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Abstract. In a multi-objective game, each individual’s payoff is a
vector-valued function of everyone’s actions. Under such vectorial pay-
offs, Pareto-efficiency is used to formulate each individual’s best-response
condition, inducing Pareto-Nash equilibria as the fundamental solution
concept. In this work, we follow a classical game-theoretic agenda to
study equilibria. Firstly, we show in several ways that numerous pure-
strategy Pareto-Nash equilibria exist. Secondly, we propose a more con-
sistent extension to mixed-strategy equilibria. Thirdly, we introduce a
measurement of the efficiency of multiple objectives games, which pur-
pose is to keep the information on each objective: the multi-objective
coordination ratio. Finally, we provide algorithms that compute Pareto-
Nash equilibria and that compute or approximate the multi-objective
coordination ratio.
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1 Introduction

Game theory and microeconomics assume that individuals evaluate outcomes
into scalars. However, bounded rationality can hardly be modeled consistently
by agents simply comparing scalars: “The classical theory does not tolerate the
incomparability of oranges and apples” [25]. Money is another case of scalariza-
tion of the values of outcomes. For instance, while ‘making money’ theoretically
creates value [26], the tobacco industry making money and killing approximately
six million people every year [31] is hardly a creation of value1.

In this work, we assume that agents evaluate outcomes over a finite set of dis-
tinct objectives2; hence, agents have vectorial payoffs. For instance, in the case
of tobacco consumers, this slightly more informative model would keep the infor-
mation on these three objectives [4]: smoking pleasure, cigarette cost and conse-
quences on life expectancy. In literature, this model was called games with vecto-
rial payoffs, multi-objective games or multi-criteria games; and several applica-
tions were considered (see e.g. [30,32]). Indeed, behaviors are less assumptively
1 Tobacco consumers are free to value and choose cigarettes how it pleases them.

However, is value the same when they inhale, as when they die suffocating?
2 It is a backtrack from the subjective theory of value, which typically aggregates

values on each objective/commodity into a single scalar by using an utility function.
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modeled by a partial preference: the Pareto-dominance. Using Pareto-efficiency
in place of best-response condition induces Pareto-Nash (PN) equilibria as the
solution concept for stability, without even assuming that individuals combine
the objectives in a precise manner. Pareto-Nash equilibria encompass the out-
comes, even under unknown, uncertain or inconsistent preferences.

This paper more particularly addresses two unexplored issues.
(1) The algorithmic aspects of multi-objective games have never been studied.
(2) Also, the efficiency of Pareto-Nash equilibria has never been a concern.

Related Literature on Mixed-Strategies and Similar Strategy Spaces. Games with
vectorial payoffs, or multi-objective games, were firstly introduced in the late
fifties by Blackwell and Shapley [1,24]. The former shows the existence of a
mixed-strategy Pareto-Nash equilibrium in finite two-player zero-sum multi-
objective games. The later generalizes this existence result to finite multi-
objective games. Both use a definition of mixed-strategy Pareto-Nash equilib-
ria that suffers an inconsistency: pure-strategy Pareto-Nash equilibria are not
included in the set of mixed-strategy Nash equilibria (see Sect. 4). Nonetheless,
there is an established literature on games with vector payoffs that uses this
definition. Deep formal works generalized known existence results [24] to indi-
vidual action-sets being compact convex subsets of a normed space [29]. Weak
Pareto-Nash equilibria can be approximated [16].

Works Related to Pure Strategies and Algorithms. [30] achieves to character-
ize the entire set of Pareto-Nash equilibria by mean of augmented Tchebycheff
norms. However, the number of dimensions that parameterize these Tchebycheff
norms is algorithmically prohibitive. [20] shows that a MO potential function
guarantees that a Pareto-Nash equilibrium exists in finite MO games.

In Sect. 3, we show in three different settings that pure-strategy Pareto-Nash
equilibria are guaranteed to exist, or very likely to be numerous. In Sect. 4, we
show an inconsistency in the current concept of mixed-strategy PN equilibrium,
and propose an extension to solve this flaw. In Sect. 5, in the fashion of the
price of anarchy [14], we define a measurement of the worst-case efficiency of
individualistic behaviors in games, compared to the optimum. In the multi-
objective case, it is far from trivial, as worst-case equilibria and optima are
not uniquely defined. In Sect. 6, we show how to compute the set of (worst)
pure-strategy Pareto-Nash equilibria for several game structures, and provide
algorithms to compute and approximate our multi-objective coordination ratio3.

2 Preliminaries

Definition 1. A multi-objective game (MO game, or MOG) is defined by the
following tuple

(
N, {Ai}i∈N ,D, {ui}i∈N

)
:

– The agents set is N = {1, . . . , n}. Agent i decides action ai in action-set Ai.

3 All the proofs are in the long paper on arxiv.
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– The shared list of objectives is denoted by D = {1, . . . , d} and every agent
i ∈ N gets her payoff from function ui : A = A1 × . . .×An → R

d which maps
every overall action to a vector-valued payoff; e.g., real ui

k(a) is the payoff of
agent i on objective k for action-profile a = (a1, . . . , an).

Fig. 1. Didactic toy example in Ocean Shores city.

In the subjective theory of value, every individual evaluates her endowment
(ui

1, . . . , u
i
d) however she wants based on an utility function vi : Rd → R. The

theory of multi-objective games [1,24] aims at allowing for individuals that
behave according to several unknown, uncertain, or inconsistent utility functions.
These utility functions are reduced to their common denominator: the Pareto-
dominance, as defined below. That vector y ∈ R

d weakly-Pareto-dominates and
respectively Pareto-dominates vector x ∈ R

d is denoted and defined by:

y � x ⇔ ∀k ∈ D, yk ≥ xk,

y � x ⇔ ∀k ∈ D, yk ≥ xk and ∃k ∈ D, yk > xk.

For the preferences of individuals, given an adversary action-profile
a−i = (aj | j 	= i), this defines a partial rationality on set
ui(Ai,a−i) = {ui(bi,a−i) | bi ∈ Ai}, which is less assumptive than complete
orders, since it does not presume any individual utility function vi : Rd → R.
Formally, given a finite set of vectors X ⊆ R

d, the set of Pareto-efficient vectors
is defined as the following set of non-Pareto-dominated vectors:

EFF[X] = {y ∈ X | ∀x ∈ X, not (x � y)}.

Since Pareto-dominance is a partial order, it induces a multiplicity of Pareto-
efficient vectors. These are the best compromises between objectives. Similarly,
let WST[X] = {y ∈ X|∀x ∈ X,not(y � x)} denote the worst vectors.

In a multi-objective game, individuals behave according to the Pareto -
dominance, inducing the solution concept Pareto-Nash equilibrium (PN), for-
mally defined as any action-profile a ∈ A such that for every agent i ∈ N :

ui(ai,a−i) ∈ EFF
[ {ui(bi,a−i) | bi ∈ Ai} ]

.
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We call these conditions Pareto-efficient responses. Let PN ⊆ A denote the set
of Pareto-Nash equilibria. For instance, in Fig. 1, action-profile (b1, b2, a3, b4, b5)
is a PN equilibrium, since each action, given the adversary local action profile
(column), is Pareto-efficient among the given agent’s two actions (rows). In this
example, there are 13 Pareto-Nash equilibria (depicted in Fig. 2).

Such an encompassing solution concept provides the first phase for bound-
ing the efficiency of games. It is well-known that individualistic behaviors
can be far from the optimum/maximum in terms of utilitarian evaluation
u(a) =

∑
i∈N ui(a). In single-objective games4, this inefficiency is measured by

the Coordination Ratio CR = min[u(PN)]
max[u(A)] [14], which is more commonly known

as the Price of Anarchy [23]. However, in the multi-objective case, the utilitar-
ian social welfare u(a) =

∑
i∈N ui(a) is a vector-valued function u : A → R

d

with respect to d objectives. To study the efficiency of Pareto-Nash equilibria,
we introduce:

– set of equilibria outcomes E = u(PN) (⊂ R
d),

– set of efficient outcomes F = EFF[u(A)] (⊂ R
d).

The utilitarian outcomes are a set of vectors, de-
picted above. Worst case equilibria and optima
are not uniquely defined. The ratio of set of equi-
libria outcomes E (♦) to set of efficient outcomes
F (×) would be a ratio of sets, which remains
undefined. It would be crucial that such a defini-
tion keeps information for every objective. E.g.,
we want to remember that a car pollutes, or that
a cigarette kills, not just that it makes some eco-
nomic agents happy.

Fig. 2. Biobjective set of utilitarian outcomes u(A) ⊂ R
2 in Ocean Shores.

3 Numerous Pure Strategy Pareto-Nash Equilibria Exist

This section demonstrates the existence of pure strategy Pareto-Nash equilibria.
Firstly, we write how the existence results from single-objective (SO) games can
be retrieved in MO games. Secondly, we generalize the equilibria existence results
of single-objective potential games to multi-objective potential games. Thirdly,
we show that on average, numerous Pareto-Nash equilibria exist.

4 In the single-objective case, Pareto-Nash and Nash equilibria coincide.
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3.1 Reductions from MO Games to SO Games

In the literature, most rationalities are constructed by means of a utility function
vi : Rd → R, which is monotonic with respect to the Pareto-dominance, that is:

x � y ⇒ vi(x) > vi(y)

Such functions are called Pareto-monotonic. For instance, these include posi-
tive weighted sums, Cobb-Douglas utilities, and utility functions in general as
assumed by the Arrow-Debreu theorem.

A straightforward consequence is that the set of Pareto-efficient vectors con-
tains the optima of any Pareto-monotonic utility function. Formally, given a
MOG Γ , from Pareto-monotonic utility functions V = (vi : R

d → R|i ∈ N)
the single-objective game V ◦ Γ = (N, {Ai}i∈N , {vi ◦ ui}i∈N ) results from the
given utilities, and one has: PN(V ◦ Γ ) ⊆ PN(Γ ). In other words, Pareto-Nash
equilibria encompass the game’s outcome, regardless of the unknown preferences.

Also, inclusion PN(V ◦ Γ ) ⊆ PN(Γ ) argues for the guaranteed existence of
numerous PN equilibria in MO games, under the following assumptions:

1. the structure of the SO game on every objective is the same,
2. equilibria are guaranteed in that structure of SO game,
3. and a positive linear combination of the MO game induces that SO game.

This remark is the canonical argument used in previous results (e.g. [20,24]).

3.2 Multi-objective Potentials

We now explore potential games, as introduced for congestion games by Robert
Rosenthal [15,22] and recently generalized to MO games [20]. The existence of
an MO potential function guarantees that at least one Pareto-Nash equilibrium
exists [20]. We go further and completely characterize the set of PN equilibria.

Definition 2. An MO game Γ =
(
N, {Ai}i∈N ,D, {ui}i∈N

)
admits (exact)

potential function Φ : A → R
d if and only if for every action-profile a ∈ A,

for every agent i ∈ N and for every action bi ∈ Ai, one has:

∀k ∈ D, Φk(bi,a−i) − Φk(a) = ui
k(bi,a−i) − ui

k(a).

That is, function Φ additively accumulates the vectorial values of each deviation.

Definition 3. Given a vector valued function Φ : A → R
d, let the set of locally

efficient action-profiles LOC(Φ) be the set of action-profiles a ∈ A such that:

Φ(a) ∈ EFF[{Φ(bi,a−i) ∈ R
d | i ∈ N, bi ∈ Ai}].

Set LOC(Φ) corresponds to a generalization of local optima for function Φ, and is
non-empty if sets N , D and A are finite. Moreover, due to the loose requirement
for local efficiency, set LOC(Φ) is likely to contain numerous action-profiles.
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Theorem 1. Let Γ =
(
N, {Ai}i∈N ,D, {ui}i∈N

)
be a finite multi-objective

game5 that admits potential function Φ. Then, it holds that:

PN(Γ ) = LOC(Φ) 	= ∅.

This theorem completely characterizes the set of Pareto-Nash equilibria as the
set of locally efficient action-profiles for function Φ, which is a non-empty set
with numerous action-profiles. More generally, Theorem 1 also holds when sets
N and D are finite and sets Ai are just compact.

3.3 Likelihood of Equilibrium in Random Games

Another manner to study whether a PN-equilibrium exists is to provide a prob-
ability distribution on a family of finite games and then discuss the probability
of PN-equilibrium existence. A similar methodology was successfully applied
[7,9,21] to SO games in several settings where every SO payoff ui(a) is inde-
pendently and identically distributed by a uniform distribution on continuous
intervals [0, 1]. At the heart of this subsection, let random variable Z denote the
number of pure Nash-equilibria action-profiles in the game. In the SO case, there
is almost surely only one best response. However, when considering MO games, a
main technical difference lies in the average number of “best responses” (or here,
Pareto-efficient responses), which in most cases exceeds 1, due to the surface-
like shape of the Pareto-efficient set in R

d, surface which is (d − 1) dimensional.
Here, we assume a probability distribution Pn,α,β , that builds randomly the
Pareto-efficient response tables of an n-agent normal form game with α actions-
per-agent: for every agent i and every adversary action-profile a−i ∈ ∏

j �=i Aj ,
there is a fixed number β : 1 < β ≤ α of Pareto-efficient responses, for the sake
of simplicity.

Theorem 2. Given numbers n ≥ 2 of agents, α ≥ 2 of actions-per-agent and
β ≤ α of Pareto-efficient responses, based on probability distribution Pn,α,β, the
number Z of Pareto-Nash equilibria satisfies E[Z] = βn and:

P ((1 − γ)βn ≤ Z ≤ (1 + γ)βn) ≥ 1 − 1
γ2βn

, ∀γ ∈ (0, 1).

It argues for the existence of numerous Pareto-Nash equilibria when there
are enough agents and efficient responses, and follows from the Bienaymé-
Tchebychev inequality. For instance, (given γ = 1/2) the probability that the
number of Pareto-Nash equilibria Z is between (1/2)βn and (3/2)βn, is at
least 1 − 4β−n, which for β = 2 efficient responses and n = 5 agents, gives
P(16 ≤ Z ≤ 48) ≥ 7/8.

5 In a finite multi-objective game, sets N , {Ai}i∈N and D are finite.
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4 Consistent Extension to Mixed Strategies

To guarantee equilibrium existence by means of fixed-point theorems on compact
sets [17,27], the finite action sets of every agent are expanded to include mixed
strategies. That is: every agent i decides a probability distribution pi in the set
Δ(Ai) of probability distributions over his action-set Ai. Each payoff function
ui is redefined to be the expected utility

ui(p) = Ea∼p [ui(a)],

under the mixed-strategy profile p = (p1, . . . , pn) ∈ ∏
i∈N Δ(Ai). This defines a

mixed-extension of the original game. The stability concept induced is called a
mixed-strategy Nash equilibrium.

In MOGs, Pareto-Nash equilibria based on their original definition by Black-
well [1] and Shapley [24] (below) are those usually considered [2,5,28,32].

Definition 4. Given finite MO game Γ =
(
N, {Ai}i∈N , {D}, {ui}i∈N

)
, a

mixed-strategy profile p = (p1, . . . , pn) ∈ ∏
i∈N Δ(Ai) is a mixed-strategy

Pareto-Nash equilibrium if and only if it satisfies for every agent i:

ui(pi,p−i) ∈ EFF
[{

ui(qi,p−i) ∈ R
d | qi ∈ Δ(Ai)

}]

The rational behind this first definition is the following. For every agent
i, mixed-strategy pi ∈ Δ(Ai) acts as a convex-combination of set of vectorial
payoffs ui(Ai,p−i) and the best-response condition is replaced by the fact that
mixed-strategy pi should have a Pareto-efficient evaluation ui(pi,p−i) among
the elements of this convex set of evaluations {ui(qi,p−i) ∈ R

d | qi ∈ Δ(Ai)}.
That is, a mixed-strategy Pareto-Nash equilibrium is a pure-strategy Pareto-
Nash equilibrium in finite game Γ ’s mixed extension. However, as depicted in
Fig. 3, Definition 1 fails to fulfill two fundamental requirements:

1. Pure-strategy equilibria must be included in mixed-strategy equilibria.
2. Mixed-strategies also enable to model a risk-averse agent.

Proof. Figure 3 demonstrates these side effects.

To fulfill the two requirements, instead of efficient mixed actions, we consider
mixtures of efficient pure-actions. As in Fig. 3, it corrects both side effects.

Definition 5. Given a finite multi-objective game
(
N, {Ai}i∈N , {D}, {ui}i∈N

)
,

a mixed-strategy Pareto-Nash equilibrium is a mixed-strategy profile
p = (p1, . . . , pn) ∈ ∏

i∈N Δ(Ai), such that for every agent i and action ai ∈ Ai

if ai is played with positive probability pi(ai) > 0, then it holds that

ui(ai,p−i) ∈ EFF
[
ui(Ai,p−i)

]
.

This generalized definition connects in the single-objective case to a less
know definition of Nash-equilibria (see [18], p. 30, Theorem 2.1). In this alter-
native definition, each mixed strategy must be a mixture of pure-strategies that
are best-responses. In other words, the support of each mixed strategy must
be included in the set of pure-strategy best-responses. Furthermore, concern-
ing existence, since this revised definition contains the former one, (which is
guaranteed to exist) the new definition is guaranteed to exist too.
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The three outcomes, u(A) = {(1, 4), (2, 2), (4, 1)},
are depicted by black dots. With Def. 4, since
the mixed outcomes are all convex-combinations
of {(1, 4), (2, 2), (4, 1)}, the Pareto-efficient mixed-
strategies are here the convex-combinations of
{(1, 4), (4, 1)}; and outcome (2, 2) is Pareto-
dominated. Not every pure-strategy Pareto-Nash
equilibrium is a mixed-strategy one, which is a severe
inconsistency. Furthermore, since outcome (2, 2) is
well balanced, it may also be decided with a non-null
probability, e.g., if the agent’s utility is concave [6],
or if she is risk-averse [21]. Our revised definition
considers instead all the convex-combinations of the
Pareto-efficient pure actions {(1, 4), (2, 2), (4, 1)}.

Fig. 3. Single-agent three-actions bi-objective game showing inconsistencies. (The coor-
dinates correspond to the bi-objective valuation (u1, u2).)

5 Multi-objective Coordination Ratio

In the single-objective case, the coordination ratio measures the efficiency loss
of equilibria compared to the optimum. In MO games, we claim that it is critical
to study efficiency with respect to every objective. Even after the actions, the
game analyst still has access to the vectorial payoffs. In this section, we follow the
agenda outlined in the introduction, to define a multi-objective coordination ratio
MO-CR[E ,F ] of the set of equilibria outcomes E to the set of efficient outcomes
F , that fills the critical purpose to keep information on each objective.

First, we state the list of desirable properties that we want the ratio to satisfy.
For the purpose of having meaningful divisions and ratios, some vectors are
positive in this section. Given vectors ρ,y ∈ R

d and z ∈ R
d
+, vector ρ � y ∈ R

d

is defined by ∀k ∈ D, (ρ � y)k = ρkyk. Vector y/z ∈ R
d is defined by ∀k ∈

D, (y/z)k = yk/zk. Given vector r ∈ R
d and set of vectors Y , set r�Y is defined

by {r �y ∈ R
d
+|y ∈ Y } and for r ∈ R

d
+, set Y/r is defined by {y/r ∈ R

d|y ∈ Y }.
Given x ∈ R

d, cone C(x) denotes {y ∈ R
d | x � y}, and given X ⊂ R

d, cone-
union C(X) is defined by ∪x∈XC(x). Vector 0 denotes a vector with d zeros, and
1 denotes a vector with d ones.

The first property that we require from MO-CR[E ,F ] is to be on a multi-
objective ratio scale. Given E ,F ⊂ R

d
+ and r ∈ R

d
+, the following shall hold.

MO-CR[E ,F ] ⊆ R
d (1)

MO-CR[{0},F ] = {0} (2)
MO-CR[r � E ,F ] = r � MO-CR[E ,F ] (3)
MO-CR[E , r � F ] = MO-CR[E ,F ]/r (4)

E ⊆ F ⇔ 1 ∈ MO-CR[E ,F ] (5)
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To fix these ideas one can think of d = 1 and given two positive numbers e, f ,
to the properties of ratio e/f . Equation (1) states that MO-CR is expressed in
a multi-objective space. Equations (2), (3) and (4) state that MO-CR is well-
centered and sensitive on each objective to multiplications of outcomes, which is
what we want. For instance, if E is three times better on objective k, then so is
MO-CR. If there are two times more efficient opportunities in F on objective k′,
then MO-CR is one half on objective k′. In other words, the efficiency of each
objective independently reflects on MO-CR in a ratio-scale. Equation (5) states
that if all equilibria outcomes are efficient (i.e. E ⊆ F), then this amounts to
1 ∈ MO-CR[E ,F ], i.e. the MO game is fully efficient.

These requirements rule out a set of first ideas. For instance, we can rule
out comparisons of equilibria outcomes to ideal vector I = (maxz∈F{zk}|k ∈ D)
does not satisfy requirement (5) to have 1 ∈ MO-CR[E ,F ] when E ⊆ F . By
starting from a social welfare f : Rd

+ → R+, taking ratio min f(E)/max f(F),
induces the same problem.

This measurement should also be non-dictatorial, in the sense that no point
of view should be imposed on what the overall efficiency is: no prior choice must
be done on the set of efficient outcomes. Formally, if two sets of efficient out-
comes F ,F ′ ⊂ R

d
+ differ even slightly, then this must reflect at least for some

numerator set E onto ratio MO-CR[E ,F ]. This amounts to a disjunction on effi-
cient outcomes. Finally MO-CR[E ,F ] must provide guaranteed efficiency ratios
that hold for every equilibrium outcome y ∈ E , which amounts to a conjunction
on equilibria outcomes. The definition below follows from these requirements.

Firstly, the efficiency of one equilibrium y ∈ E is quantified without prior
choices on what efficient outcome should we compare it to, as required:

R[y,F ] =
⋃

z∈F
C(y/z),

The idea is that we do not take sides with any efficient outcome. Instead, we
define with flexibility and without a dictatorship a disjunctive set of guaranteed
efficiency ratios, which lets the differences between two sets of efficient outcomes
F ,F ′ ⊂ R

d
+ reflect onto ratio MO-CR[E ,F ].

Secondly, in MOGs, on average, there are many Pareto-Nash equilibria. An
efficiency guarantee ρ ∈ R

d should hold for every equilibrium outcome. It induces
this conjunctive definition of the set of guaranteed vectorial ratios:

R[E ,F ] =
⋂

y∈E
R[y,F ].

In fact, because of the conjunction on equilibria outcomes, the set R[E ,F ]
only depends on sets WST[E ] (instead of set E) and F .

Finally, if two bounds on efficiencies ρ and ρ′ are such that ρ � ρ′ (e.g. the
former guarantees fraction ρ = (0.75, 0.75) of efficiency and the later fraction
ρ′ = (0.5, 0.5)), then ρ′ brings no more information; hence, MO-CR is defined
using EFF on the guaranteed efficiency ratios R[WST[E ],F ]. These points are
summed up in the following definition:
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Definition 6 (MO-CR). Given an MO game, vector ρ ∈ R
d bounds its inef-

ficiency (i.e. ρ ∈ R[E ,F ]) if and only if the following holds (see Fig. 4):

∀y ∈ E , ∃z ∈ F , y/z � ρ.

The multi-objective coordination ratio MO-CR[E ,F ] is then defined as:

MO-CR[E ,F ] = EFF[R[WST[E ],F ]].

u2

E = u(PN)

u(A)

u1

ρ � F

The multi-objective coordination ratio can be
explained by the implications of a vectorial ratio
ρ ∈ MO-CR: for each vector y ∈ E , an efficient
outcome z(y) ∈ F exists such that y Pareto-
dominates vector ρ � z(y). In other words, equi-
libria outcomes E are at least as good as set of
vectors ρ�F : If ρ ∈ R[E , F ], then every equilib-
rium satisfies the ratio of efficiency ρ in an un-
specified manner. In other words, the equilibria
outcomes are contained in the “at least as good
as ρ �F” cone-union, that is: E ⊆ (ρ �F)+R

d
+.

Moreover, since ρ is tight, set E sticks to ρ � F .

Fig. 4. Didactic depiction of a guaranteed vectorial ratio ρ from MO-CR[E , F ].

The most famous results of the coordination ratio (or price of anarchy) are
stated analytically on families of games, for instance on congestion games [3,23].
Such results would also be desirable in the multi-objective case. However, the
underlying proofs do not survive this generalization: while best response inequal-
ities can be summed in single-objective cases, here, non-Pareto-dominances can-
not. This issue is independent of the chosen efficiency measurement and moti-
vates numerical approaches, as proposed in the next section.

6 Computation

In this section, we provide algorithms for computing the set of pure-strategy
Pareto-Nash equilibria and for computing the multi-objective coordination ratio.

6.1 Computing Pure-Strategy Pareto-Nash Equilibria

If the MO game is given in normal form, then it is made of the MO payoffs
of every agent i ∈ N on every action-profile a ∈ A. Since there are nαn such
vectors, where recall that n is the number of agents, α the number of actions per
agent and d the number of objectives, the length of this input is L(n) = nαnd.
Then, enumeration of the action-profiles works efficiently with respect to length
function L, using a simple argument similar to [11].



220 A. Ismaili

Theorem 3. Given a MO game in normal form, computing the set of the best
(resp. worst) equilibria outcomes EFF[E ] (resp. WST[E ]) takes polynomial time

O(nαn+1d + α2nd) = O(L2).

Moreover, if d = 2, this complexity is lowered to quasi-linear-time

O(nαn log2(α)) = O(L log2(α)).

Graphical games provide compact representations of massive multi-agent
games when the payoff functions of the agents only depend on a local sub-
set of the agents [13]. Graphical games can be generalized in a straightfor-
ward manner to assuming vectorial payoffs. Formally, there is a support graph
G = (N,E) where each vertex represents an agent, and an agent i’s evaluation
function only depends on the actions of the agents in his inner-neighbourhood
N (i) = {j ∈ N |(j, i) ∈ E}. That is ui : AN (i) → R

d maps each local action-
profile aN (i) ∈ AN (i) to a multi-objective payoff ui(aN (i)) ∈ R

d.

Definition 7 (Multi-objective graphical game (MOGG)). An MOGG is
a tuple

(
G = (N,E), {Ai}i∈N ,D, {ui}i∈N

)
. N is the set of agents. {Ai}i∈N are

their individual action-sets. D is the set of all objectives. Every function ui :
AN (i) → R

d is vector-valued, and its scope is vertex i’s neighborhood.

Figure 1 pictures a didactic instance of an MOGG. In the same manner as com-
puting equilibria in graphical games was reduced to junction-tree algorithms
[6], it is also possible to exploit a generalized MO junction-tree algorithm [8,10].
However, even though this MO junction-tree algorithm is not in polynomial time
(but rather pseudo-polynomial time), it still remains faster than browsing the
Cartesian product of action-sets and is tractable on average, as experimented in
the appendix. Symmetric games [12] can also be generalized to MOGs:

Definition 8. In a multi-objective symmetric game, individual payoffs are not
impacted by the agents’ identities. There is one sole action-set A∗ for every agent
i. So, when deciding action a∗ ∈ A∗, the multi-objective reward only depends
on the number of agents that decided every action. Consequently, the game is
not specified for every action-profile a ∈ A =

∏
i∈N A∗ and every agent i, but

rather for every action a∗ ∈ A∗ and every configuration c : A∗ → N, where
number c(a∗) ∈ N indicates the number of agents deciding action a∗. Therefore,
the utility is given by a function u∗ such that u∗(a∗, c) ∈ R

d is the payoff for
deciding action a∗ when configuration c occurs.

There is a number
(
n+α−1

α−1

)
of configurations6 to which the MO symmetric game

associates MO vectors. As a consequence, generalizing to vectorial payoffs, the
representation length is L = α

(
n+α−1

α−1

)
d, and when the numbers α and d are fixed

constant, length is L(n) ∈ Θ (αnαd). Quite simply, for computing E , EFF[E ] and
WST[E ], configurations enumeration already takes polynomial time.
6 To enumerate the number of ways to distribute number n of symmetric agents into

α parts, one enumerates the ways to choose α−1 “separators” in n+α−1 elements.
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Theorem 4. Given a multi-objective symmetric game with fixed α,

– computing PN and E takes time O(nαα2d) = O(Lα);
– computing EFF[E ] and WST[E ] takes time O(n2αd) = O(L2). If d = 2, this

lowers to O(L(α + log(L))).

6.2 Computing MO-CR

In this subsection, we address the problem of computing the set MO-CR[E ,F ],
given sets of worst equilibria outcomes WST[E ] and efficient outcomes F . Algo-
rithm 1 (below) computes such set. In the algorithm, set Dt denotes a set of
vectors. Given two vectors, x,y ∈ R

d
+, let x ∧ y denote the vector defined

by ∀k ∈ D, (x ∧ y)k = min{xk, yk}, let xy ∈ R
d
+ be the vector defined by

∀k ∈ D, (xy )k = (xk)yk , and recall that ∀k ∈ D, (x/y)k = xk/yk.

Input: WST[E ] = {y1, . . . , yq} and F = {z1, . . . , zm}
Output: MO-CR = EFF[R[WST[E ], F ]]

create D1 ← {y1/z ∈ R
d
+ | z ∈ F}

for t = 2, . . . , q do
Dt ← EFF[{ρ ∧ (yt/z) | ρ ∈ Dt−1, z ∈ F}]

end
return Dq

Algorithm 1: Computing MO-CR in polynomial-time

Theorem 5. Algorithm1 outputs MO-CR[E ,F ] in poly-time O((qm)2d−1d),
where q = |WST[E ]| and m = |F| denote the size of the inputs, and d is fixed.

Proof. Algorithm 1 calculates product ∩y∈WST[E] ∪z∈F C(y/z), where there
could be mq terms in the output. This set-algebra of cone-unions is compact.

A decisive corollary is that given an MO game with length L that satisfies q =
O(poly(L)), m = O(poly(L)) and both sets WST[E ] and F are computable in
time O(poly(L)), then one can compute MO-CR in polynomial time O(poly(L)).
For instance, it is the case with MO normal forms or MO symmetric games. So
this approach is not intractable in the most basic cases.

6.3 Approximation of the MO-CR for MO Compact
Representations

Unfortunately, Algorithm1 is not practical when the MO game has a compact
form and cardinalities q,m are exponentials with respect to the compact size
of the game’s representation. For instance, this is the case for multi-objective
graphical games. Theorem 6 below answers this issue by taking only a small
and approximate representation of sets WST[E ] and F , in order to output a
guaranteed approximation of sets MO-CR or R[WST[E ],F ]. This suggests the
following general method:
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1. Given a compact MOG representation, compute quickly an approximation
E(ε) of WST[E ] and an approximation F (ε′) of F .

2. Then, given E(ε) and F (ε′), use Algorithm 1 to approximate the MO-CR.

For this general method to be implemented rigorously, we must specify the
precise definitions of the two approximations required in input, for the desired
output to be indeed some approximation of the MO-CR.

Firstly, let us specify the output. The ratios in R[WST[E ],F ] must be repre-
sented, even approximately, but only by using valid ratios of efficiency, as below.

Definition 9 ((1 + ε)-covering). Given R ⊂ R
d
+ and ε > 0, R(ε) ⊂ R is a

(1 + ε)-covering of R, if and only if:

∀ρ ∈ R, ∃ρ′ ∈ R(ε) : (1 + ε)ρ′ � ρ

For instance, R[WST[E ],F ] is (1+0)-covered by MO-CR = EFF[R[WST[E ],F ]].
Denote ϕ : Rd

+ → N
d the discretization into the (1 + ε)-logarithmic grid. Given

a vector x ∈ R
d
+, ϕ(x) is defined by: ∀k ∈ D, ϕk(x) = �log(1+ε)(xk)�. A typical

implementation of (1 + ε)-coverings are the logarithmic (1 + ε)-coverings, which
consist in taking one vector of R in each reciprocal image of ϕ(R). That is, for
each l ∈ ϕ(R), take one ρ in ϕ−1(l). The logarithmic grid is depicted in Fig. 5.

Now we must specify rigorously what approximate representations E(ε1) of
set WST[E ], and F (ε2) of set F we should take in input, in order to guarantee
that R[E(ε1), F (ε2)] is an (1+ε)-covering of R[WST[E ],F ]. Definitions 10 and 11
come from the need of specific approximate representations that will carry the
guarantees to the approximate final output R[E(ε1), F (ε2)].

Definition 10 ((1 + ε)-under-covering). Given ε > 0, E ⊂ R
d
+ and E(ε) ⊂

R
d
+, E(ε) (1 + ε)-under-covers E if and only if:

∀y ∈ E, ∃y′ ∈ E(ε) : y � y′

and ∀y′ ∈ E(ε), ∃y ∈ E : (1 + ε)y′ � y

The first condition states that E(ε) bounds E from below. The second condi-
tion states that this lower bound is precise within a multiplicative (1+ε). Given
E, one can implement Definition 10 by using the log-grid (see e.g. Fig. 5):

E(ε) ← WST
[ {

el ∈ R
d
+ | l ∈ ϕ (WST[E ])

} ]

where ϕ(WST[E ]) = {ϕ(y) ∈ N
d | y ∈ WST[E ]}, and given l ∈ N

d, the vector el

is defined by (el)k = (1 + ε)lk . Now let us state what approximation is required
on the set of efficient outcomes F .

Definition 11 ((1+ε)-stick-covering). Given ε > 0, F ⊂ R
d
+ and F (ε) ⊂ R

d
+,

F (ε) (1 + ε)-stick-covers F if and only if:

∀z′ ∈ F (ε), ∃z ∈ F : z′ � z

and ∀z ∈ F, ∃z′ ∈ F (ε) : (1 + ε)z � z′
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The first condition is easily satisfiable by F (ε) ⊆ F . The second condition states
that F (ε) sticks to F . Given F , one can implement Definition 11 as in Fig. 5:
Take one element of F per cell of the logarithmic grid, and then take WST of
this set of elements. Now we can state that with an approximate Phase 1, the
precision transfers to Phase 2 in polynomial time, as follows.

Fig. 5. MO approximations, depictions of under and stick coverings

Lemma 1. Given ε1, ε2 > 0 and approximations E of E and F of F , if

∀y ∈ E ,∃y′ ∈ E, y � y′ and ∀y′ ∈ E,∃y ∈ E , (1 + ε1)y′ � y (6)
∀z′ ∈ F,∃z ∈ F , z′ � z and ∀z ∈ F ,∃z′ ∈ F, (1 + ε2)z � z′ (7)

holds, then it follows that R[E,F ] ⊆ R[E ,F ] and:

∀ρ ∈ R[E ,F ], ∃ρ′ ∈ R[E,F ], (1 + ε1)(1 + ε2)ρ′ � ρ (8)

Equations (6) and (7) state approximation bounds as in Definitions 10 and
11. Equations (6) state that (1 + ε1)−1E bounds below E which bounds below
E . Equations (7) state that F bounds below F which bounds below (1 + ε2)F .
Crucially, whatever the sizes of E and F , there exist such approximations E
and F with respective sizes O((1/ε1)d−1) and O((1/ε2)d−1) [19], yielding the
approximation scheme below.

Theorem 6 (Approximation Scheme for MO-CR). Given a compact
MOG of representation length L, precisions ε1, ε2 > 0 and two algorithms to
compute approximations E of E and F of F in the sense of Eqs. (6) and (7) that
take time θE(ε1, L) and θF (ε2, L), one can approximate R[E ,F ] in the sense of
Eq. (8) in time O

(
θE(ε1, L) + θF (ε2, L) + (ε1ε2)−(d−1)(2d−1)

)
.

For MO graphical games, Phase 1 could be instantiated with approximate
junction-tree algorithms on MO graphical models [8]. For MO symmetric action-
graph games, in the same fashion, one could generalize existing algorithms [12].
More generally, for the worst equilibria WST[E ] and the efficient outcomes F ,
one could also use meta-heuristics with experimental guarantees.
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7 Conclusion: Discussion and Prospects

Along with equilibrium existence, potential functions also usually guarantee
the convergence of best-response dynamics. This easily generalizes to dynam-
ics where every deviation step is an individual Pareto-improvement. However,
when studying a dynamics based on a refinement of the Pareto-dominance, con-
vergence is not always guaranteed.

Pareto-Nash equilibria, which encompass the possible outcomes of MO
games, very likely exist. The precision of PN-equilibria inevitably relies on the
uncertainty on preferences. A promising research path would be to linearly con-
strain the utility functions of agents. This would induce a polytope and would
boil down to another MO game where every objective corresponds to an extreme
point of the induced polytope. The efficiency of several multi-objective games
could be analyzed by using the contributions in this paper.
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