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Preface

Welcome to the proceedings of the 21st International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA 2018) held in Tokyo, Japan, from
October 29 to November 2.

Originally started as a regional (Asia-Pacific) workshop in 1998, PRIMA has
become one of the leading and most influential scientific conferences for research on
multi-agent systems. Each year since 2009, PRIMA has brought together active
researchers, developers, and practitioners from both academia and industry to show-
case, share, and promote research in several domains, ranging from foundations of
agent theory and engineering aspects of agent systems, to emerging interdisciplinary
areas of agent-based research. PRIMA’s previous editions were held in Nagoya, Japan
(2009), Kolkata, India (2010), Wollongong, Australia (2011), Kuching, Malaysia
(2012), Dunedin, New Zealand (2013), Gold Coast, Australia (2014), Bertinoro, Italy
(2015), Phuket, Thailand (2016), and Nice, France (2017).

This year, we received 95 full paper submissions and eight short paper submissions
from 24 countries, including seven papers submitted to the social science track, chaired
by Michael Mäs. Each submission was carefully reviewed by three members of the
Program Committee (PC) composed of 94 prominent world-class researchers. In
addition, seven sub-reviewers were called upon to review submissions. The PC and
senior PC (SPC) included researchers from 23 countries. The review period was fol-
lowed by PC discussions moderated by SPC members. The PRIMA SPC has been part
of the PRIMA reviewing scheme since 2010, and this year it included 17 members. At
the end of the reviewing process, in addition to the technical reviews, authors received
a summary meta-review by an SPC member.

PRIMA 2018 accepted 27 full papers (an acceptance rate of 28%) and 31 submis-
sions were selected to appear as short papers. Two papers were accepted to be presented
in the social science track. In total, 27 full papers and 30 short papers are included in the
present proceedings. Papers accepted into the social science track were fast-tracked into
the Journal of Artificial Societies and Social Simulation, and are not included in the
present proceedings. In addition to the paper presentations and poster sessions, the
conference also included four keynote talks: Prof. Manuela M. Veloso, Prof. Michael
Luck, President Hideyuki Nakashima, and Associate Prof. Fujio Toriumi.

We would like to thank all individuals, institutions, and sponsors that supported
PRIMA 2018. Mainly we thank the authors for submitting high-quality research
papers, confirming PRIMA’s reputation as a leading international conference in
multi-agent systems. We are indebted to our PC and SPC members and additional
reviewers for spending their valuable time by providing careful reviews and recom-
mendations on the submissions, and for taking part in follow-up discussions. We thank
the journal of Autonomous Agents and Multi-Agent Systems for agreeing to fast track



selected papers. We also thank EasyChair for the use of their conference management
system. Finally, we are very grateful to the sponsors who supported PRIMA finan-
cially, making the conference accessible to a larger number of delegates.

September 2018 Tim Miller
Nir Oren

Yuko Sakurai
Itsuki Noda

Bastin Tony Roy Savarimuthu
Tran Cao Son
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Modeling a Real-Case Situation of Egress
Using BDI Agents with Emotions and

Social Skills

Marion Valette1,3, Benoit Gaudou2,4(B), Dominique Longin1,
and Patrick Taillandier3

1 CNRS-IRIT, Paul Sabatier University, Toulouse, France
2 University Toulouse 1 Capitole, UMR 5505 IRIT, CNRS, Toulouse, France

benoit.gaudou@ut-capitole.fr
3 MIAT, INRA, Toulouse, France

4 Sorbonne University, IRD, UMMISCO, 93143 Bondy, France

Abstract. To be realistic, evacuation simulations have to consider sev-
eral aspects of the human psychology that affect their decision-making
process. Among them we find social relationships and emotions like fear.
The former has been proven to have a great influence on the outcomes of
simulations as they modify the behaviour of agents to make them escape
in groups. This phenomenon strongly affects the efficiency of the evacua-
tion. The latter impacts the ways the people will try to escape, leading to
adaptation and unplanned behaviour. This paper presents an evacuation
model that includes cognition with a BDI architecture to represent the
way agents do complex reasoning, social relationships and a modelling
of fear. The model is applied to simulate the fire of the Rhode Island
Station Nightclub in 2003. We shows that after calibration, the model
enables to reproduce in a credible way the real event.

Keywords: BDI · Egress · Simulation · Social relationships
Emotions.

1 Introduction

In the domain of evacuation studies, it is almost impossible to make real-scale
experiments. Indeed, the behaviour of the people involved in fire drills is differ-
ent from the one they would have in real egress, as their physical integrity is not
actually threatened. Besides, it is forbidden by ethics to perform experiments
with humans without telling them what they participate in. This is why sim-
ulations are needed to help design better security policies. But in order to be
used as scientific or decision-support tools, simulations involving humans have
to be realist in terms of human evacuation behaviors and therefore consider and
implement many aspects of their cognition, and in particular the factors that
influence their decision-making process in emergency situation.

c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-03098-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03098-8_1&domain=pdf


4 M. Valette et al.

This article introduces a model including cognition with a BDI architecture,
social relationships and emotions and studies the relationships and interactions
between them. This model, that is highly modular, enables to separately and
simultaneously use these different aspects in order to control the complexity of
the model. It uses the BDI (for Belief, Desire, Intention) [10,15] paradigm to
model the cognition of agents and takes into account the social relationships
between people and their emotions, particularly fear. The first level of social
relationship taken into account by an agent is the group of close relationships:
friends will first try to gather before evacuating together (one of the individuals
becoming the leader and the other ones following him/her). The second level is
related to gregarious and imitation behavior: in some specific situations, indi-
viduals can follow a crowd of unrelated people. In addition, the model allows
the agents to adapt to the situation, for example by exiting in some extreme
situations through windows instead of using the doors initially recognized as
exits.

The model was implemented with the GAMA platform [12]. This open-source
platform, which is dedicated to the development of simulation of agent-based
models, allows to easily integrate spatial data such as building plans. In addition,
it provides modelers with numerous primitive dedicated to agent movement,
which greatly eases the development of pedestrian models. At last, it integrates a
BDI architecture that includes several modules dedicated to social relationships,
emotions and norms [6].

In order to illustrate how the model enables to reproduce in a credible way
egress situation, we propose in this paper an application for the classic case-study
of the evacuation of the Station Night club.

The paper is structured as follows. In Sect. 2, we further discuss the impor-
tance of the three aspects cited above. Section 3 describes the case study that
is used to illustrate the model. In Sect. 4, we depict the model using the ODD
protocol. Afterwards, in Sect. 5, the results of the simulation for the case study
are presented. In Sect. 6, some scenarios are tested to show the influence of a few
parameters.

2 State of the Art

Multiple simulations of emergency situations already exist. But places like office
buildings and railway stations, whose evacuation has been largely studied, are
mostly occupied by business people, who are familiar with the environment and
disconnected from one another [18,24]. Some models only consider crowds with-
out making any distinctions between agents, using for example model based on
forces [20] or cellular automaton [4].

Buildings like airports [22] or nightclub in contrast bring together people who
have no or little knowledge of their surroundings, and often who have strong
social relationships. Therefore simulations of such places need to consider more
aspects than just the individual movement of each person. Many models [9,11]
have shown the importance of taking into account the social relationships that
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exist in groups, in particular in egress situations, as they have a great influence
on the death toll and duration of the evacuation. People indeed tend to escape
in groups, so they must look for their friends and relatives before reaching an
exit, which considerably increases the evacuation time.

In addition, as it is recognized to be a key factor in egress situation, some
focus on complex representations of emotions, for example based on the Orthony,
Clore and Collins’ theory [2,16,17]. But few models include all three aspects
(differentiation of persons, social relationships and emotions) and thus the way
they interact to drive the agent behavior.

Finally, to obtain realistic simulations, the complexity of human behaviour
needs to be captured. Therefore cognition has to be implemented. For this pur-
pose, different architectures such as the ones listed in [5] have been theorized
and developed. The BDI architecture [7] has proven itself to be well adapted to
model humans [1,3], as it is close to folk psychology and natural language. Sev-
eral works such as [19] have already used this architecture to model the crowds
during emergency evacuation, but without considering all the aspect mentioned
above.

3 Case-Study: The Station Night Club Evacuation

The case-study we propose to use as a base to present our model concerns the
fire of the Station Night club, located in Rhode Island (U.S.A), which burned
on February 20, 2003 (see Fig. 1). This case study is that it has been studied
extensively in the past and there is a lot of information on it allowing to validate
the model proposed. The fire was triggered by the ignition of polyurethane foam
on the walls and ceiling by pyrotechnics. The ignition points were located on the
raised platform on the east side of the building (see Fig. 1). It spread rapidly,
whereas a dense black toxic smoke filled the whole club. In less than 3 min, the
flames were all over the place. The building was mainly made of wood and had
no sprinklers. That night, the building hosted about 465 persons, more than
the authorized limit, which led, despite a rapid intervention of the firemen, to
a heavy human toll, with 100 deceased persons and 230 injured. People started
to evacuate approximately 20 seconds after ignition, and most persons escaped
during the first 150 seconds. There were four exits: the front door entrance or
main entrance, the main bar exit, the kitchen exit, and the platform exit.

The platform exit was blocked by the staff who reserved it for the musicians
and professionals. Besides, it became fast unreachable because of the spreading
of the fire, which explains the low number of people who escaped through it.
The kitchen door was also badly indicated and visible. The two remaining exits
were fast blocked by the crowd, so some people started to look for alternatives,
and broke the windows situated on the northern wall. About one third of the
evacuees used that way to escape, one third went through the main entrance, and
the last third split into the three other doors. The actual figures are summarized
in Table 1. All real data come from El-Tawil et al. [11].
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Fig. 1. Plan of the night club with indication of the exits (Copied from [14])

Table 1. Distribution of the people having evacuated through each exits

Main Bar Kitchen Platform Windows

128 78 17 24 105

4 Description of the Model

In the following, we describe the model using the ODD (Overview, Design con-
cepts, and Details) protocol [13]. This is a standard protocol designed to describe
individual-based and agent-based models, in order to make them more under-
standable.

4.1 Purpose of the Model

The purpose of this model is to simulate the evacuation of a building, in par-
ticular night-clubs, in order to evaluate the influence of emotions and social
relationships [6,8] on the efficiency of the evacuation.
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4.2 Entities, State Variables and Scales

This model includes several types of entities. Their most important variables
and actions are presented in the class diagram shown in Fig. 2.

Fig. 2. Class diagram of the model

The key entities represent people agents. The People species contains all the
attributes (target destination, speed, a set of known exits) and action (choose an
exit and run away) related to the individual evacuation. It also includes the man-
agement of people emotions with danger rate, which represents the fear emotion
intensity, and danger threshold attributes. The People species is specialized in
two sub-types of agent: Staff and Patron.

Staff main objective is to help Patrons to evacuate the building by sharing
information about exits. Patron agents add mainly the social components to
the People agents: it adds the lists of close friends and of possible followers, a
charisma value, used to determine the leader in a group of close friends, the max-
imum search time before leaving the place without the missing friends, a crowd
threshold, used to determine when a patron stops to follow its leader to follow
the patrons around him, and an emergency awareness, which characterizes the
response time of an agent when it perceives the danger. In the following, unless
specified, the term group refers to friends spatially close, when the expression
friend group or social group refer to the whole social group of the agents, which
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can be physically divided. As far as actions are concerned, it introduces the
capability to look for others or follow leaders.

Finally the building is discretized using a grid of Cells. These Cell agents are
used to diffuse the fire and smoke. They are also used to help the computation
of the shortest path to the exit chosen by each agent who is running away from
the fire.

One time step represents one second, and the simulation lasts until there is
no more living people inside the building.

4.3 Process Overview and Scheduling

As it is classical in agent-based models, the simulation is based on discrete
time steps. As far as agent activation order is concerned, we rely on the default
scheduling on the model underlying GAMA.

Actions during an simulation step are executed in the following order (each
one is detailed in Sect. 4.7):

– the patrons are activated in their order of creation (patron 0 first, then patron
1, etc.). They start by the perceptions of their environment. This includes a
phase of determination of the leader of each group. Then, they move according
to their goals, which depend on their social relationships with the other people
in the building and on personal characteristics. Their fear is modeled by a
numerical value (danger rate) and a threshold, above which the behaviour of
the agent is modified (valid also for the staff);

– the staff is activated, they perceive their environment. Then they help the
patrons near them. If there is nobody or if their danger rate is too high, they
run away;

– Every two time steps, the grid propagates the fire to the four neighbors of
each cell in fire and at every iteration, it propagates the smoke to the eight
neighbors of cells whose smoke density is greater than a given threshold. Here
the cells are activated in a random order.

4.4 Design Concepts

Basic Principles. This model uses the BDI paradigm [10,15] to implement
cognitive agents [23]. It relies on the BDI architecture implemented in GAMA,
described in details in [8,21]. It is based on three sets: the belief base (what the
agent believes to be true), the desire base (what it wants), and the intention
base (what it is doing).

In our model, the beliefs are only used to model the knowledge about the
exits. Each agent has the beliefs of the location of each exit it knows. The BDI
architecture provides primitives to automatically create beliefs or desires from
perceptions. When an agent perceives an exit by walking near it, this one is
added to its belief base.

The desires of an agent depend on its species (patron or staff), its social
relationships, or if it is a leader or not, etc. Each desire has a priority. The
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choice of an intention to fulfill among the existing desires is driven by theses
priorities: when the agent has no intention, the desire with the highest priority
becomes the intention. The agent will then execute the plan corresponding to
its intention. If a new desire with higher priority arises, it can drop its intention
to consider a new one.

To fulfill its intentions, the agent has a set of plans that will be executed
if the activation condition (expressed in terms of intention) is fulfilled. In our
model, the people agents have two plan: running away and choosing an exit.
Patron agents have three additional plans: looking for their friends, following
the leader, and following the crowd. At last staff agents have all the people
agent plans and the plan to share information. All the plans are described in
Sect. 4.7).

This architecture has the advantage to help the design of modular agents
internal structure, separating clearly the perception and the actions, executed
in plans. These two components are coupled through the various mental states
of the agent.

Adaptation. The patrons have a danger rate, which allows them to change
their behaviors when the close environment is changing. For example, when
their danger rate becomes too high, they can change their target, and if it was
an exit, it is no longer considered as a possible way out. They can also decide to
break a window to go out quicker. This is a way to get out that was not planned
at the origin for them.

Sensing. All agents have a view distance, within which they can perceive several
things like the fire and the exits. Furthermore, each species of agents has specific
perceptions. The staff can perceive the patrons to inform them of the exits. The
patrons can perceive their friends and the patrons who are heading to a window.
This perception can be interpreted as a capacity to imitate the behaviour of
others. After this perception, the agent can indeed change its target to go to the
window too. Moreover, the agents can hear the alarm.

Interaction. Two agents cannot be on the same cell, thus the movement of an
agent will be impacted by the other agents. In addition, the patrons in a group
interact via a leader/follower relationship, that is, a patron follows its leader but
have no interaction with the other members of its group. Furthermore, the staff
shares information about the exits with the patrons, to do so they give them the
location of the exits. They also interact in order to tell others that they have to
flee if they are not already aware of that.

Stochasticity. During the initialization, people are placed randomly in the
available space. Their initial value of speed is randomly chosen between two
realistic bounds, when their initial value of energy, their emergency awareness
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and their charisma are chosen between two arbitrary limits. Their danger thresh-
old, maximum search time and crowd threshold are chosen in a range of values
defined around the related global parameter1.

During the simulation, the targets of patrons who are looking for their friends
are random. In the case where the agent who wants to run away is stuck or in too
much danger, the exit it will go to is randomly chosen among its known exits.

The cells of the grid are activated in a random order to simulate a more
realistic propagation of the smoke and fire.

Observation. The model is observed through a 3D representation (see Fig. 3)
of the building with visuals of the patrons, staff, fire, smoke. It is also possible to
at every time step different information about the agents like their danger rate,
etc.. There are also monitors which shows the number of dead, injured and safe
and sound people, and the number of people who went out through each door.

Fig. 3. 3D visualization of the simulation

4.5 Initialization

At the beginning of the simulation, all agents and variables are created and
initialized. First the geometries (walls, bars, and exits) are built from shape file
input data, then the grid is created. The initial number of patrons is created,
the socials links are determined, based on real data [11], with the following rules:
one agent can be a member of only one group of friends, and these friends are
randomly selected among a list. This list is composed of all the persons close
to the agent and of a few persons spatially further. At last, the staff is created,
with one person located near the exit next to the raised platform (where the fire
starts) to prevent patrons from using this door. At that moment, each patron is
its own leader.
1 These parameter values are computed in the calibration presented in Sect. 5.
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The clients are in majority placed randomly in the dance floor, while the rest
and the staff are randomly placed in the building. The staff knows all exits, while
only a third of the patrons have already been there before and know three exits
(the main one, the one near the main bar and the one near the raised platform).
All other patrons only know the main entrance.

4.6 Input Data

The model uses shape files2 to design the walls, bars, and exits. The model users
have also to provide information about the human agents, such as their number
and the distribution of the size of the social groups.

4.7 Sub-models

Smoke and Fire Spread. As the main goal of the model is to evaluate the
impact of social behaviors on evacuation, we chose for this first version of the
model to use simple smoke and fire diffusion models, but we plan to integrate
more realistic models in the further.

Thus, in our model, every two time steps, each cell in fire propagates it to
its four closest neighbours. The cells are activated in a random order to ensure a
little bit of realism in the propagation. The Fig. 4 explains the beginning of this
process. The number in each cell refers to the activation order, the cells in red
are in fire.

Fig. 4. Propagation of the fire

With regard to the smoke, the propagation principle is slightly different. Each
cell has a smoke density, that can vary between 0 and a maximum quantity (here
100). At the beginning of the fire, we set the smoke density of the cells in fire and
their neighbours to the maximum. To be able to propagate the fire, a cell has to
have a density strictly greater than 1. Then the smoke propagates with the same
pattern as the fire, except for the fact that it spreads to the eight neighbours.
Each time the smoke propagates to a cell, its smoke density is increased by one.

2 A shape file is a file format for geographical information systems, it contains all the
information linked to the geometry of the described objects.
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Fig. 5. Looking for others

Search. As soon as a patrons detects the danger, by perceiving the fire or the
alarm, it starts to look for its group of friends. Since all patrons are their own
leader at the beginning of the simulations, they all do the following: as long as
the group is not complete or the maximum search time has not been reached, the
leader looks for its friends. They remember where they have seen their friends
for the last time, so their first targets are those locations. If during their moves,
friends find each other, a leader is determined from their charisma, except in the
case where a friend alone finds a group already formed, here the leader of the
group stays leader (cf. Fig. 5).

Evacuation.

Run Away. Leaders and persons alone who want to run away first choose a
target. To this end, if they are not in danger, they choose the closest exit among
their known doors. Otherwise they choose a random one. They can choose a new
target if the danger becomes too important. If their danger rate is higher than
their respective thresholds or if at least one of the windows is broken, they can
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choose to exit through the window. Then they move towards that target, and
when they reach it, they are removed from the simulation.

Follow Leader. The others patrons follow their leader when it looks for others
or toward an exit. Therefore, they move on a cell near the one of the leader. If
their leader dies, they have the desire to keep looking for other friends.

Follow the Crowd. When a follower is too far from its leader, and surrounded
by more people than its crowd threshold patrons, it begins to follow them. That
means that its heading is the mean of the heading of the costumers around him.
If the number of patrons near him becomes less than the half of the threshold,
the agent changes its intention to look for others.

Updates of Attributes.

Speed. The speed is updated according to the level of energy of the agent through
the following formula:

speed =

{
speed init if energy > 0.8 ∗ energy init
speed init ∗ energy

0.8 ∗ energy init else

In addition, for the leader, it also depends on whether the others are following
it or not. If the group that follows the leader is not physically close enough to
it, the speed of the leader will correspond to the minimum between the value
computed from the previous formula and the min of the follower speeds divided
by two.

Danger rate. The danger rate is computed from the mean of smoke density
(normalized by the maximum quantity) in the cells visible for the agent (VC )
with the following formula:

danger rate =
energy init
energy

∗
∑

c∈VC
smoke quantityc

max smoke

#(V C)

where smoke quantityc is the smoke quantity of the visible cell c. Thus, it
increases when the agent looses energy and is surrounded by a high quantity
of smoke.

Energy. Each agent who is located on a cell on fire looses 2 points of energy. If
it is on a cell c with smoke, it looses 1.5 ∗ smoke quantityc

max smoke points of energy. These
numerical values are a simplification of the rules described in [11].

Share Information. The staff can inform the clients near them about all the
exits of the building. Moreover, if the patron knows the exit near the stage, they
forbid him to use it, as it is considered to be reserved for the musicians and staff.



14 M. Valette et al.

5 Results

The model was applied to the case study of the Rhode Island Station Nightclub.
For that, we digitized the nightclub plan as shapefiles. We used the data provided
by [11] to initialize the human agents and the real values for the time of the alarm
triggering (30 s) and the initial number of staff members (10) parameters.

To make the model closer to the reality, we calibrated it using a genetic algo-
rithm. Three parameters were concerned by this calibration: the fear threshold,
the crowd threshold (the limit of people around a follower which makes him
start to follow the crowd instead of its leader) and the maximum search time (in
seconds). These parameters are used to initialize the related attributes for each
agent: the value of their attribute corresponds to a random value choice around
the parameter value. We run 4 replications for each parameter value set. The
final parameter set is given in Table 2. The fitness function used for the calibra-
tion was computed from following indicators: the numbers of deceased people, of
injured people, of safe and sound people, and the numbers of people who exited
through each exit, including the windows.

Table 2. Parameters of the base case

Danger threshold Crowd threshold Maximum search time

Minimum 0.3 15 10

Maximum 0.6 35 15

Table 3 shows the results obtained with this parameter sets. The results are
close to the real ones. However, as shown by the high value of the standard
deviation, the simulation results vary a lot from one to another.

Table 3. Comparison between reality and simulations (mean on 1120 runs)

Deceased Injured Main exit Windows

Reality 100 230 128 105

Simulation Mean 121 202 161 112

Std 22 17 49 51

6 Scenario

We first tested two scenarios to show the influence of the emotions and of social
relationships, before testing the impact of the number of staff members and of
the environment awareness.
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6.1 Scenario 1: Influence of Emotions

As a first experiment, named Scenario 1, we remove the fear from the simulation.
We observe more deceased people, which can be explained by the fact that
they tend, without the effect of the fear, to stay longer in the toxic smoke.
Furthermore, as the decision to escape through a window is triggered by fear,
the number of people exiting this way falls to zero. More people used the main
entrance and the others values do not significantly change (see Table 4 where the
results of the Scenario 1 are compared to the Base Case, corresponding to the
results after the calibration).

Table 4. Comparison between the calibrated results (Base Case) and the results of
the Scenario 1, where emotions do not have any effect on the behaviour (in number of
people, mean over 764 runs for the tested case)

Deceased Safe Injured Main exit Windows

Base case 121 132 202 161 112

Scenario 1 158 133 164 230 0

6.2 Scenario 2: Influence of Social Relationships

In a second experiment, called scenario 2, we tested the influence of social rela-
tionships by removing them. We obtain the results summed up in Table 5. The
result shows that the number of casualties has drastically diminished, since the
patrons go right away to the exits. They tend to exit more by the main entrance
and the windows as they are the closest from the dance floor.

Table 5. Comparison between the calibrated results (Base Case) and the results of the
Scenario 2, where Patrons do not have any social relationships (in number of people,
mean over 596 runs for the tested case)

Deceased Safe Injured Main exit Windows

Base case 121 132 202 161 112

Scenario 2 28 234 193 208 181

6.3 Scenario 3: Adding Staff

We progressively increase the staff member number to see if they can help to
decrease the casualties by giving information about unsaturated exits. There-
fore we run the simulations with respectively 10 (normal case), 30 and 50 staff
members. As this makes the total number of persons in the club vary, the results
are the proportion (in percentage) of persons deceased, injured, safe and sound
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and through each exit. Table 6 shows that the proportions of people who escape
safely increases as the proportion of injured people decreases. But as the stan-
dard deviations for those results are respectively around 25 (deceased), 18 (safe)
and 18 (injured), the observed variations are too small to be significant. Fewer
people leave through the main exit and more through the kitchen and bar ones,
as more people know them thanks to the staff. Consequently, the proportion of
people who go out through the windows decreases.

Table 6. Proportions’ evolution with the number of staff members (in percentage)

Staff members Deceased Safe Injured Bar exit Main exit Windows

10 26.6 29.0 44.4 8.7 35.5 24.7

30 27.0 30.1 42.9 10.8 33.5 23.4

50 27.1 31.1 41.8 12.5 32.9 22.0

6.4 Scenario 4: More Environment Awareness

We carried out a last experiment to evaluate the sensibility of the simulation
results to the variation of the awareness parameter around the solution found
though calibration. This corresponds to evaluate the impact of providing more
information to the patrons about the club. We ran simulations with respectively
33% of people who knows several exits (normal case, obtained after calibration),
66% and 100%. Table 7 shows that the number (or proportion as the initial
number of persons inside is constant) of injured costumers remains constant,
whereas the number of deceased people increases slightly. The numbers of people
exiting through the kitchen’s and scene’s exits raise and the one through the bar’s
and main exit fall. Regarding the windows, the numbers are roughly constant.

Table 7. Proportions’ evolution with environment awareness (in percentage)

Awareness Deceased Injured Bar exit Kitchen exit Main exit Windows

33% 26.6 44.4 8.7 4.2 35.5 24.7

66% 27.6 44.6 6.2 6.2 34.8 24.6

100% 28.6 44.7 3.6 8.2 33.4 25.6

As the variations are really small, we can conclude that the awareness does
not have influence on the simulation, around the solution found by the calibra-
tion.
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7 Conclusion

In this paper, we described an evacuation model which includes three main
features: a BDI architecture, social relationships and emotions, implemented
with the GAMA agent-based modeling and simulation platform. The model has
been apply to reproduce the event that occurred at the Station Nightclub. After
calibration, the model has allowed to reflect the reality of the case study, which
allowed us to test different scenarios. These experiments showed the importance
of taking into account the emotions and social relationships in that type of model
as they profoundly influence the outcomes of the simulation.

With this model, we are facing a classical issue when we want to reproduce
some extreme event: we only have a single data set to calibrate on, which can
restrict the generic aspect of the model and produce simulation results with
a large variability. Future search will thus invest new methods of calibration
dedicated to this issue.

To improve the credibility of the model, we plan as well to integrate in the
further more realist models of fire and smoke propagation. To this purpose, we
are currently working on a module dedicated to the importation of 3D BIM
(Building Information Modeling) data-models. These data-models are nowadays
a standard for describing buildings in civil engineering and architecture, and will
allow us to directly reuse realist fire and smoke propagation models.
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Abstract. In this paper we introduce a novel approach to discovering
emergent behaviour in multiagent simulations, using evolutionary finite
state machines to model intelligent agents in an adversarial two-player
game. Agent behaviour is modelled as a finite set of predetermined states.
The logic that leads to transitions between states is evolved to maximise
fitness, which is determined through execution in a constructive simula-
tion environment. The resultant evolved finite state machine (E-FSM) is
evaluated for two finite state machine implementations, one with states
specifically designed to perform a known behaviour and the other with
states consisting of generic actions. Our experiments demonstrate that
this approach can discover complex emergent behaviours from simple,
generic actions, and use these behaviours to achieve a position of tacti-
cal superiority in the domain of air combat simulation.

Keywords: Emergent behavior · Evolutionary algorithms
Multiagent simulation · Air combat simulation

1 Introduction

Increasingly, the military uses simulations for defence applications, such as train-
ing, concept development and experimentation, and as an alternative to live
training exercises which involve expensive aircraft and require the presence of
highly trained pilots. These simulations have incorporated intelligent agents to
model individual and team decision-making, for a variety of reasons including
the development and assessment of tactics for air combat [2]. A typical agent
has a role, such as ally or adversary, and its behaviour is traditionally scripted
by hand mapping observations to actions.

The process of scripting these behaviour models for specific simulation envi-
ronments is labour intensive, costly, requires domain expertise, and may require
the use of dedicated agent behaviour authoring tools. Any subsequent variations
to the agent behaviour require manual modifications to the existing model. In
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addition, these scripted behaviour models are limited in their ability to discover
novel behaviours.

Adaptive machine learning systems have been employed as an alternative to
human test pilots and live training exercises [13]. Smith et al. [13] argued that
this approach has numerous advantages, namely, a distilled analytical model
that captures combat simulation, eliminates bias from the pilots’ previous expe-
riences, and does not have the constraints typically associated with real-time
simulations.

Technological advances for fighter aircraft, such as stealth, advanced avionics
and weapons, electronic warfare, and increased networking capabilities, require
sophisticated tactics to be exploited effectively. As a result, there is a need for
new techniques to adequately explore fighter combat behaviour. Artificial intelli-
gence techniques, such as automated planning [8,9] and differential game theory
[7], have been employed to automate the discovery of new tactical behaviours
by optimising action selection in a close range two player air combat scenario.

In this paper, we demonstrate that the integration of evolutionary algorithms
with finite state machines provides a viable approach to tactical behaviour dis-
covery. The approach involves the evolution of a behavioural model in the form
of a finite state machine (FSM) using genetic algorithms, to produce an Evolved
Finite State Machine (E-FSM) that can automate the generation of complex
tactical behaviours in multiagent simulations.

The contributions are (1) a generalisable evolutionary approach to evolving
finite state machine transitions in multiagent simulations, and (2) the develop-
ment of a chromosome representation for evolving rules for transitions of finite
state machines.

The paper is structured as follows: A discussion of related works is first
presented in Sect. 2. Section 3 describes the air combat problem, namely the stern
conversion manoeuvre, and the corresponding stern conversion agent controller
used in this study. Our evolutionary approach is outlined in Sect. 4, followed
descriptions of the sets of experiments and associated results and discussion in
Sect. 5. Lastly, conclusions and future works are presented in Sect. 6.

2 Related Work

Existing research has explored the use of machine learning to automatically gen-
erate behaviour models incorporating techniques such as evolutionary algorithms
and dynamic scripting, in conjunction with employing FSMs or behaviour trees
as models for capturing agent behaviour.

The Smart Bandits project [11] employed machine learning techniques to
generate FSM-based behaviour models that can be used for air-to-air tactic
training. While Smart Bandits provides no adaptive capabilities, Toubman et al.
[14] incorporated dynamic scripting in their approach for developing adaptive
FSMs that can be used against opponents in air combat.

Revello [10] presented a GA-based approach for generating war game strate-
gies whereby the various ship groups demonstrated emergent behaviours, moving
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in a coordinated fashion even though there was no exchange of information in
terms of their respective movements.

Smith et al. [13] evolved a learning classifier system that produced novel one-
vs-one WVR manoeuvres in the role of a fighter pilot using the AASPEM system
as the simulator environment. The GA population consists a set of classifiers
and through an iterative process of fitness evaluation of the classifiers, selection
and genetic operations, produced several novel strategies that were subsequently
evaluated and approved by test fighter pilots.

Other researchers such as Mulgund et al. [5] and Keshi et al. [4] have applied
genetic algorithms to optimise tactical parameters in BVR involving scenarios
of many-vs-many using hierarchical encoding involving binary codes for chro-
mosome representation. Yao et al. [15] described an approach where air combat
manoeuvres are represented using behaviour trees and through grammatical evo-
lution, generates adaptive human behaviour models for BVR engagements.

While Toubman et al. [14] and others have applied evolutionary algorithms
to FSM behaviour models, those approaches relied on hand-authored tactical
behaviours. The approach presented here obviates the need for problem-specific
tactics, by evolving transitions between generic agent actions using kinematic
properties of the entities. This enables the emergence of complex behaviours
without predisposing the system towards known solutions. Unlike the approach
taken by researchers such as Smith et al. [13], by incorporating an FSM our
approach produces human-readable tactics, and allows the modelling of agent
behaviours with higher levels of complexity if required, enabling the discovery of
emergent behaviours for problem scenarios with different levels of abstraction.

3 Problem Description

The problem used to evaluate our approach is that of an aircraft that aims to
manoeuvre into a particular position of tactical superiority with respect to a
single adversary aircraft. This position is defined as being behind the adversary
and following it. In this position, the aircraft can fire on its adversary, whilst
being out of range of the adversary’s weapons.

The classical scenario that models this is the stern conversion intercept
(described by Shaw [12]), a two-player scenario where the aircraft are within
visual range and initially flying towards each other (Fig. 1). Execution of the
manoeuvre as described relies on a number of tactical parameters, which are
dependent on the manoeuvring capabilities of the aircraft.

An implementation of the stern conversion manoeuvre as a finite state
machine is shown in Fig. 2, where each state represents the execution logic of a
single section or subtask of the manoeuvre. The transitions between the states,
based on various conditions defined by Shaw [12], result in a sequence that
realises the complex behaviour. A description of the states is given in Table 1.
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Fig. 1. The sequence of subtasks and tactical parameters required to execute the clas-
sical stern conversion manoeuvre.

Fig. 2. FSM implementing the Shaw stern conversion manoeuvre.

4 Proposed Approach

4.1 A Flexible FSM Model

Our approach to the exploration of air combat strategies employs a flexible FSM
model, where a set of states is provided as input and an evolutionary algorithm
is used to determine appropriate transition conditions so that the FSM can act
as an agent controller that achieves a particular goal. The transition conditions
in our approach are based on the kinematic properties of an aircraft and a
measure of goal achievement for the evolutionary algorithm is obtained through
agent-based simulation.

A generic FSM controller, employing n states, is shown in Fig. 3. From each
state it is possible to transition into any other state, depending on a set of
conditions. Each state corresponds to an action that is performed in that state,
such as flying an aircraft in a particular manner, and a set of conditions that are
constantly checked while in that state to determine if the FSM should transition
to another state.

The functional logic of the generic FSM is provided in Algorithm1, where
the FSM starts in State 1. In the case where transition conditions for moving
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Table 1. States and transitions for the FSM stern conversion agent

State Action Transitions

(a) Pure pursuit Point aircraft at and fly
directly towards red
aircraft

If distance to red aircraft less than
turn range and red aligned with
blue, transition to (b)

(b) Fly relative bearing Turn by turn angle and
fly straight on that
bearing

If lateral separation between red and
blue greater than required

displacement transition to (c)

(c) Fly offset Fly parallel to heading of
red aircraft

If distance between red and blue less
than conversion range transition to
(d). If distance between red and blue
not decreasing transition to (a)

(d) Convert Turn to match red
heading. Approach no
closer than no closer
range

If the rear quarter intercept criteria
have been met then the maneuver
reaches the end/final state as it has
been successfully executed

into more than one state become valid, the next state is chosen probabilistically.
In its simplest form, the choice of valid transition can be random, as was done
in our experiments, or each transition can be assigned its own probability.

The key difference between the approach taken here is and a regular finite
state machine is that in this case we only assume what states the pilot agent
can be in. We don’t make any assumptions about the transition events or the
transition probabilities between states. Rather, the transitions between the pre-
determined states are evolved and hence generated dynamically. This allows
for the possibility of new tactical behaviour to emerge and to be potentially
discovered.

Algorithm 1. Functional logic for the generic FSM agent controller.
currentState = State1; nextPossibleStatesList = empty;
loop

performAction(currentState);
for nextStateToCheck ← 1 to n do

if transitionConditionsSatisfied(currentState, nextStateToCheck) then
append nextStateToCheck to nextPossibleStatesList;

end

end
if nextPossibleStatesList not empty then

currentState = randomChoice(nextPossibleStatesList);
nextPossibleStatesList = empty;

end

end
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Fig. 3. A generic n-state finite state machine where each state corresponds to some
action taken by the agent. From each state, a transition can occur to any other state.
The conditions that would lead to state transitions are evolved in our approach to suit
a particular task.

Fig. 4. Kinematic properties of the Red and Blue aircraft; each has a position (p),
velocity vector (v) and acceleration vector (a). (Color figure online)

4.2 Kinematic Transition Model

We base the transition conditions for the air combat domain on the kinematic
properties of the aircraft taking part in the scenario: position (p), velocity (v)
and acceleration (a). For the case of two aircraft (denoted Blue and Red), these
parameters are shown in Fig. 4. Each kinematic parameter is a vector quantity
with three Cartesian components, along the x, y and z axes.

The kinematic properties are transformed from values with reference to a
fixed world coordinate system, to a coordinate system relative to the aircraft
controlled by the FSM. This ensures that the transition parameters are rotation
and translation invariant (i.e. not specific to a particular position and orientation
in the world), and is obtained by calculating the difference vectors for each
parameter:
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Δp = (Δpx,Δpy,Δpz) = (pxRed − pxBlue, pyRed − pyBlue, pzRed − pzBlue)
Δv = (Δvx,Δvy,Δvz) = (vxRed − vxBlue, vyRed − vyBlue, vzRed − vzBlue)
Δa = (Δax,Δay,Δaz) = (axRed − axBlue, ayRed − ayBlue, azRed − azBlue)

where Δp is the distance vector between the two aircraft, and Δv and Δa are
the difference vectors between the velocity and acceleration vectors. The three
vectors are then rotated to compensate for the heading direction of the blue
aircraft. After transformation the values correspond to the position, velocity
and acceleration of the red aircraft as they would be perceived by the pilot of
the blue aircraft. The values of these transformed kinematic parameters can then
be used to determine whether a transition should take place.

A wide number of algorithmic approaches can be employed to implement the
transition conditions. We employ a simple model, checking that Δp, Δv and
Δa are within a certain range of values. The minimum and maximum bounds on
the transition condition ranges are represented by a set of constants, determined
through an evolutionary approach (described in Sect. 4.3). Evaluation for the
transition from a particular state i to another state j requires 18 constants since
there are three kinematic parameters (Δp, Δv and Δa), each of these has three
Cartesian components (x, y and z), and each of these has both a lower and upper
bound. For an FSM with n states, in each state a total of n− 1 transitions need
to be checked, thus 18 × (n − 1) boundary checks, making the computational
complexity of the FSM transition model O(n). The storage complexity is O(n2)
as the total number of constants to be stored is:

nconstants = 18 × (nstates − 1) × nstates (1)

These constants are denoted by Aij , Bij , Cij ,Dij · · ·Rij . To determine if a tran-
sition from current state i to next state j can be taken, the current Δp, Δv and
Δa is evaluated against the bounds, as shown in Table 2.

Table 2. An example of the transition logic conditions that must all be satisfied for a
change of state from state i to state j. The 18 transition parameters (A to R) act as
thresholds for the relative position (Δp), velocity (Δv) and acceleration (Δa) in each
transition.

Relative position Relative velocity Relative acceleration

Aij < Δpx < Bij Gij < Δvx < Hij Mij < Δax < Nij

Cij < Δpy < Dij Iij < Δvy < Jij Oij < Δay < Pij

Eij < Δpz < Fij Kij < Δvz < Lij Qij < Δaz < Rij

4.3 Genetic-Based Approach to Transition Evolution

Our evolutionary approach to determining the optimal boundaries for transition
conditions is based on the genetic algorithm (GA), originally developed by Hol-
land (1992) [3]. The GA takes an initial set of candidate solutions to the problem,
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called the population. For the purposes of the algorithm, individuals are encoded
as a set of attributes, the gene, with the set of genes called a chromosome.

In our approach, the boundary constants each form a gene, with the complete
set of constants forming the chromosome. Thus for an FSM with n states, given
Eq. 1, there are 18 × (n − 1) × n genes in each chromosome. The chromosome
representation is shown in Fig. 5, with the constants laid out sequentially. For
the purposes of the GA, each constant is stored as a real number, normalised to
be in the range [0.0–1.0]. The values are mapped during execution to an actual
range for the kinematic parameters by considering their physical bounds, based
on mission parameters and aircraft capabilities.

Fig. 5. Chromosome representation for evolving FSM transitions.

5 Evaluation

5.1 Experimental Results

The evolved finite state machine (E-FSM) approach described in Sect. 4 was eval-
uated for two FSM implementations (described below), one with states specif-
ically designed to perform a known behaviour, and the other with states con-
sisting of generic actions utilised by Park et al. [7]. The scenario used for our
experiments is a two player close-range air combat engagement, as per the initial
conditions for Shaw’s stern conversion scenario described in Sect. 3.

Each implementation of the E-FSM approach is evolved against a set of
four opponent models, described in Table 3. The range of permitted transition
boundary parameter values is given in Table 4, chosen based on the scenario
scale and aircraft characteristics to speed up convergence by avoiding values
that in practice could not be reached. Each experiment was repeated 30 times
with different initial populations, to examine the range of solutions produced by
the non-deterministic evolution process.

Genetic Algorithm Parameters. The population is initialised by generating
a set of individuals such that each gene that corresponds to a minimum bound
has its value set to a random number in the range of [0, 0.5], while each gene
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Table 3. Description of the four opponent models used to evaluate each implementation
of the E-FSM approach.

Opponent Behaviour description

Straight Line Non-reactive; flies in a straight line as per the red target aircraft in
Shaw’s stern conversion (Fig. 1)

Pure Pursuit Pursues the blue fighter using the pure pursuit behaviour described in
Table 1(a)

Shaw Attempts the classical stern conversion manoeuvre using the stern
conversion specific FSM described in Table 1, with hand-selected
transition parameters

Evolved Shaw Attempts the stern conversion manoeuvre using the stern conversion
specific FSM described in Table 1, with transition parameters evolved
against a straight line agent

Table 4. Kinematic parameter ranges used to reduce experimental run time.

Kinematic parameter Encoded range Actual range

Δp [0, 1] [−48152, 48152] m

Δv [0, 1] [−1000, 1000] ms−1

Δa [0, 1] [−100, 100] ms−2

that corresponds to a maximum bound has its gene value initialised to a random
number in the range [0.5, 1].

Evolution proceeds for a pre-determined number of generations, each of which
involves comparing the performance of individuals in the candidate population
through 5 runs in a constructive simulation environment, with a maximum sim-
ulation run-time of 250 s.

The population is updated after each generation by copying a number of indi-
viduals, selected using Stochastic Universal Sampling [1], and the single most fit
candidate (the elite), into the next generation. Selected individuals are combined
using single point crossover and two point crossover [3]. Mutation is controlled
using the Gaussian mutation operator, as it is flexible enough to allow for both
fine tuning of solutions and searching of the domain. The value for a mutated
gene is calculated using the equation x = x + N (0, 1) where N (0, 1) is the
Gaussian Normal distribution with a mean of 0 and a standard deviation of 1.
The probability as to whether a gene undergoes mutation is associated with the
mutation probability, pm, and this has been assigned a value of 0.1, based on
initial experimental results.

Experiments are terminated when either of the following conditions are met:
the number of generations reaches a pre-defined maximum number, or there has
been no improvement in the fitness value in the population for N consecutive
generations.
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Fitness Evaluation. In this study, the fitness of an individual is calculated from
the output of a set of runs in the constructive air combat simulator ACE Zero [6].
We base our success measure for blue on the achievement of a position of supe-
riority, defined as being behind the red agent and following it. We consider the
blue aircraft to have succeeded if during the simulation run the following criteria
have been met (illustrated in Fig. 6):

1. Target aircraft is within 30◦ of attacking aircraft nose (φ1 < 30)
2. Attacking aircraft is within 30◦ of threat aircraft tail (φ2 < 30)
3. Range to the target aircraft is between 500 and 3000 feet (500 < r < 3000)
4. Separation in altitude is less than 500 feet (Δa < 500)
5. Difference in velocity is less than 100 knots (Δv < 100)

To calculate the fitness of a blue aircraft in a particular simulation run, we
initialise its fitness to 0 at the start of the simulation, then check each of the
six conditions at intervals of 1 s of simulated time. For each condition that is
true at the particular point in time we add 1 to the fitness. Thus, the more
conditions that are true at a particular time, the higher the fitness for that time
interval. Fitness is summed across time intervals, so that a higher fitness results
the longer a condition is true.

While more criteria could be considered, for example that the above criteria
be met continuously for a long enough duration to launch a weapon, through our
experiments we confirmed that the above five criteria were sufficient to produce
valid solutions.

One simulation run results in a single fitness score. Due to the non-
determinism that is present when multiple transition conditions are satisfied,
we take the average fitness of five simulation runs and associate that with the
individual.

Problem-Specific E-FSM Results. The problem-specific E-FSM has states
hand-coded to enact the stern conversion manoeuvre as described by Shaw [12]
(Fig. 2), with the original tactical-parameter-based transitions replaced by the
flexible kinematics-based model described in Sect. 4. This FSM has 4 states,
resulting in a chromosome with 216 genes as per Eq. 1. An initial population
of 50 individuals is evolved through a maximum of 300 generations, and the
individual with the highest fitness after termination is selected for examination.

Figure 7 illustrates exemplary results for each of the opponent types described
in Table 3. Against the Straight Line opponent, the evolved problem-specific
FSM found the classical stern conversion sequence (that is, the states in Table 1
executed in order), despite having no knowledge of the tactical parameters tra-
ditionally used to execute the state transitions. Against the Pure Pursuit oppo-
nent, the agent learned to stay in the Pure Pursuit state. In the case of the Shaw
opponent, a hand-optimised stern conversion FSM, the problem-specific E-FSM
learned a novel tactic, waiting for its opponent to turn away before turning to
follow it as it passed. Against the more adept Evolved Shaw opponent, which
had itself been evolved against a Straight Line agent, the E-FSM learned to
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Fig. 6. Illustration of the criteria used to evaluate the fitness of an individual. Blue is
in a position of superiority, corresponding to a high fitness score.

counteract the behaviour of its opponent to complete the manoeuvre behind it.
In all cases, the evolutionary approach successfully found effective behaviours to
achieve a position of tactical superiority.

Generic E-FSM Results. The generic E-FSM has states based on generic
aircraft manoeuvre actions, taken from Park [7] (illustrated in Fig. 8). In previous
versions of the evolutionary finite machine, the states represented either high
level or intermediate level goals or maneuvers that the pilot agent was trying
to achieve (such as flying an offset maneuver). In this iteration described here,
break the maneuvers down even further into low level actions such as flying left
and up, level flight and right and down. These represent some of the lowest
level actions a pilot can take to control an aircraft. By assembling a sequence
of these low level aircraft control actions, a pilot can assemble a different higher
level maneuvers that will enable it to undertake to model basic fighter combat.
Through the evolution of the transitions between these low level actions–states
we can generate air combat behaviour against a maneuvering opponent without
the constraints of a pre-determined tactic such as that descrbed by Shaw [12].

Due to the generic E-FSM having 7 states, it results in a chromosome with 756
genes as per Eq. 1. As the chromosome size is much larger than for the problem-
specific E-FSM, resulting in a larger search space, more extensive exploration
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Fig. 7. Example traces for the problem-specific E-FSM against red opponents (clock-
wise from top left): Straight Line, Shaw, Evolved Shaw, Pure Pursuit. (Color figure
online)

was enabled through a larger population of 100, and by increasing the maximum
number of generations to 1000. The large size of the chromosome also led us
to lower mutation probability to 0.001 and use two-point crossover to prevent
excessive modification between generations.

Figure 9 illustrates exemplary results for each of the opponent types described
in Table 3. Against the Straight Line opponent, the generic E-FSM found an
effective set of transitions between the generic manoeuvre states to approximate
the classical stern conversion sequence, although with a lower average fitness
score than the problem-specific E-FSM (which has states specifically designed
for this opponent). Against the Pure Pursuit opponent, the agent learned a
behaviour that approximated the hand-coded pure pursuit behaviour of the
problem-specific FSM, continually transitioning between basic manoeuvres to
follow its opponent. The pursuit behaviour discovered by the generic E-FSM
achieved a higher fitness than the hand-coded Pure Pursuit state, suggesting
that the agent had found a superior tactic (most likely the more efficient lead
pursuit). In the case of the Shaw opponent, the generic E-FSM learned a sim-
ilar strategy to the problem-specific E-FSM, waiting for its opponent to turn
away before turning to follow it. Against the more adept Evolved Shaw oppo-
nent, the generic E-FSM achieved significantly improved performance over the
problem-specific E-FSM, discovering a novel tactic (drawing its opponent into a
turn before looping around behind it) that was not found when the hand-coded,
stern conversion specific states were used. In all cases apart from the straight line
opponent, the generic E-FSM attained significantly higher fitness scores than the
problem-specific E-FSM.
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Fig. 8. Representation of the states in the Generic E-FSM, where each state represents
a low level aircraft control. The arrows above each state indicate that the E-FSM can
evolve to transition to any possible state.

Fig. 9. Example traces for the generic E-FSM against red opponents (clockwise from
top left): Straight Line, Shaw, Evolved Shaw, Pure Pursuit. (Color figure online)
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5.2 Discussion

In comparison to traditional approaches such as the hand-coded state transi-
tion logic described in Sect. 3, where the transitions are specific to the problem
and must be determined by the analyst for each combination of aircraft, the
kinematic approach was able to discover a sequence of transitions to enact a
successful rear-quarter intercept without prior knowledge of the flight charac-
teristics of either aircraft. In addition, the generic E-FSM was able to generate
complex emergent behaviours, such as pursuit and drawing the opponent into
an advantageous position, from simple aircraft flight control actions.

The experiments highlight a number of interesting properties of using an
evolutionary approach to optimise tactical behaviour, primarily the impact of
the particular fitness function chosen, and the relationship between the level of
complexity of the FSM states and the novelty of discovered behaviours.

Impact of the Fitness Function. The fitness function used in our exper-
iments was based purely on the desired final outcome (Fig. 6), calculated by
aggregating points associated with five criteria at 1 s intervals and summed over
a period of 250 s of simulation time. Since the objective is to maximise the fit-
ness function, the evolved model is naturally biased towards solutions that avoid
any intermediate manoeuvres that reduce fitness, although these may subse-
quently be helpful in better achieving the final goal. For example, when evolving
the problem-specific E-FSM against a straight line opponent, the classical stern
conversion manoeuvre (Fig. 1) achieves a rear-quarter intercept faster than the
greedy behaviour of remaining in the Pure Pursuit state. However, the stern
conversion manoeuvre begins with a turn away from the opponent, resulting in
an initial loss of fitness. In comparison, a solution where the blue aircraft points
continuously at its opponent over the same time period (pure pursuit) will be
ranked higher in fitness initially, despite ultimately taking longer to achieve the
rear-quarter intercept. As a result, it is important to develop the fitness func-
tion carefully to avoid biasing discovered behaviours in this way, and to allow
sufficient evolution time for manoeuvres with lower initial fitness to be found.

Transitional Complexity of Solutions. A factor in finding an effective set
of transition conditions for the FSM is the number of transitions that need to
be made to reach an optimal solution. The evolutionary process favours solu-
tions with lower transitional complexity. For example, performing the prescribed
stern conversion manoeuvre depends on the problem-specific E-FSM executing
four states at the right time and in the right order, requiring the correct evo-
lution of up to 216 transition condition parameters. On the other hand, the
Pure Pursuit state provides a relatively strong solution on its own. This means
that solutions that involve staying in the Pure Pursuit state have a very low
transitional complexity, and require the correct optimisation of fewer transition
condition parameters (none if the FSM starts in the Pure Pursuit state). As a
result, sufficient exploration should be enabled during evolution to search the
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solution space, so that more complex manoeuvres can be found. The more com-
plex a manoeuvre, in terms of the number and sequence of transitions that need
to occur, the longer it can be expected to take to evolve.

State Complexity and Solution Novelty. It is observed from the experimen-
tal results that, when implementing the E-FSM approach, the use of more com-
plex, problem-specific states predisposes the evolutionary search toward known
solutions, while the use of simpler states produces more novel solutions (although
at a computational cost). While the problem-specific E-FSM often converged to
a solution within 20 generations, it did so in many cases by settling quickly on a
sub-optimal solution, such as staying in the Pure Pursuit state (which is able to
achieve the final goal on its own). In contrast, the states of the generic E-FSM
correspond to simple directional changes for the aircraft, so evolving a novel
sequence of state transitions is the only way to achieve the target goal without
an initial workable solution.

6 Conclusion

We have demonstrated an effective approach to discovering emergent tactical
behaviours, using the combination of evolutionary algorithms with finite state
machines in the context of adversarial air combat. The incorporation of FSMs
produces human-readable tactics, and enables the modelling of agent behaviour
at varying levels of complexity, avoiding the predisposition towards known solu-
tions that results from hand-coding behaviours, while enabling the modelling of
actions at higher levels of abstraction as required.

It was found that there is a strong relationship between the complexity of
the FSM states, the time taken to find an effective solution, and the novelty of
discovered behaviours. For example, a generic FSM, with simple states represent-
ing low-level aircraft directional changes, took many more generations to find
an optimal solution than a problem-specific FSM, whose more complex states
were hand-coded for the specific scenario. However, the generic FSM achieved
superior performance when evolved against reactive opponents, and discovered
novel tactics that were not seen when using problem-specific states.

Future work will involve scaling the approach presented here to more complex
scenarios involving teams of agents employing beyond visual range sensors and
weapons (requiring more sophisticated transition conditions than the kinematic
parameters used to determine state transitions in this study), and the integration
of co-evolutionary methods.
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Abstract. The purpose of this research is to verify the effectiveness
of the combination of the introduction of a tramway with introducing
a public facility for urban residents and implementing a policy to pro-
mote activeness around it, on urban sprawl. By using an agent-based
model (ABM), which was built for simulating urban structure changes
through autonomous behavior of urban residents, this research clarified
that, depend on the urban initial state, the combination of these policies
can lead the two different types of compact city: the polycentric-form
and the monocentric-form.

Keywords: Agent-based model · Urban design
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1 Introduction

1.1 Urban Sprawl Issues

The world population has rapidly increased during our current century along
with the previous century, and continued urbanization has taken place at various
places around the globe [13]. Many researchers and experts predict that this
unrelenting urbanization will not fade but continue to advance [26]. Under such
circumstances, urban sprawl has attracted much attention as one of the issues
that has been most widely discussed in the past few decades, coming under fire
as an unsustainable form of urbanization.

Urban sprawl is commonly defined by the following land-use characteristics
[10,15,21,30]:

• Expansion of urban area in outer fringe (undeveloped) area
• Low-density development
• Scattered development (multi-direction)
• Leapfrog development (discontinuity)
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 35–50, 2018.
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• Commercial strip development

Urban sprawl is often criticized because of its following negative impacts
[10,12,21,31]:

• Increase in traffic congestion and commuting time, air pollution, and increase
in energy consumption

• Increase in infrastructure maintenance and operation cost
• Hollowing out in urban central area, economic disparity, employment imbal-

ance, and loss of neighboring community
• Loss of agricultural and natural land

These negative impacts cannot be disregard, since urban sprawl causes
greater environmental impacts than other land-uses [6].

In the future, Japan will definitely have a shrinking as well as ever-aging
population. At the same time, the population has continued to concentrate in
large city regions. These reasons have given rise especially to a concern about
the serious negative impact caused by urban sprawl [2].

1.2 Shift into Compact City

Researchers and experts have studied a shift into “Compact City”, as a coun-
termeasure against urban sprawl [15,19].

Compact city does not have a generally accepted definition. It is, however,
commonly defined by the following characteristics [5,8,15,33]:

• High-density
• Concentration of development
• Development in public transportation network

Two forms are found for city center:

• Monocentric-form
• Polycentric-form

It has been proved that compact city can overcome some of the negative
impacts driven by urban sprawl. Many studies have also indicated that a compact
city can enhance quality of life by offering a broad range of choices with regard
to lifestyle and behavior including residences, travel, and shopping goods [8].

Considering the urban dynamics including sprawl as complex phenomena of
mutual interactions of a wide variety of autonomous entities, such as individu-
als, households, and firms [7,18,24], however, highlights the difficulty in direct
control of the urban dynamics.

1.3 Purpose of This Research

With these in mind, this research built an agent-based model (ABM) to simulate
urban structure changes through the induction of autonomous daily travel and
residential relocation of urban residents rather than the compulsion. And based
on this ABM, this research verified the following points:
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• The introduction of a tramway in the central urban area has been actively
promoted in recent years. Is the combination of the introduction of a tramway
with introducing a public facility for urban residents and implementing a
policy to promote activeness around it effective in controlling urban sprawl?

• Is the combination of these policies also effective in improving existent urban
sprawl?

2 Related Works and Position of this Research

To build the simulation model, this chapter referred to the findings of two
research fields, agent-based land-use/transport interaction (LUTI) model and
revitalization of urban central area.

2.1 Agent-Based LUTI Model

Urban sprawl is a special kind of land-use change, urban spatial expansion along
a city boundary. Land-use changes come from its complex driving forces and
their interactions [18,24]. Above all, the fundamental principle that land-use
impacts transport and vice versa has been acknowledged by many scholars and
supported by empirical findings [3]. These research efforts have culminated in the
development of operational urban land-use/transport interaction (LUTI) models
as decision support systems.

And recently, researchers have supported a concept to express the real-world
complicated system including a city as a macro-level state that is generated
by micro-level collective interactions of multiple autonomous agents [9]. The
activity-based disaggregate modeling approach particularly emphasizes the point
that each agent learns, modifies, and improves its own activities through interac-
tions with the environment (including other agents) where the agent is located.
Based on the above-mentioned concept of complexity science, this modeling app-
roach is referred to as the agent-based model (ABM) [7,17,29].

The ABM initially applied to the land-use model as a spatially-explicit cel-
lular automaton (CA) form. In the CA-based land-use models, which serve as a
typical application in social science, the state of each individual cell in the model
space indicates the specific land-use. Such models have subsequently continued
to develop as hybrid agent-based urban models through relaxation of the basic
assumptions. A series of these models have contributed to express complicated
macro-level land-use patterns of cities including clusterization and sprawl as self-
organization through micro-level adaptive behavior of agents. Such models have
served to explore urban growth scenarios.

There have been, however, only a small number of applications of agent-based
models to express agents spatially-explicitly both as households or firms relocat-
ing and as individuals using traffic networks in parallel. One such model to be
called the seamless agent-based LUTI model is the bipolar formed urban dynam-
ics simulation model by Taniguchi [32]. In this model, changes in distribution of
residences emerge through the daily travel of individual residents (households)
and their relocations which are spatially-explicitly expressed [32].
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2.2 Revitalization of Urban Central Area

Recently, particularly in advanced nations, revitalization of urban central areas
that hollowed out along with urban sprawl has become a critically important
issue. Jacobs [20] has emphasized the attractiveness of a city as a lively and
bustling place which has served as a market for exchange from the time before
the establishment of the concept of nation or trading by using currency [20].
And researchers and experts have reevaluated the importance of informal public
spaces for activities of local residents in the way of an antithesis to urban devel-
opment on an inhuman scale as well as another way to regain people in urban
central areas. The two factors are vital to forming such public space. First, such
public space needs to serve as a hub for people in their daily lives so that they
can visit there casually while they are out. Second, such public space needs to
generate “street activeness” set in an open space, such as a street or a plaza,
around the public space.

Library as an Urban Hub. As for urban hubs, public complexes based mainly
on libraries have recently attracted much attention. The representative one is
the series of Idea Store in London, U.K. [1]. Several pioneering libraries built
and put into operation recently in Japan are also relevant to these cases1. These
public libraries, while offering the library service as the core function, provide a
wide variety of other services. These may include attached commercial facilities,
such as cafes, and facilities that promote learning and civic activities. They also
try to enhance convenience for visitors by various policies including the extension
of opening time. By doing so, they aim to serve as a hub for local culture.

Street Activeness. Street activeness indicates a lively situation where indi-
viduals gather and stroll around downtown while enjoying exchanges, such as
encountering various people, contacting various shopping goods, and experienc-
ing other services [27]. Therefore, it can bring about not only usefulness or
efficiency, but also creative, cultural, or recreational benefits. From an economic
point of view, it has been long argued that the density of interactions by vari-
ous people propels economic activity [25]. From a sociological point of view, the
following positive feedback has been demonstrated empirically: the number of
people that visited a certain place including their sojourn time they spent there
can derive positive evaluations for the place, such as cheerful and lively atmo-
sphere, and at the same time these positive evaluations attract further activities
[22].

2.3 Position of This Research

By integrating the above-mentioned conceptual framework, Nagai [27] built the
agent-based model (ABM) to consider qualitative benefit obtained by using infor-
1 E.g., Musashino Place in Tokyo, Japan (2011), Takeo City Library in Saga, Japan

(2013), Gifu Media Cosmos in Gifu, Japan (2015), Art Museum & Library, Ota in
Gunma, Japan (2017).
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mal public space and being in such a place, along with the daily travel of urban
residents. And they clarified that the synergistic effects of some policies, such
as locating of the public space and promoting activeness in such a place, are
effective to maintain a compact urban structure [27]. On the other hand, an
introduction of tramway is well known as one of the measures to reduce traffic
congestion, save energy consumption, and reduce air pollution in urban area.
In recent years momentum for introduction of tramway has also been raised in
Japan [28]. Additionally, especially in Japan a large part of the land is moun-
tainous, thus the area suitable for urbanization is relatively small [23]. And the
population is also declining [2]. For these reasons, improvement of many cities
that have already sprawled is considered to be more important. This research
develops the conceptual framework introduced by Nagai [27] to verify whether
the introduction of a tramway is effective in maintaining a compact urban struc-
ture, and whether it is also effective in improving an urban structure that has
already sprawled.

3 Simulation Model

Based on Nagai [27], this research developed the experimental model in various
factors including the change of the initial experimental state, the introduction of
a tramway, and parameter refinement. The overview of the experimental model
was described below according to the ODD (Overview, Design concepts, and
Details) protocol.

3.1 Purpose

By modeling and running the ABM that abstracted a city and activities of the
residents in the city, this research verified the effects of controlling the urban
structure, which was planned according to the zoning with separation between
residences and job locations, based on the combination of the introduction of a
tramway with introducing a public facility for urban residents and implementing
a policy to promote activeness around it. Additionally, this research verified the
effects of improving the urban structure, which has already sprawled, based on
the combination of them.

3.2 Entities and Scales

Entities are a planar urban schematic and household agents who act in the urban
schematic. Both are spatially-explicit. Figure 1 shows the urban schematic. This
is the abstraction of a part of typical regional cities in Japan, where a central
business district (CBD) and bedroom towns connected by railway. They were
planned according to the zoning with separation between residences and job
locations. Therefore, they are also regarded as the polycentric-form compact city,
which is composed of multiple hubs linked with traffic networks and sharing their
own role [5,33]. In the urban schematic, two domains are located: the residence
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district and the central business district (CBD). The residence district is the
aggregation of residences, which are the starting point and the final destination
of each household agent’s daily travel which corresponds to commuting. CBD
is the aggregation of job locations, which are also a halfway point of the travel.
Two railway stations, the residence station and the central station, are located
at the centers and they are connected by a railway. Additionally, a highway
is located 500 m north of the railway. Furthermore, three tramway routes are
radially installed around the central station as a hub (see next section for details).
To simplify the simulation, uniform and high-density sidewalks and roads are
located on this whole urban schematic. With the assumption, household agents
can freely travel on this space on foot, by bicycle or private automobile.

In the residence district, as the initial location, residences of the same num-
ber as household agents, 1,000, are located randomly based on normal distribu-
tion centering on the residence stations. One household agent corresponds to 10
households in the real-world. Similarly, in CBD, job locations of the same number
are also located. Additionally, one public facility such as a complex mentioned
in the previous section: a public facility for stopping off (PFS), is located in the
central area.

Fig. 1. Urban schematic
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3.3 State Variables of Household Agent

State variables of household agent are as follows:

• Position of the residence
• Position of the job location
• Type of linked trip selected currently
• Value list of linked trips (updated based on daily travel cost)

In this research, the position of a job location corresponding to a certain
household agent is always fixed. A linked trip indicates the series of travels of
each household agent from the starting point to the destination.

3.4 Process Overview and Scheduling

Each household agent does daily travel based on the value list of linked trips, and
fixes travel mode in one way through the learning period of repeating this daily
travel 30 times. After that, for 1/10 of all household agents that are randomly
chosen, relocate their residences. The change in land-use pattern is brought about
through these residential relocations. In this research, after the loop process of
residential relocation is repeated 20 times, the simulation stops processing.2

3.5 Sub-model of Daily Travel

Each household agent repeats daily travel according to the selected linked trip.
The representative travel mode is either of the following: on foot, by bicycle,
train, private automobile, or tramway. The initial representative travel mode of
all household agents is train according to the original urban planning philosophy.
Each household agent leaves the residence for the job location. And after all
household agents arrive at each job location, they leave for PFS. After arriving
and staying there, finally they return to the residence. When the household
agents return to the residence, the total travel cost C is calculated according to
the equation below.

C = wtCt + wcCc + wfCf − wPP

Ct, Cc, Cf , and P indicate time cost, charge cost, fatigue cost, and activeness
value. wt, wc, wf , and wP indicate each preference bias. The preference biases of
all agents are assumed to be equal. According to this cost, the household agent
updates the value Vi of the selected i-th linked trip, according to the equation
below.

Vi ←− α(−C) + (1 − α)Vi

2 This model assumes that 30 times of daily travels (a single loop process of residential
relocation) represent two years in the real-world. Therefore, 20 loop processes of the
residential relocation correspond to simulating 40 years of urban dynamics in the
real-world.
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The following travel of the household agent is done according to the linked
trip selected by the ε-greedy method based on this value. And each household
agent fixes their travel mode in one way through the learning period of repeating
this daily travel 30 times. This setting is based on the findings that individuals
choose travel modes and routes rather boundedly rationally and habitually [16].

Activeness Value. Regarding a 500 m radius around PFS as the zone of influ-
ence, the implementation of a policy to promote activeness is considered. Here, it
is assumed that street activeness can be generated when household agents, which
travel on foot or by bicycle within this range, interact face-to-face, namely when
they agglomerate geographically. During this time, relevant household agents
acquire benefit brought about by the street activeness, which is mentioned in
the previous section, as activeness value P .

P = min(ηacDac, P
max)

Dac(agent) indicates the number of other household agents traveling on foot
or by bicycle within rac meter radius centering on the relevant household agent.
ηac indicates coefficient of activeness. The total travel cost is reduced by the
amount obtained by multiplying the activeness value P with preference bias wP .
The coefficient of activeness can be regarded as a level of effort to bring further
street activeness within the relevant range according to the agglomeration of
pedestrians. This coefficient is enhanced by projects such as arranging comfort-
able sidewalks and cycling roads, arranging attractive retail stores, or holding
attractive events. Improvement in this coefficient enhances the benefit for travel
on foot or by bicycle in the relevant range, increasing a balanced total travel cost.
Therefore, this coefficient can be regarded as a coefficient of gain. Hereinafter,
the policy that corresponds to improvement of this coefficient of activeness is
referred to as the policy to promote activeness.

3.6 Sub-model of Residential Relocation

After all household agents fix their travel mode in one way through the learn-
ing period, 1/10 of all household agents that are randomly chosen relocate their
residence. To the relevant household agents, 10 of candidate residences are pre-
sented randomly. The total living cost of these candidates is the sum of total
travel cost and land rent. The total travel cost is calculated by conducting vir-
tual daily travel from a candidate residence based on the travel mode fixed by
the relevant household agent through learning. The land rent for the candidate
residence increases corresponding to the agglomeration of neighboring residences
and job locations. In other words, the local interactions between households, and
between a household and an environment, also impact the change in land-use
pattern through the change in land rent. Each household agents relocate to the
candidate residence of which the total living cost Cl is the minimum out of 10
candidates.
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3.7 Initialization and Input Data

Setting values of parameters of the urban schematic and household agent were
set carefully based on the various mainly empirical materials, including socio-
demographic and other statistical data published by public authorities e.g., the
ministry of land, infrastructure and transport [2], and previous studies, while
assuming a regional city in Japan.

3.8 Indicators to Estimate Experimental Result

By observing the result of each experimental scenario according to the indicators
shown below, changes in the urban structure were evaluated.

• Percentage of each representative travel mode
• Total CO2 emission (expressed as percentage relative to the scenario A)
• Average travel time
• Standard deviation of distribution of residences (the initial values are 8)
• Distribution map of residences.

4 Experiment 1 - Introduction of Tramway

This section verifies the change of the urban structure, which was formed accord-
ing to the zoning with separation between residences and job locations, based on
the combination of the introduction of tramway with introducing a public facil-
ity for urban residents and implementing a policy to promote activeness around
it, described in Nagai [27].

4.1 Conditions of Experiment 1

The simulation here assumes that the urban schematic tramway routes imitate
the “Karlsruhe Model” [11], where the routes are shared with ordinary railways.
Therefore, three routes are radially installed centering on the central station as
shown on Fig. 2, and the routes pass through CBD. Each route has tramway
stops at 400 m intervals like ordinary tramway services in the real world. Along
with this, residents can also choose the additional following four types of linked
trips. The first two are by train and tramway in combination, and the other two
are by tramway.

The experiments were conducted under the conditions of the following two
types for the location of a public facility for stopping off (PFS).

• A : not introduced (no implementation of the policy to promote activeness)
• E : urban central area, 0.5 km south and 0.5 Km east from the central station

E was the most effective location to maintain compact urban structure in
Nagai [27]. And the four types, 0, 10, 20, and 30, for coefficient of activeness.
Hereinafter, each of these experiments is expressed e.g., scenario At, Et0 – 30,
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Fig. 2. Schematic of tramway routes

by combining the symbols of A and E indicating the location of PFS, the initial
letter t for the word of tram, and the coefficient of activeness. Additionally, this
section reproduces scenario A, where PFS was not introduced, and a policy to
promote activeness around it was also not implemented, to compare with the
new scenarios and validate the simulation model.

4.2 Results of Experiment 1

Table 1 shows the quantitative result of scenario A, At, and Et0 – 30. Figure 3
shows the final distributions of residences of the same scenarios.

The result of scenario At, when compared with scenario A, shows that the
percentage of private automobile users decreased by close to 30 points, while the
percentage of train (and tramway in combination) users increased accordingly.
Along with this, the sprawl on the periphery of CBD was improved, and the
total CO2 emission also reduced considerably.

The results of scenario Et0 – 30 show that, in scenario Et0, the percentages
of each travel mode and the sprawl level were almost the same as scenario At. As
advancing the policy to promote activeness, however, the percentage of private
automobile users got decreasing gradually. When the scenario reached Et30,
the percentage of private automobile users decreased to less than 10%, and the
percentage of train (and tramway in combination) users increased to more than
75%. Along with this, the cluster of residences of train users around the residence
station was maintained quite clearly. Additionally, the percentage of tramway
users increased to more than 15%. And the total CO2 emission also reduced to
less than 30%.
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Table 1. Result of Experiment 1

Scenario Percentage of representative travel modes CO2
emission

Travel

time

Standard deviation

Walk bicycle Train Automobile train + Tram Tram x-cor y-cor

A 1.3% 2.4% 7.3% 89.0% 0.0% 0.0% 100.0% 9.3min 22.9 9.8

At 1.4% 2.6% 15.0% 49.7% 27.9% 3.5% 66.6% 20.6min 17.0 8.4

Et0 1.1% 2.3% 14.4% 53.7% 25.3% 3.2% 91.1% 33.5min 17.5 9.1

Et10 1.2% 1.5% 11.3% 21.6% 57.1% 7.4% 48.1% 39.4min 13.9 7.8

Et20 1.2% 1.3% 9.5% 10.4% 65.7% 11.9% 32.9% 44.7min 13.3 7.6

Et30 1.0% 1.1% 7.9% 7.1% 67.6% 15.3% 28.6% 47.6min 13.7 8.0

Fig. 3. Residences’ final distribution of Experiment 1

5 Experiment 2 - Setting Urban Sprawl as Initial State

This section verifies the effect on improving the existent urban sprawl based on
the implementation of the same policies including the introduction of tramway,
described in the previous section.

5.1 Conditions of Experiment 2

This section sets the final state of scenario A as the experimental initial state.
Most of the residences were distributed on the periphery of CBD as sprawl, and
the percentage of private automobile users reached close to 90%. This shows the
state after 20 loop processes of residential relocation (corresponding to 40 years)
from the zoning with separation between residences and job locations. The edge
routes of tramway also pass through the suburb area with sprawled residences.

The experiments were conducted under the conditions of the two types for the
location of PFS and the four types for coefficient of activeness, like the previous
section. Hereinafter, each of these experiments is expressed e.g., scenario SAt,
SEt0 – 30, by combining the initial letter S for the word of sprawl, the symbols
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of A and E indicating the location of PFS, the initial letter t for the word of
tram, and the coefficient of activeness. Additionally, scenario SEt30+, which was
run for twice as long as SEt30, was executed.

5.2 Results of Experiment 2

Table 2 shows the quantitative result of scenario SAt, SEt0 – 30, and SEt30+.
Figure 4 shows the final distributions of residences of the same scenarios.

The result of scenario SAt shows that the percentage of private automobile
users increased further, and the sprawl of their residences on the periphery of
CBD also advanced further, unlike scenario At.

The results of scenario SE0 – 30 also show that both the decrease in the pri-
vate automobile users and the cluster of residences of train users around the res-
idence station were not observed, unlike the series of Et. Particularly in scenario
SEt0 – 20, the percentage of private automobile users increased further, and the
sprawl also advanced further, like scenario SAt. In advancing the policy to pro-
mote activeness, however, the percentage of private automobile users decreased,
and the percentage of tramway (and train in combination) users increased and
reached close to 50% in total in scenario SEt30.

Furthermore, the results of scenario SEt30+, where scenario SEt30 was run
further, shows that the percentage of tramway (and train in combination) users
reached close to 90% in total. Along with this, the total CO2 emission also
reduced considerably, and the following two clusters of residences were formed.
One is the cluster by residents commuting by train and tramway in combination
(about 20%), on centering the residence station. The other is the cluster by
residents commuting by tramway alone (about 70%), along tramway routes from
the center to the periphery of CBD.

Table 2. Result of Experiment 2

Scenario Percentage of representative travel modes CO2
emission

Travel

time

Standard deviation

Walk Bicycle Train Automobile Train + tram Tram x-cor y-cor

SAt 0.8% 1.3% 1.5% 93.4% 1.3% 1.7% 89.3% 7.5min 27.3 11.7

SEt0 0.7% 0.9% 1.7% 94.1% 1.5% 1.2% 95.4% 20.9min 21.6 14.2

SEt10 0.6% 0.6% 1.7% 94.5% 1.4% 1.2% 97.1% 21.1min 21.9 14.2

SEt20 0.8% 0.7% 1.4% 91.8% 1.9% 3.3% 94.8% 21.3min 21.9 14.3

SEt30 2.3% 0.9% 4.1% 44.9% 12.3% 35.6% 54.2% 37.4min 22.5 14.2

SEt30+ 0.8% 0.9% 1.4% 10.0% 19.4% 67.5% 20.6% 43.7min 20.5 12.9

6 Discussion

6.1 Estimation of the Experimental Results

By combining the introduction of tramway with introducing a public facility
for stopping off (PFS) and implementing a policy to promote activeness around
it, the percentage of private automobile users decreased, when compared with
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Fig. 4. Residences’ final distribution of Experiment 5

the cases when no policies were implemented. And the percentage of train (and
tramway in combination) users increased accordingly. Along with this, the total
CO2 emission reduced, and the compact urban structure, which was formed
according to the zoning, was maintained. These suggest that the synergistic
effects of the introduction of tramway, the proper location of the public facility
for urban residents, and the policy to promote activeness around it, could impact
positively on a both static and dynamic urban environment. This also seems to
be because the policy to promote activeness, which is incentive to stroll about
downtown, was effective to increase the percentage of tramway users, like the
two transport policies in Nagai [27].

On the other hand, where the initial state was sprawl mainly with private
automobiles, the introduction of tramway could not serve to control further
sprawl and use of private automobiles. When combined with the introduction of
the public facility and the implementation of the policy to promote activeness,
however, most of the private automobile users switched to tramway use, although
it took a long period. This suggests that once residents established the lifestyle
of low-density residence in suburb and commuting by private automobile, that
becomes robust, irreversible, and very difficult to be upset.

As for the residence distribution in the same scenario, most of the resi-
dences that are distributed along the tramway routes deviated from the initial
polycentric-form compact city, which was planned according to the zoning with
separation between residences and job locations. This, however, can gain the
following positive evaluations of a monocentric-form compact city. First, the res-
idents can establish a life where residences and job locations are nearby based
mainly on use of public transportations, resulting in being free from traffic con-
gestion and air pollution. Second, mixed land-use provides the residents with a
broad range of social activities, while revitalizing the central urban area.



48 H. Nagai and S. Kurahashi

Simply put, the policy to promote activeness is a policy to lead people to
walk by giving them incentives. On the other hand, many successful cases of
introducing tramway in the real world are characterized with combining the
introduction of tramway with other policies which serve as a benefit for people
traveling on foot. That is, this experiment clarified that the introduction of
tramway can exert a profound effect only when combined with policies, which
lead tramway users’ walk before and after they use a tramway, and how it can
offer great benefits.

6.2 Validation of the Simulation Model

Because of the property of emergence in complex self-organizing systems, ABMs
should be assessed based on validity rather than one-to-one correspondence or
correlation measures [34]. Pattern-Oriented Modeling (POM) procedure is an
effective validation procedure. In POM procedure, after identifying the observed
patterns in the real-world characterizing the system to be modeled, the ABM
is evaluated by whether the observed patterns are reproduced [29]. This section
validated the simulation model according to the concept of POM.

In scenario A for the first experiment, the residence distribution significantly
changed from separation between residences and job locations to sprawl where
most of the residences on the periphery of CBD. This can be regarded as the
reproduction of the growth process of a concentric low-density suburb based
on the monocentric urban model which was proposed by Alonso [4] and subse-
quently supported by many related researches. This can be also regarded as the
reproduction of the fact that many cities in Japan’s urban areas have consis-
tently expanded since the high economic growth period [14]. Furthermore, the
travel mode used by most of the household agents living in suburb has switched
from train to private automobiles. This can be also regarded as the reproduction
of the fact that the main travel mode in commuting has switched from train to
private automobiles, and the road traffic has reached saturation, especially in
regional cities [2].

The purpose of the model is not to reproduce the real society precisely, but to
analyze the mechanism of highly abstracted urban dynamics by a small number
of elements and simple rules. Nevertheless, the simulation model reproduced the
above multiple social phenomena which were not directly incorporated into the
model. Therefore, these reproductions demonstrate that the simulation model
can explain the real society to a certain level, and the experimental results of
this research are valid.

7 Conclusion

The purpose of this research was to verify the effectiveness of the combination
of the introduction of a tramway with introducing the public facility for urban
residents and implementing the policy to promote activeness around it, on urban
sprawl. So, this research built an agent-based model (ABM) for simulating urban
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structure changes through autonomous daily travel and residential relocations
of urban residents. By using this model, the simulations were conducted based
on the assumption of setting zoning with separation between residences and job
locations as the initial state and combining these policies. These were followed by
other simulations based on the assumption of setting urban sprawl as the initial
state and combining these policies. As a result, these experiments clarified the
following points and how they were.

• The synergistic effects of the introduction of a tramway, the proper location
of a public facility for urban residents, and the policy to promote active-
ness around it, are effective in maintaining a polycentric-form compact urban
structure in accordance with the initial plan.

• The introduction of a tramway targeting the urban sprawl can exert a pro-
found effect only when combined with the above-mentioned policies, which
lead tramway users’ walk before and after using the tramway, although it
takes a long period.

• A monocentric-form compact urban structure, which differs from the initial
plan, is realized along with the above-mentioned point, improving the living
environment for the residents and revitalizing the urban central area.
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Abstract. Forming comprehensive security plans is essential to ensure
safety at large events. The Multi Agent Simulator (MAS) is widely used
for preparing security plans that will guide responses to accidents at large
events. For forming security plans, it is necessary that we simulate crowd
behaviors that reflect real world observations. However, crowd behavior
simulations require OD information (departure time, place of Origin,
and Destination) of each agent. Moreover, from the viewpoint of pro-
tecting personal information, it is difficult to observe the complete and
detailed trajectories of all pedestrians. Therefore, the OD information
should be estimated from the data observed at several points, usually
the number of people passing fixed points. In this paper, we propose
an accurate method for estimating OD information; it has three fea-
tures. First, by using Bayesian optimization (BO) which is widely used
to find optimal hyper parameters in the machine learning fields, the OD
information is efficiently and accurately estimated using fewer parameter
searches. Second, by dividing the time window and ignoring the identity
of the observed people, the parameter dimension of the OD information
is reduced to yield a solvable search space. Third, by considering the
time delay created by the physical separation of the observation points,
we develop a more accurate objective function. Experiments evaluate the
proposed method using the data collected at three events (University fes-
tival, projection-mapping event, and music live), and the accuracy with
which reproduction MAS can reproduce the people flows is assessed. We
also show an example of the MAS-based process used in making guidance
plans to reduce crowd congestion.

Keywords: Multi-agent simulator · Bayesian optimization
Crowd behavior

1 Introduction

Large events such as music festivals and sports games can attract large crowds
that can trigger crowd congestion. To ensure safe operation by avoiding con-
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 53–69, 2018.
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gestion and accidents, effective plans (e.g. the placement of security guards, the
guiding of participants toward common destinations) are critical. The Multi-
Agent Simulation [3,5] (hereinafter abbreviated as MAS) approach has been
widely used to realize effective planning [10,13]; MAS is used to generate a wide
variety of security plans that are then compared. If the security plans are to
be effective in the real world, MAS needs to reproduce reality. Therefore, it is
necessary to determine the MAS parameters accurately. There are two types of
MAS parameters. The first are micro parameters such as agent moving speed in
the behavior model. There are many studies on the estimation of micro param-
eters, such as using MAS to reproduce the flow of people in a video [1,14]. The
second are macro parameters, such as OD information (departure time, place of
origin and destination), of the agents [8]. Although estimating macro parameters
is important because they are dominant factors in determining congestion, few
studies have tackled them. If trajectory information of all participants is avail-
able, these macro parameters can be obtained, but privacy concerns have made
this unrealistic. One data source that can be observed practice is the number of
pedestrians who pass one or more fixed points on a road; data can be gathered
either by visual count or by video processing. The data contains information of
crowd behavior but can not be used directly for estimating OD information of
individuals.

For parameter estimation, we need to use a meta-heuristic approach that
does not require an explicit function form such as a genetic algorithm [1,8]. This
is because MAS is not represented by a combination of simple functions due to
the interaction of many agents, and the output yielded by the input is not known
until the run is completed. Figure 1 shows the process of estimating parameters
by the meta-heuristic approach. In this method, at first, OD information is input
to MAS. Next, MAS outputs the number of pedestrians observed at fixed points
after completion. Then, based on past trial results, the candidate parameters
that reduce the reproduction error are selected.

In this paper, we propose an efficient and highly accurate meta-heuristic esti-
mation method. Figure 2 shows three key features of our method. These features
allow it to estimate the parameters efficiently and accurately.

Bayesian optimization approach: For efficient estimation, we use Bayesian
optimization (hereafter BO) which is widely used in the machine learning field
to find optimal hyper parameters [9]. This method can efficiently estimate the
input parameters since it predicts the reproduction error between the values
observed in the real world and those output by MAS.

Parameter conversion technique: The estimation of OD information is diffi-
cult in practice because it involves a problem of high dimensionality. Therefore,
we change the parameters of each agent to route-based parameters, i.e. the num-
ber of pedestrians moving on each route in each time window. This technique
greatly reduces the dimensions of the parameters.

Design objective function: For accurate parameter estimation, it is neces-
sary to consider that the same user or users may be observed in multiple time
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Fig. 1. Framework of our task

Fig. 2. Three key features of the proposed method

windows. Therefore, as the reproduction error to be optimized, we designed an
objective function that uses observed values of multiple time windows in which
agents are observed.

We conduct experiments to confirm the accuracy of our method in reproduc-
ing crowd behavior. The experiments validate the proposal using data collected
at three large events, all of which attracted large crowds (several tens of thou-
sands to several hundreds of thousands of people). The results show that the
proposed method has higher accuracy than an existing method. We also ana-
lyze the effect of considering that the same agents are observed in multiple time
windows. Finally, we will develop a guidance route that should be taken if an
accident occurs in similar events in the future based on the crowd behaviors
reproduced by our method.

The contributions of this paper are as follows.

1. Proposing MAS parameter estimation method based on BO.
2. Confirming that it can reproduce crowd behavior.
3. Verifying the effectiveness of the guidance created to ease a crowd congestion

at actual events as reproduced by MAS.

2 Related Work

Several studies have simulated traffic accidents and disasters at large events, and
verified the effectiveness of security plans prepared in advance [10,13]. Yamashita
et al. [13] simulate a tsunami hitting a coastal area, and verify the evacuation
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time when guiding the pedestrians along evacuation routes as a security plan.
Ueda et al. [10] simulate the situation of multiple accidents in the vicinity of
the 2020 Tokyo Olympic venue, and verify congestion level when changing the
movement route of pedestrians as a security plan.

Other studies attempted to use observed data to estimate MAS parame-
ters that conformed to reality, since the appropriate security plan will change
depending on the situation assumed in advance [1,8,14]. Observed data has var-
ious forms such as videos captured by fixed-point cameras and the number of
people passing each observation point. Bera et al. [1] use videos from fixed-point
cameras for estimating the RVO parameters (comfort speed, neighbor distance)
of each agent, which are parameters commonly used in agent behavior models.
Zhou et al. [14] also use video data for estimating the speed and the moving
direction of each agent. Both methods were designed to reproduce the move-
ment of people in an area covered by a camera. Their approach is, however, not
suitable for reproducing crowd behavior in the large-scale venues that we are
targeting, because video data can not be captured at large venues to assuage
privacy concerns. Some studies use the number of people passing each observa-
tion point as observed data for the reproduction of crowd behavior [8]. They
estimate the number of people on each moving route and the guidance pattern
that was adopted on the day to prevent congestion. Their research has the same
motivation as ours, and it is very similar to the task we address. However, their
method requires more than a month to complete the estimations because they
use the genetic algorithms shown below.

In estimating MAS parameters, the meta-heuristic optimization approach
such as the genetic algorithm (GA) is often used [1,8]. In this approach, param-
eters are identified by running MAS repeatedly. To formulate a security plan
for the next event at the venue, it is desirable to estimate parameters with as
few trials as possible. For example, in order to update a security plan with
popular artist’s music live performance over several days, it is necessary that
reproduction be completed within a few days. Therefore, as the GA-based app-
roach requires a large number of MAS trials, it is not suitable for parameter
estimation, since each large-scale MAS trial takes a long time to complete. In
contrast, BO offers accurate estimation with just a few MAS trials. Therefore,
the BO-based approach is suitable for parameter estimation of large-scale MAS.

The dimension of the parameters to be estimated, departure time and move-
ment route for each agent, increases with the number of agents. Unfortunately,
unlike GA, BO suffers the disadvantage that accuracy worsens as parameter
dimensionality increases. BO for highly dimensional input parameters has been
proposed mainly for two kinds of simple functions [4,12]. One is a low dimen-
sional function buried in a high dimensional space [12] and the other is a high
dimensional function expressed as the sum of low dimensional functions [4].
However, no BO proposal targets complicated high-dimensional functions such
as MAS. We propose a key technique to convert high dimensional parameters
into low dimension equivalents.
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3 Proposed Method

3.1 Setting

The problem we address is OD estimation for each agent from observed data
streams generated by counting the number of people passing fixed points. When
the total number of people whose OD information should be estimated is U ,
the problem is recast as the optimization of parameter search in U -dimensional
space.

The parameter set of departure time and route (the pair of Origin and Desti-
nation) of agent u is given as π = {(tu, ru)}U

u=1, where U is the number of agents
passed to MAS. The objective function to be optimized, the error between the
MAS output yielded by π and the observed data, is defined by L(π), and the
problem is expressed as follows,

π∗ = arg minπ∈Sπ
L(π), (1)

where Sπ is the U -dimensional search space for the OD parameters. With this
problem setting, as the number of agents increases, the combination of parame-
ters to be estimated increases exponentially. Therefore, it is necessary to realize
a more practical setting.

Parameter conversion technique: Our key idea for avoiding the exponen-
tial increase in calculation cost is to avoid the parameter dimensionality curse of
the OD information by using time window divisions and ignoring the identifica-
tion of the observed people. The observed data Y (= {yto}T,O

t,o ∈ R
T×O) is the

number of people passing the o-th fixed point during t ∼ t + Δ t. To reproduce
Y on MAS, identification of the people (agents) is not necessary to ensure the
symmetry of the search space. Specifically, the objective function becomes same
value if the two parameters π and π′, indicating two agents that have the same
departure time (tk = tk+1 = t∗) but different routes (rk �= rk+1), are swapped.
In short,

L(π) = L(π′), where π = {(t1, r1), . . . , (t∗, rk), (t∗, rk+1), . . . , (tU , rU )}
and π′ = {(t1, r1), . . . , (t∗, rk+1), (t∗, rk), . . . , (tU , rU )}.(2)

Therefore, it is not necessary to estimate each agent’s parameters for reproducing
crowd behavior, since even if the departure time of an agent changes slightly the
reproduction error does not change significantly. Therefore, agent’s departure
times in the same time window can be integrated to the route based parameter
matrix X = {xtr}T,R

t,r ∈ R
T×R, instead of the agent-based parameters π. Where,

xtr is the number of pedestrians who move on route r and depart within the
time window Wt = [t, t + Δ t) as follows,

xtr = # of u s.t. tu ∈ Wt and ru = r. (3)

On the other hand, the inverse conversion from X to π cannot be determined
strictly and uniquely. However, because of the above symmetry of the identi-
fication, small differences in the departure times of the agents generated from
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a uniform distribution within time window, Wt, yield minimal changes in the
reproduction error. Therefore, π can be inversely converted from X. The depar-
ture time of the u-th agent is given as tu ∼ U(Wt) and π is converted as follows:

π = {(U(W1), 1), · · · , (U(W1), R)
︸ ︷︷ ︸

|x1|

, · · · , (U(WT ), 1), · · · , (U(WT ), R)
︸ ︷︷ ︸

|xT |

} (4)

here xt = {xtr}R
r=1 is the total number of pedestrian vectors. By estimating xt

sequentially with t, the dimensionality of the parameter to be estimated becomes
the number of routes, R (R << U). This means that rather than the original
problem, we solve the following optimization problems for each time window,

x∗
t = arg minxt∈Sx

L(xt), t = 1, . . . , T, (5)

where Sx is the positive real R-dimensional vector space, and T is the number
of time windows. In the later experiment, whereas the dimensionality of the
original problem is tens of thousands, the dimensionality after conversion ranges
from 20 to 40. Called the conversion technique, it makes the original problem
easy to solve.

Designing the objective function: To estimate xt accurately, it is nec-
essary to design an objective function that takes into consideration the time
windows in which agents are observed. The relationship between the agent’s
departure time window and the observation time window is shown in Fig. 3.
Agents departing at Wt−ω may be observed within Wt, where ω is the maximum
window size in which the agent is observed. Therefore, the following relationship
holds,

ŷt = f(xt−ω, · · · ,xt), (6)

where f is a function that associates observation value ŷt at time window Wt

on MAS executed with agent parameter π converted from xt−ω, · · · ,xt. Also,
the agents departing in time window Wt are observed in time window Wt′(t′ =
t, · · · , t + ω). Thus, the objective function for estimating xt is as follows,

Lω(xt) =
t+ω
∑

t′=t

‖yt′ − ŷt′‖ =
t+ω
∑

t′=t

‖yt′ − f(xt′−ω, · · · ,xt′)‖. (7)

This objective function takes account of all the time windows observed until the
agent arrives at the destination, and enables highly accurate estimation.

3.2 Multi Time Window Bayesian Optimization (MTWBO)

Our method (called Multi Time Window Bayesian Optimization: MTWBO)
uses three features in estimating route-based parameters xt for each time window
Wt instead of agent-based parameters π. Figure 4 indicates the framework of our
method.

First, the candidate route-based parameters, xt, that may reduce the repro-
duction error are selected using the BO approach based on past trial results of
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Fig. 3. Space-time map of departure time window and travel distance

Fig. 4. Proposed method: outline

MAS. For parameter selection, the prediction function that predicts the repro-
duction error of any point is constructed based on the executed result of the
parameter x

(m)
t (m = 1, . . . , M) randomly selected from parameter space Sx. We

denote the reproduction error of agent-based parameter π(m) converted from
x
(m)
t by the parameter conversion technique as z

(m)
t = Lω(x(m)

t ), and past trial
results as Dt = {(x(m)

t , z
(m)
t )| m = 1, . . . ,M}. Here, assuming that Lω follows a

Gaussian process [7], the reproduction error z
(m)
t = Lω(x(m)

t ) at any point x
(m)
t

follows a normal distribution with average μ(xt) and variance σ(xt) as follows

z
(m)
t ∼ N (μ(xt), σ(xt)), (8)

μ(xt;Dt) = kT (K + βI)z, (9)
σ(xt;Dt) = k(xt,xt) − kT (K + βI)−1k, (10)

where k : Sx ×Sx → R is a kernel function that measures the similarity between
two parameters, k = (k(x(m)

t ,xt))M
m=1 ∈ R

M , K = (k(x(m)
t ,x

(m′)
t ))M

m,m′=1 ∈
R

M×M ; β is a hyper-parameter, I ∈ R
M×M is an identity matrix, and z =

(z(m)
t )M

m=1 ∈ R
M . In the later experiment, we use following commonly used

Gaussian kernel,

k(x(m1)
t ,x

(m2)
t ) = exp(a‖x

(m1)
t − x

(m2)
t ‖2), and a > 0. (11)
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Then, a parameter the has the highest possibility of updating the current best
reproduction error is selected by utilizing the information of the prediction func-
tion. In the BO approach, we evaluate this possibility quantitatively using the
acquisition function α. Parameters with low predicted reproduction error and
parameters of unsearched areas take higher values in the acquisition function. In
this paper, we use Expected Improvement (EI) [2,6,11] which is one of the most
studied theoretical features for acquisition functions. EI is expressed as follows,

α(xt;Dt) = (μ(xt) − τ)Φ (γ(xt)) + σ(xt)φ (γ(xt)) , γ(xt) =
μ(xt) − τ

σ(xt)
, (12)

where φ and Φ are the PDF and CDF of the standard normal distribution,
respectively, and τ is the best value in trial results zt(m = 1, . . . , M). We select
the parameter that maximizes the acquisition function as the input of MAS.

arg maxxt∈Sx
α(xt). (13)

Next, the reproduction error of the chosen route-based parameter xt is cal-
culated. Since route-based parameters xt cannot be input directly to MAS, they
are converted into agent-based parameters π by using our parameter conversion
technique. Then, the reproduction error for converted parameter π is calculated
using the proposed objective function Lω defined in Eq. (7). The pair of obtained
parameter xt and reproduction error Lω(xt) is added to the past trial data, Dt,
and then used to select a new input parameter of MAS.

Our algorithm estimates agent-based parameter xt in each time window Wt

in order. The value of the objective function depends on not only the previous
time window parameter x′

t(t
′ = t − ω, . . . , t − 1), but also later time window

parameter x′
t(t

′ = t + 1, . . . , t + ω) as shown Eq. (7). To allow the influence
of subsequent parameters, it is necessary to estimate xt again after estimating
those time windows. That is, estimation from x1 to xT is performed in multiple
cycles. The estimation procedure is summarized as Algorithm 1.

4 Experiment

In this section, we confirm the effectiveness of the proposed method by using
datasets gathered at multiple events. The two objectives of the experiment are
as follows.

• Confirm that the proposal achieves higher estimation accuracy than existing
methods and is more practical.

• Show how to determine window size, ω, for maximizing estimation accuracy.

4.1 Multi-agent Simulator

This paper uses a multi-lane graph-based MAS [10]. In MAS, each agent is
directed to its destination along the shortest path considering the degree of
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Algorithm 1. MTWBO
Input:

Lω : Objective function;
C ∈ N

+ : Number of cycles;
T ∈ N

+ : Number of time windows;
M ∈ N

+ : Sample size in each Time window;
I ∈ N

+ : Number of iterations in each Time window;
ω ∈ N

+ : Window size;
Sx : Parameter space;

1: Set x∗
t by random sampling from Sx, t = 1, · · · T

2: for c = 1 to C do
3: for t = 1 to T do
4: Collect {x

(m)
t |m = 1, · · · , M} by random sampling from Sx

5: Convert x
(m)
t to π(m) by Eq.(4)

6: for m = 1 to M //Running MASdo

7: ŷ
(m)

t′ = f(x∗
t′−ω, · · · , x

(m)
t , · · · , x∗

t′) where t′ = t, · · · t + ω

8: z
(m)
t = Lω(x

(m)
t ) by Eq. (7)

9: end for
10: Dt = {(x

(m)
t , z

(m)
t )|m = 1, · · · , M}

11: for i = M + 1 to M + I //Input parameters selectiondo
12: Calculate μ(xt), σ(xt) and α(xt) on Dt following Eq. (9)(10)(11)

13: x
(i)
t = argmaxxt∈Sα(xt; Dt)

14: Convert x
(i)
t to π(i) by Eq.(4)

15: ŷ
(i)

t′ = f(x∗
t′−ω, · · · , x

(i)
t , · · · , x∗

t′) where t′ = t, · · · , t + ω

16: z
(i)
t = Lω(x

(i)
t ) following Eq. (7)

17: Dt = Dt ∪ (x
(i)
t , z

(i)
t )

18: end for
19: x∗

t ← argminxt∈Dt
Lω(xt)

20: end for
21: end for

congestion of the roads. The walking speed of pedestrians is reflected in the
degree of congestion as follows,

v =

⎧

⎪
⎨

⎪
⎩

vmax (ρc > ρ ≥ 0)
1.8/ρ − 0.3 (6 > ρ ≥ ρc)
0.0 (ρ ≥ 6).

(14)

Here, ρc = 1.8/(vmax + 0.3)[persons/m2] is the criterion for the degree of con-
gestion. The maximum speed vmax is given a log normal distribution following
ln N (1.2 [m/s], 0.12). MAS is written C-language and can control tens of thou-
sands of agents within just a few seconds per 3600 steps.

4.2 Data Set

We collected the people flow data on the three venues by vision-based manual
counts. Using the smartphone application that we made, the observers visually
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counted the people passing the observed points, shown by the red circled letters
in Fig. 5(a). Departure points are indicated by blue circles and destinations by
pink circles. Points that are both departure and destination are shown by green
circles.

WASEDA: Waseda Festival1 is one of the biggest school festivals in Japan.
The central green shading on the map represents the university’s premises; four
stations lie on its borders. Participants move from the four stations towards the
university’s six gates when entering and move in the opposite directions when
leaving. Also, a roughly 30 min parade is held during this event. The participants
walked slowly with the parade. Therefore, they may be observed in multiple time
windows.

YOYOGI: YOYOGI CANDLE 20202 is an event held in Yoyogi in Japan.
The participants view a projection mapping display from above a bridge. In
this event, we set the bridge itself as the destination in addition to the stations
around the bridge.

LIVE: This event is a massive live music festival. We gathered data on the
people leaving the event. Since it is a long distance from the hall to the station,
many users were observed in multiple time windows. We set the route from the
three exits to the station.

4.3 Estimation Accuracy

To evaluate estimation accuracy performance, we use the normalized absolute
error. A lower value indicates that the method extracted the parameter that
reproduced the agent’s behavior more precisely. The normalized absolute error
is defined as

NAE =
∑

t |yt − ŷt|
∑

t |yt| ,

We compare the proposed method with the following methods. (i) Random
search (Random): Generate x randomly from parameter space Sx. Then, we
select the one with the highest estimation accuracy as the best parameter. (ii)
Genetic Algorithm (GA): Search by combining values of input parameters using
the genetic operators of selection, crossing, and mutation. The hyper parameters
of each operator (crossing probability c ∈ {0.6, 0.7, 0.8, 0.9, 1.0}, mutation rate
m ∈ {0.02, 0.04, 0.08}) are determined by grid search. Moreover, to investigate
the effect of the proposed objective function Lω, the time window size ω was
set to 0 or the appropriate value explained later. Since the appropriate time
window size ω is different for each data set, in the experimental results, it is
shown as ω = ∗. ω = 0 means to consider the reproduction error for just a single
time window. For fairness comparison, each method was restricted to the same
number of MAS executions. Iterations of each time window are performed 120
times in 10 cycles for a total of 1200 iterations.

1 http://www.wasedasai.net/2016/.
2 http://www.ntt.co.jp/topics/pdf/topics 20171130.pdf.

http://www.wasedasai.net/2016/
http://www.ntt.co.jp/topics/pdf/topics_20171130.pdf
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(a) Map

(b) Observation information

(c) The total number of people observed

WASEDA

(a) Map

(b) Observation information

(c) The total number of people observed

YOYOGI

(a) Map

(b) Observation information

(c) The total number of people observed

LIVE

Fig. 5. Information from three events. (a) Map around the event venue and observation
points. (b) Detailed observation information. (c) The total number of people observed
during the event. (Color figure online)
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4.4 Result

Quantitative evaluation of estimation performance: Figure 6(a) shows
the estimation accuracy of each method for each data set. The result of GA is
almost the same as random, because the number of trials is small and conver-
gence was not achieved. In contrast, the proposed method had higher estima-
tion accuracy than the existing methods. To investigate the estimation accuracy
result in detail, NAE of the observation point near the departure point is shown
in Fig. 6(b), and far from the departure point (i.e.: near to the destination) is
shown in Fig. 6(c). As can be seen from Fig. 6(b), both MTWBO(ω = 0) and
MTWBO(ω = ∗) yield highly accuracy estimations at observation points near
the departure point. This is because MTWBO(ω = 0) can consider the values
observed in a single time window. On the other hand, Fig. 6(c) shows that only
MTWBO(ω = ∗) maintains high estimation accuracy for observation points far
from the departure point. This is because only MTWBO(ω = ∗) can take into
account observed values in multiple time windows. This confirms that designing
the objective function properly enables highly accurate estimation.

Qualitative evaluation of estimation performance: Figure 7 shows the
number of people passing through a far point by inputting the parameters esti-
mated by each method. Closeness to the observed value (black line) indicates the
realism of the simulation. This figure shows that MTWBO(ω = ∗) (blue line)
can reproduce real observation values more accurately than the other methods.
Note that YOYOGI results show only one hour flow including events, because
of space constraints.

How to determine window size ω: We analyze how to determine window
size ω for highly accurate estimation. Figure 8 shows the average travel time for
100 people moving on each route, and Fig. 9 shows the relationship between time
window size ω and estimation accuracy. As these figures show, for highly precise
estimation, it is sufficient to set the maximum value among the time window
sizes necessary for transiting each route. Note that ω = 3 can handle travel
times of 30 min since the measurement time interval is 10 min in the result of
WASEDA.

5 Application

This section forms a security plan as an example of applying the proposal. We
verify the plan in three steps. In the first step, we reproduce the crowd behavior
based on our estimated parameters. In the second step, we input an accident to
MAS and cause congestion. In the third step, we verify the effect of the security
plan prepared in advance. With regard to security plans, guidance to evacuation
centers is often needed to handle sudden disasters. However, in the scenario
of exiting an event venue, the destination has been decided, and changing the
destination is not realistic. Therefore, we examine the congestion mitigation
achieved by changing the movement route rather than the agent’s destination.
Accurate estimation of the number of people moving along each route by our
method makes it possible to verify these plans.
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(a) All observation points (b) Near to departure point (c) Far from departure point

WASEDA

(a) All observation points (b) Near to departure point (c) Far from departure point

YOYOGI

(a) All observation points (b) Near to departure point (c) Far from departure point

LIVE

Fig. 6. Comparison of NAE of each method at (a) all observation points, (b) near to
departure point, and (c) far from departure point. Lower values are better.

WASEDA YOYOGI LIVE

Fig. 7. Execution results of MAS using parameters estimated by each method. It shows
the transitions in the number of people passing through observation points far from
the departure point. (Color figure online)
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WASEDA YOYOGI LIVE

Fig. 8. Average travel time required to transit each route

WASEDA YOYOGI LIVE

Fig. 9. Relation between time window size ω and estimation accuracy

5.1 Setting

Simulation case: We used the crowd movement of YOYOGI estimated by our
method as the target. At this event, a maximum of about 500 people stayed
on the bridge, which is the viewing area. The estimation result of our method
showed that there many participants left from the left side of the bridge and
went to the north station after the event. Therefore, we analyzed the crowd
behavior assuming an accident closed the left end of the bridge. Because of the
road closure, all the agents whose destination was a station had to leave from
the right side of the bridge.

Fig. 10. Point of accident and guide route in each scenario (Color figure online)

Security plan scenario: Figure 10 shows where the accident occurred and each
scenario. In this experiment, we compared (i) the naive scenario where all agents
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used the shortest path (orange) and (ii) the guidance scenario where all agents
whose destination was a station were instructed to take the detour that used a
wide road (green). Also, the shortest-path is a one-way road from north to south
(blue).

19:30 19:33 19:36 19:39 19:42

(a) naive scenario

19:30 19:33 19:36 19:39 19:42

(b) guidance scenario

Fig. 11. Crowd behavior with each scenario (Color figure online)

5.2 Results

We show the result of crowd behavior every three minutes from 19:30 at the
end of the event following each scenario in Fig. 11. 3D city model data ( c©2017
ZENRIN CO.LTD) is used for visualization. Figure 11(a) shows that the crowd
behavior created congestion when following the naive scenario. This is because
people heading south from the station in addition to the people headed to the
station used the same route (orange). Figure 11(b) shows the crowd behavior
when following the guided scenario. People going south from the station and
people heading from the bridge to the station took different routes. In this way,
by using the estimation results provided by our method, we can assess how well
guidance routes will reduce congestion without changing the destination.

6 Conclusion and Future Work

In this paper, to formulate MAS-based security plans for large-scale events that
will generate heavy pedestrian flows, we showed how to accurately estimate the
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parameters that best reproduce crowd behavior. Our proposal, an estimation
method with three key components, realizes efficient and highly accurate esti-
mations. The estimation accuracy of the method was verified using data of crowd
behavior gathered at three venues. Experiments showed that our method can effi-
ciently output estimates that are highly accurate. In addition, as an application
of the method, we also formed a security plan based on the estimation results
provided by the method. In future work, we plan to study spatial parameter con-
version techniques in order to accurately reproduce crowd behavior over wider
areas.

References

1. Bera, A., Kim, S., Manocha, D.: Efficient trajectory extraction and parameter
learning for data-driven crowd simulation. In: Proceedings of the 41st Graphics
Interface Conference, pp. 65–72. Canadian Information Processing Society (2015)

2. Bull, A.D.: Convergence rates of efficient global optimization algorithms. J. Mach.
Learn. Res. 12(Oct), 2879–2904 (2011)

3. Castle, C.J.E., Waterson, N.P., Pellissier, E., Le Bail, S.: A comparison of grid-
based and continuous space pedestrian modelling software: analysis of two UK
train stations. In: Peacock, R., Kuligowski, E., Averill, J. (eds.) Pedestrian and
Evacuation Dynamics, pp. 433–446. Springer, Boston (2011). https://doi.org/10.
1007/978-1-4419-9725-8 39
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Abstract. With increasing popularity of location-based social networks, POI
recommendation has received much attention recently. Unlike most of the
current studies which provide recommendations from perspective of users, in
this paper, we focus on the perspective of Point-of-Interest (POI) for predicting
potential users for a given POI. We propose a novel vector representation model
for the prediction. Many current matrix factorization-based methods only pay
attention to combining new information and basic matrix factorization, while in
our model, we improve the matrix factorization model itself by replacing dot
product with cosine similarity. We also address the problem of randomness of
user’s check-in behavior by applying deep neural network to modeling the
relationships between the user’s current check-in and context information of
current check-in. Extensive experiments conducted on two real-world datasets
demonstrate the superior performance of our proposed model and the effec-
tiveness of the factors incorporated in our model.

Keywords: POI recommendation � Matrix factorization
Location based social network � Vector representation

1 Introduction

With increasing popularity of location-based social networks (LBSNs), more people
would like to post or share their locations in the real world to social network in the form
of check-in, and users’ mobility patterns could be modeled by analyzing these check-in
data with algorithms. POI recommendation is such a study which provides users with
recommendations of point-of-interests (POI) users will visit next based on the analysis
of the check-in data. This study has received much attention due to its convenience to
users and huge business opportunities it brings to advertisers.

A user’s mobility pattern is influenced by many factors such as distance between
user’s current location and the location of POI, user’s preference for the POI, and even

© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 70–85, 2018.
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the correlation with friends could influence the user’s check-in behavior. Recently,
context-aware recommendation has been extensively studied, many methods tries to
incorporate new information to improve the performance of recommendation. POI2Vec
(Feng et al. 2017) applies word2vec to modeling geographical influence and user
preference for predicting future visitors. (Li et al. 2016) realizes the hardness to model
user’s POI decision making process, considers the information of friends and analyzes
the correlation between the user and the friends to improve POI recommendation
accuracy. CAPRF (Gao et al. 2015) models User Sentiment Indications based on the
basic recommendation model, which reflect users’ check-in experience. A positive tip
the user leaves strengthens importance of this check-in, while a negative tip weakens its
importance. However, all the above methods ignore randomness of the user’s behavior
(Song et al. 2010). Sometimes the user visits POIs for some personal reasons rather
than the user’s preference or geographical influence, thus it’s hard to use these regular
methods to predict their check-in behavior in these situations.

Many classic machine learning algorithms have been successfully applied to the
POI recommendation tasks (Horozov et al. 2006, Zheng et al. 2010, Gambs et al.
2012). Matrix Factorization (Koren et al. 2009) is one of the most successful models
among them. Many new methods have been proposed based on matrix factorization
(Cheng et al. 2012, Lian et al. 2014) for POI recommendation tasks, while most of
them try to incorporate new information like geographical influence and social influ-
ence into the matrix factorization model rather than improving matrix factorization
itself. However, the disadvantage of matrix factorization (He et al. 2016) limits its
performance. In our model, we attempt to address this problem.

Many of the POI recommendation methods provide recommendation from the
perspective of users: given user historical check-in records, a list of POIs the user may
visit in the future is provided. While in this paper, we focus on the perspective of POIs:
given in one POI and check-in records, we predict potential users who will visit this
POI. This research brings great values to the side of POI for digging potential
customers.

In this paper, to improve performance of prediction, we try to explain the flaw of
matrix factorization which uses dot product to capture the relationship between users
and POIs. We conduct the experiments to prove that an angle between two vectors is
more able to capture the relationship than dot product which cares about magnitude. In
our model, information about users and POIs are all represented by k-dimensional
vectors, and relationships between them are measured by cosine similarity. We
incorporate three types of information for prediction: (1) User’s preference for POIs:
captured by a cosine similarity-based matrix factorization model. (2) Randomness of
user’s check-in behavior: as we discussed earlier, current methods fail to capture the
randomness of the user’s behavior which doesn’t reflect his/her preference for POIs. To
analyze the randomness, given one check-in, we treat the check-in records within a
certain time period as context information for this check-in, then we apply deep neural
network to modeling the relevance between context information and the check-in.
(3) Geographical influence: user activity vector and POI influence vector are introduced
for modeling the user’s range of activity and the POI’s influence on surrounding areas,
we use cosine similarity of the two vectors to represent the willingness that user visits
the POI from the perspective of geography.
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The main contributions of this paper are summarized as follows:

• Unlike other matrix factorization-based models which only incorporate new
information to the basic matrix factorization model, we improve the matrix fac-
torization model itself by introducing cosine similarity to replace dot product which
limits its performance.

• We propose a novel vector representation model for predicting potential users for
POIs, which incorporate context information of check-in to capture the randomness
of users’ behavior, while other state-of-art methods fail to do.

• Results of experiments conducted on the real-world datasets show superior per-
formance of our proposed model.

2 Related Works

Matrix factorization (MF) is one of the most popular methods in the fields of recom-
mender systems and POI recommendation which was first used in the Netflix contest.
Despite the great success of MF, the flaw that MF uses dot product to measure the
relationships between the users and items can’t be ignored. Many new methods have
been proposed to improve the MF model. By pointing out that the relationship between
users and items is non-linear, NeuMF (He et al. 2017) applies neural network to
modeling the user-item relationships instead of the dot product used in the MF model
and optimizes the model with a negative log-likelihood function. Based on the idea that
the query and the documents are mapped into a lower semantic space with a non-linear
projection used in DSSM (Huang et al. 2013), DMF (Xue et al. 2017) applies deep
neural network to mapping user and item vectors into a latent structured space
respectively and calculates the similarity between the two vectors as the output.
A novel loss function is designed to incorporate the explicit ratings based on the binary
cross-entropy loss function. Inspired by word embedding models, item embedding is
proposed in (Liang et al. 2016) which factorizes an item co-occurrence matrix by
calculating pointwise mutual information of item i and context j to explain item co-
occurrence patterns.

Recently, POI recommendation task has received widespread attention; many new
methods try to capture new features to improve results of recommendation. The model
(Yuan et al. 2013) incorporates temporal influence into a user-based collaborative
filtering method, which splits one day into equal time slots (by hour) and calculates
similarity between users in terms of time slots instead of the whole check-in history,
and spatial influence is also incorporated by modeling users’ moving patterns based on
a power law function. GeoMF (Lian et al. 2014) pays attention to geographical loca-
tions of POIs and reconstructs the User-POI matrix of geographical information. More
specifically, the model divides the map into many grids with same sizes and introduces
the user activity vector and the POI influence vector, and the influence of POIs to
adjacent areas are modeled by a two-dimensional Gaussian function. The model (He
et al. 2016) combines factorization models and Markov chain to generate transition
tensor with each element representing the observed transition record of user u from
location i to location j, while spatial influence and latent behavior patterns are also

72 S. Peng et al.



considered to predict users’ next POIs. Recurrent Neural Networks (RNN) have been
successfully applied to tasks for treating sequential data like natural language pro-
cessing tasks; a novel model ST-RNN is proposed in (Liu et al. 2016), where temporal
context and spatial context are represented as time-specific matrices and distance
matrices for input elements to capture time interval and geographical distance infor-
mation. In this paper, unlike most of the current studies which predict user’s next
check-in POI, we focus on a new perspective that predicts potential users given a
specific POI at certain time.

3 Proposed Model

In this section, we first clarify the problem we try to figure out, then we explain the flaw
of the MF model and introduce the detail of our proposed model. Finally, we present a
unified model for predicting potential users.

3.1 Problem Definition

We denote a set of users as U ¼ u1; u2. . .umf g, and POIs as P ¼ p1; p2. . .pnf g. Given a
specific time slot t (in this paper, time is handled hourly), Cu;p;t represents the rating of
user u to POI p at time t from check-in datasets X, while rating is usually represented as
implicit feedback in POI recommendation tasks:

Cu;p;t ¼ 1; if u visted p at t
0; otherwise

�

Given historical check-in records X of users and a POI p, our task is to predict
potential users who will visit p at time t.

3.2 Vector Representation for User Preference

User preference measures users’ interest for POIs. To predict potential users who may
visit POIs, it’s important to capture the degree of user interest in POIs. Matrix Fac-
torization is a successful model for recommendation tasks. The basic idea of the MF
model is to factorize User-POI visit matrix C 2 R

m�n to two low rank parameter
matrices while each user and POI are represented by a latent space with dimension
k � minðm; nÞ, and user’s preference for a POI is represented as dot product between
user and item latent factors as:

~cðpjuÞ ¼ XT
u Yp ¼

Xk
f¼0

Xu;f Yf ;p ð1Þ

However, dot product between two latent factors is unable to measure the rela-
tionship between them. Assume there are three vectors: a (1, 1), b (0.9, 0.9), c (0,2).
Obviously, vector b is more similar to vector a than vector c. But according to the
operation of dot product, similarity between vector a and c aTc[ aTb is larger. Dot
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product pays more attention to magnitude rather than angle between two vectors.
Furthermore, for a User-POI interaction matrix shown in Fig. 1(a), we would like to
calculate the similarity between users based on their preference to items, so we use
Jaccard similarity as the ground truth similarity between users. Then we train a MF
model based on the matrix of Fig. 1(a) and represent user latent factors in two-
dimensional space as shown in Fig. 1(b). According to Jaccard similarity, the most
similar user for u4 and u1 are u2 and u3, respectively, while the Fig. 1(b) shows wrong
relationships between users, which means that dot product doesn’t treat user and POI
latent factors as vectors in k-dimensional space to consider their relationships. On the
other hand, if we use Eq. (2), which calculates cosine similarity measuring the cosine
value of the angle between two vectors, we can calculate the similarity more agree with
the Jaccard similarity than dot product as shown in Fig. 1(c). Figure 1 (c) illustrates the
user vectors after applying Eq. (2) to the MF model.

~cðpjuÞ ¼ XT
u Yp

k Xu k � k Yp k ¼

Pk
f¼0

Xu; f Yf ; pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
f¼0

X2
u; f

s
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
f¼0

Y2
p; f

s ð2Þ

Furthermore, to evaluate the two MF models: dot product-based model (BasicMF)
and cosine similarity-based model (VectorMF), we conducted preliminary experiments
using a real-world data set. The results of the two models are shown in Fig. 1(d). We
can see that the relationships obtained by the VectorMF model correspond to the true
relationships, and the VectorMF model obviously outperforms the BasicMF model.
This shows the necessity of using cosine similarity rather than dot product.

Similarly, we employ the cosine similarity-based MF model in our model to capture
user preference for POIs. Each user and POI are associated with a vector in k-
dimensional space, and willingness S(p|u) that the user visit POIs is represented by
cosine similarity between the user vector Xu and the POI vector Yp.

SðpjuÞ ¼ XT
u Yp

k Xu k � k Yp k ð3Þ

Larger of cosine similarity shows stronger interest of user u would like to visit
POI p. In this paper, we make a hypothesis to build our model that the angle
between two vectors can measure relationships between them better than the
magnitude. Thus, information of users and POIs are represented by vectors in a
geometric space, and relationships between vectors are calculated by cosine similarity.

3.3 Capturing Randomness of User’s Behavior

User behavior pattern doesn’t always reflect user preference. Sometimes user visits
some POIs for personal reasons even though they aren’t interested in those locations.
So, it’s hard to predict user’s behavior by only considering their preference. Assuming
that user’s current behavior is related to his/her previous behaviors, given one check-in
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record Cu; p; t, we define the check-in records of user u within time periods l as its
context information Cðcu; p; tÞ.

However, as shown in Fig. 2, users always visit different types of POIs. So, it’s
hard to find the relevance between current POI and context POIs by cosine similarity or
other linear functions. Therefore, we apply deep neural network to mapping them into a
latent structure space because of the great nonlinear mapping ability of neural network
(Agrafiotis et al. 2000). Figure 3 illustrates detailed structure.

Current POI is represented as a high-dimensional vector which contains current
POI’s rating across all users. Context POIs are represented in the same way, but all of
the vectors of context POIs are projected into a projection layer by averaging all of the
context POIs as the structure in wrod2vec model (Mikolov et al. 2013). Then two
vectors are mapped into latent spaces by neural network, where the mapping function
f �ð Þ is written as follows:

fcpðxcpÞ ¼ Rnð. . .R2ðR1ðxTcpWcp1ÞTWcp2Þ. . .Þ
fpðxpÞ ¼ Rnð. . .R2ðR1ðxTpWp1ÞTWp2Þ. . .Þ

ð4Þ

Rð�Þ is the ReLU activation function:

RðxÞ ¼ maxð0; xÞ ð5Þ
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Fig. 1. An example for explaining the disadvantage of dot product used in MF model. (a): User-
POI interaction matrix; (b): user latent factors (dot product based); (c): user vectors (cosine
similarity based); (d): performance comparison between dot product based model and cosine
similarity based model conducted on Gowalla (we will introduce later).
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Wcp1 and Wp1 are weight matrices of the first layer for context POIs and current
POI, respectively, Wcp2 andWp2 are parameters of the second layer, and so on. Then
after mapping the two input vectors to a latent space in which the relationship could be
represented by a linear function, we use cosine similarity to measure their relationship.

SðpjCðcu;p;tÞÞ ¼ fcpðxcpÞT fpðxpÞ
k fcpðxcpÞ k � k fpðxpÞ k ð6Þ

3.4 Incorporating Geographical Influence

In the real world, a user’s willingness to move from one place to another is associated
with the distance between the two places. (Yuan et al. 2013) uses a power law function
to model users’ moving patterns. However, this model fails to capture the influence of
POIs on adjacent areas. For example, a convenience store is visited by residents nearby,
while people living several blocks away are unlikely to come. In contrast, the

Context POI1

Context POI2

Context POI3

Current POI

Fig. 2. The illustration of POI vectors user u visits at time t (Current POI) and visited within
time period [t − l, t] (Context POIs)
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Fig. 3. The architecture for capturing randomness of user mobility
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department store located in a central business district is always visited by people who
live in every corner of the city. The difference between convenience stores and
department stores are their influence on the surroundings; more famous POI brings
larger influence on surrounding areas. In this section, our work is based on GeoMF
(Lian et al. 2014) which employs Gaussian distribution to model the influence of POIs
on surrounding area and works well. We divide the whole map into several grids with
same size a, so that each POI could be assigned to one grid (area).

A user tends to visit areas with preferences, while the user hardly visits areas
without interests. Since the whole map are consisted of some small areas, a user’s
preference for the areas could be represented by a vector called user activity vector Au.
The user activity vector could be either given in advance based on the user’s check-in
frequency to each area or learned in the training process. For convenience of com-
putation, we give the user activity vector in advance in our codes.

Similarly, influence of a POI on surrounding areas could be represented by a POI
influence vector Ip. How to model the influence on surrounding areas should be based
on the following rules:

(1) The influence of the point of interest on the surrounding areas is decayed as the
distance increases.

(2) Different POIs own different influences, more popular POI owns larger influence
on surrounding areas.

In our model, we use two-dimensional Gaussian Function to model the POI
influence:

Iðx0;y0Þtoðx;yÞ ¼ Kðx0; y0; x; y; r2Þ
Kð�Þ ¼ exp � 1

2
ðx�x0Þ2

r2 þ ðy�y0Þ2r2

� �� � ð7Þ

Each area can be represented by a two-dimensional coordinate. I x0;y0ð Þto x;yð Þ means

influence from the area where the POI is located ðx0; y0Þ to the target area ðx; yÞ.Kð�Þ is
the Gaussian Function, Variance r2 is associated with popularity of the POI.

So far, we have vectorized both the user’s preference for areas and the POI’s
influence on surrounding areas. Given a user and a POI, the willingness SðpjgpuÞ that the
user visits the POI from geographical perspective (gpu) is calculated by cosine similarity
between user activity vector Au and POI influence vector Ip as follows.

SðpjgpuÞ ¼
AT
u Ip

jjAujj � jjIpjj ð8Þ

3.5 The Model for Predicting Potential Users

To predict potential users for a given POI, we need to capture users’ check-in patterns
precisely to measure each user’s willingness to POIs. In our model, we first capture the
user’s preference for POIs based on the cosine similarity-based MF model; then given a
check-in Cu;p;t, we define the check-in records in the time period [t-l, t] as its context

Vector Representation Based Model Considering Randomness of User Mobility 77



information, apply deep neural network to modeling the relevance between context
information and the check-in to capture randomness of the user’s check-in behavior; in
the meantime, we model the geographical influence on POIs and users by vectorizing
the user’s preference for areas and the POI’s influence on surrounding areas. Based on
the three factors incorporated in our model, users’ willingness to POIs ~Cu; p; t could be
represented as Eq. (9), the unified model is shown in Fig. 4. We should notice that
context information isn’t considered for every check-in record. It depends on if there
are check-in records in the time period [t-l, t].

~cu;p;t ¼ Sðpju;Cðcu;p;tÞ; gpuÞ if Cðcu;p;tÞ exists
Sðpju; gpuÞ otherwise

�
ð9Þ

For the convenience of expression, Eq. (9) could be rewritten as:

~cu;p;t ¼ SðpjuÞþ i � SðpjCðcu;p;tÞÞþ SðpjgpuÞ ð10Þ

Here i is an indicator function, if context information exits, i ¼ 1, otherwise i ¼ 0.
Given a POI p and time t, each user’s willingness score to p is computed by Eq. (10).
Then, we rank all users by their willingness scores ~Cu; p; t, and select top-N users as the
potential users for the given POI.

3.6 Explicit Rating for Prediction

In our model, we treat users and POIs as vectors in k-dimensional space, and we only
care about the angle between them which is calculated by cosine similarity. Therefore,
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Fig. 4. The model for predicting potential users
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the angle between vectors should be different according to users’ preference for POIs.
Implicit feedback is usually used in POI recommendation tasks, while in our model, we
assume that the user’s preference is reflected by the user’s check-in frequency, so rating
for POIs is represented as:

�cu;pi;t ¼
fpi

maxffp1 ...fpi ���fpng
if u visited pi at t

0 otherwise

(

fpi is the frequency of pi that the user visited, fp1 . . .fpi . . .fpn
� �

is the set of fre-
quencies of all POIs user u has visited. We assume the most visited POI as the user’s
favorite POI, cosine similarity between user vector and the user’s favorite POI vector
should be the largest, and ratings of other visited POIs are similarly determined by the
user’s check-in frequency. We randomly sample POIs which the user never visited at a
certain rate as negative samples for training.

3.7 Parameter Inference

In this section, we introduce learning process of our model. Given a loss function
which measures the loss between the model and the actual distribution of training data,
we optimize parameter by minimizing the loss function.

LðhÞ ¼
X

Xþ [ X�
�cu;p;t � XT

u Yp
k Xu k � k Yp k � i � fcpðxcpÞT fpðxpÞ

k fcpðxcpÞ k � k fpðxpÞ k �
AT
u Ip

jjAujj � jjIpjj

 !2

þ k k h k2 þ c k A k

ð11Þ

Square loss function is chosen for training. Where h ¼ X; Y ;Wcp;Wp;A
� �

, Wp and
Wcp contain several weight matrices which need to be optimized. We still give the
learning process of user activity vector Au which should be sparse and subjected to be
greater than 0. k and c are parameters of L1 and L2 regularization.

We employ stochastic gradient descent (SGD) to estimate model parameters; to
update the parameter, we need to calculate the derivatives of LðhÞ with respect to the
parameters. Let q be:

q ¼ �cu;p;t � XT
u Yp

k Xu k � k Yp k � i � fcpðxcpÞT fpðxpÞ
k fcpðxxpÞ k � k fpðxpÞ k �

AT
u Ip

jjAujj � jjIpjj

Then derivatives could be calculated as follows.

@L
@Xu
¼ q XT

u Yp � 2 k Xu k2 Yp
� 	
k Yp k � k Xu k3

@L
@Yp
¼ q XT

u Yp � 2 k Yp k2 Xu
� 	
k Xu k � k Yp k3
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@L
@Au
¼ q AT

u Ip � 2 k Au k2 Ip
� 	
k Ip k � k Au k3

@L
@WcpðiÞ

¼ qi fcpðxcpÞT fpðxpÞ � 2 k fcpðxcpÞ k2 fpðxpÞ
� 	

k fpðxpÞ k � k fcpðxcpÞ k3 � ai�1cp dicp

@L
@WpðiÞ

¼ qi fcpðxcpÞT fpðxpÞ � 2 k fpðxpÞ k2 fcpðxcpÞ
� 	

k fcpðxcpÞ k � k fpðxpÞ k3 � ai�1p dip

Where ai�1 is the output of layer i� 1 (or input of layer i), and

di ¼ @f xð Þ
@zi ¼ WT

iþ 1d
iþ 1� 	� R0 zið Þ, zi is the weighted input of layer i without activation,

� is the operation of elementwise multiplication. Lastly, the parameter could be
updated as w w� g @L

@w. In the meanwhile, update of Au should be Au  
max 0;Au � g @L

@w

� 	
since user activity vectors are subjected to be greater than 0. The

whole training procedure is shown in Algorithm 1.
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4 Experiments

In this section, first we introduce the datasets used in our experiments and what
evaluation metrics we used to test the performance. Then, we evaluate the performance
of our proposed model including: (1) effects of parameters, (2) comparison with other
state-of-art models, (3) effectiveness of factors incorporated in our model.

4.1 Experimental Setup

We choose two real-world datasets to conduct experiments: Gowalla1 within Chicago
and Brightkite2 within New York. We removed the users who checked in less than 10
times. The statistics of datasets are listed in Table 1.

We adopt Recall@N and Precision@N as evaluation metrics. Given a POI p, we
rank all users by their predicted scores, then select TOP-N users as the prediction list Rp

for this POI. A list of users who actually visited this POI are represented as Sp. the
definitions of Recall@N and Precision@N are given below. We implemented our
proposed model with PyTorch3.

Recall@N ¼ jRp \ Spj
jSpj

Precision@N¼ jRp \ Spj
jRpj

ð12Þ

4.2 Effect of Parameters

The value of several parameters affects test performance of our model. First is the area
size a that controls the dimension of user activity vectors and POI influence vectors.
The effects of size a is shown in Fig. 5. We observe that there was no obvious rule to
explain the relationships between a and the performance. Roughly speaking, the per-
formance gets the best at a¼ 0:02 which is about 1500 m on both of the datasets.
Setting a too small means the map is divided into many small areas which makes the
influence of POI decays quickly; while a too large a causes the slow decay rate which
fails to model the influence of POI on surrounding areas. Based on the results shown in
Fig. 5, we set a¼ 0:02.

Table 1. Statistics of datasets

Datasets #User #POI #Check-in #Density

Gowalla 1044 7502 49192 4.44 � 10−3

Brightkite 1060 13985 80354 1.25 � 10−3

1 http://snap.stanford.edu/data/loc-gowalla.html
2 http://snap.stanford.edu/data/loc-brightkite.html
3 https://pytorch.org/
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The second parameter is time period l. From Fig. 6, it’s clear that the performance
increases as the length of time period increases and gets the best at 6 h, then it starts to
get down. The performance on the Brightkite is less sensitive to the change on
parameters; the reason may be the sparsity (compared with Gowalla) of the data that
covers up the effect of parameters on results. For other parameters, learning rate η,
weights of regularization k and c are set at 0.05, 0.0001, 0.0001, respectively.

4.3 Comparison

To evaluate the performance of our proposed model, we compare our method with the
following baseline methods:

(1) BasicMF: Matrix Factorization (Koren et al. 2009), one of the most popular
methods for recommendation tasks which consider user preference by calculating
dot product of user latent factor and POI latent factor.
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(2) GeoMF: modeling geographical influence on users and POIs based on MF model
for POI Recommendation (Lian et al. 2014), which is a state-of-art method.

(3) DMF: Deep Matrix Factorization Models (Xue et al. 2017) combines deep neural
network and Matrix Factorization for recommendation tasks.

Unlike the above baseline models, we replace dot product with cosine similarity to
capture relationship between users and POIs, and incorporate three types of information
in our model for prediction tasks. To evaluate the effectiveness of these factors
incorporated into our model, we consider three approaches as: (4) NonGeo: Geo-
graphical influence is not considered for prediction. (5) NonContext: given one check-
in record, we don’t consider context information for capturing randomness. (6) Dot-
basedModel: still incorporate three types of information, but instead of cosine simi-
larity, we use dot product to capture relationships between users and POIs.

Table 2 shows the experimental results on two datasets. Our proposed model
obviously outperforms the other state-of-arts methods. For example, compared with the
DMF model which has the best performances among the baseline methods at
Recall@5, our model outperforms DMF by 36% and 145% on Brightkite and Gowalla,
respectively. Even the results on the NonGeo or NonContext are still better than the
baseline methods.

Also, without the consideration of context information or geographical influence,
the performance decreases to a great extent; while it declines the most when the cosine
similarity is replaced by the dot product, which proves the effectiveness of these factors
incorporated in our model, especially the necessity of vector representation.

Table 2. Experimental results for predicting potential users

recall@1 recall@5 recall@10 recall@15 pre@5 pre@10 pre@15

Gowalla BasicMF 0.034 0.056 0.071 0.083 0.011 0.007 0.006
GeoMF 0.040 0.104 0.152 0.192 0.021 0.015 0.013
DMF 0.079 0.137 0.170 0.201 0.027 0.017 0.013
Dot-based 0.034 0.116 0.177 0.238 0.023 0.018 0.016
NonContext 0.085 0.180 0.222 0.251 0.036 0.022 0.017
NonGeo 0.106 0.281 0.362 0.419 0.056 0.036 0.028
Ours 0.142 0.335 0.430 0.479 0.067 0.043 0.032

Brightkite BasicMF 0.217 0.308 0.328 0.344 0.062 0.033 0.023
GeoMF 0.103 0.211 0.284 0.411 0.042 0.028 0.027
DMF 0.292 0.335 0.358 0.378 0.067 0.036 0.025
Dot-based 0.116 0.225 0.300 0.352 0.045 0.030 0.023
NonContext 0.334 0.414 0.448 0.469 0.083 0.045 0.031
NonGeo 0.343 0.407 0.432 0.450 0.081 0.043 0.030
Ours 0.347 0.456 0.491 0.508 0.091 0.049 0.034
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5 Conclusion and Future Work

In this paper, we proposed a novel vector representation model to predict potential
users for given POIs. We improved the matrix factorization model by replacing dot
product with cosine similarity and applied the vector representation to our model. We
modeled user’s preference, randomness of the user’s mobility pattern and geographical
influence for prediction. Experimental results on two datasets showed superior per-
formance of our proposed model compared to other state-of-art methods.

In future work, we will incorporate more new factors into our model for improving
accuracy. Since cosine similarity isn’t the only way to capture relationships between
users and POIs, we will try to model the relationship by other ways.

Acknowledgement. This work is partially supported by JSPS KAKENHI Grant Number
JP15H05708 and the Chongqing Nature Science Foundation under contract number
cstc2016jcyjA0398.
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Abstract. Co-operative learning is used to refer to learning procedures
for heterogeneous teams in which individuals and teamwork are organ-
ised to complete academic tasks. Key factors of team performance are
competencies, personality and gender of team members. Here, we present
a computational model that incorporates these key factors to form het-
erogeneous teams. In addition, we propose efficient algorithms to parti-
tion a classroom into teams of even size and homogeneous performance.
The first algorithm is based on an ILP formulation. For small problem
instances, this approach is appropriate. However, this is not the case for
large problems for which we propose a heuristic algorithm. We study the
computational properties of both algorithms when grouping students in
a classroom into teams.

1 Introduction

Students learn best when they are actively engaged in the processing of infor-
mation [24]. One way to involve students in active learning is to have them learn
from one another within teams. Research shows that students working in teams
tend to learn more and retain the knowledge longer than when the same content
is presented by means of other instructional formats; they also appear more sat-
isfied with their classes [6]. However, not just any team promotes learning. In
order for learning to be productive, all teams in the classroom should be hetero-
geneous, that is, representative of the diversity of the whole class and balanced
in size. Also, effective education must balance performance across teams, that
is, performance should be as homogeneous as possible in the classroom: No one
should be left behind.

Considerable work in fields such as organisational psychology, and industrial
psychology has focused on various factors that influence team performance [5,
15,25,26]. [5,26] underline the importance of personality traits or types for team
composition. Other studies have focused on how team members should differ or
converge in their characteristics, such as personality, competencies, or gender,
among others [15,25], in order to increase performance.
c© Springer Nature Switzerland AG 2018
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Also in the area of multiagent systems, team composition has attracted much
research. MAS research has widely acknowledged competencies as important to
perform tasks of different nature [9,17,21]. However, the majority of approaches
represent capabilities of agents in a Boolean way (i.e., an agent either has a
required skill or not). This is a simplistic way to model an agent’s set of capa-
bilities since it ignores any skill degree. In real life, capabilities are not binary
since every individual shows different performances for each competence. Addi-
tionally, the MAS literature has typically disregarded significant organizational
psychology findings (with the exception of several recent, preliminary attempts
like [11] or [3]). To the best of our knowledge, the current organizational psy-
chology and MAS literature have not tackled how to compose teams taking into
account the personality, gender and competencies of individuals.

Given this background, in this paper we address the following team compo-
sition problem commonly faced by educators. There is a complex task that has
to be solved by different teams of students of the same size [1]. The task requires
that each team has at least one student that shows a minimum level of compe-
tence for a given set of competencies. We have a pool of students with varying
genders, personalities, and competencies’ levels. The problem is how to partition
students into teams that are balanced in size, competencies, personalities, and
gender. We refer to these teams as synergistic teams.

This paper makes the following contributions. First, we identify and formalise
a new type of real-world problem: the synergistic team composition problem
(STCP), requiring balanced solutions in terms of team size and team value.
Second, we propose two algorithms to solve STCP: an algorithm to optimally
solve it that is very efficient for small instances, and an approximate algorithm
that is effective for larger instances. And third, a computational comparison of
both algorithms over realistic settings in an education context.

Outline. The remainder of this paper is structured as follows. Section 2 intro-
duces basic definitions required by our team composition problem. Section 3
introduces the synergistic team composition problem. Section 4 details how to
compute a team’s synergistic value. Sections 5 and 6 describe how to opti-
mally and approximately solve the synergistic team composition problem respec-
tively. Then, Sect. 7 reports on our empirical analysis of both algorithms over
artificially-generated instances of the synergistic team composition problem.
Finally, Sect. 8 draws some conclusions and sets paths to future research.

2 Basic Definitions

We consider that each student has a gender, personality, and competencies.
First, to measure personality, we explore a novel method: the Post-Jungian

Personality Theory [28], a modified version of the Myers-Briggs Type Indica-
tor (MBTI) [8].1 This questionnaire is short, contains only 20 quick questions
(compared to the 93 MBTI questions). This is very convenient for both experts

1 MBTI numerical values can be used with the same purpose.
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designing teams and individuals doing the test since completing the test takes
just a few minutes (for details of the questionnaire, see [28, p.21]). In contrast to
the MBTI measure, which consists of four binary dimensions, the Post-Jungian
Personality Theory uses the numerical data collected using the questionnaire
[27]. The results of this method seem promising, since within a decade this novel
approach has tripled the fraction of Stanford teams awarded US prizes by the
Lincoln Foundation [27]. The test is based on the pioneering psychiatrist C. G.
Jung’s personality model [14]. It has two sets of variable pairs called psycholog-
ical functions: (1) Sensing / Intuition (SN), and (2) Thinking/Feeling (TF) and
two sets of attitudes: (3) Extroversion/Introversion (EI), and (4) Perception /
Judgment (PJ).

Psychological functions and attitudes compose together a personality. The
numerical values for each dimension of a personality (SN, TF, EI, PJ) are mea-
sured through a five multiple choice true/false questions. Thus,

Definition 1. A personality profile is a tuple 〈sn, tf , ei, pj〉 ∈ [−1, 1]4, where
each of these four components represents one personality trait.

Second, a competence integrates the knowledge, skills and attitudes that
enable a student to act correctly in a job, task or situation [22]. Each student is
assumed to possess a set of competencies with associated competence levels. Let
C = {c1, . . . , ck} be the whole set of competencies, where each element ci ∈ C
stands for a competence.

Definition 2. A student is represented as a tuple 〈id, g,p, l〉 such that: id is an
identifier; g ∈ {man,woman} is a gender; p = 〈sn, tf , ei, pj〉 is a personality
profile; l : C → [0, 1] is a function that assigns the quality level of the outcome
with respect to competence c.2

Henceforth, we will note the set of students as A = {a1, . . . , an}. Moreover,
we will use super-indexes to refer to students’ attributes. For instance, given a
student a ∈ A, ida will refer to the id attribute of student a.

Definition 3 (Team). A team is any subset of A with at least two students.

We denote by KA = (2A \ {∅}) \ {{ai}|ai ∈ A} the set of all possible teams
in A.

Finally, a team is any subset of A with at least two students. We denote by
KA = (2A \ {∅}) \ {{ai}|ai ∈ A} the set of all possible teams in A.

3 The Synergistic Team Composition Problem

We can regard our team composition problem as a particular type of set parti-
tioning. We will refer to any partition of A as a team partition. Since all teams
should have an even size, we only consider team partitions whose teams are
constrained by a given size.
2 We assume that the competence level is zero when a student does not have a com-

petence (or we do not know its value).
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Definition 4. Given a set of students A, we say that a team partition Pm of A is
constrained by size m, |A| ≥ m ≥ 2, iff for every team K ∈ Pm, m ≤ |K| ≤ m+1.

As |K|/m is not necessarily a natural number, we may need to allow for some
flexibility in team size within a partition. This is why we introduced above the
condition m ≤ |K| ≤ m + 1. In practical terms, in a partition we want to have
teams of sizes differing by at most one student. This is a common constraint
when partitioning a classroom: we want teams to be balanced in size. We note
by Pm(A) the set of all team partitions of A constrained by size m.

The question is: which partition to choose? We want to have teams that
show a homogeneous behaviour so that there are no big differences in perfor-
mance (i.e., we do not want partitions for which some teams perform well and
some poorly; Remember, no one is to be left behind!). To do that, we first define
the synergistic value of a team K, noted as s(K), as an expectation of its per-
formance. We present the formal definition of such a function in Sect. 4. Second,
we define the overall performance of a partition as the Bernoulli-Nash prod-
uct of individual teams’ synergistic values, since this function evaluates better
homogeneous (“fair”) solutions [16] than other functions (e.g. the sum).

Definition 5. Given a team partition Pm, the synergistic value of Pm is

S(Pm) =
∏

K∈Pm

s(K). (1)

Thus, the STCP is solved by finding the partition with the highest synergistic
value.

Definition 6. Given a set of students A the synergistic team composition prob-
lem (STCP) is the problem of finding a team partition constrained by size m,
P ∗

m ∈ Pm(A), that maximises S(Pm), namely:

P ∗
m = arg max

Pm∈Pm(A)

S(Pm)

3.1 Relation with the Coalition Formation Literature

The STCP is a particular case of a coalition generation problem [20]. Unfortu-
nately, we cannot benefit from the algorithms in the literature. In particular,
following [19], given a STCP we can identify a constrained coalition formation
(CCF) game G = 〈A,Pm(A), s〉, where A is the set of students, Pm(A) is the
set of feasible coalition structures (i.e. team partitions constrained by size m as
per definition 4), and s is the characteristic function (synergistic value function)
that assigns a real value to every coalition (team) that appears in some feasi-
ble coalition structure (team partition). Given the former CCF game, solving
the STCP amounts to finding a coalition structure (team partition) with the
highest total value. More precisely, the STCP poses a particular type of CCF
game, a so-called basic CCF game [20]. Intuitively, the constraints in a basic
CCF game are expressed in the form of: (1) sizes of coalitions that are allowed
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to form; and (2) subsets of students whose presence in any coalition is viewed
as desirable/prohibited. On the one hand, a STCP naturally defines constraints
on the size of coalitions. On the other hand, expressing a STCP as a CCF prob-
lem requires one positive constraint per feasible team (i.e., q positive constrains),
while the set of negative constraints is empty. The number of positive constraints
is so large for the problems we want to solve (i.e. >3000) that these problems
are prohibitive for the algorithm in [19].

4 Computing Team Synergistic Values

A team K is effective solving a task when it is both proficient (covers the
required competencies) and congenial (balances gender and psychological traits
so that students work well together) [28]. We linearly combine these two aspects
(uprof (K) and ucon(K), respectively) into the synergistic value of K as follows:

Definition 7. Given a team K, the synergistic value of team K is defined as:

s(K) = λ · uprof (K) + (1 − λ) · ucon(K) (2)

λ ∈ [0, 1] is the relative importance of K being proficient.

In general, the higher the value of λ, the higher the importance for the
proficiency of a team. The setting of the value of λ depends on the task type. For
instance, task types that are difficult and performed for the first time (no experts
on that matter) require a high level of creativity and exchange of ideas, and
hence, personality and gender balance (congeniality) should be more important
than proficiency (λ < 0.5). However, for tasks where team members need to act
fast (such as sport competitions or rescue teams) it is crucial for a team to be
proficient (λ > 0.5). For creative task types that require certain levels of both
proficiency and congeniality (such as creating a webpage) the value of λ should
be set to 0.5 (so that congeniality and proficiency are equally important). The
next subsections detail how to measure team proficiency and congeniality.

4.1 Evaluating Team Proficiency

Given a team and a task, we want to calculate the degree of proficiency of the
team as a whole, noted uprof . In other words, our aim is to match each com-
petence with the student(s) whose personal competence level is closer to the
task competence level requirement. With this we aim at avoiding both under-
proficient and over-proficient allocations as both of those scenarios are ominous
for team performance. In the first case, under-proficient students may get frus-
trated because they do not have enough knowledge to cope with the assigned
competence requirements. In the second case, over-proficient students may get
distracted and unmotivated because of the easiness of a job they are asked to
do [7]).

In other words, given a team and a task, we want to measure how apt is the
team to solve the task. We understand a task as a particular instance of a task
type that specifies the competencies and competence levels required to solve it.
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Definition 8. A task type τ is defined as a tuple 〈λ, {(ci, li, wi)}i∈Iτ
〉, where Iτ

is the index set of the required competencies; λ ∈ [0, 1] is the importance given to
proficiency; ci ∈ C is a required competence; li ∈ [0, 1] is the required competence
level for ci; wi ∈ [0, 1] is the importance of competence ci; and

∑
i∈Iτ

wi = 1.

A task is an instance of a task type defined as:

Definition 9. A task t is a tuple 〈τ,m〉 such that τ is a task type and m is the
required number of students, where m ≥ 2.

Henceforth, we denote by T the set of tasks and by T the set of task types.
Moreover, we will note as Cτ = {ci|i ∈ Iτ} the set of competencies required by
task type τ .

Students must feel both accountable and useful when working in a team [23].
Hence, each team member must be responsible for at least one competence; this
is expressed as a competence assignment between competencies and students:

Definition 10. Given task type τ and a team K ∈ KA, a competence assign-
ment is a function η : K → 2Cτ satisfying that Cτ =

⋃
a∈K η(a). We note by

ΘK
τ the set of competence assignments for task type τ and team K.

The degree of proficiency of a team will obviously depend on the particular
student(s) assigned to each competence.

Definition 11. Given task type τ , team K, and competence assignment η, the
set δ(ci) = {a ∈ K|ci ∈ η(a)} stands for those students responsible of competence
ci.

Informally, our aim is to match each competence ci with the student(s) δ(ci)
whose personal competence level is closer to the task competence level require-
ment. With this we aim at avoiding both under-proficient (frustrated students
because they cannot cope) and over-proficient (frustrated students because they
get bored [7]) allocations.

Definition 12 (Degree of under-proficiency). Given a task type τ , a team
K, and an assignment η, we define the team’s degree of under-proficiency for
the task as:

u(η) =
∑

i∈Iτ

wi ·
∑

a∈δ(ci)
|min(la(ci) − li, 0)|
|δ(ci)| + 1

Definition 13 (Degree of over-proficiency). Given a task type τ , a team
K, and an assignment η, we define the team’s degree of over-proficiency for the
task as:

o(η) =
∑

i∈Iτ

wi ·
∑

a∈δ(ci)
max(la(ci) − li, 0)

|δ(ci)| + 1

Finally, we can calculate the team’s proficiency degree to perform a task by
combining its over-proficiency and under-proficiency as follows:
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Definition 14. Given a team K and a task of type τ , the proficiency degree of
the team to perform an instance of τ is:

uprof (K) = max
η∈ΘK

τ

(1 − (υ · u(η) + (1 − υ) · o(η)) (3)

where υ ∈ [0, 1] is the penalty given to the under-proficiency of team K.

If we want to penalise teams that cannot cope with the competence require-
ments (i.e. they are under-competent) we need to choose a large value for υ.
And similarly a small υ to penalise teams with members clearly over-competent.
Although the exact value to choose will depend on the particular task type and
student context, if the objective is to favour effective teams we should penalize
more their under-proficiency and thus select a significantly large value for υ.
Given these definitions, uprof (K) is correctly defined for any team, task type
and competence assignment:

Proposition 1. For any task type τ , team K, and η ∈ ΘK
τ , u(η) + o(η) ∈ [0, 1)

and 0 ≤ uprof (K) < 1.

Proof. Soundness is straightforward as a student cannot be over- and under-
proficient at the same time.

Computing uprof (K) is an optimisation problem: to have each competence
assigned to at least one student and each student assigned to at least one com-
petence so that the total cost of the assignment is minimal (in terms of under-
and over-proficiency). Such optimisation problem can be cast and efficiently
solved as a minimum cost flow problem [2]. The network model would contain
v = |K| + |Cτ | + 2 nodes and e = |K| · |Cτ | + |K| + |Cτ | edges. As discussed in
[18], the minimum cost flow problem can be solved in O(e · log(v) ·(e+v · log(v)))
on a network with v nodes and e arcs.

4.2 Evaluating Team Congeniality

Given a team and a task, we also need to measure the degree of congeniality of
the team, ucon, that is, how well do students work together in a creative and
co-operative atmosphere. According to [10], the only truthful collaboration is
the one containing tension, and disagreement as these improve the value of the
ideas, expose the risks inherent in plan, and lead to enhanced trust among the
team members. This conflict is generated by people having different views of
the world (associated with opposing personality and gender), whereas harmony
comes from agreement between people with similar personalities [28]. Based on
these findings Douglas J. Wilde [27] compiled heuristics to successfully compose
teams. According to Wilde’s findings the most successful teams are: (i) teams
whose SN and TF personality dimensions are as diverse as possible; (ii) teams
with at least one student with positive EI and TF dimensions and negative PJ
dimension, namely an extrovert, thinking and judging student (called ETJ per-
sonality); (iii) teams with at least one introvert student; and (iv) teams with
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gender balance. Hence, to define the degree of congeniality we get inspiration
from [27] where D. J. Wilde uses psychological traits (see Sect. 2) to form suc-
cessful teams. Formally, this can be captured by function:

ucon(K) = uSNTF (K) + uETJ(K) + uI(K) + ugender(K),

with:

1. uSNTF (K) = σ(K,SN) · σ(K,TF ) measures the diversity in a team, where
σ(K,SN) and σ(K,TF ) stand for the standard deviations over the SN and
TF personality traits of the members of team K. The larger the values of
σ(K,SN) and σ(K,TF ), the larger their product, and hence the larger the
personality diversity along the SN and TF dimensions within a team.

2. uETJ(K) = maxa∈KET J [max(α · p, 0), 0] measures the utility of counting on
ETJ personalities, being KETJ = {a ∈ K|tf a > 0, eia > 0, pja > 0} the set
of students exhibiting ETJ personality, α = (0, α, α, α) is a vector, and α is
the importance of counting on an extrovert, thinking, and judging student
(ETJ personality).

3. uI(K) = maxa∈K [max(β · p, 0), 0] is the utility of counting on an introvert
student, β = (0, 0,−β, 0) is a vector and β is the importance of introvert
students.

4. ugender(K) = γ · sin(π · g(K)) measures the importance of gender bal-
ance, where γ is a parameter to weigh the importance of gender balance,
and g(K) = w(K)

w(K)+m(K) calculates the ratio of women in a team (w(K)
and m(K) are functions counting the number of women and men, respec-
tively). A team K is perfectly gender-balanced iff w(K) = m(K), and hence
sin (π · g(K)) = 1.

5 Solving the STCP Optimally

Next we study how to optimally solve the STCP. We start by linearising the
problem in Sect. 5.1. This allows us to solve the STCP with the aid of off-
the-shelf solvers. Thereafter, in Sect. 5.2 we detail an optimal algorithm for the
STCP.

5.1 Linearising the STCP

We denote by n = |A| the number of students in A, by t a task of type 〈τ,m〉,
and by b the total number of teams, b = 	n/m
. Note that depending on the
cardinality of A and the desired team size, the number of students in each team
may vary in size. For instance, if there are n = 7 students in A and we want
to compose duets, we split students into two duets and one triplet. In general,
whenever n ≥ m: if n mod m = 0, each partition must contain b teams of size
m; and if n mod m ≤ b, each partition must contain b− (n mod m) teams of size
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m and n mod m teams of size m + 1.3 Let Q(n,m) be the quantity distribution
of students in teams of sizes m and m + 1; these are called feasible teams.

Notice that the total number of feasible teams is q =
(

n
m

)
+ min(n mod

m, 1) ·
(

n
m+1

)
. Therefore, let K1, . . . ,Kq denote the feasible teams in A, and

s(K1), . . . , s(Kq) their synergistic values concerning task t. Moreover, let b be
the number of teams required to form a team partition. Finally, let C be a matrix
of size n × q such that cij takes on value 1 if student ai is part of team Kj , and
0 otherwise.

We shall consider the set of binary decision variables xj , 1 ≤ j ≤ q, to
indicate whether team Kj is selected or not as part of the optimal solution of
the STCP. Then, solving the STCP amounts to solving the following non-linear
problem:

max
q∏

j=1

s(Kj)
xj (4)

subject to:

q∑

j=1

xj = b (5)

b∑

j=1

cij · xj = 1 ∀1 ≤ i ≤ n (6)

xj ∈ {0, 1} 1 ≤ j ≤ q (7)

Notice that constraint 5 enforces that the number of teams in the team par-
tition is b, whereas constraint 6 enforces that the selected teams form a partition
by imposing that no student can belong to two selected teams at the same time.
Now observe that Eq. 4 —the objective function— is non-linear. Nevertheless,
it can be readily linearised if we consider the logarithm of

∏q
j=1 s(Kj)

xj as our
objective function to maximise. Thus, solving the non-linear problem above is
equivalent to solving the following binary linear program:

max
q∑

j=1

xj · log(s(Kj)) (8)

subject to: Eqs. 5, 6, and 7.

5.2 An Algorithm to Optimally Solve the STCP

Algorithm 1 shows the pseudocode of an optimal solver for the STCP. The algo-
rithm starts by generating the input for an integer linear programming solver
3 Beyond these cases, there is no way to compute a partition constrained by m (see

def. 4). If so, m′ ≤ m, m′ = �n/(b + 1)� is the largest value smaller than m that can
be used to compute partitions.
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(lines 2 to 5). Line 2 generates all the possible teams of size m as dictated by
the quantity distribution Q(|A|,m). Thereafter, lines 3 and 4 compute the best
synergistic value per team. That is, these lines compute (1) the competence
assignment with the highest proficiency value. This amounts to solving an opti-
misation problem, as discussed at the end of subsection 4.1, and (2) the team’s
congenial value from the personalities and genders of the team members. Once
all synergistic values are computed, we can generate an integer linear program-
ming encoding of the problem like in Eq. 8 (line 5). The generated integer linear
program (ILP) can be solved with the aid of an ILP solver (line 6) such as, for
instance, CPLEX, Gurobi, or GLPK. Finally, the algorithm returns the team
partition together with the competence assignments (line 7).

Algorithm 1. STCPSolver
Require: A � The set of students
Require: t = 〈τ, m〉 � Task
Ensure: (P, η∗) � Best partition found and best assignments
1: P ← ∅
2: [K1, . . . , Kq] ← GenerateTeams(A,Q(|A|,m))
3: for i ∈ [1..q] do
4: (s(Ki), η

∗
i ) ← getBestSynergisticValue(Ki, t)

5: ILP ← generateILP([K1, . . . , Kq], [s(K1), . . . , s(Kq)], b)
6: P ← solve(ILP )
7: return (P, {η∗

i }Ki∈P )

The cost of optimally solving an STCP can be split into: the cost of generating
the ILP model, and the cost of solving it. As to the first cost, this comes from:
(i) generating all the teams of sizes given by Q(n,m) (line 2); (ii) computing
the synergistic values of all teams (lines 3 and 4); (iii) generating a linear pro-
gramming encoding (line 5). The cost of generating all teams is linear with the
total number of teams, and hence O(q). Note that the number of teams grows
rapidly with increasing m and n. Moreover, the cost of computing the syner-
gistic value for each team requires finding the optimal competence assignment.
As discussed in Sec. 4.1, this can be cast as a minimum cost flow problem and
solved in O(m · log(e) · (m + e · log(e))) time, where e = m · |Cτ |, being |Cτ | the
number of competencies required by task type τ . Thus, generating the input to
an ILP solver becomes increasingly costly as the number of students per team
grows.

6 An Approximate Algorithm for the STCP

In this section we present an approximate algorithm — SynTeam (see Algo-
rithm 2). SynTeam quickly finds an initial partition, to subsequently improve it
by performing student swaps between teams. First, it randomly orders the list
of students and assigns students to teams one by one from that list following
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Q(|A|,m) (see Sec. 5.1) to generate an initial solution (P, S(P ),η) (line 1). The
assignment of students to competencies is solved as described in subsection 4.1.

Second, at each iteration, SynTeam generates a random neighbour of the
current solution as follows (line 4). First, it randomly selects two teams from
the current solution. Then, it computes the synergistic value of all partitions
resulting from substituting the randomly selected teams by two new teams (and
corresponding competence assignments. see Subsection 4.1) formed by reordering
the students of the randomly selected teams in all possible ways. It stores the
best option in (P ′, S(P ′),η′). In addition, if the current iteration is the nl-th—
not necessarily consecutive—non-improving iteration,4 the following more fine-
grained procedure is applied to (P,η) (line 6). In the ascending order determined
by team and student indexes it tries to swap two students from two different
teams. The first improving solution found this way (if any) is stored in (P ′,η′)
and the cl counter, for non-consecutive non-improving iterations, is re-initialized.
Finally, the algorithm stops after nr consecutive non-improving iterations.

Algorithm 2. SynTeam
Require: A � The list of students
Require: nr � Max. # of consecutive non-impr. iterations
Require: nl � # of non-impr. iterations before student-swap
Ensure: (P, η) � Best partition found and best assignments
1: (P, S(P ), η) ← GenerateRandomSolution(A, Q(|A|, m))
2: cr ← 1, cl ← 1
3: while cr ≤ nr do
4: (P ′, S(P ′), η′) ← GenerateRandomNeighbor(P, η)
5: if S(P ′) ≤ S(P ) and cl = nl then
6: (P ′, S(P ′), η′) ← ApplyImprovingSwap(P, η)
7: cl ← 1

8: if S(P ′) > S(P ) then
9: (P, S(P ), η) ← (P ′, S(P ′), η′)

10: cr ← 1, cl ← 1
11: else
12: cr ← cr + 1, cl ← cl + 1

return (P, η)

7 Experimental Results

In this section we compare our two STCP solvers: optimal (STCPSolver), and
approximate (SynTeam). Our empirical evaluation compares: (1) their runtimes
as team sizes and number of students increase; (2) the quality of SynTeam’s
approximate solutions; (3) the anytime performance of SynTeam with respect
to STCPSolver.
4 If the current solution is improved at an iteration, we refer to it as an improving

iteration, a non-improving iteration otherwise.
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7.1 Empirical Settings

Our empirical evaluation employs the following settings:

– LP Solver. We used CPLEX Optimization Studio v12.7.1 [13] for STCP-
Solver.

– Students. We used actual-world data from 102 students, each one with an
id, a gender, a personality profile, and seven competencies with varying com-
petence levels.

– Task type. The task type used in our experiments here {(ci, li, wi)}i∈[1,7] was
the same as the one used in our study involving real students [4]. It had seven
equally important competencies, wi = 1/7, with a maximally competence
level requirement, li = 1, and the importance of proficiency set larger than
congeniality, λ = 0.8. In an educational context, task types requiring more
than seven competencies are rare and thus the task type used here is complex
enough for our purposes [12].

– Task. Team size m ranged from 3 to 6. Larger team sizes were not considered
because the generated STCPs were too costly for STCPSolver and rare in an
education context.

– Team proficiency. As in this paper we are just interested in the computa-
tional properties of the algorithms, the concrete value for υ is irrelevant. We
used υ = 1.

– Team Congeniality. We analytically assessed that to make each component
of the personality requirements equally relevant, we must set importance val-
ues as follows: (1) α = 0.11, (2) β = 3 · α, (3) γ = 0.33.

– Number of iterations without improvement (nr). To give SynTeam a
chance to visit all teams at least once without revisiting the same teams too
many times, we decided to set nr based on the value of b (number of teams in a
partition). We experimentally observed how the quality of SynTeam solutions
improved over time. Thus, setting nr to 1.5 · b offered a good compromise.

– Frequency of local search (nl). We empirically observed that, after per-
forming approximately nr

6 random team re-compositions without improve-
ment, the probability of finding an improvement was very low. Hence, we set
nl to nr

6 .

7.2 Computational Results

The experimental evaluation was performed on a cluster of PCs with Intel(R)
Xeon(R) CPU 5670 CPUs of 12 nuclei of 2933 MHz and at least 40 Gigabytes of
RAM. Moreover, we used IBM ILOG CPLEX v12.7.1 within both STCPSolver
and SynTeam. Note that CPLEX is used within SynTeam in order to calculate,
given a team, the optimal assignment of students to tasks. Moreover, note that
CPLEX was run in one-threaded mode, in order to be able to perform a fair
comparison.
Runtime Analysis. Figure 1 shows the performance, in terms of total run-
ning time, of SynTeam and STCPSolver for different teams as the number of
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students increases. We performed 20 runs for each configuration, and recorded
the total run time average and standard deviation. As team size (m) increases,
generating the input for STCPSolver becomes prohibitively costly. Therefore, for
STCPSolver we were only able to do calculations for: 102 students for m ∈ {3, 4},
60 students for m = 5, and 42 students for m = 6. For larger values of n and
m, reading the problem was beyond CPLEX capabilities.5 We observe that the
runtime of STCPSolver dramatically increases with the number of students (n)
and team size (m). Note that for team size m = 6 and n = 42 students, SynTeam
is more than two orders of magnitude faster than STCPSolver.

Fig. 1. SynTeam vs STCPSolver runtimes.

To better understand this result, we compared STCPSolver solving time
(only CPLEX time) with SynTeam. That is, we disregard the time required
by STCPSolver to generate the problem (lines 1–5 in Algorithm 1). Figure 2
shows this comparison. We observe that — even in this case — SynTeam is
more efficient for larger instances (team sizes m > 3 and a growing number of
students).
Quality Analysis. For each case we calculated the optimality ratio. Specifically,
we divided the solution obtained by SynTeam by the optimal solution calculated
by STCPSolver. Figure 4 illustrates this quality ratio with respect to the number
of students and team sizes. The results show that the quality of approximate
solutions slightly decreases with the number of students and team sizes but it
always remains above approx. 95%.
5 For instance, CPLEX must consider 12.271.512 binary variables for n = 48 and

m = 6.



102 E. Andrejczuk et al.

Fig. 2. SynTeam vs. STCPSolver solving times (disregarding problem generation time).

Fig. 3. Anytime performance (in quality ratio) of SynTeam vs. STCPSolver (n = 45,
m = 5).
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Fig. 4. SynTeam quality ratio.

Anytime performance. We chose the configuration with n = 45 students and
team size m = 5, since it is still in the region of problems that STCPSolver
could afford. Figure 3 shows the evolution of the best solutions found over time
(divided by the optimal solution) for both algorithms. Note that the problem
generation time required by STCPSolver is not included, and hence we only plot
the CPLEX solving time. Observe that SynTeam provides very good solutions in
approx. 15 s, while STCPSolver needs approximately 20 seconds (in addition to
more than 1000 s of preprocessing time) to come up with a first, low-quality solu-
tion. To conclude, to reach optimality, STCPSolver requires nearly two orders
of magnitude more time than the one required by SynTeam to obtain solutions
very close to optimality.

8 Conclusions

In this paper, we considered the Synergistic Team Composition Problem (STCP)
in the context of student team composition and proposed both an optimal and an
approximate solution to this problem. First, we discussed an algorithm to opti-
mally solve the STCP called STCPSolver. When we noticed that the algorithm
is only effective for small instances of the problem, we developed SynTeam, a
greedy algorithm for partitioning groups of humans into proficient, gender, psy-
chologically and size balanced teams, which yields a good, but not necessarily
optimum solution. Our computational evaluation shows that the larger the num-
ber of students and team sizes, the larger the benefits of SynTeam with respect
to STCPSolver. Furthermore, SynTeam provides good quality approximate solu-
tions (beyond 95% with respect to the optimal).
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This paper identified a real-world instance of an interesting new type of con-
strained coalition formation problem requiring a balanced coalition structure in
terms of coalition sizes and coalitional values. The computational analysis of our
proposed algorithms gives the guidelines for their use by any organisation that
faces the need to form problem solving teams (e.g. in a classroom, in a company,
in a research unit). The algorithm composes teams in a purely automatic way
without consulting experts, which is a huge advantage for environments where
there is a lack of experts.

Finally, we have implemented a freely available web-based application to
solve the STCP that automatically selects which algorithm to use depending on
the size of the problem. It is available here: https://eduteams.iiia.csic.es.

This new problem, STCP, has potential to spur future research. In particu-
lar, we aim at considering richer and more sophisticated models to capture the
various factors that influence the coalition composition process in the real world.
For instance, we want to be able to add constraints and preferences coming from
experts that cannot be established by any algorithm, e.g. Ana cannot be in the
same team with José as they used to have a romantic relationship.
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4. Andrejczuk, E., Rodŕıguez-Aguilar, J.A., Roig, C., Sierra, C.: Synergistic team
composition. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, pp. 1463–1465, International Foundation for Autonomous
Agents and Multiagent Systems (2017)

5. Arnold, J., Randall, R.: Work Psychology. Pearson Education Limited, Harlow
(2010)

6. Barkley, E.F., Cross, K.P., Major, C.H.: Collaborative Learning Techniques: A
Handbook for College Faculty. John Wiley & Sons, Hoboken (2014)

7. Bashshur, M.R., Hernández, A., Peiró, J.M.: The impact of underemployment on
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Abstract. We introduce the Constraint Composite Graph (CCG) for
Distributed Constraint Optimization Problems (DCOPs), a popular
paradigm used for the description and resolution of cooperative multi-
agent problems. The CCG is a novel graphical representation of DCOPs
on which agents can coordinate their assignments to solve the distributed
problem suboptimally. By leveraging this representation, agents are able
to reduce the size of the problem. We propose a novel variant of Max-
Sum—a popular DCOP incomplete algorithm—called CCG-Max-Sum,
which is applied to CCGs, and demonstrate its efficiency and effective-
ness on DCOP benchmarks based on several network topologies.

1 Introduction

In a cooperative multiagent system, multiple autonomous agents interact to pur-
sue personal goals and to achieve shared objectives. The Distributed Constraint
Optimization Problem (DCOP) model [6,17] is an elegant formalism to describe
cooperative multiagent problems that are distributed in nature. In this model,
a collection of agents coordinate a value assignment to the problem variables
with the goal of optimizing a global objective within the confines of localized
communication. DCOPs have been used to solve a variety of problems in the
context of coordination and resource allocation [9,30], sensor networks [5], and
device coordination in smart homes [8,22].

DCOP algorithms are either complete or incomplete. Complete algorithms
find an optimal solution to the problem employing one of two broad modus
operandi: distributed search-based techniques [17,26] or distributed inference-
based techniques [20,24]. In search-based techniques, agents traverse the search
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space by selecting value assignments and communicating them to other agents.
Inference-based techniques rely instead on the notion of agent belief, describing
the best cost an agent can achieve for each value assignment to its variables.
These beliefs drive the value-selection process of the agents to find an optimal
solution to the problem. Since finding an optimal DCOP solution is NP-hard
[17], optimally solving a DCOP requires exponential time or space in the worst
case. Thus, there is growing interest in the development of incomplete algo-
rithms, which trade off solution quality for better runtimes. Similar to complete
algorithms, incomplete algorithms can be classified as local search-based [16,27]
and inference-based [5]. Some incomplete algorithms have been used in differ-
ent multiagent applications. For instance, Max-Sum [5] is an inference-based
incomplete algorithm which has been successfully used to solve sensor networks
problems [5] and smart home coordination problems [22].

Fig. 1. DCOP constraint graph (a), pseudotree (b), factor graph (c), and a constraint
(d).

In both complete and incomplete DCOP algorithms, the problem resolu-
tion process is characterized by the graphical representation of the problem.
The three most important problem representations are the constraint graph, the
pseudo-tree, and the factor graph. The first one represents a problem as a graph
whose nodes describe the variables and whose edges describe the constraints.
The second one is a rearrangement of the constraint graph, where a subset of
edges forms a rooted tree and where two variables participating in the same
constraint appear in the same branch of the tree. The third one represents the
problem as a bipartite graph where nodes represent both variables and con-
straints, and edges link the constraint nodes to the variables participating in the
associated constraint. In many local search algorithms, such as MGM [16], DSA
[27], or the region-optimal algorithm family [19], agents operate directly on the
constraint graph and perform distributed local searches by exchanging informa-
tion with their neighbors in the constraint graph. In the main inference-based
algorithms, the agents operate on either a pseudo-tree (e.g., P-DCOP [21]) or
a factor graph (e.g., Max-Sum). In the former case, agents exchange messages
following the structure of the pseudo-tree, typically alternating between a phase
in which messages are propagated up from the leaf agents to the root agent of
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the pseudo-tree, and one in which information is propagated down. In the latter
case, there are two types of entities, which represent variables and constraints.
Both of them participate in the message-exchange process to solve the problem.

All these representations allow agents to exploit the graphical structure of
the problem. However, they hide the numerical structure of the problem’s con-
straints. Thus, in this paper, we introduce the Constraint Composite Graph
(CCG) for DCOPs, a lifted graphical representation that provides a framework
for exploiting simultaneously the graphical structure of the agent-coordination
process as well as the numerical structure of the constraints involving the vari-
ables controlled by the agents. CCGs have recently been introduced in the con-
text of Weighted Constraint Satisfaction Problems (WCSPs) [13,15], and shown
to be highly effective in solving a wide range of problems [25]. We contribute
to the development of inference-based DCOP algorithms by presenting a novel
framework for solving DCOPs sub-optimally whose agent interactions are driven
by the structure of the CCG representation. We analyze the behavior of our
framework on federated social network problems (introduced in Sect. 5) and ran-
dom Boolean problems on different graph topologies and show its effectiveness
on several important classes of graphs, including grid networks and scale-free
networks, which are used to model many applications in distributed settings.

To the best of our knowledge, this work describes the first proposal of a
distributed message-passing algorithm based on the CCG representation. We
refer to our algorithm as a “lifted” message passing algorithm since it works on
the CCG representation of a DCOP.

2 Background

We now review the distributed constraint optimization framework, the graphical
models commonly adopted to represent a DCOP, and the CCG model.

Distributed Constraint Optimization. A Distributed Constraint Optimiza-
tion Problem (DCOP) is a tuple P =〈X,D,F,A, α〉, where: X={x1, . . . , xn} is
a set of variables; D={Dx1 , . . . , Dxn

} is a set of finite domains for the variables
in X; F= {f1, . . . , fe} is a set of constraints (also called cost functions), where
f :

∏
x∈xf Dx → R+ ∪ {∞} and xf ⊆X is the set of the variables (also called

the scope) of f ; A={a1, . . . , ap} is a set of agents; and α : X → A is a function
that maps each variable to one agent. Figure 1(d) shows an example constraint.
It specifies the costs of all combinations of values for the variables x1, x2 in its
scope. For a variable x ∈ X, we use fx to denote the set of constraints that
involve x in their scopes.

A partial assignment σX is an assignment of values to a set of variables
X ⊆ X that is consistent with their domains; i.e., it is a partial function
θ : X → ∪n

i=1Dxi
such that, for each xj ∈ X, if θ(xj) is defined (i.e.,

xj ∈ X), then θ(xj) ∈ Dxj
. For a set of variables V = {xi1 , . . . , xih} ⊆ X,

πV (σX) = 〈θ(xi1), . . . , θ(xih)〉 is the projection of σX onto the variables in V ,
where i1 < . . . < ih. When V = {xi} is a singleton, we write πxi

(σX) to denote
the projection of σX onto xi. The cost F(σX) =

∑
f∈F:xf⊆X f(πxf (σX)) of an



Solving DCOPs on the CCG 109

assignment σX is the sum of the evaluation of the constraints involving all vari-
ables in X. A solution is a partial assignment σX (written σ for shorthand) for all
variables of the problem, i.e., with X =X, whose cost is finite (i.e., F(σ) 	= ∞).
The goal is to find an optimal solution σ∗ = argminσF(σ). In this paper, we
restrict our attention to Boolean DCOPs (i.e., DCOPs where all domains are
{0, 1}). Despite our focus on Boolean DCOPs, the concepts introduced in the
next sections are generalizable, as discussed in Sect. 6.

Given a DCOP P , its constraint graph is GP = (X, EC), where an undirected
edge {x, y}∈EC exists if and only if there exists an f ∈F such that {x, y} ⊆ xf .
The constraint graph provides a standard representation of a DCOP instance. It
highlights the locality of interactions among agents and therefore is commonly
adopted by DCOP algorithms. Figure 1(a) shows an example constraint graph of
a DCOP instance with three agents a1, a2, and a3, each controlling one variable
with domain {0,1}. There are three constraints: f1 with scope xf1 = {x1, x2},
f2 with scope xf2 = {x2, x3}, and f3 with scope xf3 = {x1, x3}.

A pseudo-tree for P is a spanning tree TP =〈X, ET 〉 of GP , i.e., a connected
subgraph of GP that contains all nodes and is a rooted tree, with the following
additional condition: for each x, y∈X, if {x, y} ⊆ xf for some f ∈F, then x and
y appear in the same branch of TP (i.e., x is an ancestor of y in TP or vice versa).
Figure 1(b) shows one possible pseudo-tree for our example DCOP, where the
solid lines represent tree edges and the dotted line represents a backedge that
connects an agent with one of its ancestors.

A factor graph [12] is a bipartite graph used to represent the factorization
of a function. Given a DCOP instance P , the corresponding factor graph FP =
〈X,F, EF 〉 is composed of variable nodes x ∈ X, function nodes f ∈ F, and
edges EF such that there is an undirected edge between function node f and
variable node x if and only if x ∈xf . Figure 1(c) illustrates the factor graph of
our example DCOP instance, where each agent ai controls its variable xi and, in
addition, a1 controls the constraints f1 and f3, and a2 controls the constraint f2.

Max-Sum. Max-Sum [5] is a popular incomplete DCOP algorithm. Its agents
operate on a factor graph FP through a synchronous iterative process. Albeit
the logic of each variable node and each function node is executed within an
agent, to ease exposition, in what follows, we treat them as entities that are able
to send and receive messages. In each iteration, each function node f exchanges
messages with the nodes of variables in its scope xf , and each variable node x
exchanges messages with the nodes of constraints which involve x in their scopes
fx. Thus, each node exchanges messages with its neighbors in the factor graph.

The content of the messages sent by each function (variable) node is based
exclusively on the information received from neighboring variable (function)
nodes. The message qi

x→f sent by a variable node x to a function node f in
fx in iteration i contains, for each value d ∈ Dx, the aggregated costs for d
received from all neighboring function nodes in iteration i − 1, excluding f . It
is defined as a function qi

x→f : Dx →R+ ∪ {∞}, whose value is 0 for all d∈Dx

when i=0 and
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qi
x→f (d) = αi

xf +
∑

f ′∈fx\{f}
ri−1
f ′→x(d) (1)

when i > 0. Here, ri−1
f ′→x is the message received by variable node x from function

node f ′ in iteration i−1 and αi
xf is a normalizing constant used to prevent the

values of the transmitted messages from growing arbitrarily and chosen so that∑
d∈Dx

qi
x→f (d) = 0 holds. The message ri

f→x sent by a function node f to a
variable node x∈xf in iteration i contains, for each d∈Dx, the minimum cost
of any assignments of values to the variables in xf in which x takes value d. It
is defined as a function ri

f→x : Dx →R+∪{∞}, whose value is 0 when i=0 and

ri
f→x(d) = min

σ
xf : πx(σxf )=d

f(σxf ) +
∑

x′∈xf\{x}
qi
x′→f (πx′(σxf )) (2)

when i > 0. Here, σxf is a possible assignment of values to all variables in
the scope xf of the constraint f , given that variable x ∈ xf takes value d.
The agent controlling a variable node x decides its value assignment at the
end of each iteration i > 0 by computing its associated belief bi

x(d) for each
d ∈ Dx: bi

x(d) =
∑

f∈fx ri−1
f→x(d) and choosing the assignment d∗i such that,

d∗i = argmind∈Dx
bi
x(d). This form of message passing allows for an inference-

based method: Max-Sum agents initialize all their messages to 0 and, in each
iteration i > 0, retain only the most recent messages, overwriting the messages
received in previous iterations.

Max-Sum is an incomplete DCOP algorithm. However, on acyclic problems,
it is guaranteed to converge to an optimal solution [5].

3 The Constraint Composite Graph

We now describe the constraint composite graph (CCG), a graphical structure
that can be used to represent DCOPs. Its goal is to exploit simultaneously the
graphical structure of the agent interactions as well as the numerical structure of
the cost functions. It is a node-weighted tripartite graph GCCG = 〈V =X ∪ Y ∪
Z, E,w〉, where X, Y, and Z are a partition of V . The nodes in X correspond
to the DCOP variables, while the nodes in Y and Z correspond to auxiliary
variables introduced to model a reformulation of the original problem into a
Minimum Weighted Vertex Cover (MWVC).

The concept of a CCG was first proposed by Kumar [13] as a combinatorial
structure associated with a Weighted Constraint Satisfaction Problem (WCSP).
WCSPs are similar to DCOPs, except that all computations are centralized. In
that proposal, it was shown that the task of solving a WCSP can be reformulated
as the task of finding a MWVC on its associated CCG [13–15]. A desirable
property of the CCG is that it can be constructed in polynomial time and is
always tripartite [13–15]. CCGs also enable the use of kernelization methods for
solving WCSPs [25], which are polynomial-time procedures that can simplify a
problem to a smaller one, called the kernel. The Nemhauser-Trotter reduction
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Algorithm 1: CCG-Max-Sum
// CCG Construction Phase

1 foreach fi ∈ Fi do
2 pi ← construct-polynomial(fi);
3 GCCGi =〈Vi = Xi ∪ Yi ∪ Zi,Ei,wi〉 ← decompose-polynomial(pi) ;

4 foreach f ∈ FCCGi involving variable vj with α(vj) �=ai do
5 ai sends f to aα(vj);

6 When agent ai receives f involving vi ∈ Xi from neighboring agent aj :
fvi(1) ← fvi(1) + f(1) ;
// Message Passing Phase

7 μvi→vj ← 0 (∀vi ∈ Vi, ∀vj ∈ N(vi));
8 while termination condition is not met do
9 Wait for all messages μvj→vi from vj ∈N(vi) (∀vi ∈Vi);

10 foreach vi ∈ Vi do
11 Update μvi→vj according to Eq. (5);

12 for vi ∈ Xi do
13 if wvi <

∑
vj∈N(vi)

μvj→vi then vi ← 1 else vi ← 0;

(NT reduction) [2,18] is one such kernelization method and uses a maxflow
procedure to find the kernel.

In the next section, we introduce an extension of the Max-Sum algorithm,
called CCG-Max-Sum, which can be used directly on CCGs.

4 CCG-Max-Sum

CCG-Max-Sum is an incomplete, iterative DCOP algorithm which works in two
phases, namely, the CCG construction and the message passing, which are exe-
cuted sequentially and summarized in Algorithm1. In the CCG construction
phase, the agents coordinate in the construction of a CCG and take ownership
of the auxiliary variables and constraints introduced by this lifted graphical rep-
resentation. Afterwards, in the message passing phase, the agents execute the
iterative synchronous process which extends the Max-Sum algorithm.

In what follows, we use Gi = 〈Xi,Fi〉 to denote the subgraph of the constraint
graph controlled by agent ai, where the sets Xi ⊆ X form a partition of the set
of variables X, and the sets Fi ⊆ F form a partition for the constraint set F.

4.1 CCG Construction Phase

The CCG construction proceeds in 3 stages:

1. Expressing Constraints as Polynomials. In this stage, each agent ai transforms
the constraints fi ∈ Fi it controls into polynomials pi (line 2 of Algorithm 1)
using standard Gaussian Elimination. We use GCCGi

=〈Vi =Xi ∪Yi ∪Zi, Ei, wi〉
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to denote the portion of the CCG obtained from constraint fi. Consider the
example constraint f1 in Fig. 1(d), which involves the variables x1 and x2.
It can be written as a polynomial p1(x1, x2) in x1 and x2 of degree 1 each:
p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2. The coefficients c00, c01, c10, and c11
of the polynomial can be computed by solving a system of linear equations, where
each equation corresponds to an entry in the constraint table, using standard
Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6 p1(1, 0) = 0.7 p1(1, 1) = 0.3
c00 = 0.5 c01 = 0.1 c10 = 0.2 c11 = −0.5.

x1

0.2

y1

0.5

x2

0.1

Fig. 2. The projection of an MWVC on the IS {x1, x2} of this node-weighted undirected
graph leads to Fig. 1(d). The weights on x1, x2, and y1 are 0.2, 0.1, and 0.5, respectively.
The entry 0.6 in cell (x1 = 0, x2 = 1) in Fig. 1(d), for example, indicates that, when x1

is necessarily excluded from the MWVC but x2 is necessarily included in it, then the
weight of the MWVC {x2, y1} is 0.6.

xi

w1

y1

w2

xi xj xk

y2

w

xi xj xk

z

L

y3

w

(a) w·xi (b) −w·(xi ·xj ·xk) (c) w·(xi ·xj ·xk)

Fig. 3. The lifted graphical representation of terms in a polynomial for linear (a),
negative nonlinear (b), and positive nonlinear (c) terms. We assume that w > 0 in (b)
and (c) (but not in (a)). A node has a zero weight if no weight is shown. In (a), w1

and w2 satisfy w1 − w2 = w.

2. Decomposing the Terms of the Polynomials. In this stage, for each fi ∈ Fi,
the agent that controls it constructs a subgraph GCCGi

of the CCG (line 3
of Algorithm 1). At the end of this stage, each agent introduces new sets of
auxiliary variables Yi and Zi and replaces its constraints with a new set FCCGi

of
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constraints that involve the decision variables and its newly introduced auxiliary
variables. Before describing this procedure, we review the concept of the MWVC,
a cornerstone concept for the notion of the CCG.

A minimum node cover of G = 〈V,E〉 is the smallest set of nodes S ⊆ V
such that every edge in E has at least one of its nodes in S. When G is node-
weighted, (i.e., each node vi ∈ V has a non-negative weight wi associated with
it), its MWVC is defined as a node cover of minimum total weight of its nodes.

For a given graph G, one can project MWVCs on a given independent set
(IS) U ⊆ V . (An IS is a set of nodes in which no two nodes are connected
by an edge.) The input to such a projection is the graph G as well as an IS
U = {u1, u2, . . . , uk} on G. The output is a table of 2k numbers. Each entry in
this table corresponds to a k-bit vector. We say that a k-bit vector t imposes
the following restrictions: (a) If the ith bit ti is 0, then node ui has to be
excluded from the MWVC; and (b) if the ith bit ti is 1, then the node ui has
to be included in the MWVC. The projection of an MWVC on the IS U is then
defined to be a table with entries corresponding to each of the 2k possible k-bit
vectors t(1), t(2), . . . , t(2

k). The value of the entry that corresponds to t(j) is the
weight of the MWVC conditioned on the restrictions imposed by t(j).

Fig. 4. (a)–(c): CCG gadget graph construction in the “Decomposing the Terms of
Polynomials” stage for the example DCOP of Fig. 1. The original constraint, the asso-
ciated CCG gadget, and the new constraint are shown on the left, middle, and right of
each panel, respectively. (d): CCG construction in the “Merging Gadget Graphs into
a CCG” stage for the example DCOP of Fig. 1. It is obtained by merging the CCG
gadget graphs in (a)–(c).

Figure 2 illustrates this projection for the subgraph of our example DCOP
problem of Fig. 1(a) that involves variables x1 and x2 and constraint f1, whose
costs are shown in Fig. 1(d).

The table produced by projecting an MWVC on the IS U can be viewed
as a constraint over |U | Boolean variables. Conversely, given a (Boolean) con-
straint, we can design a lifted representation for it so as to be able to view
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it as the projection of an MWVC on an IS for some intelligently constructed
node-weighted undirected graph [13,14]. The lifted graphical representation of a
constraint depends on the nature of the terms in the polynomial that describes
the constraint. We distinguish three classes of terms: linear terms, negative non-
linear terms, and positive nonlinear terms. We can construct a lifted graphical
representation, i.e., a gadget graph, for each term in the polynomial of each
constraint as follows.

• A linear term is represented with the two-node graph shown in Fig. 3(a) by
connecting the variable node with an auxiliary node.

• A negative nonlinear term is represented with the “flower” structure as
depicted in Fig. 3(b). Consider the term −w · (xi · xj · xk) where w > 0. Pro-
jecting an MWVC on the “flower” structure on the variable nodes represents
w − w · (xi · xj · xk). The constant term w does not affect the optimality of
the solution.

• A positive nonlinear term is represented using the “flower+thorn” struc-
ture as depicted in Fig. 3(c). Consider the term w ·(xi ·xj ·xk) where w > 0.
The projection of an MWVC on the “flower+thorn” structure on the variable
nodes represents L·(1 − xk) + w − w ·(xi ·xj ·(1 − xk)), where L > w + 1 is a
large real number. By constructing gadget graphs that cancel out the lower
order terms as shown before, we arrive at a lifted graphical representation of
the positive nonlinear term.

Procedure decompose-polynomial on line 3 of Algorithm 1 takes as input the
polynomial pi associated with a constraint fi, constructed in stage 1, and returns
its lifted representation GCCGi

, where Xi = xfi , Yi and Zi are the set of auxiliary
variables introduced by the procedure, Ei is the set of edges between the GCCGi

graph nodes, and wi is the set of weights associated with the variables in Xi, Yi,
and Zi. For a variable vi ∈ Xi ∪ Yi ∪ Zi, a unary constraint fvi

in FCCGi
is

fvi
(vi) =

{
wi, if vi = 1,

0, if vi = 0.
(3)

For each edge {vi, vj} in Ei, a constraint f{vi,vj} in FCCGi
is defined as

f{vi,vj}(vi, vj) =

{
∞, if vi = vj = 0,

0, otherwise.
(4)

For a CCG gadget graph GCCGi
, Xi contains nodes that correspond to decision

variables, Zi contains the nodes with weight L (if any), and Yi contains the
other nodes. At the end of this stage, each agent ai ∈ A controls the set of
decision variables in Xi and the set of auxiliary variables ∪fj∈Fi

(Yj ∪ Zj) for all
constraints fj ∈ Fi controlled by agent ai.

3. Merging Gadget Graphs into a CCG. Finally, the CCG-Max-Sum agents con-
struct the CCG by merging their gadget graphs GCCGi

. This stage is done incre-
mentally. Every time an agent builds a new gadget graph, it (1) updates its inter-
nal graphical representation to include the auxiliary variables introduced by the
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construction, and (2) increases the weight associated with the agent’s variables.
Each agent ai sends to its neighbor aj all unary constraints in FCCGi

involving
variable vj controlled by agent aj (i.e., α(vj) = aj) (lines 4–5). When an agent
receives a new unary constraint f which involves one of its decision variables
vi, it increases the weight associated with the constraint (fvi

(vi)) by the value
fvi

(1) (line 6). The communication structure of the underlying DCOP does not
vary after the CCG construction. If an agent ai is a neighbor of an agent aj in
the constraint graph of the original DCOP, then ai is also a neighbor of aj in
the lifted DCOP representation.

Figure 4 shows the construction of the CCG associated with our example
DCOP of Fig. 1. There are three unary and three binary constraints. Their lifted
graphical representations are shown next to them. Every node in the CCG is
given a weight equal to the sum of the individual weights of the nodes in the
CCG gadget graphs. Computing the MWVC for the CCG yields an optimal
solution for the DCOP: If variable xi ∈ X is in the MWVC, then it is assigned
the value 1 in the DCOP, otherwise it is assigned the value 0.

4.2 Message-Passing Phase

Once the CCG has been constructed, the agents start the message-passing phase
to find a node cover with a small total weight. The message-passing scheme is
similar to that of Max-Sum: During each iteration, each agent waits to receive
all messages from its neighbors, updates the current values (beliefs) for the vari-
ables it controls, computes the messages to send to its neighbors based on its new
beliefs, and sends these to all of its neighbors. Here, we adapt the algorithm pre-
sented in [25] (see Algorithm 1). Differently from Max-Sum, where each function
node exchanges messages with its neighboring variable nodes, and each variable
node exchanges messages with its neighboring function nodes, in CCG-Max-
Sum, the messages are exchanged between (decision and auxiliary) variables
nodes in the CCG. The message μu→v sent by a variable u to a variable v in
iteration i is:

μi
u→v = max

⎧
⎨

⎩
wu −

∑

t∈N(u)\{v}
μi−1

t→u, 0

⎫
⎬

⎭
, (5)

where wu is the weight associated with variable u, and N(u) is the set of neigh-
boring variables of variable u in the CCG. Equation (5) is derived from Eqs. (1)
and (2) using an approach similar to that in [25]. These steps are shown on lines
7–11 of Algorithm 1. When the termination condition (e.g., a convergence criteria
or a maximum number of iteration) is met, for a node v, if wv <

∑
u∈N(v) μi

u→v,
with i being the last iteration of the algorithm, then v is selected into the MWVC;
otherwise it is not. A variable is assigned value 1 if its corresponding decision
variable node in the CCG is selected into the MWVC; otherwise it is assigned
value 0 (lines 12–13).



116 F. Fioretto et al.

5 Experimental Evaluation

In this section, we compare the solution costs of CCG-Max-Sum, Max-Sum (exe-
cuted on the factor graph), and DSA [27], a local search DCOP algorithm. DSA
has been shown to outperform several other incomplete DCOP algorithms [3,10]
and performs similarly to several Max-Sum variants, including Max-Sum ADVP
[29], which has been shown not to benefit from damping [3], where message values
are modified to follow a weighted moving average process. We also analyze the
effect of using the NT reduction [18], which solves a polynomial-time relaxation
of the MWVC to expose optimal assignments to sets of variables, in conjunction
with CCG-Max-Sum (denoted by CCG-Max-Sum-k). The NT reduction is exe-
cuted as a preprocessing centralized step.1 We use DSA-C with p = 0.6, where
agents decide probabilistically if to select a local-non-worsening assignment, and
adopt a damping strategy with weight 0.7 in all Max-Sum variants [3].

We evaluate all algorithms on federated social network problems—an appli-
cation domain that we introduce below—and on random minimization Boolean
DCOPs over three classical networks topologies [11]: grid networks, scale-free
networks, and random networks, to cover both structured and unstructured prob-
lems. We implement all algorithms within an anytime framework, as proposed
in [28], where the agents memorize the best solution found up to the current
iteration. All results are averages of 30 runs.

Federated Social Networks. To address the privacy concerns raised in modern
centralized social networks, open-source communities have developed decentral-
ized social networks, such as Diaspora, GNU Social, and pump.io [23]. A federated
social network (FSN) adopts a decentralized structure by allowing each user or
group of users to maintain its server and communicating using a common inter-
server protocol. In an FSN, multiple servers are used to store the information
of the social network users. A server ai fetches information from a server aj if a
user in ai follows a user in aj [23]. Qualitatively speaking, there are two fetching
strategies: freq-fetch, that fetches frequently and caches less information, and
more-cache, that fetches less frequently and caches more fetched information.
Each strategy has its own advantages and disadvantages: freq-fetch incurs
higher bandwidth costs but lower storage costs, while more-cache incurs lower
bandwidth costs but higher storage costs. Since freq-fetch incurs bandwidth
costs for both servers, this strategy takes effect between two servers only if both
have the strategy freq-fetch.

We model the relationship between the costs and fetching strategies as a
DCOP. The choice of strategy of each server ai (which is modeled as an agent)
is a variable xi. xi = 1 implies freq-fetch, and xi = 0 implies more-cache.

The binary f(xi, xj) cost functions capture the storage and bandwidth costs
for servers ai and aj . A user in ai following a user in aj and a user in ai and one

1 Its runtime is comparable to that of one iteration of CCG-Max-Sum, which in turn
takes 0.035 s on average in our experiments.
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Max-Sum CCG-Max-Sum CCG-Max-Sum-k DSA

Fig. 5. FSN based on Twitter network data: 100 agents (left), 500 agents (center), and
1000 agents (right).

in aj following each other are modeled, respectively, as
{

αij(cb
i + cb

j), if xi =xj =1
αijc

s
i , otherwise

{
(αij + αji)(cb

i + cb
j), if xi =xj =1

αijc
s
i + αjic

s
j , otherwise,

where cb
i and cs

i denote the unit bandwidth and unit storage costs of agent ai,
respectively, and αij is the amount of information that ai fetches from aj .

We model an FSN based on Twitter network data [4], which describe a graph
whose nodes model Twitter users. There is a link between two nodes if at least
one of the corresponding users follows the other one. The graph contains 456,626
nodes and 14,855,842 edges. We map the Twitter network to an FSN graph G.
Its nodes represent the FSN servers and are constructed as follows. We first
randomly assign one distinct Twitter user to each node in G. Then, we associate
each remaining user u to a node of G with a probability proportional to the
number of followers user u has in the corresponding server. We add an edge
(ai, aj) to G if there exist a user in ai and a user in aj such that at least one of
them follows the other one. The costs cb

i and cs
i are generated by sampling from

the discrete uniform distribution U(1, 10), and all weights αij are the number of
users in ai following users in aj .

Figure 5 illustrates the anytime behavior of the algorithms on FSN problems
with 100 (left), 500 (center), and 1000 (right) agents. The shaded region around
each line describes the confidence interval of the solution costs reported by each
algorithm. The plots use a log-10 scale for the x-axis. The algorithms in order
of their solution costs (from highest to lowest) tend to be: Max-Sum, DSA,
and both CCG-Max-Sum variants. In particular, CCG-Max-Sum-k dominates
all other algorithms from the very first iteration.

Random DCOPs. We now discuss the solution cost of the algorithms on ran-
dom minimization Boolean DCOPs. The costs of each assignment to the variables
involved in a constraint are generated by sampling from the discrete uniform dis-
tribution U(1, 100). For grid networks, we generate two-dimensional 10×10 grids
and connect each node with its four nearest neighbors. For scale-free networks,
we create an n-node network based on the Barabasi-Albert model [1]. Starting
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from a connected 2-node network, we repeatedly add a new node, randomly con-
necting it to two existing nodes. These two nodes are selected with probabilities
that are proportional to the numbers of their incident edges. Finally, for random
networks, we create an n-node network whose density p1 produces 
n(n − 1)p1�
edges. We report experiments on low-density problems (p1 = 0.2) and high den-
sity problems (p1 = 0.6) and fix the maximum constraint arity to 4. Constraints
of arity 4 and 3, respectively, are generated by merging first all cliques of size 4
and then those of size 3. The other edges are used to generate binary constraints.
In each configuration, we verify that the resulting constraint graph is connected
and set the number of agents to 100.

Max-Sum CCG-Max-Sum CCG-Max-Sum-k DSA

Fig. 6. Grid networks (top left), scale-free networks (top right), low-density random
networks (p1 =0.2) (bottom left), and high-density random networks (p1 =0.6) (bottom
right). The blue and red curves overlap in the last two plots.

The results are similar to the ones on FSN problems: The algorithms in order
of their solution costs (from highest to lowest) tend to be: Max-Sum, DSA, and
both CCG-Max-Sum variants, except on high-density random networks, where
the solution costs of DSA are slightly lower than the ones of the CCG-Max-
Sum variants. On grid, scale-free, and low-density random networks, CCG-Max-
Sum-k dominates all other algorithms from the first ten iterations. On random
networks (Fig. 6 (bottom)), the effect of kernelization is negligible and both
CCG-Max-Sum variants are thus almost indistinguishable, meaning that both
of them dominate all other algorithms on low-density random networks.

Thus, our experiments suggest that CCG-Max-Sum has strong advantages
on grid and scale-free networks, which are important for a large variety of DCOP
applications [5,8,22].
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x1 0 0 0 1 1 1
x2 0 1 2 0 1 2
f1 0.5 0.6 0.2 0.7 0.3 0.5

Fig. 7. A cost function with a non-Boolean variable. This cost function extends the
Boolean cost function in Fig. 1(d) with x2 being able to take 3 values 0, 1, and 2. The
tuples highlighted in red are the parts additional to Fig. 1(d).

6 Discussion: Non-Boolean DCOPs

The construction of the CCG for CCG-Max-Sum can be extended to DCOPs
with non-Boolean domains [14] as outlined in the following.

1. Expressing Constraints as Polynomials. For a cost function with non-Boolean
variables, this step outputs polynomials of degrees at least 2 instead of polyno-
mials of degree 1. The degree of each variable equals its domain size - 1. Figure 7
shows an example cost function. Similar to Boolean DCOPs, a polynomial of the
following form can be used to characterize this cost function:

p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2 + c20x
2
2 + c21x1x

2
2.

Here, the coefficients c00, c01, c10, c11, c20, and c21 can be computed by solving a
system of linear equations, where each equation corresponds to an entry in the
constraint table, using standard Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6 p1(0, 2) = 0.2
p1(1, 0) = 0.7 p1(1, 1) = 0.3 p1(1, 2) = 0.5.

2. Decomposing the Terms of the Polynomials. The procedure to construct graph
gadgets is similar to Boolean DCOPs, except that each variable xi with domain
Dxi

= {0, 1, . . . , |Dxi
| − 1} is now represented by |Dxi

| − 1 nodes in the gad-
get graph. The value of xi in the to-be-determined optimal solution equals the
number of nodes representing xi in the computed MWVC. Figure 8 illustrates
the lifted representation of linear terms, negative non-linear terms, and posi-
tive non-linear terms. It is not hard to verify that Fig. 8 (a-c) represent w · xi,
2w − w · (xi · xj) and L · (1 − xj) + 2w − w · (xi · (1 − xj)), respectively.

3. Merging Gadget Graphs into a CCG. Similar to Boolean DCOPs, a CCG can
be constructed by merging all nodes corresponding to the same variable. The
size of the CCG increases only polynomially in the domain sizes.

Since the agents need to control the value of several CCG nodes, the local
solving process, in which an agent decide the value assignments for each of the
variables it controls, can be handled with a framework similar to that presented
in [7], which was shown highly effective for solving multi-variable agent DCOPs.
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Fig. 8. The lifted graphical representation of terms in a polynomial for linear (a),
negative nonlinear (b), and positive nonlinear (c) terms. Here, xi and xj have domain

sizes 3 and 2, respectively. x
(1)
i and x

(2)
i are the two nodes representing xi. We assume

that w > 0 in (b) and (c). A node has a zero weight if no weight is shown. In (a), w1

and w2 satisfy w1 − w2 = w.

7 Conclusions

In this paper, we adapted the Constraint Composite Graph (CCG) graphi-
cal representation encoding for Distributed Constraint Optimization Problems
(DCOPs). The CCG provides a framework for exploiting simultaneously the
graphical structure of the agent interaction process as well as the numerical
structure of the constraints of a DCOP instance. We use this representation to
introduce CCG-Max-Sum, a novel incomplete DCOP algorithm which extends
Max-Sum by executing the distributed message passing phase on the CCG.

Compared to a version of Max-Sum which is executed on factor graphs and
other incomplete DCOP algorithms, CCG-Max-Sum finds solutions of better
quality within fewer iterations on several DCOP benchmarks. While this paper
introduced an inference-based algorithm operating on the CCG of a DCOP, we
believe that CCGs can also be exploited with other classes of DCOP algorithms.

Future directions include extending the experiments evaluation to DCOPs
with non-Boolean variables and applying CCG-Max-Sum to problems with hard
constraints (e.g., constraints whose costs are either 0 or ∞), since many types of
hard constraints can be simplified during the construction of the CCG, resulting
in smaller problems.
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Abstract. How to form effective coalitions is an important issue in
multi-agent systems. Coalition Structure Generation (CSG) is a funda-
mental problem that can formalize various applications related to multi-
agent cooperation. CSG involves partitioning a set of agents into coali-
tions so that the social surplus (i.e. the sum of the values of all coalitions)
is maximized. In the real world, it is natural to consider the uncertainty
of agents’ attendances, e.g., an agent is available only two or three days
a week because of his/her own schedule. In other words, there is no
guarantee to establish all coalitions. Probabilistic Coalition Structure
Generation (PCSG) is the extension of CSG where the attendance type
of each agent is considered. The aim of this problem is to find the opti-
mal coalition structure which maximizes the sum of the expected values
of all coalitions. In PCSG, since finding the optimal coalition structure
becomes easily intractable, it is important to consider fast but approx-
imate algorithms. In this paper, a formal framework for PCSG is intro-
duced. An approximate algorithm for PCSG called Bounded Approximate
Algorithm based on Attendance Types (BAAAT) is then presented. Also,
we show that BAAAT can provide the theoretical bound of a solution a
priori. In the experiments, BAAAT is evaluated on a number of bench-
marks.

Keywords: Multi-agent Systems
Probabilistic Coalition Structure Generation

1 Introduction

Coalition Structure Generation (CSG) [1,16,20] is a key issue for various applica-
tions related to multi-agent cooperation, e.g., waste-water treatment system [6],
distributed vehicle routing [22] and multi-sensor networks [4]. A CSG involves
partitioning a set of agents into coalitions (where each coalition is a subset of
the available set of agents) so that the social surplus is maximized. A partition
c© Springer Nature Switzerland AG 2018
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is called a coalition structure. In CSG, the value of a coalition is assumed to
be given by a black box function called a characteristic function, and the value
of a coalition structure is provided by the sum of the values of all coalitions.
It is well-known that CSG is equivalent to the complete set partition problem
[26]. Various algorithms have been proposed for CSG problems, e.g., dynamic
programming [26], anytime algorithms [19], and hybrid algorithms [12,17].

Let us consider the following scenario. There is a service company with three
employees (Ali, Bob and Chan) dispatching interpreters. This company has
received the requests of the simultaneous interpretation as shown in table 1:
request 1 requires Ali, and the company gets $20 for it; request 2 pays $50 and
needs Bob’s language skill; request 3 needs Chan and pays $10; request 4 pays
$70 and needs Ali and Bob; request 5 pays $60 and needs Ali and Chan; request
6 needs Bob and Chan and pays $100; request 7 requires all three employees and
pays $110. Assume that you are the manager of this service company and want to
assign the employees to the job(s) so that the sum of the rewards is maximized.
Then, this problem can be represented as a CSG problem. If you assign three
employees Ali, Bob and Chan to the requests 1, 2 and 3 separately, i.e., the coali-
tion structure {{Ali}, {Bob}, {Chan}} is formed by singleton coalitions, the sum
of the rewards obtained by this coalition structure is $20+$50+$10 = $80. When
you assign Ali to the request 1, Bob and Chan to the request 6, the social sur-
plus is maximized. In this case, the coalition structure is {{Ali}, {Bob,Chan}}
and the service company earns $20 + $100 = $120.

Table 1. Requests, coalitions, and rewards

Request Coalition Reward Request Coalition Reward

1 {Ali} $20 5 {Ali, Chan} $60

2 {Bob} $50 6 {Bob,Chan} $100

3 {Chan} $10 7 {Ali,Bob, Chan} $110

4 {Ali,Bob} $70 - - -

In the following, we are interested in the uncertainty of agents’ attendances.
In traditional CSG, it is guaranteed to establish all coalitions, that is, each agent
joins any coalition with the probability 1.0. However, in the real world, it is
natural to consider the uncertainty of agents’ attendances, e.g., it might happen
that an agent is available only two or three days a week because of his/her own
schedule. In our example, it is natural that the manager of the service company
asks three employs their schedules before assigning them to the jobs. In this
paper, we assume that (i) each agent chooses, for instance, one of the following
attendance types according to his/her own schedule1, and (ii) the CSG maker
(e.g. the manager) knows all information about the attendances.

1 How to provide the participation rate of each agent is out of scope. Here, each agent
chooses the attendance type including a given probability, e.g., {unsure (50%)}.
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type 1 : {attend (90%)}, type 2 : {maybe attend (70%)}, type 3 : {unsure (50%)},
type 4 : {maybe not attend (30%)}, type 5 : {not attend (10%)}.

In this paper, the main focus is laid on the Probabilistic Coalition Structure
Generation (PCSG) problem which is the extension of CSG where the attendance
type of each agent is considered. First, a formal framework for PCSG is intro-
duced where the aim is to find an optimal coalition structure which maximizes
the sum of the expected values of all coalitions. In a PCSG problem, how to
compute the expected value of a coalition is an important issue. In our frame-
work, the expected value of a coalition is computed where any k agents might be
absent. For instance, the expected value of the coalition {Ali, Chan} for k = 1
(i.e. any one agent might be absent) is provided by the sum of the expected
values in case (i) Ali and Chan are attended, (ii) only Ali is attended, and (iii)
only Chan is attended.

Furthermore, an approximate algorithm for solving a PCSG problem called
Bounded Approximate Algorithm based on Attendance Types (BAAAT) is pre-
sented. In PCSG problems, since finding the optimal coalition structure becomes
easily intractable, it is important to consider fast but approximate algorithms.
The basic idea of the proposed algorithm BAAAT is that for a given parameter
p̃, (i) the singleton coalition is formed for an agent whose attendance type is
below the parameter p̃, then (ii) an optimal coalition structure of the relaxed
problem with the remaining agents is computed. Moreover, we show that BAAAT
can provide the theoretical upper bound of the absolute errors of the solution,
which can be obtained a priori, that is, the error bound is obtained before actu-
ally running the algorithm. In our experiments, the performances of BAAAT are
evaluated on a number of benchmarks.

The rest of the paper is organized as follows. In Sect. 2, the framework for
coalition structure generation (CSG) problem is provided. Section 3 introduces
our framework for probabilistic coalition structure generation (PCSG) problem.
The next section presents an approximate algorithm for PCSG problems, and the
theoretical bound is provided. Afterward, some empirical results are presented.
Just before the concluding section, some related works are discussed.

2 Coalition Structure Generation

In this section, the formalization of Coalition Structure Generation (CSG) prob-
lem is briefly described. CSG involves partitioning a set of agents into coalitions
so that the social surplus (i.e. the sum of the values of all coalitions) is maxi-
mized.

Let us start with some preliminary definitions. Let A = {a1, a2, . . . , an} be
a finite set of agents. A coalition from A, denoted as C, is a non-empty subset
of A. A coalition structure on A, denoted as CS, is a partition on A, i.e., a
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jointly exhaustive set of pairwise disjoint coalitions from A. Formally, a coalition
structure on A is a finite set of coalitions satisfying the following conditions:

∀i, j ∈ {1, 2, . . . ,m}, i �= j, Ci ∩ Cj = ∅,
⋃

Ci∈CS

Ci = A.

In other words, each agent belongs to exactly one coalition, and some agents
may be alone in their coalitions. In our running example for the service com-
pany dispatching interpreters with three agents Ali, Bob and Chan, there exist
seven possible coalitions (i.e. {Ali}, {Bob}, {Chan}, {Ali,Bob}, {Ali, Chan},
{Bob,Chan}, {Ali, Bob, Chan}) and the following five coalition structures:

{{Ali}, {Bob}, {Chan}}, {{Ali}, {Bob,Chan}}, {{Bob}, {Ali, Chan}},
{{Chan}, {Ali,Bob}}, {{Ali,Bob, Chan}}.

Definition 1 (CSG problem description). A coalition structure generation
problem description is defined by a pair CSG = 〈A, v〉 where A = {a1, a2, . . . , an}
is a set of agents and v : 2A → N is a function called a characteristic function.

The value of a coalition C, denoted as v(C), is given by the characteristic
function v. The value of a coalition structure CS, denoted as V (CS), is provided
by the sum of the values of all coalitions, i.e.,

V (CS) =
∑

Ci∈CS

v(Ci). (1)

A coalition structure is said to be optimal, denoted as CS∗, if it maximizes the
social surplus, that is, it satisfies the following condition:

∀CS, V (CS) ≤ V (CS∗).

Example 1 (CSG). Consider our running example of a service company with
three employees Ali, Bob and Chan. This problem can be represented as a CSG:
let CSG = 〈A, v〉 be a CSG problem description with A = {Ali,Bob, Chan}, and
the function v is characterized as follows:

v({Ali}) = $20, v({Bob}) = $50, v({Chan}) = $10,
v({Ali,Bob}) = $70, v({Ali, Chan}) = $60, v({Bob,Chan}) = $100,
v({Ali,Bob, Chan}) = $110.

The optimal coalition structure is CS∗ = {{Ali}, {Bob,Chan}}, and the
obtained value is V (CS∗) = v({Ali}) + v({Bob,Chan}) = $20 + $100 = $120.

As illustrated on this running example, as stated otherwise, the character-
istic function v is supposed to be represented extensively, as the set of pairs
{(CS, v(CS)) | CS ⊆ A and CS �= ∅}. The CSG problem is defined as follows:
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Definition 2 (CSG problem).

– Input: A CSG problem description CSG = 〈A, v〉,
– Question: Find an optimal coalition structure CS∗ which maximizes the

sum of the values of all coalitions.

A number of representation settings for characteristic functions have been
pointed out in the literature, and some of them have been adapted to CSG and
studied from the computational complexity viewpoint [14]. Among the repre-
sentation frameworks which have been developed are marginal contribution nets
(MC-nets) [8] and synergy coalition groups (SCGs) [3]. Contrastingly, some early
works [21,22] assume that v is provided “fully extensionally” as an input of a
CSG problem description, i.e., v is given as a table with 2n−1 entries, associating
with every coalition a number. Providing such an extensional representation of
v makes the size of an input CSG to be exponential in the number of agents and
maybe an unrealistic assumption for relatively large problems.

Yet there exist real applications involving only a dozen agents, for which
an extensional representation of v is feasible. Thus, cooperative games can be
used to analyze cost allocation problems, where the players are willing to form
coalitions in order to get extra monetary savings as an effect of cooperation.
For instance, in [6] the authors address the problem where nearby municipal-
ities must take the decision on whether to cooperate in order to implement a
Waste-water Treatment System (WTS). This type of problems can be repre-
sented formally as a CSG and it involves a few agents in essence, so that (i)
considering a few numbers of agents for experimentations (as it is done in recent
works on CSG experiments considering about 10–20 agents), and (ii) assuming
an extensional representation of the characteristic function, can sometimes be
considered as reasonable.

Lastly, let us focus on the specific cases for CSG problem where the charac-
teristic function v is subadditive or superadditive. For a CSG problem description
CSG = 〈A, v〉, the characteristic function v is said to be subadditive if for any
coalitions Ci and Cj with Ci ∩ Cj = ∅, it holds v(Ci) + v(Cj) ≥ v(Ci ∪ Cj), and
it is called superadditive if it holds v(Ci) + v(Cj) ≤ v(Ci ∪ Cj). It is well-known
that in case the characteristic function is subadditive, the coalition structure
formed by singleton coalitions is optimal, i.e., CS∗ = {{ai}|ai ∈ A}. For the
superadditive case, the grand coalition, i.e., CS∗ = {A}, is an optimal one [21].

3 Probabilistic Coalition Structure Generation

In this section, a formal framework for Probabilistic Coalition Structure Genera-
tion (PCSG) problem is introduced where the aim is to find an optimal coalition
structure which maximizes the sum of the expected values of all coalitions. In a
PCSG problem, how to compute the expected value of a coalition is an important
issue. In our framework, the expected value of a coalition is computed where any
k agents might be absent.
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Definition 3 (PCSG problem description). A probabilistic coalition struc-
ture generation problem description is defined by a tuple PCSG = 〈A, v, f〉 where
A = {a1, a2, ..., an} is a set of agents, v : 2A → N is a characteristic function and
f : A �→ [0, 1] is a function that gives the attendance type/rate of each agent.

Here, we assume that the participation of each agent to join any coalition
is independent, that is, it has no influence on those of other agents. In the
following, the expected value of a coalition is computed where any k agents
might be absent. For a coalition C, let ā ⊆ 2C be a set of absent agents where
|ā| = k and 0 ≤ k ≤ |C|. For any ā, the remaining coalition by removing ā from
a coalition C is denoted as C \ ā, and the value of this coalition is given by
v(C \ ā). The expected value of this coalition, denoted as ve(C, ā), is defined by

ve(C, ā) = v(C \ ā) ·
∏

a∈C\ā
f(a) ·

∏

a′∈ā

(1 − f(a′)). (2)

The expected value of a coalition C, denoted as ve,k(C), is given by

ve,k(C) =
∑

ā∈2C

ve(C, ā). (3)

The expected value of a coalition structure CS, denoted as Ve(CS), is computed
by the sum of the expected values of all coalitions as standard CSG, i.e.,

Ve(CS) =
∑

C∈CS

ve,k(C). (4)

A coalition structure is said to be optimal, denoted as CS∗
e , if it maximizes the

sum of the expected values of all coalitions, i.e., it holds the following condition:

∀CS, Ve(CS) ≤ Ve(CS∗
e ).

The PCSG problem is defined as follows:

Definition 4 (PCSG problem).

– Input: A PCSG problem description PCSG = 〈A, v, f〉 and a non-negative
integer k,

– Question: Find a coalition structure CS∗
e which maximizes the sum of the

expected values of all coalitions.

Example 2 (PCSG). Consider our running example of a service company with
three employees. Assume that Ali reported the manager the type 1 (i.e. {attend
(90%)}), Bob chose the type 3 (i.e. {unsure (50%)}), and Chan selected the
type 4 (i.e. {maybe not attend (30%)}) for their attendance types. Moreover,
the manager sets the parameter k = 1, that is, he/she wants to maximize the
expected values of all coalitions where any one employee might be absent (e.g.
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because of the illness or other unexpected matters). The expected value of each
coalition is then computed by the Eqs. (2) and (3) as follows:

ve,k({Ali}) = 18, ve,k({Bob}) = 25, ve,k({Chan}) = 3,
ve,k({Ali,Bob}) = 43, ve,k({Ali, Chan}) = 29.1, ve,k({Bob,Chan}) = 34,
ve,k({Ali,Bob, Chan}) = 46.5.

For instance, consider the coalition formed by Ali and Bob (i.e. {Ali,Bob}). The
expected value of this coalition is then computed as follows:

– Ali and Bob are attended : v({Ali,Bob}) · f(Ali) · f(Bob) = 70 · (0.9 · 0.5) =
31.5.

– only Ali is attended : v({Ali}) · f(Ali) · (1 − f(Bob)) = 20 · (0.9 · 0.5) = 9.
– only Bob is attended : v({Bob}) · (1 − f(Ali)) · f(Bob) = 50 · (0.1 · 0.5) = 2.5.

The expected value of this coalition is given by ve({Ali,Bob}) = 31.5 +
9 + 2.5 = 43. Table 2 shows the expected values of all possible coalition
structures. Compared to the optimal coalition structure in example 1, i.e.,
CS∗ = {{Ali}, {Bob,Chan}}, the optimal coalition structure of this example
is CS∗

e = {{Bob}, {Ali, Chan}}, and the expected value obtained by this coali-
tion structure is Ve(CS∗

e ) = ve,k({Bob})+ve,k({Ali, Chan}) = 25+29.1 = 54.1.

Table 2. The expected values of all possible coalition structures

Coalition structure Expected value

{{Ali}, {Bob}, {Chan}} 46

{{Ali}, {Bob,Chan}} 52

{{Bob}, {Ali, Chan}} 54.1

{{Chan}, {Ali,Bob}} 46

{{Ali,Bob, Chan}} 46.5

Let us now describe the specific cases for PCSG problem where the expected
values of all coalitions satisfy the subadditivity or superadditivity. In those cases,
the counterpart of the results in the standard CSG framework also hold in our
PCSG framework, that is, in case it holds the subadditivity, the coalition struc-
ture formed by singleton coalitions is optimal (i.e. CS∗

e = {{ai}|ai ∈ A}), and
for the superadditivity case, the grand coalition is optimal (i.e. CS∗

e = {A}).
Finally, let us introduce that a PCSG problem can be represented as a zero-

one integer programming as a CSG problem. For the simplicity, we show the
zero-one integer programming formulation of the Example 2 for PCSG problem.
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The objective function and the constraints are formalized as follows:

max. 18 · a1+25 · a2+3 · a3+43 · a12+29.1 · a13 + 34 · a23 + 46.5 · a123, (5)
s.t a1 + a12 + a13 + a123 = 1, (6)
a2 + a12 + a23 + a123 = 1, (7)
a3 + a13 + a23 + a123 = 1, (8)
a1, a2, a3, a12, a13, a23, a123 ∈ {0, 1}. (9)

Each variable a1, a2, ..., a123 represents a coalition, e.g., a1 is the coalition
{Ali} and a123 shows the grand coalition {{Ali,Bob, Chan}}, and it takes the
value 0 or 1 (Eq. (9)). The Eq. (6) describes that Ali belongs to one of the coali-
tions {Ali}, {Ali,Bob}, {Ali, Chan}, {Ali,Bob, Chan}, and he cannot belong to
different coalitions simultaneously. Similarly, the Eq. (7) shows the constraint for
Bob and the Eq. (8) is for Chan. The Eq. (5) represents the objective function
which maximizes the sum of the expected values of all coalitions, and each coef-
ficient shows the expected value obtained by the corresponding coalition, e.g.,
18 is for {Ali} and 46.5 is for the grand coalition.

4 Bounded Approximate Algorithm

In this section, an approximate algorithm for PCSG problems called Bounded
Approximate Algorithm based on Attendance Types (BAAAT) is presented. Fur-
thermore, we show that BAAAT can provide the theoretical upper bound of the
absolute errors of the solution, which can be obtained a priori.

4.1 Approximate Algorithm

The BAAAT has the following two phases :

Phase 1 : For a given parameter p̃ and the participation rate of an agent a (i.e.
f(a) = p), form the singleton coalition for a if p is less than or equal to p̃.
Phase 2 : Find the optimal coalition structure of the relaxed PCSG problem
with the remaining agents.

The basic idea of BAAAT is that for a given parameter p̃, the singleton
coalition is formed for an agent who chooses the attendance type where the given
probability is less than or equal to the parameter p̃. Then an optimal coalition
structure of the relaxed problem with the remaining agents is computed.

We denote the coalition structure obtained in phase 2 as CS−
e and the coali-

tion structure provided by BAAAT as CS+
e . Let us explain how BAAAT computes

an approximate solution by using the Example 2. Given is the attendance type,
i.e. the participation rate, f(Ali) = 0.9 (type1 : attend), f(Bob) = 0.5 (type 3 :
unsure), f(Chan) = 0.3 (type 4 : maybe not attend), the parameter k = 1, and
the following expected values of coalitions.

ve,k({Ali}) = 18, ve,k({Bob}) = 25, ve,k({Chan}) = 3,
ve,k({Ali,Bob}) = 43, ve,k({Ali, Chan}) = 29.1, ve,k({Bob,Chan}) = 34,
ve,k({Ali,Bob, Chan}) = 46.5.
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Let be p̃ = 0.3, i.e., the manager does not count on the agents who chose the
attendance types 4 (i.e. may be not attend (30%)) and 5 (i.e. not attend (10%)).
Since Chan has reported the manager the attendance type 4, i.e., f(Chan) =
0.3 = p̃, the singleton coalition is formed for Chan in phase 1. Then the relaxed
PCSG problem with Ali and Bob is solved in phase 2, that is, the coalitions
which includes Chan can be ignored in the simplified problem as follows:

ve,k({Ali}) = 18, ve,k({Bob}) = 25, ve,k({Ali,Bob}) = 43.

Since the expected value of the coalition formed by Ali and Bob is equal
to the sum of the expected values of singleton coalitions with Ali and Bob,
i.e., ve,k({Ali,Bob}) = 43 = ve,k({Ali}) + ve,k({Bob}), the optimal coali-
tion structures of the relaxed problem are {Ali,Bob} and {{Ali}, {Bob}}.
The solutions obtained by BAAAT are CS+

e = {{Chan}, {Ali,Bob}} and
CS+

e = {{Ali}, {Bob}, {Chan}}. In this problem, we have two solutions, but the
expected values of these two coalition structures are same, i.e., Ve(CS+

e ) = 46.

4.2 Quality Guarantee

We show that BAAAT can provide the upper bound of the absolute errors of the
solution, which can be obtained a priori, i.e., the error bound is obtained before
actually running the algorithm. Let us denote by Ca the set of all coalitions that
contain an agent a as a member, and let Ā be the set of agents whose probability
is lower than or equal to a given parameter p̃ such that they form their own
coalition in phase 1. Furthermore, let CS−

e be the expected optimal coalition
structure obtained by BAAAT in phase 2, and rmax

a = max{ve(C) | C ∈ Ca},
i.e., the maximal expected value of all coalitions which include agent a.

Lemma 1. Let PCSG = 〈A, v, f〉 be a probabilistic coalition structure genera-
tion problem description. For an optimal coalition structure CS∗

e and CS−
e , the

following inequality holds:

Ve(CS∗
e ) − Ve(CS−

e ) ≤
∑

āi∈Ā
rmax
āi

(10)

Proof. We proof the claim by induction on the size of Ā. In the base case, let
us consider Ā = ∅. Then, since no agents are selected/removed in phase 1 of
BAAAT, the whole instance is solved to optimality in phase 2. This means that

Ve(CS∗
e ) = Ve(CS−

e ).

On the other hand,
∑

āi∈Ā rmax
āi

= 0, so

Ve(CS∗
e ) − Ve(CS−

e ) = 0 ≤ 0 =
∑

āi∈Ā
rmax
āi
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and the inequality (10) holds. Let us now assume that the inequality (10) holds
for all Ā such that |Ā| = n. More specifically, we assume that

Ve(CS∗
e ) − Ve(CS−

e ) ≤
n∑

i=1

rmax
āi

, ∀Ā, |Ā| = n. (11)

Next, consider the case where Ā = {ā1, ..., ān, ¯an+1}. We first observe the coali-
tions that form the expected optimal coalition structure CS∗

e and denote these
by CS∗

e = {C∗1
e , ..., C∗l

e }. We also know that ā1 must be in one of these coali-
tions C∗1

e , ..., C∗l
e and without loss of generality we can assume that C∗1

e =
{ā1, b1, ..., bm}. It might happen that bi = āj for some i ∈ [m], j ∈ [n + 1] \ {1}
but this does not influence the following inequalities:

Ve(CS∗
e ) = ve,k(C∗1

e ) + ve,k(C∗2
e ) + ... + ve,k(C∗l

e )

≤ rmax
ā1

+ ve,k(C∗2
e ) + ... + ve,k(C∗l

e )

≤ rmax
ā1

+ ve,k({b1}) + ... + ve,k({bm}) + ve,k(C∗2
e ) + ... + ve,k(C∗l

e )

≤ rmax
ā1

+ Ve(CS−ā1
e ),

where Ve(CS−ā1
e ) denotes the optimal expected coalition structure on the set of

agents A \ {ā1}. The last inequality follows from the fact that {{b1}, ..., {bm},
C∗2

e , ..., C∗l
e } is a coalition structure over the agents in A \ {ā1} and Ve(CS−ā1

e )
is the expected optimal such coalition structure. Now, we need to still remove
agents ā2, ..., ān to reach phase 2 of BAAAT and to be able to compare Ve(CS∗

e )
with Ve(CS−

e ). However, by the induction hypothesis (11) on CS−ā1
e , we have

Ve(CS∗
e ) − Ve(CS−

e ) ≤
n+1∑

i=2

rmax
āi

Thus, it holds

Ve(CS∗
e ) ≤ rmax

ā1
+ Ve(CS−ā1

e )

≤ rmax
ā1

+
n+1∑

i=2

rmax
āi

+ Ve(CSe)

≤
n+1∑

i=1

rmax
āi

+ Ve(CS−
e )

Proposition 1. Let PCSG = 〈A, v, f〉 be a probabilistic coalition structure gen-
eration problem description. For an optimal coalition structure CS∗

e and the
approximate coalition structure CS+

e obtained by BAAAT, the following holds:

Ve(CS∗
e ) − Ve(CS+

e ) ≤
∑

āi∈Ā
{rmax

āi
− ve,k(āi)} (12)
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Proof. By Lemma 1, it holds

Ve(CS∗
e ) − Ve(CS−

e ) ≤
∑

āi∈Ā
rmax
āi

Now we subtract
∑

āi∈Ā ve(āi) from the both sides, then we have

{Ve(CS∗
e ) − Ve(CS−

e )} −
∑

āi∈Ā
ve,k(āi) ≤

∑

āi∈Ā
rmax
āi

−
∑

āi∈Ā
ve,k(āi)

Ve(CS∗
e ) − {Ve(CS−

e ) +
∑

āi∈Ā
ve,k(āi)} ≤

∑

āi∈Ā
{rmax

āi
− ve,k(āi)}

Ve(CS∗
e ) − Ve(CS+

e ) ≤
∑

āi∈Ā
{rmax

āi
− ve,k(āi)}

Let us now focus on the specific case for PCSG problem.

Proposition 2. Let PCSG = 〈A, v, f〉 be a probabilistic coalition structure gen-
eration problem description. In case the expected values of all coalitions satisfy
the subadditivity, the coalition structure CS+

e obtained by BAAAT is optimal,
i.e., it holds

CS∗
e = CS+

e (13)

Proof. (Sketch) In the subadditive case, the optimal coalition structure CS∗
e

is formed by singleton coalitions. So, we just need to show that CS+
e has the

form CS+
e = {{ai}|ai ∈ A}. In phase 1 of BAAAT, the singleton coalition is

always formed. In phase 2, since it holds the subadditivity, the optimal coalition
structure CS−

e of the relaxed problem is formed by singleton coalitions. Thus,
the solution CS+

e obtained by BAAAT is formed by singleton coalitions.

5 Experimental Evaluation

In this section, BAAAT is evaluated on a number of benchmarks. As preliminary
experiments, the influence of the value k = |ā| (i.e. the number of agents who
might be absent) is first investigated. Next, the performances of BAAAT are
evaluated. In order to compute an optimal coalition structure, the CPLEX solver
is used. The attendance type (i.e. participation rate) of each agent is randomly
chosen from type 1 : {attend (90%)} to type 5 : {not attend (10%)}. For each
setting, 100 problem instances are generated, and they are based on several
probability distributions for the characteristic function v used in the literature:

– Uniform: v(C) = Uniform(0, |C|) [11].
– Normal: v(C) = Normal(μ = 10 ∗ |C|, σ2 = 0.1) [18].
– Modified uniform: v(C) = Uniform(0, 10 ∗ |C|) + a, where a =

Uniform(0, 50) with probability 0.2 and a = 0 otherwise [23].
– Modified normal: v(C) = Normal(10 ∗ |C|, 0.01) + a (a is as above) [17].
– Beta: v(C) = |C| ∗ Beta(α = β = 0.5) [12].
– Gamma: v(C) = |C| ∗ Gamma(k = θ = 2) [12].
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Fig. 1. The average runtime for different value of k.

5.1 Preliminary Experiments

The influence of the value k = |ā| is investigated. Specifically, we compare the
runtime for finding an optimal coalition structure by varying the value k = |ā|.
Figure 1 represents the average runtime for different k for the uniform case2.
When the number of agents is small, the influence of k on the runtime is small.
However, the difference becomes larger when the number of agents increases, e.g.,
in case the number of agents is 12, the average runtime is 5.8 s. for k = 1 and it
is 85.1 s. for k = 5. The experimental results revealed that the influence of k on
the runtime becomes larger when the number of agents increases. This is because
it requires to consider

(
n
k

)
possible cases in the Eq. (3) in order to compute the

expected value for each coalition. For instance, in our running example, when
k = 2, it requires to consider

(
3
0

)
+

(
3
1

)
+

(
3
2

)
= 7 cases to compute the expected

value for the coalition {Ali,Bob, Chan}, i.e., all employees attend, one of them
might be absent, and two of them might be absent. However, in case the number
of agents increases from 3 to 4 for k = 2, we need to consider

(
4
0

)
+

(
4
1

)
+

(
4
2

)

= 11 possible cases for computing the expected value of this coalition. In the
following experiments, we mostly use the setting in case k = 1.

5.2 Performance of BAAAT

The approximate algorithm BAAAT is evaluated on a number of benchmarks. In
our experiments, BAAAT is implemented in Python and carried out all experi-
ments on 6 core running at 3.3 GHz with 32GB of RAM. We set the parameter
p̃ to 0.3, that is, we form the singleton coalition for an agent who reports the
attendance type 4 : {maybe not attend (30%)} or type 5 : {not attend (10%)}.
Figure 2 represents the average runtime of BAAAT in the uniform case. The x-
axis shows the number of agents and the y-axis represents the average runtime.
2 We observed the similar results as shown in Fig. 1 for other cases.
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Fig. 2. The average runtime of the complete algorithm and BAAAT.

Table 3. The average runtime of the complete algorithm and BAAAT.

# Agents Algorithms Uniform Normal Mod. uniform Mod. normal Beta Gamma

6 Complete 0.02 0.02 0.02 0.02 0.02 0.02

BAAAT 0.01 0.01 0.01 0.01 0.01 0.01

8 Complete 0.07 0.07 0.07 0.07 0.07 0.06

BAAAT 0.02 0.02 0.02 0.02 0.02 0.02

10 Complete 0.33 0.37 0.32 0.33 0.34 0.38

BAAAT 0.04 0.04 0.04 0.04 0.04 0.03

12 Complete 5.82 5.82 5.62 5.72 5.70 5.46

BAAAT 0.08 0.08 0.13 0.10 0.10 0.08

14 Complete 109.9 109.2 95.9 97.5 98.1 98.0

BAAAT 0.52 0.54 0.61 0.40 0.86 0.72

The dotted line shows the results of BAAAT and the solid line is for the complete
one. When the number of agents is small, both algorithms can solve the prob-
lems very quickly. However, in case the number of agents increases, the difference
of the average runtime between the two algorithms becomes significant. When
the number of agents is 14, the average runtime of BAAAT is 0.52 s, while it is
109.9 s. for the CPLEX solver. Table 3 shows the detailed results of runtime for
all settings. In all cases, we observed similar results shown in Fig. 2.

Table 4 shows (a) the quality of an obtained solution by BAAAT (i.e.,
V (CS+

e ) /V (CS∗
e )) and (b) the estimated quality of an optimal solution based

on the absolute error bound for BAAAT (i.e., (Ve(CS+
e ) +

∑
āi∈Ā{rmax

āi
−

ve,k(āi)})/Ve(CS∗
e )). The results of (a) and (b) are normalized by the quality of

an actual optimal solution, where (a) should be less than 1.0, and (b) should be
more than 1.0. For all of them, a value closer to 1 is desirable. For the results
of (a), we can see that the expected values obtained by BAAAT are more than
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Table 4. Solution quality obtained by BAAAT. The results of (a) represent the quality
of an obtained solution and (b) show the estimated quality of an optimal solution based
on the absolute error bound. For all of them, a value closer to 1 is desirable.

# Agents Quality Uniform Normal Mod. uniform Mod. normal Beta Gamma

6 (a) 0.950 0.999 0.939 0.954 0.972 0.976

(b) 2.28 1.98 1.81 1.97 1.70 1.76

8 (a) 0.964 0.999 0.961 0.941 0.981 0.975

(b) 2.08 2.06 1.98 1.98 1.69 1.79

10 (a) 0.963 0.999 0.954 0.968 0.981 0.969

(b) 2.32 2.45 2.07 2.09 1.84 1.92

12 (a) 0.962 0.999 0.950 0.960 0.983 0.972

(b) 2.49 2.58 2.15 2.16 1.85 1.99

14 (a) 0.965 0.994 0.956 0.956 0.981 0.973

(b) 2.71 2.74 2.07 2.25 1.76 2.03

95% of the optimal values in most cases. For the results of (b), we can see that
the value (i.e. a priori bound) increases slightly in all cases when the number of
agents increases.

6 Related Work

In coalition formation including CSG, many works have been devoted so far to the
uncertainty of forming a coalition. Chalkiadakis et al. [2] focused on the uncer-
tainty of types (capabilities) of agents, and proposed a Bayesian reinforcement
learning framework for repeated coalition formation under type uncertainty. In
this framework, the agents maintain and update beliefs about the types of others
through the experience gained by repeated interaction with others, and improve
their ability to form useful coalitions. Compared to this work, we focus on the
attendance type (i.e. the uncertainty of agents’ attendances), while a type is
considered as the capability of an agent. Also, the payoffs to coalitions depend
on capabilities and actions in this work, but we compute them with the payoffs
given by the characteristic function and the probability of the attendance type.

Kraus et al. [10] worked on the coalition formation under coalitional value
uncertainty. In this framework, a set of tasks is given, and each task is performed
by a different agent. The agents may not know the value of a task to another
agent or the cost of performing it, but they know the overall payoff associated
with performing a set of tasks and the capabilities of the other agents. Faye et al.
[7] worked on dynamic coalition formation in dynamic uncertain environments.
This work investigates dynamic, uncertain environments in which tasks may
evolve during execution, and agents and resource availability may vary rapidly
and unpredictably. None of those works actually considers the attendance type
of each agent for CSG, making them quite different from the present work.
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Moreover, related to our work is team formation problems (TF) [13,25]. TF is
the problem of forming the best possible team to perform some tasks of interest,
given some limited resources. Nair et al. [13] worked on forming a team with
the maximum expected value so that the team has all the required skills to
accomplish the tasks of interest. Compared to the TF problem, CSG (and PCSG)
is similar to the complete set partition problem [26], while TF is equivalent to the
set cover problem [9]. Okimoto et al. [15] worked on the robustness issue in team
formation problems. In this work, a set of agents and a set of tasks are given,
and the aim is to form a team which is robust, i.e., which can achieve the given
tasks even if some agents break down. Considering the value k (i.e. the number
of agents who might be absent) is similar to the robustness defined in this work.

7 Conclusion

How to form a coalition is a major issue for many applications related to multi-
agent cooperation. Coalition Structure Generation (CSG) involves partitioning a
set of agents into coalitions so that the social surplus is maximized. Probabilistic
Coalition Structure Generation (PCSG) is the extension of CSG where the aim is
to find the optimal coalition structure which maximizes the sum of the expected
values of all coalitions. The contributions of this paper are as follows:

– A formal framework for the Probabilistic Coalition Structure Generation
(PCSG) is introduced where the attendance type of each agent is considered.
Also, we provide the way how to compute the expected value of a coalition.

– An approximate algorithm for solving a PCSG problem called Bounded
Approximate Algorithm based on Attendance Types (BAAAT) is presented.
Furthermore, we show that our algorithm BAAAT can provide the upper
bound of the absolute errors of the solution, which can be obtained a priori,
that is, the error bound is obtained before actually running the algorithm.

– The performances of BAAAT is evaluated on the number of benchmarks.
Our experimental results revealed that (i) it can solve PCSG problems very
quickly, (ii) it provides high solution quality, and (iii) the estimated quality of
an optimal solution (i.e. theoretical bound) increase slightly when the number
of agents increases. Also, the influence of the value k is investigated.

As our future works, we would like to investigate the concise representation
of the characteristic function in PCSG. In PCSG, since the number of coalitions is
exponential in the number of agents, it is required to reduce the representation
size of characteristic function which provides the value of each coalition. We
will plan to apply the type based concise representation [24] in our framework.
Furthermore, we will intend to apply our framework to real-world problems, e.g.,
multi-sensor networks [4] and distributed vehicle routing [22], and solve them by
using our algorithm BAAAT. Lastly, we would like to extend our framework to
a dynamic setting in which the set of agents A may change w.r.t. time with the
objective to apply it to a distributed robot team reconfiguration problem [5].
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Abstract. How to form effective coalitions is an important issue in
multi-agent systems. Coalition Structure Generation (CSG) involves par-
titioning a set of agents into coalitions so that the social surplus (i.e. the
sum of the rewards obtained by each coalition) is maximized. In many
cases, one is interested in computing a partition of the set of agents which
maximizes the social surplus, but is robust as well, which means that it
is not required to recompute new coalitions if some agents break down.
In this paper, the focus is laid on the Robust Coalition Structure Gener-
ation (RCSG) problem. A formal framework is defined and some decision
and optimization problems for RCSG are pointed out. The computational
complexity of RCSG is then identified. An algorithm for RCSG (called
AmorCSG) is presented and evaluated on a number of benchmarks.

Keywords: Multi-agent system · Coalition structure generation
Robustness

1 Introduction

Coalition Structure Generation (CSG) [14,20] is a key issue for a number of appli-
cations related to multi-agent cooperation, e.g., waste-water treatment system
[5], distributed vehicle routing [20] and multi-sensor networks [3]. CSG involves
partitioning a set of agents into coalitions so that the sum of the values of all
coalitions is maximized. In CSG, it is well-known that finding an optimal coalition
structure which maximizes the social surplus is NP-hard. Indeed, the decision
problem associated with CSG is equivalent to the complete set partition problem
[23] which is NP-complete.

Robustness (i.e., it is not required to recompute new coalitions of CSG even
if some agents break down) is an expected property of CSG. In this paper, the
focus is laid on the Robust Coalition Structure Generation (RCSG) problem. A
formal framework for the RCSG problem is presented and some decision and opti-
mization problems for RCSG are pointed out. A coalition structure is viewed as
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 140–157, 2018.
https://doi.org/10.1007/978-3-030-03098-8_9
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k-robust (for a given non-negative integer k) if removing any subset of k agents
from it leads the remaining coalitions to still be beneficial. The RCSG decision
problem consists in determining whether there exists a u-beneficial and k-robust
coalition structure, for a given reward threshold u and robustness threshold k.
We identify the computational complexity of the RCSG decision problem. While
the standard CSG problem is NP-complete, we show that the RCSG decision
problem is inherently harder unless the polynomial hierarchy collapses (RCSG is
Σp

2 -complete). One of the optimization counterparts of this problem consists in
fixing the robustness threshold k and finding one of the most beneficial coali-
tion structures meeting the robustness requirement. Dually, one can also fix the
reward threshold u and optimize the robustness of a u-beneficial coalition struc-
ture. Lastly, one can consider the bi-objective optimization problem where the
aim is to optimize both the reward and the robustness of a coalition structure.

As an application domain, we believe that the vehicle routing problem [18]
is promising area, which can be formalized as CSG, where geographically dis-
persed dispatch centers of several companies cooperate. When we consider both
the effectiveness and robustness of the drivers’ groups, this problem amounts
to a robust CSG problem. Another application area is about the multi-sensor
networks [3], which can be also formalized as CSG. Consider several sensors in
an airport or in a shopping center where some sensors collaborate and observe a
certain area for the security reason. Then, forming effective and robust groups
of sensors, amounts to solving a RCSG problem.

Related to our work is the team formation problem (TF) [11,22]. Compared
to the TF problem, CSG is similar to the complete set partition problem [23], while
TF is equivalent to the set cover problem [7]. The robustness issue has recently
been considered in TF [13]. Our approach of robustness in CSG is similar to the
one developed in this work. However, this paper focuses on the robustness issue
for CSG. Also, the significant difference between RCSG and robust TF lies in the
complexity of each of the corresponding decision problems: RCSG is shown here
to be Σp

2 -complete, whereas robust TF is “only” NP-complete. To the best of
our knowledge, the robustness issue for CSG have been left unaddressed so far
in the literature.

2 Coalition Structure Generation

Let us start with some preliminary definitions. Let A = {a1, a2, . . . , an} be a
finite set of agents. A coalition from A, denoted as C, is a non-empty subset
of A. A coalition structure on A, denoted as CS, is a partition on A, i.e., a
jointly exhaustive set of pairwise disjoint coalitions from A. Formally, a coalition
structure CS (on A) is a set of coalitions {C1, . . . , Cm} such that for each i, j ∈
{1, 2, . . . ,m} such that i �= j, we have that Ci ∩ Cj = ∅ and

⋃
Ci∈CS Ci = A.

Definition 1 (CSG problem description). A coalition structure generation
problem description is defined by a pair CSG = 〈A, v〉 where A = {a1, a2, . . . , an}
is a set of agents and v : 2A → N is a function called a characteristic function.
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The value of a coalition C, denoted as v(C), is given by the characteristic
function v. The value of a coalition structure CS, denoted as V (CS), is the
sum of the values of each coalition, i.e., V (CS) =

∑
Ci∈CS v(Ci). A coalition

structure is said to be optimal, denoted as CS∗, if CS∗ satisfies the followings:
∀CS, V (CS) ≤ V (CS∗).

Example 1 (CSG). Let us consider the following scenario. The olympic games
will be held in Tokyo and it requires some interpreters in different stadiums,
e.g., athletics stadium, swimming stadium and basketball stadium etc. A ser-
vice company dispatching interpreters with three employees (Ana, Becky and
Carol) has received the requests of the simultaneous interpretation and send
them employees to different stadiums: request 1 requires Ana, and the company
gets $20 for it; request 2 pays $30 and needs Becky’s language skill; request
3 needs Carol and pays $10; request 4 pays $80 and needs Ana and Becky;
request 5 pays $90 and needs Ana and Carol; request 6 needs Becky and Carol
and pays $70; request 7 requires all employees and pays $110. Assume that you
are the manager of this service company and want to assign the employees to
job(s) so that the sum of the rewards is maximized. Then, this problem can
be represented as a CSG: let CSG = 〈A, v〉 be a CSG problem description with
A = {Ana,Becky, Carol}, and the function v is characterized as follows:

v({Ana}) = $20, v({Becky}) = $30, v({Carol}) = $10,
v({Ana,Becky}) = $80, v({Ana,Carol}) = $90, v({Becky,Carol}) = $70,

v({Ana,Becky, Carol}) = $110.

The optimal coalition structure is CS∗ = {{Becky}, {Ana,Carol}}, and the
obtained value by CS∗ is V (CS∗) = v({Becky}) + v({Ana,Carol}) = $30 +
$90 = $120.

An expected property for coalition structures is to ensure a given level of
efficiency. Formally, this (quite standard) property can be stated as follows:

Definition 2 (Beneficialness). Let CSG = 〈A, v〉 be a CSG problem descrip-
tion. Given a coalition structure CS and a non-negative integer u, CS is said to
be u-beneficial if the value of CS is larger than u: V (CS) ≥ u.

Let us stress an important remark as to the representation of the character-
istic function v in a CSG. In our running example about the service company
dispatching interpreters, v is defined “implicitly”, i.e., it is viewed as an ora-
cle. One possible generalization of our example above to an arbitrary number
n of agents would be to associate with every coalition C a number depending
on the size of C only; in such a case, the corresponding characteristic function
v can be represented with a size in O(n). A number of representation settings
for characteristic functions have been pointed out in the literature, and some
of them have been adapted to CSG and studied from the computational com-
plexity viewpoint [12]. Among the representation frameworks which have been
developed are marginal contribution nets (MC-nets) [6] and synergy coalition
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groups (SCGs) [2]. Contrastingly, some early work [19,20] assume that v is pro-
vided “fully extensionally” as an input of a CSG problem description, i.e., v is
given as a table with 2n − 1 entries, associating with every coalition a number.
Providing such an extensional representation of v makes the size of an input CSG
to be exponential in the number of agents and may be an unrealistic assump-
tion for relatively large problems. Yet there exist many real world applications
involving only a dozen of agents (e.g. because of the limited resources), for which
an extensional representation of v is feasible [3,9,18]. Thus, cooperative games
can be used to analyze cost allocation problems, where the players are willing to
form coalitions in order to get extra monetary savings as an effect of cooperation.
For instance, in [5] the authors address the problem where nearby municipalities
must take the decision on whether to cooperate in order to implement a Waste-
water Treatment System (WTS). These types of problem can be represented
formally as a CSG and it involves a few agents in essence, so that (i) considering
a few number of agents for experimentations, and (ii) assuming an extensional
representation of the characteristic function, can sometimes be considered as
reasonable.

So both choices of representation for v (i.e., “implicit” vs.“extensional”) have
been considered in the literature. It turns out that for a number of implicit
representations of v (including MC-nets and SCG, see [12]), the complexity of
computing a beneficial coalition structure (cf. Definition 2) is NP-hard:

Definition 3 (DP-CSG)

– Input: A coalition structure generation problem description CSG = 〈A, v〉,
and a non-negative integer u,

– Question: Does there exist a coalition structure CS such that CS is
u-beneficial?

As mentioned above, the complexity of DP-CSG is NP-complete in general:

Theorem 1 ([19]). If the characteristic function v is computable in polynomial
time, then DP-CSG is NP-complete.

In the next section, we will show that computing a “robust” coalition struc-
ture is an intrinsically harder problem than the traditional CSG problem.

3 Robust Coalition Structure Generation

In this section, a formal framework for Robust Coalition Structure Generation
(RCSG) is defined. Furthermore, both the decision and optimization problems for
RCSG are considered. Also, the computational complexity of RCSG is identified.

Let A = {a1, . . . , an} be a set of agents and A′ ⊆ A. The restriction on A′

of a coalition C from A is defined as the set C ∩ A′. We extend this notion of
restriction on coalition structures as follows. The restriction on A′ of a coalition
structure CS = {C1, . . . , Cm} on A is defined as the coalition structure CS′ =
{C ′

1, . . . , C
′
m} \ {∅} on A′, where for each i ∈ {1, . . . ,m}, C ′

i is the restriction
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on A′ of Ci. Consider the same coalition structure generation problem in our
example of the service company dispatching interpreters. Let us consider the
coalition structure CS = {{Ana,Becky}, {Carol}} and A′ = {Ana,Carol}.
Then, the restriction on A′ of CS is the coalition structure {{Ana}, {Carol}}.
Robustness can now be defined in formal terms as follows:

Definition 4 (Robust Coalition Structure). Let CSG = 〈A, v〉 be a CSG
problem description. For a given coalition structure CS on A and non-negative
integers u and k, CS is said to be (u, k)-robust if for every A′ ⊆ A, such that
|A′| ≥ n − k, the restriction on A′ of CS is u-beneficial.

That is to say, a coalition structure is (u, k)-robust if whenever k agents are
removed from it, the “remaining” coalition structure is u-beneficial. Obviously
enough, robustness generalizes the usual notion of beneficialness in CSG. Indeed,
we trivially have that for any non-negative integer u, a CSG is u-beneficial if
and only if it is (u, 0)-robust.

Example 1 (continued). Let us consider the service company dispatching inter-
preters with three employees. The manager of this company planed to assign
Becky to the request 2 and Ana and Carol to the request 5 so that he/she
gets the maximal rewards. However, what’s happen if one of them cannot work
on the day because of the illness or other unexpected matters. For instance, let
u = $70 and k = 1, that is, the manager wants to have at least $70 even
if such an event would occur. In this example, the optimal coalition struc-
ture planed in advance is CS∗ = {{Becky}, {Ana,Carol}}. To check whether
CS∗ is (70, 1)-robust, we check for each removed agent from CS∗ whether the
remaining coalition structure is 70-beneficial. We have that: V (CS∗ \ {Ana}) =
v({Becky}) + v({Carol}) = $40, V (CS∗ \ {Becky}) = v({Ana,Carol}) = $90,
V (CS∗ \ {Carol}) = v({Ana}) + v({Becky}) = $50. When we remove Ana
from CS∗, the remaining coalition structure is not 70-beneficial. Intuitively, this
comes from the fact that it is not “safe” to form the coalition {Ana,Carol}
to get a reward of $90, since the absence of Ana from this coalition would
leave Carol alone, getting a reward of $10. Thus, CS∗ is not (70, 1)-robust.
However, CS = {{Ana,Becky, Carol}} is (70, 1)-robust, since all remaining
coalition structures are 70-beneficial after we remove each agent from CS, i.e.,
V (CS \ {Ana}) = $70, V (CS \ {Becky}) = $90, and V (CS \ {Carol}) = $80.

In the following, we assume that the characteristic function v of CSG = 〈A, v〉
satisfies the property of monotonicity, i.e., for all coalitions C, C ′, if C ⊆ C ′ then
v(C) ≤ v(C ′). This property requires that adding an agent to a given coalition is
harmless, or stated otherwise, removing an agent from a coalition does not result
in an increase of its value. This assumption is very natural when considering the
robustness issue, as we are interested in dealing with the “damages” caused to
a coalition structure when removing a number of agents from it.1 Nonetheless,
1 Note that the property of monotonicity differs from the super-additivity which

requires that for all coalitions C, C′, it holds v(C) + v(C′) ≤ v(C ∪ C′) and is
stronger than monotonicity.
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this assumption does not affect the following complexity results, that is, it does
not make the RCSG problem computationally easier.

Definition 5 (DP-RCSG)

– Input: A CSG problem description CSG = 〈A, v〉, with v computable in
polynomial time, and two non-negative integers u and k,

– Question: Does there exist a coalition structure CS such that CS is (u, k)-
robust?

In the general case, computing a robust coalition structure is a harder prob-
lem than computing a beneficial one (unless the polynomial hierarchy collapses):

Proposition 1. DP-RCSG is Σp
2 -complete. Σp

2 -hardness holds even if the char-
acteristic function satisfies monotonicity.

Proof. Let us first prove that RCSG is in Σp
2 . Let CSG = 〈A, v〉 be a CSG

problem description such that A = {a1, . . . , an}, and u and k be two non-negative
integers. Consider the following non-deterministic polynomial algorithm with
NP oracle:

1. Guess a set CS = {C1, . . . , Cm} of coalitions from A;
2. Check that CS is a coalition structure on A;
3. Check using an NP oracle that there does not exist a set of agents A′ ⊆ A

such that |A′| = n − k and such that the restriction of CS on A′ is not
u-beneficial.

This algorithm decides RCSG, showing that RCSG is in Σp
2 .

We prove that Σp
2 -hardness holds for RCSG by consider a reduction in polyno-

mial time to the complementary problem of RCSG from the following Πp
2 -hard

problem, that is, the validity problem for 3-CNF quantified boolean formulas
(QBFs) of the form ∀X∃Y.α where X = {x1, . . . , xn} and Y = {y1, . . . , yn}
are two disjoint sets of propositional atoms and α is 3-CNF propositional for-
mula such that V ar(α) = X ∪ Y . Consider such a QBF ∀X∃Y.α, and let us
associate with it an RCSG problem description 〈A, v〉, where A is the set of
agents A = {a1, ā1, b1, b̄1, . . . , an, ān, bn, b̄n}, and v is a characteristic function
v : 2A �→ N given as follows. Let us first define:

– the mapping x associating any literal over X with a pair of agents from A,
defined for every (possibly negated) literal xi as x(xi) = {ai, āi} if xi is a
positive literal, otherwise x(xi) = {bi, b̄i};

– the mapping y associating any literal over Y with a pair of agents from A,
defined for every (possibly negated) literal yi as y(yi) = {ai, bi} if yi is a
positive literal, otherwise y(yi) = {āi, b̄i}.

Additionally, we assume that α is viewed as a set of clauses written as (li, lj , lk),
where li, lj , lk are literals from X ∪ Y , and such that the literals li, lj , lk are
ordered in such a way that if li ∈ Y (resp. lj ∈ Y ) then lj , lk ∈ Y (resp.
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lk ∈ Y ). Then a clause (li, lj , lk) ∈ α can be of the form (xi, xj , yk), (xi, yj , yk)
or (yi, yj , yk), since the presence of clauses of the form (xi, xj , xk) make the QBF
trivially not valid.

Then given the QBF ∀X∃Y.α, the characteristic function v is defined as
follows. Consider the function p associating any literal pq from X ∪Y with a pair
of agents from A, defined as p(pq) = x(xl) if pq = xl, otherwise p(pq) = y(ym)
when pq = ym. For each coalition C ⊆ A, we set:

(i) v(C) = 2n + 1 if there exists i ∈ {1, . . . , n} such that {ai, āi} ⊆ C or
{bi, b̄i} ⊆ C;

(ii) v(C) = n+1 if there exists a clause (pi, pj , pk) from α such that p(pq)∩C �=
∅, for any q ∈ {i, j, k};

(iii) v(C) = 1 in the remaining cases.

We often refer to these conditions as (i), (ii) and (iii) in the rest of the proof.
First, one can easily check that v satisfies (monotonicity). Indeed, one can

see that for any coalition C ⊆ A, if C satisfies condition (i) (resp., condition (ii),
(iii), (iv)), then any coalition C ′ such that C ⊆ C ′ also satisfies condition (i)
(resp., condition (ii), (iii), (iv)). Hence, for all coalitions C,C ′ ⊆ A, if C ⊆ C ′

then v(C) ≤ v(C ′). Therefore, v satisfies (monotonicity).

We intend now to prove that the QBF ∀X∃Y.α is valid if and only if there
does not exist any coalition structure which is (2n+1, 2n)-robust, i.e., if and only
if for every coalition structure CS on A, there exists a set A′ ⊆ A, |A′| = 2n, such
that the restriction on A′ of CS is not (2n+1)-beneficial. This would show that
the complementary problem of RCSG is Πp

2 -hard, thus that RCSG is Σp
2 -hard.

(If part) We show the contraposite of the claim. Assume that the QBF ∀X∃Y.α is
not valid, i.e., ∃X∀Y.¬α is satisfiable, and let us prove that there exists a coalition
structure which is (2n+1, 2n)-robust. So let ωX be an interpretation over X such
that for any interpretation ωY over Y , one the clauses of α is not satisfied by
ωX ∪ ωY . Define the coalition structure CSr as CSr = {Cr, C

1
r , . . . , Cn

r }, where:

– Cr ={ai, āi | i ∈ {1, . . . , n}, ωX(xi)=0} ∪ {bi, b̄i | i ∈ {1, . . . , n}, ωX(xi) = 1};
– for each i ∈ {1, . . . , n}, Ci

r = {ai, āi, bi, b̄i} \ Cr.

Let us show that CS is (2n, 2n + 1)-robust, i.e., for any set A′ ⊆ A such
that |A′| = 2n, the restriction on A′ of CS is (2n+1)-beneficial. From condition
(i), we know that for any coalition C, if there exists i ∈ {1, . . . , n} such that
{ai, āi} ⊆ C or {bi, b̄i} ⊆ C, then v(C) = 2n + 1, so that for any coalition
structure CS containing such a coalition C we would get that v(CS) ≥ 2n + 1.
Yet by construction of our coalition structure CSr = {Cr, C

1
r , . . . , Cn

r }, for every
i ∈ {1, . . . , n} we have that {ai, āi} ⊆ C for some coalition C ∈ CSr and
{bi, b̄i} ⊆ C for some coalition C ∈ CSr. And we have 4n elements in A, thus
for any set A′ ⊆ A such that |A′| = 2n, in the case where {ai, āi} ⊆ A′ or
{bi, b̄i} ⊆ A′ for some i ∈ {1, . . . , n}, we get that v(C ∩ A′) = 2n + 1 for some
coalition C ∈ CSr (cf. condition (i)), i.e., the restriction CS′

r on A′ of CSr

satisfies v(CS′
r) ≥ 2n + 1, and thus CS′

r is (2n + 1)-beneficial, which makes
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CSr (2n, 2n + 1)-robust, that was to be shown. So consider the remaining cases
and assume that A′ is formed of exactly one element among {ai, āi} and exactly
one element among {bi, b̄i}, for each i ∈ {1, . . . , n}. So now, for any coalition
Ci

r ∈ CSr (i ∈ {1, . . . , n}), it can be checked by definition of Ci
r that Ci

r ∩ A′

contains exactly one element from A. This means that none of the conditions
(i), (ii), (iii) are satisfied by C ∩ A′, and thus v(C ∩ A′) = 1 (cf. condition
(iv)). To sum up, we have that v(Ci

r ∩ A′) = 1 for each coalition Ci
r ∈ CSr

(i ∈ {1, . . . , n}), and we need to prove that the restriction CS′
r of CSr on

A′ satisfies v(CS′
r) ≥ 2n + 1; yet v(CS′

r) =
∑

C∈CSr
v(C ∩ A′), so v(CS′

r) =
∑

Ci
r∈CSr,i∈{1,...,n} v(Ci

r ∩ A′) + v(Cr ∩ A′) = n + v(Cr ∩ A′). Then we need to
prove that v(Cr ∩A′) ≥ (2n+1)−n, i.e., we must prove that v(Cr ∩A′) ≥ n+1.
Let us show that v(Cr ∩A′) = n+1. This is enough to show that Cr ∩A′ satisfies
condition (ii) or (iii). Let us associate with Cr and A′ the interpretation ωY over
Y defined as follows, for each i ∈ {1, . . . , n}:

– in the case where {ai, āi} ⊆ Cr, then: ωY (yi) = 0 if ai ∈ A′, otherwise
ωY (yi) = 1 (i.e., if āi ∈ A′);

– in the remaining case (i.e., {bi, b̄i} ⊆ Cr) then: ωY (yi) = 0 if bi ∈ A′, otherwise
ωY (yi) = 1 (i.e., if b̄i ∈ A′);

We know that there is at least one clause c from α which is not satisfied by
ωX ∪ ωY . Such a clause c is of the form (xi, yj , yk) or (yi, yj , yk), but in any
of the two cases we have that none of the literals of the clause is satisfied by
ωX ∪ ωY . It can be a literal from X (denoted xi below) or from Y (denoted yi
below). Let us denote l this literal, we fall into one of the two following cases:

– l is a literal xi. If xi is a positive literal, then ωX(xi) = 0. Yet we know
by definition of the coalition Cr ∈ CSr that {ai, āi} ⊆ Cr, and we already
know that A′ contains exactly one element from {ai, āi}, thus we get that
{ai, āi} ∩ (Cr ∩ A′) �= ∅. If xi is a negative literal, then ωX(xi) = 1. By a
similar reasoning, we get that {bi, b̄i} ∩ (Cr ∩ A′) �= ∅. Stated otherwise, we
get that x(xi) ∩ (Cr ∩ A′) �= ∅.

– l is a literal yi. If yi is a positive literal, then ωY (yi) = 0. Yet we know by
definition of ωY that we are in the case where ({ai, āi} ⊆ Cr and ai ∈ A′) or
({bi, b̄i} ⊆ Cr and bi ∈ A′). Thus Cr ∩ A′ = {ai} or Cr ∩ A′ = {bi}. Hence,
{ai, bi}∩(Cr∩A′) �= ∅. If xi is a negative literal, then ωY (yi) = 1. Yet similarly
by definition of ωY we are in the case where ({ai, āi} ⊆ Cr and āi ∈ A′) or
({bi, b̄i} ⊆ Cr and b̄i ∈ A′). Thus Cr ∩ A′ = {āi} or Cr ∩ A′ = {b̄i}. Hence,
{āi, b̄i} ∩ (Cr ∩ A′) �= ∅. Stated otherwise, we get that y(yi) ∩ (Cr ∩ A′) �= ∅.

From these two points, we can claim for the clause c which is not satisfied
by ωX ∪ ωY that: if c is of the form (xi, yj , yk), then x(xi) ∩ (Cr ∩ A′) �= ∅,
y(yj)∩ (Cr ∩A′) �= ∅ and y(yk)∩ (Cr ∩A′) �= ∅; and if c is of the form (yi, yj , yk),
then y(yi) ∩ (Cr ∩ A′) �= ∅, y(yj) ∩ (Cr ∩ A′) �= ∅ and y(yk) ∩ (Cr ∩ A′) �= ∅. By
definition of the characteristic function v (cf. conditions (ii) and (iii)), we get
that v(Cr ∩ A′) = n + 1, that was left to be shown and concludes this part of
the proof.
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(Only if part) We show the contraposite of the claim. Assume that there exists
a coalition structure which is (2n+1, 2n)-robust, and let us prove that the QBF
∀X∃Y.α is not valid, i.e., ∃X∀Y.¬α is satisfiable.

Let us introduce a preliminary notion. For a given q ∈ {0, . . . , n}, we say
that a coalition structure CS is q-normal if CS = {A} when q = 0, and if
CS = {C,C1, . . . , Cq} when q ∈ {1, . . . , n} such that:

– for all i ∈ {1, . . . , q}, Ci = {ai, āi} or Ci = {bi, b̄i};
– C = A \ ⋃{Ci | Ci ∈ CS, i ∈ {1, . . . , q}}.

For instance, when n = 4, the coalition structure CS = {C,C1, C2, C3}
defined such that C1 = {a1, ā1}, C2 = {b2, b̄2}, C3 = {b3, b̄3} and C =
{b1, b̄1, a2, ā2, a3, ā3, a4, ā4, b4, b̄4} is 3-normal.

What we first intend to prove is that there exists a coalition structure which
is n-normal and (2n + 1, 2n)-robust. Beforehand, we want to show that for each
q ∈ {1, . . . , n}, there exists a coalition structure CS which is q-normal and such
that for any A′ ⊆ A, |A′| = 2n, there exists a coalition C ′ ∈ CS↓A′ which satisfies
condition (i), (ii) or (iii), where CS↓A′ denotes the restriction of CS on A′ (for
short, we say that CS is (i)-(ii)-(iii)-consistent in the following). So to recap,
we want to show that for each q ∈ {1, . . . , n}, there exists a coalition structure
CS which is q-normal and (i)-(ii)-(iii)-consistent. We prove it by recursion on q:

– Base case (q = 0): since the only 0-normal coalition structure is defined as
CS0 = {A}, it is enough to show that CS0 is (ii)-(iii)-consistent, i.e., that for
every set A′ ⊆ A such that |A′| = 2n, A∩A′ satisfies condition (ii) or (iii). Yet
we know that there exists a coalition structure which is (2n + 1, 2n)-robust,
so let CSr be such a coalition structure. So for every set A′ ⊆ A such that
|A′| = 2n, the restriction of CSr on A′ is (2n + 1)-beneficial. Let A′ ⊆ A,
|A′| = 2n, such that for each i ∈ {1, . . . , n}, A′ contains exactly one element
among {ai, āi} and exactly one element among {bi, b̄i}. We can see then that
no coalition from CSr↓A′ satisfies condition (i). Let us prove there exists a
coalition from CSr↓A′ satisfying condition (ii) or (iii). Toward a contradiction,
assume that there is no such coalition. Then for every coalition C ∈ CSr↓A′ ,
v(C) = 1 (cf. condition (iv)). Yet there are 2n elements in A′, which means
that v(CSr↓A′) ≤ 2n (we get that v(CSr↓A′) = 2n in the case where each
coalition from CSr↓A′ is a singleton set). And yet CSr is (2n + 1, 2n)-robust,
so CSr↓A′ is (2n + 1)-beneficial, which leads to a contradiction. Hence, there
exists a coalition from CSr↓A′ satisfying condition (ii) or (iii); let C ′ be such
a coalition. We know that C ′ is a coalition from CSr↓A′ , so C ′ ⊆ A′. But we
also have C ′ ⊆ A, thus C ′ ⊆ A ∩ A′. Hence, since C ′ satisfies condition (ii)
or (iii), it is easy to see that A ∩ A′ satisfies condition (ii) or (iii) as well.
Therefore, CS0 is (i)-(ii)-(iii)-consistent.

– Recursion step: let CSq = {C,C1, . . . , Cq} be a q-normal coalition structure
for some q ∈ {0, . . . , n−1} (CS0 = {A}), and assume that CSq is (i)-(ii)-(iii)-
consistent. Let us prove that there exists a coalition structure CSq+1 which
is (q + 1)-normal and (i)-(ii)-(iii)-consistent. Let us associate with CSq =
{C,C1, . . . , Cq} the coalition structure CSq+1

a = {Ca, C
1, . . . , Cq, Cq+1

a }
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where Ca = C \ {aq+1, ¯aq+1} and Cq+1
a = {aq+1, ¯aq+1}; similarly, we

associate with CSq = {C,C1, . . . , Cq} the coalition structure CSq+1
b =

{Cb, C
1, . . . , Cq, Cq+1

b } where Cb = C \{bq+1, ¯bq+1} and Cq+1
b = {bq+1, ¯bq+1}.

It is easy to verify that CSq+1
a and CSq+1

b are well-defined coalitions struc-
tures, and that both of them are (q+1)-normal. So this is enough to show that
one of these coalitions is (i)-(ii)-(iii)-consistent. Since CSq is either (i)-(ii)-
(iii)-consistent, for any A′ ⊆ A, |A′| = 2n, there exists a coalition C ′ ∈ CSq

↓A′

which satisfies condition (i), (ii) or (iii). So let A′ ⊆ A, |A′| = 2n, and let
C ′ ∈ CSq

↓A′ , we know that C ′ satisfies condition (i), (ii) or (iii). Yet by con-
struction of CSq+1

a and CSq+1
b it is easy to see that if C ′ satisfies condition

(i) (resp. condition (ii)), then both CSq+1
a↓A′ and CSq+1

b↓A′ contain a coalition
which satisfies condition (i) (resp. condition (ii)). So assume that C ′ does
not satisfy condition (i) nor (ii), so that C ′ satisfies condition (iii). But then,
it is easy to verify that one of the two following cases holds: (1) for every
A′′ ⊆ A, |A′′| = 2n, CSq+1

a↓A′′ contains a coalition which satisfies condition
(iii), or (2) for every A′′ ⊆ A, |A′′| = 2n, CSq+1

b↓A′′ contains a coalition which
satisfies condition (iii). Overall, we have shown that either CSq+1

a or CSq+1
b

is (i)-(ii)-(iii)-consistent.

We have now proved that there exists a coalition structure CS = {C,C1, . . . , Cn}
which is n-normal and such that for any A′ ⊆ A, |A′| = 2n, there exists a
coalition C ′ ∈ CS↓A′ which satisfies condition (i), (ii) or (iii). Let us show that
such a coalition structure CS is (2n, 2n + 1)-robust. Let A′ ⊆ A, |A| = 2n and
let us show that CS↓A′ is (2n + 1)-beneficial. Let C ′ ∈ CS↓A′ . Assume first that
C ′ satisfies condition (i), then one can see that v(C ′) = 2n + 1 and thus CS↓A′

is (2n + 1)-beneficial. So assume that C ′ does not satisfy condition (i), i.e., C ′

satisfies condition (ii) or (iii). Note that in this case (because C ′ does not satisfy
condition (i)), we know that A′ contains exactly one element from {ai, āi} and
exactly one element from {bi, b̄i}, for each i ∈ {1, . . . , n}. Then for each coalition
Ci ∈ CS, i ∈ {1, . . . , n}, we get that Ci ∩ A′ is a singleton set and Ci satisfies
none of the conditions (ii) and (iii), and thus v(Ci ∩A′) = 1 (condition (iv)). We
have that v(CS↓A′) = v(C ∩A′)+v(C1∩A′)+ · · ·+v(Cn∩A′) = v(C ∩A′)+n =
v(C ′) + n = (n + 1) + n = 2n + 1. Hence, CS↓A′ is (2n + 1)-beneficial.

We have proved that there exists a coalition structure which is n-normal and
(2n, 2n + 1)-robust, denote it CSr = {Cr, C

1
r , . . . , Cn

r }. Now, it remains to show
that the QBF ∃X∀Y.¬α is valid. Let us associate with CSr the interpretation
ωX over X defined for each i ∈ {1, . . . , n} as ωX(xi) = 0 if Ci

r = {bi, b̄i},
otherwise ωX(xi) = 1 (in the remaining case where Ci = {ai, āi}). Now, let ωY

be any interpretation over Y . It remains to show that ωX ∪ ωY does not satisfy
α, i.e., there exists a clause from α which is not satisfied by ωX ∪ ωY . With ωY

we associate the set A′ ⊆ A characterized as follows: for each i ∈ {1, . . . , n},
{ai, bi} ⊆ A′ and {āi, b̄i} ∩ A′ = ∅ if ωY (yi) = 0, otherwise {āi, b̄i} ⊆ A′ and
{ai, bi} ∩ A′ = ∅. Note that for each i ∈ {1, . . . , n}, A′ contains exactly one
element among {ai, āi} and exactly one element among {bi, b̄i}. This means that
for each i ∈ {1, . . . , n}, Ci

r ∩ A′ is a singleton set and thus v(Ci
r ∩ A′) = 1
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(condition (iv)). So v(CSr↓A′) = v(Cr ∩ A′) + v(C1
r ∩ A′) + · · · + v(Cn

r ∩ A′) =
v(Cr ∩ A′) + n. Yet CSr is (2n, 2n + 1)-robust, so that v(CSr↓A′) ≥ 2n + 1, and
thus v(Cr ∩ A′) ≥ n + 1, which means that Cr ∩ A′ satisfies condition (i), (ii)
or (iii). But by construction of A′, one can see that Cr ∩ A′ does not satisfy
condition (i), so it satisfies condition (ii). We will show that the clause that
enables condition (ii) to be satisfied, is not satisfied by ωX ∪ ωY . Let pq be a
literal from a clause from condition (ii):

– Assume first that pq = xl for some l ∈ {1, . . . , n}.
• If xl is a positive literal, then we know that p(pq) = x(xl) = {al, āl}. Since

{al, āl} ∩ Cr ∩ A′ �= ∅, it follows that Cl
r = {bl, b̄l}. But then ωX(xl) = 0.

• If xl is a negative literal, we analogously conclude that ωX(xl) = 1.
In both cases ωX does not satisfy the clause when pq = xl for some l ∈
{1, . . . , n}.

– So assume now the remaining case holds, i.e., that pq = ym for some m ∈
{1, . . . , n}.

• If ym is a positive literal, then p(pq) = y(ym) = {am, bm}. Since
{am, bm} ∩ Cr ∩ A′ �= ∅, we can conclude that {am, bm} ⊆ A′ and thus
ωY (ym) = 0.

• If ym is a negative literal, we analogously conclude that ωY (ym) = 1.
In both cases ωY does not satisfy the clause when pq = ym for some m ∈
{1, . . . , n}.

We have just shown that the QBF ∃X∀Y.¬α is valid, which concludes this part
of the proof.

We have shown that the QBF ∀X∃Y.α is valid if and only if there does not
exist a coalition structure CS which is (2n + 1, 2n)-robust, which means that
the complementary problem RCSG is Πp

2 -hard. Therefore, RCSG is Σp
2 -hard. ��

Beyond the decision problem of RCSG, the following optimization problem
could be considered: one sets a robustness threshold k and intend to optimize
the beneficialness of the coalition structure; or one sets a beneficialness thresh-
old u and intend to optimize the robustness of the coalition structure. We can
also view the RCSG problem as a bi-objective constraint optimization problem,
and be interested in computing Pareto optimal (i.e., non-dominated) coalition
structures.

4 The AmorCSG Algorithm

We now describe AmorCSG, our complete algorithm to compute the coalition
structure of maximum beneficialness. The algorithm is based on the integer-
partitioning (IP) approach [10,17]. We briefly describe the IP-approach and refer
to the original works [10,17] for more details. It starts by decomposing the search
space into disjoint parts (integer partitions) and applies branch-and-bound to
each subspace. Every integer partition of n (the number of agents) defines a



Robust Coalition Structure Generation 151

subspace by associating the integers in the partition to the number of agents in
each coalition (e.g. 1 + 3 is a subspace with two coalitions with one and three
agents). Note that the integer partitions generated by n are non-overlapping.
The main advantage of the decomposition is that effective upper bounds can be
calculated for partial solutions from a particular partition, which is an essential
for pruning the search space in the branch-and-bound algorithm. Our algorithm
follows the same structure as the IP algorithm, with the addition of the following
important components: calculation of the robustness for coalitions and coalition
structures, robust upper bounds, and our pruning technique for branch-and-
bound. These are described in detail below. The pseudo-code of AmorCSG is
given in Algorithm 1 and 2.

Algorithm 1. Branch-And-Bound Subspace Search
input: CSG, I = [I0, .., Im−1], k
output: CS in subspace I with the highest r(CS, k)

1 begin

2 CSbest ←− ∅; LBbest ←− −∞; depth ←− 0
3 CS ←− [C0, C1, .., Cm−1]
4 Ci ←− ∅, ∀i
5 while depth ≥ 0 do
6 if depth = m then
7 depth ←− depth − 1

8 if r(CS, k) > LBbest then

9 LBbest ←− r(CS, k)

10 CSbest ←− CS

11 else
12 Cdepth ←− select next coalition not explored

// if no new Cdepth possible, backtrack
13 if Cdepth = ∅ then
14 depth ←− depth − 1
15 continue

16 if r(CS, k) +
∑

depth<j<m UB(Ij) > LBbest then

17 depth ←− depth + 1

18 return CSbest

We considered extending other state-of-the-art CSG algorithms for RCSG
namely ODP [10], ODP-IP [10], and inclusion-exclusion DP [1]. However, these
approaches are not applicable to RCSG, as they are based on dynamic pro-
gramming and the Bellman property does not hold for RCSG. Our method uses
dynamic programming during its execution but the core part of the algorithm
is branch-and-bound.

Definition 6. (Robustness of a Coalition (Structure)). Let CSG = 〈A, v〉
be a CSG problem description. For a given coalition structure CS on A and non-
negative integer k, the k-robustness of CS, denoted r(CS, k), is the maximal
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Algorithm 2. AmorCSG Algorithm Outline
input: CSG = 〈A, v〉, k
output: CS∗ = argmaxCS(r(CS, k))

1 begin
2 IP ←− generate integer partitions of |A|
3 UBrob ←− computeRobustUpperBounds(IP ) // Eq. 6

4 LBbest ←− −∞; CS∗ ←− ∅
5 do
6 foreach I ∈ IP do

7 if UBrob(I) ≤ LBbest then
8 IP ←− IP \ {I}
9 if IP = ∅ then

10 break

11 Inext ←− argmax{UBrob(I) : I ∈ IP}
12 (val, CS) ←− searchSubspace(CSG, I, k) // Algorithm 1

13 if val ≥ LBbest then

14 LBbest ←− val
15 CS∗ ←− CS

16 while IP �= ∅
17 return CS∗

value u such that CS is (u, k)-robust. Similarly, the k-robustness of a coalition
C, denoted r(C, k), is the maximal value u if the coalition structure {{C}} is
(u, k)-robust.

Robustness Values for Each Coalition. For every coalition C we calculate
r(C, k′) for each k′ ∈ [1,min(k, |C|)] as a preprocessing step, which represents
the lowest beneficial value obtainable after removing k′ agents from C. We com-
pute r(C, k′) using a dynamic programming:

r(C, 0) = v(C), (1)
r(C, k′)= min

C′⊂C
|C′|=|C|−1

(r(C ′, k′ − 1)), ∀k′ ∈ [1,min(k, |C|)].

Robustness Values for a Particular Coalition Structure. For a given
coalition structure CS we compute its robust value as r(CS, k) = V (CS) −
e(CS, k), where e(CS, k) is defined as the optimal value of the following multi-
dimensional knapsack problem:

e(CS, k) = max
∑

C∈CS

∑

j∈[1,|C|]
r(C, j) ∗ x(C,j) (2)

∑

C∈CS

∑

j∈[1,|C|]
j ∗ x(C,j) ≤ k (3)
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∑

j∈[1,|C|]
x(C,j) ≤ 1 ∀C ∈ CS (4)

x(C,j) ∈ {0, 1} ∀C ∈ CS, j ∈ [1, |C|] (5)

The value e(CS, k) denotes the maximum penalty that can be achieved by
removing k agents. The variables x(C,j) indicates if j agents are selected for
removal from coalition C.

Robust Upper Bounds. For a given subspace generated by the partition
I = [I0, I1, . . . , Im−1] we compute the upper bound as:

UBrob(I) = max∑
j yj≤k

yj∈N0

(
∑

j∈[0,m)

(UB(max(0, Ij − yj)))) (6)

In other words, we calculate maximum upper bound of all subspaces that
can be generated by removing at most k agents from the subspace I. The upper
bound of a partition I, UB(I), is computed as in the integer-partition approach
[10,17].

Branch-And-Bound Pruning. The partial solution CS can be pruned if it
cannot be extended to a solution with a higher beneficial value than the best
solution found so far (denoted LBbest). This is determined based on the upper
bounds of the unassigned coalitions and LBbest:

r(CS, k) +
∑

j∈[d+1,m)

(UB(Ii)) ≤ LBbest (7)

The solution CS can be pruned from the search if the above equation holds.
Note that the (partial) solution CS has its first d coalitions assigned at search
tree depth d.

4.1 Incremental Computation of R(CS, K)

The robust value r(CS, k) is computed in each iteration incrementally using
dynamic programming. Let c be the coalition that is added to the partial solution
CS, we then have:

r(CS ∪ c, k) = min{r(CS, k − i) + r(c, i)|i ∈ [0, k]} (8)
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Fig. 1. Average runtime (five benchmarks for each n, the number of agents) on a
variety of distributions with different values for k. Number of timeouts with a limit of
1 h shown in brackets.
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5 Experimental Evaluation

We implemented AmorCSG and the integer-partition approach for CSG [10,17] in
C++. The experiments were run on an Intel i7-7700HQ CPU @ 2.80 GHz with
32 GB of RAM. We experimented with instances based on several probability
distributions for the characteristic function v used in the literature:

– Uniform: v(C) = Uniform(0, |C|) [8].
– Normal: v(C) = Normal(μ = 10 ∗ |C|, σ2 = 0.1) [16].
– NDCS: v(C) = Normal(μ = |C|, σ2 =

√|C|) [17].
– Modified uniform: v(C) = Uniform(0, 10 ∗ |C|) + a, where a =

Uniform(0, 50) with probability 0.2 and a = 0 otherwise [21].
– Modified normal: v(C) = Normal(10∗ |C|, 0.01)+a, where a is as above [15].
– Beta: v(C) = |C| ∗ Beta(α = β = 0.5) [10].

The benchmarks were adjusted to ensure monotonicity. We compared the
runtime for different values of n (number of agents) and k ∈ [0, 3] (robustness
parameter). Note that RCSG with k = 0 degenerates to CSG. The results are
summarized in Fig. 1, averaged over five instances for each n.

The distribution used plays an important role in the execution time, more so
than for standard CSG (k = 0). The main reason is that bounds on robustness
cannot be approximated as accurately in general and this is further amplified for
certain distributions. Furthermore, the strength of the robust bounds weakens
with the increase in k. Hence, the algorithm must explicitly explore a large part
of the search space, leading to higher run times when compared to CSG. In
return, guarantees on robustness are provided.

6 Conclusion

In this paper, the robustness issue for CSG has been investigated. The contribu-
tions of this paper are as follows: A notion of robustness in the CSG framework
has been formalized and shown useful. Furthermore, the corresponding decision
and (bi-objective) optimization problems for RCSG have been studied and the
computational complexity has been identified. Finally. a complete algorithm has
been presented for solving a RCSG problem.

This work paves the way for a number of perspectives. Our complete algo-
rithm (AmorCSG) can solve RCSG problem instances such as waste-water treat-
ment system. For addressing large-scale RCSG instances, we plan to develop
approximate algorithms. Another perspective will consist in considering the
robustness issue in a probabilistic setting. In the framework presented in this
paper, the robustness of a coalition structure is evaluated from the “worst-case”
viewpoint. Another approach would be to consider each agent as “reliable” to
a certain extent, e.g., by associating with each agent ai a value α(ai) ∈ [0, 1]
standing for the probability that the agent may remain in its coalition at the
next step. Obviously enough, this probabilistic setting departs from the one we
proposed here. Lastly, we plan to extend our framework to a dynamic setting in
which the set of agents A may change w.r.t. time, with the objective to apply it
to a distributed robot team reconfiguration problem [4].
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Abstract. A fundamental problem in artificial intelligence is how to
organize and coordinate agents to improve their performance and skills.
In this paper, we consider simultaneously generating coalitions of agents
and assigning the coalitions to independent tasks, and present an any-
time algorithm for the simultaneous coalition structure generation and
assignment problem. This optimization problem has many real-world
applications, including forming goal-oriented teams of agents. To eval-
uate the algorithm’s performance, we extend established methods for
synthetic problem set generation, and benchmark the algorithm against
CPLEX using randomized data sets of varying distribution and com-
plexity. We also apply the algorithm to solve the problem of assigning
agents to regions in a major commercial strategy game, and show that
the algorithm can be utilized in game-playing to coordinate smaller sets
of agents in real-time.

Keywords: Coalition structure generation · Assignment problem

1 Introduction

An important research challenge in the domain of artificial intelligence is to
solve the problem of how to organize and coordinate multiple artificial enti-
ties (e.g. agents) to improve their performance, behaviour, and/or capabilities.
There are many approaches to this, including task allocation [7], assignment
algorithms [4,12,15,16,29], multi-agent reinforcement learning [14], and organi-
zational paradigms [10].

Coalition formation [11,24] is a major coordination-paradigm and study of
coalitions (flat goal-oriented organizations of agents) that has received exten-
sive coverage in the literature over the past two decades [22]. This paradigm
typically involves forming coalitions and allocating tasks, with applications in
economics [30], planning [6], sensor fusion [5], wireless networks [9], and cell net-
works [32]. In cooperative games with transferable utility, coalition formation
generally involves identifying coalition structures (sets of disjoint and exhaus-
tive coalitions) that maximizes social welfare (utility) through coalition structure
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generation [20]. Coalition structure generation is NP-complete [23], and many
algorithms have been presented that solves this problem, including algorithms
based on dynamic programming [18,31], tree-search [21], constraint optimiza-
tion [27], and hybrid techniques [19]—each with their own strengths and weak-
nesses, making them suitable for solving different types of problems. Variations
on the coalition structure generation problem also exist, e.g. with overlapping
coalitions—where agents have limited resources that they can use to partake in
multiple coalitions at the same time [3,8].

Coalition structure generation and assignment (of coalitional goals) are
two processes for coordination that are often treated separately—including the
majority of the previous examples. This is because traditional algorithms for
coalition structure generation have no notion of independent coalitional goals,
even though coalitions are often described as goal-oriented organizational struc-
tures. In instances for which coordination of multiple coalitions is important,
this may generate suboptimal teams for achieving and accomplishing the tasks
and goals at hand, and would typically require two different utility functions:
one for deciding on which coalitions to form, and one for assigning them to
tasks/goals. This is potentially disadvantageous, since it is often complicated
to create good utility functions (or to generate realistic performance measures),
and it is not necessarily a simple task to predict how the two utility functions
influence the quality of generated solutions. Also, there are many settings and
scenarios in which the utility of a team not only depends on its members and the
environment, but also on the task/goal it is assigned to. It would therefore be
beneficial if algorithms for coalition structure generation could take advantage
of goal-orientation.

To make this possible, and to address the aforementioned issues, we present
an anytime algorithm that solves the simultaneous coalition structure generation
and assignment problem by integrating coalition-to-task assignment into the for-
mation of coalitions. We accomplish this by extending the coalition structure
generation problem, and generating coalition structures for which each coali-
tion is assigned to exactly one goal. Our algorithm can thus be used to cre-
ate structured collaboration through explicit goal-orientation. Furthermore, our
algorithm only requires one utility function, has the ability to prune large parts
of the search space, can give worst-case guarantees on solutions, and always
generates an optimal solution when run to completion.

To evaluate the algorithm’s performance, we extend established methods
for generating synthetic problem sets, and benchmark our algorithm against
CPLEX—a commercial state-of-the-art optimization software. Our experiments
are conducted to deduce whether the presented algorithm can handle difficult
data sets efficiently. We also apply our algorithm to solve the problem of simul-
taneously forming and assigning groups of armies to regions in the commercial
strategy game Europa Universalis 4, and empirically show that our algorithm can
be used to optimally solve a difficult game-playing problem in real-time. Apart
from being applied to strategy games, our algorithm can potentially be used to
solve many important real-world problems. It could, for example, be used to
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form optimal cross-functional teams aimed at solving a set of problems, to assist
in the organization and coordination of subsystems in an artificial entity (e.g. a
robot), or to allocate tasks in multi-agent systems (e.g. multi-robot facilities).
Since the algorithm is anytime and can return a valid solution even if it is inter-
rupted prior to finishing a search, it can potentially be used in many real-world
scenarios with real-time constraints as well, including time-critical systems for
managing tactical decisions.

Note that this paper is the full-paper version of a previous extended abstract
[17]. This version has been thoroughly revised and extended. The presented algo-
rithm, its presentation, and the benchmarks herein, have all been significantly
improved.

We begin by formalizing the problem that we solve in Sect. 2. Then, in Sect. 3,
we describe our algorithm. In Sect. 4, we present the results from our experi-
ments. Finally, in Sect. 5, we conclude with a summary.

2 Problem Formalization

The simultaneous coalition structure generation and assignment problem for-
malizes as:

Input: A set of agents A = {a1, ..., an}, a list of tasks T = 〈t1, ..., tm〉, and the
value v(C, t) �→ R for assigning any coalition C ⊆ A to any task t ∈ T .

Output: A list of coalitions 〈C1, ..., Cm〉 that maximizes
∑m

i=1 v(Ci, ti), where
Ci ⊆ A for i = 1, ...,m, Ci ∩ Cj = ∅ for all i 
= j, and

⋃m
i=1 Ci = A.

Note that we use the sum V (S) =
∑m

i=1 v(Ci, ti) to denote the value of a solution
S = 〈C1, ..., Cm〉 throughout this report. We also use the terms agent and task
as abstractions (they can be substituted for any type of entities, e.g. resources,
regions), and we use the conventions n = |A| and m = |T |.

Now, with this in mind, and given the aforementioned input, we can also
formalize this problem using a binary integer programming model:

Maximize
2n−1∑

j=0

m∑

k=1

xjk · v(Cj , tk)

subject to
2n−1∑

j=0

m∑

k=1

xjk · yij = 1 i = 1, ..., n

m∑

k=1

xjk ≤ 1 j = 1, ..., 2n − 1

2n−1∑

j=0

xjk = 1 k = 1, ...,m

xjk ∈ {0, 1}
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where yij = 1 if agent ai ∈ Cj , yij = 0 if not, and Cj is a coalition defined
through its binary coalition-encoding given by j over A (see Definition 1). Note
that xjk = 1 if and only if coalition Cj is to be assigned to task tk, and that
C0 = ∅ is the only coalition that can be assigned to multiple tasks. The first
constraint ensures disjoint and exhaustive coalitions, while the second and third
constraints ensures coalition-to-task bijections.

Definition 1. Binary coalition-encoding. Given a set of agents A = {a1, ..., an},
and the non-negative integer j < 2n on binary form j = b120+b221+ ...+bn2(n−1)

with bi ∈ {0, 1} for all i ∈ N, we say that the coalition Cj ⊆ A has a binary
coalition-encoding given by j over A if and only if bk = 1 ⇐⇒ ak ∈ Cj for
k = 1, ..., n. For example, if the coalition Cj has a binary coalition-encoding given
by j over {a1, ..., an}, we have C0 = ∅ for j = 0, C3 = {a1, a2} for j = 3 = 112,
and C8 = {a4} for j = 8 = 10002.

3 Algorithm Description

To solve this optimization problem, we propose an anytime search algorithm that
utilizes branch-and-bound and a search space representation based on multiset
permutations of integer partitions. By doing so, our algorithm always generates
optimal solutions when run to exhaustion, and solutions with worst-case guar-
antees when interrupted prior to finishing a search. The algorithm consists of
the following major steps:

I. Partitioning of the search space.
II. Calculation of the bounds for partitions.

III. Searching for solutions using branch-and-bound.

These steps are described in the following subsections.

3.1 Partitioning of the Search Space

To partition the search space, we use a search space representation that is based
on multiset permutations (ordered arrangements) of integer partitions (see Def-
inition 2). In this representation, a list of non-negative integers 〈p1, ..., pm〉 rep-
resents all solutions 〈C1, ..., Cm〉 with |Ci| = pi for i = 1, ...,m. Note that this is,
technically speaking, a refinement (or an extension) of Rahwan, Ramchurn, Jen-
nings and Giovannucci’s search space representation for conventional coalition
structure generation [21].

Definition 2. Integer partition. An integer partition of y ∈ N is a multiset of
positive integers {x1, ..., xk} such that:

k∑

i=1

xi = y

For example, the multiset {1, 1, 2} is an integer partition of 4 since 1 + 1 + 2 = 4,
and {1, 2, 12, 15} is an integer partition of 30 since 1 + 2 + 12 + 15 = 30.
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In more detail, we generate all multiset permutations of m-sized non-negative
integer partitions of n. We use the following three steps to do so:

1. First, generate the set M1 of all integer partitions of n that has
m or fewer elements. For example, if n = 4 and m = 3, then
M1 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}}. Algorithms that can be used to generate
these integer partitions already exist, e.g. [1,25]. In our case, order is of no
concern, and it is trivial to exclude integer partitions that have more than m
elements, so any algorithm can potentially be used.

2. Generate M2 by appending zeros to the integer partitions in M1 (that we
generated during step 1 ) until all of them have m elements. For example, if
n = 4 and m = 3, then M2 = {{4, 0, 0}, {3, 1, 0}, {2, 2, 0}, {2, 1, 1}}.

3. Now, let M3 be the set of all multiset permutations of the multisets in M2.
For example, if n = 4 and m = 3, then M3 =
{ 〈4, 0, 0〉, 〈0, 4, 0〉, 〈0, 0, 4〉, 〈0, 2, 2〉, 〈2, 0, 2〉, 〈2, 2, 0〉,

〈3, 1, 0〉, 〈3, 0, 1〉, 〈0, 3, 1〉, 〈1, 3, 0〉, 〈1, 0, 3〉, 〈0, 1, 3〉,
〈2, 1, 1〉, 〈1, 2, 1〉, 〈1, 1, 2〉 }

Each multiset permutation 〈p1, ..., pm〉 ∈ M3 represents the partition (sub-
space) that contains all solutions 〈C1, ..., Cm〉 with |Ci| = pi and Ci ⊆ A
for i = 1, ...,m. For instance, if n = 4 and m = 3, the multiset permu-
tation 〈3, 1, 0〉 then represents 〈{a1, a2, a3}, {a4}, ∅〉, 〈{a1, a2, a4}, {a3}, ∅〉,
〈{a1, a3, a4}, {a2}, ∅〉, and 〈{a2, a3, a4}, {a1}, ∅〉. Note that there exists sev-
eral known algorithms that can generate these multiset permutations in O(1)
per permutation, e.g. [26,28].

The reason that partitions represented by the multiset permutations in M3 cover
the whole search space, is the fact that every coalition structure that consists of
k agents can be mapped to exactly one of the integer partitions of k (see [21]
for proof). For example, the coalition structure {{a1, a2}, {a3}} can be mapped
to {2, 1}, and {{a1, a2, a3}} to {3}. In step 1 , we generate the partitions that
correspond to these mappings. We then remove unnecessary coalition structures
in step 2, so that we only look at coalition structures that can represent valid
solutions (i.e. m-sized coalition structures). Finally, in step 3, we refine the rep-
resentation of the search space that was generated in step 2, by taking advantage
of the fact that we are only interested in coalition-to-task bijections.

Now, given any multiset permutation P = 〈p1, ..., pm〉 generated through this
process, let SP denote the set of all possible solutions 〈C1, ..., Cm〉 with |Ci| = pi
and Ci ⊆ A for i = 1, ...,m. In other words, let SP be the subspace of the
search space that contains all solutions represented by the multiset permutation
P ∈ M3.
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3.2 Calculation of the Bounds for Partitions

To establish bounds for partitions (subspaces), so that the algorithm can make
more informed decisions during search, let Cp := {X ⊆ A : |X| = p}, i.e. the set
of all p-sized coalitions, and define:

• M(p, t):= max {v(C, t) : C ∈ Cp}
• Avg(p, t):= 1

|Cp|
∑ {v(C, t) : C ∈ Cp}

We can now establish an upper and a lower bound for the value of the best pos-
sible solution in SP as the sums

∑m
i=1 M(pi, ti) and

∑m
i=1 Avg(pi, ti), respec-

tively. For proofs, see Theorems 1 and 2. Note that this lower bound, that we
base on the average values of coalitional values, is better than the one you would
achieve by using the more straight-forward min {v(C, t) : C ∈ Cp}. A proof for
this follows directly from the definition of Avg(p, t).

Theorem 1. uP =
∑m

i=1 M(pi, ti) is an upper bound for the value of the best
possible solution in the subspace SP that is represented by P = 〈p1, ..., pm〉. In
other words,

∑m
i=1 v(Ci, ti) ≤ uP for all 〈C1, ..., Cm〉 ∈ SP .

Proof. If 〈C1, ..., Cm〉 ∈ SP , then pi = |Ci| for i = 1, ...,m. From this, it follows
that:

M(pi, ti) = M(|Ci|, ti) (1)

Since v(Ci, ti) ≤ M(|Ci|, ti) for i = 1, ...,m, we have:

m∑

i=1

v(Ci, ti) ≤
m∑

i=1

M(|Ci|, ti)

Based on this, and (1), we conclude that:

m∑

i=1

v(Ci, ti) ≤
m∑

i=1

M(pi, ti)

��
Theorem 2. lP =

∑m
i=1 Avg(pi, ti) is a lower bound for the value of the best

possible solution in the subspace SP that is represented by P = 〈p1, ..., pm〉. In
other words:

lP ≤ max
〈C1,...,Cm〉∈SP

{
m∑

i=1

v(Ci, ti)}

Proof. Recall that, for the arithmetic mean y1, ..., yk of a finite set
{y1, ..., yk} ⊂ R, the following holds:

y1, ..., yk ≤ max {y1, ..., yk} (2)
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Now, since there are |Cp| coalitions of size p ∈ P , we have:

|SP | = Xi · |Cpi
| (3)

for some integer Xi ∈ N for i = 1, ...,m. This is because there are |Cpi
| different

coalitions that can be assigned to task ti, and for each coalition assigned to ti,
we have Xi ways of assigning coalitions to the other tasks t1, ..., ti−1, ti+1, ..., tm.
Following this argument, there are exactly Xi solutions in SP for which any
coalition C with |C| = pi is the ith coalition. Based on this and (3), we can
calculate the arithmetic mean of VP := {∑m

i=1 v(Ci, ti) : 〈C1, ..., Cm〉 ∈ SP }, i.e.
the set of the values of the solutions in SP , as follows:

VP =
1

|SP |
m∑

i=1

∑

C∈Cpi

Xi · v(C, ti)

=
m∑

i=1

∑

C∈Cpi

Xi

|SP | · v(C, ti)

=
m∑

i=1

∑

C∈Cpi

1
|Cpi

| · v(C, ti)

=
m∑

i=1

1
|Cpi

|
∑

C∈Cpi

v(C, ti)

=
m∑

i=1

Avg(pi, ti)

From this and (2), we conclude:

m∑

i=1

Avg(pi, ti) ≤ max
〈C1,...,Cm〉∈SP

{
m∑

i=1

v(Ci, ti)}

��
Since the performance measure for each coalition-to-task assignment is assumed
to be known, the bounds can, in practice, be calculated without having to enu-
merate or generate any solution. For instance, by enumerating all coalition-to-
task values, the lower bounds can be calculated using a moving average.

3.3 Searching for Solutions Using Branch-and-Bound

We search for solutions by searching one partition (subspace) at a time, and
discard partitions that only contain suboptimal solutions (i.e. a partition is dis-
carded when its upper bound is lower than the value of the best solution found
so far). With this in mind, consider the following observation: Finding a bet-
ter solution than the best that we have found can potentially make it possible
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to discard (additional) partitions, and thus reduce execution time by decreas-
ing the search space that we need to consider. To potentially take advantage of
this observation, we design a mechanism, based on defining a precedence order
that dictates the order for which we search partitions, that ultimately makes it
possible to find better solutions more quickly, and use heuristics to guide search.

Note that the efficiency induced by any search order depends on the problem
that is being solved. In our case, we assume that there exists no a priori knowl-
edge in regards to the domain, except for the coalition-to-task utility function
v �→ R, and we instead have to take advantage of domain-independent informa-
tion (e.g. partitions and their bounds). It is possible to utilize potential domain-
specific information when it is available, which is likely a more efficient strategy
for solving many real-world problems. In any case, the domain-independent order
of precedence for searching partitions that we use is defined as follows:

P1 ≺ P2 if uP1 + lP1 > uP2 + lP2

where P1 ≺ P2 denotes that the partition represented by the multiset permuta-
tion P1 ∈ M3 is searched before the partition represented by P2 ∈ M3. uP and
lP are defined as in the previous subsection.

We use Algorithms 1 and 2 to search a subspace SP (represented by the
multiset permutation P ∈ M3) for arg maxS∈SP

V (S). If interrupted before ter-
mination, these algorithms return the best feasible solution found so far, denoted
S′. Note that we use a notation based on brackets to indicate an element at a
specific position of a list or a vector. For example, the notation S[j] corresponds
to the coalition Cj ∈ S, and the notation A[i] corresponds to the agent ai ∈ A.

Algorithm 1 . InitAndStartSearchSubspace(A, T , P , S′, uP )
Initializes and starts the search procedure defined in Algorithm 2, thus searching SP .

1: if S′ is uninitialized then
2: S′ ← ∅|T | � S′ is initialized to a list of m = |T | empty coalitions.
3: end if
4: return SearchSubspace(A, T , P , uP , 1, ∅|T |, 0.0, S′)

To address the high memory requirements for generating and storing many
multiset permutations (required for generating the precedence order), it is pos-
sible to generate and store multiset permutations in memory-bounded blocks
(distinct sets of multiset permutations). These blocks can sequentially be gener-
ated and searched during partitioning. The more blocks we use, the less memory
is required. In our case, we use each set Q ∈ M2 generated in step 2 during the
partitioning phase (described in Subsection 3.1) to represent a block. In other
words, each disjoint group of distinct multiset permutations in which all multiset
permutations have the same members is searched in sequence according to some
criterion. The particular criterion that we use is defined as:

Q1 ≺ Q2 if wQ1 + fQ1 > wQ2 + fQ2
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Algorithm 2 . SearchSubspace(A, T , P , u, i,
−→
S , −→v , S′)

Recursively searches the subspace SP represented by the multiset permutation P .

1: if i > |A| then � All agents have been assigned to a coalition in
−→
S .

2: return
−→
S

3: end if
4: for j = 1, ..., |T | do
5: if |−→S [j]| �= P [j] then

6:
−→
S [j] ← −→

S [j] ∪ {A[i]} � Assign agent A[i] to the coalition
−→
S [j].

7: if |−→S [j]| = P [j] then � Update the intermediary values.

8: −→v ← −→v + v(
−→
S [j], T [j])

9: u ← u − M (P [j], T [j])
10: end if
11: if S′ = ∅|T | or

−→v + u > V (S′) then � Check if a better solution is
possible.

12: S′′ ← SearchSubspace(A, T , P , u, i + 1,
−→
S , −→v , S′)

13: if S′ = ∅|T | or V (S′′) > V (S′) then
14: S′ ← S′′ � Update the best solution found so far.
15: end if
16: end if
17: if interrupt has been requested then
18: return S′

19: end if
20: if |−→S [j]| = P [j] then � Reset the intermediary values.

21: −→v ← −→v − v(
−→
S [j], T [j])

22: u ← u + M (P [j], T [j])
23: end if
24:

−→
S [j] ← −→

S [j] \ {A[i]} � Remove agent A[i] from the coalition
−→
S [j].

25: end if
26: end for
27: return S′

where Q1 ≺ Q2 denotes that the solutions represented by the group of multiset
permutations consisting of the members q1, ..., qm is searched before the solutions
represented by the group of multiset permutations consisting of the members
p1, ..., pm, where {q1, ..., qm} = Q1 and {p1, ..., pm} = Q2, with Q1 ∈ M2 and
Q2 ∈ M2. wQ and fQ are defined (similarly to the partition bounds), for all
Q ∈ M2, as follows:

• wQ:=
∑

q∈Q {maxi=1,...,m M(q, ti)}
• fQ:=

∑
q∈Q { 1

m

∑
i=1,...,m Avg(q, ti)}

wQ and fQ can, similarly to partition bounds, be computed without having to
enumerate or generate any solutions. Moreover, the algorithm can search these
blocks in parallel using separate processes. Also, the blocks can be partitioned
into several smaller parts to further decrease memory usage.
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4 Evaluation and Results

A common approach to evaluating optimization algorithms is to use standardized
problem instances for benchmarking. To our knowledge, no such instances exist
for the simultaneous coalition structure generation and assignment problem. We
therefore translate standardized problem instances from a similar domain. More
specifically, we extend established methods for synthetic problem set generation
used for benchmarking coalition structure generation algorithms. The extended
methods are then used to generate difficult problem sets of varying distribution
and complexity that we use to benchmark our algorithm against IBM ILOG
CPLEX Optimization Studio—a commercial state-of-the-art optimization soft-
ware.

Larson and Sandholm [13] provided standardized synthetic problem instances
for the coalition structure generation problem by using normal and uniform
probability distributions to generate randomized coalitional values. Following
Rahwan et al. [21], we denote these distributions NPD and UPD, respectively.
To benchmark our algorithm, we extend these distributions to our domain, so
that we also take tasks into consideration. In addition to NPD and UPD, we
also extend and use NDCS, a distribution that was proposed by Rahwan et al.
[21] for benchmarking coalition structure generation algorithms. Our extensions
of these probability distributions, to our task-dependent domain, are defined as
follows:

– UPD: v(C, t) ∼ |C| · U(0, 1)
– NPD: v(C, t) ∼ |C| · N (1, 0.12)
– NDCS: v(C, t) ∼ N (|C|, |C|)
where N (σ, μ) and U(a, b) are the normal and uniform distributions, respec-
tively, given a coalition C ⊆ A and a task t ∈ T .

The results of our experiments that were based on these distributions, and
from applying the algorithm to a commercial strategy game, are presented in
Subsects. 4.2 and 4.3, respectively.

4.1 Implementation and Hardware

Our algorithm was implemented in C++11, and all synthetic problem sets
were generated using the random number generators normal distribution (for
NDCS and NPD) and uniform real distribution (for UPD) from the C++
Standard Library. All tests were conducted using Windows 10 (x64), an Intel
7700K 4200 MHz CPU, and 16 GB of 3000 MHz DDR4 memory.

4.2 Results of the Synthetic Experiments

The result of each experiment was produced by calculating the average of the
resulting values (i.e. time measurements and numerical values of solution quality)
from 50 generated problem sets per probability distribution and experiment.
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Also, to compete on equal terms, both CPLEX and our algorithm were only
allowed to use a single CPU thread during all tests (even though both approaches
support parallel computing). Furthermore, the algorithms did not have any a
priori knowledge of the problems that they were given to solve.

Note that we, throughout this section, use the abbreviation MP (short for
multiset permutation) to denote our algorithm.

The execution time to find an optimal solution for 8 tasks is plotted using
a logarithmic scale in Fig. 1, in which we benchmark MP against CPLEX with
different numbers of agents, using problem sets generated with UPD, NPD and
NDCS.
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Fig. 1. Execution time for solving synthetic problems with 8 tasks. The values for
the coalition-to-task assignments were generated using UPD (top), NPD (middle) and
NDCS (bottom).

The results in these graphs show that our algorithm (MP) is considerably
faster (by many orders of magnitude) than CPLEX for almost all distributions
and problem sets. When there are more than 16 agents, CPLEX has diffi-
culty finding optimal solutions within a reasonable time, especially for NPD
and NDCS, as can be seen in the graphs above. MP, however, manages to find
optimal solutions for all problems (at least up to 20 agents) within a reason-
able time. In these logarithmic graphs, MP is clearly linear, while CPLEX is
not. Furthermore, MP is clearly sensitive to the distribution of utility values. A
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potential reason for this is that the efficiency of MP depends on its ability to
discard partitions. Naturally, this ability is affected by the distribution of the
utility values in the problem being solved.

We plot the execution time to find an optimal solution for 16 agents in
Fig. 2, and instead look at how the number of tasks (2 to 12) affect performance.
We used 16 agents in these tests, since CPLEX didn’t manage to find optimal
solutions within a reasonable time for problems with more agents.

As can be seen in Fig. 2: CPLEX demonstrates inconsistent behaviour for
problems when varying the number of tasks. This includes increased execution
time in easier problems with few (2 to 4) tasks. With this in mind, our algorithm
is considerably faster for most problem sets, except for those with many (8
to 12) tasks generated by NDCS. A reason could be that, when we increase
the number of tasks, MP consequently generates larger integer partitions. As a
consequence, the blocks generated by MP also becomes much larger, since the
number of possible multiset permutations grows exponentially in the number of
tasks. These multiset permutations take a considerable time to generate, even if
(or when) MP discards the entire partitions that they represent.
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Fig. 2. Execution time to solve synthetic problems with 16 agents. Generated using
UPD (top), NPD (middle) and NDCS (bottom).

In Fig. 3, we look at the quality of the anytime solutions generated by MP.
We used 12 agents and 8 tasks for this purpose, and interrupted the algorithm
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during search by only allowing it to evaluate a fixed number of solutions. The
total number of possible solutions for 12 agents and 8 tasks is 812 ≈ 7 × 1010.
We show the value Vanytime of the best solution that our algorithm has found
after a number of evaluated solutions, divided by the value Vopt of an optimal
solution, on the y-axis. In this experiment, all utility values were generated using
NDCS.

Fig. 3. The quality of anytime solutions when our algorithm is interrupted prior to
finishing a complete search for problem sets based on NDCS with 12 agents, 8 tasks
and 812 ≈ 7 × 1010 possible solutions.

In this experiment, MP’s execution time is roughly the same for evaluating
any subsequent 1000 solutions, and was measured to 0.34 ± 0.27 s. Also, finding
an optimal solution took 3.07 ± 1.75 s. This means that, after roughly 0.34 s,
MP manages to find close to 90% efficient solutions, and after approximately
1 second, MP often manages to find 99% efficient solutions. For this execution
time, CPLEX fails to find any solution at all.

4.3 Applying the Algorithm to Europa Universalis 4

To empirically show that the algorithm can be used to coordinate agents in a
real-world scenario, we applied it to improve the coordination skills of computer-
based players in Europa Universalis 4 (EU4)—a very complex strategy game,
in which agents are required to act and reason in real-time. This game is very
popular, with many thousands of active players, and was developed and released
commercially by the Swedish game development company Paradox Development
Studio. Note that there are many reasons to why strategy games are ideal for
empirically evaluating and testing AI algorithms, and other authors have dis-
cussed these reasons in earlier publications, see e.g. [2].

In a session of EU4, hundreds of simulated countries, both computer- and
human-controlled alike, face off against each other, and have to coordinate them-
selves to defeat their opponents—they have to form alliances, coordinate armies,
handle diplomacy, and wage war. To play this dynamic (and partially observable)
game successfully, the players have to continuously solve simultaneous coalition
structure generation and assignment problems by assigning their armies to dif-
ferent regions. Previously, the computer-based players in EU4 used an ad hoc
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anytime search algorithm to do so—a highly specialized algorithm designed for
the context of EU4, inherently based on expert knowledge and heuristics.

In collaboration with the game’s developers, we benchmarked our algorithm
against theirs. To do so, we used the same problem sets (generated by the game)
and utility function (based on expert knowledge and defined by the develop-
ers) for both algorithms. We ran both algorithms while the game was play-
ing, measured the algorithms’ execution time, and compared the values of the
solutions that the two algorithms generated. The following constraints held for
all EU4 problem sets: n ∈ [1, 8] and m ∈ [1, 35]. However, there were at most
308 ≈ 6.56 · 1011 solutions for the largest problem sets that were generated by
the game (i.e. problems with n = 8 armies and m = 30 regions).

The results from these experiments show that applying the algorithm to
EU4 was a great success in terms of improving the computer-based players’
performance (i.e. an increase of solution quality) and computational efficiency
(i.e. reduction of execution time). In fact, our algorithm managed to find an
optimal solution for all problems in less time than a game’s frame (approxi-
mately 1/20 ≈ 0.05 s)—and compared to the developer’s algorithm, our algo-
rithm decreased the execution time to, on average, 0.24% of theirs. Our algo-
rithm also increased the numerical quality of solutions by, on average, 565% over
theirs, and their algorithm seldom managed to find an optimal solution. These
are the results from solving, in total, 13922 problem sets that were generated
while playing the game during 3 separate simulated sessions. Note that these
results are not only promising in terms of performance, but also on the basis of
generalization: If the utility functions that are used in EU4 were to change (e.g.
due to environment alterations), the ad hoc algorithm might have to be altered.
This is not the case for our algorithm, since it does not make any assumptions
on coalitions’ utility functions, or the game’s rules. Therefore, our algorithm is
potentially cheaper and easier to maintain. Finally, note that EU4’s environment
is not superadditive: Adding an agent to a coalition does not necessarily increase
its value, since the regions’ have supply-based limitations that can reduce larger
coalitions’ values.

5 Conclusions

In this paper, we presented an anytime algorithm that solves the simultaneous
coalition structure generation and assignment problem by integrating assignment
into the formation of coalitions. We are, to the best of our knowledge, the first
to study and solve this problem in a formal context.

Moreover, to benchmark the presented algorithm, we extended established
methods for benchmarking coalition structure generation algorithms to our
domain, and then used synthetic problem sets to empirically evaluate its per-
formance. We benchmarked our algorithm against CPLEX, due to the lack of
specialized algorithms for the simultaneous coalition structure generation and
assignment problem.

Our results clearly demonstrate that our algorithm is superior to CPLEX
in solving synthetic instances of the simultaneous coalition structure generation
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and assignment problem. Also, our algorithm does not have to search for very
long before it can find high-quality solutions—even when interrupted prior to
finishing a complete search. This is beneficial in many real-time systems (e.g.
real-world multi-agent systems), in which feasible solutions must be available
fast, but optimality is not necessarily required. Apart from these properties, our
algorithm is able to give worst-case guarantees on solutions.

By using our algorithm to improve the coordination of computer-based play-
ers in Europa Universalis 4, we demonstrated that it can be used to solve a
real-world simultaneous coalition structure generation and assignment problem
more efficiently than previous algorithms.

For future work, it would be interesting to investigate other approaches to
solving this problem, including dynamic programming and greedy algorithms.
We also intend to analyze the algorithm’s parallel computing performance, and
look at the problem of simultaneous coalition structure generation and assign-
ment with overlapping coalitions. Finally, it would be interesting to see if machine
learning could be applied to solve large-scale simultaneous coalition structure
generation and assignment problems, or increase our algorithm’s performance
by improving its search heuristics.
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Abstract. We study a cost sharing problem derived from bug bounty
programs, where agents gain utility by the amount of time they get
to enjoy the cost shared information. Once the information is provided
to an agent, it cannot be retracted. The goal, instead of maximizing
revenue, is to pick a time as early as possible, so that enough agents are
willing to cost share the information and enjoy it for a premium time
period, while other agents wait and enjoy the information for free after
a certain amount of release delay. We design a series of mechanisms with
the goal of minimizing the maximum delay and the total delay. Under
prior-free settings, our final mechanism achieves a competitive ratio of 4
in terms of maximum delay, against an undominated mechanism. Finally,
we assume some distributions of the agents’ valuations, and investigate
our mechanism’s performance in terms of expected delays.

Keywords: Mechanism design · Cost sharing · Bug bounty

1 Introduction

The market for software vulnerabilities—also known as bugs—is a crowded one.
For those holding a serious bug to sell, there are many kinds of interested cus-
tomers: the software vendors themselves that can produce official patches, the
anonymous buyers in the black markets that boast greater reward [1], and many
others in between—such as the vulnerability brokers.

As defined by Böhme [3], by vulnerability brokers, we refer to organizations
other than software vendors that purchase vulnerabilities and produce corre-
sponding defense services (such as intrusion detection systems [8]) for their sub-
scribers. Bug bounty programs offered by vulnerability brokers provide greater
financial incentives for vulnerability sellers, as their customers could include large
corporations and government agencies that have huge budgets for security [8].
One common problem these programs have is that their subscribers are usually
charged an annual subscription fee [3], while they certainly don’t produce a con-
stant number of security updates every year, and each customer may not benefit
equally with each update—for example, an update that helps prevent a bug in
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Windows operating system would be of little interest to customers that don’t
use Windows at all, though they still have to pay the fixed subscription fee.

While this inequality can be trivially solved by designing as many subscrip-
tion levels as necessary, we are introducing a game-theoretical model for non-
profit bug bounty programs that both solves this efficiency problem and promotes
general software security.

Specifically, we study the mechanism design problem of selling one bug (infor-
mation regarding it) to multiple agents. The goal is not to make a profit, but
we need the mechanism to cover the cost of the bug. All agents receive the bug
if enough payments can be collected to cover the cost. To incentivize payments,
agents who do not pay receive the bug slightly delayed. Our goal is to maximize
the social welfare by minimizing the maximum and the total delay. We end up
with a mechanism that is 4-competitive against an undominated mechanism in
terms of maximum delay, and for expected delay, we did some experiments under
some assumptions on the distributions of the agents’ valuations.

Although this problem we are studying is derived from bug bounty programs,
it certainly could relate to other systems. So here we define the traits that char-
acterize the problem. The service or good that is sold has unlimited supply once
funded (zero marginal cost), and cannot be retracted once given to a user. The
most common examples are information and digital goods. The agents have a
valuation function that is non-decreasing in terms of time: the earlier the agent
gets the information, the more utility she receives. And as we are designing non-
profit systems, the mechanism should be budget balanced: we charge the agents
exactly the amount needed to purchase the bug which the defense information
is derived from. Finally, we want to incentivize enough payments with long pre-
mium time periods (periods exclusively enjoyed by the paying agents). But we
also want the premium time periods to be as short as possible so that non-paying
agents can receive the information sooner, as it leads to higher social welfare.

2 Related Research

With more and more critical software vulnerabilities catching the public’s atten-
tion, there’s an increasing amount of literature on the market for vulnerabilities.
However, we failed to identify any research that shares the same problem struc-
ture or the same goal as ours, so the following work is mostly on understanding
the vulnerability market, and inspirations for future work, rather than what our
study is based on.

Regarding the vendor’s possible reluctance to accept and fix reported vul-
nerabilities responsibly, Canfield et al. [4] made quite a few recommendations on
ways to incentivize vendors to fix the software’s vulnerabilities responsibly, and
general improvement suggestions including allowing negotiations of the severity
level of discovered vulnerabilities; on the subject of how and when should bugs
be disclosed to the general public. Arora et al. [2] produced numerical simu-
lations which suggested instant disclosure of vulnerabilities to be sub-optimal.
Nizovtsev and Thursby [13], unlike others, used a game-theoretic approach to
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show that full disclosure can be an equilibrium strategy, and commented on the
pressure of instant disclosure may put on vendors may have a long-term effect
that improves software quality. Also, there had been discussions on the feasibil-
ity of introducing markets for trading bugs openly [11], with some going as far
as designing revenue-maximizing mechanisms for them [5,6].

Then, when introducing new bug bounty programs, it’s quite necessary to
consider its effect outside the expected producer and consumer population. Mail-
lart et al. [10] proved that each newly launched program has a negative effect
on submissions to existing bug bounty programs, and they also analyzed the
bounty hunters’ expected gains and strategies in participating in bug bounty
programs. Specifically for vulnerability brokers, Kannan et al. [9] emphasized a
caveat that a vulnerability broker (which is called a market-based infomediary
in their paper) always has incentive to leak the actual vulnerability, as “. . . This
leakage exposes non-subscribers to attacks from the hacker. The leakage also
serves to increase the users incentives to subscribe to the infomediary’s service.”

Finally, we found a sorely lacking amount of literature on existing vulner-
ability brokers and the actual sellers of vulnerabilities. Although a few papers
on these topics were located [5,6,8], we did not find any detailed models or
discussions, perhaps due to the secretive nature of the cybersecurity business.

3 Model Description

We study the problem of selling one bug (with a fixed cost) to n agents. Our
goal is not to make a profit, but we need the mechanism to cover the cost of the
bug. Without loss of generality, we assume the cost of the bug is 1.

Our mechanism would generally charge a total payment of 1 from the agents
(or charge 0, in which case the bug is not sold). If the bug is sold, then we provide
the bug to all agents, including those who pay very little or do not pay at all.
There are a few reasons for this design decision:

– The main goal of this non-profit system is to promote general software secu-
rity, so we would like to have as many people protected from the vulnerability
as possible.

– Since no cost is incurred in distributing the bug once funded, the system and
the agents don’t lose anything by allowing the presence of free riders.

– In practise, providing free security information encourages more agents to
join the system. Under our cost sharing mechanism, including more agents
actually generally leads to less individual payment and increased utilities for
everyone.

To incentivize payments, if an agent has a higher valuation (is willing to pay
more), then our mechanism provides the bug information to this agent slightly
earlier. For the free riders, they receive the bug for free, except that there is a
bit of delay. Our aim is to minimize the delay (we cannot completely get rid of
the delay as it is needed for collecting payments).
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We assume the bug has a life cycle of [0, 1]. Time 0 is when the sale starts.
Time 1 is when the bug reaches its end of life cycle (or when the bug becomes
public knowledge).

We use vi to denote agent i’s type. If agent i receives the bug at time t, then
her valuation equals (1− t)vi. That is, if she receives the bug at time 0, then her
valuation is simply vi. If she receives the bug at time 1, then her valuation is 0.

We use tMi (vi, v−i) and pMi (vi, v−i) to denote agent i’s allocation time and
payment, under mechanism M , when agent i reports vi and the other agents
report v−i.1 Agent i’s utility uM

i (vi, v−i) is (1 − tMi (vi, v−i))vi − pMi (vi, v−i).
We enforce three mechanism constraints in this paper: strategy-proofness,

individual rationality, and ex post budget balance. They are formally defined as
follows:

– Strategy-proofness: for any vi, v
′
i, v−i,

(1 − tMi (vi, v−i))vi − pMi (vi, v−i) ≥ (1 − tMi (v′
i, v−i))vi − pMi (v′

i, v−i)

– Individual Rationality: for any vi, v−i,

(1 − tMi (vi, v−i))vi − pMi (vi, v−i) ≥ 0

– Ex post budget balance2:
If the bug is sold, then we must have

∑

i

pMi (vi, v−i) = 1

If the bug is not sold, then we must have that for all i

pMi (vi, v−i) = 0 and tMi (vi, v−i) = 1

We study the minimization of two different mechanism design objectives. The
Max-Delay and Sum-Delay are defined as follows:

Max-Delay: max
i

tMi (vi, v−i)

Sum-Delay:
∑

i

tMi (vi, v−i)

Our setting is a single-parameter setting where Myerson’s characterization
applies.

Claim (Myerson’s Characterization [12]). Let M be a strategy-proof and indi-
vidually rational mechanism, we must have that

1 For randomized mechanisms, the allocation times and payments are the expected
values over the random bits.

2 For randomized mechanisms, we require that for all realizations of the random bits,
the constraint holds.
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– For any i and v−i, tMi (vi, v−i) is non-increasing in vi. That is, by reporting
higher, an agent’s allocation time never becomes later.

– The agents’ payments are completely characterized by the allocation times.
That is, pMi is determined by tMi .

pMi (vi, v−i) = vi(1 − tMi (vi, v−i)) −
∫ vi

z=0

(1 − tMi (z, v−i)) dz

The above payment characterization also implies that both the payment
pMi (vi, v−i) and the utility uM

i (vi, v−i) are non-decreasing in vi.

4 Prior-Free Settings

In this section, we focus on problem settings where we do not have the prior
distributions over the agents’ types. For both Max-Delay and Sum-Delay,
the notion of optimal mechanism is not well-defined. Given two mechanisms A
and B, mechanism A may outperform mechanism B under some type profiles,
and vice versa for some other type profiles.

We adopt the following dominance relationships for comparing mechanisms.

Definition 1. Mechanism A Max-Delay-Dominates mechanism B, if

– for every type profile, the Max-Delay under mechanism A is at most3 that
under mechanism B.

– for some type profiles, the Max-Delay under mechanism A is less than that
under mechanism B.

A mechanism is Max-Delay-Undominated, if it is not dominated by any
strategy-proof and individually rational mechanisms.

Definition 2. Mechanism A Sum-Delay-Dominates mechanism B, if

– for every type profile, the Sum-Delay under mechanism A is at most that
under mechanism B.

– for some type profiles, the Sum-Delay under mechanism A is less than that
under mechanism B.

A mechanism is Sum-Delay-Undominated, if it is not dominated by any
strategy-proof and individually rational mechanisms.

3 Tie-breaking detail: given a type profile, if under A, the bug is not sold (max delay
is 1), and under B, the bug is sold (the max delay happens to be also 1), then we
interpret that the max delay under A is not at most that under B.
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For our model, one trivial mechanism works as follows:

Cost Sharing (CS)

Strategy-proofness: Yes
Individual rationality: Yes

Ex post budget balance: Yes

– Consider the following set:
K = {k | k values among the vi are at least 1/k, 1 ≤ k ≤ n}

– If K is empty, then the bug is not sold. Every agent’s allocation time is 1
and pays 0.

– If K is not empty, then the highest k∗ = max K agents each pays 1/k∗ and
receives the bug at time 0. The other agents receive the bug at time 1 and
each pays 0.

The above mechanism is strategy-proof, individually rational, and ex post bud-
get balanced. Under the mechanism, k∗ agents join in the cost sharing and their
delays are 0s, but the remaining agents all have the maximum delay 1. Both
the Max-Delay and the Sum-Delay are bad when k∗ is small. One natural
improvement is as follows:

Cost Sharing with Deadline (CSD)

Strategy-proofness: Yes
Individual rationality: Yes

Ex post budget balance: No

– Set a constant deadline of 0 ≤ tC ≤ 1. Under the mechanism, an agent’s
allocation time is at most tC .

– Consider the following set:

K = {k | k values among the vi are at least
1

ktC
, 1 ≤ k ≤ n}

– If K is empty, then the bug is not sold. Every agent’s allocation time is tC
and pays 0.

– If K is not empty, then the highest k∗ = max K agents each pays 1/k∗ and
receives the bug at time 0. The other agents receive the bug at time tC and
each pays 0.
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The idea essentially is that we run the trivial cost sharing (CS) mechanism on
the time interval [0, tC ], and every agent receives the time interval [tC , 1] for free.
The mechanism remains strategy-proof and individually rational. Unfortunately,
the mechanism is not ex post budget balanced—even if the cost sharing failed
(e.g., K is empty), we still need to reveal the bug to the agents at time tC for
free. If tC < 1, we have to pay the seller without collecting back any payments.

The reason we describe the CSD mechanism is because our final mechanism
uses it as a sub-component, and the way it is used fixes the budget balance issue.

Example 1. Let us consider the type profile (0.9, 0.8, 0.26, 0.26). We run the
cost sharing with deadline (CSD) mechanism using different tC values:

– If we set tC = 0.9, then agent 1 and 2 would receive the bug at time 0 and
each pays 0.5. Agent 3 and 4 pay nothing but they have to wait until time
0.9.

– If we set tC = 0.7, then agent 1 and 2 would still receive the bug at time 0
and each pays 0.5. Agent 3 and 4 pay nothing but they only need to wait
until 0.7. This is obviously better.

– If we set tC = 0.5, then all agents pay 0 and only wait until 0.5. However, we
run into budget issue in this scenario.

We need tC to be small, in order to have shorter delays. However, if tC is too
small, we have budget issues. The optimal tC value depends on the type profile.
For the above type profile, the optimal tC = 0.5

0.8 = 0.625. When tC = 0.625, agent
2 is still willing to pay 0.5 for the time interval [0, 0.625] as 0.8 × 0.625 = 0.5.

Definition 3. Given a type profile (v1, v2, . . . , vn), consider the following set:

K(tC) = {k | k values among the vi are at least
1
ktC

, 1 ≤ k ≤ n}

tC is between 0 and 1. As tC becomes smaller, the set K(tC) also becomes
smaller. Let t∗C be the minimum value so that K(t∗C) is not empty. If such t∗C
does not exist ( e.g., K(1) is empty), then we set t∗C = 1.

t∗C is called the optimal deadline for this type profile.

Instead of using a constant deadline, we may pick the optimal deadline for
every type profile.

Cost Sharing with Optimal Deadline (CSOD)

Strategy-proofness: No
Individual rationality: Yes

Ex post budget balance: Yes

– For every type profile, we calculate its optimal deadline.
– We run CSD using the optimal deadline.
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CSOD is ex post budget balanced. If we cannot find k agents to pay 1/k each
for any k, then the optimal deadline is 1 and the cost sharing failed. That is, we
simply do not reveal the bug (choose not to buy the bug from the seller).

Unfortunately, we gained some and lost some. Due to changing deadlines,
the mechanism is not strategy-proof.

Example 2. Let us re-consider the type profile (0.9, 0.8, 0.26, 0.26). The optimal
deadline for this type profile is 0.625. By reporting truthfully, agent 2 receives
the bug at time 0 and pays 0.5. However, she can lower her type to 0.26 (the
optimal deadline is now slightly below 1). Agent 2 still receives the bug at time
0 but only pays 0.25.

Other than not being strategy-proof, under our prior-free settings, CSOD is
optimal in the following senses:

Theorem 1. Cost sharing with optimal deadline (CSOD) is both Max-
Delay-Undominated and Sum-Delay-Undominated.

Proof. We first focus on Max-Delay-Undominance. Let M be a strategy-
proof and individually rational mechanism that Max-Delay-Dominates
CSOD.

We will prove by contradiction that such a mechanism does not exist.
Let (v1, v2, . . . , vn) be an arbitrary type profile. Without loss of generality,

we assume v1 ≥ v2 ≥ . . . vn. We will show that M ’s allocations and payments
must be identical to that of CSOD for this type profile. That is, M must be
identical to CSOD, which results in a contradiction.

We first consider type profiles under which the bug is sold under CSOD. We
still denote the type profile under discussion by (v1, v2, . . . , vn). Let k∗ be the
number of agents who participate in the cost sharing under CSOD.

We construct the following type profile:

(1/k∗, . . . , 1/k∗
︸ ︷︷ ︸

k∗

, 0, . . . , 0) (1)

For the above type profile, under CSOD, the first k∗ agents receive the bug
at time 0 and each pays 1/k∗. By dominance assumption (both Max-Delay-
Dominance and Sum-Delay-Dominance), under M , the bug must also be
sold. To collect 1, the first k∗ agents must each pays 1/k∗ and must receive the
bug at time 0 due to individual rationality.

Let us then construct a slightly modified type profile:

(v1, 1/k∗, . . . , 1/k∗
︸ ︷︷ ︸

k∗−1

, 0, . . . , 0) (2)

Since v1 ≥ 1/k∗, under M , agent 1 must still receive the bug at time 0 due
to the monotonicity constraint. Agent 1’s payment must still be 1/k∗. If the
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new payment is lower, then had agent 1’s true type been 1/k∗, it is beneficial
to report v1 instead. If the new payment is higher, then agent 1 benefits by
reporting 1/k∗ instead. Agent 2 to k∗ still pay 1/k∗ and receive the bug at time
0 due to individual rationality.

We repeat the above reasoning by constructing another slightly modified type
profile:

(v1, v2, 1/k∗, . . . , 1/k∗
︸ ︷︷ ︸

k∗−2

, 0, . . . , 0) (3)

Due to the monotonicity constraint, agent 2 still pays 1/k∗ and receives the
bug at time 0. Had agent 1 reported 1/k∗, he would receive the bug at time 0
and pay 1/k∗, so due to the monotonicity constraint, agent 1 still pays 1/k∗ and
receives the bug at time 0 under type profile (3). The rest of the agents must
be responsible for the remaining (k∗ − 2)/k∗, so they still each pays 1/k∗ and
receives the bug at time 0.

At the end, we can show that under M , for the following type profile, the
first k∗ agents each pays 1/k∗ and must receive the bug at 0.

(v1, v2, . . . , vk∗ , 0, . . . , 0) (4)

For the above type profile (4), there are n − k∗ agents reporting 0s. For such
agents, their payments must be 0 due to individual rationality. Since M Max-
Delay-Dominates4 CSOD, these agents’ allocation time must be at most

1
k∗vk∗ , which is their allocation time under CSOD (this value is the optimal
deadline). We show that they cannot receive the bug strictly earlier than 1

k∗vk∗
under M .

Let us consider the following type profile:

(v1, v2, . . . , vk∗ ,
k∗vk∗

k∗ + 1
, . . . , 0) (5)

For type profile (5), agent k∗ + 1 must receive the bug at time 0 and pay
1/(k∗ + 1). She can actually benefit by reporting 0 instead, if under type pro-
file (4), agents reporting 0 receive the bug at 1

k∗vk∗
∗

< 1
k∗vk∗ for free.

utility for reporting truthfully =
k∗vk∗

k∗ + 1
− 1

k∗ + 1
,utility for reporting 0 =

k∗vk∗

k∗ + 1
(1 − 1

k∗vk∗

∗
) >

k∗vk∗

k∗ + 1
(1 − 1

k∗vk∗
) =

k∗vk∗

k∗ + 1
− 1

k∗ + 1

Therefore, for type profile (4), all agents who report 0 must receive the bug
at exactly 1

k∗vk∗ . That is, for type profile (4), M and CSOD are equivalent.

4 The claim remains true if we switch to Sum-Delay-Dominance.
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Now let us construct yet another modified type profile:

(v1, v2, . . . , vk∗ , vk∗+1, 0, . . . , 0) (6)

Here, we must have vk∗+1 < k∗vk∗
k∗ +1 . Otherwise, under the original type profile,

we would have more than k∗ agents who join the cost sharing. We assume under
M , agent k∗ + 1 receives the bug at time t and pays p. t is at most 1

k∗vk∗ due to
the monotonicity constraint. We have

utility when the true type is vk∗+1 and reporting truthfully = vk∗+1(1 − t) − p

utility when the true type is vk∗+1 and reporting 0 = vk∗+1(1 − 1
k∗vk∗

)

Therefore,

vk∗+1(1 − t) − p ≥ vk∗+1(1 − 1
k∗vk∗

) (7)

Had agent k∗ + 1’s type been k∗vk∗
k∗+1 , her utility for reporting her true type

must be at least her utility when reporting vk∗+1. That is,

utility when the true type is
k∗vk∗

k∗ + 1
and reporting truthfully =

k∗vk∗

k∗ + 1
− 1

k∗ + 1

utility when the true type is
k∗vk∗

k∗ + 1
and reporting vk∗+1 =

k∗vk∗

k∗ + 1
(1 − t) − p

That is,

k∗vk∗

k∗ + 1
− 1

k∗ + 1
≥ k∗vk∗

k∗ + 1
(1 − t) − p (8)

Combine Eqs.(7), (8), vk∗+1 < k∗vk∗
k∗+1 , and t ≤ 1

k∗vk∗ , we have p = 0 and
t = 1

k∗vk∗ . That is, under type profile (6), agent k∗ +1’s allocation and payment
remain the same whether she reports 0 or vk∗+1.

Repeat the above steps, we can show that under the following arbitrary
profile, agent k∗ +2 to n’s allocation and payment also remain the same as when
they report 0.

(v1, v2, . . . , vk∗ , vk∗+1, vk∗+2, . . . , vn) (9)

That is, for type profiles where the bug is sold under CSOD, M and CSOD
are equivalent.

We then consider an arbitrary type profile for which the bug is not sold under
CSOD. Due to the monotonicity constraint, an agent’s utility never decreases
when her type increases. If any agent i receives the bug at time t that is strictly
before 1 and pays p, then due to the individual rationality constraint, we have
that vi(1−t)−p ≥ 0. vi must be strictly below 1, otherwise the bug is sold under
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CSOD. Had agent i’s true type been higher but still below 1 (say, to vi + ε), her
utility must be positive, because she can always report vi even when her true
type is vi + ε. But earlier we proved that had vi’s true type been 1, she would
receive the bug at time 0 and pay 1. Her utility is 0 when her type is 1. This
means her utility decreased if we change her true type from vi + ε to 1, which is
a contradiction. That is, all agents must receive the bug at time 1 (and must pay
0). Therefore, for an arbitrary type profile for which the bug is not sold under
CSOD, M still behaves the same.

In the above proof, all places where we reference Max-Delay-Dominance
can be changed to Sum-Delay-Dominance. ��

CSOD is both Max-Delay-Undominated and Sum-Delay-
Undominated, but it is not strategy-proof. We now propose our final mech-
anism in this section, which builds on CSOD. The new mechanism is strategy-
proof and its delay is within a constant factor of CSOD.5

Group-Based Cost Sharing with Optimal Deadline (GCSOD)

Strategy-proofness: Yes
Individual rationality: Yes

Ex post budget balance: Yes

– For agent i, we flip a fair coin to randomly assign her to either the left group
or the right group.

– We calculate the optimal deadlines of both groups.
– We run CSD on both groups.
– The left group uses the optimal deadline from the right group and vice versa.

Claim. Group-based cost sharing with optimal deadline (GCSOD) is strategy-
proof, individually rational, and ex post budget balanced.

Proof. Every agent participates in a CSD so strategy-proofness and individual
rationality hold. Let DL and DR be the optimal deadlines of the left and right
groups, respectively. If DL < DR, then the left group will definitely succeed
in the cost sharing, because its optimal deadline is DL and now they face an
extended deadline. The right group will definitely fail in the cost sharing, as
they face a deadline that is earlier than the optimal one. At the end, some
agents in the left group pay and receive the bug at 0, and the remaining agents
in the left group receive the bug at time DR for free. All agents in the right
group receive the bug at time DL for free. If DL > DR, the reasoning is the
same. If DL = DR < 1, then we simply tie-break in favour of the left group. If
DL = DR = 1, then potentially both groups fail in the cost sharing, in which
case, we simply do not reveal the bug (do not buy it from the seller). ��
5 That is, we fixed the strategy-proofness issue at the cost of longer delays, but it is

within a constant factor.
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Definition 4. Mechanism A is α-Max-Delay-Competitive against mecha-
nism B if for every agent i, every type profile, we have that the max delay under
A is at most α times the max delay under B.

α-Sum-Delay-Competitive is defined similarly.

Theorem 2. GCSOD is 4-Max-Delay-Competitive against CSOD under
two technical assumptions:

– No agent’s valuation for the bug exceeds the whole cost. That is, vi ≤ 1 for
all i.

– At least one agent does not participate in the cost sharing under CSOD.

There’s no way to ensure that the first assumption always holds, but it can
be argued that it at least holds in the scenarios of cost sharing serious bugs
beyond any individual’s purchasing power. The second assumption is needed only
because in the single case of everyone joining the cost sharing under CSOD, the
max delay is 0. While under GCSOD, the max delay is always greater than 0 so
it would not be competitive in this case only. And for the other assumption, as
our system would welcome as many agents as possible, it is expected that there
are always agents who don’t value a new bug very much so that they would
prefer to be free riders instead of participating in the cost sharing under CSOD.

Proof. Let us consider an arbitrary type profile that satisfies both technical
assumptions. We denote it by (v1, v2, . . . , vn). Without loss of generality, we
assume v1 ≥ v2 ≥ · · · ≥ vn. Let k∗ be the number of agents who join the cost
sharing under CSOD. The optimal deadline under CSOD is then D∗ = 1

k∗vk∗ ,
which is exactly the max delay for this type profile.

Under a specific random grouping, for the set of agents from 1 to k∗, we
assume kL agents are assigned to the left group and kR = k∗ − kL agents are
assigned to the right group.

For the left group, the optimal deadline is at most 1
kLvk∗ if kL ≥ 1, which is

at most k∗
kL

D∗. When kL = 0, the optimal deadline is at most 1. Under CSOD,
since all types are at most 1, the optimal deadline D∗ is at least 1/k∗. That is,
if kL = 0, the optimal deadline of the left group is at most k∗D∗.

In summary, the optimal deadline of the left group is at most k∗
kL

D∗ if kL ≥ 1
and k∗D∗ if kL = 0. That is, the optimal deadline of the left group is at most

k∗
max{1, kL}D∗

Similarly, the optimal deadline of the right group is at most k∗
max{1, kR}D∗

The max delay under GCSOD is at most the worse of these two deadlines.
The ratio between the max delay under GCSOD and the max delay under
CSOD is then at most k∗

max{1,min{kL, k∗−kL}} .
We use α(k) to denote the expected ratio (expectation with regard to the

random groupings):
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α(k) =
k∑

kL=0

1
2k

(
k

kL

)
k

max{1,min{kL, k − kL}} (10)

We define β(k) = α(k)2k.

β(k) =
k∑

kL=0

(
k

kL

)
k

max{1,min{kL, k − kL}} =
k−1∑

kL=1

(
k

kL

)
k

min{kL, k − kL} + 2k

If k is even and at least 50, then

β(k)=

k/2−1∑

kL=1

(
k

kL

)
k

min{kL, k − kL} +

k−1∑

kL=k/2+1

(
k

kL

)
k

min{kL, k − kL} + 2

(
k

k/2

)
+ 2k

=2

k/2−1∑

kL=1

(
k

kL

)
k

kL
+ 2

(
k

k/2

)
+2k

β(k) = 2
k/2−1∑

kL=1

(
k + 1
kL + 1

)
(kL + 1)k
(k + 1)kL

+ 2
(

k

k/2

)
+ 2k

≤ 4
k/2−3∑

kL=1

(
k + 1
kL + 1

)
+ 2

(
k + 1

k/2 − 1

)
(k/2 − 1)k

(k + 1)(k/2 − 2)

+ 2
(

k + 1
k/2

)
(k/2)k

(k + 1)(k/2 − 1)
+ 2

(
k + 1
k/2

)
+ 2k

≤ 4
k/2−3∑

kL=1

(
k + 1
kL + 1

)
+ 2.1

(
k + 1

k/2 − 1

)
+ 4.1

(
k + 1
k/2

)
+ 2k

The ratio between
(
k+1
k/2

)
and

(
k+1

k/2−1

)
is at most 1.08 when k is at least 50.

β(k)≤ 4

k/2−3∑

kL=1

(
k + 1

kL + 1

)
+4

(
k + 1

k/2 − 1

)
+ 4

(
k + 1

k/2

)
+ 2k ≤ 4

k/2−1∑

kL=0

(
k + 1

kL + 1

)
≤ 4 × 2k

We omit the similar proof when k is odd. In summary, we have α(k) ≤ 4 when
k ≥ 50. For smaller k, we numerically calculated α(k). All values are below 4. ��
Corollary 1. GCSOD is 8-Sum-Delay-Competitive against CSOD under
two technical assumptions:

– No agent’s valuation for the bug exceeds the whole cost. That is, vi ≤ 1 for
all i.

– At least half of the agents do not participate in the cost sharing under CSOD.
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Proof. Let D∗ and k∗ be the optimal deadline and the number of agents who
join the cost sharing under CSOD. The Sum-Delay of the agents under CSOD
is (n − k∗)D∗. Under GCSOD, the deadlines are at most 4D∗ according to
Theorem 2. The Sum-Delay is then at most 4D∗n. Therefore, the competitive
ratio is 4n

n− k∗ , which is at least 8 if k∗ ≤ n/2. ��

5 Settings with Prior Distributions

In this section, we assume that there is a publicly known prior distribution
over the agents’ types. Specifically, we assume that every agent’s type is drawn
from an identical and independent distribution, whose support is [0, U ]. We
still enforce the same set of mechanism constraints as before, namely, strategy-
proofness, individually rationality, and ex post budget balance. Our aim is to
minimize the expected Max-Delay or the expected Sum-Delay. Our main
results are two linear programs for computing the lower bounds of expected Max-
Delay and expected Sum-Delay. We then compare the performance of CS and
GCSOD against these lower bounds.

The key idea to obtain the lower bounds is to relax the ex post budget balance
constraint to the following:

– With probability C, the bug is not sold under the optimal mechanism. C
depends on both the mechanism and the distribution.

– Every agent’s expected payment is then (1−C)/n, as the agents’ distributions
are symmetric.6

– Every agent’s expected allocation time is at least C, as the allocation time is
1 with probability C.

We divide the support of the type distribution [0,D] into H equal segments.
We use δ to denote D/H. The i-th segment is then [(i− 1)δ, iδ]. Noting that the
agents’ distributions are symmetric, we do not need to differentiate the agents
when we define the following notation. We use ti to denote an agent’s expected
allocation time when her type is iδ. That is, t0 is an agent’s expected allocation
time when her type is 0, and tH is her expected allocation time when her type
is D. Similarly, we use pi to denote an agent’s expected payment when her type
is iδ. The ti and the pi are the variables in our linear programming models.

Due to Myerson’s characterization, the tH must be non-increasing. That is,

1 ≥ t0 ≥ t1 ≥ · · · ≥ tH ≥ 0

6 It is without loss of generality to assume that the optimal mechanism does not treat
the agents differently based on their identities. Given a non-anonymous mechanism,
we can trivially create an “average” version of it over all permutations of the identi-
ties [7]. The resulting mechanism is anonymous and has the same Max-Delay and
Sum-Delay.



Cost Sharing Security Information with Minimal Release Delay 191

We recall that strategy-proofness and individual rationality together imply
that the agents’ payments are completely characterized by the allocation times.
Using notation from Sect. 3, we have

pMi (vi, v−i) = vi(1 − tMi (vi, v−i)) −
∫ vi

z=0

(1 − tMi (z, v−i)) dz

Using notation from this section, that is

iδ(1 − ti) −
i∑

z=1

(1 − tz)δ ≤ pi ≤ iδ(1 − ti) −
i−1∑

z=0

(1 − tz)δ

C is another variable in our linear programming model. We use IP(i) to denote
the probability that an agent’s type falls inside the i-th interval [(i−1)δ, iδ]. Since
every agent’s expected payment is (1 − C)/n, we have

H∑

z=1

IP(z)pz−1 ≤ (1 − C)/n ≤
H∑

z=1

IP(z)pz

Since an agent’s expected allocation time is at least C, we have

H∑

z=1

IP(z)tz−1 ≥ C

The expected Sum-Delay is at least
∑H

z=1 IP(z)tz. We minimize it to com-
pute a lower bound for the expected Sum-Delay.

To compute a lower bound on the expected Max-Delay, we introduce a few
more notations:

– Let A(i) be the expected Max-Delay when all agents report higher than iδ.
– Let PA(i) be the probability that all agents report higher than iδ.
– Let B(i) be the expected Max-Delay when at least one agent reports at

most iδ.
– Let PB(i) be the probability that at least one agent reports at most iδ.
– Let C(i) be an agent’s expected delay when she reports at most iδ.

The expected Max-Delay is at least the following for any i:

A(i) × PA(i) + B(i) × PB(i) ≥ B(i) × PB(i) ≥ C(i) × PB(i)

We minimize (11) to compute a lower bound on the expected Max-Delay.

C(i) × PB(i) ≥
∑i

z=1 tzIP(z)
∑i

z=1 IP(z)
×

{
1 −

(
H∑

z=i+1

IP(z)

)n}
(11)

We present the expected delays of CS and GCSOD under different distri-
butions. U(0, 1) refers to the case where every agent’s valuation is drawn from
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Max-Delay Sum-Delay

GCSOD CS Lower bound GCSOD CS Lower bound

U(0, 1), n = 1 1.00 1.00 0.89 1.00 1.00 0.89

U(0, 1), n = 2 0.87 0.75 0.67 1.75 1.50 0.96

U(0, 1), n = 5 0.85 0.67 0.46 2.67 1.41 0.94

U(0, 1), n = 10 0.68 0.65 0.29 3.01 1.13 0.89

N(0.5, 0.2), n = 1 1.00 1.00 0.97 1.00 1.00 0.97

N(0.5, 0.2), n = 2 0.87 0.75 0.63 1.75 1.50 0.89

N(0.5, 0.2), n = 5 0.79 0.27 0.20 2.13 0.40 0.27

N(0.5, 0.2), n = 10 0.54 0.15 0.11 2.20 0.17 0.14

N(0.5, 0.4), n = 1 0.95 0.95 0.92 0.95 0.95 0.92

N(0.5, 0.4), n = 2 0.88 0.76 0.66 1.73 1.48 0.94

N(0.5, 0.4), n = 5 0.84 0.57 0.40 2.54 1.09 0.71

N(0.5, 0.4), n = 10 0.65 0.50 0.26 2.76 0.74 0.59

the uniform distribution from 0 to 1. N(0.5, 0.2) refers to the case where every
agent’s valuation is drawn from the normal distribution with mean 0.5 and stan-
dard devastation 0.2, conditional on that the value is between 0 and 1.

CS outperforms GCSOD in terms of both Max-Delay and Sum-Delay.
This is not too surprising because GCSOD is designed for its competitive ratio
in the worst case. Our derived lower bounds show that CS is fairly close to
optimality in a lot of cases.

6 Conclusions and Future Work

We have come up with a mechanism with competitive ratios of 4 for max
delay and 8 for sum delay under certain assumptions. As the problem setting
is rather new, there are plenty of options to be explored when designing mech-
anisms with better performance. Possible solutions showing promise include,
for exmaple, another method we considered but did not dedicate as much time
into—scheduling fixed prices for different sections of time periods, regardless of
the agents’ submitted valuations. But such a mechanism will require extensive
simulations and analyses to evaluate its performance. It should also be noted
that the lack of data for such simulations is to be addressed.

While most of our result is presented under prior-free settings, we made
a certain number of assumptions, some of which easily hold true for realistic
applications—and therefore rather trivial—some of which less so. For example,
there is an assumption that there is at least one agent not participating in the
cost sharing in the benchmark function CSOD. This is necessary because we
cannot evaluate any mechanism’s resulting time against 0 and produce a valid
competitive ratio, while this can also be easily satisfied by including free-riders
who are determined not to contribute at all. But for the assumption that no
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agent’s valuation exceeds the total required amount, although it is introduced
because of similar reasons, we cannot expect it to hold true for every case. So
either removing existing constraints to generalize the solution or adding more
assumptions to yield better results would be reasonable as immediate future
work.
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Abstract. Myerson’s seminal work characterized optimal auctions;
applied naively, however, his approach yields exponential-time algo-
rithms. Using Border’s theorem, in contrast, one can solve mechanism
design problems in polynomial time. This latter approach relies on lin-
ear programming machinery, the mechanics of which are significantly
more complicated than Myerson’s. Motivated by the simplicity and trans-
parency of Myerson’s analysis, we present fast algorithms for computing
interim allocations in simple auction settings. These methods apply to
both surplus and revenue maximization, and yield ex-ante symmetric
solutions.

Keywords: Mechanism design · Auctions · Simple algorithms

1 Introduction

In a sealed-bid auction with bidders whose values are described by a single-
parameter, Vickrey [10] showed that bidders can be incentivized to bid their
true value by allocating to a highest bidder, and requiring winners to pay the
second highest bid. Consequently, Vickrey auctions maximize surplus. Building
on this idea, Myerson [8] showed that the auctioneer can maximize the total
expected revenue by allocating to a bidder with the highest virtual value, and
adding to this design a reserve price. In such auctions, one may naturally ask:
what is the total expected surplus and revenue, what is the probability of a
bidder being allocating, and how much should each bidder expect to pay?

Note that it is straightforward to estimate total expected surplus and rev-
enue using Monte Carlo methods. But beyond these aggregate quantities, we
are also interested in the details of the mechanism, namely the allocation prob-
abilities and payments. To answer all three of the aforementioned questions,
one could apply Vickrey’s or Myerson’s analyses in a straightforward manner,
but this would yield an exponential time algorithm—exponential in the number
of bidders.1 Alternatively, using Border’s theorem, one could instead compute
1 In this work, we assume discrete value distributions. Assuming continuous value

distributions, the mathematical program for the expected surplus or revenue-
maximizing allocations and payments can be solved analytically.
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the quantities of interest in polynomial time (See, for example, Cai et al. [3]).
This latter approach, however, which employs linear programming, buys us no
understanding of the solution.2 This lack of intuition is problematic for bid-
ders who want to understand their probability of winning, and how much they
should expect to pay. In sum, existing methods may not allow bidders to reason
about an auction’s outcome in sufficient detail without spending an exponential
amount of time or implementing a linear program.

In this paper, we show that in certain sealed-bid auctions, assuming bidders
values are described by a single parameter, one does not need to invoke such
machinery. We put forth alternative solutions, which are both fast and intuitive,
and avoid the black-box nature of linear programming. Our methods apply to
the “standard” dominant-strategy incentive-compatible single-good, sealed-bid;
k-Vickrey; and sponsored search auctions implied by Myerson’s analysis.

These three auction formats are well-defined, up to tie-breaking. As many
bidders would not be satisfied with a serially dictatorial allocation scheme (see,
for example, [9]), we restrict our attention to ex-ante symmetric mechanisms—
those in which the probability of winning for each of the highest bidders is 1/Z,
when Z bidders place the highest bid. Our methods are designed to preserve the
interim allocations of ex-ante symmetric mechanisms.3

In each setting, we describe how to compute interim allocations in time poly-
nomial in the number of bidders, while preserving symmetry. Further, our meth-
ods provide intuition that justifies the resulting allocations. As a byproduct of
computing interim allocations, our algorithms also output total expected surplus
and revenue. Specifically, we provide three methods. We express their complex-
ities in terms of the number of bidders n and the size of the value space K:

1. We show that exact interim allocations can be computed in polynomial time
when there are no ties, and we use perturbations to arrive at approximately-
optimal interim allocations otherwise. Our method is simple to implement,
and takes O(n logK) time to compute an interim allocation.

2. We also show that by sampling tie-breaking rules, we can use dynamic pro-
gramming to arrive at interim allocations with small errors. This method also
takes O(n2 logK) time to compute an interim allocation in the single-good
setting, but extends to cases in which there are k goods.

3. Finally, we show that by using dynamic programming, we can compute exact
interim allocations. This method takes O(n3 logK) time in the single-good
setting, but extends to cases in which there are k goods.

Related Work. In principle, revenue maximization for some mechanism design
problems can be solved using Border’s characterization of interim feasible out-
comes [1] and an ellipsoid-style algorithm with a separation oracle [7]. See, for

2 Analogously, one can use linear programming to solve the fractional knapsack prob-
lem. A greedy approach, which is also optimal, in effect explains the solution.

3 That said, our randomized algorithms can be extended to work for any randomized
tie-breaking scheme, because any randomized tie-breaking scheme can be expressed
as a convex combination of deterministic tie-breaking schemes.
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example, Cai et al. [2]. However, in practice, such mechanisms tend to be expen-
sive and do not have the simplicity and elegance of the pointwise maximization
procedure Myerson’s analysis yields. Additionally, recent work by Gopalan et
al. [5] describes limitations to using such methods, further motivating us to seek
alternative methods of solving for expected surplus and revenue, interim alloca-
tions, and interim payments. We make use of perturbations for handling ties, as
Hartline [6] did for revenue curves. Additionally, we assume value distributions
are discrete with finite support, as was previously studied by Elkind [4].

2 Model and Background

An auctioneer would like to sell some set of goods or services to some subset
of n bidders. Each bidder i ∈ N = {1, . . . , n} has a private value (or type)
0 ≤ vi ∈ Ti that is independently drawn from some discrete distribution Fi with
finite support. Let T = T1 × · · · × Tn be the set of all possible value vectors
(profiles), and let F = F1 × · · · × Fn be the distribution over value vectors
v = (v1, . . . , vn) ∈ T. Let the cardinality of the largest type space be K =
maxi∈N |Ti|. Let b = (b1, . . . , bn) ∈ R

n be a vector of bids, where the ith entry bi

is bidder i’s bid. For any vector y ∈ R
n, we use the notation y = (yi,y−i), where

y−i = (y1, . . . , yi−1, yi+1, . . . , yn). Similarly, T−i =
∏

j �=i Tj and F−i =
∏

j �=i Fj .
Given a vector of reports b , a mechanism determines an allocation rule

x(b) ∈ [0, 1]n, where bidder i’s allocation probability is xi(bi,b−i), together
with a payment rule p(b) ∈ R

n
≥0, where bidder i’s payment is pi(bi,b−i). We

define bidder i’s quasi-linear utility function as = vixi(bi,b−i) − pi(bi,b−i).
Next, we formalize the usual constraints imposed on optimal auction design.

Because we restrict our attention to incentive compatible auctions, where it is
optimal to bid truthfully, hereafter, we write xi(vi,v−i) instead of xi(bi,b−i),
and pi(vi,v−i) instead of pi(bi,b−i). We introduce interim allocation and
interim payment variables, respectively: x̂i(vi) = Ev−i

[xi(vi,v−i)] and
p̂i(vi) = Ev−i

[pi(vi,v−i)]. These variables comprise the interim allocation and
payment rules, x̂(v) ∈ [0, 1]n and p̂(v) ∈ R

n
≥0. We call a mechanism (Bayesian)

incentive compatible (IC) if all bidders maximize their expected utility by
reporting truthfully, assuming all other bidders are reporting truthfully: ∀i ∈ N
and ∀vi, wi ∈ Ti, vix̂i(vi) − p̂i(vi) ≥ vix̂i(wi) − p̂i(wi). We say a mechanism
is Individually rational (IR) if it insists on non-negative expected utilities:
∀i ∈ N and ∀vi ∈ Ti, vix̂i(vi) − p̂i(vi) ≥ 0. A mechanism is ex-post feasible
(XP) if it never overallocates: ∀v ∈ T,

∑n
i=1 xi(vi,v−i) ≤ 1. Finally, we require

that 0 ≤ xi(vi,v−i), x̂i(vi) ≤ 1, ∀i ∈ N , ∀vi ∈ Ti and ∀v−i ∈ T−i.

Background. Myerson’s first expressed his payment theorem [8] assuming bid-
ders draw values from continuous distributions. Here, we apply his analysis to
discrete values. Specifically, we assume the distribution of values is drawn from
the discrete type space Ti = {zi,k : 1 ≤ k ≤ Mi}, of cardinality |Ti| = Mi,
where zi,j < zi,k for j < k, and we let zi,|Ti|+1 = zi,|Ti|. We also assume the
probability of type zi,k ∈ Ti is given by cumulative distribution function Fi(zi,k)
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and corresponding probability mass function fi(zi,k). In addition, f−i(v−i) is
the probability mass function of v−i ∈ T−i.

Theorem 1 ([8]). An optimal mechanism is IC and IR iff for all i ∈ N :
the allocation rule x̂ is monotone, i.e., ∀vi ≥ wi ∈ Ti, x̂i(vi) ≥ x̂i(wi); and
interim payment is given by: ∀zi,� ∈ Ti, p̂i(zi,�) = zi,1x̂i(zi,1) +

∑�
k=2 zi,k

(x̂i(zi,k) − x̂i(zi,k−1)).

Myerson also proved that expected revenue can be expressed as something
called expected virtual surplus, which he defined in terms of virtual val-
ues. Using our notation, we define virtual values as follows: ψi(zi,k, zi,k+1) =

zi,k −(zi,k+1 − zi,k)
(

1− Fi(zi,k)
fi(zi,k)

)
. We use the shorthand ψi(vi) ≡ ψi(zi,k, zi,k+1),

where vi = zi,k for some 1 ≤ k ≤ |Ti|. We assume our distributions are reg-
ular, as in [8], so that ψi(zi,k+1) > ψi(zi,k) whenever zi,k+1 > zi,k. Using the
discrete version of Myerson’s payment formula (Theorem 1), and following a
similar analysis to that of Myerson [8], we arrive at the following theorem:

Theorem 2 ([8]). If a mechanism is IC and IR, then
∑

i∈N Ezi,k∼Fi
[p̂i(zi,k)] =∑

i∈N Ezi,k∼Fi
[ψi(zi,k) x̂i(zi,k)].

In maximizing total expected virtual surplus, bidders with negative virtual
values will never be allocated. Since bidders must place a bid that maps to a
non-negative virtual value in order to be allocated, each bidder i has a reserve
price, ψ−1

i (0), which is the smallest bid she may place in order to possibly be
allocated, and the smallest possible payment she must make when allocated.

Using Myerson’s analysis, we can maximize either objective—total expected
surplus, Ev∼F [v · x(v)], or virtual surplus, Ev∼F [ψ(v) · x(v)]—by solving the
problem pointwise, meaning solving for an optimal allocation for each v in turn,
subject only to ex-post feasibility. This can be done (see Algorithm 2) while pre-
serving ex-ante symmetry, without using a serially dictatorial allocation scheme.
The ensuing interim allocations can then be supported with Myerson’s payments,
thereby ensuring IC and IR. However, this procedure is exponential in time, as
it requires iterating over all O(Kn) value vectors. We will present a scheme for
computing ex-ante symmetric interim allocations in polynomial time.

3 Perturbing (Virtual) Values

In this section, we show how one can perturb (virtual) values and compute
interim allocations in polynomial time. We first describe how, when all types
are unique, interim allocations can be computed exactly in polynomial time. We
then handle the general case, by making use of perturbed (virtual) values, and
bounding the errors that may result from this method.

3.1 Special Case: No Ties

We describe how, in the single-good setting, the expected revenue from each
bidder can be described by a partition of calculations in which at most one bidder
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can be allocated. This partitioning does not change the fact that calculating total
expected revenue takes an exponential amount of time. However, in the very
special case of no ties, this partitioning leads to a polynomial-time calculation.

Bidder i can only be allocated when the following criteria are met:

– i has placed a bid that meets i’s reserve price: ψi(vi) ≥ 0, and
– i’s virtual value is the highest: ψi(vi) ≥ maxj∈N\i ψj(vj).

Let w(v) be the set of bidders that can potentially be allocated, i.e., w(v) ={
i : ψi(vi) ≥ 0, ψi(vi) ≥ maxj∈N\i ψj(vj),∀i ∈ N

}
. The ex-ante probability that

a bidder is allocated depends on whether there are any ties or not, and is
given by xi(vi,v−i) = 1i∈w(v )/|w(v)|−1 if w(v) non-empty, and 0 otherwise.
We know that i will not be allocated when she bids less than her reserve
price; only values at least as large as the reserve price may be allocated.
Let τ≥0

i be the set of bidder i’s values that at least match her reserve price:
τ≥0
i = {zi,k : ψi(zi,k) ≥ 0,∀zi,k ∈ Ti}. Similarly, we know that bidder i is guar-

anteed not to be allocated when there exists any other bidder with virtual value
larger than i’s. Specifically, in order for i to win with value zi,k, the other bid-
ders virtual values must be at most ψi(zi,k). Let τ

≤ψi(zi,k)
−i be the set of profiles

other bidders may have where i’s virtual value, ψi(zi,k), is at least as large
as any other: τ

≤ψi(zi,k)
−i =

{
v−i : maxj∈N\i ψj(vj) ≤ ψi,k(zi,k),∀v−i ∈ T−i

}
.

We can now express the interim allocation x̂i(zi,k) as follows: x̂i(zi,k) =
∑{xi(zi,k,v−i)f−i(v−i) | v−i ∈ τ

≤ψi(zi,k)
−i }. Furthermore, we can parti-

tion the calculation of total expected revenue from bidder i as follows:∑
1≤k≤|Ti| ψi(zi,k)fi(zi,k)x̂i(zi,k) =

∑
zi,k∈τ

≥0
i

ψi(zi,k)fi(zi,k)x̂i(zi,k). This total
expected revenue formula involves only a subset of T. However, as indicated by
our expression for total expected revenue this subset is still exponential in size.
Next, we observe that when there are no ties, computing total expected revenue
can be done in polynomial time.

Assuming no ties, when i wins, xi(vi,v−i) = 1. Let τ
<ψi(zi,k)
−i be the set of

profiles other bidders may have where i’s virtual value, ψi(zi,k), is strictly larger
than any other: τ

<ψi(zi,k)
−i =

{
v−i : maxj∈N\i ψj(vj) < ψi,k(zi,k),∀v−i ∈ T−i

}
.

In this strict case, the interim allocation is x̂i(zi,k) =
∑

v−i∈τ
<ψi(zi,k)
−i

f−i(v−i).

Finally, since we are working with independently distributed random vari-
ables, the interim allocation calculation is no longer exponential: x̂i(zi,k) =∏

j �=i Pr(ψi(zi,k) > ψj(zj,�)) =
∏

j �=i

∑
zj,�:ψi(zi,k)>ψj(zj,�)

fj(zj,�). In other
words, assuming no ties, interim allocations can be computed in polynomial
time. Consequently, we can also compute total expected revenue in polynomial
time in this case.

We describe this procedure in Algorithm 1, where Li denotes i’s virtual value
function. Algorithm 1 runs in polynomial time. For each bidder, setting x̂i(zi,k)
to 0 for all zi,k ∈ Ti \ τ≥0

i,Li
is O(K), while computing x̂i(zi,k) is O(nK). We note

that we can improve this run time by precomputing all the Fi, and then running
binary search. In this way, an interim allocation can be found in O(n logK)
time. For any fixed bidder i, running the interim allocation computation for all
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Algorithm 1. Optimized Pointwise Maximizer (No Ties)
1: for all i ∈ N do
2: for all zi,k ∈ Ti \ τ≥0

i,Li
do � τ≥0

i,Li
= {zi,k : Li(zi,k) ≥ 0, ∀zi,k ∈ Ti}

3: x̂i(zi,k) ← 0
4: end for
5: for all zi,k ∈ τ≥0

i,Li
do � Calculate interim allocations

6: x̂i(zi,k) ← ∏
j �=i

∑
zj,�:Li(zi,k)>Lj(zj,�) fj(zj,�)

7: end for
8: for � = 1 to |Ti| do � Calculate interim payments
9: p̂i(zi,�) ← zi,1x̂i(zi,1) +

∑�
k=2 zi,k (x̂i(zi,k) − x̂i(zi,k−1))

10: end for
11: end for
12: S ← ∑n

i=1 Ezi,� [zi,�x̂i(zi,�)] � Total expected surplus
13: R ← ∑n

i=1 Ezi,� [p̂i(zi,�)] � Total expected revenue
14: return S, R, x̂ , p̂

zi,k ∈ τ≥0
i,Li

is O
(
nK2

)
, and computing every p̂i(zi,�) is O(K), as we only require

constant time to compute p̂i(zi,�+1) using p̂i(zi,�). Therefore, determining all
interim allocations takes O

(
n2K2

)
, and determining all interim payments takes

O(nK). Computing S takes O(nK). Computing R takes O(nK). Therefore, the
complexity of Algorithm 1 is O

(
n2K2

)
, or O

(
n2K logK

)
, if we precompute all

the Fi.

Remark 1. When there are no ties, and Li is the identity function, Algorithm 1
provides a way of maximizing total expected surplus in polynomial time.

Remark 2. Generalizing the interim allocation computation used in Algorithm 1
beyond the one-good setting may increase the complexity to undesirable levels.
For example, consider the k-Vickrey auction, in which there are k identical goods
for sale, and assume the bidders have unit demands. Those bidders who are not
among the top k are not allocated. For k > 1, we need to consider all the ways in
which i can be the 1 ≤ � ≤ k-th highest bidder. For each type, this takes O(nk).

Next, we adapt Algorithm 1 to the general case when there are ties.

3.2 Breaking Ties with Perturbations

At this point, we have observed that one can calculate total expected revenue
in polynomial-time when there are no ties. It remains, then, to show how ties
can also be handled in polynomial-time. Here, we show how this can be done by
perturbing (virtual) values.

Similar to Hartline’s perturbation approach [6], our strategy for handling ties
will be to transform any set of virtual values into one that is guaranteed to have
no ties, without changing the allocation function too much. In this section, we
show that we can modify virtual values slightly so that
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– any virtual value larger (smaller) than any other virtual value continues to
remain larger (smaller), and

– any virtual value above (below) the reserve price remains above (below) the
reserve price.

This method will yield, in expectation, allocations described by a pointwise max-
imizer which preserves tie-breaking probabilities and does not employ a serially
dictatorial allocation scheme. However, if one is interested in an outcome that
uses a serially dictatorial allocation method, then the method described in this
section can be adapted to do so.

More formally, our perturbations satisfy the following two lemmas.

Lemma 1. There exists an εA ∈ R>0 such that for all ri,k ∈ [0, 1], if ψi(zi,k) >
ψj(zj,�), then ψi(zi,k) + ri,kεA > ψj(zj,�) + rj,�εA, for all i, j ∈ N , 1 ≤ k ≤ |Ti|,
1 ≤ � ≤ |Tj |.
Computing an εA can be done in polynomial time. Given unique virtual values,
one can construct a set of absolute differences of all unique virtual values S, and
then let εA = min S/2. If all virtual values are the same, then ε = 1 suffices.

Lemma 2. There exists an εB ∈ R>0 such that for all ri,k ∈ [0, 1], if ψi(zi,k) ≥
0, then ψi(zi,k) + ri,kεB ≥ 0, and if ψi(zi,k) < 0, then ψi(zi,k) + ri,kεB < 0, for
all i, j ∈ N , 1 ≤ k ≤ |Ti|, 1 ≤ � ≤ |Tj |.
Computing an εB can be done in polynomial time. Given a set of non-zero virtual
values S, one can set εB = min|ψ|/2, where ψ is the smallest absolute value of
the elements in S.

We say that an ε is a valid ε if it satisfies the properties named in Lemmas 1
and 2 (and restated in Theorem 4.3). The existence of a valid ε is given by the
following theorem:

Theorem 3. There exists a valid ε ∈ R>0 such that for all ri,k ∈ [0, 1], the
following properties hold:

– if ψi(zi,k) > ψj(zj,�), then ψi(zi,k) + ri,kε > ψj(zj,�) + rj,�ε,
– if ψi(zi,k) ≥ 0, then ψi(zi,k) + ri,kε ≥ 0, and
– if ψi(zi,k) < 0, then ψi(zi,k) + ri,kε < 0,

for all i, j ∈ N , 1 ≤ k ≤ |Ti|, 1 ≤ � ≤ |Tj |.
Theorem 3 tells us that unique virtual values may be changed without affect-

ing their ordering among other virtual values, and non-negative (negative) vir-
tual values can likewise be changed and remain non-negative (negative). Thus,
perturbing a unique virtual value will not alter its corresponding allocation.

Even more interesting, any tied virtual values which are perturbed will no
longer be so, provided that changes to virtual values are unique. We use this
observation to compute total expected revenue in polynomial time.

Let the perturbed virtual value function ψ̃i : Ti → R be defined as
ψ̃i(zi,k) = ψi(zi,k) + ri,kε,∀zi,k ∈ Ti, where all ri,k variables are drawn indepen-
dently from a continuous uniform distribution. Since all ri,k variables are being
drawn from a continuous distribution, the probability that ri,k = rj,� is 0, so
each bidder’s perturbed virtual values should be unique.
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Remark 3. Due to machine precision issues, non-unique ri,k terms may appear
in an actual implementation of the perturbed virtual value function. To ensure
correctness, a check may be implemented to see if this is ever the case, and
a new set of ri,k values may be drawn if non-uniqueness is observed. Drawing
O(nK) random numbers and checking for uniqueness is O(nK), so this should not
greatly affect runtime. For example, one may check for uniqueness by inserting
each ri,k into a hash table, keeping track of the number of times each ri,k is seen.

Notice that drawing ri,k from a U(0, 1) distribution is akin to picking a
winner at random when there are ties. This means that we can compute total
expected revenue without any error despite using perturbed virtual values when
determining allocations, as computing interim allocations and interim payments
can each be computed in polynomial time.

Theorem 4. Total expected revenue can be computed in polynomial time using
perturbed virtual value functions.

Remark 4. Our choice of ε and ri,k ensures that virtual values are perturbed
upwards. While it may be possible to perturb virtual values down with an appro-
priate choice of ε and values drawn from, say, a U(−1, 1) distribution, so that
ψ̃i(zi,k) < ψi(zi,k) is possible, any virtual value equal to zero may become neg-
ative. Our choice of ε and U(0, 1) was made to avoid this possibility, so that a
bidder with a zero virtual value may be allocated.

The analysis and remark given is not specific to virtual values, and can
be applied to values as well. We can construct a perturbed value function,
ṽi : T → R, where ṽi(zi,k) = zi,k + ri,kε′ for all i ∈ N , ∀zi,k ∈ Ti, with a valid ε′

computed using values instead of virtual values.

Corollary 1. Total expected surplus can be computed in polynomial time using
perturbed value functions.

Perturbing (virtual) values once and running Algorithm 1 may not yield a
good estimate of interim allocations. Next, we show that by running Algorithm 1
multiple times, the interim allocations we compute will be close to optimal.

3.3 Interim Allocations and Payments

Given that we can, in polynomial time, compute interim allocations, even in the
presence of ties, we can now argue that multiple runs of Algorithm 1 allows us
to obtain ex-ante symmetric interim allocations.

Let v be a bidder profile where multiple bidders have the highest virtual
value. Ordinarily, each bidder i ∈ w(v) has probability p = |w(v)|−1 of being
allocated: i.e., xi(vi,v−i) = p. However, by using perturbed virtual values, allo-
cations x̃i(vi,v−i) are either 0 with probability 1 − p, or 1 with probability p.
This means E[x̃i(vi,v−i)] = 1(p)+0(1 − p) = p. While xi(vi,v−i) �= x̃i(vi,v−i),
it holds that xi(vi,v−i) = E[x̃i(vi,v−i)].
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Observe that x̃i(vi,v−i) is a Bernoulli random variable with mean p and
variance p(1 − p). Assuming multiple runs of Algorithm 1, let x̃d

i (vi,v−i) be an

allocation of the dth run. Let yi,D(v) =
∑D

d=1 x̃d
i (v )

D be the estimate of x̃i(v)
after D observations of vector v . By Chebyshev’s inequality, for a fixed a > 0,
Pr(|yi,D(v) − xi(v)| ≥ a) ≤ p(1− p)

a2D . This suggests that for a fixed v , we can
recover a good estimate of the allocation xi(vi,v−i) with high probability after
a few runs of Algorithm 1.

Interim allocations x̂i(vi) are dependent on the outcomes xi(vi,v−i) for
every v−i ∈ T−i. Let χ(vi) be the set of v−i in which i may win, but ties
with at least one other bidder: χ(vi) = {v−i ∈ T−i : |w(vi,v−i)| > 1, i ∈
w(vi,v−i)}. To obtain a good estimate of an interim allocation x̂i(vi), we can
use a union bound to determine how many times we should run Algorithm 1:
∑

v−i∈χ(vi)
Pr (|yi,D(vi,v−i) − xi(vi,v−i)| ≥ a) ≤ ∑

v−i∈χ(vi)
(1− |w(vi,v−i)|−1)

|w(vi,v−i)|a2D .
In words, Chebyshev’s inequality tells us that the number of times we should
run Algorithm 1 is directly proportional to the number of ties there are. When
there are no ties, only one run is sufficient. An exponential number of ties would
require an exponential number of runs to recover a good estimate of interim allo-
cations. With a good estimate of interim allocations, a good estimate of interim
payments can then be computed using Myerson’s payment formula.

Remark 5. Like Myerson [8], we assumed our distributions are regular, so that
ψi(zi,k+1) > ψi(zi,k) whenever zi,k+1 > zi,k. However, some works, such as
[6], use regularity to describe distributions so that virtual values are not strictly
increasing with respect to value. By adding small perturbations, we cannot guar-
antee that ψ̃i(zi,k+1) ≥ ψ̃i(zi,k) whenever ψi(zi,k+1) = ψi(zi,k). In expectation,

whenever ψi(zi,k+1) = ψi(zi,k), E
[
ψ̃i(zi,k+1)

]
= E

[
ψ̃i(zi,k)

]
, so averaging the

result across multiple runs of Algorithm 1 preserves virtual value monotonicity,
and hence allocation monotonicity, in expectation.

We next describe our second method of computing interim allocations, which
involves sampling tie-breaking schemes, and extends to multiple goods.

4 Sampling Tie-Breaking Schemes

Our analysis of interim allocations thus far applies only in the case of a single
good. We now present simple randomized algorithms that use dynamic program-
ming to estimate interim allocations. These algorithms apply to the k-Vickrey
auction and to sponsored search.

Recall that in a k-Vickrey auction, there are k identical goods, and they are
allocated to the k highest bidders. As usual, we assume symmetric random tie-
breaking. Equivalently, a random permutation of bidder priorities can be sampled
before the auction, with ties then broken according to this permutation.

We characterize the k-Vickrey auction allocation process (from the perspec-
tive of bidder 1), assuming a deterministic tie-breaking permutation π, as:
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1. Initialize counts L, which keeps track of the number of bids higher than bidder
1’s, and R, which keeps track of the number of bids lower than bidder 1’s, to
0.

2. For bidder i from 2 to n:
(a) Case 1: vi > v1, then increment L.
(b) Case 2: vi = v1 and π(i) > π(1), then increment L.
(c) Otherwise: increment R.

3. If L ≥ k, then x1(v1,v−1) = 0, otherwise x1(v1,v−1) = 1.

From this, we can derive a dynamic programming algorithm for calculating the
interim allocation of bidder 1 assuming the deterministic tie-breaking permuta-
tion π. We compute a table T , where T (i, �) is the probability that the value of
variable L is equal to � after the ith iteration in the characterization, assuming
that the bidder values v−1 are drawn from F−1. Initialize all entries to be 0.
Then set T (i = 1, � = 0) = 1. Now for 2 ≤ i ≤ n and 0 ≤ � < n, the table T
satisfies the following recurrence:

– T (i, �) = Prvi∼Fi
(vi ≥ v1)T (i − 1, � − 1) + Prvi∼Fi

(vi < v1)T (i − 1, �).

With this table, the interim allocation of bidder 1 given value v1 is
∑

�<k T (n, �).
If we randomly sampled a uniform π, the expected value of the above dynamic

program is the interim allocation we seek. This gives us a simple randomized
framework for estimating the interim allocation of bidder 1 (and, in general, any
bidder i) in the case of fair tie-breaking, given her value of v1:

1. For m times:
(a) Sample a uniformly random tie-breaking permutation π of bidders.
(b) Compute the interim allocation of bidder 1 using π.

2. Return the average interim allocation.

Observe that interim allocations in these settings, using any tie-breaking permu-
tation, are bounded in [0, 1]. Letting pv1 be the probability that v−1 requires tie-
breaking for the allocation of bidder 1, then the variance of the interim allocation
of bidder 1 over the randomness of the permutation is bounded by Θ(pv1). Thus,
in order to achieve an estimation accuracy of ε′ = ε

n with probability 1 − δ
nK in

each of the interim allocations (per player and type), we can calculate a sufficient
sample complexity m for the above algorithm using the tail bound of Bernstein’s

inequality, PrXi i.i.d.

(∣
∣X̄ − E [X1]

∣
∣ > ε′) ≤ 2e

− mε′2
2(Var[X1] + 1

3 ε′) , for Xi i.i.d. random

variables bounded in [0, 1], and X̄ =
∑m

i=1 Xi

m . So, m = Θ
((

pv1n2

ε2 + 1
ε

)
log nK

δ

)

suffices. Note that for value distributions that do not concentrate around a few
support elements, the probability pv1 is going to be small.

To interpret the accuracy and failure probability we chose, n is the number
of bidders and K is the maximum cardinality of the type space of any bidder.
Therefore, with probability 1 − δ, none of the interim allocations of any player
and any type have estimates more than ε

n away from the truth. With these
accuracy bounds, we can compute the interim payments per bidder per type to
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accuracy εV
n , where V is the maximum range of the type space of any bidder.

Similarly, the expected payment per bidder, from the perspective of the mecha-
nism designer, is estimated to within accuracy εV

n . The sum over bidders gives
an estimate of the expected revenue to an additive error of εV .

Summarizing, the above algorithm estimates the expected revenue in an auc-
tion to an additive error of εV , with probability at least 1 − δ.

The time complexity for calculating an interim allocation is Õ(mn2), since the
allocation process takes O(n2 logK) time to simulate. In the regime of constant
ε and δ, the run time of this randomized algorithm scales in the worst case
as O(n4 log nK), when the probability of ties is large, meaning a concentration
of value probabilities. However, in practice, values are not often concentrated
around discrete values, so the estimate should converge faster than Õ(n4) time.

This framework can be generalized to the setting of sponsored search. In this
setting, there are k non-identical slots on a search webpage, with α1 ≥ · · · ≥ αk

click-through rates, and αi = 0 for i > k. The allocation assigns the ith highest
bidder to slot i for i ≤ k. That is, xi(vi,v−i) = αrank(i), where rank(i) is the
rank of bi in the bid vector, again breaking ties randomly and symmetrically.

In order to estimate the interim allocations for sponsored search, we slightly
modify the dynamic programming algorithm that was used to calculate interim
allocations using a deterministic tie-breaking rule. We still compute the table T
as described, but the returned answer is now

∑
�<k T (n, �)α�+1. The rest of the

estimation algorithm, and the complexity analysis, are unchanged.
We have thus far presented two randomized methods of computing interim

allocations. We next present our final method of computing interim allocations,
which does not involve randomization and yields exact solutions.

5 Deterministic Algorithms for Interim Allocations

Above we presented randomized algorithms for estimating interim allocations
in the single good, k-Vickrey, and sponsored search settings. We now present
deterministic dynamic programs that compute these interim allocations exactly.

Single Good Auctions. The interim allocations in a single good auction can be
calculated precisely, without randomization, even in the case of possible ties.
The following characterization of the allocation process determines, given a bid
vector, the allocation of bidder 1 with symmetric tie breaking:

1. Initialize a boolean variable B, which indicates if bidder 1 loses, to false, and
a count E, which keeps track of the number of ties, to 0.

2. For bidder i from 2 to n:
(a) If vi > v1, then set B to true.
(b) If vi = v1, then increment E.

3. If B is true, then x1(v1,v−1) = 0, otherwise x1(v1,v−1) = 1
E +1 .

Using this characterization, we can compute the interim allocation of bidder 1,
given her value v1, by a dynamic programming algorithm. We compute a table T ,
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where T (i, b, e) is the probability that the values of variables B and E are equal
respectively to b and e after the ith iteration in the characterization, assuming
that the bidder values v−1 are drawn from F−1. Initialize all entries to be 0.
Then set T (i = 1, b = false, e = 0) = 1. For 2 ≤ i ≤ n and 0 ≤ e < n, the table
T satisfies the following recurrence:

– T (i, true, e) = Prvi∼Fi
(vi > v1)(T (i − 1, true, e) + T (i − 1, false, e)) +

Prvi∼Fi
(vi = v1)T (i − 1, true, e − 1) + Prvi∼Fi

(vi < v1)T (i − 1, true, e)
– T (i, false, e) = Prvi∼Fi

(vi = v1)T (i − 1, false, e − 1) + Prvi∼Fi
(vi < v1)T (i −

1, false, e).

Then, the interim allocation of bidder 1 given value v1 is
∑

e
T (n, false, e)

e+1 .

k-Vickrey Auctions and Sponsored Search. We generalize from single good auc-
tions to k-Vickrey auctions, and present a polynomial time dynamic program-
ming algorithm to compute the interim allocations, and hence also the interim
payments and expected revenue.

We refine our characterization of the allocation process from the single good
auction to the following:

1. Initialize counts L, which keeps track of the number of bids higher than bidder
1’s, and E, which keeps track of the number of bids tied with bidder 1’s, and
R, which keeps track of the number of bids lower than bidder 1’s, to 0.

2. For bidder i from 2 to n:
(a) If vi > v1, then increment L, else if vi = v1, increment E, otherwise

increment R.
3. If L ≥ k, then x1(v1,v−1) = 0, otherwise x1(v1,v−1) = 1

E +1 .

Then, to calculate the interim allocation for bidder 1, we adapt the above
dynamic programming algorithm to compute a new table T ′, where T ′(i, �, e) is
the probability that the values of variables L and E are � and e respectively after
the ith iteration. Initialize all entries to be 0. Then set T (i = 1, � = 0, e = 0) = 1.
For 2 ≤ i ≤ n, 0 ≤ � < n, and 0 ≤ e < n, the adapted recurrence is as follows:

– T ′(i, �, e) = Prvi∼Fi
(vi > v1)T ′(i−1, �−1, e)+Prvi∼Fi

(vi = v1)T ′(i−1, �, e−
1) + Prvi∼Fi

(vi < v1)T ′(i − 1, �, e).

For the sponsored search setting, Bidder 1’s interim allocation is instead
∑

(�<k,e) T ′(n, �, e)
∑�+e+1

i=�+1 αi

e+1 , where αi is the allocation to the ith highest bidder.
The complexity of this algorithm is O(n3 logK): the table is of O(n3) size

and the probabilities in the recurrence can be computed in time logarithmic in
the size of the type spaces. Such run time is no worse than the run time given
in Sect. 4, for fixed ε and δ.

Comparing our last method to the earlier ones, we find that there is a tradeoff
between accuracy and run time. Although this last method computes interim
allocations exactly, depending on use case, a randomized algorithm that produces
very accurate estimates may be more, or less, useful than an exact algorithm.
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6 Conclusion

We show how to solve for the interim allocation function in a variety of single-
parameter auction settings. In the classic single-good setting, we show how
one can modify Myerson’s exponential-time pointwise-maximization approach
to compute interim allocations in polynomial time. We then show how one can
use randomness to estimate the interim allocation function by perturbing (vir-
tual) values. These methods enable fast computation of the interim quantities
and estimation of total expected surplus and revenue in the single-good setting.

We then go on to show how one can use dynamic programming in the single-
good setting, and beyond. We present both deterministic and randomized algo-
rithms that compute interim allocations in the k-Vickrey and the sponsored-
search settings. While the randomized methods provide a simple and intuitive
way of estimating interim allocations, the deterministic methods are exact—and
both preserve symmetry regardless of ties. All of our algorithms presented have
a common theme: in order to accurately compute interim allocations, we must
deal with the issue of ties. It is easy to claim victory over the lesser; much less
so over equals. The combinatorial issues involving ties leads to multiple paths
in understanding probabilities of winning. In the future, we plan to investigate
the effect of ties in more complicated single-parameter auction settings, such as
knapsack auctions.

Acknowledgments. This research was supported by NSF Grant #1217761.

Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. Consider any set of virtual values ψ1 > ψ2 > ψ3. For c, d ∈ {1, 2, 3}, let
δc,d = (ψc − ψd) for c < d. Let rc be any number in [0, 1]. The difference between
any rc and rd cannot exceed 1, so δc,d = (ψc − ψd) ≥ (rd − rc)δc,d. Let 0 < εA <
εU
A = min{δc,d : c, d ∈ {1, 2, 3}, c < d}. Then we have (ψc − ψd) > (rd − rc)εA, so

ψc + rcεA > ψd + rdεA. See Fig. 1.

Fig. 1. Graphical depiction of the proof of Lemma 1. Any change of the virtual values
by εA preserves the ordering of virtual values.
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A.2 Proof of Lemma 2

Proof. Let εU
B be the minimum of the absolute value of the set of all non-zero

virtual values: εU
B = min{|ψi(zi,k)| : ψi(zi,k) �= 0,∀i ∈ N,∀zi,k ∈ Ti}. Let 0 <

εB < εU
B . Any virtual value ψi(zi,k) ≥ 0 can have εB added to it and remain

non-negative. Similarly, any virtual value ψi(zi,k) < 0 can have εB added to it
and remain negative, since εB < |ψi(zi,k)|. See Fig. 2.

Fig. 2. Graphical depiction of the proof of Lemma 2. Any change of the virtual values
by εB does not change whether virtual values are negative or not.

A.3 Proof of Theorem 3

Proof. Lemma 1 shows the existence of an εA which satisfies the first property,
and Lemma 2 shows the existence of an εB which satisfies the latter properties.
These values are not unique: for any εA, εB , we can construct an ε′

A < εA and
ε′
B < εB . Thus, the minimum of εA and εB satisfies all three properties of the

theorem.

A.4 Proof of Theorem 4

Proof. For any value vector v ∈ T, Algorithm 1 will allocate only to bidders
with the highest non-negative virtual value. As defined earlier, let w(v) be the
set of bidders with the highest virtual value. Suppose instead of virtual values,
we used perturbed virtual values. Let w̃(v) be the set of bidders with the highest
perturbed virtual values that have met their reserve price:

w̃(v) =
{

i : ψ̃i(vi) ≥ 0, ψ̃i(vi) ≥ max
j∈N\i

ψ̃j(vj),∀i ∈ N

}

.

Using a valid ε guarantees that the intersection of w(v) and w̃(v) is nonempty.
If there are no ties, then w(v) = w̃(v).

The interesting case is when there are ties. Since all perturbed virtual val-
ues are unique, |w(v) ∩ w̃(v)| = 1, and the unique bidder i∗ ∈ w(v) ∩ w̃(v)
contributes ψi∗(vi∗) to the total expected virtual surplus. The probability that
i ∈ w̃(v) is allocated depends on the perturbations. Since perturbations are
drawn independently and uniformly at random, the ri,k values act as tie-breaking
rules, where the probability that any j ∈ w(v) wins is uniform over the cardinal-
ity of w(v), just as in Algorithm 2. The maximum virtual surplus attained from
any convex combination of winners in w(v) where

∑
j∈w(v ) xj

(
vj ,v−j

)
= 1 is

∑
j∈w(v ) ψj(vj)xj

(
vj ,v−j

)
= maxj∈w(v ) ψj(vj), which is the outcome of Algo-

rithm 2. In Algorithm 1, the virtual surplus given by v is ψi∗(vi∗). Since
maxj∈w(v ) ψj(vj) = ψi∗(vi∗), the contribution any v ∈ T has on total expected
revenue is equivalent in both algorithms.
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B Algorithms

B.1 Pointwise Maximization

Algorithm 2 describes the pointwise approach in detail for the one-good set-
ting, where, when maximizing total expected surplus is the objective, each Li is
the identity function. When maximizing total expected revenue, each Li is the
virtual value function. Further notice that Algorithm 2 preserves tie-breaking
probabilities in allocation terms, thus preserving symmetry in the final outcome.
Algorithm 2 is exponential in runtime. This is because determining the interim

Algorithm 2. Pointwise Maximizer
1: for all v ∈ T do � Find allocations
2: x(v) ← 0
3: if any of the Li(vi)’s are positive then
4: w ← arg maxi {Li(vi)}
5: for all i∗ ∈ w do
6: xi∗(vi∗ ,v−i∗) ← 1/|w|
7: end for
8: end if
9: end for

10: for all i ∈ N do � Compute interim quantities
11: for � = 1 to |Ti| do
12: x̂i(zi,�) ← Ev−i

[xi(zi,�,v−i)]

13: p̂i(zi,�) ← zi,1x̂i(zi,1) +
∑�

k=2 zi,k (x̂i(zi,k) − x̂i(zi,k−1))
14: end for
15: end for
16: S ← ∑n

i=1 Ezi,� [zi,�x̂i(zi,�)] � Total expected surplus
17: R ← ∑n

i=1 Ezi,� [p̂i(zi,�)] � Total expected revenue
18: return S, R, x̂ , p̂

allocation takes exponential time. Indeed, if we are given interim allocations, we
can solve for interim payments, total expected surplus, and total expected rev-
enue in polynomial time. Thus, we see that the bottleneck is computing interim
allocations, and is the main subject of this paper. We first analyze the one-good
setting in detail, and then analyze other single-parameter settings. There are
O(Kn) value vectors in T. For each value vector, determining allocations is O(n),
so determining all allocations is O(nKn). Each x̂i(zi,�) is computed in O

(
Kn−1

)
,

so determining all interim allocations takes O(nKn). Each p̂i(zi,�) is computed
in O(K), so determining all interim payments takes O

(
nK2

)
. Computing S is

done in O(nK). Computing R is done in O(nK). Therefore, the complexity of
Algorithm 2 is O(nKn).
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and Efficiency in Multi-objective Games
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Abstract. In a multi-objective game, each individual’s payoff is a
vector-valued function of everyone’s actions. Under such vectorial pay-
offs, Pareto-efficiency is used to formulate each individual’s best-response
condition, inducing Pareto-Nash equilibria as the fundamental solution
concept. In this work, we follow a classical game-theoretic agenda to
study equilibria. Firstly, we show in several ways that numerous pure-
strategy Pareto-Nash equilibria exist. Secondly, we propose a more con-
sistent extension to mixed-strategy equilibria. Thirdly, we introduce a
measurement of the efficiency of multiple objectives games, which pur-
pose is to keep the information on each objective: the multi-objective
coordination ratio. Finally, we provide algorithms that compute Pareto-
Nash equilibria and that compute or approximate the multi-objective
coordination ratio.

Keywords: Multi-objective game · Pareto-nash equilibrium

1 Introduction

Game theory and microeconomics assume that individuals evaluate outcomes
into scalars. However, bounded rationality can hardly be modeled consistently
by agents simply comparing scalars: “The classical theory does not tolerate the
incomparability of oranges and apples” [25]. Money is another case of scalariza-
tion of the values of outcomes. For instance, while ‘making money’ theoretically
creates value [26], the tobacco industry making money and killing approximately
six million people every year [31] is hardly a creation of value1.

In this work, we assume that agents evaluate outcomes over a finite set of dis-
tinct objectives2; hence, agents have vectorial payoffs. For instance, in the case
of tobacco consumers, this slightly more informative model would keep the infor-
mation on these three objectives [4]: smoking pleasure, cigarette cost and conse-
quences on life expectancy. In literature, this model was called games with vecto-
rial payoffs, multi-objective games or multi-criteria games; and several applica-
tions were considered (see e.g. [30,32]). Indeed, behaviors are less assumptively
1 Tobacco consumers are free to value and choose cigarettes how it pleases them.

However, is value the same when they inhale, as when they die suffocating?
2 It is a backtrack from the subjective theory of value, which typically aggregates

values on each objective/commodity into a single scalar by using an utility function.

c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 210–225, 2018.
https://doi.org/10.1007/978-3-030-03098-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03098-8_13&domain=pdf


Multi-objective Games 211

modeled by a partial preference: the Pareto-dominance. Using Pareto-efficiency
in place of best-response condition induces Pareto-Nash (PN) equilibria as the
solution concept for stability, without even assuming that individuals combine
the objectives in a precise manner. Pareto-Nash equilibria encompass the out-
comes, even under unknown, uncertain or inconsistent preferences.

This paper more particularly addresses two unexplored issues.
(1) The algorithmic aspects of multi-objective games have never been studied.
(2) Also, the efficiency of Pareto-Nash equilibria has never been a concern.

Related Literature on Mixed-Strategies and Similar Strategy Spaces. Games with
vectorial payoffs, or multi-objective games, were firstly introduced in the late
fifties by Blackwell and Shapley [1,24]. The former shows the existence of a
mixed-strategy Pareto-Nash equilibrium in finite two-player zero-sum multi-
objective games. The later generalizes this existence result to finite multi-
objective games. Both use a definition of mixed-strategy Pareto-Nash equilib-
ria that suffers an inconsistency: pure-strategy Pareto-Nash equilibria are not
included in the set of mixed-strategy Nash equilibria (see Sect. 4). Nonetheless,
there is an established literature on games with vector payoffs that uses this
definition. Deep formal works generalized known existence results [24] to indi-
vidual action-sets being compact convex subsets of a normed space [29]. Weak
Pareto-Nash equilibria can be approximated [16].

Works Related to Pure Strategies and Algorithms. [30] achieves to character-
ize the entire set of Pareto-Nash equilibria by mean of augmented Tchebycheff
norms. However, the number of dimensions that parameterize these Tchebycheff
norms is algorithmically prohibitive. [20] shows that a MO potential function
guarantees that a Pareto-Nash equilibrium exists in finite MO games.

In Sect. 3, we show in three different settings that pure-strategy Pareto-Nash
equilibria are guaranteed to exist, or very likely to be numerous. In Sect. 4, we
show an inconsistency in the current concept of mixed-strategy PN equilibrium,
and propose an extension to solve this flaw. In Sect. 5, in the fashion of the
price of anarchy [14], we define a measurement of the worst-case efficiency of
individualistic behaviors in games, compared to the optimum. In the multi-
objective case, it is far from trivial, as worst-case equilibria and optima are
not uniquely defined. In Sect. 6, we show how to compute the set of (worst)
pure-strategy Pareto-Nash equilibria for several game structures, and provide
algorithms to compute and approximate our multi-objective coordination ratio3.

2 Preliminaries

Definition 1. A multi-objective game (MO game, or MOG) is defined by the
following tuple

(
N, {Ai}i∈N ,D, {ui}i∈N

)
:

– The agents set is N = {1, . . . , n}. Agent i decides action ai in action-set Ai.

3 All the proofs are in the long paper on arxiv.
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– The shared list of objectives is denoted by D = {1, . . . , d} and every agent
i ∈ N gets her payoff from function ui : A = A1 × . . .×An → R

d which maps
every overall action to a vector-valued payoff; e.g., real ui

k(a) is the payoff of
agent i on objective k for action-profile a = (a1, . . . , an).

Fig. 1. Didactic toy example in Ocean Shores city.

In the subjective theory of value, every individual evaluates her endowment
(ui

1, . . . , u
i
d) however she wants based on an utility function vi : Rd → R. The

theory of multi-objective games [1,24] aims at allowing for individuals that
behave according to several unknown, uncertain, or inconsistent utility functions.
These utility functions are reduced to their common denominator: the Pareto-
dominance, as defined below. That vector y ∈ R

d weakly-Pareto-dominates and
respectively Pareto-dominates vector x ∈ R

d is denoted and defined by:

y � x ⇔ ∀k ∈ D, yk ≥ xk,

y � x ⇔ ∀k ∈ D, yk ≥ xk and ∃k ∈ D, yk > xk.

For the preferences of individuals, given an adversary action-profile
a−i = (aj | j 	= i), this defines a partial rationality on set
ui(Ai,a−i) = {ui(bi,a−i) | bi ∈ Ai}, which is less assumptive than complete
orders, since it does not presume any individual utility function vi : Rd → R.
Formally, given a finite set of vectors X ⊆ R

d, the set of Pareto-efficient vectors
is defined as the following set of non-Pareto-dominated vectors:

EFF[X] = {y ∈ X | ∀x ∈ X, not (x � y)}.

Since Pareto-dominance is a partial order, it induces a multiplicity of Pareto-
efficient vectors. These are the best compromises between objectives. Similarly,
let WST[X] = {y ∈ X|∀x ∈ X,not(y � x)} denote the worst vectors.

In a multi-objective game, individuals behave according to the Pareto -
dominance, inducing the solution concept Pareto-Nash equilibrium (PN), for-
mally defined as any action-profile a ∈ A such that for every agent i ∈ N :

ui(ai,a−i) ∈ EFF
[ {ui(bi,a−i) | bi ∈ Ai} ]

.
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We call these conditions Pareto-efficient responses. Let PN ⊆ A denote the set
of Pareto-Nash equilibria. For instance, in Fig. 1, action-profile (b1, b2, a3, b4, b5)
is a PN equilibrium, since each action, given the adversary local action profile
(column), is Pareto-efficient among the given agent’s two actions (rows). In this
example, there are 13 Pareto-Nash equilibria (depicted in Fig. 2).

Such an encompassing solution concept provides the first phase for bound-
ing the efficiency of games. It is well-known that individualistic behaviors
can be far from the optimum/maximum in terms of utilitarian evaluation
u(a) =

∑
i∈N ui(a). In single-objective games4, this inefficiency is measured by

the Coordination Ratio CR = min[u(PN)]
max[u(A)] [14], which is more commonly known

as the Price of Anarchy [23]. However, in the multi-objective case, the utilitar-
ian social welfare u(a) =

∑
i∈N ui(a) is a vector-valued function u : A → R

d

with respect to d objectives. To study the efficiency of Pareto-Nash equilibria,
we introduce:

– set of equilibria outcomes E = u(PN) (⊂ R
d),

– set of efficient outcomes F = EFF[u(A)] (⊂ R
d).

The utilitarian outcomes are a set of vectors, de-
picted above. Worst case equilibria and optima
are not uniquely defined. The ratio of set of equi-
libria outcomes E (♦) to set of efficient outcomes
F (×) would be a ratio of sets, which remains
undefined. It would be crucial that such a defini-
tion keeps information for every objective. E.g.,
we want to remember that a car pollutes, or that
a cigarette kills, not just that it makes some eco-
nomic agents happy.

Fig. 2. Biobjective set of utilitarian outcomes u(A) ⊂ R
2 in Ocean Shores.

3 Numerous Pure Strategy Pareto-Nash Equilibria Exist

This section demonstrates the existence of pure strategy Pareto-Nash equilibria.
Firstly, we write how the existence results from single-objective (SO) games can
be retrieved in MO games. Secondly, we generalize the equilibria existence results
of single-objective potential games to multi-objective potential games. Thirdly,
we show that on average, numerous Pareto-Nash equilibria exist.

4 In the single-objective case, Pareto-Nash and Nash equilibria coincide.
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3.1 Reductions from MO Games to SO Games

In the literature, most rationalities are constructed by means of a utility function
vi : Rd → R, which is monotonic with respect to the Pareto-dominance, that is:

x � y ⇒ vi(x) > vi(y)

Such functions are called Pareto-monotonic. For instance, these include posi-
tive weighted sums, Cobb-Douglas utilities, and utility functions in general as
assumed by the Arrow-Debreu theorem.

A straightforward consequence is that the set of Pareto-efficient vectors con-
tains the optima of any Pareto-monotonic utility function. Formally, given a
MOG Γ , from Pareto-monotonic utility functions V = (vi : R

d → R|i ∈ N)
the single-objective game V ◦ Γ = (N, {Ai}i∈N , {vi ◦ ui}i∈N ) results from the
given utilities, and one has: PN(V ◦ Γ ) ⊆ PN(Γ ). In other words, Pareto-Nash
equilibria encompass the game’s outcome, regardless of the unknown preferences.

Also, inclusion PN(V ◦ Γ ) ⊆ PN(Γ ) argues for the guaranteed existence of
numerous PN equilibria in MO games, under the following assumptions:

1. the structure of the SO game on every objective is the same,
2. equilibria are guaranteed in that structure of SO game,
3. and a positive linear combination of the MO game induces that SO game.

This remark is the canonical argument used in previous results (e.g. [20,24]).

3.2 Multi-objective Potentials

We now explore potential games, as introduced for congestion games by Robert
Rosenthal [15,22] and recently generalized to MO games [20]. The existence of
an MO potential function guarantees that at least one Pareto-Nash equilibrium
exists [20]. We go further and completely characterize the set of PN equilibria.

Definition 2. An MO game Γ =
(
N, {Ai}i∈N ,D, {ui}i∈N

)
admits (exact)

potential function Φ : A → R
d if and only if for every action-profile a ∈ A,

for every agent i ∈ N and for every action bi ∈ Ai, one has:

∀k ∈ D, Φk(bi,a−i) − Φk(a) = ui
k(bi,a−i) − ui

k(a).

That is, function Φ additively accumulates the vectorial values of each deviation.

Definition 3. Given a vector valued function Φ : A → R
d, let the set of locally

efficient action-profiles LOC(Φ) be the set of action-profiles a ∈ A such that:

Φ(a) ∈ EFF[{Φ(bi,a−i) ∈ R
d | i ∈ N, bi ∈ Ai}].

Set LOC(Φ) corresponds to a generalization of local optima for function Φ, and is
non-empty if sets N , D and A are finite. Moreover, due to the loose requirement
for local efficiency, set LOC(Φ) is likely to contain numerous action-profiles.
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Theorem 1. Let Γ =
(
N, {Ai}i∈N ,D, {ui}i∈N

)
be a finite multi-objective

game5 that admits potential function Φ. Then, it holds that:

PN(Γ ) = LOC(Φ) 	= ∅.

This theorem completely characterizes the set of Pareto-Nash equilibria as the
set of locally efficient action-profiles for function Φ, which is a non-empty set
with numerous action-profiles. More generally, Theorem 1 also holds when sets
N and D are finite and sets Ai are just compact.

3.3 Likelihood of Equilibrium in Random Games

Another manner to study whether a PN-equilibrium exists is to provide a prob-
ability distribution on a family of finite games and then discuss the probability
of PN-equilibrium existence. A similar methodology was successfully applied
[7,9,21] to SO games in several settings where every SO payoff ui(a) is inde-
pendently and identically distributed by a uniform distribution on continuous
intervals [0, 1]. At the heart of this subsection, let random variable Z denote the
number of pure Nash-equilibria action-profiles in the game. In the SO case, there
is almost surely only one best response. However, when considering MO games, a
main technical difference lies in the average number of “best responses” (or here,
Pareto-efficient responses), which in most cases exceeds 1, due to the surface-
like shape of the Pareto-efficient set in R

d, surface which is (d − 1) dimensional.
Here, we assume a probability distribution Pn,α,β , that builds randomly the
Pareto-efficient response tables of an n-agent normal form game with α actions-
per-agent: for every agent i and every adversary action-profile a−i ∈ ∏

j �=i Aj ,
there is a fixed number β : 1 < β ≤ α of Pareto-efficient responses, for the sake
of simplicity.

Theorem 2. Given numbers n ≥ 2 of agents, α ≥ 2 of actions-per-agent and
β ≤ α of Pareto-efficient responses, based on probability distribution Pn,α,β, the
number Z of Pareto-Nash equilibria satisfies E[Z] = βn and:

P ((1 − γ)βn ≤ Z ≤ (1 + γ)βn) ≥ 1 − 1
γ2βn

, ∀γ ∈ (0, 1).

It argues for the existence of numerous Pareto-Nash equilibria when there
are enough agents and efficient responses, and follows from the Bienaymé-
Tchebychev inequality. For instance, (given γ = 1/2) the probability that the
number of Pareto-Nash equilibria Z is between (1/2)βn and (3/2)βn, is at
least 1 − 4β−n, which for β = 2 efficient responses and n = 5 agents, gives
P(16 ≤ Z ≤ 48) ≥ 7/8.

5 In a finite multi-objective game, sets N , {Ai}i∈N and D are finite.
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4 Consistent Extension to Mixed Strategies

To guarantee equilibrium existence by means of fixed-point theorems on compact
sets [17,27], the finite action sets of every agent are expanded to include mixed
strategies. That is: every agent i decides a probability distribution pi in the set
Δ(Ai) of probability distributions over his action-set Ai. Each payoff function
ui is redefined to be the expected utility

ui(p) = Ea∼p [ui(a)],

under the mixed-strategy profile p = (p1, . . . , pn) ∈ ∏
i∈N Δ(Ai). This defines a

mixed-extension of the original game. The stability concept induced is called a
mixed-strategy Nash equilibrium.

In MOGs, Pareto-Nash equilibria based on their original definition by Black-
well [1] and Shapley [24] (below) are those usually considered [2,5,28,32].

Definition 4. Given finite MO game Γ =
(
N, {Ai}i∈N , {D}, {ui}i∈N

)
, a

mixed-strategy profile p = (p1, . . . , pn) ∈ ∏
i∈N Δ(Ai) is a mixed-strategy

Pareto-Nash equilibrium if and only if it satisfies for every agent i:

ui(pi,p−i) ∈ EFF
[{

ui(qi,p−i) ∈ R
d | qi ∈ Δ(Ai)

}]

The rational behind this first definition is the following. For every agent
i, mixed-strategy pi ∈ Δ(Ai) acts as a convex-combination of set of vectorial
payoffs ui(Ai,p−i) and the best-response condition is replaced by the fact that
mixed-strategy pi should have a Pareto-efficient evaluation ui(pi,p−i) among
the elements of this convex set of evaluations {ui(qi,p−i) ∈ R

d | qi ∈ Δ(Ai)}.
That is, a mixed-strategy Pareto-Nash equilibrium is a pure-strategy Pareto-
Nash equilibrium in finite game Γ ’s mixed extension. However, as depicted in
Fig. 3, Definition 1 fails to fulfill two fundamental requirements:

1. Pure-strategy equilibria must be included in mixed-strategy equilibria.
2. Mixed-strategies also enable to model a risk-averse agent.

Proof. Figure 3 demonstrates these side effects.

To fulfill the two requirements, instead of efficient mixed actions, we consider
mixtures of efficient pure-actions. As in Fig. 3, it corrects both side effects.

Definition 5. Given a finite multi-objective game
(
N, {Ai}i∈N , {D}, {ui}i∈N

)
,

a mixed-strategy Pareto-Nash equilibrium is a mixed-strategy profile
p = (p1, . . . , pn) ∈ ∏

i∈N Δ(Ai), such that for every agent i and action ai ∈ Ai

if ai is played with positive probability pi(ai) > 0, then it holds that

ui(ai,p−i) ∈ EFF
[
ui(Ai,p−i)

]
.

This generalized definition connects in the single-objective case to a less
know definition of Nash-equilibria (see [18], p. 30, Theorem 2.1). In this alter-
native definition, each mixed strategy must be a mixture of pure-strategies that
are best-responses. In other words, the support of each mixed strategy must
be included in the set of pure-strategy best-responses. Furthermore, concern-
ing existence, since this revised definition contains the former one, (which is
guaranteed to exist) the new definition is guaranteed to exist too.
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The three outcomes, u(A) = {(1, 4), (2, 2), (4, 1)},
are depicted by black dots. With Def. 4, since
the mixed outcomes are all convex-combinations
of {(1, 4), (2, 2), (4, 1)}, the Pareto-efficient mixed-
strategies are here the convex-combinations of
{(1, 4), (4, 1)}; and outcome (2, 2) is Pareto-
dominated. Not every pure-strategy Pareto-Nash
equilibrium is a mixed-strategy one, which is a severe
inconsistency. Furthermore, since outcome (2, 2) is
well balanced, it may also be decided with a non-null
probability, e.g., if the agent’s utility is concave [6],
or if she is risk-averse [21]. Our revised definition
considers instead all the convex-combinations of the
Pareto-efficient pure actions {(1, 4), (2, 2), (4, 1)}.

Fig. 3. Single-agent three-actions bi-objective game showing inconsistencies. (The coor-
dinates correspond to the bi-objective valuation (u1, u2).)

5 Multi-objective Coordination Ratio

In the single-objective case, the coordination ratio measures the efficiency loss
of equilibria compared to the optimum. In MO games, we claim that it is critical
to study efficiency with respect to every objective. Even after the actions, the
game analyst still has access to the vectorial payoffs. In this section, we follow the
agenda outlined in the introduction, to define a multi-objective coordination ratio
MO-CR[E ,F ] of the set of equilibria outcomes E to the set of efficient outcomes
F , that fills the critical purpose to keep information on each objective.

First, we state the list of desirable properties that we want the ratio to satisfy.
For the purpose of having meaningful divisions and ratios, some vectors are
positive in this section. Given vectors ρ,y ∈ R

d and z ∈ R
d
+, vector ρ � y ∈ R

d

is defined by ∀k ∈ D, (ρ � y)k = ρkyk. Vector y/z ∈ R
d is defined by ∀k ∈

D, (y/z)k = yk/zk. Given vector r ∈ R
d and set of vectors Y , set r�Y is defined

by {r �y ∈ R
d
+|y ∈ Y } and for r ∈ R

d
+, set Y/r is defined by {y/r ∈ R

d|y ∈ Y }.
Given x ∈ R

d, cone C(x) denotes {y ∈ R
d | x � y}, and given X ⊂ R

d, cone-
union C(X) is defined by ∪x∈XC(x). Vector 0 denotes a vector with d zeros, and
1 denotes a vector with d ones.

The first property that we require from MO-CR[E ,F ] is to be on a multi-
objective ratio scale. Given E ,F ⊂ R

d
+ and r ∈ R

d
+, the following shall hold.

MO-CR[E ,F ] ⊆ R
d (1)

MO-CR[{0},F ] = {0} (2)
MO-CR[r � E ,F ] = r � MO-CR[E ,F ] (3)
MO-CR[E , r � F ] = MO-CR[E ,F ]/r (4)

E ⊆ F ⇔ 1 ∈ MO-CR[E ,F ] (5)
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To fix these ideas one can think of d = 1 and given two positive numbers e, f ,
to the properties of ratio e/f . Equation (1) states that MO-CR is expressed in
a multi-objective space. Equations (2), (3) and (4) state that MO-CR is well-
centered and sensitive on each objective to multiplications of outcomes, which is
what we want. For instance, if E is three times better on objective k, then so is
MO-CR. If there are two times more efficient opportunities in F on objective k′,
then MO-CR is one half on objective k′. In other words, the efficiency of each
objective independently reflects on MO-CR in a ratio-scale. Equation (5) states
that if all equilibria outcomes are efficient (i.e. E ⊆ F), then this amounts to
1 ∈ MO-CR[E ,F ], i.e. the MO game is fully efficient.

These requirements rule out a set of first ideas. For instance, we can rule
out comparisons of equilibria outcomes to ideal vector I = (maxz∈F{zk}|k ∈ D)
does not satisfy requirement (5) to have 1 ∈ MO-CR[E ,F ] when E ⊆ F . By
starting from a social welfare f : Rd

+ → R+, taking ratio min f(E)/max f(F),
induces the same problem.

This measurement should also be non-dictatorial, in the sense that no point
of view should be imposed on what the overall efficiency is: no prior choice must
be done on the set of efficient outcomes. Formally, if two sets of efficient out-
comes F ,F ′ ⊂ R

d
+ differ even slightly, then this must reflect at least for some

numerator set E onto ratio MO-CR[E ,F ]. This amounts to a disjunction on effi-
cient outcomes. Finally MO-CR[E ,F ] must provide guaranteed efficiency ratios
that hold for every equilibrium outcome y ∈ E , which amounts to a conjunction
on equilibria outcomes. The definition below follows from these requirements.

Firstly, the efficiency of one equilibrium y ∈ E is quantified without prior
choices on what efficient outcome should we compare it to, as required:

R[y,F ] =
⋃

z∈F
C(y/z),

The idea is that we do not take sides with any efficient outcome. Instead, we
define with flexibility and without a dictatorship a disjunctive set of guaranteed
efficiency ratios, which lets the differences between two sets of efficient outcomes
F ,F ′ ⊂ R

d
+ reflect onto ratio MO-CR[E ,F ].

Secondly, in MOGs, on average, there are many Pareto-Nash equilibria. An
efficiency guarantee ρ ∈ R

d should hold for every equilibrium outcome. It induces
this conjunctive definition of the set of guaranteed vectorial ratios:

R[E ,F ] =
⋂

y∈E
R[y,F ].

In fact, because of the conjunction on equilibria outcomes, the set R[E ,F ]
only depends on sets WST[E ] (instead of set E) and F .

Finally, if two bounds on efficiencies ρ and ρ′ are such that ρ � ρ′ (e.g. the
former guarantees fraction ρ = (0.75, 0.75) of efficiency and the later fraction
ρ′ = (0.5, 0.5)), then ρ′ brings no more information; hence, MO-CR is defined
using EFF on the guaranteed efficiency ratios R[WST[E ],F ]. These points are
summed up in the following definition:
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Definition 6 (MO-CR). Given an MO game, vector ρ ∈ R
d bounds its inef-

ficiency (i.e. ρ ∈ R[E ,F ]) if and only if the following holds (see Fig. 4):

∀y ∈ E , ∃z ∈ F , y/z � ρ.

The multi-objective coordination ratio MO-CR[E ,F ] is then defined as:

MO-CR[E ,F ] = EFF[R[WST[E ],F ]].

u2

E = u(PN)

u(A)

u1

ρ � F

The multi-objective coordination ratio can be
explained by the implications of a vectorial ratio
ρ ∈ MO-CR: for each vector y ∈ E , an efficient
outcome z(y) ∈ F exists such that y Pareto-
dominates vector ρ � z(y). In other words, equi-
libria outcomes E are at least as good as set of
vectors ρ�F : If ρ ∈ R[E , F ], then every equilib-
rium satisfies the ratio of efficiency ρ in an un-
specified manner. In other words, the equilibria
outcomes are contained in the “at least as good
as ρ �F” cone-union, that is: E ⊆ (ρ �F)+R

d
+.

Moreover, since ρ is tight, set E sticks to ρ � F .

Fig. 4. Didactic depiction of a guaranteed vectorial ratio ρ from MO-CR[E , F ].

The most famous results of the coordination ratio (or price of anarchy) are
stated analytically on families of games, for instance on congestion games [3,23].
Such results would also be desirable in the multi-objective case. However, the
underlying proofs do not survive this generalization: while best response inequal-
ities can be summed in single-objective cases, here, non-Pareto-dominances can-
not. This issue is independent of the chosen efficiency measurement and moti-
vates numerical approaches, as proposed in the next section.

6 Computation

In this section, we provide algorithms for computing the set of pure-strategy
Pareto-Nash equilibria and for computing the multi-objective coordination ratio.

6.1 Computing Pure-Strategy Pareto-Nash Equilibria

If the MO game is given in normal form, then it is made of the MO payoffs
of every agent i ∈ N on every action-profile a ∈ A. Since there are nαn such
vectors, where recall that n is the number of agents, α the number of actions per
agent and d the number of objectives, the length of this input is L(n) = nαnd.
Then, enumeration of the action-profiles works efficiently with respect to length
function L, using a simple argument similar to [11].
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Theorem 3. Given a MO game in normal form, computing the set of the best
(resp. worst) equilibria outcomes EFF[E ] (resp. WST[E ]) takes polynomial time

O(nαn+1d + α2nd) = O(L2).

Moreover, if d = 2, this complexity is lowered to quasi-linear-time

O(nαn log2(α)) = O(L log2(α)).

Graphical games provide compact representations of massive multi-agent
games when the payoff functions of the agents only depend on a local sub-
set of the agents [13]. Graphical games can be generalized in a straightfor-
ward manner to assuming vectorial payoffs. Formally, there is a support graph
G = (N,E) where each vertex represents an agent, and an agent i’s evaluation
function only depends on the actions of the agents in his inner-neighbourhood
N (i) = {j ∈ N |(j, i) ∈ E}. That is ui : AN (i) → R

d maps each local action-
profile aN (i) ∈ AN (i) to a multi-objective payoff ui(aN (i)) ∈ R

d.

Definition 7 (Multi-objective graphical game (MOGG)). An MOGG is
a tuple

(
G = (N,E), {Ai}i∈N ,D, {ui}i∈N

)
. N is the set of agents. {Ai}i∈N are

their individual action-sets. D is the set of all objectives. Every function ui :
AN (i) → R

d is vector-valued, and its scope is vertex i’s neighborhood.

Figure 1 pictures a didactic instance of an MOGG. In the same manner as com-
puting equilibria in graphical games was reduced to junction-tree algorithms
[6], it is also possible to exploit a generalized MO junction-tree algorithm [8,10].
However, even though this MO junction-tree algorithm is not in polynomial time
(but rather pseudo-polynomial time), it still remains faster than browsing the
Cartesian product of action-sets and is tractable on average, as experimented in
the appendix. Symmetric games [12] can also be generalized to MOGs:

Definition 8. In a multi-objective symmetric game, individual payoffs are not
impacted by the agents’ identities. There is one sole action-set A∗ for every agent
i. So, when deciding action a∗ ∈ A∗, the multi-objective reward only depends
on the number of agents that decided every action. Consequently, the game is
not specified for every action-profile a ∈ A =

∏
i∈N A∗ and every agent i, but

rather for every action a∗ ∈ A∗ and every configuration c : A∗ → N, where
number c(a∗) ∈ N indicates the number of agents deciding action a∗. Therefore,
the utility is given by a function u∗ such that u∗(a∗, c) ∈ R

d is the payoff for
deciding action a∗ when configuration c occurs.

There is a number
(
n+α−1

α−1

)
of configurations6 to which the MO symmetric game

associates MO vectors. As a consequence, generalizing to vectorial payoffs, the
representation length is L = α

(
n+α−1

α−1

)
d, and when the numbers α and d are fixed

constant, length is L(n) ∈ Θ (αnαd). Quite simply, for computing E , EFF[E ] and
WST[E ], configurations enumeration already takes polynomial time.
6 To enumerate the number of ways to distribute number n of symmetric agents into

α parts, one enumerates the ways to choose α−1 “separators” in n+α−1 elements.
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Theorem 4. Given a multi-objective symmetric game with fixed α,

– computing PN and E takes time O(nαα2d) = O(Lα);
– computing EFF[E ] and WST[E ] takes time O(n2αd) = O(L2). If d = 2, this

lowers to O(L(α + log(L))).

6.2 Computing MO-CR

In this subsection, we address the problem of computing the set MO-CR[E ,F ],
given sets of worst equilibria outcomes WST[E ] and efficient outcomes F . Algo-
rithm 1 (below) computes such set. In the algorithm, set Dt denotes a set of
vectors. Given two vectors, x,y ∈ R

d
+, let x ∧ y denote the vector defined

by ∀k ∈ D, (x ∧ y)k = min{xk, yk}, let xy ∈ R
d
+ be the vector defined by

∀k ∈ D, (xy )k = (xk)yk , and recall that ∀k ∈ D, (x/y)k = xk/yk.

Input: WST[E ] = {y1, . . . , yq} and F = {z1, . . . , zm}
Output: MO-CR = EFF[R[WST[E ], F ]]

create D1 ← {y1/z ∈ R
d
+ | z ∈ F}

for t = 2, . . . , q do
Dt ← EFF[{ρ ∧ (yt/z) | ρ ∈ Dt−1, z ∈ F}]

end
return Dq

Algorithm 1: Computing MO-CR in polynomial-time

Theorem 5. Algorithm1 outputs MO-CR[E ,F ] in poly-time O((qm)2d−1d),
where q = |WST[E ]| and m = |F| denote the size of the inputs, and d is fixed.

Proof. Algorithm 1 calculates product ∩y∈WST[E] ∪z∈F C(y/z), where there
could be mq terms in the output. This set-algebra of cone-unions is compact.

A decisive corollary is that given an MO game with length L that satisfies q =
O(poly(L)), m = O(poly(L)) and both sets WST[E ] and F are computable in
time O(poly(L)), then one can compute MO-CR in polynomial time O(poly(L)).
For instance, it is the case with MO normal forms or MO symmetric games. So
this approach is not intractable in the most basic cases.

6.3 Approximation of the MO-CR for MO Compact
Representations

Unfortunately, Algorithm1 is not practical when the MO game has a compact
form and cardinalities q,m are exponentials with respect to the compact size
of the game’s representation. For instance, this is the case for multi-objective
graphical games. Theorem 6 below answers this issue by taking only a small
and approximate representation of sets WST[E ] and F , in order to output a
guaranteed approximation of sets MO-CR or R[WST[E ],F ]. This suggests the
following general method:
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1. Given a compact MOG representation, compute quickly an approximation
E(ε) of WST[E ] and an approximation F (ε′) of F .

2. Then, given E(ε) and F (ε′), use Algorithm 1 to approximate the MO-CR.

For this general method to be implemented rigorously, we must specify the
precise definitions of the two approximations required in input, for the desired
output to be indeed some approximation of the MO-CR.

Firstly, let us specify the output. The ratios in R[WST[E ],F ] must be repre-
sented, even approximately, but only by using valid ratios of efficiency, as below.

Definition 9 ((1 + ε)-covering). Given R ⊂ R
d
+ and ε > 0, R(ε) ⊂ R is a

(1 + ε)-covering of R, if and only if:

∀ρ ∈ R, ∃ρ′ ∈ R(ε) : (1 + ε)ρ′ � ρ

For instance, R[WST[E ],F ] is (1+0)-covered by MO-CR = EFF[R[WST[E ],F ]].
Denote ϕ : Rd

+ → N
d the discretization into the (1 + ε)-logarithmic grid. Given

a vector x ∈ R
d
+, ϕ(x) is defined by: ∀k ∈ D, ϕk(x) = �log(1+ε)(xk)�. A typical

implementation of (1 + ε)-coverings are the logarithmic (1 + ε)-coverings, which
consist in taking one vector of R in each reciprocal image of ϕ(R). That is, for
each l ∈ ϕ(R), take one ρ in ϕ−1(l). The logarithmic grid is depicted in Fig. 5.

Now we must specify rigorously what approximate representations E(ε1) of
set WST[E ], and F (ε2) of set F we should take in input, in order to guarantee
that R[E(ε1), F (ε2)] is an (1+ε)-covering of R[WST[E ],F ]. Definitions 10 and 11
come from the need of specific approximate representations that will carry the
guarantees to the approximate final output R[E(ε1), F (ε2)].

Definition 10 ((1 + ε)-under-covering). Given ε > 0, E ⊂ R
d
+ and E(ε) ⊂

R
d
+, E(ε) (1 + ε)-under-covers E if and only if:

∀y ∈ E, ∃y′ ∈ E(ε) : y � y′

and ∀y′ ∈ E(ε), ∃y ∈ E : (1 + ε)y′ � y

The first condition states that E(ε) bounds E from below. The second condi-
tion states that this lower bound is precise within a multiplicative (1+ε). Given
E, one can implement Definition 10 by using the log-grid (see e.g. Fig. 5):

E(ε) ← WST
[ {

el ∈ R
d
+ | l ∈ ϕ (WST[E ])

} ]

where ϕ(WST[E ]) = {ϕ(y) ∈ N
d | y ∈ WST[E ]}, and given l ∈ N

d, the vector el

is defined by (el)k = (1 + ε)lk . Now let us state what approximation is required
on the set of efficient outcomes F .

Definition 11 ((1+ε)-stick-covering). Given ε > 0, F ⊂ R
d
+ and F (ε) ⊂ R

d
+,

F (ε) (1 + ε)-stick-covers F if and only if:

∀z′ ∈ F (ε), ∃z ∈ F : z′ � z

and ∀z ∈ F, ∃z′ ∈ F (ε) : (1 + ε)z � z′
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The first condition is easily satisfiable by F (ε) ⊆ F . The second condition states
that F (ε) sticks to F . Given F , one can implement Definition 11 as in Fig. 5:
Take one element of F per cell of the logarithmic grid, and then take WST of
this set of elements. Now we can state that with an approximate Phase 1, the
precision transfers to Phase 2 in polynomial time, as follows.

Fig. 5. MO approximations, depictions of under and stick coverings

Lemma 1. Given ε1, ε2 > 0 and approximations E of E and F of F , if

∀y ∈ E ,∃y′ ∈ E, y � y′ and ∀y′ ∈ E,∃y ∈ E , (1 + ε1)y′ � y (6)
∀z′ ∈ F,∃z ∈ F , z′ � z and ∀z ∈ F ,∃z′ ∈ F, (1 + ε2)z � z′ (7)

holds, then it follows that R[E,F ] ⊆ R[E ,F ] and:

∀ρ ∈ R[E ,F ], ∃ρ′ ∈ R[E,F ], (1 + ε1)(1 + ε2)ρ′ � ρ (8)

Equations (6) and (7) state approximation bounds as in Definitions 10 and
11. Equations (6) state that (1 + ε1)−1E bounds below E which bounds below
E . Equations (7) state that F bounds below F which bounds below (1 + ε2)F .
Crucially, whatever the sizes of E and F , there exist such approximations E
and F with respective sizes O((1/ε1)d−1) and O((1/ε2)d−1) [19], yielding the
approximation scheme below.

Theorem 6 (Approximation Scheme for MO-CR). Given a compact
MOG of representation length L, precisions ε1, ε2 > 0 and two algorithms to
compute approximations E of E and F of F in the sense of Eqs. (6) and (7) that
take time θE(ε1, L) and θF (ε2, L), one can approximate R[E ,F ] in the sense of
Eq. (8) in time O

(
θE(ε1, L) + θF (ε2, L) + (ε1ε2)−(d−1)(2d−1)

)
.

For MO graphical games, Phase 1 could be instantiated with approximate
junction-tree algorithms on MO graphical models [8]. For MO symmetric action-
graph games, in the same fashion, one could generalize existing algorithms [12].
More generally, for the worst equilibria WST[E ] and the efficient outcomes F ,
one could also use meta-heuristics with experimental guarantees.
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7 Conclusion: Discussion and Prospects

Along with equilibrium existence, potential functions also usually guarantee
the convergence of best-response dynamics. This easily generalizes to dynam-
ics where every deviation step is an individual Pareto-improvement. However,
when studying a dynamics based on a refinement of the Pareto-dominance, con-
vergence is not always guaranteed.

Pareto-Nash equilibria, which encompass the possible outcomes of MO
games, very likely exist. The precision of PN-equilibria inevitably relies on the
uncertainty on preferences. A promising research path would be to linearly con-
strain the utility functions of agents. This would induce a polytope and would
boil down to another MO game where every objective corresponds to an extreme
point of the induced polytope. The efficiency of several multi-objective games
could be analyzed by using the contributions in this paper.
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Abstract. In this paper, we consider a student-project-resource allo-
cation problem, in which students and indivisible resources are allo-
cated to every project. The allocated resources determine endoge-
nously the student capacity of a project. Traditionally, this problem is
divided in two: (I) resources are allocated to projects based on expected
demands (resource allocation problem), and (II) students are matched
with projects based on the capacity determined in the previous prob-
lem (many-to-one matching problem). Although both problems are well-
understood, unless the expectations used in the first problem are cor-
rect, we obtain a suboptimal outcome. Thus, it is desirable to solve
this problem as a whole, without dividing it. We start by introducing a
compact representation that takes advantage of the symmetry of prefer-
ences. Then, we show that computing a nonwasteful matching is FPNP-
complete. Besides, a fair matching can be found in polynomial-time.
Finally, deciding whether a stable (i.e. nonwasteful and fair) matching
exists is NPNP-complete.

Keywords: Matching · Resource allocation · Complexity

1 Introduction

In this work, we propose a simple but fundamental model, which we call a
student-project-resource matching-allocation problem. From a first perspective,
this problem can be seen as a two-sided, many-to-one matching problem (Roth
and Sotomayor 1990), since students are matched to each project based on the
preferences of students and projects. From a different perspective, this problem
also contains discrete resource allocation problems (Korte and Vygen 2018), since
resources are allocated to each project. However, unlike the standard setting of
two-sided many-to-one matching, where the capacity of each project (or school)
is exogenously determined, we assume it is endogenously determined by the
allocated resources. A common practice is to determine the resource allocation
part based on some expected demands or past data, and fix the capacities of
projects. Then, the actual allocation of students to projects is determined by
c© Springer Nature Switzerland AG 2018
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using some matching mechanism. In this approach, if the expectations used in
the first problem are incorrect, we obtain a suboptimal outcome. To avoid such
inefficiency, it is desirable to solve this problem as a whole without dividing
it into a matching and a resource allocation problem. One real-life instance is
the nursery school waiting list problem in Japan (Okumura 2017), with children
(students), schools (projects) and nurses (resources). Children are matched to
schools whose quotas are endogenously determined by the assignment of nurses
to schools. In April 2017, a record breaking number of 47,700 children were wait-
listed for daycare centers, urging for more efficient methods to allocate nurses
to schools.

This paper follows a stream of works that deals with constrained match-
ing. Two-sided matching has been attracting considerable attention from AI
researchers (Aziz et al. 2017; Hamada et al. 2017b; Hosseini et al. 2015; Kawase
and Iwasaki 2017; Kurata et al. 2017). A standard market deals with maximum
quotas, i.e., capacity limits that cannot be exceeded. However, many real-world
matching markets are subject to a variety of distributional constraints, including
regional maximum quotas, which restrict the total number of students assigned
to a set of schools (Kamada and Kojima 2015), minimum quotas, which guaran-
tee that a certain number of students are assigned to each school (Fragiadakis
et al. 2016; Goto et al. 2016; Hamada et al. 2017a; Sönmez and Switzer 2013;
Sönmez 2013), and diversity constraints, which enforce that a school satisfies a
balance between different types (e.g. socioeconomic status) of students (Ehlers
et al. 2014; Hafalir et al. 2013; Kojima 2012; Kurata et al. 2017). Also, there
exists a stream of works that examines the computational complexity for finding
a matching that satisfies some desirable properties under distributional con-
straints (Biró et al. 2010; Fleiner and Kamiyama 2012; Hamada et al. 2014).
Furthermore, Abraham et al. (2007) consider a (many-to-one) student-project-
lecturer allocation problem, where every lecturer proposes a set of projects.
Students have preferences on projects, and lecturers on students. Projects and
lecturers have fixed exogenous capacities. Their student-proposing and lecturer-
proposing algorithms both compute a stable matching. Chiarandini et al. (2017)
consider the problem of allocating students to projects, by using linear program-
ming, under various constraints, like envy-freeness.

In normal representations (where every student is represented explicitly),
the large number of students is a first computational issue. In this work, we
assume that large classes of students have the same preferences. The idea of
grouping students with same preferences is related to “agent types” for coalition
structure generation Ueda et al. (2011). It allows the introduction of a compact
representation that deals with a large number of students. This also defines
computational problems that we study in this paper1. We show the following:

1 Two different representations result in two different computational problems with
distinct intricacies. Here, our results on this compact representation have no impli-
cations on normal representations. Conversely, results on the normal representation
would not imply theorems as strong as in the present article. (E.g. if the number of
projects is a constant, the normal case is tractable, while here it is intractable.).



228 A. Ismaili et al.

Theorem 1 Verifying whether a student-project matching is made feasible by
some resource-project allocation is NP-complete, even in struc-
tured cases. However, if all resources have same capacity, this fea-
sibility is in P.

Theorem 2 If resources are also partitioned into classes, feasibility is in FPT.
Theorem 3 Verifying whether a feasible matching is non-wasteful is coNP-

complete.
Theorem 4 Finding a nonwasteful matching is FPNP-complete.
Theorem 5 Given a fixed number of projects, there is an FPTAS for approxi-

mating a nonwasteful matching.
Theorem 6 A fair matching can be computed in polynomial time.
Theorem 7 A stable (i.e., nonwasteful and fair) matching may not exist.
Theorem 8 Verifying whether a matching is stable is coNP-complete.
Theorem 9 Deciding whether a stable matching exists is NPNP-complete.

2 Preliminaries

In this section, we introduce our model, representation and complexity notions.

Definition 1 (Student-Project-Resource (SPR) Instance). An SPR
instance is a tuple I = (S, P,R,X,�S ,�P , TR, qR), defined as follows.

– S = {s1, . . . , sn} is a set of students.
– P = {p1, . . . , pm} is a set of projects.
– R = {r1, . . . , rk} is a set of resources.
– X ⊆ S × P is a finite set of contracts between students and projects.
– �S= (�s)s∈S is a profile of students’ preferences on projects and home (∅).
– �P = (�p)p∈P is a profile of projects’ preferences on (subsets of) students.
– In profile TR = (Tr)r∈R, resource r is compatible with projects Tr ⊆ P .
– In profile qR = (qr)r∈R, integer qr ∈ N>0 is the capacity of resource r.

A contract x = (s, p) ∈ X means that student s is matched to project p. For
each student s ∈ S, strict order �s represents her preference over set P ∪ {∅}.
For each project p ∈ P , weak order �p represents its preference over set S ∪{∅}.

Contract (s, p) is acceptable for student s if p �s ∅ holds, and acceptable for
project p if s �p ∅ holds. Without loss of generality, we assume that X is the
set of every contract (s, p) which is acceptable for student s and project p. ��

One may extend preferences �p to 2S in a non-specified manner that satisfies
both following properties: (i) responsiveness: for every pair of students s, s′ ∈ S
and every subset S′ ⊆ S \ {s, s′}, s �p s′ ⇔ S′ ∪ {s} �p S′ ∪ {s′}, and (ii)
separability: for every s ∈ S and every S′ ⊆ S \ {s}, s �p ∅ ⇔ S′ ∪ {s} �p S′.

Given preference �p, let ∼p (resp. �p) be its symmetric (resp. asymmetric)
part. Given subset of contracts Y ⊆ X, student s and project p, set Ys denotes
contracts {(s, p) ∈ Y | p ∈ P} and set Yp denotes {(s, p) ∈ Y | s ∈ S}. Pref-
erences naturally extend over contracts. When no misunderstanding is possible,
we omit the subscript and just write � or �.
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2.1 Solution Concepts

In this subsection, we define the solution concepts that are studied in this paper.
Our main interest lies in stable (i.e., nonwasteful and fair) matchings.

Definition 2 (Matching). A (many students to one project) matching is a
subset of contracts Y ⊆ X such that for every student s, |Ys| ≤ 1. We can then
abuse shorthand Y in a functional manner:

– Student s is mapped to project Y (s) ∈ P ∪ {∅}.
– Project p hires students Y (p) ⊆ S.

��
Definition 3 (Feasibility). Matching Y ⊆ X is feasible if there exists an allo-
cation function μ : R → P that maps each resource r to a compatible project
μ(r) ∈ Tr, and that satisfies2 for every project p ∈ P that:

|Yp| ≤
∑

r∈μ−1(p)

qr.

A feasible matching (Y, μ) is a couple of a matching and an allocation as above.
Let qμ(p) =

∑
r∈μ−1(p) qr be the total of capacities allocated to project p. ��

Definition 4 (Nonwastefulness). For feasible matching (Y, μ), a contract
(s, p) ∈ X \ Y is a claiming pair if and only if:

1. student s has preference p �s Y (s),
2. project p has preference s �p ∅,
3. and matching (Y \ Ys) ∪ {(s, p)} is feasible.

A feasible matching (Y, μ) is nonwasteful if it admits no claiming pair. ��
For instance, in Fig. 1, (s2, p1) is a claiming pair: by exchanging resources r1

and r2, project p1 (resp p2) gets capacity 2 (resp. 1), and the new matching is
feasible.

Definition 5 (Fairness). For feasible matching (Y, μ), contract (s, p) ∈ X \ Y
is an envious pair if and only if:

1. student s has preference p �s Y (s),
2. there exists a student s′ ∈ Y (p) such that project p prefers s �p s′,
3. and matching Y \ (Ys ∪ Ys′) ∪ {(s, p)} is feasible.

(Since matching Y is feasible, matching Y \ (Ys ∪ Ys′) ∪ {(s, p)} is feasible too.)
A feasible matching (Y, μ) is fair if it has no envious pair. ��
Definition 6 (Stability). A feasible matching (Y, μ) is stable if it is nonwaste-
ful and fair: it admits no claiming pair and no envious pair. ��
Definition 7 (Mechanism). A mechanism ϕ, given any SPR instance, outputs
a feasible matching. If a mechanism always obtains a feasible matching that
satisfies property A (e.g., fairness), we say this mechanism is A (e.g., fair). ��
2 To handle the case where p ∈ P\µ(R) and then µ−1(p) = ∅, we assume the standard

convention that an empty sum equals zero.
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Fig. 1. Instance of student-project-resource allocation problem. The given matching is
wasteful: (s2, p1) is a claiming pair; and it is unfair: s1 envies s2 on p2.

2.2 Compact Representation Under Symmetry

A normal SPR instance is represented by the tuple in Definition 1; hence its
length is polynomial in n, m and k, where the number of students n could be
large. Instead, we propose a compact representation, tailored for instances with
a large number of students. It takes advantage from the fact that numerous
students can have the same preference, hence exponentially many students can
be represented.

Definition 8 (Symmetric SPR Instance). In a symmetric SPR instance,
set S is not fully represented, but is instead partitioned into student-classes
{σ1, . . . , σν}. In every student class σ, students have the same preference over
projects. Also, projects rank classes and are indifferent between students in the
same class. For every student-class σ, we represent its number of students #σ.
Therefore, representation length is polynomial in ν, log(n), m and k. ��

In this setting, at first, the representation of a matching as a map from S to
P seems linear in n, hence non-compact w.r.t. log(n). To overcome this detail,
a matching can also be represented compactly by Y (σ, p) ∈ N≥0 the number of
students of each class mapped to each project.

2.3 Computational Problems

Computation times are always defined with respect to a representation length.
We assume that the following concepts are common knowledge3: length function,
decision problem, function problem, complexity classes P, FPT, NP, coNP, FP,
FPNP, NPNP, coNPNP, polynomial-time reduction, hardness and completeness
(Papadimitriou 2003).

In this paper, we settle the computational complexity of the following prob-
lems. Our main interest lies in computing stable (i.e. nonwasteful and fair)
matchings. While a nonwasteful matching (or a fair matching) always exists,
we will show that a stable matching does not always exist. Hence, we address
function problems for the formers, and a decision problem for the later.
3 FPNP: a solution can be found by calling polynomially many NP-oracles.
NPNP: yes-instances can be solved in non deterministic polynomial-time by calling
one NP-oracle.
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Definition 9 (SPR Allocation Problems).

– Decision Problem SPR/Sym/FA:
Given a symmetric SPR instance and a matching Y ⊆ X, is Y feasible?

– Decision Problem SPR/Sym/Nw/Verif:
Given a sym. SPR instance and a feasible matching (Y, μ), is Y nonwasteful?

– Function Problem SPR/Sym/Nw/Find:
Given a symmetric SPR instance, find a nonwasteful matching.

– Function Problem SPR/Sym/Fair/Find:
Given a symmetric SPR instance, find a fair matching.

– Decision Problem SPR/Sym/NwFr/Verif:
Given a symmetric SPR instance and a feasible matching (Y, μ), is Y stable?

– Decision Problem SPR/Sym/NwFr/Exist:
Given a symmetric SPR instance, does a stable matching exist?

��

3 The Feasibility Problem

In this section, we study the problem of verifying whether a given matching Y is
feasible. A simple tractable case is when all resources r have the same capacities
qr = q and are compatible with every project (Tr = P ). Conversely, in the general
case, we show completeness for class NP, even under strong assumptions.

Theorem 1. Decision problem SPR/Sym/FA is NP-complete,

1. even when there are only two projects, two student-classes with only one
acceptable project and Tr = {p1, p2} for every resource r,

2. and even when for every resource r, capacity qr is in {1, 3}.
However, problem SPR/Sym/FA is in class P when all resources r have the
same capacity qr = q, even if compatibilities Tr ⊆ P vary between resources.

Proof. Problem SPR/Sym/FA belongs to class NP: whether Y is feasible can
be verified in polynomial time, when allocation μ is given as a certificate. ��
Proof (1.). Let any instance of Partition be defined by positive integer set B =
{b1, . . . , bk}. It asks whether there is a subset B′ ⊆ B s.t.

∑
b∈B′ b =

∑
b∈B\B′ b.

We reduce it to an instance of SPR/Sym/FA. There are two projects.
We identify resources R to integers B and the resources’ capacities are qR =
(b1, . . . , bn). For every resource r, compatibilities Tr = {p1, p2} hold. Let integer
β be defined by 2β =

∑
b∈B b. (The odd case is trivial.) There are two student

classes of size β whose only acceptable project is p1 (resp. p2). In matching Y ,
the number of students assigned to projects is |Yp1 | = |Yp2 | = β.

One can identify subset B′ ⊆ B (resp. B \B′) to resources set μ−1(p1) (resp.
μ−1(p2)), and weight

∑
b∈B′ b (resp.

∑
b∈B\B′ b) to project capacity qμ(p1) =∑

r∈μ−1(p1)
qr (resp. qμ(p2) =

∑
r∈μ−1(p2)

qr). The only way that qμ(p1) ≥ β

and qμ(p2) ≥ β holds is when qμ(p1) = qμ(p2) = β. Consequently, there exists
a subset B′ ⊆ B such that

∑
b∈B′ b =

∑
b∈B\B′ b, if and only if there exists an

allocation μ that makes Y feasible. ��
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Fig. 2. Reduction from problem X3C to SPR/Sym/FA, described in proof of Theorem
1.2. We depict X3C instance C = {b1b2b3, b4b6b7, b7b8b9, b4b5b6, b5b8b9, b5b6b7}
on base B = {b1, . . . , b9}. Each line represents a 3-set/project asking resources for
three students, and the last line is a project asking for 3k resources. Each column
represents a resource and the projects it is compatible with. In each square is the
capacity of the resource (the same inside each column). Darker is a solution for X3C
and SPR/Sym/FA; C1, C2, C5 is an exact cover, and the allocation maps every resource
to one project.

Proof (2.). Let any instance of X3C be defined by a set B = {b1, . . . , b3k} and
a collection C = {C1, . . . , Cm} of 3-element subsets of B. It asks whether there
exists a subcollection C′ ⊆ C such that every element of B occurs in exactly one
member C ∈ C′. We reduce it to an instance of SPR/Sym/FA (Fig. 2). Projects
P are identified with collection C and a last element pm+1. On every project
C ∈ P , we define a subset SC of three students wants to go, and on project pm+1,
a subset Sm+1 of 3k students. Hence, the set of students is S = Sm+1∪⋃

C∈P SC ,
and total demand in resources is for 3m+3k students. Resources R are identified
with set B ∪ C. For every resource b ∈ B, we define Tb = {C ∈ C | b ∈ C} and
capacity qb = 1. For every resource C ∈ C, we define TC = {C, pm+1} and
capacity qb = 3. Hence, total offer in resources is 3k +3m, from 3k +m different
resources.

(yes⇒yes.) Let subcollection C′ ⊆ C be an exact cover of B. Then one has
feasible allocation μ : B ∪ C → C ∪ {pm+1} defined by:

– if C ∈ C′, then μ(C) = pm+1 and ∀b ∈ C, μ(b) = C;
– if C ∈ C \ C′, then μ(C) = C.

Indeed, μ is a feasible allocation. It is a function (that maps every resource
b ∈ B) because C′ is an exact cover. If 3-set/project C is in the exact cover,
since |C| = 3, it receives three resources. And, if a 3-set/project C is not in the
exact cover, then it receives a resource of capacity three. The remaining resources
(of remaining capacity 3k + 3m − 3m = 3k) are mapped to project pm+1, which
then gets the allocated capacity 3k that it required.

(yes⇐yes.) Assuming feasibility by some μ : B ∪C → C ∪{pm+1}, since total
demand equates total offer (3k + 3m), no project p ∈ {C1, . . . , Cm, pm+1} has
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excess resources, and only gets exactly the capacity it needs. Hence, if a resource
C from C is allocated to pm+1, then every resource b ∈ C are allocated to project
C. And, if a resource C from C is allocated to project C, no additional resources
are allocated to project C. (It would contradict the tightness on capacities.)
Therefore, subcollection C′ = μ−1(pm+1) is an exact cover of B. Indeed, by
definition of C′, every element b ∈ B is mapped to a 3-set in C′ which receives
exactly the right number (by tightness). ��
Proof (However). If all resources r have the same capacity qr = q, then the
feasibility problem reduces to one where every project p asks for � |Yp|

q � resources,
and all resources r have unitary capacity qr = 1. Compatibilities Tr ⊆ P are still
combinatoric, but what remains of the problem boils down to a maximum flow
problem that the Edmonds-Karp algorithm solves in polynomial-time Edmonds
and Karp (1972).

This maximum flow problem is as follows. In the direction of flows, there
is a super-source, the set of resources, the set of projects, and a super-sink.
There are edges from the super-source to every resource, with edge-capacity one.
Every resource r has edges going to compatible projects Tr and edge-capacity
one. Every project has an edge to the super-sink, with edge-capacity � |Yp|

q �.
These later edges are all saturated in a maximum flow4, if and only if, there is a
feasible assignment of resources to projects. The assignment is given by the flow
of resources to projects, due to the integral flow theorem. ��
Theorem 2. Assume that resource set R = {r1, . . . , rk} can be partitioned into
κ resource-classes {ρ1, . . . , ρκ} where inside every class ρ, resources have the
same capacity, and assume that every resource is compatible with all projects.

Then, for every class ρ, we only need to represent the number of resource #ρ,
and the representation length of the feasibility problem becomes Θ(m log(n) +
κ log(k)). Moreover, there is an O(k2κm log(n)) algorithm addressing feasibility.
Therefore, under this assumption, SPR/Sym/FA is in FPT w.r.t. (k, κ).

Proof. Given any integer i ∈ N≥0, let set [i] be defined by {0, 1, . . . , i}. Let
integers (x1, . . . , xm) ∈ [n]m be the capacities that must be achieved for the m
projects. We proceed by dynamic programming on substructures Fj(z1, . . . , zκ) ∈
B, defined for every 0 ≤ j ≤ m and every (z1, . . . , zκ) ∈ [#ρ1] × . . . × [#ρκ], as
true if and only if the capacities of projects p1, . . . , pj can be satisfied while still
having (z1, . . . , zκ) resources unused. One can compute Fj+1 as a function of Fj

in time O(kκ × kκ). Indeed, there are at most kκ entries in Fj+1 and at most kκ

ways to satisfy capacity requirement |Ypj+1 | by using resources (z1, . . . , zκ). ��
Since the number of resources k is an exponential of log(k) in the length, it

is necessary to also include k as a parameter along κ, to formulate a FPT.

4 That is, the maximum flow has the maximum possible value
∑

p∈P � |Yp|
q

�.
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4 Computing a Nonwasteful Matching

In this section, we are interested in computing a nonwasteful matching. We start
by showing that verifying whether a given feasible matching is nonwasteful is
coNP-complete. Then, we adapt the Serial Dictatorship (SD) mechanism that
was described in Goto et al. (2017), to our symmetric representation, and show
that a nonwasteful mechanism can always be computed by O(νm log(n)) queries
to an oracle for verification problem SPR/Sym/Nw/Verif. Finally, we settle
the complexity of computing a nonwasteful matching: SPR/Sym/Nw/Find is
complete for FPNP (to solve a polynomial number of queries to an NP-oracle).
Also, we propose an FPTAS that assumes a bounded number of projects.

Theorem 3. SPR/Sym/Nw/Verif is coNP-complete, even when there are
only three projects, three student-classes with one acceptable projet, and every
resource r is compatible with Tr = {p1, p2, p3}. Besides, SPR/Sym/Nw/Verif
can be decided by O(νm) queries to an oracle for SPR/Sym/FA.

Fig. 3. Reduction from Partition to the complement of SPR/Sym/Nw/Verif. The
thick (resp. dashed) arrows are the given matching (resp. a solution for Partition).

Proof. SPR/Sym/Nw/Verif is in coNP. Indeed, a claiming pair (s, p) along
with the allocation μ′ that makes (Y \Ys)∪{(s, p)} feasible are an easy certificate
that matching Y is not nonwasteful.

(Hardness.) Let any instance of Partition be defined by positive integer set
B = {b1, . . . , bk}. It asks whether there exists a subset of integers B′ ⊆ B such
that

∑
b∈B′ b =

∑
b∈B\B′ b. We reduce the instance to the following instance

of SPR/Sym/Nw/Verif, represented in Fig. 3. Let integer β be defined by
2β =

∑
b∈B b. (The odd case is trivial.) There are three projects p1, p2, p3 and

three student classes σ1, σ2, σ3 where pi is the only acceptable project of students
in class σi. The numbers of students in each class are σ1 = β, σ2 = β, σ3 = 2β+2.
There are k+2 resources. Resources r1 and r2 have capacities β +1. The other k
resources are identified with set B and have capacities qbj = bj . Every resource
r has compatibilities Tr = {p1, p2, p3}. In the given feasible matching (Y, μ), the
allocation is μ(r1) = p1, μ(r2) = p2 and μ−1(p3) = B. In Y , the β students from
σ1 (resp. σ2) go to p1 (resp. p2), and only 2β students from σ3 can be matched
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with p3. (Two students from σ3 stay home.) Hence the only possible claiming
pairs are between σ3 and p3.

(yes⇒yes) If there exists a subset of integers B′ ⊆ B such that
∑

b∈B′ b =∑
b∈B\B′ b = β, then we can construct an allocation μ′ defined by μ′−1(p1) = B′,

μ′−1(p2) = B \ B′ and μ′−1(p3) = {r1, r2}. Hence, qμ′(p1) = qμ′(p2) = β and
qμ′(p3) = 2β + 2. Consequently, there are claiming pairs between σ3 and p3.

(yes⇐yes) Remark that the total excess of resources is two. If there is a
claiming pair (between σ3 and p3), then p1 or p2 has an excess resource of zero,
which cannot happen by using r1 or r2 who have capacity β +1. Hence, μ′−1(p1)
or μ′−1(p2) is a solution for Partition. ��
Theorem 4. Concerning the computation of a nonwasteful matching:

1. There exists a non-wasteful mechanism for SPR/Sym/Nw/Find. Given a
constant-time oracle for problem SPR/Sym/FA, it takes time O(νm log(n)).
(It requires to solve O(νm log(n)) NP-complete problems SPR/Sym/FA.)

2. Function problem SPR/Sym/Nw/Find is FPNP-complete, even when there
are only two projects, two student-classes (where students only have one
acceptable project) and Tr = {p1, p2} for every resource r.

A positive corollary of 1. is that the tractable cases formulated in theorems
1 and 2 induce efficient algorithms for computing a non-wasteful mechanism.
Conversely, 2. implies that in the general case, solving one SPR/Sym/Nw/Find
instance is as hard as deciding a polynomial number of embedded SAT instances.

Proof (1.). We adapt Mechanism Serial Dictatorship (SD) [Goto et al. (2017)].
Their idea is to start from an empty matching Y , and to iterate serially on each
student s ∈ S by choosing contract (s, p) ∈ X where (s, p) is the most preferred
contract for s such that Y ∪ {(s, p)} is feasible (or by choosing no contract for s
if no such contract exists). This mechanism is non-wasteful, because a claiming
pair for Y would contradict that contract (s, p) is student s’s top-preferred in
what is still feasible. Also, it asks for feasibility at most O(nm) times. (Besides,
it is strategyproof.) For symmetric instances, here is an equivalent algorithm:

Definition 10 (Mechanism SD for Symmetric SPR Instances).
Let 	 be an exogenous order on student-classes, where 	(i) is the i-th class in 	.

Initialization: Set matching Y to ∅.

For student-class σ in {	(1), . . . , 	(ν)}: let integer θ be #σ
For project p in order of preference �σ (and acceptable for σ):

1. Find the largest integer θ′ ∈ [0, θ] s.t. if Y (σ, p) is set to Y (σ, p) + θ′

then Y is still feasible, by mean of a dichotomy on θ′ in [0, θ]

2. Set Y (σ, p) to Y (σ, p) + θ′ and θ to θ − θ′. (If θ = 0, go to next σ.)

The idea is to iterate on each student-class σ (instead of students) and on projects
p, following σ’s preference �σ. Integer θ is the number of students in σ that
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remain to be matched. At each iteration, we determine maximal number θ′ of
remaining students s ∈ σ who can get contract (s, p) while keeping Y feasible,
by a dichotomy on θ′ ∈ [0, θ]; hence in time log(n). The outcome is the same
as if SD had been applied to each single student, hence both mechanisms are
equivalent and satisfy the same properties. Therefore, SPR/Sym/Nw/Find is
in class FPNP. ��
Proof (2.). Mechanism SD for the symmetric case shows that function problem
SPR/Sym/Nw/Find is in class FPNP. Let any instance of function problem
MinPartition be defined by positive integer set B = {b1, . . . , bm}. It requires
to find a subset B′ ⊆ B that minimizes |∑b∈B′ b − ∑

b∈B\B′ b|. It is FPNP-
complete (Gasarch et al. 1995, Theorem 3.6). We reduce this instance to the
following SPR/Sym/Nw/Find instance, in the sense that finding a solution for
the later, provides the optimum for the former. There are two projects p1 and
p2. β students want to go to each project. Resources R are identified to multi-
set B in the sense that qbi = bi and Tbi = {p1, p2}, for every resource/integer
bi ∈ R ≡ B.

The idea: nonwastefulness enforces balance between projects p1 and p2.
Indeed, a nonwasteful matching (Y, μ) maximizes the least allocated project, oth-
erwise this project has claiming pairs (while the other has an excess of resources).
It follows that B′ = μ−1(p1) minimizes |∑b∈B′ b − ∑

b∈B\B′ b|. ��

4.1 Computing an Approximately Nonwasteful Matching

In this subsection, we provide a positive result on the approximability of non-
wasteful matchings, under the assumption that the number of projects is fixed.
We start by defining what is meant here by approximately nonwasteful, and then
expose our approximation theorem.

Definition 11 (Approximate Nonwastefulness). Given ε ≥ 0 and feasible
matching (Y, μ), a contract (s, p) ∈ X \ Y is an (1 + ε)-claiming pair iff:

1. student s has preference p �s Y (s),
2. project p has preference s �p ∅,
3. and considering matching Y ′ = (Y \Ys)∪{(s, p)}, any matching with capacity

requirements (�(1 + ε)|Y ′(p′)|� | p′ ∈ P ) is feasible.

Given ε ≥ 0, a feasible matching (Y, μ) is approximately (1 + ε)-nonwasteful if
it admits no (1 + ε)-claiming pair as defined just above. ��

This concept generalizes nonwasteful matchings (case ε = 0). It means that
an approximately nonwasteful matching is a feasible matching that relaxes the
notion of nonwastefulness. Indeed, (1 + ε)-claiming pairs are more demanding
and fewer; it is then less demanding on a feasible matching to not admit (1+ ε)-
claiming pairs. By definition, it guarantees that no (nonwasteful) matching can
use (1 + ε) times more seats than a (1 + ε)-nonwasteful matching.
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Theorem 5. For a fixed number of projects m and ε > 0, there is an FPTAS
that computes a (1+ε)-nonwasteful matching in time O

(
νm (log(n)k(1/ε))m+1

)
.

Proof. The idea is to run SD, but only checking an approximate feasibility that
will answer no in a bounded set of cases where it should say yes-feasible. For
this purpose, we use standard techniques from multi-objective approximation
algorithms (see e.g. on the multi-objective knapsack problem (Erlebach et al.
2002, Sect. 4.2), which itself generalizes approximation algorithms in the fashion
of Vazirani (2001, Chap. 8)).

Feasibility space [1, n]m is sliced geometrically on each project/dimension
p by Fp = {1, (1 + ε)

1
k , (1 + ε)

2
k , . . . , (1 + ε)

u
k }, where u ≥ k log(1+ε)(n) =

O(k(1/ε) log(n)) fits the purpose. The discretized feasibility space is then F =
F1 × . . . × Fm, which has size O ((k(1/ε) log(n))m). We then define a dynamic
programming table Tr : F → {false, true} (for resources r ∈ {r0} ∪ {r1, . . . , rk})
that maps every capacity vector x ∈ F to true if and only if there exists an
allocation satisfying it by using resources {r1, . . . , r} ⊆ {r1, . . . , rk}. Dynamic
programming is achieved by initializing table Tr0 to false, but Tr0(0) to true.
Then, to compute Trj+1 from Trj

, one adds resources one by one: For every entry
x true in Trj

, rounded entries corresponding to x + eiqrj+1 , 1 ≤ i ≤ m are set to
true in Trj+1 . The chain of errors is small enough to guarantee approximation
ratio (1 + ε) on every project/objective (Erlebach et al. 2002, Sect. 4.2). ��

5 Computing a Fair Matching

The Artificial Cap Deferred Acceptance mechanism (ACDA), described in Goto
et al. (2017), is as follows. Choose an arbitrary assignment μ that maps every
resource to a compatible project. For each project p, set its maximum quota
(capacity limit) qμ(p) to

∑
r∈μ−1(p) qr, and run the standard deferred acceptance

mechanism (DA) from Gale and Shapley (1962). Goto et al. (2017) shows that
ACDA is fair, strategyproof and that it is in polynomial-time. Mechanism ACDA
adapts equivalently to symmetric instances:

Theorem 6. Symmetric ACDA is fair and in polynomial-time O(ν log(n)m).

Proof (sketch). In the standard deferred acceptance mechanism, at each iter-
ation, students apply to projects, and projects select their top-students who
applied, constrained by the quota. Here, the idea is straightforward: instead of
students, student-classes apply. ��

6 Computing a Stable Matching

In this section, we try to satisfy both nonwastefulness and fairness requirements
and show that a stable (i.e. nonwasteful and fair) matching may not exist. Fur-
thermore, we settle the complexity of deciding whether a stable matching exists
as complete for the second level of the polynomial hierarchy.
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Theorem 7. A stable (i.e. nonwasteful and fair) matching may not exist.

Proof. The counter-example is the following. There are two students s1, s2 and
two projects p1, p2. One resource r is available, with qr = 1 and Tr = {p1, p2}.
Preferences are:

s1 : p1 � p2 � ∅ p1 : s2 � s1 � ∅
s2 : p2 � p1 � ∅ p2 : s1 � s2 � ∅

Since only one resource is available, assuming non-wastefulness, only matchings
of one student are possible, but all are blocked:

– If Y (s1) = p1, then (s2, p1) is an envious pair.
– If Y (s1) = p2, then (s1, p1) is a claiming pair.
– If Y (s2) = p1, then (s2, p2) is an claiming pair.
– If Y (s2) = p2, then (s1, p2) is an envious pair.

��
Theorem 8. Decision problem SPR/Sym/NwFr/Verif is coNP-complete.

Proof. The same proof as for SPR/Sym/Nw/Verif adapts: since projects are
indifferent to their acceptable students, the concept of envious pair is empty. ��
Theorem 9. Decision problem SPR/Sym/NwFr/Exist is NPNP-complete,
even when there are only six projects and six student-classes.

Proof. SPR/Sym/NwFr/Exist is in class NPNP: for ‘yes’-instances, a non-
wasteful and fair matching (Y, μ) can be efficiently verified by an NP-oracle.

Let any instance of ∃∀SubsetSum be defined by positive integer sets A =
{a1, . . . , a|A|}, B = {b1, . . . , b|B|} and target θ ∈ N>0. It asks whether:

∃A′ ⊆ A, ∀B′ ⊆ B,
∑

a∈A′
a +

∑

b∈B′
b �= θ. (1)

Its complement ∀∃SubsetSum asks ∀A′ ⊆ A,∃B′ ⊆ B,
∑

a∈A′ a +
∑

b∈B′ b = θ.
∃∀SubsetSum is NPNP-complete (Hamada et al. 2017b, Lemma 2). It holds
even if

∑
a∈A a ≤ θ ≤ ∑

b∈B b, since the other cases have trivial answers. We
reduce the given instance to an SPR/Sym/NwFr/Exist instance, that will ask
whether:

∃ feasible matching(Y, μ), ∀(s, p) it is not a claiming or envious pair (2)

Our construct is depicted in Fig. 4. There are six projects pA, p′
A, pB , p′

B , p1, p2
and six student-classes σa, σ′

a, σb, σ
′
b, s1, s2, where the last two are just students.

The preferences of students and projects are depicted in Fig. 4. Set of resources
RA (resp. RB) is identified with set A (resp. B) which defines its capacities.
For every resource ai ∈ RA (resp. bj ∈ RB), compatibilities are Tai

= {pA, p′
A}

(resp. Tbi = {pB , p′
B}). Elements s1, s2, p1, p2, r1 are as in Theorem 5.
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(1)⇒(2). Assume ∃A′ ⊆ A,∀B′ ⊆ B,
∑

a∈A′ a +
∑

b∈B′ b �= θ, and let us
construct a stable matching. One has μ−1(pA) = A′ and μ−1(p′

A) = A \ A′,
and Y (σA, pA) =

∑
a∈A′ a and Y (σ′

A, p′
A) =

∑
a∈A\A′ a. No claiming pair can

occur with pA or p′
A because more resource for one, is less resource for the other,

and an envious pair is impossible by lack of student classes. Then, let us choose
μ−1(pB) = B′ (resp. μ−1(p′

B) = B \ B′) such that min{qμ(pB) − #σB , qμ(p′
B) −

#σ′
B} is maximized given A′. Both capacities miss their targets, because of the

first assumption (one below, one above), and there is no other allocation that
would make a claiming pair between σB and pB , or σ′

B and p′
B . (Same reason

as Theorem 3.2.) Then, we can allocate r1 to pB or p′
B , and by emptiness, no

claiming/envious pair occurs between s1, s2, p1, p2.
not(1)⇒not(2). Assume ∀A′ ⊆ A,∃B′ ⊆ B,

∑
a∈A′ a +

∑
b∈B′ b = θ, and for

the sake of contradiction, let us assume a stable matching (Y, μ). Every resource
ai ∈ RA must be used. Let μ−1(pA) = A′ and μ−1(p′

A) = A \ A′. Moreover,
Y (σA, pB) =

∑
a∈A\A′ a and Y (σ′

A, p′
B) =

∑
a∈A′ a; hence |Y (pB)| = θ−∑

a∈A′ a

and |Y (p′
B)| =

∑
a∈A′ a +

∑
b∈B b − θ. Let B′ fit A′ in the first assumption,

μ−1(pB) = B′ and μ−1(p′
B) = B \ B′. Hence all the students in σB and σ′

B are
matched with pB and p′

B : Using r1 on pB or p′
B would be a waste. But then, a

claiming or envious pair occurs between s1, s2, p1, p2 (Theorem 5). ��

Fig. 4. Reduction from NPNP problem ∃∀SubsetSum to SPR/Sym/NwFr/Exist.
Left of students are the sizes of the classes. Arrows indicate acceptability/compatiblity.

7 Conclusion

In this paper, we proposed a compact representation for symmetric SPR
instances. Then, we completely characterized the computational complexity of
matching feasibility, nonwastefulness and stability: it is intractable to compute,
but not under natural assumptions. Strikingly, only Theorem9 involves students
who consider more than two projects acceptable. It suggests that complexity
does not come from the preferences of students, until Theorem 9.
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Normal representations, where students are represented explicitly are a dif-
ferent representation, hence a different problem with distinct intricacies. An
interesting prospect is to settle the complexity of the same problems for these
non-compact representations. Besides, discovering more operational solutions
like more tractable cases, MILP formulations, or approximation schemes, would
be useful on the Student-Project-Resource Allocation problem.
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Number 17H00761) and JST, Strategic International Collaborative Research Program,
SICORP.

References

Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the student-project
allocation problem. J. Discrete Algorithms 5(1), 73–90 (2007)

Aziz, H., et al.: Stable matching with uncertain pairwise preferences. In: Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS,
pp. 344–352 (2017)
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Abstract. We introduce a new fundamental problem called triangu-
lar trade, which is a natural extension of the well-studied prisoner’s
dilemma for three (or more) players where a player cannot directly pun-
ish a seemingly defecting player. More specifically, this problem deals
with a situation where the power/influence of players is one-way, play-
ers would be better off if they maintain circular cooperation, but each
player has an incentive to defect. We analyze whether players can sus-
tain such circular cooperation when they repeatedly play this game and
each player observes the actions of another player with some observation
errors (imperfect private monitoring). We confirm that no simple strategy
can constitute an equilibrium within any reasonable parameter settings
when there are only two actions: “Cooperate” and “Defect.” Thus, we
introduce two additional actions: “Whistle” and “Punish,” which can be
considered as a slight modification of “Cooperate.” Then, players can
achieve sustainable cooperation using a simple strategy called Remote
Punishment strategy (RP), which constitutes an equilibrium for a wide
range of parameters. Furthermore, we show the payoff obtained by a
variant of RP is optimal within a very general class of strategies that
covers virtually all meaningful strategies.

Keywords: Repeated games · Private monitoring
Belief-free equilibrium

1 Introduction

The prisoner’s dilemma (PD) concisely represents a ubiquitous situation where
the cooperation of two players is efficient, but each player has an incentive to
defect. A repeated game, where players repeatedly play the same stage game
(e.g., PD) over an infinite time horizon, is a formal model that can explain why
cooperation arises in long-term relationships. In this paper, we introduce a new
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 242–257, 2018.
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problem called triangular trade, which is similar to the PD, but a player cannot
directly punish a player who has (seemingly) defected. In the real world, there
exist many situations where the influence of players is not symmetric and can
be considered as one-way (e.g., a teacher to a student/parent, a TV production
company to a viewer). It is also common that such one-way relations create
a cycle, e.g., a teacher affects a student/parent, the student/parent affects the
school attended by the student, and the school affects the teacher, or a pro-
duction company affects a viewer, the viewer affects a sponsor, and the sponsor
affects the production company. In such situations, as in the PD, it is quite pos-
sible that the cooperation of all the players is efficient (e.g., the teacher gives a
good lecture, the student/parent donate enough money, and the school supports
the teacher), but each player has an incentive to defect. The triangular trade is
a problem that concisely represents such a ubiquitous situation. Such a situation
can occur in international trade among three countries, where the trade between
two countries is strongly imbalanced [17]. Also, let us assume there exist a profes-
sor, a postdoctoral researcher, and a new Ph.D. student in a laboratory. Assume
the professor can assist the postdoc to be a full-fledged researcher, the postdoc
can give the student practical advice to start her research, and the student can
bring some fresh ideas for the professor to explore a new research direction.
Then, these players are in a triangular trade like situation. Since a player cannot
directly punish a seemingly defecting player, obtaining sustainable cooperation
appears difficult especially when a player can only imperfectly observe other
players’ actions. To the best of our knowledge, we are the first to analyze this
problem in repeated games with imperfect private monitoring.

Repeated games have received considerable attention in the literature of AI,
multi-agent systems, and economics. The case of perfect monitoring, where each
player can observe other players’ actions, is now well understood. There is also a
large body of literature on the imperfect monitoring case, where players’ actions
are only imperfectly observed through some signals. Such imperfect monitoring
cases are further classified into public and private monitoring cases. If all players
observe the same set of signals that imperfectly indicate players’ actions, we
have an imperfect public monitoring case. An example is the PD game with
action-errors, investigated by Nowak and Sigmund [20]. In contrast, suppose
that each player observes her opponent’s action with some observation errors.
Assume that each player chooses “Cooperate” (C) or “Defect” (D), and a signal,
which determines a player’s outcome, can be either good (g) or bad (b). If the
opponent plays C, a player usually observes g, but she may observe b with a small
probability. An important feature of this model is that a player’s observation
is her private information (which is not known to the opponent). This is an
example of imperfect private monitoring, where each player privately receives
signals about the actions of other players. In private monitoring, verifying an
equilibrium becomes hard since we need to check that no player has an incentive
to deviate under any possible belief she might have on the past histories of other
players. To overcome this difficulty, a special type of equilibrium called a belief-
free equilibrium is identified, where checking whether a profile of strategies forms
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such an equilibrium becomes more tractable [9,22]. Also, possible cooperative
relations that are sustainable in the repeated PD are examined [8].

We first show that when there are only two actions C and D, there exists no
profile of simple strategies that constitutes a belief-free equilibrium.1 We confirm
this fact by exhaustively enumerating all simple strategies. Thus, we consider
adding new actions, which we call “Whistle” and “Punish.” These actions are
similar to C; they are dominated by D. Thus, adding them is irrelevant in a one-
shot game, i.e., they do not affect the equilibria. Introducing such an action is not
interesting with perfect or imperfect public monitoring, since it is well-known
that cooperative relations are sustainable without introducing such an action
due to the celebrated folk theorem [11,12]. With imperfect private monitoring,
introducing an action that can severely punish other players can be effective even
if it is dominated by another action, i.e., the equilibria of a repeated game may
significantly change if the added action changes the players’ minimax values.
Our argument is not based on this logic; these actions are mildly spiteful actions
that do not change the minimax values.

To our surprise, it turns out that by adding these actions, players can achieve
sustainable cooperation using a very simple strategy called Remote Punishment
strategy (RP), which constitutes a belief-free equilibrium in a wide range of
parameter settings. Since a belief-free equilibrium is a very strict requirement
for an equilibrium, it is often the case that no strategies constitute a belief-
free equilibrium. Even if one exists, it tends to be very complex and requires a
sophisticated probabilistic state transition. Our RP is remarkable since it is a
very simple deterministic strategy. We obtain a simple closed-form sufficient and
necessary condition in which it constitutes a belief-free equilibrium. Furthermore,
we show the payoff obtained by a variant of RP is optimal within a very general
class of strategies that covers virtually all meaningful strategies.

2 Model

2.1 Repeated Triangular Trade

Let us describe the basic model of the triangular trade with three players. There
are three players N = {0, 1, 2}. Each player i ∈ N repeatedly plays the same
stage game over an infinite horizon t = 0, 1, 2, . . .. In each period, player i takes
some action ai from a finite set A. Assume an action profile in that period is
a = (a0, a1, a2) ∈ A3. Then, her expected payoff in that period is given by stage
game payoff function ui(a). In the triangular trade, we assume that the stage
game payoff of player i depends only on her own action ai and the action of
player i − 1, i.e., ai−1. In this paper, when we write player i ± k (k ∈ N), it
means player i ± k mod 3.2

1 We say a strategy is simple when it is concisely represented by a finite-state automa-
ton with a few states.

2 The same applies to action ai±k or state θi±k.
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Table 1. Stage game payoff of player i (two actions)

ai\ai−1 C D

C 1 − c −c

D 1 0

In the basic model, we assume that actions A = {C,D} and payoff ui is given
in Table 1, where 0 < c < 1. In the triangular trade, player i makes a product
and delivers it to player i + 1. Action C means that a player exerts adequate
effort in the production (which incurs cost c), while action D means that a player
exerts no effort at all (which incurs no cost). By receiving a product made with
adequate effort, a player obtains benefit 1, while by receiving a product made
with no effort, a player obtains no benefit. Note that this game has a similar
characteristic as PD. Here, C is dominated by D. Thus, in the one-shot game,
the dominant strategy equilibrium is that all players play D and their utilities
are 0. However, if they play C, their utilities are 1 − c > 0. The triangular
trade can be considered as one natural extension of the PD for three (or more)
players.3 More specifically, a typical domain where a PD like situation would
occur is mutual aid ; each player has her own task, which can be done better with
the help of another player, but a player obtains no merit by helping another.
Assume a similar situation with three players, where each task requires at most
two players, then a natural and efficient way is to maintain circular cooperation.
This is exactly the same problem setting as the triangular trade.

Within each period, player i observes her private signal ωi ∈ Ω that is related
to player i − 1’s action. Observations are Ω = {g, b}. Observation g means that
the delivered product from i − 1 has high quality and b means that it has low
quality. Let ω = (ω0, ω1, ω2) ∈ Ω3 denote the profile of the private signals
for all players. Let o(ωi | ai−1) denote the marginal distribution of ωi given
player i − 1’s action ai−1. The signals are independent, i.e., the probability that
players receive the profile of private signals ω when players take a is given as
o(ω | a) =

∏
i∈N o(ωi | ai−1).

We assume nearly-perfect monitoring. When a player chooses C (or D), we
assume that the “correct” signal is g (or b). We assume a player receives a
correct signal with high probability q but she receives a wrong signal with small
probability 1−q. Also, we assume no player can infer which action was taken (or
not taken) by another player for sure; each signal ωi ∈ Ω occurs with a positive
probability for any ai−1 ∈ A (full-support assumption).

Player i’s realized payoff, which is determined by her own action and signal,
is denoted as πi(ai, ωi). Hence, her expected payoff is given by

∑
ωi∈Ω πi(ai, ωi) ·

o(ωi | ai−1). The product can occasionally have low (or high) quality even if
the player exerts adequate effort (or no effort). It is natural to assume that

3 There exist many other directions to extend the PD for three or more players, includ-
ing the well-known public goods game [13]. Our extension is original, as it addresses
the case where a player cannot directly punish a seemingly deviating player.
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the benefit of the product is solely determined by its quality. We assume this
expected value of the realized payoff is identical to stage game payoff ui(a). This
formulation ensures that realized payoff πi conveys no more information than
ai and ωi. The particular values of the realized payoffs are not important for
analyzing equilibria since their expected value, which is equal to ui(a), depends
only on the action profile a. Thus, in this paper, we do not specify the particular
values of the realized payoffs. This model is standard in the literature of repeated
games with private monitoring [18].

The stage game is repeatedly played over an infinite horizon. Player i’s
expected discounted payoff from a sequence of action profiles a0,a1, . . . is∑∞

t=0 δtui(at), with discount factor δ ∈ (0, 1). The (expected) discounted aver-
age payoff (payoff per period) is defined as (1 − δ)

∑∞
t=0 δtui(at). If a player

obtains the same stage game payoff, say 1, for every period, the discounted
average payoff becomes 1.

2.2 Strategy Representation and Equilibrium Concept

For player i, the set of her private histories in period t is Ht
i := (A × Ω)t.

Each element ht
i = (a0

i , ω
0
i , . . . , at−1

i , ωt−1
i ) ∈ Ht

i represents the sequence of her
actions and observation profiles until the end of period t − 1. H0

i is interpreted
as a singleton, which represents a (dummy) initial history. Let Hi denote all the
possible histories of i, i.e.,

⋃
t≥0 Ht

i . A (pure) strategy for player i is represented
as function si : Hi → A, which returns the action that player i chooses in period
t given her history ht

i. Let s = (si, s−i) denote the profile of strategies, where
si is i’s strategy and s−i is the profile of the strategies of the other players. Let
Ei(s) denote player i’s discounted average payoff when all the players act based
on strategy profile s. We say si is a best response to s−i if for any possible
strategy s′

i of player i, Ei((si, s−i)) ≥ Ei((s′
i, s−i)) holds.

A standard equilibrium concept in repeated games is a sequential equilibrium,
which is a refinement of a subgame perfect equilibrium as well as a perfect
Bayesian equilibrium [15]. In a private monitoring setting, profile of strategies s
is a sequential equilibrium if for each i ∈ N , for any t, for any history ht

i ∈ Ht
i ,

and a possible belief reached after observing ht
i, acting according to si (for a

given history ht
i) is a best response under the belief.

A Finite-State Automaton (FSA) is a common approach for concisely repre-
senting a strategy in an infinitely repeated game. Player i’s FSA Mi is defined by
〈Θi, θ̂i, fi, Ti〉, where Θi is a set of states, θ̂i ∈ Θi is an initial state, fi : Θi → A
determines the action choice in each state, and Ti : Θi × Ω → Θi specifies
a deterministic state transition. Specifically, Ti(θt

i , ω
t
i) returns next state θt+1

i

when the current state is θt
i and player i’s private signal is ωt

i . For Mi and ht
i,

the action to choose in period t is defined as fi(θt
i), where θt

i is the state reached
after history ht

i.
An FSA without specification of the initial state, i.e., mi = 〈Θi, fi, Ti〉, is

a Finite-State preAutomaton (pre-FSA). (mi, θ̂i) denotes an FSA obtained by
pre-FSA mi, where the initial state is θ̂i. Let M = (Mi)i∈N denote a profile of
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FSAs. Figure 1 shows an example of a pre-FSA (this pre-FSA is for the extended
game with additional actions/observations introduced in the next section). Each
node represents a state and a direct link represents a state transition according
to an observation. For FSA Mi, let Θt

i ⊆ Θi denote a set of states reachable in
period t. By the full-support assumption, Θt

i is determined independently from
the strategies of other players.

Now, we are ready to define a belief-free equilibrium, which is a special case
of a sequential equilibrium.

Definition 1 (Belief-free equilibrium). We say M is a belief-free equilib-
rium if for all t, for all θ = (θi)i∈N ∈ ∏

i∈N Θt
i , and for all i ∈ N , (mi, θi) is a

best response when player j �= i is going to behave based on (mj , θj).

3 Game with Additional Actions and Observations

We exhaustively generated all small FSAs (each of which has at most three
states) and confirmed that none of them constitutes a belief-free equilibrium
under any reasonable parameter settings, except for a trivial strategy that simply
plays D forever. More specifically, we checked parameter settings in which 0.1 ≤
δ ≤ 0.9 (in increments of 0.2), 0.55 ≤ q ≤ 0.95 (in increments of 0.1), and
0.1 ≤ c ≤ 0.9 (in increments of 0.1). Here, we restrict the number of states to
three since the number of strategies grows quickly by increasing the number of
states. The number of possible pre-FSAs with k states is given as 2k · k2k where
the number of actions/observations is two. It is 5832 when k = 3, 2048576 when
k = 4, and 312500000 when k = 5.

Consequently, we consider a slightly modified game with two additional
actions and observations. Here, we assume that a player can slightly modify
action C. More specifically, the player actually exerts adequate effort to produce
a product, but she intentionally damages the product such that the benefit for
the receiver is reduced and the receiver notices (with high probability) that the
producer intentionally did so. There are two additional actions W (“Whistle”)
and P (“Punish”), and two associated observations w and p. The stage game
payoff is given in Table 2. Here, doing W or P incurs cost c (as doing C). When
player i − 1 plays W (or P ), player i’s benefit is reduced by y (or z) compared
to the case where player i− 1 plays C. We assume 0 ≤ y, z ≤ 1, i.e., P (or W ) is
a relatively mild spiteful action; it is weaker than (or at most equal to) making
the product completely useless.

For actions C,D,W , and P , their “correct” signals are g, b, w, and p, respec-
tively. Then, the observation probability o(ωi | ai−1) is q when ωi is the correct
signal, and e = (1− q)/3 when ωi is an incorrect signal. We assume 1/4 < q < 1,
i.e., the correct signal is most likely.

4 Generalized Remote Punishment (GRP) Strategy

We first introduce a general class of strategies, which we call Generalized Remote
Punishment (GRP). We say a strategy is an instance of GRP if it satisfies the
following conditions.
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Table 2. Stage game payoff (four actions)

ai\ai−1 C D W P

C 1 − c −c 1 − y − c 1 − z − c

D 1 0 1 − y 1 − z

W 1 − c −c 1 − y − c 1 − z − c

P 1 − c −c 1 − y − c 1 − z − c

– Each player’s default action is C. As long as she observes g, she continues to
play C.

– When a player observes b, with probability r, she takes particular action ã,
whose correct signal is ω̃. Here, ã can be any action except C. We assume a
player plays ã only when she observes b.

– If player i observes ω̃, she starts punishing player i + 1. The punishment can
be arbitrary: it can be probabilistic and not necessarily by P , and can even
be done over several periods.

Class GRP is very general and covers virtually all strategies in which we are
interested. Since we are interested in sustainable cooperation, we can assume
the default action is C without loss of generality. Also, since we are looking for
an equilibrium strategy, the deviating action D must be punished somehow. In
our setting, the only way to punish a seemingly defecting player is to ask the
next player to do so. The following theorem illustrates the amount of inevitable
loss due to imperfect monitoring.

Theorem 1. If a strategy that is an instance of GRP constitutes a belief-free
equilibrium, then a player’s discounted average payoff is at most:

(1 − c) − ce

(1 − 4e)
− ce

(1 − 4e)2
. (1)

Proof. Let us examine the probability that when player i deviates to D at t,
player i+2 receives ω̃ at t+1. There are two cases: (i) no error occurs and i+1
plays ã, and (ii) i + 1 does not play ã (because she did not observe b due to an
error, or she refrained from doing ã although she observed b), but i + 2 receives
ω̃ due to an error. For (i), the probability is rq2, and for (ii), the probability is
3e2+(1−r)qe. Thus, in total, it becomes e+r−7re+12re2 (by using q = 1−3e).

On the other hand, even if player i plays C at t, there is a chance that player
i+2 receives ω̃ at t+1. There are two cases: (i) i+1 observes b due to an error,
i + 1 plays ã, and no error occurs between i + 1 and i + 2, and (ii) i + 1 does not
play ã (because she did not observe b with or without an error, or she refrained
from doing ã although she observed b), and i+2 observes ω̃ due to an error. For
(i), the probability is req, and for (ii), the probability is (1 − e)e + (1 − r)e2.
Thus, in total, it becomes e + re − 4re2.

If a strategy constitutes a belief-free equilibrium, the current gain for devi-
ating to D, i.e., c, must be offset by the future loss. Let F denote the impact of
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the punishment for player i’s discounted expected payoff after i + 2 observes ω̃.
Then, the following inequality must hold.

c ≤ δ2[(e + r − 7re + 12re2) − (e + re − 4re2)]F
= δ2r(1 − 4e)2F (2)

Also, even if player i keeps on playing C, player i + 2 observes ω̃ with prob-
ability e + re − 4re2. Thus, the discounted average payoff is at most:

(1 − δ)[(1 − c) + δ(1 − c) + δ2{(1 − c) − (e + re − 4re2)F}
+ δ3{(1 − c) − (e + re − 4re2)F} + . . .]

= (1 − c) − δ2(e + re − 4re2)F.

From Inequality (2), we obtain it is at most:

(1 − c) − ce

(1 − 4e)
− ce

r(1 − 4e)2
.

This value is maximized at r = 1, which is identical to (1). 
�

5 Remote Punishment (RP) Strategy

We identify a very simple strategy that is an instance of GRP and can constitute
a belief-free equilibrium with a wide range of parameter settings. We call it
Remote Punishment strategy (RP). It is a kind of “reactive” (or one-memory [5])
strategy, in which the action in the current period is determined by the signal
in the previous period. The signal-action mapping is given in Table 3. In plain
words, as long as player i observes g, she plays C. When she observes b, i.e.,
player i−1 seems to play D, then she informs this fact to player i+1 by playing
W . When she observes w, i.e., player i − 1 seems to ask her to punish i + 1, she
plays P . Finally, when she observes p, i.e., player i − 1 seems to punish her, she
tolerates the punishment and plays C. The pre-FSA for RP is given in Fig. 1.
There are three states SC , SW , SP . In each state Sai

(where ai ∈ {C,W,P}),
player i plays the specified action ai. The initial state is SC .

We illustrate in Fig. 2 how the action selection in period t of player i affects
the possible states of players i + 1, i + 2, and i for periods t + 1, t + 2, and t + 3,
respectively. A thick arrow connects an action/state and its “correct” signal,
which is observed with probability q. For example, when the action of player i
in period t is C, the observation of player i + 1 is g with probability q (and the
probabilities of the other “wrong” signals are e). Thus, the state of player i+1 in
period t+1 is Sc with probability q+e = 1−2e, and the probabilities of the other
states are e. Figure 2 illustrates that when the action of player i at t is either
C, P , or W , the probability distribution of the state of player i + 2 in period
t + 2 is the same (Lemma 1). More specifically, starting from C, P , or W and
following thick arrows, we reach Sc in period t + 2, which means that Sc is most
likely and other states occur only by error. Also, the probability distribution of
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Table 3. Signal-action mapping of RP

Previous signal Current action

g C

b W

w P

p C

Fig. 1. Pre-FSA of RP

Fig. 2. Effect of action selection for
probability distribution of states

Fig. 3. Parameter range where RP
constitutes an equilibrium

the state of player i in period t + 3 is the same regardless of the action of player
i in period t (Lemma 3).

The following theorem characterizes the condition where RP constitutes a
belief-free equilibrium.

Theorem 2. The sufficient and necessary condition in which RP constitutes a
belief-free equilibrium is:

δ2(1 − 4e)2z ≥ c. (3)

This condition is intuitively natural; it says that sustainable cooperation is more
likely to be established when (i) the cost of cooperation c is small, (ii) the players
are patient (i.e., δ is large), (iii) the error probability e is small, and (iv) the
punishment z is large. Figure 3 illustrates the range of e (x-axis) and c (y-axis)
where this condition is satisfied assuming z = 1. When e = 1/8 (and q is 5/8),
then c must be at most 0.25δ2, which is around 0.2 when δ is 0.9. Note that the
value of y, i.e., the amount of reduced benefit for player i when player i−1 plays
W , is irrelevant to this condition. Thus, it can be zero.

To prove this theorem, we need to show that player i has no incentive to
deviate from RP regardless of the current states of the other players. Although
there exist infinitely many possible deviations, by Proposition 12.2.3 in [18], it is
sufficient to check a finite number of deviations, each of which chooses a different
action only once, and immediately returns to the original strategy. This property
is called one-shot deviation principle or one-deviation property [18].
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Since all players use the same strategy, it is sufficient to check that there
exists no profitable deviation for player 0. We utilize the following lemmas.

Lemma 1. Let γi,t (and γ′
i,t) denote the probability distribution of the state of

player i in period t, i.e., it is a three element vector
(
γSC

γSP
γSW

)
. Also, for

given γi,t (or γ′
i,t), let γi+k,t+k (or γ′

i+k,t+k) denote the probability distribution
of the state of player i + k in period t + k when all players follow RP. For all
k ≥ 2, for all γi,t,γ

′
i,t, the following condition holds:

γi+k,t+k = γ′
i+k,t+k.

In plain words, for k ≥ 2, the probability distribution of player i + k’s state in
period t + k is identical regardless of the probability distribution of player i’s
state in period t.

Proof (Lemma 1). Let X denote the following matrix:

X =

⎛

⎝
1 − 2e e e
1 − 2e e e

2e 1 − 3e e

⎞

⎠ ,

i.e., it represents the transition probabilities from one state to another. Then,
γi+1,t+1 is given by γi,tX, and γi+k,t+k is given by γi,tX

k. X2 is calculated as
follows:

X2 =

⎛

⎝
4e2 − 3e + 1 −4e2 + 2e e
4e2 − 3e + 1 −4e2 + 2e e
4e2 − 3e + 1 −4e2 + 2e e

⎞

⎠ .

Since all the row vectors in X2 are identical, and for each row vector of X, the
sum of its elements is 1, for any k ≥ 2, all the row vectors in Xk are identical.
Actually, for any k ≥ 2, Xk = X2 holds. Thus, for any k ≥ 2, for all γi,t and
γ′

i,t, γi+k,t+k = γ′
i+k,t+k holds. 
�

Let V θ denote the discounted average payoff of player 0 when all players
follow RP and start from θ.

Lemma 2. For all θ1, θ2 ∈ {SC , SW , SP }, the following condition holds:

V (SC ,θ1,θ2) = V (SW ,θ1,θ2) = V (SP ,θ1,θ2).

In plain words, the discounted average payoff of player 0 is identical regardless
of her current state. This is a necessary condition for a belief-free equilibrium.

Proof (Lemma 2). Since all actions C,W, and P have the same cost, the cost
of player 0 is identical as long as she plays RP. Thus, let us concentrate on her
expected benefit, which is determined by player 2’s action. The (discounted)
expected benefit in period t + τ (τ ≥ 0) for player 0 is given as follows:

δt+τγ2,t+τ

(
1 1 − z 1 − y

)T

= δt+τγ2−τ,tX
τ

(
1 1 − z 1 − y

)T
.
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In period t, i.e., τ = 0, it depends only on γ2,t. Therefore, it is identical regardless
of γ0,t. In period t + 1, i.e., τ = 1, it depends only on γ1,t. Again, it is identical
regardless of γ0,t. In period t + τ with τ ≥ 2, from Lemma 1, the probability
distribution of the state of player 2 must be identical for any γ0,t. Thus, the
expected benefit of player 0 is identical for any γ0,t. Therefore, the expected
discounted average payoff of player 0 is identical regardless of her current state.


�
Lemma 3. Assume player i plays action ai ∈ A (which might be different from
the one specified by RP) at period t and acts according to RP thereafter. Then,
for all k ≥ 3, the conditional probability distributions of the states of player i+k
at period t + k are identical regardless of ai.

Proof. Let γC ,γD,γW , and γP denote the probability distributions of the states
of player i+1 at period t+1, assuming player i plays C,D,W , and P at period
t, respectively. Then, the probability distribution of player i + k at period t + k,
assuming player i plays C (or D,W,P ) at period t, is given as γCXk−1 (or
γDXk−1, γW Xk−1, γP Xk−1). From Lemma 1, these distributions are identical
when k − 1 ≥ 2. 
�
Now, we are ready to prove Theorem 2.

Proof (Theorem 2). Assume player 0 deviates in period t (and returns to RP
after t + 1). It is sufficient to compare the following two values: (i) the cost of
player 0 at period t (which is determined by her chosen action a0 in period t),
and (ii) the benefit of player 0 at period t+2 (which is determined by a2 in period
t + 2). This is because, at period t, all the players except 0 follow the strategy.
Thus, the benefit of player 0 is unchanged (only her cost can vary). At period
t + 1, the action of player 2 is unchanged. At period t + 2, the benefit of player
0 is affected by the action of player 2. At and after period t + 3, the probability
distributions of the states of the other players are the same (Lemma3).

Let us compare these values for possible deviations. For any (θ1, θ2) ∈ Θ2,
by the deviation from C to D at period t, the payoff increases by c since she
exerts no effort. Let us examine the decreased amount of player 0’s payoff at
period t + 2. The probability distribution of player 2’s states after two periods
can be represented as follows: (i)

(
1 − 2e e e

)
X when player 0 chooses C and

(ii)
(
2e e 1 − 3e

)
X when player 0 deviates to D. Then, the difference is given

as:

δ2
(
2e e 1 − 3e

)
X

(
1 1 − z 1 − y

)T

− δ2
(
1 − 2e e e

)
X

(
1 1 − z 1 − y

)T

= δ2
(−(1 − 4e) 0 1 − 4e

)
X

(
1 1 − z 1 − y

)T

= −δ2(1 − 4e)2z.

Thus, the incentive constraint is given as Inequality (3). For the deviation from
W or P to D, the results are the same as above. Also, from Lemma 2, there is
no incentive for any deviation among C,P , and W . 
�
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Let us derive the discounted average payoff for RP.

Theorem 3. When all players play RP, the discounted average payoff, i.e.,
V (SC ,SC ,SC), is given as follows:

(1 − c) − δ2e(1 − 4e)z − δey − δez. (4)

Here, (1 − c) is the ideal payoff when players keep on cooperating and no errors
occur. Due to the errors, the discounted average payoff is reduced to some extent.

Proof (Theorem 3). As we showed in the proof of Lemma 1, for all k ≥ 2, Xk =
X2 holds. The probability distribution of the states of player 2 at period t is
given as follows (we assume X0 is an identity matrix):

(
1 0 0

)
Xt.

As long as player 0 follows RP, the cost of her action is c. Also, the baseline
benefit of player 0, which is determined by the action of player 2, is 1. Let us
examine how the decreased amount of player 0’s benefit affects her discounted
average benefit. This amount is given as follows.

(1 − δ)
∞∑

t=0

δt
(
1 0 0

)
Xt

(
0 z y

)T

= (1 − δ)δ
(
1 0 0

)
X

(
0 z y

)T + (1 − δ)
∞∑

t=2

δt
(
1 0 0

)
X2

(
0 z y

)T

= (1 − δ)δ
(
1 − 2e e e

) (
0 z y

)T

+ δ2
(
4e2 − 3e + 1 −4e2 + 2e e

) (
0 z y

)T

= δe(y + z) + δ2e(1 − 4e)z

Thus, the discounted average payoff is given as Eq. (4). 
�

6 Modification of RP (RP+)

Let us consider a slightly modified version of RP, which we call RP+. It achieves
the upper bound of Condition (1). In RP, all players start from Sc at t = 0. A
player has no incentive to deviate to W from C. Thus, if player i observes w at
t = 0, it must be an observation error; punishing player i + 1 is meaningless.
RP+ avoids such futile punishments. The signal-action mapping of RP+ and the
pre-FSA are given in Table 4 and Fig. 4, respectively. The only change is that if
a player observes w at t = 0, she plays C (instead of P ) at t = 1.

The sufficient and necessary condition where RP+ constitutes a belief-free
equilibrium is identical to that of RP, i.e., Inequality (3). This is because a player
has no incentive to deviate to W from C; the expected rewards in the current
and future periods are identical.
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Table 4. Signal-action mapping of RP+

Previous signal Current period Current action

g C

b W

w t = 1 C
t ≥ 2 P

p C
Fig. 4. Pre-FSA of RP+

When all players play RP+, the probability distribution of the state of player
1 at period 1 is γ1,1 =

(
1 − e 0 e

)
. Therefore, in a similar way as Theorem 3,

player 0’s discounted average payoff is given as:

(1 − c) − (1 − δ)
∞∑

t=1

δt
(
1 − e 0 e

)
Xt−1

(
0 z y

)T

= (1 − c) − δey − δ2e(2 − 4e)z.

The payoff is improved by δ(1 − δ)ez.

Theorem 4. The discounted average payoff of RP+ becomes optimal within all
strategies in GRP by appropriately choosing y and z.

Proof. If we choose y = 0 and z = c
δ2(1−4e)2 , the discounted average payoff of

RP+, i.e., (1 − c) − δey − δ2e(2 − 4e)z, becomes identical to Condition (1). 
�
If players can appropriately choose the level of punishment z, Theorem 4

shows that RP+ is optimal within GRP. If z is chosen exogenously such that
it is strictly larger than c

δ2(1−4e)2 , RP+ is no longer optimal. In such a case,
we can slightly modify RP+ so that when observing w, a player plays P with
probability r′ (and with probability 1 − r′, she plays C), where r′ = c

δ2(1−4e)2z .
Then, this modified strategy becomes optimal within GRP and constitutes a
belief-free equilibrium.

Extending RP and RP+ for the case of four or more players (with more
actions and observations) is straightforward. In general, an n-player case needs
n − 1 additional actions/observations; one punishing action and n − 2 whistling
actions. In the four-player case with two whistling actions W1 and W2, for
instance, the idea is to choose W1 if b is observed and to choose W2 if a sig-
nal most likely under W1 is observed. In this way, each player can ask the other
players to punish an apparent deviator.

7 Discussions

7.1 Additional Actions/Observations

Let us argue whether the new actions we introduced (i.e., W and P ) are available
in real-life situations. First, y, i.e., the decreased amount of player i+1’s benefit
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Fig. 5. Pre-FSA that constitutes a sequential equilibrium under A = {C, D, P}

when player i plays W , can be 0. Thus, W can be basically identical to C, but
it must be distinguished from C with a high probability. Such a new action (and
an observation) would be easy to implement (e.g., by cheap talk [10]). On the
other hand, z, i.e., the decreased amount of the benefit for player i + 1 when
player i plays P , must be large enough as shown in Theorem 2. However, within
reasonable parameter settings, z can be smaller than 1. Thus, a relatively mild
spiteful action, which decreases the value of the product, is sufficient.

The reason that we require two additional actions/observations is as follows.
As discussed in Sect. 4, we need one action for punishment that can be dis-
tinguished from D in order to avoid the endless chain of punishment due to
communication errors. Also, it is convenient to have another action for asking
punishment. Actually, by adding just one action for punishment (i.e., without
adding W ), there exists an elaborated strategy that constitutes a sequential equi-
librium in some parameter settings. However, it cannot constitute a belief-free
equilibrium and its expected payoff is low compared to RP/RP+. Figure 5 illus-
trates such an FSA. When all players follow this strategy, their default action is
C. Assume player 0 observes b due to a communication error at period t. Also
assume no error occurs afterward. Then, player 0 remains SP for the next three
periods. Player 1 moves to SD in period t+2, then it moves to SP in period t+3.
Player 2 moves to SP in period t + 3. Then, all players observe p and return to
SC in period t + 4. The case where player 0 observes p due to a communication
error is symmetric to the above case; all players move to SD, observe b, and
return to SC .

7.2 Related Literature

In the literature of AI and multi-agent systems, there are many streams
associated with repeated games [4]: the complexity of equilibrium computa-
tion [1,3,16], multi-agent learning [2,6,24], repeated congestion games [25], par-
tially observable stochastic games (POSGs) [7,14], etc.

The repeated PD with imperfect observability has been extensively studied,
but most papers assume public monitoring. To the best of our knowledge, we
are the first to introduce the idea of the triangular trade in repeated games
with imperfect private monitoring. Also, the idea of adding a dominated and



256 K. Shigedomi et al.

seemingly irrelevant action is new, whether the monitoring is public or private. A
notable exception is Shigenaka et al. [23], who show that by adding a dominated
action, sustainable cooperation can be achieved in the repeated PD and in a
problem called a team production problem. In this paper, we deal with a different
problem, i.e., the triangular trade.

In evolutionary biology, several types of “reciprocity,” i.e., how altruistic
behavior can evolve, have been examined [19]. Among these works, our triangular
trade resembles indirect reciprocity [21], in which a pair is randomly chosen, and
one player acts as a donor while the other player acts as a recipient. If the donor
chooses “Cooperate,” she pays cost c and the recipient receives benefit b. If
the donor chooses “Defect,” both receive 0. Our work is different from indirect
reciprocity in the following points: (i) the same set of players repeatedly plays
the game, and (ii) it deals with imperfect private monitoring and a belief-free
equilibrium.

8 Conclusions and Future Works

In this paper, we proposed a new fundamental problem called triangular trade,
which models a situation that is similar to the PD, i.e., the cooperation of players
is efficient, but each player has an incentive to defect, while it is different from
the PD since a player cannot directly punish a seemingly defecting player. We
first showed that when there exist only two actions, no simple strategy consti-
tutes a belief-free equilibrium. Then, we showed that by adding two additional
actions (and associated observations), RP can constitute a belief-free equilib-
rium in a wide range of parameter settings. Furthermore, we showed the payoff
obtained by a variant of RP (i.e., RP+) is optimal within a very general class of
strategies called GRP that covers virtually all meaningful strategies. Our future
work includes examining the optimality of RP+ in a more general setting (e.g.,
sequential equilibria).
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Abstract. We discuss the limits of current agent organizations, and the
benefits of introducing an explicit account of responsibility and account-
ability. We, then, illustrate how through such notions it is possible to
design both organization specifications and organization entities, that
are guaranteed to properly distribute responsibilities, that is, not only
to own but also to connect the needed, distributed control over the goal
so as to enable its achievement.

Keywords: Accountability · Responsibility · Agent organizations

1 Introduction

Multiagent Systems (MAS) provide a programming paradigm for the devel-
opment of complex systems, which are characterized by multiple autonomous
threads of execution that run in parallel, interact and coordinate with each
other. Several design methodologies and programming platforms that have been
proposed (e.g., [1]) are grounded on the metaphor of the organization. Such agent
organizations represent strategies decomposing complex organizational goals into
simpler sub-tasks and allocating them to roles. By adopting roles in the organi-
zation, agents acquire responsibilities and execute the corresponding tasks in a
distributed, coordinated and regulated fashion.

However, even if current models are targeting open systems by allocating
and enforcing rights and duties to agents about the tasks to realize, they lack
an explicit representation of the relationships between the agents, resulting in
the following limits: (i) difficulty for the agents to identify who should give resti-
tution to whom for a certain state of the organization, (ii) even if agents who
enter the organization are under the regulation of norms, that stipulate their
rights and duties, the organization has no guarantee that they will provide all
the accompanying proofs, that are induced by their responsibilities. We claim
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that the introduction of accountability relationships could enable a more fruitful
participation of agents to the organization both from the agent and the organi-
zation perspectives. Accountability, indeed, is a fundamental concept that could
help to overcome these limitations. However, this term is little understood and is
often used to refer to answerability for one’s actions or behavior. As [26] explains
referring to Public Administrations, accountability plays a greater role in organi-
zational processes than indicated by the idea of answerability. As underlined by
the authors, accountability involves the means (i.e., the control on the necessary
resources within and outside the organization) by which organizations and their
members manage the expectations on fulfillment of their duties.

The objective of this paper is to introduce this broader perspective in agent
organizations and demonstrate that it is an important ingredient that agent orga-
nizations should encompass. We propose thus to use accountabilities as explicitly
taken social relationships, between an account-giver and an account-taker within
an agent organization. Such relationships are mutually agreed by the parties
and concern, in our proposal, roles, agents, goals (either complex or atomic).
Accountability relationships are important in the design of agent organizations
since, as we will explain, when they are properly defined the system properly
distribute responsibilities, i.e., not only to own but also to “connect” the needed,
distributed control over the goal so as to enable its achievement. In particular,
we extend the specification of an organization in a way that enables the verifica-
tion of the feasibility, for a group of agents, to incarnate the organizational roles
properly, i.e., by respecting the accountabilities the agents can cooperate so as
to achieve the organizational goal and discharge their responsibilities. The orga-
nizational model, thus, should no longer be a structure that distributes goals to
its agents, but it should become a way for coordinating responsibility assumption
by the agents.

The paper is so structured. Section 2 reviews the current existing agents
organizational models and analyzes their current limitations w.r.t. accountabil-
ity Sect. 3 proposes a formal definition of accountability and of the accompa-
nying concept of responsibility. This proposal is then applied to agent orga-
nizations, defining accountability and responsibility relationships between roles
and between agents. From these definitions, Sect. 4 shows how such relationships
may help the design and enactment of agent organization definitions within open
MAS. We illustrate this in the context of the Moise organization model which
is part of the JaCaMo MAS-oriented programming platform [8]. The choice is
representative of those approaches where the organization is described in terms
of roles, goals and norms, and the organization issues obligations to push agents
to pursue the assigned goals at the right moment.

2 Lack of Accountability in Agent Organizations

To face the inherent need of coordination among autonomous agents, the orga-
nization metaphor has been used for a long time in MAS. When looking back,
a set of initial proposals [13,18] have defined an explicit structure of roles and
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relations, through which responsibilities of tasks are distributed by adoption of
roles, among the agents participating in the organization. Such models are well
adapted to “closed agent organization” where benevolent agents, always com-
plying, coordinate with each other to achieve their responsibility assumptions
(actions, goals or interactions). A second generation of organization models,
following the electronic institution pioneering approaches [21], has introduced
norms in the structure of roles and tasks, giving birth to normative organization
[8,16,17,19,22]. These social coordination frameworks [1] are targeting “open
socio-technical systems”. Thanks to norms, the structures of distributed respon-
sibilities among agents have been enriched with structures of social expectations:
besides being the source of task responsibility assumption, roles have become the
anchoring point of social expectations on the behavior of the agents who will play
them in the organization. As for normative MAS [7], normative organizations are
equipped with a set of mechanisms to publish, enact, adapt, monitor and enforce
normative behaviors. Thus, once decided to adopt a role with the accompanying
norms and thus participating to the organization, agents assume the responsi-
bility of the targeted tasks. Moreover, they are expected by the organization to
accomplish their duties. In case of violation, they are enforced to do so through
sanctions.

However, while addressing the requirement of assigning duties and rights to
agents, agent organizations are obfuscating accountability as pointed by [10,11].
Agent autonomy demands a different way of conceptualizing coordination by
clearly constraining them in terms of responsibilities that are explicitly taken on
by them, and by establishing a directed relationship from one agent to another,
that reflects the legitimate expectations the second principal has of the first.
Agent organizations have not established yet the foundational facts of account-
ability, i.e., following [6] who has control over the situation and who is responsible
of acting (or not) in accordance with established expectations.

Lack of Control for the Agents. Current agent organizations are lacking an easy
way, for the agents participating to them but also for the organization designers,
to check who has control over the situation. That is to say, checking that the
means to execute the expected tasks are properly provided to the agents who
become in charge of them through their adopted roles, i.e., enabling agents to
have control/power on resources, on other tasks, on other agents on which their
duties depend. For instance, in an organization coordinating the building of a
house, a bricklayer who depends on some other worker in charge of preparing
the site does not have the means to ask about occurring delays. Not even the
house owner has such means. Indeed, even if each co-worker, by reasoning on
the organization specification, may know about the existence of others with
whom it should coordinate, the co-worker has no explicit endorsement from the
organization to do so. Assignment of roles to tasks in organization specifications
and then roles to agents via their enactments are not sufficient to explain the
control structure of the expected coordinated tasks in the organization.
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Agents’ Responsibility Is Not Well Captured. In most of the current normative
organization approaches, when norms are enacted through adoption by agents of
the role on which they bear, they are translated into deontic modalities or social
commitments. Deontic modalities only constrain the agent who is in charge of
fulfilling the norm. Targeting the control of its autonomy, they are lacking all
what concerns the act of assuming responsibility in the broader context of the
organization such as role adoption, detachment of duties. Social commitments
[9,28] help to capture the deliberate act of the agent that takes on a duty by
adopting the role, but still lack to capture the adoption of role itself, and the
detachment. Moreover, besides detachment and adoption, there is a lack of an
explicit social ground that clearly models in terms that are known and agreed
upon by all agents participating in the organization, what duties an agent has
accepted to bring about in interaction with others [15]. That is to say, when a
failure occurs in the agent organization, it is not possible for an agent to attribute
causal responsibilities nor to identify the causes of the failure.

In most of the approaches, then, it is assumed that the sanctions associ-
ated with the violation (or fulfillment) of an obligation are a sufficient tool for
constraining agents’ behaviors. However, in order to apply sanctions, there is a
need to conduct an inquiry process, to investigate on the reasons of the failure
or success in order to properly apply adequate and justified sanctions. Agents
participating to the organization are thus also expected to provide proofs and
explanations of their behaviors in the organization w.r.t. their responsibilities.

Organizations are dynamic structures with a life cycle chaining design, role
adoption, execution with fulfillment and enforcement of corresponding social
expectations. When tasks participating in the definition of social expectations,
connected to roles, change, the organization is changed, restarting a new cycle
of design, adoption and fulfillment. All current models in MAS are assuming
such a life cycle. However, there is no explicit commitment that organizations
will not change the tasks attached to social expectations during the time agents
play the corresponding role. In case of malevolent organization, for instance,
it may be possible that the organization dynamically changes the set of allo-
cated tasks to roles, roles already adopted by agents. Thus when the normative
organization issues an obligation towards an agent, that agent may not have the
desire or a proper capability for satisfying that obligation (see [4,5] for instance).
This short example demonstrates that currently social expectations are mainly
directed from the organization to the agents, stating the expected agents’ behav-
iors when adopting roles within the organization. The inverse relation, where the
organization is engaging in expected behaviors with respect to the agents, does
not exist.

3 Accountability in Agent Organizations

The accountability model that we will define aims at being used in the con-
text of agent organizations. Before presenting this model, let’s first introduce in
Sect. 3.1, a definition of its components in the context of collective execution of
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plans, decomposition of tasks into subtasks with temporal relations as presented
in Fig. 1. Based on this model, we will then define in Sect. 3.2, accountability
relation in agent organizations.

3.1 Preliminary Definitions

As a first step, it is necessary to provide a language for expressing those con-
ditions and behaviors to which accountabilities refer. To this aim, we rely
upon precedence logic [29]. Precedence logic is an event-based linear tempo-
ral logic devised for modeling and reasoning about Web service composition.
The interpretation of such a logic deals with occurrences of events along runs
(i.e., sequence of instanced events). Event occurrences are assumed to be non-
repeating and persistent: once an event has occurred, it has occurred forever. The
logic has three primary operators: ‘∨’ (choice), ‘∧’ (concurrence), and ‘·’ (before).
The before operator allows constraining the order with which two events must
occur, e.g., a · b means that a must occur before b, but the two events do not
need to occur one immediately after the other. Such a language, thus, allows
us to model complex expressions, whose execution needs to be coordinated as
they are under the responsibility of different agents. Let e be an event. Then
e, the complement of e, is also an event. Initially, neither e nor e hold. On any
run, either e or e may occur, not both. Intuitively, complementary events allow
specifying situations in which an expected event e does not occur, either because
of the occurrence of an opposite event, or because of the expiration of a time
deadline.

Example 1 (Building a house). For the sake of explanation, we rely on the
building-a-house example introduced in [8] for JaCaMo. We represent by means
of precedence logic the functional specification of the organization:

– house built
.= frame · (interior ∧ exterior).

– frame
.= site prepared · floors laid · walls built.

– interior
.= plumbing installed · electrical system installed · (walls painted ∨

wallpapered).
– exterior

.= roof built · (windows fitted ∧ doors fitted).

The main goal, house built, requires the site to be prepared and then both the
interior and exterior of the house to be built. The two activities can be performed
in any order or even in parallel. All such sub-goals amount to complex processes.
Most activities need to be carried out one after the other (e.g. site prepared ·
floors laid · walls built) but concerning the walls, it will be up to the performer
to decide whether to paint them or to lay paper on them. The decomposition of
house built is graphically shown by Fig. 1.

We also rely on the notion of residuation, inspired by [25,29]. Residuation
allows tracking the progression of temporal logic expressions, hopefully arriving
to their satisfaction, i.e., the completion of their execution. The residual of a
temporal expression q with respect to an event e, denoted as q/e, is the remainder
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Fig. 1. The building-a-house goal’s functional decomposition.

temporal expression that would be left over when e occurs, and whose satisfaction
would guarantee the satisfaction of the original temporal expression q. Residual
can be calculated by means of a set of rewrite rules. The following equations are
due to Singh [25,29]. Here, r is a sequence expression, and e is an event or �.
Below, Γu is the set of literals and their complements mentioned in u. Thus, for
instance, Γe = {e, e} = Γe and Γe·f = {e, e, f, f}.

0/e
.
= 0 �/e

.
= � (r ∧ u)/e

.
= ((r/e) ∧ (u/e))

(r ∨ u)/e
.
= ((r/e) ∨ (u/e)) (e · r)/e

.
= r, if e �∈ Γr r/e

.
= r, if e �∈ Γr

(e′ · r)/e
.
= 0, if e ∈ Γr (e · r)/e

.
= 0

Using the terminology in [3], we say that an event e is relevant to a temporal
expression p if that event is involved in p, i.e. p/e �≡ p. Let us denote by e a
sequence e1, e2, . . . , en of events. We extend the notion of residual of a temporal
expression q to a sequence of events e as follows: q/e = (. . . ((q/e1)/e2)/ . . .)/en.
If q/e ≡ � and all events in e are relevant to q, we say that the sequence e is
an actualization of the temporal expression q (denoted by q̂).

Example 2. Let (a · b)/a be the temporal expression b, while (a · b)/a and
(a · b)/b cause the temporal expression to become false, in the first case
because the opposite event of a occurs, in the second because event b occurs
in the wrong order. Referring to Example 1, the residual of (plumbing installed
· electrical system installed· (walls painted ∨ wallpapered))/plumbing installed is
electrical system installed · (walls painted ∨ wallpapered). Instead, the resid-
ual of the latter temporal expression with respect to walls painted would
be false because the event occurrence disrupted the order, captured by
the temporal expression. Finally, the residual of the temporal expression
(plumbing installed · electrical system installed· (walls painted ∨ wallpapered))
with respect to the sequence {plumbing installed, electrical system installed} is
(walls painted ∨ wallpapered).

3.2 Specifying Accountability in Agent Organizations

No unique and standard organization specification model exists yet to spec-
ify agent organization in the MAS domain. However, as pointed in [14], gen-
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erally, their specifications are based on the concepts of roles, which have to
be adopted by agents, tasks (e.g. actions, goals, interactions) assigned to roles
through norms, usually expressed with deontic modalities. Agents’ organizations’
life cycle chains design, enactment (i.e., adoption of roles by agents, building
what is usually called organization entity), execution (i.e., coordination of agents
realizing their duties, monitoring, enforcement). The proposal that we explain
fits equally well the specification of accountability in the context of organiza-
tion specification and in the context of organization entity, i.e., accountability
between roles at the specification level, and accountability between agents at
the entity level. We let the structure of roles at the simplest expression (i.e., we
won’t consider groups or relations among roles).

In the following we use the notations A(x, y, r, u) and R(x, q) in order to
explicitly represent accountabilities and responsibility assumptions respectively.
By A(x, y, r, u) we express that x, the account-giver, is accountable towards y,
the account-taker, for the condition u when the condition r (context) holds.
Both r and u are temporal expressions, given in precedence logic. If we think
of a process being collectively executed, we can say that when the r part of the
process is done, then x becomes accountable of the u part. When u is true, x is
considered to have satisfied the expectation that was put on it by exercising its
control, which means that it has built a proof that can be supplied to the account-
taker. A proof here is intended as a set of recorded facts, that demonstrate the
achievement of the specified condition. Indeed, the account-taker can ask at any
time for a proof to the account-giver, provided that r is true (in this case the
accountability is detached). Such a proof of the partial execution will amount
to the set of facts collected that far. Along with the execution, expectation and
control will evolve and will run out with the satisfaction of the accountability,
and only the final proof will be left. When, instead, u is false, the expectation
was violated, and x’s control failed. When r is false, instead, the accountability
expires. This means that those conditions, which subtend both the expectation
about u and its control, do not hold anymore. Instead, by R(x, q) we capture the
responsibility assumption by x of the temporal expression q. When q is true the
responsibility is fulfilled, when it is false, it is neglected.

We denote by A a set of accountabilities, calling it an accountability spec-
ification, and by R a responsibility distribution, that is a set of responsibility
assumptions.

We use residuation to compute the progress of both accountabilities and
responsibility assumptions: the idea is that, even though they are not tempo-
ral expressions, such relationships progress with the progress of their temporal
expressions. A(x, y, r/e, u/e) denotes the residual of A(x, y, r, u) with respect
to the sequence of events e. On the other hand, when r/e

.= 0, we say that
the accountability expires; when r/e

.= � and u/e
.= 0, the accountability is

violated; when u/e
.= � it is satisfied. Similarly, R(x, q/e) denotes the residual

of R(x, q) with respect to the sequence of events e, while when q/e
.= � the

responsibility is fulfilled, and when q/e
.= 0, it is neglected.
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As explained since the introduction, A(x, y, r, u) is grounded on control and
expectation. While expectation is naturally conveyed with the accountability
itself, the control needs to be recursively verified on the structure of u. In fact,
x controls u either directly or indirectly by relying on accountabilities by other
parties. In the following discussion we adopt the convention in [25] and limit
sequences to just two events each. This is done to simplify the formalization and
without loss of generality, because e1 · · · en ≡ (e1 · e2) ∧ . . . ∧ (en−1 · en).

Definition 1 (Control). Let A be an accountability specification, we denote
by ξ(x, r, u) the control in A of x over u in the context r (ξ(x, r, u) in A holds).
For control, the following rules hold:

– ξ(x, r, u) in A if u/r = �;
– ξ(x, r, u′ ∧ u′′) in A if ξ(x, r, u′) in A and ξ(x, r, u′′) in A;
– ξ(x, r, u′ ∨ u′′) in A if ξ(x, r, u′) in A or ξ(x, r, u′′) in A;
– ξ(x, r, u), where u/r = u′ ·u′′, in A if ξ(x, r, r ·u′) in A and ξ(x, r ·u′, r ·u′ ·u′′)

in A;
– ξ(x, r, u) in A if there exists A(y, x, r′, u) ∈ A such that ξ(x, r, r′) in A −

{A(y, x, r′, u)}.
Notice that having control does not mean having the ability of making a temporal
expression become true in any case, but that x has the possibility of realizing it.
Moreover, the control relation on atomic temporal expressions cannot be checked
from the specification only. The check depends on the responsibility assumption
by the agent who has adopted the role.

Definition 2 (Accountability Closure). Let A be an accountability specifi-
cation, A is closed under control if for each A(x, y, r, u) ∈ A, such that u/r is
not atomic, we have ξ(x, r, u) in A.

Residuation preserves control, indeed the following proposition holds.

Proposition 1. Let A be an accountability specification that is closed under
control, and let e be an event, then A/e = {A(x, y, r/e, u/e) |A(x, y, r, u) ∈ A}
is still closed under control.

Proof. The proof proceeds by induction. To correctly define the base case,
we select, at each inductive step, the subset A of the accountabilities that
are relevant to a specific control expression. More precisely, given a control
expression ξ(x, r, u) in A, let us denote with A|r,u a set of accountabilities
{A(z, w, p, q)} ⊆ A such that either p/r �≡ p, p/u �≡ p, q/r �≡ q, or q/u �≡ q.
Now, it is sufficient to assume that the control rules in Definition 1 hold in A|r,u
(if this is true, they trivially hold in A, too).

Now let us show that A/e is closed under control if also A is closed under
control. To demonstrate this, we show that the progression caused by an event e
preserves control ξ(x, r, u) in A|r,u. By induction over the size of A|r,u and the
length of u/r.
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– Base case: ξ(x, r, u) in A|r,u holds and u/r ≡ �, then it is obvious that also
ξ(x, r/e, u/e) holds in A.

– Base case: ξ(x, r, u) in A|r,u = {A(z, w, r′, u′)} and ξ(x, r, r′) in {} hold. Given
the rules of control in Definition 1, it must be the case that u ≡ u′, w ≡ x.
In addition, since ξ(x, r, r′) cannot base control upon another accountability
relation, it must be the case that r ≡ r′ (falling in the previous base case).
It follows that if ξ(x, r, u) in A|r,u = {A(z, x, r′, u)} and ξ(x, r, r) in {} hold,
also ξ(x, r/e, u/e) in (A|r/e,u/e)/e = {A(z, x, r′/e, u/e)} and ξ(x, r/e, r/e) in
{}/e hold.

– Inductive step, cases ξ(x, r, u′ ∧ u′′) and ξ(x, r, u′ ∨ u′′) follow from definition
of residuation, and from the rules of control.

– Inductive step, case ξ(x, r, u), where u/r = u′ ·u′′. We have that ξ(x, r, r ·u′) in
A|r,r·u′ and ξ(x, r ·u′/e, r ·u′ ·u′′/e) in (A|r·u′/e,r·u′·u′′/e)/e from the definition
of control. Now, by inductive hypothesis, we have that ξ(x, r/e, r · u′/e) in
(A|r/e,r·u′/e)/e and ξ(x, r · u′/e, r · u′ · u′′/e) in (A|r·u′/e,r·u′·u′′/e)/e. Thus,
we conclude that ξ(x, r/e, u/e) in (A|r/e,u/e)/e. In fact if e is not relevant to
r nor to u, than no change occurs, and control is trivially preserved. If e is
relevant to both r and u, then e cannot be but the first element of r since
otherwise it would progress the consequent condition to 0.

– We have ξ(x, r, u) in A|r,u, then there is A(y, x, r′, u) ∈ A|r,u s.t. ξ(x, r, r′)
in (A|r,u − {A(y, x, r′, u)})|r,r′ . By inductive hypothesis, ξ(x, r/e, r′/e) in
(A|r,u − {A(y, x, r′, u)})|r,r′/e, that is (A|r/e,u/e − {A(y, x, r′, u)})|r,r′ . Now,
ξ(x, r/e, r′/e) in (A|r/e,u/e − {A(y, x, r′, u)}) because of the last set includes
A|r/e,u/e − {A(y, x, r′, u)})|r,r′ and, for the same reason, ξ(x, r′/e, r/e) in
A|r/e,u/e that proves the case. �

In words, this property means that the possibility of realizing a temporal expres-
sion is not disrupted by the occurrence of events, and that possibility remains
step after step. Of course, agents, in their autonomy will maintain the decision
about what to do (e.g., make an accountability expire) but this will remain in
the proof.

We now show how accountabilities are complemented with responsibilities to
the aim of developing full organization specifications and organization entities.
In the following, we denote by A a set of accountability specifications Ai, each of
which is closed under control. Intuitively, each Ai in A represents a proper way
to achieve the organizational goal. A is therefore the set of alternative solutions
the organization designer considers as acceptable at runtime. In this paper, we
assume that the designer has specified A in a way that complies with the design
aims. In particular, we assume that for each Ai there is at least a sequence of
events e that satisfies all the accountabilities in Ai, allowing the achievement
of the organizational goal. We denote by 〚Ai〛 the set of event sequences that
satisfy all the accountabilities in Ai.

Any actual set of agents enacting roles within the organization, should there-
fore be such to satisfy at least one of the accountability specifications Ai in A. To
verify whether this occurs, we approach the problem in general terms by means
of the responsibility characterization. Intuitively, assuming that agents are will-



270 M. Baldoni et al.

ing to take on a set of responsibilities, each declaring what is willing to bring
about within the organization, the problem becomes to verify whether such a
set of responsibility declarations fits at least one of the accountability specifica-
tions in A. Part of such responsibilities will be due to the roles agents will enact,
thus they can be considered as part of the specification of the organization (role
responsibility), e.g., deduced from the definition of norms that connect roles to
goals. Part of them may, instead, have as a source the agents themselves – con-
straints they pose on the organization for playing roles (agent responsibility).
Depending on the source of responsibilities that is considered, thus, it will be
possible either to check the consistency of the specification of the organization or
to check the feasibility for a group of agents to incarnate the foreseen roles prop-
erly, i.e., respecting the accountabilities and preserving closure under control,
which means that the agents can cooperate so as to achieve the organizational
goal and discharge their responsibilities. The problem is formalized as follows.

Definition 3 (Accountability fitting). Given a set of accountability specifi-
cations A and a responsibility distribution R, we say that R fits A, denoted by
R � A, if there is A ∈ A such that for each accountability A(x, y, r, u) ∈ A, there
is a responsibility R(x, q) ∈ R such that, for some actualization q̂, (u/r)/q̂ ≡ �.

In particular, the following propositions hold.

Proposition 2. Given a set of accountability specifications A, and a responsi-
bility distribution R, such that R � A, let e be an event, then R/e � A/e.

Proof. By Definition 3 (Accountability Fitting), we know that there exists in
A at least one accountability specification A such that, for each A(x, y, r, u)
there is one responsibility declaration R(x, q) ∈ R such that (u/r)/q̂ ≡ � some
actualization q̂ of q. To show that R/e � A/e we have just to show that R/e �
A/e, for any possible event e. If e is irrelevant to R, then R/e ≡ R, and hence
the same actualizations that make R fit A are still possible in R/e, and hence
R/e � A/e. If e is relevant to some responsibility declaration R(x, q) in R we
consider two cases:

– e is not relevant to A, this happens when the responsibility taken on by x
covers a wider set of events than actually required by A. The actualizations of
the residual expression q/e, thus, can still bring some accountabilities in A to
satisfaction, namely for some A(x, y, r, u) ∈ A it must happen (u/r)/̂q/e ≡ �,
and hence R/e � A/e.

– e is relevant to A, that is, there exists at least one accountability A(x, y, r, u)
such that e is relevant for r, u, or both. Since by hypothesis we know that
(u/r)/q̂ ≡ � holds, it must also hold that ((u/e)/(r/e))/̂q/e ≡ �, in fact the
actualizations of the residual expression q/e are just suffixes of the actualiza-
tions of expression q.

Thus, since whichever event e occurs R/e � A/e, we conclude that R/e �
A/e. �
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Proposition 3. Given a set of accountability specifications A, and a responsi-
bility distribution R such that R � A, then, there exists e such that: (1) e = q̂
where q =

∧

R(x,qi)∈R qi (2) e ∈ 〚Ai〛, for some Ai in A.

Proof. Let us assume, by absurd, that the sequence e does not exist. This means
that for any sequence e we obtain by the actualizations of the responsibility
declarations in R, and for all accountability specification Ai ∈ A, there is at
least one accountability A(x, y, r, u) ∈ Ai, that does not progress to satisfaction
when A(x, y, r/e, u/e). That is to say, there is a gap in the responsibilities due
to the fact that R(x, p), such that (u/r)/p̂ ≡ � is missing.

Of course, this is not possible as we are assuming by hypothesis that R � A

and hence, there must exist at least one accountability specification A in A,
such that, for accountability A(x, y, r, u) in A there exists R(x, p), such that
(u/r)/p̂ ≡ �. It follows that, when a sequence e is an actualization of all the
responsibilities in R, it will also be an actualization of each accountability in at
least one A ∈ A. �

Schlenker’s well-known triangle model of responsibility [27] states that
responsibility depends on three linkages called prescription-identity, identity-
event, and event-prescription. Only when the three linkages are drawn will an
individual feel responsible for something. We resort on this model to summarize
what our proposal adds to organization specifications and organization entities.

Responsibility assumptions in R describe which duties agents take on when
playing some roles inside an organization. From an organization designer’s per-
spective, such duties would be captured in the simplest case through norm spec-
ification, or, in a richer form, norms would be complemented with requirements
the agents have to comply with for adopting roles concerned by the norms.
Still, this is on the organization side. On the agent side, obligations (per se)
are received by fiat; following [20], they succeed in directing individual behavior
only when they agree with the sensitivity of the individuals. Our proposal fills
this design gap through explicitly declared/taken responsibility assumptions and
accountability relationships, which give agents the means for reasoning about
the implications of role enactment, and give designers the means for specifying
organizations that show the good characteristics expressed by Proposition 3.

For a normative organization to function well, its agents should interiorize
the norms in their behavior but when can this happen in open organizations?
If the agent considers a norm (say, an obligation) as a prescription concerning
one of its identities (i.e., one of the roles it plays in the organization having
that norm) the norm would start being something more than “given by fiat”.
In our proposal this can be done because, even though here we do not focus on
the process, R can be derived from the organization norms; in some case, the
norm specification could even reduce to the specification of the responsibility
distribution – which duties are up to which roles. That would not, however, be
enough if the same agent cannot see the connection between the prescription
and some events it concerns (in our setting, the prescription would apply in a
context), and also between the event and the identified identity (the context
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as one in which the role has control over something). It is the co-presence of
the three linkages (1) to create in the agent the urge to tackle that context,
abiding by the prescription, by virtue of its role, should the prescription apply;
(2) that helps the designer to create organizations where role specification and
goal distribution combine well.

On the other hand, A is focused on accountability, basing it on the coordina-
tion aspect, and specifies alternative ways to be accountable in the achievement
of the organizational goals. This separation of concerns encourages both mod-
ularity and reuse. In fact, the accountability specifications can be defined and
verified w.r.t. responsibility concerning roles independently of the actual agents
that will play roles in the organization itself. The separation of concerns is at
two levels. First, the organization specification level: a same organization can be
characterized by several accountability specifications and several responsibility
distributions, that fit with each other. Second, the organization entity level. Here,
the same set of agents can take responsibility and be accountable in different
organizations specifications, as well as, different sets of agents could take respon-
sibility and be accountable in the same organization specification. The proposed
formalization enables the check that the responsibility, taken by agents accord-
ing to the responsibility specification in the organization specification, fits the
accountability in the organization entity, that is enacted from the accountability
specification in the organization specification.

4 Example: Building a House

Let’s consider Example 1, originally presented in [8], and relying on the three
dimensions of the Moise organizational model [23]. The structural dimension
specifies roles, groups and links between roles in the organization. The func-
tional dimension is composed of one or more schemes that elicit how the global
organizational goals are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed to roles in the nor-
mative dimension. This latter binds the two previous dimensions by specifying
the roles’ permissions and obligations for missions. While the model presented in
the previous section is independent of a particular agent organization model, we
demonstrate its use and interest, focusing on the roles, functional and normative
dimensions of the Moise model.

As in the original building-a-house example, an agent wants to build a house
on a plot. To achieve this goal the companies, he has contracted with, must
coordinate and execute various tasks, part of which can be executed in paral-
lel, while part depends on other tasks. The temporal order is specified by the
functional specification of the process (cf. Fig. 1). Its translation in precedence
logic is given in Example 1. The structural specification defines a group which
includes the following roles: House Owner (ho), Boss (bo), Frame Manager (fm),
Interior Exterior Manager (iem), Site Prep Contractor (spc), Bricklayer (bl),
Roofer (ro), Fitter (ft), Plumber (pl), Electrician (el), Painter (pa). The nor-
mative specification defining how each of the goals are allocated to roles will be
described later when mapping it in terms of responsibilities.
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The top-level organizational goal is house built, of which bo should be in
charge. On this basis, the designer can define the accountability relationship
A(bo, ho,�, frame · (interior ∧ exterior)). Below, we report an example account-
ability specification A1 (see Fig. 2a) that includes the accountability of interest:

a11. A(bo, ho,�, frame · (interior ∧ exterior))
a12. A(fm, bo,�, frame)
a13. A(spc, fm,�, site prepared)
a14. A(bl, fm, site prepared, site prepared · floors laid)
a15. A(bl, fm, site prepared · floors laid, site prepared · floors laid · walls built)
a16. A(iem, bo, frame, frame · interior)
a17. A(iem, bo, frame, frame · exterior)
a18. A(pl, iem, frame, frame · plumbing installed)
a19. A(el, iem, frame · plumbing installed,

frame · plumbing installed · electrical system installed)
a110. A(pa, iem, frame · plumbing installed · electrical system installed,

frame · plumbing installed · electrical system installed · walls painted)
a111. A(ro, iem, frame, frame · roof built)
a112. A(ft, iem, frame · roof built, frame · roof built · windows fitted)
a113. A(ft, iem, frame · roof built, frame · roof built · doors fitted)

It is easy to see that A1 is closed under control (see Definition 2). Let us
start with a11. We must verify if ξ(bo,�, frame ·(interior∧exterior)) holds. To this
aim, by Definition 1, we should have that ξ(bo,�, frame) and ξ(bo, frame, frame ·
(interior∧exterior)), which is true because of the accountabilities a12, a16, and a17.
Similarly for every relationship in A1. The choice walls painted ∨ wallpapered in
Example 1 enables an alternative accountability specification A2, by substituting
a110 with A(pa, iem, frame · plumbing installed · electrical system installed, frame
· plumbing installed · electrical system installed · wallpapered). We could, then,
define A as the set {A1,A2} if both are considered adequate by the designer.

Fig. 2. Two accountability specifications for the building-a-house organization. Green
arrows depict who is accountable towards whom. (Color figure online)

A1 and A2 rely on two managers, fm and iem, who act as intermediaries
between their account-givers and bo: bo controls the overall process through the
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accountability relationships in which it is account-taker and the managers are
account-givers. Accountability specification A3 shows a more substantial change.
Here, fm is removed and spc and bl are directly accountable towards bo:

a31. A(spc, bo,�, site prepared)
a32. A(bl, bo, site prepared, site prepared · floors laid)
a33. A(bl, bo, site prepared · floors laid, site prepared · floors laid · walls built)

The extreme is when all accountabilities, though having the already seen shape,
show bo as account-taker. This leads to A4 (see Fig. 2b) which includes:

a41. A(bo, ho,�, frame · (interior ∧ exterior))
a42. A(spc, bo,�, site prepared)
a43. A(bl, bo, site prepared, site prepared · floors laid)
a44. A(bl, bo, site prepared · floors laid, site prepared · floors laid · walls built)
a45. A(pl, bo, frame, frame · plumbing installed)
a46. and so forth....

Also A3 and A4, if deemed adequate, may be included in A.
Finally, let us consider A5, which is similar to A1, but for a13, substi-

tuted by a53 : A(spc, bo,�, site prepared), and where a18 is not defined. Two
main problems can be identified. First, for fm to have control over frame (i.e.,
site prepared · floors laid · walls built), there should be three accountability rela-
tionships, one for each event, with fm as account-taker. In particular, spc
should be accountable to fm rather than to bo (as, instead, encoded in a53) for
site prepared. Second, there is no accountability concerning plumbing installed.

Fig. 3. Accountability specification A1 fitted by R

Let us now consider the set of responsibility assumptions R, depicted in
Fig. 3:
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r1. R(bo, frame · (interior ∧ exterior))
r2. R(fm, frame)
r3. R(spc, site prepared)
r4. R(bl, floors laid · walls built)
r5. R(iem, interior ∧ exterior)
r6. R(pl, plumbing installed)

r7. R(el, electrical system installed)
r8. R(pa,walls painted)
r9. R(ro, roof built)
r10. R(ft,windows fitted)
r11. R(ft, doors fitted)

This set of responsibilities can be deduced from the normative specification of
the Moise organization specification that connects roles to goals of the func-
tional specifications through missions. Thus, for instance, R(bo, frame · (interior∧
exterior)) is deduced from the norm stating that bo has the obligation of achiev-
ing interior∧exterior after frame. Due to space limitations we cannot provide this
normative specification.

It can easily be shown that R fits A. Recalling Definition 3, there should
be at least one Ai ∈ A such that, for each accountability belonging to
Ai there is a responsibility declaration belonging to R with an actualiza-
tion that allows to satisfy the accountability, thus discharging the responsi-
bility. This holds in particular with respect to A1. Indeed, let’s consider, for
instance, a16, a17 and r5. An actualization of interior is {plumbing installed,
electrical system installed, walls painted}. Similarly, a possible actualization of
exterior is {roof built, windows fitted, doors fitted}. It’s important to point out
that these are not the only two allowed actualizations. Moreover, any interleav-
ing which preserves the partial ordering of the two sequences is an actualization
of interior ∧ exterior. It is easy to show that such an actualization would bring
both the consequents of a16, a17 (residuated w.r.t. the antecedent) to �. The
same holds for every accountability in A1. As a remark, it is important to high-
light that the responsibility distribution R would fit A4, as well. However, the
absence of the two managers in the accountability specification would make r2
and r5 unnecessary.

5 Conclusions and Future Work

In this paper we have proposed the foundational facts for specifying account-
ability within agent organizations. Such a specification complements the respon-
sibility assumption, coming from the normative specification, which expresses
social expectations on the rights and duties of the agents, participating to the
organization. Based on precedence logic, this model of accountability involves
roles in an organization specification, or agents in an organization entity. It is
based on control relations and on social expectations about tasks contributing
to the achievement of organizational goals. We have shown how it is possible
to check that responsibility distribution in roles (or agents while playing roles)
fits the accountability relationships coming from the accountability specifica-
tion of the organization. As such, the proposal has many application fields, like
software development, agent reasoning, organization management. Since the pro-
posal relies on the constitutive elements of the approaches to agent organizations,
i.e. roles, goals and norms, we could illustrate how this model can be used in the



276 M. Baldoni et al.

context of the Moise organization model, component of the JaCaMo platform.
While here mainly demonstrated to support an organization designer–to check
the coherence between an accountability specification and a responsibility dis-
tribution, the model could be used also at the agent level for providing agents
with reasoning capabilities on those accountability relationships that come from
the organizations to which they (may) participate.

Besides what already discussed, accountability relationships and responsibil-
ity, and in particular the presented proposal, will help to enrich the expression
of social expectation by enlarging their scope and by introducing expectations
from agents towards organization – thus turning organizations into structures of
bilateral social expectations. The scope of social expectations are limited to the
task to be executed. They are currently missing all what concerns the adoption
of roles by agents. It is, usually, assumed that an agent who is going to adopt
a role will necessarily have proper capabilities for each task it will ever receive.
Organizations are trusting the agents for having the right capabilities for realiz-
ing what is expected from them when playing roles. There is no way of expressing
social expectations on requirements for playing a role and of checking them. Few
models have addressed this question by proposing modeling of contracts [12] or
[2,24] involving agents and organization when adopting roles.

In the future, we intend to extend the proposal by including other forms of
accountability relationships, such as the negative accountability, i.e., to capture
that someone is expected not to impede social progress and negatively impact
others. We will also study ways for leading agents to an agreement on a specific
fitting of accountabilities when more than one exists.

References

1. Aldewereld, H., Boissier, O., Dignum, V., Noriega, P., Padget, J. (eds.): Social
Coordination Frameworks for Social Technical Systems. LGTS, vol. 30. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33570-4

2. Aldewereld, H., Dignum, V., Jonker, C.M., van Riemsdijk, M.B.: Agreeing on role
adoption in open organisations. KI-Künstliche Intelligenz 26(1), 37–45 (2012)

3. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Type checking for proto-
col role enactments via commitments. J. Auton. Agents Multi-Agent Syst. 32(3),
349–386 (2018)

4. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability in MAS organizations with ADOPT. J. Appl. Sci. 8(4), 489 (2018).
Special issue “Multi-Agent Systems”

5. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: ADOPT JaCaMo:
accountability-driven organization programming technique for JaCaMo. In: An, B.,
Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS, vol.
10621, pp. 295–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69131-2 18

6. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: An information
model for computing accountabilities. In: Ghedini, C., Magnini, B., Passerini, A.,
Traverso, P. (eds.) Proceedings of 17th International Conference of the Italian
Association for Artificial Intelligence, AI*IA 2018. LNAI, Trento, Italy. Springer
(2018)

https://doi.org/10.1007/978-3-319-33570-4
https://doi.org/10.1007/978-3-319-69131-2_18
https://doi.org/10.1007/978-3-319-69131-2_18


Accountability and Responsibility in Agent Organizations 277

7. Boella, G., van der Torre, L.W.N., Verhagen, H.: Introduction to the special issue
on normative multiagent systems. J. AAMAS 17(1), 1–10 (2008)

8. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

9. Castelfranchi, C.: Principles of individual social action. In: Contemporary Action
Theory: Social Action, vol. 2, pp. 163–192. Kluwer, Dordrecht (1997)

10. Chopra, A.K., Dalpiaz, F., Aydemir, F.B., Giorgini, P., Mylopoulos, J., Singh,
M.P.: Protos: foundations for engineering innovative sociotechnical systems. In:
IEEE 22nd International Requirements Engineering Conference, pp. 53–62 (2014)

11. Chopra, A.K., Singh, M.P.: From social machines to social protocols: software
engineering foundations for sociotechnical systems. In: Proceedings of the 25th
International Conference on WWW (2016)

12. Colman, A., Han, J.: Operational management contracts for adaptive software
organisation. In: Proceedings of the 2005 Australian Conference on Software Engi-
neering, pp. 170–179. IEEE Computer Society (2005)

13. Corkill, D.D., Lesser, V.R.: The use of meta-level control for coordination in dis-
tributed problem solving network. In: Bundy, A. (ed.) Proceedings of the 8th
International Joint Conference on Artificial Intelligence, IJCAI 1983, pp. 748–756.
William Kaufmann, Los Altos (1983)

14. Coutinho, L.R., Sichman, J.S., Boissier, O.: Modelling dimensions for agent organi-
zations. In: Handbook of Research on Multi-Agent Systems: Semantics and Dynam-
ics of Organizational Models, pp. 18–50. IGI Global (2009)

15. da Rocha Costa, A.C.: Proposal for a notion of modularity in multiagent systems.
In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) Pre-proceedings of Engineering
Multi-Agent Systems Workshop at AAMAS, Paris, pp. 21–40 (2014)

16. Dastani, M., Tinnemeier, N.A.M., Meyer, J.-J.C.: A programming language for
normative multi-agent systems. In: Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, pp. 397–417. IGI Global (2009)

17. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis. Utrecht University (2004). Published by SIKS

18. Dignum, V.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global, Hershey (2009)

19. Dignum, V., Vázquez-Salceda, J., Dignum, F.: OMNI: introducing social structure,
norms and ontologies into agent organizations. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) ProMAS 2004. LNCS, vol. 3346, pp. 181–198.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32260-3 10

20. Durkheim, E.: De la division du travail social. PUF, Paris (1893)
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Abstract. To guarantee the overall intended objectives of a multiagent
systems, the behavior of individual agents should be controlled and coor-
dinated. Such coordination can be achieved, without limiting the agents’
autonomy, via runtime norm enforcement. However, due to the dynam-
icity and uncertainty of the environment, the enforced norms can be
ineffective. In this paper, we propose a runtime supervision mechanism
that automatically revises norms when their enforcement appears to be
ineffective. The decision to revise norms is taken based on a Bayesian
Network that gives information about the likelihood of achieving the
overall intended system objectives by enforcing the norms. Norms can
be revised in three ways: relaxation, strengthening, and alteration. We
evaluate the supervision mechanism on an urban smart traffic simulation.

Keywords: Norm revision · Multiagent systems · Bayesian networks

1 Introduction

A multiagent system consists of (heterogeneous) autonomous agents that coexist
and interact in a shared open environment [1]. In order to guarantee the over-
all intended objectives of a multiagent system, the behavior of the autonomous
agents should be coordinated [2]. In the multiagent systems literature, runtime
norm enforcement is a widely studied mechanism for controlling and coordinat-
ing the runtime behavior of the agents without limiting their autonomy [3,4].
For example, a smart road populated by autonomous cars can control the cars’
behavior by enforcing traffic rules, such as speed limitations, in order to improve
throughput and safety of the road. In this paper, we do not focus on norm
enforcement and assume that norms can be enforced on autonomous agents by
means of, e.g., regimentation and sanctioning mechanisms.

However, due to the dynamicity and uncertainty involved in the agents’ oper-
ating environments, such as sudden changes of weather conditions or accidents
due to heavy traffic, enforcing the existing norms may not be sufficient to ensure
the overall intended objectives [5]. For example, the enforcement of some speed
norms may not improve traffic throughput or safety when the weather condi-
tions change from extreme to normal (or vice versa). Given a set of norms and
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a set of environmental conditions, it is often hard—or practically impossible—
to predict the effectiveness of enforcing specific norms in various environmental
conditions [6]. This suggests that continuous evaluation of norm enforcement and
dynamic revision of the norms at runtime are key factors to build an effective
normative multiagent system capable of ensuring the overall system objectives
within a dynamic and uncertain environment [7].

We introduce a runtime norm supervision mechanism that monitors the
behavior of a multiagent system, evaluates the enforcement of the norms in
terms of the overall system objectives, and, when needed, intervenes by revising
the norms. For example, if the enforcement of adaptive traffic lights on a smart
road significantly decreases the safety of cars in extreme weather conditions,
our runtime norm supervision mechanism will suggest a revision of such norm
proposing the enforcement of static traffic lights.

This paper focuses on the evaluation and revision of the norms enforced in
the system. We describe three main types of norm revision (relaxation, strength-
ening and alteration) and provide two heuristic algorithms for suggesting norm
revisions based on data that is collected and encoded into a Bayesian Network
(called Norm Bayesian Network) at runtime. Such network is used to learn and
reason about the correlation between norm satisfaction/violation and the over-
all system objectives achievement. The runtime norm supervision mechanism is
implemented as an optimization process that uses a variation of the hill climb-
ing optimization technique. Our revision algorithms are used in the optimization
process to determine the next sets of norms to enforce in the system.

We report on an experimental evaluation of the supervision mechanism by
applying it to an urban traffic simulation. Our implementation guarantees the
identification of norm sets that ensure the overall system objectives. We com-
pare the results obtained using hill climbing combined with and without our
revision engine (i.e., Bayesian Network and revision strategies) and show that
the proposed mechanism, using runtime information about norms effectiveness,
allows to find optimal solutions with less revisions.

The paper is structured as follows. Section 2 describes a case study con-
cerning urban traffic management. Section 3 presents the runtime supervision
mechanism and the Norm Bayesian Network. Section 4 describes two algorithms
for the suggestion of norms revision. Section 5 evaluates the effectiveness of the
approach. Finally, Sects. 6 and 7 review related studies and conclude the paper.

2 Case Study: Norms for Urban Traffic Management

Consider a city where 10% of the cars are autonomous self-driving cars operating
in a road network that is enriched with autonomous traffic controllers such as
smart traffic lights and panels. The city council aims at improving the urban
traffic by achieving two overall objectives: minimize the average travel time and
minimize the number of accidents. To achieve such objectives, the city council
plans to control and coordinate the traffic by enforcing traffic norms. To this
end, the council is able to prescribe the self-driving cars to use a centralized
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navigation service (CNS) instead of their personal navigation system. The CNS
can be either adaptive (able to autonomously change its own parameters at
runtime) or static. The council may also prescribe the use of specific traffic
controllers at road junctions. In particular, the council can enforce five possible
obligation norms in the city:

– every self-driving car is obliged to employ the routes suggested by an adaptive
or static CNS (denoted by O(ans) and O(sns)).

– every road junction is obliged to employ adaptive traffic lights (O(atl)), static
traffic lights (O(stl)), or priority lines panels (O(pl)).

Due to the highly dynamic nature of the city, drivers and cars can behave
differently in different contexts (in this paper, we consider four contexts: day or
night, normal or extreme weather). This makes it hard to determine in advance
which set of norms will be the most effective in every context. For this reason,
the city council aims at developing a traffic management system that starts
with a set of norms, enforces the norms at run-time and monitors whether the
enforcement of the norms is effective in the sense that they will guarantee the
achievement of the overall objectives of minimizing travel time and accidents.
In case norms are learned not to be effective, the traffic management system is
expected to revise the norms accordingly.

Consider the norms O(ans) and O(sns) to be mutually exclusive, as well
as the norms O(atl), O(stl) and O(pl). Based on these relationships, the city
council disposes of a set N of 12 possible norm sets that could be enforced in the
city: N = {{O(ans)}, {O(sns)}, {O(atl)}, {O(stl)}, {O(pl)}, {O(ans), O(atl)},
{O(ans), O(stl)}, {O(ans), O(pl)}, {O(sns), O(atl)}, {O(sns), O(stl)}, {O(sns),
O(pl)}, ∅}. When a navigation service is prescribed (e.g., in case of {O(ans)})
the routes suggested are followed by the self-driving cars in the 80% of the cases;
when no navigation service is prescribed (e.g., in case of {O(pl)}) the self-driving
cars use their own navigation system; finally when no junction management is
prescribed (e.g., in case of {O(ans)}) the cars approaching the smart junctions
follow the default priority-to-the-right rule.

In this paper norms are obligations expressed as propositional state formulae
in conjunctive normal form and O denotes the obligation operator. Norms are
considered here to be regimented, rather than enforced by means of sanctions.
We leave sanction-based enforcement mechanism for future work; here, we study
in detail the effect of imposing different norms on a multiagent system, their
relationship with overall system objectives in different contexts and the possible
strategies to revise norms when they are not effective.

3 Runtime Norm Supervision

We present the control loop performed by the runtime supervision mechanism
(sketched in Fig. 1) to automatically evaluate and revise norms in order to achieve
the overall objectives of a multiagent system.
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Given a set O of boolean overall system objectives, a set N of all possible
norm sets enforceable in the system and a set C of all possible contexts of the
multiagent system, we call system configuration an assignment of a norm set
N ∈ N to each possible context in C. For example, given the four possible
contexts (day, normal), (day, extreme), (night, normal), (night, extreme), and
given the set N of possible norm sets defined in Sect. 2, an example of system
configuration is {〈(day, normal), {O(p)}〉, 〈(day, extreme), {O(ans), O(p)}〉,
〈(night, normal), {O(sns)}〉, 〈(night, extreme), {O(atl), O(ans)}〉}. A norm
n is said to be active in a context c if 〈c,N〉 is in the system configuration and
n ∈ N . Otherwise n is said disabled.

The control loop of the supervision mechanism starts with a Norm Base
containing an initial system configuration. We assume a runtime Monitoring
component that perfectly collects information about the satisfaction or viola-
tion of the norms in the contexts in which they are evaluated. Such component
provides a boolean evaluation of the overall system objectives. This knowledge is
used to learn, by means of a Norm Bayesian Network (described in Sect. 3.1), the
dependencies between the satisfaction of the norms and the achievement of the
objectives in the different contexts. A Revision Trigger component (described in
Sect. 3.2) uses the learned knowledge to determine whether some norms should
be revised. The norm revision process is executed by the Revision Engine com-
ponent (described in Sect. 3.3) and generates as output a (possibly) new system
configuration, replacing the current one in the Norm base.

Fig. 1. The control loop of the runtime supervision mechanism.

We propose an implementation of the control loop above described as a vari-
ation of the hill climbing optimization technique. In particular, we consider the
system configurations as possible solutions to explore in order to find an optimal
one. The quality of a solution is determined, by means of runtime data, as the
average probability of achievement of the overall objectives in all the contexts.
Instead of terminating the exploration of the space when a local optimum is
found, as in traditional hill climbing, we use as stopping criterion a constraint
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defined by the system designer that determines whether or not the current solu-
tion is acceptable (see Sect. 3.2). We use the Revision Engine to determine the
next solution to try, when the current one is not acceptable.

Sections 3.1 and 4 describe the main components involved in the control
loop. Section 5 provides an experimental evaluation of our implementation of
the control loop. We compare the results that hill climbing can obtain by using
our Revision Engine for the neighborhood definition with results that can be
obtained by using heuristics that do not evaluate the effectiveness of the norms.

3.1 Norm Bayesian Network

Bayesian Networks have been widely used in many fields as knowledge rep-
resentation structures for learning and reasoning about the inter-dependencies
between their nodes [8]. We define a type of Bayesian Network called Norm
Bayesian Network to represent and reason about norms and their relationship
with overall objectives in different contexts. We call contextual variables mon-
itorable environmental properties such as Time and Weather. Each of these
variables is associated to a domain of values (e.g., Time can be either day or
night, Weather can be either normal or extreme). Given a set of contextual vari-
ables we call context an assignment of a value to each contextual variable (e.g.,
given Time and Weather as above described, we have four possible contexts:
(day, normal), (day, extreme), (night, normal), (night, extreme)).

A Norm Bayesian Network NBN = (X ,A,P) is a Bayesian Network where:

– X = N∪O∪C is a set of nodes, representing random variables in probability
theory. The sets N, O and C are disjoint. The set N consists of norm nodes;
each node N ∈ N corresponds to one norm and has a discrete domain of 3
possible values: obeyed, violated and disabled. The set O consists of objective
nodes; each node O ∈ O corresponds to a boolean objective and has a discrete
domain of 2 values: true and false. Finally, the set C consists of context nodes ;
each node C ∈ C corresponds to a contextual variable and can have a discrete
or continuous domain of values.

– A ⊆ (C×N) ∪ (C×O) ∪ (N×O) is the set of arrows connecting pairs of
nodes. If there is an arrow from node X to node Y , X is called parent of Y .

– P is a set of conditional probability distributions, each one associated with a
node in X and quantifying the effect of the parents on the node.

In the context of Bayesian Networks we use the following notation.
X, Y , ... (italic uppercase) denotes random variables; X, Y, ... (bold uppercase)
denotes sets of random variables; v1, v2, ... (italic lowercase) denotes values in
the domain of a random variable; Xv denotes an assignment (X = v) of value v
to a random variable X; x (bold lowercase) denotes an assignment of values to
a set of nodes X; Xv denotes an assignment of value v to all nodes in X; Xact
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denotes the fact ¬Xdis = ¬(X = disabled)); ¬xX
v is equivalent to

∧
X∈X(¬Xv);

P denotes a probability distribution; P denotes a single probability1.
Figure 2 reports the structure (X ,A) of an NBN for our case study. Notice

the three types of nodes representing contextual variables, norms and overall
objectives. Arrows connect each contextual variable to all norms and all objec-
tives, and each norm to all the objectives. Nodes Travel Time and Accidents
correspond to the two overall objectives of minimizing travel time and accidents.

Fig. 2. The structure of the NBN for the case study of Sect. 2.

In Bayesian Networks, an evidence e is an observed assignment of values for
some or all of the random variables in the network. An evidence c for all the
context nodes C is an observation for a certain context (e.g., Time has value day
and Weather has value extreme). For simplicity we use the term context also to
refer to the associated evidence in the Bayesian Network. An evidence of value
obeyed or violated for a norm node can be obtained when the corresponding norm
is enforced in the multiagent system. When the norm is not enforced the only
possible evidence for its corresponding node is disabled. Note that the evidence
values are determined by the Monitoring component. Norms nodes, therefore,
only collect statistical information about norm obedience in different contexts.

Note also that, for the sake of brevity, we omit a discussion about the learning
technique (e.g., classical Bayesian learning) to train the network and we refer the
reader to the existing literature (e.g., [8,9]). In the following, we assume that we
dispose of a network trained with data produced by the Monitoring component.

3.2 Revision Trigger

Let e be an event denoting that changes in the probability distributions in the
Norm Bayesian Network are not significant anymore (i.e., the variations in the
distribution when a new sample is given are below a specified δ). Assuming

1 When we refer to nodes of a specific type we use the corresponding notation con-
vention, e.g., N refers to a node in N, c refers to an assignment of values to nodes
in C, Nviol refers to an assignment of value violated to a set of norm nodes N, etc.
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a population of agents that behaves consistently, such event will occur after
some time. Let toa be a threshold defining the minimum average probability
of achievement of the objectives desired by the system designer, and let c be
the related constraint (e.g., c = P (Travel Timetrue ∧ Accidentstrue) ≥ 0.95, with
toa = 0.95). A revision (i.e., a new iteration of the hill climbing procedure) is
triggered every time e occurs and c is not satisfied.

3.3 Revision Engine

Assume that the Norm Bayesian Network NBN of Fig. 2 is trained with data
and that a norm revision is triggered by the Revision Trigger. We describe the
three components of the Revision Engine shown in Fig. 1. Such components are
used to determine the new norm set to enforce in the multiagent system.

Diagnoser. This component uses the NBN to generate an explanation for
the objectives not being achieved. To do so, it first determines a context mpc
that corresponds to the most problematic context in which the objectives are
not achieved. mpc = argmaxc∈all(c)P (Ofalse | c), where all(c) is the set of all
possible contexts (assignments of a value to each of the context nodes in NBN ).

Let Nmpc be the set of norms currently active in the context corresponding to
mpc, and Na and Nd be the two disjoint sets of nodes in NBN that corresponds
to the norms that are respectively active and disabled in the most problematic
context. The Diagnoser determines the most likely explanation [10] ne for Ofalse

given mpc, in terms of satisfaction of the active norms in Nmpc.

ne = argmaxn∈nNa
{ob,viol}

P (n |Ofalse ∧ mpc ∧ nNd

dis ∧ ¬nNa

dis)

where nNa

{ob,viol} = {Nv|N ∈ Na, v ∈ {ob, viol}} is the set of all the possible
assignments of values (either obeyed or violated) to nodes Na.

Revision Selector. Given the most likely explanation ne, we aim to revise
Nmpc so to increase P (Otrue | mpc) above the threshold toa. The Revision
Selector determines the most adequate type of revision to perform.

We define three types of norm revision: relaxation, strengthening, alteration.
Relaxing (strengthening) a propositional obligation norm O(n) means replacing
it with a new norm O(n′) such that n′ is a less strict (stricter) formula than n
(e.g., O(ans ∨ ⊥) is a less strict obligation than O(ans)). A less strict (stricter)
obligation makes the norm violated in fewer (more) situations, which means
that more (less) behaviors are allowed. Any other revision of a norm O(n) is
an alteration. Relaxing (strengthening) a set of norms N means replacing it
with a new norm set N ′ such that one or more norms in N ′ are a relaxation
(strengthening) of norms in N and all the other norms are unchanged (e.g.,
{O(ans), O(atl)} is a strenghtening of {O(atl)}). Any other revision of a set of
norms N is an alteration of N (e.g., {O(ans)} is an alteration of {O(sns)}).
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The Revision Selector applies the following idea. To achieve the overall objec-
tives in a certain context, some of the active norms are more useful if obeyed,
others are more useful if violated, and the rest are always harmful (regardless
of the fact that they are obeyed or violated). This information can be derived
from the conditional probability distributions of nodes N as follows.

Consider the case of a single active norm N in Nmpc (Na = {N}), a single
boolean objective O, and a single context2. Figure 3a illustrates revision strate-
gies based on the three types of relationships between N and O above described.

(a) (b)

Fig. 3. (a) Decision tree for determining a suitable type of revision. (b) system con-
figurations (points) in four states (A–D) w.r.t. the average satisfaction of the enforced
norms and the average probability of achievement of the objectives.

The decision tree first determines whether the norm N is more useful for
O when disabled or active. In the former case the norm is considered harmful,
i.e., Nharm ≡ (P (Otrue | Ndis) > P (Otrue | ¬Ndis)). The most suitable strategy
in this case is either to disable N or to relax N (relaxation is a “soft” kind of
disabling, for it allow more behaviors). If N is not harmful, the decision tree
compares the probabilities of N supporting O when obeyed and when violated.

If N is more useful for O when violated (P (Otrue | Nviol) > P (Otrue | Nob) ∧
¬Nharm), the suggested revision is to relax it, thereby turning some non-
compliant (but useful to achieve O) behaviors into compliant ones. If N is more
useful when obeyed (i.e., P (Otrue | Nob) > P (Otrue | Nviol) ∧ ¬Nharm), the tree
computes the most likely explanation for O not being achieved, between N being
violated or obeyed. In the former case, the suggested revision is to strengthen
N (restricting the allowed behaviors) or alter it (N is not effective). In the lat-
ter case, the suggestion is either to not revise (N may not be the cause of the
problem) or to strengthen (N may not be strong enough to achieve O).

Section 4 presents two revision selection algorithms that apply the principle
here described to the entire set of norms enforced in the system. The output of
the Revision Selector is a set of norms annotated with suggested revisions (if
any).

2 In the following we omit the context from the conditional probabilities since implicit.
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Revision Actuator. The task of this component is to determine the new norm
set to enforce in the system. Given the set of norms annotated with suggested
revisions (from the Revision Selector), and given a set of possible norm sets N ,
the Revision Actuator selects a norm set N ′ ∈ N that is as aligned as possible
with the direction provided by the suggestions. For example, given the norm set
{O(ans)} and a suggestion of disabling norm O(ans), the norm set in N that is
the most aligned with the suggestion is the empty set {}. If multiple norm sets are
available, different distance metrics can be defined, e.g., the similarity with the
current norm set, or the sensitivity of the objectives to the change of the selected
norms. In this paper, we use as distance metric the number of revision of norms
needed to obtain N ′ from N . For instance, two revisions are necessary to to
obtain {O(ans), O(p)} from {O(sns), O(atl)}: O(sns) must be altered to O(ans)
and O(atl) must be altered to O(p). If there is no new norm set that is aligned
with the provided suggestion (i.e., either the defined neighborhood of the current
solution is empty or it contains only configurations that have already been tried)
the Revision Actuator randomly selects a configuration never tried before, if
any. Notice that this makes our implementation of hill climbing different from a
traditional one and it guarantees to always converge to an optimal solution.

4 Revision Selection Algorithms

We present two algorithms for the Revision Selector component. The pureBN
algorithm enacts the decision tree of Fig. 3a for all the enforced norms. The
stateBased algorithm takes also into account the overall status of the system in
the current configuration. Both algorithms are invoked on the most problematic
context defined in Sect. 3.3 and they both return a set of norms annotated with
suggested revisions. Such set of norms is used as heuristic to determine the
neighborhood of the current norm set in the hill climbing process.

4.1 PureBN

Algorithm 1 reports the pureBN heuristic for the selection of norms revision.
Line 2 determines, based on the top decision node of Fig. 3a, the norm set N ′

that has the highest probability to satisfy the objectives. If the current norm
set has active norms, and there is some norm set that has not been attempted
in the most problematic context yet (line 3), the most likely explanation ne for
not fulfilling the objectives is determined (line 4). Then, for each active norm in
the new norm set N ′ (line 5), the algorithm determines the “desired” state, i.e.,
whether that norm helps better the satisfaction of the objectives when obeyed
or violated (line 6). Finally, in line 7, the suggestion for the examined norm
is determined based on the decision tree of Fig. 3a. If no norms are active or
all possible norm sets have already been tried, pureBN returns N ′: the best
possible norm set for the most problematic context (skipping lines 4–7).
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Algorithm 1. The pureBN algorithm for revision selection
1: function pureBN(c)
2: N ′ ← getBestNormSet(c) � obtain N′

a and N′
d

3: if (|Na| > 0) && ¬allNormSetTried(c) then
4: ne ← getMLE(Ofalse, c)
5: for all norms N ∈ N′

a do
6: ndes ← getDesiredVal(N , c)
7: setSugg({N}, getSugg(N , ne, ndes))

return N ′

4.2 StateBased

While pureBN provides a suggestion for each active norm, stateBased con-
siders the average satisfaction of active norms and the average achievement of
the overall objectives to suggest a specific type of revision per time.

Figure 3b plots system configurations in four states with respect to norms
satisfaction and objectives achievement. The configurations in state A sufficiently
satisfy the norms, but the objectives are not achieved to a sufficient extent. State
B denotes insufficient norms satisfaction and objectives achievement. State C
indicates that the objectives are achieved even though the norms are not satisfied.
State D is the ideal area: the norms are satisfied and the objectives are achieved.

Assume we have, together with the threshold toa, an additional threshold tns
that defines the desired probability of satisfaction of norms. stateBased first
determines the average norms satisfaction and objectives achievement based on
the evidence from the active norms in the most problematic context (lines 2).
Like in pureBN, the best possible norm set in the most problematic context is
generated (line 3). If there are currently no active norms or N ′ contains at least
one suggestion of type disable, the function returns immediately (line 4).

Three empty sets of norms are defined in line 5: obeyed norms that are
better when violated obbv, violated norms that are better when violated vabv,
and violated norms that are better when obeyed vbbo. After determining the
most likely explanation ne (line 6), the algorithm determines (line 7) the desired
state (obeyed, violated) of all active norms of the new norm set. Using ne

(obeyed/violated) and the desired state (obeyed/violated), the norms are added
to the corresponding sets obbv, vavb, and vbbo (line 8).

Lines 9–16 implement the idea visualized in Fig. 3b by comparing the state
of the current norm set (ns and oa) against the thresholds tns and toa. If the
configuration is in state A (lines 9–11), if obbv contains norms, the suggestion is
to relax them; if obbv is empty, a suggestion to alter or strengthen is given for
the active norms (the active norms behave as expected but the objectives are
not achieved). In state B (lines 12–13), a relaxation of the norms that are better
if violated is suggested, and an alteration or strengthening is suggested for the
norms that are better if obeyed. In state C (lines 14–16), if there are violated
norms that are better if violated, they are relaxed; if, instead, there are violated
norms that are better if obeyed, the suggestion is to either alter or strengthen.
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Algorithm 2. The stateBased algorithm for revision selection
1: function stateBased(c)
2: ns ← avgNormSat(Na, c); oa ← avgObjAch(Na, c)
3: N ′ ← getBestNormSet(c) � obtain N′

a and N′
d

4: if (|Na| = 0) || hasDis(N ′)) then return N ′

5: obbv ← vabv ← vbbo ← {}
6: ne ← getMLE(Ofalse, c)
7: ndes ← getDesiredVal(N′

a, c)
8: determineTYPE(N′

a, ne, ndes, obbv, vabv, vbbo)
9: if ns ≥ tns && oa < toa then

10: if |obbv| > 0 then setSugg(obbv, relax)
11: else setSugg(Na, alter ∨ strengthen)

12: else if rs < tns && ga < toa then
13: setSugg(oobv ∪ vabv, relax); setSugg(vbbo, alter ∨ strengthen)
14: else if rs < tns && ga ≥ toa then
15: if |vabv| > 0 then setSugg(vabv, relax)
16: else if |vbbo| > 0 then setSugg(vbbo, alter ∨ strengthen)

return N ′

5 Evaluation

We conducted an experimental evaluation of our implementation of the runtime
norm supervision mechanism in terms of convergence speed and quality of the
final solution. We compare the results that can be obtained by using our Revision
Engine with results that can be obtained with heuristics that do not evaluate
the effectiveness of the norms.

We make use of a simulation of the scenario described in Sect. 2. We adopt the
CrowdNav simulator from the self-adaptive systems literature [11]. CrowdNav
consists of a number of cars traveling in a medium-size city (Eichstädt, Germany)
with 450 streets and 1,200 intersections. Each car relies on a navigation service
to receive a route. 90% of the cars use a default routing algorithm implemented
in SUMO (the underlying traffic simulation engine), while the remaining 10% are
smart cars that use a centralized navigation service. In CrowdNav such service
is adaptive, i.e., it is able to autonomously adapt its parameters at runtime.

We extended CrowdNav to support, besides the adaptive service, also a static
service, as well as different ways of managing junctions, in line with the norms
described in Sect. 2. We use the two contextual properties Time, which can
assume the values day (600 cars in the simulation) or night (300 cars), and
Weather, which can be either normal or extreme (the maximum allowed speed
is reduced by 25% in all the streets). We instrumented the extended CrowdNav
to collect data about norm satisfaction and objectives achievement. The boolean
value of the objective Travel Time is obtained, every simulation-day, by deter-
mining whether, on average, the cars in the city took less than 2.5 times the
optimal trip time3 to reach their destination. The boolean value of the objective

3 Actual trip time over the theoretical time w.r.t. to length and speed limits.
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Accidents is obtained by determining whether there are less than 4 accidents per
day.

5.1 Experiments

We implemented the runtime norm supervision mechanism as a modified version
of hill climbing that accounts for toa as a stopping criterion: it stops only when
either all the configurations have been tried or it finds a local optimum with an
average objectives achievement probability higher than toa.

We used the algorithms pureBN and stateBased of Sect. 4 as two possible
heuristics for defining the neighborhood of a configuration: the neighborhood
defined by pureBN and stateBased is the set of all the configurations that
satisfy their suggestions. We defined three additional configuration neighbor-
hood metrics that do not take into account the acquired knowledge about the
effectiveness of the enforced norms. (1) maximum distance 4 (MD4) includes in
the neighbourhood all the configurations that are obtained by revising at most
4 norms4; (2) Maximum size 10 (NMS10) and (3) maximum size 20 (NMS20)
define a neighborhood that includes the 10 and 20 closest configurations to the
current one, respectively. We tested the hill climbing implementation with the 3
uninformed neighborhoods and we compared them with our proposals employing
the pureBN (HCPB) and the stateBased (HCSB) suggestion algorithms.

In order to determine the average quality in terms of objectives achievement,
each algorithm has been executed starting from all of the possible configura-
tions. The system has 124 = 20, 736 possible configurations (12 possible norm
sets enforceable in any of the 4 contexts). Since in the worst case every algorithm
may need to try all the configurations before stopping, to limit the experimenta-
tion time, we reduced the data set to 81 configurations via test case generation
techniques5. We introduced then three additional configurations more distant
from the others. Two of them are the best-scoring configurations. We defined
experiments for three different thresholds toa, based on the distribution of values
in the 84 tested configurations (see Fig. 4). T1 = 0.5, accepts as final configura-
tions only the two best-scoring configurations in group A (2.4% of the total),
which are significantly different (and therefore more distant) from the others;
T2 = 0.4 accepts the configurations in groups A and B (9.5% of the total); and
T3 = 0.37 accepts configurations in groups A, B and C (17.8% of the total).

We compare the results in terms of (i) convergence speed : the number of
steps attempted before stopping; and (ii) solution quality : the average objectives
achievement probability of the final solution.

4 Revising one norm leads to a distance of 2–3 from the original configuration, and
each configuration has 10%–20% of all configurations in its neighborhood.

5 We obtained 12 variants from pairwise testing with variables: time (day, night),
weather (normal, extreme), CNS (none, adaptive, static), and junctions (none, adap-
tive lights, static lights, priority lanes). We grouped those variants in 4 groups (one
per context) and we generated all their combinations to obtain 81 configurations.
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Fig. 4. Avg. probability of objectives achievement for the 84 tried configurations.

5.2 Analysis of the Results

Table 1 compares the 5 different tested algorithms. With threshold T1 (toa =
0.5), we tested a scenario where the (few) optimal configurations are slightly more
distant from the others (while the median distance between the 82 suboptimal
configurations is 6.3, the median distance with the remaining two is 7).

Table 1. Comparison of the algorithms with thresholds T1, T2 and T3. Values of Steps
and Final columns are average values over the 84 different simulations.

Algo T1 (tga = 0.5, 2 optimal conf.) T2 (tga = 0.4, 8 optimal conf.) T3 (tga = 0.37, 15 optimal conf.)

Steps (σ) Final (σ) Opt. Steps (σ) Final (σ) Opt. Steps (σ) Final (σ) Opt.

MD4 68.94 (21.47) 0.54 (0.00) 100% 24.48 (12.56) 0.45 (0.04) 100% 17.54 (9.56) 0.43 (0.05) 100%

ML10 88.54 (15.15) 0.54 (0.00) 100% 18.80 (10.62) 0.43 (0.02) 100% 11.15 (6.15) 0.40 (0.03) 100%

ML20 73.81 (17.93) 0.54 (0.00) 100% 23.80 (11.44) 0.44 (0.03) 100% 17.94 (9.08) 0.42 (0.04) 100%

HCPB64.86 (27.48)0.54 (0.00)100%11.90 (8.04)0.43 (0.02)100%2.99 (3.03)0.40 (0.03)100%

HCSB 79.70 (22.05)0.54 (0.00)100%5.10 (3.50) 0.43 (0.02)100%0.82 (0.39)0.40 (0.03)100%

In terms of convergence speed, with T1 our heuristics behave similarly to the
others. On average, uninformed heuristics take around 77.08 steps, while HCPB
and HCSB require 72.28 steps. Since all the algorithms give priority to the closest
configurations in the neighborhood, they need to explore big part of the solution
space before finding the 2 optimal configurations, which are more distant. HCPB
slightly outperforms all the other heuristics. The reason is that its strategy is
to suggest a revision for all the active norms in the current configuration. This
strategy, compared to the others, accomodates the exploration of more diverse
configurations (i.e., HCPB defines a more heterogeneous neighborhood), thereby
favouring the discovery of the optimal ones.

With less demanding thresholds (T2 and T3), our algorithms significantly
outperform the others. For T2, our heuristics HCPB and HCSB offer, on average,
an improvement of 61.9% = 1−(8.5/22.36) over the tested uninformed heuristics
in terms of convergence speed, while for T3 the efficiency gain is 87.7% = 1 −
(1.9/15.54). In particular, with T3, HCSB requires on average only 0.82 steps,
i.e., it finds an optimal configuration after only one revision. Concerning solution
quality, the results are comparable for all the algorithms in all the experiments.

These preliminary results, which shall be confirmed on other cases, support
our hypothesis that heuristics that leverage knowledge about norm satisfaction



292 D. Dell’Anna et al.

T1 T2 T3

0%
20%
40%
60%
80% MD4 NMS10 NMS20
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Fig. 5. Average percentage of explored configurations before finding an optimal one.
100% means trying, on average, all the 84 configurations.

allow efficient runtime norm revision, by altering a suboptimal norm set into an
optimal one with only few revisions. Results concerning T1 suggest improvements
of our algorithms in order to consider more exploration when a configuration is
not found quickly. Figure 5 summarizes the convergence speed results.

It is finally worth to note that, in this paper, the selection of a norm set
that satisfies the given suggestions depends on the number of available norm
sets (only 12 in our experiments). However, thanks to the use of a Bayesian
Network and to the concept of norm revision, the Revision Engine also provides
information about the effectiveness of the norms w.r.t. the achievement of the
overall objectives. Differently from classical search algorithms, therefore, our
suggestion algorithms also provide direct information about how to revise the
norms, supporting targeted human or automated intervention on the norms.

6 Related Work

Several papers have focused on deciding and proving the correctness of normative
systems by model checking formulas describing desired properties such as liveness
or safety properties [12–14]. Despite their elegance, these approaches do not fully
cope with the dynamicity of today’s complex systems. Recently, frameworks
emerged to cope with norms dynamics and their impact on system specification.

Knobbout et al. [7] propose a dynamic logic to formally characterize the
dynamics of state-based and action-based norms. Both in Knobbout’s works
[7,15] and in Alechina et al.’s [14], norm change is intended as norm addition.
In this paper we investigated further types of norms revision that could be used
to extend such framework for dynamic normative systems.

Aucher et al. [16] introduce a dynamic context logic to describe the operations
of contraction and expansion of theories by introducing or removing new rules.
Governatori et al. [17] investigate from a legal point of view the application of
theory revision to reason about legal abrogations and annulments. The types of
revision presented in this paper can be related to theory revision. However we
have taken a multiagent systems standpoint, in which norm revision should be
studied in terms of its impact on the overall system behavior. We leave for future
work the study of the impact of a revision on the existing normative system.
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Norms update has also been studied from the perspective of approximation
[18], where an approximated version of a norm is obtained to cope with imper-
fect monitors for the original norm. The concept of approximation is similar to
our notion of relaxation, however it is defined with respect to a specific mon-
itor: an approximated norm is synthesized from the original one to maximize
the violations detectable by the available imperfect monitor. In this paper we
assumed perfect monitors and we focused instead on the effectiveness of norm
enforcement to develop algorithms that suggest a norm revision when needed.

Cranefield et al. [19] present a Bayesian approach to norm identification.
They show that agents can internalize norms that are already present in an envi-
ronment, by learning from both norm compliant and norm violating behaviours.
In this paper, instead of focusing on the agents, we used a Bayesian Network to
collect information about norms effectiveness, regardless of their internalization
in the agents. We used then the acquired knowledge to develop strategies for the
suggestion of revisions of the norms that are enforced in the system.

7 Conclusion and Future Work

The complexity and unpredictability of modern multiagent systems allows only
partial and incomplete domain knowledge at design-time. We proposed a runtime
supervision mechanism to automatically revise the norms enforced in a multia-
gent system. The mechanism employs a Bayesian Network to collect data about
norms satisfaction, and to learn their relationship with objectives achievement in
different contexts. Informed by such data, the supervisor performs norm revision
based on the revision suggested by the pureBN and stateBased algorithms.

We implemented the supervision mechanism as a variant of the hill climbing
optimization technique. Such variant always guarantees to find, if it exists, a
norm set that ensures the overall system objectives. We evaluated our imple-
mentation in terms of convergence speed and quality of the final enforced norm
set. We used an urban traffic simulation to compare the results that can be
obtained by taking into account the knowledge learned at runtime about norms
effectiveness, with results that can be obtained without such knowledge. The
results show that the our heuristics outperform the tested uninformed ones by
identifying the optimal solutions in significantly less number of revisions.

Future work will focus on four main directions. Evaluation: the scalabil-
ity and computational complexity of the approach must be properly evaluated:
the conditional probability tables of the objective nodes in the Bayesian Net-
work grow exponentially with the number of norms. The structure of the Norm
Bayesian Network does not leverage the conditional independence properties
that may exist between different norms. In case of large sets of norms, the use
of such network may become intractable. A solution is to use, when building the
network, a model representing the hierarchy between norms (e.g., [20]). Refined
revision algorithms shall be developed with a memory that provides informa-
tion about the effectiveness of previous revisions; possible techniques include
Q-Learning [21] and Dynamic Decision Networks [8]. Additional types of analy-
sis of the Bayesian Network, such as sensitivity analysis [22], should be studied
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to help select a new norm set. It is possible to extend the current structure of
the Norm Bayesian Network to support imperfect monitoring and uncertainty,
through the introduction of an additional layer of nodes and a sensor model
[8]. Norm synthesis, i.e., the automated generation of norms that can regulate
the multiagent system by preventing harmful behaviors and by promoting use-
ful behaviors, based on the revisions suggested and on agents preferences and
their relationship with the system objectives. Sanctions and their revision can
be studied as a way to influence the behavior of agents that goes beyond norm
relaxation or strengthening.
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Abstract. As service-oriented environments become widespread, there
exists a pressing need for service compositions to cope with the high
scalability, complexity, heterogeneity and dynamicity features inherent in
these environments. In this context, reinforcement learning has emerged
as a powerful tool that empowers adaptive service composition in open
and dynamic environments. However, most of the existing implementa-
tions of reinforcement learning algorithms for service compositions are
inefficient and fail to handle large-scale service environments. Towards
this end, this paper proposes a novel approach for adaptive service com-
position in dynamic and large-scale environments. The proposed app-
roach employs deep reinforcement learning in order to address large-scale
service environments with large number of service providers. Experimen-
tal results show the ability and efficiency of the proposed approach to
provide successful service compositions in dynamic and large-scale ser-
vice environments.

Keywords: Deep reinforcement learning · Service composition
Cloud computing

1 Introduction

The fundamental objective of service-oriented computing (SOC) is to enable
the interoperability among different software and data applications running on
a variety of platforms. Therefore, the full potential of service-oriented comput-
ing is realized only when there is an ecosystem of numerous service providers
and service consumers collaborating with each other in order to attain certain
business goals. Since one service cannot satisfy end-user requirements, there
exists a need to combine component services into a composite service. In this
regard, service composition becomes the most effective technology to imple-
ment a service-oriented architecture (SOA). A challenging issue towards this
purpose is the selection of the best set of services that meet the quality of
service (QoS) constraints, that are imposed by the consumer, from the set of
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functionally equivalent concrete services, that is, QoS-aware service composi-
tion. QoS-aware service composition has been widely researched in the areas
of service-oriented architecture and service-oriented computing [3,28]. However,
most of the existing approaches for service composition are built on a deter-
ministic view that fails when they face dynamic and continuously changing ser-
vice environments. Therefore, due to the inherent dynamicity and complexity
in service-oriented environments, a good service composition solution needs to
adapt to the changes/fluctuations of these dynamic service environments. In
addition, the explosive growth of the number of functionally-equivalent services
puts a pressing need for efficient service composition algorithms that are able to
deal with the combinatorial candidate service space in these large-scale service
environments.

Reinforcement Learning (RL) is a strategy for sequential decision making
processes in which an agent interacts with the environment in order to learn an
optimal solution by trial and error. Reinforcement learning has been adopted in a
wide range of fields including engineering, natural, and social sciences. Therefore,
reinforcement learning has emerged as a powerful tool that promises to promote
adaptive service composition in open and dynamic environments. Towards this
end, RL adopts a learning scheme which learns by trial and error from the inter-
action with dynamic service environments. In this regard, RL has the capacity
to optimize the service composition system to dynamically choose the best set
of services without having a complete and full knowledge of the service environ-
ment. In recent years, adaptive service composition algorithms based on rein-
forcement learning have witnessed an increasing interest, especially those based
on model-free online learning algorithms, such as Q-learning [13,22]. The basic
idea behind these algorithms is modeling the service composition as a stochastic
process in which an intelligent agent learns to select the set of Web services,
with the highest QoS values, through sequential and iterative interactions with
these services in a dynamic environment. These model-free online learning algo-
rithms such as Q-learning are only appealing from a theoretical perspective.
They proved their success when applied to small and medium-sized Web ser-
vice environments. However, when deployed to large-scale service environments
with large numbers of service providers, these algorithms fail to scale to high
dimensional state and action spaces which affects the stability of the learning
process.

The advent of deep learning has had a significant impact on many areas in
artificial intelligence dramatically improving the state of the art in areas such as
object detection, speech recognition, and language translation. Recently, deep
convolutional neural networks have achieved unprecedented performance in sev-
eral domains: for example, image classification [8], face recognition [9], and play-
ing Atari games [12]. Towards this end, they use many layers of neurons, each
arranged in overlapping tiles, in order to construct, increasingly abstract, local-
ized representations of the data. In this paper, we employ deep learning in order
to enable RL to scale to service environments that were previously intractable,
i.e., service environments with high dimensional state and action spaces. To
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achieve this goal, we adopted a novel agent, a deep Q-network (DQN) [12],
which is able to combine reinforcement learning with a class of artificial neural
network [4] known as deep neural networks. In this regard, deep neural networks
use hierarchical layers of tiled convolutional filters in order to progressively build
up an accurate abstraction of large-scale service environments. We use these deep
neural networks to reduce the effective depth and breadth of the search space
by evaluating states using a value network, and sampling actions using a pol-
icy network [16]. The rest of this paper is organized as follows. The problem
description and basic definitions are introduced in Sect. 2. Section 3 introduces a
baseline model for reinforcement learning-based service composition in dynamic
environments. Section 4 introduces a novel model for learning service compo-
sition in dynamic environments using deep reinforcement learning. In Sect. 5,
the experimental results and discussions are presented for evaluating the pro-
posed approach. Section 6 briefly reviews the related work. Finally, the paper is
concluded and the future work is outlined in Sect. 7.

2 Preliminary

This section describes the process of service composition and presents the basic
model related to the proposed algorithms. The proposed model employs Markov
Decision Process (MDP) as a general scheme in order to describe the process of
service composition and adaptation in dynamic environments. MDP is a discrete-
time stochastic control process that is used to model sequential decision making
in uncertain domains. The key components of MDP are formally defined as
follows.

Definition 1 (Markov Decision Process (MDP)). An MDP is defined as
a 5-tuple MDP = <S,A, P,R, γ>, where

– S is a finite set of states of the world;
– A(s) is a finite set of actions depending on the current state s ∈ S;
– P is a probability value, i.e., when an action a ∈ A is performed, the world

makes a probabilistic transition from its current state s to a resulting state
s′ according to a probability distribution P (s′ | s, a); and

– R is a reward function. Similarly, when action a is performed, the world makes
its transition from s to s′, the composition receives a real-valued reward r,
whose expected value is r = R(s′ | s, a).

– γ ∈ [0, 1] is the discount factor that differentiates the importance of future
rewards and immediate rewards.

The solution to MDP is a decision policy. In general, a decision policy π is a
mapping from states to a probability distribution over actions. π is a mapping
from states to actions, defined as π : S −→ A. If MDP is episodic, that is the
state is reset after each episode of length t, then the sequence of states, actions
and rewards in an episode constitutes a trajectory or rollout of the policy. Every
rollout of the policy accumulates a reward from the environment that results in
the return R. The goal of solution algorithm is to find an optimal policy which
accumulates the maximum expected returns/rewards from all the states.
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3 Reinforcement Learning for Service Composition

The purpose of RL is to design algorithms by which decision agents can learn
to behave autonomously in some environment, from their interactions with this
environment or from observations gathered from the environment. This environ-
ment is typically formulated as a Markov decision process (MDP). Unlike classi-
cal dynamic programming techniques, reinforcement learning algorithms do not
need knowledge about the MDP and they target large MDPs where exact meth-
ods become infeasible. In this context, RL aims to determine an optimal control
policy from their interactions with the environment. This policy can be achieved
by approximating the so-called Q-function based on a set of four-tuples (st, at,
rt, st+1), where st denotes the environment state at time t, at the control action
taken, rt the instantaneous reward obtained, and st+1 the successor state of the
environment, and by determining the control policy from this Q-function [24].

The problem types that are best suited to RL are complex control problems,
where there appears to be no obvious or easily programmable solution. For this
reason, there exists a clear advantage of using RL for adaptive service compo-
sition in open and dynamic environments. Therefore, by using RL inside our
composition model, it enables to learn the optimal service selection policy in an
adaptive way. The key concepts used in the dynamic service composition based
on MDP are formally defined as follows.

Definition 2 (A MDP-Based Web Service Composition (MDP-
WSC)). An MDP-WSC is defined as a 6-tuple MDP − WSC = <Si, si

0, S
i
r,

Ai(.), P i, Ri>, where

– Si is a finite set of states/abstract services observed by agent i;
– si

0 ∈ S is the initial state and any execution of the service composition usually
starts from this state;

– Si
r ⊂ S is the set of terminal states. Upon arriving at one of those states, an

execution of the service composition terminates;
– Ai(s) is the set of Web services that can be executed in state s ∈ Si, a Web

service ws belongs to Ai, only if some precondition wsP is satisfied by s;
– P i is the probability by which a Web service ws ∈ Ai(s) can be invoked when

agent i makes a transition from its current state s to a resulting state s′. For
each state s, this transition occurs with a probability P i(s′|s, ws); and

– Ri is a reward function; when a Web service ws ∈ Ai(s) is invoked, agent i
makes a transition from s to s′, the service consumer receives an immediate
reward ri, whose expected value is Ri(s′|s, ws).

Considering the MDP-WSC model introduced previously, the task of the
learning agent then becomes to distinguish the optimal workflow that offers the
highest accumulated rewards. For each agent i, let W i be the set of candidate
workflows. Let Ri

ws be the reward associated with each Web service invocation
wsi for some workflow w. Let N be a fixed maximum number of invocations in
each of the candidate workflows. The workflow w∗, that results in the maximum
expected reward is called an optimal workflow.
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This reward value can be calculated using the action value function [11,26]
as follows:

Qi(s, a) ← Qi(s, a) + α[r + γmaxa′Qi(s′, a′) − Qi(s, a)], (1)

where s represents the state space, i.e., abstract services, for all the possible
workflows that agent i traverses in order to achieve a user’s request, a is the
action vector representing the available Web services, r is the reward given by
selecting a particular service, α is the learning rate, which controls convergence
and γ is the discount factor that reflects the learning policy. When agent i selects
a Web service ws, agent i receives a reward which is an aggregate value for the
QoS attributes of ws. This reward value can be calculated as follows:

r =
∑

ω × Qn − Qmin
n

Qmax
n − Qmin

n

, (2)

where Qn represents the observed value of the nth quality attribute of Web
service ws, Qmax

n and Qmin
n represent the maximum and the minimum values of

the nth quality attribute of Web service ws, respectively. ω is a weighting factor.
In this model, an ε-greedy strategy is adopted to enable the learning agent to

make a trade-off between selecting Web services that have been tried in the past,
i.e., exploitation, and randomly selecting new Web services that may provide
better results, i.e., exploration. For agent i, given a state s and a set of available
Web services Ai(s), agent i selects the next Web service aj with a probability
that can be calculated as follows:

P i(aj |s) =
{

(1 − ε) if aj = argMaxaQ[s, a],
ε others, (3)

where ε is a probability distribution over individual Web services. Agent i chooses
the best Web service according to its policy with probability (1−ε), and otherwise
it selects a uniformly random Web service with probability ε.

4 Deep Reinforcement Learning for Service Composition

Deep learning is an area of machine learning algorithms that aim to learn mul-
tiple levels of representations and abstractions in order to help make sense of
complex data such as images, sound, and text. Towards this end, deep learning
adopts multiple layers of nonlinear processing units for feature extraction and
transformation. Each successive layer uses the output of the previous layer as its
own input. In fact, the word “deep” in “deep learning” refers to the number of
layers through which the data is transformed. During the learning process, mul-
tiple levels of representations are constructed that correspond to different levels
of abstractions. These levels of representations form a hierarchy of concepts.
Deep learning architectures are often constructed on a layer by layer basis. In
this regard, deep learning disengages several abstractions and chooses the most
important features that are required in order to improve performance. Therefore,
deep learning is suitable for both supervised and unsupervised learning tasks.
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4.1 Deep Reinforcement Learning

The usage of deep learning algorithms within RL defines the field of deep rein-
forcement learning (DRL) [12,16]. Deep learning enables reinforcement learning
to scale to problems that were previously intractable, i.e., problems with high
dimensional state and action spaces, such as learning to play video games directly
from the pixels [12]. In fact, large state and/or action spaces make it intractable
to learn Q value estimates for each state and action pair independently. In order
to solve this problem, deep reinforcement learning represents the various com-
ponents of agents such as policies π(s, a) and state/action spaces Q(s, a) with
deep neural networks. The parameters of these deep neural networks are trained
using gradient descent in order to minimize some suitable loss function. In this
context, the learning process proceeds as follows. First, the agent captures an
observation from the environment and passes it as input to the deep neural net-
work. The deep neural network, then, learns abstract representations from the
high dimensional input/observation, then, it evaluates the action space and maps
a suitable action according to the current observation. Finally, the environment
responds to this action and makes a transition to the next observation. In this
paper, a DRL-based approach is proposed in order to address the problem of
service composition in large-scale environments.

4.2 Applying Deep Reinforcement Learning to Service Composition

In this section, a DRL-based approach is proposed in order to enable adaptive
service composition in large-scale service environments. The proposed approach
employs deep Q network (DQN) [12] as a baseline algorithm for learning adap-
tive compositions in large-scale service environments. In addition, the proposed
approach is enhanced using a double Q learning technique in order to address the
overestimation bias of Q-learning. In this regard, removing the overestimation
bias of Q-learning is achieved by decoupling the selection step and the evaluation
step of the bootstrap action. Moreover, a prioritized experience replay scheme
is implemented that is able to improve data efficiency by replaying more often
the transitions from which there is more to learn. Each of these enhancements
promotes substantial performance improvements to the baseline learning algo-
rithm. As a result, the adopted enhancements address several challenging issues.
The proposed approach works as follows.

Deep Q Network. Deep neural networks and reinforcement learning are suc-
cessfully combined in DQN [12] by using a convolutional neural network in order
to approximate the action values of a given state St, which is fed as input to the
neural network (in the form of a stack of raw pixel frames). At each step, based on
the current state, the agent selects an action, ε-greedily, with respect to the action
values and adds a transition to a replay memory buffer (St, At, Rt+1, γt+1, St+1).
This replay memory buffer holds the last million transitions. Then, stochastic
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gradient descent is used in order to optimize the parameters of the neural net-
work to minimize the loss as follows:

(Rt+1 + γt+1 max
á

Qθ̄(St+1, á) − Qθ(St, At))2 (4)

where t is a time step that is randomly chosen from the replay memory. θ̄ rep-
resents the parameters of the target network. This target network is a periodic
copy of the online network that is not directly optimized. θ represent the param-
eters of the online network where the gradient of the loss is only back-propagated
to. This online network can be used in order to choose actions. The parameter
optimization of this online network is performed using a variant algorithm of
stochastic gradient descent [16]. The optimization process is conducted on mini-
batches that are uniformly sampled from the experience replay. This means the
time index represented as t in the loss above is a random time. This random
time index is selected from the last million transitions rather than the current
time. Therefore, a stable learning of Q values is enabled by the usage of tar-
get networks and experience replay. This stability, in turn, enabled superhuman
performance in Atari games [12].

Double Q-learning. Due to the maximization step in Eq. 1, conventional Q
learning is affected by overestimation bias. This overestimation bias, in its turns,
leads to divergence and harms the stability of the learning process. In order to
address this overestimation bias, the proposed algorithm employs a decoupling
scheme [18] that aims to separate the selection of the action from the evalua-
tion of this action. This separation happens in the maximization step that is
performed for the bootstrap target. This decoupling scheme can be combined
effectively with the deep Q network [19] using the loss as follows:

(Rt+1 + γt+1Qθ̄(St+1, argmaxáQθ(St+1, á)) − Qθ(St, At))2 (5)

This decoupling scheme has been proven to reduce the disadvantageous over-
estimations that are present with DQN. This over-estimation reduction, in turn,
improves the stability and performance of the learning process.

Prioritized Replay. The basic idea behind the experience replay step is to store
the experiences of certain agent, and then, uniformly draw batches of these stored
experiences in order to efficiently train the neural network. By keeping the expe-
riences we draw random, the decision agent is able to learn more robustly in the
task. However, in practice, the decision agent needs to sample more frequently
from the experiences/transitions that have higher priority, i.e., the experiences
from which there is more to learn. To achieve this goal, the proposed approach
implements a prioritized experience replay scheme [15] that is able to sample
transitions with probability pt. This probability threshold pt is relative to the
last encountered absolute temporal difference error as follows:

pt ∝ |Rt+1 + γt+1 max
á

Qθ̄(St+1, á) − Qθ(St, At)|ω (6)
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where ω is a hyper parameter that determines the shape of the distribution.
Therefore, the prioritized replay scheme inserts new transitions into the experi-
ence memory/buffer with maximum priority. As a result, there exits a certain
bias towards the recent transitions. In this regard, it is worth noting that stochas-
tic transitions might also be favored, even though there is less experience to learn
from them.

5 Experiments

Two simulation experiments have been conducted in order to evaluate the pro-
posed learning approach from different perspectives. The first experiment studies
the impact of the environment scale on the ability of the proposed approach to
learn high quality service composition policies in large-scale service environ-
ments. The second experiment evaluates the performance of the proposed app-
roach when operates in dynamic service environments and the impact of their
inherent dynamicity on the learning process.

5.1 Experiment Setting

The proposed approach runs in successive iterations/episodes till reaching a
convergence point. The learning agent converges to an optimal policy once it
receives the same value of the accumulated rewards for a number of successive
episodes. Those accumulated rewards are compared episode by episode and the
difference is projected against a threshold. This threshold value is set to 0.001,
and the number of successive episodes is set to 1000.

In the following experiments, three QoS attributes are considered, which are
availability, reliability and response time, based on the QWS dataset [1]. The
average accumulated reward r for each workflow is computed by aggregating the
QoS vectors of its member Web services using Table 1 as follows:

Table 1. Aggregation functions

QoS parameter Aggregation function

availability
∑n

i=1(log(availability(wsi))

response time
∑n

i=1(response time(wsi))

reliability
∑n

i=1(log(reliability(wsi))

The following experiments compare the proposed prioritized double deep Q-
learning approach (PDDQN) with the deep Q network approach (DQN) and the
classic Q-learning based reinforcement learning approach (RL). The learning
parameters are set up based on previous empirical simulations conducted by
the authors in [13]. Those parameter settings are listed in Table 2. Also, all the
simulation experiments are conducted on 3.2 GHz Intel Xeon 6 core iMac Pro
with 32 GB of RAM and 8 MB of GPU.
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Table 2. Parameter settings

Parameter Meaning Value

α Learning rate 1

γ Discount factor 0.8

ε Exploration strategy 0.7

ν Heuristic weighting factor 0.5

ω QoS weighting factor 0.3

5.2 Experiment 1: Learning Quality

The purpose of this experiment is to study the ability of the proposed approach to
find high quality service compositions in large-scale environments. The approach
ability is measured in terms of the average accumulated rewards the learning
agent receives when the solution converges to an optimal service selection policy.
This reward value represents the aggregate QoS of the optimal workflow.

Fig. 1. The scalability of the proposed approach (number of tasks)

Totally two tests are carried out in this experiment. In Test 1, the scale
of the service environment is represented by the number of concrete services
assigned to each task/abstract service. Towards this end, we consider two work-
flows that consist of 150 tasks/abstract services and 250 tasks/abstract services,
respectively. Then, we vary the number of available concrete Web services into a
range of 600 to 900 per task. We run the proposed PDDQN approach under these
environment scales and compare the average accumulated rewards obtained with
their counterparts of the DQN and RL approaches.
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As shown in Fig. 1, the proposed PDDQN approach outperforms both the
DQN and RL approaches despite the environment scale. The PDDQN approach
clearly gains higher accumulated rewards throughout the learning process, and
thus, leads to higher quality solutions.

In Test 2, the scale of the service environment is represented by the number of
tasks/abstract services used in each workflow. For this reason, we fix the number
of concrete services to 700 and 900, and then vary the number of tasks/abstract
services in a range from 100 to 250. The performance of the proposed PDDQN
approach is also measured in terms of the average accumulated rewards that the
learning agent receives when the solution converges to an optimal service com-
position policy. This reward value represents the aggregate QoS of the optimal
workflow.

Fig. 2. The scalability of the proposed approach(number of concrete services)

Figure 2 depicts the relationship between the average accumulated rewards
that are obtained by running the PDDQN approach and both the DQN and
RL approaches multiple times with various number of tasks/abstract services
per workflow. As shown in Fig. 2, the PDDQN service composition approach
also outperforms both the DQN and RL approaches regardless of the number
of tasks/abstract services per workflow. As the number of tasks/abstract ser-
vices increases, the performance gap of these approaches increases in favor of
the PDDQN service composition approach, which proves the scalability of the
PDDQN approach and its ability to find high quality service compositions in
large-scale environments.
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5.3 Experiment 2: Dynamic Environment

The purpose of this experiment is to evaluate the ability of the proposed learning
approach to find optimal service selection policies in dynamic service environ-
ments. The approach ability is measured by the accumulated rewards that the
learning agent receives when it converges to the optimal service selection policy,
in a dynamic service environment.

The dynamic changes in the service environment are expressed by the changes
in the QoS values of the participant concrete services. These QoS values dynam-
ically rise up or drop down for many reasons. Hence, affecting the reward values
r which are received by the learning agent. The dynamic changes in the service
environment are measured in this experiment by two factors. The first factor
is the scale of change, which means how many concrete services in the running
workflow are subject to QoS changes. The second factor is the frequency of this
change, which means how frequently these concrete services experience new QoS
values.

Fig. 3. Dynamic environment (a) scale of change (b) frequency of change

In order to experiment the first factor, i.e., the scale of change, we consider
a workflow that consists of 200 tasks/abstract services and 700 concrete services
per task. The QoS values of the participant concrete services are periodically
varied with 1%, 5% and 10% respectively, every 500 episodes. Figure 3(a) depicts
the impact of this change in the service environment on the performance of the
proposed PDDQN approach. In Fig. 3(a), the x axis represents the percentage
of change in the QoS values of the participant concrete services, and the y axis
represents the average accumulated rewards that the learning agent receives
when it converges to an optimal service selection policy. We can see from Fig. 3(a)
that the proposed PDDQN approach accumulates 162 and 111 units of rewards,
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respectively, before it converges to an optimal policy in a service environment
that experience 1% and 5% periodic changes in the QoS values of its participant
concrete services. Compared to 84 and 67 units of rewards, and 60 and 53 units
of rewards which are received by the DQN and RL approaches, respectively,
under the same environment. These results show the efficiency of the proposed
PDDQN approach in learning the optimal service selection policy in a complex
and dynamic environment. These accumulated rewards drop to 88, 46 and 40
units of rewards for the PDDQN approach, the DQN approach and the RL
approach, respectively, when considering a service environment that experience
10% periodic changes in the QoS values of its participant concrete services.
These results are rational in such highly dynamic and fairly complex service
environment.

In order to experiment the second factor, i.e., the frequency of change, we
consider a workflow that consists of 200 tasks/abstract services and 700 concrete
services per task. The QoS values of 5% of the participant concrete services are
periodically varied every 250, 500 and 1000 episodes, in order.

Figure 3(b) depicts the impact of this change in the service environment on
the performance of the proposed PDDQN approach. In Fig. 3(b), the x axis
represents the frequency of change, i.e., the number of episodes the learning
agent runs before the QoS values of the participant concrete services are varied
according to a predefined percentage, and the y axis represents the average
accumulated rewards that the learning agent receives before it converges to an
optimal service selection policy. As shown in Fig. 3(b), the proposed PDDQN
approach receives 142 and 111 units of rewards, before it converges to an optimal
policy in a service environment that experience 5% periodic changes in the QoS
values of its participant services every 1000 and 500 episodes, respectively. This
is compared to the 80 and 67 units of rewards, and 57 and 53 units of rewards
that are received by the DQN approach and RL approach, respectively, under
the same service environment. Finally, the proposed PDDQN approach receives
59 units of accumulated rewards, compared to 36 and 33 unites of accumulated
rewards received by the DQN and RL approaches, respectively, when considering
a service environment that experience 5% change in its QoS values every 250
episodes. These results are reasonable in such a highly dynamic environment.

6 Related Work

Several approaches have been proposed in order to address adaptation in service
oriented environments [2,3,28]. Wang et al. [23] proposed a two-phase approach
for dynamic service composition and adaptation in which the service perfor-
mance changes in different transactions. In the first phase, the uncertainty level
is calculated by applying the cloud model proposed by Li et al. [10] in order to
change the qualitative value of the QoS parameters to their quantitative equiv-
alent. In the second phase, mixed integer programming (MIP) is used in order
to select the proper services. In this context, service selection is determined by
using a binary decision vector. Huang et al. [5] proposed a two-step procedure
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in order to satisfy the end users QoS requirements. In the first step, the pro-
posed procedure attempts to select the set of single services that satisfy the first
two types of the end users functional requirements, and eliminate the remaining
requirements. In the second step, a virtual network of service providers is gen-
erated and modelled as a directed acyclic graph (DAG). It is then sufficient to
apply an algorithm that determines the shortest path in this DAG in order to
satisfy each users QoS requirements. A shortcoming of this procedure is that,
for the two QoS parameters, the service selection problem is changed to a multi-
constrained path problem when the constructing auxiliary graph is used. Ye et
al. [27] proposed a model for QoS-aware service composition. In their model, the
QoS parameters are divided into three groups, namely, ascending, descending,
and equal QoS attributes. Then, a simple additive weighting method is employed
in order to normalize the values of those QoS parameters. Finally, the authors
applied a genetic algorithm where a roulette wheel service selection technique
is used in order to excuse the crossover operation. Klein et al. [7] proposed an
approach that separates the network and non-network QoS parameters of par-
ticipant Web services. Towards this end, a QoS equation is introduced in order
to calculate the network QoS, latency, and transfer rate among member Web
services. In the last phase of the approach, a genetic-based selection algorithm
is applied in order to generate composite services. However, the aforementioned
techniques assume full and a priori knowledge of the service environment.

In order to solve this problem, RL has emerged as an effective and promising
technique that promotes adaptive service composition in dynamic environments
[13,17]. Towards this end, RL employs a trial and error exploration approach
in order to discover an optimal policy and resolve incomplete information sce-
nario. Early work to utilize reinforcement learning for service composition was
proposed by Jureta et al. [6], where a multi-criteria driven reinforcement learn-
ing approach was introduced in order to ensure that the system is responsive to
the changes in the availability of participant Web services. In their approach,
the authors proposed a distributed architecture, which enabled single Web ser-
vices to join and leave the composition at runtime. Then, a novel reinforcement
learning based service provisioning algorithm was adopted in order to select and
compose the participant Web services according to multiple quality attributes.
A similar approach for dynamic service composition was proposed by Wang et
al. [22]. In their approach, reinforcement learning was combined with prefer-
ence logic in order to empower adaptive service provisioning. However, despite
the effectiveness of these two approaches [6,22] in improving adaptability, their
respective performance degraded when applied to complex and large-scale ser-
vice environments. Moustafa and Zhang [14] proposed an approach that utilized
multi-objective reinforcement learning in order to solve multi-criteria service
composition problems. The proposed approach adopted a geometric operator,
the convex hull, and a self organization mechanism, in order to facilitate service
selection in dynamic and uncertain cloud environments. Although their approach
achieved good results in comparison with the state-of-the-art, the efficiency of
their approach also decreased when applied to large-scale service environments.
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An early attempt to adopt the multi-agent reinforcement learning paradigm in
dynamic service composition has been proposed by Wang and Wang [21]. How-
ever, their algorithm allows the learning agents to update the state-action only
if the observed rewards/QoS values are higher than the previously recorded val-
ues. This might hinder learning and adaptation in dynamic service environments
as only considering the higher QoS values will blind the learning agents to the
drops in the QoS values and trap the agents into sub-optimal policies or policies
that are no longer exist. In dynamic service environments, services are subject to
rises and drops in their QoS values, and both cases should be treated equally. In
addition, their algorithm does not take the potential collaboration between the
multiple agents into consideration. Another multi-agent reinforcement learning
model for service composition has been proposed by Xu et al. [25]. The proposed
model uses multi-agent Q-learning with a hierarchical goal structure in order to
accelerate the searching of candidate services during the learning process. How-
ever, this model fails to deal with complicated goals, with mutual dependencies
among sub-goals, as the learning agents are fixed for certain service classes. A
more mature and generic model has been proposed by Hong et al. [20] where
team Markov Games are adopted in order to facilitate adaptive service compo-
sition in multiagent reinforcement learning scenarios. In their model, the coordi-
nation equilibrium and fictitious play process have been introduced in order to
ensure that the agents converge to unique equilibrium when they face multiple
equilibrium points. Then, a multi-agent Sarsa algorithm has been implemented
in order to empower multi-agent service composition. However, in their current
implementations, the aforementioned RL-based approaches do not perform well
in large-scale service environments, as they suffer from the state-action space
explosion.

7 Conclusion

This paper introduces a novel learning approach for adaptive service composition
in large-scale environment. The proposed approach employs deep reinforcement
learning in order to learn high quality service composition policies, while adapt-
ing to the changes in dynamic service environments efficiently. The experimental
results reveal the ability of the proposed approach to combine deep learning and
reinforcement learning in order to address large-scale service environments in an
effective way. The future work is set to extend the proposed approach to multi-
agent settings, and to study the trade-off between the number of learning agents
and the scale of service environments.
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Abstract. Personalization of support in health and wellbeing settings
is challenging. While personalization has shown to be highly beneficial
to maximize the success of interventions, often only very limited experi-
ences are available to personalize support strategies. Because of its focus
on finding suitable actions/interventions that lead to long term rewards,
reinforcement learning is very suitable for personalization but requires a
substantial learning period. To overcome this so-called cold start prob-
lem, we propose a novel approach called narrowing reinforcement learn-
ing. The approach exploits experiences of the nearest neighbors around a
user to generate a suitable policy, expressing which action to perform in
what state. Using a narrowing function, the size of the neighborhood is
reduced as more experiences are collected, allowing for the most person-
alized experience that is possible given the amount of collected experi-
ences. An evaluation of the approach in a realistic simulator shows that
it significantly outperforms the current state-of-the-art approaches for
personalization in health and wellbeing using reinforcement learning.

Keywords: Reinforcement learning · Personalization
Health

1 Introduction

Rapid developments are seen in the domain of health and wellbeing, where man-
aging one’s health is becoming more and more supported by automated systems.
These developments are fueled by the huge increase in data collected about peo-
ple’s health as well as an increased availability of sensor-enabled devices (e.g.
smart phones, smart watches). Such devices can be used to provide assistance to
people such that they make the right choices to improve or maintain their health.
Over the last few years, a significant increase in the number of health related
apps that can be downloaded on these devices is seen, totaling to nearly 100,000
health apps that are available for download in the iTunes store alone (cf. [2]).
These apps include apps supporting physical activity (e.g. Nike+, Runkeeper,
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and Strava) as well as apps supporting mental health (e.g. Calm, HeadSpace,
and MoodNotes).

While the current health apps are often downloaded, only a limited group
of users find sustained benefits from using these apps. Personalization of such
apps, where the app tailors its support strategies based on the user, is rarely
seen (cf. [6]). Personalization can be established using more knowledge driven
strategies (e.g. specify what message to send for different user profiles), but can
also be performed in a data-driven way, thereby circumventing the need for a
domain expert.

Reinforcement learning (see e.g. [7,9]) is a natural choice for personalization
for health and wellbeing as it focuses on selecting the best actions with a more
long term reward in mind. Here, the strategy defining which action to perform
in what user state is referred to as a policy.

A problem that all data-driven approaches for personalization suffer from is
the cold start problem: in the beginning, very few (or even no) experiences with
the user are available, making it nearly impossible to provide a good level of
personalization while this is precisely the period where the user should become
engaged. For reinforcement learning, this problem is even more severe as it is
known to require quite a few experiences with a user to be able to learn a good
policy (see e.g. [11]). To remedy the cold start problem, one can exploit expe-
riences obtained from other users. In recent work in the reinforcement learn-
ing domain, clustering of users has been proposed, showing promising results
(cf. [4,11]). Users are clustered based on the data that is available about them
(e.g. socio-demographic data, the experiences obtained thus far) and policies
are created over all users within these clusters. While this is a good first step,
there are a few downsides to this approach. First of all, the approach is not
very flexible, as it always learns one policy over the entire cluster. Intuitively
it makes more sense to start with exploiting a lot of users to generate policies,
while making these policies more and more user specific when more experiences
become available. Secondly, we suffer from the grey sheep problem (well known
in collaborative filtering), where users can be atypical for their cluster, result-
ing in suboptimal personalization for both the grey sheep and the others in the
cluster.

In this paper, we present an approach that overcomes the two disadvan-
tages of cluster-based reinforcement learning. We call this approach narrowing
reinforcement learning. The approach we propose considers a number of nearest
neighbors around a user and exploits these nearest neighbors (combined with the
user itself) for generating a policy for that specific user. Neighbors are defined
based on a distance metric (such as dynamic time warping). This neighbor based
approach guarantees that a policy for a user is based on users that are most alike,
tackling the grey sheep problem. Secondly, the number of neighbors considered
is reduced as we gain more experiences using a narrowing function. Hence, we
use the most suitable number of neighbors in each part of the personalization
process following the intuition we described before. We test the effectiveness of
our approach compared to different benchmarks (including cluster-based rein-



314 S. A. Tabatabaei et al.

forcement learning) in a simulator. The simulator encompasses agents that mimic
human behavior by performing activities during a day and responding to support
messages to improve their daily amount of physical activity.

This paper is organized as follows. First, we dive into the problem formulation
and existing approaches. We then introduce our approach in Sect. 3. The exper-
imental setup is described in Sect. 4, and Sect. 5 presents the results. Finally,
Sect. 6 concludes the paper and provides avenues for future work.

2 Problem Formulation and Existing Approaches

As said, we want to create personalized interventions. We present our approach
to improve the learning speed for reinforcement learning in this section. First,
we describe the reinforcement learning problem we are facing in a generic way
(cf. [4]), followed by a specification of the existing solutions to apply reinforce-
ment learning for the problem at hand. This sets the stage for our novel approach.

2.1 Reinforcement Learning Problem Formulation

For specifying our reinforcement learning problem, we follow the approach put
forward in [4]. A user is defined by means of u and the set of all users is identified
by U , where u ∈ U . We see each user as a control problem that can be modeled as
a Markov Decision Process [9]: Mu = <Su, Au, Ta, Ra>. In this formulation, Su

is a finite set of states of user u at any time point. Au is the set of possible actions.
In our problem, Au shows the set of all possible interventions for that user. We
assume that the set of possible actions and states are the same across the users.
To model state transitions we use the probabilistic function T ::S × A × S → R.
This function shows the probability to move from one state to another given a
certain action that is performed. R :: S × A → R represents the reward given a
state S and the action A performed to get to that state. In many reinforcement
learning problems, it is not possible to observe all features related to the state of
a user. In this case, a vector of features is observable, which is derived from the
state s, φ(s) = <φ1(s), φ2(s), . . . , φn(s)>. We can take φ(s) as a representation
of the state s.

Assume that at time point t user u is in state st
u and φ(st

u) is the feature
vector of this state. Based on a policy π the system selects and performs an
action, at. In this case, <φ(st

u), at, rt, φ(st+1
u )> shows the experience that by

taking the action at the user state is changed to a state with the vector function
of φ(st+1

u ), and rt is received as reward of this transition.
All the past experiences of user u together form the trace for that user Σu:

Σt
u = <φ(s0u), a0, r0, φ(s1u), a1, r1, . . . φ(st−1

u ), at−1, rt−1, φ(st
u)> (1)

Based on this formulation of the problem, the goal of the learning process is to
learn the best policy π∗ which specifies which action should be taken given a
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certain state π :: S → A. The expected cumulative reward by doing an action a
in state s is (given T as end time):

Qπ(s, a) = Eπ{ΣT
t γtR(st, st+1)|S0 = s, a0 = a} (2)

where at each time point action a is selected by policy, π (at = π(st)). And γ is
a discount factor for future rewards (0 � γ < 1).

Learning algorithms try to find the optimum policy that maximizes the cumu-
lative reward:

π∗(s) = argmaxaQπ∗
(s, a),∀s ∈ S (3)

Since we cannot be sure that the process satisfies the Markov property, we
assume it is close enough that we can employ the standard reinforcement learn-
ing algorithms. With a Markovian state s, we can estimate the probability of
transition to another state, s′, and receiving reward r.

2.2 Existing Personalization Setups

Given our problem formulation, we can now formally describe what known algo-
rithms do to develop personalized policies given the traces of users Σu we obtain
(that are used to learn the policy). Here, we distinguish three approaches: sep-
arate, pooled, and clustered. We will briefly describe each one of them in more
detail below.

Separated. The goal of this strategy is to learn a policy for each user u and
only use the traces of that specific user. Hence, we use Σ = {Σu} and do this
for each user. This strategy learns a very personalized policy but is not able to
learn a reasonable policy in a short term period.

Pooled. In this case, one policy is learned for all users, based on the experi-
ences of all of them. To do that, we provide Σ = {Σu|u ∈ U}, and generate a
single policy across all users. The advantage of this strategy is that learning can
be done very fast, however it learns one policy for everybody, and there is no
personalization.

Clustering. This strategy [4,11] is an intermediate approach and positioned
between the two approaches that have just been explained. The aim is to make
the reinforcement learning process more effective while still enabling a level of
personalization. This strategy learns policies across groups (or clusters) of users
that seem to be relatively alike. To learn a policy for one cluster of users the
learning algorithm is fed with experiences of all members of that cluster C,
Σ = {Σu|u ∈ C}. The clusters are made based on some distance metric between
users and a clustering algorithm (e.g. k-means clustering). While this, of course,
is a nice approach, it is not very flexible and even when enough experiences are
available per individual user, still a cluster based policy is used.
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3 Narrowing Reinforcement Learning

We propose a novel algorithm called narrowing reinforcement learning, NRL.
This approach has a few ingredients that we will explain in more detail later.
First, let us consider the basic idea. Narrowing reinforcement learning contains
the following ingredients:

– At each learning step t (update of the policy) we learn a policy for each user
u. To generate this policy we consider the traces of Nt users that are most
like the user u, i.e. the nearest neighbors.

– To determine the nearest neighbors, a distance function d :: U × U → R is
used.

– The number of users considered is changed over time using a narrowing func-
tion.

Algorithm 1 shows the connected steps in more detail, which follows the
explanation above.

Algorithm 1. Narrowing Reinforcement Learning
1 N = number-of-users;
2 for t = 1 : end-time do
3 for current-user = 1 : number-of-users do
4 similar-users = get-closest-users( user-id = current-user, size-of-group =

N)
5 Σ = get-experiences (list-of-users = similar-users)
6 learned-policy = learn-policy ( learning-data = Σ) # reinforcement

algorithms like Q-learning or LSPI
7 selected-action = select-an-action (policy = learned-policy , state=

current-state)
8 do-action ( user = current-user, action = selected-action)

9 end for
10 observe-and-collect-new-experiences();
11 N = determine-new-value(N) #N can be updated using an arbitrary regime

12 end for

The idea behind the approach is to learn individual policies per user but
to use a variable additional amount of experiences from other users. Using the
narrowing function, the amount of additional users from which data is used can
be varied. Here, a typical narrowing function would use a large number of users
in the beginning and reduce the number of neighbors over time. This allows for
a quick generation of a policy in the beginning that is less tailored (because
experiences from lots of users are used) while in later stages highly personalized
policies can be generated. Since the nearest neighbors of that specific user are
used, they are guaranteed to be the most like the current users (opposed to the
cluster-based approach).
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Let us now consider the ingredients in more detail, starting with the approach
to find the nearest neighbors given a certain distance function. We then focus
on example distance functions and end with the narrowing functions.

3.1 Defining the Nearest Neighbors

The idea of using the nearest neighbors is to learn one specific policy for each
user, based on the data gathered from him and N most similar users to him (N
nearest neighbors). Let us consider our distance function d again. We define the
set of nearest neighbors of a user u as the set of users of size N out of the total
set of users U that minimizes the distance to u:

nearest neighbors(u,N) = argminUs⊆(U−u):|Us|=N

∑

∀ui∈Us

d(ui, u) (4)

Given a user u and a neighborhood size N we use the following traces:

Σ = {Σn|n ∈ nearest neighbors(u,N)} ∪ Σu (5)

3.2 Distance Metric

As explained, we need to have a distance function d to estimate the similarity of
pairs of users. There are multiple ways to do that. One approach would be to use
socio-demographic data available right from the start. Alternatively, one could
also use the experiences obtained by the users. While our idea is independent
of the distance metric, we assume that only the experiences (traces) are used to
determine the distance between users. Hence, we need to have these experiences
to determine the distance. How we establish that is explained in the experimen-
tal setup. Given that we have some experiences, we use dynamic time warping
(DTW) [1] to define the distance.

DTW is a technique to measure the distance of two time series (we can
see traces as time series). This technique calculates the optimal match between
them, and calculates the distance based on this optimum match. DTW not only
allows for the traces that are shifted, but also takes into account that there
might be a different speed between different traces. To calculate the distance of
two traces, dtw(Σu1 , Σu2) the DTW algorithm finds the best matching of the
time points of two traces in a way that the sum of Euclidean distance of paired
states is minimized. These pairs are ordered, which means pairing comes with the
constraints that time order needs to be preserved (monotonically) [6]. Therefore,
the first datapoint of traces has to be matched together, and the same goes for
the last data points.

3.3 Narrowing Function

The last part includes the narrowing function, i.e. determining what value for
N we should select in the different stages of the process. We can set this at a
fixed value, where:
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– N = 0: Σ = {Σu}: in this case the proposed strategy is the same as the
separated strategy (fully personalization).

– N = |U |: Σ = {Σu|u ∈ U}: in this case, the proposed strategy is the same as
pooled.

An important feature of the narrowing reinforcement learning is that the
value of N can be dynamic during the time. To take advantage of a large number
of users in the beginning (as data is limited in general), N should have a large
value at the beginning. To take the advantage of the separated strategy later
on, N should have a small value at the end. Therefore, it would be possible to
initially have a large value for N, and decrease it over time. For this, we can
apply various functions. In this case, we use two functions in the current paper,
a linear function and an exponential function are used:

Nt+1 = max(0, Nt − α) (6)
Nt+1 = βNt (7)

If we select a positive value for α or a value for β such that 0 < β < 1 we
reduce the neighborhood size over time. By gradually decreasing the value of
N, the shift from a pooled strategy to the separated strategy would be done
smoothly, while being more flexible compared to using fixed clusters.

Figure 1 depicts our hypotheses of the performance of the various approaches,
where the performance of the proposed method is the best of both worlds.

4 Experimental Setup

Evaluation of reinforcement learning algorithms is challenging, especially when
dealing with people in a health setting. In order to perform a proper evaluation
of algorithms that generate policies, it is required to either have a model of the
world (being the human in this case) or to interact with humans directly. In
this way, you can observe the states that result from selected actions as well as
the rewards obtained. While studies with real humans are obviously the golden
standard, studying a lot of different variants of algorithms (mainly to study the
algorithmic improvements) will require a substantial number of experiments and
human subjects, which is infeasible. We, therefore, opted for using a simulation
environment which mimics realistic human behavior. The simulator is an open
source simulator [4] that allows one to specify different profiles of users that drive
the behavior. More details about the simulator are explained below as well as
the experimental setup where we described how we use the simulator to evaluate
the proposed approach.

4.1 Simulator

To do the required experiments, we used a simulator environment (cf. [4]) which
generates realistic human behaviour. This simulator can be used to evaluate
different strategies for motivating people to engage more in physical activity
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Fig. 1. Dynamics of performance of different strategies over time. The performance of
the Pooled policy is very good at the beginning. The Separated policy is very slow, and
its performance would be high after a long time, however its final performance would
be the best. Narrowing Reinforcement Learning would have the benefits of both. It
would be fast at the beginning and a high performance at the end.

(sports in this case). It encompasses a behavioral module that generates states
for the users (represented by activities they perform during the day) as well as
responses actions that are provided by the reinforcement learning algorithm. In
this case, only two actions are available, namely to suggest the person to do
sports, or not send a message. In addition, rewards are generated. The simulator
has different components shown in Fig. 2.

Generate Agents: This component runs once at the beginning of the sim-
ulation and creates agents (representing real life users) based on pre-defined
profiles. These profiles represent different lifestyles with different routines and
habits. Essentially, the profiles indicate what activities people perform during a
day, what the mean start time and duration of the activities as well as the stan-
dard deviation of both. Furthermore, the profiles express how users respond to
interventions. Agents generated from the same profile have similarities in their
life routines, but still each agent has its specific personality and properties.

To specify realistic profiles from which agents are spawned, we have used the
dataset provided in [5]. This dataset contains information about what activities
people have performed during one day. In addition, information is provided on
job status. We have selected three groups of users (i.e. profiles) based on job
status within this dataset and calculated the average start time and the average
duration of each activity:



320 S. A. Tabatabaei et al.

Fig. 2. Simulator environment

– “Retired” represents the daily schedule of elderly people who do not work.
They have enough time to do some sport during the day, but they have
preferences about the time for interventions (they do not like to be interrupted
during a meal). To accept an intervention, the person will just look at his
schedule, and will not accept if he has not enough time to do it during the
next 3 h.

– “Worker” represents a person with a full-time job. A worker prefers to receive
interventions during his lunch time. Although he checks his schedule for the
next 24 h, because of his tight schedule it would be a difficult task to find
some free time to work out.

– “Athletic” is the class of agents who love sports. An Athletic agent has a part
time job, so his spare time is more than a worker, but less than a retired
agent. He might even work out more than once on some days.

For each profile, the following activities are included: sleep, breakfast, lunch,
dinner, work. The specification of the daily schedule for different profiles is
presented in Table 1. In addition to the mentioned activities, by accepting the
received interventions, an agent might do some workout.

In Table 1, the average of starting time and duration of each activity for dif-
ferent profiles are extracted from real dataset [5]. To make different agents from
the same profile, for each new agent a random value from a normal distribution
of N(0, stdactivity) is added to the range of the start time (early start, late start)
of each activity. As an example, “retired” agents are similar in the sense that
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Table 1. Experimental setup: parameters of different profiles

Profile Parameter Activity

Sleep Breakfast Lunch Dinner Work

Worker Early start 21:32 07:41 13:03 18:03 07:18

Late start 22:32 08:44 13:51 20:03 09:48

Std start 1.02 1.63 1.75 1.21 3.78

Min duration 07:52 00:25 00:15 00:57 06:55

Max duration 08:52 00:31 00:51 01:27 09:18

Probability

in weekdays

1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 0.5, 0.2

Athletic Early start 21:18 08:06 12:38 18:21 09:15

Late start 23:18 09:06 14:38 19:51 11:45

Std start 1.06 1.43 1.77 1.55 3.84

Min duration 08:35 00:15 00:21 00:17 05:37

Max duration 09:35 00:30 00:51 00:47 06:07

Probability

in weekdays

1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 0, 0

Retired Early start 21:19 06:36 12:54 17:50 08:00

Late start 22:49 09:36 14:54 19:50 09:00

Std start 1.08 1.40 1.86 1.23 00:00

Min duration 07:55 01:18 0.23 00:18 08:00

Max duration 09:55 01:30 00:47 00:54 08:00

Probability

in weekdays

1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 0, 0, 0, 0, 0, 0, 0

they both do not work, while “Worker”s should work during working days. On
the other hand, “retired” agents are not exactly the same because each has its
own preferences for his daily schedule (e.g waking-up time, start time for eating
breakfast, ...).

Create Daily Schedules: At the beginning of each day, a daily schedule is
created for each agent based on his personal properties. The daily schedule of
an agent is filled with start and end time of different activities (e.g. breakfast
(start:8:10, end:8:43)), and he will be busy with this activities, or will be idle in
the case of no activity is assigned for that specific moment. The daily schedule
of an agent would not change during the day, except in the case that he receives
and accepts an intervention which invites him to do some workout. In this case,
the agent modifies his daily schedule and adds this new activity on it.

Following Daily Schedules: This component runs every second and for each
agent checks if his current activity should stop or if he should start a new activity.
Moreover, the current state of each agent is written in the database.

Reinforcement Learning: This component learns the best policy to send inter-
ventions based on the state of agents. This component runs at the beginning of
each day. We deploy the methods we have explained throughout the paper here,
we use feature-based least squares policy iteration (LSPI) [8]. The features of the
state (φ(s)) include (i) the current time (ii)the current weekday, (iii) whether
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the user already worked out in the current day (iv) fatigue level of the agent and
(v) which activities are performed during the last hour.

Sending Interventions: At the beginning of each hour, for each agent this
component applies the policy and decides to send an intervention1 to him, or
not.

Reward Function: In our experiments, the reward function, Ru, included both
positive and negative rewards. Rewards are defined based on accepting/rejecting
an intervention, doing the desired activity, and fatigue level of the agent. To be
more precise, if the agent accepts an intervention a reward of +1 is given, and a
negative reward of −1 in the case of rejection. Moreover, if the agent does some
workout, the reward of +10 is given when he finishes this activity. The last type
of reward is related to the fatigue level of the agent. If the agent becomes fatigue
because of working out in several days in a row, a negative reward is given. The
size of this negative reward is dependent on the number of days that the agent
worked out (the more fatigue the agent is, the more negative rewards receive).
The value of fatigue shows the number of times a user worked out during a
couple of days in a row, without skipping working out for a day.

4.2 Experiments

Below, the experimental setup is described. First, we describe the setup of the
learning algorithms followed by the way the experiments are run.

Learner: As the learning algorithm, we have used LSPI which is a good option
when the state space is big and sparse (like our problem, especially during the
first days). To learn a policy, at the beginning of each day, we apply LSPI
and learn policies based on the selected traces that have been selected given the
applied algorithm. For LSPI, we use an exploration rate of 0.05 (cf. [4]). it means
that at 5% of hours, an action is selected by random.

Algorithms: We apply the separate, pooled and clustering schemes, and try
different variants of the narrowing reinforcement learning, NRL, approach. For
the latter, we apply different variants of the narrowing function. Both the linear
and exponential narrowing function have hyperparameters. We did the experi-
ment with different values for each, (2, 3, 4, 5) for α and (0.5, 0.75, 0.85, 0.90) for
β. The results are reported in the next section. Note that for each experimental
setting we performed five runs and averaged the rewards over those runs. We
use 60 agents in our simulations (20 agents per profile).

Following the clustering approach, as we use traces of experiences to deter-
mine the distance between users we perform an initial “warmup” phase in which
we apply a random policy for a number of days (we experiment with 1, 7 and
10 days) to gather initial traces on user experiences. Only after this part has
been finished we start to learn policies.

1 In our experiments, an intervention is just a message that would send to the agent
and invite him to workout in that day. The agent can accept or reject it.
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5 Results

Figure 3 shows the average and standard deviation of the accumulated reward
of all agents over the different approaches. Before comparing the approaches,
let us dive into the influence of the parameter setting upon the performance of
the approach first. When it comes to the cluster-based approach, it shows that
7 days leads to the higher accumulated reward. For the narrowing reinforcement
learning we consider the different settings of the narrowing function. Results
show that the best results are achieved when α = 3 for the linear narrowing
function, or β = 0.50 for the exponential one.

Fig. 3. Average of accumulated reward for different strategies

We have performed an unpaired Wilcoxon rank-sum test [10] to compare the
final accumulated rewards of different runs of the best narrowing reinforcement
learning (with exponential narrowing function, β = 0.50) and the separated
approach (as the best strategy with highest average). The result of this test
(p-value = 0.0163) reveals that the accumulated rewards of runs with narrowing
RL strategy are significantly higher compared to the accumulated rewards of
runs with separated strategy.

Figure 4 shows the average accumulated rewards over time for the differ-
ent approaches (where we took the best performing parameter settings for the
cluster-based and narrowing approaches). As can be seen, a few days after the
beginning of the experiment, the pooled strategy has some downward trend. The
reason is that at the beginning of the experiments the agents are not fatigued
from working out. Because of that, the learner receives positive rewards for most
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Fig. 4. Accumulated reward over the time

of the sent interventions and learns to send more and more interventions. Which
makes fatigue many agents, and leads to negative rewards. After a few days,
based on these negative rewards the learner updates the policy to send fewer
interventions (it is explained more in Fig. 5). In all, even after this first days,
we see that the graph of this strategy has a very limited upwards trend. The
reason is that this strategy learns one policy for everybody, and there is no
personalization.

Figures 5a and b show the daily reward received by agents from different
profiles for two strategies, namely the narrowing reinforcement approach (with an
exponential narrowing function, β = 0.5) and the results for the pooled approach.
As can be seen, in both cases, the received rewards by Athletic agents is more
than for the two other profiles. This is due to specific characteristics of these
agents which are open to more workouts (and hence, can obtain a higher reward).
Figure 5b shows that the learned policy with the pooled strategy receives a lot
of rewards from Athletic agents, this leads to more and more interventions being
sent as this agent type does not get tired easily and accepts all these workouts.
However, since this strategy learns one policy for all agents, it will also send a lot
of interventions to the retired and worker agents, causing negative rewards for
these agents due to messages being rejected and fatigue building up. By receiving
these new rewards, the number of actions will be reduced for all agents (Fig. 5d),
which decrease the amount of negative rewards from retired and worker agents
but also decrease the positive rewards from Athletic agents. This clearly shows
the disadvantages of learning one policy for all agents. By looking at Fig. 5c,
for the narrowing approach, we can see that at the beginning the number of
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Fig. 5. Received reward and number of sent interventions for each profile. The results
are shown for two strategies: NRL(a, c), Pooled(b, d)

interventions sent for different profiles are almost the same. But, after some time,
the learned policies for athletic agents send more interventions in comparison to
the learned policies for agents from other profiles. By narrowing the size of
nearest neighbors, a higher level of personalization is achieved over time. Please
note that in Fig. 5c, even though the number of sent interventions for the worker
and retired agents is quite the same over days, the learned policies are different.

Figure 6 shows the average daily reward of runs with the different strategies.
We have performed a paired Wilcoxon signed-rank to compare the average of
daily rewards of different runs (5 runs for each) of narrowing reinforcement
learning and separated. The result of this test (p-value = 1.114e−14) shows that
the daily rewards of runs with the narrowing strategy are significantly higher
than accumulated rewards of runs with separated strategy.
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Fig. 6. Average of daily reward over the time

6 Conclusion and Future Work

Selecting the best technique to obtain personalization is highly dependent on
the task at hand. Personalization in health and wellbeing domain is challenging
since a sequence of actions should be selected, while the consequence of actions
cannot be observed immediately. Reinforcement learning is a technique fits this
setting very well [6]. However, reinforcement learning has its own drawbacks.
The learning process needs quite a lot of experiences to learn a proper policy. As
a result, learning a personalized policy based on the experiences of an individual
would be very slow. Several approaches have been proposed before that try to
overcome this problem.

Gonul et al. [3] adopted standard reinforcement learning methods to optimize
the time of interventions. They use transfer learning for this purpose. To do
that, the learned policy from other users is transferred to other users. This
technique can solve the cold start problem (in [3] it is called a “jump start”).
More specifically, transfer learning is used to learn the common patterns across
individuals and that knowledge is used to achieve the “jump start” for new
individuals. The approach does, however, assume initial users and data to be
present, which is not a hard requirement in our case.

In [4,11] users are assigned to clusters based on the similarities in their
behaviours. Then, one policy is learned for each cluster of users. Even though
it is not a fully personalized technique, but there is a level of personalization in
this technique and the technique outperforms a single policy across all users as
well as one policy per user (but only in the beginning).
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In this paper, we have presented an approach which we call narrowing rein-
forcement learning to remedy some of the shortcomings of current approaches
to personalize interventions towards users. The proposed approach is general
and independent to a specific domain. However, in this paper, we focus on
the e-health domain and evaluate the approach by using a simulation environ-
ment in this domain. The approach significantly outperforms the other available
approaches when we compare them in a realistic simulation environment.

As is clear, the function for decreasing the value of N has an important effect
on the performance of the approach. In this paper, we tested two different func-
tions, linear and exponential, and different values for their parameters. Results
show that the exponential function for narrowing performs best.

An important question that can be the subject of further research is about
the best strategy for decreasing the value of N. It should also be noted that it
is not necessary to have one N for all agents. For each agent, we can have a
separate N, which is updated at the beginning of each learning cycle.
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Abstract. The act of persuasion, a key component in rhetoric argu-
mentation, may be viewed as a dynamics modifier. We extend Dung’s
frameworks with acts of persuasion among agents, and consider inter-
actions among attack, persuasion and defence that have been largely
unheeded so far. We characterise basic notions of admissibilities in this
framework, and show a way of enriching them through, effectively, CTL
(computation tree logic) encoding, which also permits importation of
the theoretical results known to the logic into our argumentation frame-
works. Our aim is to complement the growing interest in coordination of
static and dynamic argumentation.

1 Introduction

An interesting component of rhetoric argumentation is persuasion. We may code
an act of it into A:a1© ��� B:a2© �a1 B:a3© with the following intended mean-
ing: some agent A’s argument a1 persuades an agent B into holding a3; B, being
persuaded, drops a2. There can be various reasons for the persuasive act. It may
be that A is a great teacher wanting to correct some inadvisable norm of B’s, or
perhaps A is a manipulator who benefits if a2 is not present. Persuasion is popu-
larly observed in social forums including YouTube and Twitter, and methods to
represent it will help understand users’ views on topics accurately. Another less
pervasive form of persuasion is possible: A:a1© � B:a3© in which A persuades
B with a1 into expressing a3 but without conversion. In either of the cases, per-
suasion acts as a dynamics modifier in rhetoric argumentation, allowing some
argument to appear and disappear.

Of course - and this is one highlight of this paper - these acts will not be
successful if a1 is detected to be not a defensible argument: we may have C:a3© →
A:a1© � B:a2© where a3 attacks a1. Suppose now that B is aware of a3, then B

can defend against A’s persuasion due to a3’s attack on a1. B is not persuaded
into holding a2 in such a case. We will care for the interactions between attack,
persuasion and defence.

While AGM-like argumentation framework revisions defining a class of argu-
mentation frameworks to result from an initially given argumentation framework
and an input (which could be argument(s), attack(s) or both), and persuasion
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 331–343, 2018.
https://doi.org/10.1007/978-3-030-03098-8_20
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in the context of (often two-parties) dialogue games, are being studied, there are
very few studies in the literature that pursue coordination of statics and dynam-
ics. One exception is the dynamic logic for programs adapted for argumentation
by Doutre et al. [20,21], which is rich in expressiveness with non-deterministic
operations, tests, sequential operations. Bridging dynamics and statics is impor-
tant for detailed and more precise analysis of rhetoric argumentation. So far,
however, the above-said interaction between attack, persuasion and defence has
been largely unheeded. We first of all fill the gap by developing an abstract
persuasion argumentation, an extension to Dung’s argumentation theory [22].
We formulate the notion of static admissibility for our theory, and then show a
way of diversifying it into other types of admissibilities through, effectively, CTL
(computation tree logic) embedding.

1.1 Example Situations

Defence and Reference Set. One aspect that has not been shed much light
on in the literature of dynamic argumentation is defence against such persuasive
acts (dynamic operations). Let us consider an example.

a2 (Mr. X) Elma does not like the music.
a3 (Mr. Z) We should get a piano.
a4 (Mrs. Y) We can buy Elma a Hello Kitty shoulder bag.
a5 (Mrs. Y) We will go to Yamaha Music Communications Co., Ltd. for a piano.

The relation among them is as shown in Figure A ( B ): there is an attack
from a2 to a3, and there is also a persuasion act by (Mr. Z holding) a3 trying
to convert a4 into a5. Suppose that a5 is not initially on Mrs. Y’s mind, that
is, that it is not visible initially. If the persuasion by Mr. Z is successful, Mrs.
Y changes her mind, dropping a4 and gaining a5. Otherwise, she holds onto a4.
In Dung theory, defence of an argument ax is defined with respect to a set of
arguments A. The reference set A defends ax just when A’s members attack
all arguments attacking ax. We see that this concept may be extended also to
persuasion operations. For example, if, as marked with a rectangular box in
Figure A , the reference set consists of a4 and a5 alone, it does not detect any
flaw in a3. Thus, the persuasion is successful with respect to the reference set.
However, if it also contains a2 attacking a3 as in Figure B , it can prevent the
persuasion from taking effect on a4.
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Multiple Persuasions. We have a kind of concurrency scenario when multiple
persuasions act on an argument. Let us consider an example.

a1 (Alice at London Bridge, having agreed to see Bob at 7 pm) I am going to
have dinner with Bob. It is 7 pm now. He should be arriving soon.

a2 (Tom, calling from Camden) Chris (Alice’s brother) is looking for you. He is
at Camden Bar. He says there is some urgent matter, can you please get to
the bar as soon as possible?

a3 (Katie, seeing Alice by chance) Hey Alice, you’ve left your laptop at King’s
library? You better go there now. Oh, and don’t forget about your presenta-
tion tomorrow morning. Make sure you have slides ready!

Having been acquainted with Bob only recently, Alice is more inclined to getting
to Camden Bar or to King’s library. That is, a4: I am going to Camden Bar,
or a5: I am going to King’s library. She knows her brother is very stern. But
the assignment of which Katie reminded Alice seems to be a thing that must be
prioritised, too. Whichever option she is to go for, she must, thinks she, come
up with excuses to justify her choice. Therefore:

a6 (Alice’s excuse) It is fine to skip dinner because I waited for Bob at London
Bridge and he did not arrive in time. Besides, I suddenly have something
urgent.

a7 (Alice’s excuse) I cannot see Chris. For my career, it is important that I
perform well at presentation tomorrow. Chris will understand.

a8 (Alice’s excuse) I cannot go to King’s library now, because it is always urgent
when Chris calls me.

Figure C represents these arguments. Now, what we have is a potentially irre-
versible branching. If a2 persuades a1 into a4, it is no longer possible for a3 to
persuade a1, as a1 will not be available for persuasion. If a3 persuades a1 into a5,
on the other hand, it is no longer possible that a2 persuades a1. A certain partial
order may be defined among persuasion (as in preference-based argumentation),
but the non-deterministic consideration leads to a more general theory (as in
probabilistic argumentation) in which the actual behaviour of a system depends
on run-time executions.

Just as in program analysis, however, it may be still possible to identify
certain properties, whichever an actual path may be. In this particular example,
(Alice holding) a1 may be persuaded into holding a4 or else a5, and we cannot tell
which with certainty. However, we can certainly predict a8’s emergence. Thus, by
obtaining varieties in arguments admissibility by means of CTL, we can answer
such a query as ‘Is a8 going to be an admissible argument in whatever order
persuasive acts may take place?’.

2 Technical Backgrounds

Let A be a class of abstract entities which we understand as arguments. We
denote any member of A by a with or without a subscript, and any finite subset
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of A by A with or without a subscript. An argumentation framework [22] is a
tuple (A,R) where R is a binary relation over A. Let F (A,R)(A1) denote (A1, R ∩
(A1×A1)), we denote by 2(A,R) the following set:

⋃
A1⊆A F (A,R)(A1), i.e. all sub-

argumentation frameworks of (A,R). When confusion is unlikely to occur, we
abbreviate F (A,R)(A1) for some A1 by F (A1).

For any (A,R) an argument a1 ∈ A is said to attack a2 ∈ A if and only
if, or iff, (a1, a2) ∈ R. A set of arguments A1 ⊆ A is said to defend ax ∈ A
iff each ay ∈ A attacking ax is attacked by at least one argument in A1. A set
of arguments A1 ⊆ A is said to be: conflict-free iff no member of A1 attacks a
member of A1; admissible iff it is conflict-free and it defends all the members of
A1; complete iff it is admissible and includes any argument it defends; preferred
iff it is a set-theoretically maximal admissible set; stable iff it is preferred and
attacks every argument in A\A1; and grounded iff it is the set intersection of all
complete sets of A.

3 Abstract Persuasion Argumentation

We define our Abstract Persuasion Argumentation (APA) framework to be a
tuple (A,R,Rp, A0, ↪→) for A0 ⊆ A, for a ternary relation Rp : A× (A∪{ε})×A
and for another ↪→: 2A × (2(A,R) × 2(A,R)). For Rp, (a1, ε, a2) ∈ Rp represents
a1 � a2 (passive persuasion or to induce), and (a1, a2, a3) ∈ Rp represents
a1 ��� a2 �a1 a3 (active persuasion or to convert). We refer to a subset of Rp by
Γ with or without a subscript and/or a superscript.

APA is a dynamic argumentation framework where arguments can appear
(go visible) or disappear (go invisible). As in a transition system, it comes
with an initial state and a transition relation ↪→. For any APA framework
(A,R,Rp, A0, ↪→), we define a state to be a member F (Ax) of 2(A,R), and we
say any argument that occurs in a state visible and any that does not occur in
the state invisible, in each case at that particular state.1 We define F (A0) to be
the initial state.

Example 1. In Elma example, we assumed A0 = {a2, a3, a4} and F (A0) =
(A0, {(a2, a3)}). In Alice example, A0 = {a1, a2, a3} and F (A0) = (A0, ∅).

Definition 1 (Reachable states). For APA (A,R,Rp, A0, ↪→), for a set
of arguments Ax ⊆ A, and for states F (A1) and F (A2), we say that
there is a transition from F (A1) to F (A2) with respect to Ax iff it
holds that (Ax, (F (A1), F (A2))) ∈↪→, which we alternatively state either as
(F (A1), F (A2)) ∈↪→Ax or as F (A1) ↪→Ax F (A2). We say that a state F (Ax)
is reachable iff F (Ax) either is the initial state or else is such that F (A0) ↪→Ai1

· · · ↪→Ain F (Ax), 1 ≤ n.

A reachable state is a static snapshot of an APA framework at one moment,
which is a Dung argumentation framework. To enumerate all reachable states,
it suffices to define ↪→ in specific detail. And this is where the notion of defence
1 We assume the standard notion of occurrence.
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against persuasive acts with respect to a reference set at a state - specifically
visible arguments of the set at the state - comes into play:

Definition 2 (Possible persuasion acts). For APA (A,R,Rp, A0, ↪→), we
say that a persuasion act (a1, α, a2) ∈ Rp, α ∈ {ε} ∪ A, is possible with respect
to: (i) a reference set Ax ⊆ A; and (ii) a state F (Au) iff a1, α ∈ Au ∪ {ε} and
a1 is not attacked by any member of Ax ∩ Au. We denote the set of all members
of Rp that are possible with respect to a reference set Ax ⊆ A and a state F (Au)
by ΓAx

F (Au)
.

Example 2 (Continued). In Elma example with A0 = {a2, a3, a4}, there is
one argument, a2, which is in A0 (thus visible), and which attacks a3, so
(a2, a3, a4) ∈ Rp is possible with respect to Ax ⊆ A and F (A0) only if
a2 
∈ Ax. ΓAx

F (A0)
is: {(a2, a3, a4)} if a2 
∈ Ax; ∅, otherwise. In Alice example

with A0 = {a1, a2, a3}, (a2, a1, a4) and (a3, a1, a5) are both possible with respect
to any Ax ⊆ A and F (A0), because for no (ax, α, ay) ∈ Rp there is (az, ax) ∈ R.
ΓAx

F (A0)
= {(a2, a1, a4), (a3, a1, a5)}.

Since transition as we consider is non-deterministic, each persuasion act possi-
ble in a state may or may not execute for transition. Therefore, for any APA
(A,R,Rp, A0, ↪→), any reference set Ax ⊆ A and any state F (A1), there are

2|Γ Ax
F (A1)| − 1 transitions, though some of them may be identical.

Definition 3 (Non-deterministic transition). For APA (A,R,Rp, A0, ↪→),
for A1 ⊆ A and for Γ ⊆ Rp, let negA1(Γ ) be {ax ∈ A1 | ∃a1, a2 ∈
A1.(a1, ax, a2) ∈ Γ}, and let posA1(Γ ) be {a2 ∈ A1 | ∃a1, α ∈ A1 ∪
{ε}.(a1, α, a2) ∈ Γ}. For Ax ⊆ A and states F (A1) and F (A2), we define:
F (A1) ↪→Ax F (A2) iff there is some ∅ ⊂ Γ ⊆ ΓAx

F (A1)
⊆ Rp such that

A2 = (A1\negA1(Γ )) ∪ posA1(Γ ).

For Γ ⊆ Rp, if Γ ⊆ ΓAx

F (A1)
, it is a (non-deterministically) chosen set of possible

persuasion acts at F (A1). Thus, negA1(Γ ) is the set of all visible arguments that
are to be converted, and posA1(Γ ) is that of all visible arguments that are to be
generated, in the transition. As clear from this definition, while every member
of posA1(Γ ), if not visible in F (A1), will be visible in F (A2), not necessarily
every member of negA1(Γ ) will be invisible in F (A2) in case it also belongs to
posA1(Γ ), in which case the effect is offset.

Example 3. Consider the argumentation in the figures below, in each of which
visible arguments are marked with a black border around the circle. Suppose
A0 = {a1, a2} as in Figure D . At F (A0), there are more than one possible
persuasion acts: ΓAx

F (A0)
= {(a1, a2, a4), (a2, a1, a3)} for any reference set Ax ⊆

A. There are three transitions for F (A0), depending on which one(s) execute
simultaneously. If just (a1, a2, a4), a2 will go invisible, while a4 will be visible,
so we have F (A0) ↪→Ax F (A1) (Figure E ) for any Ax. If just (a2, a1, a3), we
have F (A0) ↪→Ay F (A2) (Figure F ) for any Ay. Or both of them may execute
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at once, in which case both a1 and a2 will be invisible, and a3 and a4 meanwhile
will be visible, so we have F (A0) ↪→Az F (A3) (Figure G ) for any Az. Reasoning
similarly for the new states, we eventually enumerate all reachable states and all
transitions among them:

– F (A0) ↪→Ax F (A1), F (A0) ↪→Ay F (A2), F (A0) ↪→Az F (A3).
– F (A1) ↪→Au F (A1).
– F (A2) ↪→Av F (A2).
– F (A3) ↪→Ap F (A4), F (A3) ↪→Aq F (A5), F (A3) ↪→Ar F (A6).
– F (A4) ↪→Ai F (A4), F (A4) ↪→Aj F (A6).
– F (A5) ↪→Ak F (A5), F (A5) ↪→Ac F (A6).
– F (A6) ↪→Ad F (A4), F (A6) ↪→Af F (A5), F (A6) ↪→Ag F (A6).

The reference sets for the transitions are any subset of {a1, a2, a3, a4}. Notice,
apart from the trivial self-transitions, states could oscillate infinitely between
F (A4), F (A5) and F (A6).

Proposition 1. Suppose an APA framework δ with a finite number of argu-
ments. It is necessary that the number of (reachable) states is finite. It is, how-
ever, not necessary that the number of transitions in δ is finite.

3.1 Admissibilities

We now define the static notion of admissibility in APA frameworks, based on
three criteria. For APA (A,R,Rp, A0, ↪→),
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Conflict-Freeness. We say that A1 ⊆ A is conflict-free in a (reachable) state
F (Ax) iff no member of A1 ∩ Ax attacks a member of A1 ∩ Ax.

Defendedness. We say that a reference set A1 ⊆ A defends a ∈ A in a state
F (Ax) iff either a 
∈ Ax or else both of the conditions below hold.

1. Every au ∈ Ax attacking a is attacked by at least one member of Ax ∩ A1

(counter-attack).
2. There is no state F (Ay) such that both F (Ax) ↪→A1 F (Ay) and a 
∈ Ay at

once (no elimination).

We say that A1 ⊆ A is defended in a state F (Ax) iff A1 as a reference set defends
every member of its in F (Ax).

Properness. We say that Au ⊆ A is proper in a state F (Ax) iff Au ⊆ Ax.

Defendedness above extends Dung’s defendedness naturally for Rp. Properness
ensures that we will not be talking of invisible arguments. With these properties,
we say Au ⊆ A is: admissible in a state F (A1) iff Au is conflict-free, defended
and proper in F (A1); complete in a state F (A1) iff Au is admissible in F (A1)
and includes all arguments it defends; preferred iff no Av ⊆ A that is complete in
a state F (A1) is a strict superset of Au; stable iff it is preferred and attacks every
member of A1\Au; and grounded in a state F (A1) iff it is the set intersection of
all complete sets in F (A1). Since each state is a Dung argumentation framework,
we have:

Proposition 2. For APA (A,R,Rp, A0, ↪→), for a state F (A1) and for Ax ⊆
A1: if Ax is stable, then Ax is preferred; if Ax is preferred, then Ax is complete;
if Ax is complete, then Ax is admissible; there exists at least one complete set;
and there may not exist any stable set.

For general admissibilities across transition, one way of describing more varieties
is to embed this state-wise admissibility and transitions into computation tree
logic (CTL) or other branching-time logic, by which model-theoretical results
known to the logic become available to APA frameworks, too. We consider CTL
with some path restrictions. Denote {ad, co, pr, st, gr} by Ω, and refer to a mem-
ber of Ω by ω. Let the grammar of φ be:

φ := ⊥ | � | a∈̇δAx | Pδ(ω,Ax) | ¬φ | φ ∧ φ | φ ∨ φ | φ ⊃ φ | AXΣφ |
EXΣφ | AFΣφ | EFΣφ | AGΣφ | EGΣφ | EΣ [φUφ] | AΣ [φUφ]

where both a∈̇δAx and Pδ(ω,Ax) are atomic predicates for an APA framework
δ := (A,R,Rp, A0, ↪→), with Ax ⊆ A, with a ∈ A and with Σ ⊆ 2A. A is ‘in
all branches’, E is ‘in some branch’, X is ‘next state’, F is ‘future state’, G
is ‘all subsequent states’, and U is ‘until’. The superscripts restrict paths to
only those reachable with member(s) of Σ as reference set(s). See below for the
exact semantics. We denote the class of all atomic predicates for δ by Pδ. For
semantics, let L : Ω × 2A → 2Pδ be a valuation function such that L(ω,Ax) is:

– {Pδ(ad, Ay) ∈ Pδ | Ay is admissible in F (Ax)} if ω = ad.
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– {Pδ(co, Ay) ∈ Pδ | Ay is complete in F (Ax)} if ω = co.
– {Pδ(pr, Ay) ∈ Pδ | Ay is preferred in F (Ax)} if ω = pr.
– {Pδ(st, Ay) ∈ Pδ | Ay is stable in F (Ax)} if ω = st.
– {Pδ(gr, Ay) ∈ Pδ | Ay is grounded in F (Ax)} if ω = gr.

We define M := (δ, L) to be a transition system with the following forcing
relations.2

– M, A1 |= �.
– M, A1 
|= ⊥.
– M, A1 |= a∈̇δAx iff a ∈ Ax.
– M, A1 |= Pδ(ω,Ax) iff Pδ(ω,Ax) ∈ L(ω,A1) (in plain terms, this says Ax is

admissible/complete/preferred/stable/grounded in a state F (A1)).
– M, A1 |= ¬φ iff M, A1 
|= φ.
– M, A1 |= φ1 ∧ φ2 iff M, A1 |= φ1 and M, A1 |= φ2.
– M, A1 |= φ1 ∨ φ2 iff M, A1 |= φ1 or M, A1 |= φ2.
– M, A1 |= φ1 ⊃ φ2 iff M, A1 
|= φ1 or M, A1 |= φ2.
– M, A1 |= AXΣφ iff M, A2 |= φ for each transition F (A1) ↪→Ax F (A2),

Ax ∈ Σ.
– M, A1 |= EXΣφ iff there is some transition F (A1) ↪→Ax F (A2), Ax ∈ Σ,

such that M, A2 |= φ.
– M, A1 |= AFΣφ iff there is some i ≥ 0 for each transition F (A1) ↪→Aj1

· · · ↪→Aji F (Ai+1)(↪→Ax · · · ), Ajk ∈ Σ for 1 ≤ k ≤ i + 1, such that
M, Ai+1 |= φ.

– M, A1 |= EFΣφ iff there are some i ≥ 1 and a transition F (A1) ↪→Aj1

· · · ↪→Aji F (Ai+1)(↪→Ax · · · ), Ajk ∈ Σ for 1 ≤ k ≤ i + 1, such that
M, Ai+1 |= φ.

– M, A1 |= AGΣφ iff M, Ak |= φ for each transition F (A1) ↪→Aj1 · · · , Ajn ∈
Σ for 1 ≤ n, such that F (Ak) occurs in the transition sequence.

– M, A1 |= EGΣφ iff there is some transition F (A1) ↪→Aj1 · · · , Ajn ∈ Σ
for 1 ≤ n, such that M, Ak |= φ and that F (Ak) occurs in the transition
sequence.

– M, A1 |= AΣ [φ1Uφ2] iff there exists some i ≥ 0 for each transition
F (A1) ↪→Aj1 · · · ↪→Aji F (Ai+1)(↪→Ax · · · ) such that M, Ai+1 |= φ2 and
that M, Ak |= φ1 for all k < i + 1.

– M, A1 |= EΣ [φ1Uφ2] iff there exists some i ≥ 0 and a transition F (A1) ↪→Aj1

· · · ↪→Aji F (Ai+1)(↪→Ax · · · ) such that M, Ai+1 |= φ2 and that M, Ak |= φ1

for all k < i + 1.

We say that φ is true (in δ) iff (δ, L), A0 |= φ.
While this logic appears more graded than CTL for the superscripts Σ, there

is an obvious encoding of it into the standard CTL with an additional atomic
predicate in the grammar of φ that judges whether an argument is visible. That
2 The liberty of allowing arguments into M causes no confusion, let alone issues. If

one is so inclined, he/she may choose to consider that components of δ that appear
in M are semantic counterparts of those that appear in the syntax of CTL with
one-to-one correspondence between them.
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is, we can for example replace EX{Ax}φ with EX(φ1∧φ)∨· · ·∨EX(φn ∧φ) if we
can express by the expression that, for any transition F (Ac) ↪→Ax F (Ad) such
that F (Ac) is the state with respect to which the expression is evaluated, there
exists some 1 ≤ i ≤ n such that φi holds good just when all and only members
of Ad are visible, and that for every φi, 1 ≤ i ≤ n, there exists some Ad such
that F (Ac) ↪→Ax F (Ad) and that φi holds good just when all members of Ad are
visible, which confirms that our logic is effectively CTL. It is straightforward to
see the following well-known equivalences in our semantics:

Proposition 3 (De Morgan’s Laws and Expansion Laws). ¬AFΣφ ≡
EGΣ¬φ, ¬EFΣφ ≡ AGΣ¬φ, ¬AXΣφ ≡ EGΣ¬φ (De Morgan’s Laws),
AGΣφ ≡ φ∧AXΣAGΣφ, EGΣφ ≡ φ∧EXΣEGΣφ, AFΣφ ≡ φ∨AXΣAFΣφ,
EFΣφ ≡ φ ∨ EXΣEFΣφ, AΣ [φ1Uφ2] ≡ φ2 ∨ (φ1 ∧ AXΣAΣ [φ1Uφ2]),
EΣ [φ1Uφ2] ≡ φ2 ∨ (φ1 ∧ EXΣEΣ [φ1Uφ2]) (Expansion Laws).

Proof is by induction on the size (the number of symbols) of φ for each Σ. Other
well-known general properties of CTL immediately hold true, such as existence of
a sound and complete axiomatisation of CTL. Atomic entailments are decidable
for any APA δ (with a finite number of arguments), since each state is a Dung
argumentation framework.

Example 4. For Elma example (re-listed above in Figure X that marks initially
visible arguments), recall A0 = {a2, a3, a4}. Denote the argumentation by δ. By
stating that (a5∈̇δA1 ∧ EF{A1}Pδ(ad, A1)) ⊃ ¬a2∈̇δA1 is true, we have stated
that if a2 is a member of a reference set A1, and if the same reference set is used
for all transitions, A1 that contains a5 is never admissible.

For Alice example (re-listed above in Figure Y that marks initially visible
arguments), recall A0 = {a1, a2, a3}. Denote the argumentation by δ. By stating
that (AF{A1}AG{A1}Pδ(co, A1)) ⊃ a8∈̇δA1 is true, we have stated that if a set
of arguments A1 is such that, in all branches with A1 as the reference set, it will
be permanently complete from some state on, then it must include a8.

For the example in Figure D (re-listed above), recall A0 = {a1, a2}
within A = {a1, a2, a3, a4}. Assume: Exct({ai1 , . . . , ain

}, A2) ≡ ((ai1 ∈̇δA2) ∧
· · · ∧ (ain

∈̇δA2)) ∧ (¬ain+1∈̇δA2 ∧ · · · ∧ ¬aim
∈̇δA2) where A2 ⊆ A and where

{ai1 , . . . , aim
} ≡ {a1, . . . , a4} ≡ A. Assume also that Σ = 2A.

By Exct({a2, a3, a4}, A4) ∧ Exct({a1, a3, a4}, A5) ∧
AGΣ((Pδ(ad, A4) ⊃ EFΣ(Pδ(ad, A5) ∧ ¬Pδ(ad, A4)))

∧(Pδ(ad, A5) ⊃ EFΣ(Pδ(ad, A4) ∧ ¬Pδ(ad, A5)))),
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We have described that when either of A4 and A5 is admissible in some reachable
state, there is always a branch where the other becomes admissible and that
becomes not admissible in some future state, that is to say, there can be an
infinite number of oscillation among states that admit different sets of arguments.

Straightforwardly:

Proposition 4 (Non-monotonicity of admissibility). Suppose APA
(A,R,Rp, A0, ↪→), and suppose that a set of arguments Ax ⊆ A is admissible
in a reachable state F (A1). It is not necessary that Ax be admissible in a state
F (A2) which satisfies F (A1) ↪→Ay F (A2) for some Ay ⊆ A.

4 Discussion and Related Work

For dynamics of argumentation, adaptation of the AGM-like belief revision [1,28]
to argumentation systems [9,15,16,18,19,34] is popularly studied. In these stud-
ies, the focus is on restricting the class of resulting argumentation frameworks
(post-states) by means of postulates for a given argumentation-framework (pre-
state) and some action (add/remove an argument/attack/argumentation frame-
work). In APA, generation by inducement and modification by conversion are
primarily defined. Removal of an argument, however, is easily emulated through
conversion by setting a1 = a3 in (a1, a2, a3) ∈ Rp. In the literature of belief
revision theory, some consider selective revision [26], where a change to a belief
set takes place if the input that is attempting a change is accepted. While such
screening should be best assumed to have taken place beforehand within belief
revision, a similar idea is critical in argumentation theory where defence of an
argument is foundationally tied to a reference set of arguments. Since any set of
arguments may be chosen to be a reference set, and since which arguments in
the set are visible non-monotonically changes, it is not feasible to assume some
persuasion acts successful and others not in all states.

Coordination of dynamics and statics is somehow under-investigated in the
literature of argumentation theory. A kind for coalition profitability and forma-
bility semantics with what are termed conflict-eliminable sets of arguments [4]
focuses on the interaction between sets of arguments before and after coalition
formation. Doutre et al. show the use of propositional dynamic logic in pro-
gram analysis/verification for encoding Dung theory and addition/removal of
attacks and arguments [20,21]. The logic comes with sequential operations, non-
deterministic operations, tests. In comparison to their logic, our theory is an
extension to Dung theory, which already provides a sound theoretical judgement
for defence against attacks, which we extended also to persuasion acts. As far
as we could fathom, such interaction between attack, persuasion, and defence
has not been primarily studied in the literature. For another, a Dung-based
theory has a certain appeal as a higher-level specification language. Consider
the argumentation in Figure D . APA requires 4 arguments, its subset as the
set of initially visible arguments, 2 inducements and 2 conversions for specifi-
cation of the dynamic argumentation. By contrast, specification of a dynamic
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argumentation in the dynamic logic can be exponentially long as the number
of non-deterministic branches increases; for the same dynamic argumentation
in Figure D , it requires descriptions of all possible reachable states and tran-
sitions among them for the specification. We might take an analogy in chess
here. While the number of branches in a chess game is astronomical, the game
itself is specifiable in a small set of rules. For yet another, the dynamic logic
facilitates dynamic changes to attacks in addition to arguments, which we did
not study in this paper. The reason is mostly due to such consideration bound
to lead to recursive persuasions and attacks (for recursive attacks/supports, see
[3,6,8,14,24]) in our theory, which we believe will be better detailed in a separate
paper for more formal interest.

Argumentation theories that accommodate aspects of persuasion have been
noted across several papers. In [10], argumentation frameworks were augmented
with values that controlled defeat judgement. Compared to their work, per-
suasion acts in APA are stand-alone relations which may be ‘executed’ non-
deterministically and concurrently, may irreversibly modify visible arguments,
and may produce loops. In most of argumentation papers on this topic, per-
suasion or negotiation is treated in a dialogue game [2,11,12,23,25,27,30–33]
where proponent(s) and opponent(s) take turns to modify an argumentation
framework. APA does not assume the turn-based nature. In real-time rhetoric
argumentation, as also frequently seen in social forums, more than one dialogue
or more than one line of persuasive act may be running simultaneously. In this
work, we were more interested in modelling those situations. The various admis-
sibility judgement enabled by (effectively) CTL (and other branching-time logic)
should provide means of describing many types of argumentation queries.

Studies on temporal arguments include [5,7,13,29]. Most of these actually
consider arguments that may be time-dependent. APA frameworks keep argu-
ments abstract, and observe temporal progress through actual execution of per-
suasive acts. We use temporal logic for describing admissibilities rather than
arguments (recall that Pδ(ω,Ax) is a formula on admissibility, not an argu-
ment). In timed argumentation frameworks [13], arguments are available for set
periods of time. Combined with APA, it should become possible to explain how
and why arguments are available for the durations of time in the frameworks,
the explanatory power incidentally having been the strength of argumentation
theory.

5 Conclusion

We have shown a direction for abstract argumentation with dynamic operators
extending Dung’s theory. We set forth important properties and notions, and
showed embedding of state-wise admissibility into CTL for various admissibili-
ties across transitions. Many technical developments are expected to follow. Our
contribution is promising for bringing together knowledge of abstract argumen-
tation in AI and techniques and issues of concurrency in program analysis in a
very near future. Cross-studies in the two domains are highly expected. Study
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in concurrent aspects of argumentation is important for evaluation of opinion
transitions, which influences development of more effective sales approaches and
better marketing in business, and consensus control tactics in politics. Harness-
ing our study with probabilistic methods is likely to form exciting research. For
future work, we plan to: take into account nuances of persuasive acts such as
pseudo-logic, scapegoating, threat, and half-truths [17]; and extend APA with
multi-reference sets.

Acknowledgements. We thank anonymous reviewers for helpful comments. There
was one suggestion concerning terms: to say to “convince” instead of “actively per-
suade” or “convert”. We seriously contemplated the suggested modification, and only
in the end chose to leave the text as it was.
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Abstract. Planning is a classic problem in Artificial Intelligence (AI).
Recently, the need for creating “Explainable AI” has been recognised
and voiced by many researchers. Leveraging on the strength of argumen-
tation, in particular, the Related Admissible semantics for generating
explanations, this work makes an initial step towards “explainable plan-
ning”. We illustrate (1) how plan generation can be equated to construct-
ing acceptable arguments and (2) how explanations for both “planning
solutions” as well as “invalid plans” can be obtained by extracting infor-
mation from an arguing process. We present an argumentation-based
model which takes plans written in a STRIPS-like language as its inputs
and returns Assumption-based Argumentation (ABA) frameworks as its
outputs. The presented plan construction mapping is both sound and
complete in that the planning problem has a solution if and only if its
corresponding ABA framework has a set of Related Admissible argu-
ments with the planning goal as its topic. We use the classic Tower of
Hanoi puzzle as our case study and demonstrate how ABA can be used
to solve this planning puzzle while giving explanations.

1 Introduction

Planning, known as the “reasoning side of acting” [17], has been long stud-
ied in artificial intelligence and seen its applications in many areas form robot
navigation to manufacturing scheduling. Much research has been devoted to
the development of expressive planning languages and efficient planners, e.g.
[18,20]. Recently, we see that the need for developing transparent and explain-
able autonomous intelligent systems has been recognised and voiced by many
researchers [6,21]. At the same time, argumentation [15], a knowledge represen-
tation and modelling technique in rapid development, for reasoning with incom-
plete and inconsistent information with its ability in explaining the results and
processes of computation, has seen its use in many applications.

In this work, we present a study on modelling and solving planning problems
with Assumption-based Argumentation (ABA) [5]. We establish the correspon-
dence between ABA arguments and plans such that a planning problem has a
solution (plan) if and only if the argument representing this solution is accept-
able. On the front of plan explanation, we observe that a plan solution (1) meets

c© Springer Nature Switzerland AG 2018
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all of its goals while (2) satisfying all pre-conditions of its actions. Thus, expla-
nations for “successful” plans are focused on justifying these two criteria; and
explanations for “failed” plans are focused on identifying unmet pre-conditions.
The tasks of generating plans and explanations are unified under the computa-
tion of Related Admissible set of arguments using dispute trees [7].

To make our argumentation-based planning study concrete, we take a ver-
sion of a classic planning puzzle, Tower of Hanoi, as a case study example.
This example, though conceptually simple, exhibits typical planning character-
istics and challenges. Roughly speaking, a plan takes a world containing multiple
objects in the world’s initial state to its goal state via a sequence of actions in
discrete time steps. In each time step, multiple actions, subject to various pre-
conditions, are possible to be performed. A search for suitable actions is needed
to find solutions. By developing argumentation-based approaches to Tower of
Hanoi, we establish the feasibility of using argumentation to plan and reveal the
strength and potential future development for argumentation-based planning.

ABA is selected as the modelling and computation vehicle as it is a ver-
satile structured argumentation framework with many successful applications,
although similar results can be obtained with other structured argumentation
frameworks, including ASPIC+ and DeLP [3]. Roughly, ABA assumptions rep-
resent actions (in the sense that we assume actions are valid unless its pre-
conditions are not met), invalidity of world states (in the sense that we assume
the environment is not in a specific state unless we prove it is in). Acceptable
arguments correspond to planning solutions. We use well-defined argumentation
semantics with sound computation tools to generate plans and explanations.

2 Background

Assumption-based Argumentation (ABA) frameworks are tuples 〈L,R,A, C〉,
where

– 〈L,R〉 is a deductive system, with L the language and R a set of rules of the
form s0 ← s1, . . . , sm(m ≥ 0, si ∈ L);

– A ⊆ L is a (non-empty) set of assumptions;
– C is a total mapping from A into 2L −{{}}, where each s ∈ C(a) is a contrary

of a, for a ∈ A.

Given ρ = s0 ← s1, . . . , sm, s0 is referred to as the head and s1, . . . , sm as the
body.

Arguments are deductions of claims using rules and supported by sets of
assumptions; Attacks are targeted at the assumptions in the support of argu-
ments:

– an argument for (claim) s ∈ L supported by Δ ⊆ A (denoted Δ � s) is a
finite tree with nodes labelled by sentences in L or by τ1, the root labelled
by s, leaves either τ or assumptions in Δ, and non-leaves s′ with, as children,
the elements of the body of some rule ρ with head s′;

1 τ /∈ L represents “true” and stands for the empty body of rules.
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– an argument A = Δ1 � s1 attacks an argument Δ2 � s2 if and only if s1 is a
contrary of some assumption α in Δ2, and we say A targets at α.

A set of arguments As is admissible if and only if As is conflict-free (i.e.
no argument in As attacks any argument in As) and all arguments attacking
some argument in As are counter attacked by arguments in As; an argument is
admissible if and only if it belongs to an admissible set of arguments.

We will use the notion of Related Admissible and Argument Explanation intro-
duced in [8] for some of our results, defined as follows. Given an ABA framework
F = 〈L,R,A, C〉, AGF denotes the set of all arguments in F . Let X,Y ∈ AG

F .
X defends Y if and only if: (1) X = Y ; or (2) ∃Z ∈ AG

F , such that X attacks
Z and Z attacks Y ; or (3) ∃Z ∈ AG

F , such that X defends Z and Z defends Y .
S ⊆ AG

F defends X ∈ AG
F if and only if ∀Y ∈ S: Y defends X. Let s ∈ L and

A,B ∈ AG
F , A defends s if and only if s is the claim of B and A defends B.

A set of arguments As is Related Admissible if and only if: (1) As is admissi-
ble, (2) there exists a topic sentence χ (of As), χ is the claim of some argument
in As, such that for all B ∈ As, B defends χ. As is an explanation of χ.

We will use the abstract dispute trees of [7] to compute explanations for our
plans. An abstract dispute tree for an argument A is a (possibly infinite) tree T a

such that:2

1. every node of T a holds an argument B and is labelled by either proponent
(P) or opponent (O), but not both, denoted by L : B, for L ∈ {P,O}; (a node
labelled by P/O is called a P/O node, respectively);

2. the root of T a is a P node holding A;
3. for every P node N holding an argument B, and for every argument C that

attacks B, there exists a child of N , which is an O node holding C;
4. for every O node N holding an argument B, there exists at most3 one child

of N which is a P node holding an argument which targets some assumption
α in the support of B; if N has a child attacking α, then α is said to be the
culprit in B;

5. there are no other nodes in T a except those given by 1–4 above.

The set of all assumptions in (the support of arguments held by) the P nodes
in T a is called the defence set of T a. In an abstract dispute tree T a, a P node
N is defeated if and only if N is the root of a sub-tree in T a such that the
defence set of the sub-tree is not admissible. A winning attacker N ′ of N is a
child node of N such that either (1) there is an O leaf node in the tree rooted at
N ′ or (2) there is an argument held at both a P node in the tree rooted at N ′

and an O node in T a. Abstract dispute trees can be used to compute (related)
admissibility semantics:
2 Here, a stands for ‘abstract’. Also, ‘proponent’ and ‘opponent’ should be seen as
roles/fictitious participants in a debate rather than actual agents.

3 In the original definition of abstract dispute tree [7], every O node is required to have
exactly one child. We incorporate this requirement into the definition of admissible
dispute tree given later, so that our notion of admissible abstract dispute tree and
the admissible abstract dispute trees of [7] coincide.
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– Let an abstract dispute tree T a be admissible if and only if each O node has
exactly one child and no culprit in the argument of an O node in T a belongs to
the defence set of T a. If a dispute tree is not admissible, it is non-admissible.

– The defence set of an admissible abstract dispute tree is admissible (Theorem
5.1 in [7]), and thus the root node of an admissible dispute tree is admissible.

– The defence set of an admissible abstract dispute tree is Related Admissible
(Theorem 1 in [8]) with the claim of the argument held by the root of the
tree being the topic sentence (Theorem 5 in [8]).

3 Planning Preliminaries

We consider an instance of the standard, also the most widely used, planning
representation, STRIPS, as given in [17]. A planning problem P is a tuple P =
(Σ, s0, Sg); Σ = (S,A, γ) is the planning domain, S the set of states, A the
set of actions, γ the deterministic transition function, s0 the initial state, and
Sg the set of goal states. Each state in S is described by a set of predicates
and each predicate is either a flexible relation or a rigid relation. The transition
function γ is specified through a set of planning operators, each representing an
action. A planning operator is given by name, precond and effects, where name
is syntactically a predicate, precond and effects are sets of predicates, describing
the pre-conditions and the effects of the action, respectively. A plan is a sequence
of actions; and a solution to a planning problem is a plan from the initial state
to the goal state.

We use the following classic Tower of Hanoi example to illustrate.

Example 1. As in a classic Tower of Hanoi game, we have three rods, r1, r2, r3.
To simplify the example, we use only two disks d1 and d2. The problem states
S is described by two flexible relations clear and on, as well as a rigid relation
smaller. The initial and the goal states are shown in Fig. 1. Specifically, the
initial state s0 is described with the following predicates:

clear(r2) clear(r3) clear(d1) on(d1, d2)
on(d2, r1) smaller(d1, r1) smaller(d1, r2) smaller(d1, r3)
smaller(d2, r1) smaller(d2, r2) smaller(d2, r3) smaller(d1, d2)

The goal state sg is described by: on(d1, d2) on(d2, r3).

Fig. 1. A Tower of Hanoi game with two discs d1 and d2 and three rods r1, r2 and r3.
The initial state is shown on the left hand side and the goal state is shown on the right
hand side.
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There is a single planning operator:
move(D, A, B)
precond : smaller(D, B), on(D, A), clear(D), clear(B)
effects : clear(A), on(D, B),¬on(D, A),¬clear(B)

The action sequence (move(d1, r2), move(d2, r3), move(d1, d2)) is a solution.

To model planning with argumentation, we take the bounded planning app-
roach as in SAT based planners [17]. Namely, we focus on finding plans of some
known length n for some fixed n. Each i, 0 ≤ i ≤ n is a step of the planning
problem, and for each step k there is one and only one action taking place.4

Specifically,

– we denote each predicate with k variables representing a flexible relation as
a new predicate with k + 1 variables, where the last variable is the step;

– we leave all predicates representing rigid relations unchanged;
– for each action taking place at step k, its pre-conditions are composed of predi-

cates representing rigid relations and predicates representing flexible relations
with their last variables k; effects of this action are composed of predicates
representing flexible relations with their last variables k + 1.

Effectively, a bounded planning problem can be described with a tuple
〈A, s0, sg,F,R,K〉, a set of actions A, the initial state s0, the goal state sg, a
set of flexible relation F, a set of rigid relation R and the step bound K. The
goal state is a set of goals denoted by flexible relations with their last variable
(the step variable) specified as K.

Given a plan (m1, . . . ,mn) in a bounded planning problem, we say that a
flexible relation FR(A, K)5 holds at step k if and only if either (1) FR(A, 0) ∈ s0,
or (2) FR(A, i) in the effects of some action mi, i ≤ k and ¬FR(A, j) is not in the
effects of any action mj for i < j ≤ k.

For each action m in a plan P , we use S(m) to denote the step of action m
in P .

Example 2. (Example 1 continued.) With step introduced, the three predicates
are:
clear(X, K), on(X, Y, K), smaller(X, Y).
The planning operator is:

move(D, A, B, K)
precond : smaller(D, B), on(D, A, K), clear(D, K), clear(B, K)
effects : clear(A, K + 1), on(D, B, K + 1),¬on(D, A, K + 1),¬clear(B, K + 1)

Suppose that K = 3, a plan taking the initial state
clear(r2, 0) clear(r3, 0) clear(d1, 0) on(d1, d2, 0) on(d2, d1, 0)

to the goal state
4 This is a standard approach in planning as it allows the complete specification of the
planning search space. Techniques have been developed to estimate the step bound,
see e.g. [17].

5 We use the convention that the over-line on A denotes that A represents a list of
variables of unspecified length. Variables without over-lines are “normal” variables.
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on(d1, d2, 3) on(d2, d1, 3)
is the sequence (move(d1, d2, r2, 0), move(d2, r1, r3, 1), move(d1, r2, d2, 2)).
Clearly, this plan is a solution to this planning problem.

4 Plan Explanations

Given a bounded planning problem introduced in the previous section, we make
the following observation:
A plan is a solution if the following two conditions hold:

C1. All pre-conditions hold for all actions in the plan.
C2. All goals in the goal state hold at the end of plan.

Thus, to “explain” why a plan is a solution, we want to show that both (C1)
and (C2) are satisfied in the sense that an “explanation” should justify that all
pre-conditions and goals are met at the right steps, formally:

Definition 1. Given a bounded planing problem P with a solution P . An expla-
nation for P being a solution to P is the set S = sg ∪{C|C is a precondition for
an action in P} such that every predicate in S holds at its respective step.

We illustrate Definition 1 with the following example.

Example 3 (Example 2 continued). To simplify the illustration, we let the step
bound K = 2 and the goal state sg = {on(d1, r2, 2), on(d2, r3, 2)}. To see that
(move(d1, r2, 0), move(d2, r3, 1)) is a solution, we observe that6:

– all predicates in sg hold at step 2; and
– all pre-conditions hold for mv(d1, d2, r2, 0) at step 0:
on(d1, d2, 0), sm(d1, r2), cl(d1, 0), cl(r2, 0)

– all pre-conditions hold for mv(d2, r1, r3, 1) at step 1:
on(d2, d1, 1), sm(d2, r3), cl(d2, 1), cl(r3, 1)

Definition 1 specifies explanations for solutions to planning problems. On
the other hand, to explain “why a plan fails to be a solution”, we introduce
“invalidity” of plans by identifying actions not meeting their pre-conditions or
occurred at the same step as other actions. These invalid actions “explain” the
invalidity of a plan.

Definition 2. Let P = (m1, . . . ,mn) be a plan. An action mi is invalid in P if
either one of the following two conditions holds.

1. There exists a pre-condition C of mi such that C does not hold at step S(mi).
In this case, C is an explanation for the invalidity of mi.

2. There exists an action mj in P , j < i, such that S(mi) = S(mj). In this case
mj is an explanation for the invalidity of mi.

If a plan P contains no invalid action, then P is valid; otherwise, P is invalid.
6 mv, cl and sm are short-hands for move, clear and smaller, respectively.
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We illustrate Definition 2 with the following example.

Example 4 (Example 2 continued.) With the Tower of Hanoi game as spec-
ified, let the step bound K = 2. Given a plan P = (move(d1, d2, r3, 0),
move(d2, r1, d1, 1)), the action move(d2, r1, d1, 1) is invalid as small(d2, d1),
a pre-condition of move(d2, r1, d1, 1), does not hold at step 1. (Note that
since small(A, B) is a rigid relation, small(d2, d1) never holds.) We thus have
small(d2, d1) as an explanation for move(d2, r1, d1, 1). Since P contains an invalid
action, P is invalid.

For P ′ = (move(d1, d2, r2, 0), move(d1, d2, r3, 0)), the action move(d1, d2, r3, 0)
is invalid, and its explanation is move(d1, d2, r2, 0). This is easy to see as both
actions occur at step 0. As previously, P ′ is invalid.

5 Planning with ABA

Thus far, we have reviewed bounded planning problems and presented several
definitions of explanations. We show how ABA can be used to solve bounded
planning problems in this section and how explanations can be extracted from an
arguing process in the next section. To model planning with ABA, the main task
is to represent bounded planning problems with ABA frameworks. Formally,

Definition 3. Given a bounded planning problem P = 〈A, s0, sg,F,R,K〉, let
the following denote a generic action in A,

act(A, K)
precond : PreC1(C1, K), . . . , PreCw(Cw, K)
effects : Ef1(E1, K + 1), . . . , Efm(Em, K + 1),

then the ABA framework corresponding to P is F = 〈L,R,A, C〉, in which7

• R is constructed as follows.

1. Let sg = {g1, . . . , gn}, insert the rule: goal ← g1, . . . , gn.
2. For each action in A, insert rules:

aE(act, A, K + 1) ← act(A, K); hasAct(K) ← act(A, K).
Ef1(E1, K) ← aE(act, A, K); . . . ; Efm(Em, K) ← aE(act, A, K).

3. For each flexible relation FR(A, K) in F, insert a rule:
FR(A, K + 1) ← FR(A, K), hasAct(K), df(FR, A, K + 1).

4. For each rigid relation RR(A) in R, insert the rule: RR(A) ←.
5. Let s0 = {P1(I0, 0), . . . , Pn(In, 0)}, insert rules P1(I0, 0) ←; . . . ;

Pn(In, 0) ←.

• A is constructed as follows.

7 When defining ABA frameworks, we omit to indicate the language component, as
this can be easily inferred from the other components (being the set of all sentences
occurring in rules, assumptions, and contraries). Also, we use rule schemata to sim-
plify the notation. Each rule schema represents the set of grounded rules.
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1. For each action in A, insert the following assumptions:
act(A, K), not PreC1(C1, K), . . . , not PreCw(Cw, K)

2. For each flexible relation FR(A, K) in F, insert df(FR, A, K) to A.

• C is such that:

1. For each action let act′ be the name of an action in A, then
– C(act(A, K)) = {act′(B, K) |act′ = act or B = A}∪

{not PreC1(C1, K), . . . , not PreCw(Cw, K)};
– for i = 1, . . . , w, C(not PreCi(Ci, K)) = {PreCi(Ci, K)}.

2. C(df(FR, A, K)) = {¬FR(A, K)}.

In Definition 3, reaching the goal state sg is modelled with the rule

goal ← g1, . . . , gn

such that to reach the goal state, we need to prove each of its goals in the goal
set. Then, for each action act(A, K), taking a list of variables A at step K, we use
the rule

aE(act, A, K + 1) ← act(A, K);

to describe that effects of act can be realised by performing act. Note that act
has step variable K whereas aE has step variable K + 1, indicating the advance
in time. Rule

hasAct(K) ← act(A, K)

states that there is an action taking place at step K if there is an action act
at K. Rules

Ef1(E1, K) ← aE(act, A, K); . . . ; Efm(Em, K) ← aE(act, A, K)

describe each and every predicate listed as an effect of act can be derived from
aE, at the same time step as aE. Rule

FR(A, K + 1) ← FR(A, K), hasAct(K), df(FR, A, K + 1)

describes that for every predicate FR describing a flexible relation, it is the case
that if FR(A) holds at step K, and there is some action taking place at step K, then
it is assumed that, FR(A) holds at step K + 1. The assumption df(FR, A, K + 1)
states that, by default, FR can be carried forward from K to K + 1. hasAct(K) is
introduced in the body of the rule to enforce that at least one action has taken
place during this step. Rule

RR(A) ←

specifies that all rigid relations RR hold at all steps. Rules

P1(I0, 0) ←; . . . ; Pn(In, 0) ←.

specify that all predicates in the initial state s0 hold at step 0.
Assumptions and contraries are such that:
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– all actions are assumptions with contraries being either
1. any other action at the same step or
2. failure of meeting pre-conditions of the action.

We enforce that any two different actions are in conflict at the same step;
and if any pre-condition does not meet for an action, then the action cannot
be performed.

– C(not PreCi(Ci, K)) = {PreCi(Ci, K)} specifies that the contrary of not meet-
ing a pre-condition is meeting it.

– C(df(FR, A, K)) = {¬FR(A, K)} specifies that the assumption df(FR, A, K) does
not hold if it can be shown explicitly that FR(A, K) does not hold, at step K.

Example 5 (Example 2 continued.) Let the step bound K = 3. The ABA frame-
work corresponding to this planning problem is 〈L,R,A, C〉, given as follows.8

– R is composed of the following rules.
goal ← on(d1, d2, 3), on(d2, r3, 3);
hA(K) ← mv(D, A, B, K); aE(mv, D, A, B, K) ← mv(D, A, B, K);
cl(A, K + 1) ← aE(mv, D, A, B, K); ¬cl(B, K + 1) ← aE(mv, D, A, B, K);
on(D, B, K + 1) ← aE(mv, D, A, B, K); ¬on(D, A, K + 1) ← aE(mv, D, A, B, K);
cl(A, K + 1) ← cl(A, K), hA(K), df(cl, A, K + 1); sm(d1, d2) ←;
on(D, A, K + 1) ← on(D, A, K), hA(K), df(on, D, F, K + 1); sm(d2, r3) ←;
sm(d1, r1) ←; sm(d1, r2) ←; sm(d1, r3) ←; sm(d2, r1) ←; sm(d2, r2) ←;
cl(r2, 0) ←; cl(r3, 0) ←; cl(d1, 0) ←; on(d1, d2, 0) ←; on(d2, r1, 0) ←;

– A is composed of the following assumptions.
mv(D, A, B, K),df(on, D, F, K),df(cl, A, K),not on(D, F, K),not cl(A, K)

– C is such that:
C(mv(D, A, B, K)) = {not sm(D, B), not on(D, A, K), not cl(D, K), not cl(B, K)}

∪ {mv(D′, A′, B′, K)|mv(D′, A′, B′, K) = mv(D, A, B, K)}

C(df(on, D, F, K)) = {¬on(D, F, K)}C(not on(D, F, K)) = {on(D, F, K)}
C(df(cl, A, K)) = {¬cl(A, K)}C(not cl(A, K)) = {cl(A, K)}

Now we are ready to present our main results on the correspondence between
planning problems and ABA frameworks, with the next two theorems.

Theorem 1. Given a bounded planning problem P with a solution S =
(m1, . . . ,mn), let F be the ABA framework corresponding to P. Then, there
is a related admissible set of arguments RF in F with its topic sentence goal
such that mi in S are assumptions supporting arguments in RF .

Proof. (Sketch.) We need to show that (1) RF is admissible, (2) all arguments
in RF defend goal. Note that each mi in S is of the form act(A, i). To show
(1), we start by observing that since S is a solution, there is an argument A =
{act(An, n), . . .} � goal in F . Arguments attacking A are in the following three
forms:
8 hA is shorthand for hasAct.
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1. {acti(A′
i, n)} � acti(A′

i, n), targeting at the assumption act(A, n), represent-
ing alternative moves one can make at step n,

2. {not PreCi(Ci, n)} � not PreCi(Ci, n), also targeting at act(A, n), represent-
ing challenges to pre-conditions of the action at n,

3. Δ′ � ¬FR(A, n), targeting at assumptions df(FR, A, n), representing challenges
to flexible relations that they may not hold from one step to the next.

Attacking arguments in form (1) can be counterattacked by arguments
{act(A, n)} � act(A, n) in RF . This can be read as, although it is possible to make
some other actions at step n, we can always choose to make action act. Attacking
arguments in form (2) can be counterattacked by arguments Δ∗ � PreCi(Ci, n)
in RF . Since S is a solution, all pre-conditions at each step must be met. This
can be read as, each action at step n meets all of its pre-conditions. Attacking
arguments in form (3), if they exist, indicate that there is some other plan S′

such that ¬FR(A, n) is in the goal state of S′ and S′ is not part of S. Since S is a
solution, all pre-conditions in all of its actions must hold, for any S′ composed by
actions act′(B, L) ∈ Δ′ differ from the ones in S (up to step n), act′(B, L) can be
targeted by argument {act(A, L)} � act(A, L) in RF for act(A, L) in S. This can
be read as, although there are some other plans S′ such that S′ invalidates some
pre-condition of an action in S, S withstands such attacks as all of its actions
meet their pre-conditions. With this reasoning, we can see that all arguments in
RF defend goal, thus meeting the second condition.

Theorem 2. Given a bounded planning problem P with its corresponding ABA
framework F , let RA be a related admissible set of arguments with topic sentence
goal, S = {act(A, K)|act(A, K) is the name of an action in A and act(A, K) is an
assumption of an argument in RA}, then the sequence (m1, . . . ,mn), for which
{m1, . . . ,mn} = S and S(mi) < S(mj) if and only if i < j is a solution to P.

Proof. (Sketch.) From Definition 3 we can see that RF is related admissible only
when there is a sequence of actions taking the initial state to the goal state. Thus,
all actions in assumptions defending goal consist a solution.

Theorems 1 and 2 sanction that bounded planning problems can be mod-
elled with ABA frameworks such that solutions correspond to related admissible
arguments. We illustrate these results with the following example.

Example 6 (Example 5 continued.) An argument for goal is A = Δ � goal with
Δ = {mv(d1, r2, d2, 2), mv(d2, r1, r3, 1), df(on, d2, r3, 3)} (see Fig. 2). Arguments
targeting mv(d1, r2, d2, 2) include

B = {mv(d1, r2, r1, 2)} � mv(d1, r2, r1, 2) C = {mv(d2, r3, r1, 2)} � mv(d2, r3, r1, 2)
D = {not on(d1, r2, 2)} � not on(d1, r2, 2) E = {not cl(d1, 2)} � not cl(d1, 2)
F = {not cl(d2, 2)} � not cl(d2, 2) G = {not sm(d1, d2)} � not sm(d1, d2)
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Arguments B and C can be attacked by H = {mv(d1, r2, d2, 2)} �
mv(d1, r2, d2, 2).
Arguments D can be attacked by (Fig. 3)
I = {mv(d1, d2, r2, 0), mv(d2, r1, r3, 1), df(on, d1, r2, 2)} � on(d1, r2, 2)
Arguments E can be attacked by (Fig. 4)
J = {mv(d1, d2, r2, 0), mv(d2, r1, r3, 1), df(cl, d1, 2), df(cl, d1, 1)} � cl(d1, 2)
Arguments F can be attacked by (Fig. 5)
K = {mv(d1, d2, r2, 0), mv(d2, r1, r3, 1), df(cl, d2, 2)} � cl(d2, 2)
Arguments G can be attacked by L = {} � sm(d1, d2).
We can see that arguments H, I, J,K and L all defend A. Arguments targeting
mv(d2, r1, r3, 1) and df(on, d2, r3, 3) can be counter-attacked similarly. H,J,K
can also be defended with arguments in similar patterns. Overall, A is in a
related admissible set with its topic goal and assumptions in Δ form a solution
to the planning problem.

Fig. 2. An argument for goal in Example 6.

By Theorem 5 of [8], we know that assumptions in arguments held by pro-
ponent nodes of an admissible dispute tree are related admissible with the claim
of the argument held by the root of the tree as the topic sentence. Thus, given
Theorem 2, the following corollary holds.

Corollary 1. Given a bounded planing problem P = 〈A, s0, sg,F,R,K〉 with
F the ABA framework corresponding to P, if there is an admissible abstract
dispute tree T a for goal, then {act(A, K)|act(A, K) is a name of action in A and
P : {act(A, K), . . .} � is in T a} is a solution to P.9

Proof. Follows directly from Theorem 5 of [8] and Theorem 2.

Corollary 1 sanctions that abstract dispute trees can be used to compute
solutions for bounded planning problems. This is a useful result as it allows us
to use a semantics computation tool to compute plan solutions.

9 Throughout, stands for an anonymous variable.
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Fig. 3. An argument for on(d1, r2, 2) in Example 6.

Fig. 4. An argument for cl(d1, 2) in Example 6.

Fig. 5. An argument for cl(r2, 2) in Example 6.

6 Extracting Explanations from ABA

In the previous section, we have shown how ABA can be used to compute solu-
tions for bounded planning problems by identifying a related admissible set
of arguments for the topic goal. Corollary 1 establishes the connection between
solutions and abstract dispute trees. In this section, we focus on extracting expla-
nations from dispute trees.

Proposition 1. Given a bounded planning problem P with corresponding ABA
framework F , let E be an explanation for � goal in F . Then, S = sg ∪ {s| �
s ∈ E} contains an explanation for a plan P being a solution to P, where P
consists of actions represented by action assumptions supporting arguments in
E.

Proof. (Sketch.) By Theorem 2, and the definition of explanations for argument
in ABA frameworks (see the Background section), P is a solution to P. Since P
is a solution, all pre-conditions of all actions in P must hold at their respective
steps. By Definition 3, each action in the plan is mapped to an assumption with
contraries being assumptions not PreCi for all of its pre-conditions. Since the
contrary of not PreCi is PreCi, there must be an admissible argument for each
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Fig. 6. An argument for goal in Example 7.

PreCi. Thus, S by containing all goals in sg and all pre-conditions of all actions,
contains an explanation for P , by Definition 1.

Proposition 1 sanctions that, given a bounded planning problem P with its
corresponding ABA framework F , by computing an explanation for the argument
� goal, we not only compute a solution to P, but also an explanation for this

solution. We illustrate Proposition 1 with the following example.

Example 7 (Example 3 continued.) The ABA framework corresponding to this
bounded planning problem (with K = 2, sg = {on(d1, r2, 2), on(d2, r3, 2)}) is the
ABA framework shown in Example 5 with the rule

goal ← on(d1, d2, 3), on(d2, r3, 3)

replaced by

goal ← on(d1, r2, 2), on(d2, r3, 2)

and everything else unaltered. The argument A for goal is shown in Fig. 6. Argu-
ments attacking A are summarised in Table 1. Argument B targets at assumption
df(on, d1, r2, 2). Arguments C1–C5 target at assumption mv(d1, d2, r2, 0). Argu-
ments D1–D5 target at assumption mv(d2, r1, r3, 1). Note that B,C1 and D1
represent sets of arguments with A unified to different ris and djs.

Arguments attacking B,C1–C5 and D1–D5 are shown in Table 2. Here, X ′

attack X, for X = B, C1–C5, D1–D5. Arguments attacking B′ and D1′ are D1–
D5. Arguments attacking C1′ are C1–C5. Arguments attacking D2′ are: C1–C5
and E = {mv(d2, r1, A, 0)} � ¬on(d2, r1, 1). Arguments attacking D3′ are: C1–
C5 and F = {mv(A, B, d2, 0)} � ¬cl(d2, 1). Arguments attacking D4′ are: C1–C5
and G = {mv(A, B, d3, 0)} � ¬cl(r3, 1). Argument C1′ attacks E, F and G. In
summary, we can see that the related admissible set of arguments, which is the
defence set of the tree, together with the goal set, contains explanations for the
plan being a solution.

Proposition 2. Given a bounded planning problem P with corresponding ABA
framework F , let P = (m1, . . . ,mn) be an invalid plan. If there is a non-
admissible dispute tree T a for � goal such that m1, . . . ,mn support arguments
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Table 1. Arguments attacking A in Example 7.

Table 2. Arguments attacking B, C1–C5 and D1–D5 in Example 7.

held by P nodes in T a. Then, if a node N = P : {mi, . . .} � is defeated and
A = {not PreCi(Ci, K)} � not PreCi(Ci, K) held by N ’s winning attacker, then
PreCi(Ci, K) is in an explanation for the invalidity of P .

Proof (Sketch.) By Definition 2, to show that PreCi(Ci, K) is in an explanation for
the invalidity of P is to show that PreCi(Ci, K) is not held at K. This is achieved
by showing that the argument A held in T a. Since A is held by a winning attacker
of N , in T a, meaning that it cannot be disapproved, PreCi(Ci, K) cannot be held.
Thus it is in an explanation for the invalidity of P .

Proposition 2 sanctions that to identify explanations for invalid actions, we
can look at dispute trees and find non-admissible sub-trees and their successful
attackers. We illustrate Proposition 2 with the following example.

Example 8 (Example 4 continued.) Let the goal state sg = {on(d1, r3, 2),
on(d2, d1, 2)}. An argument for goal is A = Δ � goal with Δ =
{mv(d1, d2, r3, 0), mv(d2, r1, d1, 1), df(on, d1, r3, 2)}. Arguments targeting at
mv(d2, r1, d1, 1) include the following:

B = {mv(d2, r1, r2, 1)} � mv(d2, r1, r2, 1),
C = {not on(d2, r1, 1)} � not on(d2, r1, 1),
D = {not cl(d1, 1)} � not cl(d1, 1),
E = {not cl(d2, 1)} � not cl(d2, 1),
F = {not sm(d2, d1)} � not sm(d2, d1).
G = {mv(d2, r1, d1, 1)} � {mv(d2, r1, d1, 1)} attacks B.
H = {mv(d1, d2, r3, 0), df(on, d2, r1, 1)} � on(d2, r1, 1) attacks C.
I = {df(cl, d1, 1), mv(d1, d2, r3, 0)} � cl(d1, 1) attacks D.
J = {mv(d1, d2, r3, 0)} � cl(d2, 1) attacks E.



358 X. Fan

Fig. 7. An illustration of a fraction of the non-admissible dispute tree for Δ � goal

with Δ = {mv(d1, d2, r3, 0), mv(d2, r1, d1, 1), df(on, d1, r3, 2)} in Example 8. Since O : F
has no P child, O : F is a winning attacker.

However, no argument can attack F as there is no argument for sm(d2, d1). Thus,
O : F is a winning attacker and P : A is defeated. A fraction of the abstract
dispute tree for A is shown in Fig. 7. Thus, we conclude that the unmet pre-
condition sm(d2, d1) is in an explanation for the invalidity of the plan.

For simplicity, we only present results for plan invalidity due to unmet pre-
conditions. In general, however, by Definition 2, a plan is invalid if there are
multiple actions take place at the same time. It is easy to see that such inva-
lidity can be easily captured in dispute trees as the contrary of an assumption
representing an action includes all other actions taking place at the same step.
Therefore, if a defeated node labelled by an argument supported by an action
assumption and the winning attacker holds an argument with an action as its
claim, then the action in the winning attacker is in an explanation.

7 Related Work

Very recently, [10] presented a study on “Explainable Planing”. Not connected to
argumentation, the authors proposed six questions to be answered by “explain-
able planners”. That paper focuses on high level discussion with no theoretical
result. The two forms of explanations presented in this work can be viewed as
(at least partial) answers to three of their questions: Q1: Why did you do that?
(because such moves are valid), Q2 Why didn’t you do something else? (because
“something else” is not valid) and Q4: Why can’t you do that? (because certain
precondition does not meet), as our explanations justify actions in plans and
identify invalid ones.

Argumentation has seen its use in planning since 1980s (see e.g. [12,14]), in
the context of urban planning. Formal arguments are constructed to evaluate
the pros and cons of urban plans. Our work differs from theirs as we view plans
as sequences of actions and argumentation is used to generate these sequences.

Connection between planning and defeasible argumentation has been made
in [11] with an application in [9]. Their works are based on DeLP where argu-
ments are in the level of actions and a tailored algorithm has been developed
for searching the suitable plans. Our work differs from theirs as we use ABA
arguments to represent plans with existing argumentation semantics computing
techniques so that explanations can be obtained along the course.
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Conflict resolution in goal selection and planning has been studied by
researchers in argumentation [1,13]. Our work differs from theirs as, in addition
to using entirely different argumentation languages, we use argumentation as a
modelling tool for solving planning problems and derive explanations from our
solutions; whereas they use argumentation to model agent actions and desires
so that more suitable actions can be selected.

In multi-agent negotiation, there are works on connecting argumentation with
the classic planners [16,19]. There, argumentation-based negotiation is viewed
as a planning problem with negotiation utterances being agents’ actions. Under
such modelling, negotiation is then solved with existing planner, e.g., HTN.
Similarly, argumentation-based persuasion can be viewed as a planning problem
and solved with existing planning techniques [4]. Our work is orthogonal to those
as we use argumentation to plan instead of using planner to argue.

Agent planning has been studied in [2]. There, agents’ beliefs and actions
are analysed in a single argumentation framework, such that plans satisfying
agents’ desires can be directly generated. Our work differs from theirs as, instead
of studying BDI agent planning in a specifically defined language, we present a
generic representation for planning problems represented in STRIPS. Moreover,
by explicity representing planning steps, our approach reasons with temporal
information, which is not supported in [2]. Thus, a better generalisation and
improved applicability have been achieved.

8 Conclusion

Empowering AI techniques with the ability of generating explanations is central
to bringing trust to autonomous systems. In this paper, we have looked at how
to use ABA to model planning problems and to generate explanations. The
aim is to develop planning techniques which not only produce solutions, but
also generate explanations for solutions (and non-solutions). Taking a generic
planning problem represented in a standard STRIPS-like language, our model
generates an “ABA counterpart” of the problem. The correspondence is realised
such that plan solutions correspond to Related Admissible arguments with the
topic being the goal state. The proposed plan construction method is both sound
and complete in the sense that a solution exists if and only if the corresponding
Related Admissible arguments exist.

To generate planning explanations, we again rely on the Related Admissible
semantics and its computation means, dispute trees. We observe that a plan
is a solution if and only if all goals are met at the end of the plan and there
is no unmet pre-condition in any action in the plan. Related Admissible set
of arguments computed with dispute trees contain justifications for all actions
meeting their pre-conditions. Moreover, by looking at “defeated nodes” in non-
admissible dispute trees, we identify unmet pre-conditions, which explain why
some plans are not solutions.

In future, we will further explore argumentation-based explanations in plan-
ning. Namely, we would like to study explanations for questions such as “Why
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plan A is better than plan B?”, “Why certain goal can never be reached by any
plan?”. We will also study argumentation-based dialectical explanation, which
can be used in multi-agent planning. Moreover, we will look at mapping other
planning languages with argumentation, e.g. support partial order planning and
conditional-effects of actions.
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Abstract. Agent planning has attracted much research attention in
recent years. In argumentation, agent planning has been studied by sev-
eral researchers with significant contributions made in modelling agent
goals, desires and actions. However, there is little work that connects
argumentation semantics, plan construction and temporal information
in a unified framework. In this work, we use a version of the classic
blocks world planning problem as our case study and demonstrate how
Assumption-based Argumentation can be used to tackle planning prob-
lems with explicit time step information. In our approach, the process of
plan construction is equated to constructing acceptable arguments (with
respect to an argumentation semantics) with temporal aspects taken into
consideration.

1 Introduction

Agent planning has been studied with argumentation-based approaches by sev-
eral researchers. Notably, Amgoud and her colleagues have studied joining delib-
eration and means-ends reasoning in a single unified argumentation system such
that “[the] system combines option generation and checking the feasibility of
options” [1,2]. In their work, argumentation has been used to identify agent
intentions in a way that the resulting intentions satisfy the argumentation ratio-
nality postulates [2]. However, in their work, temporal reasoning has not been
considered as agent goals are fulfilled by sets of actions instantaneously rather
than through a sequence of actions over a course of plan execution. On the
other hand, Garćıa et al. [4] have studied incorporating defeasible information
in agent planning, as originally proposed by Pollock [6]. In Garćıa’s work, argu-
mentation has been introduced to model defeasibility in planning [4]. Their work
is more inline with classic planning approaches (see e.g. [5]) in that their plans
are sequences of actions with effects. Although temporal information has been
considered in [4] with arguments modelling defeasibility, they have used a specif-
ically designed search process to identify suitable plans. Thus their plans are not
confirmed to argumentation rationality postulates in the same way as [2].

In this work, we study using Assumption-based Argumentation (ABA) [3]
to solve planning problems. In the same spirit as [4], we consider plans consist
sequences of actions and performing an action results changes to the “world
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 362–370, 2018.
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state”. Thus, the execution of a plan transfers the world from some “initial sit-
uation” to a “final situation”. The designed transformation is carried out argu-
mentatively so argumentation semantics can be used to validate plans. Unlike
[4], where a dedicated algorithm was introduced to search for plan solutions, we
equate plan solution construction with acceptable argument computation. In our
work, actions are modelled with assumptions and the contrary of an assumption
describe conditions for which an action cannot be performed; the efforts of an
action describe changes to the world state, updating available actions. Overall,
our work can be viewed as an illustration of an ABA instantiation of Pollock’s
idea on defeasible planning: “It is argued that the planning must instead be
done defeasibly, making the default assumption that there are no threats and
then modifying plans as threats are discovered” [6].

2 Background

Assumption-based Argumentation (ABA) frameworks are tuples 〈L,R,A, C〉,
– 〈L,R〉 is a deductive system, with L the language and R a set of rules of the

form s0 ← s1, . . . , sm(m ≥ 0, si ∈ L);
– A ⊆ L is a (non-empty) set of assumptions;
– C is a total mapping from A into 2L −{{}}, where each s ∈ C(a) is a contrary

of a, for a ∈ A.

Given a rule ρ = s0 ← s1, . . . , sm, s0 is referred to as the head and s1, . . . , sm as
the body. A rule with an empty body is referred to as a fact.

Arguments are deductions of claims using rules and supported by sets of
assumptions; Attacks are targeted at the assumptions in the support of argu-
ments:

– an argument for (claim) s ∈ L supported by Δ ⊆ A (denoted Δ � s) is a
finite tree with nodes labelled by sentences in L or by τ1, the root labelled
by s, leaves either τ or assumptions in Δ, and non-leaves s′ with, as children,
the elements of the body of some rule ρ with head s′;

– an argument A = Δ1 � s1 attacks an argument Δ2 � s2 iff s1 is a contrary
of some assumption α in Δ2, and we say A targets at α.

A set of arguments As is admissible iff As is conflict-free (i.e. no argument
in As attacks any argument in As) and all arguments attacking some argument
in As are counter attacked by arguments in As; an argument is admissible iff it
belongs to an admissible set of arguments.

3 Planning in Blocks World

A blocks world (Fig. 1) contains a set of “blocks” of different sizes and a set of
“locations” where each block is at some location, and each location could have a
1 τ /∈ L represents “true” and stands for the empty body of rules.
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“block pile” such that if two blocks r, r′ are in a pile then r is placed higher than
r′, iff r is smaller than r′. The initial and final situations are two placements
of blocks. Two types of actions are possible to a block, (1) moving it from one
location to another while satisfying the “smaller-block-placed-higher” constraint
and (2) no-operation, i.e., not to move it. A plan is a sequence of actions which
transfers the initial situation to the final one. Formally, we use the following four
definitions.

Fig. 1. A blocks world with two blocks r1 and r2 and three locations a, b and c. The
initial situation is shown on the left-hand side and the final situation is shown on the
right-hand side.

Definition 1. A blocks world is a tuple 〈R, L, <〉 in which R is a set of blocks,
L is a set of locations and <⊆ R × R is a total order such that for r1, r2 ∈ R,
r1 < r2 iff r1 is smaller than r2.

Definition 2. A blocks world planning problem is a tuple 〈W, T, S0, Sn〉 where

– W = 〈R, L, <〉 is a blocks world,
– T = 〈t0, . . . , tn〉 is a time step sequence,
– a situation Si (for a time step ti in T) is a set {at(r1, l1, ti), . . . , at(rn, lm, ti)}

specifying the location lj ∈ L for each block rk ∈ R. For a situation Si, there
is no rk ∈ R such that rk is not specified in Si. Moreover,
• S0 = {at(r1, l1, t0), . . . , at(rn, lm, t0)} is the initial situation, and
• Sn = {at(r1, l′1, tn), . . . , at(rn, l′m, tn)} is the final situation.

Definition 3. In a blocks world 〈R, L, <〉, the two actions are: (1)
move(X,L,L′, T ), move X ∈ R from L ∈ L to L′ ∈ L at time step T , and
(2) noOp(X,L, T ), do nothing to X ∈ R sitting at L ∈ L at time T .

Given Si = {at(r1, l1, ti), . . . , at(rn, li, ti)}, then apply move(ri, l, l′, ti) to
Si yield (Si \ {at(ri, l, ti)}) ∪ {at(ri, l′, ti+1)}; apply noOp(ri, l, ti) to Si yield
(Si \ {at(ri, l, ti)}) ∪ {at(ri, l, ti+1)}.

move(X,L,L′, T ) is valid iff all of the following conditions hold (at time T ):

(C1) X sits at L;
(C2) there is no X ′ ∈ R such that X ′ is at L and X ′ < X;
(C3) if there is a block at L′, then let X ′ ∈ R be the top block at L′, X < X ′;
(C4) X is not being moved to a different location L′ ∈ L; and
(C5) there is no other block X ′ ∈ R being moved to L.
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Definition 4. A plan for 〈W, T, S0, Sn〉 is a set

{P (r1, t0) . . . P (rm, t0)} ∪ . . . ∪ {P (r1, tn) . . . P (rm, tn)}
where each P (ri, tj) is either move(ri, l, l′, tj) or noOp(ri, l, tj) such that S1 is
obtained by applying all P (r, 0) to S0; Si+1 is obtained by applying all P (r, ti)
to Si; and Sn is obtained by applying all P (r, tn−1) to Sn−1.

A plan P is valid iff all actions in P are valid; otherwise, P is invalid.

We illustrate Definition 2–4 with the following example.

Example 1. Given the blocks world shown in Fig. 1, we have blocks R = {r1, r2},
locations L = {a, b, c} and time steps T = 〈t0, t1, t2, t3〉. Moreover, r1 is smaller
than r2. The initial situation is {at(r1, a, t0), at(r2, a, t0)} and the final sit-
uation is {at(r1, c, t3), at(r2, c, t3)}. It is easy to see that {move(r1, a, b, t0),
noOp(r2, a, t0), noOp(r1, b, t1), move(r2, a, c, t1), move(r1, b, c, t2), noOp(r2,
c, t2)} is a plan.

4 Planning in Blocks World with ABA

We take a two-step approach to model blocks world planning with ABA. Firstly,
we define the core framework wrt a blocks world; then, for any given specific
problem with a given time step sequence and initial, final situations, we define
an instantiated framework (extending the core framework) to generate specific
plans. Formally,

Definition 5. Given a blocks world W = 〈R, L, <〉, the core framework corre-
sponding to W is an ABA framework F0 = 〈L0,R0,A0, C0〉 such that:2

– R0 contains the following rules and nothing else.
above(X,X ′, L, T ) ← at(X,L, T ), at(X ′, L, T ), smaller(X,X ′) (1)
at(X,L, T ) ← at(X,L, T−), noOp(X,L, T−), succ(T, T−) (2)
at(X,L, T ) ← at(X,L′, T−),move(X,L′, L, T−), succ(T, T−) (3)
occupied(X,L, T ) ← at(X ′, L, T ), smaller(X ′,X) (4)
smaller(X,X ′) ← (5)

– A0 contains the following assumptions and nothing else.
move(X,L′, L, T ) noOp(X,L, T ) notAt(X,L, T )

– C0 is such that:
C(move(X,L′, L, T )) = {noOp(X,L, T ),move(X,L′, L′′, T ),

move(X ′, L′′, L, T ), above(X ′,X, L, T ),
occupied(X,L, T ), notAt(X,L′, T )}

C(noOp(X,L, T )) = {move(X,L,L′, T )}
C(notAt(X,L, T )) = {at(X,L, T )}

2 We use rule and assumption schemata to simplify our notations. Specifically, in each
of the rules, assumptions and contraries, we have X, X ′ ∈ R, X �= X ′, L, L′, L′′ ∈
L, L �= L′, L �= L′′, L′ �= L′′ and T, T − in some time step sequence. In Rule 5, we
also enforce that X < X ′.
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Table 1. Arguments attacking A in Example 2.

Arguments targeting at move(r1, a, b, t0):

B1 = {m(r1, a, c, t0)} � m(r1, a, c, t0),B2 = {m(r2, a, b, t0)} � m(r2, a, b, t0),

B3 = {m(r2, c, b, t0)} � m(r2, c, b, t0), B4 = {n(r1, a, t0)} � n(r1, a, t0),

B5 = {nA(r1, a, t0)} � nA(r1, a, t0)

Arguments targeting at n(r2, a, t0):

C1 = {m(r2, a, b, t0)} � m(r2, a, b, t0),C2 = {m(r2, a, c, t0)} � m(r2, a, c, t0).

Arguments targeting at n(r1, b, t1):

D1 = {m(r1, b, a, t1)} � m(r2, b, a, t1),D2 = {m(r1, b, c, t1)} � m(r2, b, c, t1).

Arguments targeting at m(r2, a, c, t1):

E1 = {m(r2, a, b, t1)} � m(r2, a, b, t1),E2 = {m(r1, a, c, t1)} � m(r1, a, c, t1),

E3 = {m(r1, b, c, t1)} � m(r1, b, c, t1), E4 = {n(r2, a, t1)} � n(r2, a, t1),

E5 = {nA(r2, a, t1)} � nA(r2, a, t1), E7 = {m(r1, a, c, t0)} � o(r2, c, t1),

E6 = {n(r1, a, t0), n(r2, a, t0)} � above(r1, r2, a, t1).

Arguments targeting at m(r1, b, c, t2):

F1 = {m(r1, b, a, t2)} � m(r1, b, a, t2),F2 = {m(r2, a, c, t2)} � m(r2, a, c, t2),

F3 = {m(r2, b, c, t2)} � m(r2, b, c, t2), F4 = {n(r1, b, t2)} � n(r1, b, t2),

F5 = {nA(r1, b, t2)} � nA(r1, b, t2)

Arguments targeting at n(r2, c, t2):

G1 = {m(r2, c, a, t2)} � m(r2, c, a, t2),G2 = {m(r2, c, b, t2)} � m(r2, c, b, t2)

Rule 1 states that a block X is above another block X ′ at time T if both X
and X ′ are at the same location L at time T and X is smaller than X ′. Rule 2
states that if a block X is at location L at ti and it is not moved at ti, then X
is at L at time ti+1. Rule 3 states that, at ti, if a block X is at location L′ and
X is moved from L′ to L, then X is at L at ti+1. Rule 4 states that a location
L is occupied wrt to a block X if there is another block X ′ at L such that X ′ is
smaller than X. Rule 5 states that X is smaller than X ′ for all X < X ′.

Assumptions A0 and their contraries C0 can be read as:

1. we move a block X from L′ to L at time T unless (a) we do not move X, or
(b) we move it to a different L′′, or (c) some other block X ′ 
= X is moved
to L, or (d) some other block X ′ is on top of X, or (e) X is no smaller than
the top of pile block at L, or (f) X is not at L′.

2. we do not move a block X unless we move it;
3. a block X is not at a location L unless it is at L.

Within a blocks world, a planning problem can be modelled with an instan-
tiated framework, defined as follows.

Definition 6. For a planning problem Π = 〈W, T, S0, Sn〉, let 〈L0,R0,A0, C0〉
be the core framework for W , then the instantiated framework corresponding to
Π is an ABA framework FI = 〈LI ,RI ,AI , CI〉 such that:
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– RI is R0 with the following additional rules:
goal ← s1, . . . , sm, for {s1, . . . , sm} = Sn, (1)
succ(T, T−) ←, for all T, T− ∈ T such that T is the successor of T−, (2)
s ← for each s ∈ S0; (3)

– AI = A0, and for each α ∈ AI , CI(α) = C0(α).

The core framework corresponding to a blocks world W capturing generic
information about W . The instantiated framework encodes information that is
specific to a planning problem. Namely, RI contains all rules in R0 and with an
addition rule to describe what is to be achieved in the final situation (Rule 1),
facts to describe the time step sequence (Rule 2), and facts to describe the initial
situation (Rule 3). We illustrate Definitions 5 and 6 with the following example.

Fig. 2. An argument for goal in Example 2. To save space, all leaf nodes τ , as the child
of underlined nodes, are omitted.

Example 2 (Example 1 continued.) As given in Definition 6, we introduce rules
goal ← at(r1, c, t3), at(r2, c, t3)
at(r1, a, t3) ← at(r2, a, t3) ← smaller(r1, r2) ←

in the instantiated framework. An admissible argument for goal, A =
Δ � goal, is shown in Fig. 2 with Δ = {move(r1, a, b, t0), noOp(r2, a, t0),
noOp(r1, b, t1), move(r2, a, c, t1), move(r1, b, c, t2), noOp(r2, c, t2)}. Arguments
attacking A are in Table 1.3 Arguments attacking B1 . . . G2 (thus defending
A) are shown in Table 2 (B′

1 attacks B1, B′
2 attacks B2, etc.). We observe

that all arguments in Table 2 are supported by assumptions in Δ except
B′

3 = {nA(r2, c, t0)} � nA(r2, c, t0), E′
2 = {nA(r1, a, t1)} � nA(r1, a, t1) and

F ′
3 = {nA(r2, b, t2)} � nA(r2, b, t2). Among these, B′

3 is not attacked as
there is no argument for at(r2, c, t0). E′

2 is attacked by H = {n(r1, a, t0)} �
at(r1, a, t1) and F ′

3 is attacked by I1 = {m(r2, a, b, t0), n(r2, b, t1)} � at(r2, b, t2),
I2 = {m(r2, a, c, t0),m(r2, c, b, t1)} � at(r2, b, t2), and argument I3 =
{n(r2, a, t0),m(r2, a, b, t1)} � at(r2, b, t2). However, H is attacked by B′

1, I1 and
I2 are attacked by B′

2. I3 is attacked by E′
1. Thus, A is defended by arguments

in Table 2.

3 Here, m, n, nA and o are short-hands for move, noOp, notAt and occupied, respec-
tively.
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Table 2. Summary of arguments defending A in Example 2.

B′
1 {m(r1, a, b, t0)} � m(r1, a, b, t0)B′

2 {n(r2, a, t0)} � n(r2, a, t0)

B′
3 {nA(r2, c, t0)} � nA(r2, c, t0) B′

4 {m(r1, a, b, t0)} � m(r1, a, b, t0)

B′
5 {} � at(r1, a, t0)

C′
1 {n(r2, a, t0)} � n(r2, a, t0) C′

2 {n(r2, a, t0)} � n(r2, a, t0)

D′
1 {n(r1, b, t1)} � n(r1, b, t1) D′

2 {n(r1, b, t1)} � n(r1, b, t1)

E′
1 {m(r2, a, c, t1)} � m(r2, a, c, t1)E′

2 {nA(r1, a, t1)} � nA(r1, a, t1)

E′
3 {n(r1, b, t1)} � n(r1, b, t1) E′

4 {m(r2, a, c, t1)} � m(r2, a, c, t1)

E′
5 {n(r2, a, t0)} � at(r2, a, t1) E′

6 {m(r1, a, b, t0)} � m(r1, a, b, t0)

E′
7 {m(r1, a, b, t0)} � m(r1, a, b, t0)

F ′
1 {m(r1, b, c, t2)} � m(r1, b, c, t2) F ′

2 {n(r2, c, t2)} � n(r2, c, t2)

F ′
3 {nA(r2, b, t2)} � nA(r2, b, t2) F ′

4 {m(r1, b, c, t2)} � m(r1, b, c, t2)

F ′
5 {m(r1, a, b, t0), n(r1, b, t1)} � at(r1, b, t2)

G′
1 {n(r2, c, t2)} � n(r2, c, t2) G′

2 {n(r2, c, t2)} � n(r2, c, t2)

Theorem 1. Given a planning problem Π, let FI be the instantiated framework
corresponding to Π, then there is a valid plan for Π iff there exists an admissible
argument Δ � goal in FI .

Proof (Sketch.) We first show that if a plan exists then an admissible argument
A = Δ � goal. By Rule 1 in Definition 6, we know that to “prove” goal, we
need to “prove” at(X,L, tn) for all blocks X, each at some location L. It is easy
to see that using a combination of Rules 2 & 3 in Definition 5, all blocks can
be placed to their specified locations (assuming tn is large enough) so A can be
constructed. To see that A is admissible, we make the following observations.

– Arguments targeting at α = noOp( , , ) are of the form {move( , , , )} �
move( , , , ). These arguments can be counterattacked by N = {α} � α. N
does not attack A.

– Arguments targeting at α′ = move(X,L,L′, T ) are of the following forms:
(1) {noOp(X,L, T )} � noOp(X,L, T ) (not to move X away from L at time
T ) and {move(X,L,L′′, T )} � move(X,L,L′′, T ) (move X to a different loca-
tion). These arguments can be counterattacked by M = {α′} � α′. M does
not attack A.
(2) {move(X ′, L′′′, L′, T )} � move(X,L′′′, L′, T ). These can be coun-
terattacked by either {move(X ′, L′′′, L∗, T )} � move(X,L′′′, L∗, T )
or {noOp(X ′, L′′′, T )} � noOp(X ′, L′′′, T ) or {notAt(X ′, L′′′, T )} �
notAt(X ′, L′′′, T ). These arguments do not attack A.
(3) � above(X ′,X, L, T ). By Rule 1 in Definition 5, to have arguments of this
form, we need to have some block X ′ at the same location as X but smaller.
Under such cases, X should not be moved thus no such move(X,L,L′, T )
would be used to support A.
(4) � occupied(X ′,X, T ). By Rule 4 in Definition 5, to have arguments
of this form, we have some block smaller than X at the destination of the
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Table 3. Arguments attacking A′ in Example 3.

Arguments targeting at move(r1, a, c, t0):

B1 = {m(r1, a, b, t0)} � m(r1, a, b, t0)B2 = {m(r2, a, c, t0)} � m(r2, a, c, t0)

B3 = {m(r2, b, c, t0)} � m(r1, b, c, t0) B4 = {n(r1, a, t0)} � n(r1, a, t0)

B5 = {nA(r1, a, t0)} � nA(r1, a, t0)

Arguments targeting at noOp(r2, a, t0):

C1 = {m(r2, a, b, t0)} � m(r2, a, b, t0)C2 = {m(r2, a, c, t0)} � m(r2, a, c, t0)

Arguments targeting at noOp(r1, c, t1):

D1 = {m(r1, c, a, t1)} � m(r1, c, a, t1)D2 = {m(r1, c, b, t1)} � m(r1, c, b, t1)

Arguments targeting at move(r2, a, c, t1):

E1 = {m(r2, a, b, t1)} � m(r2, a, b, t0)E2 = {m(r1, a, c, t1)} � m(r1, a, c, t1)

E3 = {m(r1, b, c, t1)} � m(r1, b, c, t1) E4 = {n(r2, a, t1)} � n(r2, a, t1)

E5 = {nA(r2, a, t1)} � nA(r2, a, t1) E6 = {m(r1, a, c, t0)} � o(r2, c, t1)

E7 = {n(r1, a, t0), n(r2, a, t0)} � above(r1, r2, a, t1)

move. In such cases, X should not be moved to that destination so no such
move(X,L,L′, T ) would be used to support A.

Since a plan exists for this problem, a sequence of moves and noOps, which
would not trigger indefensible attacks from Δ � above(X ′,X, L, T ) or Δ �
occupied(X ′,X, T ) must exist. The other direction of this theorem is trivial
as once an admissible A is found, assumptions from A consist a plan. ��

The following corollary follows trivially from Theorem1.

Corollary 1 Given a planning problem Π, let FI be the instantiated framework
corresponding to Π, if Δ � goal is admissible in FI , then Δ is a valid plan for
Π.4

Theorem 1 and Corollary 1 establish the connection between planning in
blocks world and ABA frameworks. The admissibility of the argument A for goal
can be viewed as a means to justify the “validity” of the plan as every assump-
tion supporting the argument A is “defended”. This can be read as every action
in the plan is valid. Similarly, non-admissible arguments of the form Δ � goal
correspond to invalid plans, illustrated with the next example.

Example 3 Given the blocks world shown in Fig. 1, the plan

P = {move(r1, a, c, t0), noOp(r2, a, t0),move(r2, a, c, t1), noOp(r2, c, t1)}
is invalid as c is occupied by r1 at t1 and r1 < r2. So move(r2, a, c, t1) is invalid
and it is in an explanation for P . Let FI be the instantiated framework.

A′ = {move(r1, a, c, t0), noOp(r2, a, t0),move(r2, a, c, t1), noOp(r2, c, t1)} � goal

4 We abuse the notation Δ. Here and hereinafter, Δ is used to represent both a set of
assumptions in the instantiated framework FI and a plan containing a set of actions
with syntactically identical names in the corresponding planning problem Π.
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is not admissible in FI . Arguments attacking A′ are shown in Table 3. Using
reasoning similar to Example 2, we see that A is able to defend all of its attackers
except E6 as E6 is supported by a single assumption m(r1, a, c, t0), which also
supports A′. Thus, any argument Bi attacks E6 must also attack A′. Any set of
argument containing A′, Bi cannot be conflict-free, therefore A′ is not admissible.

5 Conclusion

In this paper, we studied how to use ABA to model planning problems in line
with the defeasible planning proposal suggested by Pollock. Using blocks world
as a case study, we demonstrated the feasibility of using ABA to plan. The two
key ideas are (1) with actions modelled with assumptions, plan construction
can be equated to the construction of ABA arguments and (2) by modelling
action constraints as arguments attacking the plan, identifying valid plans can
be equated to computing admissible ABA arguments. In future, we will generalise
this work to create argumentation-based planning models, study its connection
with situation calculus, SAT planning, or BDD-based symbolic planning and
apply our work in some real-world practical planning applications.
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Abstract. We develop a progressive inference approach for Probabilis-
tic Argumentation, and then implement obtained algorithms for three
standard semantics: the credulous, the ideal, and the skeptical preferred
semantics. Like their exact counterparts, these algorithms can be des-
tined to compute the exact answers, however while doing so, they can
output immediate answers increasingly close to the exact ones.

Keywords: Probabilistic argumentation · Approximate inference

1 Introduction

Probabilistic Argumentation (PA) aims at combining the strengths of argumen-
tation theory and probability theory. Focusing on appropriate structures and
semantics for PA, researchers in [6,9,14,17,22] have proposed different frame-
works of PA. Others pay attention to computational issues, notably computing
the probability that a given argument is acceptable under a certain seman-
tics [10,11,21], or computing the probability that there exists an acceptable
argument supporting a given proposition [12,13], among other issues [2,7,17].
Since the complexity of these algorithms, due to the nature of the problem, is
not always bearable for applications, in this paper we are interested in their
approximate counterparts. To this end, we can restrict ourselves to Proba-
bilistic Assumption-based Argumentation (PABA [6] - a PA framework using
Assumption-based Argumentation (ABA [1]) to structure arguments) without
any loss of generality because, as shown in [13], many PA frameworks includ-
ing [17,19] can be easily translated into PABA (see also Sect. 6). Let’s illustrate
our contributions using a sample PABA framework below1, which is also used
throughout the paper.

Example 1. Let P = (Ap,N ,F) be a PABA framework where

– F = (R,A, ) is an ABA framework with a set of (logical) assumptions
A = {not runaway, not bark, not alarm} where the contrary not x of each
assumption not x is simply x, and R consists of inference rules for describing:

1 PABA and ABA are formally defined in Sect. 2.
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• an alarm rings with different probabilities upon different events.
alarm ← burglary, earthquake,p1 alarm
alarm ← burglary, ¬earthquake,p2 alarm
alarm ← ¬burglary, earthquake,p3 alarm

• a dog’s behavior: it barks if there is a burglary, and runs away if there is
an earthquake. If both events occur, it may do one or both actions.
bark ← burglary, not runaway runaway ← earthquake, not bark

• what a tenant might notice: nothing ← not bark, not alarm
– Ap is a set of probabilistic assumptions {b, e, p1, p2, p3}2 whose joint prob-

ability distribution is represented by a Bayesian network N = (G,Θ) with
structure G and probabilistic parameters Θ3 below.

A possible world is a truth assignment to all probabilistic assumptions, and
hence BN N can also be viewed as representing the probability distribution
over the set of all possible worlds W.

To compute the probability that there exists an acceptable argument for a
given proposition q under a certain semantics sem, denoted Prsem(q), a native
approach is to follow the definition of Prsem(q) (given in Sect. 2.4) directly, as
follows: (1) iterate over the set of all possible worlds W to compute the subset
Wq ⊆ W in which there is an acceptable argument for q; and (2) compute the
probability of each world ω ∈ Wq and return their sum. For example, in comput-
ing Prcr(bark) (the credulous semantics), the first step ends up with Wbark =
{ω ∈ W | ω ⊇ {b}}, which intuitively says that the dog might bark whenever
there is a burglary. However in computing Prsem(bark) with sem ∈ {gr, id, sk}
(grounded/ideal/skeptical preferred), Wbark = {ω ∈ W | ω ⊇ {b,¬e}} since the
dog surely barks only if there is no earthquake. Unfortunately this native app-
roach always results in an exponential blowup since it iterates over as many as
2|Ap| possible worlds. An obvious way to address this problem, which is followed
in [13], is to suppress this iteration. Concretely, the algorithms of [13] start from
a given proposition q and characterizes the set of all possible worlds in which
q is acceptable in terms of a DNF (Disjunctive Normal Form) formula whose
each constituent disjunct describes a combination of probabilistic assumptions
sufficient for the acceptability of q. Abstractly, this process can be seen as a
2 Shorthands for burglary, earthquake,p1 alarm,p2 alarm,p3 alarm respectively.
3 The dependency of burglaries on earthquakes as well as parameter values are made

up for the sake of illustrations.
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translation q
sem⇐=⇒ DNFq. For example, bark

cr⇐⇒ b while bark
sem⇐=⇒ b ∧ ¬e for

sem ∈ {gr, id, sk}. However, due to the complex nature of the problem, the
complexity of these exact algorithms [13,21] can be unbearable for many appli-
cations. Hence, in this paper we are interested in their approximate counterparts
that can transparently substitute them. In particular, we show herein that the
task can be solved increasingly well as time flies. As a result we obtain progres-
sive algorithms, which can be destined to compute the exact answers and on
the way doing so, can output immediate answers that are increasingly close to
the exact ones. Figure 1(a) gives a visual illustration for what being said, while
Fig. 1(b) offers an example: in computing Prsk(bark), our progressive algorithms
may return PrN (b∧¬e) if they are destined to compute the exact answer or the
given time budget is sufficient; otherwise may return an interval [0, P rN (b)].

Fig. 1. Progressive inference

To the best of our knowledge, approximate inference has not been explored in
the current PA literature, though approximate algorithms have been well devel-
oped and heavily used in related fields, like Probabilistic Graphical Models (see
[16]) or Probabilistic Logic Programming (e.g. in Problog system [8]). The rest of
this paper is structured as follows. Section 2 presents the background. Section 3
summarizes the exact approach in [13] and sets the stage for our approximate
approach presented in Sect. 4. Section 5 materializes our approximate approach,
presenting progressive algorithms in an abstract form and then in pseudo code.
This section also demonstrates a Prolog-based implementation for three seman-
tics: the credulous, the ideal, and the skeptical preferred (download link: http://
hung.network/prengine/2.0). Section 6 presents related work and concludes. Due
to the lack of space, we omit the proofs of technical results.

2 Background

2.1 Abstract Argumentation

An AA framework [3] F is a pair (AR,Att) where AR is a set of arguments,
Att ⊆ AR × AR and (A,B) ∈ Att means that A attacks B. S ⊆ AR attacks

http://hung.network/prengine/2.0
http://hung.network/prengine/2.0
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A ∈ AR iff (B,A) ∈ Att for some B ∈ S. A ∈ AR is acceptable wrt to S iff
S attacks every argument attacking A. S is conflict-free iff S does not attack
itself; admissible iff S is conflict-free and each argument in S is acceptable wrt
S; complete iff S is admissible and contains every arguments acceptable wrt S;
a preferred (credulous) extension iff S is a maximal (wrt set inclusion) complete
set; the grounded extension iff S is the least complete set; the ideal extension
iff it is the maximal admissible set contained in every preferred extension. An
argument A is accepted under semantics sem ∈ {cr, gr, id}4, denoted F 	sem A,
iff A is in a sem extension. Finally A is skeptically preferred accepted, denoted
F 	sk A, if A is in each preferred extension. It is well-known that F 	gr A =⇒
F 	sk A =⇒ F 	id A =⇒ F 	cr A but the reverse may not hold.

2.2 Assumption-Based Argumentation

As AA ignores the internal structure of argument, an instance of AA called
Assumption-Based Argumentation (ABA [4,5]) defines arguments by deductive
proofs based on assumptions and inference rules. Assuming a language L consist-
ing of countably many sentences, an ABA framework is a triple F = (R,A, )
where R is a set of inference rules of the form r : l0 ← l1, . . . , ln (n ≥ 0, li ∈ L)5,
A ⊆ L is a set of assumptions, and is a (total) one-to-one mapping from A
into L, where x is referred to as the contrary of x. Assumptions do not appear
in the heads of inference rules.

A (backward) deduction of a conclusion q supported by a set of premises Q is
a sequence of sets S1, S2, . . . , Sn where Si ⊆ L, S1 = {q}, Sn = Q, and for every
i, where σ is the selected proposition in Si: σ �∈ Q and Si+1 = Si \ {σ}∪ body(r)
for some inference rule r ∈ R with head(r) = σ.

An argument for q ∈ L supported by a set of assumptions Q is a deduction
from q to Q and denoted by (Q, q). An argument (Q, q) attacks an argument
(Q′, q′) if q is the contrary of some assumption in Q′.

A proposition q is said to be credulously/groundedly/ideally/skeptically
accepted in ABA F , denoted F 	sem q (where sem ∈ {cr, gr, id, sk}) if in the
AA framework consisting of above defined arguments and attacks, there is an
argument for q accepted under the corresponding semantics of abstract argu-
mentation. So the order of skepticism among ABA semantics is F 	gr q =⇒
F 	sk q =⇒ F 	id q =⇒ F 	cr q. For a thorough tutorial of ABA, see [23].

2.3 AB-dispute Derivations

Different forms of dispute derivations have been developed to compute the
semantics of ABA. To compute the credulous semantics of an ABA F =
(R,A, ), AB-dispute derivations simulate a dispute between two fictitious play-
ers: proponent and opponent. Formally, in [4,5] an AB-dispute derivation is
defined as a sequence of tuples 〈P0,O0, A0, C0〉 . . . 〈Pi,Oi, Ai, Ci〉 . . . , where Ai

4 credulous/grounded/ideal semantics.
5 For convenience, define head(r) = l0 and body(r) = {l1, . . . ln}.
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is the set of defense assumptions (consisting of all assumptions occurring in the
proponent’s arguments) and Ci is the set of culprits (consisting of all opponent’s
assumptions that the proponent attacks). Multi-set Pi consists of propositions
belonging to any of the proponent’s potential arguments. Multi-set Oi consists of
multi-sets of propositions representing the state of all of the opponent’s potential
arguments.

Definition 1. 1. An AB-dispute derivation using a selection strategy sl is a
sequence t0, . . . , ti, ti+1, . . . where for each i ≥ 0, two conditions below hold.
(a) ti is a tuple 〈Pi,Oi, Ai, Ci〉 where Pi is a multi-set of propositions; Oi

is a multi-set of finite multi-sets of propositions; Ai and Ci are sets of
assumptions.

(b) ti+1 ∈ FollowABF (ti, sl) where FollowABF (ti, sl) is defined by Defini-
tion 2.

2. An AB-dispute derivation for a proposition π starts with t0 = 〈{π}, ∅,A ∩
{π}, ∅〉. It is said to be successful if it ends with tn of the form 〈∅, ∅, , 〉.

Definition 2. Given a tuple ti = 〈Pi,Oi, Ai, Ci〉 and a selection function sl
that selects: (1) a sentence σ ∈ Pi, or (2) a sentence σ ∈ S for some S ∈ Oi, or
(3) an empty set ∅ ∈ Oi; FollowABF (ti, sl) is defined respectively as follows.

1. If sl selects σ ∈ Pi then
(a) if σ ∈ A then FollowABF (ti, sl) = {〈Pi − {σ},Oi ∪ {{σ}}, Ai, Ci〉}.
(b) otherwise, FollowABF (ti, sl) consists of tuples 〈Pi \ {σ} ∪ (Bd \

Ai),Oi, Ai ∪ (A ∩ Bd), Ci〉 for each rule σ ← Bd in R such that
Ci ∩ Bd = ∅.

2. If sl selects σ ∈ S for some S ∈ Oi, then
(a) If σ ∈ A, then

i if σ ∈ Ci, then FollowABF (ti, sl) = {〈Pi,Oi \ {S}, Ai, Ci〉}.
ii otherwise,

A. if σ ∈ Ai then FollowABF (ti, sl) = {〈Pi,Oi \ {S} ∪ {S \
{σ}}, Ai, Ci〉}.

B. otherwise, FollowABF (ti, sl) = {〈Pi ∪ {σ},O \ {S}, Ai, Ci ∪
{σ}〉, 〈Pi,Oi \ {S} ∪ {S \ {σ}}, Ai, Ci〉}.

(b) otherwise, FollowABF (ti, sl) = {〈Pi,Oi \{S}∪{S \{σ}∪Bd | σ ← Bd ∈
R and Bd ∩ Ci = ∅}, Ai, Ci〉}.

3. If sl selects ∅ ∈ Oi then FollowABF (ti, sl) = ∅.
Note that FollowABF (ti, sl) is a singleton set except in two cases: 1.b and

2.a.ii.B. An example of successful AB-dispute derivations is given in Table 1.
The soundness and completeness of AB-dispute derivations for credulous

acceptances have been proved in [5]. In particular: (1) Soundness: For any suc-
cessful AB-dispute derivation 〈P0,O0, A0, C0〉, . . . , 〈Pn,On, An, Cn〉 for a propo-
sition π, An is an admissible set of assumptions6 and supports π; and (2) Com-
pleteness: In a positively acyclic and finitary ABA F7,
6 Note that any admissible set of assumptions is a subset of some preferred set of

assumptions; and any preferred set of assumptions is also admissible.
7 An ABA F is finitary if for each node in the dependency graph of F , there is a finite

number of nodes reachable from it; and positively acyclic if in the dependency graph
of F , there is no infinite directed path consisting solely non-assumption nodes.
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Table 1. A successful AB-dispute derivation for bark in ABA F ′ obtained from the
ABA F in Example 1 by adding two facts: e ← and b ←. Note that notation x means
that x is selected by selection function sl.

Pi Oi Ai Ci FollowABF′(ti, sl)

t0 {bark} {} {} {} {t1}
t1 {b, not runaway} {} {not runaway} {} {t2}
t2 {not runaway} {} {not runaway} {} {t3}
t3 {} {{runaway}} {not runaway} {} {t4}
t4 {} {{e, not bark}} {not runaway} {} {t5}
t5 {} {{not bark}} {not runaway} {} {t6}
t6 {bark} {} {not runaway} {not bark} {t7}
t7 {b} {} {not runaway} {not bark} {t8}
t8 {} {} {not runaway} {not bark} undefined

– If π is supported by an admissible set S of assumptions, then for any selection
strategy there is a successful AB-dispute derivation . . . , 〈Pn,On, An, Cn〉 for
π where An ⊆ S.

– There are no infinite AB-dispute derivations for any proposition.

2.4 Probabilistic Assumption-Based Argumentation

A PABA framework [6] represents a probability distribution of ABA frameworks.
The focus of this paper is a subclass of PABA called Bayesian PABA [13] where
the probabilistic information is represented by a Bayesian network.

Definition 3. A (Bayesian) PABA framework P is a tuple (Ap,N ,F) where

– F = (R,A, ) is an ABA framework with a set of (logical) assumptions A
and a set of inference rules R,

– Ap = {x1, . . . , xm} is a set of so-called positive probabilistic assumptions and
elements of ¬Ap = {¬x | x ∈ Ap} are called negative probabilistic assump-
tions8, and

– No probabilistic assumption occurs in A or in the head of a rule in R, and
– N = (G,Θ) is a Bayesian network of Boolean variables such that for each

(positive) probabilistic assumption xi ∈ Ap, N has a corresponding Boolean
node Xi (with possible values {xi,¬xi}) 9.

The probability distribution induced by N is denoted by PrN (.). The seman-
tics of PABA is defined as follows.
8 A probabilistic assumption is an element of Ap ∪¬Ap. A proposition not in Ap∪¬Ap

is called a non-probabilistic proposition.
9 G is a directed acyclic graph over X = {X1, . . . , Xm} and Θ is a set of conditional

probability tables (CPTs), one CPT ΘX|par(X) for each X ∈ X .
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Definition 4. – A possible world is a maximal (wrt set inclusion) consistent
subset of Ap ∪ ¬Ap.
W denotes the set of all possible worlds, and for each ω ∈ W, Fω denotes the
ABA framework (Rω,A, ) with Rω � R ∪ {p ←| p ∈ ω}.

– The acceptability probability of a proposition q under semantics sem,
denoted Prsem(q), is the probability that there is an acceptable argument for

q under sem, i.e. Prsem(q) �
ω∈W∑

Fω�semq

PrN (ω).

Example 2 (Continue Example 1.) Table 2 shows the necessary and sufficient
condition on a possible world ω ∈ W for Fω 	sem q (Note that |W| = 25).
For instance, the second rows says that for sem ∈ {id, sk, gr}, Fω 	sem bark iff

ω ⊇ {b,¬e}, thus Prsem(bark) =
ω∈W∑

ω⊇{b,¬e}
PrN (ω).

Table 2. Necessary and sufficient condition on ω for Fω �sem q

q Fω �sem q (sem ∈ {id, sk, gr}) iff Fω �cr q iff

bark ω ⊇ {b, ¬e} ω ⊇ {b}
runaway ω ⊇ {¬b, e} ω ⊇ {e}
alarm ω ⊇ s1 ∨ ω ⊇ s2 ∨ ω ⊇ s3 where ω ⊇ s1 ∨ ω ⊇ s2 ∨ ω ⊇ s3

s1 = {b, e, p1}, s2 = {b, ¬e, p2}, s3 = {¬b, e, p3}
nothing ω ⊇ s′

1 ∨ ω ⊇ s′
2 where ω ⊇ s′

1 ∨ ω ⊇ s′
2 ∨ ω ⊇ s′

3

s′
1 = {¬b, ¬e}, s′

2 = {¬b, e, ¬p3} where s′
3 = {b, e, ¬p1}

3 Exact Approach for PABA Inferences

From now on, we always refer to an arbitrary but fixed PABA framework P =
(Ap,N ,F) if not explicitly stated otherwise.

In this section we summarize the exact approach in [13] and set the stage
for our approximate approach developed in the next section. As mentioned in
the introduction, to compute Prsem(q), q is first translated into a DNF formula
DNFq in such a way that each disjunct in DNFq describes a combination of
probabilistic assumptions sufficient for the acceptability of q. This DNF formula
is represented by a set of subsets of possible worlds, called frame, as follows.

Definition 5. – A partial world s is a subset (not necessarily proper) of a

possible world and has probability PrN (s) =
ω∈W∑

ω⊇s

PrN (ω).

– A frame S is a set of partial worlds and has probability PrN (S) =∑

s∈S
PrN (s).
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Definition 6. A partial world s is said to be sufficient for a proposition q
under semantics sem (for short, sem-sufficient for q) if Fs′ 	sem q for any
partial world s′ ⊇ s.10

Definition 7 (Exact Translations.)

– A frame S is a frame for a proposition q under a semantics sem (for
short, a sem-frame for q) if each partial world in S is sem-sufficient for q.

– A sem-frame S for a proposition q is said to be complete (written q
sem⇐=⇒ S

and shortly read as “q is translatable to S”), if for each possible world
ω ∈ W where Fω 	sem q, ω ⊇ s for some partial world s ∈ S.

Example 3 (Continue Example 2.) It is easy to verify the following translations
(Table 3).

Table 3. Translating propositions into frames

Prop. q Frame S where q
sem⇐==⇒ S for sem ∈ {id, sk, gr} Frame S where q

cr⇐⇒ S
alarm {{b, e, p1}, {b, ¬e, p2}, {¬b, e, p3}} {{b, e, p1}, {b, ¬e, p2}, {¬b, e, p3}}
bark {{b, ¬e}} {{b}}
runaway {{¬b, e}} {{e}}
nothing {{¬b, ¬e}, {¬b, e, ¬p3}} {{¬b, ¬e}, {b, e, ¬p1}, {¬b, e, ¬p3}}

So to compute Prsem(q), one can first translate q
sem⇐=⇒ S, then compute

PrN (S). The following theorem ensures the correctness of this approach.

Theorem 1. 1. If q
sem⇐=⇒ S then Prsem(q) = PrN (S).

2. For any proposition q and semantics sem, q
sem⇐=⇒ S for some frame S.

In [13], computing PrN (S) is done by Bayesian network algorithms thanks
to the following lemma (See Example 4 below for an illustration).

Lemma 1. Suppose that S is a frame in a PABA framework (Ap,N ,F) and
N ′ is the Bayesian network obtained from N by adding: for each s ∈ S, an AND
gate representing the conjunction

∧
s; an OR gate representing the disjunction∨ S. Then PrN (S) = PrN ′(q), where q is the output of the OR gate.

PrN (S) may also be computed by Probabilistic Logic Programming (PLP
[8,18,20]), as follows.

Lemma 2. Suppose that S is a frame in a PABA framework (Ap,N ,F) and R
is the PLP program obtained from a PLP program representing N by adding a
set of rules {q ← s | s ∈ S} where q is a new proposition not occurring in P.
Then PrN (S) coincides with the probability of q wrt R.

10 Note that Fs′ is obtained from F by adding a set of facts {p ←| p ∈ s′}.
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Example 4. Prsk(nothing) can be computed by first translating nothing
sk⇐⇒

Snothing = {{¬b,¬e}, {¬b, e,¬p3}}, then computing PrN (Snothing) which can
be done by querying PrN ′(q) where N ′ is the following BN, or querying Pr(q)
wrt the following PLP program 11.

4 Approximate Approach

It is clear that Prsem(q) can be approximately computed by either approximately
translating q

sem⇐=⇒ S, or approximately answering PrN (S) =?. Given that algo-
rithms for the second possibility have been well developed in the literature of
Probabilistic Graphical Models [16] (furthermore, thanks to Lemma2, existing
approximate algorithms in Probabilistic Logic Programming can also be used),
in this paper we focus on the first possibility. So the following definition lies at
the heart of our approach. It introduces two kinds of approximate translations:
q

sem==⇒ S and q
sem⇐== S, which can be seen as standing for q

sem⇐=⇒ S ′ ⇒ S and
q

sem⇐=⇒ S ′ ⇐ S respectively. Concretely,

Definition 8 (Approximate Translations). Wrt a semantics sem, we say
that:

1. A proposition q is under-translatable to a frame S, written q
sem==⇒ S, if q

is translatable to a frame S ′ (i.e. q
sem⇐=⇒ S ′) such that S ′ logically implies S.

2. A proposition q is over-translatable to a frame S, written q
sem⇐== S, if q is

translatable to a frame S ′ such that S logically implies S ′.

Continue our running examples, some under-translations under sem ∈
{id, sk, gr} are shown below.

11 We use Problog [8] syntax.
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alarm
sem⇐=⇒ {{b, e, p1}, {b, ¬e, p2}, {¬b, e, p3}} ⇒ {∅}

bark
sem⇐=⇒ {{b, ¬e}} ⇒ {{b}}

runaway
sem⇐=⇒ {{¬b, e}} ⇒ {{e}}

nothing
sem⇐=⇒ {{¬b, ¬e}, {¬b, e, ¬p3}} ⇒ {{¬b, ¬e}, {b, e, ¬p1}, {¬b, e, ¬p3}}

Note that an extreme case of over-translating q is q
sem⇐== {}, which turns q

into an empty set of possible worlds. An extreme case of under-translating q is
q

sem==⇒ {∅}, which turns q into the set of all possible worlds.
As stated in Theorem 2 below, approximate inferences using over-translations

(resp. under-translations) result in probabilities that are smaller (resp. greater)
than the exact ones.

Theorem 2. Let q be a proposition, S be frame, and sem be an argumentation
semantics.

1. If q
sem⇐== S then Prsem(q) ≥ PrN (S).

2. If q
sem==⇒ S Prsem(q) ≤ PrN (S).

The following lemma ensures that both kinds of approximate inferences shall
converge to exact inferences.

Lemma 3. q
sem⇐=⇒ S if and only if q

sem==⇒ S and q
sem⇐== S.

5 Progressive Algorithms

In this section, we materialize the approximate approach presented in the previ-
ous section, by presenting progressive algorithms first in an abstract form called
Translation schemes (Subsect. 5.1) and then in pseudo code (Subsect. 5.2).

5.1 Translation Schemes

Intuitively, a Translation scheme for semantics sem controls the translation pro-
cess defined in Definition 8. It is defined in terms of a set of states K and three
helper functions γ, λ, δ. For example, a translation scheme for the credulous
semantics is Mcr = 〈K, γ, λ, δ〉 where

1. K is the set of states of Mcr. Concretely each state in K is a tuple of the
form 〈P,O, A,C〉 as defined in Subsect. 2.3. A pair (k, s) of a state k and a
partial world s is called an configuration.

2. γ, called the acceptance function of Mcr, maps each state k ∈ K to � or
⊥ (true or false) where γ(k) = � iff k has the form 〈∅, ∅, , 〉. A configuration
(k, s) is called an accepting configuration if γ(k) = �.

3. λ, called the initialization function of Mcr, maps a given proposition
q (which needs to be translated) to a singleton set λ(q) = {(〈{q}, ∅,A ∩
{q}, ∅〉, ∅)} containing only one configuration (〈{q}, ∅,A ∩ {q}, ∅〉, ∅).
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4. δ, called the transition function of Mcr, maps each pair (c, sl) where
– c = (k, s) is a non-accepting configuration, and
– sl is a function that selects from k = 〈P,O, A,C〉 either (1) a sentence

σ ∈ P, or (2) a sentence σ ∈ S for some S ∈ O, or (3) an empty set
∅ ∈ O,

into a set of configurations δ(c, sl) defined as follows.
(a) If sl selects a sentence σ by case 1 or 2, and further σ is a probabilistic

assumption not occurring in s, then δ(c, sl) = {(k, s∪{σ}), (k, s∪{¬σ})}.
(b) Otherwise, δ(c, sl) = {(k′, s) | k′ ∈ FollowABFs

(k, sl)}.

In general, translation schemes have the following form.

Definition 9. A Translation scheme is a tuple M = 〈K, γ, λ, δ〉 where

1. K is a set of states. A pair (k, s) of a state k and a partial world s is called
a configuration.

2. γ, an acceptance function, maps each state k into a truth value where
γ(k) = � (resp. γ(k) = ⊥) means that k is an accepting state (resp. non-
accepting state). An accepting (resp. non-accepting) configuration (k, s) is
such that γ(k) = � (resp. γ(k) = ⊥).

3. λ, an initialization function, maps each proposition q into a set of config-
urations λ(q).

4. δ, a transition function, maps each pair (c, sl) where
– c = (k, s) is a non-accepting configuration, and
– sl is a selection function whose only requirement is that sl(k) is defined.

into a set of configurations δ(c, sl) satisfying either conditions below.
(a) δ(c, sl) = {(k, s ∪ {σ}), (k, s ∪ {¬σ})} for some probabilistic assumption

σ that does not occur in s.
(b) δ(c, sl) ⊆ {(k′, s) | k′ ∈ K}.
The following definition describes how a translation scheme runs in order

translate a given proposition q.

Definition 10. Wrt a Translation scheme M = 〈K, γ, λ, δ〉,
1. A frame derivation for a sentence q using a selection strategy sl is a

sequence of pairs (S0, T0) . . . , (Si, Ti) . . . where:
(a) Si is a set of partial worlds and Ti is a set of configurations. The first

pair (S0, T0) = (∅, λ(q)).
(b) At each step i, sl selects a configuration c = (k, s) from Ti, and

i If c is an accepting configuration, then Ti+1 = Ti − {c} and Si+1 =
Si ∪ {s}.

ii. Otherwise, Ti+1 = Ti − {c} ∪ δ(c, sl) and Si+1 = Si.
2. A derivation (S0, T0), . . . , (Sn, Tn) is said to be full if Tn = ∅ and in such a

case Sn is called the derived frame.

We are interested in sound translation schemes, because they ensure that if
S is a derived frame for proposition q, then q is translatable to S. Concretely,
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Definition 11. Let M = 〈K, γ, λ, δ〉 be a translation scheme and sem be an
argumentation semantics. We say that M is sound under sem iff for any a full
frame derivation (S0, T0), . . . , (Sn, Tn) of a proposition q, q

sem⇐=⇒ Sn.

For example, it turns out that:

Lemma 4. The translation scheme Mcr (described at the beginning of this
section) is sound under the credulous semantics12.

Finally, the following theorem says that full derivations of sound transla-
tion scheme perform exact translations, while partial derivations perform under-
translations and over-translations at the same time.

Theorem 3. Let M be a translation scheme, sem be an argumentation seman-
tics and q be a proposition. If M is sound under sem, then for any full derivation
(S0, T0), . . . , (Sn, Tn) of q,

1. q
sem⇐=⇒ Sn, and

2. for any i < n, q
sem⇐== Si and q

sem==⇒ Si ∪ {s | ( , s) ∈ Ti}.
Data: A sentence q; a semantics sem; a non-negative integer maxSteps.
Result: An interval [l, u] containing Prsem(q)

Function ProgressiveInference(q, sem,maxSteps)
M := a sound translation scheme under sem;
(Π,Θ) := a PLP program representing BN N of the underlying
PABA framework

(S,S ′) := ProgressiveTranslation(q,maxSteps,M)
foreach s ∈ S do

Π := Π ∪ {lower ← s}
end
foreach s ∈ S ′ do

Π := Π ∪ {upper ← s}
end
l := the probability of lower according to PLP program (Π,Θ)
u := the probability of upper according to PLP program (Π,Θ)
return [l, u]

Algorithm 1: ProgressiveInference(q, sem,maxSteps)

5.2 Pseudo Code and Implementation

Now we are ready to give the pseudo codes for our progressive algorithms. The
pseudo-code function ProgressiveInference(q, sem,maxSteps) given in Algo-
rithm1 combines progressive translation, which is performed by the pseudo-code
function ProgressiveTranslation(q,maxSteps,M) in Algorithm2, and proba-
bilistic query answering, which is done by PLP. Note that both functions receive
a non-negative integer maxSteps as a proxy for time budget.
12 We have developed sound translation schemes for the ideal semantics and skeptical

preferred semantics. However they can not be presented here due to lack of space.
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Data: A sentence q; a non-negative integer maxSteps; and a translation scheme
M = 〈 , γ, λ, δ〉 (the set of states K need not be passed in. This is
important because K is often a big and even infinite set).

Result: A frame S such that q
sem⇐=⇒ S if given time budget is sufficient;

otherwise a pair (S, S ′) of frames such that q
sem⇐== S and q

sem
==⇒ S ′.

Function ProgressiveTranslation(q, maxSteps, M)
(S, T ) := (∅, λ(q))
sl := a selection strategy
Procedure OneStepTranslation()

sl selects a configuration c = (k, s) from T
T := T − {c}
if γ(k) =  then

S := S ∪ {s}
else

T := T ∪ δ(c, sl)
end

stepCount := 0
while T �= ∅ and stepCount < maxSteps do

OneStepTranslation()
stepCount := stepCount + 1

end
if T = ∅ then

return S;
else

S ′ := S ∪ {s | ( , s) ∈ T }
return (S, S ′);

end

Algorithm 2: ProgressiveTranslation(q,maxSteps,M)

The following theorem asserts the correctness of our progressive algorithms.

Theorem 4. 1. If ProgressiveTranslation(q,maxSteps,M) returns a pair
(S,S ′) and the translation scheme M is sound under semantics sem, then
q

sem⇐== S and q
sem==⇒ S ′.

2. If ProgressiveInference(q, sem,maxSteps) returns an interval [l, u] then
l ≤ Prsem(q) ≤ u.

In the following, we demonstrate a Prolog-based implementation of the
above algorithms. As illustrated by code listing 1.2, which specifies the PABA
framework in Example 1, users specifies PABA frameworks using several pred-
icates: iNas([...]) declares assumptions; contr(...) refers to the contrary
of an assumption; iRule(..., [...]) declares an inference rule; iPas([...])
declares probabilistic assumptions; and iProblog(...) gives the file path of a
Problog program encoding a Bayesian network, which is exemplified by Code
listing 1.3. The screen shot in Fig. 2 shows how users call our progressive algo-
rithms to compute Prsem(nothing) using predicate prob. For example, the last
call “prob(sk, nothing, Pr sk nothing, Frame, 50)” queries Prsk(nothing)
with maxSteps = 50. It turns out that this time budget is sufficient for produc-



384 N. D. Hung

ing the exact answer 0.831. In the call just before, we give maxSteps = 40 and
receive a probability interval [0.81, 0.834] instead of the exact probability.

Fig. 2. Calling progressive algorithms

6 Conclusions and Related Work

We develop progressive inference algorithms for three PA semantics: the credu-
lous, the ideal, and the skeptical preferred semantics. To the best of our knowl-
edge, approximate inference has not been explored in the current literature of
PA, though one might say that classical AA [3] has offered a somewhat crude
way to this issue, namely that one can approximate one semantics by another
that is more amenable to computation. For example, one may approximate the
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skeptical preferred semantics by the credulous semantics, getting false positives
sometimes (since a credulously acceptable argument may not be skeptically-
preferred acceptable). On the other hand, if willing to have false negatives, one
can approximate the skeptical preferred semantics by the ideal semantics, which
can be in turn approximated by the grounded semantics. Since PA subsumes
AA, the approximate inference problem addressed in this paper is broader than
the corresponding one in AA. It is worth noting that computing the semantics
is just one (possibly the most important) among other computational problems
studied in the PA literature. For example, in [17] Li et al. have used a Monte-
Carlo simulation to approximate the probability of a set of arguments consistent
with an argumentation semantics in their model of Probabilistic Abstract Argu-
mentation (Li’s PAA). The complexity of this problem is investigated in [7]. As
briefly presented in the introduction, PABA and Li’s PAA are just two PA mod-
els among many others [9,14,15,19,22] (for a recent review, see [15]). Though we
restrict ourselves to PABA, our developed algorithms are directly applicable to,
for example the PA models in [17,19], because, as shown in [13], these models
can be translated easily to PABA. In general, this translation approach can be
extended for any PA models adopting the distribution semantics, according to
which a PA framework is viewed as a compact representation of a probability
distribution of classical AA frameworks. Not in this line are the PA models in
[9,14,15,22] whose semantics are defined in terms of some rational conditions
on a function f : AR → [0, 1], for f(A) to represent the “value” of argument A,
taking into account an attack relation Att ⊆ AR × AR between the arguments.
Note that f(A) has been given diverse interpretations, from the truth of A, the
reliability of A, the probability of A being effective, the belief degree put into
A by some agent [9]. It is interesting to explore progressive inference algorithms
for computing such a value f(A).
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tract no SIIT 2017-YRG-NH02.
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Abstract. We present an extension-based approach for computing pref-
erences in an abstract argumentation system. Although numerous argu-
mentation semantics have been developed previously for identifying
acceptable sets of arguments from an argumentation framework, there is
a lack of justification behind their acceptability based on implicit argu-
ment preferences. This paper presents a novel algorithm for exhaustively
computing and enumerating all possible sets of preferences for a conflict-
free set of arguments in an abstract argumentation framework. We prove
the soundness and completeness of the algorithm. The research estab-
lishes that preferences are determined using an extension-based approach
after the evaluation phase (acceptability of arguments) rather than stated
beforehand. We also present some novel insights by comparing the com-
puted preferences for the extensions.

1 Introduction

Preferences play a central part in decision making and have been extensively
studied in various disciplines such as economy, operations research, psychology
and philosophy [21]. Preferences are used in many areas of artificial intelligence
including planning, scheduling, multi-agent systems, combinatorial auctions and
game playing [27]. Preference elicitation is a very difficult task and automating
the process of preference extraction can be very difficult. The complexity of
eliciting preferences and representational questions like dealing with uncertainty
has remained a very active research area [18,22,27].

Argumentation has gained an increasing popularity in Artificial Intelli-
gence (AI). It has been widely used for handling inconsistent knowledge
bases [11,16,25], and dealing with uncertainty in decision making [6,12,20].
Logic-based abstract argumentation [15] provides a formal representation of pref-
erences. An abstract argumentation framework is a directed graph consisting of
nodes that represent unique atomic arguments and directed edges that represent
an attack between two arguments. This visual representation of an argumenta-
tion framework as a directed graph is also known as an argumentation graph.
Acceptable sets of arguments called extensions for an argumentation framework
can be computed based on various acceptability semantics [15].

c© Springer Nature Switzerland AG 2018
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Arguments can have different strengths, e.g., an argument relies on more
certain or important information than another. This has led to the introduc-
tion of preference-based argumentation framework consisting of preference rela-
tions between arguments [1,2,4,6,19,23]. Furthermore, preferences are taken into
account in the evaluation of arguments at the semantic level, which is also known
as preference-based acceptability [5]. The basic idea is to accept undefeated argu-
ments and also arguments that are preferred to their attacking arguments, as
these arguments can defend themselves against their attacking arguments.

Several variations of argumentation frameworks with preferences have been
studied previously. Value-based argumentation framework (VAF) [9] extends a
standard argumentation framework to take into account values promoted by
arguments. Preferences over arguments are determined by the values the argu-
ments promote or support. The idea is to accept undefeated arguments and
also arguments who promote values that are more important or preferred to
the values promoted by their attacking arguments. Furthermore, value-based
argumentation frameworks (VAF) have been extended to take into account the
possibility that arguments may support multiple values, and therefore, various
types of preferences over values could be considered in order to deal with real
world situations [17]. Another variation is an extended argumentation frame-
work (EAF) [19] that considers the case where arguments can express preferences
between other arguments.

Further studies on preference-based argumentation frameworks led to the
observation that ignoring the attacks where the attacked argument is stronger
than the attacking argument does not always give intuitive results [7,19], since
the resulting extension violates the basic condition imposed on acceptability
semantics, which is the conflict-freeness of extensions, thus violating the rational-
ity postulates given in [13]. This problem was later resolved in a new preference-
based argumentation framework that guarantees conflict-free extensions with a
symmetric conflict relation [3,19]. The preference relation is then used to deter-
mine the direction of the defeat relation between the two arguments. Further-
more, preference relations have been used to refine the results of a framework
by comparing its extensions [8].

Although a preference-based argumentation framework (PAF) has been pre-
viously studied to represent an abstract argumentation framework [17], there
seems to be no previous work on automatically computing implicit argument
preferences in an abstract argumentation framework using an extension-based
approach. Furthermore, there have been no attempts to perform an exhaustive
search for all possible preferences, and their explicit enumeration. The aim of
our research is to exhaustively compute all possible sets of argument preferences
that hold for a given set of conflict-free arguments in an abstract argumentation
framework. We present a novel algorithm to perform this computation.

The remainder of this paper is structured as follows. In Sect. 2, we present the
background on abstract argumentation framework and acceptability semantics
for acceptable set of arguments also known as extensions which is followed by
background on preference-based argumentation framework. In Sect. 3, we present
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an algorithm for computing all possible sets of preferences for a given extension
and abstract argumentation framework, and we prove the soundness and com-
pleteness of the algorithm. In Sect. 4, we present the evaluation and results.
Finally, we conclude and suggest future work in Sect. 5.

2 Background

An argumentation framework is simply a set of arguments and a binary attack
relation among them. Given an argumentation framework, the aim of argumen-
tation theory is to identify the sets of arguments that can survive the conflicts
expressed in the framework. In this work, we only consider finite abstract argu-
mentation frameworks.

Definition 1 (Abstract Argumentation Framework [15]): An abstract argumen-
tation framework (AAF) is a pair AAF = (A,R), where A is a set of arguments
and R is an attack relation (R ⊆ A × A). The notation (A,B) ∈ R where
A,B ∈ A denotes that A attacks B.

A B C D E

Fig. 1. Example abstract argumentation framework AAF 1

An abstract argumentation framework is a directed graph where the argu-
ments are represented as nodes and the attack relations as directed edges. An
example abstract argumentation framework (A,R) is shown in Fig. 1, where
A = {A,B,C,D,E} and R = {(A,B), (C,B), (C,D), (D,C), (D,E)}, which
means that A attacks B, C attacks both B and D, and D attacks both C
and E.

Dung [15] originally introduced an extension approach to define the accept-
ability of arguments in an argumentation framework. An extension is a subset
of A that represents the set of arguments that can be accepted together. Dung’s
semantics are based on a conflict-free set of arguments, i.e., a set should not be
self-contradictory nor include arguments that attack each other. This is defined
formally as follows.

Definition 2 (Conflict-freeness): Let (A,R) be an argumentation framework.
The set E ⊆ A is conflict-free if and only if there are no A,B ∈ E such that
(A,B) ∈ R

The minimal requirement for an extension to be acceptable is conflict-
freeness. Many other acceptability semantics have been introduced in the lit-
erature, and from these the most common are given as follows.
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Definition 3 (Extensions): Let AAF = (A,R) be an argumentation framework,
and set E ⊆ A and A,B,C ∈ A
– E is admissible iff it is conflict free and defends all its arguments. E defends

A iff for every argument B ∈ A, if we have (B,A) ∈ R then there exists
C ∈ E such that (C,B) ∈ R.

– E is a complete extension iff E is an admissible set which contains all the
arguments it defends.

– E is a preferred extension iff it is a maximal (with respect to set inclusion)
admissible set.

– E is a stable extension iff it is conflict-free and for all A ∈ A \ E, there exists
an argument B ∈ E such that (B,A) ∈ R.

– E is a grounded extension iff E is a minimal (for set inclusion) complete
extension.

Every argumentation framework has at least one admissible set (the empty
set), exactly one grounded extension, one or more complete extensions, one
or more preferred extensions, and zero or more stable extensions. The follow-
ing example shows the extensions for the abstract argumentation framework of
Fig. 1.

Example 1. Given the abstract argumentation framework of Fig. 1, then we com-
pute its extensions as follows:

– Conflict free: {A,C,E}, {A,D}, {B,D}, {A,C}, {A,E}, {B,E}, {C,E}, {A},
{B}, {C}, {D}, {E}, ∅

– Admissible: {A,C,E}, {A,C}, {A,D}, {C,E}, {A}, {C}, {D}, ∅
– Complete: {A,C,E}, {A,D}, {A}
– Preferred: {A,C,E}, {A,D}
– Stable: {A,C,E}, {A,D}
– Grounded: {A}

While an abstract argumentation framework captures the basic interactions
between arguments, it does not consider factors such as argument strength, i.e.,
arguments may not necessarily have the same strengths [10,14,25]. Consequently,
preferences over arguments can be added to the argumentation framework and
taken into account in order to evaluate arguments [2,4,6,19,23], which is demon-
strated in the following example [5].

Example 2. Let (A,R) be an argumentation framework with A = {A,B,C}
and R = {(A,B), (B,C)}. The set of acceptable argument is {A,C}. However,
suppose argument B is preferred to A and C. How can we combine the pref-
erence over arguments and the attack relation to decide which arguments are
acceptable? We can say that, since B is preferred to A, it can defend itself from
the attack of A. This would lead us to accepting B and rejecting C.

Dung’s framework has been extended by introducing preference relations into
argumentation systems, which is known as a preference-based argumentation
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framework (PAF) [1]. A PAF extends an abstract argumentation framework to
account for preferences over arguments. The attack relation in a preference-based
argumentation framework is called defeat, and is denoted by Def .

Definition 4 (Preference-based Argumentation Framework (PAF) [1]). A
preference-based argumentation framework is a triple (A,Def ,≥) where A is
a set of arguments, Def is the defeat binary relation on A, and ≥ is a (partial
or total) pre-ordering defined on A × A. The notation (A,B) ∈ Def means that
argument A defeats argument B.

The notation A ≥ B means that argument A is at least as preferred as B
and the relation > is the strict counterpart of ≥.

A B C D

Fig. 2. Example abstract argumentation framework AAF 2

Example 3. Let there be the argumentation framework of Fig. 2. Preferences
could be applied in two ways [8]: one way is to apply preferences at the time
of argument acceptability (semantic level); and second way is to compute all
preferred extensions and filter them by the application of the preferences. By
using the first method, if we assume {A > B,C > D} is the set of preferences
between arguments, then we get a single extension E = {A,C}. Now, by using
the second method, we first compute all preferred extensions [{A,C}, {B,D}].
These extensions could now be filtered by the application of the set of preferences
{A > B,C > D} which suggest {A,C} to be better than {B,D}.

A preference-based argumentation framework can represent an abstract argu-
mentation framework [17]:

Definition 5 (PAF representing an AAF). A preference-based argumentation
framework (A,Def ,≥) represents an abstract argumentation framework (A,R)
iff ∀A,B ∈ A, it is the case that (A,B) ∈ R iff (A,B) ∈ Def and it is not the
case that B > A

3 An Extension-Based Approach for Computing
Preferences

It has been previously shown that each preference-based argumentation frame-
work represents one argumentation framework, however each argumentation
framework can be represented by various preference-based argumentation frame-
works [17]. Following this, we introduce an extension-based approach for com-
puting sets of preferences for a subset of conflict-free arguments in an abstract
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argumentation framework. For any two arguments A and B in an argumenta-
tion framework, we use the strict preference relation A > B to denote that A
is strictly preferred to B, i.e., A is of greater strength than B, and we use the
preference relation A = B to denote that A and B are of equal strength or
preference. Following are the three cases that we have identified for which the
preferences are computed for a given conflict-free extension E in an abstract
argumentation framework AAF = 〈A,R〉.
– Case 1: Suppose α, β ∈ A and α ∈ E , β /∈ E such that α are attacked by

arguments β, and α are not defended by any other arguments (not equal to
α) in the extension. We have the following preferences for all α and β: α > β.

– Case 2: Suppose α, β ∈ A and α ∈ E , β /∈ E , and suppose α attack arguments
β and β do not attack α. We have the following preferences for all α and β:
β ≯ α, i.e., (α > β) ∨ (α = β).

– Case 3: Suppose α, β, γ ∈ A and α, γ ∈ E , β /∈ E where α, β and γ are
different arguments, such that, α are attacked by arguments β but defended
by arguments γ in the extension, i.e., γ attack β. We have the following
preferences for all α and β: (α > β) ∨ (α = β) ∨ (β > α).

A worked example of how preferences are computed using the above three cases
is as follows.

Example 4. Let there be the abstract argumentation framework (A,R) of Fig. 1,
where A = {A,B,C,D,E} and R = {(A,B), (C,B), (C,D), (D,C), (D,E)}. We
consider the conflict-free extensions E1 = {A,C,E}, E2 = {A,D} for computing
preferences. For the extension E1 = {A,C,E}, we have the following preferences
for each case.

– Case 1: (C > D)
– Case 2: ((A > B) ∨ (A = B)) ∧ ((C > B) ∨ (C = B))
– Case 3: (E > D) ∨ (E = D) ∨ (D > E)

Combining the preferences from the three cases we get (C > D) ∧ (((A >
B)∨ (A = B))∧ ((C > B)∨ (C = B)))∧ ((E > D)∨ (E = D)∨ (D > E)), which
gives us the following sets of preferences:

{C > D,A > B,C > B,E > D}
{C > D,A > B,C > B,E = D}
{C > D,A > B,C > B,D > E}
{C > D,A > B,C = B,E > D}
{C > D,A > B,C = B,E = D}
{C > D,A > B,C = B,D > E}
{C > D,A = B,C > B,E > D}
{C > D,A = B,C > B,E = D}
{C > D,A = B,C > B,D > E}
{C > D,A = B,C = B,E > D}
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{C > D,A = B,C = B,E = D}
{C > D,A = B,C = B,D > E}

For the extension E2 = {A,D}, we have the following preferences for each case.

– Case 1: (D > C)
– Case 2: ((A > B) ∨ (A = B)) ∧ ((D > E) ∨ (D = E))
– Case 3: ∅

Combining the preferences from the three cases we get (D > C) ∧ (((A >
B) ∨ (A = B)) ∧ ((D > E) ∨ (D = E))) ∧ ∅, which gives us the following sets of
preferences:

{D > C,A > B,D > E},

{D > C,A > B,D = E},

{D > C,A = B,D > E},

{D > C,A = B,D = E}
Algorithm 1 exhaustively computes all possible sets of preferences for a given
input extension (consisting of conflict-free arguments) in an abstract argumen-
tation framework (AAF) using the above three cases. The input of Algorithm1
is a tuple 〈AAF, E〉, where:

– Abstract argumentation framework AAF = 〈A,R〉, A denotes the set of all
arguments in the AAF , and R denotes the attack relation between arguments.

– Extension E consists of a finite number of conflict-free arguments such that
E ⊆ A.

The algorithm computes and outputs a set consisting of finite sets of preferences,
where each set of preferences is represented as Prefs = {A > B,B = C, ....} such
that {A,B,C} ⊆ A.

Algorithm 1. Compute all preferences
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict-free arguments
Ensure: PrefSet , the set of sets of all possible preferences
1: function ComputeAllPreferences(AAF , E)
2: Prefs ← ComputePreferences1(AAF , E)
3: PrefSet ← ComputePreferences2(AAF , E ,Prefs)
4: PrefSet ← ComputePreferences3(AAF , E ,PrefSet)
5: return PrefSet
6: end function

We establish that our approach is sound (that is, all its outputs are cor-
rect) and complete (that is, it outputs all possible solutions). We start with its
soundness:
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Algorithm 2. Compute preferences (Case 1)
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict-free arguments
Ensure: Prefs, a set of preferences
1: function ComputePreferences1(AAF , E)
2: Prefs ← ∅
3: for all A ∈ E do
4: Attackers ← {B | (B, A) ∈ R} � get all attackers of A
5: for all B ∈ Attackers do
6: Defenders ← {C | C �= A, C ∈ E , (C, B) ∈ R} � C �= A attacks B &

defends A
7: if Defenders = ∅ then � if B not attacked by any C
8: Prefs ← Prefs ∪ {A > B} � add preference A > B
9: end if

10: end for
11: end for
12: return Prefs
13: end function

Theorem 1. Algorithm1 is sound in that given an abstract argumentation
framework AAF and an extension E as input, every output preference set
Prefs ∈ PrefSet, when applied to the AAF results in the input E (under a given
semantics).

Proof. We prove this by exploring all cases and how these are handled by
Algorithms 2–4. Each set of preferences computed for each subset of arguments
α, β, γ ⊆ A is such that α, γ ⊆ E , β ∩ E = ∅. We proceed to show how each of
the auxiliary Algorithms 2–4 help us achieve this.

Algorithm 2 computing each case 1 preference of the form A > B,A ∈ E , B ∈
β, (B,A) ∈ R ensures that the following holds:

1. There is no C ∈ E , C �= A such that (C,B) ∈ R (lines 6–7).
2. A ∈ E since A is preferred to its attacking argument B, which invalidates the

attack (B,A) ∈ R.
3. Since the input extension E consists of conflict free arguments, if A ∈ E then

its attacking argument B �∈ E . This supports that β ∩ E = ∅.

Algorithm 3 computing each case 2 preferences of the form A > B,A = B,A ∈
E , B ∈ β, (A,B) ∈ R, (B,A) �∈ R ensures the following holds:

1. Since A attacks B and B does not attack A, we have two different preferences
between A and B, namely, A > B,A = B. Therefore A ∈ E with respect to
each of these preferences.

2. Preferences A > B,A = B will be in different preference sets, as per lines 8
and 9. We will have Prefs1 ← Prefs∪{A > B} and Prefs2 ← Prefs∪{A = B},
where Prefs consists of preferences of case 1.

Algorithm 4 computing each case 3 preferences of the form A > B,A = B,B >
A,A ∈ α,B ∈ β,C ∈ γ, (B,A) ∈ R, (C,B) ∈ R ensures the following holds:
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Algorithm 3. Compute preferences (Case 2)
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict free arguments
Require: Prefs, a set of preferences
Ensure: PrefSet , a set of sets of preferences
1: function ComputePreferences2(AAF , E ,Prefs)
2: PrefSet ← {Prefs}
3: PrefSet ′ ← ∅
4: for all A ∈ E do
5: Attacked ← {B | (A, B) ∈ R ∧ (B, A) /∈ R} � get arguments A attacks
6: for all B ∈ Attacked do � for all B attacked by A
7: for all Prefs ∈ PrefSet do � for all sets of preferences Prefs
8: PrefSet ′ ← PrefSet ′ ∪ {Prefs ∪ {A > B}} � add Prefs ∪ {A > B}
9: PrefSet ′ ← PrefSet ′ ∪ {Prefs ∪ {A = B}} � add Prefs ∪ {A = B}

10: end for
11: PrefSet ← PrefSet ′

12: PrefSet ′ ← ∅
13: end for
14: end for
15: return PrefSet
16: end function

1. Since C defends A from the attack of B, we have three different preferences
between A and B, namely, A > B, A = B and B > A. Therefore A ∈ E with
respect to each of these preferences.

2. Preferences A > B,A = B,B > A will be in different preference sets, as
per lines 9, 10 and 11. We will have Prefs1 ← Prefs ∪ {A > B}, Prefs2 ←
Prefs ∪ {A = B} and Prefs3 ← Prefs ∪ {B > A}, where Prefs consists of
preferences of cases 1 and 2.

��
Theorem 2. Algorithm1 is complete in that given an abstract argumentation
framework AAF and an extension E as input, if there is a preference set Prefs ∈
PrefSet which when applied to the AAF results in the input E (under a given
semantics), then Algorithm1 will find it.

Proof. Similar to above, we prove this by exploring all cases and how these are
handled by Algorithms 2–4. We find all sets of preferences computed for each
subset of arguments α, β, γ ⊆ A, α, γ ⊆ E , β ∩ E = ∅. We proceed to show how
each of the auxiliary Algorithms 2–4 help us achieve this.

Algorithm 2 computes all case 1 preferences of the form A > B,A ∈ E , B ∈
β, (B,A) ∈ R. Lines 3-11 exhaustively search for A ∈ E for which there is an
attacker B (not attacked by any C �= A). If there are such A,B ∈ A, the
algorithm will find them and add A > B to a set of preferences.

Algorithm 3 computes all case 2 preferences of the form A > B,A = B,B ∈
β,A ∈ E , (A,B) ∈ R, (B,A) �∈ R. Lines 4-14 exhaustively search for A ∈ E for
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Algorithm 4. Compute preferences (Case 3)
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict free arguments
Require: PrefSet , a set of sets of preferences
Ensure: PrefSet , an updated set of sets of preferences
1: function ComputePreferences3(AAF , E ,PrefSet)
2: PrefSet ′ ← ∅
3: for all A ∈ E do
4: Attackers ← {B | (B, A) ∈ R} � get all attackers of A
5: for all B ∈ Attackers do
6: Defenders ← {C | C �= A, C ∈ E , (C, B) ∈ R} � C �= A attacks B &

defends A
7: if Defenders �= ∅ then
8: for all Prefs ∈ PrefSet do � for all sets of preferences Prefs
9: PrefSet ′ ← PrefSet ′ ∪ {Prefs ∪ {A > B}} � add Prefs ∪ {A > B}

10: PrefSet ′ ← PrefSet ′ ∪ {Prefs ∪ {A = B}} � add Prefs ∪ {A = B}
11: PrefSet ′ ← PrefSet ′ ∪ {Prefs ∪ {B > A}} � add Prefs ∪ {B > A}
12: end for
13: PrefSet ← PrefSet ′

14: PrefSet ′ ← ∅
15: end if
16: end for
17: end for
18: return PrefSet
19: end function

which there is an attacked argument B and B does not attack A. If there are
such A,B ∈ A, the algorithm will find them and add each A > B,A = B to a
different set of preferences.

Algorithm 4 computes all case 3 preferences of the form A > B,A = B,B >
A,A ∈ α,B ∈ β,C ∈ γ, (B,A) ∈ R, (C,B) ∈ R. Lines 3–17 exhaustively search
for A ∈ E for which there is an attacker B and there is a defender C that attacks
B. If there are such A,B,C ∈ A, the algorithm will find them and add each
A > B,A = B,B > A to a different set of preferences. ��

4 Evaluation and Results

In this section, we present an illustrative example to demonstrate and evalu-
ate Algorithm 1. Suppose we have an input abstract argumentation framework
(A,R) shown in Fig. 1, where A = {A,B,C,D,E} and R = {(A,B), (C,B),
(C,D), (D,C), (D,E)}. We consider the conflict-free extension E1 = {A,C,E}
for computing preferences. Table 1 shows the preferences computed at lines 2, 3
and 4 of Algorithm 1.

– At line 2, Algorithm 2 is called, which returns the set of case 1 preferences
{C > D}.
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Table 1. Computing preferences for extension {A, C, E}

Line no. Preference sets

2 {C > D}
3 {C > D, A > B, C > B}

{C > D, A > B, C = B}
{C > D, A = B, C > B}
{C > D, A = B, C = B}

4 {C > D, A > B, C > B, E > D}
{C > D, A > B, C > B, E = D}
{C > D, A > B, C > B, D > E}
{C > D, A > B, C = B, E > D}
{C > D, A > B, C = B, E = D}
{C > D, A > B, C = B, D > E}
{C > D, A = B, C > B, E > D}
{C > D, A = B, C > B, E = D}
{C > D, A = B, C > B, D > E}
{C > D, A = B, C = B, E > D}
{C > D, A = B, C = B, E = D}
{C > D, A = B, C = B, D > E}

– At line 3, Algorithm 3 is called, which returns the sets of preferences (cases 1
and 2 combined together) {C > D,A > B,C > B}, {C > D,A > B,C = B},
{C > D,A = B,C > B}, {C > D,A = B,C = B}.

– Finally at line 4, Algorithm4 is called, which returns the sets of preferences
(cases 1, 2 and 3 combined together) {C > D,A > B,C > B,E > D},
{C > D,A > B,C > B,E = D}, {C > D,A > B,C > B,D > E},
{C > D,A > B,C = B,E > D}, {C > D,A > B,C = B,E = D},
{C > D,A > B,C = B,D > E}, {C > D,A = B,C > B,E > D},
{C > D,A = B,C > B,E = D}, {C > D,A = B,C > B,D > E},
{C > D,A = B,C = B,E > D}, {C > D,A = B,C = B,E = D},
{C > D,A = B,C = B,D > E}.

Table 2 presents the sets of preferences for the two preferred extensions
{A,C,E} and {A,D} of the abstract argumentation framework given above
and shown in Fig. 1. The sets of preferences for all conflict-free extensions for
this example abstract argumentation framework are shown in Table 3 in the
Appendix.

The unique preferences for an extension in comparison to another extension
can be computed by Algorithm 5. By analysing the preference sets shown in
Table 2, we can identify the unique preferences for extension {A,C,E}, which
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Table 2. Preferences for the preferred extensions {A, C, E} and {A, D}

Preferred
extensions

Preference sets Unique
preferences

Common
preferences

{A,C,E} {C > D,A > B,C > B,E > D} C > D A > B

{C > D,A > B,C > B,E = D} E > D A = B

{C > D,A > B,C > B,D > E} C > B D > E

{C > D,A > B,C = B,E > D} C = B D = E

{C > D,A > B,C = B,E = D}
{C > D,A > B,C = B,D > E}
{C > D,A = B,C > B,E > D}
{C > D,A = B,C > B,E = D}
{C > D,A = B,C > B,D > E}
{C > D,A = B,C = B,E > D}
{C > D,A = B,C = B,E = D}
{C > D,A = B,C = B,D > E}

{A,D} {D > C,A > B,D > E} D > C

{D > C,A > B,D = E}
{D > C,A = B,D > E}
{D > C,A = B,D = E}

Algorithm 5. Algorithm for Computing Unique Preferences
Require: PrefSet1 , the set of sets of preferences for first extension.
Require: PrefSet2 , the set of sets of preferences for second extension.
Ensure: UniquePrefs, unique preferences for first extension.
1: function ComputeUniquePreferences(PrefSet1 , PrefSet2 )
2: for all Prefs1 ∈ PrefSet1 do
3: for all p ∈ Prefs1 do
4: if �Prefs2 ∈ PrefSet2 s.t. p ∈ Prefs2 then
5: UniquePrefs ← UniquePrefs ∪ p
6: end if
7: end for
8: end for

return UniquePrefs
9: end function

are C > D, E > D, C > B and C = B1, and the unique preferences for extension
{A,D}, which is D > C. Since, at least one unique preference for each extension
is in its corresponding preference set, therefore it can be concluded that if we
evaluate the example abstract argumentation framework given in Fig. 1 with a
corresponding preference set of a given preferred extension, then the evaluation
results in exactly the same preferred extension.

1 This means it could be either C > B or C = B.
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Algorithm 6. Algorithm for Computing Common Preferences
Require: PrefSet1 , the set of sets of preferences for first extension.
Require: PrefSet2 , the set of sets of preferences for second extension.
Ensure: CommonPrefs, common preferences for both extensions.
1: function ComputeCommonPreferences(PrefSet1 , PrefSet2 )
2: for all Prefs1 ∈ PrefSet1 do
3: for all p ∈ Prefs1 do
4: if ∃Prefs2 ∈ PrefSet2 s.t. p ∈ Prefs2 then
5: CommonPrefs ← CommonPrefs ∪ p
6: end if
7: end for
8: end for

return CommonPrefs
9: end function

Furthermore, we can identify preferences that are common to both exten-
sions, which are A > B, A = B, D > E, D = E2. The common preferences for
any two extensions can be computed by Algorithm 6. It is interesting to note
that, extension {A,C,E} can have preferences D > E and D = E, consider-
ing D is not present in the extension. It can be concluded that if we evalu-
ate the example abstract argumentation framework given in Fig. 1, then we get
both preferred extensions with the following preference sets: {A > B,D > E},
{A > B,D = E}, {A = B,D > E} and {A = B,D = E}.

5 Conclusions and Future Work

In this paper we have described a novel extension-based approach to compute
abstract argument preferences. We present an algorithm that takes an abstract
argumentation framework and a set of conflict-free arguments (extension) as
input and computes all possible sets of preferences that are valid for the accept-
ability of the arguments in the input extension. The main contributions of our
work are as follows:

1. An extension-based approach is employed for computing argument prefer-
ences. Thus, preferences specifically justify the reasoning behind the accept-
ability of the arguments in an extension.

2. Preferences are computed at the end of the argumentation process and need
not be stated in advance.

3. Exhaustive search is performed to compute all possible sets of preferences.
4. The approach operates on a conflict-free extension as input which is the min-

imal acceptability semantic, therefore, it can take as input most of the exten-
sions given in the literature and stated in this paper.

As future work, we plan to investigate different ways to aggregate and assess
the sets of preferences. Furthermore, we also plan to do an empirical evaluation
2 This means it could be either A > B or A = B, and similarly D > E or D = E.
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of our proposed work on concrete examples. This will allow us to filter sets of
preferences, i.e., to accept or reject them; or to rank the sets of preferences by
human participants. This work has applications in decision support systems [26]
and recommender systems [24], where the resulting decision(s) or recommenda-
tion(s) can be justified by the preference set(s).
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ences Research Council (EPSRC) for the grant (EP/P011829/1), Supporting Security
Policy with Effective Digital Intervention (SSPEDI) is gratefully acknowledged.

Appendix

Table 3. Preference sets for all conflict-free extensions

Conflict-free extensions Preference sets

{A,C,E} {C > D,A > B,C > B,E > D}
{C > D,A > B,C > B,E = D}
{C > D,A > B,C > B,D > E}
{C > D,A > B,C = B,E > D}
{C > D,A > B,C = B,E = D}
{C > D,A > B,C = B,D > E}
{C > D,A = B,C > B,E > D}
{C > D,A = B,C > B,E = D}
{C > D,A = B,C > B,D > E}
{C > D,A = B,C = B,E > D}
{C > D,A = B,C = B,E = D}
{C > D,A = B,C = B,D > E}

{A,D} {D > C,A > B,D > E}
{D > C,A > B,D = E}
{D > C,A = B,D > E}
{D > C,A = B,D = E}

{B,D} {B > A,B > C,D > C,D > E}
{B > A,B > C,D > C,D = E}

{A,C} {C > D,A > B,C > B}
{C > D,A > B,C = B}
{C > D,A = B,C > B}
{C > D,A = B,C = B}

{A,E} {E > D,A > B}
{E > D,A = B}

{B,E} {B > A,B > C,E > D}
{C,E} {C > D,C > B,E > D}

{C > D,C > B,E = D}
{C > D,C > B,D > E}
{C > D,C = B,E > D}
{C > D,C = B,E = D}
{C > D,C = B,D > E}

{A} {A > B}
{A = B}

{B} {B > A,B > C}
{C} {C > D,C > B}

{C > D,C = B}
{D} {D > C,D > E}

{D > C,D = E}
{E} {E > D}
∅ ∅
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Abstract. We present a logic of agency called LAE whose language
includes propositional constants for actions and expectations. The logic
is based on Von Wright’s theory of agency in general and his analysis of
instrumentality in particular. An axiomatization of the logic, including
an independence of agents axiom, is provided and soundness and com-
pleteness are shown with respect to its intended class of frames. The
framework of LAE will allow us to formally define a manifold of con-
cepts involved in agency theories, including Von Wright’s four elementary
forms of action, the notion of forbearance and notions of instrumentality
that make reference to an agent’s expectations.

Keywords: Action logic · Agency · Expectations · Instrumentality

1 Introduction

What do we mean when we ascribe agency to a human being? We most likely
assert that this person has the ability to perform an action. This answer high-
lights two key aspects of agency: ability and action. A third key aspect of agency
is that actions can be seen in most cases as means to an end; that is, as instru-
ments. The present work provides a logical framework to reason about the inter-
play of these three aspects of agency. While the notions of ability and action
have been formally addressed for the past few decades, the notion of instrumen-
tality seems to have received minor attention in the literature thus far. Philo-
sophical analyses of instrumentality as such are scarce, although the concept of
‘means to an end’ is paramount to any theory of agency. Despite these limi-
tations, we believe that logical investigations around instrumentality should be
established on firm philosophical grounds. The present work aims at providing
a formal account of instrumentality within a framework of agency logic and will
be largely based on ideas presented by Georg Henrik von Wright [13–15], who
can be regarded as one of the founding fathers of the logic of action [2].

Two prominent formal frameworks have been developed for the last few
decades with respect to the logical treatment of agency: stit-logic [4,10] and
propositional dynamic logic (PDL) [7,8]. The main difference between the two
approaches can be pinpointed as follows: in stit-logic the focus has been largely

c© Springer Nature Switzerland AG 2018
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put on the formal treatment of (explicit) agents on the basis of available choices,
whereas in PDL the focus has been put on the formal analysis of (explicit)
actions, regarded as transitions between states. In this article we reconstruct
both frameworks within a logic including propositional constants for actions
and expectations called LAE (logic of actions and expectations); our contribu-
tion is related to previous proposals that aim either at extending one framework
to include the other, such as [16], or at defining one framework within the other,
such as [9]. Our main purpose is to use LAE in order to provide a formal def-
inition of various notions of instrumentality that rely on Von Wright’s ideas.
Special attention will be paid to how these notions interact with an agent’s
expectations. The article is divided as follows: in Sect. 2 we present and elabo-
rate on Von Wright’s ideas; in Sect. 3 we introduce the system LAE and prove
its soundness and completeness. Finally, in Sect. 4, we formally specify the main
notions of the theory of agency and instrumentality at issue.

2 A Theory of Agency and Instrumentality

2.1 Acting

To ‘bring about something’ and to ‘prevent something’ are essential character-
istics of what it is to act. What is brought about is a state of affairs and, for
that reason, to ‘see to it that p’ means that one acts “in such a manner that
the state of affairs that p is the result of one’s action” [13, p. 37]. From this
account it follows that acting is strongly related to the emergence of a particular
result (perhaps not always the desired one). An account of action, hence, heavily
depends on the notion of change.

A change is a transition from an initial state to an end-state. These tran-
sitions can be triggered by events in which agents play no role (e.g., a moon
eclipse); however, in many cases they are triggered by an agent’s behaviour. In
particular, an agent may decide to act or not to act in a certain way in a given
circumstance and this behaviour may produce several different results (at least,
in a non-deterministic world). For this reason, we say that an action triggers a
set of possible transitions from an initial state to a set of end-states. To act,
then, is to provoke a specific form of change: it is a change brought about by the
interference of an agent with the “course of nature” [15, p. 36]; one can a poste-
riori say that if the agent had not acted, the course of history would have been
different. This is what Von Wright calls the counterfactual element of action [13,
p. 43].

In order to understand how a result p is related to an action, one also has to
take into account whether p holds or not in the initial state. Indeed, an agent may
bring about p in two ways: either the initial state is ¬p and the agent’s behaviour
changes it to the result p, or the initial state is p and the agent prevents it from
changing to ¬p [15, p. 42]. Summing up, the analysis in this section provides
us with three main characteristics of action: (i) the initial state, (ii) the result
of the agent’s behaviour (i.e., the end-state) and (iii) the counterfactual ‘course
of nature’. Taking into account also the difference between p and ¬p as atomic
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results, Von Wright classifies four elementary forms of agent behaviour ; the first
two concern actions that ‘bring about’ something, the latter two are actions that
‘prevent’ something from happening [15, pp. 43–44]:

– producing p: constructively bringing p into ‘existence’ (Fig. 1a);1

– destroying p: without the agent’s acting p would have ‘prevailed’ (Fig. 1b);
– preserving p: if the agent does not act, then p will ‘perish’ (Fig. 1c);
– suppressing p: if the agent does not act, then p will ‘emerge’ (Fig. 1d).

¬p
(a) producing

¬p

nature

p

act

p
(b) destroying

p

nat.

¬p

act

p
(c) preserving

¬p

nat.

p

act

¬p
(d) suppressing

p

nat.

¬p

act

Fig. 1. Von Wright’s four elementary types of action.

2.2 Actions

Up until now we have been talking about ‘acts’ without specification. Com-
monly, a distinction is made between two sorts of actions: actions described in
an impersonal, generic way (e.g. ‘writing’) and concrete, individual instances of
these generic actions, as performed by a particular agent at a particular time
(e.g. ‘I am currently writing’). The former are frequently called ‘action-types’,
whereas the latter can be named ‘action-tokens ’. Following Von Wright, generic
actions (i.e., types) can be regarded as ‘categories’ to which individual ‘cases’
(i.e., tokens) belong [15, p. 36].

Here we will generalize this account of actions by considering also negative
actions and complex actions. This will enable us to speak of, for instance, the
action-type ‘not opening the door’ and the action-type ‘not opening the door or
closing the window’. Negative actions are usually not expressible in the language
of propositional dynamic logic, but they are taken into account in other formal
approaches to agency which make explicit reference to actions, such as [2] and
[3]. We will regard both action-types and action-tokens as essential to our logic
of agency: As was pointed out in the previous section, an agent’s behaviour at
a particular state triggers a set of possible transitions and, therefore, represents
an action-token. Moreover, as we will clarify in the next section, a proper notion
of instrumentality makes reference to action-types; that is, in order to determine
whether an action is a good instrument for a given purpose, one has to consider
the outcomes of previous transitions triggered by actions of that type.
1 The term used by Von Wright for this behaviour is ‘doing p’. We avoid this expression

because we reserve ‘doing’ for actions, and use ‘producing’ for results.
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2.3 Instrumentality

Actions can be regarded as instrument serving a particular purpose; they are
‘means to an end’. For instance, ‘pressing Y on the keyboard’ and ‘pulling the
handbrake of a car’ are respectively instruments to ‘confirm a procedure on a
computer terminal’ and to ‘perform an emergency stop’. In this section several
distinct forms of instrumentality will be presented that will be formally addressed
in subsequent sections. As a philosophical basis, we will borrow from and extend
Von Wright’s analysis of instrumental goodness, as presented in [14, pp. 19–40].
To avoid ambiguity, the term ‘proper instrument’ is here regarded as an appro-
priate synonym for ‘good instrument’ and they will be used interchangeably.

Let us call an intended state of affairs φ a purpose and an action Δ an
instrument. Paraphrasing Von Wright, an action Δ will qualify as a φ-instrument
if and only if Δ can serve the purpose φ [14, p. 21]. It is also important to
distinguish between instruments that can serve the purpose φ simpliciter and
those that can serve φ well. The former will be called φ-instruments and the
latter proper φ-instruments.

To qualify a particular instrument suitable for a particular purpose, we base
our judgment on past performance; for example, with respect to questions of
instrumentality we often make remarks such as ‘it has worked before’ and ‘it has
never disappointed me (thus far)’. In the first case, we recognize a weak criterion;
that is, the instrument has served the purpose at least once and, for that reason,
it can serve the purpose. In the latter case, we identify a stronger criterion for
instrumentality; that is, there have been applications of the instrument and these
applications have always served the purpose and, for that reason, the instrument
serves the purpose well. Hence, notions of instrumentality are based on past
experience. This experience, subsequently, can be either impersonal or personal
(e.g., ‘this machine has been tested’ or ‘I have used this tool before’). Thus far,
we established two definitions of impersonal instrumentality:

(1) agent-independent basic instrumentality: action-type Δ is a basic
φ-instrument if and only if Δ has served the purpose φ at least once in the
past.

(2) agent-independent proper instrumentality: action-type Δ is a
proper φ-instrument if and only if (i) Δ is a basic φ-instrument and (ii)
Δ has always served the purpose φ in the past.

Hence, notions of instrumentality relate to both purpose and past performance.
However, when we judge that ‘these scissors are a proper instrument for me to
cut this piece of paper’, what do we mean? Von Wright briefly remarks that
“judgments of instrumental goodness, usually, even if not necessarily, contain
a conjectural element” [14, p. 27]. In other words, practical statements about
instrumentality also contain reference to expectations about the instrument’s
future performance. Hence, agent-bound instrumentality is based on both (i)
the past performance of particular action-tokens associated with a certain type
and (ii) the expected continuation of this performance in the nearby future. In
contrast to agent-independent statements of instrumentality, statements of this
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form will vary over agents. What is more, the conjectural element of expected
performance does not guarantee any future result: the agent might simply be
wrong [14, p. 27]. The fact that the instrument has served the purpose well
in the past, does not guarantee that it will not fail in the future. In our formal
framework we will strongly emphasize these fundamental aspects of agent-bound
instrumentality by investigating different notions of instrumentality that are
restricted by the agent’s expectations.

Lastly, we emphasize that expectations must be regarded as those future
moments which the agent considers more likely to happen. An agent’s expecta-
tions about the nearby future are therefore a subset of all possible next moments.
We will accordingly introduce a formal restriction on expectations in Sect. 3.2

From the above we derive two agent-bound definitions of instrumentality:

(3) agent-bound basic instrumentality: An instrument Δ is a basic φ-
instrument for agent α at moment m if and only if (i) Δ is a basic φ-
instrument and (ii) α expects that Δ will serve φ at m.

(4) agent-bound proper instrumentality: An instrument Δ is a proper
φ-instrument for agent α at moment m if and only if (i) Δ is a proper
φ-instrument and (ii) α expects that Δ will serve φ at m.

The agent-independent and agent-dependent notions of instrumentality (1)–(4)
will be formally addressed in Sect. 4.

In passing, ability can be regarded as an abstract form of agentive instru-
mentality; namely, saying that ‘an agent is able to behave in a certain way which
guarantees a result’ is an abstraction of saying that ‘there exists an instrument
(action) which the agent can successfully employ to obtain that result’. More-
over, saying that an agent α is able to obtain φ through an action Δ, given that
Δ has always led α to φ in the past, is essentially the same as saying that α
excels at performing Δ to obtain φ. In this sense, Von Wright’s concept of abil-
ity, ‘being good at something’, is strongly related to our concept of agent-bound
proper instrumentality (cf. the analysis of ‘technical goodness’ as ability and
skill in [14, pp. 32–39]).

3 The System LAE

We start our formal presentation with a boolean algebra of actions and subse-
quently introduce the language of the logic LAE, in which the performance of
an action by an agent will be represented by a formula. Let Action = {δ1, ..., δn}
be a finite set of atomic action-types. The set Action∗ of complex action-types
is defined by the following BNF:

Δ ::= δi|Δ ∪ Δ|Δ

2 We want to stress that the term ‘expectation’ must not be regarded as an epistemic
notion, such as knowledge. Although an agent can have expectations about the
future, the agent might still have imperfect knowledge of these expected future states.
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where δi ∈ Action. The operations ∪ and — are respectively used to form
disjunctions of action-types (e.g., ‘turning-left or turning-right’) and negations
of action-types (e.g., ‘not turning-right’). If Agent = {α1, ..., αm} is a finite
set of agent constants, an agent-bound action-type is an expression of kind
Δαi , where Δ ∈ Action∗ and αi ∈ Agent. Let V ar = {p1, p2, p3, ...} be a
countable set of propositional variables; furthermore, for any αi ∈ Agent, let
Witαi = {dαi

1 , ..., dαi
n } be a set of propositional constants respectively witnessing

the performance of the atomic action-types δ1, ..., δn by αi and let eαi be a
propositional constant witnessing the compatibility of a state with αi’s expec-
tations.3 Notice that |Witαi | = |Action| = n. The set

⋃
αi∈Agent Witαi can be

simply denoted by Wit. The language L is defined by the following BNF:

φ ::= pi|eαj |dαj

i |¬φ|φ → φ|�φ|Nφ

for any pi ∈ V ar, αj ∈ Agent and d
αj

i ∈ Wit. We can read �φ as ‘in all successor
states φ is the case’ and Nφ as ‘in the actual successor state φ is the case’.
We use standard definitions for additional boolean and modal operators. For
instance, ♦φ abbreviates ¬�¬φ and means ‘in some successor state φ is the case’.
Expressions like eαj and d

αj

i mean respectively ‘the most recent expectations of
agent αj are met’ and ‘agent αj has just performed action δi’. The set of atomic
propositional symbols in L is Atom = V ar ∪ Wit ∪ {eαj : αj ∈ Agent}.

Let t be a translation function mapping agent-bound action-types to formulas
of L as below:

– for any δi ∈ Action and αj ∈ Agent, t(δαj

i ) = d
αj

i ,
– for any Δ ∈ Action∗ and αi ∈ Agent, t(Δαi) = ¬t(Δαi);
– for any Δ,Γ ∈ Action∗ and αi, αj ∈ Agent, t(Δαi ∪ Γαj ) = t(Δαi) ∨ t(Γαj ).

Let LAE be the system specified below:

A0 if φ is a propositional tautology, then �LAE φ;
R0 φ, φ → ψ �LAE ψ;
A1 �(φ → ψ) → (�φ → �ψ);
R1 if �LAE φ, then �LAE �φ;
A2 N(φ → ψ) → (Nφ → Nψ);
A3 ¬Nφ → N¬φ;
A4 �φ → Nφ;
A5 for any list of (distinct) α1, ..., αn ∈ Agent and list of (non-necessarily dis-

tinct) Δ1, ...,Δn ∈ Action∗,
(♦t(Δα1

1 ) ∧ ... ∧ ♦t(Δαn
n )) → ♦(t(Δα1

1 ) ∧ ... ∧ t(Δαn
n ));

A6 for any αj ∈ Agent, ♦eαj → ♦¬eαj .

The most relevant axioms of the system S are A3, which guarantees that every
state has a unique successor, A4, which says that the actual successor of a state
is within the set of its successors, A5, which represents the stit-logic principle
known as independence of agents, and A6, which ensures that agents never expect

3 The use of propositional constants in modal logic can be traced back at least to [1].
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all possible future state-of-affairs to happen (if at a given state there are successor
states satisfying an agent’s expectations, then there are also successor states not
satisfying the expectations).4 The semantics for LAE will clarify that none of
these axioms implies that a state has successors. Thus, the system can be used
to reason about scenarios in which there are final possible states. Furthermore, it
is noteworthy that the principle of ‘independence of agents’ is compatible with a
scenario in which an agent ends in a state that does not meet that agent’s (most
recent) expectations.

We define the following additional operators:

E1 for any Δ ∈ Action∗ and αi ∈ Agent,
[Δαi ]wouldφ =def �(t(Δαi) → φ);

E2 for any Δ ∈ Action∗ and αi ∈ Agent,
[Δαi ]couldφ =def �(t(Δαi) → φ) ∧ ♦t(Δαi);

E3 for any Δ ∈ Action∗ and αi ∈ Agent,
[Δαi ]willφ =def �(t(Δαi) → φ) ∧ ¬N¬t(Δαi).

We can read the formula [Δαi ]wouldφ as ‘at the current state, by behaving
in accordance with Δ, αi would bring about φ’. (Notice that this does not
ensure that αi is currently able to behave in accordance with Δ.) The formula
[Δαi ]couldφ means ‘at the current state, by behaving in accordance with Δ, αi

would bring about φ and αi could (i.e., is able to) behave in accordance with Δ’.
Finally, the formula [Δαi ]willφ means ‘at the current state, by behaving in accor-
dance with Δ, αi would bring about φ and αi will actually behave in accordance
with Δ’.

A relational frame to interpret the language L is an ordered tuple F =
〈W, {W

d
αj
i

: dαj

i ∈ L}, {Weαj : eαj ∈ L}, R,RN 〉, where W = {w1, w2, w3, ...}
is a set of states, each W

d
αj
i

and each Weαj is a subset of W and R and RN are
binary relations over W . The relation R captures the idea of a transition from a
state to one of its immediate successors. As we pointed out in Sect. 2, a transition
can be triggered by any event and so it does not require, in general, an active
interference of an agent. The relation RN represents transitions in the course
of events that can be considered actual with respect to a given state; namely, we
have wRNu only if u is an immediate successor of w and belongs to the actual
future of w. Thus, the notion of actual future is state-dependent. This allows one
to reason about the actual future of counterfactual states as well.5

4 The ‘independence of agents’ axiom is central to stit-logic; it ensures that when
choices are made simultaneously, an agent cannot a priori limit the choices available
to the others; see e.g. [4, pp. 217–218]. Axiom A6 allows for the possibility that an
agent has contradictory expectations about the future which cannot be realized.

5 For instance, suppose that at w it started raining and I decided to take a walk
without bringing an umbrella with me. Thus, I am in a state w′ such that in the
future of w′ I will very likely get wet; however, had I decided to bring an umbrella
with me at w, I would have ended in a state w′′ such that in the future of w′′ I
would not have got wet. Therefore, one can also say that in the actual future of the
counterfactual state w′′ I would not have got wet.
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A relational model to interpret L is an ordered tuple M = 〈F, V 〉 where F is a
relational frame and V is a valuation function which maps atomic propositional
symbols to sets of states and satisfies the following conditions:

– V (dαj

i ) = W
d

αj
i

, for any d
αj

i ∈ L;
– V (eαj ) = Weαj , for any eαj ∈ L.

Thus, propositional constants have the same interpretation in all models over a
frame. Formulas of L are evaluated at a state of a model in the customary way.
Truth-conditions are defined as follows:

– M, w � χ iff w ∈ V (χ), for any χ ∈ Atom;
– M, w � ¬φ iff M, w � φ;
– M, w � φ → ψ iff M, w � φ or M, w � ψ;
– M, w � �φ iff for all v ∈ W s.t. wRv we have M, v � φ;
– M, w � Nφ iff for all v ∈ W s.t. wRNv, we have M, v � φ.

Let F, w � φ mean that M, w � φ for all models M over the frame F. The notion
of validity of a formula with respect to (w.r.t.) a model, a frame, a class of models
and a class of frames is defined in the standard way. Finally, for a given formula
φ ∈ L, let ||φ||M = {w ∈ W : M, w � φ} and ||φ||F = {w ∈ W : F, w � φ}. Due
to the fixed interpretation of propositional constants and the definition of the
translation function t, we have that, given a frame F and an arbitrary model M
over it:

– ||t(Δαi)||F = ||t(Δαi)||M, for any Δ ∈ Action∗ and any αi ∈ Agent.

Let Cf be the class of all frames satisfying the following properties:

p(A3) for all w ∈ W , if there is u ∈ W s.t. wRNu, then for all v ∈ W s.t. wRNv,
we have v = u;

p(A4) for all w, v ∈ W , if wRNv, then wRv;
p(A5) for all w ∈ W and for all lists of distinct agents α1, ..., αn, if there are

(non-necessarily distinct) action-types Δ1, ...,Δn s.t. for 1 ≤ i ≤ n there
is ui ∈ W s.t. wRui and ui ∈ ||t(Δαi

i )||F, then there is v ∈ W s.t. wRv
and v ∈ ||t(Δα1

1 )||F ∩ ... ∩ ||t(Δαn
n )||F;

p(A6) for all w ∈ W and αj ∈ Agent, if there is v ∈ W s.t. wRv and v ∈ ||eαj ||F,
then there is also u ∈ W s.t. wRu and u /∈ ||eαj ||F.

The class Cf is non-empty. Indeed, the following is a very simple frame belonging
to it: F = 〈W, {W

d
αj
i

: dαj

i ∈ L}, {Weαj : eαj ∈ L}, R,RN 〉, where W = {w1, w2},

W
d

αj
i

= {w2} for any d
αj

i ∈ L, Weαj = ∅ for any eαj ∈ L and R = RN =
{(w1, w2)}. It is straightforward to verify that p(A3)-p(A6) are satisfied by F.

Theorem 1. The system LAE is sound w.r.t. the class Cf .

Proof. Axioms A0, A1 and A2 are valid in all relational frames and rules R0 and
R1 preserve validity in all relational frames. In the case of A3, take an arbitrary
frame F ∈ Cf and a model M over it. Assume M, w � ¬Nφ for some w ∈ W ;
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from this we can infer that there is v ∈ W s.t. wRNv and M, v � ¬φ; by p(A3),
it follows that for all u ∈ W s.t. wRNu, u = v. Therefore, M, w � N¬φ. In the
case of A4, assume M, w � �φ; then, for all v ∈ W s.t. wRv we have M, v � φ.
By p(A4), we can infer that for all u ∈ W s.t. wRNu we have M, u � φ. Hence,
M, w � Nφ. In the case of A5, let, for some distinct α1, ..., αn ∈ Agent and some
(non-necessarily distinct) Δ1, ...,Δn ∈ Action∗, M, w � ♦t(Δα1

1 ) ∧ ... ∧ ♦t(Δαn
n ).

From this we can infer that there are (non-necessarily distinct) v1, ..., vn ∈ W
s.t., for 1 ≤ i ≤ n, wRvi and vi ∈ ||t(Δαi

i )||F. By p(A5), we can infer that
there is u ∈ W s.t. wRu and u ∈ ||t(Δα1

1 )||F ∩ ... ∩ ||t(Δαn
n )||F. Hence, M, w �

♦(t(Δα1
1 )∧ ...∧t(Δαn

n )). In the case of A6, assume M, w � ♦eαj for some eαj ∈ L.
Then, there is v ∈ W s.t. wRv and M, v � eαj . By p(A6), we can infer that there
is u ∈ W s.t. wRu and M, u � ¬eαj ; hence, M, w � ♦¬eαj .

Let FLAE be the canonical frame for LAE, defined as follows:

– WLAE is the set of all maximally LAE-consistent sets of formulas;
– for any w, v ∈ WLAE , wRLAEv iff {φ : �φ ∈ w} ⊆ v;
– for any w, v ∈ WLAE , wRLAE

N v iff {φ : Nφ ∈ w} ⊆ v;
– for any d

αj

i ∈ L, WLAE

d
αj
i

= {w ∈ WLAE : dαj

i ∈ w};

– for any eαj ∈ L, WLAE
eαj = {w ∈ WLAE : eαj ∈ w}.

The canonical model for LAE, denoted by MLAE , is obtained by adding a
valuation function V LAE s.t.:

– for any χ ∈ Atom, V LAE(χ) = {w ∈ WLAE : χ ∈ w}.

Any alternative valuation function V on the canonical frame must satisfy
the aforementioned restrictions on propositional constants (namely, V (dαj

i ) =
WLAE

d
αj
i

, etc.). By usual properties of canonical models, for any formula φ ∈ L
and any state w ∈ WLAE , we have MLAE , w � φ iff φ ∈ w.

The following theorem illustrates some properties of the frame FLAE .

Theorem 2. Let RLAE
Δαi be a binary relation over WLAE s.t., for any w, v ∈

WLAE, wRLAE
Δαi v iff {φ : [Δαi ]wouldφ ∈ w} ⊆ v; we show some of the properties

of this relation:

(I) RLAE
Δαi ⊆ RLAE;

(II) RLAE
Δαi∪Γ αj = RLAE

Δαi ∪ RLAE
Γ αj ;

(III) RLAE
Δαi

= RLAE ∩ RLAE
Δαi .

Proof. Let w be an arbitrary world in the canonical model of LAE.
(I) Assume wRLAE

Δαi v; then, {φ : [Δαi ]wouldφ ∈ w} ⊆ v. Furthermore, let
¬(wRLAEv); then there is �ψ ∈ w s.t. ψ /∈ v. From this and ordinary modal
reasoning it follows that �(t(Δαi) → ψ) ∈ w and [Δαi ]wouldψ ∈ w, so ψ ∈ v,
which represents a contradiction.
(II) Assume wRLAE

Δαi∪Γ αj v. Then, {φ : [Δαi ∪Γαj ]wouldφ ∈ w} ⊆ v, which entails
{φ : �((t(Δαi) ∨ t(Γαj )) → φ) ∈ w} ⊆ v and {φ : �(t(Δαi) → φ) ∧ �(t(Γαj ) →
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φ) ∈ w} ⊆ v, so {φ : [Δαi ]wouldφ ∧ [Γαj ]wouldφ) ∈ w} ⊆ v. Suppose ¬(wRLAE
Δαi ∪

RLAE
Γ αj v); then, there are [Δαi ]wouldψ, [Γαj ]wouldχ ∈ w s.t. ψ, χ /∈ v. From this it

follows that �(t(Δαi) → ψ),�(t(Γαj ) → χ) ∈ w. Since �(t(Δαi) → (t(Δαi) ∨
t(Γαj ))) ∧ �(t(Γαj ) → (t(Δαi) ∨ t(Γαj ))) ∈ w, then t(Δαi) ∨ t(Γαj ) ∈ v, which
means that either t(Δαi) ∈ v or t(Γαj ) ∈ v. Since we know that wRLAE

Δαi∪Γ αj v
entails wRLAEv, then {φ : �φ ∈ w} ⊆ v. This means that if t(Δαi) ∈ v, then
ψ ∈ v; if t(Γαj ) ∈ v, then χ ∈ v. A contradiction arises in both cases.

Assume ¬(wRLAE
Δαi∪Γ αj v); then, there is [Δαi ∪ Γαj ]wouldψ ∈ w s.t. ψ /∈ v.

Therefore, �((t(Δαi) ∨ t(Γαj )) → ψ) ∈ w. Suppose wRLAEv (otherwise the
intended result trivially follows); then, since �(¬ψ → ¬(t(Δαi) ∨ t(Γαj ))) ∈ w,
then ¬(t(Δαi)∨t(Γαj )) ∈ v, whence ¬t(Δαi),¬t(Γαj ) ∈ v, so {φ : [Δαi ]wouldφ ∈
w} � v and {φ : [Γαj ]wouldφ ∈ w} � v, hence ¬(wRLAE

Δαi ∪ RLAE
Γ αj v).

(III) Let wRLAE
Δαi

v; then, {φ : [Δαi ]wouldφ ∈ w} ⊆ v; we know that from this
it is possible to infer wRLAEv. Since [Δαi ]wouldt(Δαi), [Δαi ]would¬t(Δαi) ∈ w,
then ¬t(Δαi) ∈ v and t(Δαi) /∈ v, so ¬(wRLAE

Δαi v), which is wRLAE
Δαi v, and

wRLAE ∩ RLAE
Δαi v.

Let ¬(wRLAE
Δαi

v); then, there is [Δαi ]wouldψ ∈ w s.t. ψ /∈ v. Assume wRLAEv;
since �(¬t(Δαi) → ψ) ∈ w, then ¬t(Δαi) → ψ ∈ v, so t(Δαi) ∈ v. Let
[Δαi ]wouldχ ∈ w; then, �(t(Δαi) → χ) ∈ w and χ ∈ v; thus, {φ : [Δαi ]wouldφ ∈
w} ⊆ v, which means wRLAE

Δαi v and ¬(wRLAE ∩ RLAE
Δαi v).

Theorem 3. The frame FLAE belongs to the class Cf .

Proof. We need to show that FLAE satisfies the properties p(A3)–p(A6). In the
case of p(A3), suppose wRLAE

N v, wRLAE
N u and v �= u. Then, there is φ s.t. φ ∈ v

and φ /∈ u. In the canonical model MLAE we have MLAE , v � φ and MLAE , u �
¬φ, so MLAE , w � ¬Nφ and, by A3, MLAE , w � N¬φ, which entails MLAE , v �
¬φ, whence φ,¬φ ∈ v: contradiction. In the case of p(A4), suppose that wRLAE

N v
and ¬wRLAEv. Then there is �φ ∈ w s.t. φ /∈ v; however, by A4, Nφ ∈ w and
this entails ¬wRLAE

N v: contradiction. In the case of p(A5), suppose that for a list
of distinct agents α1, ..., αn and for a list of (non-necessarily distinct) action-types
Δ1, ...,Δn, we have that there are (non-necessarily distinct) worlds u1, ..., un

s.t., for 1 ≤ i ≤ n, wRLAEui and ui ∈ ||t(Δαi
i )||F. Then, w ∈ ||♦t(Δα1

1 )||F ∩
... ∩ ||♦t(Δαn

n )||F, which entails ♦t(Δα1
1 ) ∧ ... ∧ ♦t(Δαn

n ) ∈ w and, by A4, we
get ♦(t(Δα1

1 ) ∧ ... ∧ t(Δαn
n )) ∈ w. Assume that there is no maximally LAE-

consistent set v s.t. {φ : �φ ∈ w} ∪ {(t(Δα1
1 ) ∧ ... ∧ t(Δαn

n )) ⊆ v; then, �LAE

(φ1 ∧ ... ∧ φm) → ¬(t(Δα1
1 ) ∧ ... ∧ t(Δαn

n )) for some φ1, ..., φm ∈ {φ : �φ ∈ w}.
From this one can infer �LAE �(φ1 ∧ ... ∧ φm) → �¬(t(Δα1

1 ) ∧ ... ∧ t(Δαn
n )), so

�LAE (♦t(Δα1
1 ) ∧ ... ∧ ♦t(Δαn

n ) ∧ �(φ1 ∧ ... ∧ φm)) → ¬♦(t(Δα1
1 ) ∧ ... ∧ t(Δαn

n ));
however, this is impossible since we know that �LAE (♦t(Δα1

1 )∧ ...∧♦t(Δαn
n )) →

♦(t(Δα1
1 )∧ ...∧t(Δαn

n )). Hence, we can conclude that there is a maximally LAE-
consistent set v s.t. wRLAEv and v ∈ ||(t(Δα1

1 )||F ∩ ... ∩ ||t(Δαn
n ))||F. In the case

of p(A6), assume that wRLAEv and v ∈ ||eαi ||F for some eαi ∈ L; then, suppose
that the set {φ : �φ ∈ w} ∪ {¬eαi} is not LAE-consistent. From this one can
infer that �LAE �(φ1 ∧ ... ∧ φn) → ¬♦¬eαi for some φ1, ..., φn ∈ {φ : �φ ∈ w};
hence, �LAE (�(φ1 ∧ ... ∧ φn) ∧ ♦eαi) → ¬♦¬eαi , which contradicts A6. Then,



Instrumentality Agency Logic 413

there is a maximally LAE-consistent set u s.t. {φ : �φ ∈ w}∪{¬eαi} ⊆ u, which
means u ∈ ||¬eαi ||F and wRLAEu.

An immediate consequence of Theorem 3 is that LAE is complete w.r.t. the class
Cf ; hence, together with Theorem 1, this entails that LAE is characterized by
the class Cf . Furthermore, as a consequence of Theorem 2 and Theorem 3, the
following schemata, which capture the properties of a boolean algebra of action-
types, are provable in LAE:6

T1 [Δαi ∪ Γαj ]wouldφ ≡ [Γαj ∪ Δαi ]wouldφ;
T2 [Δαi ∪ (Γαj ∪ Σαk)]wouldφ ≡ [(Δαi ∪ Γαj ) ∪ Σαk ]wouldφ;
T3 [Δαi ∪ Γαj ∪ Δαi ∪ Γαj ]wouldφ ≡ [Δαi ]wouldφ.

We will now show that the system LAE is also characterized by a subclass of
Cf that includes only tree-like frames which resemble more familiar structures
used in the literature for logics of agency, in particular, diverse stit-logics (e.g.
[4,6,10,16]). A branching-time frame with immediate successors is an ordered
tuple F = 〈T, {T

d
αj
i

: dαj

i ∈ L}, {Teαj : eαj ∈ L}, <〉 where T = {m1,m2,m3, ...}
is a set of moments, each T

d
αj
i

and each Teαj is a subset of T and < is a binary
asymmetric, intransitive and backward linear relation over T , namely:

– ∀m,m′ ∈ T : (m < m′ → ¬(m′ < m));
– ∀m,m′,m′′ ∈ T : ((m < m′ ∧ m′ < m′′) → ¬(m < m′′));
– ∀m,m′,m′′ ∈ T : (m′ < m ∧ m′′ < m) → m′ = m′′.

We define the usual machinery related to branching-time frames. Let � be
the transitive closure of <; then, T is partially ordered by � and any �-maximal
chain of moments can be called a history. Let H be the set of histories in a given
branching-time frame F and Hm = {h ∈ H : m ∈ h} the set of all histories in
F ‘passing through’ a moment m. A model over a branching-time frame with
immediate successors is an ordered tuple M = 〈F, V 〉, where F is the underly-
ing frame and V a valuation function mapping atomic propositional symbols to
moments and satisfying the usual restrictions on propositional constants.7 For-
mulas of L are in this case evaluated with reference to a moment/history pair
in a model.8 Let actual be a function which associates to a moment m the only
successor of m (if any) which belongs to the actual future of m, then:9

6 Future work can be devoted to extensions of the language of LAE including operators
for concatenations and iterations of action-types, in the spirit of [7,8].

7 In the context of ‘next moment’ agency logic there is no need to assign atomic
symbols to moment/history pairs, as observed in [6].

8 Reference to histories provides a general framework suitable to express more complex
notions related to indeterminism; for instance, one could add to the language of LAE
an operator saying that something will always hold in one history passing through
a given moment. Such an operator is not definable in terms of � in infinite trees.

9 Notice that, by definition, actual can be a partial function (a moment may have no
actual successor even if an agent expects it to have some) and has some remarkable
difference with the ‘thin red line’ function of the stit-logic literature [4]; indeed,



414 K. van Berkel and M. Pascucci

– M, (m/h) � χ iff m ∈ V (χ), for any χ ∈ Atom;
– M, (m/h) � ¬φ iff M, (m/h) � φ;
– M, (m/h) � φ → ψ iff M, (m/h) � φ or M, (m/h) � ψ;
– M, (m/h) � �φ iff for all m′ ∈ T s.t. m < m′ and all h′ ∈ Hm′ we have

M, (m′/h′) � φ;
– M, (m/h) � Nφ iff M, (actual(m)/h′) � φ for all h′ ∈ Hactual(m).

Notice that according to the definition of actual(m), if m has no actual successor,
then M, (m/h) � Nφ for every φ ∈ L. In order to formally specify a class of
branching time frames with immediate successors contained in Cf , we define the
relations R and RN in terms of moment/history pairs and the relation <, as
follows:

– (m/h)R(m′/h′) iff m < m′, h ∈ Hm and h′ ∈ Hm′ ;
– (m/h)RN (m′/h′) iff m′ = actual(m), h ∈ Hm and h′ ∈ Hm′ .

The last two semantic clauses are then respectively equivalent to:

– M, (m/h) � �φ iff for all (m′/h′) s.t. (m/h)R(m′/h′), M, (m′/h′) � φ;
– M, (m/h) � Nφ iff for all (m′/h′) s.t. (m/h)RN (m′/h′), M, (m′/h′) � φ.

Let us say that a branching-time frame with immediate successors is an lae-
frame iff it satisfies the properties p(A3)-p(A6). The class of all lae-frames can
be denoted by Clae

f ; clearly, Clae
f ⊂ Cf . In order to claim that LAE is also

characterized by Clae
f , one needs to show that the additional properties of lae-

frames cannot be forced by any formula of the language L. But this follows from
well-known results concerning the correspondence theory of propositional modal
languages. We sketch the proof below, relying on notions illustrated in [5].

Theorem 4. For any φ ∈ L, if Clae
f � φ, then Cf � φ.

Proof. By contraposition, assume that φ is not valid in some model M over a
frame F in Cf . This means that for some world w∗ in the domain of M, we have
M, w∗ � ¬φ. Let M′ be the submodel of M generated by w∗; then M′, w∗ � ¬φ.
M′ can be transformed into a model Mt over an asymmetric, intransitive tree
Ft rooted in w∗, whose set of states W t consists of the sequences 〈w1, ..., wn〉
s.t. w1, ..., wn ∈ W ′, w1 = w∗ and w1R

′w2, ..., wn−1R
′wn (W ′ and R′ being

respectively the domain and the accessibility relation associated with � in M′)
and whose relations Rt and Rt

N are defined as follows:

– for any u, v∈W t, uRtv iff u=〈w1, ..., wn〉, v=〈w1, ..., wn, wn+1〉 and
wnR′wn+1;

the thin red line function assigns to each moment m a unique history to which m
belongs (the actual history w.r.t. m), whereas actual assigns to m only its actual
successor, if the latter exists. This solves some objections raised in [4] against the
use of functions to represent actuality in branching-time; for instance, while there
are problems of ‘thin red line inheritance’ among states related by <, there is no
problem of ‘actual successor inheritance’, since any two states related by < have
different actual successors (if any).
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– for any u, v∈W t, uRt
Nv iff u=〈w1, ..., wn〉, v=〈w1, ..., wn, wn+1〉 and

wnR′
Nwn+1.

Let Π be a function from W ′ to ℘(W t) s.t. Π(u) = {〈w1, ..., wn〉 : wn = u}; then,
for all u ∈ W ′ and all ψ ∈ L we have M′, u � ψ iff Mt, x � ψ for every x ∈ Π(u).
Therefore, since Π(w∗) ⊇ {w∗}, we get Mt, w∗ � ¬φ. Finally, let Ht be the
set of histories in Mt; transform Mt into a model Mfin obtained by replacing
every state u ∈ W t with a state u∼ = {(w/h) : u ∈ Π(w) and h ∈ Ht

u}. Define
a binary relation <fin over W fin s.t. u∼ <fin v∼ iff uRtv; it follows that, for
all u∼ ∈ W fin, Hfin

u∼ = Ht
u. Let Rfin and Rfin

N be defined in terms of <fin as
in branching-time frames with immediate successors, where actual(w∼) = w′

∼
iff wRt

Nw′. Mfin is a model over an lae-frame by construction. It can be easily
proved that for all u ∈ W t and all ψ ∈ L, we have Mt, u � ψ iff Mfin, (w/h) � ψ
for every (w/h) ∈ u∼ iff Mfin, u∼ � ψ, hence Mfin, w∗

∼ � ¬φ.

We conclude with some theorems of LAE involving the operators in E1−E3:

T4 ([Δα1
1 ]couldφ1∧ ...∧ [Δαn

n ]couldφn) → [Δα1
1 ∩ ...∩Δαn

n ]could(φ1∧ ...∧φn), where
α1,...,αn are distinct;

T5 [Δαi ]couldφ → ¬[Δαi ]could¬φ;
T6 [Δαi ]willφ → ¬[Δαi ]will¬φ;
T7 [Δαi ]willφ → [Δαi ]couldφ;
T8 [Δαi ]couldφ → [Δαi ]wouldφ.

T4 expresses the familiar ‘independence of agents’ principle in its agency appear-
ance; T4 equivalents for ‘will’ and ‘would’ are also provable in LAE. T5 and T6
express that the defined operators for ‘could’ and ‘will’ behave in accordance
with seriality. Clearly, we do not have a T5 equivalent for ‘would’. T7 and
T8 are bridge-theorems that express the relations between ‘will’, ‘could’ and
‘would’. Finally, notice that the operators in E1-E3 can be modified by taking
into account also agents’ expectations, as illustrated below:

– M, (m/h) � [Δαi ]would
ex φ iff M, (m/h) � �((t(Δαi) ∧ eαi) → φ);

– M, (m/h) � [Δαi ]could
ex φ iff M, (m/h) � �((t(Δαi) ∧ eαi) → φ) and

M, (m/h) � ♦(t(Δαi) ∧ eαi);
– M, (m/h) � [Δαi ]will

ex φ iff M, (m/h) � �((t(Δαi) ∧ eαi) → φ) and
M, (actual(m)/h′) � t(Δαi) ∧ eαi for all h′ ∈ Hactual(m).

4 Discussion and Final Remarks

Performing Actions. Several concepts pertaining to the theory of agency
introduced in this paper can be formally specified within the syntactical
and semantic framework of the logic LAE. Recall (Sect. 2) that, by mak-
ing reference to initial states, end-states, and counterfactual states, Von
Wright derives four elementary forms of action: producing, destroying, pre-
serving and suppressing. Although a formal approach to these terms is not
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new (cf. [2,11]), the logic LAE allows us to expand them to more com-
plex notions interacting with actions, expectations, instrumentality and ability:
(a) m/h |= [Δαi ]prodp iff m/h |= ¬p and m/h |= [Δαi ]willp and

∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′|=¬p

(b) m/h |= [Δαi ]destrp iff m/h |= p and m/h |= [Δαi ]will¬p and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′ |= p

(c) m/h |= [Δαi ]presp iff m/h |= p and m/h |= [Δαi ]willp and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′|=¬p

(d) m/h |= [Δαi ]suppp iff m/h |= ¬p and m/h |= [Δαi ]will¬p and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′ |= p

The above formulae allow us to make explicit reference to the instruments that
lead to producing, destroying, preserving and suppressing p, respectively. (Notice
that (a)–(d) refer to atomic results.) We provide the intuitive reading of (a), the
others will be similar: ‘at the current state, by behaving in accordance with Δ,
αi produces p’ means that ‘(i) ¬p is currently the case; (ii) α actually behaves
in accordance with Δ; (iii) p will actually be the case immediately after and (iv)
¬p could otherwise be the case immediately after’.

Von Wright’s reading of the four actions is stronger than ours, since he
represents them in a binary setting : through agent α’s conduct p will be the
case, whereas through α’s not-acting ¬p would be the case. We believe that this
account is too strong: it gives the agent α complete power over the faith of p.
Definitions (a)–(d), instead, exemplify that α has the capability of determin-
ing the faith of p with some behaviour Δ, but cannot determine the faith of p
through not acting.

Furthermore, observe that in our framework we can also redefine these four
elementary actions in terms of could and would, as well as with reference to
an agent’s expectations. For the sake of discussion, we only provide the def-
inition of ‘agent α could destroy p by behaving in accordance with Δ’:

(-) m/h |= [Δαi ]could
destrp iff m/h |= p and m/h |= [Δαi ]could¬p and

∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′ |= p

Definitions (a)–(d) entail that propositions true at every next state, can nei-
ther be brought about nor prevented by any agent. Such definitions can therefore
be seen as strong notions of deliberative action (cf. ‘dstit’ in [10]). This result
brings us to the concept of forbearance (omission). Following Von Wright [15,
p. 45], to forbear is stronger than to merely not act. In fact, it presupposes
the ability to perform what is forborne. We introduce the following definition:
(e) m/h |= [Δαi ]forb� iff m/h |= [Δαi ]could� and m/h |= [Δαi ]will�

Forbearance explicitly refers to actions: the usage of � (i.e., ‘tautology’) in (e)
refers to the possibility to behave in accordance with action Δ and is interpreted
as ‘agent α forbears to behave in accordance with Δ’ if and only if ‘α could
behave in accordance with Δ, but will behave in accordance with Δ instead’.
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Definitions (a)–(e) can be easily extended to formal notions of forbearance
relating to results. We only illustrate the notion of ‘forbearing to destroy p’:
(-) m/h |= [Δαi ]forb

destrp iff m/h |= p and m/h |= [Δαi ]could¬p and
m/h |= [Δαi ]will� and ∃m′, ∃h′∈Hm′ s.t.
m<m′ and m′/h′ |= p

Instrumentality. In Sect. 2 we made a distinction between weak and strong
concepts of instrumentality, as well as agent-independent and agent-bound con-
cepts. We will now provide their formalizations in the framework of LAE:

basic instrumentality
(f) m/h |= [Δ]b−instrφ iff ∃m′ s.t. m′<m and for some αi∈Agent we

have m′/h |= [Δαi ]willφ

proper instrumentality
(g) m/h |= [Δ]p−instrφ iff (i) m/h |= [Δ]b−instrφ and (ii) ∀m′,∀h′ s.t.

m′<m and h′∈Hm′ and for all αi∈Agent we
have m′/h′ |= [Δαi ]wouldφ

basic α-instrumentality
(h) m/h |= [Δαi ]b−instr

ex φ iff (i) m/h |= [Δαi ]could
ex φ and (ii) ∃m′ s.t. m′<m

and m′/h |= [Δαi ]willφ

proper α-instrumentality
(i) m/h |= [Δαi ]p−instr

ex φ iff (i) m/h |= [Δαi ]b−instr
ex φ and

(ii) ∀m′,∀h′ s.t. m′<m and h′∈Hm′ we have
m′/h′ |= [Δαi ]wouldφ

Definitions (f) and (g) employ the will -operator to ensure that, in the past,
φ has been the actual result of behaviour in accordance with Δ and not just
the result of lucky coincidence. Furthermore, (f) and (g) express instrumentality
independent of past expectations. Moreover, (g) requires that, everywhere in the
past, behaviour in accordance with Δ would have led to φ.

Definitions (h) and (i), instead, introduce respectively weak and strong agent-
bound notions of instrumentality, the difference with the former two is that
(h) and (i) consist of both future expectations and past experience: the agent
expects the continuation of the instrument’s past performance. We don’t limit
past experience to past expectations since an agent might discover concrete rules
of instrumentality through the experience of unexpected results and actions.
Observe that agent-bound instrumentality is defined through all three terms
‘could’, ‘will’ and ‘would’, relating respectively to ‘the present state’, ‘a past
state’ and ‘all past states’. Lastly, we emphasize that all formal definitions (f)–
(i) allow for the agent to be disenchanted; that is, even proper-instruments might
presently fail to lead to the intended result and agents might end in a state in
which their expectations are not met.

In conclusion, taking both agent-dependent expectations and actions as the
basis of our logic of agency we were able to construct three different notions of
agency: would, could and will, each with its corresponding expectation-variant.



418 K. van Berkel and M. Pascucci

Together, these concepts were sufficient to address several extensions of Von
Wright’s elementary actions, including forbearance, as well as several formal
definitions of instrumentality. As a final remark, we mention that both the pro-
cess of generalizing actions and deriving notions of instrumentality are associated
with induction and, for that reason, with the problems that come with it. Here,
we only accentuate that the above formalization is in line with Von Wright’s divi-
sion of the problem of induction into two distinct problems [12]. First, there is
the problem of justifying whether generalized statements are true for all observed
cases (i.e., with respect to the past). This part is formally represented by defi-
nition (g). Secondly, there is the problem of using these generalized statements
for future predictions. Von Wright remarks that here we seem to be satisfied
with something less stringent: “Scarcely anybody would pretend that predic-
tions, even when based upon the safest inductions, might not fail sometimes”
[12, p. 51]. The latter is captured through the formal behaviour of expectations
in LAE and the first clauses of definitions (h) and (i).
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Abstract. This paper demonstrates the potential of augmented real-
ity to enhance visualisation and facilitate interrogation of multi-agent
simulations of military operations. It describes four use cases for aug-
mented reality in the context of constructive and virtual simulation for
operations research, and discusses work undertaken and proposed future
projects in both small and large augmented environments. The proto-
types developed are used to assess the feasibility and benefits of apply-
ing augmented reality to simulation visualisation, wargaming, and the
explainability and interpretability of agent behaviour.
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1 Introduction

Multi-agent simulation is used to model the behaviour of intelligent agents in
complex environments in applications such as military operations, transport
management and medical research. In the field of aerospace operations research,
adversarial flight simulators are used by analysts to develop and assess tactics
for domains such as air combat [6]. As new artificial intelligence techniques are
employed to develop and optimise these tactical behaviours [11,12], the abil-
ity to efficiently understand and explain agent decision making has become as
important as the effectiveness and efficiency of the behaviours themselves.

Although graphical visualisation has been used for many years as a tool
for understanding the behaviour of agents in multi-agent flight simulations, the
ability of these interfaces to effectively interrogate activity has frequently been
limited [3,5,7]. Traditionally, analysts have interacted with simulations using
a keyboard-video-mouse (KVM) interface, such as the display of aircraft traces
shown in Fig. 1. However, the modelling of modern tactics, sensors and networks,
and of the intricate agent decision-making generated by artificial intelligence
techniques, has increased the complexity of these visualisations. This poses new
challenges for usability and explainability, and existing methods for interacting
with these simulations may no longer be sufficient.
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Augmented reality (AR) technologies have the potential to provide a more
natural and collaborative interface to visualisations of agent behaviour, by
providing more efficient interfaces for analysts, enabling shared visualisation
between multiple users, and affording a mechanism for improved explainability
of complex agent reasoning models. In the air combat domain, augmented reality
may be used to provide visualisations of agent reasoning that are not possible
using traditional methods, including the display of agents overlaid on real-world
locations and the visualisation of complex geometries in three dimensions.

This paper presents four use cases chosen to demonstrate the potential of
augmented reality as an interface to multi-agent simulations of air operations
(Sect. 3), and describes work completed to date addressing these through the
development of software prototypes (Sect. 4). The aim of this paper is to provide
an initial assessment of the benefits provided by AR for the comprehension of
multi-agent simulations of air operations, and to determine the limitations of
current AR technology for use in the context of military operations analysis.

Fig. 1. Screenshot of XCombat, a desktop 3D visualisation application used to dis-
play the trajectories of agent-controlled aircraft in ACE [9], a constructive air combat
simulator.

2 Related Work

The integration of agent technology with augmented reality is not a recent idea
[4]. Military operations analysis, experimentation and wargaming have often
been at the forefront of simulation and visualisation technologies; multi-agent
simulations and virtual and augmented reality [3] technology are no exceptions.
Hence, it is not surprising that AR has begun to play a role in visualising, explor-
ing and interacting with multi-agent simulations of military operations [1]. In
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2015, the US Army developed an AR research testbed called ARES [10] with
goals to address training, mission command and operational decision making,
while McDonald and Papasimeon [7] described an AR interface to an air com-
bat multi-agent simulation (described in Sect. 4). More recently, the US Army
explored AR technology to evaluate the simulation of a battlefield [5].

3 Use Cases

Four main use cases for interacting with multi-agent simulations of air oper-
ations in AR were identified: (a) visualisation of agent behaviour, (b) visual-
isation of agent decision making, (c) interactive agent-based simulation, and
(d) distributed simulation-based wargaming. These use cases were chosen as
being representative of common tasks conducted by operations analysts: defin-
ing multi-agent scenarios for study, interpreting the results of constructive sim-
ulations, and conducting wargaming exercises with subject matter experts. The
high level architecture for each use case is provided in Fig. 2.

simulation state
Constructive 

Simulator
AR Device

(a) Visualising agent behaviour

agent mental states

Constructive 
Simulator

simulation state AR Device

(b) Visualising agent reasoning

scenario description

simulation state

Constructive 
Simulator

AR Device

(c) Interactive simulation

user states 
simulation state

user inputsConstructive 
Simulator

AR Device

AR Device

AR Device

AR Device

(d) Distributed multi-user simulation

Fig. 2. High level architecture of the four representative use cases

4 Multi-agent Augmented Reality Prototypes

A number of prototype augmented reality applications were developed to explore
the use cases presented in Sect. 3, described briefly below with an initial high-
level assessment of the benefits and limitations of each prototype in the context
of military operations analysis. Two approaches to AR were considered during
this project. Prototype applications for hand-held devices were developed using
the Vuforia Augmented Reality SDK [13] and Unity game engine [8], and tested
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on tablets, smart phones and laptops. Prototypes for wearable AR devices were
developed using the Windows 10 SDK and Microsoft Mixed Reality Toolkit for
Unity and tested on the Microsoft HoloLens head-mounted device [2].

4.1 AR Dice

AR Dice is an AR prototype for hand-held mobile devices that addresses the
requirement for interactive simulation presented in Sect. 3 (Fig. 3). Described
in detail by McDonald and Papasimeon [7], this prototype was developed with
the aim of investigating the potential of AR as a two-way interface to multi-
agent air combat constructive simulations. Printed image targets are used to
position simulation entities on a physical tabletop. These targets are tracked
by the application and used to initialise a constructive simulation, which when
executed produces aircraft traces that are displayed on the mobile device.

The prototype encouraged multi-user participation by allowing several users
to collaboratively define a scenario by moving their respective image targets
around the table. The prevalence of mobile devices also meant that the pro-
totype could be easily deployed and users intuitively understood how to use
the prototype. However, the number of image targets that could be detected
simultaneously was limited, and the mobile device needed to be within a certain
distance of the image target to ensure tracking.

4.2 ARCombat

ARCombat is a prototype application for the Microsoft HoloLens that provides
a tabletop augmented reality interface for viewing aircraft traces generated by a
constructive air combat simulator, addressing the use case for visualising agent
physical behaviour presented in Sect. 3 (Fig. 4). The prototype was developed for
a demonstration presented at the International Joint Conferences on Artificial
Intelligence (IJCAI 2017) [11], and was used to visualise the behaviour of pairs
of automated planning agents in a close-range air combat scenario.

This prototype provided a useful visualisation tool for interpreting agent
behaviour in air combat scenarios. The aircraft traces produced by the agents
were often geometrically complex and difficult to interpret using a traditional
KVM interface; the tabletop display provided depth and enabled users to move
naturally around the augmented display to improve their points of view. How-
ever, the novelty of the AR interface competed with the demonstration of the
automated planner; users were often so caught up in the experience of trying a
wearable AR device that they were distracted from the content.

4.3 HoloHUD

HoloHUD is a prototype air traffic control tool for the Microsoft HoloLens that
displays live and simulated aircraft at their real-world positions using target
indicators overlaid on the user’s visual field (Fig. 5). Unlike the table-top visu-
alisation provided by ARCombat (Sect. 4.2), this prototype addresses the use
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Fig. 3. AR Dice, a prototype AR interface for mobile devices.

Fig. 4. ARCombat, a prototype AR application for visualising agent behaviour.
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case for visualising agent physical behaviour presented in Sect. 3 by providing
the user with a first-person view of the agents at world scale. Figure 6 describes
the high-level architecture of the application. Live entity data such as position
and heading are retrieved directly from aircraft in the local area using a low-cost
software defined radio and an open source ADSB decoder. Synthetic aircraft in
the scenario are implemented as agents in a real-time simulator.

This prototype demonstrated a key benefit of wearable AR for world-scale
visualisation of agent behaviour: users could determine the real-world locations
of the agents quickly and intuitively, avoiding the traditional mental translation
from a two-dimensional monitor. However, the limited field of view of the device
resulted in users needing to scan the sky for aircraft indicators (this can be
partially mitigated by adding visual cues).

Fig. 5. HoloHUD, an AR prototype for visualising live and constructive entities. VA140
indicates a real aircraft while Agent-1 is a simulated agent.

4.4 Battlespace Management Tool

In a collaborative project with the Royal Australian Air Force (RAAF) and an
industry partner, a prototype battlespace management and wargaming tool was
developed to explore how AR technology could provide air force planners with
a more natural and collaborative interface to simulations of military scenarios.
This prototype addressed the requirement for distributed multi-user simulation
(Sect. 3) by providing a shared interface to a multi-agent simulation of military
operations, using wearable AR devices connected to a simulation server. The
prototype provided a three-dimensional map of a military scenario, including
interactive military units.
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Fig. 6. HoloHUD high level architecture

The prototype successfully demonstrated the potential for AR to provide a
more natural and collaborative interface to simulation-based wargaming. How-
ever, the limited field of view, weight, and placement of the head-mounted display
caused discomfort and control difficulties for a number of participants, while bat-
tery life limited the duration of exercises. It was assessed that while the wearable
AR interface was valuable as a demonstration of the potential of AR technology,
it was not yet suitable for use in operational wargaming.

5 Conclusions

This paper has demonstrated the potential for augmented reality technology to
enhance the visualisation and interrogation of multi-agent simulations of military
operations. Four representative use cases were presented along with a number of
prototypes exploring real-world applications of this technology.

Limitations of current hardware, such as tracking and immersion issues with
hand-held AR technologies, and field-of-view, battery life, comfort and con-
trol issues with wearable devices, mean that while current AR technology is
as an effective research tool for analysts interrogating agent behaviour, further
advances are required before it can be used for wargaming in operational environ-
ments. It was observed during a number of demonstrations of the AR prototypes
that the novelty of the AR interface itself often overshadowed the information
being conveyed; users became so focused on the experience of trying and learning
to use the AR devices that they were distracted from the content. This effect
will lessen over time as AR technology becomes more widespread and familiar,
but remains a consideration when using AR technology to convey information.
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Abstract. Recent breakthroughs in reinforcement learning have
enabled the creation of learning agents for solving a wide variety of
sequential decision problems. However, these methods require a large
number of iterations in complex environments. A standard paradigm
to tackle this challenge is to extend reinforcement learning to handle
function approximation with deep learning. Lack of interpretability and
impossibility to introduce background knowledge limits their usability
in many safety-critical real-world scenarios. In this paper, we propose
a new agent architecture to combine reinforcement learning and exter-
nal knowledge. We derive a rule-based variant version of the Sarsa(λ)
algorithm, which we call Sarsa-rb(λ), that augments data with complex
knowledge and exploits similarities among states. We apply our method
to a trading task from the stock market environment. We show that
the resulting agent leads to much better performance but also improves
training speed compared to the Deep Q-learning (DQN) algorithm and
the Deep Deterministic Policy Gradients (DDPG) algorithm.

Keywords: Reinforcement learning · Learning agent
Symbolic reinforcement learning · Reasoning about knowledge
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1 Introduction

In the last few years, we have seen an increasing interest on the study of learn-
ing agents. The reinforcement learning approach has drawn the attention of
researchers in artificial intelligence and multi-agent systems. They have made
significant progress to learn good policies in many domains. Well-known tempo-
ral difference (TD) methods such as Sarsa [19] or Q-learning [21] learn to predict
the best action to take by step-wise interactions with the environment. In partic-
ular, Q-learning has been shown to be effective in solving the traveling salesman
problem [7] or learning to drive a bicycle [15]. However large or continuous state
spaces limit their application to simple environments.

Recently, deep reinforcement learning wherein a deep neural network is com-
bined with reinforcement learning has proved to be very successful in mastering
c© Springer Nature Switzerland AG 2018
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complex tasks. A significant example is the combination of neural networks and
Q-learning, resulting in “Deep Q-Learning” (DQN) [12], able to achieve human
performance on many tasks including Atari video games [2].

Learning from scratch and lack of interpretability impose some problems on
deep reinforcement learning methods. The impossibility to explain and under-
stand the reason for a decision also restricts their use to non-safety critical
domains, excluding, for example, medicine or law. Combining simple reinforce-
ment learning techniques and external knowledge [4] aims to address these chal-
lenges.

An approach to introduce external knowledge, Symbolic Reinforcement
Learning [5], combines a system that learns an abstracted representation of
the environment and high-order reasoning. However, it cannot support ongoing
adaptation to a new environment. Compact state representation [16] focuses on
creating an abstracted representation of the states [6]. It can enable a faster learn-
ing than training the agent on the raw data without facing the drawbacks of deep
learning. Andre et al. [1] hierarchically abstract the states by decomposing the
states into subroutines but has been limited to simple domains. Other attempts
[3] don’t take advantage of state similarities [17] or produce non-interpretable
states [14]. All the previously cited approaches suffer from lack of interpretation
reducing their usage in critical applications such as autonomous driving.

This paper demonstrates that abstracting a reinforcement learning agent
with prior knowledge can overcome these challenges to learn control policies. We
seek to address these shortcomings by proposing a new variant of the Sarsa(λ)
algorithm [18] which represents the states as understandable rules. Rules trans-
form raw data into a compressed and symbolic representation, reducing the
state space size. To deal with the problem of training speed and highly fluctuat-
ing environments, we propose a sub-states mechanism which exploits similarities
among rules. Sub-states allow a more frequent update of the Q-values thereby
smooth and speed-up the learning. Furthermore, we adapted eligibility traces,
which turned out to be critical in guiding the algorithm to solve tasks. Finally,
our agent learns effective policies in a small number of iterations and exhibits
higher performance than the best generally-applicable reinforcement learning
methods.

2 Reinforcement Learning

Reinforcement learning consists of an agent learning a policy π by interacting
with an environment. At each time-step the agent receives an observation st and
chooses an action at. The agent gets a feedback from the environment called
a reward rt. Given this reward and the observation, the agent can update its
policy to improve the future rewards.
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Given a discount factor γ, the future discounted rewards, called return Rt,
is defined as follows:

Rt =
T∑

t′=t

γt′−trt′ (1)

where T is the time-step at which the epoch terminates.
The goal of reinforcement learning is to learn to select the action with the max-
imum return Rt achievable for a given observation [20]. From Eq. (1), we can
define the action value Qπ(s, a) at a time t as the expected reward for selecting
an action a for a given state st and following a policy π.

Qπ(s, a) = E [Rt | st = s, a] (2)

The optimal policy π∗ is defined as selecting the action with the optimal Q-value,
the highest expected return, followed by an optimal sequence of actions. This
obeys the Bellman optimality equation:

Q∗(s, a) = E

[
r + γ max

a′
Q∗(s

′
, a

′
) | s, a

]
(3)

In temporal difference (TD) learning methods such as Q-learning or Sarsa,
the Q-values are updated after each time-step instead of updating the values
after each epoch, as happens in Monte Carlo learning.

2.1 Sarsa Algorithm

Sarsa [19] is a common TD control technique to approximate π ≈ π∗. The
estimation of the action value function is iteratively performed by updating
Q(s, a). This algorithm is considered as an on-policy method since the update
rule is related to the policy that is learned, as follows:

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) − Q(st, at)] (4)

The choice of the action follows a policy derived from Q. The most common
policy called ε-greedy policy trade-off the exploration/exploitation dilemma. In
case of exploration, a random action is sampled whereas exploitation selects the
action with the highest estimated return. In order to converge to a stable policy,
the probability of exploitation must increase over time.

2.2 Eligibility Traces

Since it takes time to back-propagate the rewards to the previous Q-values, the
above model suffers from slow training in sparse reward environments. Eligibility
traces is a mechanism to handle the problem of delayed rewards. Many temporal-
difference (TD) methods including Sarsa or Q-learning can use eligibility traces.
In popular Sarsa(λ) or Q-learning(λ), λ refers to eligibility traces or n-steps
returns. In case of Sarsa(λ), this leads to the following update rule:

Qt+1(s, a) = Qt(s, a) + α [rt+1 + γQt(st+1, at+1) − Qt(st, at)] et(s, a) ∀s,a (5)
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where

et(s, a) =

{
λet−1(s, a) + 1, if s = st and a = at

λet−1(s, a) otherwise
(6)

The temporal difference error for a state is estimated in a bootstrapping process.
Instead of looking only at the current reward, in Monte Carlo methods the
prediction is made based on the successive states.

3 Rule-Based Sarsa(λ)

We propose a simple method, rule-based Sarsa (Sarsa-rb), to enable Sarsa in con-
tinuous spaces by injecting external knowledge. Besides the general idea that the
state representation has the role of encoding and compressing essential informa-
tion about the task while discarding irrelevant states, it enables to inject prior
knowledge. In Sarsa-rb, external knowledge is jointly used to enhance states
representation and to efficiently initialize the Q-values. As in Sarsa, the agent
estimates the Q-values. However, each state is represented by a rule. There
are various advantages of representing the states by rules. Their compositional
structure makes possible to combine and recombine the rules and interpret them.
Furthermore, the present architecture maps high-dimensional raw input into a
lower-dimensional rule space which reduces the number of Q-values to estimate.

While Sarsa-rb provides some advantages over Sarsa in terms of quality of
policy, we can significantly improve their training time with a sub-states mech-
anism. This enables to exploit similarities among rules to maximize the benefit
of past experience to face new similar situations. Instead of updating one Q-
value at each iteration, our model updates several Q-values which share similar
information with the current state, leading to a significant speed-up. Finally,
we adapt the eligibility trace λ technique to take advantage of the sub-states,
rule-based Sarsa(λ) (Sarsa-rb(λ)).

3.1 Rule-Based Sarsa (Sarsa-rb)

The Sarsa algorithm maintains a parametrized Q-function which maps the state
representations to their Q-values. Instead of using the state space or a discretiza-
tion of it, our representation relies on rules. States are replaced by a set of rules,
R, each Q-value is mapped to a rule. A rule associates a pattern to an action.
Patterns define whether a Q-value is active or not and the recommended actions
to improve the Q-value initialization.

A pattern is an arbitrarily complex conjunction of variables. The variables
represent significant events in the task. Finally, a rule links a pattern to action.
Given an observation obst, the active state is the state for which its associated
pattern is satisfied, in other words, all its variables are active. Since no pattern
is always satisfied, we added an “empty” state. This is the default state, active
regardless of the input.
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In Sarsa, the Q-values are uniformly initialized. We take advantage of prior
knowledge by initializing the Q-values according to the recommended actions of
the rules:

Q(st=0, at=0) =

{
N (μ, σ2), if ruleaction = a

0 otherwise
(7)

with μ the mean and σ2 the variance. For a state s, the initialization of the
Q-value with the action recommended by the rule follows a normal distribution
centered around μ, greater than 0. The other Q-values are initialized to 0.

This rule-based representation can now be used to learn an effective policy
in large state space domains. Our contribution here is to propose a technique
to jointly use background knowledge and reinforcement learning to decrease
training time of the agent (rule-based representation) and avoid learning from
scratch (Q-value initialization).

3.2 Prior Knowledge for Rule Generation

Rules are created according to our knowledge about the task. The technique
retrieves patterns from external sources of data. This idea can be extended
to other domains, for example visual, by adapting the symbolic representation
methods [8] or more sophisticated methods [11].

An intuitive approach to create the rules relies on human or background
knowledge about domains. For example, if the task involves driving a car, back-
ground knowledge can be extracted from highway rules. The action associated
with a pattern can be let empty if it cannot be predicted without much affecting
the quality of the agent.

We can use our expertise about time-series and stock markets. To deal with
that, the rules can be based on candlestick patterns [13]. This stock-market
analysis technique estimates the trend of the share price by identifying patterns
into time series.

3.3 Sub-states

In TD methods without eligibility traces, only one Q-value is updated at each
iteration. In TD methods with eligibility traces, the reward is propagated to the
previous states. Instead, we propose an approach to update the similar states
while back-propagating the reward to the previous states. We refer to this mech-
anism as sub-states. The goal is to get most of the benefits of the shared infor-
mation among the rules while keeping the rest of the Sarsa algorithm intact and
efficient. The sub-states are constructed by augmenting each Q-value with an
ensemble of sub-states, subs(s, a). Since each state is represented by a pattern,
we define the sub-states as its sub-patterns, the combinations of the variables.
To avoid a too large number of sub-states, we limit the size of the sub-rules to
conjunctions of at least 3 variables.
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We provide modifications to the estimation and update of the Q-values
inspired by Sarsa to incorporate sub-states. The estimation of a Q-value Q

′
(s, a)

takes into account the Q-value itself Q(s, a) and the value of the sub-states
Q(s

′
, a). This process is now guided by the previously obtained rewards of the

similar states and sub-states:

Q
′
(s, a) = Q(s, a) +

∑

s′∈subs(s,a)

Q(s
′
, a) (8)

with subs(s, a) the sub-states of a state (s, a). Q(s
′
, a) refers to the estimation

of the value of the sub-state s
′
given the action a. Adding this term grounds the

values of the unvisited states, and makes the value induced by the values of the
similar visited states. Note that we limit the weight of the term Q(s

′
, a) in the

Q
′
(s, a) estimation such as Q(s

′
, a) << Q(s, a) to ensure convergence towards

an optimal policy. We achieved this mechanism during the update step.

3.4 Eligibility Traces

Directly implementing Sarsa-rb proved to be slow to learn in environments with
sparse rewards. Our method, Sarsa-rb(λ), is derived from Sarsa(λ). Adding n-
steps returns helps to propagate the current reward rt to the earlier states. We
allow a propagation of rt to the earlier sub-states by changing their eligibility
traces. The idea behind is that a sub-state similar to the current state is likely
to get a similar reward by following the same action. The update of the current
state s remains unchanged from Sarsa(λ):

⎧
⎪⎨

⎪⎩

E(s, a) = E(s, a) + 1
E(y, a) = E(y, a) + e−sim(y,s), if y is a sub-states of s

E(y, a) = E(y, a) + e−sim(y,s)2

K , otherwise

(9)

E(s, a) denotes the eligibility trace of the state s and E(y, a) the eligibility trace
of the sub-state y for a given action a. We refer to sim(y, s) as the similarity
between the sub-state y and the state s. We compute the similarity score as the
number of different variables between a sub-state y and a state s, sim(y, s) =
|y ∪ s| − |y ∩ s|. We bounded the score between 0 (identical) and 1.

Since sub-states are often updated, we avoid exploding eligibility trace values
by adding an exponential decay and a constant K. Updates performed in this
manner allow to estimate more accurately Q-values.

4 Experiments

We evaluated our agent, Sarsa-rb(λ), on the OpenAI trading environment, a
complex and fluctuating simulation from real stock market data. The agent
observes the last stock price described by the open price, the close price, and
the highest/lowest price during a one minute interval. We limit the possible
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actions to Buy, Hold and Sell. Each episode was played until the training data
are consumed, approximatively 105 iterations. In total, we used 4 datasets with a
duration varying between 2 years and 5 years. We trained the model on one stock
index and we used the three other datasets as external sources of knowledge to
generate the rules. Among the training examples, 80% are randomly selected for
training the model and the remaining for the evaluation. We found that μ the
mean equals to 0.25 and σ equals to 0.2 were the best parameters to initialize
the Q-values. We use K = 100 as decay factor of eligibility traces. To create the
rules, we first compute the percentage increase in the share price 14 days later
and then estimate an optimal action associated with each pattern. In total, we
took into account 40 candlestick patterns.

Fig. 1. Performance curves for a selection of algorithms: original deep Q-learning algo-
rithm (red), deep deterministic policy gradients algorithm (green) and Sarsa-rb(λ)
(blue). (Color figure online)

We evaluated Sarsa-rb(λ) trained with the sub-states mechanism. We used
a deep recurrent Q-learning model [9] and a DDPG model [10] as baselines.
For this evaluation, we individually tuned the hyper-parameters of each model.
We decreased the learning rate from α = 0.3 to α = 0.0001, we increased the
eligibility trace from λ = 0.9 to λ = 0.995, and then used ε = 0.01, λ = 0.9405
and K = 100. The plots are averaged over 5 runs. Finally, we used the external
knowledge based rules as the states of Sarsa-rb(λ). We report the learning curve
on the testing dataset in Fig. 1. Sarsa-rb(λ) always achieve a score higher than
DQN and DDPG. As shown in Fig. 1, Sarsa-rb(λ) clearly improves over DQN,
we obtained an average reward after converging around 3.3 times higher. DDPG
appears less fluctuating than Sarsa-rb(λ) but also less effective. We conclude
that our model learns a better policy than a neural network based approach in
a similar number of training steps.
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5 Conclusion

This paper introduced a new model of learning agents to combine reinforcement
learning and external knowledge. We demonstrated its ability to solve complex
and highly fluctuating tasks, trading in stock market. Additionally, this algo-
rithm is fully interpretable and understandable. Our central thesis is to enhance
state representation of Sarsa(λ) with background knowledge and speed up learn-
ing with a sub-states mechanism. Further benefits stem from efficiently updating
eligibility traces and improving the learning rate decay. Moreover, our approach
can be easily adapted to solve new tasks with a very limited amount of human
work. We have demonstrated the effectiveness of our algorithm to decrease the
training time and to learn a better and more efficient policy.
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1 Sorbonne University, IRD, UMMISCO, 93143 Bondy, France
kevin.chapuis@gmail.com

2 MIAT, University of Toulouse, INRA, Castanet-Tolosan, France
3 University Toulouse Capitole, IRIT, Toulouse, France

4 USTH - AVAST, ICTLab, Hanoi, Vietnam
5 CNRS, Rouen University, UMR IDEES, Rouen, France

Abstract. Urban traffic is made of a variety of mobility modes that
have to be taken into account to explore the impact of catastrophic
event. From individual mobility behaviors to macroscopic traffic dynam-
ics, agent-based modeling provides an interesting conceptual framework
to study this question. Unfortunately, most proposals in the domain do
not provide any simple way to model these multi-modal trajectories, and
thus fell short at simulating in a credible way the outcomes of a catas-
trophic event, like natural or industrial hazards. This paper presents an
agent-based framework implemented with the GAMA modeling platform
that aims at overcoming this lack. An application of this model for the
study of flood crisis in a district of Hanoi (Vietnam) is presented.

1 Introduction

The Agent-Based Modeling paradigm has been used for several decades to model
urban traffic. This well-established field of research has seen many frameworks
populating the scientific landscape such as MATSim [13], SUMO [14] or SimMo-
bility [2] to name only a few. Those generic toolkits make it possible to build
a traffic model to study several phenomena from nanoscopic – e.g. lane change
and cross section – to macroscopic dynamic – e.g. mass congestion and residen-
tial relocation. Thanks to the agent paradigm, it is possible to explicitly repre-
sent the decision making process and action of heterogeneous actors, including
transportation providers, political institutions or end users like pedestrians and
drivers.

However, most of the influential proposals in the domain focus on demand,
supply and control of traffic transportation system [3]. While this covers almost
all urban planners’ concerns about problems such as how to design, maintain
and expand traffic systems, they are not suitable for studying the outcomes of
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 440–448, 2018.
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uncommon and/or extreme event [7,11]. Indeed, mobility in a crisis context is
radically different from mobility in a normal situation: individuals can change
destination goals and/or modes of transport very quickly; they may adopt a
specific attitude, for example nervousness, fear, impatience; finally, the trans-
port networks can themselves be affected either by the hazard directly (flood
or earthquake) or indirectly (traffic lights interruption). Unfortunately, adapt-
ing generic toolkits to this type of context requires to build extensions using a
generic programming language like C++ or JAVA, which is out of reach of most
modelers. The framework presented in this paper aims at being able to simulate
this type of situation with easy to use modeling tools.

The paper is structured as follows: Sect. 2 discusses about the other agent-
based models and frameworks proposed in recent years. The model we proposed
is presented in Sect. 3. Section 4 illustrates the use of the framework by presenting
the case of the evacuation of a district of Hanoi, Vietnam. Finally, Sect. 5 serves
as conclusion.

2 Agent-Based Model and Simulation of Urban Traffic in
Crisis Situation

2.1 Agent-Based Urban Traffic Framework

The most important multi-agent traffic frameworks like MATSim, SUMO and
SimMobility are based on highly efficient multi-modal traffic model to study
demand, supply and control of traffic systems. Several extensions of these plat-
forms have been proposed in order to investigate the impact of catastrophic event
on transportation system. However, those proposal exhibit two drawbacks for our
concern: they are either based on the O-D paradigm or use very simple model of
pedestrian mobility. For example, [15] propose a mass evacuation model based
on MATSim that requires to use pre-calculated evacuation trips, hence failing to
capture individual response; [8] design a SUMO extension (VEBEN++) to study
individual response to catastrophic event where pedestrian follow a path on a
network without any direct interaction with other road users (including other
pedestrians), which does not reflect actual people movement in crisis situation
[4].

In order to tackle this issue, a solution consists in using a generic agent-based
modeling platform. Among the existing open-source generic platforms such as
Mason, Netlogo or Cormas, one of the most suitable for traffic simulation is
GAMA [10]. Indeed GAMA provides modelers a complete modeling language
(GAML: GAma Modeling Language) and different features that can be used
by modelers to develop traffic models [20]. It has already been used for several
traffic models such as the ones proposed by [7,16].

2.2 Crisis Event in Urban Traffic Agent-Based Model

While aforementioned frameworks make it possible to model regular urban traf-
fic, most of them do not propose extended features to study the disruption



442 K. Chapuis et al.

induced by crisis events [7]. On the other hand, even if there are several agent-
based models that study evacuation model, there is no dedicated framework to
the best of our knowledge [11]. Netlogo is still widely used but does not pro-
vide native features to handle large scale traffic models [17]. Furthermore, agent
based traffic model that study crisis situation and evacuation do not incorporate
complex transportation system often [21]. Those multi-agent evacuation models
usually come with limitations, such as a narrowed area – e.g. buildings [5] – or a
limited number or only one mode of transportation – e.g. pedestrian in a crowd
[18].

GAMA has been recently used to study evacuation and traffic under catas-
trophic event [1,7] as an alternative to Netlogo. The platform has several well
suited features such as GIS native integration and simple and efficient primitives
for car as well as pedestrian mobility over network and continuous topography.
In the next section we describe the tools we developed to further enhance GAMA
accuracy to model large-scale traffic and evacuation during catastrophic event.

3 An ABMS Framework of Multi-modal Urban Mobility
in Crisis Events

Our proposal is an attempt to bring easy to use, flexible and scalable modeling
features to study multi-modal traffic systems during crisis events. An example
of implementation and an instance on a real case study (described in Sect. 4) are
implemented using the GAMA platform [10].

3.1 Proposal - Desiderata

The key agent type of our framework is the human being. The main corollary and
our main contribution is that the human agent will always be an entity distinct
from its vehicle. Hence, we need to distinguish the decision-maker human agent
and its various mobility ways all over the simulation. To this end, we designed
our template for the human agent to have full autonomy on the strategical and
tactical level of mobility decision process. The activity paradigm provide enough
flexibility to cope with immediate danger (e.g. stop the current activity to go to
a safe place) but agents also have the capacity to define how they should go to
their destination, including the ability to adapt their current course of action to
the uncommon circumstances (e.g. to continue evacuating at foot considering a
mass car congestion).

3.2 The Environment

The environment is composed of the spatial and physical entities that drive,
support or constrain the human mobility. The studied system must be made of
two main entities that are buildings and mobility environment (e.g. road net-
work and walking area), but can optionally be made up of non buildings areas
like park, parking, water, etc. Our framework provides a complete adapter for
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OpenStreetMap (OSM) data, meaning that any case study road network, build-
ings and walking area can be easily setup using raw OSM data. Alternatively,
modelers can setup the environment using classical shapefile that will required
several mandatory attributes for buildings and roads to be define within file.

The Buildings. The buildings are related to human activity, so they can drive
agent mobility: go to the workplace, go home, go to shopping center, etc. Each
building is made of a localized shape and should at least have a building type
(the human activity), like dwelling, amenity, school or office. Building can have
model related feature, like being a shelter or the number of floors, that can be
used to shape agent response to catastrophic event.

Mobility Environment. We design mobility environment to be adapted to
each mobility modes: pedestrians, cars, bikes or trains can obviously not move
on the same support. However these supports are not always mutually exclusive
as roads can be used by pedestrians, cars or bus. Hence, we organize mobility
environment in two different topology: a two-dimensions continuous walking area
and a roads network. The former is exclusive to pedestrian while the later can
be used by every vehicle and pedestrian.

Road Network. The roads are considered to be one-dimension spatial entities (i.e.
polyline) organized as a graph. Each road has a speed limit and a number of
lanes while intersection manage traffic light and priority. There are both agent
so they can have pro-active behavior, e.g. deterioration due to a catastrophic
event.

Walking Area. Pedestrian area mixes all walkable space, such as parks, public
places or parking. Those spaces can have a great impact on the traffic during
catastrophic event: parks can turn into safe area during earthquake, near river
or seaside can become dangerous area during flood event, etc. Opposite to the
road network, the walking area is made of two-dimensions geometrical shape.
We provide with the framework tools to compute and generate this walking area
from available data (more details can be found in the next Section).

3.3 Mobile Entities: People and Vehicle Agents

People. Realistic traffic simulations need statistically realistic population of
agents. To this purpose, we use an open source synthetic population generator
called Gen* [6] that will initialize agents demographic attributes like age and
gender. This generation also provide agent with the mandatory location for home
place and optional other places like school or workplace.

Meso-Traffic Related Features. Every agent must be provided with an agenda
in the form of a list of localized activities associated with an appointment and a
desired mobility mode. During simulation, activities will trigger agent mobility:
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the time of departure is calculated based on expected travel time and time of
appointment considering walking and motorized movement with constant speed.
The path and modes to use are computed using behavioral rules and shortest
path algorithm: agent will choose the most efficient mode in term of time, while
computing shortest path using NBA* algorithm [19]. On the tactical level, each
agent is able to update its path when changes in the environment does not let
them move to their current destination, including the ability to change the mode
of transportation. Triggering event, like congestion, overwhelming travel time or
impracticable street, are flexible and must be stated by the modelers.

Micro-Traffic Related Features. Agent are able to walk on a continuous space,
while following the shortest path on a virtual pedestrian network. Thus, the
mobility support is made of the defined walking area minus all obstacles, like
building and water body, the virtual network being build automatically from it:
we design an algorithm using Delaunay’s triangulation to scattered the walk-
ing area and connect triangle to each other to build the network. Regarding
pedestrian movement, we design an algorithm inspired by the social force model
[12]. It define how people move on the continuous space, avoiding collision and
adapting direction and speed to other pedestrian.

Vehicles. They are the mean by which people agents will move on the road
network. The driving capacities are handled by vehicles although adjusted by
people agent attributes: e.g. the tendency to overstep speed limit depends on
people agent attributes. Hence, a vehicle needs a driver people agent to define
destination and to adapt its behavior, while it can also contain some other people
agents that will only be passengers. Vehicle operational level rely on the GAMA
advanced driving skill, which consists in attributes and methods dedicated to the
driving behavior of agent. [20] proposal provides more details about additions
brought by the advanced driving skill.

3.4 Catastrophic Event

At the moment, the integration of hazard event modeling is under active devel-
opment and already provide static and basic dynamic models of catastrophic
event. The static approach is the most simple and consists in defining the cen-
tral localization of the event and a radius. To further enhance realism, modelers
can import GIS data to characterize the spatial spread of the event over time.
Alternatively, modelers can use a cellular automata diffusion dynamic to mimic
the dispersion of the zone impacted by the event. The algorithm has already
been used to simulate flood and fire spread [1,9], and can be initialized using
input data.
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4 Case Study: Multi-modal Evacuation in a Ward of
Hanoi

Authorities of the Vietnam city capital have launched in 2018 a large project
to mitigate risks that could potentially result from natural as well as industrial
disasters for Hanoi. Management and control of such extreme events in large
urban area is a huge challenge [11]. In this paper we consider the ward of Phuc
Xa, located between the dyke and the Red River, in the North of the Old Quarter
of Hanoi.

4.1 Input Data and Parameters

For GIS data we had to transpose cadastre image to vector-based road network
and buildings. School, university, market and hospital were extracted from OSM
data, but because of lack of data, we assume amenities (like shops or workplace)
to be uniformly distributed among building with a high probability.

To illustrate the use of our framework we design a proof of concept experi-
ment. The generated population is a simplification of the actual one with 15 767
agents with a probability of 0.15 to be under 18, and a probability of 0.52 to be
a woman. To locate them, we used an uniform spatial distribution. Agents are
also bound with a workplace or school depending on age, respectively between
18 and 65 years old and under or equal to 17 years old. Each people under 18 is
considered as having a motorbike.

Fig. 1. Simulation snapshot: the green triangles represent the people agents, and the
blue rectangles the motorbikes (Color figure online)

We built three types of agenda according to age: one for scholarship, active
people and retired. The first two ones are made of a main activity every day
week – respectively school or work – and the last template is made of wandering
activities in the morning and the afternoon. All the three end the day after the
last activity in the afternoon with the return to the home place.
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4.2 Simulation of Multi-modal Traffic and Evacuation Model

The normal course of the simulation is a work day of the week, agent follow-
ing their agenda. Each step of the simulation represents 1 s in real life (86400
simulation cycles for a whole day) because micro-traffic dynamic needs to keep
simulated time in a short scale: indeed, the time frame for human and vehi-
cle agent to avoid obstacle and other agents must remain credible in terms of
distance and speed because they act sequentially. Moreover, we know that indi-
vidual behavior during a catastrophic event can change rapidly according to the
local context and behaviors of the neighbors.

In order to test the capacity of our framework to simulate a complete evac-
uation of the area, we triggered a signal for the people agents to evacuate the
simulated area at 8am. We defined all three exits of the quarter to be at the
opposite of the Red River. For the choose of mode to evacuate, agent will choose
the less time consuming mode, meaning at foot if there are close to exit or using
motorbike if there expects to get to exist quicker.

The batch simulation took less than 44 min (average duration of a simulation
cycle: 0.35 s on a personal computer) on the computer used for the experiment.
This computation time is acceptable, especially as there are many possibilities
to decrease it, in particular by using parallel computing.

5 Conclusion and Perspectives

Our framework gathers tools to model multi-modal urban traffic and individual
response to catastrophic event with Gama. In this proposition, we detailed some
of the new built-in features we bring to the platform to ease the design of realistic
pedestrian and vehicle behavior. Furthermore we incorporated additional tools
to add catastrophic event and model agent response within traffic simulation.
We applied the framework to a case study mixing pedestrian and motorcycle
mode for evacuation of a dense urban area.

To further refine our proposal, we plan to add a richer cognitive architecture
to human agents coupling BDI classical mechanics with emotions and social
norms to help modeling traffic rules and transgression during egress. Finally,
we plan to apply our framework to case study involving public transport in
day-to-day mobility as well as special freight for evacuation purpose.
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Abstract. Argumentation is dynamic in nature and most commonly
exists in dialogical form between different agents trying to convince each
other. While abstract argumentation framework are mostly static, many
studies have focused on dynamical aspects and changes to these static
frameworks. An important problem is the one of argument enforcement,
modifying an argumentation framework in order to ensure that a certain
argument is accepted. In this paper, we use dialogue games to provide an
exhaustive list of minimal sets of attacks such that when removed, a given
argument is credulously accepted with respect to preferred semantics. We
then extend the method to enforce other acceptability statuses and cope
with sets of arguments.

Keywords: Abstract argumentation · Dialogue games
Argument enforcement · Attack removal · Dynamical argumentation

1 Introduction

Argumentation is a dynamic process where one party attempts to convince
another, or itself, of the validity of some statement. This process involves both
parties putting arguments in favor or against the validity of said statement in
turns, until one party has been convinced by running out of counter-arguments.

Abstract argumentation [6] provides a static approach where all arguments
and their interactions are given from the beginning in what is called an argumen-
tation framework, and the acceptability of the arguments is determined based
on the entire state of the framework. While the dialogical nature might appear
to be missing at first, dialogue games can be extracted from such a framework
where one focuses on the acceptability status of a single argument with a process
very similar to the one described in the earlier paragraph.

When focusing on adding a dynamic aspect to abstract argumentation, one
common problem is the problem of argument enforcement: given a particular
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argument in a framework, what changes are required in order to change the
status of the argument from rejected to accepted or vice-versa? This problem is
tightly linked to persuasion [8], as the goal of an agent there is for the other agent
to accept or perhaps reject a given argument of interest, and hence the question
of what the best approach is for this goal. There is also an element of strategy,
as the other party might have an objective of their own, perhaps wanting to
conserve their beliefs about certain arguments more than about others.

There has been much work already on the problem of argument enforcement.
In his paper, Baumann [2] studies the minimal necessary additions, in terms of
arguments and attacks, one needs to perform in order to enforce the acceptability
of a given argument. Coste-Marquis et al. [5] examine the enforcement issue from
the point of view of belief revision by allowing only for change in the attacks.

On another side, there also exists studies on the effects of argumentation
framework manipulation. In their paper, Cayrol et al. [4] study the possible
repercussions that the addition of an argument might have on the framework.
Another study by Boella et al. [3] focuses on the effects that removing argu-
ments and attacks in an argumentation framework have on the grounded exten-
sion. Liao et al. [9] propose a partitioning method to efficiently compute the
repercussions of changes in an abstract argumentation framework.

In this paper, we provide an algorithm to compute an exhaustive list of sets
of attacks, which, when removed, toggle the acceptance status of an argument,
as well as a formal framework to ensure the well behavior of the algorithm. In
practice, the operation of removing an attack could for example be performed
by arguing for the preference of the attacked argument over its attacker, or by
reformulating the argument so that it still reaches the same conclusion but from
different, less vulnerable premises. Since operations of this kind come with a
cost, we wish to minimize these costs, but since these costs might differ between
the different attacks, we also wish to provide an exhaustive list of solutions.

In Sect. 2, we provide preliminary definitions of abstract argumentation upon
which we build our results. In Sect. 3, we delve into the problem of enforcing the
credulous acceptance of an argument with respect to the preferred semantics.
We finish in Sect. 4 with a conclusion and discussion of potential future work.

2 Preliminaries

In this section we provide definitions of existing notions of abstract argumenta-
tion and dialogue games which will be used later on.

An argumentation framework [6] (AF) is a pair 〈A,R〉 where A is a finite set
of atomic entities called arguments, and R ⊆ A × A is a relation of attack.

Definition 1. Let F = 〈A,R〉 be an AF and S ⊆ A a set of arguments. We say
that S is: conflict-free iff there exist no a, b ∈ S such that a attacks b; admissible
iff it is conflict-free and for all a ∈ S, b ∈ A such that b attacks a, there exists
c ∈ S such that c attacks b; and a preferred extension iff it is a ⊆-maximal
admissible set.



Dialogue Games for Enforcement 451

The preferred semantics is the function which returns all preferred extensions
of a given AF. Since it may return more than one extension, we also define
different degrees of acceptance.

Definition 2. Let F = 〈A,R〉 be an AF, a ∈ A an argument. We say that a is:
credulously accepted iff for some preferred extensions E, a ∈ E; rejected iff for
all preferred extensions E, a /∈ E.

Dialogue games [7,10,12] provide a proof theory to test the acceptability of
a given argument in a fixed AF. The games involve two players, the proponent
and the opponent, where moves are of the form ap with a an argument and
p ∈ {pro, opp} a player. The game starts with apro, where a is the argument to be
tested. The opponent then moves forward an argument to attack it, attempting
to undermine its acceptability. A legal move function is a function from sequences
of moves to sets of moves which, given a sequence of moves, dictates which moves
could possibly be put forward next by the opposing player. We also define a
dispute on an argument a as a finite sequence of moves apro ← bopp ← ... starting
with apro, such that every move is a legal move with respect to the earlier part
of the dispute according to a set legal move function. If a dispute has no more
legal moves, we say that the dispute is final and that the player who put forward
the last move is the winner of the dispute.

Definition 3. Let F = 〈A,R〉 be an argumentation framework and d a dispute
in F with last move ap. The legal move function fpref for the preferred semantics
is defined as follows:
1. if p = pro, then fpref (d) = {bopp | (b, a) ∈ R,�bopp ∈ d};
2. otherwise, fpref (d) = {bpro | (b, a) ∈ R}.

The acceptability of an argument is then determined by whether or not the
proponent has a strategy to win the dialogue game. This is a conditional plan
which is formally represented by a set of disputes including a dispute for each
possible move of the opponent. The definition makes use of the notion of sub-
dispute, which is a sub-sequence of a dispute with the same initial argument.

Definition 4. Let F = 〈A,R〉 be an argumentation framework, a ∈ A an argu-
ment and f a legal move function. A defending strategy for a in F with respect
to f is a non-empty set of disputes T such that:
1. each dispute in T has initial argument a and is won by pro;
2. for each d ∈ T and for each sub-dispute d′ of d, if the last move in d′ is an

argument b moved by pro, then for any c ∈ f(d′), there exists a d′′ ∈ T such
that d ← c is a sub-dispute of d′′;

3. there is no d, d′ ∈ T, b ∈ A such that bpro ∈ d and bopp ∈ d′.

The last item represents the requirement that the strategy must be conflict-
free, since the goal is to construct an admissible set. Note that these are usually
called winning strategies in the literature, however since we will later define
strategies for the victory of the opponent, we prefer using the term defending.

The existence of a defending strategy for a given argument is equivalent to
its credulous acceptability [10].
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Theorem 1. Let F = 〈A,R〉 be an argumentation framework and a ∈ A an
argument. a is credulously accepted in F with respect to the preferred semantics
iff there is a defending strategy for a in F with respect to fpref .

3 Enforcing Credulous Acceptance for Preferred
Semantics

In this section, we first provide a few new definitions and associated results for
dialogue games, and then use these to provide a procedure for identifying mini-
mal sets of attacks to be removed in order to enforce credulous acceptability of a
given argument with respect to the preferred semantics. We start by defining a
counterpart to the defending strategies, i.e. a notion of strategy for the opponent
to win the dispute.

Definition 5. Let F = 〈A,R〉 be an argumentation framework, a ∈ A an argu-
ment and f a legal move function. An opposing strategy for a in F with respect
to f is a non-empty set of disputes T such that:

1. each dispute in T has initial argument a and either is won by opp, or contains
a move bpro such that there exists d′ ∈ T with bopp ∈ d′;

2. for each d ∈ T and for each sub-dispute d′ of d, if the last move in d′ is an
argument b moved by opp, then for any c that pro can legally move against b,
there exists a d′′ ∈ T such that d ← copp is a sub-dispute of d′′.

The opponent’s goal is to prevent the proponent from successfully defend-
ing the argument in focus and thus construct an admissible set containing it.
The opponent does this by providing a set of argument attacks from which the
proponent cannot fully defend, and thus shows no admissible set containing the
argument in focus can be constructed.

Theorem 2. Let F = 〈A,R〉 be an argumentation framework and a ∈ A an
argument. There exists a defending strategy for a in F with respect to fpref iff
there does not exist an opposing strategy for a in F with respect to fpref .

Proof sketch. This follows from Zermelo’s Theorem [13]. ��
Corollary 1. Let F = 〈A,R〉 be an argumentation framework and a ∈ A an
argument. a is rejected in F with respect to the preferred semantics iff there is
an opposing strategy for a in F with respect to fpref .

We have now laid down the foundations for dialogue games, in which we
can identify whether an argument is accepted or rejected by providing defend-
ing strategies, respectively opposing strategies for said argument. In order to
alter that argument’s acceptance status, we can use this information in order
to pinpoint minimal sets of attacks which, when removed, guarantee that the
argument’s status is changed. For this, we first have to be able to retrieve the
attacks which correspond to each player’s moves in a particular strategy.
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Definition 6. Let F = 〈A,R〉 be an AF and d a dispute. We define the
attacking set of d to be A(d) = {(a, b) | for some dispute d′, d′ ← bpro ←
aopp is a sub-dispute of d}. We define the defending set of d to be D(d) =
{(a, b) | for some dispute d′, d′ ← bopp ← apro is a sub-dispute of d}.

For a set of disputes D, we write A(D) for
⋃

d∈D A(d), and similarly, D(D)
for

⋃
d∈D D(d).

We wish to disrupt all winning strategies of a given player, which will hence
give his counter-part a strategy to win. We do this by removing one of the
player’s possible moves from each winning strategy in the form of attack removal.
To identify these attacks, since we want to work with minimal changes to the
framework, we use minimal hitting sets.

Definition 7. Let E be a set and S a set of subsets of E. We define the set of
hitting sets of S to be HS(S) = {s ⊆ E | ∀s′ ∈ S, s∩ s′ �= ∅}. We also define the
set of minimal hitting sets of S to be MHS(S) = {s ∈ HS(S) | �s′ ∈ HS(S)
such that s′ ⊂ s}.

The enumeration of all minimal hitting sets can be efficiently done using for
example the algorithm described by Satoh et al. [11].

Example 1. Let S =
{{(a, b), (c, d)}, {(c, d), (e, f)}}. Then, the minimal hitting

sets of S are MHS(S) =
{{(a, b), (e, f)}, {(c, d)}}.

If an argument is rejected, we can enumerate all the opposing strategies for
it. We then identify candidate sets of attacks to be removed by computing the
minimal hitting sets of the attacking sets in the opposing strategies.

Definition 8. Let F = 〈A,R〉 and S a set of strategies in F . We define the
set of critical attack sets of S to be CA(S) = MHS({A(T ) | T ∈ S}). We also
define the set of critical defense sets of S to be CD(S) = MHS({D(T ) | T ∈ S}).

Our first result with regard to argument status enforcement is that entirely
removing at least one of these sets of attacks is required in order to enforce the
acceptance of the argument of interest.

Lemma 1. Let F = 〈A,R〉 be an AF where some argument a ∈ A is rejected
with respect to preferred semantics and S the set of opposing strategies for a with
respect to fpref . For all R′ ⊆ R, if there is no s ∈ CA(S) such that s ⊆ (R \R′),
then a is rejected in F ′ = 〈A,R′〉.
Proof sketch. There exists at least one opposing strategy which is still viable in
F ′, otherwise there would be a critical attack set which has been fully removed.
Hence, a is still rejected in F ′. ��

This lemma shows that fully removing some of the critical attacks of S is a
necessary condition to enforce the acceptability of the argument of interest a.
Now the question is whether this is a sufficient condition to ensure it. An issue
could arise when removing a controversial attack with respect to a, i.e. an attack
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which appears in A(d) and D(d′) for two disputes d and d′ with initial argument
a. Deleting such an attack might also hinder some of the proponent’s potential
new defending strategies and give rise to new opposing strategies. Hence, when
removing such an attack, one might need to iterate the argument enforcement
procedure.

Algorithm 1. Enumeration of solutions for enforcement of credulous acceptance
with respect to preferred semantics
Input: 〈A, R〉 is an AF with a ∈ A, Except ⊆ R is a set of attacks.
Output: sols is the exhaustive set of minimal solutions to the enforcement problem.
1: procedure EnumAtksAcc(〈A, R〉, a, Except) � Enumerate all solutions
2: S ← OppStrats(F, a)
3: if S = ∅ then return {∅} � If already accepted, solution is no change
4: end if
5: sols := ∅
6: C ← CA(S)
7: for every s ∈ C such that �e ∈ Except with e ⊆ s do
8: if ∃r ∈ s such that r is controversial then
9: E := Except ∪ (C \ {s})

10: sols := sols ∪ {s ∪ s′ | s′ ∈ EnumAtksAcc(〈A, R \ s〉, a, E)}
11: else
12: sols := sols ∪ {s}
13: end if
14: end for
15: return sols
16: end procedure

Algorithm 1 provides the details of how to compute the exhaustive list of
minimal sets of attack to be removed in order to enforce the acceptance of an
argument a in a framework F . The algorithm relies on a function OppStrats
which computes and returns all opposing strategies for a given argument in a
given framework, and a function CA which computes the set of critical attack
sets of a given set of strategies. Note that the procedure EnumAtksAcc should
initially be called with an empty set of exceptions, however if some sets of attacks
in the framework are already determined to be jointly crucial and impossible to
remove, one can add them to the initial set of exceptions. This set of exceptions
is mainly used in order to prevent the iterated procedure called in line 10 to
consider removing attacks which could already have been selected at an earlier
stage and hence ensure the minimality of the output. If the set of exceptions is
initially too restrictive, it is possible that no solution is returned.

Example 2. Consider the argumentation framework F2 = 〈A2, R2〉 and final
disputes for the argument a depicted in Fig. 1. In this framework, there
are two opposing strategies: T1 = {d1} and T2 = {d4}. We get that
CA(T1 ∪ T2) = {S1, S2, S3, S4}, where S1 = {(b, a), (e, a)}, S2 = {(j, h), (k, i)},
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Fig. 1. Example argumentation framework F2 and all final disputes for a in F2.

S3 = {(e, a), (j, h)} and S4 = {(b, a), (k, i)}. Since S1 contains no controversial
attacks, it is directly listed as a solution. On the other hand, both (j, h) and
(k, i) are controversial since (j, h) also appears in D(d2) and (k, i) also appears
in D(d5). However, it turns out that a is accepted in 〈A2, R2 \ S2〉 and hence
{(j, h), (k, i)} is a solution. Next, we consider S3. This one contains a contro-
versial attack as well, so we have to compute the solutions for enforcing a in
〈A2, R2 \S3〉, which gives us three solutions: {(c, a)}, {(h, f)} and {(k, i)}. Since
{(k, i), (j, h)} is already a solution, we only take {(c, a)} and {(h, f)}, giving us
two new solutions in F : {(j, h), (e, a), (c, a)} and {(j, h), (e, a), (h, f)}. Lastly, S4

also contains a controversial attack, so we once again iterate the procedure in
〈A2, R2 \ S4〉, giving us three solutions: {(l, a)}, {(i, g)} and {(j, h)}, of which
we ignore {(j, h)}. In the end, we have 6 solutions:

1. {(e, a), (b, a)}
2. {(j, h), (k, i)}

3. {(e, a), (j, h), (c, a)}
4. {(e, a), (j, h), (h, f)}

5. {(b, a), (k, i), (l, a)}
6. {(b, a), (k, i), (i, g)}

Theorem 3. Let F = 〈A,R〉 where a ∈ A is rejected with respect to preferred
semantics, and sols the set returned by calling EnumAtksAcc(F, a, ∅). For all
s ∈ sols, a is credulously accepted in 〈A,R \ s〉 with respect to the preferred
semantics, and for all R′ such that (R \ s) ⊂ R′ ⊆ R, a is rejected with respect
to preferred semantics in 〈A,R′〉.
Proof sketch. The minimality result follows from Lemma 1. Similarly, the cor-
rectness of the solutions follows from Theorem 2. In the cases of controversial
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attack removals, Lemma 1 might need to be applied multiple times while The-
orem 2 applies only on the final framework. Note that since the initial set of
attacks is finite, the algorithm is guaranteed to terminate. ��

Algorithm 1 can be adapted to work for the enforcement of argument rejec-
tion by retrieving defending strategies in line 2 and computing critical defense
sets in line 6 instead. This modified algorithm will then disrupt defending strate-
gies in a similar way and thus give rise to at least one opposing strategy, ensuring
the rejection of the argument in question.

4 Conclusion and Future Work

In this paper, we have described results in dialogue games for abstract argu-
mentation frameworks which have allowed us to provide an algorithm for the
computation of minimal sets of attacks which, when removed from the frame-
work, enforce the credulous acceptability of a given argument with respect to
preferred semantics, which can be easily modified to enforce rejection instead.

Future work could include similar procedures for other semantics, such as
stable, semi-stable and ideal, of which the dialogue games have been briefly
discussed by Modgil et al. [10], but also for semantics such as stage2 or cf2 [1].
One could also use the results in this paper to focus on the removal of arguments
instead of attacks, or a mixture of both.
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Abstract. We examine whether a team of agents can learn geometric
and strategic group formations by using deep reinforcement learning in
adversarial multi-agent systems. This is a significant point underlying the
control and coordination of multiple autonomous and intelligent agents.
While there are many possible approaches to solve this problem, we are
interested in fully end-to-end learning method where agents do not have
any prior knowledge of the environment and its dynamics. In this paper,
we propose a scalable and distributed double DQN framework to train
adversarial multi-agent systems. We show that a large number of agents
can learn to cooperatively move, attack and defend themselves in vari-
ous geometric formations and battle tactics like encirclement, guerrilla
warfare, frontal attack, flanking maneuver, and so on. We finally show
that agents create an emergent and collective flocking behaviors by using
local views from the environment only.

Keywords: Multi-agent systems
Deep reinforcement learning · Collective intelligence
Coordination · Cooperation

1 Introduction

Multi-agent systems (MAS) [12] are systems where agents in the same environ-
ment collectively solve a problem that is very difficult and complex to solve by a
single agent [3]. To achieve such collective behavior, intelligent agents are often
implemented on the basis of some behaviors from nature and society such as
flocking [9] and group formation [4]. For instance, in an adversarial environment,
agents learn how to minimize their encounters with opponents by strategically
forming a group and by combining their knowledge of the environment to maxi-
mize the probability of avoiding opponents and obstacles. This behavior is very
important in an adversarial environment with a large number of agents with
limited field of views. This can be seen as the same strategy used by a group
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of humans or animals in real life. They coordinate between them and generate
collective behaviors which can be seen as intelligent because the knowledge or
behavior of an isolated individual agent is not enough to learn anything useful
from the environment.

In general, policies are goal-directed and can last for a relatively long time.
These policies might just cease to exist when the goal no longer exists or agents
have already achieved their predefined goal. Even if the agents do not generally
have a global view of their environment, the local behavior of an individual agent
affects other agents’ behavior, thereby resulting in very complex global behaviors
of the team. In addition, scalability is a very important issue [8], particularly in
learning systems where the environment is non-stationary because the dynamics
change frequently and agents have to adapt their behaviors accordingly [5]. Fur-
thermore, if we have a leader or decision-maker agent that decides which action
should be taken by agents, the performance of the system might slow down.

We address the fundamental question: can deep reinforcement learning agents
find the strategic group formation by combining the local views of individual
agents in a multi-agent context and adapt to the change of opponent strate-
gies in an adversarial environment. When we apply deep reinforcement learning
techniques in MAS, we always ask what will happen when the number of agents
drastically increases. Will the network converge? Will the agents be able to learn
interesting strategies or policies that help them to achieve their goal or sub-goal?
These are very important questions because the dimensionality of the tasks grows
exponentially with the number of agents.

2 Related Work

Balch et al. [1] presented a behavior-based multi-robot team formation and
formation-keeping. They demonstrated that robots could form teams to reach
navigational goals, avoid hazards and simultaneously remain in formation. Desai
et al. [4] proposed a graph theoretical method of modeling a formation of non-
holonomic mobile robots and developed a framework for transitioning from one
formation to another. They dealt with situations where agents have to briefly
cease their formation to avoid obstacles. Barfoot et al. [2] studied the motion
planning for formations of mobile robots, where the robots used predetermined
geometrical constraints throughout their travel. Nathan and Barbosa [7] stud-
ied the emergence of V-like formations during bird flight by introducing a dis-
tributes positioning rules to guide agents’ movements. They also try to find the
basic behavior that generates a flock and collective behavior strategies using
mathematical framework.

One drawback of these methods is that the strategies are always given. In
other words, the agents cannot generally discover a set of new strategies. Unfor-
tunately, defining such behaviors manually is tedious and complex. In the afore-
mentioned papers, some parts of the process were hand-designed. They gener-
ally calculate the expected outcome that could be derived if a group or flock
was formed. Then, they select the optimal groups to form after estimating all
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possible outcomes. And finally, they divide the set of agents into exhaustive and
disjoint groups. One drawback of this method is that the system becomes very
complex as the number of agents increases. In addition, we cannot always design
and predict all possible and useful formations in a complex environment.

3 Problem

3.1 Multi-agent Reinforcement Learning

A Multi-agent Markov game is defined as 〈N,S,A,R, T 〉, where N = {1, . . . , n}
is a set of n agents, S a finite state space, A = A1×· · ·×An is a joint action space
of agents (where Ai is the action space of agent i), R : S×A → R is the common
expected reward function; and T : S ×A×S → [0, 1] is a probabilistic transition
function. At each timestep t, agent i takes action ai

t sampled from the policy πi
t

in state st ∈ S, where πi : S × Ai and st =
(
s1t , . . . , s

n
t

)
. When a joint action

at =
(
a1
t , . . . a

n
t

)
is executed, the environment transits from st to st+1 with a

probability p(st+1|st, at) ∈ T and agent i receives a reward rit = R(st+1|sit, ai
t).

The goal of the agents is to find a deterministic joint policy π =
(
π1, . . . πn

)
so

as to maximize the sum of their individual reward rt =
∑n

i=1 rit.

3.2 Adversarial MAS Environment

Fig. 1. Initial state

In this paper, we used a well-known adversarial
multi-agent domain, the so-called “Battle game”
[10], in which two teams of many agents are
fighting against each other. Agents of the same
team cooperate with their teammates to find some
strategies in order to defeat the opponent team.
The main goal is to kill as much opponents as pos-
sible by invading the neighbor territories and by
using some warfare strategies. Our environment
operates on two (2) teams of n agents and runs
from some initial positioning of the agents inside a square in two-dimensional
space for each team.

An agent can take up to 7 actions: going up, going down, going left, going
right, turning left, turning right and shooting. An agent is dead after being
attacked three (3) times. An episode ends when all agents on one team have
been killed or after 1, 000 timesteps. The winning team is the one who has the
highest number of alive agents.

3.3 Reward Scheme

Each agent receives a reward of −0.01 after each step. An agent gets +5 when it
kills an opponent, and receives −5 when the agent is killed by an opponent. An
agent receives a small negative reward of −0.01 whenever it attacks an empty
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position. An agent receives +1 for attacking an opponent, and −1 if it is being
attacked. The global reward of each team is the sum of all the rewards received
by agents of the same time at any timestep t, rt =

∑n
i=1 rit.

4 Method

4.1 Proposed Learning Framework

(obs, ID)

Agent 1

Agent n
(obs, ID)

(o,a,r,o')
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action

reward

reward

action

Fig. 2. Scalable adversarial MAS architec-
ture. The environment constitutes of two
teams of n agents (n = 100, 200, 300, 400)
each at the beginning of each episode.

We proposed a distributed learn-
ing framework for training adversarial
multi-agent systems with a large num-
ber of agents (Fig. 2). In our frame-
work, each agent has its own local view
sit, its own action space ai

t and its own
reward rit. At every timestep t, an indi-
vidual agent observes its local environ-
ment, takes an action, and receives a
local scalar reward. Agents only know
their own individual action and they
do not observe each other’s action.

In this model, all members of the same team use the same neural network.
The deep Q network of each team receives a “tensorized” observation at time t
(see Sect. 4.2). Each agent asynchronously infers its action from the output of
the network which contains the Q-values of every possible action for all agents.

4.2 Observation 2k + 1

2k
 +

 1

...

Fig. 3. 3D Tensor observation.

The main environment is represented
as a square grid. The image is con-
verted into grayscale. And then every
agent uses a filtering method to
delimit its local view controlled by
the parameter k (Fig. 3). The input of
each network is a tensorized stack of
all local views of agents at any given
timestep. Each agent senses distances to neighboring agents within a radius k
from its current position. Each channel represents the local view sit of each indi-
vidual agent of the same team. Using only this information, a network can learn
a policy that is able to establish and maintain a certain group formation and
to cooperatively locate and eliminate the opponents. This representation can be
thought of as an aggregation of all inputs from different sensors of many robots.
In our implementation, the local view sit of a dead agent is sit = 1(2k+1,2k+1),
an identity matrix of size (2k + 1, 2k + 1) whose entries are 1. This practically
means that the local views of a dead agent is white as is the background.
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5 Results

5.1 Experimental Settings

We use the following parameters for all our experiments: learning rate α =
0.00025, discount factor γ = 0.99. We update the target network every 10, 000
timesteps. To stabilize learning, we feed the network with medium size mini-
batches of 250 samples. The double DQN [11] network structure is similar to
the one from [6]. The experimental results in the following sections describe the
average values of ten (10) experimental runs with different random seeds.

5.2 Convergence and Improvement of Group Behaviors

Figure 4 represents the training performance of our baseline implementation
where we have 100 agents per team with a narrow local field of view (k = 3).
The average error of each team is shown in Fig. 4a. In the beginning, the losses
were high because of the high values of ε(t). After more or less than 1, 000
episodes and smaller values of ε(t), each network’s training loss converges to a
very low value close to null.

Fig. 4. Training result of our adversarial multi-agent with n = 100 and k = 3.

By using double DQN [11], we make sure that the networks do not over-
estimate the Q-values, and consequently, the action-state values will converge
to the actual Q-values. The average Q-values of each team is shown in Fig. 4b.
Agents were taking random actions by sampling from high values of ε(t) in the
beginning. After training sufficiently enough, agents started to take good actions
based on their near-optimal policies.

Figure 4c shows the average reward per episode for each team during training
time. We see that both networks tend to have approximately the same reward.
Our reward scheme could make a group of agents learn how to efficiently form
various strategic group formations based on their opponents’ strategies.

Figure 4d shows the number of alive agents at the end of each episode for
each team. This helps us evaluate how often each team wins and to know exactly
how many agents are still alive at the end of an episode. First, the team with
the largest number of agents at time t uses some tactics to eliminate as many
opponents as possible in a very short time before the opponents’ counter-attack.
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Then, both teams reach a kind of equilibrium in which they use similar group
formation strategies. And finally, agents periodically update their strategies to
effectively defend themselves against the opponents.

5.3 Scalability

The input of each network is smaller when k is smaller because the input shape
is (n, (2k + 1), (2k + 1)). That mainly justified why we observed low loss values
for k = 3, 4 (Figs. 4a, 5a, f and k). Moreover, all networks started to use their
optimal policies after 1, 000 episodes. No matter what the values of k are, all
networks converge to the same Q-values soon or late (Figs. 5b, g and l). As
the number of agents increases, the networks converge to the actual Q-values
independently to their local field of views.

Fig. 5. Training performance of our adversarial multi-agent with different number of
agents (n = 200, 300, 400) and field of view ranges (k = 4, 5, 6). (d), (i), and (n) show
the cumulative number of alive agents.

Despite the fact that all settings did converge, we can see that the agents
with k = 3 take much longer to learn a new strategy or to adapt their behaviors.
This can be explained by the fact that with a small field of views, agents cannot
see the surrounding opponents, hence their lack of good defense strategies. After



464 E. A. O. Diallo and T. Sugawara

1, 000 episodes, both teams started to learn not only how to attack but how to
defend themselves for a relatively longer period. A larger field of view (k = 5, 6)
helps agents to simultaneously learn good attack and defense strategies.

While with large k, both teams learn the same strategies and they can kill
approximately the same number of opponents, they also rapidly co-adapt them-
selves based on the opponents’ behaviors by finding some good defense strate-
gies. We can conclude that our proposed learning framework is scalable in non-
stationary and adversarial learning environments with a large number of agents.

5.4 Learned Team Strategies

In the following, we describe the most common observed strategic group for-
mations learned by agents. It seems like most of the following strategies always
appeared in all experiments. As we train agents, we might observe slightly vari-
ant tactics which do have the same roots. Agents often prefer short-term and
aggressive strategies to long-term and safe ones.

Fig. 6. Some learned team strategies.

Encirclement. This situation is highly dangerous for the encircled team. The
agents of the encircled team can be subject to an attack from several sides.
However, if there are some obstacles inside the environment or on one side of it,
it would be much harder to achieve a full encirclement attack. (Fig. 6b)

Guerrilla warfare. It is a strategy in which a small number of agent use mobil-
ity tactics to fight a larger and less-mobile opponent team. The main goal is to
inflict damage on a target and immediately move away from the location from
where the attack did happened to avoid the opponents’ counter-attack (Fig. 6c).

Frontal attack. This is a direct and hostile movement of the agents toward the
front of the opponent agents. By targeting the front, the attackers are subjecting
themselves to the maximum defensive power of the enemy (Fig. 6d).

Flanking maneuver. This consists of a movement of agents of the same team
around a flank to achieve an advantageous position over enemies. Agents easily
form echelons in which they are diagonally aligned. However, this strategy is not
always safe when the team is outnumbered. (Fig. 6e)

Pincer movement. Similarly to the flanking maneuver, this is a tactic in which
agents of the same team simultaneously attack both flanks of the opponent team.
This generally leads to a frontal attack on each flank (Fig. 6f).
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5.5 Discussion

Our reward structure appears to make this domain a negative-sum game as
points are lost for time and scores are balanced for attacks and kills only during
the beginning of the training. In other words, the positive and negative rewards
of all agents will add up to less than zero only during the first episodes when the
values of ε are high. Then, the environment becomes a zero-sum game before
generating positive-sum outcomes in which the sum of positive and negative
rewards is greater than zero.

In our framework, each agent has its own Q-values and they simultaneously
act in a decentralized manner. Therefore, the problem is much more complex
than having centralized learning, where two agents compete with each other
in a grid world. One of the main advantages of our method is that we do not
necessarily need to retrain the network from scratch for a different number of
agents. Even though our agents are homogeneous, it is easy to see that our agents
can adapt their strategies against the change of opponents’ strategies.

6 Conclusion

We demonstrated that agents keep forming groups whenever new ones are nec-
essary. Also, the formations are dissolved whenever it is beneficial to do so. The
networks have learned how to effectively position and move agents for the emer-
gence of group formation during and after training. This proves that grouping
provides greater protection against opponents. We confirmed that local behav-
ior of an individual can conspire to determine very complex global behaviors of
multi-agent systems.
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Abstract. Research has shown that personalization of health interven-
tions can contribute to an improved effectiveness. Reinforcement learn-
ing algorithms can be used to perform such tailoring. In this paper,
we present a cluster-based reinforcement learning approach which learns
optimal policies for groups of users. Such an approach can speed up the
learning process while still giving a level of personalization. We apply
both online and batch learning to learn policies over the clusters and
introduce a publicly available simulator which we have developed to
evaluate the approach. The results show batch learning significantly out-
performs online learning. Furthermore, near-optimal clustering is found
which proves to be beneficial in learning significantly better policies com-
pared to learning per user and learning across all users.

Keywords: Reinforcement learning · Personalization · m-Health

1 Introduction

Within the health domain, an ever increasing amount of data originating from
a variety of sources is being collected about people’s health state and behavior.
Smart devices not only allow for the collection of data, but can also be used
to provide interventions to users directly. One-size-fits-all solutions, where each
user gets the same intervention, have been shown less effective compared to more
personalized approaches that tailor interventions to (groups of) users (see e.g.
[3]). The data collected from the users can help to establish this personalization.

A challenging aspect of intervention personalization is that success is often
not immediately clear and that interventions are composed of sequences of
actions that should act in harmony, and thus reinforcement learning (RL) (see
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e.g. [9]) arises as a very natural solution (cf. [2]). RL typically requires a sub-
stantial learning period before a suitable policy is found. In our setting, we do
not have a sufficiently long learning period per user. Hence, there is a need to
substantially shorten the learning period. To establish this, we can either: (1)
start with an existing model (transfer learning, see e.g. [7]) or (2) pool data from
multiple users who are, in some way, similar to learn policies (cf. [10]).

In this paper, we present a cluster-based RL algorithm which builds on top
of the work done by [10] and test it for a complex health setting using a dedi-
cated simulator we have built. We use K-Medoids clustering with Dynamic Time
Warping (DTW) [1] as the distance function to find suitable clusters. We learn
policies over the clusters using both an online RL algorithm (Q-learning, cf. [8])
and a batch-algorithm (LSPI. cf. [4]). We compare the cluster-based approach
to learning a single policy across all users and learning completely individual-
ized policies. The aforementioned simulation environment generates realistic user
data for a health setting. Here, the aim is to coach users towards a more active
lifestyle. In comparison with [10], our approach relies on a more sophisticated
and complex simulation environment where several types of users are simulated
with each their own behavioral profile and personal preferences which allows for
highly personalized policies. Furthermore, we apply clustering using a state-of-
the-art distance metric to learn optimal policies for clusters of users. Also, the
stochasticity in the behavior of users makes the simulation environment a very
robust testbed for RL algorithms.

2 Approach

Generally, we want to learn an intervention strategy for many types of users,
without knowing beforehand which types of users exist, how they differ behav-
iorally, and how they react differently to interventions. We employ RL to opti-
mize our system by experimenting with different intervention strategies.

Users and Interventions. Let U be the set of users. We see each user u ∈ U
as a control problem modeled as a Markov decision process [9] Mu = 〈Su, I,
Tu, Ru〉, where Su is a finite set of states the user u can be in, I is the set of
possible interventions (actions) for u, Tu :: Su × I ×Su → [0,1] is a probabilistic
transition function over u’s states Su, and Ru ::Su × I → R is a reward function
assigning reward r = Ru(su, i) to each state su ∈ Su and action i ∈ I.

The user’s state set Su consists of the observable features of the user state. In
general, we cannot observe all relevant features of the true underlying user state
strue and Su is therefore restricted to measurable aspects, modeled through a
set of basis functions over a state su ∈ Su. That is, we use the feature vector
representation φ(su) = 〈φ1(su), φ2(su), . . . , φn(su)〉� of the state su ∈ S of user
u as representation. If there is no confusion we will use su instead of φ(su). The
transition function Tu, which determines how a user u ∈ U moves from state
su ∈ Su to s′

u ∈ Su due to action i ∈ I, is not accessible from the viewpoint of
the RL algorithm, a natural assumption when dealing with real human users. In
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Sect. 3, we do show how we have implemented it for the artificial users in our
simulator. The granularity of modeling Tu can be set based on the case at hand,
ranging from seconds to hours, denoted by Δt. Finally, the reward function Ru

determines the goal of optimization and is explained in more detail in 4.
Every time point a user u is in some state su ∈ S, the system chooses an

intervention i ∈ I, upon which the user enters a new state s′
u, receiving a reward

r. Note that for both the transition and reward function it is unknown whether
they can be considered Markov, and thus whether the user can be controlled as
an MDP. Nevertheless, we assume it is close enough such that we can employ
standard RL algorithms. With a state that is Markov we can make predictions
of future states using only the current state. Note also that all users share the
same state representation, but can differ in Ru and Tu. An alternative strategy
would be to learn the dynamics of Tu and Ru from experience as in model-based
RL (e.g. see [6]), but here we focus on learning them implicitly by clustering
users who are similar in their behavior (and thus Tu and Ru).

Evaluating and Learning Interventions. The goal is to learn intervention
strategies, or policies, for all users. For any user u ∈ U , π ::Su → I specifies
the intervention for user u in state su. The intervention i = π(su) will cause
user u to transition to a new state s′

u and a reward r = Ru(su, i) is obtained,
resulting in the experience 〈su, i, r, s′

u〉. A sequence of experiences for user u
can be compactly represented as 〈su, i, r, s′

u, i′, r′, s′′
u, i′′, r′′, . . .〉 and is called a

trace for user u. For the sake of simplicity we will drop the user subscript if
possible. To compare policies, we look at the expected reward they receive in the
long run, represented by so-called Q-functions. For Q-learning, we optimize the
policy using the standard formulation of a Q-learning approach (see e.g. [6]).
Note that for all users U together one Q-function is learned. In addition, we use
variants of experience replay [5] which amounts to performing additional updates
by “replaying” experienced traces backwards to propagate rewards quicker. In
our setting, we sample the experience pairs in chronological order instead of
random. Using disjoint experience pairs would have been the better alternative
if the set of traces we learn from was larger.

In our second method, LSPI, we employ the basis function representation
φ(s) of a state and compute a linear function approximation of the Q-function,
Q̂ =

∑k
j=1 φ(s)wk, from a batch of experiences E. Here, w = 〈w1, . . . , wk〉

consists of tunable weights. LSPI implements an approximate version of standard
policy iteration (cf. [6]) by alternating a policy evaluation step and a policy
improvement step. However, due to the linear approximation, the evaluation
step can be computed by representing the batch of experiences in matrix form
and using them to find an optimal weight vector w .

Two Learning Phases. For any given set of users we define two optimization
phases. In the first phase (warm-up) we employ a default policy πdef (see the
experimental section for details) to generate traces for each user, and use all
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experiences of all users to compute Qπdef . By maximization we obtain a bet-
ter policy π′ that is used at the start of the second phase (learning). During
this phase we iteratively apply the policy to obtain experiences and update our
Q-function (and policy) using either Q-learning or LSPI. In this phase some
exploration is used, reducing the amount of exploration ε over time.

Cluster-Based Policy Improvement. So far, we have assumed all users
belong to one group. Our main hypothesis is that since users have different
(but unknown) transition and reward functions, learning one general policy for
all users will not be optimal. To remedy this, we add a clustering step after
the warm-up phase. We employ K-Medoids clustering and by employing DTW
instead of a default Euclidean distance, we can also measure similarity when
two users are out of phase. The traces that are used here contain the states and
rewards. Matching two traces needs to satisfy constraints: (1) every data point
from the trace of the first user has to be matched with at least one data point
from the trace of the second user and vice versa, (2) the first (and last) data
point from the trace of the first user has to be matched with that of the second
user, and (3) the mapping of the data points from the trace of the first user to
those of the second user must increase monotonically. We split user traces by
day and deploy DTW to calculate the optimal match.

Let U be the set of users targeted in the warm-up phase, and ΣU the set of
all traces generated. Let Σui,m be user i’s experiences during day m, excluding
the interventions. The similarity between users u1 and u2 is defined:

SDTW (u1, u2) =
M∑

m=0

DTW (Σu1,m , Σu2,m) (1)

Let the number of resulting clusters be k and ΣU
1 , . . . , ΣU

k be the partitioning
of ΣU , and let U1, . . . Uk be the partitioning of U . Instead of utilizing all experi-
ences of U for one Q-function, we now induce a separate Q-function QΣU

i
(and

corresponding policy πΣU
i

) for each user set Ui based on the traces in ΣU
i and

continue with learning and performance phases for each subgroup individually.

3 Simulator

In our health setting applying RL directly to real users would be prohibited by
the number of interaction samples required to learn good strategies. We therefore
built a simulator to experiment with algorithmic settings first.

3.1 Schedules

We assume that we have n users in our simulator: {u1, . . . , un}, originating from
the set U as defined before. Each of these users can conduct one of m activities
at each time point ({ϕ1, . . . , ϕm}). Time points in our simulator have a discrete
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step size δt. Let Φ denote the possible values of the activity. Example activities
are working, sleeping, working out, and eating breakfast. Each user has a unique
activity that is being conducted at a time point t ∈ T (activity : A × T → Φ).
Note that this activity can also be none. For each user, a template schedule can
be specified, which expresses for each activity ϕi: (i) an early and late start time
(early start(ϕi) and late start(ϕi)), (ii) a minimum and maximum duration of
the activity (min duration(ϕi) and max duration(ϕi)), (iii) a standard devi-
ation of the duration of the activity (sd duration(ϕi)), (iv) a probability per
day of performing the activity (p(ϕi, day)), and (v) priorities of other activities
over this activity. Using these template schedules, a complete schedule is derived
which instantiates activities at each time point, on a per day basis.

3.2 Interventions and Rewards

Besides performing activities during a day, interventions can also be sent to users.
In our system, the set of interventions I contains a binary action as {yes, no},
representing at each decision moment whether the system sends an intervention
or not. Acceptance of a message is determined by conditions in the user’s profile.
If a message is sent at the right time and a gap in the schedule is between tplan min

and tplan min + tplan duration from the time the message is sent, the activity will
be performed. These parameters define a time window in the schedule into which
the users will try to fit the desired activity.

4 Experimental Setup

As said, we focus on a health setting where learning a policy as fast as possible
(i.e. based on limited experiences) is essential. Within this paper, we aim to
answer the following questions: RQ1 How do batch and online learning in our
simulator setting differ, and how can generalization be employed to speed up
learning?, RQ2 Can a cluster-based RL algorithm learn faster compared to (1)
learning per individual user or (2) learning across all users at once?, and RQ3
Can we effectively cluster users based on traces of their states and rewards?

Simulator Setup. In our simulator setup, we aim to improve the amount of
physical activity of users. We include several types of users. More specifically,
we employ three prototypical users, referred to as the workaholic, the sporter
(an avid athlete), and the retiree. The simulator itself runs on a fine-grained
time scale (δt is one second) while we model Tu at a coarser granularity (Δt
is one hour). We include the following activities: sleep, breakfast, lunch, dinner,
work, workout. We use three profiles with n = 33 agents each from which daily
activities are spawned with some level of variability per agent.

The goal of the scenario is to make sure the total work out time meets the
guideline for the amount of daily physical activity (30 min per day). Messages
can be sent to the user to start working out. The acceptance of the message
is dependent on the planning horizon of the user and whether it fits into the
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schedule where the workaholic needs to know long in advance, the retiree works
with a short advance notice and the sporter is right in the middle. In addition,
acceptance windows are defined (during lunch for workers (with probability 0.7),
outside of lunch for retiree (0.5) and anytime for sporters (0.9)). How long the
workout activity will be performed is defined in the profile of the user Fatigue
plays a role here. Fatigue can build up when working out across multiple days.
The value of fatigue is the number of times a user worked out in total during a
consecutive number of days where at least one workout per day occurred.

Algorithm Setup. As features for the state (i.e. φ(su)) we use: (i) the current
time (hours), (ii) the current week day (0-6), (iii) whether the user has already
worked out today (binary), (iv) fatigue level (numerical), and (v) which activities
were performed in the last hour (six binary features). All these features are
realistically observable through sensor information, or inferable.

The reward function Ru consists of three components. If an intervention is
sent and the user accepts it, the immediate reward is +1 (otherwise −1). A
second reward component is obtained while the user is exercising, where the
exact reward value is scaled relative to the length of the exercise (+0 per Δt)
and when the user finishes exercising (+10). A third component is related to the
fatigue level of the agent at each hour of the day: higher levels result in a small
negative reward (−0.1 per unit of fatigue per hour) which shape the intervention
strategy such that it does not overstimulate the user with exercises.

The first part of a simulation run is a warm-up phase of seven days where
interventions are driven by a default policy which sends one intervention per day
to each user at random between 9:00 h and 21:00 h. This allows us to perform
exploration and to generate traces for clustering.

The second part of a simulation run is the learning phase that lasts for 100
days. Immediately after the start of this phase we update the Q-table and learn
LSPI policies using the traces generated during the warm-up phase. During the
learning phase we perform updates to Q-table once every hour and update the
LSPI policies at the end of each day. For Q learning and LSPI we use γ = 0.95,
and ε = 0.05 and 0.01 resp. and the learning rate α for Q-learning decreases
from an initial 0.2 with 1% every day. These parameters have been set using
grid search for γ between 0.85 and 0.95 with step size 0.05, ε between 0 and 0.05
with step size 0.05 and α was fixed at 0.2 with a 1% decrease rate every day. For
LSPI the maximum number of iterations was set at 20 with a threshold of the
change in policy weights as a stopping criterion of 0.00001 and we use a first win
tie breaking strategy. We initialize the Q-values with a random value between 0
and 1 if the action of the state-action pair is 0 otherwise we initialize the Q-values
with a random number between −1 and 0, all to encourage exploration. To speed
up the learning we use experience replay. We store the last 250 experiences and
use these to update the Q-values.

Setup of Runs. To answer our research questions, we run several simulations.
First, we vary the type of RL algorithm: online (Q-learning) and batch learning
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Fig. 1. Cumulative reward LSPI Fig. 2. Cumulative reward Q Learning

(LSPI); this enables us to answer RQ1. For each type of algorithm, we com-
pare runs where we learn a single policy across all users (pooled approach) to a
cluster-based approach and learning a completely individualized policy for each
user (separate approach). This variation reflects RQ2. For each algorithm we do
two simulation runs for the cluster-based approach; one simulation run using
K-Medoids clustering with the DTW distance (cluster-based approach) and a
second simulation run using three homogeneous clusters, one for each type of
agent (grouped benchmark approach). The latter provides us with a benchmark
to evaluate the cluster quality (i.e. RQ3 ). Hence, in total we perform eight runs.

5 Results

Batch versus Online Learning: Figures 1 and 2 demonstrate that LSPI signif-
icantly outperforms Q-learning when we compare the average daily reward over
the 100 days. Significance has been tested using a Wilcoxon Signed-Rank test
with a significance level of 0.05. The Q-learning experiments show that online
(table-based) learning without generalizing over states is not capable of learning
reasonable policies in a period of 100 days. LSPI on the other hand, generalizes
over states and utilizes the relatively short amount of interaction much better.
This is not a surprise, but it does confirm that generalization – over the expe-
riences of multiple agents, but also over states – is needed to obtain reasonable
policies in “human-scale” interaction time (and thus answers RQ1).

Different Learning Approaches: The grouped benchmark approach with
LSPI provided us with a policy that outperformed all other policies in this
setting. The grouped approach using clustering with DTW was the second best
performing approach. The separate approach has the ability to match the per-
formance of the grouped benchmark approach given enough time to learn. At
the same time the grouped approach clearly outperformed the pooled approach
which indicates that clustering helps us learn better policies in a shorter amount
of time, by generalizing over the groups of agents. With the cluster-based app-
roach we are able to speed up the learning time in comparison with the pooled
approach to potentially reach better policies. The policies that were produced by
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Q-learning show little variation in terms of performance resulting from the differ-
ent learning approaches. On the contrary, LSPI produces policies learned using
the same approaches that are significantly different among each other (Wilcoxon
Signed-Rank test, 0.05 significance). Although Q-learning shows little differences
across the setups, an interesting observation is that clustering using knowledge
about the profiles of the users performs slightly worse in terms of average daily
reward than the remaining approach while using Q-learning.

Clustering: Clustering with the K-Medoids algorithm and the DTW distance
metric for LSPI is clearly near-optimal. Two users of the type retiree were con-
fused as the type sporter and one sporter was put together with the workaholics
in the same cluster. For the Q-learning case similar patterns were observed.

6 Discussion

In this paper, we have introduced steps towards a cluster-based RL approach
for personalization of health interventions. Based on the results we can say that:
RQ1: RL with batch learning and function approximation outperforms table-
based RL using online learning in a significant way, thereby disqualifying the
latter when interaction time is short. RQ2: A cluster-based RL can learn a
significantly better policy within 100 days compared to learning per user and
learning across all users, provided that a suitable clustering is found. RQ3:
Learning suitable clusters using the Dynamic Time Warping distance function
and K-Medoids clustering based on traces of states and rewards over 7 days shows
to be very feasible, resulting in a near perfect clustering. While our simulator
exhibits realistic behavior, we plan on moving more and more to a setting where
the actual user is in the loop. Furthermore, from a methodological side, we aim to
experiment with more powerful RL techniques, and we want to explore different
clustering algorithms and more distance metrics to improve the clustering itself.
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Abstract. Simulation environments have proven to be very useful as
testbeds for reinforcement learning (RL) algorithms. For settings where
an actual human user is involved, these simulation environments allow
one to test out the suitability of new RL approaches without having to
include real users at first. It obviously does require the simulator to have
a certain degree of realism, however, realistic simulators for the behavior
of humans in the health domain are rarely seen. To generate realistic
behavior, the simulator could be driven by data from real users, but this
might lead to privacy issues. In this paper, we propose to use Generative
Adversarial Networks (GANs) for generating realistic simulation envi-
ronments. In this first step, we use an existing simulator that simulates
daily activities of users and the GANs are used to generate realistic sen-
sory data that accompanies such activities. After training, the original
(potentially privacy sensitive) data can be thrown away and the simula-
tor can simply be driven by the GAN models. Results show that a model
trained on real data shows similar performance on the data artificially
generated by the GAN.

Keywords: Simulation · Generative adversarial networks
Reinforcement learning · Deep learning · e-Health

1 Introduction

Applications of RL rely on the notion of sequential decision making [2]. The goal
is to learn optimal policies for selecting actions that maximize long-term reward.
Consequently, the effectiveness of such learned policies only become apparent
in the long run. Hence, lengthy experiments are needed to generate suitable
policies. Simulation environments give researchers the ability to develop and
rigorously test novel RL algorithms and methods and generate policies before
applying them in a real-world setting. Recent developments in RL rely heavily
on simulation environments as testbeds for the algorithms [12].
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In the domain of e-Health, the focus of this paper, RL algorithms are the
appropriate choice for solving sequential decision problems such as sending inter-
ventions to improve the health state of users. The application of RL algorithms
in e-Health has been limited by data availability, data reliability, and privacy
constraints. It could clearly benefit from a suitable simulation environment. Cur-
rently, however, none are available that include a realistic simulation of human
behavior. Due to discrepancies between the simulation environments and the
real world, the newly developed algorithms shown to work well in simulation, or
even policies learned in such simulations, can perform poorly in real-life settings
[4]. On that account, simulation environments should be based on actual data
to minimize the gap between simulation and reality. However, sharing this data
might lead to privacy issues if the environment is to be made available to the
community, which clearly is highly desirable.

In this paper, we propose to exploit GANs to develop behavioral models that
mimic human behavior as an approach to take simulation environments for e-
Health to the next level. This paper presents a first step in this endeavor: we
focus on GANs that are able to generate sensory values that mimic those of real
humans. We show that we can employ these techniques to develop models that
learn from real-world sensory data to synthesize realistic sensory data for human
behavior, a crucial first step in the development of a simulation environment for
this domain as e-Health applications are often driven by sensory data of users.
The approach can also help to remedy privacy issues: we use privacy-sensitive
data in a secure environment once to generate the GAN models, and can then
share the resulting model with the community as it no longer contains the real
users’ data. We embed the GANs into an existing simulation environment (cf. [7])
that we extend and make more mature. This simulator focuses on a health
setting where users conduct certain activities and adapt their activities based on
interventions. To evaluate the performance of our generative models and show
that we meet the required level of realism, we use an activity recognition model
that can classify human activity from raw sensory input, which is known to be
highly accurate (cf. [3]) and observe the difference in performance on the real
and artificially generated data. All the above-mentioned models make use of the
Long Short-Term Memory networks (LSTMs) [8] or variations thereof.

This paper is organized as follows. In Sect. 2 we present related work, while
Sect. 3 explains our simulation environment. Section 4 details how we use GANs
to generate behavior in the simulation environment. Section 5 describes the
experimental setup, and the results are presented in Sect. 6. Finally, we present
our conclusions.

2 Related Work

Limited work has been done in relation to generating realistic data related to
human behavior for simulation environments using GANs. [11] argues that access
to sensory data can be very beneficial in the area of e-Health for tasks such as
health monitoring and activity recognition. They also argue that this type of
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data is very sensitive and contains information that needs to be protected. They
propose an approach using a replacement autoencoder along with a GAN to
remedy this. With the approach, they preserve the privacy of the data while
simultaneously allowing for the usage of realistic sensory data. Alzantot et al. [1]
used GANs to synthesize accelerometer data from mobile phones. They showed
that realistic accelerometer data can be generated using LSTM and Mixture
Density networks. The results presented by this work are promising and shows
that these methods can be very effective given a large set of training data. Tseng
et al. [13] use RL in combination with a simulation in the health domain using
GANs. They used deep RL techniques to develop automated radiation protocols
for patients with lung cancer. Historical treatment plans where used to learn
these protocols. They use a GAN to learn the characteristics of the patients from
a relatively small dataset and use it to generate more data. This is required to
make learning with deep RL viable. Secondly, they use a deep neural network to
reconstruct an artificial environment for radiotherapy. They do this using both
the original data as well as the synthetic data.

3 Simulation Environment

Generally, we want to simulate the real-world process of artificial people (users)
performing activities over time. These users generate experiences that can be
used by an RL driven agent to learn optimal policies. These policies are used to
make decisions at fixed points in time. The decisions that have to be made are
related to sending a specific intervention to a certain user. In this paper, we fur-
ther develop upon an earlier version of the simulation environment [7]. Figure 1
provides an illustration of this system. The environment API is a communica-
tion layer that allows the learning agents to send interventions to the users and
observe data about these users (i.e. the state). This observed data is used to
learn optimal policies and use these policies to make decisions.

Fig. 1. Simulation environment for RL algorithms in the e-Health domain.

Let us turn a bit more formal. We define U as the set of users and assume
we have n users in our simulation environment: {u1, . . . , un}. Each user can per-
form an activity out of a set of m activities Φ (Φ = {ϕ1, . . . , ϕm}). Examples of
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activities are sleeping, eating, working and working out. The simulation environ-
ment runs in ticks, these are discrete steps of size δt. Users perform one unique
activity at any certain time point t of a simulation run (activity : A × T → Φ).
When a user is not performing an activity (idle) we denote the activity with
(none). In short, a simulation run is a sequence of unique mappings of the
activities space onto time points in T . Users generate sequences of experiences
〈su, i, r, s′

u, i′, r′, . . .〉 where at every time point δt, the observable state of user
u ∈ U is denoted by su ∈ S, the intervention by i ∈ I and the observed scalar
reward drawn from the reward function Ru by r.

In parallel, a learning and decision-making system is ticking along with the
simulation environment. The learning and decision making system interacts with
the simulation environment and has partial observability of the states. Fur-
thermore, this system can influence the environment through interventions that
are sent to users in the simulation environment. The learning system uses the
observed experiences to learn optimal policies. Furthermore, it uses the observa-
tions to make decisions about intervening using the learned policies and models.

User schedules are based on generic profiles that specify what activities users
perform, including a certain variability. Furthermore, user schedules are adjusted
based on the current schedule and responses of the user to an intervention. For
each user, a template schedule is created at the start of each day. This schedule
denotes the different activities the user will perform during that day. For each
activity ϕi, several parameter values are specified, see [7] for more details.

Once activities are generated in the simulator, it is possible to generate the
proper observations for the RL algorithm (i.e. the observable state of the user
su). In this case, we assume that we cannot directly observe the activities, but
only their accompanying sensor values. As mentioned in the beginning, we use
GANs to generate appropriate values for these activities. How we do this will be
explained in the next section, which is the main contribution of this paper. The
rewards can be defined based on these observations.

4 Using GANs to Generate Sensor Data

Generative Adversarial Networks. GANs [6] are a class of algorithms with
two neural networks, a generator, and a discriminator, that are competing in a
zero-sum game. The generator, denoted by G, generates samples x = G(z;Θ(G)).
Here z denotes random noise and Θ(G) the weights of the network. The adver-
sary of the generator, the discriminator D, has the task of distinguishing between
sequences sampled from the training data and sequences generated by the gener-
ative network. The discriminator generates a probability, denoted by D(x;Θ(D)),
indicating whether the sequence is a real example drawn from the training data
or whether it is a sequence generated by the generator network.

Long-Short Term Memory Networks. We employ GANs to generate
sequences of accelerometer data. Gated Recurrent neural networks are the most



480 A. el Hassouni et al.

effective sequence models used in practical applications of deep learning tech-
niques [5]. Given that the sequences of sensory data are of highly temporal nature
we deploy LSTM networks, a type of network falling under the Gated Recurrent
Neural Networks category.

Dataset. To develop a GAN that generates realistic sensory data, we need a
realistic dataset. We use the WISDM dataset [10] for this purpose. This data
is known as the Wireless Sensor Data Mining dataset and consists of labeled
3D accelerometer data (x, y, and z) from real people captured while they per-
formed several activities humans engage in on a daily basis. There are 6 activities
included in this dataset and these are climbing stairs (upstairs and downstairs),
jogging, sitting, standing and walking.

5 Experiments

The main goal of this paper is to show that we can generate realistic human data
using GANs. In our experiments, we focus on evaluating to what extent the data
that is generated differs from real data. This is our performance criterion: that
an independent model is not able to distinguish between the real and generated
data. Below, we detail how each of the components is set up.

5.1 Activity Classifier Setup

As a first step, we started out with the development of a classifier for daily human
activities which acts as the aforementioned independent model. The sequence
length is 160 data points which amount to 8 s worth of data. As a preprocessing
step, segments of length 160 data points were created with a shifting window of
20 data points. The segments were labeled with the activities that occurred at
that moment. 80% of the WISDM data was randomly selected for training and
20% of the data was used for testing. An LSTM network with 2 hidden layers
was used. Each hidden layer has 64 hidden units. ReLu activation was used
along with a forget bias of 1 for the hidden layer. For the output layer, Softmax
activation was chosen along with a forget bias of 1. Softmax cross entropy with
logits with L2 regularization of 0.0015 was used as the cost function. Adam
optimizer with a learning rate of 0.0025 was selected. The batch size during
training is 1024. The choice of algorithm, network architecture and parameters
selected were based on [3] and [9].

5.2 Generative Adversarial Network Setup

For training the GAN, we use the Adam optimizer with a learning rate of 0.1
with a learning rate decay of 1e-10, a clip value of 1, β1 of 0.5 and β2 of 0.55. We
use a batch size of 24 for the real data and 1 for the synthetic data. Binary cross
entropy is used as the loss function and the accuracy is used as the metric of
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choice. We describe further details about the generator and the discriminator in
the next two sections. The parameters selection and network architectures were
chosen based on inspiration from different existing work in the area of genera-
tive adversarial networks [1,11]. During initial experiments, we employed a grid
search between different optimizers (SGD, Adam, and RMSprop) and activation
functions (tanh, sigmoid, linear and ReLu). The best performing combinations
were selected and are described below.

Generator. For the generator, we use a deep neural network that contains 1
hidden layer and one output layer. The hidden layer is an LSTM layer with
64 hidden units. We use a dropout rate of 0.5 for this layer along with a tanh
activation function and hard-sigmoid as the recurrent activation function. The
output layer is a fully connected layer with 3 output neurons (x, y, and z). The
activation function is the linear activation function. The Adam optimizer with
identical parameters to the ones selected for the GAN is used.

Discriminator. The discriminator is a deep neural network of 2 hidden layers
and 1 output layer. The first hidden layer is an LSTM layer with 32 hidden units,
a dropout rate of 0.5 along with a tanh activation function and hard sigmoid as
the recurrent activation function. The second hidden layer is a fully connected
layer of 16 hidden neurons with a linear activation function and a dropout rate
of 0.5. The output layer is a fully connected layer with one neuron and the
tanh activation function. We use SGD as the optimizer with a learning rate of
0.01, a learning rate decay of 1e-6, a momentum of 0.8 and Nesterov accelerated
gradient descent. Binary cross entropy was selected as the loss function and the
accuracy is used as the metric for tracking the accuracy of the model.

6 Results

6.1 Activity Classifier

Our results demonstrate that we can classify daily human activities with an
accuracy of 97.33% on the test set when using the independent classifier. These
results show that the training accuracy is slightly higher than the test accuracy
while the training loss is slightly lower than the test loss. The model stabilizes
after 40 epochs. The results also show that the algorithm misclassified a relatively
large number of samples from the activities Downstairs as Upstairs and vice versa
and Sitting as Standing. The activities Jogging, Standing, and Walking have the
highest accuracies.

6.2 Generative Adversarial Networks

To validate the performance of the generated sequences for the activities, we rely
on the independent activity classifier we developed earlier. Figure 2 shows the
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probabilities that the generated sequences belong to any of the 6 activities over
time. The classifier classifies the generated Jogging sequences from the begin-
ning as either Walking or Jogging. Downstairs and Upstairs also occur with
relatively smaller probabilities. The probabilities for Standing and Sitting are
low in comparison with all other activities.

Fig. 2. Validating the generated data using the activity recognition classifier.

Table 1 presents for each activity the iteration at which the GAN could be
considered as converged and the average classification accuracy for 500 itera-
tions after convergence using the independent classifier. The activities Jogging,
Walking and Downstairs are classified by the classifier with the highest average
accuracies. Upstairs, Standing and Sitting have significantly lower accuracies but
are higher than random classification.

Table 1. Overview of the performance of the generator for different activities.

Jogging Walking Downstairs Upstairs Standing Sitting

Convergence iteration 3000 3200 7800 15475 2000 1180

Average prob classification 0.97 0.85 0.89 0.20 0.07 0.21

7 Conclusion

In this paper, we have introduced the first steps towards a realistic simulator
for health settings. Realistic simulators are needed as testbeds for RL algo-
rithms because of lack of data and inability to experiment extensively with real
users during the development phase of the algorithms. We present an approach
whereby existing data generated by real users is used to develop a GAN for
synthesizing human behavior. GANs allows us to solve data privacy issues as
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well. In this first case, the generative model generates sensory data belonging to
activities a simulated user is performing at a certain point in time. Our results
show that we can employ GANs to develop generative models that learn from
actual data to generate sensory data belonging to behaviors of users. We validate
our approach using an activity recognition classifier that was trained and tested
on a real dataset. The number of training iterations and training samples needed
to develop an accurate generative model prove to be in the magnitude of a few
thousand to a few ten thousands.
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Abstract. Deontic Defeasible Logic (DDL) is a simple and computa-
tionally efficient approach for the representation of normative reasoning.
Traditionally defeasible logics are defined proof theoretically based on the
proof conditions for the logic. In this paper we present an argumentation
system that corresponds to a variant of DDL. The resulting machinery
is able to grasp in a natural way intuitions behind deontic reasoning
with conditional norms featuring obligations, prohibitions, and (strong
or weak) permissions.
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1 Introduction

Computational models of argument address defeasible claims raised on the basis
of partial, uncertain and possibly conflicting pieces of information. Argumenta-
tion is pervasive in artificial intelligence, with many application domains [2].

Normative systems, and in particular legal systems, constitute a rich test
bed and a major application domain for formal models of argument [13]. There,
models of argument have applications ranging from case-based reasoning [14] to
strategic studies in legal interactions [16,17].

When representing and reasoning upon norms, deontic concepts such as obli-
gation, prohibition and permission play a crucial role; and there exist some stud-
ies of deontic reasoning with formal models of argument, and a few argument-
based models focus on (conditional) norms, deontic operators and their interplay
[3,4].

Besides these undertakings in deontic argumentation, many deontic for-
malisms have been previously designed [6]. Amongst formalisms with practical
applications, DDL has been perhaps the most developed to represent and rea-
son upon norms [8–10]. Moreover and interestingly, Defeasible Logic (DL) has
possible interpretations in terms of arguments [7,12,15], but its deontic variants
have received little or no consideration to construct argument-based frameworks

c© Springer Nature Switzerland AG 2018
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for deontic reasoning. In this paper, we consider constructs from DDL to build
a deontic argumentation system.

Contribution. Following the approach in DDL, we offer a rich formalism able
to express relevant aspects of deontic reasoning, such as contrary-to-duty obliga-
tions and preferences about permissions. The deontic argumentation framework
is described in the remainder of the paper.

2 Deontic Argumentation System

This section presents the deontic argumentation system. We first specify its lan-
guage, then arguments are constructed. Eventually, the justification and rejection
of arguments are defined.

2.1 Language

The following definitions provide the building blocks of our formalism:

– literals and modalities ;
– preference operators for obligations and permissions.
– constitutive and deontic rules.

The attention is restricted to a simple propositional language with atomic
negation and supplemented with a set of deontic operators {O,P} where O indi-
cates an obligation, and P a permission.

Definition 1. A literal is a plain literal iff it is an atomic proposition p or
the negation of an atomic proposition, i.e., ¬p. A literal is a deontic literal iff
it has either the form Ol or Pl or ¬Ol or ¬Pl where l is a plain literal. A literal
is either a plain literal or a deontic literal.

Notation 1. Given a set of literals L, the set of plain literals in L is denoted
as LitL and the set of modal literals as ModLitL. However, in the remainder,
the set of literals may be left implicit, and we may omit the subscript L.

We introduce two preference operators, ⊗ for obligations and � for permis-
sions. These operators are used to build chains of preferences, called ⊗- and
�-expressions. Intuitively, an ⊗-expression such as l1 ⊗ l2 ⊗ . . . ⊗ ln indicates
that the obligation that l1 is preferred to the one that l2, which is preferred to
l3 etc.

Definition 2. Let � ∈ {⊗,�}. An �-expression is defined as follows:

1. every literal l ∈ Lit is an �-expression;
2. if A is an �-expression and c1, . . . , ck ∈ Lit, then A � c1 � · · · � ck is an

�-expression;
3. nothing else is an �-expression.
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Notation 2. Given a set of literals L, the set of �-expressions defined by L is
denoted Pref�,L or simply Pref� if L is left implicit.

Definition 3. Let Lbl be a set of arbitrary labels. A set of rules Rul is a well-
formed set of rules over a set of literals L iff:

Rul ⊆ (RulOd ∪ RulOd ∪ Rulcd) ∪ (RulOdft ∪ Rulcdft)

such that

RulOd = {r : a1, . . . , an ⇒O b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ ModLit, b ∈ Pref⊗}
RulPd = {r : a1, . . . , an ⇒P b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ ModLit, b ∈ Pref�}
Rulcd = {r : a1, . . . , an ⇒c b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit, b ∈ Lit}
RulOdft = {r : a1, . . . , an �O b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ ModLit, b ∈ Lit}
Rulcdft = {r : a1, . . . , an �c b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit, b ∈ Lit}.
Rules with an arrow ⇒ are defeasible rules, while rules with an arrow � are
so-called defeaters which are essentially used to specify exceptions to defeasible
rules. A defeasible rule can be used to support its consequent, whereas a defeater
does not support its consequent.

Notation 3. The set of antecedents of a rule r is denoted A(r),
and C(r) denotes its consequent. Other abbreviations are, for example,
RulO = RulOd ∪ RulOdft, and Rul [b] to denote the set of rules whose consequent
is b, and Ruld[b] the set of defeasible rules whose consequent is b.

Consequents of rules can be incompatible, and such incompatibilities are
captured though complementary literals.

Notation 4. The complementary of a literal q is denoted by ∼q; if q is a positive
literal p, then ∼q is ¬p, and if q is a negative literal ¬p, then ∼q is p.

Definition 4. Let l ∈ Lit ∪ ModLit denote a literal. A set of literals is a set of
complementary literals of l, denoted Compl(l), iff:

– if l = p ∈ Lit then Compl(l) = {∼l};
– Compl(Ol) = {¬Ol,O∼l,¬Pl,P∼l}, Compl(¬Ol) = {Ol,¬Pl},

Compl(Pl) = {O∼l,¬Pl}, Compl(¬Pl) = {¬O∼l,Pl,¬P∼l}.
As usual, we can define a superiority relation between rules to determine

their relative strength in case of conflict. As shown in [1], we can disregard the
superiority relation in the discussion, since modular transformations exist that
empty this relation while maintaining the same conclusions in the language [8].
This result holds both for ambiguity blocking and ambiguity propagating DL
[7]. It also applies to deontic extensions of DL (including the one with ⊗ and �
operators), by means of the notion of inferiorly defeated rules [11].

2.2 Arguments and Attacks

Defining the notion of argument in the current context is not obvious. The com-
plexity mainly resides in the richness of the language (especially the presence
of the operators ⊗ and �) and in the constructive nature of the introduction
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of modalities. The derivation of a modal literal such as Ob depends on the con-
structive provability of b using rules such as a1, . . . , an ⇒O b, and the derivation
of ¬Ob depends on showing that there is no proof for Ob. We propose thus the
following definition of arguments.

Definition 5. An argument A for a conclusion p generated from a set of
rules Rul is a (possibly infinite) tree where

1. the root node is labelled by literal p;
2. any node is labelled by either a literal h ∈ Lit ∪ ModLit or no literals;

and such that:

1. if the node labelled by h has children h1, . . . , hn (n > 0), then all arcs
connecting h1, . . . hn to h are labelled by exactly one rule r ∈ Rul with
A(r) = {b1, . . . , bn} such that h1 = b1, . . . , hn = bn, and either
(a) if r ∈ RulOd and C(r) = c1 ⊗ · · · ⊗ cm then h = Ock (1 ≤ k ≤ m);
(b) if r ∈ RulPd and C(r) = c1 � · · · � cm then h = Pck (1 ≤ k ≤ m);
(c) if r ∈ Rulcd then h = C(r);
(d) if r ∈ RulOdft then h = p = ¬OC(r) is the root of the argument;
(e) if r ∈ Rulcdft then h = p = C(r) is the root of the argument;

2. if the node labelled by h has no children (i.e. h is a leaf node), then either
(a) h is labelled by no literals;
(b) h = ¬�l (� ∈ Mod);
(c) h = Pl.

The interpretation of item (d) is as follows. First of all, notice that we have to
do with a case where a defeater is considered. A defeater for O with head p does
not positively prove anything, but it can attack any obligation rule a1, . . . an ⇒O

¬p supporting ¬p (i.e., proving O¬p). Conceptually, this means that the defeater
can be a reason for stating that p is not obligatory, i.e., that ¬Op is the case.
Notice, also, that such a defeater—as any defeater here, and as done in standard
argumentation semantics for DL [7]—can only label arcs leading to a root. In the
modal case, this makes the interaction among arguments simple, as the concept
of derivation for a negative modal literal depends on the relation between the
argument considered and other arguments attacking the former one. Hence—as
we will see—that ¬Op is justified depends on the absence of successful arguments
whose conclusion is O¬p.
Remark 1. Item (b) of the last condition where the modality � is a permission P
captures the case where the conclusion l as strong permission—i.e. a permission
derived from a rule with ⇒P—is defeated (as we will see later). If the modality
� is an obligation O, then it captures the case where a weak permission is put
forward. Similarly, the last item (c) of condition (2) captures the case where a
weak permission is assumed. In both cases, such a weak permission is not directly
expressed in a specific deontic rule and cannot be constructively reflected in the
tree-structure. In this sense, such nodes can only be leaf nodes.
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Example 1. Suppose we have the following rule set:

{r1 : ⇒O c1 ⊗ c2, r2 : Oc1,¬Op ⇒P q}.

Then, we can build an argument as in Fig. 1. �

Pq

Oc1

r1

r2

¬Op

r2

Fig. 1. An argument.

We may employ some auxiliary terminology.

– A supportive argument is a finite argument in which no defeaters are used.
– An argument is positive iff no defeater is used in it.
– A constitutive argument is an argument where all rules are constitutive rules.
– Any literal/modal literal labelling any node of an argument A is a conclusion

of A.

Definition 6. Let A denote any argument with height j ≥ 1 for any literal p.1

The top subargument of A, denoted At, is the top subargument of A with height
1. Let us use R(At) to denote the rule associated with the arcs arriving at the
root of At.

On the basis of arguments, we provide the core notion of the approach
—argument agglomeration set— which gathers all arguments that are strictly
needed to accept an argument. Such agglomeration set caters for two cases:

– when nodes are labelled by rule conclusions, in case of ⊗- or �-expressions in
the head of rules such as a ⊗ b and p � q, the fact that Ob or Pq label nodes
means that a and O¬p have been concluded;

– when leaf nodes are labelled modal literals such as ¬Op we fall in the case
discussed in Remark 1; even here, conditions external to the single argument
at stake must be checked, which is required to verify that such an argument
is justified.

Definition 7. Let A ∈ Args be an argument such that for every node h of A
labelled by a modal literal ¬Ol, ¬Pl, Ol or Pl, the arcs leading to h are labelled
by

1 As usual, the height of an argument is the number of edges on the longest path
between the root and a leaf node.
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– (for literals such as Ol) r : b1, . . . , bn ⇒ c1⊗· · ·⊗cm and l = ck (1 ≤ k ≤ m),
and

– (for literals such as Pl) r : b1, . . . , bn ⇒ d1�· · ·�dm and l = dk (1 ≤ k ≤ m).

An argument agglomeration set Aggl(A) ⊆ Args w.r.t. A is a smallest set
of arguments such that A ∈ Aggl(A) and:

– for each (leaf) node labelled ¬Ol or ¬Pl,
• there is an argument B ∈ Aggl(A) whose conclusion is p ∈ Compl(Ol);
• Aggl(B) ⊆ Aggl(A);

– for each node labelled cj (1 ≤ j < k),
• there is an argument C ∈ Aggl(A) whose conclusion is ¬cj ∈ Compl(cj);
• Aggl(C) ⊆ Aggl(A);

– for each node labelled dj (1 ≤ j < k),
• there is an argument D ∈ Aggl(A) whose conclusion is q ∈ Compl(Pdj);
• Aggl(D) ⊆ Aggl(A).

Remark 2. The agglomeration set of any argument A gathers all arguments that
are strictly needed to accept the construction of A. Thus, the agglomeration set
of A can be viewed as a single argument where special arcs connect nodes in A
labelled by modal literals obtained by rules supporting �-expressions.

Example 2. Suppose the following rules:

{ r1 : ⇒c ¬c1, r3 : ⇒O c1 ⊗ c2,
r2 : �O ¬p, r4 : Oc2,¬Op ⇒P d1 � d2 }.

Then, we can build the following arguments2:

A : ⇒ Oc2,¬Op ⇒ Pd1, B : ⇒ ¬c1, C : �O ¬p
which agglomerate as illustrated in Fig. 2.

Pd1

Oc2

r3

¬c1
r1

r4

¬Op

¬Op

r2

r4

Fig. 2. An argument agglomeration set, where the dotted arc represent the relation
between arguments in the agglomeration.

2 Arrows indicate the type of rule used.
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Eventually, arguments supporting complementary literals attack each other.

Definition 8. An argument A attacks an argument B iff

1. there exists a node of B labelled by m, and
2. there exists a node of A labelled by l ∈ Compl(m).

A set of arguments S attacks an argument B iff there is an argument A in S
that attacks B.

2.3 Justified and Rejected Arguments

The justification of arguments has been thoroughly studied in the literature, and
multiple semantics have been proposed. As we are dealing with DL, we resort to
the argumentation semantics for variants of DL as presented in [7].

The usual definition of accepted arguments is slightly adapted to embrace
argument agglomeration sets.

Definition 9. An argument A is an accepted argument w.r.t a set of argu-
ments S iff A is finite, and every argument attacking any argument in any
Aggl(A) is attacked by S.

From accepted arguments, and similarly as [5], we can define justified argu-
ments using a ‘characteristic function’.

Definition 10. Let Args be a set of arguments. The deontic justification
characteristic function of Args is a function Ji : pow(Args) → pow(Args)
such that:

– J0 = ∅, and
– Ji+1 = {A ∈ Args | A is accepted w.r.t. Ji}.
Definition 11. Let Args be a set of arguments. The set of justified argu-
ments of Args is JArgs =

⋃∞
i=1 Ji.

Definition 12. Let Args be a set of arguments. A literal is a justified literal
if it is a conclusion of a supportive argument in JArgs.

Once justified arguments and literals are established, rejected arguments and
literals can be determined. We first define rejected arguments with respect to a
generic set of arguments which is then instantiated as a set of justified arguments.

Definition 13. An argument A is a rejected argument by a set of arguments
S iff either

1. a proper subargument B of A is in S, or
2. B is attacked by a finite argument.
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Definition 14. Let T be a set of arguments. The deontic rejection charac-
teristic function of Args is a function Ri(T ) : pow(Args) → pow(Args) such
that

– R0(T ) = ∅, and
– Ri+1(T ) = {A ∈ Args | A is rejected by Ri(T ) and T}.
Definition 15. The set of rejected arguments w.r.t. T is RArgs =⋃∞

i=1 Ri(T ). An argument is rejected if it is rejected w.r.t. JArgs.

From justified and rejected arguments with respect to justified arguments,
we define rejected literals.

Definition 16. A literal l is a rejected literal by T iff there is no supportive
argument for l in Args − RArgs(T ). A literal l is rejected if it is rejected by
JArgs.

In reference to the above definition, we can note that the set of justified argu-
ments JArgs is included in Args −RArgs(JArgs). Furthermore, some arguments
in Args −RArgs(T ) may be neither justified nor rejected. Consequently, a literal
may be neither justified nor rejected. In this case, we may say that the status of
the literal is undetermined.

Example 3. Let us suppose two arguments A and B attacking each other. Argu-
ment A supports literal a, while argument B supports literal ¬a. The set of
justified arguments is empty, and thus the set of rejected arguments is empty.
Consequently, literals a and ¬a are neither justified nor rejected. Their status is
undetermined. �

3 Conclusion

A deontic rule-based argumentation framework has been devised to capture nor-
mative knowledge and reasoning upon it. To do so, we have been inspired by
works in DDL and extended the argumentation machinery developed in [7].

The main source of difficulties resided in the introduction of modal and
deontic-preference operators. In particular, the introduction of modalities
required to significantly modify the concept of argument and the basic system
of [7]. Indeed, the derivation of a modal literal such as Ob depends on the con-
structive provability of b using rules such as a1, . . . , an ⇒O b, and the derivation
of ¬Ob requires that there is no proof for Ob. We have thus devised argument
agglomeration sets which, to the best of our knowledge, have no counterparts in
the argumentation literature.
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Abstract. The repeated prisoner’s dilemma is an essential game model
which is widely applied in real-world economic situations such as price
competition between similar products. Studies of the game have focused
on the equilibrium strategies for rational players in simplified settings,
which do not necessarily reflect the complexity of real-world applica-
tions. Therefore, this paper proposes an advanced model that mimics the
real-world dynamics of the game, and uses both simulations and human-
playing to study the robustness and applicability of different strategies in
the game. The result indeed discovers certain weaknesses of the classical
strategies. It further shows that well-known dominant strategies such as
tit-for-tat are rarely played by human players (less than 5% of the par-
ticipants played dominant strategies) and instead they tend to use more
involved strategies, which again demonstrates their bounded rationality.
Our model also plays a crucial role in analyzing real-world multi-agent
systems involving human players.

1 Introduction

The prisoner’s dilemma is the best-known game in social cooperation [8]. A rich
literature on game theory has focused on the conflict and cooperation models of
the prisoner’s dilemma. For instance, Andreoni and Miller [3] designed experi-
ments to let people compete against each other and sometimes let computers to
play the prisoner’s dilemma game. They showed that players tend to cooperate
in the repeated prisoner’s dilemma game.

However, most of the literature is based on theoretical deduction and only
focuses on unitary strategy in simple settings. For example, Press et al. [9]
showed that there exist strategies that one player can enforce a unilateral claim to
an unfair share of rewards. However, in practice, such strategies can hardly occur
due to their high computational costs. Hence, we want to study the repeated
prisoner’s dilemma from a more practical perspective. Based on the work of evo-
lutionary game [9,10] and repeated game [2,5], we propose a novel game model
to mimic real-world environments. Our goal is to understand the survivability
of a strategy when it has to face multiple agents with different strategies in the
repeated game. We run simulations to test classical and new defined strategies

c© Springer Nature Switzerland AG 2018
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under our model. Besides, we also want to understand how people will play in
the real world applications. The work done by Mao et al. [7] inspired us that it
is a good way to study human’s behaviour via web experiments, thus we have
designed a web game for human players and collected their behaviours.

By analyzing the simulations, we found that tit-for-tat (TFT) [4] strategy
still maintains its advantages and survives in most of the games, although it
is not always dominant. However, in the human-playing games, we found that
most people didn’t choose the strategies like TFT that perform better in the
simulations. One reason is that TFT cannot get benefits when the opponents
always choose cooperation. This weakness of TFT can be easily discovered in
our model. Another important reason is that people may not be rational during
the games. Actually, according to our observations, people prefer to use simple
strategies, since simple strategies can be chosen with less efforts [1]. Our results
show that in the real-world multi-agent systems involving human players, the
analysis combining predictable irrationality is very important, but it has not
been well-studied in the literature.

2 The Model

We consider a repeated prisoner’s dilemma game with n agents/players denoted
by a set N = {1, 2, ..., n}. Each agent i ∈ N has two private elements: utility pi
and strategy si, where pi ∈ R is i’s total utility in the present time (all players’
utilities are zero before the game starts) and si is a function of type ek �→ ak.
ak ∈ {C,D} is the action of i in the kth round of the game, where C denotes
cooperates and D denotes defects. ek is the game state for i in the kth round and
specifically, it is the form of (pi, ak−1

i , j), where j is i’s opponent in the kth round.
j will be randomly selected among other agents. Unlike traditional settings,
where one agent only plays with one another agent with the same strategy until
the end, we let each agent play with all other agents (who may use different
strategies) with the same probability. Therefore, each agent’s opponent may vary
between rounds, but she remembers the action history of all her opponents when
they meet again. Given i and j’s actions ak

i and ak
j in round k, i’s utility of the

stage game is denoted by pki . Therefore, after the kth round, pi for each agent
i is

∑k
l=1 pli, where we do not involve artificial discount factors for simplicity

and also in reality the life-time of the repeated game is limited due to the swift
change of environments. We assume that the game lasts for T > 1 rounds.

Our goal is to study the repeated prisoner’s dilemma from a new perspective:
to understand the survivability of a strategy when it has to face multiple agents
with different strategies in the repeated game. The types of strategies involved
in our model will be defined in Sect. 2.1. The concept of survivability is defined
as follows.

Definition 1 ((p, ε)-survivable). Given two strategy types A and B, for all
agents i ∈ N , si ∈ {A,B} and the proportion of agents with type A is p ∈ (0, 1),
we say A is (p, ε)-survivable over B if in the end of the game (i.e. after T
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rounds), the average utility of type A agents is not less than ε times of the average
utility of type B agents, where ε ∈ (0, 1].

Intuitively, A is (p, ε)-survivable over B means that when agents with only type
A and B compete in the game, if the proportion of type A agents is p ∈ (0, 1),
then the agents with strategy A achieve an average utility that is not less than
the average utility of agents with strategy B times a discount factor ε.

Definition 2 (p-dominant). Given strategy types A, B and C, for two differ-
ent game settings:

1. ∀ agents i ∈ N , si ∈ {A,C} and the proportion of agents with type A is p,
2. ∀ agents i ∈ N , si ∈ {B,C} and the proportion of agents with type B is p,

we say A is p-dominant B over C if the average utility of type A agents in
setting 1 is not less than the average utility of type B agents in setting 2.

Intuitively, A is p-dominant B over C means that in a setting consisting of
agents with only types B and C and the proportion of type B agents is p, if
we just replace strategy B by A, then the average utility of type B agents is
non-decreasing after the replacement.

2.1 Strategy Types

In the following, we define all the strategy types studied in the paper.

Type 1 (Constant(p)). Constant(p) is a strategy with a probability p to coop-
erate and a probability (1 − p) to defect. Specifically, when p = 0.5, we call it a
Random.

Type 2 (Action-Based). Action-Based is a strategy that the probability of
cooperation p is increased by Δp = k×p if the opponent chooses defect, otherwise
decreases Δp. In this paper, we set k = 0.02 and the initial p to be 1.

Type 3 (TFT(k)). TFT(k) is a strategy that if the opponent chooses defect
k times in succession, then it chooses defect in the next round, otherwise, it
chooses cooperation. Specifically, when k = 1 and k = 2, TFT(1) is called TFT
(as known as tit-for-tat) and TFT(2) is called Co-TFT.

Type 4 (Revenger(k, r)). Revenger (as known as grim trigger strategy) is
a non-forgiving strategy that cooperates initially, but keeps defecting after being
defected [6]. We introduce strategy Revenger(k) that initially cooperates and
defects forever when the opponent defects k ≥ 1 times in succession. We also
define Revenger(k, r) such that it initially cooperates and when the opponent
defects k ≥ 1 times in succession it defects until the opponent cooperates r ≥ 1
times in succession.

Type 5 (Bayesian). Bayesian is a strategy that can learn the probability dis-
tribution of the opponent’s action in a long run. In each round k, when i plays
with j, it calculates the probability pki to for i to cooperate as the following.
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[
b11 b12
b21 b22

] [
pk−1
i

1 − pk−1
i

]

=
[

pki
1 − pki

]

where b11, b12, b21 and b22 are estimators of Pr(aj = C | ai = C), Pr(aj =
C | ai = D), Pr(aj = D | ai = C) and Pr(aj = D | ai = D) respectively. These
values will be estimated by the games’ results before kth round. Intuitively, if the
opponent has a fixed probability distribution on actions, Bayesian can converge to
the same distribution. Hence Bayesian strategy can be considered as a generalized
TFT, which tries to imitate the opponent’s behaviour.

2.2 Strategy Evaluation Settings

To evaluate all the strategies defined above, we conducted both agent-based
simulations and designed a web-game involving human-players. For each stage
game of the repeated prisoner’s dilemma game, we apply the payoff matrix given
by Table 1.

Table 1. Payoff matrix of the stage game.

Player 2 \ Player 1 C D
C 2\2 -1\3
D 3\-1 0\0

3 Simulations

We first introduce our simulations, where we test the survivability of all the
strategies defined above under our model.

3.1 Settings

We ran the simulations between each pair of all types defined above. For each
pair, we simulated the condition that one of the pair has a proportion p from
0.1 to 0.9 with p changing by 0.1 each time and each simulation has 12 agents
(n = 12) and runs 80 rounds (T = 80). We recorded the utilities of each sim-
ulation between every two types in the range of all possible proportions of p.
Figure 1 shows the results when TFT plays against Constant(0) at p = 0.1 and
0.5 respectively.

Furthermore, for each pair of types (A and B), we checked that at which
proportion p, A is (p, ε)-survivable over B and also checked that at which pro-
portion p, A is p-dominant B over Random. We set ε = 0.8, because it is hard to
define whether they can survive or not when their average utility is just less than
their adversary a little. We recorded all possible proportions p which can ensure
their survivability. Some results are shown in Tables 2 and 3. Table 2 shows the
results of p-dominant and Table 3 shows the results of (p, 0.8)-survivable. In
each table, the tuple (x, y) means that the type of agents in the row can survive
when their proportion is from x/10 to y/10 against with the type in the column.
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(a) TFT has the proportion p = 0.1 (b) TFT has the proportion p = 0.5

Fig. 1. The simulation results of TFT vs. Constant(0), where the players with smaller
ids are of type TFT.

Table 2. p-dominant (Compared to random type)

Const(0)Const(.3)Const(1)AB TFT Co-TFTRevengerRevenger(2)Revenger(2,2)Bayesian

Action based (4, 9) (6, 9) (3, 4) NULL (1, 7) (2, 3) (1, 9) (8, 9) (7, 8) (4, 9)

TFT (1, 9) (1, 9) (8, 9) (1, 8) NULL(8, 9) (1, 9) (2, 4) (7, 8) (2, 9)

Co-TFT (1, 9) (9, 9) (5, 7) (1, 4) (1, 9) NULL (1, 9) (5, 9) (4, 5) (0, 0)

Revenger (1, 9) (1, 9) (2, 5) (1, 5) (1, 7) (6, 7) NULL (5, 8) (4, 6) (1, 9)

Revenger(2) (1, 9) (9, 9) (2, 9) (1, 9) (1, 9) (6, 7) (1, 9) NULL (1, 3) (0, 0)

Revenger(2,2)(1, 9) (0, 0) (2, 3) (1, 7) (1, 9) (2, 4) (1, 9) (3, 6) NULL (0, 0)

Bayesian (1, 9) (6, 9) (1, 9) (7, 9) (1, 2) (1, 9) (0, 0) (1, 9) (1, 9) NULL

Const(0) NULL NULL NULL (4, 9) (7, 8) (1, 9) (7, 9) (1, 9) (1, 9) (1, 9)

Const(.3) NULL NULL NULL (5, 9) (8, 9) (1, 9) (0, 0) (1, 9) (1, 9) (1, 9)

Const(1) NULL NULL NULL (1, 5))(1, 5) (6, 8) (1, 9) (9, 9) (5, 6) (0, 0)

Table 3. (p, 0.8)-survivable

Const(0)Const(.5)Const(1)AB TFT Co-TFTRevengerRevenger(2)Revenger(2,2)Bayesian

Action based (7, 9) (3, 9) (1, 9) NULL(1, 9) (1, 9) (1, 9) (1, 9) (1, 9) (1, 9)

TFT (3, 9) (1, 9) (1, 9) (1, 9) NULL(1, 9) (1, 9) (1, 9) (1, 9) (1, 9)

Co-TFT (8, 9) (0, 0) (1, 9) (1, 9) (1, 9) NULL (1, 9) (1, 9) (1, 9) (5, 9)

Revenger (3, 9) (1, 9) (1, 9) (1, 9) (1, 9) (1, 9) NULL (1, 9) (1, 9) (1, 9)

Revenger(2) (9, 9) (8, 9) (1, 9) (1, 9) (1, 9) (1, 9) (1, 9) NULL (1, 9) (5, 9)

Revenger(2,2)(8, 9) (7, 8) (1, 9) (1, 9) (1, 9) (1, 9) (1, 9) (1, 9) NULL (6, 9)

Bayesian (0, 0) (1, 9) (1, 9) (1, 9) (6, 9) (1, 9) (0, 0) (1, 9) (1, 9) NULL

Const(0) NULL NULL NULL (4, 9) (8, 9) (1, 9) (7, 9) (1, 9) (1, 9) (1, 9)

Const(.5) NULL NULL NULL (1, 9) (5, 9) (1, 9) (9, 9) (1, 9) (1, 9) (3, 8)

Const(1) NULL NULL NULL (1, 9) (1, 9) (1, 9) (1, 9) (1, 9) (1, 9) (0, 0)
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3.2 Observations

1. TFT performs the best under the definition of (p, 0.8)-survivable: TFT has
the widest p-range competing with other types for (p, 0.8)-survivable. Even
when TFT meets those who always defect, it can ensure survivability as long
as its proportion is greater than 30%.

2. TFT does not behave the best under the definition of p-dominant: For exam-
ple, TFT does not perform well when meeting Constant(1), where people
always choose cooperation, i.e. TFT may not be chosen in this case. Accord-
ing to our simulations, in terms of p-dominant, there does not exist a type
that is always better than others.

3. Co-TFT, Revenger(2) and Revenger(2,2) are friendly to other types: Com-
pared to TFT and Revenger those who will punish others immediately, Co-
TFT, Revenger(2) and Revenger(2,2) are more “friendly”: every other type
competes with them can“survive” no matter what proportion they have.

3.3 Summary

By analysing the simulations results, we can see that traditional strategies like
TFT and Revenger are still effective under our setting. However, in games where
the other agents always tend to cooperate, TFT cannot get benefits by taking
the advantage of defect since TFT will always choose cooperate as well. Thus
the performance of TFT under the definition of p-dominant is not dominant
since some other types can get very high score by defecting agents who always
choose cooperation. Because of this, people may not choose TFT-like strategies
in practice.

4 Human Players vs. Agents

To investigate how human players behave in the repeated prisoner’s dilemma
game, we designed a web game which also contains multiple computer-controlled-
agents. A human player is asked to play with one of the agents for many rounds.
Meanwhile, other agents are playing the game at the same time with other human
players. The goal of the human player is to get the highest utility among all the
players, both human players and agents.

We released two versions of the game. In the first version, players can easily
get the highest score because agents have a high possibility of using simple
strategies such as Constant, while in the second version, we removed those too
simple strategies and only choose four strategies: Bayesian, Random, Revenger
and TFT. There were 194 people joined the first version which was available
from December 26th, 2017 to December 28th, 2017. For the second version, 121
people joined from December 29th, 2017 to December 31st, 2017.
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4.1 Observations

In the first version, when getting a high score is easy, many people just choose
simple strategies. We say a player plays a simple strategy if her actions are
just repeating a certain pattern, as shown in Fig. 2(a). In Figs. 2(a) and (b), the
x-axis refers to the round of the game between a human player and a computer-
simulated agent while the y-axis refers to their actions. Here, 0 means coopera-
tion and 1 means defect. The title of the figure indicates the strategy chosen by
the computer-simulated agent. In the second version, when getting a high score
becomes harder, more people started to try complex strategies to adapt to the
agents’ strategies, as shown in Fig. 2(b).

(a) Human players play simple patterns (b) Human players play complex strategies

Fig. 2. Examples of human players playing simple and non-simple strategies.

(a) The first version of the game (b) The second version of the game

Fig. 3. The proportion of human players playing simple strategies vs. non-simple ones.

Figures 3(a) and (b) show the proportion of people who use simple and non-
simple strategies. In the figures, y-axis is the strategy chosen by our computer
agents. For each type of computer agents, we collected all the actions of human
players and counted the number of players who played simple strategy. The
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longer the left part of the bar is, the more likely human players will choose a
simple strategy. We noticed that in the second version, the proportion of those
who only use simple strategies decreases sharply. This indicates that when the
environment becomes harder to survive, people tend to adopt more involved
strategies.

4.2 Compared with Simulations

According to the simulations shown in Sect. 3, the TFT strategy and Revenger
strategy have the best performance in terms of survivability. However, in the
real-world games with human players, we found that very few people used TFT
or Revenger. As shown in Table 4, in the first version less than 5% of the players
played TFT-like or Revenger-like strategies. In the second version, although
people tended to use more involved strategies, the number of people who used
TFT-like or Revenger-like does not increase. This shows that most people in
the real-world game have irrational behaviours. This is irrational because this
does not give them better utility, but it is also an expected behaviour since
people tend to choose strategies which need less efforts [1]. On the other hand,
in terms of p-dominant, TFT does not maintain its advantages. This indicates
the importance of the analysis combining predictable irrationality in the game,
which has not been well studied in the literature.

Table 4. TFT-like, Revenger-like

The 1st version The 2nd version

Revenger-like 6/194 (3.09%) 4/121 (3.31%)

TFT-like 8/194 (4.12%) 6/121 (4.96%)

5 Conclusions

We proposed a novel model for the repeated prisoner’s dilemma, where simulated
agents and human players compete with each other in a complex and dynamic
environments. We conducted both simulations and designed games with human
players to evaluate the survivability of various strategies in theory and practice.
In the simulations, our studies showed that classical strategies such as tit-for-tat,
are not always good when we evaluate them by comparing to other strategies
under our definition of p-dominant. In human-involved experiments, our stud-
ies showed that most people are irrational when they play the game. Most of
them choose simpler strategies, even though they know there exist better strate-
gies such as TFT and Revenger. Furthermore, people are willing to adopt more
complex strategies when the games become harder for them to survive.

The novel game model proposed in the paper can be applied to the study
of social evolution and other economic settings such as commercial trading and
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marketing. The work is also valuable for studying the relationships between
agents, e.g. friendship and adversarial relationship, which have different levels of
tolerance. Furthermore, we haven’t touched the memoryless effects, which worth
further investigations with more involved strategies.
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Abstract. This paper proposes a new budget allocation method for
crowdsourced sequential tasks. Sequential tasks mean that an output of
a task becomes an input to another task, and the quality of the final arti-
fact depends on the qualities of the preceding tasks. In crowdsourcing,
the abilities of workers are often difficult to learn in advance. Thus, the
fixed budget allocation to the component tasks cannot respond to the
realized situation. Also, the requester is often difficult to evaluate the
quality of intermediate artifacts accurately, which results in misallocat-
ing the budget and wasting a budget. To overcome these difficulties, we
have developed a contingent budget allocation method, i.e., generating
a conditional plan given uncertainty about the intermediate states and
action effects, by formalized a problem as POMDP and introducing a
quality evaluation action. The experimental results show that the pro-
posed method can find a solution in a reasonable time and improve the
quality of the final artifact.

Keywords: Cooperation · Budget allocation · POMDP
Crowdsourcing

1 Introduction

In crowdsourcing, a complicated task is often divided into more than one sim-
ple subtasks, and then the requester asks workers to solve these subtasks [2].
Although there are several ways of task decomposition, this study focuses sequen-
tial tasks. Sequential tasks mean that an output of a subtask becomes an input
of another subtask, and the quality of the final artifact depends on the quality
of preceding artifacts. For example, a Find-Fix-Verify workflow was proposed
for English proofreading tasks [2]. Specifically, in Find tasks, workers are asked
to identify the patches that need proofreading throughout the whole article. In
Fix tasks, workers are recruited to correct the errors in all patches as many as
they can. In Verify tasks, all the corrections made in the Fix stage are verified
by other workers. Here, if the workers of the Find task fail to find the patches
to be fixed, workers of the Fix and Verify tasks cannot recover such failure.

Here, a challenge is how to allocate the budget into subtasks under the budget
constraint. This problem has been studied in [4,5]. Their method, however, can
c© Springer Nature Switzerland AG 2018
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be viewed as static in that the budget allocation is determined in advance, and
it does not respond to any events occurred during the execution process. Such
fixed budget allocation may result in wasting the budget and deficit or missing
the opportunity to save the budget. For example, assume that an allocation plan
specifies that the first subtask is allocated to three workers. If the quality of the
artifact submitted by the first worker is very high, allocating the same subtask
to additional two workers is redundant. In such a case, it is better to re-allocate
the budget to the succeeding subtasks.

On the other hand, a dynamic workflow control has been studied in [3].
Their method enables the requester to respond to the events during the execu-
tion. However, they do not explicitly consider the budget constraint, i.e., a state
is characterized only by the qualities of the artifacts. This may cause a deficit
in executing the remaining plan. Also, incorporating the budget constraint may
make the computation intractable. Thus, developing a method for dynamic work-
flow control under the budget constraint in crowdsourcing is new as long as the
authors’ knowledge.

Another issue in controlling the crowd is that accurately evaluating the qual-
ity of intermediate artifacts is often difficult for the requester. In crowdsourcing,
the requester can publish an evaluation task that asks other workers to evalu-
ate the quality of artifacts. However, it needs to determine when the requester
should publish evaluation tasks. The payment for crowdsourced tasks is often
cheap but publishing evaluation tasks at every time incurs high costs.

To solve this problem, we provide a model of adaptive budget allocation prob-
lem based on Partially-Observable Markov Decision Process (POMDP). There
are related studies that apply POMDP to crowdsourcing workflow control [3],
but, as mentioned above, their research does not consider the budget constraint
explicitly, i.e., there is no discussion of how to incorporate the budget constraint
into the model. A simple introduction of the budget constraint brings the explo-
sion of the problem space, which makes the computation intractable. We for-
malize a problem as POMDP with quality evaluation actions and discretize the
problem space regarding the budget constraint. The experimental results show
that the proposed method outperforms the baseline methods.

The contribution of this paper is summarized as follows.

– First, we propose a formalization of the workflow control problem as POMDP.
In this formalization, we introduce quality evaluation actions. By designing
an appropriate reward function, we succeeded to obtain the desirable control
policy.

– Second, we show the effectiveness of our method in a simulation. In the simu-
lation, we introduced discretization to reduce the computational complexity.
We verified that desirable control is attained.

The rest of the paper is organized as follows. In Sect. 2, we explain a budget
allocation problem for sequential tasks, and in Sect. 3, we formalize the problem
as POMDP. In Sect. 4, we evaluate the proposed method, and Sect. 5 concludes
the discussions.
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2 Budget Allocation Problem

This section provides a model of budget allocation problems for sequential tasks.
A task is divided into N(> 1) subtasks. The i-th subtask is called as subtask i.
Different subtasks are carried out by the different workers, and workers execute
at most one subtask. The difficulty of subtask i is designated as di ∈ [0, 1].

A worker is characterized by its type j who has the ability level of ai,j for
subtask i. The higher ability level a worker has, the higher quality of the artifact
can be produced.

The quality of the artifact is determined by the quality function whose inputs
are the worker’s ability and the quality of the preceding task. If qi−1 represents
the quality for subtask i, we assume qi = f(ai,j , qi−1). The ability distribution
of workers choosing subtask i depends on the payment wi for subtask i. We do
not consider the existence of high-ability but lazy workers.

The requester’s utility is defined by the quality of the final artifact. The
requester has a budget constraint on the task. If the expense does not exceed
the budget, the remaining amount does not affect the requester’s utility.

The requester has the budget of B and sets the payment for each subtask
(HITs) so that the total amount of payment does not exceed the budget. Here,
HIT means a minimum unit of tasks in crowdsourcing. The requester can publish
the same subtask more than one times to increase the quality of artifact. We
assume that the payment wi (wi ≤ B) is the same for HITs for subtask i. Here,
a budget allocation problem can be formalized as the optimization problem of
finding the payment wi (wi ≤ B) that maximizes the quality, qN , of the final
artifact.

3 Problem Formalization as POMDP

This section formalizes a budget allocation problem as a Partially-Observable
Markov Decision Process (POMDP). POMDP is a tuple of < S,A, T,O,Z,R >,
i.e., the set of states, the set of actions, the transition function, the set of obser-
vations, the observation function, and the reward.

Definition 1. A budget allocation problem is represented by a tuple of < S,A, T,
O,Z,R >, where

– S = {si = (i, qi, Bi, qi−1) | i ∈ 1, · · · N}, the index i represents the subtask in
question, qi represents the quality of an artifact for subtask i, Bi represents the
remaining budget, qi−1 represents the quality of the artifact for the preceding
subtask i − 1.

– A = {CURRENT(wi), NEXT(wi+1), EVAL(wEVAL) | w ∈ [0, B]}, wi, wi+1,
and wEVAL represent the payments for workers completing subtask i, subtask
i + 1, and an evaluation task, respectively. The set of actions consists of the
Cartesian product of the type of actions and the payment of the subtask.
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– T : The quality of artifact in the next state is determined by the quality func-
tion described in Sect. 2, where the inputs are the worker’s ability ai,j ∈ [0, 1]
the payment wi, and the quality for the preceding subtask. ai,j is drawn from
the distribution function of F (ai,j). The budget in the next state is equal to
the difference between the current budget and wi. If CURRENT is chosen,
qi = max{qi, q

′
i}, where qi is the quality of the owned result and q′

i is the qual-
ity of the newly obtained result. If NEXT is chosen, the number of subtask i
is incremented by one.

– O = {o | o ∈ [0, 1]}, o represents the quality of the artifact given through the
evaluation task.

– Z = {P (o | qi, wEVAL) = N(qi, σ
2)}

– R = {R(qN ) | R(qN ) ∈ R}, the reward is given by the reward function R.

The requester agent cannot directly observe the quality of an artifact but can
indirectly observe the quality of an artifact by publishing an evaluation task. The
agent recognizes the outcome of the evaluation task as observation o. We assume
the followings. When the requester agent publishes the evaluation task in state
si, the probability of getting o as an observation follows the normal distribution
N(qi, σ

2), where qi represents the true value of the quality in state si.
Rewards are not payments to workers but are received by the requester agent,

which can be classified into the following three cases.

– If all subtasks are completed, the agent obtains the following reward R(qN )
that corresponds to the quality qN of the final subtask.

R(qN ) =

{
0 (qN < qθ)
1000 (eqN −1)

(e−1) (qN ≥ qθ)

Here, qθ represents the minimum requirement for the quality, and if the final
quality is less than the minimum requirement qθ, the agent gets nothing.

– If the budget runs out before completing all the subtasks, the agent gets some
penalty, i.e., the negative reward.

– In the intermediate states except the above two cases, the agent gets the
reward of zero.

The reason for introducing this minimum requirement is as follows. As using
a reward function having a gentle slope, we could not obtain the desirable policy
in the experiments. To overcome this difficulty, we introduced the minimum
requirement in the reward function. We assume that the human requester enjoys
the artifact if the quality is larger than zero, but we can use an arbitrary reward
function for the requester agent (computer) to obtain a desirable policy.

4 Evaluations

We evaluated the adaptive budget allocation method proposed in Sect. 3 by using
simulations.
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4.1 Experimental Settings

Quality of Artifacts. To run a simulation, we need to give a concrete form
of the quality function. As a quality function that satisfies assumptions, we
assume that the quality qi ∈ [0, 1] for subtask i is defined as qi = f(ai,j , qi−1) =
(1 − di)1/αiai,j · qi−1. Here, di, αi(> 0), ai,j , and qi−1 represent the difficulty of
subtask i, the weight on subtask i, the worker’s ability, and the quality of the
preceding subtask i− 1, respectively. The worker’s ability ai,j is drawn from the
probability density function g0(ai,j) with the support [aL, aH ] for a unit pay-
ment, and g(ai,j) = g0(ai,j/wi)/wi with the support [wiaL, wiaH ] for a payment
wi. We assume that q0 = 1, since the first subtask does not have any preceding
subtask. If the total number of subtasks is N , the final quality of the task, q∗,
is given by the following expression.

q∗ = qN =
N∏

i=1

(1 − di)1/αiai,j

Distribution of Workers’ Abilities. The set of workers accepting the task
depends on the payment. We examine the following two cases, although we
assume that all the component subtasks have the same distribution of workers’
abilities.

(a) Convex Distribution: There are two peaks in the distribution, each of which
corresponds to high-ability workers and low-ability workers. There are few
workers having the median ability.

(b) Concave Distribution: There is a single peak in the distribution, i.e., many
workers have the median ability.

Discretization of the Problem Space. We set the upper bound of the pay-
ment W and the number of ability level L. If W and L are set to the larger
values, more elaborated control of budget allocation becomes possible. On the
other hand, it increases the computational cost of solving POMDPs. By balanc-
ing the tractability with the feasibility of dealing with actual tasks, we use the
settings of W = 8 and L = 3.

Task Decomposition. A task is decomposed into more than one subtasks.
There are several ways of decomposing a task. For example, a task is decomposed
into three subtasks in the Find-Fix-Verify workflow [2]. We examine the case that
a task is decomposed into three subtasks, i.e., N = 3.

Combinations of the Difficulties of Subtasks. The objective of task decom-
position is to reduce the difficulty of completing the task. There exist various
cases in the difficulties of subtasks. For example, in the study of collaborative
workflow, a translation task is decomposed into three subtasks [1], where it is
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Table 1. Workers’ ability distribution

(a) Convex (b) Concave

ai,j = 0.2 0.45 0.20

ai,j = 0.6 0.10 0.60

ai,j = 1.0 0.45 0.20

Table 2. Task difficulties

(1) Increasing (2) Decreasing

d1 0.3 0.7

d2 0.5 0.5

d3 0.7 0.3

considered that the third subtask (target synthesis) is easiest and the second
subtask (assistive translation) is the most difficult. However, a way of decompo-
sition is not limited to such one. We examine the following two cases.

(1) Increasing difficulties: The difficulty of the succeeding subtask is higher than
that of the preceding subtask.

(2) Decreasing difficulties: The difficulty of the succeeding subtask is lower than
that of the preceding subtask.

Methods to Be Compared. To evaluate the performance of the proposed
method, we compare it with two static methods that determine the budget
allocation and the number of publishing each subtask in advance.

Equal-division agent (E-Agent)
Allocate the budget on subtasks equally, and further divide equally the allo-
cated budget into the HITs included in each subtask.

Difficulty-based agent (D-Agent)
Allocate the budget on subtasks in proportional to the difficulties of the
subtasks.

Here, it is assumed that E-Agent and D-Agent repeatedly publish the same
number of HITs for each subtask. We will compare the proposed agent called
P-Agent with E-Agent and D-Agent.

D-Agent can be viewed as the existing methods for budget allocation because
the existing method by Tran-Thanh [4,5] cannot respond to the events during
the execution. Their method is more elaborated in that they created the accuracy
models of a Find-Fix-Verify workflow. Thus, their method may perform better
than D-Agent, but obtaining the accuracy model for different task domains itself
is often costly.

4.2 Simulation

We examined the four cases by combining the two cases of workers’ ability dis-
tribution, (a) convex, (b) concave, and the two cases of task difficulties, (1)
increasing difficulties, (2) decreasing difficulties. By using (a-1), we represent
the case of combining (a) convex distribution with (1) increasing difficulties. We
examined the four cases, (a-1), (a-2), (b-1), and (b-2). Tables 1 and 2 show the
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details of the ability distributions for a unit payment and the task difficulties,
respectively.

We assume that the requester agent has the budget of B = 40. For the
payment for a CURRENT action and a NEXT action, we set wi = 1, · · · , 7,
while for the payment for an EVAL action, we set wEV AL = 1. This is because
the evaluation task is, in general, easier than the creation tasks such as finding
patches to be fixed.

In the experiment, we ran the simulation twenty times for each case and
calculated the average value of the quality of the final artifact. To remove the
effect of the randomness on workers’ abilities, we first create the queue of work-
ers whose abilities are drawn from the specified distributions and simulate the
workers appear according to the queue, which enables us to fairly compare the
three methods with each other.

4.3 Simulation Results

Figure 1 shows the simulation results of the four cases. In these graphs, the hori-
zontal axis represents the index of subtasks, while the vertical axis represents the
ratio of the obtained quality to that in the optimal budget allocation. The opti-
mal budget allocation is calculated by assuming that the requester can observe
the order of the workers’ arrival as well as the abilities of all workers in advance,

(a-1) (a-2)

(b-1) (b-2)
In each graph, the horizontal axis represents the index of subtasks, while the vertical

axis represents the ratio of the obtained quality to that in the optimal budget
allocation.

Fig. 1. Comparison of P-Agent with E-Agent and D-Agent
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although achieving such qualities is virtually impossible. These graphs elucidate
that P-Agent can achieve the highest quality for all the four cases.

For the cases of the decreasing difficulties, i.e., (a-2) and (b-2), D-Agent
achieves the higher quality of an artifact for the first subtask, compared to P-
Agent. This is because the first subtask is most difficult than others and D-Agent
tries to pay more for the first subtask compared to P-Agent. However, P-Agent
finally becomes superior to D-Agent at the last subtask. Also, for the final quality,
D-Agent outperforms E-Agent in the case of increasing difficulties, i.e., (a-1) and
(b-1), while E-Agent outperforms D-Agent in the case of decreasing difficulties,
i.e., (a-2) and (b-2).

5 Conclusions

We have developed an adaptive budget allocation method for crowdsourced
sequential tasks. Sequential tasks mean that an output of a task becomes an
input to another task, and the quality of the final artifact depends on the qualities
of the preceding tasks. Our method enables the requester to adaptively control
the workflow, considering the budget constraint simultaneously. The simulation
results showed that our method outperforms the baseline methods. A limitation
of this study is that we assume that the quality function and the distribution of
workers’ ability are known. Incorporating multi-armed bandits to overcome the
limitation is included in our future work.

Acknowledgments. This research was partially supported by a Grant-in-Aid for Sci-
entific Research (A) (17H00759, 2017-2020) from Japan Society for the Promotion of
Science (JSPS).
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Abstract. Discovering who performed a cyber-attack or from where it
originated is essential in order to determine an appropriate response
and future risk mitigation measures. In this work, we propose a
novel argumentation-based reasoner for analyzing and attributing cyber-
attacks that combines both technical and social evidence. Our reasoner
helps the digital forensics analyst during the analysis of the forensic evi-
dence by providing to the analyst the possible culprits of the attack, new
derived evidence, hints about missing evidence, and insights about other
paths of investigation. The proposed reasoner is flexible, deals with con-
flicting and incomplete evidence, and was tested on real cyber-attacks
cases.

1 Introduction

We are currently facing an escalation of cyber-attacks [10] and an aggravation of
their effects [3]. The expected exponential increase of the use of IoT and other
smart connected devices, together with the growing dependabilities the users
have on these devices, make the users more vulnerable and exposed to cyber
threats. General preventive and mitigative measures are not sufficient, as there
is a need to enforce protective measures that are specific to the attacker (group
of attackers) that is performing the attack. Attacker-specific countermeasures
would be highly effective and would contain the attack damage. These targeted
measures require to discover the entity performing/related to the attack. Iden-
tifying who performed the attack would help to bring the culprits of the attack
into justice.

Attribution is the process of assigning an action of a cyber-attack to a particu-
lar actor. The attribution problem is not trivial as attackers often use deceptive
and anti-forensics techniques [4]. Currently, the attribution process is mainly
human-based, hence easily biased and error prone, and labour intensive as it
involves skilled human resources to analyze enormous amounts of low format
data [2]. Digital forensics helps during the attribution process, as it collects,
examines, and reports the forensic evidence [9]. Nevertheless, digital forensics
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 510–518, 2018.
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techniques suffer from the limitations derived from the big amount of data to
be collected (where there is a need for efficient evidence collection) and ana-
lyzed [1,7], and from the fact that it considers only the technical aspects of an
attack, without examining the social/geopolitical/economical aspects where the
attack took place. A major challenge of digital forensics techniques is that they
cannot work with contradictory pieces of evidence or incomplete information.

In this work, we propose an argumentation-based reasoner (ABR) to help
the forensic analysts during the analysis and attribution of cyber-attacks. Given
different pieces of digital forensics and social evidence, our reasoner derives new
information, such as, the potential identity of the attacker, together with an
explanation of how the reasoner arrived to its conclusion, and proposes to the
user new investigation paths. ABR was based on preliminary results of a deci-
sion process framework introduced in [8], and is able to work with incomplete
and conflicting evidence, provided by the user, whom we expect to be the foren-
sic analyst. To the best of our knowledge, this is the first reasoner that com-
bines technical and social evidence during the analysis and attribution process
of cyber-attacks.

ABR consists of two main components: a set of reasoning rules, called core
rules, and the background knowledge. The core rules model the reasoning used by
the forensic analysts during the analysis and attribution of real cyber-attacks.
The background knowledge is formed of common knowledge usually used by the
analyst, e.g., countries characteristics, prominent cyber groups, past attacks.
The core rules use the pieces of evidence given by the user together with the
background knowledge to derive a conclusion. The reasoning behind ABR is
unbiased and its combination with expert knowledge provides an efficient and
accurate analysis and attribution.

We based our reasoner on the Q-Model [13], a social science attribution
model, in order to include the social evidence in our reasoning, alongside techni-
cal indications. This model describes the procedure of putting together technical
and social evidence, followed by the forensic analysts during the attribution of
cyber-attacks. The use of the Q-Model enables ABR to structure the reason-
ing rules and the evidence in three different layers: technical, operational, and
strategic, and to work with social and technical pieces of evidence.

We decided to use argumentation reasoning for our reasoner as it allows to
capture the knowledge in the same natural and direct form as the human forensic
analysts. The use of preference-based argumentation [5,6], permits ABR to deal
with conflicting pieces of information, by introducing preferences between rules.
We use Gorgias [5], a preference-based argumentation reasoning tool that uses
abduction, to construct ABR. The ability to work with incomplete information
makes abduction suitable to use in the attribution process, as it fills the knowledge
gaps in our reasoning, and gives to the analyst potential leads to follow and carry
out further investigations.

Prior to our work argumentation has been applied to attribution in [11,14],
where a probabilistic model is introduced. However, the framework introduced
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in [11,14] does not use any social evidence or background knowledge that are
useful in detecting motives, capabilities, and potential culprits.

The goal of our reasoner is not to substitute the forensic analyst but rather
to provide a supporting tool to help with the analysis and attribution of cyber-
attacks. Therefore, when ABR gives an output to the user, e.g., who is the cul-
prit, or new insights, it provides also an explanation of the given result, allowing
the user to adjust and refine the reasoning used by ABR.

In Sect. 2 we introduce the argumentation framework used by ABR. We
present ABR and its main components in Sect. 3. We conclude in Sect. 4 and
propose some future research directions.

2 Preference-Based Argumentation Framework

The proposed reasoner is based on preference-based argumentation [5,12], as we
believe it is best suited for interacting with an analyst during the analysis and
attribution of cyber-attacks. In particular, we use the framework proposed in [5,
6] that represents multi-agent application problems via argumentation reasoning.
This framework permits us to work with conflicting pieces of evidence, or pieces
of evidence that derive conflicting conclusions by introducing preference rules.
Preference-based argumentation allows us to handle non-monotonic reasoning in
attribution, where the introduction of new evidence might change the result of
the attribution (due to conflicting arguments). For example, given the argument
pair (T, P )1 extracted from the core rules of ABR:

T = { r1 : attackOrig(X,Attack) ← ipGeoloc(X, IP ), attackSourceIP (IP,Attack),
r2 : ¬attackOrig(X,Attack) ← ipGeoloc(X, IP ), attackSourceIP (IP,Attack),

spoofedIP (IP )}
P = { pref1 : r2 > r1}

where rule r1 states that Attack originates from X, (attackOrig(X,Attack)), if
the source IP of the attack is geolocated in X, while r2 states that Attack does
not originate from X, if the source IP of the attack is geolocated in X and the
IP is spoofed. If we have the following pieces of evidence:

E = {attackSourceIP (ip1, attack1), ipGeoloc(countryC, ip1)}

we get attackOrig(countryC, attack1) as the conclusion of the argument. How-
ever, if we have the evidence:

E = {attackSourceIP (ip2, attack2), ipGeoloc(countryC, ip2), spoofedIP (ip2)}

then the conclusion is ¬attackOrig(countryC, attack2), thus attack2 was not
originated from countryC, as according to the preference rule pref1, we prefer
rule r2 over rule r1.

1 T represents the argument rules, while P represents the preference rules.
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3 Argumentation-Based Reasoner

Our argumentation based reasoner, ABR, is based on two main components,
the core rules and the background knowledge, see Fig. 1. The core rules use the
pieces of evidence of an observed cyber-attack, which are given as input by the
user, together with the background knowledge and give as output the answer
as to who/where the observed attack can be attributed to. As the main goal of
ABR is to help the analyst to gain new insights, it is crucial that ABR provides
explainable and transparent results to the user. Therefore, ABR outputs the
result as well as its associated score and the used derivations together with their
supporting and/or conflicting rules, and the corresponding graphical represen-
tations. The score represents the confidence ABR has in the result, and is used
to order multiple results. Furthermore, ABR provides hints about other investi-
gation paths, by giving a list of missing pieces of evidence that, if provided, can
bring into new conclusions. The suggested hints permit the analyst to put in act
an efficient prioritized evidence collection. ABR models the iterative and incre-
mental nature of the attribution process, where it provides an answer with new
information to the analyst, and can integrate additional input from the analyst,
which makes ABR suitable to be used in conjunction with human experts.

Investors

Background Knowledge

Technical  
Layer 

Core Rules

import

Operational
Layer 

Strategic 
Layer 

import import

import import import

User

Evidence/Rules/
Preferences

ABR Input ABR Output

Standard/Verbose Execution:
Results/ Derivation Diagram/

Scores/Suggestions 

ABR

Fig. 1. ABR Overview
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Let us now introduce an example, where, for the sake of understandability,
we simplify the representation of rules and pieces of evidence.

Example 1. Suppose an attack a has occurred, and the analyst is able to recover
the IP’s from where the attack came from, geolocate them, and check if they
can be used or not for the analysis process by checking if they are spoofed or
not. An analysis of the attack states that it was performed using malware m and
that m shares code with another known malware mal2. We represent below the
pieces of evidence that the analyst provides to ABR, denoted by caseEi.

caseE1 : attackSourceIP (ip1, a), caseE2 : attackSourceIP (ip2, a),
caseE3 : ipGeoloc(ip1, countryX), caseE4 : ipGeoloc(ip2, countryY ),
caseE5 : spoofedIP (ip2), caseE6 : hasMotive(countryY, a),
caseE7 : malwareUsed(m,a), caseE8 : sharedCode(m,mal2).

The first five focus on technical evidence related to the IP’s from where the
attack originates, ip1, ip2, and their geolocation, correspondingly in countryX
and countryY . ip2 is found to be spoofed. Evidence caseE6 provides ABR with
some social information related to the attack, stating that countryY has motives
to perform a. The last two pieces of evidence, deal with the type of attack, stating
that malware m was used in a, and it shares code with mal2.

We introduce below some of the background knowledge of ABR that might
be useful for the given example.

bg1 : malwareLinkedTo(mal2, aGroup), bg2 : notFromBlackMarket(mal2),
bg3 : country(countryX), bg4 : country(countryY ).

The first two pieces of information are part of the domain specific knowledge.
bg1 states that mal2 is linked to a known group of attackers aGroup, and bg2
states that mal2 is not from the black market. bg3 and bg4 are general knowledge,
where ABR recognises countryX and countryY as countries. ��

3.1 Division of the Core Rules

The core rules are composed of the reasoning rules used to derive the various
conclusions. We extracted the core rules from past real cyber-attacks’ attribu-
tions, where the rules represent the reasoning process followed by the forensic
analysts. To deal with the social evidence, we base our reasoner on a social model
for attribution, called Q-Model [13]. Following the Q-Model, the pieces of evi-
dence (given and derived), and the reasoning rules are divided into three layers:
technical, operational, and strategic.

In our reasoner, the rules of the technical layer deal with technical evidence
of the attack, e.g., IP from where the attack was originated, time of attack, logs.
The rules of the operational layer deal with other social aspects of the attack,
e.g., the motives of the attack, the needed capabilities to perform it. The rules
of the strategic layer deal with who might have done the attack, or who is taking
advantage from it. Depending on the layer a rule/evidence is part of, we call it
a technical, operational, or strategic rule/evidence.
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Let us show through an example, how these layers are connected to each
other and what type of evidence and rules goes to which layer. One of the rules
of the strategic layer is the following2:

s1 : isCulprit(X,A) ← hasMotive(X,A), hasCapability(X,A).

saying that entity X is the culprit of attack A, if it has the motivations to
perform the attack hasMotive(X,A) and it has the capability to conduct it
hasCapability(X,A). The evidence used in the above rule is given by the user
or is derived using rules of the technical and operational layer. In particular, the
evidence hasCapability depends on the type of attack.

o1 : hasCapability(X,A) ← requireHighResource(A), hasResource(X).

The above rule is an operational layer rule and states that X has the capability
to perform attack A, in case A requires high resources requireHighResource(A)
and X has these resources hasResource(X). The rule below, which is part of
the technical layer, derives the requireHighResource(A) evidence from the skill
level needed by the attacker to perform A.

t1 : requireHighResource(A) ← highLevelSkill(A).

The highLevelSkill(A) evidence is derived using the technical layer rule below:

t2 : highLevelSkill(A) ← malwareUsed(M,A), usesZeroDayV uln(M).

where the used pieces of evidence are technical ones. The above rule states that
A is a high level skill attack, if the used malware, malwareUsed(M,A), exploits
zero day vulnerabilities, usesZeroDayV uln(M).

Example 2. Following from Example 1, reasoning rules can be used to derive the
results. For example, we show below a strategic reasoning rule used by ABR to
derive that aGroup might be the culprit of the attack.

s2 : isCulprit(X,A) ← malwareUsed(M1, A), similar(M1,M2),
notFromBlackMarket(M1),
notFromBlackMarket(M2),
malwareLinkedTo(M2,X).

The rule states that a certain entity X is the attacker, if the malware used
M1 is similar to malware M2 that is linked to entity X. The similar(M1,M2)
evidence can be derived using a technical rule, such as:

t3 : similar(M1,M2) ← sharedCode(M1,M2).

which considers that two malwares are similar if they share a significant part of
their code, sharedCode(M1,M2). ��
2 The rule’s name represents the layer of the rule, i.e., the rules’ names of the technical,

operational, and strategic layer start correspondingly with t, o, and s.
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3.2 ABR execution

Given the pieces of evidence to ABR, the user can execute ABR in two modes.
In standard mode, it gives as result the answers to the queries, e.g., wether a
particular entity performed the attack. In verbose mode, it gives as result hints
of what other pieces of evidence are required to reach a specific conclusion, given
the evidence found so far. We tested ABR with real cyber-attacks cases, taken
from public reports, and artifacted examples. ABR was able to correctly identify
the culprits given the appropriate pieces of evidence. In verbose mode, ABR’s
results include the missing evidence (when some pieces of evidence were omitted)
or suggest appropriate investigation paths to be followed by the analyst.

Standard Mode. The standard execution is called after providing to ABR the
pieces of evidence and making a query. This mode gives as result the answer
of the query, e.g., if an entity is the culprit or not of the attack, if there are
other attacks similar to the exiting one, from where the attack originated, or
all the entities that might be the culprits of the examined cyber-attack. For
every given answer, ABR provides the derivations rules and pieces of evidence
used to arrive at the conclusion, together with a graphical representation of
the derivation, and a score of the result, based on a scoring system. It also
provides an argumentation tree of the used reasoning rules that shows how the
different conflicting arguments supporting/attacking the various possibilities of
attribution are considered.

Example 3. Going back to Example 1, when ABR is given the pieces of evidence
and is asked “who is the culprit” it gives the following output:

aGroup, countryX, countryY.

ABR gives three different answers as it is able to prove for each of them that
they might be the culprit. Thus, it provides all the above answers together with
their explanations. ��

Verbose Mode. The verbose mode is usually used when there are not enough
pieces of evidence to support a conclusion, or when the user wants to know other
paths of investigation. Given the pieces of evidence ABR’s verbose execution
identifies the missing pieces of evidence necessary to reach other or more precise
conclusions. The list suggests to the user other pieces of evidence to be collected,
and hints to other investigation paths.

Example 4. Some of the results of executing ABR in verbose mode given the
pieces of evidence of Example 1 are shown below:

hasMotive(countryX, a), target(X, a), hasMotive(countryZ, a).

The first suggestion asks if countryX has motive to perform the attack, in order
to make the attribution more precise. The second one, target(X, a), asks which
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were the targets of a. The last suggestion, asks if the user can provide evidence
(hasMotive) for another country, countryZ, as this country is linked with a
prominent group of attackers that is able to perform this type of attack, and it
usually performs attacks for countryZ. ��

4 Conclusions and Future Works

A correct and swift attribution of cyber-attacks permits to put in place adequate
mitigative and preventive measures. Attributing cyber-attacks is a delicate and
difficult task, due to the large amount of often conflicting evidence that needs
to be analysed and the fact that attackers use deceptive and anti-forensics tech-
niques. In this work we proposed a reasoner (ABR), based on a preference-based
argumentation that helps the forensic analyst during the analysis of forensic evi-
dence of an observed cyber-attack and its attribution. ABR provides the analyst
with an answer as of where the observed attack originated and to who it can
be attributed. The proposed reasoner automates the attribution process and is
fully flexible, as it allows and supports the analyst to introduce new evidence,
rules, and preferences.

As future work, we plan to increase ABR reasoning capabilities by adding
new reasoning rules, and background knowledge. In order to fully automate
the attribution process, we intend to enrich ABR with an automatic evidence
extraction/collection, by integrating ABR with digital forensics tools and data
mining techniques.
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Abstract. The international Automated Negotiating Agents Competi-
tion (ANAC) is being held annually since 2010 in order to bring together
the researchers from the multi-agent negotiation community. In this
regard, the Repeated Multilateral Negotiation League (RMNL), one of
the four negotiation research challenges in ANAC 2018, requires partic-
ipants to design and implement an intelligent negotiating agent, that is
able to negotiate with two other opponents and that is able to learn
from its previous negotiation experiences. In this context, in this paper,
we design a negotiating agent that focuses on searching the space of suit-
able bids that provide high utilities for both sides near the Nash Bargain-
ing Solution (NBS) using a novel heuristic method. The proposed agent
has participated in the ANAC competition successfully and finished in
the second place in the social welfare category.

Keywords: Automated negotiation · Heuristic method
Bid searching · Nash bargaining solution

1 Introduction

In this paper, we present Agent33, an intelligent agent negotiation strategy that
was designed and implemented in order to participate in the ANAC RMNL
2018. ANAC 2018 [1] includes four different negotiation research challenges. One
of these challenges, i.e., RMNL, promotes the researchers to develop successful
automated negotiators for scenarios where there is incomplete information about
their opponents. In order to achieve this goal, it allows a set of automated nego-
tiating agents to compete against each other, in a closed trilateral multi issue
setting using Stacked Alternating Offers Protocol (SAOP) [2].

A review of several strategies that were adopted by many agents from the past
competitions reveals the introduction of plenty of algorithms for bid searching,
such as Simulated Annealing (SA) [3], the Bids Replacement by the Agreement
and Reject (A/R) [4], the Combination of the Best Bid, the Best Offered Bid and
the Frequency Bid [5]. However, a number of limitations exist in these algorithms.
In order to solve these problems, this paper introduces Agent33. Agent33 is an
c© Springer Nature Switzerland AG 2018
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intelligent negotiating agent that aims to solve these problems by employing an
effective bid search strategy and a successful bid acceptance strategy.

The rest of this paper is organized as follows. Section 2 describes the negotia-
tion environment in ANAC 2018. Section 3 introduces the proposed negotiation
strategy. Section 4 presents the ANAC 2018 competition results, along with their
evaluation and discussion. Section 5 analyzes the proposed negotiating strategy
and discusses the evaluation results. Section 6 briefly presents the related work.
Section 7 summarizes the conclusion and outlines the future work.

2 The Negotiation Environment

This section describes the negotiation environment where the participant agents
competed during the ANAC 2018. The description of the negotiation environ-
ment consists of the following parts as follows.

2.1 Competition Setup

The chosen competition is a multi-party closed negotiation among three agents,
without any knowledge of the preferences and strategies of the opponent agents,
where the negotiating agents used the Stacked Alternating Offers Protocol
(SAOP). In this context, each agent has three minutes to deliberate. In addition,
a reservation value is allowed to be held in certain scenarios. Each negotiation
round is repeated five times. Also, the utility functions are linear and the par-
ticipant agents are able to negotiate about a large set of previously unknown
preferences.

2.2 General Environment for Negotiation with Intelligent
Multi-purpose Usage Simulation (GENIUS)

GENIUS [6] is a negotiation environment that implements an open architecture
for heterogeneous negotiating agents. It provides a testbed for negotiating agents
that includes a set of negotiation problems for benchmarking these agents, a
library of negotiation strategies, and a set of analytical tools in order to evaluate
the performance of the participant agents.

2.3 Preferences of the Negotiation Parties

The preferences for each agent in all domains are given by a weighted sum
utility function. In this regard, each agent has its own utility function. This
utility function is expressed as follows:

ua(b) =
∑

j∈I

Va(bj) · wa,j (1)

where each issue j ∈ I can take a value vj from a predefined set of valid values
for that issue which is denoted by Dj (i.e., vj ∈ Dj), where each agent can access
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this domain information. In addition, a bid b = (b1,...,b|I|) is an assignment of
values to all issues where b1 ∈ D1. Va(bj) denotes Agent a valuation of the value
for the issue j in the bid b. wa,j denotes Agent a the weight of its issue j.

2.4 Time Constraints

There are three important factors that are defined in order to increase the degree
of complication of the negotiation and make it similar to real life scenarios.
These factors are deadline, discount factor and reservation value. During each
negotiation round, bid offers are exchanged in real time with a deadline set after
specific minutes, which is three minutes in the ANAC 2018. If the participant
agents cannot reach an agreement by the deadline, their utility values are set to
the reservation value. In addition, this agreement prospect decreases over time
according to a certain discount factor, which means the more time an agreement
takes, the lower utilities the participant agents receive. As a result, reservation
value is set equal to disagreement point. An example of discount factor [7] is
presented in Fig. 1.

Fig. 1. An example of discount factor

3 Description of the Proposed Agent

The majority of the participant agents in the ANAC competitions are imple-
mented in the BOA framework [8]. In this regard, a negotiating agent in the
BOA framework, called a BOA agent, consists of four components as follows:

Bidding Strategy. A bidding strategy is a mapping which maps a negotiation
trace to a bid. The bidding strategy is able to interact with the opponent model
by communicating with it.

Opponent Model. An opponent model in the BOA framework is a learning tech-
nique that constructs a model of the preference profile of this opponent.
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Opponent Model Strategy. An opponent model strategy specifies how the oppo-
nent model is used in order to select a bid for the opponent, and if that opponent
model could be updated in a specific turn.

Acceptance Strategy. The acceptance strategy determines whether the oppo-
nent’s bid is acceptable and is considered enough decide to end the negotiation
prematurely.

Fig. 2. The BOA framework architecture

The lifecycle of an agent in the BOA framework architecture is shown in
Fig. 2. The main idea of the proposed agent (Agent33) is to search an approxi-
mate scope of the bids that lie around the NBS, and then, offer one of these
bids that yields high utility for all participant negotiators. In other words,
there is no need to build complete preference profiles for opponent negotia-
tors, instead, focus on searching these opponent’s preference issues. Therefore,
this work focuses on implementing the Bidding Strategy and the Acceptance
Strategy components of the BOA Framework. In addition, the Domain and the
Negotiation Status are also implemented as components of the negotiation envi-
ronment. We will discuss the Bidding Strategy and the Bid Acceptance Strategy
in the following two subsections.

3.1 Bidding Strategy: A Heuristic Method for Searching a Nash
Bargaining Solution (NBS)

The proposed agent (Agent33) works as follows. The Bidding Strategy aims
to propose bids around the NBS [9] because these bids are expected to posses
higher values of the joint utility. However, it is difficult to find the NBS with
an incomplete utility values. Therefore, Agent33 uses a novel heuristic method
in order to find the promising bids around the NBS. In other words, Agent33
only searches for the promising bids in a small scope around the NBS. In order
to achieve this goal, the proposed heuristic method aims to construct a list
of the opponents prior issues, which is incrementally updated throughout the
negotiation process.

The process to find the opponents prior issues consists of two steps. The first
step calculates the standard deviation of each value’s frequency in each issue and



Agent33: An Automated Negotiator with Heuristic Method 523

names the result as Value Standard Deviation. While the second step calculates
the standard deviation of each issue’s Value Standard Deviation and names
the result as Issue Standard Deviation. In this context, if a certain negotiator
has large Issue Standard Deviation, it means this negotiator has an obvious
preference of the prior issues. The issues with high Value Standard Deviation
are the prior issues of this negotiator and the values with high frequency are the
prior values of these prior issues. These prior issues and their prior values are
set in a pair that is called Prior Pair. In other words, we believe that the issues
whose values are frequently changed by opponent negotiators are not crucial for
them.

Using the aforementioned concepts, the proposed agent (Agent33) constructs
a bid by combining the opponent’s Prior Pair with its own Prior Pair, and then
chooses the values of other issues randomly. However, during the negotiation
process, if opponent negotiators compromise at an early stage, or if they do not
have any prior issues, Agent33 might return errors. In addition, if a conflict is
found among the prior issues, Agent33 then uses the Prior Pair of the opponent
negotiators as priority. It is important to note that the repetition of negotiation
helps to improve the accuracy of prediction. From above, it is presumed that
the proposed heuristic method is able to reduce the bid searching scope and to
find promising bids around the NBS, which improves the probability to find a
suitable bid. The comparison of the bid searching scope is presented in Fig. 3. A
simple example is presented in Fig. 4.

Fig. 3. The bid searching scope without our method (right) and with our method (left)

3.2 Bid Acceptance Strategy

In this subsection, we present the bid acceptance strategy. If the utility of a
certain bid is greater than a preset threshold value, then the proposed agent
accepts this bid. This threshold value is decreasing as time passes. In addition,
this threshold value is calculated using the following equation.

Threshold = max{(1 − (1 − df) · log(e − 1.9 + (e − 1)α) · t), emax} (2)
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Fig. 4. A simple example of the bidding strategy

where df represents a discount factor. α is a parameter which we set as 4.5
optionally. t represents the current time. emax means the estimated maximum
which is calculated using the following equation.

emax(t) = μ(t) + (1 − μ(t)) · d(t) (3)

where μ(t) is the utility mean of the opponent’s offers in the agent’s utility
space. d(t) [4] is a function for estimating the utility width of the opponent
offers in this agent utility space which is given by Farma Agent in the ANAC
2016 competition as follow:

d(t) =
√

3σ(t)√
μ(t)(1 − μ(t))

(4)

where σ is the standard deviation.

4 The Results and Evaluation

There are 21 participant agents who represent ten institutions from eight coun-
tries in the ANAC RMNL 2018. The 21 participant agents are divided by three
pools randomly. Through the qualifying round, the top three performing agents
in each pool can proceed to the final round.

The ANAC RMNL 2018 competition has two categories: the individual cat-
egory, in which the participant agents are ranked according to the individual
utility they have obtained, and the social welfare category in which the partic-
ipant agents are ranked by the social utility, which is the sum of these agent’s
individual utilities and their opponents’ utilities. The final round has been run
among nine finalists in each category with four selected scenarios submitted by
the participants. For each scenario, 2520 negotiations were run. The results of
the qualifying round of the social welfare category is presented in Fig. 5. The
proposed agent (Agent33) won the second place in the final round of the social
welfare category as shown in Fig. 6 which demonstrated its efficiency by wining
the second place in this competitive environment.
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Fig. 5. The qualify round results of the
social welfare category (Pool C)

Fig. 6. The final round results of the
social welfare category

5 Discussion

In the proposed negotiation strategy, the negotiating agent (Agent33) compares
among the different negotiation issues by the standard deviation of their values,
and then, chooses the issues with the highest standard deviation values as prior
issues. In this regard, the most frequent values of each prior issue are considered
as prior values. Therefore, instead of modeling the opponents’ utility distribution,
the proposed agent focuses on searching the scope of the bids that are able to
return high utilities for all participant agents.

At the current stage, the proposed agent does not focus on the acceptance
strategy, therefore, the proposed agent performed weakly in the individual cat-
egory. In order to solve this problem, the proposed agent needs to consider the
existing threshold calculation strategies, and the necessary techniques needed to
combine these strategies with the proposed bid searching strategy.

6 Related Work

In AgentM [5], which is the champion in both the individual category and the
social welfare category in the ANAC 2014, Niimi et al. proposed a bids combi-
nation strategy which offers a combined bid that consists of the Best Bid, the
Best Offered Bid, and the Frequency Bid. This agent used the Best Bid as a base
bid, and replaced two issues’ values of the Best Bid randomly with a random
issue value of the Best Offered Bid and a random issue value of the Frequency
Bid, respectively. In order to generate the Frequency Bid, they counted up the
number of all issue values and chose the most frequent value for each issue. The
same consideration is also used in Agent Farma and Agent Terra in the ANAC
2016. However, all of the three agents did not consider the importance level of
each issue.

In Agent Farma17 [10], the Agreement and Reject (A/R) idea is used for
offering a more acceptable bid. This agent focused on the frequency of bids
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that are offered by the opponents, and calculated the cumulative probability
distribution of each bid. In addition, this agent set up a Reject Rate and an
Agreement Rate where part of the bids that are accepted from the opponents
are included in these two types. If the cumulative probability of the accepted
bid is lower than the Reject Rate, the values of certain issues will be randomly
changed into those values of a bid which has higher cumulative probability than
the Agreement Rate. However, a bid that has higher cumulative probability does
not mean that all of its issue values are acceptable. Instead of focusing on the
Reject Rate and the Agreement Rate of the bids, considering an Agreement Rate
of the whole negotiation issues is more suitable.

7 Conclusion

In this paper, we proposed an intelligent negotiation agent that utilizes the pre-
vious bids of its opponents in order to search for the successful bids around Nash
Bargaining Solution. The final round results of the ANAC RNML 2018 compe-
tition demonstrated that the proposed agent is able to search the suitable bids
scope around Nash Bargaining Solution and succeeded to lead other participant
agents where the proposed agent achieved higher social utilities. Future work
is set to study the necessary improvements that are needed to achieve a high
individual utility and to reduce the scope of bid searching.
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Abstract. Deep reinforcement learning, which has recently attracted
the interest of AI researchers, combines deep neural networks (DNNs)
and reinforcement learning (RL). By approximating a function in RL
with a DNN, it enables an agent to learn in a complex environment rep-
resented by low-level features such as the pixels used in a 3D video game.
However, learning from low-level features is sometimes problematic. For
example, a small difference in input pixels results in completely different
behaviors of an agent. In this study, as an example of such problems, we
focus on the viewing directions of an agent in a 3D virtual environment
(Minecraft) and analyze their effect on the efficiency of deep reinforce-
ment learning.

1 Introduction

Recent developments in deep neural networks (DNNs) have enhanced the capa-
bility of DNNs to process high-dimensional data and to serve as vision in
autonomous agents. This progress has made it possible for artificial intelligence
(AI) to learn behaviors in video games directly from the screen images, which
is called visual learning. In particular, Deep Q-Network (DQN) [3,4], an algo-
rithm proposed by DeepMind for Google, outperformed a human expert player
in Atari 2600 games with 2D image data. In 2016, Google DeepMind proposed
an asynchronous method [2]. One of the algorithms based on this method, called
asynchronous advantage actor-critic (A3C), has surpassed all existing methods
in efficiency and gain score.

Deep reinforcement learning (DRL) algorithms combine deep learning (DL)
and reinforcement learning (RL). In DL, image data is used to define the repre-
sentation of states, while RL is used for approximating the outputs of the DNN
to outputs of RL. But image data are too complex to use as a representation. For
example, image data expressed using RGB has a 〈height〉 × 〈width〉 × 〈3(RGB)〉
× 〈256(0∼255〉 pattern. However, in most RL environments, visual information
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available to agents is restricted, which very much complicates the process of rep-
resentation learning. In the case of learning from first-person view image data
in a 3D virtual environment, agents have limited information about the envi-
ronment and sometimes misunderstand their states. Furthermore, when pixels
change color due to a change in the sight direction, learning from such image data
becomes unstable. In order to acquire best action from the first-person views in a
3D environment, an algorithm that can handle this complexity is needed. In this
study, as a preparation for developing such algorithm, we investigate differences
in learning processes and acquired behavior in relation to the elevation angle of
the agent’s view when playing Minecraft.

The viewing direction is deeply related to the important psychological state
of humans and animals such as attention and curiosity. It is also an important
means of communication among them. We think controlling the viewing direction
is an essential element to build autonomous agents and multiagent systems that
operate in complex environments.

2 Related Work

This section describes the research related to deep reinforcement learning and
the environment of Minecraft.

2.1 Deep Reinforcement Learning

Deep reinforcement learning algorithms approximate policy π(s, a; θ), value func-
tion V (s; θ), Q(s, a; θ), or both of them with the outputs of deep learning, where
s, a, and θ represent state, action, and DNN parameters, respectively. These
algorithms combine deep learning and reinforcement learning and use image
data for learning specific actions. However, using non-linear approximators such
as neural networks decreases the robustness of reinforcement learning. It is well
known that loss of robustness is caused by the correlation between data sorted
by a time series and a policy or a value function. Two DRL methods, DQN and
A3C, solve this problem in their own way.

Deep Q-Network. DQNs use two methods for stability. One of them is called
experience replay in which tuples, sets of [state, action, reward, next state], are
saved to experience replay memory for the last T steps of exploration. The algo-
rithm then learns by mini batches randomly sampled from the experience replay
memory every few explorations. Although this method reduces correlations, it
has two weak points. One is that the on-policy algorithms are not applicable
because the data from exploration is based on a previous policy. The other is
that the size of the experience replay memory tends to be large.

The second method is called fixed target network. In DQNs, there is a learn-
ing phase after every few explorations. During that phase, a little changes in
value functions update the policy greatly, causing loss of robustness of the algo-
rithm. To avoid this problem, the DNN parameters θ are fixed to θ− during the
learning phase. This contrivance is called fixed target network.
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Asynchronous Advantage Actor-Critic. In A3C, the algorithm contains
parallel threads for collecting data by exploration to reduce correlation, and the
threads run asynchronously. Since asynchronous threads run apart from each
other, the collected data is the same as the randomly sampled data. Each threads
computes in the following order.

1. Copy from global network parameter θ to thread’s own local network param-
eter θ−.

2. Explore the learning environment based on own parameter, and compute the
gradient dθ from the loss function L(θ). L(θ) is computed from temporal
difference error.

3. After several explorations, send gradient dθ to global network and update
parameter by gradient decent.

4. Return to step 1. and repeat the process until Tmax.

Here, copying parameter at 1 has the same effect as the fixed-target network
of the DQN. These parameters are optimized by gradient decent of the REIN-
FORCE algorithm [6] and use Advantage function for estimating a current state
value in this time. Advantage function is as follows:

At =
k−1∑

i=0

γirt+1 + γkV (st+k; θv) − V (st; θv) (1)

Owning Advantage function, the algorithm could use more future data than tem-
poral difference error calculated by Bellman equation. Using Advantage function,
the gradient of parameters are calculated by the following formula.

dθ ← dθ + α∇θ log π(st, at; θ)At + β∇θH(π(st; θ)) (2)
dθv ← dθv + α∇θv

A2
t (3)

Here, third term of (2) is the entropy term for stochastic normalization.

2.2 Minecraft (Project Malmo)

Minecraft is a videogame sold by Microsoft in a genre called sandbox. Sandbox
games have no forced mission, so the playing styles and the environment are
flexible. In Minecraft, the environment is made of various cubes, but is similar
to the real world we live in. The environment has the following features.

– Agents are affected by gravity, but cubes placed in the environment are not,
with some exception.

– Enemies are spawned under certain circumstances.
– There is a concept of time. Time affects Brightness of the environment.
– There is a concept of biome and different terrains; various blocks and creatures

are existed in each biome.
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The agents can perform the following actions.

– Destroy and get almost all blocks by continuous attack. Some blocks require
a special tool for destroying.

– Relocate the conquered blocks to the adjacent spaces.
– Combine blocks or items and create new blocks or items, called crafting.
– Use the newly crafted items.

Microsoft Research released a platform called Project Malmo [1] at GitHub in
2016. It’s aim is to provide a testbed/sandbox for developing AI agents within
Minecraft. This release provides a framework for interactions between the agent
and the environment and facilitates the development of the Minecraft experi-
mental environment.

3 Experiment in Minecraft

3.1 Purpose of the Experiment

The purpose of the experiment is to investigate the differences in the learning
process and acquired behavior in relation to the elevation angle of the agent’s
view in Minecraft.

3.2 Configuration of Learning Task

Here, we describe the configuration of the task using Project Malmo. The outline
of the learning task is to “advance without falling down the road and without
branching”, as a simple problem is preferred for investigating the effect of changes
in the elevation angle. An episode ends when the agent reaches the goal (the end
of the road), or falls down the road, or when time is up. The score is calculated
and recorded by the advantage function. The environment is composed of a
road having several corners, and the agent gets RGB images (84 × 84 × 3) as
a representation of the current state (Fig. 1). The agent can take actions that
combine “advance, turn left, turn right” with the exception of taking no action.
The reward for the agent is designed as +1.0 when the goal is reached, −1.0
when the agent falls down the road or when time is up, and +0.1 when the agent
proceeds down the road for 1 block in Minecraft in order to avoid acquiring the
behavior of the agent turning in the same spot. In the experiment, we set the
elevation angle of the agents’ view to 0◦, −30◦, and −45◦, then learn during 2
million steps (a step is about 0.1 s) (Fig. 2). Because the information about the
road is different from each angle, it is expected that the results of the experiment
will also be different.

3.3 Experimental Results

Difference in Learning Process. Figure 3 shows the average score of every
10,000 steps in the learning process of 2 million steps. It indicates that the more
information about the road is caught in the agent’s view, the earlier the agent
acquires suitable behavior.
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Bird’s - eye view of the environment Agent’s view

Fig. 1. Environment using for learning

angle 0◦ angle −30◦ angle −45◦

Fig. 2. Each agent’s view at different elevation angles

Difference in Acquired Behavior. After the learning process, we collect
the data on the average scores, average advanced degrees and the goal arrival
rates from 1,000 episodes. The results are presented in Fig. 4. It also shows the
significance of the information about the road in the agent’s view. These results
are similar to the results of the previous experiments Sect. 3.3.

The Points of Falling down. The points where the agents fall down are shown
in Fig. 5. The agents with a view of 0◦ fall down at the beginning of the road,
in its straight part, because the agent cannot obtain useful information enough
to pass. On the contrary, the agents with a view of −30◦ and −45◦ can obtain
information that helps them reach the goal. However, they also fall down at a
certain point. This is because the actions are discrete and binarized to “do” or
“not do”, which sometimes cause the agents to lose sight at the corners of the
road.
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3.4 Discussion

In the experiment of learning process, the learning process is affected by the
agents’ view during the time required for learning. In the experiment Sect. 3.3,
the acquired behavior is also affected by the view. This proves that the amount
of information necessary to achieve the learning task is extremely important for
exploration in a 3D virtual environment by the first-person view. Furthermore, in
the experiment Sect. 3.3, it is necessary not only to give the appropriate view but
also to make the actions continuous. Therefore, we consider that the control of
the agents’ view is an important issue for exploration in a 3D virtual environment
by the first-person view.

Fig. 3. Average score every 10,000
steps during learning process

Fig. 4. Average score, progress
rate, and goal rate by 1,000
episodes

Fig. 5. Difference in falling position

4 Additional Experiment

We prepared a more difficult task for evaluating the difficulty of learning the
control of agent’s view direction. In this new task, the basic rules are the same as
in the previous task, but the road is randomly generated with a fixed length. The
road does not have any branches or loops, and its terminus is a tower of specific
blocks. Figure 6 is an example of the generated road of such environment. We
compared the learning process and acquired behavior with the agent controlling
the view direction (the sight-controlling agent), in addition to the agents with
fixed angles in our previous experiment.
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Fig. 6. Environment for additional experiment

4.1 Result of Additional Experiment

We compared difference in learning process and acquired behavior. Figure 7
shows the average scores of the learning process and Fig. 8 shows the evalua-
tions of each agent. Both of them indicate the difficulty of controlling agent’s
sight direction. In Fig. 7, the sight-controlling agent could not outperform other
agents even if it was trained for longer than the others. In Fig. 8, the sight-
controlling agent shows the results similar to the agent with a view of 0◦ and it
indicates the training was not successful.

Learning process
until 2 million steps

Extended learning process
for the sight control agent

Fig. 7. Average score every 10,000
steps during learning process in
additional experiment

Fig. 8. Average score, progress rate,
and goal rate by 1,000 episodes in addi-
tional experiment
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4.2 Discussion on Additional Experiment

In the additional experiment, the difficulty of controlling agent’s sight direction
was indicated. It might be caused by vast and discrete action space. The sight-
controlling agent has 17 patterns of actions, which are about 3 times as many as
the actions of other agents. It can affect the results as the curse of dimensional-
ity. Hence, to learn complex behavior to control site direction, we improve the
learning algorithm so that it can solve the problem of the large actions space.

5 Conclusion and Future Work

In this paper, we explained the methods of Deep Reinforcement Learning, then
investigated the effects of directions of agents’ view in 3D virtual environment
for the task acquiring behavior using one of the methods, A3C.

As a future work, we suggested controlling agents’ view direction and pre-
sented the results of the preliminary experiment. Since A3C was proposed in
2016, the methods with various additions to A3C is proposed. One of these
methods [5] used curiosity by self-supervised prediction. It calculates internal
reward from input images apart from external reward given as reply of action
by the environment. We consider concept of internal reward is useful for explo-
ration in 3D virtual environment by first person view. Therefore, we set a goal
for proposing an algorithm to control agent’s view direction.
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Abstract. The Distributed Constraint Optimization Problem (DCOP)
has been studied as a fundamental optimization problem that represents
various problems on multiagent systems. We focus on the asymmetric
DCOPs where each objective function is differently defined as an evalu-
ation of an agent. This class of problems is studied as a multi-objective
problem for the preferences of individual agents. In this work, we investi-
gate the possibility of a solution framework based on relaxation methods
as a scalable and inexact solution approach for this class of problems.
We address a bottleneck problem that minimizes the worst-case cost
value. As the first study, we apply a penalty method to the minimization
problems of the maximum cost values.

Keywords: Distributed Constraint Optimization
Asymmetric problem · Bottleneck · Relaxation · Penalty method

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) [2] has been stud-
ied as a fundamental optimization problem that represents various problems on
multiagent systems. With DCOPs, multiagent cooperation problems, including
the distributed task allocation of meeting scheduling, smart grids and emer-
gency responses, are formalized. A DCOP consists of variables and objective
functions that represent the states of agents and the relationship among agents.
In the original DCOP, the objective functions are commonly defined for related
agents. In recent studies, asymmetric multi-objective problems where the objec-
tive functions are differently defined for individual agents are addressed [1,6,7].
These classes of problems represent several practical cases that optimize multiple
objectives for preferences of individual agents.

There are several approaches of solution methods for DCOPs including
stochastic local search, tree-search, dynamic programming, belief propagation
and relaxation approaches. Those approaches can also be applied to asymmetric
problems with several modifications. Most studies of asymmetric problems with
preferences of agents address exact solution methods or those variations. While
c© Springer Nature Switzerland AG 2018
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the relaxation methods [4,8] are proposed as a relatively scalable and inexact
approach for DCOPs, the opportunities to apply those methods to asymmetric
problems have not been well addressed.

In this work, we investigate the relaxation approaches for asymmetric con-
straint optimization problems. As the first study, we apply a penalty method
to the minimization problems of the maximum cost values. The effects of the
proposed methods are experimentally evaluated.

2 Preliminary

2.1 Distributed Constraint Optimization Problem

The Distributed Constraint Optimization Problem (DCOP) [2] is a combina-
tional optimization problem on multiagent systems and defined by (A,X,D,F ),
where A is a set of agents, X is a set of variables, D is a set of domains of
variables, and F is a set of cost functions. Variable xi ∈ X represents the state
or decision of agent i ∈ A. For simplicity, we assume that an agent has a single
variable. The variable xi takes a value in a set of discrete values Di ∈ D. Cost
function fi,j(xi, xj) ∈ F defines the cost values for assignments to the pair of
variables xi and xj . We also assume that each cost function fi,j is defined as a
binary function: fi,j : Di × Dj → N0. The goal is to find the assignments to the
variables that minimize the global cost function

∑
fi,j∈F fi,j in a decentralized

manner.

2.2 Optimization of Bottlenecks in Asymmetric Multi-objective
Problems

The situations where each agent has different evaluations for the assignments
to variables are represented with an Asymmetric DCOP [3] which is defined
by (A,X,D,F ). Here, A, X and D are the same as the DCOP. F is a set of
asymmetric cost functions. An asymmetric cost function fi,j(xi, xj) ∈ F defines
the evaluation of agent i. For simplicity, we assume that fi,j and fj,i are defined
as a pair of functions. In particular, we focus on the Asymmetric Multi-Objective
DCOP (AMODCOP) [6] where each agent locally aggregates its related cost
functions. The local cost fi of agent i is defined as the summation of the functions
related to i: fi =

∑
k fi,k. fi is considered as the objective of agent i. Namely the

problem is a multiple objective problem where each agent i has its own objective
fi. We denote by Fi ⊆ F a set of all functions fi,k.

To evaluate multiple objectives, we employ scalarization functions [5]. A tra-
ditional scalarization is the summation of cost values

∑
i fi. While the minimiza-

tion of the summation is Pareto optimal, it does not consider inequality among
agents. A different basic scalarization is the maximum cost value maxi fi, which
is also called the Tchebycheff function. While the minimization of the maximum
cost value improves the worst-case cost for all agents, it is not Pareto opti-
mal. The Tchebycheff function is improved with the summation. Augmented
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weighted Tchebycheff function is approximately defined with a small value a:
maxi fi + a

∑
i fi. The optimization with this scalarization is Pareto optimal

and improves the worst-case and the total cost values. The goal is to find the
solution that minimizes scalarized values. We mainly focus on the bottlenecks
(i.e. worst-case cost values).

2.3 Solution Methods Using Relaxation

Several solution methods are based on the relaxation of DCOPs [4,8]. In [4],
the original DCOP is represented with a quadratic encoding. The problem is
relaxed as a Lagrangian relaxation problem. Then, the relaxed problem and cor-
responding dual problem are repeatedly optimized with a decentralized solution
method. See the literature for details of the method. In the following sections,
we employ a similar encoding approach, while it is a simple penalty method.

3 Applying Relaxation Methods to Asymmetric
Problems

3.1 Basic Scheme

For AMODCOPs, we investigate solution methods with relaxation approaches.
As the basic scheme, we employ simple relaxation problems and solution meth-
ods. For the minimization of the summation, we employ the following original
problem.

minimize
∑

i∈A

∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j (1)

subject to xi = αi,j
i , xj = αi,j

j , ∀fi,j ∈ F . (2)

Here, xk and αi,j
k take a |Dk| dimensional vector from {[1, 0, · · · , 0]T · · ·

[0, · · · , 0, 1]T}. If the original xk takes its l-th value, xk corresponding to xk

takes a vector whose l-th dimension value is one. Here, we do not explicitly
write the constraint conditions of the domain of the vectors. Moreover, we also
omit the above constraint conditions of xk and αi,j

k due to space limits in the
following. Fi,j is a matrix that represents the values of asymmetric function fi,j .

For simplicity, we employ average vector xi for all αi,j
i and αj,i

i instead of
xi. In addition, we also add linear and quadratic penalty terms with parameters
μi,j

i , μi,j
j and λ. With these modifications, the relaxation problem is represented

as follows.

minimize
∑

i∈A

(
∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j + (3)

∑

fi,j∈Fi

μi,j
i (xi − αi,j

i ) + λ||xi − αi,j
i ||22 +

∑

fi,j∈Fi

μi,j
j (xj − αi,j

j ) + λ||xj − αi,j
j ||22

)

.
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Here, we do not relax the domain of vectors for simplicity. Since xi, αi,j
i and αj,i

i

are not easily determined simultaneously, xi is approximately updated in each
iterative optimization process. To determine an assignment to original variable
xi from average vector xi, we simply select a dimension with the largest element
value.

Based on the problem shown above, we basically employ the following update
rule at each time step t.

minimize
∑

i∈A

(
∑

fi,j∈Fi

αi,j T
i (t)Fi,jα

i,j
j (t) + (4)

∑

fi,j∈Fi

μi,j
i (t)(xi(t) − αi,j

i (t)) + λ||xi(t) − αi,j
i (t)||22 +

∑

fi,j∈Fi

μi,j
j (t)(xj(t) − αi,j

j (t)) + λ||xj(t) − αi,j
j (t)||22

)

,

xi(t + 1) =
1

mi

∑

fi,j ,fj,i∈F

(αi,j
i (t) + αj,i

i (t)) , ∀i ∈ A , (5)

μi,j
i (t + 1) = μi,j

i (t) + π(xi(t + 1) − αi,j
i (t)) , ∀fi,j ∈ F , (6)

μi,j
j (t + 1) = μi,j

j (t) + π(xj(t + 1) − αi,j
j (t)) , ∀fi,j ∈ F . (7)

Here, mi is the number of functions such that fi,j , fj,i ∈ F . π is an update
parameter.

The variables and parameters of the above rule can be distributed among
agents. Agent i has the following elements: (1) all fi,j ∈ Fi, (2) αi,j

i and αi,j
j

for all fi,j ∈ Fi, (3) μi,j
i and μi,j

j for all fi,j ∈ Fi, and 4) λ and π. On the
other hand, average vector xi must be shared by all related agents. Therefore,
corresponding agents aggregate xi. Agent i has xi

k for each xk related to fi,j in
Fi. Each xi

k is aggregated for agent i and all neighborhood agents j, which are
related to i with fi,j .

The computation of aggregation consists of two synchronized phases as fol-
lows: (1) Each agent i aggregates its own αi,j

i . In addition, agent i also collects
αj,i

i from all neighborhood agents. As a result, the summation vector of all αk,l
i

for i is computed. The summation vector can be averaged by the number of
aggregated copy 2|Fi|. (2) Each agent i collects the aggregated vectors from all
neighborhood agents.

The local problem of agent i is represented as follows.

minimize
∑

fi,j∈Fi

(
αi,j T

i Fi,jα
i,j
j + (8)

μi,j
i (xi

i − αi,j
i ) + λ||xi

i − αi,j
i ||22 + μi,j

j (xi
j − αi,j

j ) + λ||xi
j − αi,j

j ||22
)

.

The procedure of agent i in each time step is as follows: (1) In the initial
time step, reset all μi,j

i and μi,j
j to zero. (2) Under all μi,j

i , μi,j
j and xi

i, find the
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assignment to all αi,j
i and αi,j

j that minimizes i’s local problem. (3) Aggregate
xi

k from related neighborhood agents. (4) Update all μi,j
i and μi,j

j based on their
corresponding gaps. (5) Repeat the processing from step (2) until the cut-off time
step. Here, the processes of all agents are synchronized at each interaction.

Note that the relaxed problem is not a lower bound problem due to discrete
variables. In addition, the convergence is not assured due to non-convex functions
in general cases. As in the first study, we mainly focus on the perturbation of the
solution method. We assume a distributed snapshot algorithm to commit with
a best solution.

3.2 Modifications with Threshold Value for Bottleneck Problems

Next, we apply the above scheme to the case of the mini-max problem. Here, we
introduce a scalar threshold value β, which is considered as the objective. Since
we assume that each fi,j takes non-negative integer values, β also takes similar
values. We assume that the range of β is known. β is related to each aggregation
of local cost functions of an agent with a constraint condition.

minimize β (9)

subject to (
∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j ) ≤ β , ∀i ∈ A .

Similar to the case of the minimization of the summation shown in Eq. (3), an
approximate relaxation problem can be represented. In this case, the additional
constraint conditions for β and the aggregations of local functions are relaxed
with non-negative scalar multipliers μFi . However, there are several problems in
this formalization as follows: (1) There are different types of constraint conditions
whose relaxations might differently affect the solution. (2) While β is an objective
value, it relates with other functions as a threshold value. (3) β is shared by all
agents. For these problems, we investigate several heuristic approaches below.

3.3 Priority of Penalty Terms

To represent the priority of different constraint conditions, we employ different
scales of the update parameters for the multipliers of relaxed conditions. In the
above case, πμFi and πμi,j

are employed for two types constraints instead of π in
Sect. 3.1. λ is also replaced to different parameters for corresponding constraints.
The different weight values will emphasize the priority of constraint conditions.

3.4 Aggregation and Search of Threshold Value

To investigate the methods to determine the value of β, we first employ a dedi-
cated central agent, while such an agent will be a bottleneck of communication.
Basically, the central agent maintains the value of β. On the other hand, the β
should be agreed on by all agents. To represent this situation, a copy βi of β is
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introduced for each agent i, similar to xi and αi,j
i . With β and βi, the problem

and its relaxation can be represented as follows.

minimize β (10)
subject to βi = β , ∀i ∈ A ,

(
∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j ) ≤ βi , ∀i ∈ A .

minimize β +
∑

i∈A

(
μβi(β − βi) + λβi ||β − βi||22 + (11)

μFi((
∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j ) − βi) + λFi ||max(0, (

∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j ) − βi)||22 +

∑

fi,j∈Fi

μi,j
i (xi − αi,j

i ) + λi,j ||xi − αi,j
i ||22 +

∑

fi,j∈Fi

μi,j
j (xj − αi,j

j ) + λi,j ||xj − αi,j
j ||22

)
.

The local problem of i is represented as follows.

minimize μβ′
i(β − βi) + λβ′

i ||β − βi||22 + (12)

μFi((
∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j ) − βi) + λFi ||max(0, (

∑

fi,j∈Fi

αi,j T
i Fi,jα

i,j
j ) − βi)||22 +

∑

fi,j∈Fi

μi,j
i (xi − αi,j

i ) + λi,j ||xi − αi,j
i ||22 +

∑

fi,j∈Fi

μi,j
j (xj − αi,j

j ) + λi,j ||xj − αi,j
j ||22 .

The local problem of the central agent is represented as follows.

minimize β +
∑

i∈A

(

μβ′′
i (β − βi) + λβ′′

i ||β − βi||22
)

. (13)

Since β and βi are shared among agents, those values cannot be simulta-
neously determined. As an approximation method, previous value βi(t − 1) of
current βi(t) is employed in each time step t. The procedure for the central agent
in each time step is as follows: (1) In the initial time step, collect initial βi from
all agents. Reset all μβ′′

i of the central agent to zero. (2) Under all μβ′′
i , find the

assignment to β that minimizes the local problem. (3) Notify all agents of the
current β. (4) After the update of βi in all agents i, collect current βi. (5) Update
all μβ′′

i based on their corresponding gaps. (6) Repeat the processing from step
2) until the cut-off time step. The procedure for each agent i resembles that
shown in Sect. 3.1, while it contains additional steps to exchange β and βi. Here,
xi

k are aggregated by neighboring agents as shown in Sect. 3.1.
Now we address another approach without the central agent. Instead of β

in the central agent, similar to Eq. (13), each agent i approximately optimizes
the threshold β̃i under the constraints for its own βi and each βj of agent j
in a range. On the other hand, the local problem of each agent i resembles
one shown in Eq. (12), except β is replaced by β̃i. To collect more information,
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agent i can collect βk from agents k within a diameter r from the agent i with
some communication trade-off. Here, we assume r = 2 that is the same as the
aggregation of xi

k.

3.5 Augmented Weighted Tchebycheff Function

Here, we also investigate the case where the objective is defined with the aug-
mented weighted Tchebycheff function. The objective function is as follows:
minimize β + a

∑
fi,j∈Fi

αi,j T
i Fi,jα

i,j
j . The relaxed problem also resembles the

case of the minimization of the maximum cost. Since the relaxed problem already
contains the term of the total cost as shown in Eq. (11), the coefficient μFi of
the term is replaced by (μFi + a).

4 Evaluation

We experimentally evaluated the proposed approach using asymmetric DCOPs
with fifty ternary variables, which take one of three values, and 120 constraints.
The maximum degree of variables on constraint graphs is six. Following cost func-
tions fi,j are evaluated. u1 100: random integer values in [1, 100] with uniform
distribution. g9 2: rounded random integer values based on gamma distribution
with (α, β) = (9, 2).

Following methods are compared. sum.: the minimization of the summation
cost value. Parameter π is set to 1. max. dst. fpx/eql: the minimization of
the maximum cost value. Here, only the version without the central agent is
shown, since we found that the results resemble the cases with the central agent.
Paramters (πμi,j

, πμFi , πμβ′
i , πμβ′′

i ) for Eqs. (12) and (13) are set to (1, 10, 5, 1)
for fpx and (1, 1, 1, 1) for eql, respectively. In the case of fpx, the penalty terms
of the threshold value are emphasized. awt. 1e-3/1e-9: the minimization of the
augmented weighted Tchebycheff function. The methods with parameters 1e-3
and 1e-9 (i.e. 10−3 and 10−9) for a are evaluated. The paramters (πμi,j

, πμFi ,
πμβ′

i , πμβ′′
i ) are set to (1, 10, 5, 1).

Each λ∗ is set to π∗/2 similar to the extended Lagrangian method. For local
problems of agents, we employed an exact solution method based on a tree search
and did not relax the discrete values of variables. We employed a synchronized
simulator with cut-off time step t = 200. Results are averaged over ten problem
instances.

Tables 1 and 2 show the best upper bound value of the objective function,
the best summation/maximum cost value, and the summation/maximum cost
value that is averaged over an execution. Here, we computed the upper bound
from feasible solutions that are collected as snapshots of the system. The aver-
aged summation/maximum cost value represents the perturbation of the solu-
tion method. In the case of u1 100, the best cost values relatively correspond to
the objectives to be minimized. The minimization of summation/maximization
found the smallest summation/maximum value in average. In the case of ‘max.
dst.’, fbx found relateively smaller maximum values than eql. That reveals the
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Table 1. Solution qualities: u1 100

opt. Best avg.

ub. sum. max. sum. max.

sum. 9303.7 9303.7 296.0 10269.3 362.0

max. dst. fbx 256.3 9648.9 256.3 9962.2 290.9

max. dst. eql 258.9 9564.6 258.9 10166.2 311.1

awt. 1e-3 260.2 9525.8 250.6 9768.6 279.9

awt. 1e-9 252.6 9516.4 252.6 9769.6 284.4

Table 2. Solution qualities: g9 2

opt. Best avg.

ub. sum. max. sum. max.

sum. 3709.9 3709.9 97.2 3923.3 114.0

max. dst. fbx 95.9 3957.4 95.9 3979.4 97.9

max. dst. eql 95.2 3782.7 95.2 3940.8 109.9

awt. 1e-3 99.0 3875.4 95.1 3929.7 98.2

awt. 1e-9 95.1 3875.4 95.1 3929.7 98.2

Fig. 1. Best and anytime cost values

effect of tuning the weight parameters of penalty terms. While the summation
cost values by ‘awt.’ is rather smaller than ‘max. dst.’, ‘awt.’ also reduced the
maximum cost value in several cases. This can be considered that the minimiza-
tion of summation cost values causes additional perturbations to escape from
local optimal solutions. Two parameters of ‘awt.’ slightly affected the solutions.
In the case of g9 2, the effect of ‘max. dst.’ was not so well. The non-uniform
distributions and relatively narrow range of objective functions affected the local
search. In our environment, for the case of u1 100, the total usage time for all
agents was 50.3, 79.9, and 77.7 ms for ‘sum.’, ‘max. dst. fbx’ and ‘awt. 1e-9’,
respectively.

Figure 1 shows a set of examples of each best/anytime cost value. In the
anytime curve, the minimization of the maximum cost value often converges



A Study of Relaxation Approaches 543

rather than the summation. The threshold value β performs as a temperature
parameter.

5 Conclusion

In this work, we investigated relaxation approaches for asymmetric multi-
objective constraint optimization problems. As the first study, we applied a
penalty method to the minimization problems of the maximum cost values. The
results show the proposed approaches work reasonably well, and a benefit of the
relaxation method is their perturbations. Future works will include improvement
of the relaxation method to ensure good lower bounds and convergence, detailed
theoretical analysis, comparison with related solution methods, and evaluation
with practical problems.
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Abstract. Monitoring plan execution is useful in various multi-agent
applications, from agent cooperation to norm enforcement. Realistic envi-
ronments often impose constraints on the capabilities of such monitor-
ing, limiting the amount and coverage of available sensors. In this paper,
we consider the problem of sensor placement within an environment to
determine whether some behaviour has occurred. Our model is based
on the semantics of planning, and we provide a simple formalism for
describing sensors and behaviours in such a model. Given the computa-
tional complexity of the sensor placement problem, we investigate heuris-
tic techniques for performing sensor placement, demonstrating that such
techniques perform well even in complex domains.

1 Introduction

Norms are commonly used to obtain desirable behaviour within an open multi-
agent system. Such norms specify obligations, permissions, and prohibitions on
individual behaviour, preventing actions or states of affairs that an agent might
find beneficial, but which will have a negative effect on others or the system
environment as a whole [7]. Given a normative multi-agent system, the ques-
tion arises as to how to ensure that agents comply with the norms. While it
is possible to sometimes design the system so that violating a norm is irra-
tional [11], or design the agents so that they are incapable of violating norms [2],
doing so within an open system is often difficult or impossible. Instead, sanction-
ing mechanisms are normally introduced to punish, and therefore disincentivise
norm violation [7]. Recent work has developed an approach to define how norms
should be modified to be monitorable given an available set of imperfect moni-
tors [1], and the problem we address here is the dual of such work. In turn, we
consider a further problem, namely how to combine a set of so-called primitive
sensors—available within the environment—to form a new sensor that will be
able to detect whether some state of affairs does, or does not hold.

R. Fraga Pereira—This study was financed in part by the Coordenação de Aper-
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We consider an abstract form of the problem, seeking to identify whether—
with no prior knowledge on agent preferences—some behaviour can be detected
by combining the primitive sensors. For example, consider two cameras overlook-
ing different portions of a highway, and assume that each camera can uniquely
identify individual cars. In such a system, the two cameras (i.e., the sensors)
can be combined (synthesised) to form a new sensor which can detect a vehicle’s
average speed (i.e., a behaviour or state-of-affairs) over the stretch of highway.
We refer to this problem as the plan monitoring problem.

We formally describe our primitive sensors and the behaviour we wish to
detect as formulae within a simple logic. Synthesising a new sensor then involves
creating a new formula by joining a subset of the primitive sensor formulae
with operators from the logic. If this new formula is equivalent to the formula
encoding the behaviour we wish to detect, then we are able to form a sensor for
monitoring the behaviour. Since this is clearly a computationally hard problem,
in this paper we consider a heuristic approach for the synthesis of our sensors
using genetic programming.

2 Plan Monitoring

We formalise logic formulas over states in Definition 1—these are basically
propositional-logic formulas to be evaluated in individual states.

Definition 1 (State Formula). Let F be a set of fluents1. If ϕ ∈ F then ϕ
is a state formula2. If ϕ and ψ are state formula, then ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ
are state formulas. Nothing else is a state formula. State formulas are evaluated
according to a valuation function V : S → F , which returns a set of fluents that
hold at state s ∈ S (set of possible states). We write s |= φ (s is a model of φ)
if φ ∈ V (s); s |= φ ∧ ψ iff s |= ψ and s |= φ; and s |= φ ∨ ψ iff s |= ψ or
s |= φ; and s |= ¬φ iff s � |= φ.

To formalise plan monitoring tasks, we must express constraints over entire
plans, made up of traces or sequences of states which occur (Definition 2).

Definition 2 (Path Formula). If ϕ is a state formula, then ϕ is a path for-
mula. If ϕ and ψ are path formulas, then ϕ[Y ]ψ and ¬ϕ are path formulas. Let
tπ be a trace and ϕ and ϕ[Y ]ψ be path formulas. Y represents the number of
steps between state formulas. We write tπ |= ϕ (tπ is model for ϕ) iff any state
si ∈ tπ |= ϕ, and tπ |= ϕ[Y ]ψ iff si, sk ∈ tπ; si |= ϕ; si+k |= ψ; and Y ≥ k.
We write tπ |= ¬ϕ iff it is not the case that tπ |= ϕ.

Path formulas can only be evaluated over plan traces (i.e., sequences of
states), so a path formula ϕ[Y ]ψ is in a trace if ϕ holds in any state of the

1 Fluents are ground logical predicates, which can either be positive or negated, and
include constants for truth (�) and falsehood (⊥).

2 A state formula is comprised of a finite set fluents that represent logical values
according to some interpretation.
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trace, and ψ holds in any state within Y steps or less of when ϕ held. It should
be noted that conjunctions over path formulae can be captured using ϕ[0]ψ.
Together with negation, this provides us with disjunctions over path formulae.

Example 1. Consider the domain model illustrated in Fig. 1, and a trace tb,a =
〈[q], [p], [p, q]〉 for a plan 〈b, a〉. Formula q[2](p∧q) is true for this trace, whereas
formula q[1](p∧q) is not.

[]

['q']

c

['p']

b

['q', 'p']

a b c

a

Fig. 1. Propositional domain example.

A sensor is a mechanism that evaluates path formulas over traces, and rep-
resents a concrete and indivisible (atomic) capability to evaluate path formulas
on plan traces, following Definition 3.

Definition 3 (Sensor). Let ϕ be a path formula and tπ be a trace, we say ϕ is
a sensor for tπ iff tπ |= ϕ.

Sensors can be aggregated to form monitors to detect specific desirable for-
mulas, following Definition 4.

Definition 4 (Monitor). Let S = {ϕ1, . . . ϕn} be a set of sensors. A monitor
M is a sensor obtained by combining a subset of S using path operations. M is
a monitor for a trace tπ iff tπ |= M .

We note that this formalisation of sensors and monitors provides a simple
mechanism to describe partially observable monitoring problems. For example,
in Fig. 1, if no available sensor has formulas referring to p, then a monitoring
problem for this example is partially observable with respect to p. Algorithm 1
describes a simple function to compute whether a sensor is sensitive to a trace,
returning a set of models for a given sensor, a trace, a state, and a set of actions.
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Algorithm 1. Computation of the |= relation.
Input: A sensor σ, a trace tπ, a state S, and a set of actions A.
Output: A set of models ( |= ) relation.

1: function models(σ, tπ, S, A)
2: if σ is an atom then
3: return σ = � or σ ∈ S
4: else if σ = ¬ϕ then
5: return ¬models(ϕ, tπ, S, A)
6: else � σ is not an atom.
7: (lhs, ∗, rhs) ← σ
8: if ∗ = ∧ then
9: return models(lhs, tπ, S, A) and models(rhs, tπ, S, A)

10: else if ∗ = ∨ then
11: return models(lhs, tπ, S, A) or models(rhs, tπ, S, A)
12: else if ∗ = [k] then
13: if k = 0 then
14: return models(lhs, tπ, S, A) and models(rhs, tπ, S, A)
15: else
16: a ← first action of tπ

17: t′
π ← remainder tπ

18: S′ ← γ(S, a)
19: if models(lhs, tπ, S, A) then
20: if not models(rhs, tπ, S, A) then
21: return models(� [k − 1] rhs, t′

π, S′, A)
22: else
23: return �
24: else � Did not apply to first state, need to check next.
25: return models(σ, t′

π, S′, A)

2.1 Decision Problems

So far, we have defined individual sensors and described how these can be aggre-
gated into more complex sensors, which we call monitors. We use these to repre-
sent imperfect sensing capabilities which, much like the real world, may not be
capable of fully distinguishing the states and traces of interest. Thus, we need to
be able to quantify the extent to which the resulting monitors can capture such
traces. Building on the definition of sensors and monitors, we can now formally
define the notions of sensitivity and specificity of a sensor with regards to a set
of traces. More specifically, a sensor is sensitive to a set of traces if the formula
of the sensor is true for each trace (Definition 5).

Definition 5 (Sensitive Sensor). Let ϕ be an arbitrary sensor and TΠ =
{tπ1 , . . . tπn

} be a set of plan traces (i.e., the sequences of states induced by plans
π ∈ Π) within a planning domain Π. ϕ is sensitive for the traces in TΠ iff
∀tπ∈TΠ

(tπ |= ϕ), i.e., ϕ is a sensor for all traces in TΠ .

Conversely, we want to be able to detect when specific plans do not trigger
a sensor, leading to the notion of a specific sensor (Definition 6).
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Definition 6 (Specific Sensor). Let ϕ be an arbitrary sensor and TΠ =
{tπ1 , . . . tπn

} and T ′
Π = {tπm

, . . . tπk
} be two sets of plan traces (i.e., the

sequences of states induced by plans π ∈ Π) within a planning domain Π such
that TΠ ∩ T ′

Π = ∅ and TΠ ∪ T ′
Π = Π (i.e., T ′

Π consists of all the plans not in
TΠ). ϕ is specific for the traces in TΠ iff ∀tπ∈T ′

Π
(tπ � |= ϕ), i.e., that ϕ is not a

sensor for any of the traces not in TΠ .

Now that we can specify sets of traces for which a sensor is sensitive and
specific to, we can proceed to defining the problem of generating a monitor that
approximates the sensing capabilities of an intended sensor. That is, given a
specific desired sensing capability, which we call an intended sensor, we want to
be able to synthesise a sensor from a set of actual available sensors that covers
as much of the model sensor’s traces as possible. Thus, we define the problem of
synthesising a sensor to agree with a model sensor as follows (Definition 7).

Definition 7 (Monitor Synthesis). Let Φ = {ϕ1, . . . , ϕn} be a set of avail-
able sensors, TΠ and T ′

Π be two set of traces such that σ is sensitive to TΠ and
specific to T ′

Π , and σ be an intended sensor formula such that no available sen-
sor captures exactly the traces of the intended sensor, that is: ∀ϕ∈Φ∃tπ∈TΠ

(tπ |=
σ) ∧ (tπ � |= ϕ), i.e., no sensor in Φ is sensitive to the same traces as σ; or
∀ϕ∈Φ∀tπ∈T ′

Π
(tπ � |= σ) ∧ (tπ |= ϕ), i.e., no sensor in Φ is specific to the same

traces as σ.

The problem of synthesising a monitor for an intended sensor σ consists
of creating a monitor M〈ϕj ,...,ϕj〉 such that {ϕj , . . . , ϕj} ⊆ Φ; ∀tπ∈TΠ

(tπ |=
M〈ϕj ,...,ϕj〉) iff (tπ |= σ); and ∀tπ∈T ′

Π
(tπ � |= M〈ϕj ,...,ϕj〉) iff (tπ � |= σ); i.e., the

monitor agrees with the intended sensor for all traces. Synthesising an intended
sensor may not be possible, given restrictions on the actual sensors available.

Since many plan monitoring applications rely on the ability to detect the
execution of specific actions in an environment, we need to define sensors capable
of detecting them. Definition 8 formally describes how such intended sensors can
be built from the action specification.

Definition 8 (Sensor for Action). Let a be an action of the form
〈pre(a), eff +(a), eff −(a)〉. We say a sensor built to detect formula:

⎛
⎝

⎛
⎝ ∧

φ∈pre(a)

φ

⎞
⎠ [1]

⎛
⎝ ∧

ψ∈eff+(a)

ψ ∧
∧

ψ∈eff−(a)

¬ψ

⎞
⎠

⎞
⎠

is a sensor for a.

3 Synthesising Monitors Using Genetic Programming

We are now in a position to develop our approach to synthesising monitors using
genetic programming. Consider a desired sensor F , and a set of traces T . We can
partition this set of traces into two mutually exclusive sets, namely T t where
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for any t ∈ T t, t |= F , and T f where for any t ∈ T f , t � |= F . Now given some
other set of primitive sensors {k1, . . . , kn}, we seek to find a formula containing
these primitive sensors which partitions the traces in the same way. To generate
such a formula—a candidate sensor—we must perform a search over the space
of all possible sensors that can be constructed from our primitive sensors. One
approach that has proven successful for performing a search over such a symbolic
space is genetic programming [6], a form of evolutionary computing.

To describe the space of possible individuals within a genetic program, we
must identify the terminal (leaf) nodes, as well as the form that non-terminal
nodes can take. Now within the plan monitoring domain, we consider a set of
primitive sensors consisting of formulae in the language described in Sect. 2. Our
goal is to combine these primitive sensors in such a way so as to obtain the same
inferences as some other formula, the goal sensor. The primitive sensors thus
comprise one class of terminal nodes.

∧

[ ][ ]

∨

b

a ∧ d

a

4 ¬c¬

Fig. 2. An individual genetic program for the formula ((a ∧ b)[4]¬c) ∨ (a ∧ d) with
primitive sensors a, b, ¬c and a ∧ d.

Our logic consists of four operators—negation, conjunction, disjunction, and
the path operator. Each of these forms a potential non-terminal node. We note
that the path operator is a ternary operator which takes in two formulae as well
as an integer. Therefore, the set of integers consists of another class of terminal
nodes available within the genetic program, though this latter class of terminal
nodes can only be used within a path operator. Figure 2 illustrates how the
formula ((a ∧ b)[4]¬c) ∨ (a ∧ d) is represented as a genetic program, where a, b,
¬c and a ∧ d are primitive sensors.

Given an individual sensor, a set of traces, and a formula representing a
target sensor, we can specify the fitness of the individual by evaluating the
traces over the individual, and the target sensor, summing up the number of true
positive and negative classifications of traces, and subtracting the false positive
and negative trace classifications. For example, if the target sensor returns true
for traces t1, t3 and t4, and false for traces t2 and t5, while the individual returns
true for t1, t2, t3 and t4 (and false for t5), the individual’s fitness would be 1. We
then select fit individuals reproduce them (using copy, mutation and cross-over
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operations [6]) to create a new generation of individuals. This process repeats
until a sufficiently fit individual is found encoding the synthesised sensor.

To define the quality of a synthesised sensor, we formally define a monitor
fitness as an F1-Score3 between the traces of the intended sensor and the invisible
traces, following Definition 9.

Definition 9 (Monitor Fitness). Let Φ = {ϕ1, . . . , ϕn} be a set of available
sensors, TΠ and T ′

Π be two set of traces, and σ be an intended sensor formula
such that TΠ |= σ, T ′

Π � |= σ. We define quality in terms of the Precision and
Recall of a monitor, where Precision is Pr = |{tπ∈TΠ |MΦ′ |= tπ}|

|TΠ |+|T ′
Π | , and Recall is

Re = |{tπ∈TΠ |MΦ′ |= tπ}|
|TΠ | . The quality of an arbitrary monitor MΦ′ such that

Φ′ ∈ P(Φ) (i.e., Φ′ is an element of the power set of the available sensors)
is the harmonic mean between Precision and Recall, F1-Score, which is quality
Q(MΦ′ , TΠ , T ′

Π) = 2 · Pr+Re
Pr∗Re .

4 Related Work

A related approach to ours is the work of Keren et al. [4]. In this work, the authors
introduce the problem of re-designing a domain model in order to facilitate (or
improve) the process of goal and plan recognition, and such problem is called
goal recognition design [4]. Goal recognition design aims to optimize the domain
design so that goal and plan recognition approaches can provide inferences with
as few observations as possible [5].

Alechina et al. [1] developed an approach that considers how norms should
be modified to be monitorable given an available set of imperfect monitors. In
this work, the authors define that a monitor is imperfect for a norm if it does
not have sufficient observational capabilities to determine if an execution trace
of a multi-agent system complies with or violates a given norm.

5 Conclusions and Future Work

In this work, we have demonstrated that a genetic programming based approach
to sensor synthesis can create useful sensors for detecting the execution of actions
and the occurrence of specific states within planning domains.

We are currently investigating several applications and future extensions of
our work. First, the output of our approach can serve as input to Bayesian
goal and plan recognition algorithms [10], with the quality of the synthesised
sensor serving as a prior probability for the action having taken place. Second,
we can apply our work to normative domains, determining the likelihood that
some obliged or prohibited state of affairs did, or did not take place. Apart from
these applications, we are also investigating more complex forms of the sensor

3 F1-Score is the harmonic mean between Precision (i.e., positive predictive value)
and Recall (i.e., true positive rate).
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synthesis problem including creating sensors given some fixed budget. We also
aim to use the notion of planning landmarks [3] (fluents or actions that cannot
be avoided to achieve a goal from an initial state) in our approach for monitoring
particular states (landmarks), since it has been done successfully for recognizing
goals and detecting commitment abandonment [8,9].
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Abstract. In different situations, information coming from different
sources are often affected with uncertainty and imprecision. Represent-
ing such information generally gives rise to a prioritized (i.e. stratified)
knowledge base. To reason with such prioritized knowledge in a principled
way, we propose an extension of EL description logics within possibility
theory, which provides a very natural framework to deal with ordinal,
qualitative uncertainty, preferences and priorities. We first introduce the
syntax and semantics of possibilistic EL, and then provide the main
related reasoning tasks. We show in particular that these tasks remain
tractable in possibilistic EL.

Keywords: Uncertainty handling · Possibility theory · EL ontology
Description logics

1 Introduction

Structured knowledge about concepts and relations between objects plays an
important role in many applications such as information retrieval, natural lan-
guage processing and bio-informatics. Ontologies offer a powerful framework to
encode such structured knowledge. They are typically expressed using descrip-
tion logics (DLs for short) [1], and stored in two parts: a part that contains
generic knowledge, i.e. semantic relationships between concepts and relations,
and another part that contains data, i.e. information about which entities belong
(resp. related) to what concepts (resp. relations). DLs provide the foundations
of the Web Ontology Language OWL2 1, and its profiles OWL2-QL, OWL2-EL
and OWL2-RL.

Recent years have witnessed an increasing interest in the use of OWL2-EL,
which is based on a family of lightweight DLs called EL [2,5]). EL offers a good
expressiveness in expressing ontological knowledge and guarantee the tractability
of reasoning process especially for instance and subsumption checking.

1 https://www.w3.org/TR/owl2-overview/.
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In different situations, especially in a Web setting, information are provided
with uncertainty. Within the broad aim of uncertainty management in ontologies,
several works have been proposed to extend DL within probabilistic (e.g. [12,13])
and non-probabilistic (e.g. [7,9,10,14]) uncertainty frameworks.

This paper focuses on qualitative uncertainty, which for instance holds when
the information are provided by several sources where there exists a total pre-
ordering between them reflecting their reliability, or when there exists a prefer-
ence ranking between the provided information according to their level of priority
[8]. Representing such information generally gives rise to prioritized or stratified
knowledge base. To reason with such prioritized knowledge in a principled way,
we focus in this paper on methods from possibility theory [11]. This theory
offers a natural framework to deal with ordinal, qualitative uncertainty, prefer-
ences and priorities. This is often the case in applications where not enough data
is available to estimate a meaningful probabilistic representation.

2 Preliminaries

In this section, we recall EL description logic considered in this paper, and then
introduce the main notions of possibility theory rephrased within a description
logic setting.

2.1 Recall on EL Family of Description Logics

Syntax. Let NC , NR, NI be three pairwise disjoint sets where NC denotes a
set of atomic concept, NR denotes a set of atomic role and NI denotes a set
individuals. The EL concept expressions are built according to the following
syntax:

C,D → � | A | C � D | ∃r.C

where A ∈ NC , r ∈ NR.
An EL ontology (or knowledge base) consists of a set of general concept

inclusion (GCI) axioms of the form C � D, meaning that C is more specific
than D or simply C is subsumed by D, a set of equivalence axioms of the form
C ≡ D, which is the abbreviation of the two general concept inclusions C � D
and D � C, a set of concept assertions of the form C(a), and a set of role
assertions of the form r(a, b).

Several extensions of EL have been considered. For example, EL+ extends
EL with role inclusion axioms of the form s � r and role composition axioms of
the form r1 ◦ ... ◦ rn � s where r ◦ s is the role composition expression. The logic
EL+

⊥ extends EL+ by allowing the use of ⊥ concept in concept expression. In
this paper, we focus on EL+

⊥ as it is the main block of OWL-EL, for more detail
about EL and its extensions, we refer to [3,4,6].

Semantics. The semantics is given in terms of interpretations I = (ΔI , .I)
which consist of a non-empty interpretation domain ΔI and an interpretation
function .I that maps each individual aI ∈ NI to an element aI ∈ ΔI , each
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concept A ∈ NC to a subset AI ⊆ ΔI and each role r ∈ NR to a subset
rI ⊆ ΔI × ΔI . Furthermore, the function .I is extended in a straightforward
way for concept and role expressions as depicted in Table 1.

Table 1. Syntax and Semantics of concept and role expressions.

Syntax Semantics

Atomic concept A AI ⊆ ΔI

Atomic role r rI ⊆ ΔI × ΔI

Individual a aI ⊆ ΔI

Top � ΔI

Bottom ⊥ ∅
Conjunction C � D CI ∩ DI

Existential restriction ∃r.C {x ⊆ ΔI | ∃y ⊆ ΔI s.t (x, y) ⊆ rI and y ⊆ CI}
Nominal {a} {aI}
Role chain r ◦ s {〈x, y〉 | ∃z ⊆ ΔI s.t 〈x, z〉 ∈ rI and 〈z, y〉 ∈ sI}

An interpretation I is said to be a model of (or satisfies) a GCI (resp. role
inclusion, role composition) axiom, denoted by I |= C � D (resp. I |= r � s,
I |= r1 ◦ r2 � s), if CI ⊆ DI (resp. rI ⊆ sI , (r1 ◦ r2)I ⊆ sI). Similarly, I
satisfies a concept (resp. role) assertions, denoted I |= C(a) (resp. I |= r(a, b)),
if aI ∈ CI (resp. (aI , bI) ∈ rI). An interpretation I is a model of an ontology
O if it satisfies all the axioms of O. An ontology is said to be consistent if it has
a model. Otherwise, it is inconsistent. An axiom φ is entailed by an ontology,
denoted by O |= φ, if φ is satisfied by every model of O. We say that C is
subsumed by D w.r.t an ontology O iff O |= C � D. Similarly, we say that a is
an instance of C w.r.t O iff O |= C(a). A concept C is said to be in unsatisfiable
w.r.t. O iff O |= C � ⊥, otherwise C is said to be satisfiable.

In this paper, we will consider assertion free EL+
⊥, i.e EL+

⊥ without concept
assertions C(a) and role assertions R(a, b). The main reasoning task that we
consider is classification. It consists in computing all the entailed subsumption
(and equivalences) that hold between atomic concepts of an ontology O, or the
� or ⊥ concepts. We follow the procedure given in [3,4]. Let O be an EL+

⊥
ontology, the first step of reasoning consists in transforming the ontology O into
normal form using a set of rules. We recall that O is said to be in normal form
if each of its axioms has one of the following forms:

A � B,A1 � ... � An � B,A � ∃r.B,∃r.A � B, r � s and r1 ◦ r2 � s

where A,B ∈ NC ∪ {�,⊥} and Ai ∈ NC .
Once the ontology is in normal form, reasoning is performed using the set of

inference rules [3,4].
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2.2 Possibility Theory

Let L be a description language and Ω be a universe of discourse on a set of DL
interpretations, i.e. I = (ΔI , .I) ∈ Ω. We introduce the semantics of possibility
theory over DL interpretations.

Possibility Distribution. A possibility distribution, denoted by π, is the main
block of the possibility theory. A possibility distribution is a mapping from Ω
to the unit interval [0, 1] 2 that assigns to each interpretation I ∈ Ω a possibil-
ity degree π(I) ∈ [0, 1] reflecting its compatibility or consistency w.r.t available
knowledge. The weights could be interpreted in two ways, a numerical interpre-
tation when values have a real sense, and an ordinal interpretation when values
only reflect a total pre-order between the different states of the world. In this
paper, we consider the latter interpretation, i.e. qualitative setting. We say that I
is totally possible (i.e. fully consistent with available knowledge) when π(I) = 1
and is impossible (i.e. fully inconsistent) when π(I) = 0. Finally, given two inter-
pretations I and I ′, we say that I is more consistent or more compatible than
I ′ if π(I) > π(I ′).

Possibility and Necessity Measures. Given a possibility distribution π,
standard possibility theory offers two measures from 2Ω to the interval [0, 1]
which discriminate between the plausibility and the certainty regarding an event
M ⊆ Ω. A possibility measure Π(M) = sup{π(I) : I ∈ M} evaluates to what
extent M is compatible or plausible w.r.t available knowledge encoded by π. A
necessity measure N(M) = 1 − Π(M̄), which is a dual function to Π, evaluates
to what extent M is certainty entailed from available knowledge encoded by π.
When N(M) = 1, we say that M is certain. When N(M) ∈]0, 1[, we say that
M is somewhat certain. When N(M) = 0 and N(M̄) = 0, we say that there is
a total ignorance about M .

Let φ be an EL+
⊥axiom and Mod(φ) be the set of models of φ. The possibility

measure and necessity measure associated to φ are defined respectively as follows:
Π(Mod(φ)) = sup

I∈Ω
{π(I) : I |= φ}, and N(Mod(φ)) = 1 − sup

I∈Ω
{π(I) : I |= φ}.

where I |= φ is the satisfaction relation defined in Sect. 2.

3 Min-Based Possibilistic EL+
⊥

In the following, we introduce the syntax and semantics of the possibilistic exten-
sion of EL+

⊥ denoted by π-EL+
⊥.

Syntax. Let O = {φi : i = 1, . . . , n} be an EL+
⊥ ontology composed of a finite

set of axioms as presented in Sect. 2. A possibilistic EL+
⊥ ontology, denoted by

Oπ = {(φi, αi) : i = 1, . . . , n}, consists of a finite set of possibilistic axioms
of the form (φi, αi) where φi is a standard EL+

⊥ formula and αi is its certainty

2 In fact, it is a mapping from Ω to a totally ordered scale O. This scale may often be
a finite set of integers or the unit interval [0, 1] and encodes our knowledge on the
real world. In general, one considers the interval [0, 1].
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degree, meaning that N(φi) ≥ αi. Note that the higher the degree α the more φ is
certain. Note that the axioms with αi’s equal to ‘0’ are not explicitly represented
in the ontology. Moreover, when all the degrees are equal to 1, Oπ coincides with
a standard EL+

⊥ ontology O. In a possibilistic ontology, the necessity degree
attached with an axiom reflects its confidence degree.

Semantics. The semantics of possibilistic EL+
⊥ ontology Oπ is given by a pos-

sibility distribution, denoted by πO, defined over the set of DL interpretations
as presented in Sect. 2.2, namely Ω = {I1, . . . , In}. The possibility distribution
assigns to each interpretation I ∈ Ω a possibility degree π(I) ∈]0, 1] reflecting
to what extent this latter satisfies (see Sect. 2) the axioms of the ontology. More
formally,

Definition 1. The possibility distribution πO associated with EL+
⊥ontology Oπ

is defined as follows:

∀I ∈ Ω, π(I) =

{
1 if ∀(φi, αi) ∈ Oπ, I |= φi

1 − max{αi : (φi, αi) ∈ Oπ, I |= φ} otherwise.

An important advantage of using possibilistic logic is that it can naturally
deal with inconsistency, based on the notion of inconsistency degree. Therefore,
one can associate to a EL+

⊥ ontology a degree of inconsistency (which usually
ranges between 0 and 1 if we use the unit interval ]0, 1] to encode certainty
degrees).

An interpretation I is a model of Oπ if it satisfies all the axioms of the ontol-
ogy. In this case π(I) = 1, which collapse with the standard definition of ontology
model. This also means that the possibility distribution πO is normalized. Oth-
erwise, if I is not a model of Oπ, then the possibility degree π(I) depends on
the axiom having the maximum weight which is non satisfied (falsified) by the
interpretation, namely π(I) = 1 − max{αi : (φi, αi) ∈ Oπ, I |= φi}. In this
case, the ontology is inconsistent and its inconsistency degree is ∀I, Inc(Oπ) =
1 − max(π(I)).

Definition 2. Let Oπ be a π-EL+
⊥ ontology, we define possibilistic entailment

as follows:

– An axiom φ is entailed from Oπ, denoted by π |= φ if and only if N(φ) > 0
where N(φ) is the necessity degree of φ computed from π.

– An axiom φ is entailed from Oπ with a certainty degree α, denoted by π |=
(φ, α) if and only if N(φ) ≥ α > 0 where N(φ) is the necessity degree of φ
computed from π.

In the following, we study reasoning in π-EL+
⊥ by given algorithms that com-

pute the possibilistic entailment given in Definition 2. We focus on the subsump-
tion problem in π-EL+

⊥ as possibilistic entailment, i.e., we study the problem of
deciding whether Oπ |= (A � B,α), where A,B ∈ NC ∪ {�,⊥}. Notice that
Oπ |= (A � B,α) iff Oπ ∪ {(C � A, 1), (B � D, 1)} |= (C � D,α), where C, D
are new atomic concepts. Similarly to standard EL+

⊥, we first provide in Table 2
the normalization rules needed to transform a π-EL+

⊥ ontology into normal form,
and then we give in Table 3 the inference rules needed to compute entailment.
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Table 2. Possibilistic normalization rules.

Table 3. Possibilistic inference rules.

To obtain these rules, we first introduce the following Lemma.

Lemma 1. Let Oπ be a possibilistic EL+
⊥ ontology that contains two

axioms (φ, α1) and (φ, α2) then Oπ and O′
π = {Oπ\{(φ, α1), (φ, α2)}} ∪

{(φ,max(α1, α2))} are equivalent in the sense that ∀I ∈ Ω, πO(I) = πO′(I).
Namely, Oπ and O′

π induce the same possibility distribution.
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Using this lemma, we have the following propositions.

Proposition 1. Let Oπ be a possibilistic EL+
⊥ ontology and let ON

π be the ontol-
ogy obtained from Oπ by applying the normalization rules given in Table 2. Then
Oπ and ON

π induce the same possibility distribution.

Let us now study the inference rules and let cl(Oπ) be the closure of the
possibilistic EL+

⊥ ontology Oπ obtained by applying the rules given in Tables 2
and 3. The following proposition holds.

Proposition 2. Let Oπ be an EL+
⊥ ontology and cl(Oπ) be its closure under the

rules depicted in Tables 2 and 3. Then Oπ and cl(Oπ) induce the same possibility
distribution.

The following proposition formalizes possibilistic entailment (Definition 2). It
is given for subsumption relation as is the main task in EL. However, it can be
generalized to any axiom φ.

Proposition 3. Let cl(Oπ) be the closure of Oπ a possibilistic EL+
⊥ ontology.

Let A,B ∈ Nc two concept of the ontology. Then Oπ |= (A � B,α) if

– (A � B, β) ∈ cl(Oπ) with β ≥ α
– (A � ⊥, β) ∈ cl(Oπ) with β ≥ α.

Proposition 4. Let cl(Oπ) be the closure of Oπ a possibilistic EL+
⊥ ontology

obtained by applying the normalization rules and inference rules given respec-
tively in Table 2 and 3. Then cl(Oπ) is computed in polynomial time w.r.t the
size of the ontology |Oπ|.

4 Conclusion

In this paper, we investigated uncertainty-based extension of EL+
⊥ using pos-

sibility theory. We introduced the syntax and the semantics of this extension
EL+

⊥, and then studied min-based reasoning to deal with qualitative uncertainty
attached to the axioms of the ontology. An important result shown in this paper
is that the computational complexity of subsumption remains polynomial.

As future work, we will broaden this work by adding nominal, concrete
domain and range in order to propose a possibilistic OWL2-EL. We also plan to
study a qualitative extension of EL.
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Abstract. Autonomous Negotiation is a promising technology that
allows individuals and institutions to reduce the burden and cost of
negotiating win-win agreements. A common challenge in practical appli-
cations is the inability or high cost of finding the utility value for each
possible outcome of the negotiation before it even starts. Earlier work on
utility elicitation during negotiations tried to avoid the need of full reve-
lation of the utility function to the agent by interleaving elicitation and
negotiation actions. This paper proposes an efficient elicitation algorithm
that allows the agent to achieve similar utility at orders of magnitude
higher speed compared with the state-of-the-art algorithm.

Keywords: Autonomous negotiation · Utility elicitation

1 Introduction

Automatic negotiation is attracting more attention from the research community
in recent years especially given the rise of AI, machine learning systems and
the Internet of Things (IoT) that promise to automate most repetitive aspects
of our lives. Recent applications of automatic negotiation include permission
management in IoT systems, Wi-Fi channel assignment [5], agriculture supply
chain support, and providing feedback for student negotiation skills [8].

Most of this work assumes that the negotiation agent has perfect knowledge
of the utility function of the person/entity it is representing during the negotia-
tion. While this can be the case in some limited situations, in many real-world
scenarios; it is not possible to have perfect apriori knowledge of this utility func-
tion.

Utility elicitation was studied extensively in the decision support commu-
nity [6]. Most of this work focuses on the problem of eliciting the utility function
of an actor for several possible outcomes of the decision process. Negotiation adds
a new complexity to this problem because during negotiation it is not enough to
know the utility value of some outcome for the user in order to propose/accept
it but it is also essential to judge the probability that this outcome/offer is also
acceptable by the partner(s) in the negotiation.
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More recently, few works have reported systems for utility elicitation during
negotiation [2,3,10]. These systems build upon earlier work in preference elici-
tation in the decision support domain [4] while taking into account the specific
features of negotiation.

The optimal elicitation algorithm [2] assumes that the actor (user) can
be queried to provide exact utility values for different outcomes. This can be
achieved using several possible elicitation strategies that does not require actual
assignment of a numeric value to any outcome by the user so it is not restric-
tive. Nevertheless, this form of deep elicitation for each outcome considered is
time-consuming and would lead to high levels of elicitation bother to the user
that can sometimes be avoided. A shallow version of this algorithm was recently
proposed that also uses a heuristic to manage avoid offering outcomes that turn
out to have low utilities in the beginning of the negotiation [10].

The Optimal Query Agent (OQA) [3] avoids the problem of deep elicitation
by assuming that a predefined set of possible queries are available that can reduce
the uncertainty in the probability distribution of utility values for a given out-
come. The system selects the optimal query at each point as the one maximizing
the value of information which is the difference between the expected expected
utility if the answer to the query is known compared with it if the answer is not
known. The main disadvantage of this approach is its high computational cost
which increases linearly with both the outcome space size and the number of
available queries.

This paper proposes an efficient value of information based algorithm
(FastVOI) that is shown to achieve the same utilities as OQA and provide a per-
formance on-bar with an ideal agent with full knowledge of the utility function
while reducing the complexity to O (n log n) where n is the number of outcomes.

2 Problem Setting

A negotiation session is conducted between multiple agents representing self-
interested actors over a set of issues. Issues can have discrete or continuous
values. Every possible assignment of a value to each issue is called an outcome
and during negotiation it may also be called an offer. Ω denotes the – possibly
uncountable – set of all outcomes and ωi indicates a member of this set. If
an agreement is reached, the agreed upon outcome is called a contract (ωc).
Each actor a is assumed to be self-interested with some internal utility function
Ũa : Ω → [0, 1] that assigns a numeric value (assumed to be normalized to the
range 0 to 1 in this work) to every possible outcome.

The actor wishes to maximize the utility she receives from the negotiation
through the behavior of its representing agent. Every actor also has a predefined
reserved value (Ra) that she receives if the negotiation was broken either due to
timing out or explicitly by one of the agents.

Negotiation sessions are conducted in rounds in which different outcomes are
offered/judged by the agents according to some negotiation protocol. Negotia-
tion protocols can be moderated with a moderator-agent that have a special
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role or unmoderated with all agents having similar roles. Several negotiation
protocols have been proposed over the years. They can either be mediated [7]
or un-mediated [1]. This work utilizes the Stacked Alternating Offers Protocol
(SOAP) [1] but is not limited to it.

To provide an incentive for the agents to concede from the outcome with max-
imum utility, a time-limit is usually applied to the negotiation and the session is
broken (times-out) automatically if no agreement is reached within a predefined
real-time (T ) or number of rounds limit (K). A constant cost δa is incurred by
every agent at the end of each negotiation round to encourage early agreement.
Moreover, any other costs incurred by the agent during the negotiation (e.g.
bother cost to the actor) (Ca) is always subtracted from its final utility.

For the rest of this paper, k represents the round number, t ≡ k/K is the rel-
ative time, and n ≡ |Ω| is the total number of outcomes. Superscripts represent
round number. The proposed system can trivially be applied to cases with any
combinations of real-time and round-limit constraints as well as to cases with
constant or discounted negotiation cost.

The SOAP protocol works as follows: An ordering of the agents is defined.
We assume—without loss of generality—that it is the same as the agent index
a.

The first agent starts the negotiation by offering an outcome ω0 which is
visible to all other agents. The next agent either accepts the offer, ends the
negotiation, or proposes a new offer.

This process is continued until one of the following stopping criteria is met:

– Agreement: An offer ωc is accepted by all agents which is declared as the
contract. Each agent a receives a utility of Ũa (ωc) − k × δa − Ca.

– Timeout: A predefined number of offer exchanges/rounds (K) or a prede-
fined number of seconds T has passed since the beginning of the negotiation.
Each agent a receives a utility of Ra − Kδa − Ca.

– Failure: Some agent ends the negotiation when it has the chance to respond
to some offer. Each agent a receives a utility of Ra − kδa − Ca.

The agent a representing actor a is not assumed to have access to Ũa but have
access to a joint probability distribution over possible outcome-utility values
Û0

a : [0, 1]|Ω| → [0, 1]. Hereafter, when the agent considered is clear from the
context, the subscript a will be dropped.

In utility elicitation scenarios, the agent has the ability to ask the actor
questions that would reduce this source of uncertainty. A reply from the actor
can in general be modeled as a mapping from some joint probability distribution
over outcome utilities to a new one with smaller spread of values (e.g. variance).

More formally, a negotiation scenario with elicitation adds a set of queries
Qk ≡ {

qk
l

}
where each query qk

l is defined as a set of tuples (rli, pli, cli) and rli

is answer i for query l, pli is the probability of getting this answer, and cli is the
cost of getting it (e.g. bother cost to the actor in utility units). In most cases
the cost is the same for all answers and cli = clj = cl ∀i, j. Hereafter, m is the
number of queries |Q|.



Opponent Modeling in Elicitation 563

An answer rli can generally be modeled as a function that receives a joint
utility distribution Ûk and returns another utility distribution Ûk+1 which has
total lower spread/variance signaling a reduction of uncertainty. Elicitation dur-
ing round k is the process of selecting one query qk

l from Qk, presenting it to the
actor a, receiving a reply rk ∈ {rli} then applying the transformation defined
by that reply to the joint utility distribution: Ûk ← rk

[
Ûk−1

]
.

3 VOI Elicitation Algorithm: Optimal Query Agent

The Value-of-information (VOI) based algorithm for preference elicitation was
first proposed by Chajewska [4] in the context of decision theory. A related
algorithm explicitly designed for elicitation during negotiations was recently
proposed by Baarslag and Kaisars [3]. Our proposed variant is based on this
algorithm. This section provides a brief description of it.

All VOI variants assume that of an acceptance model M : Ω → [0, 1] is
available to the agent. We use the same subscript/superscript rules defined in
Sect. 2 with the acceptance model.

A policy Ψ ≡ 〈ωj |ωj ∈ Ω〉 of length D is an ordered sequence of outcomes
(Ψi is the outcome at index i in Ψ).

Given an elicitation scenario and an acceptance model M, the expected util-
ity of following a policy Ψ will be:

EU
(
Ψ |M, Ũ

)
=

|Ψ |∑

k=1

M (Ψk) Ũ (Ψk)
k−1∏

j=1

(1 − M (Ψj)). (1)

Given that the agent has no access to the true utility of the actor Ũ , it can
only calculate the expectation of EU which is known as the expected expected
utility [3]:

EEU
(
Ψ |M, Û

)
=

|Ψ |∑

k=1

E

[
ÛΨk

]
M (Ψk)

k−1∏

j=1

(1 − M (Ψj)), (2)

where, E [x] is the expected value of x.
An optimal policy π is a policy that maximizes EEU with respect to a given

acceptance model and utility distribution:

πM,Û ≡ argmax
Ψ

EEU
(
Ψ |M, Û

)
(3)

Baarslag and Kaisars [3] provided an efficient greedy algorithm for calculating
πM,Û that can calculate the optimal policy of length l given the one of length
l − 1 by extending it with ω∗ where:

ω∗ ≡ argmax
ω

E

[
Ûω

]
M (ω) .
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Given M, Û , the elicitation process of the Optimal Query Agent (OQA) [3]
proceeds by calculating the optimal policy π with the expected expected utility
under this policy (eeu∗), then for each question q ∈ Q, an optimal alternative
policy πqr for each possible answer r is calculated with the associated eeuqr as:

πqr = argmax
Ψ

EEU
(
Ψ |M, r(Û)

)
. (4)

The EEU of that question is then calculated as the weighted average of EEU
of following the optimal policy after getting each answer with the associated cost
subtracted. The VOI algorithm asks the question q∗ that maximizes eeuq as long
as eeuq∗ > eeu∗ which means that asking this question would entail a positive
value of information.

This approach to elicitation is promising as it puts few limitations on the
kinds of questions being asked and provides a provably optimal solution under
the aforementioned assumptions. Its main limitation is the high computational
cost. Using the greedy algorithm for optimal policy calculation, the complexity
of OQA is O (nm). In general, the number of available queries will increase—
at least—linearly with the number of outcomes because adding a new possible
outcome will entail adding at least one relevant query about its utility if it is
not already known. This leads to a quadratic complexity O

(
n2

)
.

4 Proposed Algorithm

The main bottleneck in OQA calculations is finding the optimal policy associated
with each answer. As this process is repeated for each answer of each query, it
is beneficial to optimize it.

The process proposed by Barslaag et al. [3] detailed in Sect. 3 can find the
optimal policy from scratch in O (n) operations. We use a small variant of this
process to find the optimal policy for the current distribution Û keeping some
extra information to speedup later calculations. Nevertheless, we propose an
update process that can find the optimal policy associated with each answer in
O (log n) given this modified initialization step.

To make it possible to update the EEU value associated with each question in
O (log n) operations, the optimal policy is not stored as a list but as a sorted list
implemented using a TREAP data structure. A TREAP data structure combines
a tree and a heap leading to logarithmic search and access times by ensuring that
the tree is balanced due to the randomization of the priority used to order it.

For each outcome ω, we can calculate the corresponding sorting key as:

euω = E

[
Ûω

]
. (5)

An inverse TREAP that uses the outcome as key and the corresponding
expected utility (eu) as value is also initialized to speedup localization of out-
comes within the first TREAP.

To simplify the notation, we define the cummulative sum and product at
element i in Eq. 2 as:
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Pi ≡
i−1∏

j=1

1 − M (πj) , (6)

Si ≡
i∑

k=1

M (ωk)E
[
Ûk

] k−1∏

j=1

1 − M (πj) =
i∑

k=1

MkeukPk, (7)

where Mk ≡ M (πk), and S0 = 0 and P is defined up to and including Pn+1.
Given these definitions, it is clear that EEU = Sm (see Eqs. 2, 7). It can be

shown that the policy calculated in this manner is actually optimal.
Given that we have the initialized optimal policy, if the expected utility of

outcome πk changed from euk to eu′
k without a change to the acceptance model,

it can be shown that the new expected expected utility can be found as:

EEU ‘ =

⎧
⎪⎨

⎪⎩

EEU − Mkeuk + Mkeu′
k j = k

EEU − Sk + Sj−1 + Mkeu′
kPj + (Sk−1 − Sj−1) (1 − Mk) j < k

EEU − Sj + Sk−1 + Sj−Sk

1−Mk
+ Mku′

kPj+1
1−Mk

j > k

,

(8)
where j is the new location of πk in the optimal policy after the change. The
case when the opponent model changes is slightly more involved and will not be
presented here to simplify the presentation as it does not occur during utility
elicitation because replies to questions from the user can only alter the expected
utility of some outcomes but we assume that the user has no knowledge about
the opponent to change the acceptance model beyond whatever it was initialized
to be.

Once we have the optimal policy π and associated EEU value, we can find the
optimal policy associated with any answer πqr by deleting the node containing
that outcome from the optimal policy then re-inserting it with the new eu value
as calculated from Eq. 5 after replacing Ûω with r

(
Ûω

)
. Both of these operations

take logarithmic time. Moreover, the EEU value can be updated using Eq. 8 in
constant time. This means that updating the optimal policies associated with
each response for all queries requires O (m log n).

The elicitation process requires one application of optimal policy initializa-
tion routine which takes O (n log n) operations. After that, whenever acceptance
probability M (ω) or utility distribution Ûω is changed for some outcome, only
the associated value needs to be corrected and the optimal policy can then be
updated in O (log n) operations. This process though, does not update the Sk

and Pk values. This update can be done after applying this process in linear time.
Note that we do not need to update the Sk and Pk values while calculating eeuq

values.
To find the best query to ask, we simply have to loop over all queries and for

each answer apply the aforementioned update process once to find the associated
optimal policy (O (log n)). This means that the total complexity of the process
of finding the best query with its associated EEU value is O (m log n).
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Fig. 1. The performance of different elicitation algorithms.

5 Evaluation

The main goal of this evaluation is to demonstrate the speed advantage of the
proposed FastVOI algorithm. This section compares three agents: The OQA
agent [3] representing state-of-the-art, the proposed FastVOI agent (Sect. 4),
and a Full Knowledge agent that shared the same structure as the three other
agents but had access to the real utility function of its actor.

The set of scenarios that we used for comparison are taken from the ANAC
competition [9] which started in 2010 and is still running annually. We used
five bilateral negotiation scenarios from 2012 and 2013 competitions, namely:
Fifty-fifty (a zero-sum scenario with 11 outcomes), Laptop (high number of win-
win outcomes with 27 outcomes), Flight-booking (An integrative scenario having
both good and bad possibilities with 36 outcomes), Barter with 80 outcomes,
and Outfit with 128 outcomes.

Each scenario was run 10 times with the negotiation agent assigned to one of
the two sides randomly for 10 different elicitation costs from 0 to 0.1. The initial
utility distributions for all outcomes were uniform over the total utility range (0
to 1). The other agent accepted any of the outcomes in the top 25% of its own
utility value with a probability equal to that utility after normalization. The
elicitation agent did not know this information but had an acceptance model
that assigned a probability of acceptance equaling the utility of the opponent.
This simplified opponent and opponent model were chosen following [3] to focus
the analysis on the elicitation process.

Figure 1 shows the results of this experiment. At zero elicitation cost, all
algorithms behaved similarly, nevertheless, with increased cost, all eliciting algo-
rithms started to get less utility (Fig. 1b). The differences between OQA and
FastVOI were solely due to rounding errors and tie breaking with equal expected
utilities and led to no statistically significant difference (t-test t = 0.163,
p = 0.871). Considering execution time (Fig. 1a), FastVOI was 3.61 times faster
than OCA at 11 outcomes and 5947.6 times faster at 120 outcomes. These results
support the theoretical analysis of Sect. 4. Due to lack of space more detailed
experiments with randomly generated scenarios will not be reported.

One limitation of the work presented in this paper—and almost all elicitation
during negotiation in the literature [2,3,10]—is the inability to use the internal
structure of the utility function to guide the elicitation process. Utilizing the
structure of the utility function will be one of our future research directions.
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Another issue with all algorithms based on expected expected utility calcula-
tions is that they run the risk of offering some outcome early in the negotiation
that leads to a very low utility specially in highly competitive scenarios (e.g.
the Fifty-Fifty scenario). A reliance on minimizing maximum regret or a variant
of the heuristic introduced in [10] for a simpler system may resolve this issue.
Analyzing the effect of using an adaptive acceptance model is another direction
of future research.

6 Conclusions

This paper presents an efficient algorithm for utility elicitation during negoti-
ation based on rigorous analysis of the value of information provided with all
possible queries. The proposed method achieves the same utility as the state-of-
the-art algorithm while reducing the computational cost by a factor of n

log n which
allows it to run orders of magnitude faster even for moderately sized problems.
The proposed method was evaluated on realistic negotiation scenarios.
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Abstract. This work employs an agent-based approach to model indoor
post-earthquake evacuations. The model incorporates heterogeneous
agents with a dynamic physical indoor environment that is damaged
by the earthquake. To realistically recreate the decision making process
of building occupants, we use a dual-graph model which combines a nav-
igation mesh to support agents’ physical movement and a perception
graph to model cognition of the agents.
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1 Introduction

One of the most important tasks involved in mitigating earthquake hazard is to
evaluate indoor safety by developing an understanding of how people respond to
the disaster and interact with their indoor environment [3]. Traditional methods
such as questionnaires and drills posed many limitations and are not sufficient to
assess the outcomes of evacuation within such a complex situation [7,15]. This
calls for smart simulation approaches to predict evacuation behaviors. A suit-
able simulation solution would truthfully represent the physical area while taking
into account the dynamic nature of the earthquake; it should also model indi-
vidual differences and create a diverse evacuee population who perform complex
cognition and decision making tasks.

The paper presents a new agent-based model for indoor post-earthquake
evacuation. (a) We developed a prototype of a new simulation tool for indoor
evacuation where agents navigate within a 3D domain towards a place of safety
and perform a range of tasks along the way. (b) The model implements a new
dual-layer data structure which combines a continuous physical layer and a dis-
crete perception layer. (c) To evaluate our prototype, we build two case studies
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 568–575, 2018.
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where the 3D domains are constructed using real-life building information. In
each case study we deploy multiple agents and assess the effect of different human
behaviors on evacuation.

Related Work. The recent decades have seen the development of many simula-
tion methods for emergency evacuations. In particular, an agent-based model [5]
represents the evacuees as a collection of autonomous and intelligent agents. It
has the potential to describe individual behaviors and delivers a high level of real-
ism for heterogeneous situations and bridges the micro/macro scopes. Research
on agent-based emergency and egress models has concentrated so far on (1)
outdoor evacuation for disasters such as earthquakes, tsunamis, and bush fires
where focus is put on pedestrian or traffic flow, road congestions and optimal
paths [1,13], and (2) indoor evacuation in the event of fire or a generic setting
where the building is static [4,10,12,15].

We focus on post-earthquake indoor evacuation, which deviates from the
situations above. Firstly, indoor evacuation presents a distinct set of challenges
altogether as the indoor spaces are much more limited than outdoor while items
tend to obstruct views of the evacuees. Secondly, an earthquake may change
the accessible areas in a building and hence the floor layout. Thirdly, during
earthquake evacuation, some common behavioral assumptions no longer hold
true. For example, as opposed to in fire incidents, many governments demand
building occupants not to evacuate immediately when an earthquake strikes, but
rather, they should adopt a drop-cover-hold position until the shake completely
stops before trying to move out of the building [8].

2 Model Description

The modeling phase contains two parts. The first is to create a 3D environment
of the building interior and the second is to generate a population of agents.

For the 3D environment, the system develops the physical scene using build-
ing information modeling (BIM). A detailed 3D geometrical representation of
the building interior is crafted using Autodesk Revit, a BIM software used by
architects worldwide1. The BIM model is then imported to Unity3D as an envi-
ronment for the agent-based simulations.

For the agents, the Belief-Desire-Intention (BDI) framework facilitates the
description of how individuals make decisions in disasters [10,11,14]. A BDI
agent implements 3 modules: a perception module, an interpreter module, and
an intention module. We propose a BDI model that is embedded within the
Unity3D game engine. This model is implemented as a new plug-in.

The system places a number of agents at random locations in the indoor envi-
ronment. Each agent is specified a movement speed which is randomly generated
from the general walking speed of [1.42, 2.56] m/s [9]. Each agent is designed
using a dual-layer behavioral model, which consists of a physical layer and a per-
ception layer. The physical layer defines the continuous space in which the agents

1 https://www.autodesk.com/solutions/bim.

https://www.autodesk.com/solutions/bim
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move and interact; this is common to all agents. The perception layer represents
the discrete knowledge of the agents, and is different for different agents. The
mapping from the perception layer to the physical layer enables path finding
and other behaviors of the agents. In particular, the decision making process is
implemented consistently with the BDI framework as shown in Fig. 1.

Fig. 1. The agent model

The physical layer represents the geometry of the indoor environment and
agents physical movements within it. This layer consists of a continuous space.
Each agent is represented by a cylindrical shape with a radius of 0.3 m and a
collision radius of 0.5m. When traveling with an injured person, the combined
collision radius becomes 1m [2]. The algorithm in the A* Pathfinding Project is
called to realise pathfinding tasks of the agents2.

The perception layer maintains a discrete perception graph which consists of
location nodes which are positions in the 3D environment, and edges between
close-by nodes. The entire building has a global perception graph H = (V,E)
which covers all closed regions of the building interior. At any time, any agent
a will maintain a local perception graph Ga = (Va, Ea) that represents its own
belief and knowledge. The set Va of location nodes in Ga may be a subset of V
which indicates that agent a may have partial knowledge of the 3D environment.
For each agent, we generate an initial position, which is one of the location nodes
in H. We then assign an initial knowledge percentage to the agent which could
be 1 which denotes that the agent has full knowledge of the domain, 0 which
denotes that the agent has zero knowledge, or any percentage p ∈ (0, 1) which
denotes partial knowledge. The initial knowledge graph Ga of agent a will then
contain nodes that are within a certain distance from a and make up p portion
of the entire node set V .

After the earthquake, a randomly selected set of edges in H will be removed
denoting blocking caused by damage to the building. Thus, Ea may contain
edges that are not in H. The agent may only update this knowledge when it
perceives such a change in the environment during the evacuation.
2 https://arongranberg.com/astar/.

https://arongranberg.com/astar/
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Fig. 2. The goal and subgoals of the agent

We elaborate on the decision making process performed by an agent during
evacuation. We organize goals and subgoals into the structure as in Fig. 2.

– If the local perception graph Ga contains an exit, agent a would compute a
shortest path in Ga from its current location to the closest exit, and move
along this path.

– If Ga does not contain any exit, then agent a has an “explore” sub-goal which
means that it is looking for an exit. Once the agent reaches the new location
node, it may see more locations that are not in the current local perception
graph Ga, and thus Ga is updated to reflect this new knowledge.

– An agent may follow another during the evacuation. In the scenarios of sim-
ulations undertaken, there was either none of the population or 10% of the
population able to exhibit following behaviors [6].

– The proportions of injured agents range between 0%, 2.5% and 20%. Note
that only seriously injured agents were integrated into our simulation, where
they would not move unless if an uninjured helper agent was able to help.

– Each agent either had a belonging to take, or none to be collected. With meth-
ods on where the belongings would be placed were uncertain, the belongings
were spread evenly throughout the environment, to be collected.

3 Evaluation

We carry out two case studies on real-world buildings of different types and run
agent-based evacuation simulations on these buildings. We populated the virtual
environment of each case study with 63 agents.

Case Study I. The Auckland City Hospital was chosen to be the modelled phys-
ical environment3. The visitor’s area of a floor in the main building is modeled
due to its multi-functional area. See Fig. 3.

Case Study II. We also simulate a 3-storey university building which includes
multiple classrooms, corridors, stairs, etc. The layout of this building is signifi-
cantly simpler than the hospital building, yet it covers a much larger area and
3 https://www.naturalhazards.org.nz/NHRP/Hazard-themes/Societal-Resilience/

NHRP-Partner-led-Soc/Building-Quake-People.

https://www.naturalhazards.org.nz/NHRP/Hazard-themes/Societal-Resilience/NHRP-Partner-led-Soc/Building-Quake-People
https://www.naturalhazards.org.nz/NHRP/Hazard-themes/Societal-Resilience/NHRP-Partner-led-Soc/Building-Quake-People
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the complexity for evacuation comes from the multiple storeys and the patio.
Figure 3 shows the navigation mesh (left) and the perception graph (right) of the
university environment. The perception graph has 342 location nodes. Table 1
summarises the characteristics of each simulated structure.

Table 1. Statistics about the two real-world building environments.

Scene Length (m) Width (m) Stories # Rooms # Exits # Local nodes

Hospital 78 54 1 ∼10 6 127

University 63 54 3 54 3 342

Fig. 3. The hospital navigation mesh (top-left) and the global perception graph (top-
right). The university navigation mesh (bottom-left) and the global perception graph
(bottom-right). Nodes are colored red and edges are green. (Color figure online)

We design several test scenarios for each scene by combining 16 parameters
in 5 variables. (1) Firstly we use a variable ‘Injured’ to indicate the percentage of
agents who have been seriously injured during the earthquake, and cannot move
at all by themselves. (2) We then use a variable ‘item’ to denote the percentage
of agents who will pick up valuable items along the way. (3) Thirdly, we vary
the initial knowledge level of the agents. The test scenarios assume either that
all agents have an initial knowledge of 3%, or 30%, or half of the agents have
knowledge level 3% where the other half have 30%. (4) We then use a variable
‘follow’ to represent the action of the agents to follow other agents in case they do
not know the way to any exit. (5) Last, we use a variable to denote the damage
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caused by the earthquake. In the hospital scene, we randomly put obstacles
which blocks doorways and corridors. The number of obstacles range between 4
and 8. In the university building, we randomly put 10 obstacles which mostly
concentrated on the staircase.

4 Results

For each test scenario, we run 10 times and use the average data result. We
collect data about the evacuation time of each agent, the pass frequency of each
knowledge node and exits, and the number of the injured agents and potential
safety risks left behind after all the healthy agents get out.

Node Visitation Frequency. Most agents in all scenarios are able to success-
fully evacuate. However, the frequency of exits that the agents adopt are vastly
different, as shown in Fig. 4 (left). We then extract the frequencies in which the
agents visit the other location nodes. The ranked frequency is displayed in Fig. 4
(right) which indicates an exponential decrease.

Fig. 4. The frequency of exits adopted by the agents (above) and the average node
visitation frequency from the most frequently visited location node to the least for the
hospital (bottom-left) and university (bottom-right) environment.

Evacuation Time. The evacuation time of an agent is the time taken it to go
from its initial location to a place of safety (e.g. an exit). We measure the average
evacuation time of all agents among 10 executions of our model. See Figs. 5 and
6. The generic scenario for the hospital is when 20% agents are injured, 35% are
picking up items, half of the agents have initial knowledge 3% and the other half
have 30%, and there are 4 edges that are blocked due to the earthquake. The
generic scenario for the university is similar, except 10 edges are blocked due to
the earthquake. The comparisons are made by changing one of the variables while
fixing the other as above. Some consistent patterns emerge between the results
from the two cases. In particular, the agents’ initial knowledge is a significant
factor for their effective evacuation as higher initial knowledge generally leads to
a faster evacuation time. The behavior of picking up item also impacts evacuation
time with the higher number of evacuees performing this action leading to in
general slower evacuation time.
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Fig. 5. The average number of agents evacuated after the quake for the hospital envi-
ronment. Evacuation times are measured in seconds.

Fig. 6. The average number of agents evacuated after the quake for the university
environment. Evacuation times are measured in seconds.

5 Conclusion and Future Work

This paper presents a prototyped agent-based model and simulation platform
for indoor post-earthquake evacuation. Using two case studies, we show that our
model is able to identify significant impact factors on the agent evacuation times.
Future developments must include further behaviors and agent attributes that
may affect the evacuation time such as ‘hearing’ capabilities, sign recognition,
the initial spatial distribution of agents, and the evacuation time delay agents
would experience when they help other agents.
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Abstract. The spread of Cyber-Physical Systems (CPSs) leads devel-
opers to embed various agents in a large system. It is a complicated and
difficult task to analyze and design such systems from comprehensive
specifications such as an architecture document because many behaviors
of many components including agents must be dealt with. In such a sys-
tem, the appropriateness of interactions between components should be
ensured. However, no method to efficiently define and verify behaviors
in such interactions from such specifications taking into consideration
the characteristics of CPSs has been proposed. To improve this situa-
tion, this paper preliminarily proposes a stepwise method to define and
verify behaviors in interactions between CPS components. More specif-
ically, a template system to stepwise define behaviors from an abstract
level to a concrete level is presented based on an existing architecture
modeling method. Furthermore, a model transformation tool for verify-
ing such behavior definitions by using the model checking tool NuSMV
is introduced.

Keywords: Architectural model · Cyber-Physical System
Model checking · Model transformation · Analysis and design
Behavior specification

1 Introduction

CPSs (Cyber-Physical Systems) such as IoT (Internet of Things) have become
wide spread in recent years. Agents may numerously appear as CPSs’ compo-
nents since various components have to properly act and react to various environ-
ments such as natural environments. When developers analyze and design such
CPSs, it is not easy to grasp the architecture because of the many components.
According to existing research [1,2,13] on CPS development, reference architec-
tures have been considered but such reference architectures are different from

c© Springer Nature Switzerland AG 2018
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each other. In addition, no method combining approaches to flexibly document
and efficiently verify architectures has been proposed. We [12] have proposed a
method and tool to model the architectures of CPSs and verify it using the logic
programming language Prolog, for early documentation and verification of the
architecture of large CPSs. This method called TORTE can flexibly deal with
differences between reference architectures because the method enables devel-
opers to easily extend kinds of relationships and the corresponding description
spaces called layers into the model.

However, TORTE has not been suitable for handling agents’ behaviors yet
since it only models and verifies architectural, i.e. structural, aspects. Therefore,
we propose a method to define behaviors of architectural components based on
architecture models in TORTE (hereafter called TORTE architecture models).
As a main research problem, it is evident that many complicated behaviors need
to be defined for representing large CPSs. To facilitate such behavior definition,
we propose a template system that helps developers stepwise define behaviors
from an abstract level to a concrete level. Those behavior definitions are repre-
sented in the UML (Unified Modeling Language) state machine diagram notation
which is familiar to embedded system development. In addition, we also newly
propose a way of transforming behavior definitions into a model that can be
checked by the model checking tool NuSMV [5] for assisting formal verification.

2 TORTE Architecture Model

We [12] have proposed a method of modeling and checking a CPS architecture
from only a structural aspect. This method aims to assist analysis of a CPS
architecture at an early stage of development in the twin peaks model [11].
TORTE architecture models are represented using UML class diagrams slightly
extended, and consists of nodes as typed entities (Table 1) and directed edges as
typed relationships (Table 2).

Figure 1 in which the result of merging four layers (i.e. control, request,
transmit-data and transmit-energy) is shown shows a small example of a
TORTE architecture model for explaining the process of the proposed method.
For instance, AgentC controls AgentA, transmits energy to AgentA, requests
data from ObjectB, and receives data from ObjectB and energy from AgentD or
AgentE. The order of performing these behaviors is not required since this model
only shows static relationships. The shapes of stick-men and rectangles repre-
sent agents and objects respectively, and have the detail types (e.g. service and
device) specified by developers. Entities include both agents and objects in this
paper because actual CPSs such as [7] do not consist of either agents or objects.

3 Proposed Method: A Template System for Modeling
and Verifying Agent Behaviors

Agent designers should define the interactions among agents or at least anticipate
what interactions happen even if the agents behave autonomously. Various Web
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AgentA

<<device>>
ObjectB

AgentC

<<transmit-energy>>

<<control>>

<<transmit-data>>

<<request>>

AgentD

AgentE

<<transmit-energy>>

<<transmit-energy>>

<<transmit-energy>>

Fig. 1. Small example of a TORTE architecture model

Table 1. Types of entities

Type Description

user Users using or maintaining other entities

service Services provided for other entities and deployed in
cyberspace

edge Edges constructing networks and deployed in physical space

device Devices controlling or monitoring other entities and deployed
in physical space

energy Energy suppliers transmitting energy for other entities and
deployed in physical space

environment Natural environment stimulating other entities or monitoring
them

Table 2. Types of architectural relationships

Type Description

use An entity uses a beneficial service of another entity

request An entity requires data from another entity

control An entity changes or maintains behaviors of another entity

monitor An entity monitors another entity without requiring a
response

transmit-data An entity transmits data to another entity

transmit-energy An entity transmits energy to another entity

services, devices, robots, etc. are agents which have the respective behaviors
for the interactions with others. Consequently, such definition and anticipation
are time-consuming tasks since many kinds of agents interact with each other
in large CPSs. However, it is expected that such interactions are almost the
same among various agents at a proper abstract level because their interactions
are often constructed based on some existing protocols. Therefore, the proposed
method aims to define agent behaviors in interactions from an abstract level to
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a concrete level in incremental steps so that agent designers can easily reuse
abstract interaction definitions to efficiently define concrete behaviors.

TORTE 
architecture 

model

Behavior 
template

Tailoring
Behavior 
definition

(generated)

Model
refinement

Behavior 
definition
(refined)

Model
transformation

Model in  
NuSMV format

(generated)

Modification
(adding specifications, etc.)

Model in  
NuSMV format

(modified)

Model 
checking

Scope of proposed method

Auto

Auto

Manu

Manu

Developers

Action

In/out

Data

Manu = Manual
Auto = Automatic

Fig. 2. Overview of the proposed method

Figure 2 shows an overview of the proposed method. The Auto actions are
automatically performed using a tool for model transformation. The tool was
prototyped in Java. Each of the actions and data in the scope of the proposed
method is explained in detail in the corresponding subsequent section.

3.1 Behavior Template

A behavior template defines abstracted interactions among entities or entity-
self behaviors, and is represented as a state machine diagram. The abstraction
is realized by introducing variables referring a collection of entities as shown
in Table 3. The common relationships and/or behaviors among entities can be
defined into templates by properly using these variables.

Figure 3 shows examples of behavior templates for all pairs of entities that
have a transmit-energy relationship. For instance, the diagram’s name have
two variables (i.e. <all> and <everyone>). The former and latter positions
of the variables correspond to the First and Second parameters respectively in
Table 3. Furthermore, variables used to represent communications among tem-
plates are provided for diagram element’s properties, i.e. the trigger or guard of
a transition. The Both parameter means that variables can be handled as the
First or Second parameters.

For instance, the trigger <this>.transmit-energy.passive.<another>
== Transmitted Energy means that the transition to Transmitting Energy
from Ready is executed if another entity (excluding the target entity) trans-
mits energy to this entity. Before writing each diagram, developers should pre-
define all types of states, e.g. Ready and Transmitting Energy, that is, like the
terminology in DSL (Domain Specific Language).

The logic of interactions is often controlled by an entity’s internal behav-
iors. The proposed method deals with such internal behaviors by introducing a
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behavior template named using the suffix .self. For instance, <all>.self is
one of the ways of representing templates for internal behaviors. We do not focus
on internal behaviors because the commonality between entities may be lower
than interactions. We, however, believe that the separation of interactions and
internal behaviors enhances the maintainability of each entity.

Table 3. Variables in behavior template (excerpt)

Context Parameter Variable Description

Diagram
name

First all All entities

Second everyone All opposite entities on a specified relationship

anyone One of all opposite entities on a specified
relationship

Diagram
element
property

Both this The entity represented at the first parameter in
the name of the diagram containing this element

target The entity represented at the second parameter
in the name of the diagram contains this element

other All entities relating with this entity on a
specified relationship and excluding target

entity

another One of all entities relating with this entity on a
specified relationship and excluding target

entity

<all>.transmit-energy.active.<everyone>stm 

Ready Transmitting_Energy

<this>.transmit-energy.passive.<another>==Transmitted_Energy

<this>.transmit-energy.passive.<other>==Ready

Fig. 3. Example of behavior template (excerpt)

3.2 Tailoring and Behavior Definition

The tailoring action instantiates behavior definitions from behavior templates
by merging a TORTE architecture model with the templates. In other words,
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AgentC.transmit-energy.active.AgentAstm 

Ready Transmitting_Energy

AgentC.transmit-energy.passive.AgentD==Transmitted_Energy||AgentC.transmit-energy.passive.AgentE==Transmitted_Energy

AgentC.transmit-energy.passive.AgentD==Ready&&AgentC.transmit-energy.passive.AgentE==Ready

Fig. 4. Example of behavior definition (excerpt)

this process make abstract behaviors concrete. Figure 4 shows an example of the
behavior definitions tailored using Figs. 1 and 3.

Behavior definitions are created for each pair of values derived from the
first, e.g. .<all>, and second, e.g. .<everyone>, variables of the behavior
template’s name. In this example, the first value in a pair is derived from the
range (i.e. AgentA to AgentE) referred by the all variable. The other value is
derived from the range (e.g. AgentA) referred by the everyone variable. The
latter range is determined by the value of the first parameter. For instance, the
pair (first, second) can take (AgentC, AgentA) but not (AgentC, ObjectB) on
the transmit-energy relationship.

Similarly, transition’s properties using variables are tailored as well as behav-
ior template’s name. If other or another variable refers to multiple values, they
are expanded into logical AND (i.e. &&) or logical OR (i.e. ||) operators respec-
tively. For instance, AgentC receives energy from AgentD or AgentE. Therefore,
<this>.transmit-energy.passive.<other> == Ready was replaced with
AgentC.transmit-energy.passive.AgentD == Ready && AgentC.transmit-
energy.passive.AgentE == Ready in Fig. 4.

3.3 Model Refinement

The model refinement action deals with special cases of behavior definitions
manually. The behaviors of entities are normally different from each other even
if the common behaviors can be extracted as templates. Therefore, multiple
behavior definitions may need to be customized after the tailoring. Behavior
definitions do not contain any variables in Table 3, so developers can intuitively
edit them comparing them with behavior templates.

3.4 Model Transformation and Model in NuSMV Format

The model transformation action generates an artifact to formally check behavior
definitions. Here, the artifact means a model in the NuSMV format, and excludes
any specifications. Behavior definitions are familiar to such a model because both
are written in state-transition-based notation. Table 4 summarizes the rules to
relate behavior definitions with a model. The JUSTICE running keyword is given
to each MODULE context because CPSs usually have control loops [9] which
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may break the fairness of state transitions. Listing 1 shows an example of a model
generated from behavior definitions. A lot of definitions are omitted in this list
because of space limitations, and the words “tea” and “tep” are abbreviations
for “transmit energy active” and “transmit energy passive” respectively.

Table 4. Rules to relate behavior definition with NuSMV model

Behavior definition NuSMV model

The name of an entity The name of a MODULE context

State variables of other entities used in
transitions

The parameters of a MODULE context

States in behavior definitions for one
entity

State variables in a VAR context

The initial state indicated by the initial
pseudo-state

The init functions in an ASSIGN context

Transitions including triggers and
guards

The next functions in an ASSIGN context

1 MODULE agentc(agentd_tea_agentc ,...)

2 VAR

3 agentc_tea_agenta :{Ready ,Transmitting_Energy ,...};

4 ASSIGN

5 init(agentc_tea_agenta):= Ready;

6 next(agentc_tea_agenta):=case

7 agentc_tea_agenta=Transmitting_Energy & (

agentc_tep_agentd=Ready & ... ):Ready;

8 esac;

9 JUSTICE running

10 MODULE main

11 VAR

12 agentc: process agentc(agentd_tea_agentc ,...);

Listing 1. Generated model in NuSMV format (excerpt)

4 Related Work

Several studies in the agent community are recently focusing on constructing
CPSs based on agent technologies. Floretto et al. [6] have proposed a multi-agent
system approach to scheduling devices in smart homes. This approach formalizes
the device scheduling and coordination problem across multiple smart homes as
a distributed multi-agent system. Nascimento [10] has proposed a preliminary
agent-based mechanism that can adjust and reconfigure CPSs in accordance
with environmental variants. Our study aims to aid construction of an adequate
system architecture for multi-agent systems based on CPS.
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Numerous studies focus on the verification of agent behaviors. In recent stud-
ies, Belardinelli et al. [3] have proposed a mechanism to verify agent abilities in
the context of imperfect information. This mechanism gives a verification of ATL
(alternating-time temporal logic) specifications. Boureanu et al. [4] proposed a
method of verifying whether security protocols underlying CPSs are correct in
a provable way. While these studies generally focus on verifying the correct-
ness of agent’s behaviors or interactions, our study uses a model checker to find
omissions of interactions that cause potential failures of the system.

5 Conclusion

This paper preliminarily proposed a stepwise method to define and verify enti-
ties’ behaviors including agents’ behaviors. This method provides a feature of
behavioral modeling based on a comprehensive TORTE architecture model with
less effort than before, and model transformation from behavior templates to
behavior definitions and from behavior definitions to the corresponding model
in the NuSMV format. In future work, we plan to enhance a way of defining spec-
ifications used in model checking and visualizing the result of model checking,
and then to conduct experiments in which various developers use the proposed
method for various systems.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
JP17KT0043 and JP16K16043.
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Abstract. The conclusions drawn from a dialogue depend both on the
content of the arguments, and the level of trust placed in the arguments
and the entity advancing them. In this paper, we describe a framework
for dialogue where such trust forms the basis for expressing preferences
between arguments, and in turn, for computing conclusions of the dia-
logue. Our framework contains object and meta-level arguments, and
uses ASPIC+ to represent arguments, while argument schemes capture
meta-level arguments about trust and preferences.

1 Introduction

In human dialogue, conclusions are drawn not only based on argument inter-
actions, but also by considering the level of trust or confidence placed in the
arguments and those presenting them. Critically, as the dialogue progresses,
additional utterances can cause these levels of trust to change, and capturing
such changes is therefore important.

Since we consider the arguments advanced during the dialogue, as well
as argument about those arguments, our approach builds on Muller’s meta-
argumentation system [7]. Here, object-level arguments are advanced which deal
with the topic of the dialogue. Meta-level arguments then describe arguments
about arguments, including whether an argument attacks another; what counts
as an argument; and whether an argument is preferred over another. Our focus
in this paper involves arguments which relate to trust between arguments, and
we consider several such classes of argument, described through argumentation
schemes. As the dialogue progresses, arguments attacking and supporting these
arguments can be introduced, causing shifts in trust over time, in contrast to
systems such as [2,3,11], where preferences and trust in arguments are fixed.

Our work combines several existing frameworks and techniques, and in the
next section, we provide the background necessary to our approach. In Sect. 3,
we introduce our dialogue model and the argument schemes used within our
meta-argumentation framework. Section 4 discusses an example of our work and
we conclude in Sect. 5.
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2 Background

Our work builds on a fragment of ASPIC+ [6], which uses abstract argumenta-
tion [4] to identify justified conclusions. We therefore begin by briefly discussing
these.

Definition 1. An argument framework (AF) is a pair 〈A,D〉 where A is a set
of arguments and D ⊆ A × A is a binary defeat relation. Given AF = 〈A,D〉,
and E ⊆ A,
– E is conflict-free iff there are no φ1, φ2 ∈ E s.t. (φ1, φ2) ∈ D.
– E defends φ1 iff for every (φ2, φ1) ∈ D, there exist a φ3 ∈ E s.t. (φ3, φ2) ∈ D.
– E is an admissible set iff E is conflict free and defends all its elements.
– E is a complete extension iff there are no other elements which it defends.
– E is a preferred extension iff it is a maximal complete extension.

An extension identifies a consistent set of arguments and conclusions. While
many different classes of extensions have been defined, we focus on preferred
extensions here. It should be noted that an AF can have multiple different pre-
ferred extensions. An argument present in all extensions is sceptically justified;
if it is present in at least one extension, it is credulously justified.

AFs as described above are abstract and lack structure. Given a knowledge
base, we must be able to determine which arguments can be constructed, and
for this purpose, we make use of a fragment the popular ASPIC+ framework
[6]. ASPIC+ defines an argumentation system built from an (unspecified) logi-
cal language L which is closed under negation (¬). Arguments are then formed
by repeatedly applying strict (elements of Rs) or defeasible (Rd) inference rules
to elements from a knowledge base K. The argumentation system contains a
function n : Rd → K, associating defeasible rules with entities in the knowl-
edge base. Arguments in ASPIC+ attack each other when inconsistencies exist
between them. ASPIC+ describes how preferences between arguments can be
obtained from preferences between rules and elements in the knowledge base
determining successful attacks; i.e. defeats. The resultant structure is referred
to as an argumentation theory, corresponding to an argumentation framework
as per Definition 1. In our approach, we consider only defeasible rules, no pref-
erences, and assume that all elements in a knowledge base can be attacked.

Definition 2. (Argument and Attack) [6]. An argument A on the basis of a
knowledge base K in argumentation system (L,¬,Rd, n) is
1. μ if μ ∈ K with: Prem(A) = {μ}, Conc(A) = {μ}, Sub(A) = {μ}.
2. A1, . . . , An → / ⇒ ψ if A1, . . . , An are arguments such that there exists

a defeasible rule Conc(A1 ), . . . ,Conc(An) ⇒ ψ in Rd with Prem(A) =
Prem(A1 ) ∪ . . . ∪ Prem(An), Conc(A) = {μ}, Sub(A) = Sub(A1 ) ∪ . . . ∪
Sub(An) ∪ {A}.

3. A attacks B iff A undercuts, rebuts or undermines B, where A undercuts B
(on B′) iff Conc(A) = ¬n(r) for some B′ ∈ Sub(B). A rebuts B (on B′)
iff Conc(A) = ¬μ for some B′ ∈ Sub(B) of the form B′′

1 , . . . , B′′
n ⇒ μ. A

undermines B (on μ) iff Conc(A) = ¬μ for a premise μ of B for an ordinary
premise μ of B.
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3 Hierarchical Systems of Arguments and Dialogues

Our approach uses meta-level arguments about trust. These refer to object-level
arguments about the original dialogue topic. We build on the ideas of Wooldridge
[14], who suggested that arguments and dialogue are inherently meta-logical
processes. Thus, arguments advanced in a dialogue are not restricted to asserting
the truth or falsity of statements, but include arguments about arguments; taking
a hierarchical view, arguments at level n of the hierarchy may refer to the same
or lower levels in the hierarchy. In our work, we consider a hierarchy with 3 levels,
labelled l0, . . . l2. The object level (l0) contains arguments and attacks related
to the domain of discourse. Arguments at level l1 support arguments at the
object level and indirectly attack them by attacking other arguments within l1.
These capture the trust placed in object level arguments and attacks. Similarly,
arguments at l2 attack others in this level, as well as at level l1, and capture trust
in sources of object-level arguments. All of these arguments and the interactions
between them are encoded in a bimodal argument graph.

3.1 Bimodal Argument Graphs

A bimodal argument graph is a hierarchical structure capturing object and meta-
level arguments, and the attacks and supports between them.

Definition 3. A Bimodal Argument Graph for a reasoner AgI is a tuple
BAGI = 〈AO,AMI

,DO,DMI
,SMOI

,SMAI
〉 where

– AO and AMI
are object-level and meta-level arguments respectively such that

AO ∩ AMI
= ∅.

– DO ⊆ AO × AO and DMI
⊆ AMI

× AMI
are defeat relations for the object

and meta-levels respectively.
– SMOI

⊆ AMI
×AO, is a support relation from meta-level to object-level argu-

ments.
– SMAI

⊆ AMI
× RO, is a support relation from meta-level to object-level

attacks.

Bimodal argument graphs constrain arguments, requiring that for all φ ∈ AO and
(a, b) ∈ RO there exists a β, γ ∈ AMI

such that (β, φ) ∈ SMOI
and (γ, (a, b)) ∈

SMAI
. If (β, φ) ∈ SMOI

, then β is said to support φ.

Extensions within a bimodal argument graph (according to some semantics)
are computed from the highest meta-level down to the object level. More specifi-
cally, the extension of the highest level is computed, and the subset of arguments
at the next level down supported by arguments within the extension are used to
form a sub-framework over which extensions are again computed. This process
repeats itself until an extension at the object level can be computed.
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3.2 The Object Level (l0)

Our focus revolves around arguments obtained from a dialogue—a sequence of
moves D = [M1, . . . ,Mx]. We do not specify the protocol used to create this
dialogue, but assume that each participant has a commitment store represent-
ing those arguments they are publicly committed to. Arguments can be added
or retracted from each participant’s commitment store. Furthermore, we assume
that a participant is only committed to arguments that they have introduced. We
denote the commitment store of participant Ag i as CSAgi

, and call ∪AgiCSAgi

the universal commitment store, UCS. The UCS corresponds to the set of argu-
ments at the object level AO in Definition 3. Both the individual and universal
commitment stores are updated at each move of the dialogue.

After introducing an argument at the object level, additional arguments are
added to the meta-levels monotonically. Let ϕ(·) indicate that an element should
be trusted. At the meta-levels, every argument a ∈ AO is supported by an argu-
ment α asserting that a should be trusted (ϕ(a)), every defeat (a, b) ∈ DO

should also be trusted (ϕ(a, b)), and that utterances by an agent Agi should be
trusted (ϕ(Agi)). Additional arguments are instantiated via trust-related argu-
ment schemes.

We map arguments and attacks in our hierarchical system to arguments and
defeats in a bimodal argument graph [7] by stating that argument a defeats
argument b iff a attacks b and there are some meta-arguments α, β such that
α supports a and β supports b and α attacks β. Properties of the argument
framework at the object level is encoded using a fragment of ASPIC+. We assume
that L is a predicate-based language with a finite number of constant symbols,
and which can therefore (formally) be mapped to a propositional language.

Agents build meta-arguments about object-level arguments, attacks, and
sources of argument by applying a set of defeasible rules which we define as
argument schemes (and critical questions). At the meta-level, we do not consider
preferences between arguments, meaning that attacks and defeats are equivalent
here.

3.3 The First Meta-level (l1)

The first meta-level contains facts and associated rules from which arguments
can be formed regarding the object level arguments. Table 1 summarises the
predicates which can appear at the meta-level, and describes the condition under
which these are added. As individual utterances are made within the dialogue,
additional predicates and arguments are monotonically added to the meta-level.
The arguments are obtained from a set of trust specific argument schemes. These
schemes describe inference rules from which arguments can be created, as well as
critical questions which allow attacks against the arguments to occur. We detail
these schemes in the remainder of this section1.

1 Due to lack of space, we formalise only some of the schemes and critical questions.
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Table 1. Predicates for Trust Properties

Property Definition

defeats(a, b) argument a defeats argument b (i.e., a, b ∈ A and (a, b) ∈ D)

unattacked(a) argument a is unattacked (i.e., a ∈ A and (b, a) /∈ D)

preferred(a, b) argument a is preferred to argument b (i.e., a, b ∈ A,
(a, b) ∨ (b, a) ∈ D and a defeats b via meta-level arguments

unattacked(a, b) defeat(a, b) is unattacked (i.e., a, b ∈ A, (a, b) ∈ D and
(c, a) /∈ D)

defended(a, b) defeat(a, b) is defended (i.e., a, b, c, d ∈ A, (a, b) ∈ D,
(c, a) ∈ D and there is (d, c) ∈ D)

conflict free(CSAgi ) the commitment store CSAgi is conflict-free (i.e., there exist
no φ1, φ2 ∈ CSAgi such that (φ1, φ2) ∈ D)

retracted(a,CSAgi ) argument a is retracted from CSAgi (i.e., CSAgi = CSAgi ∪ b
and (b, a) ∈ D)

Argument from Lack of Justification (ArgLJ). If a dialogue participant cannot
justify their arguments, then these arguments should not be trusted. More for-
mally, if a is in Agi’s commitment store, and b (in the universal commitment
store) defeats a, then a is not (skeptically) justified. In turn, this means that the
argument and dialogue participant should not be trusted. Formally, we have the
following defeasible inferences.

rSLJ : a ∈ CSAgi , b ∈ UCS , defeats(b, a) ⇒ ¬ϕ(a)/¬ϕAgi

A defeater to b serves as a critical question to prevent the application of the
scheme.

rCQLJ : ∃c ∈ UCS , defeats(c, b) ⇒ ϕ(a)/ϕ(Agi)

Argument from Void Precedence (ArgV P ). This scheme is adapted from the
void precedence property of ranking based semantics [1], and states that a non-
attacked argument is accepted, and should therefore be considered trusted. We
omit its formalisation due triviality and lack of space.

Argument from Defence Precedence (ArgDP ). This scheme is also adapted from
ranking based semantics [1], and states that an argument defended against its
attackers by more preferred argument(s) should be trusted.

rSDP : a, b, c ∈ UCS , defeats(b, a), defeats(c, b) ⇒ ϕ(a)

At the same time, d defeating c would undercut this scheme, and serves as a
critical question (not formalised due to space constraints).

Argument from Preference Precedence (ArgPP ). This scheme specifies how
attacks between conflicting object-level arguments are resolved with preferences.
In effect, an (otherwise defeated) argument which is preferred remains trusted
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as long as it is justified. Again, another defeater of the argument would render
this scheme invalid.

rSPP : a, b ∈ UCS , defeats(a, b), preferred(b, a) ⇒ ϕ(b)

Trust can be placed not only in arguments and speakers, but also in defeats. If
we have {(a, b), (c, a)} ⊆ D, then (c, a) attacks (a, b). An argument (d, c) would
defend (a, b) in this case. A defeat is then trusted if it is unattacked, defended, or
originates from a justified argument, and is untrusted otherwise. This intuition
is also captured in extended argument frameworks with second (or higher) order
attacks [5]. It should be noted that a defeat may be trusted when both arguments
it refers to are untrusted. Argument schemes for reasoning about trust in defeats
are defined as follows.

Argument from Justified Defeat (ArgJD). A defeat is trusted if it originates from
a justified argument.

rSJD = a, b ∈ UCS , defeats(a, b) ⇒ ϕ(a, b)

As elsewhere, the presence of a defeater of a serves to undercut this scheme.

rCQJD : c ∈ UCS , defeats(c, a) ⇒ ¬ϕ(a, b)

Argument from Unattacked Defeat (ArgUD) A defeat is trusted if it is
unattacked.

Argument from Defended Defeat (ArgDD). A defeat is trusted if it is defended.
This scheme is undercut if the defeat that the defender attacks is preferred to
the defender.

3.4 The Second Meta-level (l2)

In this level we consider properties that can be inferred to establish meta-
arguments about trust in the sources of arguments at l0. These meta-arguments
indirectly attack or support arguments at level l0 by attacking or supporting
arguments at level l1. For example, the assertion ¬ϕ(Agi) (i.e., the source Agi
of an argument a should not be trusted), attacks all meta-arguments at level l1
which support arguments advanced by Agi at level l0. Argument schemes here
include the following.

Argument from Self Contradiction (ArgSC). This scheme is adapted from Wal-
ton’s argument from inconsistent commitment [12], and states that an agent
committed to two arguments which attack each other should not be trusted.

rSSC : a, b ∈ CSAgi , defeats(a, b) ∨ defeats(b, a) ⇒ ¬ϕ(Agi)

A closely related argument scheme is Argument from Consistency (ArgCN ) stat-
ing that if all an agent’s commitments are conflict free, then the agent should
be trusted.
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Argument from Retraction (ArgRN ). Retracting a commitment results in a loss
of trust. When performing such a retraction, some premises or warrants are also
typically retracted [13]. This means that a retraction should cause trust to be
lost not only for the retraction itself, but also for other arguments which are
defended by the retracted argument (unless these latter arguments are defended
by other unretracted arguments). This leads to the following scheme.

rSRN : a, b ∈ CSAgi , c ∈ UCS , defeats(c, a), defeats(b, c), retracted(b) ⇒ ¬ϕ(Agi)

We have described how meta-arguments about trust at different levels can
attack each other and support lower level arguments. In our approach, each
dialogue participant AgI has an associated BAGI , whose object level is built
from the dialogue and their commitment stores. Meta-levels components are
constructed subjectively from a private knowledge base of preferences and prop-
erties observed at the object level. The maximal set of arguments appearing in
the extensions of all participant’s BAGs is the set of trusted arguments within
the dialogue.

4 Example

Consider a long running dialogue between three agents (Ag1, Ag3, Ag3) about
the death penalty. At the object level, the following arguments are advanced.

– Ag1 : The death penalty is a legitimate form of punishment. (a)
– Ag2 : God does not want us to kill. (b)
– Ag3 : God does not exist. (c)
– Ag1 : Some people believe in God. (d)
– Ag2 : The state has no right to put its subjects to death. (e)
– Ag3 : The legal status of the death penalty should not depend on beliefs. (f)
– Ag1 : All religions should have a say over public law. (g)
– Ag2 : Majorities in some democratic countries favour death penalty. (h).
– Ag3 : Even if God exists, religion should stop at the door of the temple. (i)

Note that Ag2 has potentially contradicted themselves in arguments e and h.
Instantiating ArgSC , we have an argument at the second meta-level for ¬ϕ(Ag2),
which attacks ϕ(e), ϕ(h) and any other arguments advanced by Ag2 in the
dialogue. While argument h is undefeated, and supports argument a, yielding
ϕ(a) using ArgDP , the fact that we had obtained ¬ϕ(Ag2) means that this
support is attacked. Figure 1 provides the full bimodal argument graph obtained
from this dialogue, where meta-arguments are represented by their conclusions.
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Fig. 1. Bimodal Graph for object and meta-level argumentation

5 Discussion and Conclusions

This paper presents an approach for reasoning about trust in dialogues that
combines three of the most popular mechanisms used within computational
modelling of argumentation: ASPIC+ [10], argument schemes [12] and meta-
argumentation [7,11].

Unlike the systems described in [2,3] where preferences are given and fixed,
our argument scheme based approach models how trust can be used as a ratio-
nal basis for expressing preferences between arguments, determining successive
attacks and for computing extensions. The systems in [8,11] compute argument
acceptability on the basis of the trustworthiness of their sources and the feedback
that the final quality of arguments provide on the source evaluation. Unlike our
approach, these approaches do not consider how trust in arguments and their
sources change dynamically within a dialogue. Also the work presented in [9]
has considered different argument schemes for reasoning about trust in an indi-
vidual. However, these rely on extra-dialogical properties, while our focus is on
how utterances affect trust during a dialogue.

We are pursuing several avenues of future work. First, we seek to link our
system with graded and numerical semantics. Second, we recognise that the
argument schemes we describe are not exhaustive, and believe that additional
argument schemes for trust can be identified. Finally, we must demonstrate that
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the manner in which our system computes trust is consistent with human intu-
itions, and that it satisfies certain desirable properties. If divergences between
these exists, then the framework could serve as a useful foundation for describing
and studying paradoxes in human-based trust.
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Abstract. Linear Logic and Defeasible Logic have been adopted to for-
malise different features relevant to agents: consumption of resources,
and reasoning with exceptions. We propose a framework to combine sub-
structural features, corresponding to the consumption of resources, with
defeasibility aspects, and we discuss the design choices for the framework.

1 Introduction

Many logic-based approaches have been proposed to account for the rational
behaviour of an agent. For example, in the well known BDI architecture (and
architectures inspired by it), agents first deliberate about the goals to achieve
and, based on such goals, they select the plans to implement from their plan
libraries. Finally, during or after the execution of the plans, the agents receive
feedback from the environment, which can trigger the so-called reconsideration:
the activity to determine whether the intended goals are still achievable with
the selected plan and the current state of execution.

Most of the logic-based approaches take an idealised representation: the
agents have unlimited reasoning power, complete knowledge of the environment
and their capabilities, and unlimited resources. Over the years, a few approaches
(using different logics) have been advanced to overcome some of these ideal
(unrealistic) assumptions.

In [8,13,14], the authors propose the use of Linear Logic to model the notion
of resource utilisation, and to generate which plans the agent adopts to achieve
its goals. In the same spirit, the authors of [5,6] address the problem of agents
being able to take decisions from partial, incomplete, and possibly inconsistent
knowledge bases, using (extensions of) Defeasible Logic (a computational and
proof theoretic approach) to non-monotonic reasoning and reasoning with excep-
tions. While these last two approaches seem very far apart, they are both based
on proof theory (where the key notion is on the idea of (logical) derivation), and
both logics (for different reasons and different techniques) have been used for
modelling business processes [1,3,7,10,12,15,16].

Formally, a business process can be understood as a compact representation
of a set of traces, where a trace is a sequence of tasks. A business process is
c© Springer Nature Switzerland AG 2018
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hence equivalent to a set of plans with possible choices. The idea behind the work
mentioned above is to allow agents to use their deliberation phase to determine
the business processes (instead of the plans) to execute.

This paper discusses the motivational ideas of a much deeper investigation,
which will lead to the full formalisation of a foundational framework to model
agents that create their plans during the deliberation phase, taking into account
the utilisation of resources and possible exceptions. We highlight some design
choices about the combination of linear logic (or more in general, substructural
logic) and a computationally oriented non-monotonic formalism, but, due to the
strict space limitations, we leave the technical implementation details for future
works. The interested reader is referred to [11] for an up to date version of our
work.

Logic is often described as the “art” of reasoning: a deductive system allows
users to derive conclusions from given premises via the usage of (inference) rules.
Under this prospective we can distinguish rules (or sequents, or instances of a
consequence relation) and inference (or derivation) rules. A rule specifies that
some consequences follow from some premises, while a derivation rule provides a
recipe to determine the valid steps in a proof or derivation. A classical example
of a derivation rule is Modus Ponens (i.e., from ‘Γ → Θ’ and Γ to derive Θ,
where Γ and Θ are sets of formulas).

If the formulas denote activities (or tasks) and resources, then the consequent
is a sequence of tasks describing the activities to be done (and the order in which
they have to be executed) to produce an outcome (and also, what resources
are needed). Thus, we can use the rules to model transformation in a business
process, and derivations as the traces of the process (or the ways in which the
process can be executed or the runs of system).

A formalism that properly models processes should feature some key charac-
teristics, and one of the most important ones is to identify which resources are
consumed after a task has finished its execution. Consider the notorious vending
machine scenario, where the dollar resource is spent to produce the can of cola.
Trivially, once we get the cola, the dollar resource is no longer spendable (unless
it can be, somehow, replenished).

(Standard) Defeasible Logic (SDL) [9] is a non-monotonic rule based for-
malism, that has been used to model exceptions and processes. The starting
point being that, while rules define a relation between premises and conclu-
sion, DL takes the stance that multiple relations are possible, and it focuses on
the “strength” of the relationships. Three relationships, and a relation called
superiority or preference, are identified: strict rules specifying that every time
the antecedent holds so does the consequent; defeasible rules represent the non-
monotonic part of the logic, when the antecedent holds then we can typically
deduce the consequent as well, unless there is evidence supporting the contrary;
and defeaters, when the antecedent holds the opposite of the consequent might
not hold (defeaters are special rules whose only purpose is to prevent to draw
opposite conclusions); finally, the superiority relation is the mechanism to solve
conflicts, and allows us to derive conclusions when there are rules for conflicting
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conclusions. An example of rules with a baseline condition and exception is the
scenario of inserting a dollar coin in a vending machine, and the outcome is that
we get a cola unless the machine is out of order, or the machine is switched off.
We can thus represent this scenario with the rules1:

r1 : 1$ ⇒ cola r2 : OutOfOrder � ¬cola r3 : Off � ¬cola.

Note that both r2 and r3 use defeaters instead of defeasible rules. This is because
we do not want to obtain the resource “notCola” (of dubious meaning), but only
to prevent to obtain the resource cola in case the machine is out of order or
switched off.

Based on the discussion so far, the motivation of our research is that we
want to combine, from a logic perspective, the mechanisms of defeasibility with
mechanisms from substructural logic (to capture the order of resources, and the
consumption of resources). It is clear that the resulting combination of logi-
cal machinery could provide a much better formalism for the representation of
processes.

The remainder of this paper is structured as follows. Section 2 describes the
features we want our logics to be equipped with. Section 3 concludes our work by
presenting some related literature, and outlining current, and future, research.

2 Desired Properties

We dedicate this section to detailing which new features our logic needs to imple-
ment and, for each of them, to justify their importance with respect to real life
problems.

Ordered List of Antecedents
Given the rule ‘r : A,B ⇒ C’, the order in which we derive A and B is typically
irrelevant for the derivation of C. As such, r may indistinctively assume the
form ‘B,A ⇒ C’. Consider a login procedure which requires a username and
password. Whether we insert one credential before the other does not affect a
successful login.

Nonetheless, sometimes it is meaningful to consider an ordered sequence of
atoms in the head of a rule, instead of an unordered set of antecedents. Suppose
we have the two activities ‘Check Creditworthiness’ and ‘Approve Loan’. Neither
of them depends on the other. However, performing one activity before the other
may affect the final result: if we approve the loan before creditworthiness has
been checked and approved, then a loan may potentially be provided to someone
who is not able to repay.

This allows us to capture the fact that some resources may be independent
of each other from the derivational viewpoint (one does not derive the other),
but are dependent from a temporal perspective (one must be obtained before the

1 ri is the name of rule i, symbol ⇒ (resp. �) denotes defeasible rules (resp. defeaters).
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other). Naturally, in the same set/list of antecedents, combinations of unordered
and ordered sequences of literals is possible. For instance,

r : A;B; (C,D);E ⇒ F

represents a situation where, in order to obtain F , we need to first obtain A,
then B, then either C or D in any order, and lastly, only after both C and D are
obtained, we need to obtain E. The notation ‘;’ is used as a separator between
elements in an ordered sequence, while ‘,’ separates unordered sets. In the rest
of the paper, unless otherwise specified, every time we use the word “sequence”,
we intend that the literals are ordered ; symmetrically, with the word “set”, we
intend that there is no order among the literals.

Multi-occurrence/Repetitions of Literals
From these ideas, it follows that some literals may appear in multiple instances,
and that two rules such as

r : A;A;B ⇒ C and s : A;B;A ⇒ C

are semantically different. For instance, rule r may describe a scenario where the
order of a product may require two deposit payments followed by a full payment
prior to delivery. Regarding s, consider that A is now ‘Add a tablespoon of ice
sugar’ and B is ‘Stir for 1 min’. A perfect frosting requires many repetitions of
A after B after A, for a specific number of repetitions.

Resources Consumption
Assume we have two rules,

r : A,B ⇒ D and s : A,C ⇒ E.

If we are able to derive A, B and C, then D and E are subsequently obtained.
Deducing both D and E is a typical problem of resource consumption.

Given the financial state of a customer (i.e., their pay cheque and their
monthly spending), a finance approval is sent to the customer for the requested
loan. However, that finance approval can only be used once, given the financial
situation of that customer. That is, they cannot obtain another loan with the
same finance approval. If the customer wants to apply for another loan, they are
required to obtain a new finance approval first.

This example indicates that some literals represent resources that are con-
sumed during the derivation process: if they appear in the antecedent of a rule,
and such a rule produces its conclusion, then the other rules with the same liter-
als in their antecedent can no longer fire (unless there are multiple occurrences).

Conversely, some resources are not consumed once used. For instance, a policy
at a bank may dictate that a customer has to be below 65 years old to be
eligible for a mortgage. A similar requirement may hold for a car loan. However,
a customer may apply for both a mortgage and a car loan, as neither of these
applications invalidate the fact that the customer is younger than 65 years old.
That is, the information regarding the customers’ age is not consumed when
used.
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The discussion of when a resource has to be considered consumable/non-
consumable is outside the scope of this paper. It is a duty of the knowledge
engineer to decide whether to tag a resource as consumable, or non-consumable.
For the remainder of this paper, we assume all literals to be consumable. The
treatment/derivation of non-consumable literals is the same as in SDL, and thus
something well known in the literature of SDL.

Concurrent Production
Symmetrically, we consider two distinct rules having the same conclusion:

r : A ⇒ C and s : B ⇒ C.

It now seems reasonable that, if both A and B are derived, then we conclude two
instances of C (whereas in classical logics we only know that C holds true). For
example, consider a family where it is tradition to have pizza on Friday evening.
Last Friday, the parents were unable to communicate with each other during
the day, and one baked the pizza while the other bought take-away on the way
home.

However, there exists consistent cases where multiple rules for the same literal
produce only one instance of the literal (even if they all fire). For example,
both a digital or handwritten signature would provide permission to proceed
with a request. The same request does not require permission twice: either it is
permitted, or it is not.

Resource Consumption: A Team Defeater Perspective
Sceptical logics provide means to decide which conclusion to draw in case of
contradicting information. Typically, a superiority relation is given among rules
for contrary conclusions: it is possible to derive a conclusion only if there exists
a single rule stronger than all the rules for the opposite literal.

Defeasible Logic handles conflicts differently, and the idea here is that of team
defeater. We do not look at whether there is a single rule prevailing over all the
other rules, but rather whether there exists a team of rules which can jointly
defeat the rules for the contrary conclusion. That is, suppose rules r′, r′′ and
r′′′ all conclude P , whilst s′ and s′′ are for ¬P . If r′ > s′ and r′′ > s′′, then the
team defeater made of {r′, r′′} is sufficient to prove P .

The focus remains on resource consumption and production. As such, the
questions we need to answer are, again, which resources are consumed, and how
many instances of the conclusion are derived. We start by distinguishing the two
scenarios where: (a) neither of the teams prevail, (b) one team wins. Consider

r′ : A ⇒ P, r′′ : B ⇒ P, r′′′ : C ⇒ P, s′ : D ⇒ ¬P, s′′ : E ⇒ ¬P.

In case (a), e.g., when no superiority is given, we cannot conclude for either
conclusion. Hence, the question is “Will any of the resources be consumed?”. In
case (b), we assume r′ > s′ and r′′ > s′′, and we conclude that P . How many
instances of P are produced? One solution is to produce three instances of P
and, accordingly, A, B and C are all consumed. We can instead consistently
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assume that we produce P twice, through the two winning rules r′′ and r′′′ only,
but not via r′; we thus consume B and C, but not A.

Lastly, on the perspective of the defeated rules another relevant question is:
Are D and E ever consumed? As clear, there is no unique answer. There are
consistent scenarios where the literals in the defeated rules are consumed, and
other cases where they are not.

Consider the process of writing a scientific publication for a conference. If
the paper is accepted, the manuscript resource is consumed, since it cannot
be submitted again. On the contrary, if the paper is rejected, the manuscript
resource is not consumed since it can be submitted again to other venues.

Multiple Conclusions and Resource Preservation
Consider internet shopping. As soon as we pay for our online order, the bank
account balance decreases, the seller’s account increases. Both the seller and the
web site have the shipping address and, possibly, the credit card number.

The conclusion of a rule is usually a single literal. The above example suggests
that a single rule may produce more than one conclusion, which cannot be
represented by multiple rules with the same set of antecedents. For example,
consider the rules

r : A,B ⇒ C and s : A,B ⇒ D.

In a propositional calculus, once the system derives A and B, by Modus Ponens,
we obtain both C and D. However, when we consider resource consumption,
then it is clear that only one rule can produce its conclusion, whilst the other
cannot. We tackle this problem by allowing rules to have multiple conclusions.
Thus, r and s can be merged into the single rule

r′ : A,B ⇒ C,D.

Similar to our discussion on the ordering of antecedents, we may have any
combination of ordered/unordered literals in the conclusion. In the previous
example, only after we have provided the credit card credentials, our bank
account decreases, whilst we can provide the shipping address before the credit
card credentials, or the other way around.

The notion of multiple conclusions, along with the discussion on team
defeaters, leads to another problem. Consider the two rules

r : A ⇒ B;C;D and s : E ⇒ ¬C,

where no superiority is given. Do we conclude that B or D? Moreover, what
happens if now we have ‘r : A ⇒ B,C,D’ and we establish that s is stronger
then r? Do we conclude that B and D (meaning that only the derivation of C
has been blocked by s), or will the production of B and D be affected also?

Loops
The importance of being able to properly handle loops is evident: loops play
a fundamental role in many real life applications, from business processes to
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manufacturing. Back to the login procedure, if one of the credentials is wrong,
the process loops back to a previous state, for instance, by asking the user to
re-enter both credentials.

Naturally, a system is able to properly handle loops when it can han-
dle/recognise the so-called exit conditions, to prevent infinite repetition of the
same set of events. For example, after three wrong login attempts, the login pro-
cedure may prevent the user from further attempts and require them to undergo
a retrieve credential procedure.

3 Conclusions, Related and Further Work

This work presented our recents investigations in combining sub-structural and
non-monotonic features within the same logical framework; such a logical appa-
ratus will be able to model agent planning while taking into account features
such as resource consumption, order in which resources are taken into account,
loops, etc. This is a complete novelty in the community of computational logic
and knowledge representation.

Variants of SDL have been investigated so far as a means for devising busi-
ness process traces [3,10,12]. While the idea is closely related to outline in the
Introduction that a derivation corresponds to a trace in a process, the approach
based on variants of SDL are not able to handle loops and, in general, repeti-
tions of tasks. These aspects are elegantly captured by the sub-structural aspects
presented in the paper.

Studies on light linear logic versions, with specific aspects of linearity related
to resource consumption have been devised such as light and soft linear logic
[2,4].

Applications of linear logic to problems indirectly related to business pro-
cesses such as Petri Nets can be found in [7] and in [1,16]. However, such
approaches are not able to handle in a natural fashion the aspect of exceptions.
The representation of exception would require complex rules and encyclopaedic
knowledge of the scenarios described by the processes encoded by rules/sequents.

The framework we have developed so far is already rather rich [11]. We
are able to represent the following cases: 1. ordered sequences of literals in the
antecedent with a single conclusion, 2.-(3.) ordered sequences (and unordered
sets) of literals in the antecedent with multiple ordered conclusions, 4.-(5.)
ordered sequences (and unordered sets) of literals in the antecedent with multiple
unordered conclusions.

As discussed in Resource Consumption and Multiple Conclusions and
Resource Preservation, things get even more complicated when we want to rep-
resent various nuances of resource consumption and dealing with team defeaters
at the same time. So far we have developed proof conditions to describe two
specific scenarios: (i) all, and only, the rules in the winning team defeater con-
sume the resources2 and we derive as many instances of the conclusion(s) as the

2 Meaning that the rules in the losing team defeater do not consume any resource.
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number of active rules in the winning team defeater, (ii) only some of the rules in
the winning team defeater consume resources and, consequently, conclude their
conclusion. We also formalised few different cases of when to stop the derivation
in case of conflicting rules and multiple conclusions.

We are aware that combinations of the previous cases are of interest, and that
other new cases are as well. This is part of our current research. The other part
is, naturally, in proving the formal properties of our framework. We are proving
that RSDL is semi-decidable, and even decidable when the theory is acyclic. We
think that the problem of computing the extension of a theory3 is likely to be
decidable for larger classes that pure acyclic theories.

More research is required to determine the correct boundary between decid-
able and undecidable problems for these types of hybrid combinations and to pro-
vide a full map of the computational complexity analysis of the various options.
However, the outline we discussed in this section seems to indicate that this is
not a straightforward task. In this paper, we did not address the issue of how to
model the motivational attitudes of the agents, we left the investigation of how
to extend the framework to integrate with the framework of [5,6]. Related to
this, we shall look at the problem of Business Process Compliance, in order to
determine how to employ RSDL for marking up traces of processes corresponding
to the execution of the a theory.
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Abstract. This paper presents preliminary results in the challenge of
developing decentralised strategies approaching the performances of cen-
tralised ones. Indeed, the latter is better than the former due to centrali-
sation of information. The approach studied here involves the estimation
of real node idlenesses (as known by the coordinator) from the individual
ones retained by each agent. This relation between real and individual
idlenesses is learnt using traces of execution of a centralised strategy
by optimising an error criterion. The strategy thereupon, uses online
the learnt relation and is assessed according to certain evaluation crite-
ria. The results indicate that such a relation between perceived and real
idlenesses is not a function, leading to large values of the fitting criterion.
Finally, the assessment of the strategy shows that performances are good
in terms of mean interval but unsatisfactory in terms of quadratic mean
interval.
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1 Introduction

The patrol task is well-suited for being shared in space and time by several
agents. There are a wide variety of problems that may be reformulated as a
particular multi-agent patrol task. As a concrete example, the monitoring of an
area by a swarm of drones does face the problem of coordinating them to patrol
that area in order to detect certain events. A feature of multi-agent patrolling
(MAP) is the difficulty to derive analytic results from its equations. Thereby it
appears that the only method enabling to predict its behaviour is to simulate the
local interactions of its components. Thus, the quality of a patrolling strategy
is evaluated in simulation and it is consensual that a good strategy is one that
minimises the time lag between two passages on the same place and for all places.
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 603–611, 2018.
https://doi.org/10.1007/978-3-030-03098-8_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03098-8_47&domain=pdf


604 M. Othmani-Guibourg et al.

Different types of strategies were proposed, however, few works concentrate
on the problematic of using Artificial Neural Networks (ANN) for the MAP
[2,4,7]. We propose and evaluate new strategies using not only machine learning
models, in particular an ANN based on the rectifier linear ReLU, but also a multi-
dimensional linear model. In this way, new strategies embedding these models are
introduced.

The Sect. 2 presents the background useful to understand proposed develop-
ments: the MAP and ANN types used by the strategies. Then, Sect. 3 describes
new strategies based on idleness estimation by ANN. In Sect. 4 these strategies
are analysed. Finally, Sect. 5 draws some conclusions and indicates directions for
further works.

2 Background

2.1 Multi-agent Patrolling

The MAP model consists of a society of agents noted A, able to move in a
graph noted G = (V,E) representing a discretisation of the area to patrol.
V = {1, .., N} is the set of nodes standing for the places to visit, and E is the set
of edges connecting them. At each edge corresponds a transit time representing
its travel time. At each node is associated a dynamic variable named idleness,
indicating the time elapsed since it has not been visited by any agent [3]. The
vector of idlenesses of all nodes at time t is noted It(v) and the idleness of a
node v, It(v). At the beginning of a patrolling, agents are positioned on nodes
and all idlenesses are set to 0. Finally, each time an agent arrives at a node v, it
shall decide, among the edges connecting v, the next edge to travel.

A strategy of agent is an information processing method allowing each agent
to take a decision each time it arrives at a node. Whatever the strategy consid-
ered, each agent intends actions based on its knowledge regarding idlenesses of
nodes. Indeed, agents make idleness estimates that can be produced assuming
different hypotheses:

– individual idleness: each agent considers only its own visits to update its
estimated node idleness. It corresponds to the case where communication
between agents is not possible. In the case of a mission with only one agent,
individual idleness corresponds to real idleness, also called global idleness.

– shared idleness: all agents consider visits of all agents to reset estimated node
idleness. In the case of perfect instantaneous communication between agents,
or a mission with only one agent, shared idleness corresponds to real idleness,
also called global idleness.

Among the wide family of strategies [1], two regarded as representative strate-
gies are relevant here: Conscientious Reactive (CR) and Heuristic Pathfinder
Cognitive Coordinated (HPCC). CR selects the next node to visit as the one
with the highest individual idleness in its neighbourhood. HPCC is based on
a perfect communication between agents: shared idlenesses are estimated by a
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coordinator on the basis of all paths of agents. Two methods are used: the first
one called Heuristic selects the next node to visit, and the second one called
Pathfinder chooses the path to go there [1,5].

Evaluation criteria relevant to establish aggregation measures based on inter-
val between visits for a node are the Mean Interval (MI) and the Quadratic Mean
Interval (QMI). In order to better evaluate the contribution of each agent when
the population size varies, these criteria are normalised by multiplying values by
the number of agents.

2.2 Artificial Neural Networks

ANNs are a special kind of machine learning models. Among the large variety of
ANN, single layer and multi-layer perceptrons [6,8] are composed with one or
several stacked layers of neurons, each one corresponding to a function that maps
the outputs of the previous layer with the output of the current layer. Several
kinds of functions are used. For example, the identity, the logistic sigmoid and
the linear rectifier (ReLU), f(z) = max(0, z). Each neuron computes a weighted
and biased sum of the previous layer’s outputs, which is finally passed through
its function, making up thereby the neuron’s output. When the functions are
non-linear, they provide a basis for developing an approximation of the function
to be learned.

Networks are generally optimised using gradient-descent-based methods by
minimising a cost function representing the difference between the output of the
network and its desired value [6,8]. A quite common cost is the Mean Squared
Error (MSE).

3 Strategies Based on Idleness Estimation

This section presents the design of the three strategies using an idleness estima-
tion called Heuristic Pathfinder Mean Predictor (HPMP), Heuristic Pathfinder
Linear Predictor (HPLP) and Heuristic Pathfinder ReLU Predictor (HPRP).

3.1 Formal Definition

Estimator-Based Strategies. The three strategies use an estimator based on
a trained statistical model noted m(., .): the decision-making process is carried
out first by computing an estimate of the global idleness from the trained model,
then by making the decision regarding the next node to visit with respect to this
estimate. In our context, a temporal series representing the successive idlenesses
each time an agent stands upon a node, the latter will be called an idleness flow.

Let Iat and Ît being the vectors of individual idlenesses of the agent a and
the corresponding estimated global idlenesses, respectively, at the time t. Then,
given that ∀t ∈ T,∀a ∈ A,∀Iat ∈ R

N , Ît is defined such as:

Ît = min( max(m(Iat ,θ), 0), Iat ) (1)
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where θ is the set of the statistical model’s parameters, and min and max are
component-wise functions ensuring that whatever the output of the model, the
estimation of global idleness is positive and lower than the individual idleness.

For any agent, such an estimator will output estimates of the global idle-
nesses, called estimated idlenesses, from the current individual idlenesses fed as
input. All the agents embed the same estimator, i.e. the same trained model.
This strategy can be thought of as a reactive strategy using an artefact for esti-
mating missing information regarding the area to patrol, and taking into account
the idleness of nodes and thereby implicitly the agents’ positions.

For a given scenario, the model learns to predict the global idleness vec-
tor corresponding to a current agent’s individual idleness vector. Then, agents
applies to the estimated global idlenesses the two methods described in the
Sect. 2, namely the Heuristic method to select the next node to visit and the
Pathfinder method to choose the path to go there.

However, the relation between individual idlenesses and global idlenesses may
not be a function. The following theorem presents conditions under which this
relation is not a function.

Theorem 1. Let G = (V,E) be a graph, let A be a society of agents and
consider two runs of a given strategy, arbitrarily named first and second run. If:

– in initial state, a node u ∈ V is occupied with an agent a1 ∈ A for the first
run and with an agent a2 ∈ A for the second run, a1 and a2 may have the
same agent identifier, and

– a next node v ∈ V is selected by the strategy for the agent a1 in the first run
and for the agent a2 in the second run and

– for the first run, it exist w ∈ V, w �= v that is occupied by an agent a3 ∈
A, a3 �= a1, a3 �= a2 or which has already been reached by a3 when, at time t,
a1 arrives at v and

– for the second run, no agent has reached w, when at time t, a2 arrives at v,

then the relation between, the individual idleness Iat and the global idleness It is
not a function.

Proof. At time t, the individual idlenesses for a1 in the first run and for a2

in the second run are equal: both have Iat (j) = t,∀j �= v and Iat (v) = 0. For
the first run It(w), the global idleness of w, is equal to 0 if a3 occupies it,
or equal to t − τ < t, where τ > 0 is the travel time of agent a3 from its
initial position to w, otherwise. For the second run It(w) = t. Thus, to the same
individual idleness corresponds two different values of the global idleness. Hence,
the relation between the individual idleness Iat and the global idleness It is not
a function.

Models. As indicated by the Eq. 1, for all the models studied here, the input
and output both of dimension N , stand for the vector of individual idlenesses
and the vector of estimated idlenesses, respectively.
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First, the mean model consists of a model which estimates for each node,
the global idleness as being the average of all global idlenesses of this node over
all the global idleness flows. With such a model noted Mean, an agent a ∈ A
carries out the estimation of the global idlenesses at t ∈ T as following:

∃θ = {B ∈ MN×1(R)} : m(Iat ,θ) = Mean(Iat ,θ) = B (2)

When such a model is used as global idleness estimator, the corresponding
strategy is called Heuristic Pathfinder Mean Predictor (HPMP).

When the estimator corresponds to a linear model noted Lin or Linear, the
strategy is termed Heuristic Pathfinder Linear Predictor HPLP. With such a
model an agent a ∈ A carries out the estimation of the global idlenesses at
t ∈ T as follows:

∃θ = {W ∈ MN (R)} : m(Iat ,θ) = Lin(Iat ,θ) = W · Iat (3)

with W being the model’s weight matrix. Training such a model corresponds to
figure out the W minimising a certain distance between m(Iat ,θ) and It.

Finally, an MLP composed with H hidden ReLU layers as described in the
Sect. 2, is termed ReLU model, while its corresponding strategy is called Heuristic
Pathfinder ReLU Predictor (HPLP). With such a model noted MLPH

ReLU , an
agent a ∈ A carries out the estimation of the global idlenesses at t ∈ T as
following:

∃θ = {Wh,Wout ∈MN (R) : h ∈ [|1,H|]} :

m(Iat ,θ) = MLPH
ReLU (Iat ,θ)

= Wout · ReLU( WH · ReLU( WH−1 · ReLU(. . .
W2 · ReLU( W1 · Iat ) ) ) . . .) ) )

(4)
with ReLU being the element-wise ReLU activation, and ∀h ∈ [|0,H|], Wh the
weight matrix of the layer h.

4 Experiments and Results

4.1 Scenarios and Training

Three different graphs were selected to evaluate the strategies: the maps Islands,
Grid and A, as shown in the Fig. 1 [5]. For each map we tested the strategies CR,
HPCC and the idleness-predictor-based strategies were trained from HPCC’s
simulation and tested. The tests were performed over population sizes of 5, 10,
15 and 25 agents and for each size we selected 100 random starts, also called
runs. For each start, each strategy was tested over 3000 periods and, in average,
an agent visits 650 nodes during one execution of 3000 periods. In doing so, the
sequences used to train the models have approximately a length of 650 idleness
vectors. For each scenario we trained 8 statistical models by minimising the
MSE: a mean-based model, a linear model, three Multi-layer Perceptron (MLP)
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with sigmoid units and three different artificial neural networks with rectifier
linear units (ReLU): an architecture with only one ReLU layer simply termed
ReLU, another one with one hidden ReLU layer and the output layer being also
a ReLU layer, termed ReLU Output (ReLUO), and finally an MLP with ReLU
activation termed ReLU MLP. The data base was divided into a training base
and a validation base with 80% of data in the training base. The training results
indicates that the lowest MSE are obtained for a single layer of linear or ReLU
neurons. Strategies based both on these networks and on the mean were selected
for assessment.

Fig. 1. Graphs used during assessment.

Fig. 2. Normalised QMI of the evaluated strategies in ordinate for the three maps
w.r.t. the population sizes of agents in abscissa.
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Fig. 3. Normalised MI of the evaluated strategies in ordinate for the three maps w.r.t.
the population sizes of agents in abscissa.

4.2 Performance Results

To evaluate their performances, the studied strategies were tested and compared
with CR and HPCC using normalised MI and QMI as evaluation criteria.

Figure 2 show all the results for the topologies Islands, A and Grid for the nor-
malised MI. Not surprisingly, HPCC always outperformed all the others strate-
gies on all the maps and for all the population sizes of agents. First, except
for the map Grid, HPLP overwhelmingly outperforms the reactive strategy CR,
while on the map Grid it is slightly better than CR. Unlike the others maps,
this little difference can be explained in considering that, Grid being a topol-
ogy where the nodes are uniformly distributed, the strategy CR is well adapted.
However, HPLP remains better than CR on this map, except for the population
size of 15 agents where they are approximately equal. Then, except for the map
Islands, HPLP has always better performances over this criterion than HPMP.
On that map, the performances of HPLP are approximately equal to the ones of
HPMP for 5 and 10 agents. However, for 15 and 25 agents the former is worse
than the latter. Results on Islands for 15 and 25 agents, on A for 5 and 15 agents
and Grid for all the population sizes, seem to show that agents do not benefit
from the presence of each other. Indeed, unlike HPCC which has a decreasing
or stable normalised MI, it increases for HPLP. For the map Islands, HPRP is
the best idleness predictor strategy over the normalised MI, except for 10 agents
where it is approximately equal to HPLP and HPMP. On that map, it is also
slightly better than HPCC for 5 agents. For the map A, HPRP is by far the best
strategy. In average it is better than HPCC of 74 periods. Finally, as previously
stated while comparing HPLP and HPRP to it, HPMP is most of the time the
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worst idleness predictor strategy and for the map Grid it is even worse than CR
of 39 periods in average. The two models trained and used as a part of the two
strategies HPLP and HPRP are thereby better than HPMP.

Figure 3 shows the results for the normalised QMI. Unlike the results of MI,
on the three topologies the idleness predictor-based strategies are worst than
HPCC and CR, the coordinated and the decentralised ones, respectively. For
Islands, the HPRP is the worst strategy, while for the maps A and Grid, it is
HPMP, which is the worst. For the latter maps, HPLP is incomparably bet-
ter than the other two idleness predictor strategies with a difference in aver-
age with HPRP of 574 for A and 1161 periods for Grid. However, HPLP has
worse performances than CR of 1522, 310 and 211 periods on the Islands, A
and Grid, respectively. Finally the idleness predictor-based strategies show bad
performances over the criterion QMI. QMI as quadratic mean takes better into
account the difference of time intervals between the nodes and thereby measures
the tendency of nodes to be equitably visited. A node with a long interval will
have a little impact on MI, while it will have a large one on the QMI due to its
quadratic growth.

Thereupon, the results show that good performances in average i.e. over MI
are balanced by the ones of QMI. These results show the tendency of idleness
predictor agents to visit a particular inferred set of nodes at the expense of the
other ones.

5 Conclusion and Perspectives

We proposed and evaluated new strategies for the MAP. Those strategies are
based on learning the relation between individual and global idlenesses. The
assessment of selected strategies based on estimations of global idlenesses using
learned model indicates good results in terms of MI, but also unsatisfactory
results in terms of QMI.

Theorem 1 indicates that there may be no significant expectation for approxi-
mation improvement. Data analysis methods should be applied in order to check
the presence of conditions implying that the relation between individual and
global idlenesses is not a function. Other future research will aim at modifying
the strategies in order to improve their performance in terms of QMI. One track
is to consider some randomisation process when exploiting the estimation of
global idlenesses by the model. For example, defining a probability distribution
with Ît as a mean and the strategy could sample in this distribution, idlenesses’
estimate. The global idleness approximation problem could be further investi-
gated with other structures of ANN and better learning algorithms. Finally, it
should be noted that there is a large set of possibilities for using ANN to try
to learn some information from centralised strategies that is useful for decen-
tralised strategies. For example, nodes sequences of centralised strategies could
be learned using Long Short-Term Memory ANN architectures and directly used
in a decentralised strategy. This kind of approach could be compared to the app-
roach proposed here.
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A Multi-agent Simulator Environment
Based on the Robot Operating System for
Human-Robot Interaction Applications

Abstract. This paper describes a simulator environment for humans to
direct a team of independent drones by allowing humans to issue high-
level goals to the teams or drones. Given a goal, the environment will
generate plans for the drones and monitor their execution while attending
to humans requests (e.g., aborting a goal, introducing a new goal). For
this reason, the environment includes two specific modules, a planning
module and an execution and monitoring module, besides the modules
for simulation and control of drones. The environment is implemented
on the Robot Operating System (ROS), a well-known framework for the
development of robotic applications, that facilitates the communication
between its components. Experiments are included to highlight the appli-
cability of the environment.

1 Introduction

Human-robot interaction (HRI) is highly studied [7,10,15], but existing work
has primarily focused on interacting with a single robot. Interacting with a team
of robots has just been explored [3–5,11,13,17]. This issue is exacerbated by the
advent of low-cost and more capable drones1. We expect to see teams of drones
working with minimal human supervision in the near future, greatly augmenting
human capabilities [3,11,13,17]. These teams can be made maximally efficient if
a lone human operator can direct them through well-designed two-way commu-
nication and appropriate control algorithms that abstract and simplify control.
While control of singular drone is well-studied, the ability to control a drone
team by a single human is limited.

The present research is developed in the context of supporting future human-
drone team scenarios [1,2]. The research works from the vision that, in the near
future, semi-autonomous drone teams can be directed by a single operator in the
field. Such an operator needs to maintain situation awareness [8], that is, s/he
must be safe in an unsafe environment and have a clear understanding of what
is happening nearby.

1 We use the term “drones” in a generic sense to refer to unmanned robotic systems.
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In this paper, we present a preliminary design and implementation of a sim-
ulated environment for a human operator to interact with a team of drones.
The environment for Controlling Teams of Drones (eCTD), is a part of a larger
project aimed at addressing issues arose from hybrid human-drone team coor-
dination and planning. For this purpose, eCTD also includes a planning module
and an execution monitoring module that enable human operators to issue high-
level commands to the drones. eCTD is implemented on the Robot Operating
System (ROS) [18], and the drones are simulated using the high-fidelity robot
simulator Gazebo [12]. Our system uses the hector quadrotor package [14] for
the modeling, controlling, and simulation of the drones. The interaction between
the system and humans (via wearable devices) is implemented over WebSockets.
Our implementation is modular and can be extended or easily adapted to other
packages available to ROS. For example, the hector quadrotor package could
be changed if the system is to be used with other robots; the planner used in
the planning module could be replaced by any planning system that uses the
Planning Domain Description Language (PDDL) as input language.

The paper is organized as follows. Section 2 reviews the basic of the Robot
Operating System (ROS) and basic terminologies in planning. Section 3 describes
in detail the design and implementation of eCTD, including the ins and outs
between the system and the clients. Section 4 shows an example scenario that
demonstrates the ability of eCTD to control and coordinate multiple drones.
Section 5 summarizes the current state of eCTD and suggests the future work.

2 Background

2.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source framework designed
for writing robotics software [18]; it is considered to be the de facto standard
for robot programming [16]. ROS uses a distributed, peer-to-peer architecture,
where the components are built and run by a number of small tools [18].

Fig. 1. Conceptual overview of ROS

Figure 1 shows a sim-
ple ROS setup with one
master. A ROS Master
provides registration and
lookup services for ROS
nodes, enabling them to
locate each other. It hosts
a parameter server, a
shared dictionary that
provides run-time param-
eter settings. It is a part of roscore, which is a set of prerequisites to run a
ROS-based system.

A ROS node (A1, A2, and B1 in Fig. 1) is a process that performs compu-
tation. ROS nodes can locate a ROS Master, but they are generally unaware
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of each other’s existence. They rely on client library2 to communicate with the
ROS Master and other nodes. A collection of nodes is organized in a package. A
package is the most atomic unit for building and releasing software in ROS. In
Fig. 1, nodes A1 and A2 are in package A while node B1 is in package B. Notice
that even nodes in the same package could be run on different networks.

ROS provides two methods for nodes to communicate with each other directly
(except for some negotiation with the ROS Master): topic and service. Topic
could be viewed as a message bus. Nodes that publish data to a topic are called
publishers and nodes that subscribe to receive messages from a topic are called
subscribers. Each node can be a publisher and/or a subscriber to multiple topics.
In Fig. 1, node A1 publishes, node A2 both publishes and subscribes, and node B1
subscribes to the topic named T1. Service could be viewed as a remote procedure
call (RPC) request/response interaction. A node that provides a service is called
a service server, and a node that makes a request to a service is called a service
client. Service is different from topic is that there could only be a single service
server for a given service. In Fig. 1, node A1 is a service server, while node B1
is a service client for the service named S1.

2.2 Planning Engine and Planning Domain Description

The planning engine employed in this project is CpA [19], one of the state-of-
the-art conformant planning system. It is responsible for generating plans for
drones given the high-level goals from a human. CpA uses the Planning Domain
Definition Language (PDDL) [9] to encode its inputs, i.e., planning problems.

There are two main parts in a planning problem: a domain definition and a
problem definition. The domain definition specifies a set of fluents that encode
the state of the world and a set of actions that the drones can execute. For exam-
ple, the fluent TookOff (D) denotes that the drone D has been taken off. The set
of actions that the drones can execute describe their effects (e.g., changing loca-
tion of a drone, whether a drone is in the flying mode, etc.). In our experiments
in Sect. 4, the following actions have been used:

• AddLocation(L): Specify a location L and set it as unoccupied
• FlyTo(D,L1, L2): Fly drone D from location L1 to location L2

• TakeOff (D): Take off drone D

A fluent literal is either a fluent or its negation. A state is a collection of
fluents of the planning domain. Given a state s and a fluent f , f is true in s if
f ∈ s; otherwise, f is false in s.

The problem definition specifies the initial state of the world (e.g., the loca-
tions of the drones, the active regions, etc.) and the goals (e.g., D1 needs to be
at a location L1 specified by the coordinates (x1, y1, z1)). In the current imple-
mentation, the initial state is given by a set of fluents and a goal is given by a
conjunction of fluent literals.

2 The list of ROS client libraries: http://wiki.ros.org/Client%20Libraries.

http://wiki.ros.org/Client%20Libraries
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3 eCTD: Design and Implementation

Fig. 2. Detailed overview of eCTD

A detailed overview of
eCTD is shown in Fig. 2.
We have introduced sev-
eral services (the boxes
with dashed-line bound-
aries inside ROS), topics
(the horizontal cylinders),
a drone action server
(the box with blue back-
ground), a drone con-
troller (the box with
orange background), and
a high-level planning and
execution monitoring com-
ponent (the big green-
dashed box) which con-
sists of a planner, an
executor, and a state database (or SD, for short).

Section 3.1 describes the clients of our system and the means for their inter-
action with other components. Section 3.2 explains how the state of the world
is managed in our system, and how it is used to form a problem definition for
a planner. Section 3.3 explains what happens when a goal request is received
from a client, how a plan is made, and what feedback is returned to the client.
Section 3.4 explains how drone actions are managed and executed.

3.1 Clients, Services, and Topics

Clients: In top-level view, the diagram in Fig. 2 consists of two parts: one that
is inside ROS, and the other that is outside (the clients and the planner).
Communication between systems inside and outside of ROS is facilitated by
rosbridge suite3 [6] which enables the implementation of components inside
ROS to stay unchanged. Those components could communicate with non-ROS
components via WebSocket as if they were inside ROS. As a result, the clients
of our system could be anything that can communicate via WebSocket. For our
final project, the clients will be wearable devices and a game engine.

Services: In Fig. 2, the dashed boxes marked with S1 to S5 inside ROS are
services implemented using ROS Service. They act as an interface between ROS
and non-ROS systems. The description of each service is as follows:

S1 GetPlan Service is responsible for generating a plan for the drones given the
current state of the world and the goals from the client. It takes the problem

3 https://github.com/RobotWebTools/rosbridge suite.

https://github.com/RobotWebTools/rosbridge_suite
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description generated as a string from SD and sends to the planner. It then
receives a plan (a sequence of actions) as an array of strings from the planner,
and returns it to SD.

S2 GetState Service allows the clients to manually ask SD to publish the infor-
mation about the current state of the world on the State Topic (see below).

S3 LocationAdd Service is responsible for updating the location table, a part of
SD, by taking a pose from the client, generates a unique location ID for the
pose, stores the mapping of them, and returns the ID to the client.

S4 LocationRemove Service is responsible for removing all objects associated to
a given location ID from the state of the world and the location table.

S5 SetGoal Service is responsible for the execution of requests from clients, i.e.,
for achieving the goals issued by humans. It creates an executor thread for
every request, and passes a goal and a feedback topic name from the client
to the executor thread. Thread is used for possible concurrent execution of
various requests from the clients.

Topics: ROS Topics are provided for the clients to track the activities of the
system in almost real-time. eCTD includes three topics which are marked with
T1 (State), T2 (Feedback), and T3 (Pose) in Fig. 2.

T1 The State Topic contains the state published by SD. The published state
consists of a set of fluents described by the planning domain and a map of
location IDs used in the fluents to real poses.

T2 The Feedback Topic contains the feedback from an executor. Different execu-
tors could publish feedback to different feedback topics depending on the
feedback topic name provided by the clients. Details of the feedback will be
explained in Sect. 3.3.

T3 The Pose Topic contains the current pose of a drone. The pose consists of
a position and an orientation. Each drone controller publishes the pose to its
own pose topic.

3.2 The State Database and the Planning System

The state database (SD) and the planning system in Fig. 2 use the planning
domain described in Subsect. 2.2 to generate plans for drones given goals from
the clients. The main purpose of SD is to maintain the information about the
current goals (from potentially different clients) and the current state of the
world (see Subsect. 2.2).

SD has two important structures: the location table and the status table.
The location table abbreviates poses to location IDs which we use in our fluents
and is implemented as a map between location IDs and poses. The status table
stores the goals from the clients and for each goal, a plan and the progress of
the execution of the plan. The status table helps deciding whether re-planning
is necessary and is implemented as a map between executor IDs and triples of
goals, plans, and their execution progresses. Because our system needs to support
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concurrent executions, the implementation of the maps has to be thread-safe.
The current system uses libcuckoo4 to provide lock-free and thread-safe maps.

SD could be updated by an executor and a request from LocationRemove or
LocationAdd services as described in Subsect. 3.1. Once SD has been updated,
the content of SD will then be published to the State topic and the re-planning
procedure will start if necessary.

Any planner using PDDL as its input can be used in our system. For language
independence, the planner is placed outside of ROS. The communication between
it and SD, which is inside ROS, is facilitated by rosbridge suite. Our current
system has been integrated with CpA planner [19].

When a goal is issued by a client, a problem definition is generated from
SD and the goal. Most of the implementation to create the problem definition
involve string manipulation and is omitted for brevity.

3.3 Execution Monitoring

The executor is in the center between the client, SD, and the drone action server.
The main responsibility of the executor is to monitor the execution of the plan
and send feedback updates to the client. When it is first created, it will ask for a
unique ID from the status table. After it receives its own ID, it will request for a
plan from SD by sending its ID and the goal to SD. The executor ID is used by
the status table, as described in Subsect. 3.2. After the executor gets the plan, it
will execute the actions sequentially. While the actions are being executed, the
executor will periodically check with SD if the plan for its goal has been changed
(e.g., human decides to cancel the mission, some action fails). If the plan has
been changed, it will abort the current plan execution, ask for a new plan, and
execute the new plan. If a drone action needs to be executed, it will be sent to
the drone action server for execution (see Subsect. 3.4).

Fig. 3. Feedback status state machine

The feedback message pub-
lished to the client through
Feedback Topic contains the
information pertaining to the
execution status of a certain
action and the executor ID.
There are a total of seven sta-
tuses: three being intermedi-
ate statuses and four being
terminal statuses. The state
machine showing the transi-
tions of the feedback statuses is shown in Fig. 3. The white boxes represent
the intermediate statuses while the blue boxes represent the terminal statuses.

4 https://github.com/efficient/libcuckoo.

https://github.com/efficient/libcuckoo
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The description of each status is as follows:

• STATUS PENDING: The plan has not yet been made.
• STATUS ACTIVE: The plan is being executed. The detail of the action being

executed is supplied in the message.
• STATUS REPLANNED: The plan has been changed.
• STATUS REJECTED: The plan for the given goal could not be made. No

action has been executed.
• STATUS PREEMPTED: The action executed was interrupted by other plan

execution.
• STATUS ABORTED: Some errors have occurred while the plan was being

executed. A description is supplied in the message.
• STATUS SUCCEEDED: The goals have been satisfied.

3.4 Drone Control and Simulation

This section describes the Drone Action Server, Drone Controller, Simulated
Drone Model, and Robot Simulator components shown in Fig. 2. Together, they
are responsible for low-level drone operations. For each drone in the system, an
instance of the drone action server, drone controller, and simulated drone model
is created. We use hector quadrotor package for the simulated drone model
and Gazebo for the robot simulator. We implemented a simple PID control for
the drone controller.

The drone action server is implemented using actionlib5. It enables the
executor to monitor the execution of an individual action, whether the action
has been executed successfully, has errors, or has been interrupted.

Currently, our drone action server provides three actions: landing, pose, and
takeoff. All of the drone actions are parameterized with the drone ID, the loca-
tions, and/or the pose or the height. Their effects are as follows:

• landing action: move the drone to a predefined height above ground and
disable the motors.

• pose action: move the drone to a given pose. This action assumes that the
motors have already been enabled.

• takeoff action: enable the motors and take off the drone to a predefined height
above ground.

4 Experiments

Due to space limitation, the detail of the experiments could be found in https://
www.cs.nmsu.edu/∼ppianpak/2018-PRIMA/full.pdf.

5 https://github.com/ros/actionlib.

https://www.cs.nmsu.edu/~ppianpak/2018-PRIMA/full.pdf
https://www.cs.nmsu.edu/~ppianpak/2018-PRIMA/full.pdf
https://github.com/ros/actionlib
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5 Conclusion and Future Work

In this paper, we described an environment for humans to direct a team of
independent drones by providing the means for humans to communicate with
the drones: humans can (i) issue high-level goals to the drones and (ii) receive
feedbacks from the drones (e.g., the goal is not attainable or has been successfully
achieved, etc.). The environment is implemented on the Robot Operating System
with components specifically developed for planning and execution monitoring. It
can handle multiple requests concurrently. We included experiments highlighting
the capability of the environment in these aspects.

eCTD will be employed as the base for our quest in the design and development
of wearable devices that allows a single human to control multiple drones at the
same time. This will be our focus in the immediate future.
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Abstract. Signage systems are installed in large facilities, such as airport
passenger terminals, to help users easily move through the facility. Simulation
systems for evaluating signage systems proposed so far could evaluate only
information message and location arrangement from the three essential com-
ponents of signage system design, which are information message, location
arrangement, and expression form. We created a model to represent the sign
selection and information acquisition behavior of pedestrian agents by intro-
ducing the concept of attractiveness, which can describe expression form. This
simulation makes it possible to more clearly discern the effectiveness of signage
system designs.

Keywords: Signage system design � Expression form
Agent-based simulation � Large facility

1 Introduction

A signage system is defined as a whole system of various signs and the content of the
signs mutually connected in a unified way to systematically provide useful information
about the facility [1]. The evaluation of a signage system is very critical for the design,
but it has been evaluated only from a qualitative point of view, mainly using a checklist
concerning the requirements for the signage system [2]. Since it is usually difficult to
revise a signage system after its installation, a simulation model to dynamically and
quantitatively evaluate the flow of pedestrian traffic and the overall signage system
before installation is needed [3–6].

A pedestrian agent simulation is considered to be effective for designing pleasant
walking spaces in commercial facilities or bustling spaces, including large facilities [7].
Wayfinding plays a key role in the pedestrian agent model. The previous related
researches on wayfinding [8, 9] have shown that “attention” and “interest” of users are
essentially related to pedestrian route selection behavior.
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The important attributes for developing and evaluating a signage system are
information message, expression form, and location arrangement [1]. By combining
these three attributes, facility managers can change the degree of attention or interest,
depending on the pedestrian types and behavior history. It is important to consider also
the concepts of simplicity, clarity, consistency, continuity, and systemicity in the
expression form of a signage system [1]. According to public transport passenger
facility guidelines [10], so far they have only focused on the simplicity and clarity as
the elements of expression form. Airport users with different attributes probably want
information different from that wanted by other users and probably perceive this
information in a different way.

The purpose of this study is to develop a simulation system to evaluate signage
system design quantitatively from a pedestrian’s dynamical point of view before
installation and to support decision-making for design and implementation of signage
system using the three attributes mentioned above. The simulation system developed so
far [11, 12] considered only information message and location arrangement. In this
study, especially by considering expression form, as well as information content and
location, we developed a model to represent the behavior by which pedestrian agents
choose one sign among multiple signs and conduct scenario analyses to evaluate the
model. To model the expression form, this paper introduces the concept of sign “at-
tractiveness,” which to our knowledge has not previously been incorporated into such a
model.

2 Model

2.1 Environmental Model

The environmental model is composed of cells that pedestrian agents move through,
nodes that are destinations of moving agents, and edges that are paths connecting the
nodes. Figure 1 provides an example of an environmental model. Each cell has Node
Type as a parameter as shown in Table 1.

In this model, we define a connection between nodes as an edge, which represents a
route. Each pedestrian agent follows routes to move between facilities.

Fig. 1. Environmental model: points represent nodes and lines represent edges.

622 E. Shimada et al.



2.2 Sign Model

The sign model consists of coordinate as sign(x, y, floor), sign number as signFid,
display orientation as signDirection(sightx, sighty), range of angle as signTheta, dis-
tance to convey information as signR, attributes of expression form as signPropertyset
and signType. SignFid is divided into two types: areaSign and facilitySign. Each sign
has an information message, which has the following five features: category infor-
mation, area information, steps to need, route to a destination and facility information.

2.3 Pedestrian Agent Model

Pedestrian Agent Model’s Attribute. The pedestrian agent model is composed of a
coordinate of agent, the area of coordinate, the angle from signs, the distance from
signs, a list of steps and facilities, the probability recalling each category as a desti-
nation, and the set of categories of facilities the agent wants to go to before boarding. In
order for the agent to obtain information from the signs and select a facility as the next
destination, 11 variables are required to express goal category, properties’ weights,
attractiveness set, area information, goal area, route information, facility information,
facility list, facility utility, facility preference and goal facility.

Setup of Pedestrian Agent Model. The pedestrian agent model is set up in four steps.
Step 1: an agent determines the flight to board. Step 2: the airport arrival time, check-in
time, security check/departure inspection time, and flight time are registered in the
schedule list. Step 3: based on the recall probability of each category, facilities to be
used before flight departure are registered. Step 4: the attractiveness of each sign is
calculated from the attribute related to the expression form of the sign and the degree of
preference of the agent with respect to the attributes and times registered in the list.

Acquiring Information. The agent can probabilistically read the sign depending on
the sign’s attractiveness, if a sign is located inside the pedestrian agent’s field of view
and the agent is inside the sign’s information delivery range (Fig. 2).

Attractiveness. We introduce the concept of sign attractiveness to the pedestrian agent
model in this paper. Attractiveness represents the degree to which any sign attracts an
agent. There are two purposes for introducing attractiveness.

Table 1. Node types

Node type Description

Waypoint Passage point on the route for agents to avoid obstacles
Procedural
facility

Facility that agents must use before boarding in the environmental model

Commercial
facility

Facility that each agent uses according to his or her purpose in the
environmental model

Goal point Point at which an agent disappears
Starting point Point at which an agent appears
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The first is to augment expression form, which is one of the three essential com-
ponents of the signage system design. Attractiveness is perceived more uniquely by
each pedestrian agent making a decision based on the expression form and his or her
state. Attractiveness expresses several attributes related to the expression form and the
relationship between these attributes. This relationship, even if the expression form
changes from sign to sign, helps maintain continuity throughout the signage system,
and agents can take consistent actions using attractiveness cues. For example, suppose
that a pedestrian agent transfers to domestic flights at the airport, follows red markings,
and sees some changes in the expression form other than color, such as a decrease in
character size or a decrease in sign clarity. The agent can continue to take consistent
actions because the color provides continuity in the signage system.

The second purpose is to express the sign selection behavior according to the
characteristics of agents’ response to the expression form. Previous decision making
models did not account for the difference in pedestrian agent characteristics with
respect to expression form. In these models, agents who see the same sign obtain the
same information, so the behavior of the agents with regard to the expression form is
similar. We can express different pedestrian behavior depending on agent character-
istics by introducing attractiveness. For example, it is possible to express agent
behavior where agents cannot acquire information because multilingual notation is
lacking in a sign and agents are more likely to approach signs having a format that they
saw before.

Attractiveness is calculated as the selection probability of the agent’s behavior with
the multinomial logit model. In introducing attractiveness, the sign selection behavior
consists of two steps. First, for each sign, the utility for the sign is calculated based on
the respective sign parameters and agent parameters. Next, based on the calculated
utility, the selection probability of the sign, which defines attractiveness, is calculated.
The selection probability that information can be acquired from the sign and the
amount of information an agent can obtain varies according to the attractiveness. The
attractiveness model allows us to evaluate policies that consider differences in the
characteristics of agents concerning the expression form. To construct the attractiveness
model, we first select the attributes that represent the expression form. These attributes
are specified according to the purpose of establishing a signage system by facility
managers.

Fig. 2. Agent’s visual recognition range and sign’s information delivery area
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Pedestrian Agent Decision-Making. When selecting a commercial facility, an agent
makes a decision in multiple stages (Fig. 3). First, the agent selects a category by
choosing one category randomly from its category recall set, and the selected category
is assigned to the goal category. Second, the agent selects an area by choosing one area
randomly from the acquired area information that satisfies the goal category. Third, the
agent selects a commercial facility. Then, the total steps spent at a facility and steps
needed to move from the current position to the commercial facility are estimated and
compared to the steps remaining until the scheduled time of arrival at the procedural
facility. If the agent has the facility information that satisfies the goal category in the
goal area, and sufficient steps are available, the procedural facility is registered in the
facility recall set. The utility value (U) for each facility included in the facility recall set
is calculated by the expression: Us ¼ cns þ d timens, using the preference for the facility
and the transit time from the current position to the facility. Then a commercial facility
as a destination is selected from the facility recall set using the multinomial logit model.

Pedestrian Agent Walking Behavior. The walking behavior of the agent changes
depending on the presence or absence of route information, the presence or absence of
the target facility, and the current position. The target node is determined depending on
the type of walking behavior: walking according to the route information, walking with
no purpose, and random walking in a specific area or in general. A pedestrian agent
searches the eight cells adjacent to its current position and enters the cell that is along
the shortest route to the destination node. Then the agent updates its coordinates to
match the new cell.

3 Simulation Experiment

3.1 Experimental Condition

We refer to the location arrangement of the signs at the Haneda Airport International
Passenger Terminal (Fig. 4) as a prototype of the model.

The environmental model represents a virtual airport passenger terminal 255 � 570
cells (where each cell is 0.5 m � 0.5 m), divided into five areas: before-check-in area,
after-check-in area, security-inspection/departure-examination area, after-departure
right area and after-departure left area. In this experiment, a signage system is
placed in two areas, before-departure and departure-floor. Signs 1 through 5 have only
area information and indicate the direction to each area. Signs 6 through 9 have
information on the area and facilities and describe the routes to destination facilities.

Fig. 3. Steps for selecting commercial facility destinations
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The model has 18 commercial facilities, which are divided into eight categories such as
restaurant, phone, exchange, ATM, and so on. The pedestrian agent population is
5,000, divided into five agent types representing different responses to the sign
expression form. The pedestrian agents are generated based on the flight schedules of
Haneda International Airport from 8 a.m. to 12 a.m., which is one of the busiest periods
of the day. We conducted about 20,000 execution steps in each simulation, corre-
sponding to 5.5 h in real time.

3.2 Setting of Attractiveness

To verify the effectiveness of attractiveness model before developing actual data, we
assumed three attributes, for example, font size, amount of information, and color.
First, with Eq. (1), we calculate the utility of the sign (signi) to the pedestrian agent
(agentn):

Ain ¼ b1n x1i þ b2n x2i þ b3n x3i þ ain; ð1Þ

where bkn are the importance of each factor k for an agent, xki is the sign’s ki attribute
value, and ain is the sign’s error term for agentn. Then we simulated selection behavior
by classifying the utility of each agent in five typical types, as shown in Table 2.

Agents of each type react in a different way from other different type agents. Using
scenarios, we can see how facility user types react. The uneven setting of types C and D
can be expected to reveal more clearly the effectiveness of the attractiveness model.

Fig. 4. Location arrangement of signs at an airport terminal.

Table 2. Agent utility types and values

Type Utilities set for pedestrian agents
b1 b2 b3

A Normal random number
–N (0.2, 0.52)

Normal random number
– N (0.1, 0.752)

Normal random number
– N (0.1, 0.252)

B Normal random number
– N (0.2, 0.52)

Normal random number
– N (0.1, 0.252)

Normal random number
– N (0.1, 0.752)

C 1 1 0
D 0 0 1
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3.3 Scenario Analyses for Variation in Expression Form

We generated agents of each type and verified four scenarios for sign expression form
by setting the values of the three attributes representing expression form (Table 3).

Facility signs in scenario 2 had more attributes of expression form than area signs.
Since agents easily acquire information in areas that match their own characteristics,
they will not get lost before arriving at the destination facility. In scenario 3, even after
getting information from a sign, an agent might forget information while walking and
be unable to follow signs continuously because it encounters a sign with low utility,
and they cannot acquire information. We conducted 10 trails for each scenario and
analyzed relationships between the amount of information acquired and signs in each
scenario. Each dot on each graph expresses one execution result. The simulation results
show how the signage system can work for each type of agents to reflect the infor-
mation acquired based on attractiveness (Fig. 5).

By comparing the walking paths of the agents (Fig. 6), we see that type C and D
agents took different routes. This shows that attractiveness changes by devising dif-
ferent expression forms, and this influences the paths taken by the agents.

Table 3. Values of each sign attributes for each scenario
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4 Conclusion

In this paper, we proposed an agent based model for designing signage systems that
considers the expression form of signs, and developed an agent based simulation tool
for a large facility to quantitatively evaluate a signage system before its installation in a
specific facility. We modeled the expression form by introducing an attractiveness
index that represents the probability of users selecting a specific sign and obtaining
useful information from it. Then, we verified its effectiveness of the attractiveness
model by scenario analyses with four typical agent types applied to a virtual airport
terminal. In order to apply the proposed model to a specific real-world situation, it is
necessary to collect behavior data for sign use and facility selection by pedestrian
agents in an actual large facility and estimate the parameters for each attribute of
attractiveness.

Fig. 5. Amount of information acquired

Fig. 6. Heat maps of agent walking routes: (a) type C and (b) type D.
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Abstract. Estimating the number of people who travel by a partic-
ular route (route traffic) is an important task for multi-agent simula-
tions in the transportation field. Previous studies have used the traffic
count to estimate the route traffic. We propose a new method that uti-
lizes the staying population (stay count) in addition to the traffic count.
With experiments using synthetic data, we demonstrate that the pro-
posed method achieves a 19.85% smaller error rate than the conventional
method when the traffic count’s observation is incomplete. In addition,
we analyze real-world data.

Keywords: Traffic estimation · Crowd simulator
Crowd measurement

1 Introduction

Multi-agent simulations have been widely used for studying traffic congestion
and crowd security. For example, Helbing et al. simulated panic situations to
understand human behavior during evacuations in crowd disasters [3]. As another
example, Yamashita et al. used a crowd simulator to make a pedestrian guidance
plan for a fireworks festival [9].

The results of a simulation depend heavily on its parameters. Determining
such parameters as time, origins, and destinations of agent movements has a
critical influence on whether the road will become congested. After estimating
the number of people who are traveling by a particular route (route traffic), it
can be used as the parameters of crowd simulations. So we estimate the route
traffic from observations.

To estimate the route traffic, previous studies (e.g., [8]) used the observation
values of the number of people who are passing through a particular directed
border (traffic count). In this research, we propose a method that estimates the
route traffic using both the number of people who stay at a particular area
(stay count) and the traffic count. The traffic count can be measured by video
recordings [6], IC cards at the ticket gates of stations, or infrared sensor data
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 630–637, 2018.
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at the entrance of shops. On the other hand, the stay count can be measured
by fixed-point cameras or by the operational data of mobile phones [7]. Since
the traffic count might be more difficult to obtain in some places, our method
is effective because it can handle multimodal data. Our proposed method uses
the relationship between the route traffic and the stay count at the origin and
destination areas of the route and estimates the route traffic that matches both
the observed traffic and stay counts. Since solution constraints are added, the
estimation accuracy is expected to improve.

2 Preliminaries

Road Network and Route. We represent a road network with areas and
directed borders. Two adjacent areas share one border. The m-th area is denoted
as vm with m ∈ {1, · · · ,M}, and the �-th directed border is denoted as e� with
� ∈ {1, · · · , L}. Note that one border has two directions for each side of the
areas. Consider N people who move from one area to another. Let the number
of people who passed directed border e� during the time period between t − 1
and t be Xt,� (traffic count) with t ∈ {1, · · · , T}, and let the number of people
who are staying at area vm at time t be St,m (stay count) with t ∈ {0, · · · , T}.
The road network we used in this paper is illustrated in Fig. 1.

Let the i-th route be ri with i ∈ {1, · · · , I}. The k-th element of ri is repre-
sented as area ri(k), where k ∈ {1, · · · ,Ki}. Then let the n-th person’s trajectory
be fn with n ∈ {1, · · · , N}. The t-th element of fn is represented as route fn(t)
by which she moves during the time period between t−1 and t. Because moving
takes time, the desired trajectory may be divided into many routes of multiple
time periods. If she does not move by any route, fn(t) = ∅. Finally, let the num-
ber of people whose trajectory fn(t) = ri be route traffic Yt,i. In this research, we
estimate route traffic {Yt,i}t,i with t ∈ {1, · · · , T}, given {Xt,�}t,� and {St,m}t,m.

Relationship Between Traffic and Stay Counts. Traffic count Xt,� is
observed for a specific time period, and stay count St,m is observed at a specific
time. For a correspondence between both observations, we use the change in stay
count Dt,m = St,m − St−1,m. If we can observe the traffic count through all the
directed borders connected to area vm, the stay count will be identical as the
difference between the number of people who flow into the area and the number
of people who flow out of it. Since no information is added based on observa-
tions of the stay count, the estimation accuracy will not improve. Therefore, we
improve the accuracy using the stay count under a situation where observation
of the traffic count is incomplete. The relationship between these variables is
illustrated in Fig. 2.

3 Conventional Method

In the communication field, a method has been developed for route traffic estima-
tion [10,11], which approximates the amount of communication between every



632 H. Shimizu et al.

Fig. 1. Pedestrian road network: white
and green squares represent areas.
Green squares indicate areas where
we observed the stay count. Red bars
indicate directed borders where we
observed the traffic count. An arrow
indicates an example of a person’s tra-
jectory. The map [5] shows positions of
the road network.“Station” denotes JR
Shinjuku Station, and “Bldg.” is the
NTT Docomo Yoyogi Building. Projec-
tion mapping was performed on this
building, and people viewed it from
areas v3, v6, and v8. (Color figure
online)

Fig. 2. Example of a person’s move-
ment in a spatiotemporal graph. Verti-
cal axis represents time and horizontal
axis represents space. Arrows indicate
elements of a person’s trajectory shown
in Fig. 1. Traffic count equals num-
ber of trajectories that cross the cor-
responding directed border (red line).
Stay count equals number of trajecto-
ries that cross the corresponding area
(green line). (Color figure online)

pair of nodes from the link traffic. Below we explain the conventional method
based on a work [8] that applied this technology to the transportation field.

In each time period, the traffic count of one directed border is the sum of the
route traffic that is passing through it. That is, using route ri(i : e� ∈ ri) that
passes through directed border e�, the following is satisfied:

Xt,� �
∑

i:e�∈ri

Yt,i. (1)

We introduce integer matrix A ∈ Z
L×I and describe the relationship of X and

Y as X � AY , where A�,i = 1 if e� ∈ ri and A�,i = 0 otherwise. A is a routing
matrix [10]. To estimate route traffic Y , we minimize the following objective
function (2) to satisfy Eq. (1) as much as possible when traffic count X is given
in each time period:

L∑

�=1

∣∣∣∣∣

I∑

i=1

A�,iYt,i − Xt,�

∣∣∣∣∣

2

+ λ1

∣∣∣∣∣

I∑

i=1

Yt,i

∣∣∣∣∣

2

. (2)

The second term, which is added to reduce the number of people who are present,
excludes trivial solutions where all people move only on a short route from
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immediately before each observed directed border to immediately afterwards.
By adding this term, we can obtain a stable solution.

4 Proposed Method

In this research, we extend the conventional method to use the stay count obser-
vations. Stay count St,m increases or decreases by the difference between the
number of people arriving at vm and departing from vm. But if vm appears in
the middle (not at the origin or the destination) of route ri, it does not affect
the stay count because it flows into and out of the area. Therefore, with route
ri that contains vm at the origin or the destination, the following is satisfied:

Dt,m �
∑

i:vm=ri(Ki)

Yt,i −
∑

i:vm=ri(1)

Yt,i. (3)

We next introduce integer matrix B ∈ Z
M×I and describe the relationship of

D and Y as D � BY , where Bm,i = 1 if rKi
= vm, Bm,i = −1 if r1 = vm and

Bm,i = 0 otherwise. B is a staying matrix. When traffic count X and the change
of stay count D are given in each time period, we need a solution that satisfies
both Eqs. (1) and (3) as much as possible. For that purpose, we estimate route
traffic Y by minimizing the following objective function (4) instead of (2):

L∑

�=1

∣∣∣∣∣

I∑

i=1

A�,iYt,i − Xt,�

∣∣∣∣∣

2

+ λ1

∣∣∣∣∣

I∑

i=1

Yt,i

∣∣∣∣∣

2

+ λ2

M∑

m=1

∣∣∣∣∣

I∑

i=1

Bm,iYt,i − Dt,m

∣∣∣∣∣

2

. (4)

We set hyperparameters λ1 = 10−2, λ2 = 103, which minimized the observation
errors in preliminary experiments.

5 Experiments

Road Networks. We evaluated our proposed method using data on the
“YOYOGI CANDLE 2020” event, which was held at Shinjuku Station. We mea-
sured the traffic and stay counts on a road network around the event venue where
thousands of pedestrians gathered. The road network consisted of 10 areas and 18
directed borders (Fig. 1), and the traffic counts were observed at all the directed
borders. We enumerated the routes between every pair of areas. Because route
ri has no cycle and is uniquely determined by the origin and destination areas,
Yt,i corresponds to the origin-destination (OD) traffic volume. In this setting,
L = 18,M = 3, I = 90.

Synthetic Traffic Data. Since we did not observe the route traffic at this
event, we generated synthetic data to validate the proposed method. The num-
ber of time periods T was 42, and 500 people moved in each time period. The
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selection probability of the origin and the destination followed multinomial dis-
tributions. Both multinomial distributions were generated based on a Dirichlet
distribution with α = 0.8. The people’s origin and destination to be generated
were determined based on the selection probability. But when the origin and des-
tination areas were identical, the origin and destination selections were redone.
After we generated route traffic Y in the above procedure, traffic count X and
the change in stay count D were calculated by formulas (1) and (3). We created
100 data sets with different random seeds.

Real-World Data. We measured the traffic count of all the directed borders
on the road network at one-minute intervals. We also measured the stay count of
the three areas (the event’s watching area) at five-minute intervals. Both counts
were observed by human eyes and hands from 18:00 to 21:30 on November 29,
2017. To align the intervals of the traffic and stay counts, we aggregated the
traffic count at five-minute intervals. In this setting, T = 42.

Fig. 3. Relationship between observation of
traffic count and estimation error. Horizon-
tal axis is number of directed borders to be
observed for traffic count. Vertical axis shows
error NAEY . Blue and green show conventional
and proposed methods. Mean value was plotted
for 100 data sets. Error bars indicate standard
deviation. (Color figure online)

Results of Synthetic Traffic
Data. We evaluated the estima-
tion accuracy of the route traf-
fic by synthetic data and used
the Normalized Absolute Error
(NAE) as an evaluation index:

NAEY =
∑

t

∑
i |Ŷt,i−Yt,i|∑

t

∑
i |Yt,i| , where

Ŷt,i is an estimated value for
Yt,i. We changed the number of
observed directed borders of the
traffic count from 1 to 18 and
randomly selected directed bor-
ders that were observed for it. The
number of stay count observations
was three, and the observed areas
were identical as the real-world
data. Figure 3 shows NAEY in this
experiment. When all 18 directed
borders were observed, both meth-
ods had similar error rates. On the
other hand, when one or more traf-
fic count observations were missing, our proposed method’s error rate was 19.85%
smaller on average than the conventional method. When the traffic count’s obser-
vation is incomplete, the estimation accuracy of the route traffic was improved
by solving it to match the stay count’s observation. However, even when the
traffic count’s observation was perfect, the error was about 0.5, which doesn’t
seem sufficiently small. Such error is inevitable because the problem setting is
ill-posed and the number of constraints is less than the number of unknown
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Fig. 4. Observation and estimations of traffic count: Blue line shows estimated value
X̂ without considering stay count, and green line shows estimated value X̂ considering
stay count. Observed value X almost completely matches estimated value without stay
count. Above each figure, pairs of area IDs indicate the observed directed borders.
(Color figure online)

Table 1. Estimation error of real-world data. NAEX is error of traffic count. NAED

is error of stay count.

Method NAEX NAED NAEX + NAED

Conventional method 0.013 0.550 0.563

Proposed method 0.066 0.000 0.066

variables. If we added constraint conditions by observing the number of depart-
ing or arriving people at any area, we could further reduce the error.

Results of Real-World Data. We applied the proposed method to real-world
data to obtain route traffic Ŷ . We calculated the traffic count (X̂ = AŶ ), the
change of the stay count (D̂ = BŶ ), and stay count Ŝt,m = S0,m +

∑t
t′=1 D̂t′,m.

As a result, we confirmed that the estimation is almost consistent with the obser-
vations (Figs. 4 and 5). On the other hand, in the conventional method, although
the estimation result agrees with the traffic count’s observation, it is inconsis-
tent with the stay count’s observation. We defined NAEX and NAED in a similar
way as NAEY : NAEX =

∑
t

∑
� |X̂t,�−Xt,�|

∑
t

∑
� |Xt,�| , NAED =

∑
t

∑
m |D̂t,m−Dt,m|

∑
t

∑
m |Dt,m| . By using

NAEX + NAED as an evaluation measure based on observations, we confirmed
that our proposed method is much more accurate than the conventional method
(Table 1).
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Fig. 5. Observation and estimations of
stay count: Blue line shows estimated
value Ŝ without considering stay count,
and green line shows estimated value
Ŝ considering stay count. Observed
value S (red line) almost completely
matches stay count estimation. Above
each figure, area IDs indicate observed
areas. (Color figure online)

Fig. 6. Estimation results of pedes-
trian origin and destination are shown
in a heat map. Values are obtained by
summing estimation results of 210 min
for each route.

Figure 6 shows the result of aggregating the route traffic estimated by the
proposed method at the origins and destinations. More than 30% of the pedes-
trians started at areas v1 or v7, and over 60% headed to areas v1 or v7. Since
these areas are near Shinjuku Station where many station users were observed,
we obtained a reasonable result that is consistent with our intuition.

6 Related Work

Since traffic simulators often need OD matrices as inputs, various techniques
for OD estimation have been developed. For example, Abe et al. developed a
technique to estimate the OD matrix using a simulator as an internal model [1].
However, since this method needs to repeatedly execute the simulator, it requires
high computational cost. Another approach for OD matrix estimation is the four
step model [4], which utilizes population distribution. But population distribu-
tion is not very accurate because it is derived from periodic censuses. Therefore
this model is not suitable for traffic simulation with short-term fluctuations.
Calabrese et al. developed a method of observing the stay count from mobile
phone data and estimating traffic volume [2]. Although their method estimates
the dynamic OD traffic volume, our method also simultaneously estimates the
route traffic.
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7 Conclusion

We addressed the problem of estimating route traffic from traffic and stay counts.
With an experiment that used synthetic data, we improved the estimation accu-
racy utilizing the stay count with a staying matrix when the traffic count’s
observation is incomplete. In addition, we analyzed the human flows by estimat-
ing the route traffic from real-world data during a popular event. Although our
data were observed by human eyes, the proposed method can be applied to data
measured by camera. A future task will execute a crowd simulator using the
estimated route traffic as input to reproduce the real world.

Acknowledgements. The authors thank Satoshi Oda and Yoshiyuki Okada of NTT
Docomo, INC. for their cooperation with the measurement of the traffic and stay counts
at the “YOYOGI CANDLE 2020” event.
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Abstract. Profit Sharing is well known as a kind of reinforcement learn-
ing. In PS method, a reward is generally distributed with a geometrically
decreasing function, and the common ratio of the function is called a
discount rate. A large discount rate increases the learning speed, but
a non-optimal policy may be learned. On the other hand, a small dis-
count rate improves the performance of the policy, but the learning may
not proceed smoothly due to the shallow learning depth. In this paper,
in order to cope with these problems, we propose a method that rein-
forces detour paths and a non-detour path with different discount rates,
respectively. Finally, this method is applied to an altruistic multi-agent
environment to confirm its effectiveness.

Keywords: Reinforcement learning · Profit sharing · Detour path

1 Introduction

Reinforcement learning (RL) is a method for the robot to adapt to the environ-
ment. RL is a type of machine learning that adapts to the environment through
trial and error searches. RL is a method to acquire an appropriate policy with a
reward. Q-Learning (QL), Sarsa and Profit Sharing (PS) [3] are representative
RL methods. QL can acquire the optimal policy in Markov decision processes
(MDPs), but it cannot in non-Markovian environment. On the other hand, PS
is one of exploitation-oriented learning methods and aims to learn not an opti-
mal but a rational policy by strongly enhancing their experience. PS has some
rationality even in a kind of non-Markovian environment [3].

In PS method, generally, the learning process progresses by distributing
rewards using a geometrically decreasing function. The common ratio of this
function is called a discount rate. A large discount rate increase learning speed
but unsuitable rules may be learned. On the other hand, a small discount rate
c© Springer Nature Switzerland AG 2018
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does not cause the above problem, but often decreases the learning speed because
distributed rewards decrease too rapidly so that the learning does not progress
in a long episode.

In this paper, in order to solve the problem, a new reward distribution method
is proposed. In this method, first, we judge whether there are any detour paths
in the episode or not, and then we distribute the reward to detour paths and
the non-detour path, separately, to suppress the reinforcement of detour paths
and prioritize the reinforcement of the non-detour path.

2 Reinforcement Learning

2.1 Environment in Reinforcement Learning

Let’s consider an agent in an unknown environment. After perceiving sensory
input from the environment, the agent selects and executes an action. Time is
discretized by one input-action cycle called a step. The agent perceives the state
input st from the environment as the observation ot at the time t. If there is
no restriction on the observability of the agent, i.e., st = ot, the environment is
called a complete perception environment. On the other hand, if there is some
restriction, i.e., st �= ot, the environment is called an incomplete perception envi-
ronment. In this paper, we assume that the environment is a complete perception
environment.

The agent decides the action at based on the state st and the evaluation
value (defined later). The pair of a state st and an action at selected in the
state is called a rule and described as rule(st, at), or simply (st, at). The agent
changes the state st to the next state st+1 by applying the rule. If the agent
receives a (positive or negative) reward rt at the state st+1, then the evaluation
value is updated with the reward. If the probability of the state transition in the
environment depends only on the state and the action, this state transition has
Markov property and the process is called a Markov Decision Processes (MDP).
A function that maps states to actions is called a policy. If the reward acquisition
expectation value of a policy is positive, the policy is called a rational policy.
The optimal policy is a policy that can maximize the amount of rewards. Rein-
forcement learning aims to acquire a policy that gives the maximum rewards
with the least actions.

A series of rules that begins from a reward state or an initial state and ends
with the next reward state is called an episode. If an episode contains rules
of the same state but paired with different actions, the partial series from the
state to the next is called a detour path and a rule in a detour path is called a
detour rule. A rule always existing in a detour path is called an ineffective rule,
and otherwise called an effective rule. Note that a detour rule is not always an
ineffective rule, but an ineffective rule is always a detour rule.

2.2 Rationality Theorem [3] and Extended Rationality Theorem [4]

PS learns a rational policy by propagating a reward backward in an episode
when a reward is given. Assume that a reward R is given at time N + 1 and
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the corresponding episode is {(s1, a1), (s2, a2), · · · , (st, at), · · · , (sN , aN )}, then
the amount of rewards (the evaluation value) of the rule (st, at), Q(st, at), is
updated as follows:

Q(st, at) ← Q(st, at) + f(N − t), t = N,N − 1, ..., 0. (1)

The function f(·) is known as a reinforcement function. In this paper, we use a
geometrically decreasing function:

f(i) = λiR, (2)

where λ (0 < λ < 1) is the discount rate.
In the case where there are ineffective and effective rules in the same state,

the ineffective rules should be suppressed and the effective rules should be pref-
erentially enhanced. The rationality theorem [3] gives a sufficient condition for a
reinforcement function to suppress reinforcement of ineffective rules. One exam-
ple of such functions is a geometrically decreasing function

f(i) = λf(i − 1), (∀i = 1, 2, ...,W ), (3)

where λ ≤ 1/(L+1), W is the maximum episode length, and L is the maximum
number of rules available in each state minus 1. The Eq. (2) is the simplest and
representative geometrically decreasing function.

The extended rationality theorem [4] suppresses detour rules. Note that
detour rules can be judged from one episode and if we suppress detour rules, the
ineffective rule suppression will be performed efficiently, because ineffective rules
are contained in detour rules. An example of functions satisfying the extended
rationality theorem is given as follows:

{
f(i) = λf(i − 1), if the rule is a detour rule,
f(i) ≤ f(i − 1), if the rule is not a detour rule. ∀i = 1, 2, ...,W. (4)

3 Proposal of Detour Paths Suppression Method

3.1 Detour Path Suppression Method (DPSM)

In this paper, we suppress detour rules similarly to the extended rationality
theorem. But we separate detour rules from the non-detour rules in an episode
explicitly. We show an example of reward distribution in Fig. 1.

We classify rules in the episode (the fist law of Fig. 1) into detour rules (the
third law) and other rules (the second law) before reward distribution. The latter
rules contain no detour rule, therefore, no ineffective rule. Hence, an arbitrary
no-monotonically-increasing function can be used as the reinforcement function.
Here, the discount rate of this function is called a non-detour discount rate and
expressed as λ0. For example, the reward R is distributed to non-detour rules
{S1, S2, S3, S4, S5} with the discount rate λ0. In principle, λ0 is required to be
0 < λ0 ≤ 1, but it is desirable to take a value near to one in order to increase
the learning horizon.
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Fig. 1. Proposed method

For detour rules, the reward allotted to the rule immediately after the detour
path is distributed to the rules in the detour path using a reinforcement function
that satisfies the rationality theorem. The discount rate of this function will be
called a detour discount rate and represented by λ1. For example, for the detour
rules {S2, S3, S4}, the rule immediately after the detour path is S2 and the
allotted reward λ4

0R is distributed to the rules {S2, S3, S4} with the discount
rate λ1. Distributing rewards with this method, we can suppress the reward
given to the detour paths and acquire a rational policy preferentially.

3.2 Detour Paths Discrimination Procedure (DPDP)

To apply the above method, first of all, we have to find out detour paths in an
episode. Here, we describe a method to discriminant detour paths in an episode.
From the definition of the detour path, a detour rule in an episode can be
discriminated by the following algorithm:

1. i = 1, j = N, d(k) = 0, (k = 1, 2, ..., N), where N is the episode length.
2. if si = sj and ai �= aj then go to 4.
3. j−= 1.if j > i then to 2 else then go to 5.
4. d(k) = 1(k = i, i + 1, ..., j − 1).
5. i+= 1, j = N . if i > W then go to 2, else end loop.

This algorithm can discriminate whether the i th rule is in the detour path
or not. If d(i) = 1, the ith rule is a detour rule, and if d(i) = 0, it is a non-detour
rule. However, this algorithm cannot work when there are multiple detour paths
and they overlap one another. We consider the problem in the next section.

Consideration of Duplicate Detour Paths. Figure 2 shows an example in
which there are two detour paths {(S2, γ), (S3, α), (S4, β)} and {(S4, β), (S2, β)}
and they overlap each other. If the above detour paths discrimination algorithm
is used, all the rules of both detour paths are judged as detour rules. However,
if all these rules are discarded, no rule chain exists from (S1, α) to (S4, γ). Note
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Fig. 2. Duplicate detour paths Fig. 3. Multiple detour paths

that if we discard only one of two detour paths, there is no detour path in
the remained episode. First, if we consider the later path {(S4, β), (S2, β)} as a
detour, an effective rule in a certain state, for example, (S2, γ), may be farther
from the target state than a detour rule competing with it, for example, (S2, β).
Depending on the value of the discount rate, the reward value distributed to the
detour rule may be larger than the reward value distributed to the effective rule.
Therefore, this procedure is not suitable for learning. Next, if we consider the
earlier path {(S2, γ), (S3, α), (S4, β)} as a detour, no effective rule in a certain
state is farther from the target state than a detour rule competing with it and
this procedure is suitable for learning. Therefore, in this paper, we discriminate
only the earliest detour path among duplicate ones as a detour path.

Consideration of Multiple Detour Paths. We show an example in Fig. 3
where there are two detour path and they are multiple. Even in this case, both are
a detour path by definition. Now, a detour path included in another is called as
a multiple detour path. If a larger detour path is discriminated, a multiple detour
path contained in it is also done. At first glance, this seems to be reasonable.
However, in an environment with autoregressive rules it arouses a problem. A
simple example of an environment with an autoregressive rule is shown in Fig. 4.
In this environment, if the episode shown in Fig. 5 is given, the autoregressive
rule of S3 will be enhances very strongly, because rewards will be added to the
rule many times repeatedly. Note that consecutive selection of an autoregressive
rule forms a multiple detour path. It is highly probable that the rules in the
multiple detour path are rules that do not contribute to reward acquisition.
Therefore, the rules in multiple detour paths are not distributed any rewards.

Fig. 4. Environment with
recursive rule

Fig. 5. Rule selection
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3.3 Extended Detour Paths Discrimination Procedure (E-DPDP)

Thus, in this paper we use the following algorithm as the detour path discrim-
ination method. The difference from the above algorithm is discrimination of
detour paths in a episode with duplicate and/or multiple detour paths.

1. i = 1, j = N , d(k) = 0 (k = 1, 2, ..., N), where N is the episode length.
2. if d(i) > 1 then go to 6.
3. if si = sj and ai �= aj then go to 5.
4. j−= 1.if j > i then to 3,else then go to 6.
5. d(k)+= 1(k = i, i + 1, ..., j − 1).

(a) l = i,m = j − 1, N ′ = j − 1.
(b) if sl = sm and al �= am then go to (d).
(c) m−= 1.if m > l then to (b),else then go to (e).
(d) d(n)+= 1(n = l, l + 1, ...,m − 1).
(e) l+= 1,m = N ′.if l < N ′ then to (b),else then go to 6.

6. i+ = 1, j = N .if i < N then 3 else end loop.

This algorithm allows to determine if the i th rule is in the detour path or
not. That is, the i th rule is a non-detour rule if d(i) = 0, a detour rule if d(i) = 1,
and the multiple detour rule if d(i) ≥ 2, respectively. We do not distribute any
rewards to multiple detour rules.

4 Evaluation of DPSM Under Altruistic Multi-agent
Environment

4.1 Setting

We use the environment used in the paper [2] to verify the effectiveness of
DPSM under multi-agent environment. The agents aim to obtain rewards as
uniformly as possible in the environment where more than one agent performs
learning at the same time. DPSM is compared with the proposed method
in the paper [2] by using the environment as shown in Fig. 6. Figure 6 are
corresponds to the case of three agents in environments, respectively. Each
agent is located in one of the squares, and can perceive vertically and hori-
zontally neighboring squares on the agent. Thick line is a wall that prevents
the perception of the square of the other side of the wall. As a result, an
agent at hatched squares perceives the same input. The perception is one of
{there is nothing, there are other agents, there is a wall} on each square. The
agent cannot distinguish each agent form others. Each agent (i = 1, 2, 3) is
located in Si at the time of starting the learning. The agent selects an action
from {up, down, left, right} movement after obtaining the sensory input. Tran-
sition to the wall is not allowed, and the agent remains in the original square.
Multiple agents can occupy the same square. Each agent (i = 1, 2, 3) aims to
move to the target state Gi, respectively. If an agent i transits to the target state
Gi, a reward is given to all agents and the agent is returned to the square of the
initial position Si. As an action selection method, we use the ε-roulette strategy
where the upper limit of the number of action selection times is decided.
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Table 1. Results on 3 agents.

R = 102 R = 103 R = 104 R = 105 R = 106

Paper [2] A1 1074.8 (190.2) 1007.4 (222.7) 1007.4 (222.7) 2462.5 (790.7) 2722.8 (802.8)

A2 174.3 (78.4) 709.5 (369.4) 709.5 (369.4) 2440.8 (835.2) 2714.4 (820.7)

A3 182.8 (80.8) 709.5 (368.9) 709.5 (368.9) 2440.5 (835.2) 2714.1 (820.6)

λ0 = 0.3 A1 923.5 (143.9) 934.5 (295.9) 1058.0 (439.1) 1045.2 (453.1) 1105.4 (486.6)

A2 286.6 (122.7) 811.3 (390.8) 980.1 (509.4) 943.5 (536.5) 1041.8 (539.8)

A3 287.9 (122.7) 811.1 (390.8) 980.0 (509.4) 943.3 (536.4) 1041.7 (539.8)

λ0 = 0.5 A1 1076.6 (299.8) 1554.8 (404.1) 1605.2 (387.8) 1591.1 (375.4) 1659.9 (384.9)

A2 1067.8 (308.6) 1554.2 (404.1) 1604.5 (375.4) 1590.4 (384.9) 1659.3 (384.9)

A3 1067.6 (308.6) 1553.9 (404.1) 1604.3 (387.9) 1590.2 (375.5) 1659.0 (384.8)

λ0 = 0.7 A1 1555.5 (162.7) 1676.5 (149.4) 1714.8 (161.0) 1751.0 (195.3) 1739.7 (183.4)

A2 1554.9 (162.7) 1676.0 (149.5) 1714.2 (161.0) 1750.4 (195.3) 1739.1 (183.4)

A3 1554.6 (162.7) 1675.7 (149.4) 1714.0 (160.9) 1750.2 (195.3) 1738.9 (183.4)

λ0 = 0.9 A1 1222.5 (51.8) 1232.4 (61.1) 1244.6 (54.7) 1248.1 (65.5) 1232.9 (62.0)

A2 1222.1 (51.8) 1231.9 (61.1) 1244.1 (54.8) 1247.6 (65.6) 1232.4 (62.0)

A3 1221.8 (51.7) 1231.6 (61.1) 1243.8 (54.7) 1247.3 (65.5) 1232.1 (62.1)

Fig. 6. Three agents environment

The upper limit of the number of
times is 100,000 in this paper. After ε
values was calculated by ε = 1.0 −
The number of selected action

50000.0 , generating a ran-
dom number between 0.0 to 1.0. If the value
of ε is zero or less, we set ε = 0.0. If the value
of ε is larger than the random number, we
use roulette selection using evaluation values,
otherwise, we use random selection for the action selection. For this ε, ratio of
roulette selection and random selection will reverse after 50,000 actions. If there
is only one agent in Fig. 6, the perceptual aliasing problem [1] will be occurred
since an agent at the hatched squares perceives the same sensory input. On the
other hand, in a multi-agent learning, it may be possible to reduce the perceptual
aliasing problem if the other agent moves properly. Such the behavior is likely
to be derived by an indirect reward, and the method using an indirect reward
has been proposed in the paper [2]. In this paper, we evaluate the performance
of DPSM for this method.

4.2 Results and Discussion

The results of the method proposed in the paper [2] are shown in the first row
of Table 1 for the reward value R from 102 to 106. The results of the case of
three agents is shown in Table 1. The experiment was carried out 100 times
by changing random seeds. These tables show the average value of the reward
acquisition number of times and the standard deviation (in parentheses).

It can be seen that the performance of the paper [2] is greatly different
depending on the reward value R. The method of the paper [2] uses PS as a
basic learning method. When the reward value is low, learning at the start point
of the episode does not progress easily, in general, since the reward is distributed
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by a discount rate of 1
4 . Then, we think that the desired behavior could not be

obtained with a low reward value. Therefore, an experiment was conducted in
which PS in the method of the paper [2] was changed to DPSM. In DPSM,
the performance may change depending on the value of non-detour discount
rate (λ0). Therefore, an experiment was conducted in which λ0 was varied from
0.3 to 0.9 in increments of 0.2, while λ1 is kept to be 1

4 . Results are shown in
the second and subsequent rows in the Table 1.

The method combined with DPSM, compared with the case of PS, obtains
behaviors in which the reward acquisition frequency of each agent is close, and
also S.D. is small, for each λ. In addition, the difference due to the reward value
seen by the method of the case of PS is reduced. This is considered to be the result
that the speed of learning of DPSM worked effectively in multi-agent learning.
There are cases where the method of the case of PS is larger if simply looking
at the reward acquisition times. Remark that we are aiming for the difference in
the number of rewards acquisition times for each agent to be close, so we should
not pay attention only to the magnitude of the reward acquisition times.

5 Conclusions

In this paper, in order to improve learning speed while satisfying rationality,
we proposed a distribution method to suppress detour rules. In addition, we
also considered detour paths in case of duplication. Furthermore, by adopting
the concept of multiple detour paths, we made it a more robust discrimination
method. We showed the discrimination algorithm that can discriminate detour
path from one episode. In order to compare the proposed method with the
conventional method, numerical experiments were conducted and effectiveness
of the proposed method were shown. By using the proposed method, the learning
efficiency was improved compared with the conventional method. Also we can
confirm the effectiveness in an altruistic multi-agent environment. In the future,
we aim to combine DPSM with deep learning. We will also apply our method to
multi-agent environments such that control for a team of quadrotors, Keepaway
task, and so on.
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1 Introduction

The annual RoboCup international robotics competition has hosted the Robo-
CupRescue Simulation (RRS) project to confront large-scale natural disas-
ters [4,7]. In particular, the agent competition is a platform for studying disaster-
rescue agents and simulations. The project’s aim is to contribute to society by
publishing the results for this project.

However, to solve the disaster-relief problem targeted by the RRS, it is nec-
essary to implement a combination of multiple algorithms to solve tasks such
as path planning, information sharing, and resource allocation [10]. In response
to this situation, the Agent Development Framework (ADF) was proposed in
recent years [11]. The ADF enables an algorithm to implement the modularity
necessary for the operation of the agent by defining the basic structure of the
agent program in the RRS. Researchers can easily use some modules developed
by other researchers and substitute their modules for other researchers’ mod-
ules. However, it is necessary to simulate all combinations to find the best one.
This leads to a problem known as combinatorial explosion because the num-
ber of trials increases exponentially [3]. Therefore, it is difficult to manage the
experiments manually.

In this paper, we propose an environment for combinatorial experiments
with ADF modules in the RRS to promote the research of multi-agent sys-
tems. Further, actual combinatorial experiments confirm the effectiveness of the
environment and show that it can contribute to future research in multi-agent
simulations.

2 Research and Development in the RRS

2.1 Overview of the RRS

The RRS is a research platform that simulates disaster situations and disaster-
relief activities on a computer. Figure 1 shows the activities of agents in the RRS.
In the disaster-relief activities, researchers control six types of agents, namely the
AmbulanceTeam, FireBrigade, and PoliceForce, as well as the headquarters of
each unit. The AmbulanceTeam and AmbulanceCentre rescue other agents that
cannot move by themselves. The FireBrigade and FireStation extinguish fires
in buildings. The PoliceForce and PoliceOffice clear road blockages. In addition,
there are other agents to simulate disaster situations, namely Civilian agents.
The activities of these agents are evaluated by the city value score, which adopts
a point-deduction scoring system [5].

Using the RRS, it is possible to research the application of artificial intelli-
gence and information science to natural-disaster rescue problems. In the RRS
project, five tasks are particularly advocated: Group Formation, Path Planning,
Search, Multi-Task Allocation, and Communication [9]. Every year, competitions
using agent programs are held for the purpose of technical exchange.
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Fig. 1. (Left) part of the screen on which the simulation is running. (Right) view
focusing on the activities of each disaster rescue agent.

2.2 Agent Development in the RRS

The disaster-relief problem handled by the RRS is a complex problem because
the disaster conditions such as fire, building collapse, and the availability of wire-
less communication change from moment to moment in afflicted areas. These
changes are addressed by the disaster-relief strategies of teams of disaster-relief
robots, which differ according to the disaster situation. To construct a disaster-
relief strategy, it is necessary to prepare all the algorithms for tasks such as route
searching, information sharing, and resource allocation in the disaster environ-
ment.

The ADF was proposed to address such situations. The ADF defines the
modularity necessary for the operation of an agent by defining the basic structure
of the agent program in the RRS.

In the RRS project, five research tasks, Group Formation, Path Planning,
Search, Multi-Task Allocation, and Communication, are proposed. In the present
ADF, these tasks can be implemented separately, as shown in Fig. 2. Note that
the ADF has been the standard framework of the RRS project from 2017 [13].
Therefore, the algorithms implemented by RRS researchers are interchangeable.

2.3 Experiments in the RRS

To develop and evaluate the RRS agents, it is necessary to conduct experiments
on multiple disaster areas while considering various conditions such as the loca-
tions of fires, the rate at which buildings collapse, and communication situations.

Fig. 2. ADF architecture. The upper black filled squares are the five tasks proposed
by the RRS project. The lower dashed boxes are modules in the ADF. The arrows
indicate relationships between the RRS tasks and ADF modules.
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The parameters of an agent may also be set for each of these situations. There-
fore, numerous simulations are required to obtain findings.

In the RRS, each simulation takes around 20 min to execute. Moreover,
the agent calculations require sufficient memory capacity. The agent calculation
processes are distributed to multiple computers and executed there.

In general, researchers have manually operated these experimental processes.
The ADF enables combinatorial experiments of the algorithm modules to be
easily conducted. However, the number of combinations increases exponentially
with the number of modules. It is hence difficult to manage such experiments
manually.

2.4 Related Work and Our Contribution

OACIS. OACIS is a simulation-execution management framework developed
by the discrete-event simulation research team of the RIKEN Advanced Institute
for Computational Science [8]. This software has the function of managing jobs.
In particular, it has a job-management function that specializes in the execution
of a simulation and a management function for experimental results. OACIS
supports numerous simulations and performs analysis under various conditions
by managing the experimental parameters and the results automatically.

However, complicated operations are required to execute the RRS simula-
tions using OACIS because it is a general-purpose system for various types of
simulation software. The creation of simulation scripts, agent programs, and
disaster scenario files must be managed outside OACIS.

Our Contribution. In this paper, we propose an environment to manage com-
binatorial experiments in the RRS to support RSS research in which the ADF
is used. Combinatorial experiments are an effective approach for developing and
evaluating various algorithms and protocols in multi-agent systems. Our envi-
ronment helps facilitate research on multi-agent systems. The environment is
constructed using OACIS.

3 Design and Implementation

3.1 Design of Environment to Manage Experiments

Figure 3 shows the experimental processes of OACIS and our proposed envi-
ronment, which is called RRS-OACIS in this paper. The RRS requires many
manual operations, as indicated by the black dots in the figure. The operations
specify various agents’ parameters, control computer clusters, and collect numer-
ous simulation results. RRS-OACIS can automate the operations shown in the
shaded area in the figure. Moreover, automating the operations makes it easier to
repeat experiments. The implementation of RRS-OACIS was carefully designed
to ensure maintainability. RRS-OACIS does not modify the OACIS code because
all control runs through application programming interfaces.
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Fig. 3. OACIS and RRS-OACIS. (Left) OACIS operations before the integration of
RRS-OACIS experimental management. (Right) OACIS operations after its integra-
tion.

We explain the parts that are implemented in RRS-OACIS. In other words,
OACIS lacks some functionalities that RRS-OACIS provides.

– Agent management
Although OACIS can manage simulators and experimental parameters, it can-
not manage agent program files. RRS-OACIS provides a function to manage
agent programs.

– Map and scenario management
OACIS cannot deal with files related to maps and disaster scenarios. RRS-
OACIS implements a function to manage these files.

– Computer cluster management
In the RRS, one simulation is executed in a computer cluster consisting of
many computers. Although OACIS can activate most simulations within a
computer cluster, it cannot directly run the RRS. RRS-OACIS has a function
that bridges the activation processes between OACIS and the RRS.

– Simulation script
OACIS cannot deal with complex processes combined with multiple opera-
tions using multiple computers in a simulation. Therefore, it is necessary to
prepare a script that describes a series of operations in a simulation. This
script loads agent programs, map files, and scenario files. It then connects
to each computer in the computer cluster and executes the simulation. The
script creates an experiment as a single job in OACIS that OACIS can man-
age.

– Simulator management
OACIS treats a simulation script and a set of parameters as a part of a sim-
ulator. In other words, the script and parameters are embedded into a simu-
lator. Parameters differ depending on a purpose of an experiment, modules,
and parameters of the algorithms. RRS-OACIS implements a mechanism that
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automatically uses the appropriate scripts and parameters for the simulator
according to the purpose of the simulation.

4 Combinatorial Experiment Example

4.1 Purpose of the Experiment

We present an example of combinatorial experiments to demonstrate the efficient
features of our environment. In this example, the most effective combination
was found through a large number of combinatorial experiments that changed
many parameters such as the algorithm modules of the rescue agents. Finally, we
developed rescue agents based on the result of those experiments. We evaluated
their effectiveness.

4.2 Experimental Approach

The experiment was divided into three phases because there are a huge num-
ber of possible combinations for the experiments. First, we selected the target
teams. All the teams of RoboCup 2017 ran on RRS-OACIS. The target teams
are the top five performing teams in the experiment: MRL, Aura, RoboAKUT,
LarvicSaurus, and CSU Yunlu [1,2,6,12,14].

Second, we divided the combination patterns and select partial module com-
binations. The modules of each target team are used with the other modules that
are necessary for experimenting with the combination pattern. In this paper,
these modules are collectively called the base team. The combinations use the
pattern, Pa, Pb, and Pc, as defined below.

Pa: BuildingDetector, RoadDetector, and HumanDetector;
Pb: the search module for each agent;
Pc: ActionFireFighting, ActionExtClear, ActionTransport, ActionExtMove, and

the corresponding PathPlanning modules.

Finally, the best combination was selected by conducting an experiment to
evaluate the top combinations for each base team that were selected in the second
phase.

Only the San Francisco 3 (SF3) map in RoboCup 2017 was used because of
the enormous number of combinations. All of the combination experiments were
repeated three times to obtain the mean value of the scores. Therefore, the final
number of simulations is 13,500. We conducted this experiment using 14 sets of
clusters consisting of four computers (a total of 54 computers).

4.3 Results and Discussion

In this paper, we mention only the final combination result. Table 1 shows the
result of a series of experiments; in other words, the best combination of algo-
rithm modules. Table 2 compares the score of the designed agent with those of
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Table 1. All adopted modules

Module type Team PathPlanning’s team

BuildingDetector LarvicSaurus -

RoadDetector MRL -

HumanDetector MRL -

Search (FireBrigade) CSU Yunlu -

Search (PoliceForce) CSU Yunlu -

Search (AmbulanceTeam) Aura -

ActionFireFighting LarvicSaurus LarvicSaurus

ActionExtClear MRL MRL

ActionTransport Aura Aura

ActionExtMove RoboAKUT RoboAKUT

Table 2. SF3 scores of the base teams and designed agent

MRL Aura RoboAKUT LarvicSaurus CSU Yunlu Configured

56.83 46.90 44.42 49.46 52.47 63.51

some original agents of RoboCup2017. These results confirm that the designed
agent is effective.

The experiments ran automatically and finished in nine days without any
trouble. These results demonstrate that our environment is an effective approach
for developing and evaluating the algorithms of multi-agent systems. To evaluate
ideas for multi-agent systems, we need an evaluation framework to evaluate its
effectiveness. Hence, our system is expected to contribute to the multi-agent and
rescue engineering research community in this respect.

5 Conclusion

In this paper, we have proposed RRS-OACIS, that which is an environment
for combinational combinatorial experiments of algorithm modules of for rescue
agents in the RRS. To Its aim is to promote researches in multi-agent systems.
The examples of a set of combinatorial combinational experiments have shown
demonstrates the effectiveness of the environment. The proposed environment
could provides an efficient simulation management system for multi-agent sys-
tems in the RRS. We Our aim is to give make the research results obtained in the
RRS project back available to society by clarifying disaster-relief problems and
proposing algorithms that are applicable to effective for disaster relief. Therefore,
our environment can contribute to the multi-agent systems and rescue engineer-
ing research communities. We will improve the environment continuously while
providing it to the RRS community.
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Abstract. In order to prevent accidents, it is important that the admin-
istrators of large-scale facilities or event organizers be able to analyze and
predict human flow. Time series prediction is generally used for such sit-
uations. However, some cases have no historical data available such as
the construction of new stadium. In such cases, the multi-agent simulator
(MAS) is useful for generating sufficient simulation data to support the
assessment of navigation plans, and predictions can be made more accu-
rate by comparing simulation results to monitored data. In this paper, to
predict the number of passengers at the multiple observation points, we
use simulation data (generated by MAS) as a learning dataset for long
short-term memory (LSTM). To compare the prediction accuracy of the
proposed approach, we use the real world data collected at the music
live events. In addition, for the comparison, we use the nearest neighbor
approach that searches the most similar result from the pre-simulated
results and predicts the human flow.

Keywords: Time series analysis · Deep learning
Multi-agent simulation

1 Introduction

The key tasks for the administrators of large-scale events include preventing
accidents, alleviating congestion, and making evacuation plans. These are seri-
ous goals as the 31, 674 concerts held in Japan in 2017 attracted nearly 48 million
people [1]. From the point of safety, it is necessary to understand the potential
human flows, beforehand, during, and after the event, where the spatial extent
includes the facilities of the venue and its surroundings (stations, restaurants,
etc.). Time series prediction [2] is generally used in such situations. The pre-
dictions of passengers at the multiple observations points are discussed in this
paper.

In practical applications, two cases are considered for time-series analysis of
human flows. One is that we have historical data around the target area. For
example, if measurements have been made under the same or similar conditions
in advance, it is possible to use the data for identifying the most appropriate
c© Springer Nature Switzerland AG 2018
T. Miller et al. (Eds.): PRIMA 2018, LNAI 11224, pp. 655–662, 2018.
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parameters of multi-agent simulator. The second case denies the existence of
historical data as the site, say a stadium, has not been built yet. In that case,
MAS is widely used to understand the people flow [3]. It can be used to predict
the flow patterns to a shopping mall that is under construction, and estimating
the change in human flow when a new store opens inside a train station.

This paper mainly focuses on the second situation. By using a multi-agent
simulator (MAS), we generate simulated human flow data as a learning data
set for prediction models. We then use long short-term memory (LSTM [4]) to
predict future flows as real data is acquired.

2 Related Works and Problem Settings

In this section, we explain the related works and define the problem settings.
Previous research related to human navigation at large facilities was done by
Yamashita et al. [5]. They constructed the multi-agent simulator (MAS) and
made navigation scenarios for large facilities. They used historical data to search
and evaluate the navigation scenarios created by using MAS. This paper differs
in that it attempts to achieve accurate predictions with no measured data. Our
approach is to use MAS to generate simulated data in order to make a prediction
model.

There are many algorithms for time-series analysis. Vector Autoregression
(VAR) [2] and Spatio-Temporal Kriging [6] can deal with both spatial and tem-
poral effects. Those methods assume that the system can be modelled as second
order stationary, so mean and variance are constant. Given two different observed
values xi,t (observation point: i, time: t) and xj,t+τ (observation point: j, time:
t+τ), the relationship of xi,t and xj,t+τ is determined by the distance d(i, j) and
time difference τ in VAR and Spatio-Temporal Kriging. LSTM [4] is also used
for dealing with spatio-temporal problems. As LSTM can deal with both short-
term and long-term effects, we use LSTM instead of VAR or Spatio-Temporal
Kriging; our expectation is that it can learn the spatio-temporal relationships
between the observation points.

The following details the problem setting of our research.

Time, Computational Resources. First, we consider that the time and com-
putational resources are sufficient for learning prediction models, and that
the prediction results (lead times of several minutes to hours) should be out-
put within few seconds. This assumption means we consider the cases like
scheduled events (music concerts, fireworks, etc.), planned construction and
store openings. In such cases, it is not a problem if we spend several hours
or days in an advance examination, and there is sufficient time to learn the
models.

Methods for Measuring Human Flows. In predicting human flows, there
are two types of data that can be used either beforehand or in real time
predictions. The first type is human trajectory data that can be obtained
from GPS, position sensors etc. Obtaining all or almost all of the trajectories
in the area of interest is beneficial for improving the accuracy of time-series
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predictions. Unfortunately, it is not realistic to assume that everyone will
carry such sensors or release the data due to privacy concerns. While we
might be able to secure some trajectories by getting approval beforehand, it is
difficult to ensure that the characteristics of the people (observed trajectories)
are not biased as regards the target. The second type of data is the number
of people at specific points or areas as acquired by cameras and sensors, etc.
It is relatively easy to get such data, and privacy concerns are not significant.
Accordingly, this paper uses this type of data.

3 Proposed Approach

In our approach, learning data is generated by performing MAS runs on the area
to predict the people flow. Then using the data to learn LSTM [4], and predict
people flow with the support of online observations of people flow (real). Input
X (the vector describes the number of observations at each point) to LSTM,
and output the people flows at multiple observation points with the predicted
time. Input and the initial values are as follows:

K The number of observation points. Different directions at the same point or
area are counted as different observation points.

T The total observation time.
t The observation time, t is calculted by separating T at an uniform interval.

tw The time window for learning data.
X The number of passengers at each observation point. X = {xk,t | k =

1, . . . ,K, t = 1, . . . , T} where xk,t is the number of pedestrians at the k-th
observation point at time t. Xt = [x1,t, . . . , xK,t] is a K dimensional vector.
XS ,XR and X̂ mean the simulation data by MAS, real data, and predicted
values by our model, respectively.

In the learning phase, our model uses simulation data (XS
t−tw+1, . . . ,X

S
t ) and

XS
t+1 as an input-output pair, and trains the prediction model by backpropaga-

tion through time (BPTT) [7]. In the prediction phase, our model uses observed
online real data (XR

t−tw+1, . . . ,X
R
t ) as an input for predicting 1-step ahead, and

outputs the prediction values of X̂t+1, the number of people passing the K points
at time t + 1 in all the directions specified by the [K] observation points. For
predicting 2-step ahead or much later, we use the combinations of real data and
predicted values by our model. For example, we use (XR

t−tw+2, . . . ,X
R
t , X̂t+1) as

an input for predicting X̂t+2, and (XR
t−tw+3, . . . ,X

R
t , X̂t+1, X̂t+2) as an input

for predicting X̂t+3.
Figure 1 shows a framework and a network architecture of our proposed app-

roach, FC means fully connected layer (100 dimensions).
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Fig. 1. Framework (left) and network architecture (right) of our proposed approach

4 Experiments

4.1 Data

In this paper, we use two types of data related to live music events.

Real data XR: gathered on the days of the concerts (4 days)
Simulated data XS: generated by MAS beforehand (400, 000 trials)

Both real and simulated data are related to the situations of exiting from the
stadium after concerts are finish. There are K = 17 observation points around
the stadium (stadium gates, stations etc. see Fig. 2). There are two train lines
serving the stadium (the nearest stations are Sta. A and B). The concert par-
ticipants mainly used Sta. A, and few people used Sta. B. The total observation
time is about 60 min (T ≈ 60). The time width of each observation is 1 minute
(t = 1, . . . , T ). Both simulation data and real data use the same observation
points, time width, and total observation time. The number of people at each
point (real data) was manually counted.

Fig. 2. The observation points
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The simulated data was generated using the following parameters.

1. The combination of exit gates {2}: (Exit 1, 2, 3) and (Exit 1, 2, 3, 4).
2. Number of people (total) {1}: Fixed with N = 22, 000.
3. Train frequency {2}: normal and irregular.
4. Weather {2}: fine and rainy.
5. The number of moving paths {50,000}: each pattern is generated by

multiplying following 4 elements.
5-1. Start time {25}
5-2. Peak flow {53}: 5 volumes of flows from 3 exit gates (Exit 1, 2, 3).
5-3. Branch flow ratio {22}: each agent choises the routes at the two

intersection by the given probabilities.
5-4. Destination {4}: 2 stations, 1 shopping mall, and 1 restaurant area.

Therefore, a total of 400, 000 (2 × 1 × 2 × 2 × 50, 000) simulation patterns were
used. “Start time” and “Peak flow” determine the flow distribution for each path.
“Destination” determines where the people move after the concert finishes. In the
experiments, both simulated and real data were normalized in a pre-processing
step (before learning and prediction phases). All the data is normalized for each
observation points xk,t, t = {1, . . . , T}.

4.2 Evaluation

We use the experiments to compare three approaches in terms of prediction
accuracy: long short-term memory learned by simulated data (LSTM-S, learning
data: 400,000), long short-term memory learned by real data (LSTM-R, learning
data: 3 (days)), and nearest neighbor search using simulated data (NN-S). In the
prediction phase of the three approaches, real data of one day is used (not used
in the learning phase of LSTM-R). Figure 3 shows frameworks of LSTM-R and
NN-S.

Fig. 3. Frameworks, left: LSTM-R and right: NN-S

The evaluation criterion is normalized absolute error (NAE),

NAE =
∑T

t=1

∑K
k=1 | xk,t − x̂k,t |

∑T
t=1

∑K
k=1 xk,t

, (1)
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and NAE for each time (NAE(t))

NAE(t) =
∑K

k=1 | xk,t − x̂k,t |
∑K

k=1 xk,t

, (2)

where xk,t means the sum of the observed values at point k from time t − 5 to t
(calculating the sum of the last 5 min passengers at every 1 min), and x̂k,t means
the predicted values corresponding to xk,t by NN-S, LSTM-S, or LSTM-R. The
number of epochs in LSTM (real, sim) is 200. The calculating time for learning
LSTM-R is 5 min (loading data: less than 1 s + learning model: 5 min) with 1
GPU, while that of learning LSTM-S is 45 min (loading data: 20 min + learning
model: 25 min) with 32 GPUs. The prediction values are output immediately.

4.3 Results and Discussions

Figure 4 shows the observed values (true) and predicted values (LSTM, NN)
at several points, “LSTM 5 m” and“sim 5 m” mean predictions with 5 min lead
time output by LSTM-S and NN-S, respectively. Table 1 means average NAE at
each observation point, compares prediction accuracy of LSTM-S and NN-S for
5, 10, 20, 30 min ahead, and the column NN-S, 0 min is calculated by the nearest
values of simulation data to the real data (not for prediction). According to
Fig. 4 and Table 1, prediction accuracy is poor at loc. 12-1 (a branching point)
and loc. 52-2 (an exit gate).

Fig. 4. Observation and prediction values at locations: 12-1, 23-1, 37-1, 52-2

Since loc. 12-1, 12-2, 12-5, and 12-6 are the intersection point and people
would choose multiple destionations (to Sta. A, B, restaurants area, etc.), it is
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difficult to predict the exact values of human flow. The observation points near
the exit gates are also difficult to predict. The number of human flow is largely
depend on the navigation inside the statidum, and we cannot observe it.

Accuracy is better at loc. 23-1 (a point around a station) and loc. 37-1. The
event participants left the stadium from several exit gates, and the most of the
participants (approximately 80–90%) moved to Sta. A. The passengers counted
at loc. 23-1 and 37-1 are assumed to be observed at other observation points
(like exit gates at loc. 40, 52-2) before. Therefore, if the prediciton model can
learn the relationships of each observation points well, the prediction accuracy at
those points gain the benefits. According to our experiments, it seems LSTM’s
prediction model have a positive effects for this aspect.

Table 1. Average NAE at each observation point

Loc LSTM-S NN-S

5 min 10min 20 min 30 min 0min 5 min 10 min 20min 30 min

12-1 0.676 0.977 4.30 11.3 4.42 4.99 4.46 7.94 1.00

23-1 0.292 0.477 0.613 0.343 0.422 0.532 0.488 0.444 0.932

37-1 0.452 0.669 0.823 0.867 0.325 0.285 0.307 0.439 1.00

52-2 1.23 4.01 28.2 26.8 10.2 8.30 8.44 2.17 1.00

Fig. 5. NAE(t)

According to Fig. 5, LSTM seems more stable than NN. Table 2 provides a
comparison of the three approaches by using average NAE (average among all
the observation points). LSTM-S offers lower prediction accuracy than LSTM-R
for lead times of 5 min and 10 min, but better accuracy than NN-S.

Table 2. Average NAE

Approach 5 min 10min 30 min

LSTM-R 0.350 0.480 1.77

LSTM-S 0.412 0.576 0.534

NN-S 0.744 0.702 0.948
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5 Conclusion

We constructed a multi-agent simulator and generated simulated data of people
flows around a large facility. By using the simulated data as LSTM input, we
learned a time-series prediction model. In addition, we verified the prediction
accuracy of LSTM and nearest neighbor search for real data and simulated data.

As shown in the experiments, the difference in prediction accuracy is not
small between using simulation data (LSTM-S, NN-S) and real data (LSTM-
R), and the accuracy in LSTM-S and NN-S depends on the quality of simulation
data generated by MAS. If the simulation data become much closer to the actual
behaviors of human flow, the prediction by using simulation data would be more
closer to the real observations. Therefore, improving the methods of searching
parameters to generate simulation data in MAS is what we aim to do in the
future work. Additionally, we also plan to consider the cases that have few pre-
measurement data. In such cases, we assume both simulation and real data
are used as the dataset in the learning phase. The approach can be considered
as semi-supervised learning [8] and this will help us to improve the prediction
accuracy.
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Abstract. Toward learning cooperative behavior for any number of
agents, this paper proposes a multi-agent reinforcement learning method
without communication, called PMRL-based Learning for Any number
of Agents (PLAA). PLAA prevents from agents reaching the purpose for
spending too many times, and to promote the local multi-agent coop-
eration without communication by PMRL as a previous method. To
guarantee the effectiveness of PLAA, this paper compares PLAA with
Q-learning, and two previous methods in 10 kinds of the maze for the
2 and 3 agents. From the experimental result, we revealed those things:
(a) PLAA is the most effective method for cooperation among 2 and
3 agents; (b) PLAA enable the agents to cooperate with each other in
small iterations.

1 Introduction

Multi-agent system becomes an effective model to simulate human society, and
solves the problem in this society by agents’ cooperation. Iwashita et al. aim to
give support to make a security plan by solving a urban road network security
problem which guards and criminals are modeled with agents [2]. Multi-agent
reinforcement learning (MARL) is a reinforcement learning technique to solve
the problems of multi-agent system. The agents generally utilize information of
other agents to cooperate with each other. Tan explored what kinds of infor-
mation of other agents contribute to increasing the performance of multi-agent
system [6]. However, it is hard for agents (i) to handle the information required
to cooperate with each other as the number of agents increases and (ii) to acquire
the current information of all other agents without delay or noise as the field
of agents becomes large or the number of the relay agents increases. From this
fact, it is important to explore methods without communication. However, this
is very difficult because the agents do not know how they cooperate with each
other [1,3]. Sen firstly addressed it and showed the possibility of reinforcement
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learning which enables agents to cooperate with each other without communi-
cation [4]. After that, such an approach is improved from the theoretical and
the efficient viewpoints. As the theoretical viewpoint, Profit Minimizing Rein-
forcement Learning (PMRL) [7] was proposed to theoretically guarantee the
multi-agent cooperation under the condition of no random actions of agents.
As the efficient viewpoint, on the other hand, Yielding Action Reinforcement
Learning (YARL) [7] was proposed to decrease the number of learning itera-
tions for the multi-agent cooperation. Both methods are useful to enable agents
to cooperate with each other without communication. However, PMRL cannot
guarantee the multi-agent cooperation when the number of agents is larger than
two, while YARL cannot always derive the multi-agent cooperation. In addition,
YARL might not perform well in situations of any number of agents because
YARL is not theoretical method. To overcome these problems, this paper pro-
poses PMRL-based Learning for Any number of Agents (PLAA) which two or
more agents can cooperate with each other with maintaining the guarantee of
PMRL and decreases the number of learning iterations.

2 Background

2.1 Q-Learning

Reinforcement Learning (RL) [5] is a try-and-error method which aims at max-
imizing an acquired reward per a unit time. As its general framework, an RL
agent interacts with an environment: it observes a state from the environment,
selects an action, receives a reward from the environment as the result of that
action, and then learns from the reward. Note that this cycle from the obser-
vation to the next observation is called “step” in this paper. Among many RL
methods, Q-learning [8] is a very popular RL method for a single-agent task. A
Q-learning agent estimates state-action values (called Q-value) for the possible
state-action pairs in the environment, i.e., the agent estimates an discounted
expected reward that it will receive when its action a is executed in its state s.
The agent learns to acquire a policy π(s, a) to decide which action should be
executed to maximize a received reward. To maximize a received reward, Q(s, a)
is updated as follows.

Q(s, a) ← Q(s, a) + α[r + γ max
a′∈A

Q(s′, a′) − Q(s, a)], (1)

where s′ is the next-state when a is executed in s, a′ is the next-action executed
in the state s′, r is the reward received from the environment, maxQ(s′, a′) is
the largest Q-value when executing the action a′ ∈ A in the state s′. In addition
to these variables, α is the learning rate, while γ is the discount factor. Precisely,
α is the real number from 0 to 1 which indicates the learning speed, while γ is
the real number from 0 to 1 which indicates how much the future rewards should
be considered as important.
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2.2 Profit Minimizing Reinforcement Learning (PMRL)

To learn multi-agent cooperation without communication, Uwano et al. proposed
Profit Minimizing Reinforcement Learning (PMRL) [7]. This method employs
internal rewards to control the agents’ learning. Each agent has the own inter-
nal rewards for any purposes, and calculate them from (external) rewards from
the environment. The agent updates Q-value from the internal rewards. PMRL
achieves multi-agent cooperation from three equations below. Equations (2) and
(3) update priority of each purpose of the agent and the internal reward for one
agent, respectively. In Eq. (2), bidg is called goal value of the certain purpose g
and a value indicating the priority of the purpose, nachieve is how much times
the agent achieves this purpose, tg is a minimum number of steps to achieve
each purpose g, and φ(m) is a function indicating whether the agent achieve this
purpose faster than any other agents or not. If the agent achieves this purpose
fastest of all, φ(m) = 1; otherwise, φ(m) = 0. In Eq. (3), irg is the internal
reward for each purpose g, and δ is a positive constant value. g′ is the certain
purpose without g, and G is a set including all purposes. PMRL can establish
the cooperation even if δ is any value. The agent updates Q-values from the
internal reward as the external reward.

bidg =
1

nachieve

nachieve∑

m=0

tgφ(m) (2)

irg = max
g′∈G,g′ �=g

rγtg′ −tg + δ (3)

In PMRL, the agent calculates the priorities and sets the internal reward every
acquiring the reward. In addition, PMRL is a theoretical method, and two agents
can always cooperate with each other in cooperation task.

3 Maze Problem and Dilemma

We employ a maze problem to validate whether the agent can change the behav-
ior through its learning or not. The maze has several number of states, starts,
and goals. The agents depart from the start and keep observing the states until
they reach the goal. If the agents are on the goal, they can acquire the reward.
During this cycle, the agents learn to reach the goal to acquire maximum gain
par a unit time. In this paper, a cycle from its departing to reaching the goal
is called “iteration”. Since there are several number of agents in one maze, the
agents cannot learn completely. This paper calls this situation “conflict”, and
the several agents have to yield this goal for other agents to solve the conflict.
This situation is “dilemma”, and this strategy changing is called “cooperation”.
Concretely, the cooperation is a policy that all agents can acquire the rewards
for shortest step.
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4 PMRL-based Learning for Any Number of Agents
(PLAA)

The agent has Q-values, minimum number of steps, goal range, and goal values
to learn cooperative behaviors. The goal range is a number to manage goals
where the agent can reach.

4.1 Mechanisms

In PLAA, the agent learns for one iteration, and evaluates the iteration. PLAA
employs ε-greedy selection in the learning phase, while it employs the greedy
selection in the evaluation phase. From the evaluation, it stores the information
including the minimum number of the steps and the number of other agents in
the same state. After that, it calculates the goal values and sets the internal
rewards. These processes are same as those of PMRL. However, if the current
iteration becomes the several times of the threshold, it changes the goal range;
otherwise, it returns to next iteration in PLAA. Note that the threshold is a
positive integer from 0 to the maximum number of the iterations. The process
of changing the goal range is a main point of PLAA.

Goal Range Determination Mechanism. The goal range is a positive inte-
ger to prevent from the agent reaching the goals: the agent can reach the several
goals in order from the nearest goal, and the goal range is the number of the
reachable goals. The goal range is initialized to 1. Since all agents have the goal
ranges 1, the certain agents might have a conflict in one goal. If the number of the
agents is two, they change the goal values to 2 as this number and learn to reach
next nearest goal in order to resolve the conflict. If there are not any conflicts,
this process is finished. If there are other conflicts in this situation, the agents
making the conflicts change the goal ranges to the number of the agents. This
is a goal range determination mechanism. Note that the conflict is determined
whenever the agents reach the same goal for 4000 times in 5000 iterations. There
are parameters Cycle and ProbConflict to determine the conflict. Cycle is the
iterations, and ProbConflict is the probability to determine the times (4000 is
calculated by Cycle × ProbConflict = 4000 in above sentence).

Goal Value Calculation Mechanism. In the process of the calculating the
goal values, the agents utilize Eq. (4) instead of Eq. (2). Equation (2) is easy to
convergence the goal value, and not easy to be influenced from the minimum
number of the steps acquired in the current iteration. Since PLAA has to find
appropriate goal values whenever the goal range is changed, the goal value has
to be calculated with putting emphasis on the new information. Equation (4)
becomes easy to be influenced the newly added tgφ(m) by changing the denom-
inator from nachieve to constant value ξ.

bidg = 1/ξ

nachieve∑

m=0

((ξ − 1)/ξ)nachieve−m tgφ(m) (4)
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Fig. 1. Examples of each case

5 Experiment

5.1 Experimental Design and Setting

To investigate the effectiveness of PLAA, we compare PLAA with three methods,
Q-learning, PMRL, and YARL, in 3 × 8 grid mazes. There are three cases as
follows, Case (2-1) for two agents, and Cases (3-1) and (3-2) for three agents.
All agents have to cooperate with each others in Cases (2-1) and (3-1). In Case
(3-2), only two agents have to cooperate with each other. There are 10 kinds of
mazes which start and goal positions are different among all mazes in each case.
Figure 1 shows examples of each case. In these mazes, A, B and C indicate start
positions of agents, respectively. X, Y and Z indicate goal positions. Note that
this paper identificates the agents and the goals with A, B, C, X, Y, and Z of
each maze, respectively.

Evaluation Criterion and Parameters. This paper evaluates steps spent
until all agents reach goals. The total number of experiments is determined by
the number of trials (e.g., 300 trials with 30 different seeds in 10 kinds of mazes
for each case.) Learning iterations and steps are limited to 50000 and 100 as
the threshold, respectively. Q-values of all states are initialized to 0. α and γ
are set to 0.1 and 0.9, respectively. All methods employ ε-greedy selection in the
learning phase, while they employ the greedy selection in the evaluation phase.
Concretely, the agents select their actions according to the ε-greedy selection
method with ε = 0.7, and evaluate the learning result according to the greedy
selection. We set ε = 0.7 to find the minimum number of the steps from the start
to all goals. An ordinary (external) reward is set to 10. δ is set to 10. A learning
cycle Cycle is set to 5000, threshold ProbConflict is set to 0.8, and constant ξ
is set to 500 in PLAA.

5.2 Experimental Result

Overall Result. Figure 2 shows the steps until the agents reach the goal in
the mazes of Fig. 1 as the typical one of 10 results in each case. The vertical
axis indicates the number of steps spent until all agents reach goals, while the
horizontal axis indicates the learning iteration. The four lines in Fig. 2 indicate
the results of Q-learning (blue lines), PMRL (orange lines), YARL (green lines),
and PLAA (red lines), respectively. If the agents cannot cooperate with each
other, the number of the steps become 100. In Fig. 2a, the line of Q-learning is
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Fig. 2. Result in sample maze of each case (Color figure online)

100 for almost all iterations, while those of PMRL, YARL, and PLAA become
the minimum number of the steps. Figures 2b and c indicate the results of Cases
(3-1) and (3-2). In Fig. 2c, the line of Q-learning indicates 100, those of YARL
and PLAA converge to the minimum number of the steps, and that of PMRL
becomes low but over the minimum number of the steps. Although Fig. 2b is
similar to Fig. 2c, the only line of PMRL do not converge to the minimum number
of the steps in Fig. 2c. Table 1 shows the results of three methods in all mazes.
In this table, “O” and “X” indicate the situations which the number of the steps
is minimum and not minimum in all seeds, respectively. “�” indicates that the
number of the steps is minimum in several seeds. From the Table 1, the agents
with PMRL can cooperate with each other in almost all mazes of Case (2-1), but
cannot in other cases. The agents with YARL can cooperate with each other in
almost all cases, but cannot in three mazes (maze 8 of Case (2-1), mazes 7 and 8
of Case (3-2)). The agents with PLAA can cooperate with each other, excluding
maze 6 of Case (3-1).

5.3 Discussion

From the results, PLAA is most effective method for each case. The agents
can learn to reach the goals with the cooperation for minimum steps. In the
following sentence, we compare and analyze the results of PLAA, PMRL, and
YARL. Figure 3 shows the maze 7 in Case (3-2). In this maze, Agent A, Agent
B, and Agent C indicate the start positions of the agents, while Goal X, Goal
Y, and Goal Z indicate the goal positions. In this maze, the number of the steps
in PMRL and PLAA is average of 5, 8, 9, and 100, while that in YARL is 8.
Since the minimum number of the steps is 5, YARL cannot find the minimum
number of the steps, while PMRL and PLAA can find that in certain seeds.
Concretely, the agents A and B have a conflict in the goal X, then both agents
update the goal ranges from 1 to 2. After that, the agent B and C have a
conflict in the goal Z, then the agent C update the goal ranges from 1 to 2. From
this mechanism, PLAA enable the agents to learn to reach the goals with the
minimum number of the steps. However, there is a case which PLAA performs
optimally. The case is that the minimum number of the steps in certain goal is
same as those in other goals. Since the agent can select both combinations of
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Table 1. Overall result in all cases

PMRL
maze1 maze2 maze3 maze4 maze5 maze6 maze7 maze8 maze9 maze10

Case (2-1) O O O O � O O O O O
Case (3-1) � � � � � X � O � O
Case (3-2) � � � � � � � � � X

YARL
maze1 maze2 maze3 maze4 maze5 maze6 maze7 maze8 maze9 maze10

Case (2-1) O O O O O O O X O O
Case (3-3) O O O O O O O O O O
Case (3-2) O O O O O O X X O O

PLAA
maze1 maze2 maze3 maze4 maze5 maze6 maze7 maze8 maze9 maze10

Case (2-1) O O O O O O O O O O
Case (3-3) O O O O O X O O O O
Case (3-2) O O O O O O � O O O

Fig. 3. maze 7 in Case (3-2) Fig. 4. maze 6 in Case (3-3)

the goals, and the goal range cannot perform well. Figure 4 shows the maze 6 in
Case (3-1). The numbers of the steps in PLAA and PMRL are 9, while that in
YARL is 7. In YARL, all agents have a conflict in the goal Y, then the agent B
and C learns to reach the goal X and Z, respectively. The agents can reach the
goals for the minimum number of the steps. In PLAA, all agent have a conflict
in the goal Y, then all agents update the goal ranges from 1 to 3. From this
mechanism, the agents can learn to reach the goals for very low steps but over the
minimum number of the steps. To solve this issue, the agent C’s the goal range
should be 2.

6 Conclusion

This paper proposes reinforcement learning method for multi-agent coopera-
tion without communication (PMAL-based Learning for Any number of Agents:
PLAA). Concretely, PLAA is an extension of PMRL which changes the external
reward to the internal reward for the cooperation. PLAA sets the goal range
to prevent from the agents reaching the farthest goal: the agent can reach the
several goals in order from the nearest goal, and the goal range is the number of
the reachable goals. If the agents have a conflict, they change the goal range to
the number of the agents. This paper compares PLAA with Q-learning, PMRL,
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YARL in 10 kinds of the maze for the 2 and 3 agents. From the experimental
result, we revealed those things: (a) PLAA is the most effective method for coop-
eration among 2 and 3 agents; and (b) PLAA enable the agents to cooperate
with each other in small iterations.

PLAA can make cooperation in almost all situations. We would propose a
new goal range setting strategy for all situations. Concretely, the PLAA agents
update the goal range gradually. From the results of this research, since the
optimal goal range for each agent always exists in each maze, it can be suggested
that to extend PLAA contributes the multi-agent learning for several number of
agents.
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Abstract. We address two major issues of Waves, a collective learning
protocol that has been recently proposed. The protocol aims at enhanc-
ing individual agent learning in an agent society organized in a network
in which agents may interact with their neighbors. When considering
a turn-based setting, Waves guarantees that at the end of a turn each
agent has a model consistent with all observations present within the
society. This guarantee is obtained thanks to exchange of observations
and hypotheses between neighbors. All interactions are performed in par-
allel and the protocol may lead to redundancies and some lack of diver-
sity in the hypotheses revised by the agents. The first issue concerns the
redundancy that follows from the generation and transmission by agents
of hypotheses equivalent to hypotheses previously encountered. The sec-
ond issue is the lack of diversity that may result in losing the accuracy
increase, with respect to an isolated agent, observed whenever all agents
freely interact with each other.

1 Introduction

While artificial intelligence at the individual level remains an important area
which recently made impressive progress, in particular regarding learning and
adaptation, there is a clear need to study learning phenomena at the collective
level, to observe efficiency of collective learning mechanism and to propose new
interaction protocols with as much as possible theoretical guarantees.

In the setting we investigate, we consider a community of agents each indi-
vidually needing to learn some model by accessing over time observations from
its environment. The community has no shared memory while agents are nodes
of a communication network and may communicate with their neighbors. The
community is considered as uniform as agents are autonomous and have the
same abilities and no predefined role. The agents have each the ability to repair
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their current model when confronted to observations that contradict this model.
More precisely, an agent has to maintain the adequacy (we call that the consis-
tency) of the model with the observations it has collected. As, at some moment,
an agent has been confronted to a limited number of observations, a model only
built from these observations would then not be accurate enough. However, as
far as the agent benefits from the observations collected by the whole commu-
nity, it could build a much better model in terms of predictive accuracy, i.e. in
terms of consistency with respect to further observations. The first purpose of
collective learning is then to allow agents to each have as good a model as if
they had access to all the observations in the community, while satisfying the
pre-requisite mentioned above: no shared memory, communications restricted to
neighbors, and autonomy. Such pre-requisite corresponds to many practical sit-
uations, and are close to settings found in two other domains, namely distributed
systems with error correcting abilities [2] and swarm intelligence [3]. A second
purpose of collective learning is concerned with homogeneity of the models built
within the community: the interaction between agents should not be limited to
exchange of observations, but also allow the agents to confront their models thus
resulting in a more homogeneous state of knowledge within the community.

Our contributions concern a recent collective learning protocol, named Waves
[4] in which interactions are performed in parallel in an agent network and guar-
antees, at convergence, the consistency of a limited set of hypotheses selected
according to the observations in the community. The propositions, presented
Sect. 3, are twofold. Firstly, we address Sect. 3.1 computational redundancies by
avoiding useless critics and merging equivalent hypotheses. Secondly, in Sect. 3.2
we focus on restoring the accuracy increase with respect to a single agent which is
lost when Waves does not always provide a sufficient diversity on the hypothe-
ses the agent revises. The resulting improvements of Waves are experimented
Sect. 4.

2 Collective Learning in a Society of Agents

In a collective learning setting, a structured society of agents, represented as a
graph where nodes are agents and edges are communicational links, performs a
supervised learning task using the examples gathered by the members of the soci-
ety in their respective example memories Ei. We consider a turn-based setting,
with two phases. During the information gathering phase, each agent accesses
its information source, possibly getting one or more new examples. Then, in the
collective learning phase, which is our focus here, agents collaboratively build
hypotheses based on their information and feedback from other agents. We focus
on a simple learning task: concept learning of boolean formulae. At the end
of this phase, we typically want to ensure MAS-consistency, meaning that the
hypothesis of each agent is consistent with the set of all examples in the system
(i.e. it classifies them correctly). A weaker requirement, group-consistency, only
demands that each agent has a hypothesis consistent with the set of examples
possessed by itself and its direct neighbors.
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In previous work [1], collective learning has been studied in the context of a
fully connected society of agents. The resulting generic protocol SMILE ensures
MAS-consistency at the end of the collective learning phase. It is based on a
learner-critic principle, where an agent which revises its hypothesis, thus taking
a learner role, proposes the revised hypothesis to the other agents, that act
as critics. As a critic, an agent either provides a counter-example or accepts
the proposed hypothesis when it does not have such a counter-example. In the
former case, the learner agent revises its hypothesis to take into account this
counter-example, and the process is iterated with this revised hypothesis until
the learner produces a MAS-consistent hypothesis that is then adopted by all
agents. Experimental evaluations confirmed that SMILE learns hypotheses that
are at least as accurate as the one formed by a single agent possessing all the
examples in the society. Moreover, in complex boolean problem, it has shown
a significant improvement in accuracy compared to such a single agent. This
accuracy increase may however be lost if the example memories of the agents
become too similar [1].

This paper builds upon the turn-based Waves protocol [4] which focuses
on the autonomous and parallel behaviors of agents that communicate with
their neighbors in a network. After the information gathering phase, each Waves
agent confront the MAS-consistent hypotheses it kept from the previous turn
with its new examples. If a hypothesis is contradicted, it revises it and proposes
this revision around, initiating an interaction with its neighbors to reach group-
consistency. Then, each of the neighbors, when notified of the group-consistency
of some hypothesis hL, is tasked with propagating hL to its own neighbors by
checking it: it will temporarily adopt it, starting new local interactions to validate
the group consistency of hL or revise it into a group consistent hypothesis h′

L.
In the last case, h′

L is marked as a revision of hL, so that other agents can infer
that hL was contradicted when receiving it.

Each agent ai is equipped with a working hypotheses memory, defined as a
tuple 〈θi,Wi, Ci, Ri〉, where θi is the current hypothesis, which the agent is cur-
rently using in a local revision, if any. Wi is the waiting list of hypotheses, which
the agent has no yet checked but intends to. Ci is the set of checked candidate
hypotheses, which are the hypotheses that the agent already checked, which are
known to be group-consistent (and might be MAS-consistent). Ri is the set of
rejected hypotheses. It is a set of identifiers indicating the hypotheses that have
been proved not to be MAS-consistent. Waves-Hypothesis H are represented as
tuples 〈id, date, h,Anc〉 where id is a unique identifier of the hypothesis, date
indicates when (the turn) it was produced, h is its logical form, and Anc is the
set of ancestors of H, that is, the identifier of the hypothesis h′ of which it is
a revision (if any) together with the ancestors of h′. The protocol unfolds as
follows:

1. Initial verification. After the information gathering phase, each agent that
received new examples confront them to Ci. If some H ∈ Ci is contradicted,
the agent revises it with example memory and takes the result as its new
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current hypothesis θi, triggering the protocol with a local revision. It becomes
active and resets Ci, Ri and Wi to ∅. Otherwise, the agent stays passive.

2. Local revisions. All active agents ai are involved as learner in a local protocol
with their neighbors (involved as critics) to check the group-consistency of
their current hypothesis θi, revising it until it is ensured.

3. Ending a local revision. When an active agent ai finishes a local revision,
it updates θi and Ri if θi was revised during the interaction (adding its
initial identifier to its ancestors and Ri and generating a new one) before
sending valid(θi) to all its neighbors. If Wi is not empty, ai chooses a new
working hypothesis in Wi and triggers a new local protocol with it, otherwise
it becomes passive.

4. Managing hypotheses. When receiving valid(H), agent ai must deal with
the underlying request to check it with its own neighbors. The process is in
three steps:
(a) Initial reset. First, if H is the first hypothesis that ai would have to check

in this turn (if its date is more recent than those of Ci or θi), Ci, Ri and
Wi are set to ∅, and θi is set to H. ai becomes active, starting a local
protocol to check its new θi.

(b) Filtering. Otherwise, the agent determines if it has already encountered
H, as it should only check it once. If H itself is in Wi ∪ Ci ∪ {θi} or
H.id ∈ Ri, H is already taken into account and not added anywhere,
otherwise, H is added to Wi.

(c) Update from ancestors. At last, the ancestors of H are added to Ri and
any hypothesis in Wi or Ci that belongs to H.Anc is removed. If θi is in
H.Anc, then ai gets in cancelling state and will stop its current revision
as soon as it has finished receiving answers for its last propose. It will
then pick a new current hypothesis in Wi and start the next check (or
become passive if Wi is empty).

5. End of phase. The protocol ends when all agents are passive. Each agent then
selects one of the shortest H ∈ Ci (lesser number of terms) as its personal
hypothesis hi.

This protocol ensures that each turn terminates and that MAS-consistency is
reached for all agents upon termination. However two issues appeared when ana-
lyzing the experimental results. Firstly, average accuracy of agents hypotheses
do not always benefit from the accuracy increase observed in SMILE. Secondly,
some network structures are too costly as computational power is spent on many
redundant computations. We will see in next section how these issues can be mit-
igated to improve Waves performance.

3 Improving Waves

As agents process and spread information independently and in parallel, a num-
ber of redundancies appears in Waves. First, it may have, as a critic, to examine
the consistency of the same logical hypothesis, either when different neighbors



Better Collective Learning with Consistency Guarantees 675

consecutively propose it the same Waves-hypothesis or when two different Waves-
hypotheses with the same logical form are produced concurrently. We propose
in Sect. 3.1 ways to reduce each of these redundancies. Second, agents’ example
memories also suffer from redundancy. With more hypotheses in the network
there are more revisions and thus examples are more widely spread across the
network leading to a loss in hypotheses diversity and causing the loss in accu-
racy increase mentioned above. This is the case in particular when many cycles
and long distances between agents impose a lot of examples exchanges. With
such a high memory redundancy, the agents tend to revise hypotheses in a same
way, leading to a poor exploration of the hypothesis space. We thus propose in
Sect. 3.2 some mechanisms to reduce this redundancy.

3.1 Reducing Computational Redundancies

Avoiding Useless Critics. Here, we are concerned with reducing the number
of times a given hypothesis is proposed to the same critic agent by different
learners. To prevent a given hypothesis from being proposed to the same critic
agent by many different learners, we attach to each Waves-hypothesis H a set of
agent identifiers H.Crit. When checking H, a learner agent will only propose it
to neighbors that are not in H.Crit. Then, when ending a local revision (step
3), the learner ai update θi.Crit with its neighbors. Note that all neighbors are
then notified of group-consistency even if they did not participate as critics.
Moreover, when receiving valid(H) where H is in Wi, agents will compare the
received version of H with the stored one to update the critics of the stored one
if needed. We call this process critics recording.

Merging Equivalent Hypotheses. In some settings, Waves generate a lot of
logically equivalent hypotheses. Since, when keeping track of hypotheses, Waves
agents are only concerned with their identifiers, such hypotheses will be propa-
gated and checked independently. To avoid that, equivalent hypotheses should
be grouped, but careful handling is needed to preserve Waves theoretical guar-
antees. The termination and MAS-consistency properties of Waves rely on the
fact that any hypothesis that is formed will either (i) reach all agents in the
system if it is MAS-consistent, or else (ii) generates at least one MAS-consistent
descendant. This ensures both that Ci is not empty and that it does not contain
any non MAS-consistent hypothesis. As, due to local revisions, a hypothesis can
be revised to a logical equivalent of one of its ancestor, rejecting all hypotheses
equivalent to a rejected one might remove all hypotheses from Ci.

Thus, when merging hypotheses, we must ensure that each unique identifier
stays associated with its ancestors and is fully propagated. We do so by using
passports, defined as a couple (id, Anc) where id is an identifier and Anc is its
ancestors’ set: passports are created with each hypothesis and never modified
afterward. Equivalent hypotheses can thus be grouped in an equivalence class of
Waves hypothesis, which will be called a Waves eq-hypothesis and defined as a
tuple 〈Pass, date, h[, Crit]〉 where Pass is the set of passports of the hypothe-
ses that belong to this logical equivalence class; date represents the turn in
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which all hypotheses of this class were produced (we only consider merging for
hypotheses generated during the current turn); h is the logical form of the for-
mula, common (modulo equivalence) to all hypotheses of this class; and Crit,
if critics recording is used, is the set of agents that accepted a hypothesis of
this class. Since critics focus on the logical content, this list can be shared by
the class. Given H1 = 〈Pass1, d1, h1[, Crit1]〉 and H1 = 〈Pass2, d2, h2[, Crit2]〉
where d1 = d2 = d and h1 ≡ h2 we can define the merging of these two eq-
hypotheses as Merge(H1,H2) = 〈Pass1 ∪ Pass2, d, h1[, Crit1 ∪ Crit2]〉.

Waves protocol then need some adaptation to deal with eq-Hypotheses. First,
θi, Wi and Ci now stores Waves eq-hypotheses (Ri remains a set of ids). Hypoth-
esis management phase (step 4 in Sect. 2) now has to deal with these equiva-
lence classes while still ensuring full propagation of each individual identifier.
This does not affect Initial reset (4.a), but Filtering step (4.b) must be thor-
oughly changed, as potential merging should be checked and passports updated
in consequence. First the passport of the new eq-hypothesis is pruned of already
rejected instances of the class (passports whose identifier is in Ri), before check-
ing whether any of the passports is really new (meaning that its identifier has
never been seen before by the agent). If not, the hypothesis management phase
can be directly finished, otherwise, at least one identifier is new, but we must
still check whether the logical content itself is new. The new hypotheses is thus
compared in turn with θi, then Wi and Ci, replacing the stored eq-hypothesis
by its merging with the new one if an equivalence is found. If the merging hap-
pens in Ci, a new valid(H) message has to be send to the neighbors to ensure
propagation of the new identifiers. Then, if no merging is found with stored
hypotheses, the new hypothesis is put in Wi or θi. The last step of hypothesis
management, Update from ancestors (4.c) is also modified: eq-hypotheses are
only removed when all their passports have been rejected. At last, we also need
to check for potential merging when the agent has formed a new hypothesis at
the end of a revision process.

3.2 Using Forgetness in Waves

Forgetness [1] is a mechanism used in SMILE to suppress redundancies in the
example memories of the agents. When combined with broadcast in a com-
plete graph, it improves performances both in term of efficiency and accuracy.
When faced with long cycles or multiple examples by turn, Waves produces more
hypotheses which provokes more examples sharing, causing a loss of the agents
average accuracy. We could have each Wave-agent forget all its external examples
(examples received from the other agents) at the end of each turn. But, when an
example is spread far away, it is likely to be important and full forgetness will
thus be prohibitively costly as such examples need to be repeatedly propagated
from scratch. We propose then to select the external examples that should be
forgotten at the end of the turn. For that purpose we shall take into account
the distance traveled by examples to reach each agent. We define two criterion:
(i) Forgetting close examples, that is, forgetting only examples that traveled
less than a given distance k, i.e. examples whose distance tag is in {1, . . . , k};
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(ii) Forgetting odd distances, that is, forgetting all external examples who trav-
eled an odd number of steps. The idea here is that instead of trying to keep
examples that traveled far in one’s memory, it is enough to just ensure that at
least one close agent keeps it: along the path of such an example, each agent will
either keep it or have a neighbor that does so.

4 Experimentation

An experiment is typically composed of 100 runs, each one corresponding to a
sequence of examples incrementally sent to random agents in the MAS. Experi-
ments are performed on a node with 48 cores, considering system of 40 agents so
that each agent can use its own core. Agents are tasked with learning a difficult
boolean problem: the 11-multiplexer (M11). We study different layouts of the
network of agents taken from [4] and covering various situations: Clique (fully-
connected graph) gives an unconstrained case where all reference protocols are
applicable; Tree5 (regular tree with five sons) is an acyclic graph with short
path length representative of hierarchical structures; Wheel (one central node
is connected to every other one, the others forming a circle) has lots of short
cycles; SmW4p05 (Small-World built with Watts-Strogatz algorithm [5] with mean
degree 4 and reconnection probability 0.5) is a structure commonly found in self
organized networks such as peer-to-peer or social networks; Line and Circle
(regular graph of degree 2) represent worst case scenario.

Critics Recording and Hypotheses Merging. We study the influence of
both improvements on the whole process of learning and compare its cost at the
end of learning which can be reached in M11 problem after around 300 examples.
Figure 1 shows execution time for the different improvements considered. We
focus first on comparing original Waves (1st bar in red) with its version with
critics recording (Waves critMin, 2nd bar in blue). We can see that, even on the
layout that benefits less from it (Tree5), critics recording is always beneficial:
avoiding the critic of the agent who sent the hypothesis is enough to compensate
the simple additional processing involved. Graphs like Clique and Wheel that
contains many triangles show the biggest improvements. We focus, on a second
time, on comparing the same original Waves with it’s version with hypotheses
merging (Waves merge, 3rd bar in pink). The benefit of merging hypotheses is
clear in networks where the presence of cycles put it at a disadvantage against
sequential protocols [4]. It also improves long distances propagation. In a cycle,
a hypothesis can be criticized by the same agent on each side with the same
counter-example so it’s more likely that the revised hypotheses on each side
are similar and benefit from being merged. Even in cases where the benefit is
minimal, despite the increased complexity of eq-Waves hypotheses, execution
time is not increased. At last, merging hypotheses and recording critics do not
have the same influence and can be cumulated for greater benefit (Waves merge

CritMin last bar in violet), especially in graphs with long paths and cycles where,
while the main improvement comes from hypotheses merging, critics recording
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further enhance it. Both of these modifications have benefits on communicational
and computational loads without any significant influence on accuracy.

Fig. 1. Comparison of execution time for the improvements of Waves in different net-
works. (Color figure online)

Forgetness. Given the combined benefits of merging hypotheses and critics
recording and their lack of influence on accuracy, we built upon these two
improvements to study forgetness, which implies a trade-off between accuracy
and execution time. We study two kinds of partial forgetness: close examples
with k = 2 (Dist 1-2) and odd distances (Odd-Dist). Their execution time and
average accuracy is compared in Fig. 2 to extreme cases of forgetting all external
examples (All-ext) or none (none).

Fig. 2. Four kinds of partial forgetness from none to all external examples and their
impact on (a) accuracy and (b) execution time in various 40 agents networks (results of
All-ext from the last 3 graphs, omitted for scaling reason, are resp. 7600 ms, 25000 ms
and 36000ms).

We first observe that forgetting all external examples can get very costly
in time when MAS have sparse structures with long distances. Partial forget-
ness can keep the learning computation time much lower. Both variants tend to
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improve accuracy at some time expense. Forgetting close examples is very layout
dependent. If its threshold k is close to or greater than the network diameter, the
protocol will behave like one forgetting of all external examples, time consum-
ing but accurate. However a small k in networks with high diameter may have
little difference with forgetting nothing. We can see these two cases with the net-
works Wheel and Line. When forgetting odd-distance examples, accuracy varies
less between layouts since every example learned once is kept in the immediate
neighborhood independently of the diameter. Accuracy results of this criterion
are among the best while the time cost remains much more reasonable.

5 Conclusion

In this article we have provided and experimented improvements of the collective
learning protocol Waves. Two major issues have been addressed. Firstly, by
associating to each hypothesis information about its trajectory and merging
equivalent hypotheses we avoid useless processing. Secondly, we have shown that
the eventual lack of diversity in the agent memories may be tackled by allowing
agents to forget part of the observations they have memorized. We provided a
reliable scheme for such a forgetting process, and the emerging accuracy increase
observed in previous protocols is then preserved with little additional cost. Still,
there is lot to do to obtain a protocol that may be applied to more realistic
problems. A collective learning approach with autonomous agents interacting
with their neighbors is prominently interesting when the community is composed
of many agents. Then, fully preserving the MAS-consistency guarantees leads to
exchanging a lot of hypotheses and observations and there is a clear need to
find a trade-off between (i) the proportion of observations present in the whole
community with which an agent hypothesis is consistent and (ii) the cost of
maintaining such a consistency guarantee. In a further work we will investigate
this in large communities.
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