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Abstract. In this paper we introduce a novel approach to discovering
emergent behaviour in multiagent simulations, using evolutionary finite
state machines to model intelligent agents in an adversarial two-player
game. Agent behaviour is modelled as a finite set of predetermined states.
The logic that leads to transitions between states is evolved to maximise
fitness, which is determined through execution in a constructive simula-
tion environment. The resultant evolved finite state machine (E-FSM) is
evaluated for two finite state machine implementations, one with states
specifically designed to perform a known behaviour and the other with
states consisting of generic actions. Our experiments demonstrate that
this approach can discover complex emergent behaviours from simple,
generic actions, and use these behaviours to achieve a position of tacti-
cal superiority in the domain of air combat simulation.
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1 Introduction

Increasingly, the military uses simulations for defence applications, such as train-
ing, concept development and experimentation, and as an alternative to live
training exercises which involve expensive aircraft and require the presence of
highly trained pilots. These simulations have incorporated intelligent agents to
model individual and team decision-making, for a variety of reasons including
the development and assessment of tactics for air combat [2]. A typical agent
has a role, such as ally or adversary, and its behaviour is traditionally scripted
by hand mapping observations to actions.

The process of scripting these behaviour models for specific simulation envi-
ronments is labour intensive, costly, requires domain expertise, and may require
the use of dedicated agent behaviour authoring tools. Any subsequent variations
to the agent behaviour require manual modifications to the existing model. In
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addition, these scripted behaviour models are limited in their ability to discover
novel behaviours.

Adaptive machine learning systems have been employed as an alternative to
human test pilots and live training exercises [13]. Smith et al. [13] argued that
this approach has numerous advantages, namely, a distilled analytical model
that captures combat simulation, eliminates bias from the pilots’ previous expe-
riences, and does not have the constraints typically associated with real-time
simulations.

Technological advances for fighter aircraft, such as stealth, advanced avionics
and weapons, electronic warfare, and increased networking capabilities, require
sophisticated tactics to be exploited effectively. As a result, there is a need for
new techniques to adequately explore fighter combat behaviour. Artificial intelli-
gence techniques, such as automated planning [8,9] and differential game theory
[7], have been employed to automate the discovery of new tactical behaviours
by optimising action selection in a close range two player air combat scenario.

In this paper, we demonstrate that the integration of evolutionary algorithms
with finite state machines provides a viable approach to tactical behaviour dis-
covery. The approach involves the evolution of a behavioural model in the form
of a finite state machine (FSM) using genetic algorithms, to produce an Evolved
Finite State Machine (E-FSM) that can automate the generation of complex
tactical behaviours in multiagent simulations.

The contributions are (1) a generalisable evolutionary approach to evolving
finite state machine transitions in multiagent simulations, and (2) the develop-
ment of a chromosome representation for evolving rules for transitions of finite
state machines.

The paper is structured as follows: A discussion of related works is first
presented in Sect. 2. Section 3 describes the air combat problem, namely the stern
conversion manoeuvre, and the corresponding stern conversion agent controller
used in this study. Our evolutionary approach is outlined in Sect. 4, followed
descriptions of the sets of experiments and associated results and discussion in
Sect. 5. Lastly, conclusions and future works are presented in Sect. 6.

2 Related Work

Existing research has explored the use of machine learning to automatically gen-
erate behaviour models incorporating techniques such as evolutionary algorithms
and dynamic scripting, in conjunction with employing FSMs or behaviour trees
as models for capturing agent behaviour.

The Smart Bandits project [11] employed machine learning techniques to
generate FSM-based behaviour models that can be used for air-to-air tactic
training. While Smart Bandits provides no adaptive capabilities, Toubman et al.
[14] incorporated dynamic scripting in their approach for developing adaptive
FSMs that can be used against opponents in air combat.

Revello [10] presented a GA-based approach for generating war game strate-
gies whereby the various ship groups demonstrated emergent behaviours, moving
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in a coordinated fashion even though there was no exchange of information in
terms of their respective movements.

Smith et al. [13] evolved a learning classifier system that produced novel one-
vs-one WVR manoeuvres in the role of a fighter pilot using the AASPEM system
as the simulator environment. The GA population consists a set of classifiers
and through an iterative process of fitness evaluation of the classifiers, selection
and genetic operations, produced several novel strategies that were subsequently
evaluated and approved by test fighter pilots.

Other researchers such as Mulgund et al. [5] and Keshi et al. [4] have applied
genetic algorithms to optimise tactical parameters in BVR involving scenarios
of many-vs-many using hierarchical encoding involving binary codes for chro-
mosome representation. Yao et al. [15] described an approach where air combat
manoeuvres are represented using behaviour trees and through grammatical evo-
lution, generates adaptive human behaviour models for BVR engagements.

While Toubman et al. [14] and others have applied evolutionary algorithms
to FSM behaviour models, those approaches relied on hand-authored tactical
behaviours. The approach presented here obviates the need for problem-specific
tactics, by evolving transitions between generic agent actions using kinematic
properties of the entities. This enables the emergence of complex behaviours
without predisposing the system towards known solutions. Unlike the approach
taken by researchers such as Smith et al. [13], by incorporating an FSM our
approach produces human-readable tactics, and allows the modelling of agent
behaviours with higher levels of complexity if required, enabling the discovery of
emergent behaviours for problem scenarios with different levels of abstraction.

3 Problem Description

The problem used to evaluate our approach is that of an aircraft that aims to
manoeuvre into a particular position of tactical superiority with respect to a
single adversary aircraft. This position is defined as being behind the adversary
and following it. In this position, the aircraft can fire on its adversary, whilst
being out of range of the adversary’s weapons.

The classical scenario that models this is the stern conversion intercept
(described by Shaw [12]), a two-player scenario where the aircraft are within
visual range and initially flying towards each other (Fig.1). Execution of the
manoeuvre as described relies on a number of tactical parameters, which are
dependent on the manoeuvring capabilities of the aircraft.

An implementation of the stern conversion manoeuvre as a finite state
machine is shown in Fig. 2, where each state represents the execution logic of a
single section or subtask of the manoeuvre. The transitions between the states,
based on various conditions defined by Shaw [12], result in a sequence that
realises the complex behaviour. A description of the states is given in Table 1.
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Fig. 1. The sequence of subtasks and tactical parameters required to execute the clas-
sical stern conversion manoeuvre.
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Fig. 2. FSM implementing the Shaw stern conversion manoeuvre.
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4 Proposed Approach

4.1 A Flexible FSM Model

Our approach to the exploration of air combat strategies employs a flexible FSM
model, where a set of states is provided as input and an evolutionary algorithm
is used to determine appropriate transition conditions so that the FSM can act
as an agent controller that achieves a particular goal. The transition conditions
in our approach are based on the kinematic properties of an aircraft and a
measure of goal achievement for the evolutionary algorithm is obtained through
agent-based simulation.

A generic FSM controller, employing n states, is shown in Fig. 3. From each
state it is possible to transition into any other state, depending on a set of
conditions. Each state corresponds to an action that is performed in that state,
such as flying an aircraft in a particular manner, and a set of conditions that are
constantly checked while in that state to determine if the FSM should transition
to another state.

The functional logic of the generic FSM is provided in Algorithm 1, where
the FSM starts in State 1. In the case where transition conditions for moving
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Table 1. States and transitions for the FSM stern conversion agent

State

Action

Transitions

(a) Pure pursuit

Point aircraft at and fly
directly towards red
aircraft

If distance to red aircraft less than
turn range and red aligned with
blue, transition to (b)

(b) Fly relative bearing

Turn by turn angle and
fly straight on that
bearing

If lateral separation between red and
blue greater than required
displacement transition to (c)

(c) Fly offset

Fly parallel to heading of
red aircraft

If distance between red and blue less

than conversion range transition to
(d). If distance between red and blue

not decreasing transition to (a)

(d) Convert

Turn to match red
heading. Approach no
closer than no closer
range

If the rear quarter intercept criteria
have been met then the maneuver
reaches the end/final state as it has
been successfully executed

into more than one state become valid, the next state is chosen probabilistically.
In its simplest form, the choice of valid transition can be random, as was done
in our experiments, or each transition can be assigned its own probability.

The key difference between the approach taken here is and a regular finite
state machine is that in this case we only assume what states the pilot agent
can be in. We don’t make any assumptions about the transition events or the
transition probabilities between states. Rather, the transitions between the pre-
determined states are evolved and hence generated dynamically. This allows
for the possibility of new tactical behaviour to emerge and to be potentially

discovered.

Algorithm 1. Functional logic for the generic FSM agent controller.

currentState = Statel; nextPossibleStatesList = empty;

loop

end
end

end

end

performAction(currentState);

for nextStateToCheck <+ 1 to n do

if transitionConditionsSatisfied(currentState, nextState ToCheck) then
‘ append nextStateToCheck to nextPossibleStatesList;

if nextPossibleStatesList not empty then
currentState = randomChoice(nextPossibleStatesList);
nextPossibleStatesList = empty;
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Transition from State 1 to State n

From State 1 to State 2

State 2 cee State n-1

From State n to State n-1

From State n to State 1

Fig. 3. A generic n-state finite state machine where each state corresponds to some
action taken by the agent. From each state, a transition can occur to any other state.
The conditions that would lead to state transitions are evolved in our approach to suit
a particular task.

TARGET
v(red)
INTERCEPTOR
a(red)
p(red) a(blue)
p(blue)
v(blue)

Fig. 4. Kinematic properties of the Red and Blue aircraft; each has a position (p),
velocity vector (v) and acceleration vector (a). (Color figure online)

4.2 Kinematic Transition Model

We base the transition conditions for the air combat domain on the kinematic
properties of the aircraft taking part in the scenario: position (p), velocity (v)
and acceleration (a). For the case of two aircraft (denoted Blue and Red), these
parameters are shown in Fig. 4. Each kinematic parameter is a vector quantity
with three Cartesian components, along the x, y and z axes.

The kinematic properties are transformed from values with reference to a
fixed world coordinate system, to a coordinate system relative to the aircraft
controlled by the FSM. This ensures that the transition parameters are rotation
and translation invariant (i.e. not specific to a particular position and orientation
in the world), and is obtained by calculating the difference vectors for each
parameter:



Discovering Emergent Agent Behaviour with Evolutionary FSMs 25

Ap = (prv Apyv Apz) = (pred — PxzBluey PyRed — PyBlues PzRed — szlue)
Av = (szca A’Uyy sz) = (vaed — UzBlue;s YyRed — VyBlue;s VzRed — szlue)

Aa = (Aa:m Aayv Aaz) = (amRed — Oz Blue; AyRed — QyBlue; @zRed — azBlue)

where Ap is the distance vector between the two aircraft, and Av and Aa are
the difference vectors between the velocity and acceleration vectors. The three
vectors are then rotated to compensate for the heading direction of the blue
aircraft. After transformation the values correspond to the position, velocity
and acceleration of the red aircraft as they would be perceived by the pilot of
the blue aircraft. The values of these transformed kinematic parameters can then
be used to determine whether a transition should take place.

A wide number of algorithmic approaches can be employed to implement the
transition conditions. We employ a simple model, checking that Ap, Av and
Aa are within a certain range of values. The minimum and maximum bounds on
the transition condition ranges are represented by a set of constants, determined
through an evolutionary approach (described in Sect.4.3). Evaluation for the
transition from a particular state i to another state j requires 18 constants since
there are three kinematic parameters (Ap, Av and Aa), each of these has three
Cartesian components (x, y and z), and each of these has both a lower and upper
bound. For an FSM with n states, in each state a total of n — 1 transitions need
to be checked, thus 18 x (n — 1) boundary checks, making the computational
complexity of the FSM transition model O(n). The storage complexity is O(n?)
as the total number of constants to be stored is:

Neonstants = 18 X (nstates - 1) X Nstates (1)

These constants are denoted by A;;, B;j, Cij, Dyj; - - - R;j. To determine if a tran-
sition from current state ¢ to next state j can be taken, the current Ap, Av and
Aa is evaluated against the bounds, as shown in Table 2.

Table 2. An example of the transition logic conditions that must all be satisfied for a
change of state from state 7 to state j. The 18 transition parameters (A to R) act as
thresholds for the relative position (Ap), velocity (Av) and acceleration (Aa) in each
transition.

Relative position | Relative velocity | Relative acceleration
Aij < Apz < Bij | Gij < Avy < Hij | Mij < Aag < Nyj
Cij < Apy < Dy | Iij < Avy < Jij | 045 < Aay < Pjj
Eij < Ap. < Fy; | Kij < Av, < Lij | Qi < Aaz < Ryj

4.3 Genetic-Based Approach to Transition Evolution

Our evolutionary approach to determining the optimal boundaries for transition
conditions is based on the genetic algorithm (GA), originally developed by Hol-
land (1992) [3]. The GA takes an initial set of candidate solutions to the problem,
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called the population. For the purposes of the algorithm, individuals are encoded
as a set of attributes, the gene, with the set of genes called a chromosome.

In our approach, the boundary constants each form a gene, with the complete
set of constants forming the chromosome. Thus for an FSM with n states, given
Eq.1, there are 18 x (n — 1) x n genes in each chromosome. The chromosome
representation is shown in Fig.5, with the constants laid out sequentially. For
the purposes of the GA, each constant is stored as a real number, normalised to
be in the range [0.0-1.0]. The values are mapped during execution to an actual
range for the kinematic parameters by considering their physical bounds, based
on mission parameters and aircraft capabilities.

Transition from State 1 to State 2 From State n-1 to State n

| : ) ™

Fig. 5. Chromosome representation for evolving FSM transitions.

5 Evaluation

5.1 Experimental Results

The evolved finite state machine (E-FSM) approach described in Sect. 4 was eval-
uated for two FSM implementations (described below), one with states specif-
ically designed to perform a known behaviour, and the other with states con-
sisting of generic actions utilised by Park et al. [7]. The scenario used for our
experiments is a two player close-range air combat engagement, as per the initial
conditions for Shaw’s stern conversion scenario described in Sect. 3.

Each implementation of the E-FSM approach is evolved against a set of
four opponent models, described in Table3. The range of permitted transition
boundary parameter values is given in Table4, chosen based on the scenario
scale and aircraft characteristics to speed up convergence by avoiding values
that in practice could not be reached. Each experiment was repeated 30 times
with different initial populations, to examine the range of solutions produced by
the non-deterministic evolution process.

Genetic Algorithm Parameters. The population is initialised by generating
a set of individuals such that each gene that corresponds to a minimum bound
has its value set to a random number in the range of [0,0.5], while each gene
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Table 3. Description of the four opponent models used to evaluate each implementation
of the E-FSM approach.

Opponent Behaviour description

Straight Line Non-reactive; flies in a straight line as per the red target aircraft in
Shaw’s stern conversion (Fig. 1)

Pure Pursuit Pursues the blue fighter using the pure pursuit behaviour described in
Table 1(a)

Shaw Attempts the classical stern conversion manoeuvre using the stern
conversion specific FSM described in Table 1, with hand-selected
transition parameters

Evolved Shaw|Attempts the stern conversion manoeuvre using the stern conversion
specific FSM described in Table 1, with transition parameters evolved
against a straight line agent

Table 4. Kinematic parameter ranges used to reduce experimental run time.

Kinematic parameter | Encoded range | Actual range

Ap [0,1] [—48152,48152] m
Av [0,1] [~1000, 1000] ms™*
Aa [0,1] [—~100, 100] ms ™2

that corresponds to a maximum bound has its gene value initialised to a random
number in the range [0.5, 1].

Evolution proceeds for a pre-determined number of generations, each of which
involves comparing the performance of individuals in the candidate population
through 5 runs in a constructive simulation environment, with a maximum sim-
ulation run-time of 250s.

The population is updated after each generation by copying a number of indi-
viduals, selected using Stochastic Universal Sampling [1], and the single most fit
candidate (the elite), into the next generation. Selected individuals are combined
using single point crossover and two point crossover [3]. Mutation is controlled
using the Gaussian mutation operator, as it is flexible enough to allow for both
fine tuning of solutions and searching of the domain. The value for a mutated
gene is calculated using the equation z = x + N(0,1) where A(0,1) is the
Gaussian Normal distribution with a mean of 0 and a standard deviation of 1.
The probability as to whether a gene undergoes mutation is associated with the
mutation probability, p,,, and this has been assigned a value of 0.1, based on
initial experimental results.

Experiments are terminated when either of the following conditions are met:
the number of generations reaches a pre-defined maximum number, or there has
been no improvement in the fitness value in the population for N consecutive
generations.
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Fitness Evaluation. In this study, the fitness of an individual is calculated from
the output of a set of runs in the constructive air combat simulator ACE Zero [6].
We base our success measure for blue on the achievement of a position of supe-
riority, defined as being behind the red agent and following it. We consider the
blue aircraft to have succeeded if during the simulation run the following criteria
have been met (illustrated in Fig. 6):

Target aircraft is within 30° of attacking aircraft nose (¢; < 30)

Attacking aircraft is within 30° of threat aircraft tail (¢o < 30)

Range to the target aircraft is between 500 and 3000 feet (500 < r < 3000)
Separation in altitude is less than 500 feet (Aa < 500)

Difference in velocity is less than 100 knots (Av < 100)

Gr o=

To calculate the fitness of a blue aircraft in a particular simulation run, we
initialise its fitness to 0 at the start of the simulation, then check each of the
six conditions at intervals of 1s of simulated time. For each condition that is
true at the particular point in time we add 1 to the fitness. Thus, the more
conditions that are true at a particular time, the higher the fitness for that time
interval. Fitness is summed across time intervals, so that a higher fitness results
the longer a condition is true.

While more criteria could be considered, for example that the above criteria
be met continuously for a long enough duration to launch a weapon, through our
experiments we confirmed that the above five criteria were sufficient to produce
valid solutions.

One simulation run results in a single fitness score. Due to the non-
determinism that is present when multiple transition conditions are satisfied,
we take the average fitness of five simulation runs and associate that with the
individual.

Problem-Specific E-FSM Results. The problem-specific E-FSM has states
hand-coded to enact the stern conversion manoeuvre as described by Shaw [12]
(Fig.2), with the original tactical-parameter-based transitions replaced by the
flexible kinematics-based model described in Sect.4. This FSM has 4 states,
resulting in a chromosome with 216 genes as per Eq.1. An initial population
of 50 individuals is evolved through a maximum of 300 generations, and the
individual with the highest fitness after termination is selected for examination.

Figure 7 illustrates exemplary results for each of the opponent types described
in Table3. Against the Straight Line opponent, the evolved problem-specific
FSM found the classical stern conversion sequence (that is, the states in Table 1
executed in order), despite having no knowledge of the tactical parameters tra-
ditionally used to execute the state transitions. Against the Pure Pursuit oppo-
nent, the agent learned to stay in the Pure Pursuit state. In the case of the Shaw
opponent, a hand-optimised stern conversion FSM, the problem-specific E-FSM
learned a novel tactic, waiting for its opponent to turn away before turning to
follow it as it passed. Against the more adept Evolved Shaw opponent, which
had itself been evolved against a Straight Line agent, the E-FSM learned to
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Fig. 6. Illustration of the criteria used to evaluate the fitness of an individual. Blue is
in a position of superiority, corresponding to a high fitness score.

counteract the behaviour of its opponent to complete the manoeuvre behind it.
In all cases, the evolutionary approach successfully found effective behaviours to
achieve a position of tactical superiority.

Generic E-FSM Results. The generic E-FSM has states based on generic
aircraft manoeuvre actions, taken from Park [7] (illustrated in Fig. 8). In previous
versions of the evolutionary finite machine, the states represented either high
level or intermediate level goals or maneuvers that the pilot agent was trying
to achieve (such as flying an offset maneuver). In this iteration described here,
break the maneuvers down even further into low level actions such as flying left
and up, level flight and right and down. These represent some of the lowest
level actions a pilot can take to control an aircraft. By assembling a sequence
of these low level aircraft control actions, a pilot can assemble a different higher
level maneuvers that will enable it to undertake to model basic fighter combat.
Through the evolution of the transitions between these low level actions—states
we can generate air combat behaviour against a maneuvering opponent without
the constraints of a pre-determined tactic such as that descrbed by Shaw [12].
Due to the generic E-FSM having 7 states, it results in a chromosome with 756
genes as per Eq. 1. As the chromosome size is much larger than for the problem-
specific E-FSM, resulting in a larger search space, more extensive exploration
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Fig. 7. Example traces for the problem-specific E-FSM against red opponents (clock-
wise from top left): Straight Line, Shaw, Evolved Shaw, Pure Pursuit. (Color figure
online)

was enabled through a larger population of 100, and by increasing the maximum
number of generations to 1000. The large size of the chromosome also led us
to lower mutation probability to 0.001 and use two-point crossover to prevent
excessive modification between generations.

Figure 9 illustrates exemplary results for each of the opponent types described
in Table3. Against the Straight Line opponent, the generic E-FSM found an
effective set of transitions between the generic manoeuvre states to approximate
the classical stern conversion sequence, although with a lower average fitness
score than the problem-specific E-FSM (which has states specifically designed
for this opponent). Against the Pure Pursuit opponent, the agent learned a
behaviour that approximated the hand-coded pure pursuit behaviour of the
problem-specific FSM, continually transitioning between basic manoeuvres to
follow its opponent. The pursuit behaviour discovered by the generic E-FSM
achieved a higher fitness than the hand-coded Pure Pursuit state, suggesting
that the agent had found a superior tactic (most likely the more efficient lead
pursuit). In the case of the Shaw opponent, the generic E-FSM learned a sim-
ilar strategy to the problem-specific E-FSM, waiting for its opponent to turn
away before turning to follow it. Against the more adept Evolved Shaw oppo-
nent, the generic E-FSM achieved significantly improved performance over the
problem-specific E-FSM, discovering a novel tactic (drawing its opponent into a
turn before looping around behind it) that was not found when the hand-coded,
stern conversion specific states were used. In all cases apart from the straight line
opponent, the generic E-FSM attained significantly higher fitness scores than the
problem-specific E-FSM.
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Fig. 8. Representation of the states in the Generic E-FSM, where each state represents
a low level aircraft control. The arrows above each state indicate that the E-FSM can
evolve to transition to any possible state.

Fig. 9. Example traces for the generic E-FSM against red opponents (clockwise from
top left): Straight Line, Shaw, Evolved Shaw, Pure Pursuit. (Color figure online)
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5.2 Discussion

In comparison to traditional approaches such as the hand-coded state transi-
tion logic described in Sect. 3, where the transitions are specific to the problem
and must be determined by the analyst for each combination of aircraft, the
kinematic approach was able to discover a sequence of transitions to enact a
successful rear-quarter intercept without prior knowledge of the flight charac-
teristics of either aircraft. In addition, the generic E-FSM was able to generate
complex emergent behaviours, such as pursuit and drawing the opponent into
an advantageous position, from simple aircraft flight control actions.

The experiments highlight a number of interesting properties of using an
evolutionary approach to optimise tactical behaviour, primarily the impact of
the particular fitness function chosen, and the relationship between the level of
complexity of the FSM states and the novelty of discovered behaviours.

Impact of the Fitness Function. The fitness function used in our exper-
iments was based purely on the desired final outcome (Fig.6), calculated by
aggregating points associated with five criteria at 1s intervals and summed over
a period of 250s of simulation time. Since the objective is to maximise the fit-
ness function, the evolved model is naturally biased towards solutions that avoid
any intermediate manoeuvres that reduce fitness, although these may subse-
quently be helpful in better achieving the final goal. For example, when evolving
the problem-specific E-FSM against a straight line opponent, the classical stern
conversion manoeuvre (Fig. 1) achieves a rear-quarter intercept faster than the
greedy behaviour of remaining in the Pure Pursuit state. However, the stern
conversion manoeuvre begins with a turn away from the opponent, resulting in
an initial loss of fitness. In comparison, a solution where the blue aircraft points
continuously at its opponent over the same time period (pure pursuit) will be
ranked higher in fitness initially, despite ultimately taking longer to achieve the
rear-quarter intercept. As a result, it is important to develop the fitness func-
tion carefully to avoid biasing discovered behaviours in this way, and to allow
sufficient evolution time for manoeuvres with lower initial fitness to be found.

Transitional Complexity of Solutions. A factor in finding an effective set
of transition conditions for the FSM is the number of transitions that need to
be made to reach an optimal solution. The evolutionary process favours solu-
tions with lower transitional complexity. For example, performing the prescribed
stern conversion manoeuvre depends on the problem-specific E-FSM executing
four states at the right time and in the right order, requiring the correct evo-
lution of up to 216 transition condition parameters. On the other hand, the
Pure Pursuit state provides a relatively strong solution on its own. This means
that solutions that involve staying in the Pure Pursuit state have a very low
transitional complexity, and require the correct optimisation of fewer transition
condition parameters (none if the FSM starts in the Pure Pursuit state). As a
result, sufficient exploration should be enabled during evolution to search the
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solution space, so that more complex manoeuvres can be found. The more com-
plex a manoeuvre, in terms of the number and sequence of transitions that need
to occur, the longer it can be expected to take to evolve.

State Complexity and Solution Novelty. It is observed from the experimen-
tal results that, when implementing the E-FSM approach, the use of more com-
plex, problem-specific states predisposes the evolutionary search toward known
solutions, while the use of simpler states produces more novel solutions (although
at a computational cost). While the problem-specific E-FSM often converged to
a solution within 20 generations, it did so in many cases by settling quickly on a
sub-optimal solution, such as staying in the Pure Pursuit state (which is able to
achieve the final goal on its own). In contrast, the states of the generic E-FSM
correspond to simple directional changes for the aircraft, so evolving a novel
sequence of state transitions is the only way to achieve the target goal without
an initial workable solution.

6 Conclusion

We have demonstrated an effective approach to discovering emergent tactical
behaviours, using the combination of evolutionary algorithms with finite state
machines in the context of adversarial air combat. The incorporation of FSMs
produces human-readable tactics, and enables the modelling of agent behaviour
at varying levels of complexity, avoiding the predisposition towards known solu-
tions that results from hand-coding behaviours, while enabling the modelling of
actions at higher levels of abstraction as required.

It was found that there is a strong relationship between the complexity of
the FSM states, the time taken to find an effective solution, and the novelty of
discovered behaviours. For example, a generic FSM, with simple states represent-
ing low-level aircraft directional changes, took many more generations to find
an optimal solution than a problem-specific FSM, whose more complex states
were hand-coded for the specific scenario. However, the generic FSM achieved
superior performance when evolved against reactive opponents, and discovered
novel tactics that were not seen when using problem-specific states.

Future work will involve scaling the approach presented here to more complex
scenarios involving teams of agents employing beyond visual range sensors and
weapons (requiring more sophisticated transition conditions than the kinematic
parameters used to determine state transitions in this study), and the integration
of co-evolutionary methods.
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