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Preface

“It is like watching a car crash in slow motion. Your child is inside the car. You are outside 
the car and there is nothing you can do about it”— the frustration on the lack of a curative 
therapy from a mother whose child is suffering from muscular dystrophy. Jen Portnoy, 
Hope for Javier, April 10, 2017

It is estimated that approximately seven million people are affected by neuromuscu-
lar diseases worldwide. Majority affected are children. Almost all neuromuscular 
diseases are caused by genetic mutations. According to the gene table of neuromus-
cular disorders (www.musclegenetable.fr/), among ~900 neuromuscular diseases, 
nearly 500 disease genes have been identified. Contemporary gene therapy technol-
ogy brings in a hope of treating these diseases at their genetic roots by correcting the 
mutated gene or introducing a normal one to replace the defective gene.

The first disease gene for a neuromuscular disease was discovered in 1987 by 
Louis Kunkel and colleagues. This gene was called the DMD gene because its 
mutations cause Duchenne muscular dystrophy (DMD), the most common child-
hood lethal muscle disease. The DMD gene encodes dystrophin, an essential muscle 
survival protein. In the absence of dystrophin, muscle undergoes degeneration and 
necrosis. The discovery of the DMD gene immediately generated euphoria and 
excitement among patients, their families and friends, researchers, and the general 
public. Optimism for a DMD cure by gene therapy appeared to be a realistic expec-
tation. However, early attempts to transfer the DMD gene did not bring an immedi-
ate cure. To review the lessons learned from these early studies, the first edition of 
Muscle Gene Therapy was published in 2010. This was the first book entirely dedi-
cated to muscle gene therapy. At the time of the publication of the first edition, the 
proof of principle for neuromuscular disease gene therapy had been demonstrated in 
rodent models, and a few clinical trials had just been initiated to test the safety and 
feasibility of directly administering a candidate muscle gene therapy vector to 
human patients. Yet, there was no gene therapy drug approved by a regulatory 
agency for any inherited disease, not to mention neuromuscular diseases. This situ-
ation is changed now. Gene therapy drugs have been marketed, including one gene 
expression modification therapy (exon skipping) for DMD and gene replacement 
therapies to treat a rare inherited lipid disease (lipoprotein lipase deficiency), a form 
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of blindness affecting children and adults (Leber congenital amaurosis). Cell-based 
gene therapies have also been approved to treat acute lymphoblastic leukemia and 
non-Hodgkin lymphoma. The field of gene therapy has entered a new phase and 
begun to produce measurable clinical benefits for some patients, including patients 
suffering from certain neuromuscular disorders. New approaches have been devel-
oped to expand the scope of neuromuscular disease gene therapy from the original 
gene replacement to gene knockdown, gene expression modulation, gene therapy 
with noncoding sequences (such as microRNA), gene therapy with disease- 
modifying genes, and, more recently, with the CRISPR technology-based gene edit-
ing. Creative new gene therapy strategies and encouraging animal study results are 
emerging targeting neuromuscular diseases. Preclinical rodent studies are now 
being scaled up in large animal models. New vector production and purification 
technologies are developed to meet the ever-increasing needs for both preclinical 
and clinical studies. Several promising bodywide therapies are on the horizon and 
in clinical trials for treating spinal muscular atrophy, X-linked myotubular myopa-
thy, and DMD. In view of these advances in translational science, this new edition 
of Muscle Gene Therapy provides a comprehensive review of recent developments 
and ongoing progress.

In the second edition of Muscle Gene Therapy, we have structured the book into 
three major sections. Part I provides a review of the foundation for muscle gene 
therapy; Part II describes the importance of preclinical studies in the development 
of muscle gene therapy for clinical translation; Part III demonstrates the essence of 
translation by illustrating examples of progress from preclinical to clinical muscle 
gene therapy. In Part I of the book, we start with an overview of muscle biology and 
physiology, then a chapter on the molecular basis of neuromuscular diseases and a 
chapter on animal models. In subsequent four chapters, stem cells, microRNA, and 
immunology in muscle disease and gene therapy are discussed. The success of gene 
therapy hinges on our understanding of the gene delivery vector. Hence, five chap-
ters are devoted to this topic. These include one chapter on the design of the muscle 
gene therapy expression cassette, one chapter on nonviral vectors, one chapter on 
viral vectors, and two chapters on vectors based on adeno-associated virus (AAV). 
AAV vectors are currently the most promising gene delivery platform for muscle 
gene therapy. Strategies that can improve the existing AAV vector system and AAV 
manufacture methods are essential to bring muscle gene therapy to every patient. 
Hence, one of the AAV chapters is on the development of the next-generation AAV 
vectors and the other on large-scale clinical grade AAV production. Outcome mea-
sures for testing efficacy of muscle gene therapy are addressed in three chapters, 
including one devoted to histological and biochemical evaluation of muscle gene 
therapy, another on biomarkers, and a chapter devoted to the newly developed imag-
ing technology called optical polarization tractography. Part I of the book is wrapped 
up with a chapter dedicated to the use of genome editing to treat neuromuscular 
diseases.

Most chapters in the first edition of Muscle Gene Therapy focus on preclinical 
development of muscle gene therapy for various neuromuscular diseases. In the 
second edition, all preclinical animal studies are grouped in Part II. The design and 
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implementation of a preclinical muscle gene therapy study are a very important but 
rarely discussed topics in the literature. As a unique feature of the new edition, we 
introduce Part II of the book with a chapter on preclinical study considerations. The 
DMD gene was the first neuromuscular disease gene discovered. Consistently, 
DMD is also the most studied disease in muscle gene therapy. Seven chapters are 
devoted to different aspects of DMD gene therapy including gene replacement, exon 
skipping, genome editing, and gene therapy approaches to treat brain dysfunction in 
DMD. Two chapters are given to innovative approaches, one for alternative transla-
tion initiation and one for sarcolipin knockdown. Remaining chapters in Part II of 
the book review the latest gene therapy developments for treating other neuromus-
cular diseases such as dysferlinopathy, dystroglycanopathies, facioscapulohumeral 
muscular dystrophy, myotonic dystrophy, myotubular myopathy, mitochondrial 
myopathy, Charcot-Marie-Tooth inherited neuropathy, and other dominantly inher-
ited muscular dystrophies and myopathies. Since sarcolemma weakness/damage is 
a common feature in many types of muscular dystrophies, we include one chapter to 
specifically discuss therapies based on muscle cell membrane repair. The last chap-
ter of Part II discusses muscle as a target for genetic vaccination.

The ultimate goal of muscle gene therapy research is to benefit patients. In the 
first edition of the book, only a single chapter was devoted to clinical translation 
consistent with limited numbers of clinical trials largely focused on proof-of- 
principle studies. Recently, the field has made a quantum leap forward with highly 
promising clinical data from bodywide systemic AAV therapy in patients with type 
I spinal muscular atrophy. For the first time in history, a gene therapy has signifi-
cantly changed the disease course, reduced symptoms, improved quality of life, and 
increased survival in a neuromuscular disease. Conditional approval of an exon- 
skipping therapy drug for DMD by the FDA, though still being hotly debated, marks 
another important milestone as the first molecular-based genetic modifying therapy 
approved by a regulatory agency. There is no doubt that many more candidate mus-
cle gene therapy drugs will progress from bench to bedside in the upcoming years. 
In the view of the editors of the second edition of the book, there is a need to bring 
researchers, trainees, funding agencies, and the patient community up to date on the 
clinical progress of neuromuscular disease gene therapy. There is also a need to 
review and reflect on experiences and lessons learned from completed and ongoing 
trials. With this backdrop, we devote nine chapters in Part III of the book to clinical 
muscle gene therapy. We start this section of the book with a chapter on patient and 
family perspective. This is followed with two chapters on clinical trial design. Of 
particular interest is the discussion on the practical and regulatory issues pivotal to 
the development of a muscle gene therapy product from the initial hypothesis to 
early preclinical studies, investigative new drug application, clinical trials, and regu-
latory approval. One chapter provides a comprehensive discussion on magnetic 
resonance imaging (MRI). The noninvasive and quantitative nature of this imaging 
technology makes it especially appealing for monitoring neuromuscular disease 
gene therapy. The next three chapters are devoted to clinical gene therapy trials for 
DMD and limb-girdle muscular dystrophy, with a special focus on gene  replacement 
therapy and exon skipping. These chapters touch on important issues encountered in 
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human studies such as the immune response and expression levels of the therapeutic 
protein. This is followed by a chapter on clinical gene therapy trials for the meta-
bolic glycogen storage disease type II, commonly referred to as Pompe disease. The 
final chapter of the book explores muscle-directed gene therapy for treating alpha-1 
antitrypsin deficiency.

The first edition of the book has a total of 16 chapters. In the second edition, we 
have a total of 45 chapters. The book is not only expanded greatly in its length but 
also on its quality and content. We are very grateful to chapter authors for their out-
standing contributions. We would like to thank Springer for giving us the opportu-
nity to compile this new edition. We would also like to thank Michael Nance for his 
assistance in the preparation of this book. Special thanks are extended to dedicated 
basic scientists and clinical researchers, the patient community, and funding agen-
cies for taking neuromuscular disease gene therapy from a paper concept to a reality 
for patients.

We would also like to acknowledge the support from the National Institutes of 
Health; Department of Defense; Parent Project Muscular Dystrophy; Jesse’s 
Journey, The Foundation for Gene and Cell Therapy; the Jackson Freel DMD 
Research Fund; the Muscular Dystrophy Association; Hope for Javier; Coalition to 
Cure Calpain 3; Solid Biosciences; and Sarepta Therapeutics and Avexis, Inc., for 
funding our neuromuscular gene therapy studies.

Columbia, MO, USA Dongsheng Duan 
Columbus, OH, USA Jerry R. Mendell 
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Chapter 1
An Overview of Muscle Biology 
and Physiology for Muscle Gene Therapy

Paul M. L. Janssen and Jonathan P. Davis

Abstract The body’s musculature is both quantitatively and qualitatively of critical 
importance to the body. In an average human, the muscle takes up a third to half of 
all the body mass. Qualitatively, it is critical to all aspects of life; even the brain has 
virtually no other means of expressing its thoughts other than by contraction of 
muscle fibers. Two main distinct muscle tissues are present in the body, smooth and 
striated muscle tissue. Striated muscle tissue is subdivided into two major parts: 
skeletal muscle tissue and cardiac muscle tissue. In the muscular dystrophies, both 
skeletal and cardiac muscle tissues are part of the pathological manifestation of 
disease. In this chapter, we will discuss the basic mechanism of contraction at the 
molecular level, as well as the regulatory mechanisms that make the muscle func-
tion in vivo. We will focus on skeletal muscle and cardiac muscle, briefly describing 
the extent to which muscular dystrophy impacts muscle contraction in these two 
different muscle tissues.

Keywords Contraction · Relaxation · Twitch · Tetanus · Sarcomere

1.1  Skeletal Muscle

1.1.1  Skeletal Muscle Structure Overview

Derived in large part from the myotomes of the embryo, the skeletal (or voluntary 
striated) muscle forms the flesh of the body. The individual muscle fibers are 
extremely large cells, typically cylindrical, with lengths that can range from about 
1 mm to many tens of centimeters. Multiple muscle fibers are aligned in parallel to 
form individual muscles. These muscle fibers are connected with connective tissues 
and are typically highly vascularized. With the focus on the muscular dystrophies, 
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we will limit most of this chapter to the muscles most impacted and most researched 
in this disease—striated muscle.

The primary property of the muscle is to produce force. This force is used for 
locomotion but also for non-locomotion, i.e., force is produced to maintain posture 
by opposing external forces on the body, such as gravity. The force production of 
the muscle fibers originates at the molecular level by protein–protein interactions. 
Microscopically, each muscle fiber is composed of a large number of sarcomeres, 
both in series (i.e., along the length of the fiber) and in parallel. Within these sarco-
meres reside the myofilament proteins whose interaction generates force. The repet-
itive nature of the arrangement of proteins within the sarcomere, and in-series 
arrangement of sarcomeres, causes the striated pattern that is observed when view-
ing skeletal muscle under a light microscope. Alternating bands of darker and lighter 
striations are caused by the arrangement and overlap of the thick and thin filaments 
that compose the sarcomere. These thick and thin filaments interact and slide past 
each other when a muscle shortens against a load, lending the name to the “sliding 
filament theory” [1] that currently remains the widely accepted working theory of 
muscle contraction.

1.1.2  Sarcomere Organization

The functional unit of muscle contraction is the sarcomere (Fig. 1.1) or, technically 
even more accurate, the half-sarcomere. The sarcomere in a skeletal muscle is 
approximately 2 μm long and stretches from Z-line to Z-line. Since the myofibril is 
a multidimensional cell, it is often also referred to as the Z-disk. The Z-disk is a 
protein-dense structure containing many structural and regulatory proteins and 
overlaps with the region where excitation is initiated in each sarcomere.

The thick filaments originate at the center of the sarcomere and span a length of 
approximately 1.6 μm. The thick filament is mainly composed of the multimeric 
protein myosin. The myosin molecule consists of two large heavy chains and four 
light chains. The myosin molecule is organized into three distinct regions, the tail, 
the neck, and the head. The tail of myosin (part of the heavy chains) forms the back-
bone of the thick filament. The globular heads of the myosin molecule (two heads 
per myosin) are also part of the heavy chains and protrude out of this backbone. 
Each myosin head contains the binding sites for ATP, the fuel for contraction as well 
as for actin (described below), and the partner protein needed to generate force. 
Each myosin head is connected to the tail by a neck that acts as a lever arm for force 
generation. Each neck (or lever arm) is stabilized by the binding of two small light 
chains. Some light chains possess regulatory functions that can modulate the extent 
and speed of contraction. It is the head of the myosin molecule that undergoes a 
conformational change during force development, when it binds to actin on the thin 
filament. The myosin molecule is ultimately connected to the Z-disc via the giant 
protein titin, originally named connectin [2], the largest protein in the body. Titin 
has several distinct regions and provides much of the passive forces and elasticity of 
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the muscle cell. Titin runs from the Z-disk to the myosin backbone and connects all 
along the thick filament ending at the center of the thick filament (called the M-line). 
A third protein located on the thick filament is myosin-binding protein-C (MyBP-C). 
This protein is located in several distinct bands along the thick filament, and its 
N-terminal region can interact with both the thin and thick filament.

The thin filament, also called the regulatory filament, is mainly composed of 
actin proteins. Single actins (G-actin or globular actin) form a double-stranded heli-
cal string, resulting in filamentous actin (F-actin). The thin filament is about 1 μm in 
length. Each actin protein contains a myosin binding site allowing for the head of 
the myosin molecule to attach during the contraction process. Additional regulatory 
proteins on the thin filament control the availability of the myosin binding sites on 
actin. These include tropomyosin (Tm), another double-stranded protein complex 
that runs in or near the groove of the double-stranded actins, and the troponin com-
plex, which acts as a molecular switch that controls tropomyosin’s position on the 
double-stranded actin. This troponin (Tn) complex has three subunits, the calcium- 
binding subunit (TnC), the tropomyosin-binding subunit (TnT), and the inhibitory 
subunit (TnI).

Fig. 1.1 Top: representative electron microscopic photograph of sarcomeres. Middle: arrange-
ment of the thick and thin filaments in a sarcomere of a muscle in the relaxed state. Bottom: 
arrangement of the myofilaments in a contracting muscle. Photograph courtesy of Dr. Maegen 
Ackermann

1 An Overview of Muscle Biology and Physiology for Muscle Gene Therapy
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1.1.3  Sarcomere Function

When the intracellular calcium level increases upon stimulation of a muscle fiber, 
TnC binds calcium and will set in motion a series of conformational changes of the 
regulatory proteins [3]. This results in tropomyosin being translocated into the 
groove of the thin filament, uncovering the myosin binding sites on actin. Myosin 
is now able to bind to actin and form what is called a cross-bridge. This cross-
bridge can undergo a power stroke that pulls the thin filament toward the center of 
the sarcomere. This power stroke costs energy, which is supplied in the form of 
ATP.  Myosin, when not bound to actin, is typically energized (has obtained 
mechanical strain from the hydrolysis of ATP into ADP and inorganic phosphate). 
Thus, upon binding to actin, it already possesses the (chemical) energy to be trans-
formed into mechanical energy (work). Upon completion of the power stroke, ATP 
needs to bind to myosin, allowing for re-energizing and release from the thin fila-
ment. Lack of energy to do so will result in permanently attached cross-bridges, 
called rigor cross-bridges. Upon release from actin, it can now reattach and undergo 
the next cross-bridge cycle. Once the intracellular calcium levels decline, i.e., when 
the fiber is no longer stimulated and calcium levels in the cell decline, calcium 
comes off of TnC, resulting in reversal of the conformational changes in the regula-
tory proteins that ultimately translocate tropomyosin once again over the myosin 
binding sites of actin. New cross-bridges are no longer formed, and the muscle 
ceases to contract.

1.1.4  Twitch Contraction

The increase in intracellular calcium that sets in motion the cross-bridge cycle takes 
place when a muscle is electrically stimulated. A single stimulation of a fiber results 
in a twitch contraction. From a motor neuron, an electrical signal arrives at an ana-
tomically specialized potion of the muscle fiber termed the neuromuscular junction 
(NMJ). At this NMJ, the motor neuron releases acetylcholine, opening muscle 
membrane-bound ion channels that result in an action potential that propagates at 
great speed across the length of the muscle fiber. When this action potential arrives 
at the t-tubules, which are membrane invaginations at the sarcomere level near the 
Z-line, it causes an interaction between the dihydropyridine receptor on the muscle 
membrane and the ryanodine receptor on the sarcoplasmic reticulum (SR). This 
voltage-dependent action triggers the opening of the ryanodine receptor, which 
releases calcium from the SR into the sarcoplasm. This calcium then diffuses toward 
the middle of the sarcomere where it binds to TnC and sets in motion the contractile 
apparatus (described above). This burst of calcium is short-lived, since SR-bound 
calcium pumps (SR calcium ATPase) constantly reuptake calcium back into the 
SR. As a result, during a twitch contraction (singe excitation), the rise in calcium 
concentration in the sarcoplasmic reticulum does not generate enough calcium to 
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fully activate the fiber. Typically, about 30–40% of maximal force is reached during 
a single twitch contraction.

1.1.5  Tetanic Contraction

A twitch contraction only lasts about 100–200 ms. However, most of the body’s 
movements last much longer than a single twitch contraction. Moreover, many body 
movements and positioning actions require a steady level of force development. A 
steady level of force development in a fiber can be reached by a process called sum-
mation. Summation occurs when a muscle fiber is excited prior to it fully relaxing 
form the previous stimulus. When a muscle is not completely relaxed, and a second 
neural impulse causes a muscle action potential, a second burst of calcium is 
released from the SR. This calcium release is now in addition to the calcium still in 
the sarcoplasm from the previous twitch and thus reaches a higher peak level. When 
neuronal pulses follow in such rapid succession that the muscle has no time to relax, 
i.e., the next pulse arrives prior to the muscle reaching peak force, a tetanus occurs. 
In this condition, the frequency of stimulation is so fast that the calcium concentra-
tion in the cytoplasm reaches a high pseudo-steady-state level (i.e., the release by 
each action potential equals the reuptake into the SR), and the cross-bridge binding 
sites are maximally exposed. This tetanic contraction mode is a common activation 
of a muscle fiber, i.e., a muscle fiber received a high-frequency train of neural pulses 
that last as long as the muscle needs to be activated.

1.1.6  Motor Units

Each muscle or muscle group consists of many motor units. A motor unit is com-
posed of an innervating neuron plus all the fibers it innervates. Per muscle, many 
motor units exist, and these motor units can be of different sizes. Some motor units 
only contain a few fibers, where other motor units contain many 100 s of muscle 
fibers. When a certain force development of a muscle is required, a number of motor 
units are activated in order to produce the desired force. Maximal force of the whole 
muscle is generated when all motor units within a muscle are stimulated to contract. 
The number of motor units that need activation mainly stems from lifelong learned 
behavior. The senses give input to the brain, and the brain initially determines how 
many, and which, motor units to switch on. When the senses are “tricked,” for 
instance, when an object is significantly heavier or lighter than it looks, initially too 
few or too many motor units are activated. Feedback loops between brain, body- 
positioning, and load perceptions help fine-tune movements. The ability to modu-
late force production through activating a different number of motor neurons is 
called recruitment. Recruitment typically occurs in a specific order from the weak-
est motor neurons to the strongest motor neurons.

1 An Overview of Muscle Biology and Physiology for Muscle Gene Therapy
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1.1.7  Fiber Sub-Types

Not all skeletal muscle fibers are the same. There are two main classifications of 
muscle fibers. The first classification is based on whether or not the muscle is “fast” 
or “slow.” Fast fibers, also called type II fibers, express a fast myosin isoform that 
has a fast cross-bridge cycle, roughly four times faster than the slow myosin iso-
form. These fast fibers have a faster shortening velocity, although the force per 
cross-bridge cycle is not significantly different from the slow isoform. Slow fibers 
(type I fibers) express a slow myosin isoform, resulting in slower cross-bridge 
cycling, and a slower shortening velocity.

The second classification is based on how these fibers generate ATP to fuel the 
force production. Fast glycolytic fibers (type IIb) possess a high concentration of 
enzymes involved in glycolysis and have a large store of glycogen. These fibers use 
little oxygen and are typically surrounded by only a few blood vessels. They are also 
known as “white fibers,” because they contain a low concentration of myoglobin. 
Anatomically, these glycolytic fibers typically have large diameters. These fibers 
are also typically the strongest of muscle fibers. Fast oxidative-glycolytic fibers 
(type IIa) have an intermediate glycolytic activity but also possess a high oxidative 
capacity. These fibers contain more mitochondria and more myoglobin. Also, to 
supply the oxygen needed, they are more vascularized. These muscle fibers are 
often referred to as red muscle fibers. The third type of fiber is the slow-oxidative 
fibers (type I). These fibers rely almost exclusively on oxygen-mediated burning of 
fuel and are highly vascularized.

Due to the different myosin isoforms and ATP-generating strategies, there are 
important functional implications of the fiber type. The fast fibers are typically orga-
nized in large motor units and are used for events that require short bursts of a lot of 
force, like weight lifting or sprinting. The generation of ATP in the muscle is much 
slower than the maximal usage rate, and this large power comes at the cost of endur-
ance resulting in fast fibers exhausting rapidly (often within 10 s when used at full 
capacity). On the other hand, the rate of ATP generation can be kept up by oxidative 
phosphorylation in slow fibers, and thus they can function for many hours. Examples 
are body posture maintenance or slow running or walking.

1.1.8  Modes of Contraction

When a muscle is activated, i.e., “contracts,” it does not necessarily mean that the 
muscle shortens. Shortening of the muscle only occurs if the opposing force, or 
load, on the muscle is lower than the generated force. The speed at which the muscle 
can shorten depends on the balance between activation of the muscle and the oppos-
ing load. With a high muscle activation (i.e., switching on all motor units), and an 
absence of load, maximal shortening velocity is reached. When the load on a muscle 
is equal to the opposing force, the muscle contracts, i.e., cross-bridges are activated 
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and undergo their power strokes, but the muscle stays at the same length. This is an 
isometric contraction. These isometric contractions are the most common form of 
contractions, as they are used to keep our body in a certain position. During stand-
ing, sitting, and even laying down, many of the muscles in our body are contracting 
isometrically to maintain the body’s position. Sometimes, the load on a muscle can 
exceed the force generated by the muscle, and the muscle will lengthen, while it is 
still actively contracting. The latter form is particularly damaging, as the muscle 
tries to shorten (i.e., pull the actin toward the center of the sarcomere), while the 
opposing load is pulling actin away from the sarcomere’s center. Eccentric contrac-
tions typically result in some degree of muscle damage and occur while one is walk-
ing downhill or attempting to sit.

1.1.9  Length Tension Relationship

The sarcomere length during a contraction has a small modifying impact on force 
development [4]. Typically, skeletal muscle works at the optimal length, i.e., a length 
of the sarcomere that promotes the highest level of force development when stimu-
lated (i.e., optimal thin and thick filament overlap). The anatomical fixed location of 
skeletal muscle attached to bones keeps the sarcomere length in the optimal or very 
close to optimal range. In the laboratory, smaller than in vivo muscle length can be 
reached, resulting in depressed force development. Likewise, an overstretched mus-
cle also produces less force (i.e., nonoptimal thin and thick filament overlap).

1.1.10  Lever Action

Almost all skeletal muscles attach around a joint. This mean that one end of the 
muscle is attached via a tendon onto a bone, while the other tendon wraps around a 
joint, and attaches to a different bone. When a muscle shortens, it only shortens by 
a small amount, typically 10% or less. However, a 10% shortening, often less than 
an inch, can through lever arm actions result in moving the end of a limb by several 
feet. For each muscle that acts on a specific joint, there is typically at least one other 
muscle located at the opposite side of the joint. These are referred to as antagonist 
muscle pairs. For instance, contraction of the biceps muscle closes the elbow joint, 
while contraction of the triceps muscle opens this joint.

1.1.11  Muscular Dystrophy and Skeletal Muscle Contraction

Muscular dystrophies ultimately result in weaker contractions of the muscle. The 
main reason is, as the name suggests, dystrophy. This dystrophy is typically char-
acterized by a replacement of muscle tissue by fibrotic tissue and fat. Deterioration 
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of muscle function is seldom the result of a primary myofilament impact. The most 
common dystrophies develop due to a compromised muscle fiber membrane and 
due to either an increase in membrane fragility or a decrease in membrane repair. 
When this membrane insufficiency is large, it can lead to a chronic calcium over-
load of the muscle, resulting in muscle fiber death. Initially, these muscle fibers are 
replaced, but the regenerative capacity of skeletal muscle is limited, and, once 
depleted, the muscle can no longer be repaired and will deteriorate. From a con-
traction standpoint, the remaining myofilaments are typically capable of producing 
normal levels of force; it is the lack of quantity, not quality, that is the most com-
mon cause of overall muscle weakness in muscular dystrophy. In the most com-
mon mouse model of muscular dystrophy, the mdx mouse, the 
force-per-cross-sectional-area is lower, and the muscle is more fibrotic and has 
more fat accumulation. In order to compensate, the total muscle is typically larger, 
and as a result the amount of total force is not depressed in the mdx mouse. When 
calculated by cross-sectional area of the myofilaments, force is again not different 
from wild-type muscles. Thus, it stands to reason that gene therapy, other than 
prevention of the disease occurring in the first place, is directed at maintaining, or 
returning muscle mass, not necessarily altering muscle function. Currently, many 
efforts are underway to combat muscular dystrophy. A more stable membrane, for 
instance, by reintroducing lost components of the membrane dystrophin-dystro-
glycan complex, would help membrane integrity and reduce or prevent damage. 
Also, better membrane repair machinery would reduce the deleterious impact of 
weak membranes.

However, not only the force of contraction is important, but the speed at 
which contraction and relaxation occur also can have functional consequences. 
Much less is known regarding these dynamic features of the muscle contraction, 
as the vast majority of end points in laboratory experiments are levels of force 
and not speed of contraction and relaxation. Much less is known regarding the 
contraction and relaxation kinetics, as they are generally thought to play an 
insignificant role. If a striated muscle needs to stop contracting, typically the 
antagonist muscle is activated to counter the agonists’ impact of contraction. 
Hence, if the active contraction (i.e., stimulation) of the muscle has stopped, the 
antagonistic muscle will be much stronger than the residual force of the agonist 
muscle, and the intended movement will occur. However, if the relaxation of a 
muscle is substantially impaired, it could have significant residual tension that 
is now (a) potentially impairing the force of the antagonistic muscle and, pos-
sibly clinically more important, (b) causing this muscle to undergo an eccentric 
stress. Thus, if relaxation kinetics were impaired, it may lead to excessive 
eccentric stress, possibly contributing to the pathology. Thus, although force of 
contraction may not necessarily be an applicable target, kinetics of relaxation 
could potentially be improved with therapy of the myofilaments or calcium 
sequestration.
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1.2  Cardiac Muscle

1.2.1  Cardiac Muscle Structure Overview

The heart muscle is a specialized striated muscle that has a large number of similari-
ties with skeletal muscle. However, its specialized function requires also some very 
significant differences in regulation of contraction. Unlike skeletal muscle, the indi-
vidual muscle cells of the heart or cardiomyocytes are all connected. The individual 
myocytes are about 150 μm long and about 20–25 μm in diameter. Functionally, the 
cardiomyocytes need to contract simultaneously, for optimal pumping performance. 
Thus, the connections between myocytes, in the form of gap junctions, allow for the 
passage of the action potential that initiates a heartbeat.

1.2.2  Cardiac Muscle Function

The excitation of the muscle differs in several important ways from skeletal muscle. 
First, the action potential has a very long plateau phase (150–300 ms), during which 
the heart is unresponsive to any subsequent action potential. This delay in repolar-
ization causes a refractory period, which is essential in allowing the heart muscle to 
relax prior to the next stimulation (i.e., the heart cannot tetanize). Second, the intra-
cellular calcium increase that activates the myofilament is regulated differently. The 
SR calcium release is not triggered by a voltage-mediated release but by a calcium- 
induced release [5]. The L-type calcium channel, upon stimulation by action poten-
tial, opens and allows calcium entry into the myocyte. This calcium triggers an 
additional release of calcium from the SR. Combined, these two sources of calcium 
form the activating calcium transient. In humans, at rest, about 30% of the calcium 
transient comes from the L-type calcium current, and the remaining 70% is released 
from the SR. Conversely, to promote relaxation, 70% of the calcium release is taken 
back up into the SR, while the remaining 30% is extruded via the Na/Ca exchanger. 
The contractile machinery is almost identical to skeletal muscle, with only minor 
isoform changes in some of the myofilament proteins. The cross-bridge cycle occurs 
virtually identically too.

A notable difference is however that, unlike skeletal muscle that operates at opti-
mal sarcomere length, the cardiac sarcomere operates on the ascending limb of the 
force-tension relationship. When the sarcomere is stretched, i.e., at the end of the 
ventricular filling phase, it is around 2.2 μm and close to optimal (i.e., highest force). 
When the ventricle ejects, sarcomere length shortens to well below optimal, and 
maximal force production is lower. This is an intrinsic mechanism, also known as 
the Frank-Starling law of the heart [6, 7], where the larger the volume (or sarcomere 
length) in the heart, the higher the developed pressure (or force).

Unlike skeletal muscle, within the ventricle there are no different classes or types 
of muscle; all myocytes practically behave the same regarding isoform expression 
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and ATP generation. Because the heart needs to beat continuously, it has to generate 
ATP at a rate that at least keeps up with ATP usage. Hence, the heart is extremely 
rich in mitochondria; up to 25–30% of the volume of a myocyte is occupied by 
mitochondria, as well as heavily vascularized. Each myocyte borders a capillary 
that supplies oxygenated blood and carries away waste products. The heart almost 
exclusively uses oxidative phosphorylation to generate ATP, with fatty acids as the 
primary fuel.

1.2.3  Muscular Dystrophy and Cardiac Muscle Contraction

Damage to the cardiac muscle occurs in most types of muscular dystrophy, albeit 
with typically a later onset compared to skeletal muscle pathology. Although skel-
etal limb muscle weakness is typically the most prominent phenotypical pathology, 
death in muscular dystrophy patients is mainly due to respiratory failure and heart 
failure. The heart does not possess significant regeneration capacity. Once a cardiac 
myocyte dies, it is not replaced. This means that the remaining cells of the heart 
have to work harder to pump blood. The heart becomes progressively weaker, to a 
point where it can no longer pump the minimal required amount of blood. Like 
skeletal muscle, membrane weakness and impaired membrane repair are at the basis 
of the eventual dysfunction. Small amounts of eccentric stress occur, even in a regu-
lar heartbeat, and this cumulatively leads to cell death, remodeling, and ultimately 
cardiac pump failure.
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Chapter 2
Molecular Basis of Muscle Disease

Ning Liu and Rhonda Bassel-Duby

Abstract Skeletal muscle is responsible for body movement, ranging from main-
taining posture to dancing to running a marathon race. The heterogeneity in size, 
shape, and arrangement of fibers coupled with a variety of metabolic, contractile, 
and endurance properties gives skeletal muscle the ability to perform a wide range 
of functions. Over the years, our understanding of the molecular basis of muscle 
formation, growth, adaptability, and disease has dramatically expanded. Much of 
our understanding stems from studies of the pathology of skeletal muscle. To date, 
840 neuromuscular disorders have been identified and attributable to mutations in 
465 different genes. More genes are expected to be discovered with the advances in 
molecular diagnostics and next-generation sequencing. Here we focus on congeni-
tal myopathy and muscular dystrophy to highlight our understanding of the molecu-
lar basis of skeletal muscle disease. Elucidating the molecular basis of skeletal 
muscle disease offers the ability to use gene therapy approaches to correct genetic 
mutations and ameliorate skeletal muscle disease.

Keywords Satellite cells · Nemaline myopathy · Congenital myopathies · Kelch 
proteins · Muscular dystrophy · Dystrophin · Dystrophin-glycoprotein complex

2.1  Introduction

Muscle diseases, myopathies, are debilitating illnesses that impair the function of skel-
etal muscle. To date, there are 840 recorded neuromuscular disorders caused by muta-
tions in 465 different genes, with the expectation that more muscle disease- related genes 
will be discovered [1–3]. An online gene table (http://www.musclegenetable.fr) has been 
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developed to maintain and update the muscle disease information in an interactive 
format. Here, our intention is not to give a comprehensive list of these neuromuscu-
lar diseases but to spotlight various monogenic muscle diseases, such as congenital 
myopathy, muscular dystrophy, and inflammatory myopathy, and to define the molecu-
lar basis of these muscle diseases (Table 2.1). By identifying the underlining genetic 
mutation causing the disease, gene therapy approaches can be designed to correct the 
mutation and restore muscle function.

2.1.1  Skeletal Muscle Fiber Types and Adaptation

Skeletal muscle accounts for ~40% of human body mass and plays vital roles 
in locomotion, physical strength, energy expenditure, and overall metabolism. Each 
muscle group is comprised of heterogeneous myofibers that differ in their biochem-
ical, physiological, and metabolic parameters. The heterogeneity of muscle fibers is 
the basis of the flexibility which allows striated skeletal muscle to be used for a 
variety of tasks, ranging from continuous low-intensity activity (e.g., posture), to 
repeated submaximal contractions (e.g., locomotion), to fast and strong maximal 
contractions (jumping, kicking) [4].

Mammalian skeletal muscle comprises different fiber types that differ in contrac-
tile properties, metabolic parameters, and expression of distinctive myosin isoforms 
[4]. Based on distinct myosin heavy-chain isoform expression, myofibers are clas-
sified into four major fiber types: one type of slow-twitch fiber (type I) and three 
types of fast-twitch fibers (types IIa, IIx/d, and IIb). While type I and type IIa fibers 
exhibit an oxidative metabolism and high endurance, type IIx and IIb fibers are 
glycolytic and display low endurance. Type I myofibers, also termed slow-twitch 
fibers, exert a slow contraction owing to the ATPase activity associated with type I 
myosin. Slow-twitch myofibers are rich in mitochondria, have more capillaries sur-
rounding each fiber, exhibit oxidative metabolism, have a low velocity of shorten-
ing, and have a high resistance to fatigue. Type II fibers, termed fast-twitch 
myofibers, exert quick contractions and fatigue rapidly. The slow oxidative fibers 
are required for maintenance of posture and tasks involving endurance, whereas fast 
glycolytic fibers are required for movements involving strength and speed. The four 
major fiber types are distributed throughout the mammalian musculature, including 
limb, trunk, and head muscles.

Fiber type is assessed using assays that delineate the differences in ATPase activ-
ity that correlate with specific myosin heavy-chain isoforms [5]. The basis of the 
reaction is the deposition of insoluble salts of inorganic phosphate cleaved from 
ATP by myofibrillar ATPase(s) followed by substitution of the phosphates with less 
soluble chromogenic salts (Fig.  2.1a). Immunohistochemistry using monoclonal 
antibodies that recognize isoform-specific myosin heavy chain is another method 
used to determine fiber type specificity (Fig. 2.1a).

Myofiber identity is first established during embryonic development by myo-
genic transcription factors and is later modulated by neural and hormonal factors. 
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Adult skeletal muscle has the ability to adapt and remodel its biochemical, 
 morphological, and physiological states in response to environmental demands [4, 5]. 
The remodeling process provides an adaptive response that serves to maintain a bal-
ance between physiological demands for contractile work and the capacity of skel-
etal muscle to meet those demands. Many remodeling responses involve activation 
of intracellular signaling pathways and consequent genetic reprogramming, result-
ing in alterations of muscle mass, contractile properties, and metabolic states [4, 5]. 
For example, exercise training can change skeletal muscle by transforming the myo-
fibers to an increased oxidative metabolism and inducing fiber type transitions from 
type IIb → type IIx/d → type IIa. Upon cessation of exercise training, these myosin 
heavy-chain isoform transitions and metabolic changes are reversed.

The relative proportion of any fiber type may vary according to species and ana-
tomical site. For example, the diaphragm, a continuously active respiratory muscle, 
is a fast muscle in a rat and a mouse but a slow muscle in large mammals, such as a 
cow [6]. In the rat, the diaphragm consists predominantly of type IIx fibers and lacks 
type IIb fibers that are abundant in leg muscles. In leg muscles, the most studied 
muscle of the body, slow type 1 fibers are more abundant in the posterior compart-
ment, where the typical slow soleus muscle is also located, in relation with the 
greater postural role of posterior muscles [6]. Finally, in many species, type II fibers 
are more numerous in forelimbs than in hind limbs, and, accordingly, in human 
upper limb muscles are faster than lower limb muscles [7, 8].

2.1.2  Regeneration and Satellite Cells

Adult skeletal muscle has a remarkable ability to regenerate in response to exercise, 
injury, and disease. In mice, injuries such as cardiotoxin injection cause severe 
muscle damage and degeneration. However, within 3  weeks muscle can fully 
regenerate and restore morphology (Fig. 2.1b). Regenerated muscles are marked by 
the presence of centralized nuclei. Skeletal muscle regeneration relies on a small 
population of stem cells, known as satellite cells (SCs), which reside beneath the 
basal lamina of myofibers. They are marked by expression of Pax7, a paired-box 
transcription factor (Fig. 2.1c) [9, 10]. SCs are normally quiescent but in response 
to stress or injury become activated to proliferate, differentiate, and fuse into mul-
tinucleated myotubes [9, 10]. Activated SCs also undergo asymmetric division, 
generating progeny that replenish the pool of quiescent SCs (Fig.  2.1d). 
Abnormalities in SC specification, proliferation, or differentiation result in skeletal 
muscle dysfunction during aging and can promote muscle disease. Pax7 is a spe-
cific marker for quiescent and activated SCs and is downregulated when SCs dif-
ferentiate into myotubes [11, 12]. Pax7 activates expression of the myogenic 
regulatory factors Myf5 and MyoD in activated SCs and proliferating myoblasts, 
which in turn drive the myogenic differentiation program. Genetic ablation experi-
ments demonstrated that Pax7-expressing SCs are essential for adult skeletal mus-
cle regeneration [13–16].
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Fig. 2.1 Skeletal muscle fiber type diversity and regeneration. (a) Fiber-type analysis of serial 
transverse sections of mouse soleus muscle by hematoxylin and eosin stain (left panel) shows a 
checkerboard pattern of fibers, metachromatic dye-ATPase method (middle panel) shows type I
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2.1.3  Primary Muscle Disorders

Primary muscle disorders are a diverse group of muscle diseases that involve mus-
cle weakness, atrophy, and myofiber degeneration and regeneration and inflamma-
tion. In general, there are three groups of diseases: congenital myopathy, the 
muscular dystrophy, and inflammatory myopathy (also called myositis). Congenital 
myopathies are caused by various genetic defects affecting the contractile apparatus 
of muscles. Symptoms include generalized weakness and hypotonia of variable 
severity, manifesting from early childhood. Muscular dystrophies are caused by 
genetic abnormalities primarily affecting the sarcolemmal membrane or its support-
ing structures, thus leading to pathological degeneration and regeneration of skele-
tal muscles and progressive loss of skeletal muscle structure and function. 
Inflammatory myopathy is further classified into polymyositis, dermatomyositis, 
and sporadic inclusion body myositis, all of which involve inflammation of the mus-
cle. The cause of inflammatory myopathy is unknown. In this chapter, we will focus 
on congenital myopathies and muscular dystrophies.

2.2  Congenital Myopathies

Congenital myopathies are a heterogeneous group of inherited muscle diseases char-
acterized by early infantile or childhood onset of muscle weakness, hypotonia, and 
developmental delay, which have a static or slowly progressive course [17]. Classically, 
they are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy 
with the presence of one or more characteristic histological features [18]. There are 
three major groups of congenital myopathies: (1) nemaline myopathies, characterized 
by the presence of electron-dense nemaline bodies or rods within myofibers; (2) cen-
tronuclear or myotubular myopathies, marked by the presence of internally located 
myonuclei; and (3) core myopathies, which have foci devoid of oxidative enzymes in 
myofibers. Congenital myopathies are caused by various genetic defects affecting the 
contractile apparatus of muscles. To date, more than 20 genes have been associated 
with the congenital myopathies, and more genes are expected to be discovered with 
the advances in molecular diagnostics and next- generation sequencing.

Fig. 2.1 (continued) fibers stained dark blue and type IIa stained light blue, and immunohisto-
chemistry (right panel) using a monoclonal antibody that recognizes type I myosin heavy chain 
(brown). Asterisks mark the same type I fibers in each panel. (b) Adult skeletal muscle regeneration 
following cardiotoxin injury. Tibialis anterior muscle is injected with cardiotoxin to induce myofi-
ber damage (day 3). Muscle regenerates and restores morphology within 3  weeks (day 23). 
Hematoxylin and eosin staining of transverse sections of tibialis muscle is shown. (c) Immunostaining 
for Pax7, a marker for satellite cells in normal and regenerating muscle. Note that muscle nuclei 
(stained by DAPI) are located in the periphery of normal muscle and are centrally located in regen-
erating muscle. (d) Model for the role of satellite cells in regeneration. Satellite cells are quiescent 
in normal muscle but become activated upon injury to participate in regeneration

2 Molecular Basis of Muscle Disease
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2.2.1  Nemaline Myopathies

Nemaline myopathy (NM) is one of the most common forms of congenital myopathy, 
affecting 1 in every 50,000 births [19]. NM encompasses a set of genetically heteroge-
neous diseases defined by the presence of rod-like structures (called nemaline bodies) 
in skeletal muscle fibers. Nemaline bodies are formed by the abnormal aggregation of 
proteins within the thin filaments, such as tropomyosin, actin, myotilin, and nebulin. 
Patients with NMs are associated with myofibril disorganization, reduced contractile 
force, and mitochondrial dysfunction and clinically present a spectrum of muscle dys-
functions from mild muscle weakness to complete akinesia [19, 20]. Currently, there is 
no effective treatment for NM patients other than symptomatic treatments.

NM is significantly heterogeneous from a genetic point of view, and its inheri-
tance can be autosomal dominant, sporadic, or autosomal recessive. The two most 
common causes of NM are recessive mutations in nebulin and de novo dominant 
mutations in skeletal muscle α-actin [19]. To date, 11 genes encoding proteins of 
skeletal muscle thin filaments, Kelch domain-associated proteins, and an unconven-
tional myosin have been implicated in NM [20]. These findings lead to the current 
hypothesis that NM is a thin filament disease.

2.2.1.1  Nebulin

The nebulin (NEB) gene is the most commonly mutated gene in NM, accounting for 
approximately 50% of genetically diagnosed cases of NM [20]. Mutations in NEB 
have been known to cause severe, intermediate, mild, and typical forms of NM but 
most often the typical form [21, 22]. The typical NEM patients with NEB mutations 
survive to adulthood, express low (but detectable) levels of nebulin, and display a 
considerably mild phenotype. All mutations hitherto identified in this gene have 
been recessive [19].

The NEB gene has 183 exons (in humans) that are predicted to encode a protein 
of maximally 900 kDa [23]. Nebulin is a large sarcomeric protein in skeletal mus-
cle, located along the length of the thin filament, with its C-terminus anchored in the 
Z-disk and its N-terminus positioned near the thin filament pointed end. The major-
ity of nebulin is composed of 35-residue domains that bind actin with high affinity, 
which are organized into super-repeats that match the repeat of F-actin, and might 
determine the minimal length of the thin filament [23].

Several mouse models of NEB deficiency have been established to understand 
the mechanism underlining NEB-associated NM, including Neb KO, NebΔex55, 
and a muscle-specific deletion of Neb (Neb-cko) [24–27]. These mice all present 
many aspects of NM phenotypes including muscle weakness, nemaline rods, and 
variable trophicity effects. Studies in these mice have revealed the essential func-
tions of NEB in muscle. NEB acts as a molecular ruler to regulate thin filament 
lengths. It also functions in the regulation of muscle contraction, force develop-
ment, and calcium homeostasis, as NEB deficiency contributes directly to a loss in 
muscle contractility due to dysregulation of actin-myosin cross-bridge formation. 
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In addition, NEB deficiency also leads to fiber type switching toward oxidative 
types [24, 27]. Finally, the NEB-KO mouse models also highlight the role of nebulin 
in the assembly and alignment of the Z-disks [24, 27].

2.2.1.2  Kelch Proteins

Out of the 11 NM-related genes, 3 genes (Klhl40, Klhl41, and Kbtbd13) encode 
proteins that belong to the Kelch family proteins. Kelch proteins are characterized 
by the presence of a Kelch repeat domain, a BTB/POZ domain involved in protein- 
protein interaction, and a BACK domain that binds E3 ubiquitin ligases (Fig. 2.2a). 

Fig. 2.2 Model for Kelch 40 and Lmod3 regulating actin cycling and sarcomere integrity. (a) Domain 
structures of Kelch 40 protein. KLHL40, like other members of the Kelch protein family, contains a 
BTB/POZ domain involved in protein-protein interaction, a BACK domain that binds E3 ubiquitin 
ligases, and a Kelch-repeat domain. (b) A model for the role of LMOD3 and KLHL40 in actin cycling 
and sarcomere integrity. In normal muscle cells, MRTF/SRF and MEF2 regulate LMOD3 expression, 
and MEF2 regulates KLHL40 expression. KLHL40 functions in the cytoplasm to stabilize LMOD3 
and nebulin proteins that are components of sarcomeres. KLHL40 and LMOD3 together promote 
actin polymerization by converting G-actin to F-actin, allowing normal sarcomeric function. In mus-
cles lacking KLHL40, nebulin and LMOD3 protein levels are reduced, resulting in destabilization of 
thin filaments, sarcomere dysfunction, and subsequent nemaline myopathy. Similarly, in muscles lack-
ing LMOD3, accumulation of G-actin monomers not only disrupts sarcomeric integrity, but also 
represses MRTF-A expression, which in turn suppresses SRF-dependent target genes encoding 
cytoskeletal proteins and components of the contractile apparatus, leading to nemaline myopathy
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Many Kelch proteins function as substrate-specific adaptors for Cullin E3 ubiquitin 
ligase (Cul3), mediating the ubiquitination and, in most cases, degradation of their 
respective protein substrates [28].

KLHL40 is localized to both the I band and A band in the sarcomere and binds 
NEB and the thin filament protein, leiomodin 3 (LMOD3) [29, 30]. Unlike other 
BBK proteins that promote target proteins to degradation, KLHL40 blocks 
proteasome- mediated LMOD3 and NEB degradation by inhibiting ubiquitination. 
Loss of KLHL40  in mice leads to a NM-like phenotype comparable to that of 
patients with NM lacking KLHL40 [30, 31]. Klhl40 KO mice display neonatal 
lethality, with defects in sarcomere structure and significant muscle weakness 
[30]. NEB and LMOD3 were reduced in skeletal muscle of both Klhl40−/− mice 
and KLHL40-deficient patients. This results in thin filament disruption, with sub-
sequent irregularities of the sarcomere Z-disks and, in extreme cases, sarcomere 
dissolution with the formation of ovoid Z-disks, culminating in a fatal loss of 
muscle function [30]. These findings provide the first example of a Kelch protein 
that can mediate protein stabilization rather than degradation and highlight the 
importance of maintaining the balance between protein synthesis and degradation 
in skeletal muscle.

Similar to KLHL40, KLHL41 mutations in humans have been associated with 
NM [32]. KLHL41 shares 52% identity with KLHL40, indicating overlapping func-
tions. Morpholino knockdown of KLHL41 in zebra fish causes NM-like abnormali-
ties with aberrant myofibril formation [32]. The absence of KLHL41 in mice results 
in severe NM with general sarcomere disarray, accumulation of nemaline bodies, 
and perinatal death as seen in humans with KLHL41 mutations [33]. KLHL41 also 
presents the unique stabilizing activity, in which it prevents NEB aggregation 
through poly-ubiquitination of its BTB domain. Under normal conditions KLHL41 
functions as a chaperone, preventing NEB aggregation and degradation [33]. Loss 
of KLHL41 or reduced poly-ubiquitination of KLHL41 results in loss of KLHL41 
activity, NEB aggregation, and NM [33].

KLHL40 and KLHL41 possess distinct functions. While both proteins stabilize 
NEB, only KLHL40 stabilizes LMOD3. The stabilization of LMOD3 by KLHL40 
occurs through a proteasome-mediated pathway, distinct from the stabilization of 
NEB.  In the absence of KLHL40, LMOD3 levels are increased by proteasome 
inhibition [30]. Although KLHL40 and KLHL41 are very similar in their BTB and 
BACK domains, the homology is decreased throughout the Kelch repeats, which 
likely enables them to discriminate between different substrates.

2.2.1.3  Leiomodin-3 (LMOD3)

LMOD3 is another sarcomere protein associated with NM.  Frameshift and non-
sense mutations in LMOD3 were found to NM in humans [34]. LMOD3 belongs to 
a family of tropomodulin-related proteins known as leiomodins that comprise 
three predicted actin-binding domains and a tropomyosin-binding domain [35–38]. 
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Like tropomodulins, LMOD proteins bind to the pointed ends of actin filaments and 
promote actin polymerization by stabilizing binucleated or trinucleated actin.

Similar to KLHL40, LMOD3 is localized to the A band in both contracted and 
relaxed muscle. Loss of function of LMOD3 in mice causes lethal NM and severe 
disruption of skeletal muscle sarcomeric structure and function [29, 39]. Skeletal 
muscle from Lmod3-KO mice also displays abnormal glycogen accumulation and 
nemaline rods. Mechanistic studies in mice revealed that LMOD3 promotes actin 
polymerization and diminishes G-actin levels [29]. The decrease in cytoplasmic 
G-actin pool triggers activation of serum response factor (SRF) in the nucleus to 
activate expression of sarcomeric components including LMOD3 itself [29]. By 
stabilizing LMOD3, KLHL40 can also stimulate the expression of LMOD3 and 
other sarcomeric components (Fig. 5.2b).

2.2.2  Centronuclear Myopathy

Centronuclear myopathies (CNMs) are a heterogeneous group of congenital myop-
athies characterized pathologically by the presence of abundant and centrally 
located nuclei. The clinical presentation of patients is extremely heterogeneous, 
ranging from severe hypotonia in newborns to a relatively late onset of muscle 
weakness with extraocular muscle involvement in adolescent and young adults 
[40, 41]. There are three main forms of CNMs according to the mode of inheritance 
and clinical presentation: (1) the X-linked recessive form, also named myotubular 
myopathy, caused by mutations in MTM1 gene; (2) the classical autosomal domi-
nant form caused by mutations in DNM2 gene; and (3) an autosomal recessive form 
caused by mutations in BIN1 gene. Other genes have also been associated with 
CNMs, including the RYR1 gene encoding the skeletal muscle ryanodine receptor, 
the TTN gene encoding titin, the CCDC78 gene encoding coiled-coil domain con-
taining protein 78, the MTMR14 gene encoding myotubularin 14, and the SPEG 
gene encoding striated muscle preferentially expressed protein kinase [20].

The X-linked recessive myotubularin myopathy (XLMTM) is the most com-
mon form of CNMs, affecting approximately 2/100,000 male births per year [41]. 
The disease is characterized by a severe phenotype in males with marked extra-
ocular, facial, respiratory, and axial muscle weakness at birth. Most affected boys 
die within the first year of life despite supportive treatment. XLMTM is caused by 
mutations in the myotubularin (MTM1) gene located on the X chromosome. MTM1 
encodes a 3′-phosphoinositides phosphatase that is implicated in many cellular pro-
cesses, including phosphatidylinositol-3-phosphate (PI3P) signaling pathway and 
 membrane trafficking [42]. More than 300 MTM1 mutations have been identified to 
date, distributed throughout the entire coding sequence [43–45].

The autosomal dominant DNM2-related CNMs usually have much milder phe-
notypes than XLMTM, with typical onset in adolescence or early adulthood [40, 41]. 
Patients show predominant proximal weakness with additional distal involvement, 
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particularly in the lower limbs, and ptosis with external ophthalmoplegia, over a 
stable or slowly progressive course. Histologically, muscles from DNM2- related 
CNMs have a radial arrangement of sarcoplasmic strands, as well as significant nuclear 
centralization and internalization. The disease is caused by mutations in the DNM2 
gene, which encodes dynamin 2, a ubiquitously expressed large GTPase protein 
[46]. Dynamin 2 is one of three members of the dynamin family, which is involved 
in membrane fission, vesicle trafficking, endocytosis, actin cytoskeleton assembly, 
and centrosome cohesion [47, 48].

Autosomal recessive CNMs caused by BIN1 mutations are generally very 
rare. Patients usually present as an intermediate form of disease between 
XLMTM and DNM2-related CNMs [2, 3]. BIN1 encodes amphiphysin-2, a 
ubiquitously expressed BAR domain containing protein. Members of the BAR 
domain proteins are involved in membrane recycling and endocytosis [49]. BIN1 
also contains a phosphoinositide-binding domain and is also involved in T-tubule 
formation [50].

It is intriguing that the three major proteins affected in CNMs, MTM1, dynamin-
 2, and amphiphysin-2 are all involved in various aspects of membrane trafficking, 
marking it a pathogenic “master mechanism” for different types of CNMs [41]. 
Other common defects include aberrant T-tubule formation, abnormalities of triadic 
assembly, and disturbance of the excitation-contraction machinery. Abnormal 
autophagy has recently been recognized as another important collateral of defective 
membrane trafficking in different genetic forms of CNM, suggesting an intriguing 
link of defective autophagy to primary disorders with overlapping histopathological 
features [18]. It remains unknown whether other CNM-associated genes such as 
RYR1 and TTN are also involved in the same pathways.

2.2.3  Core Myopathies

Core myopathies are characterized by foci (cores) devoid of oxidative enzymes in the 
central area of myofibers. Histologically, the cores are areas of abnormal sarcomeric 
structures, including Z-line streaming, complete myofibrillary disorganization, and 
accumulation of Z-band material, and the core regions are devoid of mitochondria 
[51, 52]. Core myopathies are associated at a varying degree of disease severity, and 
the pathological features most often progress over time.

Core myopathies are among the most common congenital myopathies and more 
than half of them can be attributed to RYR1 mutations, both autosomal dominant 
and recessive forms [20, 53]. Other disease-associated mutations include autosomal 
recessive mutations in the selenoprotein N1 (SEPN1) gene encoding an endoplas-
mic reticulum glycoprotein [51]. Mutations in the skeletal muscle α-actin 1 (ACTA1) 
and titin (TTN) genes can also result in core myopathies [17]. However, the molecular 
mechanisms of core myopathies are poorly understood.
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2.3  Muscular Dystrophies

Muscular dystrophies are characterized by muscle degeneration with cycles of mus-
cle necrosis and regeneration and progressive loss of muscle structure and function. 
Muscular dystrophies are caused by many different genetic mutations primarily 
affecting the sarcolemmal membrane or its supporting structures, leading to defects 
in muscle membrane integrity [54, 55]. Muscle membrane disruption triggers an 
increase in intracellular calcium, which can both activate proteolysis to exacerbate 
muscle damage and also stimulate a muscle membrane repair system containing the 
protein dysferlin [56]. Extensive muscle damage also activates SCs to repair and 
regenerate necrotic myofibers. As muscle disease advances, SCs are rapidly 
depleted; thus muscle repair cannot adequately compensate for damage, and muscle 
is gradually replaced by fibrotic tissue. Life-threatening cardiac and respiratory 
symptoms can also occur in the most severe dystrophies.

2.3.1  Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD), an X-linked inherited or spontaneous disor-
der, is the most common type of muscular dystrophy, affecting 1 in every 5000 boys 
at birth [57]. DMD boys are usually diagnosed within the first few years of life by 
delayed and abnormal walking ability. Their symptoms progress with age, and 
between ages 7 and 12, DMD children are wheelchair dependent. DMD patients die 
prematurely in their 20 s and/or 30 s, due to cardiac complications and/or respira-
tory issues. Since DMD is an X-linked recessive disorder, female carriers have little 
to no symptoms. However, it has been recently recognized that although fully ambu-
latory, adult carrier females may develop clinical manifestations, such as a dilated 
cardiomyopathy [58, 59].

DMD is caused by mutations in the dystrophin gene (DMD), one of the largest 
human genes comprised of 79 exons, encoding dystrophin, a 427-kDa intracellular 
protein [60, 61]. The large dystrophin protein has four main functional domains: an 
actin-binding amino-terminal domain, a central rod domain containing 24 spectrin 
repeats interrupted by four hinge proteins, a cysteine-rich domain, and a carboxyl- 
terminus (Fig. 2.3a) [62–64]. More than 7000 mutations in DMD have been identi-
fied, all resulting in loss of dystrophin protein expression [65]. Mutations that only 
partially disrupt the dystrophin gene resulting in an internally truncated and par-
tially functional dystrophin protein cause Becker muscular dystrophy (BMD), a 
milder phenotype than DMD [66, 67].

Dystrophin is a central component of the dystrophin glycoprotein complex 
(DGC), which is a multimeric protein complex essential for sarcolemma integrity 
and stability of muscle cells (Fig. 2.3b) [57, 62]. The DGC complex can be divided 
into three groups based on their cellular localization: extracellular (α-dystroglycan), 
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transmembrane (β-dystroglycan, sarcoglycans, sarcospan), and cytoplasmic 
(dystrophin, dystrobrevin, syntrophins, neuronal nitric oxide synthase) [57, 62]. 
α-Dystroglycan resides on the extracellular surface of the sarcolemma due to its 
heavy glycosylation and peripheral membrane association [62]. α-Dystroglycan 
functions as a receptor for the extracellular ligands such as laminin. α-Dystroglycan 
is tightly associated with β-dystroglycan, a transmembrane protein that also inter-
acts with dystrophin. At the sarcolemma, the sarcoglycan subcomplex is tightly 
associated with β-dystroglycan. The most prevalent form of the sarcoglycan com-
plex in skeletal muscle is composed of four single-pass transmembrane proteins: 
α-sarcoglycan, β-sarcoglycan, γ-sarcoglycan, and δ-sarcoglycan [68]. At the cyto-
plasmic face of the sarcolemma, dystrophin maintains its membrane localization by 
interacting with β-dystroglycan. Dystrophin also binds filamentous actin through its 
amino-terminus in the cytoskeleton, thus linking the cytoskeleton to DGC, which in 

Fig. 2.3 Dystrophin-glycoprotein complex (DGC) complex and domain structure of dystrophin 
protein. (a) The dystrophin glycoprotein complex (DGC) contains sarcoglycans, dystroglycans, 
dystrophin and other components. Through binding to laminin in the basement membrane on the 
extracellular site and binding to actin on the cytoplasmic site, DGC provides stability to the sarco-
lemma during the mechanical changes caused by muscle contraction. Absence of components of 
the DGC complex can cause muscular dystrophies characterized by sarcolemmal disruptions and 
muscle degeneration. The α7β1 integrin dimer binds laminin extracellularly and associates intra-
cellularly with actin-binding proteins. (b) Domain structure of the dystrophin protein (top panel) 
and exon arrangement of the dystrophin gene (bottom panel)
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turn is connected to the basal lamina by interacting with the ECM ligands [56]. 
Other cytoplasmic components of DGC include α-dystrobrevin, syntrophins, and 
neuronal nitric oxide synthase (nNOS). The α-dystrobrevin/syntrophin triplet asso-
ciates with dystrophin. Syntrophin and dystrophin spectrin-like repeat 16 and 17 
anchor nNOS to the sarcolemma. The DGC is essential to the integrity of muscle by 
providing muscle membrane stabilization during contraction.

DMD is associated with mutations that disrupt the reading frame of the dystro-
phin protein, causing premature stop codons. Mutations in the DMD gene cluster 
into two hot spot regions, within exons 2–20 and exons 45–55 [65]. These muta-
tional hot spot regions are subjected to missense and nonsense substitutions, as well 
as deletions, insertions, and duplications [69]. Mutations in the first hot spot region 
exons 2–20 account for ~15% of all exon deletions and ~50% of all exon duplica-
tions within the DMD gene. Deletion of exons 3–7 are the most frequent. The sec-
ond DMD hot spot, exons 45–55, accounts for ~70% of all exon deletions and ~15% 
of all exon duplications [65, 70]. Internal deletion mutations of the dystrophin gene 
DMD that preserve the amino- and carboxy-termini of the protein produce a trun-
cated form of dystrophin and translate into BMD, a milder disease phenotype, in 
which the severity of symptoms differs depending on the length and structure of the 
truncated dystrophin. Exon skipping therapies, such as antisense oligonucleotides 
or CRISPR/Cas9, are conceptually based on using gene therapy to convert the lethal 
disease of DMD to a clinically milder disease of BMD [57].

2.3.2  Limb-Girdle Muscular Dystrophies

Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of inherited 
muscular dystrophies, characterized by progressive weakness of the proximal limb 
muscles. Other muscles may also be affected, including the heart and respiratory 
muscles [54, 71]. The phenotypic spectrum is broad, ranging from minimal symp-
toms to severe, early onset weakness greatly affecting quality of life and life-span 
[54, 71]. LGMD is further categorized into the autosomal dominant LGMD1 and 
autosomal recessive LGMD2, based on modes of inheritance [72]. Mutations in 
more than 50 loci have been reported in LGMD, making accurate diagnosis and 
genetic counseling a challenge [73]. The underlying genetic changes linked to 
LGMD1 are missense mutations that occur in structural (desmin, myotilin, lamin 
A/C), transmembrane (caveolin-3), and signaling (DNAJB6) proteins [73].

2.3.2.1  LGMD Caused by Mutations in Sarcoglycans

The sarcoglycans are single-pass transmembrane proteins that form a tight unit 
within the DGC [68]. In mammalian skeletal muscle cells, the sarcoglycan complex 
is composed of α-, β-, γ-, and δ-sarcoglycan. The sarcoglycan proteins have multiple 
functions in muscle cells and are essential for membrane stability. The sarcoglycan 
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complex stabilizes the DGC, by enforcing the link between α- and β-dystroglycan 
and by interacting directly with dystrobrevin. α- and δ-Sarcoglycan also interact 
with filamin C in the cytoplasm, participating in the mechanoprotection process 
[62, 68]. The sarcoglycan complex may also regulate cell-cell adhesion via interact-
ing with the integrin complex.

Loss-of-function mutations in the α-, β-, γ-, δ-sarcoglycan genes cause the reces-
sive LGMD types 2D, 2E, 2C, and 2F, respectively [54, 73]. These patients have a 
presentation similar to the phenotypic range seen in DMD and BMD. The basic 
pathological features in LGMD-2D, 2E, 2C, and 2F patients are indistinguishable 
from those found in DMD or BMD muscle. Interestingly, mutations in any single 
sarcoglycan gene causes the absence of expression of all the other subunits [74]. 
Absence of dystrophin leads to the loss or reduction of the sarcoglycan subunits 
from the plasma membrane, but the reverse is not true as sarcoglycan gene muta-
tions do not affect the expression and distribution of dystrophin [55].

2.3.2.2  LGMD Caused by Mutations in Sarcolemmal Repair Complex

LGMD type 2B is caused by loss of function mutations in the dysferlin gene locus 
[75]. Like other LGMDs, patients with LGMD2B present proximal muscle weak-
ness. A prominent feature of LGMD2B is the presence of inflammatory infiltration 
in muscle biopsies [75]. Mutations in dysferlin also cause Miyoshi myopathy, a 
mild form of muscular dystrophy that selectively affects the gastrocnemius muscle 
but spares other musculature [76]. Surprisingly, identical dysferlin mutations cause 
both diseases, suggesting that modifiers mediate substantial aspects of the disease 
pathology [77].

Dysferlin is a 230-kDa membrane-associated protein with a long cytoplasmic 
domain [78]. Dysferlin is not a component of the DGC, but it forms a muscle repair 
complex by interacting with other proteins to mediate membrane repair. Dysferlin 
interacts with caveolin-3, a muscle-specific form of caveolar membranes that par-
ticipate in membrane trafficking [79, 80]. Dysferlin also interacts with AHNAK 
(desmoyokin), calpain-3, a calcium-activated protease, and annexins, which are 
calcium-dependent phospholipid-binding proteins that also participate in vesicle 
aggregation [81–83].

Damage to the sarcolemma results in an influx of calcium which activates and 
alters the binding properties of proteins in the membrane repair complex [56, 84]. 
Annexins bind dysferlin and phospholipids with higher affinity in the presence of 
calcium, dysferlin binds phospholipids in a calcium-dependent manner, and cal-
pains are activated [56, 84]. These interactions result in the recruitment of internal 
vesicle structures. Within seconds of activation, membrane lesions are resealed, cal-
cium concentrations are normalized, and the repair complex is deactivated. The 
deactivation of the complex may be mediated in part by calpain-dependent cleavage 
of annexins and AHNAK. In addition, mutations in the genes encoding proteins of 
this sarcolemmal repair complex cause LGMD2B and Miyoshi myopathy (dysfer-
lin), LGMD1C (caveolin), and LGMD2A (calpain-3) [56, 73].
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2.3.3  Congenital Muscular Dystrophy

Congenital muscular dystrophy (CMD) is an uncommon group of muscular dystro-
phies characterized by early onset of muscle weakness and hypotonia within 1 year 
of age. CMD patients present typical features of dystrophic muscle histology, with 
an elevated serum creatine kinase (CK), indicating disruption of the sarcolemma 
[85]. In addition, more than 50% of patients have moderate to severe cognitive 
impairment and neurological features such as lissencephaly and ocular and retinal 
defects [55, 86]. The prevalence of CMDs is poorly known, and it is estimated in 
the range of 1/100,000 individuals [87]. The majority of CMDs are autosomal 
recessive, and they are presented as several forms, including Walker-Warburg syn-
drome, muscle-eye-brain disease, Fukuyama-type CMD, Ullrich CMD, and 
Bethlem myopathy [88]. CMDs are highly heterogeneous with regard to genetic 
background, but many of the mutated genes encoded enzymes in the protein 
O-mannosylation biosynthetic pathway that is involved in the α-dystroglycan pro-
tein in the DGC [89, 90].

Dystroglycan is composed of two subunits produced from a single gene, 
α-dystroglycan and β-dystroglycan [90]. β-dystroglycan is a transmembrane protein 
that interacts with dystrophin in the cytoplasm and anchors α-dystroglycan. 
α-Dystroglycan is a soluble secreted glycoprotein that interacts with both 
β-dystroglycan and multiple components of the extracellular matrix such as laminin. 
These extracellular matrix proteins recognize and bind the unusual glycan structures 
on α-dystroglycan. Thus, proper glycosylation of α-dystroglycan is essential for bind-
ing to extracellular matrix components [90, 91]. Multiple studies have clearly demon-
strated that it is the O-mannosylated glycan structures that serve as binding sites for 
laminin and presumably other extracellular matrix proteins [89]. Many enzymes in the 
O-mannosylation process have been associated with CMDs, including POMGnT1 
(protein O-mannose 1,2-N-acetylglucosaminyl transferase), FKRP (fukutin-related 
protein), POMT1/2 (protein O-mannosyltransferase), and LARGE (like acetylglu-
coseaminyltransferase) [85]. Other forms of CMDs include mutations in the gene 
encoding the α2 chain of laminin, a major ligand for α-dystroglycan, and in the gene 
coding integrin α-7, which mediates cell membrane interactions with the extracellular 
matrix [85, 92, 93]. Therefore, in addition to O-mannosylation defects, disruption 
between the extracellular matrix and the membrane can also cause CMDs.

2.3.4  Facioscapulohumeral Muscular Dystrophy (FSHD)

Facioscapulohumeral muscular dystrophy (FSHD) is the most common autosomal 
dominant form of muscular dystrophy, affecting approximately 1 in 8,000 individuals 
worldwide [94]. FSHD is unique from other types of muscular dystrophies, in which 
muscle weakness is asymmetric and involves the face, shoulder, and upper arm 
muscles. Trunk and lower extremities often become affected with disease progression 
in FSHD, but the extraocular, pharyngeal, and cardiac muscles are spared. Unlike 
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other muscular dystrophies such as DMD and LGMD that show striking evidence of 
myofiber degeneration accompanied by elevated serum creatine kinase, FSHD mus-
cle shows minimal myopathic changes with evidence of inflammatory infiltrates spe-
cific to the perivascular region. FSHD is further divided into two groups, FSHD1 and 
FSHD2, based on different genetics and epigenetics of the disease [95, 96].

FSHD1 is an autosomal dominant gain-of-function disease, representing about 
95% of FSHD patients. Genetically, FSHD1 is linked to a contraction of a macro-
satellite repeat called D4Z4 and the consequent misexpression of subtelomeric 
gene(s) on chromosome 4 [97–99]. Normal individuals carry 11–100 repeat units 
within the highly condensed D4Z4 macrosatellite elements on the subtelomeric 
region of chromosome 4q35. Contraction of D4Z4 repeats in FSHD1 (less than 10 
repeats) relaxes the chromatin structure and induces the expression of the DUX4 
gene from the distal-most repeat unit. DUX4 encodes double homeobox 4, a puta-
tive transcription factor, which induces apoptosis and inflammation in muscle cells 
[100, 101]. It is believed that transient over-expression of DUX4 causes toxicity in 
muscle cells, leading to FSHD1. FSHD2 represents 5% of the FSHD cases, and 
patients with FSHD2 typically do not harbor a contraction of the D4Z4 repeats 
[102]. Instead, chromatin relaxation of the D4Z4 locus is caused by heterozygous 
mutations in the SMCHD1 gene encoding a protein essential for chromatin conden-
sation [102]. Mutated SMCHD1 fails to methylate D4Z4 and to suppress DUX4 
expression. FSHD1 and FSHD2 may have an additive effect: patients harboring 
D4Z4 contraction and SMCHD1 mutations display a more severe clinical pheno-
type than with either defect alone [95, 96].

2.3.5  Myotonic Dystrophy

Myotonic dystrophies (DMs) are the most common types of muscular dystrophy in 
adults, affecting 1 in 8,000 individuals [103, 104]. DMs are characterized by pro-
gressive muscle degeneration leading to disabling weakness and wasting with myo-
tonia, muscular dystrophy, cardiac conduction defects, posterior iridescent cataracts, 
and endocrine disorders. DMs are autosomal dominant diseases with two geneti-
cally distinct types causing similar nucleotide repeat expansions. Myotonic dystro-
phy type 1, DM1 (also known as Steinert’s disease), is caused by a (CTG) 
microsatellite repeat expansion in the untranslated 3′ region of DMPK (dystrophia 
myotonica protein kinase) gene in chromosome 19 [105–107]. This results in the 
nuclear accumulation of RNA containing the abnormal CUG expansions, forming 
stable secondary structures detectable as RNA foci [103]. Members of the 
muscleblind- like (MBNL) protein family, such as MBNL1, are sequestered in ribo-
nuclear foci leading to loss of function and dysregulation of MBNL splicing and 
transcription targets and microRNA metabolism [108, 109]. Myotonic dystrophy 
type 2, DM2, is caused by a (CCTG)n expansion in intron 1 of CNBP (also called 
Znf9) gene in chromosome 3 [110, 111]. Similar to DM1, the accumulation of 
(CCTG)n repeats causes MBNL1 sequestration and subsequent abnormal splicing 
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of effector genes. The prevailing paradigm therefore is that both disorders are toxic 
RNA diseases. However, research indicates several additional pathogenic effects 
take place with respect to protein translation and turnover [103].

2.3.6  Emery-Dreifuss Muscular Dystrophy (EDMD)

Emery-Dreifuss muscular dystrophy (EDMD) is a unique type of dystrophy caused 
by mutations in genes encoding nuclear proteins. Patients with EDMD are charac-
terized clinically by humero-peroneal muscle atrophy and weakness, multi-joint 
contractures, spine rigidity, and cardiac insufficiency with conduction defects [112]. 
Cardiac abnormality such as atrioventricular block is frequent in EDMD patients. 
EDMD was first described as an X-linked muscular dystrophy clinically distinct 
from DMD or BMD, caused by mutations in Emerin gene on chromosome X 
[113, 114]. In the 1990s, it was determined that EDMD may also be caused by auto-
somal dominant mutations in the gene encoding lamins A and C (LMNA) on human 
chromosome 1 [115]. To date, there are at least six types of EDMD, five of which 
have been associated with mutations in genes encoding nuclear proteins [112].

Emerin is a 34-kDa protein that embeds in the inner nuclear membrane. Emerin 
binds to barrier-to-autointegration factor (BAF), a small peptide that oligomerizes 
and directly binds to DNA [116]. Lamins polymerize to form a protein meshwork 
known as the nuclear lamina under the inner nuclear membrane. Lamin and emerin 
directly interact at the inner nuclear membrane [117]. Lamin and emerin, together 
with other nuclear proteins, maintain nuclear morphology, regulate chromatin orga-
nization and gene transcription, link the cytoskeleton to the nuclear skeleton, and 
serve as a scaffold for other nuclear proteins involved in gene regulation and DNA 
replication [118, 119]. Emerin and lamin proteins are expressed in all tissues but 
have muscle-specific phenotypes when mutated. It is postulated that muscle nuclei 
are susceptible to damage from mechanical forces from contraction, because they 
are joined to the cytoplasm actin cytoskeleton via the interaction of the nuclear 
membrane complex with the intermediate filament network [118, 119]. Through 
this interaction network, contractile stress can pass from the sarcolemma through 
the cytoskeleton to the nucleus. In EDMD patients, this force may be enough to 
disrupt nuclear structure and lead to the subsequent changes in gene expression and 
death of dystrophic muscle fibers [118].

2.4  Concluding Remarks

Skeletal muscle is highly specialized and designed to support body movement, 
maintain posture, and provide body strength. Skeletal muscle diseases are debilitat-
ing illnesses that impair skeletal muscle function and, in many cases, shorten life 
expectancy. With the entire human genome sequenced, it is possible to identify the 
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gene responsible for causing skeletal muscle disease, especially for monogenic dis-
eases. Skeletal muscle diseases generated by multiple genetic mutations still remain 
a challenge but are being actively pursued. Additionally, the relationship between 
epigenetic mutations and skeletal muscle diseases is just being realized. We appreci-
ate that identification of the gene responsible for skeletal muscle disease is not a 
guarantee of a cure for the disease; nevertheless it does provide a major step in 
allowing us to formulate a genetic therapy approach to ameliorate the disease and 
restore muscle function.
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Chapter 3
Animal Models for Muscle Disease 
and Muscle Gene Therapy

Stephanie M. Shrader, Roberta Wrighten, and Bruce F. Smith

Abstract It is currently estimated that roughly 50,000 Americans are affected by 
some form of muscular dystrophy and many others by the various forms of myopa-
thies. Animal models are critical for our understanding of the numerous muscular 
diseases that affect people and for the development of targeted gene therapeutics to 
treat such diseases. Our current understanding of the pathophysiology of these dis-
eases would not be possible without the aid of animal modeling. Multiple animal 
models have been described, including mice, cats, dogs pigs, etc.; however, the 
discussion in this chapter will primarily focus on mice and dogs because these two 
animal models have been more rigorously researched and described. The overall 
objectives of this chapter are to review the available animal models and their limita-
tions, disease-specific mutations, clinical disease manifestations, and recent 
advances in associated therapeutic modalities for various muscular disorders, with 
a focus on dystrophinopathies and limb-girdle muscular dystrophies.
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3.1  Introduction

There are various forms of genetic muscular diseases which have been identified 
in humans, including muscular dystrophies, congenital myopathies, and meta-
bolic muscular disorders. Importantly, similar diseases have been discovered (or 
created) in other animals, allowing for the development of animal models that 
can aid in the understanding of muscular disease pathogenesis and generation of 
novel therapeutics to treat such diseases. One of the most well-known and well-
studied forms of the muscular dystrophies is Duchenne muscular dystrophy 
(DMD), which will be discussed at length in this chapter. Much of our under-
standing of DMD has come from the study of multiple animal models which 
have been identified in a variety of species. Advances in the understanding of 
other muscular diseases have also been the result of animal disease modeling. 
This chapter shall endeavor to review the benefits and limitations of the various 
animal models as they pertain to the understanding and treatment of muscular 
diseases in humans.

The two most commonly used animals for human disease modeling are the 
mouse and dog. Although this chapter shall focus on these two animal models, 
it is important to note that other animal models can provide useful information 
as well. Rodent models (particularly mice) have been extensively used in dis-
ease research for multiple reasons. They have relatively fast reproduction rates 
with a gestational period ranging from 18 to 22 days. As a comparison, cats 
have a gestational period of 63–65 days, and dogs have a gestational period 
ranging from 58 to 65  days. Mice are also favored as animal models due to 
their small size, relative ease of handling, availability, and lower costs of col-
ony maintenance. Additionally, mice and humans have remarkable genomic 
similarities. Although the mouse genome is about 14% smaller than the human 
genome, both contain about 30,000 protein-coding genes and have over 90% 
corresponding regions of conserved synteny [1].

Because of these advantages, many murine models have either been discov-
ered (i.e., they develop spontaneous disease that parallels a known disease in 
humans) or created (utilizing genetic manipulation or mutagenic agents). Using 
homologous recombination in embryonic stem cells, researchers are able to 
modify the mouse genome at a specific locus. Based on this gene targeting tech-
nology, various strains of mice have been developed using knock-in, knockout, 
and conditional gene modification strategies. Embryonic stem cell technologies 
are not currently available for larger animal models such as cats and dogs; there-
fore, these animal models are spontaneous only. Discovery of these animal 
models typically relies on astute observations and disease recognition by veteri-
narians in private practice, specialty clinics, or academic institutions. Following 
discovery of an animal with a spontaneous inherited disease of interest, addi-
tional study of the disease requires the establishment of an appropriate breeding 
program and study colony.
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3.2  Dystrophinopathies

The dystrophin gene, the largest gene currently known in nature, measures 2.4 
megabases at locus Xp21. It was discovered in 1986 as the gene that causes DMD 
[2]. Roughly a year later, Louis Kunkel and his colleagues described the associated 
protein product [3]. The dystrophin protein is large (427 kD), located in the cytosol 
subjacent to the cellular membrane, and functions to link cytoskeletal F-actin and 
transmembrane beta-dystroglycan to form the dystrophin-associated protein com-
plex (DAPC) [4, 5]. Appropriate functionality of this complex is vital because it 
mediates signaling between the intracellular cytoskeleton and the extracellular 
matrix. As such, its role is to protect myocytes and myofibers from injury associated 
with normal contractile forces.

Mutations in the dystrophin gene are responsible for what are known as the dys-
trophinopathies, which result in a spectrum of related clinical diseases which 
include DMD, the less clinically severe Becker muscular dystrophy (BMD), and 
X-linked dilated cardiomyopathy (XLDCM) [6]. Since DMD has a more severe 
clinical manifestation and there is a greater interest in the development of animal 
models to study it, the remainder of this section will focus primarily on DMD. DMD 
is an X-linked recessive disorder that results from various mutations in the dystro-
phin gene (to be discussed in depth later). Due to the role that dystrophin plays in 
muscular stabilization and contractility, patients eventually develop degenerative 
changes in skeletal and cardiac muscle. Boys with DMD are typically diagnosed 
prior to 5  years of age and generally become nonambulatory and wheelchair- 
dependent by 10–12 years of age. Historically, death occurs in the second decade of 
life, attributed primarily to pulmonary infections and respiratory failure [4]. In more 
recent years, the treatment of secondary respiratory disease has improved, resulting 
in both prolongation of life and in the unmasking of cardiac disease. Almost all 
patients with DMD that survive into their 30s will be diagnosed with cardiomyopa-
thy. Electrocardiographic findings include persistent sinus tachycardia, an increased 
R-S ratio, deep Q waves, various conduction abnormalities, and arrhythmias. Over 
time, myocardial damage can progress to myocardial fibrosis and eventually to 
dilated cardiomyopathy. Because early recognition is the key, the recommended 
cardiac screening protocol for boys with DMD now includes an ECG and transtho-
racic echocardiography every 2 years until the age of 10 and then on a yearly basis 
[7]. Cardiac magnetic resonance imaging (MRI) is also starting to gain favor for the 
diagnosis of early myocardial damage and remodeling [8].

Although various types of dystrophin mutations have been documented, most of 
the mutations in people are deletions. These are thought to occur during meiosis, 
resulting from the malalignment of exons containing highly repetitive sequences. 
The mutation can either disrupt the reading frame or cause premature termination of 
translation. The end result is a loss of dystrophin functionality, an altered DAPC, 
and subsequent muscular damage. Often, DMD patients lack detectable skeletal 
muscle dystrophin expression. Point mutations that result in stop codons can cause 
a similar outcome [6]. Milder disease states, such as occurs with BMD, can result if 
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the mutation maintains the reading frame, allowing for preservation of some levels 
of a truncated dystrophin protein.

Over the last 30 years, various animal models for DMD have been discovered or 
developed. Although the mouse and dog are most popular, dystrophin deficiency 
has also been studied in cats, pigs, zebrafish, and nematodes. In cats, deficiency 
results in hypertrophic feline muscular dystrophy. It is associated with periods of 
muscular degeneration and regeneration, but lacks the characteristic debilitating 
fibrosis, which occurs in people with DMD [9]. Similar to what is seen in people, 
dystrophin-deficient pigs develop skeletal muscle degeneration, regeneration, 
inflammation, fibrosis, and impaired metabolic activity [10]. However, their larger 
size typically makes large-scale studies cost prohibitive. Nonmammalian models, 
such as the zebrafish and the nematode Caenorhabditis elegans, express a dystro-
phin ortholog, making them useful for DMD-related gene analysis and drug discov-
ery studies [11].

The most well-known animal model of DMD is the mdx mouse. Similar to what 
occurs in humans, the mdx mutation of dystrophin is recessive and was first described 
in 1984 in mice from a C57BL/10ScSn background. It results from a T to C substi-
tution at position 3185, creating a stop codon in exon 23 [12]. Homozygous females 
and hemizygous males are useful for the study of DMD because they are cheaper to 
house than larger animal models and can survive for up to 2 years (similar to that of 
the parental strain). The ability of affected male mice to reach sexual maturity is 
important because it allows for breeding of affected males to carrier and affected 
females, resulting in a greater number of affected offspring per litter. Although they 
have a fairly normal life-span, the mdx mouse does develop a disease phenotype 
similar to (although less severe than) that which occurs in humans, including stunted 
growth, muscle atrophy, muscular weakness, and compensatory hypertrophy [13] 
which can be exacerbated with eccentric contraction (e.g., walking on a downhill 
treadmill) [14]. Nevertheless, aged mdx mice show a more severe patient-like phe-
notype. Cardiac dysfunction has also been reported as early as 9–10 months of age 
in some mice [4]. Characteristic dilated cardiomyopathy can be detected in female 
mdx mice that are ≥ 21 months old [15].

Histologically, mdx mice develop pronounced skeletal myofiber degeneration, 
necrosis, inflammatory cell infiltrates, and foci of regeneration, but do not frequently 
develop fibro-fatty replacement. The exception, however, is in the diaphragm, which 
can develop severe fibrosis [16]. These mice also develop increased numbers of 
satellite cells, which when normalized to myonuclear number, appear to be stable. 
Although the mean myofiber diameter appears to be unaltered in mdx mice, the 
increased number of myonuclei per fiber and extensive fiber branching results in 
muscular hypertrophy. Hypernucleation in mdx myofibers results from abundant 
central nucleation, a characteristic feature of the disease. It is not currently clear 
whether these centralized nuclei are contributors to the myopathic process or resul-
tant from it [17, 18].

Another interesting feature in DMD patients and in murine and canine models is 
the presence of “revertant fibers.” These skeletal and cardiac myofibers are named 
as such because although there is an absence of dystrophin, with time, they may 
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develop dystrophin expression. The presence of revertant fibers does not alter the 
disease phenotype very likely because of their low abundance. It is thought that the 
acquisition of dystrophin expression in dystrophin-deficient myofibers is due to epi-
genetic alterations that involve splicing of the dystrophin mRNA. The degree of 
reversion, muscles involved, and age at which it is noted vary between mdx strains. 
For example, mdx and mdx2cv strains (which have point mutations in exon 23 and 
intron 42, respectively) have roughly 10x more revertant fibers than mdx4cv and 
mdx5cv mice (which have point mutations in exons 53 and 10, respectively) [19].

Because the disease phenotype of the mdx mouse is less severe than what is 
observed in people with DMD, additional mouse models have been created, includ-
ing mice deficient in both dystrophin and utrophin, a double knockout (dko) model. 
Utrophin is a paralog of dystrophin that is found at the neuromuscular junction and 
can redistribute to the sarcolemma. Because utrophin and dystrophin have comple-
mentary roles in muscle function and development, it was hypothesized that utro-
phin could compensate for the lack of dystrophin in DMD. In confirmation of this 
notion, dko mice develop a disease phenotype that resembles what is seen in DMD 
patients (i.e., progressive muscular dystrophy, premature death, and cardiomyopa-
thy) [20, 21]. Because DMD patients often develop osteopenia, fractures, and sco-
liosis, the dko mouse model has also proven useful in the study of DMD-associated 
premature musculoskeletal aging. In addition to the previously described muscular 
changes, they also develop degenerative changes in bone, articular cartilage, and 
intervertebral discs [22].

The mdx mouse has more recently been crossed to multiple genetic backgrounds, 
including the albino, BALB/c, C3H, C57BL/6, C57BL/10, DBA/2 and FVB strains, 
and various immune-deficient strains (including nude and SCID mice). The resul-
tant phenotypes vary significantly but offer opportunities to study different disease 
aspects. For example, the DBA/2-mdx mice develop pronounced muscular weak-
ness, decreased muscle weight, more fibrosis, and less regeneration when compared 
to other mdx crosses [23]. Crosses with immune-deficient strains may prove useful 
for transplantation studies evaluating the effect of donor cells on skeletal muscle 
regeneration.

Using a C57BL/6 background strain, four chemical variant (cv) mdx strains have 
been created via N-ethyl-N-nitrosourea (ENU) chemical mutagenesis (mdx2cv, 
mdx3cv, mdx4cv, and mdx5cv). Although each of these model strains results from a dif-
ferent point mutation, the outward phenotypes are similar to that of the mdx mouse 
[24, 25]. Even though the cv strains do not develop a severe disease phenotype, each 
is useful for the study of specific aspects of DMD pathogenesis. For example, the 
mdx3cv mice express ~5% of a nearly full-length dystrophin protein and have 
increased neonatal mortality [25]. When compared to the mdx or mdx2cv models, the 
mdx4cv and mdx5cv strains have a tenfold reduction in revertant fibers [19].

Although uncommon, spontaneous dystrophin deficiency has been identified in 
domestic shorthair cats. In cats, deficiency results in hypertrophic feline muscular 
dystrophy, a disease which is characterized by substantial glossal and diaphrag-
matic hypertrophy with resultant esophageal occlusion. Histopathologic findings 
typically include fiber size variation, fiber hypertrophy, foci of mineralization, fiber 
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splitting, nuclear centralization, and minimal endomysial fibrosis [9, 26, 27]. 
Although clinical signs of heart disease develop infrequently, gross, histopatho-
logic, and imaging studies have revealed that affected cats do develop myocardial 
hypertrophy [28].

Spontaneous dystrophin deficiency is much more commonly diagnosed in dogs 
than in cats, likely owing to the severe disease phenotype that can occur in this spe-
cies. Table 3.1 lists known affected breeds (both spontaneous and experimentally 
derived) and their associated mutations (if known).

Canine models exhibit many of the same clinical signs as boys with DMD. Affected 
puppies may be identified, often within hours after birth, by their elevated CK lev-
els. These can be extremely high, and while they often decrease during the first few 
weeks of life, CK levels remain elevated for the dog’s life. Physical signs usually 

Table 3.1 Dystrophin-deficient dog breeds and their associated mutations

Breed Mutation Comments

Golden retriever Point mutation in intron 6 [29] Original model, some 
revertant fibers

German 
shorthaired pointer

Deletion of entire dystrophin gene [30]

Rottweiler Point mutation in exon 52 [31]
Labrador retriever Insertion in intron 19 [32]
Alaskan malamute Undetermined [33] Typical clinical signs, 

elevated CK, and abnormal 
EMG

Australian 
labradoodle

Nonsense mutation in exon 21 [34]

Old English 
sheepdog

Undetermined [35]

Grand Basset 
Griffon Vendéen

Undetermined

Norfolk terrier Undetermined [36]

Tibetan terrier Exon 8–29 deletion [37]

Japanese Spitz Inversion disrupts the dystrophin and 
retinitis pigmentosa GTPase regulator gene 
[38, 39]

Cavalier King 
Charles spaniel

Point mutation in intron 50 [40]

Beagle Point mutation in intron 6 accepter splice 
site [41, 42]

CXMD and CXMDJ models

Pembroke Welsh 
corgi

Repetitive element-1 [LINE-1] insertion in 
intron 13 [43]

Outbred to beagle

Cocker spaniel Deletion in exon 65 [37]
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become apparent at 6–8 weeks of age when the puppies are noted to be smaller and 
to tire more readily than their normal siblings. Progression of the disease occurs 
over the ensuing 5–6 months, with loss of muscle mass, weakness, and kyphosis as 
classical signs (Fig.  3.1). Microscopically, affected muscles show degeneration, 
regeneration, fatty infiltration, and fibrosis. Many dogs with DMD show similar 
cardiac disease to boys with this disease. Progression can vary between dogs with 
the same mutation, with some individuals requiring euthanasia within 6 months of 
birth, while others can survive into adulthood. However, the “longer-lived” affected 
dogs show obvious disease, need significant nursing care to be maintained, and usu-
ally succumb around 2–3 years of age. In dogs with DMD, the typical reasons for 
euthanasia are inability to eat, recumbency, respiratory disease secondary to com-
promised respiration, and heart failure.

The golden retriever was the first canine model of DMD (named GRMD), the first 
model in which the mutation was identified, and has subsequently been the most 
extensively studied. GRMD is caused by a point mutation in the splice acceptor site 
of intron 6, resulting in elimination of exon 7 and a premature stop codon in exon 8 
[29]. As is the case in humans with DMD, phenotypic variability occurs in GRMD. 
Although severity and age of onset can differ, affected dogs completely lack the dys-
trophin protein and develop both skeletal and cardiac abnormalities. Common clini-
cal signs include decreased life-span, stunted growth, a plantigrade stance, ptyalism, 
and lordosis. Histologically, affected muscles have foci of degeneration, regenera-
tion, mineralization, and fibro-fatty infiltration. Revertant fibers are also occasionally 
seen in this model, owing to alternative splicing out of exons 3–9 or 5–12 [44]. As is 
the case with the other canine models, euthanasia is often opted for due to an inability 
to eat, prolonged recumbency, and secondary respiratory and/or heart failure.

Because the GRMD model has been most rigorously studied, most preclinical 
studies in dystrophin-deficient dogs have been completed in this model. Earlier 

Fig. 3.1 A photograph of 
an affected male yellow 
Labrador retriever dog at 
5 months of age. This dog 
shows severe muscle loss 
and fibrosis, kyphosis, 
weakness, and 
hyperextension of the 
carpus and tarsus. This 
represents the extreme of 
this phenotype
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interventions focused on plasmid- and vector-based gene therapies. For example, 
Howell and colleagues successfully used adenovirus-mediated dystrophin minigene 
transfer in GRMD dogs to accomplish high-level dystrophin expression in affected 
skeletal muscles [45]. Various cell-based therapies have also been pursued over the 
last 25 years, with myoblast transplantation studies leading the way. Although it 
sounded promising, significant implantation of myoblasts was not able to be 
achieved in the GRMD model [46, 47]. During roughly the same time period, myo-
blast implantation clinical trials were conducted in DMD patients; the results were 
unimpressive. The treated patients lacked functional gains, even though some donor 
cells could be detected in skeletal muscles [48–50]. More recently, pharmacologic 
interventions for the treatment of DMD have been explored using the GRMD model. 
One study showed that chronic infusion of a membrane sealant (a poloxamer) 
resulted in effective membrane stabilization with reduced myocardial fibrosis, 
decreased cardiac troponin I and brain natriuretic peptide elevations, and a lack of 
left ventricular remodeling [51]. Although the GRMD model has thus far been the 
focus of DMD-associated canine model research, further investigation of other dog 
breeds with dystrophin deficiencies may also prove useful in the study of DMD and 
the development of therapeutic strategies.

Animal husbandry in colonies of DMD dogs can be challenging. Dystrophic 
puppies have a higher neonatal mortality rate than normal puppies. Enhanced sur-
vival of affected dogs requires precise timing of pregnancies, systematic surveil-
lance of pregnant female dogs for signs of impending birth, and intensive observation 
perinatally. Dedicated facilities for whelping will help facilitate this process. 
Newborn puppies must be weighed multiple times each day to monitor weight gain, 
and puppies need to be checked for dehydration and chilling frequently. Affected 
puppies can require bottle-feeding, either as a supplement to maternal feeding (pre-
ferred) or as their sole source of nutrition. The affected puppies become robust 
within a week or two of birth and require little specialized care for the next month 
or two. However, once clinical signs begin to appear, affected puppies may require 
significant additional nursing care. This includes the feeding of softer diets, regular 
cleaning and grooming, continued attention to weight gain, limited exercise, regular 
monitoring for respiratory obstruction and infections, and regular assessment of 
disease progression. In older affected dogs, the extreme fibrosis associated with the 
disease may present appearance issues with animal care workers and regulatory 
personnel who are not familiar with the model as they may mistake the appearance 
of the dog for starvation. Some affected male dogs may live past puberty and as a 
consequence can be used to breed female carriers and produce affected female dogs.

3.3  Limb-Girdle Muscular Dystrophies

Limb-girdle muscular dystrophy (LGMD, also known as Erb’s muscular dystrophy) 
is a broad term that encompasses a group of rare diseases that result in characteristic 
wasting and weakness in the proximal limb muscles (especially muscles of the upper 
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arms, shoulders, thighs, and pelvic girdle). Clinical signs, severity, and rate of pro-
gression can vary dramatically between individual patients. Most cases of LGMD 
are inherited in an autosomal recessive pattern (subclassified as LGMD2). Less com-
monly, LGMD may be inherited in an autosomal dominant pattern (subclassified as 
LGMD1). LGMD1 and LGMD2 can be further characterized based on the affected 
gene and locus (e.g., LGMD1C is resultant from mutations in the CAV3 [caveolin-3] 
gene). A variety of transgenic mice have been developed to study the different forms 
of LGMD [52]. Research efforts in murine animal models have resulted in the devel-
opment of multiple therapeutic interventions which have entered the clinical trial 
stage. Specific subtypes of LGMD, relevant animal models, and information on drug 
discovery/development are reviewed in the following subsections. Current animal 
models of limb-girdle muscular dystrophy are shown below (Table 3.2).

3.3.1  Myotilinopathies

Myotilin is a structural Z-line protein that plays a critical role in sarcomeric assem-
bly and structural support of contracting myocytes. Myotilinopathies result from 
mutations in the highly conserved myotilin gene (MYOT); the consequent spectrum 
of diseases includes LGMD1A, myofibrillar myopathy, spheroid body myopathy, 

Table 3.2 Animal models of limb-girdle muscular dystrophies

Type Species GENE Protein Comments

LGMD1A Mouse MYOT Myotilin Transgenic mice express the myotilin T57I 
mutation

LGMD1B Mouse LMNA Lamin A Most severe phenotype seen with LmnaGT−/−

LGMD1C Mouse CAV3 Caveolin 3 Cav-3 P104L Tg and Cav-3 (−/−) null 
mice

LGMD2A Mouse CAPN3 Calpain 3 C3KO mice have reduced muscle mass 
and histologic evidence of muscle damage

LGMD2B Mouse DYSF Dysferlin Spontaneous disease in SJL/J and A/J 
strains

LGMD2C Mouse SGCC γ-sarcoglycan Cardiomyopathy and death by 20 weeks of 
age

LGMD2D Mouse SGCD α-sarcoglycan Progressive muscular dystrophy
LGMD2E Mouse SGCE β-sarcoglycan Skeletal muscle endomysial fibrosis
LGMD2F Mouse SGCF δ-sarcoglycan Skeletal and cardiac muscle involvement

Hamster Bio14.6, TO-2, J2N-k, and UMX7.1
LGMD2C-F Dog Unknown Clinical myopathy and altered sarcoglycan 

expression; exact mutation(s) unknown
LGMD2H Mouse TRIM32 Trim-32 T32KO mice have myogenic and 

neurogenic disease components
LGMD2I Mouse FKRP Fukutin-related 

protein
Multiple models that develop varying 
neural, ocular, and muscular defects

3 Animal Models for Muscle Disease and Muscle Gene Therapy



50

and distal myopathy. LGMD1A is the best characterized and will therefore be the 
focus of this discussion [53].

LGMD1A has an autosomal dominant pattern of inheritance, and its prevalence 
is less than 1/1,000,000. It is characterized by adult-onset limb-girdle weakness and 
dysarthric speech patterns. Histopathologic findings in affected muscles include 
fiber size variation, fiber splitting, vacuolar change, and foci of Z-line streaming 
[53, 54]. The disease is so rare that it has only been reported in three families 
(German, Argentinean, and Turkish ancestries) and in one person of Japanese ances-
try [55–58]. In 2006, a transgenic mouse model was generated to express mutant 
myotilin under the control of the human skeletal actin promoter. The mice develop 
similar muscular weakness and histopathologic changes in myofibers [59]. Garvey 
and colleagues subsequently produced a second LGMD1A mouse model by overex-
pressing myotilin. To do this, they crossed wild-type and mutant transgenic mice. 
They found that when compared to single-transgenic mutant mice, the double- 
transgenic mice that overexpressed myotilin had similar, but more severe, skeletal 
muscle pathology. They concluded that therapeutic modalities designed to lower 
myotilin levels in LGMD1A patients might be effective in ameliorating the clinical 
signs [60]. More recently, RNA interference (RNAi) technologies have been uti-
lized to address LGMD1A. To do this, researchers developed adeno-associated viral 
vectors (AAV) with microRNAs targeting mutant myotilin. The result was a signifi-
cant reduction in mutant myotilin mRNA and soluble protein expression in the 
muscles of TgT57I mice. RNAi-mediated gene silencing also resulted in improve-
ment of clinical signs and less severe microscopic myofiber alterations [61]. Thus 
far, the myotilin overexpression mouse model proves to be invaluable for the study 
of LGMD1A, but further investigations are necessary to better characterize the dis-
ease pathogenesis and to develop therapeutic interventions.

3.3.2  Laminopathies

As the name suggests, lamins are the major components of the nuclear lamina. They 
are necessary for appropriate nuclear architecture, help anchor nuclear proteins, and 
aid in cellular signaling processes. Lamins A and C are the major alternative splic-
ing variants of the LMNA gene. In 1999, studies of familial genetic linkage in peo-
ple (of French pedigree) with autosomal dominant Emery-Dreifuss muscular 
dystrophy (AD-EDMD) found a strong positive LOD score at an 8-cM locus on 
chromosome 1q21–1q23. All affected subjects were shown to have mutations in 
LMNA, which is located within this locus [62]. Mutations have also been found to 
be responsible for two other diseases which clinically resemble AD-EDMD: limb- 
girdle muscular dystrophy with cardiac conduction disturbances (LGMD1B) and 
dilated cardiomyopathy with conduction defects (DCM-CD) [63, 64].

In order to study the human diseases associated with LMNA mutations, mouse 
models have been developed. Depending on the deletion alleles, mice with LMNA 
mutations have postnatal lethality at either 16–18 days or 4–8 weeks. Typically, these 
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mice have defects in both cardiac and skeletal muscles, similar to what is observed in 
people with LGMD1B.  Homozygous knockout mice develop gait abnormalities, 
splayed hind limbs, and decreased strength. Heterozygous knockout mice can 
develop atrial and ventricular arrhythmias, atrioventricular conduction anomalies, 
and dilated cardiomyopathy [65, 66]. More recently, a novel LMNA germline knock-
out mouse (LmnaGT−/−) has been developed using gene trap technology. This new 
mouse model is important because it produces a severe mutant phenotype which 
includes growth retardation, cardiac anomalies (excluding dilated cardiomyopathy), 
abnormal myocyte hypertrophy, and decreased subcutaneous adiposity [67]. Although 
none of the mouse models perfectly recapitulate LGMD1B, each one allows us to 
better understand the disease and potentially develop therapeutic interventions.

3.3.3  Caveolinopathies

Caveolin-3 gene (CAV3) mutations can result in a broad spectrum of clinical syn-
dromes (caveolinopathies) and phenotypes, which include limb-girdle muscular 
dystrophy type 1 C (LGMD1C), rippling muscle disease, distal myopathy, long QT 
syndrome 9, etc. [68]. In general, caveolins are membrane proteins that aid in the 
formation and maintenance of caveolae, plasma membrane invaginations that play 
an integral role in cellular signal transduction and vesicular transport. Although 
caveolins are found in many different cell types, Caveolin-3 is the only caveolin 
found in striated muscle (i.e., skeletal muscles and the heart).

Because we are focusing on limb-girdle muscular dystrophies in this section, 
we’ll concentrate on animal models used for the study of LGMD1C. To date, only 
mouse models are utilized, and it wasn’t until recently that the first model of 
LGMD1C was created by expressing the CAV3 P104L mutant in murine skeletal 
muscle tissue as a transgene. Although the transgenic mice have a myopathic pheno-
type that resembles human disease, the underlying muscle damage is more severe. 
Histologically, muscular changes are characterized by fiber size variations, myofiber 
atrophy, centralized nuclei, and increased amounts of endomysial connective tissue 
[69]. Caveolin-3 null mice, which lack expression of caveolin-3 in skeletal muscles, 
have also been developed. These mice do not have overt clinical signs of disease; 
however, they do develop microscopic changes in the skeletal muscles which include 
areas of myofiber necrosis and variation in fiber size. Similar to what occurs in peo-
ple with LGMD1C, Cav-3 null mice also develop T-tubule system abnormalities. 
Cardiac abnormalities vary in this mouse model—one study reports a lack of gross 
and histopathologic cardiac findings, while another reports on the presence of a pro-
gressive cardiomyopathy, characterized by cardiac hypertrophy, dilation, and reduced 
fractional shortening [70, 71]. It has also been noted that Cav-3 null mice have nor-
mal expression levels of dystrophin and the DAPC, but that these components have 
abnormal localization within the cholesterol- sphingolipid rafts/caveolae [71]. 
Although further characterization of these mouse models may be necessary, they are 
potentially useful for the understanding of LGMD1C and other caveolinopathies.
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3.3.4  Calpainopathies

Calpain 3 functions as a protease to cleave various cytoskeletal and myofibrillar pro-
teins. It plays an important role in a number of processes including muscle remodel-
ing, myocyte differentiation, sarcomere formation, cytoskeletal rearrangements, and 
apoptosis [72, 73]. In humans, there are three calpainopathy phenotypes that com-
prise LGMD2A, which vary depending on the distribution of muscle weakness and 
age of onset. They include pelvifemoral limb-girdle muscular dystrophy (Leyden-
Möbius LGMD), scapulohumeral LGMD (Erb LGMD), and hyperCKemia. 
Histologically, patients with mild or preclinical LGMD2A have minimal muscular 
changes, with the exception of small foci of myonecrosis. In these patients, the dia-
phragm and the soleus muscles are the most severely affected.

Calpain 3 knockout (C3KO) mice have been used to study LGMD2A. They are 
typically smaller than age-matched wild-type mice, but they are viable and fertile. 
Grossly, they have reduced muscle mass that corresponds to a reduction in both fast- 
and slow-type myofibers. Atrophic myofibers contain small foci of necrosis with 
inflammatory cell infiltrates and nuclear centralization that progresses with age. 
Electron microscopy has also demonstrated that affected myocytes lack normal sar-
comeric organization [74, 75]. Thus far, the C3KO mouse model has proven to be 
invaluable for the understanding of LGMD2A pathophysiology.

3.3.5  Dysferlinopathies

The protein dysferlin plays an important role in the process of membrane repair, 
intracellular vesicular transport, and in myocyte T-tubule development. Limb-girdle 
muscular dystrophy 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior 
compartment myopathy result from recessively inherited DYSF mutations. Both are 
associated with muscular weakness and atrophy, slow disease progression, and 
symmetric involvement of the limb-girdle muscles.

Two mouse strains, SJL/J and A/J, have a long history as models for various non-
neoplastic and neoplastic processes. They are also spontaneous models for 
LGMD2B. SJL mice have a splice site mutation that results in removal of the DYSF 
C2E domain. The A/J mouse model has an ETn retrotransposon insertion near the 
5’ end of the DYSF gene [76]. Although skeletal muscle lesion distribution differs 
between the two mouse models, histopathologic findings include myofiber degen-
eration and necrosis, myofiber size variation, myofiber atrophy, inflammation (pre-
dominantly macrophages), centronuclear fibers, and fibro-fatty infiltration [76, 77]. 
Because these models have clinical heterogeneity and a general lack of muscular 
weakness, they are generally only employed for the study of therapeutic interven-
tions via histopathologic evaluation [78].

S. M. Shrader et al.



53

3.3.6  Sarcoglycanopathies

Sarcoglycanopathies are caused by mutations in any of the four sarcoglycan genes (α, 
β, γ, or δ). The resulting diseases are categorized as LGMD2D (α-sarcoglycanopathy), 
LGMD2E (β-sarcoglycanopathy), LGMD2C (γ-sarcoglycanopathy), and LGMD2F 
(δ-sarcoglycanopathy). The sarcoglycans form a sarcolemmal complex that interacts 
with the DAPC; this interaction functions to stabilize the plasma membrane cytoskel-
eton. Although the mutations vary, all of the sarcoglycanopathies result in muscular 
dystrophy that typically manifests in childhood.

The predominant animal model for LGMD2D is the Sgca-null mouse. Although 
these mice do not develop overt clinical signs of a myopathy, they do develop mus-
cular dystrophy characterized by myonecrosis that progresses with age, a hallmark 
of human LGMD2D.  Other findings in this model include loss of sarcolemmal 
integrity, elevated serum levels of muscle enzymes, and alterations in absolute con-
tractile force [79].

LGMD2E is interesting because affected patients develop cardiomyopathy in 
addition to skeletal muscle disease. Patients are usually asymptomatic until late 
childhood; clinical signs of cardiac involvement typically parallel the development 
of skeletal myopathy [80]. Similar to the human pathology, the Sgcb-null mouse 
develops significant endomysial fibrosis in skeletal muscles. Recently, β-sarcoglycan 
gene transfer has shown to be a promising therapeutic intervention by decreasing 
fibrosis and restoring muscular force in LGMD2E mice [81].

Similar to LGMD2E, LGMD2C usually appears in childhood (around 6–8 years 
of age). As is typical of the muscular dystrophies, clinical severity can vary, and 
some patients may be wheelchair bound by 12–16 years of age. LGMD2C can be 
difficult to distinguish from Duchenne muscular dystrophy because symptomology 
often overlaps and includes hypertrophy of the calves, macroglossa, cardiomyopa-
thy, and respiratory disease [82, 83]. γ-Sarcoglycan-deficient mice have been pro-
duced by homologous recombination to aid in the study of LGMD2C. These mice 
develop muscular dystrophy in early life characterized by myocyte membrane 
defects, myocyte degeneration, and abundant apoptotic myonuclei. Typically by the 
time they are 20 weeks old, they develop cardiomyopathy (both dilated and hyper-
trophic forms occur) and premature death [84].

It wasn’t until 1996 that a single nucleotide deletion in the δ-sarcoglycan gene was 
proven to be the cause of LGMD2F in people. Clinical signs typically occur in child-
hood and include wasting of the proximal muscles in the upper and lower extremities, 
decreased muscle strength, calf hypertrophy, and toe walking [85, 86]. Both hamster 
and mouse models have been used for the study of LGMD2F (δ-sarcoglycanopathy). 
An inbred line of Syrian hamsters (Bio14.6) develop a  spontaneous myopathy with 
both skeletal and cardiac muscle involvement. Not only do they have reduced 
δ-sarcoglycan expression, but they also have a secondary reduction of the other three 
sarcoglycan proteins. Changes in the heart consist of myocardial hypertrophy and 
myofiber necrosis; changes in the skeletal muscles are characterized by myocyte 
degeneration and necrosis [87]. Although people with LGMD2F don’t typically 

3 Animal Models for Muscle Disease and Muscle Gene Therapy



54

develop cardiomyopathy, the hamster model has been useful for the study of skeletal 
muscle changes associated with LGMD2F. In 1998, researchers showed long-term 
expression of delta-sarcoglycan and rescue of the sarcoglycan complex in the Bio14.6 
hamster using a recombinant SGCD adenovirus [88]. Histologically, treated hamsters 
lacked histologic evidence of muscular dystrophy and had restored plasma membrane 
integrity [88]. Although the Bio14.6 hamster is the most commonly used hamster 
model, other hamster models, including TO-2, J2N-k, and UMX7.1, have also been 
used in the study of LGMD2F [89–91]. Recently, several groups showed excellent 
rescue of LGMF2F in various hamster models using AAV-mediated gene therapy.

Two transgenic mouse models (one on a C57BL6 background and the other on a 
129SvJ/129SvEms- +Ter/J background), both of which develop skeletal and cardiac 
abnormalities, have also been utilized to better understand the pathophysiology of 
LGMD2F. These Sgcd−/− mice on a 129SvJ/129SvEms- +Ter/J background develop 
a more severe phenotype which includes premature death (50% survival at 
28 weeks), myocyte degeneration, regeneration, and fibrosis and cardiac changes 
that are evident by 12 weeks of age [84, 92]. In addition to the AAV vector therapies 
which were previously mentioned, myosphere-derived progenitor cells (MDPCs) 
have been shown to enhance neoangiogensis and restore δ-sarcoglycan expression 
in the vasculature of Sgcd−/− mice [93]. Thus far, as with AAV gene transfer, these 
therapeutic strategies are promising, but require further development to be accept-
able to the human immune system.

Although extremely rare, sarcoglycan deficiencies are occasionally reported in 
dogs, including a Boston terrier, cocker spaniel, Chihuahua, and most recently, a 
Doberman pinscher. In all cases, clinical signs have included failure to thrive, loss 
of body condition, and exercise intolerance. Affected dogs also had markedly ele-
vated serum creatine kinase, electromyographic abnormalities, and histologically 
evident skeletal muscle damage (i.e., varying fiber types, degeneration, necrosis, 
regeneration, and mineralization) [94, 95]. Although the specific mutations have not 
been identified, dogs represent the only intermediate animal model to date and 
therefore present a novel opportunity to study potential LGMD2F therapeutic 
interventions.

3.3.7  TRIM32 Mutations

Limb-girdle muscular dystrophy type 2H (LGMD2H) is an autosomal recessive 
myopathy characterized by proximal muscle weakness and facial muscle wasting. It 
is caused by mutations in the gene encoding tripartite motif-containing protein-32 
(TRIM32), an E3 ubiquitin ligase that functions in the maintenance and degradation 
of myofibrils during remodeling. Four known TRIM32 mutations are linked to 
LGMD2H. A fifth TRIM32 mutation is associated with a disparate, multisystemic 
oligogenic disorder known as Bardet-Biedl syndrome type 11. To date, LGMD2H 
has been reported in Hutterite and non-Hutterite European populations. Affected 
patients exhibit slowly progressive proximal muscle weakness, muscular wasting, 
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and respiratory weakness that typically manifests in middle age. They also have 
abnormal electromyograms and histologic evidence of skeletal muscle damage 
(including rounded muscle fibers, centralized nuclei, and vacuolar change). Some of 
the patients also have a neurogenic component to the disease, characterized by par-
esthesia, paresis, and hypoactive tendon reflexes [96, 97].

TRIM32 knockout (T32KO) mice have been developed in order to better under-
stand the pathophysiology of LGMD2H. Clinically, the mice develop skeletal mus-
cle weakness. Histologically, skeletal myofibers have foci of fiber splitting, ring 
fibers, angulated fibers, variation in fiber size, and internal nuclei. Interestingly, 
neural tissue from T32KO mice has fewer neurofilaments and smaller myelinated 
motor axons. Because T32KO mice develop a disease with both myogenic and neu-
rogenic components (similar to the human disease spectrum), they are a promising 
tool for future LGMD2H research and therapeutic developments.

3.3.8  Fukutin-Related Protein Mutations

Fukutin-related protein (FKRP) is present in various tissue types but is particularly 
abundant in skeletal muscles, the heart, and the brain. FKRP is found in the Golgi 
apparatus and functions to glycosylate α-dystroglycan (part of the DAPC). FKRP 
mutations are associated with Walker-Warburg syndrome (associated with skeletal 
muscle, neural, and ocular abnormalities), congenital muscular dystrophy type 1C 
(associated with skeletal muscle weakness, brain abnormalities, and intellectual dis-
ability), and LGMD2I. LGMD2I is characterized by proximal limb-girdle weak-
ness, winging of the scapulae, abdominal muscle weakness, waddling gait, calf 
hypertrophy, cardiomyopathy, and respiratory difficulties [98, 99].

To better understand the pathogenesis of LGMD2I, multiple mouse models have 
been developed. The FKRP-NeoTyr307Asn mouse has a missense mutation and a neo-
mycin cassette. Homozygous mice with this mutation die perinatally and have 
decreased levels of FKRP transcripts. They also have a reduction in the laminin- 
binding epitope of α-dystroglycan in skeletal, ocular, and neural tissues. Histologically, 
skeletal muscles have foci of edema and α-dystroglycan hypoglycosylation. A simi-
lar model has the FKRPTyr307Asn mutation but lacks the neomycin cassette; as a result, 
it lacks phenotypic evidence of disease [100]. Since these first knock-in models were 
produced, additional mouse models for LGMD2I have been developed to better 
understand disease pathogenesis and circumvent the issue of early lethality. For 
example, RNA interference and AAV technology have been utilized to knock down 
FKRP expression via postnatal gene delivery. At 10  months postinjection, FKRP 
expression was reduced by roughly 50% using a single shRNA and by 75% using a 
dual shRNA cassette [101]. More recently, researchers have developed homozygous 
and compound heterozygous murine models with human mutations in the murine 
FKRP gene. The P448Lneo+ mutant mouse develops a severe dystrophic phenotype, 
while the E310delneo+ mutant mouse develops embryonic lethality. Interestingly, 
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P448Lneo+/E310delneo+ compound heterozygotes develop neural defects and 
severe muscular dystrophy [102]. Although phenotypically different, each of these 
mouse models offers insight into ocular and brain development, the manifestation of 
muscular dystrophy, and future drug discovery.

3.4  Summary and Future Direction

Although this chapter focused on animal models and their usage in the study of 
human dystrophinopathies and limb-girdle muscular dystrophies, there are certainly 
other human muscular diseases for which animal models are being utilized. Muscle 
disease research is likely to continue to grow for the foreseeable future. Technologies 
have advanced to the point that we can now generate a murine model for almost any 
known human mutation. Although more traditional knock-in and knockout models 
will continue to be of benefit, newer technologies such as RNAi, CRISPR/Cas9- 
mediated gene editing, and embryonic stem cell microinjection techniques will lead 
the way in murine model development. It will also continue to be advantageous to 
investigate intermediate animal models. Even though identifying spontaneous 
mutations and establishing a colony can be time-consuming and costly, these larger 
models (such as dogs) often show more similarities with the investigated human 
disease than do their murine counterparts. Additionally, the intermediate models 
typically have appropriate immune function, body mass that is closer to that of 
humans, and a history of outbreeding, which makes them a more realistic model for 
preclinical studies.

In recent years, pharmaceutical companies and contract research organizations 
have come under scrutiny because of promising preclinical results in animal models 
and subsequent clinical trial failure in people. Animal models for therapeutic devel-
opment have been increasingly criticized for the perceived inability to predict drug 
efficacy, safety, and toxicity in human patients. This criticism is generally unfounded. 
Animal models are the basis for many medical discoveries and the advancement in 
the understanding of disease. One must remember that without appropriate interpre-
tation, the predictive value of any given model system is useless. Moving forward, 
these potential pitfalls of animal model research can be ameliorated by the appro-
priate design and selection of animal models, a better understanding of the model 
that is being utilized, and a greater knowledge of the intervention that is being 
investigated.
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Chapter 4
Muscle Stem Cell Biology and Implications 
in Gene Therapy

Terence Partridge

Abstract As the most abundant tissue in the body, skeletal muscle is a challenging 
target for the would-be gene therapist, particularly in the context of a severe disease 
such as Duchenne muscular dystrophy (DMD), where the bulk of tissue is simulta-
neously being destroyed and regenerated. Such instability poses the problem of 
maintaining any potential therapeutic expression construct or genetically corrected 
nuclear information but offers the compensation of the prospect of using the repair 
mechanism itself as a vector for genetic material. The best-attested myogenic stem 
cell is the skeletal muscle satellite cell, a Pax7+ve cell, sandwiched between the mus-
cle fibre plasmalemma and the overlying basement membrane. However other cell 
types capable of myogenesis have been identified, lying outside the muscle base-
ment membrane and, in the dormant state, not expressing Pax7; their place in mus-
cle development and maintenance has yet to be definitively established. Two major 
unresolved problems for the strategy of direct intramuscular transplantation of mus-
cle precursor cells are the massive necrotic loss of such cells when grafted into 
muscle and their poor migration within the recipient muscles. The main alternative 
approach involves grafting cells derived from pericytes or CD133-expressing cells 
isolated from muscle, which are shown to be distributable via the blood to wide-
spread muscles where they extravasate, adopt a myogenic phenotype and repair 
diseased and damaged muscle fibres. This approach is subject to the problems that 
the cells are incompletely characterized, and their property of being distributable 
via the vasculature has not been widely reproduced.
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4.1  What Is a ‘Stem Cell’?

Perhaps because the stem cell concept has entered biological science via two 
separate routes, it has acquired at least two different personae [1]. The paradigm 
arose originally from observations of the hierarchy of increasing cellular 
specialization, or restriction of potential function, that occurs during the generation 
of each specific tissue in the course of development from the fertilized ovum to the 
adult individual. Subsequently, it was discovered that grafts of cells from the bone 
marrow [2, 3] or epithelium [4, 5] could fully reconstitute these tissues, implying 
that some cells conserve remnants of the terminal stages of this developmental 
hierarchy. This notion of adult stem cells has become further broadened to cover 
most situations where there is evidence of cell proliferation within a distinguishable 
precursor cell population, as a component of tissue maintenance during adult life. In 
some cases this reaches the point where the term loses much of its original meaning. 
Indeed the concept behind the term ‘stem cell’ as a discrete cellular property begins 
to fail under detailed scrutiny, and we are left with an operational definition, a cell 
that is able to reconstitute a tissue or an element of a tissue within the microenvironment 
of that tissue [6, 7]. One uniting feature of these adult stem cell systems is the notion 
of perpetuation of ‘stemness’ within a subsection of the population by virtue of 
asymmetric cell division that endows the daughter cells with two different fate pre-
dilections. One perpetuates the stem cell properties. The second is, together with its 
progeny, committed to maintaining the function of the specific tissue. This overall 
binary outcome property is increasingly being recognized as an emergent phenom-
enon of a complex of interactions within the tissue as a whole, involving the partici-
pation of other cells and interstitial connective tissue together with cytokines of 
local and remote origins. This broad functional entity is commonly encapsulated 
within the term ‘stem-cell niche’. It should be noted that the commercialization of 
the ‘stem cell’ has further loosened, some would say corrupted, this definition, and 
in many cases, what is sold on the international market as a ‘stem cell’ is not specifi-
cally associated with any identified differentiated tissue.

4.2  What Is a ‘Muscle Stem Cell’?

From the early 1960s until recent years, the skeletal muscle stem cell was identified, 
with some confidence as the satellite cell, first identified by Mauro [8] on extrafusal 
muscle fibres and Katz [9] on intrafusal fibres, a confidence founded, in part, on lack 
of firm contradictory evidence. This, in turn, is attributable largely to the technical 
difficulty of experimentally linking the electron-microscopic characterization of the 
satellite cell, as a small quiescent cell sandwiched between the plasmalemma of the 
muscle fibre and its basement membrane, to myogenic functional qualities that 
involve activation, proliferation and migration [10]. Confirmatory evidence of a 
central myogenic role of the satellite cell began to arrive with development of 
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antigenic markers and, more recently, of reporters of genes that characterize satel-
lite cell determination and function. The most influential of these is Pax7 [11], 
which is as close as we get to a ‘gold standard’ for identification of this cell type. 
Intriguingly, in the mouse, absence of PAX7 has little or no impact on prenatal 
myogenesis; it is required for postnatal myogenic function [12, 13]. However, dis-
coveries of new myogenic stem cell markers, far from solidifying the status of the 
satellite cell, have led to a picture of increasing complexity, with the regular unveil-
ings of new myogenic stem cell candidates. These cells are generally distinguished 
from satellite cells by lack of Pax7 expression in their quiescent state and their posi-
tion outside the muscle fibre basement membrane (Fig. 4.1). But where their course 
to myogenic differentiation has been fully investigated, they are seen to pass through 
a satellite cell-like phase where they do express Pax7 [14–18].

Use of Pax7 as a driver of CreERT constructs designed to ablate Pax7-expressing 
cells conditionally upon treatment with tamoxifen has shown that such cells are 
essential for regeneration of limb muscles [19–21]. While these experiments fall 
short of showing that Pax7+ve cells are the only participants in regeneration, the fact 

Fig. 4.1 Skeletal muscle shows very swift and competent regeneration when damaged by either 
externally administered injury or as a result of endogenous defects in genes encoding functionally 
important proteins such as dystrophin in Duchenne muscular dystrophy. The best characterized 
source of reparative cells is the satellite cell, defined by its position between the muscle fibre plas-
malemmal surface and the overlying basement membrane and by its expression of the Pax7 gene 
in the quiescent state. However, other sources of myogenic precursor have also been identified that 
are located outside the muscle fibre basement membrane and that do not express Pax7 except when 
activated into the myogenic pathway. Of these, the pericyte is best characterized by its location 
around the microvessels. This shows very similar functional properties to the CD133+ve cells, in 
that both are reported to be deliverable to muscle by intravascular injection. PWI+ve cells lying in 
the interstitium have also been demonstrated to exhibit myogenic capacity as have the more 
recently described Twist2+ve cells which are shown to contribute preferentially to the regeneration 
of the fast type IIb/X fibre type. The normal functions of these various Pax7−ve classes of cells have 
yet to be fully elucidated
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that ablation of Pax7+ve cells extinguishes any significant regeneration brings into 
question the normal roles of the various Pax7-negative cells that have been shown 
to display myogenic function. It suggests that, at the least, they require the company 
of Pax7+ve cells to participate in effective myogenesis in vivo.

Even within the conventional myogenic satellite cell category, attempts at 
comprehensive molecular characterization run into the problem that, for much of 
the head musculature, the myogenic participants pass through different 
developmental pathways from that of the main limb and trunk muscles [20]. A 
recent report that the postnatal satellite cells of the posterior region of the body of 
the mouse are formed by a distinct migration of myogenic precursors, temporally 
separate from those that formed the very same fibres on which these satellite cells 
come to reside [22], adds further to the conundrum of constructing a coherent and 
unifying picture of the myogenic stem cell.

This raises a more general question of myogenic stem cell taxonomy; can we 
define a myogenic stem cell as a property intrinsic to the cell itself, as opposed to 
being an emergent property of a responsive cell within a facilitative environment (or 
niche)? The second view is supported by the contrast between results of heterotopic 
grafting of suspensions of myogenic cells between developmentally distinct mus-
cles and those obtained when pieces of muscle are heterotopically grafted. 
Extraocular muscle-derived satellite cells sustain robust muscle regeneration when 
grafted into damaged limb muscles [23] but lose their characteristic extraocular pat-
tern of gene expression [20], whereas regenerates from strips of jaw muscle grafted 
into the anterior tibial site retain expression of the myosins that typify this muscle 
in its original site [24]. This difference would argue for a strong influence of the 
local tissue environment on the differentiation pathway followed by the satellite 
cells, a factor that must be taken into account in any attempt to make use of these 
cells as vectors or to persuade them to behave in a specified way.

A uniting theme might be that the body is permeated by versatile cells whose 
options include the ability to differentiate into muscle under the influence of appro-
priate signals. Within such a scheme, the satellite cells would be viewed as those 
that have followed one of a particular range of definitive pathways that put them into 
the condition that has come to be regarded as the classical satellite cell, expressing 
Pax7, and positioned beneath the muscle fibre basement membrane.

4.3  Practical Utility of Muscle Stem Cells

While developmental biologists have been preoccupied with the lineage relationships 
of the various myogenic cell categories, the gene therapy community has taken a 
more utilitarian point of view that is more concerned with their practical value; i.e. 
the ease with any given myogenic stem cell can be obtained, amplified in number, 
efficiently delivered into the cellular ecosystem of skeletal muscle and, once at such 
a site, the frequency and efficiency with which they undertake myogenesis. Of 
these, the question of delivery is a strong priority for all stem cell therapies but 
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especially so in the case of skeletal muscle, where the ideal would consist of 
dissemination of myogenic stem cells throughout the large mass of this tissue spread 
throughout the body. Thus far, direct intramuscular injection has yet to achieve the 
modest aim of dispersion over more than a few millimetres from the injection site. 
In response, there has been abiding interest in the idea of delivery to muscle via the 
vasculature, with the hope of accessing the entire musculature via this all-pervasive 
highway. It should be noted, however, that it would require the myogenic cells to 
negotiate the barriers of the microvascular endothelium and basement membranes 
as well as the muscle fibre basement membrane to attain contact with its target 
tissue.

Muscle stem cells, in the form of tissue cultured myogenic cells, were first 
explored by would-be therapists for their dual function as vectors to carry normal 
dystrophin genes into genetically dystrophic muscle fibres and, by direct participa-
tion, to boost the repair of those muscle fibres [25–44]. This approach, inspired 
largely by analogy with the haematopoietic model, originally addressed the idea of 
using myogenic precursors from normal donors but subsequently acquired the addi-
tional notion of using autologous myogenic cells in which the genetic defect is in 
some way repaired, modified or supplemented by a functional copy of the gene of 
interest [45, 46]. This second option was motivated primarily as a means of mini-
mizing the problem of immune rejection of allogeneic donor cells. But, increased 
understanding on the sophistication of muscle stem cell biology and parallel 
advances in the development of techniques for tightly targeted genetic manipulation 
has shifted emphasis progressively towards the use of stem cells as vectors for car-
rying therapeutic genetic modifications that can be made efficiently ex vivo into 
regenerating muscles. Such protocols of ex vivo genetic correction, in combination 
with the transplantation of the corrected cells, are commonly viewed as intermedi-
ates on the road to direct genetic modification, in situ, of muscle cells or their stem 
cell progenitors in vivo, pending resolution of uncertainties about safety and effi-
ciency of direct in vivo application of the techniques for genetic correction. At pres-
ent, neither the direct in vivo approach nor the use of stem cell intermediaries has 
achieved standards of efficiency or well-validated safety that would commend them 
above adeno-associated virus (AAV)-mediated transfer of minimized dystrophin 
genes into fully differentiated muscle fibres.

4.4  Stem Cells as Vectors of Genetic Modification

Our therapeutic stem-cell aspirations are modelled on the archetypes of bone 
marrow/haematopoietic and the epidermal keratinocyte systems. Both possess 
advantages over most other tissues. They exhibit high cellular turnover sustained by 
what might be considered to be professional stem cells, so as to maintain a dynamic 
homeostatic status. This conspicuous maintenance activity underlies their discovery 
as the first adult stem cell systems and early exploitation for therapeutic replace-
ment of the tissues in question. This pinpoints the major impediment to application 
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of stem cell transplantation therapies to other candidate targets, none of which have 
anything approaching the extent of homeostatic cellular turnover of the epithelial 
and haematopoietic systems.

For skeletal muscle, the fact that it regenerates rapidly and nearly faultlessly 
after traumatic injury offers some hope of beneficial stem cell intervention, but the 
question of effective and efficient delivery of myogenic cells into mature skeletal 
muscle remains a major bottleneck. An unexpected obstacle was, and is still, the 
rapid massive death of the transplanted cells [47–51], for reasons that have yet to 
be determined and for which no effective remedy has been discovered. Certainly, 
this loss increases disproportionately with the number of cells injected per site 
[52], but where the data permits calculation, even with the use of multiple site 
injections, the yield of muscle per injected stem cell does not rise far above parity 
[53]; i.e. the amounts of muscle produced are less than what would have arisen 
from direct conversion of each putative muscle stem cell into a myonucleus [54]. 
This compares poorly with the massive expansions seen with the classical stem 
cell systems underlying haematopoiesis from bone marrow grafts or skin replace-
ment with keratinocyte precursors, again raising the question of general applicabil-
ity, between different tissues, of the term stem cell. A significant expansion of 
grafted myogenic stem cells was seen only when they were grafted while still 
attached to muscle fibres [55, 56] or with a minimum of experimental manipula-
tion [37, 57].

A second obstacle to the practical use of muscle stem cells is that of delivery to 
the large mass of skeletal muscle that we would wish to modify. For intramuscular 
injections, migration of myogenic cells is limited to a millimetre or so from the 
needle track [58, 59] and has only been extended to a maximum of 7 mm by exten-
sive mechanical damage to the muscle neighbouring the graft site [60]. It is true that 
the syncytial nature of skeletal muscle permits diffusion of the gene product within 
the muscle fibres. Indeed this is held to account for the near-asymptomatic condi-
tion of many DMD carriers [61], but movement of dystrophin along the long axis of 
the muscle fibre, as detected by immunostaining, is limited in extent to some tens of 
microns from the nearest competent myonucleus [54, 62, 63]. Thus efficient wide-
spread expression of this protein would be heavily dependent on efficient dispersion 
of the graft-derived myonuclei within the recipient muscle.

In response to the limited dispersion achievable from local intramuscular of 
myogenic cells, a number of attempts have been made to deliver myogenic stem 
cells via the blood circulatory system. Claims of impressive success are inter-
mixed with less encouraging reports of this approach, with puzzling variability 
between the model systems employed and between investigators. The two stron-
gest contenders for efficient vascular delivery of myogenic cells into muscle are 
cells associated with the microvascular or haematopoietic systems. One, origi-
nally termed the mesoangioblast, is now identified as a derivative of the pericytes 
[15, 64–66] that surround the arterial end of the microvasculature. This was first 
demonstrated to participate effectively in regeneration and reduce pathology in the 
α-sarcoglycan- null, dystrophic mouse [67] and subsequently in the GRMD dys-
trophic dog model of DMD [68] but was reported to be unsuccessful in the mdx 
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mouse [69]. A recent clinical trial of such pericyte-derived cells in Duchenne boys 
has reported trace levels of engraftment and, in one case, of dystrophin production 
[70]. Successful systemic delivery has also been reported for a cell identified by 
expression of CD133. Its relationship to the pericyte is uncertain, but it was shown 
to engraft successfully to widespread muscles in dystrophic dog [68, 71] and 
mouse [16] but again with contrary reports from some other laboratories [72]. 
Less encouraging results have also been reported of attempts at intravascular 
delivery of myogenic cells into non-human primates, with little or no integration 
into regenerating myofibres [73]. Further intricacy is added to the story by the 
report of a muscle-derived stem cell that, on intravenous delivery to dystrophic 
dogs, greatly ameliorates the clinical phenotype without producing commensurate 
amounts of dystrophin [74], a finding that has prompted an investigation of poten-
tially beneficial effects of these ‘MuStem’ cells other than by restoration of dys-
trophin [75, 76].

Quite apart from the exploitation of endogenous myogenic cells, considerable 
excitement has been generated by the development of myogenic cells from pluripo-
tent stem cells. Initially these were mainly of embryonic origin but with a progres-
sive switch to induced pluripotent stem cells (iPSC). The latter have the twin virtues 
of avoiding the ethical constraints placed upon cells of embryonic origin and of 
being readily derivable from a variety of differentiated tissue cells from individuals 
carrying genetic defects of interest. The conversion of pluripotent cells to a myo-
genic phenotype has been accomplished by a number of means, most commonly by 
introduction of Pax7 [77] expression plasmids but also by serial exposure to a series 
of cytokines designed to simulate the normal in vivo developmental process [78]. 
This latter approach has great appeal as a practical route to the transplantation of 
genetically corrected autologous stem cells but does still require a radical improve-
ment in the efficacy of myogenic cell transplantation.

A gene therapist’s ideal would be to directly target resident satellite cells, in situ, 
with the therapeutic gene of interest and make use of its regenerative function to 
maintain and introduce the genetic modification into the muscle during subsequent 
repair. Such a strategy would require efficient transduction of the satellite cells 
which, at around 2% of fibre-associated nuclei in the mouse [79], constitute a rare 
target. In addition, to perpetuate the modification during proliferation, sufficient 
stability of expression would be required. AAV vectors have been found to integrate 
only rarely into the genome [80], but where AAVs have been used to deliver com-
ponents of CRISPR/Cas9, there is some evidence of genetically transmitted modifi-
cation of satellite cells, presumably reflecting the ‘hit-and-run’ nature of the 
mechanism [81]. Lentiviral vectors do integrate but are conventionally thought, like 
AAV vectors [82], to be unable to package a complete dystrophin expression con-
struct. Recently, this view has been contradicted [83]. But, for direct use of such a 
vector for in vivo delivery, the questions of efficiency, accuracy of targeting and 
accompaniment by unforeseen side effects remain open [84].

Recent rapid developments of targeted CRISPR/Cas9-induced modification of 
the genome have triggered a new impetus to the use of stem cell vectors to effect 
rescue of the mutated DMD locus in the mdx mouse, by restoration of open reading 
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frame [81, 85–88]. This technology promises the dream scenario of engineering 
specific and tightly targeted rectification of genetic defects and faces us with the 
dilemma of whether to make such genetic alterations directly in vivo, with the atten-
dant risks of off target or other unforeseen side effects, or to make the corrections, 
ex vivo, in stem or precursor cells, where, for muscle, ineffectual grafting remains 
the main barrier to success.

4.5  Stem Cell Function as a Target of Genetic Therapies

Implicit in the notion of using myogenic cells as vectors is the fact that they are able 
to form new muscle or to contribute to repair of existing muscle. The balance of 
interests for diseases such as Duchenne muscular dystrophy, where muscle repair 
falls into cumulative deficit, veers towards consideration of the tissue repair func-
tion of the stem cell itself as an important therapeutic target. The resulting interest 
in the prospect of combatting the loss of regenerative potency has been pursued by 
a number of means, including the expression of genes that may directly enhance 
satellite cell activity or may modify the environment to one that favours myogenic 
activity. Both IGF-1 overexpression [89] and inactivation of myostatin [90] have 
been shown to boost muscle size and resilience in mdx mice, but it has not been 
ascertained whether this is attributable to increased satellite cell activity or to 
increases in myonuclear domain. Attempts have also been made to enhance myo-
genic stem cell function by favourably modifying the local environment [91, 92] or 
by limiting the deposition of scar tissue [93–99]. The inflammatory pathways 
involving TGFβ or TNFα have also become favoured targets but with mixed results 
[100], while others have turned their attention to the systemic signalling systems 
that impinge on fibrogenic [101, 102] versus myogenic activities [85]. This is a 
research area where the mdx mouse is a far from ideal model, because it does not 
mimic the atrophic processes that characterize DMD [79, 103]. On the contrary, the 
mdx mouse shows no sign of muscle atrophy throughout the majority of its life; 
indeed its muscles are hypertrophic containing larger than normal numbers of mus-
cle fibre nuclei and of satellite cells than the normal mouse [79]. Against such a 
hypertrophic background, it is difficult to identify beneficial levels of enhancement 
of regeneration induced by a test therapy or to determine the mechanisms whereby 
any hypertrophic effect is achieved. Balanced against this disadvantage is the time 
and cost of performing equivalent experiments in animals such as the GRMD dog, 
where the pattern of muscle loss more closely resembles that in DMD [104]. Recent 
reports of a marked atrophy when the mdx mutation is bred onto the DBA/2J back-
ground may provide a more useful model for testing methods of boosting myogenic 
stem cell function, but its value for translational purposes will depend on the extent 
to which its regenerative failure [105, 106] is shown to mechanistically parallel that 
seen in DMD.
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4.6  Hopes, Aspirations and Hurdles

Our current position in gene therapy for genetic diseases of muscle lies at a point of 
balance between two alternative paths. On one side lies  the application of vector 
biology and gene engineering to direct delivery of therapeutic genetic constructs 
directly into muscle in vivo. The alternative course of action is to profit from the 
higher levels of safety and efficiency of in vitro modification of the stem cells that 
would then be used to carry the corrections into the muscle fibres. Current literature 
does not provide us with sufficiently precise and reliable information to make this 
choice definitively. The dilemma is evident  in its most acute form in Duchenne 
muscular dystrophy, where AAV vectors are currently seen as the most promising 
means of direct in vivo delivery into muscle. This virtue is counterbalanced by two 
big problems. First, AAV vectors are unable to carry a construct large enough to 
express the full-length dystrophin protein, necessitating the use of truncated ver-
sions of the gene. Second, rapid appearance of AAV-neutralizing antibodies gives 
no assurance of repeat delivery of AAVs. These issues, in combination, present a 
major hurdle. If the effect of the genetic intervention with a suboptimal truncated 
mini-dystrophin is not adequate to preserve muscle fibre integrity, then the resulting 
chronic loss of muscle fibres will lead to loss of the therapeutic construct that cannot 
be replenished, assuredly, by further administrations of the same AAV vector. This 
effect has been observed in mdx mouse, where an exon-skipping construct that elic-
its production of a truncated, partially functional dystrophin protein, that gave sub-
optimal protection of myofibres, was gradually lost during the following months 
[107]. One obvious response, development of a fully functional therapeutic con-
struct, is an area where much progress has been made in the design of mini- or 
micro-dystrophin expression constructs [108–110] that perform well in dystrophic 
mice and dogs. But their use in man still carries a substantial element of the 
unknown, whose resolution would entail a thorough understanding of the relative 
functional properties of the various truncated dystrophin isoforms. Indeed, resolu-
tion of the immune neutralization of AAV by blockade or evasion of the immune 
response [111–113] would, at a stroke, give us an effective route to gene therapy for 
many genetic conditions of both muscle and other tissues.
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Chapter 5
Pluripotent Stem Cells for Gene Therapy 
of Hereditary Muscle Disorders

Thierry VandenDriessche, Yoke Chin Chai, Dimitri Boon, 
and Marinee K. Chuah

Abstract Stem cells and their myogenic derivatives offer unprecedented opportu-
nities to treat degenerative muscular disorders by autologous or allogeneic cell- 
based therapy. This could be attributed to their self-renewal properties, their 
myogenic differentiation potential and their capacity to enhance muscle regenera-
tion. In particular, different types of adult stem cells that participate in muscle 
regeneration have been explored for cell-based therapies of degenerative muscle 
disorders. Nevertheless, these adult stem cells cannot be expanded indefinitely due 
to cell exhaustion. To overcome this limitation, bona fide pluripotent stem cells 
could be used instead, such as embryonic stem (ES) cells and induced pluripotent 
stem (iPS) cells. They could be induced to differentiate into myogenic cells that 
contribute to muscle regeneration upon transplantation. Most importantly, patient- 
derived adult stem cells, ES and iPS cells, have been engineered by gene therapy, 
primarily using integrating vectors (with γ-retroviral, lentiviral or transposons). 
This allowed sustained expression of the therapeutic gene in the stem cells and their 
differentiated progeny. More recently, gene editing strategies have been explored 
(using either ZFNs, TALENs or CRISPR/Cas9) enabling site-specific gene correc-
tion. Proof-of-concept studies demonstrate the potential of gene-engineered adult or 
pluripotent stem cells for muscle regeneration in preclinical disease models, includ-
ing Duchenne muscular dystrophy. Nevertheless, the overall efficacy of functional 
integration of gene-corrected myogenic cells into the degenerating muscle would 
need to be increased. In this review, we discuss some of the challenges that need to 
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be addressed in order to harness the full potential of gene-engineered patient- 
specific pluripotent stem cells for regenerative medicine.

Keywords Muscle stem cells · iPS · Gene therapy · Gene editing · Myogenic 
Muscular dystrophy · Duchenne

5.1  Introduction

The regenerative capacity of skeletal muscle is essential for tissue repair and can be 
attributed to the presence of resident adult stem/progenitor cells in the muscle tissue 
[1, 2]. Exhaustion and dysfunction of muscle stem/progenitor cells have been 
reported in several muscular dystrophies, which may contribute to the muscle 
degeneration [3–9]. Consequently, adult stem/progenitor cells are attractive to 
achieve muscle repair and regeneration in the context of degenerative muscle disor-
ders, including muscular dystrophy [10]. Unfortunately, these adult stem cells have 
a limited regeneration capacity after in vitro expansion, mostly caused by dediffer-
entiation. To overcome this limitation, embryonic stem (ES) cells [11, 12] and 
induced pluripotent stem (iPS) cells [13, 14] have been explored by virtue of their 
unlimited self-renewal ability. Moreover, they can be coaxed to differentiate into 
myogenic cells capable of promoting muscle regeneration. We hereby review the 
state-of-the-art technologies and discuss the challenges that need to be addressed to 
develop a gene and cell therapy strategy for muscular dystrophy based upon plu-
ripotent stem cells. We will focus specifically on the use of genetically modified 
myogenic cells derived from patient-specific iPS cells.

5.2  Myogenic Adult Stem/Progenitor Cells for Muscle 
Regeneration

Different types of myogenic adult stem/progenitor cells have been shown to engraft 
and differentiate into muscle fibres. Only the most salient features of some quintes-
sential myogenic adult stem/progenitor cells are highlighted here. A detailed 
description of their properties falls outside the scope of this review and has been 
described elsewhere [10, 15].

In healthy individuals, adult skeletal muscle is capable of regeneration upon 
exercise, injury or disease, mainly due to the presence of resident adult stem/pro-
genitor cells, particularly satellite cells (SCs) that act as the primary drivers of this 
regenerative capacity. In muscular dystrophy, the skeletal muscles typically undergo 
repeated waves of contraction-induced fibre damage followed by constant attempts 
in repairing fibre degradation by the resident SC pool [16]. Eventually, this high 
tissue turnover leads to exhaustion of these resident stem cell populations [8]. 
Consequently, patients progressively lose muscle regeneration capacity due to 
diminishing SCs. Consequently, restoring tissue regeneration by replenishing the 
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pool of functional muscle stem/progenitor cells represents a promising therapeutic 
modality for muscular dystrophy. The potential of SC-derived myoblasts for muscle 
regeneration in muscular dystrophy is supported by preclinical studies in dystrophic 
mdx mouse models [17, 18]. Consequently, several clinical trials had been initiated 
based on intramuscular transplantation of allogeneic SC-derived myogenic progeni-
tors or myoblasts. Though dystrophin expression was apparent, it was mainly con-
fined to the proximity of the injection site, accounting for the low therapeutic 
efficacy [19]. Several confounding variables may have contributed to this outcome, 
including limited cell engraftment, survival, migration and/or differentiation. This 
may have been compounded by possible immune rejection impeding long-term 
engraftment. Nevertheless, intramuscular injection of myoblasts may still have 
merit, particularly for the treatment of specific types of muscular dystrophy that 
manifest themselves predominantly in specific muscle groups. For instance, trans-
plantation of autologous myoblasts in the pharyngeal muscles yielded promising 
results in patients suffering from oculopharyngeal muscular dystrophy, showing 
improvement in both swallowing and quality of life [20, 21].

Alternative adult myogenic stem/progenitor cells have been explored to circum-
vent the intrinsic limitations of these SC-derived myoblasts [10]. In particular, pre-
clinical studies have shown that CD133+ stem/progenitor cells have the ability to 
contribute to SC formation and muscle regeneration, paving the way to clinical 
studies in Duchenne muscular dystrophy (DMD) patients [22–24]. Alternatively, 
PW1+-expressing interstitial cells contribute to the SC pool and are capable of gen-
erating new muscle fibre [25]. Improved therapeutic outcomes have also been 
reported by using so-called muscle-derived stem cells (MDSC) in dystrophic dogs 
via systemic delivery [26]. Additionally, skeletal muscle aldehyde dehydrogenase- 
positive (ALDH+) cells have also been identified in endomysial space of human 
skeletal muscle with high myogenic capacities [27], capable of forming multinucle-
ated myotubes. Interestingly, the ALDH+CD34− cells were highly proliferative 
in  vivo and contributed to muscle formation in immunodeficient mice. Skeletal 
muscle pericytes are equivalent to mesoangioblasts and represent another myogenic 
adult stem cell population that is normally associated with capillaries [28–30]. 
These mesoangioblast-like pericytes can promote muscle regeneration in dystrophic 
mice and dogs upon intraarterial transplantation [31–36]. These encouraging find-
ings have led to a first-in-human phase I/II trial based upon intraarterial delivery of 
allogeneic mesoangioblasts in five subjects with DMD (EudraCT no. 2011-000176- 
33). Escalating doses of donor-derived HLA-matched mesoangioblasts (in the order 
of 109 cells) were transplanted intraarterially in DMD patients under immunosup-
pressive therapy. Donor DNA was detected in muscle biopsies of most of patients, 
albeit at low levels. Donor-derived dystrophin was detected in only one of the sub-
jects. Overall, no functional improvements were observed, indicating that a much 
higher dose of cells and/or younger subjects with less advanced disease may be 
required to reach clinical efficacy [37]. The study was considered relatively safe 
although one subject developed a thalamic stroke with no clinical consequences and 
whose correlation with mesoangioblast infusion remained unclear.
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5.3  ES and iPS Cells for Muscle Regeneration

ES cells are pluripotent stem cells that can be isolated from the inner cell mass of 
blastocysts during the early stages of embryonic development [11, 12, 38]. In con-
trast, iPS cells are pluripotent stem cells that are derived from normal somatic cells 
by expressing reprogramming factors (i.e. Oct4, Klf4, Sox2 and c-Myc) [39]. It is 
particularly encouraging that the ES- or iPS-derived myogenic cells show similar 
myogenic potential in vitro and regenerative capability in vivo [40]. This further 
supports the use of iPS cell-derived myogenic cells as an attractive alternative to ES 
cell derivatives for future clinical applications. iPS cells were originally generated 
through retroviral vector-mediated integration of the reprogramming cassettes 
encoding oncogenic factors. Hence, this original approach poses an intrinsic tumor-
igenic risk [41]. Recently, nonintegrating vectors, protein transduction or ‘transgene- 
free’ reprogramming method has been developed potentially as safer reprogramming 
alternatives [42, 43].

The main advantage of patient-specific iPS cells and their myogenic progeny is 
that immune rejection could in principle be avoided enabling stable autologous 
transplantation. In contrast, since ES cells are not patient-specific, autologous trans-
plantation of ES-derived myogenic cells is not possible raising potential immune 
concerns. This is compounded by the increase in immunogenicity during differen-
tiation of ES cells [44, 45] and possibly expression of major histocompatibility 
complex (MHC) class I molecules. However, even syngeneic mouse iPS cells can 
be rejected following transplantation in  vivo into mice. This indicates that even 
autologous iPS cells and their myogenic derivatives can potentially be recognised 
by the immune system [46]. It is encouraging however that human iPS cell-derived 
mesoangioblast-like cells exhibit a reduced risk of evoking inadvertent immune 
responses, potentially mediated through the suppression of T-cell proliferation via 
the IDO- and PGE-2-dependent pathways [47]. Another advantage of iPS cells is 
that they circumvent the ethical concerns associated with the use of ES cells since 
they can be derived from virtually any somatic cells and consequently obviate the 
need for human embryos altogether. Moreover, the generation of iPS cells requires 
only a limited number of patient-derived cells, which could be obtained from mini-
mally invasive skin biopsies, urine or blood [48, 49]. This avoids the need for rela-
tively invasive procedures required to harvest sufficient cells, as in the case of adult 
stem/progenitor cells.

ES and iPS cells overcome the limitations of conventional adult muscle stem/
progenitor cells by virtue of their indefinite in vitro expansion capability without 
compromising their ‘stemness’. This attribute of ES and iPS cells makes them ide-
ally suited for stem cell-based therapies of skeletal muscle disorders, since they can 
be expanded to large numbers, prior to inducing their differentiation into transplant-
able myogenic cells. Hence, safe and efficient myogenic differentiation protocols 
need to be established in order to produce sufficient myogenic progenitors of high 
regenerative capacity. Moreover, to ensure that ES/iPS cell-derived myogenic pro-
genitor/stem cells function normally in vivo after transplantation, they would need 
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to optimally integrate with the skeletal myofibres and, ideally, within the satellite 
cell niche [50–52]. This niche will be important for controlling the self-renewal and 
differentiation of the myogenic ES/iPS cell progeny. Ideally, these myogenic pro-
genitors should enable body-wide restoration of muscle function after systemic 
delivery. This would obviate the limitations associated with intramuscular cell 
delivery which is not a viable option to treat systemic muscle disorders due to the 
high number of required injections.

Myogenic differentiation of ES and iPS cells essentially attempts to replicate the 
normal myogenic differentiation in a developing embryo. Consequently, many of 
the factors known to play a role in myogenic differentiation during development 
have been explored to coax myogenic differentiation of ES and iPS cells. The vari-
ous myogenic differentiation approaches of ES and iPS cells have been discussed in 
detail elsewhere [2] and will be summarised here. Myogenic differentiation of ES 
and iPS cells can be accomplished by specific coculture conditions, growth factor 
combinations, small molecules and even genetic engineering with genes encoding 
myogenic differentiation factors (including MyoD, Pax3 or Pax7). The desired dif-
ferentiated myogenic cells could subsequently be enriched based on the expression 
of specific cell surface markers. Some of the potentially most attractive differentia-
tion protocols that may facilitate ultimate clinical translation rely on serum-free, 
chemically defined conditions that do not require any genetic modification of the ES 
or iPS cells [53]. The efficacy of myogenic differentiation may also vary depending 
on the tissue of origin of the somatic cell from which the iPS was derived [54–57]. 
Nevertheless, robust skeletal myogenic differentiation protocols may potentially 
over-ride the effects of this ‘epigenetic memory’ on this differentiation bias [9].

Regardless of the differentiation method used, it is critically important to develop 
standardised protocols to obtain pure myogenic cell populations. Inadvertent trans-
plantation of any undifferentiated ES or iPS cells should be prevented as this poses 
a significant risk of teratomagenesis. The incorporation of genetic safety switches 
(e.g. based on HSV-TK or iCASP9) that are specifically designed to eliminate any 
residual undifferentiated pluripotent stem cell may therefore be required to further 
enhance the overall safety of ES- or iPS-based strategies for muscle repair [58, 59]. 
It is particularly encouraging that transplantation of these ES- and iPS-derived myo-
genic cells in preclinical models showed engraftment, myogenic differentiation and 
expression of therapeutic transgenes, like dystrophin. Though functional benefits 
were reported in some of the transplanted mice, the overall therapeutic effects were 
limited since myogenic cells were typically injected intramuscularly instead of sys-
temically. This is compounded by the clearance of the ES- or iPS-derived myogenic 
cells by the reticuloendothelial system. Moreover, robust body-wide phenotypic 
correction of muscular dystrophy in preclinical models has not yet been realised 
after transplantation of human ES- or iPS-based myogenic cells. However, xenoge-
neic models may not necessarily replicate all of the key features of human myo-
genic cell transplantation in a clinical setting. This is compounded by the fact that 
the interaction of the transplanted cells with the host micro-environment may result 
in species-specific differences in survival, migration and differentiation of iPS- 
derived myogenic cells. Once the overall robustness can be increased, it will be 
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possible to contemplate efficacy and safety studies in large animal disease models 
prior to human trials. Alternatively, synthetic scaffolds and decellularised devices 
from large animal models could ultimately be used to optimise the maturation, dif-
ferentiation and engraftment of ES/iPS-derived myogenic cells towards possible 
clinical applications. Biomimetic 3D in vitro models of human skeletal muscle are 
currently being generated in an attempt to mimic the in vivo environment [60–62].

5.4  Genetic Modification of Pluripotent Stem Cells

The field of gene therapy is gaining momentum due, in part, to the development of 
improved gene transfer and gene editing technologies and a better understanding of 
its in vivo consequences. Consequently, this will greatly benefit the development of 
autologous patient-specific iPS-based cell therapies. This ‘personalised medicine’ 
approach requires multiple steps (Fig. 5.1). Patient-specific somatic cells are first 
harvested to generate iPS cells. Subsequently, these patient-specific iPS cells are 
induced to differentiate into myogenic cells prior to transplantation into the same 
patient. To treat a genetic disease with iPS-derived myogenic cells, it is imperative 
to correct the underlying genetic defect prior to transplantation of the autologous 
genetically engineered myogenic cells into the patient. Ex vivo genetic correction of 
the genetic defects can be performed at several different stages: (1) before cellular 
reprogramming, (2) directly on the iPS cells themselves or (3) at the stage of the 
iPS-derived committed myogenic cells, just prior to transplantation. The genetic 
modification could be accomplished either by introducing a functional copy of the 
therapeutic gene de novo into the desired target cells (i.e. ‘gene addition’) or by in 
situ targeted correction of the defective gene itself (i.e. ‘genome editing’) in the iPS 
cells or their myogenic derivatives. Since a large number of myogenic cells are 
needed for transplantation, stable expression of the therapeutic gene typically 
requires an integrating vector platform. In particular, retroviral or lentiviral vectors 
or transposons have been used to stably express a therapeutic gene in iPS or their 
myogenic progeny. Alternatively, stably persisting nonintegrating episomes such as 
human artificial chromosomes (HACs) encoding the gene of interest have been 
used. The main advantage of ‘gene addition’ is that it can be used broadly in most 
patients irrespective of the underlying mutation in the defective gene.

For specific and targeted gene correction by genome editing, the use of engi-
neered designer nucleases is required that are specifically designed to induce a 
double- strand DNA break (DSB) at any desired locus. This can then result in ‘gene 
repair’ by non-homologous end joining by exploiting the cellular DNA repair 
machinery. Alternatively, the presence of a DSB at the desired target locus can dra-
matically enhance homology-directed gene repair up to 104 to 105-fold if a homolo-
gous donor DNA is provided. The most commonly used designer nucleases are zinc 
finger nucleases (ZFN), transcription activator-like effector nuclease (TALENs) or 
homing endonucleases. In the case of ZFNs, TALENs or homing endonucleases, the 
designer nucleases are specifically engineered de novo in function of the target 
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DNA that needs to be cleaved. More recently, clustered regularly interspaced short 
palindromic repeat (CRISPR/Cas9) platforms have been developed. In this case, a 
single Cas9 protein is required that is guided to its cognate DNA target by virtue of 
a specific complementary guide RNA. Typically, gene editing is specifically tailored 
towards correcting a specific mutation and thus restricted to specific patient subsets. 
Nevertheless, by carefully designing the targeting strategy, it may be possible to 
broaden the scope of the gene editing making it mutation-independent (e.g. by tar-
geted integration of an entire cDNA into the desired target locus).

5.4.1  Gene Addition

One of the first proof-of-concept studies based on gene addition in iPS cells was 
aimed at correcting limb-girdle muscular dystrophy 2D (LGMD2D), a neuromuscu-
lar disease due to a mutation in the α-sarcoglycan gene. To this end, patient-specific 
iPS cells were first generated from patients suffering from LGMD2D.  These 
LGMD2D-iPS cells were then induced to differentiate into mesoangioblast-like 
myogenic cells (designated as HIDEMs or human iPS-derived mesoangioblast-like 
cells). These LGMD2D-HIDEMs were then transduced with a lentiviral vector 
encoding the therapeutic human α-sarcoglycan gene under the control of a muscle- 
specific promoter. The LGMD2D-HIDEMs were also transduced with another len-
tiviral vector containing an inducible MyoD expression cassette to induce myogenic 
differentiation. The genetically corrected LGMD2D-HIDEMs were then trans-
planted into immunodeficient α-sarcoglycan-null mice (Sgca-null/scid/beige) by 
intramuscular or intraarterial injection. The genetically engineered myogenic cells 
were able to engraft and produced α-sarcoglycan-positive muscle fibres 1 month 
post transplantation [9]. The expression of the α-sarcoglycan protein prompted the 
reconstitution of the dystrophin-associated protein complex in the myofibres of the 
recipient mice. Similarly, transplantation of wild-type mouse iPS cell-derived pro-
genitors into Sgca-null/scid/beige mice resulted in relatively robust engraftment in 
the recipient muscle and reestablishment of functional pericytes, consistent with 
amelioration of the dystrophic phenotype.

In a separate study, patient-specific iPS cells were generated from patients suffer-
ing from DMD. These DMD-iPS cells were then transfected with a HAC containing 
the entire 2.4 Mb dystrophin genetic locus (DYS-HAC) that was stably maintained 
as a nonintegrated episome, even upon successive cell divisions [9, 63]. This type of 
genetic modification circumvents safety concerns associated with randomly inte-
grating vectors. Unfortunately, microcell fusion typically results in relatively low 
transfection efficiencies. Nevertheless, DMD-iPS clones could be obtained that 
contained the full-length dystrophin gene. These genetically engineered DMD-iPS 
cells were subsequently induced to differentiate into HIDEMs, as described above.

As an alternative to the DYS-HAC system, we recently explored the use of pig-
gyBac transposons that encoded the full-length dystrophin cDNA instead. We ini-
tially demonstrated that the full-length dystrophin cDNA could be stably expressed 
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in primary mesoangioblasts derived from dystrophic dogs following transposition 
with the piggyBac transposon system using a hyperactive PB transposase [64]. 
Subsequently, we demonstrated that HIDEMs derived from DMD patients could be 
engineered with this piggyBac transposon to stably express the full-length dystro-
phin protein. Xenogeneic transplantation into immunodeficient mdx/SCID mice 
resulted in detectable dystrophin expression in vivo (Loperfido et al., in revision). 
Since DMD can be caused by a spectrum of mutations that essentially encompass 
the entire dystrophin gene, delivery of the entire dystrophin cDNA ensures a 
mutation- independent approach. This underscores the potential of the piggyBac 
transposon system to deliver and stably express large therapeutic genes in iPS- 
derived myogenic cells. This non-viral vector approach is more efficient than HAC- 
microcell fusion and overcomes the limitations imposed by the intrinsic packaging 
constraints of retroviral or lentiviral vectors. However, the safety consequences of 
random genomic transposon integrations would still need to be addressed in this 
system.

Another transposon system, derived from Sleeping Beauty, has been used to 
effectively deliver micro-utrophin (μUTRN)  in mouse iPS cells derived from dys-
trophin/utrophin null mouse [65]. Utrophin is a protein closely resembling dystro-
phin, whose overexpression could effectively reverse the dystrophic phenotype in 
mdx mice [66]. The myogenic differentiation of the transposon-modified mouse iPS 
cells was induced with Pax3, and the differentiated myogenic population was 
enriched by sorting for PDGF-αR+/Flk1− expression. The genetically corrected 
myogenic cells were transplanted in dystrophin/utrophin null mice and contributed 
to muscle regeneration, consistent with an improvement in contractility. By adopt-
ing a similar piggyBac transposon-based gene transfer approach, Tanaka et  al. 
reported on the correction of human iPS cells derived from patients with Miyoshi 
myopathy (MM) with a full-length dysferlin (DYSF) transgene [67]. In this study, 
expression of the DYSF protein was detected on the corrected cells in vitro, which 
in turn reversed the MM phenotype.

5.4.2  Gene Editing

Genome editing using TALENs, ZFNs, homing endonucleases and CRISPR/Cas9 
represents a powerful approach for the correction of various disease mutations in 
iPS cells. Indeed, this approach has been shown to be effective in deriving geneti-
cally edited iPS cells for the treatment of several diseases such as ß-thalassemia 
[68], α1-antitrypsin deficiency [69], epidermolysis bullosa [70] and muscular dys-
trophies [71].

In the case of DMD, Gersbach and colleagues provided proof of concept demon-
strating correction by targeting exon 51 of the dystrophin gene using TALENs spe-
cifically designed to target this locus [72]. Consequently, dystrophin expression was 
restored in the DMD skeletal myoblasts and in the dermal fibroblasts that were 
coaxed to undergo myogenic differentiation upon induction of MyoD expression. It 
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is somewhat reassuring that this TALEN-mediated gene editing appeared to be 
highly specific for the targeted locus as no off-target effects were detected by exome 
sequencing of any of the in silico predicted target sites. Alternatively, designer 
ZFNs have been used to permanently remove the essential splicing sequences in 
exon 51 of the dystrophin gene, resulting in dystrophin transcripts without exon 51 
[73]. Interestingly, ZFN-edited DMD myoblasts containing this deleted exon 51 
gave rise to concomitant restoration of dystrophin protein expression. Upon trans-
plantation into immunodeficient mice, the ZFN-edited DMD myoblasts contributed 
to in vivo expression of the human dystrophin. These gene editing approaches per-
manently and irreversibly restore the dystrophin reading frame and protein produc-
tion. This is in contrast to conventional oligonucleotide-based exon skipping 
strategies that yield only transient therapeutic effects and require repeated oligonu-
cleotide administration.

In order to restore the dystrophin reading frame in DMD myoblasts, recently 
Ousterout et  al. developed a multiplex CRISPR/ Cas9-based gene editing system 
capable of targeting the exons 45–55 mutational hotspot [74]. Encouragingly, this 
multiplex designer nuclease system allowed for the correction of >60% of DMD 
patient mutations with a single genome-editing strategy; however the technique pro-
duced a shorter version of the human dystrophin. Unfortunately, all of these proof- 
of- concept studies relied on DMD myoblasts which are not ideal candidates for cell 
therapy in DMD patients due to their limited proliferation and self-renewal potential 
and their inefficient extravasation capacity as outlined above. However, a recent 
study by Li et al. suggests that gene editing can also be achieved using DMD patient- 
specific iPS-derived myogenic cells instead of myoblasts. The authors showed that 
TALEN- and CRISPR/Cas9-based genome editing were able to restore the expres-
sion of full-length human dystrophin [75].

Though the overall efficiency of gene editing is currently not as high as with 
more conventional gene addition strategies, incremental changes in technology may 
eventually bridge this gap. It will be important to conduct the necessary in vivo 
studies with gene-edited iPS-derived myogenic cells to establish safety and efficacy 
in the appropriate preclinical models. Finally, comprehensive genome-wide analy-
sis of off-target effects would be required to formally rule out any off-target effects.

5.5  Concluding Remarks and Future Perspectives

Preclinical proof-of-concept studies highlight the potential of myogenic adult 
stem/progenitor cells, ES and iPS cells, to treat degenerative muscle disorders by 
exploiting their myogenic and self-renewing potential. Recent clinical trials indi-
cate that large numbers of cells are needed to treat dystrophic patients, the 
amount of cells and their delivery depending primarily on the type of adult stem/
progenitor cells, the type of dystrophic disorder that is targeted [21] and possibly 
also the age of the patient and the extent of muscle function deterioration. In 
contrast to adult  stem/progenitor cells, ES and iPS cells can be expanded 
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indefinitely, potentially enabling body-wide regeneration of the deteriorating 
skeletal muscles.

The advances in gene therapy will likely benefit the field of regenerative medi-
cine to treat muscle disorders by enabling the use of gene-corrected autologous cells 
for muscle repair. For ex vivo correction of patient-/disease-specific iPS cells, dif-
ferent viral and non-viral vectors have been explored that enable stable genomic 
integration and sustained expression of the therapeutic transgene. Achieving expres-
sion of either truncated or full-length dystrophin proteins after gene therapy enables 
phenotypic correction, irrespective of the patient’s underlying mutation. 
Consequently, these types of ‘gene addition’ approaches will be amenable to treat a 
larger number of patients. Whereas random genomic integration raises possible 
concerns associated with insertional oncogenesis, this risk could be reduced by 
keeping the number of vector copies per cell to a minimum (typically <2 integra-
tions) and by optimising the vector design. Furthermore, it is particularly reassuring 
that these concerns could be overcome by developing efficient site-specific integra-
tion in safe-harbour loci or by gene editing of the defective allele. However, even 
with these emerging technologies, ‘off-target’ effects cannot be excluded and would 
still need to be addressed.

Despite these advances, clinical translation of iPS cells for autologous gene and 
cell therapy of genetic diseases remains challenging as there are several hurdles that 
would need to be overcome including (1) the need for efficient long-term engraft-
ment and robust functional reconstitution and contribution to host myofibres; (2) 
possible genome instability of the transplanted iPS cells and their derivatives; (3) 
tumorigenic risk due to residual undifferentiated iPS cells and/or re-expression of 
oncogenic reprogramming factors; and (4) loss of self-renewing and regenerative 
potential due to prolonged in vitro cell expansion. The epigenetic memory of the 
cells of origin may also have a lasting impact on cellular behaviour in vivo and 
would need to be considered. It is also important to efficiently correct not only the 
skeletal muscle dysfunction but also the other afflicted tissues and organs, such as 
the heart, the diaphragm and the intercostal muscles. This is compounded by the 
fact that DMD patients typically die from cardiorespiratory failure.

Further studies are needed to optimise large-scale manufacturing of iPS cells and 
their myogenic derivatives under GMP/GLP conditions. Based on safety consider-
ations, genome-integration-free protocols would be preferred either to generate iPS 
cells and/or to coax their myogenic differentiation. The development of chemically 
defined methods enabling efficient myogenic differentiation is therefore important 
while ensuring that the myogenic progenitors retain their ability to efficiently 
migrate and engraft into muscles upon systemic or loco-regional delivery.

In conclusion, the generation and genetic correction of pluripotent stem cells and 
their myogenic derivatives foster the development of new therapeutic approaches to 
treat degenerative muscle disorders, like Duchenne. While it is encouraging that the 
‘first-in-man’ iPS-based therapies have been initiated to treat age-related macular 
degeneration [76–78], the need for widespread distribution to replace missing skel-
etal muscle gene products to multiple muscles of the limbs and diaphragm, plus 
cardiomyocytes in Duchenne and other muscular dystrophies, provides greater 

5 Pluripotent Stem Cells for Gene Therapy of Hereditary Muscle Disorders



92

challenges than singularly targeting the macula of the retina. Nevertheless, the 
opportunity to obtain valuable insights into the efficacy and safety of iPS-based 
regenerative medicine approaches cannot be underestimated.

Acknowledgements Some of the research described herein was conducted in the laboratories of 
TV and MC. This research was supported by grants from the Research Foundation of Flanders 
(FWO), Association Française contre les Myopathies (AFM), Walter Pyleman Fund (Koning 
Boudewijn Stichting), Willy Gepts grant (Vrije Universiteit Brussel, VUB), VUB Strategic 
Research Program ‘Groeier’, VUB Industrieel Onderzoeksfonds (Groups of Expertise in Applied 
Research grant), EU FP7-PERSIST grant and the EU Horizon 2020-PHC-14-2015-MYOCURE 
grant (Grant Agreement Number: 667751). DB is supported by an AAP mandate (VUB).

Conflict of Interest The authors have no conflicts of interest to declare.

References

 1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495
 2. Loperfido M, Steele-Stallard HB, Tedesco FS, VandenDriessche T (2015) Pluripotent stem 

cells for gene therapy of degenerative muscle diseases. Curr Gene Ther 15(4):364–380
 3. Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscu-

lar dystrophy. Proc Natl Acad Sci U S A 80(15):4856–4860
 4. Cassano M, Dellavalle A, Tedesco FS, Quattrocelli M, Crippa S, Ronzoni F, Salvade A, 

Berardi E, Torrente Y, Cossu G, Sampaolesi M (2011) Alpha sarcoglycan is required for 
FGF-dependent myogenic progenitor cell proliferation in  vitro and in  vivo. Development 
138(20):4523–4533. https://doi.org/10.1242/dev.070706

 5. Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore SA, Flanagan JD, Skwarchuk 
MW, Robbins ME, Mendell JR, Williamson RA, Campbell KP (2002) Disruption of DAG1 in 
differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 
110(5):639–648

 6. Kudryashova E, Kramerova I, Spencer MJ (2012) Satellite cell senescence underlies myopathy 
in a mouse model of limb-girdle muscular dystrophy 2H.  J Clin Invest 122(5):1764–1776. 
https://doi.org/10.1172/JCI59581

 7. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham 
M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 
309(5743):2064–2067. https://doi.org/10.1126/science.1114758

 8. Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, Shkreli M, Delp S, Pomerantz 
JH, Artandi SE, Blau HM (2010) Short telomeres and stem cell exhaustion model Duchenne 
muscular dystrophy in mdx/mTR mice. Cell 143(7):1059–1071. https://doi.org/10.1016/j.
cell.2010.11.039

 9. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, Antonini S, Tagliafico E, 
Artusi V, Longa E, Tonlorenzi R, Ragazzi M, Calderazzi G, Hoshiya H, Cappellari O, Mora 
M, Schoser B, Schneiderat P, Oshimura M, Bottinelli R, Sampaolesi M, Torrente Y, Broccoli 
V, Cossu G (2012) Transplantation of genetically corrected human iPSC-derived progenitors 
in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra189. https://doi.
org/10.1126/scitranslmed.3003541

 10. Benedetti S, Hoshiya H, Tedesco FS (2013) Repair or replace? Exploiting novel gene and 
cell therapy strategies for muscular dystrophies. FEBS J  280(17):4263–4280. https://doi.
org/10.1111/febs.12178

 11. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse 
embryos. Nature 292(5819):154–156

T. VandenDriessche et al.

https://doi.org/10.1242/dev.070706
https://doi.org/10.1172/JCI59581
https://doi.org/10.1126/science.1114758
https://doi.org/10.1016/j.cell.2010.11.039
https://doi.org/10.1016/j.cell.2010.11.039
https://doi.org/10.1126/scitranslmed.3003541
https://doi.org/10.1126/scitranslmed.3003541
https://doi.org/10.1111/febs.12178
https://doi.org/10.1111/febs.12178


93

 12. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, 
Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 
282(5391):1145–1147

 13. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic 
and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.
cell.2006.07.024

 14. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) 
Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 
131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

 15. Costamagna D, Berardi E, Ceccarelli G, Sampaolesi M (2015) Adult stem cells and skeletal 
muscle regeneration. Curr Gene Ther 15(4):348–363

 16. Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet 381(9869):845–860. https://doi.
org/10.1016/S0140-6736(12)61897-2

 17. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal mus-
cle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19. https://doi.
org/10.1172/JCI40373

 18. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx 
myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 
337(6203):176–179. https://doi.org/10.1038/337176a0

 19. Skuk D, Tremblay JP (2014) Clarifying misconceptions about myoblast transplantation in 
myology. Mol Ther 22(5):897–898. https://doi.org/10.1038/mt.2014.57

 20. Perie S, Mamchaoui K, Mouly V, Blot S, Bouazza B, Thornell LE, St Guily JL, Butler- Browne 
G (2006) Premature proliferative arrest of cricopharyngeal myoblasts in oculo- pharyngeal 
muscular dystrophy: therapeutic perspectives of autologous myoblast transplantation. 
Neuromuscul Disord 16(11):770–781. https://doi.org/10.1016/j.nmd.2006.07.022

 21. Perie S, Trollet C, Mouly V, Vanneaux V, Mamchaoui K, Bouazza B, Marolleau JP, Laforet P, 
Chapon F, Eymard B, Butler-Browne G, Larghero J, St Guily JL (2014) Autologous myoblast 
transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 
22(1):219–225. https://doi.org/10.1038/mt.2013.155

 22. Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J  (2014) Human skeletal 
muscle- derived CD133+ cells form functional satellite cells after intramuscular transplan-
tation in Immunodeficient host mice. Mol Ther 22(5):1008–1017. https://doi.org/10.1038/
mt.2014.26

 23. Benchaouir R, Meregalli M, Farini A, D'Antona G, Belicchi M, Goyenvalle A, Battistelli M, 
Bresolin N, Bottinelli R, Garcia L, Torrente Y (2007) Restoration of human dystrophin follow-
ing transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. 
Cell Stem Cell 1(6):646–657. https://doi.org/10.1016/j.stem.2007.09.016

 24. Torrente Y, Belicchi M, Marchesi C, D'Antona G, Cogiamanian F, Pisati F, Gavina M, 
Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, 
Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, 
Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, 
Gaini SM, Stocchetti N, Priori A, D'Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla 
P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in 
Duchenne muscle patients. Cell Transplant 16(6):563–577

 25. Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon 
DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor 
during postnatal development. Nat Cell Biol 12(3):257–266. https://doi.org/10.1038/ncb2025

 26. Rouger K, Larcher T, Dubreil L, Deschamps JY, Le Guiner C, Jouvion G, Delorme B, 
Lieubeau B, Carlus M, Fornasari B, Theret M, Orlando P, Ledevin M, Zuber C, Leroux I, 
Deleau S, Guigand L, Testault I, Le Rumeur E, Fiszman M, Cherel Y (2011) Systemic deliv-
ery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in 
duchenne muscular dystrophy dogs. Am J Pathol 179(5):2501–2518. https://doi.org/10.1016/j.
ajpath.2011.07.022

5 Pluripotent Stem Cells for Gene Therapy of Hereditary Muscle Disorders

https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/S0140-6736(12)61897-2
https://doi.org/10.1016/S0140-6736(12)61897-2
https://doi.org/10.1172/JCI40373
https://doi.org/10.1172/JCI40373
https://doi.org/10.1038/337176a0
https://doi.org/10.1038/mt.2014.57
https://doi.org/10.1016/j.nmd.2006.07.022
https://doi.org/10.1038/mt.2013.155
https://doi.org/10.1038/mt.2014.26
https://doi.org/10.1038/mt.2014.26
https://doi.org/10.1016/j.stem.2007.09.016
https://doi.org/10.1038/ncb2025
https://doi.org/10.1016/j.ajpath.2011.07.022
https://doi.org/10.1016/j.ajpath.2011.07.022


94

 27. Vauchez K, Marolleau JP, Schmid M, Khattar P, Chapel A, Catelain C, Lecourt S, Larghero 
J, Fiszman M, Vilquin JT (2009) Aldehyde dehydrogenase activity identifies a population of 
human skeletal muscle cells with high myogenic capacities. Mol Ther 17(11):1948–1958. 
https://doi.org/10.1038/mt.2009.204

 28. Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ 
Res 113(3):341–347. https://doi.org/10.1161/CIRCRESAHA.113.300203

 29. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan 
R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle 
differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. https://doi.
org/10.1038/ncomms1508

 30. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, 
Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G 
(2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal 
aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783

 31. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, 
Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha- 
sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 
301(5632):487–492. https://doi.org/10.1126/science.1082254

 32. Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud 
JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, 
Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast 
stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579. https://
doi.org/10.1038/nature05282

 33. Gargioli C, Coletta M, De Grandis F, Cannata SM, Cossu G (2008) PlGF-MMP-9-expressing 
cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat Med 
14(9):973–978. https://doi.org/10.1038/nm.1852

 34. Diaz-Manera J, Touvier T, Dellavalle A, Tonlorenzi R, Tedesco FS, Messina G, Meregalli M, 
Navarro C, Perani L, Bonfanti C, Illa I, Torrente Y, Cossu G (2010) Partial dysferlin reconsti-
tution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine 
model of dysferlinopathy. Cell Death Dis 1:e61. https://doi.org/10.1038/cddis.2010.35

 35. Tedesco FS, Hoshiya H, D'Antona G, Gerli MF, Messina G, Antonini S, Tonlorenzi R, 
Benedetti S, Berghella L, Torrente Y, Kazuki Y, Bottinelli R, Oshimura M, Cossu G (2011) 
Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystro-
phy. Sci Transl Med 3(96):96ra78. https://doi.org/10.1126/scitranslmed.3002342

 36. Giannotta M, Benedetti S, Tedesco FS, Corada M, Trani M, D'Antuono R, Millet Q, Orsenigo 
F, Galvez BG, Cossu G, Dejana E (2014) Targeting endothelial junctional adhesion molecule-
 A/EPAC/Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic mus-
cles. EMBO Mol Med 6(2):239–258. https://doi.org/10.1002/emmm.201302520

 37. Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, 
Roostalu U, Natali Sora MG, Scarlato M, De Pellegrin M, Godi C, Giuliani S, Ciotti F, 
Tonlorenzi R, Lorenzetti I, Rivellini C, Benedetti S, Gatti R, Marktel S, Mazzi B, Tettamanti 
A, Ragazzi M, Imro MA, Marano G, Ambrosi A, Fiori R, Sormani MP, Bonini C, Venturini 
M, Politi LS, Torrente Y, Ciceri F (2015) Intra-arterial transplantation of HLA-matched donor 
mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528. https://
doi.org/10.15252/emmm.201505636

 38. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cul-
tured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 
78(12):7634–7638

 39. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 
10(6):678–684. https://doi.org/10.1016/j.stem.2012.05.005

 40. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human 
ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractil-
ity upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. https://doi.
org/10.1016/j.stem.2012.02.015

T. VandenDriessche et al.

https://doi.org/10.1038/mt.2009.204
https://doi.org/10.1161/CIRCRESAHA.113.300203
https://doi.org/10.1038/ncomms1508
https://doi.org/10.1038/ncomms1508
https://doi.org/10.1126/science.1082254
https://doi.org/10.1038/nature05282
https://doi.org/10.1038/nature05282
https://doi.org/10.1038/nm.1852
https://doi.org/10.1038/cddis.2010.35
https://doi.org/10.1126/scitranslmed.3002342
https://doi.org/10.1002/emmm.201302520
https://doi.org/10.15252/emmm.201505636
https://doi.org/10.15252/emmm.201505636
https://doi.org/10.1016/j.stem.2012.05.005
https://doi.org/10.1016/j.stem.2012.02.015
https://doi.org/10.1016/j.stem.2012.02.015


95

 41. Biasco L, Baricordi C, Aiuti A (2012) Retroviral integrations in gene therapy trials. Mol Ther 
20(4):709–716. https://doi.org/10.1038/mt.2011.289

 42. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction 
of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–
775. https://doi.org/10.1038/nature07864

 43. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem 
cells generated without viral integration. Science 322(5903):945–949. https://doi.org/10.1126/
science.1162494

 44. Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, 
Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins 
in human embryonic stem cells. Proc Natl Acad Sci U S A 99(15):9864–9869. https://doi.
org/10.1073/pnas.142298299

 45. Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli 
AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenic-
ity increases upon differentiation after transplantation into ischemic myocardium. Circulation 
112(9 Suppl):I166–I172. https://doi.org/10.1161/CIRCULATIONAHA.104.525824

 46. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. 
Nature 474(7350):212–215. https://doi.org/10.1038/nature10135

 47. Li O, English K, Tonlorenzi R, Cossu G, Saverio Tedesco F, Wood KJ (2013) Human iPSC- 
derived mesoangioblasts, like their tissue-derived counterparts, suppress T cell proliferation 
through IDO- and PGE-2-dependent pathways. F1000Res 2:24. https://doi.org/10.12688/
f1000research.2-24.v1

 48. Ye L, Muench MO, Fusaki N, Beyer AI, Wang J, Qi Z, Yu J, Kan YW (2013) Blood cell- 
derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral 
vectors. Stem Cells Transl Med 2(8):558–566. https://doi.org/10.5966/sctm.2013-0006

 49. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li 
Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2012) Generation 
of human induced pluripotent stem cells from urine samples. Nat Protoc 7(12):2080–2089. 
https://doi.org/10.1038/nprot.2012.115

 50. Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell 
self-renewal and differentiation. Cell Stem Cell 2(1):22–31. https://doi.org/10.1016/j.
stem.2007.12.012

 51. Pannerec A, Marazzi G, Sassoon D (2012) Stem cells in the hood: the skeletal muscle niche. 
Trends Mol Med 18(10):599–606. https://doi.org/10.1016/j.molmed.2012.07.004

 52. Wang YX, Rudnicki MA (2011) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell 
Biol 13(2):127–133. https://doi.org/10.1038/nrm3265

 53. Borchin B, Chen J, Barberi T (2013) Derivation and FACS-mediated purification of PAX3+/
PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Reports 
1(6):620–631. https://doi.org/10.1016/j.stemcr.2013.10.007

 54. Vaskova EA, Stekleneva AE, Medvedev SP, Zakian SM (2013) “Epigenetic memory” phenom-
enon in induced pluripotent stem cells. Acta Nat 5(4):15–21

 55. Shtrichman R, Germanguz I, Itskovitz-Eldor J (2013) Induced pluripotent stem cells (iPSCs) 
derived from different cell sources and their potential for regenerative and personalized medi-
cine. Curr Mol Med 13(5):792–805

 56. Quattrocelli M, Palazzolo G, Floris G, Schoffski P, Anastasia L, Orlacchio A, VandenDriessche 
T, Chuah MK, Cossu G, Verfaillie C, Sampaolesi M (2011) Intrinsic cell memory reinforces 
myogenic commitment of pericyte-derived iPSCs. J  Pathol 223(5):593–603. https://doi.
org/10.1002/path.2845

 57. Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P, Lan F, Huber BC, Ong SG, Hong WX, 
Huang M, Wu JC (2014) Effect of human donor cell source on differentiation and function 
of cardiac induced pluripotent stem cells. J  Am Coll Cardiol 64(5):436–448. https://doi.
org/10.1016/j.jacc.2014.04.056

 58. Wu C, Hong SG, Winkler T, Spencer DM, Jares A, Ichwan B, Nicolae A, Guo V, Larochelle 
A, Dunbar CE (2014) Development of an inducible caspase-9 safety switch for pluripotent 

5 Pluripotent Stem Cells for Gene Therapy of Hereditary Muscle Disorders

https://doi.org/10.1038/mt.2011.289
https://doi.org/10.1038/nature07864
https://doi.org/10.1126/science.1162494
https://doi.org/10.1126/science.1162494
https://doi.org/10.1073/pnas.142298299
https://doi.org/10.1073/pnas.142298299
https://doi.org/10.1161/CIRCULATIONAHA.104.525824
https://doi.org/10.1038/nature10135
https://doi.org/10.12688/f1000research.2-24.v1
https://doi.org/10.12688/f1000research.2-24.v1
https://doi.org/10.5966/sctm.2013-0006
https://doi.org/10.1038/nprot.2012.115
https://doi.org/10.1016/j.stem.2007.12.012
https://doi.org/10.1016/j.stem.2007.12.012
https://doi.org/10.1016/j.molmed.2012.07.004
https://doi.org/10.1038/nrm3265
https://doi.org/10.1016/j.stemcr.2013.10.007
https://doi.org/10.1002/path.2845
https://doi.org/10.1002/path.2845
https://doi.org/10.1016/j.jacc.2014.04.056
https://doi.org/10.1016/j.jacc.2014.04.056


96

stem cell-based therapies. Mol Ther Methods Clin Dev 1:14053. https://doi.org/10.1038/
mtm.2014.53

 59. Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic 
stem cells expressing a “suicide” gene. Stem Cells 21(3):257–265. https://doi.org/10.1634/
stemcells.21-3-257

 60. Sicari BM, Agrawal V, Siu BF, Medberry CJ, Dearth CL, Turner NJ, Badylak SF (2012) 
A murine model of volumetric muscle loss and a regenerative medicine approach for tis-
sue replacement. Tissue Eng Part A 18(19–20):1941–1948. https://doi.org/10.1089/ten.
TEA.2012.0475

 61. Criswell TL, Corona BT, Wang Z, Zhou Y, Niu G, Xu Y, Christ GJ, Soker S (2013) The role 
of endothelial cells in myofiber differentiation and the vascularization and innervation of 
bioengineered muscle tissue in  vivo. Biomaterials 34(1):140–149. https://doi.org/10.1016/j.
biomaterials.2012.09.045

 62. Fuoco C, Rizzi R, Biondo A, Longa E, Mascaro A, Shapira-Schweitzer K, Kossovar O, 
Benedetti S, Salvatori ML, Santoleri S, Testa S, Bernardini S, Bottinelli R, Bearzi C, Cannata 
SM, Seliktar D, Cossu G, Gargioli C (2015) In vivo generation of a mature and func-
tional artificial skeletal muscle. EMBO Mol Med 7(4):411–422. https://doi.org/10.15252/
emmm.201404062

 63. Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K, Yoshino 
T, Kazuki K, Ishihara C, Takehara S, Higaki K, Nakagawa M, Takahashi K, Yamanaka S, 
Oshimura M (2010) Complete genetic correction of ips cells from Duchenne muscular dystro-
phy. Mol Ther 18(2):386–393. https://doi.org/10.1038/mt.2009.274

 64. Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, Nair N, Samara-Kuko 
E, Athanasopoulos T, Tedesco FS, Dickson G, Sampaolesi M, VandenDriessche T, Chuah 
MK (2016) piggyBac transposons expressing full-length human dystrophin enable genetic 
correction of dystrophic mesoangioblasts. Nucleic Acids Res 44(2):744–760. https://doi.
org/10.1093/nar/gkv1464

 65. Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaaf T, Mayerhofer T, Chamberlain 
JS, Ervasti JM, McIvor RS, Kyba M, Perlingeiro RC (2013) An ex vivo gene therapy approach 
to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4:1549. 
https://doi.org/10.1038/ncomms2550

 66. Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K (1998) Expression 
of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4(12):1441–1444. 
https://doi.org/10.1038/4033

 67. Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T, Nishino T, Shoji E, Sehara- 
Fujisawa A, Manabe Y, Fujii N, Hanaoka K, Era T, Yamashita S, Isobe K, Kimura E, Sakurai 
H (2013) Efficient and reproducible myogenic differentiation from human iPS cells: prospects 
for modeling Miyoshi myopathy in vitro. PLoS One 8(4):e61540. https://doi.org/10.1371/jour-
nal.pone.0061540

 68. Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, Huang K, Chen S, Zhou X, Chen Y, Pei 
D, Pan G (2013) Transcription activator-like effector nuclease (TALEN)-mediated gene 
correction in integration-free beta-thalassemia induced pluripotent stem cells. J Biol Chem 
288(48):34671–34679. https://doi.org/10.1074/jbc.M113.496174

 69. Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY 
(2013) Efficient drug screening and gene correction for treating liver disease using patient- 
specific stem cells. Hepatology 57(6):2458–2468. https://doi.org/10.1002/hep.26237

 70. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, DeFeo AP, Gabriel 
R, Schmidt M, von Kalle C, Carlson DF, Maeder ML, Joung JK, Wagner JE, Voytas DF, 
Blazar BR, Tolar J (2013) TALEN-based gene correction for epidermolysis bullosa. Mol Ther 
21(6):1151–1159. https://doi.org/10.1038/mt.2013.56

 71. VandenDriessche T, Chuah MK (2016) CRISPR/Cas9 flexes its muscles: in vivo somatic gene 
editing for muscular dystrophy. Mol Ther 24(3):414–416. https://doi.org/10.1038/mt.2016.29

T. VandenDriessche et al.

https://doi.org/10.1038/mtm.2014.53
https://doi.org/10.1038/mtm.2014.53
https://doi.org/10.1634/stemcells.21-3-257
https://doi.org/10.1634/stemcells.21-3-257
https://doi.org/10.1089/ten.TEA.2012.0475
https://doi.org/10.1089/ten.TEA.2012.0475
https://doi.org/10.1016/j.biomaterials.2012.09.045
https://doi.org/10.1016/j.biomaterials.2012.09.045
https://doi.org/10.15252/emmm.201404062
https://doi.org/10.15252/emmm.201404062
https://doi.org/10.1038/mt.2009.274
https://doi.org/10.1093/nar/gkv1464
https://doi.org/10.1093/nar/gkv1464
https://doi.org/10.1038/ncomms2550
https://doi.org/10.1038/4033
https://doi.org/10.1371/journal.pone.0061540
https://doi.org/10.1371/journal.pone.0061540
https://doi.org/10.1074/jbc.M113.496174
https://doi.org/10.1002/hep.26237
https://doi.org/10.1038/mt.2013.56
https://doi.org/10.1038/mt.2016.29


97

 72. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, Fedrigo O, Mouly 
V, Tremblay JP, Gersbach CA (2013) Reading frame correction by targeted genome editing 
restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 
21(9):1718–1726. https://doi.org/10.1038/mt.2013.111

 73. Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, Reddy TE, 
Gersbach CA (2015) Correction of dystrophin expression in cells from Duchenne muscular 
dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 
23(3):523–532. https://doi.org/10.1038/mt.2014.234

 74. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) 
Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations 
that cause Duchenne muscular dystrophy. Nat Commun 6:6244. https://doi.org/10.1038/
ncomms7244

 75. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, 
Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of 
the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells 
by TALEN and CRISPR-Cas9. Stem Cell Reports 4(1):143–154. https://doi.org/10.1016/j.
stemcr.2014.10.013

 76. Cyranoski D (2014) Japanese woman is first recipient of next-generation stem cells. Nature. 
https://doi.org/10.1038/nature.2014.15915

 77. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M (2014) 
Characterization of human induced pluripotent stem cell-derived retinal pigment epithe-
lium cell sheets aiming for clinical application. Stem Cell Reports 2(2):205–218. https://doi.
org/10.1016/j.stemcr.2013.12.007

 78. Nakano-Okuno M, Borah BR, Nakano I (2014) Ethics of iPSC-based clinical research for age- 
related macular degeneration: patient-centered risk-benefit analysis. Stem Cell Rev 10(6):743–
752. https://doi.org/10.1007/s12015-014-9536-x

5 Pluripotent Stem Cells for Gene Therapy of Hereditary Muscle Disorders

https://doi.org/10.1038/mt.2013.111
https://doi.org/10.1038/mt.2014.234
https://doi.org/10.1038/ncomms7244
https://doi.org/10.1038/ncomms7244
https://doi.org/10.1016/j.stemcr.2014.10.013
https://doi.org/10.1016/j.stemcr.2014.10.013
https://doi.org/10.1038/nature.2014.15915
https://doi.org/10.1016/j.stemcr.2013.12.007
https://doi.org/10.1016/j.stemcr.2013.12.007
https://doi.org/10.1007/s12015-014-9536-x


99© Springer Nature Switzerland AG 2019 
D. Duan, J. R. Mendell (eds.), Muscle Gene Therapy, 
https://doi.org/10.1007/978-3-030-03095-7_6

Chapter 6
MicroRNAs (miRs) in Muscle Gene 
Therapy

Alessio Rotini, Giorgia Giacomazzi, Ester Sara Di Filippo, 
and Maurilio Sampaolesi

Abstract Despite recent advances in scientific knowledge and several clinical tri-
als, muscle gene and cell therapies remain a major challenge. As a matter of fact, 
novel technologies are being developed for targeting muscle tissues including 
CRISPR, TALEN, and iPS technologies indicating that gene-based therapies still 
hold significant promises. Recent findings from our laboratory and others unveiled 
that microRNAs (miRs), small nonprotein-coding RNAs, are able to posttranscrip-
tionally regulate many genes and exert pleiotropic effects in the muscle. Deleterious 
changes in miR expression play an important role in muscle diseases. In this regard, 
miRs are possible therapeutic targets, and miR-based gene therapy for smooth, skel-
etal, and cardiac muscles is an extremely interesting field for harnessing the com-

A. Rotini · E. S. Di Filippo 
Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and 
Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 
Belgium 

Interuniversity Institute of Myology, Chieti, Italy

Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” 
Chieti-Pescara, Chieti, Italy
e-mail: alessio.rotini@inserm.fr; es.difilippo@unich.it 

G. Giacomazzi 
Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and 
Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 
Belgium 

Interuniversity Institute of Myology, Chieti, Italy
e-mail: Giorgia.Giacomazzi@ieo.it 

M. Sampaolesi (*) 
Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and 
Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 
Belgium 

Interuniversity Institute of Myology, Chieti, Italy

Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, 
University of Pavia, Pavia, Italy
e-mail: maurilio.sampaolesi@kuleuven.be

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03095-7_6&domain=pdf
mailto:alessio.rotini@inserm.fr
mailto:es.difilippo@unich.it
mailto:Giorgia.Giacomazzi@ieo.it
mailto:maurilio.sampaolesi@kuleuven.be


100

plexity of miR-based therapeutic approaches. In this chapter, we will focus on miR-driven 
regulation of myogenic routes in homeostatic and challenging states. We will also sur-
vey the intriguing perspective of miR biological transfers, including the delivery of func-
tional miRs via exosomes that unlike other vectors are cell-free natural systems for 
ferrying RNAs between cells. Finally, we will review the recent literature on key miR 
targets to treat skeletal, cardiac, and smooth muscle diseases and novel valuable clinical 
tools for more effective treatment strategies in muscle degeneration.

Keywords Cardiomyopathies · Muscular dystrophies · MiR-based therapies MiRs 
· Smooth muscle cells · Exosome

6.1  Introduction: miR Biogenesis and Delivery

MiRs are small endogenous noncoding RNAs that direct the posttranscriptional regu-
lation of gene expression [1]. Approximately one-third of human genes are regulated 
by miRs, and currently 3196 murine (as mmu-miRs) and 4552 human (as has-miRs) 
mature miR entries have been reported in the miRbase sequence repository (mirbase.
org; March 2017). MiRs are 21 ± 2 nucleotides in length and are present in the genome 
as independent transcriptional units or intergenic clusters. The deregulation of miRs is 
observed in many diseases such as cancer, neurologic diseases, metabolic disorders, 
as well as cardiovascular and skeletal muscle diseases [2].

MiR-encoding genes are transcribed by RNA polymerase II into principal miRs 
(pri-miRs) as hairpin structures. RNA polymerase III has the ability to generate pri- 
miRs although this is limited to the miR cluster of the human chromosome 19 
among repetitive Alu sequences. RNase III Drosha, a double-stranded specific 
endonuclease, processes the pri-miRs into ≈70-nt stem-loop precursor molecules 
(pre-miRs), which are further shuttled into the cytoplasm by the nuclear export 
protein exportin-5. The final 22-nt miR/miR* duplex is produced in the cytoplasm 
by the endoribonuclease Dicer. Argonaute proteins (AGOs) bind miRs into the 
RNA-induced silencing complex (RISC), and the weaker strand (miR* or passen-
ger) is then degraded. After the integration of the RISC complex, miRs are able to 
target specific mRNAs. However, the modus operandi of miR processing machinery 
is still largely unknown [3, 4]. The principal RISC components interact with the 
proteins responsible for RNA remodeling and for the generation of processing bod-
ies (P-bodies), or glycine-tryptophan bodies (GW-bodies), which account for 
mRNA decapping, deadenylation, and degradation. It has been reported that circu-
lating high-density lipoprotein (HDL) particles [5], exosomes [6], and liposomes 
[7] transfer endogenous miRs to host cells for functional mRNA targeting in a non- 
cell autonomous manner. It has further been described that long noncoding and 
alternative polyadenylation RNAs constitute posttranscriptional controls on miR 
activity [4].

Synthetic liposomes and viral vectors are extensively used for many applica-
tions, but both strategies present major limitations, including immune stimulatory 
properties, which restrict gene delivery applications [8]. Generally, viral-based 
 systems exploit the use of retroviruses, lentiviruses, and adenoviruses or adeno- 
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associated viruses (AAV) [9]. The advantage of this delivery system is the high 
efficiency and the stable expression of miRs or antagomiRs. For example, in mouse 
embryonic fibroblasts, retrovirus-based delivery of miR-138 was adopted to improve 
the efficiency of iPS cell generation [10]. In other study, the use of lentivirus-based 
approach guaranteed the long-term stable expression of miR-143 (2500-fold) in 
corneal epithelial progenitor cells [11]. Also, AAV vectors are suitable in transfer-
ring miRs [12], and miR-590 and miR-199a were delivered into neonatal mouse 
heart by a rAAV9 vector in order to improve cardiac regeneration [13]. Nevertheless, 
immunogenicity and random integration hamper the use of viral vectors for miR 
gene therapy approaches. Non-viral systems are less toxic and less immunogenic 
and have no limitation of the size of the transferred DNA. However, the low effi-
ciency of miR delivery of non-viral systems compared to the viral systems has lim-
ited their use in therapeutic applications. Gene gun, electroporation, hydrodynamic, 
ultrasound, laser-based energy, and inorganic carriers have been explored to improve 
the efficiency of miR delivery. However, damages of cell integrity and apoptosis are 
frequently observed in all these procedures [14].

Recently, exosomes have emerged to be important mediators of cell–cell com-
munication and cross talking. Exosomes are extracellular small vesicles (40–100 nm 
diameter) of endocytic origin secreted by several cell types and transporting macro-
molecules including lipids, proteins, mRNA, and miRs [15]. Different from other 
delivery vectors, exosomes are a unique cell-free natural system acting as signaling 
shuttles for short- and long-range communications between cells. Exosomal mem-
branes can protect and promote intracellular release of cargo molecules [15]. For 
these reasons, exosomes are now considered as an excellent delivery system for 
gene therapy.

An ideal miR delivery system for regenerative medicine should be able to target 
specific tissues or organs with low cytotoxicity and high efficiency. In this regard, 
scaffold-based miR delivery systems represent an innovative approach to optimize 
the miR distribution to target tissues, minimize miR degradation, and mitigate 
immune responses [16]. Successful miR therapies can be achieved through the over-
expression (miR-mimetics) or the inhibition (antagomiRs) of miRs or even through 
a combination of both miR-mimetics and antagomiRs [17]. An overview of the 
miRs employed in gene therapy protocols for skeletal, cardiac, and smooth muscle 
tissues is shown in Fig. 6.1.

6.2  MiRs and Skeletal Myogenesis

The skeletal muscle tissue of vertebrates originates through a complex and multi-
stage process called myogenesis where numerous genes are cooperatively involved 
in the regulation of each stage. Numerous miRs can be highly and specifically 
enriched at different phases of embryonic and adult myogenesis. The miRs that are 
specifically expressed in skeletal muscle are referred as myomiRs, which include 
miR-1, miR-133 a/b, and miR-206 [18–20]. The myogenic transcription factors 
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MyoD, MEF2, and SRF directly regulate the expression of miR-1 and miR-133a in 
skeletal muscle, whereas the expression of miR-206 is controlled by MyoD and 
MyoG. In addition to muscle-specific miRs, numerous non-muscle-specific miRs, 
referred here as non-myomiRs, are also important in the regulation of myogenesis. 
It has been demonstrated that these non-myomiRs modulate muscle proliferation 
and differentiation through different mechanisms via repression of specific target 
genes [21–24]. At the onset of myogenesis, miR-27b induces migration and early 
differentiation of myoblasts by targeting the Pax3 protein [22]. MiR-26a [21] and 

Fig. 6.1 Overview of the miR-based gene therapies for muscle diseases. MiR-based gene therapy 
holds great potential for treating disorders that affect skeletal, cardiac, and smooth muscles. Green 
marks miRs that exert beneficial effect when upregulated. Red depicts miRs that exert detrimental 
effects when upregulated
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miR-214 [23, 24] also promote myogenesis by targeting enhancer of zeste homolog 
2, a known inhibitor of myogenesis. It is noticed that the timing of expression of 
miR-26a and miR-214 differs upon myogenesis. Once muscle differentiation begins, 
miR-214 is upregulated via MyoD/MyoG, which promote P21Cip1 and MyoG expres-
sion, while miR-26a increases during the later course of myogenesis. Another crucial 
step in muscle differentiation is the inhibition of homeobox-protein A11 (HOX11) 
by miR-181 [25]. Lower expression of HOX11 leads to an increase in MyoD, a target 
of HOX11, and therefore to the myogenic differentiation of cells. This is consistent 
with the finding that inhibition of miR-181 decreased differentiation of C2C12 myo-
blasts [25]. Similarly, miR-148a has been found crucial for skeletal myogenesis as its 
main target, ROCK1, prevents myoblast fusion and antagomiR-based experiments 
results in myogenic differentiation impairment [25].

6.3  MiR-Based Therapy for Skeletal Muscle Diseases

Myopathies are characterized by muscle weakness and the loss/wasting of muscle 
tissue. Among these diseases, muscular dystrophies (such as Duchenne muscular 
dystrophy (DMD), Becker muscular dystrophy, facioscapulohumeral muscular dys-
trophy, and limb-girdle muscular dystrophy type 2A and type 2B) have emerged as 
potential targets of miR-based therapies. Indeed, it has been demonstrated that 
manipulation of miRs can ameliorate the phenotype of these diseases in combina-
tion with changes in the expression levels of specific miRs [26–28]. The loss/wast-
ing of muscle tissue is commonly associated with the depletion of satellite cells 
(SCs), which represents the reservoir of resident muscle stem cells in adulthood. 
After an injury, SCs receive external cues and, as a consequence, activate, prolifer-
ate, and give rise to new myofibers [29]. This fine-tuned process, which replaces 
damaged myofibers with newly formed myofibers, is called skeletal muscle regen-
eration. In dystrophic muscle, cycles of regeneration/degeneration continuously 
occur causing SCs to exit their quiescent state (SC activation), start to proliferate, 
differentiate, and later reenter the quiescent state [29] in order to replenish the SC 
pool. Crist et al. in 2012 showed that miR-31 maintains SCs in quiescent state by 
downregulating Myf5, [30] a protein with a key role in activating the myogenic 
program during the development of skeletal muscle. In quiescent SCs, Myf5 is tran-
scribed but not translated because of the presence of miR-31 in the messenger ribo-
nucleoprotein (mRNP) granules that directly target Myf5 mRNAs. Once SCs are 
activated, mRNP granules are dissolved including miR-31, releasing Myf5 mRNAs 
and allowing the translation and protein expression [30]. Manipulation of miR-31 
levels affects SC differentiation ex vivo and muscle regeneration in vivo and might 
provide a feasible treatment aimed at enhancing the muscle regeneration in 
DMD. Sequence analysis of myostatin (Mstn) 3′ UTR showed a single highly con-
served miR-27a/b-binding site, and increased expression of miR-27a/b was corre-
lated with decreased expression of Mstn. Moreover, the authors also showed that 
Mstn gene expression was regulated by miR-27a/b in  vitro and in  vivo [31]. 
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Treatment with miR-27a/b-specific antagomiRs resulted in increased Mstn expres-
sion, reduced myoblast proliferation, impaired SCs activation, and induced skeletal 
muscle atrophy that was rescued upon either blockade of, or complete absence of, 
Mstn [31]. Another study showed that the transcriptional factor MyoD was further 
regulated by miR-221/222. The miR-221/222-myoD-myomiRs regulatory pathway 
was confirmed by overexpressing or knocking down the miRs in C2C12 cells, 
resulting in direct modulation of MyoD expression [32].

After proliferation, myoblasts start differentiation and fusion giving rise to new 
functional myofibers, and several miRs, including myomiRs, are involved in the 
process. It has been shown that miR-1 and miR-206 repress HDAC4, which is an 
inhibitor of MEF2, a myocyte enhancer factor. Thus, miR-1/miR-206 release 
MEF2 in order to promote muscle differentiation [33, 34]. Moreover, miR-1/miR- 
206 are able to repress Pax7 and Pax3 [35], quiescence markers of SCs. Therefore, 
the miR-1/miR-206 inhibiting action on Pax7 leads to muscle differentiation. 
Moreover, miR-206 promotes myoblast differentiation by repressing other targets, 
including Pola-1, the largest DNA polymerase subunit, thereby stopping the prolif-
eration machinery favoring the differentiation process [19]. An additional target of 
miR-206 is Cx43, a protein involved in the complete maturation of muscle skeletal 
fibers [36]. Other studies have demonstrated that miR-133a/b suppresses myoblast 
proliferation and promotes differentiation by regulating MAPK (mitogen-activated 
protein kinase) through direct downregulation of its transducers, FGFR1 (fibroblast 
growth factor receptor 1) and PP2AC (protein phosphatase 2A catalytic subunit) 
[37]. Recently, Puri et al. showed that HDAC inhibition induces two components of 
the myogenic transcriptional machinery, MyoD and Baf60C, and upregulates myo-
miRs. MyomiRs, in turn, target the BAF60A and BAF60B subunits of SWI/SNF 
complex, ultimately directing promyogenic differentiation and suppressing adipo-
genic differentiation of fibro/adipogenic progenitors (FAPs) [38]. Authors showed 
direct evidence of induction of miR-206 and BAF60C and subsequent reduction of 
BAF60A and BAF60B in FAPs isolated from mdx mice treated with the HDAC 
inhibitor trichostatin A (TSA) [39]. Moreover, in SCs isolated from mdx mice 
injected with TSA, the overexpression of miR-1, miR-133, and miR-206 enhanced 
their myogenic differentiation and rescued their phenotype when compared to wild- 
type mice [38]. MiR-206 has been widely described as posttranscriptional inhibitor 
of utrophin and follistatin [40, 41]. However, more recently Amirouche and cowork-
ers [42] showed that miR-206 can activate two distinct pathways causing alterna-
tively repression or activation of utrophin A gene. In this view, miR-206-induced 
utrophin may replace dystrophin in dystrophic skeletal muscles and may limit 
 disease progression [43]. In addition, Nakasa et  al. [44] showed that the muscle 
injected with miR-206 in a rat model of skeletal muscle injury resulted in enhanced 
muscle regeneration and reduced muscle fibrosis. Finally, genetic deletion of miR-
206 delayed muscle regeneration in cardiotoxin-injured mice, and the loss of miR-
206 accelerated and exacerbated the dystrophic phenotype in miR-206–KO mdx 
mice [26]. Taken together these studies highlight the pivotal role in muscle regen-
eration of miR-206 (Fig. 6.2), which represents a preferential target for the treat-
ment of skeletal muscle damage.
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Recent studies suggest that miR-29 was repressed by NF-kappaB through the 
chromatin remodelers YY-1 [45] and Rybp [46]. During myogenesis, the downregu-
lation of NF-kappaB and YY1 causes derepression of miR-29 leading to an accel-
eration of differentiation in a loop-forward mechanism. Further, miR-486 is reduced 
in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and DMD 
patients. The muscle-specific miR-486 overexpression in Dmdmdx-5Cv mice 
resulted in reduced serum creatine kinase levels, improved sarcolemmal integrity, 
increased myofiber size, and improved muscle physiology and performance [27].

Fig. 6.2 In situ hybridization showing the expression of miR-206 in regenerating muscles from 
mdx and cardiotoxin-injured mice. Muscle sections from mdx dystrophic mice were hybridized 
with the scramble-miR, LNA™ probe as negative control (a), or using LNA™ probe for miR-206 
detection (b). Muscle sections from cardiotoxin-injured mice were hybridized as in b (c). Nuclei 
were counterstained with DAPI (in red). Note that the miR-206 signal (dark purple) is present in 
regenerating centronucleated fibers but not in large mature fibers. Bar = 100 μm
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Muscle tissues represent a mixture of two fiber types, slow- and fast-twitch 
fibers. Fast-twitch muscles have been shown to have quick and short contraction 
time, while slow-twitch have a longer contraction time (about five times longer) 
[47]. To date, different transgenic mice provide evidence that slow fibers are less 
susceptible to injury than fast-twitch muscles [48]. Indeed, it has been shown that 
the higher amount of slow fibers in mdx mice, induced by a PGC-1α transgene [49], 
by Wnt7a treatment [50], or by activation of calcineurin [51], displayed improve-
ments in the regression of the disease. In this context, miR-208b and miR-499 have 
been shown to be involved in muscle fiber-type regulation [52]. Double knockout of 
both miR-208b and miR-499 (dKO) in mouse soleus displayed loss of slow myofi-
bers. Conversely, overexpression of miR-499 in EDL, soleus and TA muscles (miR- 
499 Tg mice) induced a complete conversion of all fast myofibers to slow type I 
myofibers [52]. These miRs exerted their effect by targeting repressors of slow 
muscle genes Sox6, Purβ, and Sp3 [52]. Moreover, miR-208b and miR-499 targeted 
HP-1β, a corepressor of MEF2 involved in activating slow fiber gene expression 
program [53]. Taken together, these results suggest that miR-499 and miR-208b are 
potential therapeutic agents for MDs by inducing the conversion from fast-twitch 
fibers to the slow-twitch fibers that are more resistant to contraction-induced 
damage.

Another important feature in myopathies is the detrimental accumulation of 
fibrotic tissue. Several approaches (pharmaceutical, nutritional, exercise-based) are 
tested to reduce/control fibrotic tissue accumulation [54]. Many miRs have also 
emerged as novel-antifibrotic molecules. For example, miR-29 can reduce fibrosis 
in mdx mice by repressing the expression of collagen (Col1a1) and elastin (Eln), 
both responsible for fibrotic tissue accumulation [55–57]. In 2014, Meadows et al. 
used adeno-associated viral vector (AAV) to deliver miR-29 into muscles of 
mdx/utrn± mice and demonstrated a decline of muscle fibrotic tissue [58]. MiR-29 
is also a direct target of HDAC2 via dystrophin/nNOS pathway [59] and an ideal 
candidate for reducing muscle fibrosis in future clinical trials. Indeed MRG-201, a 
synthetic miR mimic (promiR) to miR-29b, has been developed by miRagen 
Therapeutics, Inc. and is in an ongoing phase I clinical trial study (https://clinicaltri-
als.gov/ct2/show/NCT02603224?term=MRG-201&rank=1). Additionally, miR-21 
has emerged as an important regulator of fibrotic tissue deposition in the dystrophic 
muscle and has been found upregulated in different primary muscular disorders 
[28]. Ardite et al. demonstrated that extracellular plasminogen activator inhibitor-1 
(PAI-1)/urokinase-type plasminogen activator regulates miR-21 that controls age- 
associated muscle fibrosis in mdx mice [28]. To date, the PAI-1-miR-21 fibrogenic 
pathway is well recognized as a target to treat fibrosis and MDs [28].

In 2011, Cacchiarelli et al. highlighted that miR-31a selectively represses dystro-
phin expression. Specifically, miR-31 targets directly the 3′ untranslated region 
(UTR) of the dystrophin mRNA. In combination with an exon-skipping therapy, the 
inhibition of miR-31 has been shown to enhance the dystrophin gene expression in 
a trial with DMD myoblasts of patients with exon 48–50 deletion. Moreover, local 
injection of miR-31 inhibitors strongly improved dystrophin translation in mdx 
mice treated with 48–51 exon-skipping approaches [59].
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The oxidative stress, through the release of reactive oxygen species (ROS), plays 
an important role in the progression of DMD and has been widely reviewed in lit-
erature in human [60], mdx mouse [61], and both human and mouse [62–64]. 
Moreover, dystrophin-deficient myofibers seem to be more exposed to oxidative 
stress, as previously reported [65]. Expressions of the enzymes associated with anti-
oxidant defense are increased in DMD patients, as well as in mdx mice [61, 65, 66], 
including reduced glutathione (GSH), the most important free radical scavenger 
[55]. GSH is formed from oxidized glutathione (GSSG) by glutathione reductase 
enzyme, using NADPH as an electron donor produced by glucose-6-phosphate 
dehydrogenase (G6PD) enzyme, a direct target of miR-1. Since miR-1 is downregu-
lated in DMD patients [67], the excess of G6PD determines a dysregulation of 
GSH/GSSG ratio, thus making the dystrophic muscle fibers more susceptible to 
oxidative damage [55].

A general inflammatory condition is present in various disorders of the skeletal 
muscle [68], and miR-155 plays a critical role in the regulation of inflammation 
that affects both innate and adaptive immunity [69]. MiR-155 regulates the bal-
ance between pro-inflammatory M1 macrophages and anti-inflammatory M2 
macrophages during skeletal muscle regeneration. Mechanistically, it has been 
found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT 
signaling pathway, during the initial inflammatory response upon muscle injury. 
Thus, miR-155 plays an important role in DMD physiopathology [70] and pro-
vides a novel miRNA target for improving muscle regeneration in degenerative 
muscle diseases [71].

Recently, vasculature-targeted strategies for DMD, with a major focus on 
increasing blood flow in existing blood vessels, have emerged [72]. It has been 
demonstrated that a reduced formation of blood vessels in DMD muscles com-
monly occurs, and a therapeutic approach to augment angiogenesis by using vascu-
lar endothelial growth factor (VEGF)-based strategies has been developed. The 
identification of miRs, including miR-126, miR-378, miR-296, and miR-17-92 
cluster, that regulate angiogenesis has opened a new avenue for therapeutics not 
only of vascular diseases but also of diseases whereas revascularization is crucial 
[67]. Mimics of pro-angiomiRs, or antagomiRs of anti-angiomiRs, can be used to 
elevate angiogenesis in the pathological setting of insufficient angiogenesis, such as 
myocardial infarction (MI), ischemia, and muscular disorders [73].

6.4  MiRs and Cardiac Myogenesis

As the first fully functioning organ of the body, the heart is guided throughout devel-
opment by a rather complex organization system made up of genetic pathways, 
epigenetic players, and posttranscriptional network systems. In vertebrates in gen-
eral, and more in particular in humans, the underlying mechanisms sustaining the 
cardiac muscle formation throughout development are very much conserved in the 
later stages of maturation. MiRs play crucial role in these processes.

6 MicroRNAs (miRs) in Muscle Gene Therapy



108

Alongside the aforementioned miR-1 and miR-133, two other members of the 
myomiR family, miR-208a and miR-499, must be added as main actors in many 
aspects of cardiac development and homeostasis [4]. During cardiac maturation, 
miRs must be finely regulated; the balance of miR-1 is, for instance, required as its 
excess leads to a reduction of cardiac progenitor cells, but on the other side, its 
depletion is embryonically lethal [74]. Similarly, members of the miR-133a family, 
which are transcribed together with miR1, require a stable level of expression as 
they are crucial for the growth of progenitor cells. However, when miR-133a is 
overexpressed, cardiomyogenesis is reportedly hampered [75]. Both miRs are 
reported as direct regulators of muscle differentiation, as transduction of murine 
pluripotent stem cells with lentiviral expressed miR-1 and miR-133a increased their 
cardiomyogenic differentiation [76].

MiR-208a is generally considered the cardiac-specific miR. MiR-208a is embed-
ded in one intron of Myh6. Myh6 encodes α-myosin heavy chain (α-MyHC), the 
most abundant MyHC (~90%) in the heart. MiR-208a is generally known as the 
cardiac-specific miR.  Research has unraveled the interactions of miR-208a with 
miR-208b and miR-499, and a lot of interest has grown over this triplet of miRs as 
promising therapeutic targets. Different from miR208a, miR208b and miR499 are 
inserted in introns of Myh7 and Myh7b, both encoding for β-MyHC, which consti-
tutes the primary MyHC form during embryonic development. In stress conditions, 
miR-208 is responsible for removing the transcriptional block on Myh7/7b loci, 
allowing a switch between MyHC forms. Interestingly, in animal models as well as 
humans presented with hypertrophic adverse remodeling, high levels of miR-208b 
and miR-499 were observed, suggesting the pivotal role of the switch between the 
two miR-208 forms as a marker of certain cardiac-associated diseases and more 
compellingly pointing at the therapeutic strategy of the trio [77, 78]. For instance, 
miRagen Therapeutics established MGN-9103, already tested in preclinical studies, 
which targets miR-208 with clear implications for the treatment of chronic heart 
failure [79].

The miR-138 and the miR-128 families are evolutionary conserved and provide 
important cues that guide correct structural formation of the cardiac muscle. More 
specifically, members of the miR-138 family contribute to establish and sustain a 
specific gene program in ventricle maturation, while the miR-218 family was found 
crucial for the formation of the heart tube [77, 80]. Additionally, the miR-143 family 
has been implicated in the structural regulation of the heart by controlling the distri-
bution of the cytoskeleton in the cells [81].

6.5  MiR-Based Therapy for Cardiac and Smooth Muscle 
Diseases

It was generally believed that postnatal cardiac growth in mammals was driven by 
hypertrophic modification of mature cardiomyocytes. However, evidence in mice 
has shown that mammals’ hearts hold a congenital capacity of self-regeneration, 
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albeit local cardiomyocyte turnover is not sufficient to fully heal the cardiac muscle 
after injury [82–84]. Several works have shown the role of miRs as direct contribu-
tors to cardiomyocyte maturation and renewal [85–88]. MiR-based therapeutic 
strategies typically consist in either protecting endogenous cardiac progenitors and/
or cardiomyocytes to ameliorate the injury-associated features or contributing to 
enhance differentiation potential of stem cells and progenitors. However, in very 
recent times, the promise of cell-free alternatives, including exosomes, for stem 
cell-mediated therapy has emerged [89].

MiR-1 and miR-133 seem to play a pivotal role, alongside others, in directly 
regulating cardiomyocyte functions. Notably, the lack of miR-133a-1/miR-133a-2 in 
double-knockout mice has resulted in an increase in the growth rate of cardiomyo-
cytes [75] suggesting an important role for the miR-133 family in maintaining the 
cardiac phenotype of cardiomyocytes. Similarly, members of the miR-1 family 
negatively regulate ventricular cardiomyocyte proliferation through targeting of the 
Hand2 mRNA [74]. The miR-15 and miR-29 families have been implicated as part 
of regulatory mechanisms in cardiomyocytes promoting fetal to adulthood switch. 
Patients who underwent ischemic injury show dramatic upregulated levels of miR- 
195, a member of miR-15 family. Knockdown of miR-195 in neonatal mice with 
LNA-antagomiRs resulted in increased number of proliferating cardiomyocytes and 
have thus been further investigated, providing promise in protecting against cardiac 
ischemic injury [4, 86]. Moreover, upregulation of miR-15 and miR-195a executed 
a postnatal cell cycle arrest during the process of heart regeneration after myocar-
dial infarction. In this regard, miRagen Therapeutics developed anti-miRs (MGN- 
1374) against both miR-15 and miR-195a able to induce post-myocardial infarction 
remodeling [90]. Such remodeling enhanced heart function and induced cardiomyo-
cyte proliferation in mice and pigs. MiR-29 family has more controversial features 
since miR-29a overexpression has been associated with a decrease in cardiomyo-
cyte proliferation by some authors [91], promoting progenitors’ proliferation by 
others [91, 92]. More recent work has endorsed the idea that miRs can induce the 
proliferation of resident cardiomyocytes. When injected intraperitoneally with 
AAV9 vectors expressing miR-590 family or miR-199a, neonatal mice displayed an 
increased number of mitotic cardiomyocytes. Moreover, this occurs also when 
AAV9 vectors were injected in adult mice following descending coronary artery 
ligation [13]. Furthermore in vivo inhibition of miR-199b via antagomiR in a mouse 
model of heart failure ameliorated the function of the cardiac muscle, reduced fibro-
sis, and reversed hypertrophy [93]. Hypertrophic remodeling associated with car-
diomyopathy was partially halted in mice treated with administration of LNA 
antimiR-652. These mice displayed also a significant reduction in fibrosis, less 
apoptosis, and preserved angiogenesis [94]. Further reduction and modulation of 
cardiac hypertrophy were achieved via angiotensin II silencing by upregulation of 
miR-34a, whereas its inhibition aggravated the phenotype [95]. Interestingly, this 
study underlined the role of miR-34a in suppressing cardiomyocyte autophagy via 
ATG9A silencing. Similarly, other studies have shown evidence of the role of miRs 
in directly regulating autophagy. Administration of miR-145 in rat models of myo-
cardial infarction improved cardiac function and accelerated cardiomyocyte autophagy 
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by targeting fibroblast growth factor receptor substrate 2 [96], while overexpression 
of miR-221 resulted in a marked reduction of autophagic flux, exacerbating the 
cardiac hypertrophic remodeling [97]. MiR-22 has been also implicated as a strong 
inhibitor of cardiac autophagy and pharmacological blocking of miR-22 in a post-
myocardial infarction (post-MI) model in older mice activated cardiac autophagy, 
prevented postinfarction remodeling, and improved cardiac function [98]. In other 
studies, overexpression of the miR-17/92 cluster in mice was shown to have a pro-
tecting effect after ischemic injury, promoting proliferation of postnatal cardiomyo-
cytes. Similar results were achieved via intracardiac delivery of miR-199a and 
miR-590 using an AAV vector in neonatal mice [13, 99]. Additionally, recent work 
from Shen and colleagues identified miR-30 as a novel regulator of cardiac plastic-
ity post-MI, showing how silencing of miR-30 resulted in cardioprotective features 
in mice [100]. A further interesting possibility lies in the modulation of miRs for 
myogenic fate switching purposes. To this end, it is reported that cardiac pericytes 
from dystrophic mice can differentiate into skeletal pericytes, and this aberrant fea-
ture has been attributed to miR-669a/q, a direct regulator of MyoD. Notably, trans-
duction of the neonatal murine myocardium with a miR- 699a- expressing AAV-9 
vector resulted in partial remission of cardiomyopathies in these mice [101, 102].

MiRs are acquiring growing interest as co-players in stem cell therapy. Stem 
cells hold the intrinsic ability of enhanced self-renewal and virtually can be differ-
entiated in several lineages and cell types. Different populations of adult stem cells 
have allured researchers to investigate their cardiac regeneration potential [89]. In 
more recent times, pluripotent stem cells, ESC and iPSC, have come into the spot-
light as therapeutics for cardiac pathologies. From early evidence [103] to much 
more recent work [104, 105], it is clear that ESC cells can successfully differentiate 
into cardiac precursors and even contribute to the regeneration of the heart post MI 
in large animal models. The cardiogenic potential of iPSC has been scrutinized. 
These studies suggest that iPSC cells can also contribute to regeneration in an 
injured heart when they are differentiated to mesodermal progenitors [106, 107].

Studies on ESC differentiation toward cardiomyocytes have once more unrav-
eled the central although somewhat divergent role of miR-1 and miR-133. 
Overexpression of these miRs enhanced the mesodermal profile in early embryo 
body formation. MiR-1 levels were necessary to sustain further differentiation at 
later developmental stage, while miR-133 had the opposite effect [76, 108]. 
Lentiviral mediated expression of miR-1 in ESC cells resulted in increased cardiac 
repair of these cells in infarcted mice. Similarly, treatment with the already dis-
cussed miR-499 family enhanced differentiation potential of cardiac stem cells 
in vitro and lead to partial restoration of infarcted areas in vivo [109]. Interestingly, 
these three miRs, together with miR-208a, have shown to be rather efficient at con-
verting cardiac fibroblasts to cells with cardiomyocytes-like properties. This so 
called direct reprogramming was induced by mirR-1 alone but further increased 
when four miRs were expressed in combination, additionally boosting maturation 
[110]. To this regard, other studies conducted on iPSC differentiation have demon-
strated that members of the miR-290 cluster (miR-291-3p, miR-294, and miR-295) 
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enhance murine iPSC reprogramming and, later, further influence cardiomyogenic 
lineage maturation [111].

MiRs therapeutic research targeting smooth muscle cells has been mainly focused 
on atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. 
Burdensome problems and hallmarks of such diseases are the accumulation of 
smooth muscle and inflammatory cells in the intima, deposition of fibrotic tissues, 
and abnormal phenotypic switch of vascular smooth muscle cells (VSMC) from con-
tractile, differentiated cells to a proliferative, dedifferentiated phenotype [112]. 
Therefore, understanding the molecular mechanisms of VSMC proliferation and 
remodeling may offer novel insights into disease pathogenesis leading to targeted 
therapies. MiR-132 has been described as a regulator of VSMC, as data show that 
miR-132 mimic administered to the rat carotid artery after catheter injury reduced 
VSMC migration and proliferation in the neointima [113]. One of the most abundant 
miRs found in the smooth muscle of the vasculature wall is miR-145 [114]. Recent 
work highlighted a role of miR-145 in the phenotypic modulation of VSMC during 
pathogenesis. The authors noted that delivery of miR-145  in balloon- injured rat 
carotid artery successfully promoted differentiation of VSMC and inhibited neointi-
mal growth [115]. Moreover, downregulation of miR-221 and miR-222, found 
upregulated in the vascular walls with neointimal lesion, significantly decreases 
VSMC proliferation and subsequent neointimal lesion formation in the rat carotid 
arteries after angioplasty [116]. Similarly, knockdown of miR-21 decreased neo-
intima formation in rat carotid artery after angioplasty. Inhibition of miR-21 has been 
reported to decrease proliferation of cultured VSMCs through an apoptotic mecha-
nism [117]. Pharmacological knockdown of miR-21  in human veins resulted in a 
significant reduction in neointimal formation [118]. Torella et al. demonstrated that 
adenoviral-mediated overexpression of miR-133a reduced neointimal formation and 
antagomiR to miR-133a exacerbated neointimal formation following balloon injury 
[119]. More recently, it was discovered that miR-33 is a novel regulator of smooth 
muscle cell proliferation in response to arterial stress. MiR-33 acts through the 
TGFβ-Smad signaling pathway and perivascular injections of agomiR-33 attenuated 
neointimal hyperplasia in grafted veins [120]. In addition, miR-26a has been found 
to positively regulate VSMC survival after AAA [121]. The therapeutic potential of 
miR-33 has been further explored by Regulus Therapeutics that developed an anti-
miR-33 a/b for the treatment of atherosclerosis. MiR-33b and miR-33a are encoded 
in the introns of the transcription factor loci SREBP1 and SREBP2, respectively, and 
are involved in the regulation of cholesterol and fatty acid homeostasis. Treating 
African green monkeys subcutaneously with 2′-fluoro-methoxyethyl-phosphoro-
thioate modified antisense-miR-33  oligonucleotides (anti-miR-33) resulted in a 
decrease in very-low-density lipoprotein and an increase in HDL [122].

Finally, Zhang et al. [123] demonstrated that miR-155 is significantly upregulated 
in atherosclerotic plaque, functioning to accelerate the proliferation and migration of 
VSMCs by targeting eNOS. Exogenous overexpression of miR-155 in human aortic 
SMCs confirmed the detrimental effects [123]. Thus, miR-155 represents a sensitive 
target to reduce proliferation and migration of SMCs in human vascular diseases, 
including restenosis and atherosclerosis.
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6.6  Conclusion and Remarks

In conclusion, investigation into miR biology has clearly enriched our current 
understanding on the myogenic processes for cardiac, skeletal, and smooth muscle 
tissues. There is a large consensus on the involvement of specific miRs in the indi-
vidual stages of muscle development that affect muscle metabolism, cell prolifera-
tion, differentiation, and regeneration. Furthermore, miRs are dysregulated in 
several muscle pathologies where tissue homeostasis is lost. Those studies estab-
lished the biological foundation for the use of miR knowledge in disease diagnosis 
and treatment. For example, since miRs are very stable in most body fluids, they can 
be used as biomarkers for medical purposes. On the other side, the expression of 
specific miRs, including myomiRs and angiomiRs, can be modulated to achieve 
therapeutic benefits. Nevertheless, the lack of gene specificity of miRs and the 
pleiotropic effects are the major concerns that limit their translational uses. In this 
context, miR mimics, alone or in combination with antagomiRs, shuttled by exo-
somes could provide muscle disease-tailored solutions for successful miR-based 
gene therapies.
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Chapter 7
Immune System Regulation of Muscle 
Injury and Disease

Jenna M. Kastenschmidt, Ali H. Mannaa, Karissa J. Muñoz, 
and S. Armando Villalta

Abstract Muscular dystrophy and inflammatory myopathy are muscle diseases 
that despite their etiological differences share many pathological features, including 
muscle degeneration, loss of function, and chronic inflammation. Immunological 
processes induced by muscle injury contribute to the pathology of various muscular 
dystrophies, whereas autoimmune responses specific for yet undefined muscle anti-
gens are suspected to be the cause of some idiopathic inflammatory myopathies. 
This chapter discusses the role of the immune system in eliciting immunity and 
regulating inflammatory responses during acute injury and muscle degenerative dis-
eases. Duchenne muscular dystrophy (DMD) is the most prevalent form of muscu-
lar dystrophy. Using DMD as an example, we discuss the role of immune system in 
the pathogenesis of muscle disease. In addition to the role of innate immunity, we 
review the literature supporting the elicitation of antigen-specific, adaptive immune 
responses in DMD, including those specific for dystrophin. We discuss the clinical 
implications of these adaptive immune responses and their potential in limiting the 
efficacy of dystrophin gene therapy. Last, we highlight therapeutic approaches that 
may be used to inhibit degenerative muscle inflammation and to tolerize DMD 
patients to the protein product of dystrophin gene therapy.
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7.1  Introduction

Skeletal muscle is a highly resilient tissue that maintains homeostasis despite 
dynamic changes in activity, mechanical load, and stress. Nonetheless, acute trauma 
or genetic and environmental factors that exceed this homeostatic threshold of resil-
ience cause muscle injury and loss of function. Although the etiology of muscle 
injury differs between acute and chronic disease, a common feature linking these 
ailments is the activation of the immune system and inflammatory cascades leading 
to immune cell infiltration of muscle. Acute injuries that stem from extreme exer-
cise, trauma, or the reloading of muscle following long periods of inactivity induce 
resolvable inflammation that is required for complete muscle regeneration [1–3]. At 
the other end of the spectrum, the muscle degeneration observed in muscle disor-
ders elicits chronic inflammation that impairs muscle regeneration [4]. Thus, in a 
simplified view, one may predict that the severity and chronicity of muscle injury 
dictates the role immune system plays in muscle injury and repair. While the coor-
dinated recruitment and resolution of inflammation are necessary for regeneration 
during acute injury, the chronic inflammation caused by asynchronous injury 
impairs regeneration and exacerbates muscle degeneration. In the sections below, 
we compare and contrast the role of the immune system in acute injury and chronic 
muscle disease, providing a basis for discussion on potential therapeutics aimed at 
suppressing degenerative inflammation. Additionally, we discuss the potential role 
of the immune system as a barrier limiting the efficacy of dystrophin gene therapy 
and potential therapeutic strategies aimed at tolerizing patients to dystrophin.

7.2  Immune System Contributions to Muscle Regeneration 
Following Acute Injury

Muscle injury activates multiple immune system pathways that cooperatively regu-
late the spatiotemporal dynamics of immune cell subpopulations (e.g., macrophages 
and T cells) recruited to the injured muscle (Fig. 7.1a). These events are character-
ized by an early innate immune response, running in parallel with T cell responses 
that together enhance the regeneration of damaged myofibers by promoting satellite 
cell proliferation and/or differentiation. Here we describe the carefully controlled 
series of immunological events that ensure the effective and complete recovery of 
acutely injured muscle.

Muscle fiber necrosis results in the release of damage-associated molecular pat-
terns (DAMPs) that activate innate immunity [5]. Ly6G+ neutrophils are the first 
immune cells to infiltrate the site of injury [6], causing secondary damage by secret-
ing free radicals [7] and pro-inflammatory cytokines, the latter of which promotes 
the homing of bone marrow-derived monocytes [8–10]. A recent study revealed that 
CD18 (integrin beta 2) is required for the extravasation of neutrophils into the 
acutely injured muscle, and mice deficient in CD18 exhibited enhanced signs of 
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muscle repair, suggesting that neutrophils have a detrimental role in the repair pro-
cess [8]. Following the neutrophil response, CD11b+Ly6ChiCX3CR1lo monocytes 
enter the damaged tissue and differentiate into pro-inflammatory M1-like macro-
phages [11]. M1 macrophages secrete the inflammatory cytokines, interleukin-1β 
(IL-1β) and tumor necrosis factor alpha (TNFα) and phagocytose necrotic debris, 
suggesting that they participate in the repair process by clearing dead muscle [11]. 
A requirement for M1-like macrophages in muscle repair is further supported by 
in vitro studies showing that they promote myoblast proliferation while having no 
effect on differentiation [11]. Although previous studies have shown that M1-like 
macrophages promote the cytolysis of muscle cells in vitro, it is not clear whether 
they promote myofiber injury in vivo during acute injury [12].

CD11b+Ly6CloF4/80hi, anti-inflammatory M2 macrophages infiltrate injured 
muscle as M1 macrophages begin to resolve [11]. Although M2-like macrophages 
can be further divided into M2a, M2b, and M2c subpopulations (see [13] for a 
review), in this chapter we will collectively refer to them as M2 macrophages. The 
transition from M1 to M2 macrophages is necessary for the proper and efficient 
regeneration of injured muscle. Although the mechanisms that regulate this process 

Fig. 7.1 Frequencies of immune cell populations in acutely injured and diseased muscle. 
Postulated macrophage and Treg frequencies during (a) acute muscle injury and (b) Duchenne 
muscular dystrophy (DMD). Red, blue, and dashed black lines represent frequencies of M1-like 
macrophages, M2-like macrophages, and Tregs, respectively
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are not completely understood, recent studies highlighted regulatory T cells (Tregs) 
and IL-10 as having an important role in this transition; the ablation of either 
impeded on the M1 to M2 transition during acute injury [14, 15]. The importance of 
this transition is demonstrated by an increase in myofiber injury and altered regen-
eration in this setting [14, 15].

The central role of M2-like macrophages in muscle repair is supported by several 
studies showing that depletion or the inability to induce M2 activation impedes 
muscle regeneration [16, 17]. The depletion of F4/80+ macrophages during the time 
when M2-like macrophages infiltrate muscle impairs regeneration [16]. Moreover, 
the deficiency of AMPKα1 in macrophages, which prevented M2 activation, also 
resulted in an impairment in muscle regeneration following cardiotoxin-induced 
muscle injury [17]. Recent studies also showed that the intramuscular injection of 
CD11b+Ly6CloF4/80hi macrophages into mouse skeletal muscle increased the regen-
eration and functional recovery of skeletal muscle in an ischemia-reperfusion model 
of injury [18].

Although the role of M2-like macrophages in muscle regeneration is well 
accepted, we are only recently beginning to uncover the molecular basis of M2 
macrophage-mediated regeneration. Recent studies are showing that M2-like mac-
rophages promote regeneration, in part, by secreting factors that regulate inflamma-
tion and regeneration. For example, they secrete anti-inflammatory cytokines like 
transforming growth factor beta (TGF-β) and IL-10 that modulate the inflammatory 
response to establish an environment favorable for muscle regeneration [19]. 
Reparative macrophages also express soluble factors such as growth differentiation 
factor 3 (GDF3) [20] and insulin-like growth factor 1 (IGF-1) that promote regen-
eration by enhancing satellite cell fusion and differentiation [21–23].

The recruitment of macrophage populations to damaged muscle is an additional 
layer of regulation controlling the macrophage-specific contributions to muscle 
regeneration. A recent study by Brigitte and colleagues demonstrated that following 
acute injury, muscle resident macrophages (CD11b+F4/80+CD11c−Ly6C−CX3CR1−) 
orchestrate early immune responses through the production of chemoattractants that 
recruit neutrophils and monocytes [24]. The CCL2:CCR2 chemotactic axis is 
required for macrophage recruitment to injured muscle and preferentially recruits 
inflammatory monocytes that are Ly6ChiCCR2hi [6, 23]. In contrast, the chemokine 
receptor CX3CR1 is not required for macrophage recruitment to injured muscle, but 
is important for regulating macrophage phagocytosis [25]. Macrophages also pro-
mote chemotaxis of immune cells through their intrinsic production of chemokines. 
For example, macrophages expressing CCL5 (RANTES) recruit CD8+ T cells fol-
lowing cardiotoxin-induced injury [26] and other immune cells including eosino-
phils [27]. Recent studies showed that eosinophils are required for efficient muscle 
regeneration and their accumulation in injured muscle paralleled an increase in 
CCL5 [28]. Given that macrophages are known to express CCL5, a potent eosino-
phil chemoattractant, these studies collectively suggest that macrophages recruit 
eosinophils, and both cooperatively promote regeneration.

Although myeloid cells dominate the immune cell infiltrate following injury, lym-
phocytes are also recruited and regulate muscle regeneration. Recent  investigations 
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showed that following cardiotoxin injury, forkhead box P3 (FoxP3)+CD25+CD4+ 
Tregs were recruited to skeletal muscle at the time when the M1 to M2 macrophage 
transition occurs [14, 29]. The functional importance of Tregs in acute muscle injury 
was shown by loss- or gain-of-function experiments where muscle regeneration was 
hindered or enhanced, respectively [14]. Although muscle Tregs in acutely injured 
muscle expressed high levels of amphiregulin (Areg), and intramuscular and intra-
peritoneal injections of Areg in injured mice enhanced a transcriptional signature 
associated with muscle regeneration, it remains to be defined whether Treg-derived 
amphiregulin directly promotes muscle regeneration in vivo [14]. Burzyn and col-
leagues showed that Areg treatment enhanced satellite cell proliferation and differ-
entiation, further supporting a regenerative function for Areg in acutely injured 
muscle. Further corroborating these findings, Castiglioni and colleagues indepen-
dently demonstrated that muscle Tregs promoted regeneration by increasing satellite 
cell proliferation but inhibited differentiation [29]. In their studies, Castiglioni et al. 
co-cultured Tregs with satellite cells, in contrast to the Burzyn et al. study where 
satellite cells were treated with recombinant Areg [14, 29]. Thus, the contradicting 
results on satellite cell differentiation in these two studies may be attributed to differ-
ences in the experimental assays used. Collectively, these studies highlight a critical 
role for the immune system in muscle regeneration following acute injury. As we 
discuss next, similar immunoregenerative mechanisms operate in chronic muscle 
disorders, the dysregulation of which contributes to the pathogenesis of these 
diseases.

7.3  The Role of the Immune System in Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a devastating childhood disease attributed 
to dystrophin gene mutations [30, 31] that arise in approximately 1:5000 males [32, 
33]. Clinical symptoms arise shortly after 3–5  years of age and progressively 
worsen, leading to loss of ambulation by adolescence and death by the second to 
third decade of life. The dystrophin protein mechanically stabilizes and protects the 
sarcolemma from longitudinal and radial forces generated during muscle contrac-
tion. In the absence of dystrophin, as seen in DMD patients, the sarcolemma is 
rendered susceptible to contraction-induced injury [34], which subsequently trig-
gers a chronic muscle inflammatory response that contributes to the development 
and progression of DMD [35].

7.3.1  Immunology in the Pathogenesis of Muscular Dystrophy

The critical function of inflammatory immune cells in muscle regeneration during 
acute injury is dysregulated in DMD, consequently promoting muscle degenera-
tion. Muscle injury during DMD induces an oscillating pattern of chronic muscle 
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inflammation that mirrors the asynchronous and cyclic nature of injury (Fig. 7.1b). 
This dysregulated inflammatory response subsequently promotes fibrosis and fail-
ure of regeneration [36]. The increased immune cell numbers and expression of 
genes related to immune cell function in DMD muscle further support the immune 
system’s contribution to the pathogenesis of muscular dystrophy [37–40]. 
Moreover, the immunosuppressive activity of glucocorticoids [41], and their 
known role in promoting muscle atrophy [42], suggests that the incremental delay 
in disease progression is mediated by inhibition of the immune system. This argu-
ment is supported by studies performed in the mdx mouse model of DMD showing 
that glucocorticoid treatment reduces the expression of adhesion molecules 
required for immune cell extravasation and the number of immune cells present in 
dystrophic muscle [43]. More specific methods of immune cell ablation in mdx 
mice have demonstrated that the depletion of eosinophils, macrophages, or T cells 
in muscle causes a 60–80% decrease in muscle pathology [44–46]. These early 
studies aided in establishing inflammation as a secondary disease process contrib-
uting to the severity of muscular dystrophy and have provided the basis for research 
aimed at uncovering the cellular and molecular basis of immune-mediated pathology 
in DMD.

In addition to promoting muscle injury, the immune system is also critical in 
mediating muscle regeneration during muscular dystrophy [47–51]. This dichotomy 
can be partly explained by a division in functional facets of the immune system, in 
which distinct immune cell subsets are responsible for causing injury or promoting 
regeneration (Fig. 7.2). This process is exemplified by the accumulation of macro-
phages with distinct polarized states of M1- or M2-like activation that are known to 
promote either injury or repair, respectively. M1 and M2 macrophages reflect polar 
extremes of activation. However, macrophages present in dystrophic muscle likely 
exist as a broad continuum in which cells transition from one state of activation to 
another according to changes in the pro- and anti-inflammatory environment [52, 53]. 
Pro-inflammatory cytokines such as IFNγ and TNFα promote the classical activa-
tion of M1 macrophage that induces myofiber injury through an iNOS-dependent 
mechanism [54]. In contrast, cytokines such as IL-4, IL-13, and IL-10 induce M2 
activation of macrophages that antagonize the action of M1-like macrophages via 
arginase-dependent mechanisms [54]. Recent studies have begun to define the cell 
types that orchestrate changes in the inflamed environment of dystrophic muscle. 
Below, we discuss the role of Tregs as critical regulators of muscle inflammation 
and regeneration, focusing on their capacity to shift the balance between M1 and 
M2 macrophages in favor of M2 activation.

Treg development and function is highly dependent on FoxP3, a transcription 
factor critical for the specification of this suppressive CD4+ T cell lineage. The func-
tion and viability of CD4+FoxP3+ Tregs are highly dependent on IL-2, a cytokine 
expressed primarily by conventional (CD4+FoxP3−) T cells [55] and to a lesser 
extent by naive CD8+ T cells [56] and dendritic cells [57]. IL-2 signaling through 
the IL-2 receptor induces the expression of FoxP3 in a STAT-5-dependent manner 
[58], thus, enforcing Treg lineage specification. Unlike conventional T cells, Tregs 
constitutively express CD25 (the IL-2Rα chain), corroborating the importance of IL-2 
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signaling for Treg function and/or viability. Accordingly, defects in IL-2/IL-2 receptor 
signaling have been linked with several inflammatory and autoimmune disorders 
due to a developmental defect in Tregs [59].

As discussed above, Tregs are elevated in regenerating muscle and promote 
muscle regeneration by regulating macrophage activation and enhancing myogenesis 
through Areg-dependent mechanisms. Comparably, studies in the mdx mouse and 
human indicate that muscle Tregs are also increased in chronic muscle disorders 
[60–63]. Tregs in mdx muscle were elevated in number and expressed high levels of 
IL-10. They inhibited M1 macrophage activation and reduced myofiber injury [60]. 
Similarly, Tregs and IL-10 were elevated in human dystrophic muscle [60], support-
ing the view that Tregs suppression of muscle inflammation is mediated by IL-10. 
Additionally, in vitro studies have shown that human Tregs express IL-10 and induce 
M2 macrophages [64]. Although the Treg-specific role of IL-10 in suppressing mus-
cle inflammation has not been tested, its importance is supported by studies showing 
that IL-10 deficiency in mdx mice exacerbates dystrophinopathy [65, 66]. We note, 
however, that the mechanism of Treg-mediated suppression of immunity in other 
tissues is multifaceted, involving the inhibition of antigen-presenting cells (i.e., den-
dritic cells), cytolysis of conventional T cells, and the production of anti- inflammatory 
cytokines, like IL-10 and IL-35 [67, 68]. Moreover, recent studies indicate that tissue 
Tregs also harness specialized functions adapted to the  environment they reside in. 

Fig. 7.2 The Yin-Yang function of degenerative and regenerative immune cells in muscular dys-
trophy. In healthy muscle degenerative and regenerative immune cell populations are balanced, 
maintaining homeostasis (center). During muscular dystrophy, shifts in this balance either promote 
degeneration (left) or regeneration (right). A degenerative type 1 inflammatory response is charac-
terized by increased expression of pro-inflammatory cytokines such as IFNγ and TNFα and the 
presence of polymorphonuclear neutrophils (PMN), M1-like macrophages (M1 Mϕ), CD4+ Th1 
cells, and CD8+ cytotoxic T lymphocytes (CTL). Regenerative responses are characterized by the 
presence of Tregs and M2-like macrophages (M2 Mϕ) that express amphiregulin (Areg) and 
IL-10. Eosinophils are not depicted because they are suspected to play a role in degeneration and 
regeneration
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Thus, in addition to suppressive activity, Tregs in dystrophic muscle are likely 
involved in the promotion of regeneration through Areg, and/or other growth factors, 
as seen during acute injury [14].

7.3.2  The Immune System as a Barrier Limiting the Efficacy 
of Muscle Gene Therapy

Despite the common view that inflammation is a generalized innate response to 
muscle injury, several lines of evidence indicate that antigen-specific responses are 
also operating in dystrophic muscle [49, 50]. Adaptive (antigen-specific) immune 
responses are mediated by B lymphocytes (B cells) that directly bind antigen; and T 
lymphocytes (T cells) bind cognate antigen presented on major histocompatibility 
complex (MHC) molecules [69]. Previous studies have shown that B220+ B cells, 
germinal center reactions, and IFNγ-expressing effector T cells were expanded in 
lymph node or muscle of mdx mice [60, 70, 71]. Due to the required activation of 
the antigen-specific receptors for B and T cell expansion [72, 73], one may postulate 
that an unidentified antigen/s is responsible for the activation of adaptive immune 
cells in dystrophic muscle. This hypothesis is further supported by multiple studies 
suggesting the clonal expansion of antigen-specific T cells in mdx mice and human 
DMD patients [14, 63, 74].

The activation of T cells requires engagement of the T cell receptor (TCR) by 
cognate antigen loaded on MHC, which causes the clonal expansion of antigen- 
specific T cells that promote immunity [73]. Previous reports showed that relative to 
other Vβ T cell populations, Vβ8.1/8.2+ T cell frequencies were increased in mdx 
muscle, and a conserved amino acid motif, RVSG, was observed in the TCR’s third 
complementary determining region (CDR3) in multiple DMD patients [63, 74]. 
Burzyn and colleagues provided additional evidence for clonal expansion by exam-
ining the TCR repertoire of Tregs and found an enrichment of several TCR rear-
rangements in mdx muscle [14]. Collectively, these studies indicate that the 
recognition of uncharacterized muscle antigens in mdx mice and DMD patients 
elicit adaptive immunity during muscular dystrophy. Although the antigens driving 
adaptive immunity are unknown, studies have shown that some of the specificity of 
B and T cells is directed toward dystrophin [75–77].

Recent studies revealing the development of dystrophin-specific immune 
responses raise a concern about the potential lack of immunological tolerance to the 
protein product of exogenously introduced dystrophin transgenes [76, 77]. This chal-
lenge was highlighted in a recent gene therapy trial where a subset of patients treated 
with mini-dystrophin gene therapy harbored dystrophin-specific T cells [77]. 
Flanigan and colleagues subsequently confirmed these observations in their study of 
a larger population of DMD patients, where they found that 50% of untreated patients 
harnessed dystrophin-specific T cells, in contrast to 20% in patients treated with 
glucocorticoids [76]. It remains to be determined whether any of the observed T cell 
responses in mdx mice are dystrophin-specific. However, studies have shown that 
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dystrophin-specific antibodies are elicited in animal models of DMD and patients 
following myoblast transplantation or dystrophin gene therapy [75]. Collectively, 
these studies support a lack of immunological tolerance to dystrophin in DMD, lead-
ing to the generation of dystrophin-specific B and T cells. Dystrophin-specific 
immune responses will likely compromise the long-term efficacy of dystrophin gene 
therapy due to immune-mediated rejection of myofibers expressing the dystrophin 
protein. Future investigations aimed at defining the immunoregulatory mechanisms 
operating in muscular dystrophy will provide the field with an increased understand-
ing to better design future therapies that specifically augment dystrophin tolerance.

7.4  The Role of the Immune System in Myopathies

Similar to DMD, activation of the immune system is also a feature of other muscle 
diseases. However, the immune cell populations that promote pathogenesis and 
their functional attributes differ among these disorders. This section explores 
immune responses in chronic myopathies, primarily focusing on sporadic inclusion 
body myositis (sIBM) as an example of a muscle disease with suspected autoim-
mune etiology. We describe the role of the immune system in these muscle disorders 
and highlight the Treg response in these muscle diseases.

7.4.1  Immune Responses in Myopathies

Distinctions in the localization and function of immune cells can be made among 
muscle disorders. In DMD, inflammatory cells surround and invade necrotic muscle 
fibers but spare non-necrotic muscle fibers [78]. In contrast, in facioscapulohumeral 
muscular dystrophy (FSHD), dermatomyositis (DM), polymyositis (PM), and 
sIBM, immune cells infiltrate the endomysium to form inflammatory halos that sur-
round non-necrotic muscle fibers [78, 79]. We speculate that the inflammatory 
halos, primarily composed of CD8+ cytotoxic T lymphocytes (CTLs) and macro-
phages, are responsible for the injury of healthy muscle fibers found in these dis-
eases [78, 79]. In support of this interpretation, perforin-expressing CD8+ CTLs 
invade non-necrotic fibers that express MHC class I in PM and sIBM patients [79]. 
Studies showing that perforin deficiency in mdx mice reduces myofiber injury fur-
ther support perforin-dependent cytotoxicity as an important mechanism for T cell- 
mediated injury of muscle [80].

Several studies suggest that antigen-dependent activation of CD8+ CTLs under-
lies the pathogenesis of several chronic myopathies. In sIBM, circulating and mus-
cle CD8+CD28null and CD4+CD28null T cells are expanded [81, 82]. A percentage of 
these cells expressed CD107a (a marker of degranulation and cytotoxicity) and 
IFNγ (the prototypical Th1 effector cytokine). Given that CD28 is decreased when 
T cells are exposed to antigen [83], the expression of CD107a and IFNγ on CD8+ 

7 Immune System Regulation of Muscle Injury and Disease



130

T cells likely reflects an undefined antigen-dependent activation of CD8+ CTL 
responses during sIBM. Evidence of clonal expansion of T cells in sIBM was pro-
vided by Greenberg et al., which showed that CD8+CD57+ T cells were increased 
[84]. In human disease, CD8+CD57+ T cells represent a population of oligoclonally 
expanded T cells generated in response to chronic antigenic stimulation [83]. 
Corroborating an antigen-dependent activation of T cells in sIBM, Pandya and col-
leagues showed a restricted usage of T cell receptor Vβ chains in sIBM patients, 
indicating clonal expansion of T cells following antigen exposure [82]. Although 
these data do not indicate that CD8+ T cells dominate the immune response, they do 
suggest that inflammation in chronic muscle disorders encompasses a CTL response 
that promotes muscle injury. However, further research is necessary to determine 
whether CTL activation is a result of muscle degeneration or an intrinsic defect in 
the immune system causing disease.

In several autoimmune diseases, a feature of autoimmunity is the generation of 
autoantibodies [85]. Similarly, in sIBM 70% of patients were seropositive for 
NT5c1A autoantibodies, which was associated with a more severe clinical outcome 
as determined by a significantly longer timed get-up test [86, 87]. Seropositive 
patients were also more likely to require a walker or wheelchair, present symptoms 
of dysphagia, and demonstrate facial weakness [87]. Retrospective studies based on 
data from European sIBM registries identified NT5c1A seropositive patients as hav-
ing a higher mortality risk [88]. Thus, the presence of autoantibodies directed 
against NT5c1A supports a means of stratifying sIBM patients into clinical groups 
to predict prognosis.

In addition to distinct immune effector cells and antibody responses associated 
with myopathies, the upregulation of pro-inflammatory cytokines and mediators may 
also enhance pathogenesis. Peripheral blood mononuclear cells in FSHD patients 
showed higher expression of pro-inflammatory cytokines including IL-12, IFNγ, and 
TNFα [89]. The role of IFNγ was also highlighted in sIBM and DM, where IFNγ 
induced greater expression of CXCL9, promoting systemic Th1 immune activation 
[81, 90, 91]. Furthermore, it was demonstrated in sIBM that high mRNA expression 
of IFNγ, CXCL9, and CCL3 positively correlated with β-amyloid-associated protein 
expression in myofibers, suggesting that the accumulation of this protein induces the 
expression of pro-inflammatory factors [92]. The prevalence of pro-inflammatory 
cytokines, in concert with activated immune cells and autoantibodies, is collectively 
important in potentially enhancing pathogenesis in some muscle diseases.

7.4.2  Regulatory T Cells as Immunosuppressors of Chronic 
Myopathies

Similar to acute injury and muscular dystrophy, Treg responses also appear to oper-
ate in additional muscle disorders. Previous studies revealed a decrease in periph-
eral Tregs in PM, DM, and sIBM that may underlie the elicitation of an autoimmune 
response specific for undefined muscle antigens [62, 81, 93]. Although a subset of 
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patients with active juvenile DM displayed a higher frequency of Tregs in inflamed 
muscle, Treg suppressive activity was defective in these patients [61]. Also observed 
in DM was a reduction in the serum levels of IL-10 and TGF-β, effector cytokines 
produced by peripheral Tregs that suppress inflammation [94, 95]. Conversely, 
studies in the mdx mouse model of DMD have collectively shown that Tregs are 
elevated in dystrophic muscle [60] and IL-10 inhibited M1-like macrophages, 
reducing muscle injury and improving strength [65]. The consequence of reduced 
Treg frequencies and IL-10 expression may be an underlying cause contributing to 
autoimmunity in DM, PM, and sIBM. In the context of inflammation, understanding 
the roles of effector T cells, Tregs, and their cytokine expression profiles may eluci-
date new targets for the treatment of chronic myopathies.

7.5  Potential Immunological Targets for the Treatment 
of Muscle Disorders

A great precedence should be placed on the advancement of treatment options 
aimed at improving the quality of life of DMD patients while a cure is discovered. 
Understanding how the immune system contributes to dystrophinopathy may lead 
to the development of novel immunological therapies that ameliorate disease sever-
ity by inhibiting degenerative inflammation. Moreover, immune-based interven-
tions may be used to tolerize DMD patients to the dystrophin gene therapy protein 
product. Although numerous strategies exist, NF-kB inhibitors, direct cytokine 
targeting, and Tregs show great promise to address these unmet clinical needs and 
will be discussed in this section.

7.5.1  Blockade of NF-κB

The NF-κB pathway is an attractive target because of its well-described role in tran-
scriptionally regulating the inflammatory cascade. The NF-κB family consists of 
p50, p52, p65, RelB, and c-Rel proteins, which form hetero- and homodimers that 
regulate the transcription of numerous inflammatory genes [96]. During homeostasis, 
the majority of NF-κB dimers are sequestered by IκBɑ and kept in an inactive state. 
Upon inflammatory stimuli, IκBɑ is phosphorylated by IKK (IκB kinase) and 
degraded, allowing NF-κB to translocate to the nucleus and activate the transcrip-
tional program that drives inflammation [96].

The therapeutic potential of targeting this pathway was shown by genetic studies 
where NF-κB was deleted in macrophages or myotubes, resulting in reduced inflam-
mation and improved regeneration, respectively [97]. Moreover, treating mdx mice 
with NEMO-binding domain (NBD) peptides, an NF-κB-specific inhibitor, increased 
muscle fiber regeneration and decreased macrophage accumulation in muscle [97]. 
As an alternative approach, Sun and colleagues used sulforaphane (SFN) to inhibit 
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NF-kB [98]. SFN increased muscle mass while decreasing nuclear accumulation of 
NF-κB and the expression of pro-inflammatory cytokines such as IL-1β, TNFα, and 
IL-6 [98]. Of particular interest, a new experimental steroid drug, VBP15, has gained 
clinical interest due to its ability to inhibit the NF-kB pathway without activating 
glucocorticoid receptor (GR) target transcripts [99]. The potential clinical benefits 
for DMD patients are of high impact given that the side effects of anti-inflammatory 
glucocorticoids are suspected to act through classical steroidal transactivation [100]. 
Targeting the NF-κB pathway has proved successful in preclinical models of muscu-
lar dystrophy and currently stands as a highly plausible form of immunological 
treatment for DMD.

7.5.2  Cytokine Targeting

A prominent feature of the inflammatory infiltrate in muscular dystrophy is the secre-
tion of pro-inflammatory cytokines that potently induce degenerative inflammation. 
Although multiple cytokines should be considered as potential targets for muscular 
dystrophy, here we highlight TNFα and IL-6 for their well-known role in muscle 
inflammation [101, 102]. TNFα is secreted mainly by macrophages and is a potent 
activator of immune cells and the NF-κB pathway. Studies using cVq1, an anti-TNFα 
antibody, showed a decrease in necrosis and contractile dysfunction after exercise-
induced muscle damage in mdx mice [103]. TNFα, in addition to its ability to activate 
NF-κB, is potent amplifier of IFNγ-induced activation of M1 macrophages. Thus, the 
ameliorative effect of cV1q treatment in mdx mice likely involves the inhibition of M1 
macrophages that are known to induce muscle injury in this setting [54]. Given the 
preclinical success of TNFα blockade, the FDA-approved human-specific TNFα anti-
body, infliximab, may serve as a potential immunological therapy for DMD [104].

IL-6 is an inflammatory cytokine with pleiotropic activity, showing anti- or pro- 
inflammatory effects in skeletal muscle ailments [105]. It was recently postulated 
that the functional dichotomy of IL-6 is attributed to classic versus trans-signaling 
[106]. In trans-signaling, IL-6/soluble IL-6 receptor complexes bind gp130 in trans 
to activate signal transduction, promoting the transition from acute to chronic 
inflammation [106, 107]. Alternatively, in classic signaling IL-6 binds membrane- 
bound IL-6 receptor and gp130 to activate anti-inflammatory cascades. IL-6 is 
 overexpressed in mdx mice and DMD patients, and blockade of the IL-6 pathway 
had beneficial effects in preclinical settings [108, 109]. Treatment of mdx mice with 
monoclonal IL-6 receptor-blocking antibodies reduced muscle inflammation and 
necrosis after exercise-induced injury [109]. It is important to note, however, that 
some studies have shown that neutralizing IL-6 ligand reduced inflammation in mdx 
mice without improving muscle function [110]. It remains to be addressed whether 
targeting the IL-6 ligand or blocking the receptor has differential effects on trans 
and classical IL-6 signaling. We propose that tocilizumab, an IL-6 receptor antag-
onist approved for rheumatoid arthritis, may be used as an anti-inflammatory 
treatment for DMD. However, further research is required to determine the effect 
of tocilizumab on trans- and classical signaling.
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7.5.3  Treg-Promoting Therapies

Their immunosuppressive nature makes Tregs an attractive therapeutic target in 
DMD, because of their strong potential to suppress muscle inflammation and pro-
mote dystrophin tolerance. The therapeutic potential of Tregs in DMD is supported 
by studies showing an accumulation of Tregs in mdx skeletal muscle, and their 
depletion exacerbated muscle injury, inflammation, and fibrosis [14, 60]. Importantly, 
mdx mice treated with IL-2 and anti-IL-2 antibody complexes (IL-2c) that potently 
induce Tregs in vivo reduced inflammation and myofiber injury. The amelioration of 
muscular dystrophy in mdx mice treated with IL-2c was associated with an increased 
frequency of Tregs and expression of IL-10 in mdx skeletal muscle [60]. Further 
supporting the potential of Tregs in muscular dystrophy, Gazzerro and colleagues 
found that inhibitors of the extracellular ATP/P2X purinergic signaling pathway 
significantly ameliorated disease severity in mdx mice. Inhibition of the ATP/P2X 
axis increased muscle Treg numbers and muscle strength while reducing muscle 
inflammation and injury [111]. It remains to be addressed whether the ameliorative 
role of P2X inhibitors was attributed specifically to an inhibition of the ATP/P2X 
axis in Tregs or other cellular targets. Eghtesad et al. showed previously that target-
ing the mTOR pathway with the immunosuppressant rapamycin (RAPA) amelio-
rated dystrophic pathology in mdx mice by increasing the frequency of Tregs in 
dystrophic muscle. However, it appeared that the mechanism of action for RAPA 
involved the targeting of effector T cells (Teff), effectively increasing the Treg/Teff 
ratio [112]. However, it should be noted that inhibition of the mTOR pathway causes 
atrophy [113]. Thus, further research is required to determine the consequences of 
long-term RAPA treatment on dystrophic muscle. Nonetheless, RAPA remains an 
attractive therapy because of its ability to inhibit dystrophin immunity [114], which 
may outweigh the negative consequence of mTOR inhibition on muscle growth.

7.6  Conclusion

Understanding the functional outcome of immune cell and muscle interactions that 
promote injury may lead to the development of novel treatments that prevent or delay 
muscle disease. Corticosteroids delay the deterioration of muscle that is exacerbated 
by cytotoxic inflammatory cells. However, chronic corticosteroid use is associated 
with side effects, and the complete inhibition of inflammatory cells may lead to the 
silencing of protective mechanisms that promote muscle repair. The growing body of 
evidence that specialized subpopulations of immune cells which contribute to muscle 
injury or regeneration sets forth a precedence on delineating the mechanisms that 
promote cytotoxic inflammatory responses from those that promote repair. Research 
directed at addressing this goal will lead to the development of safer treatments that 
target cytotoxic mechanisms while leaving intact those that are protective. In addi-
tion, the findings of these future lines of investigation may provide the DMD research 
community with the insight required to address the clinical challenge of promoting 
tolerance to dystrophin.
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Chapter 8
Design of Muscle Gene Therapy 
Expression Cassette

Yi Lai and Dongsheng Duan

Abstract The first gene therapy drug approved by the European Regulatory 
Commission involves the transfer of a therapeutic gene to the muscle by adeno- 
associated viral vector (AAV). Now, muscle gene transfer is quickly becoming a 
therapy of choice for muscle and non-muscle diseases. Successful muscle gene 
therapy requires efficient expression of therapeutic proteins in the muscle without 
causing any toxicity and side effects. To achieve this, the expression cassette of 
therapeutic proteins needs to be designed rationally. A typical expression cassette 
usually contains a promoter to initiate transcription, the coding sequence of a trans-
gene, and a termination signal to terminate transcription. Other cis-regulatory ele-
ments can be added into the 5′- and 3′-untranslated regions. In this chapter, we 
review the development of the components of the expression cassette in the context 
of muscle gene therapy.
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8.1  Introduction

Muscle gene therapy is becoming a therapy of choice for muscle and many non- 
muscle diseases, as exemplified by the first gene therapy drug (Glybera) approved by 
the European Regulatory Commission, which involves adeno-associated virus 
(AAV)-mediated expression of a therapeutic gene, lipoprotein lipase, in the muscle 
[1]. Gene transfer to muscle has many advantages. First, muscle is the most abundant 
tissue in the body, comprising 30–40% of the body mass. The abundance of the 
muscle tissue could possibly represent a barrier for gene transfer in muscle genetic 
disorders. However, on the other hand, a large quantity of muscle cells are advanta-
geous for gene therapy of non-muscle diseases, since abundant muscle cells are able 
to produce sufficient amount of secretive proteins for systemic distribution or vac-
cination. Second, muscle gene transfer is easy to manipulate as muscle is readily 
accessible to multiple gene delivery routes. Third, due to slow turnover of the muscle 
cells, the expression of a transgene in the muscle usually persists for a long period.

In general, gene transfer includes viral (such as adenovirus, AAV, herpes simplex 
virus (HSV), lentivirus, and retrovirus) and non-viral gene transfer (such as naked 
plasmid DNA). Irrespective of the gene transfer methods, there is usually a basic 
gene expression unit (or the expression cassette) to express a therapeutic protein. 
Sometimes, a therapeutically relevant RNA or oligonucleotides can also be 
expressed from the basic gene expression unit. In this chapter, we focus our discus-
sion on the design of the protein expression unit.

The expression cassette comprises a default structure, composed of a promoter to 
initiate transcription, a transgene coding sequence, and a termination signal to ter-
minate transcription. Also, other cis-regulatory elements can be added to facilitate 
transgene expression (Fig. 8.1). To induce safe and efficient transgene expression in 
the muscle, the expression cassette needs to be designed rationally by carefully 
evaluating and assembling each component in the expression cassette. Generally, 
several factors should be considered. First, the size of the expression cassette should 
fit in the gene transfer vector. For example, the packaging capacity of AAV is <5 kb. 

Fig. 8.1 The structure of a typical expression cassette in the gene transfer vector. The expression 
cassette is composed of the promoter to initiate transcription, the coding sequence for a transgene, 
and the termination signal to terminate transcription. Other cis-regulatory elements can be added 
into the 5′- and 3′-untranslated region (UTR) of the transgene coding sequence
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So the size of the expression cassette for AAV cannot be beyond 5 kb. Second, the 
efficiency of the expression cassette should be high enough to produce sufficient 
therapeutic proteins in muscle. Third, duration of the transgene expression should 
be long enough to generate therapeutic effects but without causing any toxicity and 
side effects. Below we discuss each components of the expression cassette.

8.2  Promoter

A good promoter can drive robust transcription of a transgene in the muscle. The 
commonly used promoters include the RNA polymerase II-dependent promoter 
(Pol II promoter) and RNA polymerase (Pol) III-dependent promoter. The Pol II 
promoter is the most commonly used one, and it is usually used to express a protein- 
coding sequence. The commonly used Pol II promoters include viral promoters, 
eukaryotic promoters, and synthetic promoters.

8.2.1  Viral Promoter

The most commonly used viral promoters are the ubiquitous cytomegalovirus 
(CMV) immediate-early promoter, Rous sarcoma virus (RSV) promoter, simian 
virus 40 (SV40) promoter, and retroviral LTR promoter. Because of their high 
potency and easy availability, the majority of gene transfer vectors utilized viral 
promoters during the early period of gene therapy development. Both CMV and 
RSV promoters can induce a higher level of transcription than SV40 and retroviral 
LTR promoter in the muscle [2, 3]. Therefore, CMV and RSV promoters are more 
widely used in muscle gene therapy and have been shown to induce the expression 
of many transgenes in mouse muscle [4–9]. In addition to the murine studies, CMV 
and RSV promoters are also widely used in large animal studies. For example, alka-
line phosphatase (AP) has been expressed in whole body muscles by an AAV.RSV.
AP vector in neonatal dogs [10], and AAV.CMV.μ-dystrophin vectors have been 
used to drive efficient expression of therapeutic micro-dystrophin proteins in the 
dystrophic muscle of canine muscular dystrophy models [11–13]. Moreover, CMV 
promoter has been reported in three clinical trials of muscle gene transfer. Two 
therapeutic proteins, α-sarcoglycan and follistatin, have been successfully expressed 
using AAV.CMV vectors in the muscle of the patients with muscle genetic diseases, 
including limb-girdle muscular dystrophy (LGMD) type 2D [14], Becker muscular 
dystrophy (BMD) [15], and sporadic inclusion body myositis [16].

In addition to efficient transgene expression in the muscle, as ubiquitous promot-
ers, viral promoters also can induce high-level expression in other organs, such as 
the liver, lung, pancreas, kidney, testes, retina, and brain [17–21]. Although univer-
sal activity makes viral promoters attractive for transgene expression in multiple 
tissues, untoward expression in nontargeted tissues may cause cytotoxicity and 
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immune responses. Eukaryotic cells are equipped with mechanisms to inactivate 
and silence viral gene expression. Hence, transgene expression from viral promot-
ers may encounter promoter shutoff, in which viral promoters are inactivated and 
silenced in eukaryotic cells. The immune mechanisms, including cytokine produc-
tion and promoter methylation, are responsible for CMV promoter shutoff [22]. 
Interestingly, the RSV promoter is not prone to silencing by methylation [23]. As a 
result of untoward expression and promoter shutoff, transgene expression from viral 
promoters is often transient [24–26].

8.2.2  Eukaryotic Promoter

The common eukaryotic promoters include elongation factor 1α (EF-1α) promoter; 
CAG promoter, which is composed of CMV immediate-early enhancer, chicken 
β-actin promoter, and the splicing acceptor of rabbit β-globin; phosphoglycerate 
kinase (PGK) promoter; ubiquitin c (UBC) promoter; and tissue-specific promoters. 
In an in vitro study, the strength of ubiquitous eukaryotic promoters was compared 
with viral promoters in the myoblast C2C12 cells. Using lentivirus-mediated GFP 
expression as a readout, the CAG promoter is shown to have the highest transcrip-
tion activity, followed by EF-1α, CMV, SV40, PGK, and UBC promoter [27]. In an 
in vivo study using the dog as the model, intracardiac injection of AAV.CAG.GFP 
led to efficient GFP expression in the smooth muscle of the heart microvessels [28].

Similar to viral promoters, ubiquitous eukaryotic promoters can also lead to 
widespread transgene expression, which may cause immune responses and cytotox-
icity. To restrict transgene expression in the muscle, muscle-specific promoters have 
been developed. Most of these promoters are developed based on our understanding 
of gene regulation in muscle-specific proteins such as creatine kinase (CK), desmin, 
troponin, α-myosin heavy chain (α-MHC), and myosin light chain 2 (MLC- 2). 
Another approach is to develop synthetic muscle promoter. By randomly joining 
multiple copies of four myogenic elements, E-box, MEF-2, TEF-1, and SRE, syn-
thetic promoter libraries have been established. The transcriptional activities of syn-
thetic promoter libraries have been screened in  vitro and in vivo. One synthetic 
promoter C5–12 has been shown to have better transcriptional activity than endog-
enous muscle-specific promoters and CMV promoter in both skeletal and cardiac 
muscle [29]. In the following studies, the C5–12 promoter was used to drive the 
robust expression of therapeutic genes, dystrophin and neuronal nitric oxide synthase 
(nNOS), in both skeletal and cardiac muscles [30, 31]. In another line of studies, by 
taking advantage of the enhancer and promoter of the genes expressing muscle-spe-
cific proteins, including creatine kinase (CK), desmin, troponin, α-myosin heavy 
chain (α-MHC), and myosin light chain 2 (MLC-2), muscle- specific promoters have 
been identified to confine transgene expression to the muscle.

The CK promoter successfully drives efficient expression of Lac Z and dystrophin 
in the muscle [3, 32]. Compared to the ubiquitous CMV promoter, CK-driven trans-
gene expression is significantly higher in the muscle [33, 34]. Further modification 
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by joining the enhancer of the α-myosin heavy chain gene to the CK promoter 
dramatically increases transcription efficiency in the heart [35] and enables the CK 
promoter for treating muscle genetic disorders with severe cardiac symptoms, such 
as Duchenne muscular dystrophy (DMD). The desmin promoter can mediate trans-
gene expression specifically in skeletal and cardiac muscle [36, 37]. However, one 
study found that the desmin promoter is less efficient than the CK promoter in skel-
etal muscle [14]. The troponin promoter is mainly used for cardiac gene transfer 
[38–42], and it successfully induces robust expression of transgenes (such as SOD, 
GFP, and Cre recombinase) in the heart. One study compared the transcription activ-
ity of CMV, desmin, α-MHC, MLC-2, and troponin promoters in the heart and found 
that the CMV promoter resulted in the highest expression [37]. Since both C5-12 and 
CK promoters are more efficient than the CMV promoter in muscle [29, 33, 34], 
these two promoters may be more appropriate for muscle gene transfer.

Contrary to viral promoters, muscle-specific promoters result in longer periods 
of transgene expression and less severe immune reaction. The use of the CK pro-
moter prevented the transgene expression in dendritic cells and prolonged the per-
sistence of transgene expression in the muscle [43]. One study compared CK- and 
CMV-driven γ-sarcoglycan expression in the muscle and found that CMV-driven 
γ-sarcoglycan expression was much lower than that from the CK promoter. Further, 
the authors found the CMV promoter induced the immune response to γ-sarcoglycan 
[44]. Given the success of muscle-specific promoters in limiting the transgene 
expression in the muscle and reducing non-specific expression in murine studies, 
now muscle-specific promoters have been expanded to canine studies, and they 
were shown to successfully induce robust expression of a series of therapeutic 
genes, such as myotubularin and micro-dystrophin, in dog muscles [45–48].

To date, the synthetic C5-12 promoter, the CK promoter, the desmin promoter, 
and the troponin promoter are the most commonly used muscle-specific promoters in 
gene therapy studies. At present about 4806 eukaryotic RNA Pol II promoters have 
been discovered and confirmed by experiments. The information of these promoters 
can be found in the Eukaryotic Promoter Database (EPD) (http://epd.vital-it.ch/). 
Facilitated by promoter-specific high-throughput data analysis, more and more 
eukaryotic promoters have been added and expanded the EPD to EPDnew, which 
accommodates 27,233 promoters in Homo sapiens and 21,239 promoters in Mus 
musculus. These two databases are valuable resources for eukaryotic promoters. 
The wealth of information about eukaryotic promoters in these databases should be 
very useful for the development of the next-generation muscle-specific promoters.

8.2.3  RNA Pol III-Dependent Promoter

Both viral and eukaryotic promoters require RNA Pol II to synthesize mRNAs, 
which encode proteins. Although RNA Pol II promoters also synthesize noncoding 
RNAs, such as microRNAs, RNA Pol III promoters, including U6 and H1, are 
mainly used to express small RNAs, such as guide RNAs (gRNAs) for clustered 
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regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene editing, small 
interfering RNAs (siRNAs), and short hairpin RNAs (shRNAs) to inhibit target 
gene expression. Transcription from the U6 promoter usually starts at the +1 posi-
tion, which is 23 nucleotides (nt) downstream of the TATA box and G as the favorite 
initiation nucleotide. However, one study has identified the region from −3 to +4 in 
the mouse U6 promoter as the putative initiation site. Transcription by the U6 pro-
moter can start with A or G, from the −1 to +2 positions. The sequences around the 
putative initiation site of the U6 promoter are critical for the accuracy of the 5′-end 
sequence of small RNAs. For another RNA Pol III promoter, H1 promoter, initiation 
consistently starts from multiple sites from −3 to +1 position. Hence, small RNAs 
transcribed by H1 promoter may have variable 5′ ends, which may influence the 
processing of small RNAs and knockdown efficiency [49]. It was reported that 
human U6 promoter- mediated shRNA knockdown is more potent than that of the 
mouse U6 promoter in both human and murine cells [50]. Knowledge on the typical 
features of the RNA Pol III promoter will be helpful in engineering the expression 
cassettes of small RNAs in muscle gene therapy.

The application of small RNAs in muscle gene therapy mainly includes four 
categories. The first category is the small nuclear RNA (snRNA) driven by the U7 
promoter. Delivery of AAV.U7.snRNA to the muscle successfully induced exon 
skipping and restored the expression of dystrophin in dystrophic mice. AAV.U7.
snRNA resulted in widespread expression of functional dystrophins in the dystro-
phic muscle and improved muscle function [51, 52]. However, with the loss of viral 
genomes, dystrophin expression decreased significantly [53]. Future studies are 
needed to optimize AAV doses to induce higher expression of dystrophin in order to 
stabilize myofibers and prevent the loss of viral genomes. The second category is 
the shRNAs driven by the U6 promoter. AAV.U6.shRNA SOD1 delivery led to sig-
nificant reduction of the SOD1 protein in both skeletal and cardiac muscles, and no 
apparent side effects were observed when AAV was injected to neonatal mice [54]. 
Knockdown of NF-kappaB/p65 by injection of AAV.U6.shRNA.NF-kappaB/p65 
reduces the muscle pathology of mdx mice, the mouse model of DMD [55]. VEGF 
expression in the muscle was knocked down by 91% by AAV.U6.shRNA.VEGF 
delivery [56]. AAV.U6.shRNA-mediated knockdown was also used in a dog study. 
Reduction of phospholamban (PLB) expression in the heart of the dog was achieved 
with AAV.U6.shRNA.PLB. However, AAV.U6.shRNA.PLB delivery is associated 
with cardiac toxicity possibly due to saturation of endogenous miRNA pathways 
caused by overexpression of shRNAs [57]. To overcome this issue, the third cate-
gory of the small RNA expression cassettes was developed by embedding synthetic 
shRNA stems into the context of endogenous miRNAs (shRNAmir). The resulting 
shRNAmir can be expressed from RNA Pol II promoters [58]. In the myotubes 
isolated from DMD patients, knockdown of phosphatidylinositol transfer protein-α 
(PITPNA) has been successfully achieved by the shRNAmir cassette driven by a 
doxycycline-inducible promoter [59]. AAV-mediated shRNA expression, which tar-
gets dystrophin and was driven by a modified CMV promoter, resulted in efficient 
and specific knockdown of the dystrophin expression in muscle [60].
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The fourth category involves the expression of gRNAs driven by either the U6 
or the H1 promoter in CRISPR-Cas9 gene editing. CRISPR-Cas9 is a rapidly 
developing gene editing tool because of its easy manipulation and versatility. With 
the help of gRNAs, the Cas9 endonuclease recognizes and cleaves the DNA targets 
in a sequence-specific manner. CRISPR editing has been used to treat two muscle 
genetic diseases (DMD and congenital muscular dystrophy type 1A) in mouse 
models. In mdx mice, a point mutation causes a premature stop codon in exon 23 
of dystrophin and results in dystrophin deficiency. With the CRISPR-Cas9 technol-
ogy, the mutated exon 23 was removed by cleavage and the subsequent nonho-
mologous end-joining of the broken DNA ends. Removal of exon 23 restored 
dystrophin expression in the muscle and improved muscle function [61–63]. These 
studies involved the CMV-driven Cas9 expression. In another study, to reduce the 
off-target risk and minimize the immune response, the expression of Cas9 was 
induced by the muscle-specific CK8 promoter. Muscle-targeted Cas9 also success-
fully corrected dystrophin mutation in mdx4cv mice, another DMD mouse model 
[64]. In these studies, due to the large size of the Cas9 coding sequence, CRISPR-
Cas9 system was delivered to the muscle by two AAV vectors: one carrying the 
Cas9 expression cassette and the other containing the gRNA expression cassette. 
In a recent study, a smaller Cas9 was identified. Combined with the small- size 
muscle-specific promoter C5-12, both expression cassettes of Cas9 and gRNAs 
can be engineered into a single AAV vector. Delivery of the single AAV vector 
carrying both Cas9 and gRNA expression cassettes successfully created indels at 
the target site in the muscle cells [65]. Besides treating skeletal muscle disease, a 
recent study revealed that systemic delivery of AAV.CK7.Cas9 and AAV.U6.
gRNAs reconstituted the expression cassette of dystrophin and improved the heart 
function of mdx/utro+/− mice, a severe DMD mouse model [66]. Another muscle 
genetic disease, congenital muscular dystrophy type 1A, is caused by the muta-
tion in the splice site of the Lama2 gene, leading to the exclusion of exon 2 and the 
expression of a truncated the Lama2 protein. Systemic delivery of AAV.CMV.Cas9 
and AAV.U6.gRNAs led to cleavage of the region containing the mutation, restored 
the expression of the full-length Lama2 protein, and improved muscle histology 
and function [67].

In muscle gene therapy with CRISPR-Cas9 system, Cas9 endonuclease is 
expressed either by the CMV promoter or by a muscle-specific promoter. These 
promoters can drive long-term expression of Cas9 in the muscle. Although until 
now no phenotype of off-target effects was reported by CRISPR-Cas9 muscle gene 
therapy, it still raises the concern on long-term and unregulated expression of Cas9 
endonuclease. One way to overcome this issue would be to replace constitutive 
CMV or muscle-specific promoters with regulable promoters, such as 
 ligand- inducible systems (tetracycline on/off system, hormone response system, 
and rapamycin system) or physiologically responsive autoregulatory promoters 
[68], in which transcriptional activity of the autoregulatory promoter is responsive 
to the specific physiological change. These regulable promoters will confer the 
extra control of the Cas9 expression and increase the safety of CRISPR-Cas9 in 
muscle gene therapy.
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8.2.4  Promoterless Cassette

Conventional expression cassettes in muscle gene therapy usually contain promot-
ers to drive transgene expression. Recently, in vivo gene targeting involved with the 
insertion of a promoterless therapeutic gene into an endogenous locus has been 
successfully used in liver gene transfer. Without the use of any nucleases, through 
homologous recombination, the promoterless therapeutic cDNA was integrated into 
the albumin locus. As a consequence, transgene expression is controlled by the 
robust liver-specific albumin promoter, an endogenous promoter [69, 70]. As a post-
mitotic tissue, muscle has lower efficiency of homologous recombination than the 
liver. To date, there is no study with the use of promoterless gene targeting in the 
muscle. Further improvements in our understanding of homologous recombination 
will help us design the promoterless gene targeting vector for muscle gene therapy.

8.3  Termination Signal

The termination signals for RNA transcription are usually downstream of the 
transgene sequence (Fig. 8.1), which include polyadenylation (poly-A) signal for 
RNA Pol II-mediated transcription and poly-T signal for RNA Pol III-mediated 
RNA transcription. The major function of the poly-A signal is to terminate tran-
scription, increase the stability of mRNA, and facilitate the export of mRNA from 
the nucleus to the ribosomes in the cytosol. The poly-A signal is an essential com-
ponent of the gene transfer vector containing RNA II promoters. For the RNA III 
promoter, the termination signal is the poly-T signal containing four to six thymi-
dine residues [49, 71]. The most common poly-A signals used in gene transfer are 
SV40 late poly-A (SV40 pA) and bovine growth hormone poly-A signals (bGHpA). 
When SV40 pA is present, transgene expression is increased 3–6.5-fold under the 
control of either CMV or EF-1α promoter [72]. The common poly-A signals have 
the size ranging from 600 to more than 1000 bp. Since AAV has a limited packag-
ing capacity, a minimal synthetic poly-A (SPA) signal (49 bp) is becoming more 
popular in AAV expression cassettes. Although SPA has been used to induce the 
transgene expression in neurons [73] and airway epithelia [74], the potency of SPA 
is controversial since one study suggests that SPA is equal to bGHpA in the trans-
gene expression [74], while some studies suggest that SPA is less efficient than 
SV40 pA in inducing the transgene expression [73, 75, 76].

Typically, the RNA II poly-A signal is composed of an upstream sequence ele-
ment (USE), the central poly-A sequence motif AAUAAA, and a downstream 
sequence element (DSE) with GU-rich sequence [77]. Several studies suggest that 
inclusion of two copies of USE resulted in better transgene expression in the mouse 
brain [73, 78]. It remains to be determined whether optimizing poly-A signal by 
including more USE will improve transgene expression in the muscle.
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8.4  Transgene Sequence

Optimization of the transgene sequence plays an important role in improving 
transgene expression in muscle gene therapy. Depending on the packaging limit of 
the gene transfer vector, usually a full-length or a truncated version of the coding 
sequence (cDNA without intron sequence) is engineered in the gene transfer vector. 
However, addition of an intron sequence in the expression cassette has been shown 
to result in increased transgene expression. In hemophilia gene therapy, inclusion 
of human factor IX (F9) intron 1 at the 5′-UTR of the human factor IX coding 
sequence significantly improved the expression of factor IX when AAV was deliv-
ered to the skeletal muscle or the liver [79–81]. The role of intron sequence in 
improving transgene expression was further revealed by a study that an intron of a 
non-coding exon, which contains bacterial replication origin and selection marker, 
improves transgene expression in the liver when the intron is placed at 5′-UTR 
of the transgene [82]. It is worthwhile to explore whether inclusion of the intron 
sequence in the expression cassette will improve transgene expression in other mus-
cle gene therapies.

The sequence surrounding the start codon of an mRNA is critical for ribosome 
recognition in eukaryotic genes. To this end, investigators often add the Kozak 
sequence for the optimal translation of mammalian genes. The translation effi-
ciency can also be influenced by codon usage since different species may preferen-
tially use different transfer RNAs for the same codon. If gene therapy is for a 
clinical trial, then codon usage and transfer RNA frequencies of the transgene cod-
ing region should be optimized for use in human. Codon optimization of micro-
dystrophins and human factor IX has shown increased expression in animal models 
[12, 13, 81, 83–85].

To increase mRNA stability, the transgene sequence can be optimized to increase 
the GC content, since GC-rich genes are more efficiently expressed than their 
GC-poor counterparts [86]. However, increasing the GC content should be balanced 
with avoiding adding more CpG motifs in the transgene sequence. TLR9 can recog-
nize unmethylated CpG motifs in the expression cassette and activate innate and 
adaptive immunity. In a muscle gene transfer experiment, depletion of CpG motifs 
in the transgene allowed escape from the adaptive immune response and resulted in 
long-term transgene expression in muscle [87].

8.5  Other Cis-Regulatory Elements

MicroRNAs (miRNAs) regulate protein expression posttranscriptionally. 
Endogenous miRNAs bind to their complementary target sequence at the 3′-UTR of 
mRNA and repress protein expression. More importantly, the expression of some 
miRNAs is cell-specific. Taking advantage of these features, engineering of the tar-
geting sites of a cell-specific miRNA into the 3′-UTR of the expression cassette will 
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allow for de-targeting or transgene expression inhibition in a cell-specific manner. 
For example, when four copies of hematopoietic-specific miR-142-3p and 
hepatocyte- specific miR-122 target sequences were engineered into a lentiviral vec-
tor, the transgene expression in Kupffer cells and hepatocytes was significantly 
reduced [88, 89]. Oncolytic viruses are promising for cancer therapy. However, 
oncolytic viruses can cause severe organ toxicity, such as myositis and liver toxicity. 
Inclusion of the target sequence of liver-specific miR-122 into an oncolytic virus led 
to up to 80-fold reduction of viral protein expression in the liver and abrogated liver 
toxicity [90]. Insertion of the binding sites of muscle-specific miR-133 and miR-
206 into the 3′-UTR of oncolytic viruses also prevented severe myositis and attenu-
ated toxicity of oncolytic viruses [91]. AAV serotype 9 (AAV9) leads robust 
transgene expression in the heart. However, AAV9 also efficiently transduces the 
skeletal muscle and liver. To achieve heart-specific transgene expression by AAV9, 
binding sites of skeletal muscle-specific miRNA-206 and liver-specific miR-122 
were included at the 3′-UTR of an AAV vector, and the transgene expression in both 
the skeletal muscle and liver was strongly repressed, but robust transgene expres-
sion in the heart was maintained [92]. Adding the binding sites of miR-122 at the 
3′-UTR of AAV.Luciferase and AAV.LacZ vectors led to 50- to 70-fold lower trans-
gene expression in the liver [93]. Incorporation of miR-142-3p target sequences into 
an AAV vector expressing the highly immunogenic protein ovalbumin (OVA) pro-
longed the expression of OVA in the muscle after AAV.OVA was intramuscularly 
injected into the muscle [94]. The size of miRNA binding sites is small and can be 
conveniently engineered into viral vectors. This technique can modify the viral tro-
pism, de-target transgene expression from nontarget tissues, and decrease tissue 
toxicity and immune response.

Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) is 
important for viral gene expression and responsible for nuclear export of intronless 
viral RNA and for mRNA stability. Compared to the parental AAV vector without 
WPRE, inclusion of WPRE at the 3′-UTR of the transgene in the AAV.GFP vector 
increased GFP expression in the muscle [95]. Also AAV.hFIX.WPRE led to effi-
cient expression of human factor IX in the muscle [96]. However, another study 
suggests that there is no significant difference of the transgene expression between 
the viral vectors with and without WPRE [97]. Since WPRE is derived from wood-
chuck hepatitis B virus, and it contains a viral enhancer and some residues of a 
viral protein, there is a concern for potential oncogenesis [98]. Further studies are 
needed to clarify this issue.

8.6  Summary

The expression cassette for muscle gene therapy usually contains a default structure 
including the promoter, the coding sequence, and termination signal. Depending on 
the requirement of gene transfer, other cis-regulatory elements can be added at 5′- 
or 3′-UTR.  To achieve safe and efficient gene transfer, design of the expression 
cassette must be tailored to the specific need of muscle gene therapy.
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Chapter 9
Non-viral Vector for Muscle-Mediated 
Gene Therapy

Serge Braun

Abstract Non-viral gene delivery to skeletal muscle was one of the first applica-
tions of gene therapy that went into the clinic, mainly because skeletal muscle is an 
easily accessible tissue for local gene transfer and non-viral vectors have a relatively 
safe and low immunogenic track record. However, plasmid DNA, naked or com-
plexed to the various chemistries, turn out to be moderately efficient in humans 
when injected locally and very inefficient (and very toxic in some cases) when 
injected systemically. A number of clinical applications have been initiated how-
ever, based on transgenes that were adapted to good local impact and/or to a wide 
physiological outcome (i.e., strong humoral and cellular immune responses follow-
ing the introduction of DNA vaccines). Neuromuscular diseases seem more chal-
lenging for non-viral vectors. Nevertheless, the local production of therapeutic 
proteins that may act distantly from the injected site and/or the hydrodynamic per-
fusion of safe plasmids remains a viable basis for the non-viral gene therapy of 
muscle disorders, cachexia, as well as peripheral neuropathies.

Keywords Naked · Complexes · Muscle · Vaccines · Hydrodynamic delivery

9.1  Introduction

Skeletal muscle can act as an effective platform for the long-term production (and 
secretion) of therapeutic proteins with systemic distribution and for the introduction 
of DNA vaccines eliciting strong humoral and cellular immune responses (for 
review see [1, 2]). Conversely, the treatment of hereditary neuromuscular diseases 
is particularly challenging for non-viral vectors. Among issues are as follows: (1) 
the size of the muscle tissue, which represents half of the total mass of the organism, 
(2) the poor accessibility of profound muscles or peripheral nerves, and (3) the pro-
gressive tissue remodeling along the natural history of some muscle diseases with 
active processes of necrosis/regeneration and fibrosis/lipidosis.
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On the other hand, non-viral vectors do bear interesting advantages over recom-
binant viruses. Non-viral vectors are made of plasmid DNA, naked or complexed to 
a variety of versatile molecules such as cationic lipids or polymers. They are (1) 
well characterized, and their structure can be fine-tuned [3], and (2) mostly non- 
immunogenic provided, they are not carrying protein motifs. This allows repeated 
administrations for chronic diseases, (3) comparatively easy to produce at a large 
scale [4], (4) less limited by size constraints, leaving the potential to deliver wide- 
type genetic material, as large as 100 kb [5] (this is far beyond the size of coding 
sequences such as the dystrophin cDNA for Duchenne muscular dystrophy), and 
non-viral vectors (5) can remain functional for a long period of time in skeletal 
muscles [6]. Episomal plasmid DNA can persist for life in rodents and for many 
years in larger animals if they are delivered into low turnover tissues, including the 
brain and spinal cord, heart, or muscle (for review see [7]).

Synthetic vectors have been constructed as substitutes to viral vectors for deliv-
ering therapeutic genes and many other drugs in humans [8]. The principle is based 
on the self-assembly of supramolecular complexes, often through electrostatic 
interactions between the positively charged vectors and the DNA negatively charged 
phosphate residues [9]. In these complexes, DNA is condensed and compacted and 
is less exposed to nuclease degradation. Among these, cationic lipid- and polymer- 
based systems have been the most extensively studied [10–12]. In early studies, 
DNA was encapsulated in neutral or anionic liposomes without changing the struc-
tures of the liposomes [9, 13]. The ratio between the cationic charge of the liposome 
and the negative charge of the DNA usually controls the size of complexes [14], 
typically in the range of 200 nm to 2 μm quasi-spherical particles with an ordered 
(often multilamellar) organization. Their positive total charge enables them of effi-
ciently interacting with the negative residues of the cell membranes and internaliz-
ing into the cell, which occurs mainly through the endocytosis pathway [10, 15].

9.2  Systemic Delivery of Non-viral Vectors: An Update 
and Perspective

Systemic bio-distribution of non-viral vectors is dependent upon their capability of 
escaping from blood vessels in the target tissue. Vectors must be small enough (less 
than 500 nm) to cross through vascular endothelial cells and gain access to sur-
rounding tissues [16]. Furthermore, they should also be designed so that they can be 
ignored by mononuclear phagocytes and have little interactions with plasma com-
ponents to avoid aggregation [17, 18] and complement activation [19]. Another 
limitation with systemic gene delivery of complexes is their rapid clearance by the 
reticuloendothelial system or their entrapment within small capillaries leading to 
the accumulation within especially lung tissue [20]. This limitation can be improved 
by incorporating polyethylene glycol (PEG) lipids, leading to increased circulation 
time of the complex, and protein expression in distal tissues [21, 22]. The negatively 
charged components of the cell membrane (glycoproteins, proteoglycans, and 
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glycerophosphates) are able to interact with the positively charged systems triggering 
the non-specific endocytosis of cationic non-viral vectors. Increasing positive net 
charge, prolongation of the incubation time, or complex concentration can improve 
cell uptake by clathrin-mediated endocytosis of cationic lipids such as DOTAP/
DNA or of cationic polymers such as PEI/DNA by clathrin-coated pits or potocyto-
sis (through interaction with caveolae pits) [23, 24], receptor-mediated endocytosis, 
macropinocytosis, or lipid raft-mediated endocytosis [25, 26].

In contrast to viral vectors, non-viral gene transfer is not elicited to a large extent 
by active intake processes. Therefore, a sophisticated vector may be needed to facil-
itate the cellular uptake and appropriate intracellular processing of the transgene. 
Significant developments in artificial complexes combined different functions for 
improved gene transfer. Many cationic liposomes are normally accompanied by a 
neutral lipid such as dioleoylphosphatidylethanolamine (DOPE) or cholesterol. 
DOPE is frequently useful because it can fuse with other lipids when exposed to a 
low pH, as in endosomes, which triggers the release of the associated DNA into the 
cytosol [27]. Other popular modifications use ligand binding to PEG. Various tar-
geting approaches have been investigated, including incorporation of peptides, 
antibodies, and sugar into the lipid vesicles to facilitate tissue targeting (for review 
see [28]). However, the association of all of these components results in complex 
structures that require thorough formulation and galenic studies.

After cell entry, intracellular barriers may impair successful gene delivery. 
Vectors need to escape from the endosomal or lysosomal membrane to avoid degra-
dation of the plasmid DNA [29]. Endosomal release of DNA by cationic polyplex- 
based vectors may be based on the physical disruption of the negatively charged 
endosomal membrane after direct interaction with the cationic complex [30], or a 
“proton-sponge” phenomenon [11] resulting in osmotic swelling and endosomal 
membrane rupture, followed by the release of the polyplexes into the cytoplasm. 
Addition of a fusogenic helper lipid such as DOPE facilitates the formation of a 
destabilizing hexagonal phase with the endosome membrane and enhances gene 
expression by promoting the release of DNA from the endosomal compartment 
(Fig. 9.1 and [31]).

It should be mentioned the majority of cytoplasmic plasmids fail to reach the 
nucleus due to cytoplasmic nucleases. In contrast to short nucleic acids (such as 
oligonucleotides) which diffuse freely, the plasmid DNA imports to nucleus by an 
active transport process via the nuclear pore complex and receptor proteins that 
include importin α, β, and RAN [32]. Nuclear localization signals or designed 
peptides can be linked to the plasmid DNA to facilitate nuclear import (for review 
see [33, 34]).

A number of therapeutic concepts have been explored in humans using more or 
less refined non-viral gene delivery systems in the view of therapies for genetic 
disorders and of immunologic disorders. As of today, despite a number of very 
sophisticated chemistries, non-viral vectors were not completely satisfactory in 
transferring genes to muscle tissues following systemic administration. Many com-
plexes show excellent transfection activity in cell culture, but most do not perform 
well in the presence of serum, and only a few are active in vivo [35]. They remain 
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at least 3 logs of magnitude less effective than viral vectors. Therapeutic doses 
require high concentrations of complexes. Besides the relatively large size of many 
synthetic vectors (often above 150 nm), the main obstacles in the use of synthetic 
complexes via systemic delivery are their aggregation, instability, toxicity, and 

Fig. 9.1 Delivery options of non-viral vectors into skeletal muscles. (a) Examples of non-viral 
vectors, including negatively charged naked plasmid DNA (or polynucleotides) delivered either 
directly or combined with physical methods (ultrasound, electroporation) or complexed with vari-
ous chemical entities such as cationic lipids or polymers. (b) Uptake pathways involve either 
fusion with the muscle cell membrane-, receptor-, clathrin-, caveolae-, or pinocytosis-dependent 
endocytosis. This is followed by endosome formation, escape from endosome, degradation, 
nuclear import of the plasmid DNA/polynucleotide, and transgene expression
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propensity to be captured by the mononuclear phagocyte system, leading to their 
rapid clearance by phagocytic cells in the liver, spleen, lungs, and bone marrow. 
These particles readily aggregate as their concentration increases. Toxicity is often 
linked to the colloidal instability of synthetic vectors resulting from interactions 
with molecules in biological fluids, leading to large aggregates. These aggregates, 
which are generally ineffective gene delivery agents, can be absorbed onto the sur-
face of circulating red blood cells, or embolized in microvasculatures, preventing 
them from reaching the intended target cells. This opsonization process can also 
activate the complement system, one of the innate immune mechanisms against 
“foreign” particles within the bloodstream, which in turn activates the phagocytosis 
and initiates an inflammatory response [7, 19, 36]. Skeletal muscles possess poorly 
permeable, tight endothelial (maybe less in the case of chronically inflamed tissues) 
layers and a highly regulated microcirculation [37]. The implication is that one 
would not expect particulate systems to be distributed easily from the blood circula-
tion to skeletal muscles. Thus, the prospects for non-viral particulate vector wide-
spread distribution from the systemic circulation are limited at present. Only one 
systemic delivery attempt was initiated in a neuromuscular disease indication. This 
was in hereditary inclusion body myopathy in a single patient intravenously perfused 
with a lipoplex in a compassionate trial. The patient showed signs of increase of sialic 
acid-related proteins and stabilization in the decline of muscle strength [38].

The administration of vectors directly to the target tissue avoids most of the 
obstacles encountered by systemic delivery. However this approach remains ham-
pered by the diffusion limitations and immune cell clearance in the interstitial region 
of the target organ. Indeed, transgene expression following direct intramuscular 
needle delivery of complexes is often localized in regions that are close to the injec-
tion site. This implies that the dispersion of colloidal particles within muscle is a 
critical issue, and there is a need for basic studies of the effect of formulation on 
dispersion within solid tissues such as skeletal muscle. Nevertheless this poor effi-
ciency remains compatible with applications that require only low levels of the 
therapeutic proteins, such as genetic vaccines, cancer, or peripheral limb ischemia 
(Table 9.1).

Interestingly, retrograde transport seemed to be obtained as some gene expres-
sion was found in the peripheral and central nervous system following intramuscu-
lar administration [39]. Delivery of therapeutic genes to peripheral neurons upon a 
peripheral and minimally invasive intramuscular administration of polymeric 
nanoparticles was shown to be feasible in animal models [40].

9.3  “Naked” DNA

Naked DNA can be manufactured in a very cost-effective manner and is a very 
stable material that can be stored at room temperature for long periods of time fol-
lowing lyophilization. It is composed of a bacterial plasmid that contains the cDNA 
of the therapeutic gene under the transcriptional control of various eukaryotic 
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regulatory elements and a bacterial origin of replication to allow production in bac-
teria. A strong promoter may be required for optimal expression in mammalian 
cells. For this, some promoters derived from viruses such as cytomegalovirus 
(CMV) or simian virus 40 (SV40) have been used. However, virally derived pro-
moters, such as the CMV promoter, may not be suitable for applications to chronic 
diseases, as illustrated by the negative impact of inflammatory cytokines (interferon-γ 
or tumor necrosis factor-α) [41]. Thus, muscle-specific alternatives to the CMV 
promoter have been proposed, such as the desmin promoter/enhancer, which con-
trols expression of the cytoskeletal protein desmin [42] or the creatine kinase pro-
moter [43]. Even in vaccines, the vaccinating immune responses obtained were 
shown to be of a comparable magnitude to those in mice immunized with DNA 
vaccines containing nonspecific promoters.

For clinical efficacy and safety of chronic disease applications, it may be neces-
sary to maintain appropriate levels of a gene product in order to prevent toxicity and 
to be able to modulate or resume transgene expression in response to disease evolu-
tion or immune problems. Artificial systems for the control of genes are based on 
two elements: a chimeric transcription factor responding to a small inducer or even 
electric field and an artificial promoter composed of multiple binding sites for the 
transcription factor followed by a minimal promoter. Inducible gene expression sys-
tems use endogenous elements that respond to exogenous signals or stress, such as 
cytokines, heat, metal ions, and hypoxia. However, neither muscle-specific nor 
inducible promoters in the absence of induction are devoid of leaky activity [44]. If 
hypomethylated bacterial CpG sequences are maintained on the plasmid DNA 
backbone or promoter elements, a T helper 1 (Th1) immune response (but only for 
a short period and with no induction of anti-DNA antibodies) can be generated 
which may however be advantageous in view of genetic vaccination, alone or in 
priming-boost regimens with viral vectors [45].

Following the serendipitous demonstration of transgene expression in skeletal 
muscle injected with naked DNA by Wolff [46], plasmid DNA has been used exten-
sively in a variety of indications [7]. Uptake and expression of numerous transgenes 
have been demonstrated in various species following intramuscular administration 
of naked DNA. Expression peaks at around 7 days, followed by a slow decrease and 
a prolonged steady state (years), in case of non-immunogenic transgene. The very 
long-term expression is probably linked to the postmitotic state of skeletal muscles 
and the persistence of administered genetic material as an extrachromosomal epi-
somal elements [47].

The efficiency of plasmid gene transfer into skeletal muscle (and other tissues) 
by direct injection is low (~1% of cell nuclei) and remains confined at the injection 
site (along the needle track) across species [48], and it further decreases with the 
plasmid size. Nevertheless, naked plasmid DNA administration was used in animal 
models to provide a systemic source of therapeutic protein, for genetic vaccination 
against pathogens and tumor cells or for therapeutic angiogenesis. In the later case, 
local gene delivery to focal lesions in the peripheral vasculature, for the production 
of highly active hormones, is ideally suited to the use of intramuscular or percutane-
ous vector delivery. In humans, intramuscular injections of naked plasmid encoding 
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angiogenic factors (such as VEGF165 or HGF) were used in small numbers of 
patients with critical limb ischemia and did demonstrate promising clinical efficacy 
for the treatment of peripheral arterial disease. Ischemic pain and ischemic ulcers in 
the affected limb were relieved or markedly improved in further trials ([49] and 
Table  9.1). Importantly, all those plasmid-based preclinical and clinical trials 
resulted in a very good safety record ([50] and Table 9.1). A meta-analysis of 12 
clinical trials (1494 patients total) of local administration of pro-angiogenic growth 
factors (VEGF, FGF, HGF, Del-1, HIF-1alpha) using plasmid or viral gene transfer 
by intra-arterial or intramuscular injections showed that, despite promising results 
in single studies, no clear benefit could be identified in peripheral artery disease 
patients, irrespective of disease severity [51].

Locally injected naked DNA is being evaluated in muscle regeneration approaches 
such as myostatin propeptide gene gun delivery [52] and for genetic motoneuron 
disorders. In the later case, SMN induction in a mouse spinal muscular atrophy 
model was observed following intramuscular injection of a tetanus toxin C fragment 
plasmid [53].

Artificially or spontaneous regenerating muscle fibers display a higher, but still 
limited, efficiency of transfection [54]. Physical methods (electric or ultrasound 
pulses, ballistic gene gun), which either create transient pores in the cell membrane 
or increase passive diffusion, were shown to improve up to 100-fold gene transfer to 
skeletal muscles [55]. The pulse parameters and the type of material used (i.e., nee-
dle versus externally applied plate electrodes) are of critical importance [44]. 
Selective electro-sonoporation in a defined area using microbubble contrast agents 
showed increased plasmid-VEGF165 delivery in skeletal muscle allowing therapeu-
tic angiogenesis in chronically ischemic skeletal muscles with undetectable tissue 
damage [56]. A slightly higher risk of random integration of plasmid DNA into 
genomic DNA may also be seen [57]. Still limited penetration of the genetic mate-
rial in the tissue is obtained (in the range of ~1 cm). Widespread delivery to large or 
deep muscles remains challenging. Muscle damage and inflammation [58] are 
induced by these methods which peak at around 7  days and resolve at 3  weeks 
postinjection with both Th1 and Th2 immune responses potentially occurring [44]. 
Therefore, this strategy may not be suitable in already inflamed tissue such as DMD 
muscles.

9.4  Pressure-Mediated Gene Transfer

High levels of gene expression in the limb and diaphragm muscles have been 
achieved by the rapid injection of naked DNA in large volumes via locoregional 
hydrodynamic intravascular delivery with both blood inflow and outflow blocked 
surgically or using external tourniquets [59, 60]. The endothelium in muscle is con-
tinuous and non-fenestrated, showing low permeability to macromolecules, includ-
ing plasmid DNA. The hydrodynamic pressure induces extravasation of the injected 
DNA, probably by expanding the endothelium and thereby making pores accessible 
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for DNA entry. The mechanism of plasmid DNA uptake by the muscle cells is still 
not clear and may involve both low-affinity receptor-mediated and nonspecific pro-
cesses [1, 61]. The procedure safety is supported by a large body of data collected 
in mice, rats, dogs, and nonhuman primates. The edema caused by the injected fluid 
is resolved within 24 h and even the minimal signs of observed muscle toxicity clear 
within 2 weeks postinjection [62, 63]. The hind limb perfusion procedure is a rather 
quick and simple technique, which may be applied to chronic diseased muscles [64] 
or other chronic diseases such as anemia [65]. Based on successful preclinical stud-
ies using the mdx mouse and golden retriever muscular dystrophy (GRMD) dog 
models of Duchenne muscular dystrophy, and the positive (expression -though very 
low-, and safety) outcome of a phase I trial of intramuscular injection of MyoDys®, 
a full-length dystrophin plasmid, in Duchenne patients (the first completed gene 
transfer clinical trial in neuromuscular diseases) [66], the ground was set for a 
human clinical trial using MyoDys® into the forearm of Duchenne patients. A dose 
escalation study of single-limb perfusion with 0.9% saline was carried out in nine 
adults with muscular dystrophies under intravenous analgesia. The study led by Fan 
et al. demonstrated feasibility and safety up to 35% of limb volume in the upper 
extremities of the young adults with muscular dystrophy. Perfusion at 40% limb 
volume was associated with short-lived physiological changes in peripheral nerves 
without clinical correlates in one subject [67]. This study used lower cuff pressures 
than in our nonhuman primate studies (310–325 mm Hg vs. 450–700 mm Hg in 
nonhuman primates) [68, 69]. From our studies in the mdx mouse and GRMD dog 
models of Duchenne dystrophy, and in nonhuman primates, the minimal volume 
needed for efficient naked DNA limb perfusion is 40% of the limb volume [70]. 
Whereas arterial limb perfusion did not turn out to be safe in GRMD dogs (personal 
data not shown), up to ten consecutive naked DNA limb perfusions every other day 
appeared very safe in both dystrophic mice and dogs. Even though head-to-head 
comparison would be necessary, our studies suggested that gene transfer was higher 
in diseased muscles than in wild-type animals. We also noticed that the highest 
transfection efficiencies were found in nonhuman primates; up to 40% of limb mus-
cles expressed reporter genes following a single-limb perfusion [68]. Therefore, 
limb perfusion of a naked DNA remains a valid approach to treat limb dystrophic 
muscles as an alternative to viral vectors in seropositive patients or in indications 
that require large transgenes with regional gene transfer [71].

Ex vivo approaches using gene-corrected stem cells with non-viral vectors are 
also being explored. Human artificial chromosome (HAC) vectors have the capacity 
to carry large genomic loci and to replicate and segregate autonomously without 
integration into the host genome. HAC vectors containing the entire human dystro-
phin gene (DYS-HAC) with its native regulatory elements allow dystrophin expres-
sion at levels similar to native dystrophin isoform expression levels. Since they can 
be stably maintained as episomal elements in host cells, the DYS-HAC could be 
introduced into several types of patient stem or progenitor cells for ex vivo therapy, 
e.g., induced pluripotent stem cells, mesoangioblasts, AC133, and mesenchymal 
stem cells [72]. One of the main issues, however, is the translatability of stem cell 
therapy in muscle disorders [73, 74].
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9.5  Conclusion

The development of successful non-viral gene delivery systems to skeletal muscle 
is highly dependent on the proportion of muscle (or their innervating motoneuron) 
cells that need to be transfected. More than 25 years of research and testing in animal 
models and in human trials gear us toward two types of muscle-directed non- viral 
gene transfer applications:

 1. Direct injection. This represents a far simpler but poorly efficient approach. 
Provided highly active gene products are used, non-viral gene therapy becomes 
increasingly amenable to infectious, cancerous, and peripheral ischemia diseases. 
Vectors could be both naked DNA and synthetic complexes.

 2. Intravascular delivery. Simple intravenous perfusion of non-viral vectors is as of 
today far less practicable. Regional hydrodynamic delivery of naked DNA offers 
several advantages over viral vectors which hold potential for muscle diseases, 
including limb-girdle muscular dystrophies and peripheral neuropathies. 
Nevertheless, muscle gene therapy using systemic administration of non-viral 
vectors retains major hurdles that need to be overcome before any human 
applications.
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Chapter 10
Viral Vectors for Muscle Gene Therapy

Dan Wang, Alexander Brown, and Guangping Gao

Abstract Muscle is a major target tissue for gene therapy, in part because various 
gene delivery vector platforms enable in vivo gene delivery to muscle tissues. Among 
them, recombinant adeno-associated virus (rAAV) stands out as one of the most safe 
and effective vectors for human applications. Many AAV strains isolated from nature 
collectively constituted the vector toolbox for muscle gene delivery during the field’s 
early development through animal studies. Caveats emerged as these vectors were 
carefully evaluated in clinical applications. As the research community has accumu-
lated knowledge about basic AAV biology and the nature of human-specific hurdles 
to translational therapy, AAV capsid engineering has emerged as a powerful approach 
for modifying naturally occurring AAV to better address the challenges in human 
muscle gene therapy. In this chapter, we first introduce basic AAV biology that 
pertains to the vectorology of AAV for gene therapy. Next, we summarize how AAV 
vectors based on natural isolates contributed to the continuing success of human 
muscle gene therapy. Finally, we discuss the protein engineering approaches that 
have been applied to AAV capsid to develop better clinical vectors, namely, rational 
design and directed evolution.
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10.1  Introduction

Gene delivery technology empowers the development of human gene therapy. In 
general, gene delivery vectors are broadly categorized into two classes, non-viral and 
viral vectors [1]—both of which have been explored for muscle gene therapy. The 
most commonly used non-viral vectors for gene therapy include circularized DNA 
(plasmid or minicircle) and oligonucleotide [2]. These have several advantages as 
compared to viral vectors, such as ease of design, manufacturing, storage, distribu-
tion, and less immunogenicity. However, these vectors are frequently less efficient 
in gene delivery to human cells than viral vectors and are not suitable for sustained 
gene expression. To improve gene transfer to human cells/tissues, vectors have been 
developed from several viruses which inherently possess a natural capacity to infect 
mammalian cells, such as lentivirus (LV), adenovirus (AdV), adeno- associated 
virus (AAV), and herpes simplex virus (HSV) [1, 3, 4].

Vectorology of these viruses calls for the creation of “gutted” recombinant viral 
particles that carry therapeutic genes in place of native viral sequences, which also 
improves safety and immunogenic profile. LV vector has an RNA genome and deliv-
ers its genetic payload, ultimately an integrating proviral complementary DNA, into 
the host genome. Therefore, gene delivery by LV vector is stable but also carries risks 
of genotoxicity and oncogenicity due to non-targeted genomic integration. Both AdV 
and AAV vectors contain a DNA genome that resides in the target cell nucleus as an 
episomal DNA. Although the episomal vector genome can be gradually diluted by 
losses during cell division, gene expression can be quite long- term in terminally dif-
ferentiated cell types such as myocytes. Adverse immune reaction within the human 
body is a concerning feature of AdV vector, whereas AAV vector has much lower 
immunogenicity. HSV vector retains the parental virus’s natural ability to infect neu-
ral cells and has been used for neurological disease gene therapy. The design, pro-
duction, clinical application, and recent development of the various types of gene 
delivery vectors have been reviewed in depth in the literature [1, 3–5]. In this chapter, 
we focus on AAV vector, for it is particularly well suited for muscle gene therapy, as 
discussed below [6].

AAV is a small virus with a simple architecture. It is composed of a single- 
stranded DNA genome of ~4.7 kb encapsidated within a protein capsid ~26 nm in 
diameter [7]. The posttranslational modifications of the capsid are just starting to be 
explored [8]. The wild-type (WT) AAV genome carries two genes and is flanked by 
two inverted terminal repeats (ITRs) on the ends. The rep gene encodes four 
replication- associated (rep) proteins that are involved in various steps of WT AAV 
life cycle, such as genome replication, viral assembly, and site-specific integration 
into host genome [9]. Notably, because recombinant AAVs (rAAVs) are devoid of 
the rep gene, their genomes remain predominantly episomal when delivered to the 
host cell nucleus. The cap gene encodes three viral protein (VP) subunits, VP1, VP2 
and VP3, that form the icosahedral capsid consisting of 60 copies of VP at 1:1:10 
ratio [10]. The assembly-activating protein (AAP) is transcribed and translated from 
the cap gene and has been shown to promote capsid assembly [11]. The ITRs serve 
as structural signals for genome packaging and therefore are the only viral DNA 
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kept within the  rAAV genome, while the rep and cap genes are replaced with a 
recombinant gene of interest. During rAAV production, sequences encoding the 
Rep proteins and VPs, along with other helper elements, are provided in trans by 
genetic means [12].

Muscle gene therapy usually requires in vivo gene delivery, although ex vivo 
gene therapy is also a potential means to treat certain conditions [13]. Depending on 
the route of delivery, rAAV must overcome several barriers within the human host 
before successfully delivering its DNA cargo to the target cell. This process mainly 
relies upon features of the capsid. For example, following systemic delivery such as 
intravenous injection, the host immune system may recognize the rAAV capsid by 
pre-existing neutralizing antibodies (NAbs). These NAbs are present in the general 
human population at various degrees, depending on the serotype, and they 
are believed to result from natural infection by WT AAV [14]. The rAAV particles 
escaping neutralization must then traverse endothelial barriers to achieve close 
proximity to target cells. Once localized to targeted cells, crossing the cell mem-
brane is initiated by interaction of capsid and cell surface receptors [15]. This inter-
action is crucial for determining the tropism of rAAV packaged within a particular 
capsid. Receptor recognition leads to a series of events, including endocytosis, intra-
cellular trafficking, endosomal escape, nuclear entry, and capsid unfolding- which 
eventually allows for the release of the DNA cargo into the nucleus [16].

So far, a handful of naturally occurring AAV serotypes and hundreds of variants 
have been isolated, each being unique in the capsid sequence [17, 18]. Although 
their capsids share common features, some subtle differences in amino acid residues 
are sufficient to confer distinctive properties when used as gene delivery vectors 
[10]. Therefore, solving the three-dimensional structures of various AAV capsids 
and understanding the molecular interactions between capsid and host are among the 
major efforts in vector development for gene therapy. For example, characterizing 
the mechanism of capsid-NAb and capsid-receptor interactions has provided crucial 
information for engineering novel capsids to better suit specific clinical needs.

In the following sections, we first summarize the rAAVs used in muscle gene 
therapy that are based on naturally occurring WT AAV serotypes. Although numer-
ous animal studies and several clinical applications have demonstrated their thera-
peutic efficacy, improvement is needed for several aspects, such as tissue specificity 
and immunogenicity. We next discuss capsid engineering for developing tailored 
rAAV to better address these clinical needs. It should be noted that the rAAV 
genome harboring a therapeutic gene is also an important vectorology aspect for 
muscle gene therapy. This topic is discussed in the other chapters in this book.

10.2  Muscle Gene Therapy Vectors Based on Naturally 
Occurring AAV Capsids

Since the initial cloning of AAV, numerous naturally occurring AAV genome 
sequences have been isolated and adapted for use as recombinant viral vectors. 
While WT AAV genomes encode two genes, rep and cap, and require helper virus 
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genomic sequences for replication and vector production, these elements can be 
readily supplied in trans within an appropriate production cell line to achieve pack-
aging of transgenes up to approximately 4.7  kb in length, when flanked by two 
ITRs. In this fashion, rAAV viral vector is produced that largely maintains serotype- 
specific capsid structure and functionality [19, 20]. These pseudotyped rAAVs col-
lectively comprise a major portion of the modern vector-driven gene therapies in 
use and under development today.

The exceptionally low immunogenicity of naturally occurring AAV capsid has 
made rAAV an attractive choice in designing gene therapies for a host of patholo-
gies, including those originating within muscle and those in which muscle may 
serve as a factory to produce therapeutic proteins. Since in vivo transgene delivery 
to muscle tissue by rAAV2 was well established over 20 years ago [21], a variety of 
serotypes have been employed, displaying a wide array of tropism and gene expres-
sion profiles within muscle fibers of all types [22, 23]. As AAV2 was among the first 
serotypes discovered, possesses broad tissue tropism, and was noted to transduce 
muscle fibers, it formed the basis for initial investigative treatment strategies.

AAV2 vectors have been investigated within several notable muscle disease ani-
mal models, including the cardiomyopathic hamster and mdx mouse models of 
Duchene muscular dystrophy [24, 25]. Additionally, rAAV2 has been used to target 
muscle tissues for the systemic expression of therapeutic transgenes, such as the 
alpha-1-antitrypsin gene and the factor IX gene [26, 27].

Despite achieving only limited measures of therapeutic efficacy during various 
phases of clinical investigation, the vector’s observed preference for slow-twitch 
muscle fiber, as well as high titer requirement for both systemic and direct injection 
of the virus, has helped establish the relative safety of rAAV therapeutic strategies 
and drive the search for other naturally occurring capsids with improved muscle 
transduction. Since these initial studies, rAAV2 transduction and expression in mus-
cle has consistently been determined to be among the lowest performing vectors. 
Furthermore, pre-existing immunity to AAV2 appears relatively common in humans, 
which may in turn lead to adverse immune reactions in a portion of potential patients 
[28]. Nevertheless, rAAV2 remains among the most well-characterized viral vectors 
and may continue to form the basis for muscle-targeted gene therapies in develop-
ment, especially where localized intramuscular (IM) injection provides for stable 
transgene expression and therapeutic efficacy.

Among the remaining and most frequently adapted pseudotyped rAAVs, rAAV1, 
6, 7, 8, and 9 have demonstrated consistent and high-level transduction vastly supe-
rior to rAAV2 when delivered via direct or systemic means [23, 29–31]. In 2012, IM 
injection of a rAAV1 treatment for lipoprotein lipase deficiency, Glybera, became 
the first AAV gene therapy approved for use in Europe [32]. Additional studies for 
AAV1-based recombinant therapeutic targeting of muscle are currently in clinical 
trials for treatment of a variety of diseases including a number of muscular dystro-
phies [33]. AAV1 treatments appear safe and effective thus far; however, the preva-
lence of AAV1 neutralizing antibody across the human population is only marginally 
improved over AAV2. While patient immunological response can be managed to 
some degree, these features of AAV1 and 2 will likely limit the effectiveness and 
availability of therapies to some patients.
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While direct intramuscular injection offers a potential benefit in that it may 
reduce the amount of vector needed to achieve efficient transduction, it is important 
to note that muscle comprises approximately 40–50% of total mass in humans, with 
widespread distribution throughout the body. Therefore, targeting muscle via sys-
temic delivery of viral gene therapy vectors is frequently desired when maximizing 
therapeutic transgene expression is necessary to achieve therapeutic effect. As com-
pared to the other muscle-transducing vectors, rAAV8 and 9 appear to exhibit supe-
rior patterns of systemic muscle transduction [29, 30, 34]. Additionally, rAAV8 and 
9 display broad tissue tropism, with particularly high efficiency of transduction in 
non-muscle tissues such as the liver [29, 31]. Therefore, deliveries via systemic 
routes of these serotypes are expected to target multiple tissues simultaneously. It is 
important to note that direct IM administration of rAAV8 and 9 also displays greatly 
enhanced transduction, a feature that is currently under clinical consideration for 
treatment of muscular dystrophies.

While rAAV8 and 9 appear most well suited for broadly targeting muscle, pathol-
ogy-specific considerations must be made during AAV serotype selection, and the 
ideal vector may not be immediately clear. Furthermore, new naturally occurring sero-
types, including minor variants of established structural clades, are continuously 
being discovered and characterized for their tissue-specific tropisms [35, 36]. Large-
scale profiling of these variants for tissue-specific patterns of transduction holds great 
promise for informing new strategies targeting muscle-specific diseases.

10.3  AAV Capsid Engineering to Meet Clinical Needs

Although naturally occurring AAV capsids collectively provide a valuable toolbox for 
in vivo gene transfer and prevail in clinical applications [37], each has potential draw-
backs for human use. For muscle gene therapy, the most concerning imperfections 
include off-targeting to non-muscle tissues and an undesirable immunological interac-
tion profile with the host. Therefore, engineering of AAV capsid to meet specific clini-
cal needs is a major research endeavor. Two main approaches have proven to be fruitful 
in developing clinically relevant capsids: rational design and directed evolution. 
Rational design is “capsid-driven,” in that it aims to exploit the existing knowledge 
base concerning AAV capsid structure and function, from which a specific hypothesis 
guides the design of a novel capsid. In contrast, directed evolution is “phenotype-
driven,” in that it is experimentally designed to generate selective pressure for isolation 
of a desired capsid phenotype, without prior knowledge about capsid structure.

10.3.1  Rational Design of Novel AAV Capsid

Grafting a cell-targeting molecule on the external surface of capsid is a straightfor-
ward concept to alter AAV vector tropism. AAV capsid can tolerate insertion of 
peptides and polypeptides at many sites, such as the N-terminus of VP2 subunit and 
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exposed flexible loop regions of the outer capsid [38–40]. These sites were initially 
identified by biochemical screening approaches and later verified through analyzing 
the three-dimensional structure of AAV capsid. For example, a fusion protein con-
sisting of DARPin (designed ankyrin repeat protein; an antibody-like protein that 
exhibits high-affinity target binding) linked to the N-terminus of VP2 can be incor-
porated into a fully assembled capsid, redirecting vector tropism according to the 
specific binding properties of DARPin [41, 42]. The position between N587 and 
R588 (AAV2 VP1 numbering) is also commonly used to insert short peptide 
sequences without compromising vector packaging. Several studies have success-
fully exploited this site’s structural flexibility to insert muscle-targeting peptides for 
engineering of modified vectors with enhanced gene delivery to muscle [43, 44]. 
When a peptide ligand is displayed on AAV capsid in this fashion, it is important to 
note that its function may be compromised by spatially neighboring capsid residues. 
Interestingly, Boucas et al. demonstrated that it is possible to recover the targeting 
functionality of the inserted peptide ligand by further mutating the interfering 
residues [45]. In general, the N-terminus of VP2 can tolerate larger polypeptides 
[46, 47], whereas the nonterminal sites allow for displaying shorter peptides, 
although Judd et al. successfully inserted sequence encoding mCherry (240 residues) 
in place of deleted sequence 453-GTTTQSR (AAV2 VP1 numbering) [48].

In addition to genetic manipulation, biochemical methods are also useful to 
physically modify AAV capsid for cell targeting. Recently, a novel method to cova-
lently couple large proteins to pre-assembled AAV capsid has emerged, utilizing 
split intein-mediated protein trans-splicing [49]. This method provides flexibility in 
generating rAAVs with desired binding specificity and affinity, in part because 
larger targeting molecules can be used, such as single-chain variable antibody frag-
ments (scFvs). Another versatile approach to rationally modify AAV capsid involves 
click chemistry [50, 51]. In this technique, an unnaturally occurring, chemically 
reactive amino acid containing azide is co-translationally incorporated into assem-
bled capsid to serve as a biochemical hook, enabling covalent coupling with alkyne- 
linked effector molecules. The modification can be geared toward not only altered 
tropism but also improved immunological properties and genome editing [50, 51].

As the structure-function relationship for several naturally occurring AAV cap-
sids have been elucidated [52–56], this information has proven crucial in guiding 
the development of novel capsids by rationally altering capsid residues. Notably, 
the capsid residues located at or near the threefold symmetry protrusions appear 
to play key roles in determining some clinically important features of AAV cap-
sid, such as tissue tropism and immunogenicity [9]. Therefore, altering these resi-
dues can simultaneously yield several benefits, such as improved on-targeting to 
muscle, reduced off-targeting to the liver, and decreased vector recognition by 
pre-existing NAbs.

AAV2i8 is a chimeric capsid variant generated by replacing a receptor-binding 
hexapeptide motif in AAV2 capsid with corresponding residues from AAV8 capsid 
[57]. When delivered into mice following isolated limb perfusion [57] or into non- 
human primates [58] by a systemic route, AAV2i8 vector shows selective tropism to 
cardiac and skeletal muscles throughout the whole body and reduced sequestration 
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in the liver. AAV2i8 is also less likely to be neutralized by human sera than the 
parental capsids [57]. Therefore, AAV2i8-based vector can be used to treat muscu-
lar dystrophies that usually require body-wide muscle gene delivery. Similarly, 
AAV2.5 was generated from replacing five residues in the AAV2 capsid with the 
corresponding orthogonal residues of AAV1 [59]. The resulting chimeric capsid 
shows an improved muscle transduction profile and reduced antigenic cross- 
reactivity, compared with both parental serotypes. Intramuscular injection of an 
AAV2.5 vector expressing a minidystrophin transgene was safe and well tolerated 
when administered to DMD boys, supporting its potential use as a muscle gene 
therapy vector [59].

A series of engineered AAV capsids carry mutated surface-exposed residues, 
notably tyrosine and serine. The rationale behind this modification is that these 
residues are readily phosphorylated, which induces capsid degradation through 
the ubiquitin-proteasome pathway [60]. Mutating these residues can not only sta-
bilize the capsid to improve transduction but also confers immunological benefits 
by reducing capsid-derived antigen presentation. Tyrosine-mutant versions of 
several naturally occurring muscle-tropic capsids have been generated and tested 
for local or systemic muscle gene delivery in mice or dogs such as AAV1, AAV6, 
and AAV9 [61]. In general, these rationally designed rAAVs showed robust trans-
gene delivery and expression in various muscle types. However, as of yet, their 
immunological advantages remain to be fully characterized when used for muscle 
gene therapy.

In addition to the structural information, the primary capsid sequences of extant 
AAVs are also helpful for rational design of new rAAVs by ancestral sequence 
reconstruction [62]. This novel approach relies on sequence analysis and bioinfor-
matics tools and aims to infer the ancestral AAVs (ancAAVs) that gave rise to the 
modern AAV variants. These ancAAVs are hypothesized to possess distinctive 
properties that are absent in their modern derivatives, such as evading neutralization 
by the modern AAV NAbs [62]. In addition, such ancAAVs may have higher tro-
pism to certain cell types than the extant AAVs [63].

10.3.2  Capsid Selection by Directed Evolution

Directed evolution starts with the creation of a diverse capsid gene library of high 
complexity, populated through genetic means. The library is used in AAV production 
to generate a mixture of assembled AAV particles, each possessing a unique cap-
sid, and packaged with the corresponding capsid protein-encoding DNA sequence. 
This AAV mixture is subsequently subjected to certain selective pressure, such as 
preferential transduction of muscle tissue, so that only the AAV particles passing 
through the selection can be recovered. To retrieve and identify the capsid 
sequences of those AAV particles capable of withstanding the selective pressure, the 
corresponding capsid genes embedded in the packaged AAV genomes must be ampli-
fied by viral replication or PCR and sequenced at depth. Furthermore, the capsid 
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diversification and/or library selection procedure can be performed for multiple 
rounds to progressively enrich for the AAV capsids with a desirable feature.

The naturally occurring AAV capsid sequence collectively provides the founda-
tion to create a capsid gene library by various molecular methods, such as mutagen-
esis and DNA shuffling [64]. Regardless of the molecular cloning methods used in 
mutating the capsid gene, the resulting AAV particle library usually carries three 
types of capsid modifications, namely, random amino acid mutations, recombined 
capsids generated from several natural AAV capsid sequences, and insertion of 
degenerately encoded peptides [65]. In one particularly interesting adaptation of 
directed evolution, an ancestral AAV capsid gene library was computationally 
designed, based upon extant sequences, and constructed by chemical synthesis [66]. 
This library comprises combinatorial variations at 32 amino acid residues. Several 
variants were identified to have higher muscle transduction than AAV1, a muscle 
gene delivery vector commonly used in clinical applications. In general, the more 
diversity contained within a library, the more likely it is to yield variants that meet 
the selection criteria.

The AAV packaging process imposes the first selection, because many mutations 
in the capsid proteins are not tolerated for viral assembly. To select for muscle- 
tropic AAV capsid variants, Yang et al. generated a capsid library by shuffling the 
capsids of natural AAV1 to AAV9, delivered the AAV mixture to adult mice by 
intravenous injection, and analyzed the vectors enriched in the heart and muscle 
[67]. They isolated a chimeric capsid designated as AAV-M41 that shows enhanced 
muscle targeting and reduced liver transduction. Choudhury et al. also conducted a 
similar library selection experiment focusing on the central nervous system (CNS) 
after intravenous delivery to mice. Interestingly, the lead vector, AAV-B1, showed 
higher tropism in both CNS and muscle than AAV9 [68]. A potential caveat of 
selecting tissue-tropic capsid variants in a model organism, prior to human applica-
tion, is that the utility of the resulting variants may be limited to the experimental 
species examined. To address this concern, selection can be performed in xenograft 
models implanted with human cells in vivo [69] or surgically resected human cells 
ex vivo [70]. A human skeletal muscle xenograft model has been developed [71], 
but its utility for AAV directed evolution remains unproven. Surgically resected 
primary human skeletal muscle cells have been used to evolve AAV capsids with 
increased transduction in human surgical explants ex  vivo [70]. Meanwhile, the 
evolved vectors have the advantage of reduced seroreactivity against pooled human 
sera, compared to existing serotypes.

Being able to escape pre-existing NAbs is another commonly employed selective 
pressure. To this end, initial studies were aimed to select AAV variants resistant to 
neutralizing sera or pooled intravenous immunoglobulin (IVIG) [72, 73]. Both 
approaches yielded novel capsids that can escape neutralization and retain transduc-
tion capability. Grimm et al. combined tissue tropism and NAb escape in directed 
evolution of a shuffled capsid library, culminating in the isolation of a variant that 
shows enhanced liver transduction and resistance to IVIG neutralization [74]. 
Recently, resistance to individual patient-derived neutralizing serum was used as the 
selective pressure [75]. In this study, AAV mutants isolated in vivo were better at 
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evading NAbs derived from the cognate serum than those from the others, suggest-
ing that NAb-escaping AAV variants can be developed in a patient-specific manner 
if necessary. Furthermore, when muscle tropism was applied as another selective 
pressure, the isolated AAV mutants showed the combined benefits of NAb escaping 
and enhanced muscle transduction [75].

10.3.3  Combinatorial Approaches

Usually, a particular aspect of structure-function relationship is only partially under-
stood, and there is insufficient knowledge to solely rely on rational design for capsid 
engineering. Similarly, it may accelerate directed evolution or library selection if the 
diversity is rationally designed at a certain capsid region. Therefore, a combinatorial 
approach has emerged as a powerful means for AAV capsid engineering. Pulicherla 
et al. hypothesized that altering the amino acid residues within the GH loop would 
confer a novel binding profile, because the surface-exposed structure is highly vari-
able among AAV strains and is thought to influence tissue tropism of different AAV 
serotypes [76]. These authors focused random mutagenesis only to the GH loop of 
AAV9 and characterized a handful of candidates based on sequence analysis, struc-
tural modeling, and in vivo screening. Through such a comprehensive workflow, 
they isolated novel AAV9 variants that retain AAV9’s capability of efficiently trans-
ducing the heart and skeletal muscle following systemic delivery in mice but display 
diminished transduction in the liver [76].

In an effort to engineer novel AAV capsids for immune evasion, Tse et al. first 
performed structural analysis of antigenic epitopes on AAV1 capsid to identify the 
residues in contact with multiple monoclonal antibodies (mAbs) [77]. These anti-
genic footprints were then mutated in synthetic capsid variants, which were subjected 
to iterative evolution to yield highly divergent antigenic motifs. One lead AAV vari-
ant, CAM130, consisting of multiple evolved antigenic sites evades neutralizing 
polyclonal anti-AAV1 antibodies derived from multiple species, including 1:5-diluted 
human sera. Notably, seronegativity to a therapeutic AAV vector capsid at this dilu-
tion is a common criterion for patient inclusion in clinical trials, indicating that 
CAM130 is potentially compatible with a large population of patients.

10.4  Conclusion

The gene delivery technologies based on rAAV has played a pivotal role in the suc-
cess of muscle gene therapy. Vectors derived from several natural AAV strains have 
been extensively tested in animal studies for muscle gene delivery and proven effi-
cacious in human applications. Although these vectors have high muscle tropism 
following various routes of administration, they lack some desired features for safe 
and efficacious human muscle gene therapy—such as tissue specificity and 
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escaping host immune surveillance. In the future, comprehensive screenings of new 
AAV isolates, with novel capsid properties, appear poised to address many of these 
basic delivery issues—or at least serve to better inform the rational design and 
directed evolution of capsids with robust muscle-specific tropism and limited immu-
nological intolerance. Because these features are largely determined by the capsid, 
protein engineering has already been employed to modify the AAV capsid to pro-
duce better clinical vectors. These “designer” capsid-based rAAVs have just begun 
to enter the clinical arena and are expected to further drive the development of 
muscle gene therapy toward the clinic.
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Chapter 11
Development of Next-Generation Muscle 
Gene Therapy AAV Vectors

Michael E. Nance and Dongsheng Duan

Abstract Recombinant adeno-associated virus (AAV)-based gene delivery is a 
promising approach to treat muscle diseases. However, body-wide muscle delivery 
and pre-existing immune responses pose significant challenges to AAV muscle gene 
therapy. While the determinants of tissue tropism and immunogenicity of AAV are 
amenable to traditional molecular engineering, the development of a muscle- 
specific, immunosilent AAV vector has remained elusive. Recent advances in under-
standing the relationship between capsid structural motifs and functional domains 
have created exciting developments in the search for a muscle-specific AAV. Novel 
approaches to generate unique AAV properties through forced evolution have 
resulted in capsids with improved immune properties and/or muscle-targeting effi-
ciency. Optimization of the gene cassette to restrict expression to mature muscle 
fibers provides another level of control. These reengineered AAV vectors have the 
potential to greatly increase efficacy and reduce off-target effects for body-wide 
muscle gene therapy. In this chapter, we discuss recent advances in the development 
of a next-generation, muscle-specific AAV vector.
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11.1  Introduction

Muscular dystrophies are a diverse group of inherited muscle diseases characterized 
by muscle weakness and dystrophic muscle pathology. Histologically, dystrophic 
muscle shows degeneration/regeneration, inflammation, and fibrotic/fatty infiltra-
tion. These microscopic changes result in variable clinical manifestations involving 
skeletal, smooth, and cardiac muscle and sometimes non-muscle organs such as the 
brain or skin. While our understanding of disease pathogenesis is still evolving, 
many genetic determinants underlying muscular dystrophies have been identified 
[1]. Thus far, defects associated with muscular dystrophies are primarily related to 
genes that encode extracellular matrix proteins, sarcolemma-associated proteins, 
nuclear membrane proteins, sarcomeric proteins, and proteins with enzymatic func-
tions [1]. Before the 1990s, treatment options for muscular dystrophies were limited 
to mainly supportive therapies without hope for correcting the underlying gene 
mutation. This therapeutic gap has its origins in our incomplete understanding of 
the genetics of each disease and, also, our limited ability to modify the genetic land-
scape. In more recent years, exciting progress in the areas of gene replacement, gene 
supplementation, and gene editing have increased potential for a viable genetic 
treatment in the near future.

The ability to efficiently and stably deliver the therapeutic gene via a vehicle to 
the diseased muscle all over the body is a premise for muscular dystrophy gene 
therapy. This vehicle can be either a viral or non-viral vector. From a pharmaco-
kinetic standpoint, the vector must traffic through the muscle vasculature, traverse 
the endothelium and extracellular space, and then, finally, enter the target cell. For 
an effective therapy for many muscular dystrophies, the target cells would include 
not only mature muscle fibers but also muscle progenitor cells. Gene delivery to 
muscle is further complicated by off-target uptake in the reticuloendothelial 
organs such as the spleen and liver and activation of local and systemic immune 
responses [2].

After decades of research, adeno-associated virus (AAV) is now considered the 
premier gene delivery vector for muscle. AAV is a dependent virus and requires a 
helper virus such as adenovirus or herpesvirus for productive infection. In the 
absence of a helper virus, AAV establishes a latent infection capable of stable long- 
term gene expression in dividing and nondividing cells. AAV was discovered more 
than 50 years ago and has been studied as a gene transfer vector in mammalian cells 
for over 30 years [3–6]. To date, there are 12 known AAV serotypes with hundreds 
of AAV variants having been engineered in the laboratory or isolated from nature 
[7, 8]. Despite this diversity, none of the existing AAV can fulfill all the needs of 
muscle gene therapy such as selective and body-wide muscle targeting and the 
capability to efficiently transduce muscle progenitor cells. In this chapter, we intro-
duce AAV biology in the context of muscle gene therapy and then discuss current 
progress toward developing next-generation, muscle-targeting AAV vectors. 
Additionally, we highlight key issues and potential solutions in the field of AAV 
capsid engineering.
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11.2  AAV Biology

11.2.1  The Basic Biology of AAV

AAV is a 25 nm non-enveloped, icosahedral particle with a 4.7 kb single-stranded 
DNA genome. The AAV genome is flanked by 145 base pair inverted terminal repeats 
which are necessary for AAV replication and packaging [9]. Within the genome, 
there are two major open reading frames (ORFs) that encode nonstructural Rep pro-
teins and structural Cap proteins. Rep proteins are involved in viral replication 
and packaging. Cap proteins are responsible for forming the viral capsid. Recently, 
a small ORF was discovered in the AAV genome. This ORF encodes a protein 
called AAV assembly-activating protein [10]. An intact AAV particle consists of 
60 monomers formed by Cap proteins. Each monomer contains a conserved core 
structure with an alpha helix and eight antiparallel beta sheets (βB–βI) with inter-
vening hypervariable loops [11, 12]. The hypervariable loops represent the primary 
source of diversity and convey the tropic/immunological properties. For this reason, 
these loops have been the focus of AAV capsid modification.

11.2.2  AAV Infection Biology in the Context of Muscle 
and Muscle Stem Cells

While the mechanisms of AAV gene transfer have been extensively studied over the 
past couple of decades, detailed knowledge of AAV infection in muscle remains 
incomplete [13, 14]. At the cellular level, AAV infection is initiated with the attach-
ment of the viral particle to the cell surface followed by entry and trafficking to the 
nucleus for gene expression. Various types of cell surface glycans have been identi-
fied as the primary binding receptor for different AAV serotypes. Of particular inter-
est is the discovery of galactose as the AAV-9 receptor because this may contribute 
to the superior cardiotropic property of AAV-9 [15–19]. AAV entry is mediated by 
a secondary binding event to a co-receptor (often a transmembrane protein such as 
integrin) that recycles between the endosomal compartment and plasma membrane. 
More recently, a generic AAV receptor named AAVR was discovered [20]. AAVR 
interacts with multiple AAV serotypes through its extracellular immunoglobulin 
domains. Characterization of the expression profile of AAVR in muscle will help to 
better understand AAV transduction in muscle and, if needed, to increase AAVR 
expression for enhanced muscle transduction. AAV internalization is primarily 
through clathrin-independent carriers/GPI-enriched endocytic compartment (CLIC/
GEEC) endocytic pathway [21]. Following endocytosis, AAV appears to utilize the 
microtubule network to transport to the perinuclear region prior to nuclear entry. 
This may be important in muscular dystrophies where the microtubule network may 
be disrupted [22, 23]. In the absence of a helper virus, AAV establishes a latent 
infection in muscle as a double-stranded circular episomal molecule [24, 25].
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Following intramuscular injection, AAV gradually spreads through the endo-
mysial compartment between muscle fibers [26]. By 4 h, AAV particles are readily 
detected three myofibers away from the injection site. AAV capsids become detect-
able as early as 2 h after injection at the injection site. Nucleus-associated AAV 
particles increase by tenfold at 4 h after injection. However, by 6 days after injec-
tion, AAV capsids become largely undetectable in myonuclei although they are still 
readily visible in the endomysial compartment [26]. A study in human patients sug-
gests that AAV capsid can persist in myonuclei for at least 12 months after local 
injection [27]. In contrast to AAV capsid proteins, the AAV vector genome can 
persist for many years after gene transfer in muscle. This leads to continuous trans-
gene expression [28].

Skeletal muscle has the unique property of high regeneration upon chemical/
physical injuries or in diseased status (such as muscular dystrophy). Satellite cells 
are responsible for muscle regeneration [29]. Effective targeting of satellite cells has 
clear advantage for gene editing therapy because genetic defects in all regenerated 
muscle cells should theoretically be corrected. AAV gene transfer to satellite cells 
has been the topic of great interest in past several years, yet the ability of various 
AAV serotypes to efficiently infect satellite cells remains uncertain. Satellite cells 
are a challenging target due to their (1) sub-laminar location, (2) cellular quies-
cence, (3) differential gene expression including cellular receptors and downstream 
trafficking molecules, and (4) low frequency in adult muscle. To study AAV- 
mediated satellite cell transduction, several labs used reporter AAV vectors [30, 31]. 
A study in adult mice from the Chamberlain Lab suggests that AAV-6 and AAV-9 do 
not transduce satellite cells and AAV-8 transduces ~5% satellite cells following 
local injection in mice [30]. However, AAV-8 did not appear to transduce satellite 
cells to a detectable level following systemic delivery [30]. Stitelman et al. tested in 
utero transduction of satellite cells with AAV-9 in mice and observed an efficiency 
reaching ~28% when AAV was delivered on embryonic day 16 [31]. More recently, 
Tabebordbar and colleagues used CRISPR editing to track AAV-9 transduction in 
satellite cells. Using fluorescence-activated cell sorting, they found slightly over 3% 
of satellite cells were transduced irrespective of AAV delivery route (intramuscular 
injection or intraperitoneal injection) [32]. Collectively, except for in utero delivery, 
postnatal AAV delivery using existing AAV serotypes appears very inefficient in 
transducing satellite cells.

11.3  Rational Design of Muscle-Targeting AAV Capsids

11.3.1  Naturally Existing Muscle-Tropic AAV Serotypes

Since the initial isolation of AAV as a contaminant of adenoviral stocks nearly 
50 years ago [6], the explosion of knowledge and isolation of novel AAV serotypes 
have propelled muscle gene therapy forward from bench to clinic in a relatively 
short period of time. While many initial studies focused on AAV-2 [5], the discovery 
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of AAV serotypes with inherent tropism for muscle tissue has been instrumental in 
the development of vectors for treating muscular dystrophies [33].

While a number of AAV serotypes (such as AAV-1, AAV-5, AAV-6, AAV-7, 
AAV-8, and AAV-9) have been shown to efficiently transduce muscle following 
local injection [33], recent studies suggest that tyrosine-mutated AAV-6 may likely 
represent the most potent serotype for local muscle delivery [34]. Efficient muscle 
transduction has been detected following systemic administration of AAV-1, AAV- 
6, AAV-7, AAV-8, AAV-9, rh10, and rh74 in rodents and large mammals [33, 35]. 
Among these, AAV-8, AAV-9, and rh74 have received particular attention for human 
use to treat neuromuscular diseases [36]. Several systemic AAV gene therapy clini-
cal trials have been initiated using these serotypes to treat type 1 spinal muscular 
atrophy, X-linked myotubular myopathy, and Duchenne muscular dystrophy [36]. 
The recent report on the spectacular clinical efficacy and high tolerability of sys-
temic AAV-9 treatment in type 1 spinal muscular atrophy patients is a historical 
milestone for the entire field of gene therapy [37].

11.3.2  Improving Muscle Targeting with Rational Design

Despite robust muscle transduction with naturally existing AAV serotypes, these vec-
tors usually display broad tropism to a number of tissues. This makes it a challenge to 
achieve muscle-specific transduction. Rational design of muscle-tropic AAV uses 
knowledge of high-resolution AAV capsid structure, receptor and co- receptor binding 
footprints, and known muscle-homing peptides. Most commonly, a muscle-targeting 
peptide is inserted to a specific location on the surface of a naturally existing AAV 
serotype. In this regard, the hypervariable loops located on the capsid threefold protru-
sions have been found extremely effective. Yu et al. inserted muscle-targeting peptide 
ASSLNIA following either 587 or 588 amino acid residues in AAV-2 [38]. 
Interestingly, the authors found that insertion after 587 ablated the intrinsic heparin 
binding of unmodified AAV-2, while insertion after 588 did not. Systemic delivery of 
a modified capsid inserted after 587 resulted in significantly improved heart and skel-
etal muscle transduction as well as reduction in non- muscle tissues. Work et  al. 
inserted the peptide EYHHYNK following 587 and achieved great targeting of AAV-2 
to human venous and arterial smooth muscle cells [39]. Ying et al. tested several car-
diac-targeting peptides they discovered through in vitro screening of a random peptide 
library [40]. Insertion of these peptides after residue 588  in AAV-2 indeed signifi-
cantly increased myocardial transduction in mice [40].

Besides muscle-homing peptides, swapping the tissue tropic footprint from one 
serotype to another has also resulted in dramatic change in tissue tropism. AAV-2 
cannot efficiently transduce muscle. The AAV-2 heparan sulfate receptor footprint is 
a hexapeptide located between residues 585 and 590. The Asokan lab replaced the 
AAV-2 footprint with the corresponding residues from AAV-8, a serotype that can 
efficiently transduce muscle following systemic delivery. The resulting chimeric 
capsid AAV2i8 displayed significantly enhanced muscle and heart transduction [41].
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Adachi et al. took a more radical approach in designing a muscle-tropic AAV 
[42]. They performed a double alanine scan in AAV-9 and identified residues critical 
for the tissue tropic phenotype. Based on this knowledge, they successfully repro-
grammed AAV-2 for muscle targeting using a minimum number of noncontiguous 
mutations.

11.4  Evolving Novel Muscle-Tropic AAV Capsids 
Through Directed Evolution

Despite the success of rational design for improving muscle targeting of AAV cap-
sids, it is suggested that the determinants of the AAV tropism are likely spread 
widely over the entire capsid surface. Modification in one location, or even one resi-
due, may lead to unexpected changes in AAV properties. This often makes structure- 
function correlation difficult. For this reason, investigators have turned to directed 
evolution [43, 44]. The fundamental concept in directed evolution is the isolation of 
desired individuals from a diverse population to meet desired selection criteria. 
Similar to natural selection, selective pressures drive the emergence of beneficial 
traits, which at the protein level amounts to desirable amino acid polymorphisms. 
In-depth discussions on the applications of directed evolution to AAV and DMD 
therapy are reviewed in [45]. Here, we limit our discussion to a brief introduction of 
basic concepts, and we then focus on the application of directed evolution for AAV 
muscle gene therapy.

11.4.1  Basic Concepts

The methods of AAV plasmid library construction and selection platform are of 
utmost importance in the initial planning phase for a directed evolution experiment. 
Traditional library construction has typically focused on one approach for diversifi-
cation. Moving forward however, combining multiple approaches is becoming more 
popular to further increase diversity (e.g., point mutations, small insertions, and 
DNA shuffling [45]). Point mutations are introduced with conventional molecular 
biology techniques such as error-prone PCR. Small insertions can be achieved by 
inserting a small stretch of random nucleotides at a particular location. DNA shuf-
fling leverages sequence homology between parental AAV serotypes to derive 
novel, diverse capsid genes through in  vitro recombination [46]. Theoretically, 
higher diversity correlates with a greater probability in isolating a beneficial 
mutation(s). However, it also increases the risk of defective variants, for example, 
variants that contain nonsense mutations and variants that affect assembly and pack-
aging. According to an estimation by PacBio, sequencing a plasmid library with ~107 
diversity may lose around 99% of its diversity resulting in ~105 in the packaged virus 
library [47].
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Following diversification and virus production, the virus library is applied in 
recursive cycles to a selection platform for the desired phenotype. For muscle tar-
geting, in vivo selection will likely provide the most realistic selection parameters. 
Screening methods should take into account the requirements of (1) intravenous 
delivery, (2) endothelial barrier translocation, (3) body-wide muscle targeting, 
(4) reduce non-muscle, especially liver, uptake, and (5) immune evasion. Another 
criteria may include species, which is difficult to address since viral libraries cannot 
be directly screened in human patients.

11.4.2  Retaining Muscle Tropism While Avoiding the Liver

From a reductionist perspective, primary muscle cells are the most straightforward 
platform for selecting muscle-targeting AAV capsids. However, in vitro screening 
methods often fail to address key desired traits for in vivo application. A vector that 
performs well in cell culture may be dependent upon a surface expression profile 
that does not occur naturally in the intact muscle and vice versa. For this reason, 
in vivo selection is preferred.

Following systemic delivery, the vast majority of AAV accumulates in the liver. 
Hence, de-targeting from the liver will allow more AAV to transduce muscle. 
Although, theoretically, minimizing liver retention should enhance muscle trans-
duction, it may not always be the case. For example, Yang and colleagues identified 
a variant called AAVM41 from a DNA-shuffled virus library [48]. AAVM41 dis-
played reduced liver tropism but also had reduced muscle transduction when com-
pared to AAV-9. Focusing on mutations to the threefold protrusion, Pulicherla and 
colleagues isolated an AAV-9 variant, AAV-9.45. This variant displayed reduced 
expression in the liver [49]. The muscle tropism of AAV-9 was retained but not 
enhanced. These studies suggest that there may be a trade-off in terms of cost- 
benefit when the entire capsid gene is mutated. It should be pointed out that 
although these variants did not show increased muscle transduction, they are still 
highly very useful for systemic muscle gene therapy due to reduced toxicity from 
liver de-targeting.

In a recent study from the Sena-Esteves laboratory, Choudhury et al. described a 
novel variant called AAV-B1 [50]. This variant was isolated from a shuffled library 
consisting of 11 parental serotypes. Similar to AAVM41 and AAV-9.45, AAV-B1 
showed reduced liver transduction. However, it also showed robust transduction in 
the central nervous system and motor neurons. Of relevance to muscle gene therapy, 
AAV-B1 displayed skeletal muscle and heart transduction at least tenfold higher 
than that of AAV-9 in mice. These results were extended and consistent following 
systemic delivery in cats. If these results can be extended to human patients,  AAV- B1 
may become a preferred vector for systemic muscle gene therapy in clinical trials 
in the future.
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11.4.3  Evading Immunity to Enhance Muscle Delivery

Muscle-specific and systemic humoral and cellular immune responses are impedi-
ments to muscle gene delivery with AAV vectors. It is estimated that 30–80% of the 
human population has pre-existing neutralizing antibodies from childhood exposure 
with a high cross-reactivity between serotypes [51]. IgG appears to be the most 
important neutralizing antibody. In one of the earliest studies investigating the evo-
lution of vectors capable of escaping antibody neutralization, Maheshri et al. devel-
oped a screening method by preincubating shuffled virus with increasing 
concentrations of rabbit anti-AAV-2 sera with each round of selection in HEK-293 
cells. Interestingly, this approach identified mutant capsids with improved gene 
expression in the mouse hind-limb muscle compared to wild-type following prein-
cubation with rabbit anti-AAV-2 sera [52]. While these results were promising, an 
important question is how relevant are antigenic variants isolated when screening 
with pooled animal sera versus human sera and, more stringently, to patient-specific 
sera? Further is preincubation with sera contextually relevant to a viral- antibody 
encounter within the vasculature? In a recently published study by Tse et al., the 
authors used a combined rational and directed evolution approach focused on mouse 
monoclonal antibody epitopes to derive antibody-resistant AAV vectors [53]. The 
resulting vector (AAV-CAM130) displayed improved antibody resistance to not 
only mouse anti-sera but pooled nonhuman primate and human anti-sera while 
maintaining the tissue tropism of parental AAV-1. Therefore, there is likely anti-
genic conservation between species to an extent.

The capsid composition, in terms of the individual structural motifs, derived 
from each parental serotype may have a large impact on the ability of chimeric cap-
sids to avoid antibody neutralization. Conspicuous epitopes, such as the threefold 
protrusions, are formed by the apposition of GH loops from adjacent monomers. In 
theory, GH loop segments could derive from different serotypes in an evolved chi-
meric AAV capsid. Such a capsid may still react to the neutralizing antibody against 
the parental serotype. For example, a capsid containing segments of GH loop from 
AAV-1 may not be able to evade neutralizing serum against AAV-1. Li et al. observed 
that shuffled vectors screened with human sera performed variably depending on a 
patient-to-patient basis [54]. This phenomenon appeared to be related to the paren-
tal origin of certain segments of the VP3 viral protein monomer. Therefore, the 
origin of the micro-architectural domains within the capsid could have a significant 
influence on important vector properties. With this notion, another consideration 
would be the ability of shuffled vectors to retain the tissue transduction efficiency of 
native vectors. Several approaches may help overcome this limitation. One solution 
is to co-inject the shuffled capsid library and neutralizing serum into skeletal mus-
cle. While this approach incorporates two selective pressures, it fails to mimic the 
natural route of infection and neutralization, i.e., intravascular delivery. Furthermore, 
it would be important to consider the effect of injecting high doses of serum into the 
muscle and how this alters the environment and muscle transduction. Indeed, 
muscle-specific vectors isolated from this approach failed to exceed the heart and 
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muscle transduction of parental serotype AAV-9 [54]. Another solution is to pre-infect 
the host with a parental AAV capsid, then deliver the virus library and anti-sera intra-
venously. This approach incorporates more realistic selection. Tse et al. identified 
capsid variants with improved antibody evasion and robust muscle expression using 
this approach [53].

While one of the driving principles behind directed evolution is the ability to 
achieve improved vectors without prior knowledge of the structure of the evolved vec-
tor, analysis of the primary amino acid sequence from advantageous capsids can help 
to rationally identify capsid segments responsible for functional improvements. 
Maheshri identified a T716A mutation in the C-terminus of VP-1 to confer improved 
antibody resistance [52]. Likewise, muscle tropism in chimeric vectors may be 
enhanced by inserting the AAV-6 VP-1 sequence from amino acid 347–446 [54].

To summarize, directed evolution is a powerful platform to develop AAV variants 
with enhanced muscle targeting and immune evasion. However, despite the immense 
effort to evolve novel vectors, the preclinical results have, thus far, not translated to 
the clinic. Likely combined approaches or, at the least, focused evolution of specific 
capsid regions will be an important area of research development for muscle gene 
therapy.

11.5  Future Directions and Conclusions

AAV capsid engineering is an alembic process whereby years of research are begin-
ning to produce promising novel vectors for muscle gene therapy. In a sense, the 
immense power of directed evolution and multitude of potential rational modifica-
tions provides gene therapists with an open canvas for endless creative possibilities. 
However, there are several additional questions (among many others) that remain 
for capsid engineers.

11.5.1  Can We Use Capsid Engineering to Expand the AAV 
Capsid Packaging Capacity?

While capsid engineering approaches have been applied to retargeting vectors and 
reducing immune responses, it is relatively unknown if these techniques may be 
utilized to enhance AAV packaging capacity. Increasing the packaging capacity 
opens the door to more complex gene expression cassettes which may accommo-
date larger genes and more sophisticated elements for selective muscle expression. 
Several studies since the early 2000s [55–57] determined that the packaging capac-
ity of AAV is limited to ~5.2  kb, although larger packaging size was reported. 
Interestingly, AAV genomes may also be cross packaged in other human parvovi-
rus capsids including parvovirus B19 (up to 5.6 kb) [58] and human bocavirus-1 
(up to 5.5  kb) [59]. The molecular interactions, specifically protein and nucleic 
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moieties, involved in cross packaging AAV genomes to the capsids of other parvo-
viruses have yet to be determined. Identification of these signal/interaction domains 
may allow rational cross packaging to other, larger icosahedral capsids. A high 
degree of homology exists between AAV serotypes, underlying the fundamental 
recombinogenic mechanism in directed evolution. The ability of AAV genomes to 
cross package to other human parvovirus capsids suggests the path to an effective 
muscle-targeting vector with increased packaging may lie in the choice of human 
parvovirus B19 or human bocavirus-1 as starting platforms for directed evolution or 
rational design. In this scenario, endogenous tropism may be ablated and vectors 
retargeted through in vivo bio-panning or retargeting with muscle-specific ligands.

11.5.2  Is Directed Evolution in Large Animal Models 
Possible?

When considering library selection in animal models, the amount of library injected 
should be large enough that each individual clone is represented multiple times [60]. 
Similarly, injecting too much virus results in saturation and isolation of nonspecific 
variants. The use of approximately 1000-fold more particles than the estimated 
library diversity has been reported as ideal for a mouse [60]. This factor provides a 
limitation on the use of larger animal models such as dogs, pigs, or nonhuman pri-
mates. Inevitably, directed evolution in larger animals may be justified, despite the 
costs. In an attempt to bypass this limitation, translational models such as human 
xenografts in immune-deficient mice may allow selection in a more relevant in vivo 
model while limiting the amount of virus needed for screening [61].

In conclusion, next-generation muscle-targeting vectors may dramatically 
improve the translation of gene therapy efforts for treating muscle diseases. Not 
only will more selective vectors improve uptake in the muscle tissue, but they may 
reduce unwanted toxicity in the other tissues and curtail untoward immune responses 
that have significantly hindered moving preclinical success into the clinic. With the 
increase in our understanding of AAV biology and the need to treat different muscle 
diseases using a tailored vector, capsid engineering certainly warrants dedicated 
research in the coming years.

References

 1. Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet 381(9869):845–860. https://doi.
org/10.1016/S0140-6736(12)61897-2

 2. Ertl HCJ, High KA (2017) Impact of AAV capsid-specific T-cell responses on design and 
outcome of clinical gene transfer trials with recombinant adeno-associated viral vectors: an 
evolving controversy. Hum Gene Ther 28(4):328–337. https://doi.org/10.1089/hum.2016.172

 3. Muzyczka N (1992) Use of adeno-associated virus as a general transduction vector for 
mammalian cells. Curr Top Microbiol Immunol 158:97–129

M. E. Nance and D. Duan

https://doi.org/10.1016/S0140-6736(12)61897-2
https://doi.org/10.1016/S0140-6736(12)61897-2
https://doi.org/10.1089/hum.2016.172


203

 4. Muzyczka N, Berns KI (2015) AAV’s golden jubilee. Mol Ther 23(5):807–808. https://doi.
org/10.1038/mt.2015.55

 5. Hastie E, Samulski RJ (2015) Adeno-associated virus at 50: a golden anniversary of discovery, 
research, and gene therapy success--a personal perspective. Hum Gene Ther 26(5):257–265. 
https://doi.org/10.1089/hum.2015.025

 6. Carter BJ (2004) Adeno-associated virus and the development of adeno-associated virus vectors: 
a historical perspective. Mol Ther 10(6):981–989

 7. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of 
adeno-associated viruses are widely disseminated in human tissues. J Virol 78(12):6381–6388. 
https://doi.org/10.1128/JVI.78.12.6381-6388.2004

 8. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno- associated 
viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 
99(18):11854–11859

 9. Weitzman MD, Linden RM (2011) Adeno-associated virus biology. Methods Mol Biol 807:1–23. 
https://doi.org/10.1007/978-1-61779-370-7_1

 10. Sonntag F, Kother K, Schmidt K, Weghofer M, Raupp C, Nieto K, Kuck A, Gerlach B, Bottcher 
B, Muller OJ, Lux K, Horer M, Kleinschmidt JA (2011) The assembly-activating protein pro-
motes capsid assembly of different adeno-associated virus serotypes. J Virol 85(23):12686–
12697. https://doi.org/10.1128/JVI.05359-11

 11. Huang LY, Halder S, Agbandje-McKenna M (2014) Parvovirus glycan interactions. Curr Opin 
Virol 7:108–118. https://doi.org/10.1016/j.coviro.2014.05.007

 12. Agbandje-McKenna M, Kleinschmidt J  (2011) AAV capsid structure and cell interactions. 
Methods Mol Biol 807:47–92. https://doi.org/10.1007/978-1-61779-370-7_3

 13. Ding W, Zhang L, Yan Z, Engelhardt JF (2005) Intracellular trafficking of adeno-associated 
viral vectors. Gene Ther 12(11):873–880. https://doi.org/10.1038/sj.gt.3302527

 14. Nonnenmacher M, Weber T (2012) Intracellular transport of recombinant adeno-associated 
virus vectors. Gene Ther 19(6):649–658. https://doi.org/10.1038/gt.2012.6

 15. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A (2011) Terminal N-linked galactose is 
the primary receptor for adeno-associated virus 9. J Biol Chem 286(15):13532–13540. https://
doi.org/10.1074/jbc.M110.210922

 16. Shen S, Bryant KD, Sun J, Brown SM, Troupes A, Pulicherla N, Asokan A (2012) Glycan 
binding avidity determines the systemic fate of adeno-associated virus type 9. J  Virol 
86(19):10408–10417. https://doi.org/10.1128/JVI.01155-12

 17. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao GP, Van Vliet K, Agbandje-McKenna 
M, Wilson JM (2011) The AAV9 receptor and its modification to improve in vivo lung gene 
transfer in mice. J Clin Invest 121(6):2427–2435. https://doi.org/10.1172/JCI57367

 18. Bell CL, Gurda BL, Van Vliet K, Agbandje-McKenna M, Wilson JM (2012) Identification 
of the galactose binding domain of the adeno-associated virus serotype 9 capsid. J  Virol 
86(13):7326–7333. https://doi.org/10.1128/JVI.00448-12

 19. Bostick B, Ghosh A, Yue Y, Long C, Duan D (2007) Systemic AAV-9 transduction in mice is 
influenced by animal age but not by the route of administration. Gene Ther 14(22):1605–1609

 20. Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, Jae LT, Wosen JE, Nagamine 
CM, Chapman MS, Carette JE (2016) An essential receptor for adeno-associated virus infection. 
Nature 530(7588):108–112. https://doi.org/10.1038/nature16465

 21. Nonnenmacher M, Weber T (2011) Adeno-associated virus 2 infection requires endocy-
tosis through the CLIC/GEEC pathway. Cell Host Microbe 10(6):563–576. https://doi.
org/10.1016/j.chom.2011.10.014

 22. Xiao PJ, Samulski RJ (2012) Cytoplasmic trafficking, endosomal escape, and perinuclear 
accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. 
J Virol 86(19):10462–10473. https://doi.org/10.1128/JVI.00935-12

 23. Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt JF (2000) Endocytosis 
and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphati-
dylinositol- 3 kinase activation. J Virol 74(19):9184–9196

11 Development of Next-Generation Muscle Gene Therapy AAV Vectors

https://doi.org/10.1038/mt.2015.55
https://doi.org/10.1038/mt.2015.55
https://doi.org/10.1089/hum.2015.025
https://doi.org/10.1128/JVI.78.12.6381-6388.2004
https://doi.org/10.1007/978-1-61779-370-7_1
https://doi.org/10.1128/JVI.05359-11
https://doi.org/10.1016/j.coviro.2014.05.007
https://doi.org/10.1007/978-1-61779-370-7_3
https://doi.org/10.1038/sj.gt.3302527
https://doi.org/10.1038/gt.2012.6
https://doi.org/10.1074/jbc.M110.210922
https://doi.org/10.1074/jbc.M110.210922
https://doi.org/10.1128/JVI.01155-12
https://doi.org/10.1172/JCI57367
https://doi.org/10.1128/JVI.00448-12
https://doi.org/10.1038/nature16465
https://doi.org/10.1016/j.chom.2011.10.014
https://doi.org/10.1016/j.chom.2011.10.014
https://doi.org/10.1128/JVI.00935-12


204

 24. Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P, Schmidt 
M, von Kalle C, Rolling F, Moullier P, Snyder RO (2008) Adeno-associated virus vec-
tor genomes persist as episomal chromatin in primate muscle. J  Virol 82(16):7875–7885. 
JVI.00649-08 [pii]. https://doi.org/10.1128/JVI.00649-08

 25. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, Fisher KJ, Engelhardt JF (1998) Circular 
intermediates of recombinant adeno-associated virus have defined structural characteristics 
responsible for long term episomal persistence in muscle. J Virol 72(11):8568–8577

 26. Xiao PJ, Li C, Neumann A, Samulski RJ (2012) Quantitative 3D tracing of gene-delivery viral 
vectors in human cells and animal tissues. Mol Ther 20(2):317–328. https://doi.org/10.1038/
mt.2011.250

 27. Mueller C, Chulay JD, Trapnell BC, Humphries M, Carey B, Sandhaus RA, McElvaney NG, 
Messina L, Tang Q, Rouhani FN, Campbell-Thompson M, Fu AD, Yachnis A, Knop DR, Ye 
GJ, Brantly M, Calcedo R, Somanathan S, Richman LP, Vonderheide RH, Hulme MA, Brusko 
TM, Wilson JM, Flotte TR (2013) Human Treg responses allow sustained recombinant adeno- 
associated virus-mediated transgene expression. J Clin Invest 123(12):5310–5318. https://doi.
org/10.1172/JCI70314

 28. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P, Sommer J, Luk A, Manno 
CS, High KA, Arruda VR (2006) Evidence of multiyear factor IX expression by AAV- 
mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 
14(3):452–455

 29. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl 
Physiol 91(2):534–551

 30. Arnett AL, Konieczny P, Ramos JN, Hall J, Odom G, Yablonka-Reuveni Z, Chamberlain JR, 
Chamberlain JS (2014) Adeno-associated viral (AAV) vectors do not efficiently target muscle 
satellite cells. Mol Ther Methods Clin Dev 1:14038. https://doi.org/10.1038/mtm.2014.38

 31. Stitelman DH, Brazelton T, Bora A, Traas J, Merianos D, Limberis M, Davey M, Flake AW 
(2014) Developmental stage determines efficiency of gene transfer to muscle satellite cells by 
in utero delivery of adeno-associated virus vector serotype 2/9. Mol Ther Methods Clin Dev 
1:14040. https://doi.org/10.1038/mtm.2014.40

 32. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, 
Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo 
gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411. 
https://doi.org/10.1126/science.aad5177

 33. Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors 
for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364. https://doi.org/10.
1517/17425247.2014.871258

 34. Qiao C, Zhang W, Yuan Z, Shin JH, Li J, Jayandharan GR, Zhong L, Srivastava A, Xiao X, 
Duan D (2010) Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations 
improve gene transfer to skeletal muscle. Hum Gene Ther 21(10):1343–1348. https://doi.
org/10.1089/hum.2010.003

 35. Duan D (2016) Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 21:16–25. 
https://doi.org/10.1016/j.coviro.2016.07.006

 36. Duan D (2018) Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystrophy 
patients. Hum Gene Ther 29(7):733–736. https://doi.org/10.1089/hum.2018.012

 37. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano 
L, Berry K, Church K, Kissel JT, Nagendran S, L’Italien J, Sproule DM, Wells C, Cardenas 
JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, 
Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular 
atrophy. N Engl J Med 377(18):1713–1722. https://doi.org/10.1056/NEJMoa1706198

 38. Yu CY, Yuan Z, Cao Z, Wang B, Qiao C, Li J, Xiao X (2009) A muscle-targeting peptide 
displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16(8):953–962. 
https://doi.org/10.1038/gt.2009.59

 39. Work LM, Nicklin SA, Brain NJ, Dishart KL, Von Seggern DJ, Hallek M, Buning H, Baker 
AH (2004) Development of efficient viral vectors selective for vascular smooth muscle cells. 
Mol Ther 9(2):198–208

M. E. Nance and D. Duan

https://doi.org/10.1128/JVI.00649-08
https://doi.org/10.1038/mt.2011.250
https://doi.org/10.1038/mt.2011.250
https://doi.org/10.1172/JCI70314
https://doi.org/10.1172/JCI70314
https://doi.org/10.1038/mtm.2014.38
https://doi.org/10.1038/mtm.2014.40
https://doi.org/10.1126/science.aad5177
https://doi.org/10.1517/17425247.2014.871258
https://doi.org/10.1517/17425247.2014.871258
https://doi.org/10.1089/hum.2010.003
https://doi.org/10.1089/hum.2010.003
https://doi.org/10.1016/j.coviro.2016.07.006
https://doi.org/10.1089/hum.2018.012
https://doi.org/10.1056/NEJMoa1706198
https://doi.org/10.1038/gt.2009.59


205

 40. Ying Y, Muller OJ, Goehringer C, Leuchs B, Trepel M, Katus HA, Kleinschmidt JA (2010) 
Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral 
display peptide library. Gene Ther 17(8):980–990. https://doi.org/10.1038/gt.2010.44

 41. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S, DiPrimio N, Nam HJ, 
Agbandje-McKenna M, McPhee S, Wolff J, Samulski RJ (2010) Reengineering a receptor 
footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat 
Biotechnol 28(1):79–82. https://doi.org/10.1038/nbt.1599

 42. Adachi K, Enoki T, Kawano Y, Veraz M, Nakai H (2014) Drawing a high-resolution functional 
map of adeno-associated virus capsid by massively parallel sequencing. Nat Commun 5:3075. 
https://doi.org/10.1038/ncomms4075

 43. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recom-
bination for molecular evolution. Proc Natl Acad Sci U S A 91(22):10747–10751

 44. Stemmer WP (1994) Rapid evolution of a protein in  vitro by DNA shuffling. Nature 
370(6488):389–391. https://doi.org/10.1038/370389a0

 45. Nance ME, Duan D (2015) Perspective on adeno-associated virus capsid modification for 
Duchenne muscular dystrophy gene therapy. Hum Gene Ther 26(12):786–800. https://doi.
org/10.1089/hum.2015.107

 46. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene 
therapy. Nat Rev Genet 15(7):445–451. https://doi.org/10.1038/nrg3742

 47. Marsic D, Govindasamy L, Currlin S, Markusic DM, Tseng YS, Herzog RW, Agbandje- McKenna 
M, Zolotukhin S (2014) Vector design Tour de Force: integrating combinatorial and rational 
approaches to derive novel adeno-associated virus variants. Mol Ther 22(11):1900–1909. https://
doi.org/10.1038/mt.2014.139

 48. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, Pu D, Hu X, Wang DZ, 
Li J, Xiao X (2009) A myocardium tropic adeno-associated virus (AAV) evolved by DNA 
shuffling and in vivo selection. Proc Natl Acad Sci U S A 106(10):3946–3951. https://doi.
org/10.1073/pnas.0813207106

 49. Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-McKenna M, Asokan 
A (2011) Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene 
transfer. Mol Ther 19(6):1070–1078. https://doi.org/10.1038/mt.2011.22

 50. Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, Ma S, Sharma 
RB, Gray-Edwards HL, Johnson JA, Johnson AK, Alonso LC, Punzo C, Wagner KR, Maguire 
CA, Kotin RM, Martin DR, Sena-Esteves M (2016) In vivo selection yields AAV-b1 capsid 
for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257. https://doi.
org/10.1038/mt.2016.84

 51. Calcedo R, Wilson JM (2013) Humoral immune response to AAV.  Front Immunol 4:341. 
https://doi.org/10.3389/fimmu.2013.00341

 52. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno- 
associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24(2):198–204. https://
doi.org/10.1038/nbt1182

 53. Tse LV, Klinc KA, Madigan VJ, Castellanos Rivera RM, Wells LF, Havlik LP, Smith JK, 
Agbandje-McKenna M, Asokan A (2017) Structure-guided evolution of antigenically distinct 
adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 114(24):E4812–
E4821. https://doi.org/10.1073/pnas.1704766114

 54. Li C, Wu S, Albright B, Hirsch M, Li W, Tseng YS, Agbandje-McKenna M, McPhee S, 
Asokan A, Samulski RJ (2016) Development of patient-specific AAV vectors after neutral-
izing antibody selection for enhanced muscle gene transfer. Mol Ther 24(1):53–65. https://doi.
org/10.1038/mt.2015.134

 55. Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes: 
impact of larger genomes on infectivity and postentry steps. J Virol 79(15):9933–9944

 56. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized 
recombinant AAV vector. Mol Ther 18(1):87–92. mt2009258 [pii]. https://doi.org/10.1038/
mt.2009.258

 57. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 
18(1):80–86. mt2009255 [pii]. https://doi.org/10.1038/mt.2009.255

11 Development of Next-Generation Muscle Gene Therapy AAV Vectors

https://doi.org/10.1038/gt.2010.44
https://doi.org/10.1038/nbt.1599
https://doi.org/10.1038/ncomms4075
https://doi.org/10.1038/370389a0
https://doi.org/10.1089/hum.2015.107
https://doi.org/10.1089/hum.2015.107
https://doi.org/10.1038/nrg3742
https://doi.org/10.1038/mt.2014.139
https://doi.org/10.1038/mt.2014.139
https://doi.org/10.1073/pnas.0813207106
https://doi.org/10.1073/pnas.0813207106
https://doi.org/10.1038/mt.2011.22
https://doi.org/10.1038/mt.2016.84
https://doi.org/10.1038/mt.2016.84
https://doi.org/10.3389/fimmu.2013.00341
https://doi.org/10.1038/nbt1182
https://doi.org/10.1038/nbt1182
https://doi.org/10.1073/pnas.1704766114
https://doi.org/10.1038/mt.2015.134
https://doi.org/10.1038/mt.2015.134
https://doi.org/10.1038/mt.2009.258
https://doi.org/10.1038/mt.2009.258
https://doi.org/10.1038/mt.2009.255


206

 58. Ponnazhagan S, Weigel KA, Raikwar SP, Mukherjee P, Yoder MC, Srivastava A (1998) 
Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression 
of transduced genes. J Virol 72(6):5224–5230

 59. Yan Z, Keiser NW, Song Y, Deng X, Cheng F, Qiu J, Engelhardt JF (2013) A novel chimeric 
adenoassociated virus 2/human bocavirus 1 parvovirus vector efficiently transduces human 
airway epithelia. Mol Ther 21(12):2181–2194. https://doi.org/10.1038/mt.2013.92

 60. Korbelin J, Trepel M (2017) How to successfully screen random Adeno-associated virus 
display peptide libraries in  vivo. Hum Gene Ther Methods 28(3):109–123. https://doi.
org/10.1089/hgtb.2016.177

 61. Lisowski L, Dane AP, Chu K, Zhang Y, Cunningham SC, Wilson EM, Nygaard S, Grompe M, 
Alexander IE, Kay MA (2014) Selection and evaluation of clinically relevant AAV variants in 
a xenograft liver model. Nature 506(7488):382–386. https://doi.org/10.1038/nature12875

M. E. Nance and D. Duan

https://doi.org/10.1038/mt.2013.92
https://doi.org/10.1089/hgtb.2016.177
https://doi.org/10.1089/hgtb.2016.177
https://doi.org/10.1038/nature12875


207© Springer Nature Switzerland AG 2019 
D. Duan, J. R. Mendell (eds.), Muscle Gene Therapy, 
https://doi.org/10.1007/978-3-030-03095-7_12

Chapter 12
Histological and Biochemical Evaluation 
of Muscle Gene Therapy

Michael W. Lawlor, Joel S. Schneider, Martin K. Childers, 
and Kristy J. Brown

Abstract The histological and biochemical evaluation of muscle tissue can be of 
critical importance for the establishment of safety and efficacy in muscle gene ther-
apy studies. While specific pathological and biochemical endpoints vary greatly 
with respect to disease, most gene therapy studies encounter common challenges 
associated with study planning, tissue triage, and tissue preparation. This chapter 
discusses a number of issues related to study planning for the performance of histo-
logical and biochemical studies, highlighting our own experience and lessons 
learned from other studies. Additionally, we illustrate some current approaches 
using our own experiences in gene therapy studies of X-linked myotubular myopa-
thy (XLMTM) and Duchenne muscular dystrophy (DMD), both of which are now 
in the human clinical trial stage. The evaluation of endpoints related to important 
histological features and the expression of key proteins by immunohistochemistry, 
western blot, and mass spectrometry are discussed in the context of these studies.

Keywords Pathology · Western blot · Mass spectrometry · X-linked myotubular 
myopathy · Duchenne muscular dystrophy · XLMTM · DMD · 
Immunohistochemistry

M. W. Lawlor (*) 
Division of Pediatric Pathology, Department of Pathology  
and Laboratory Medicine and Neuroscience Research Center,  
Medical College of Wisconsin, Milwaukee, WI, USA
e-mail: mlawlor@mcw.edu

J. S. Schneider · K. J. Brown 
Solid Biosciences, Inc., Cambridge, MA, USA
e-mail: joel@solidbio.com; kristy@solidbio.com

M. K. Childers 
Department of Rehabilitation Medicine, Institute for Stem Cell  
and Regenerative Medicine, University of Washington, Seattle, WA, USA
e-mail: mchilders@askbio.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03095-7_12&domain=pdf
mailto:mlawlor@mcw.edu
mailto:joel@solidbio.com
mailto:kristy@solidbio.com
mailto:mchilders@askbio.com


208

The evaluation of tissue morphology and biochemistry is often essential in deter-
mining the therapeutic efficacy of gene therapy agents. The selection of key tissues 
for evaluation depends on the disease and experimental system, but many muscle 
gene therapy preclinical studies incorporate some combination of skeletal muscle 
and organ histology. Multiple approaches including histological examination, west-
ern blot, and mass spectrometry can assess the effects of a new therapeutic agent, 
dose, or manufacturing technique. This chapter will outline some lessons learned 
with respect to the performance of histological, western blot, and mass spectrome-
try assays in our experience of translating gene therapy studies for X-linked myotu-
bular myopathy (XLMTM) and Duchenne muscular dystrophy (DMD) to the human 
clinical trial stage, while also touching on issues related to other disease states 
where gene therapy is being pursued.

12.1  Tissue Collection Planning

The appropriate collection of tissue is essential in studies of skeletal muscle disease, 
and careful planning of tissue collection can accelerate the pace of a study. It is 
extremely important to understand the possible endpoints of a study prior to plan-
ning animal numbers and tissue collection strategies. Factors that may impair (or 
entirely prevent) the use of specific assays may include (1) the amount of tissue, (2) 
freezing or fixation technique used, and (3) delay between tissue collection and 
freezing/fixation.

Common endpoints in muscle gene therapy studies include organ histology (usu-
ally performed on formalin-fixed tissue); skeletal muscle histology (often performed 
on isopentane-frozen tissue); DNA, RNA, and protein expression studies (usually 
requiring frozen tissue); and possibly electron microscopy (usually performed on 
glutaraldehyde-fixed tissue). Some of these techniques require specialized buffers 
to be used at the time of tissue collection, further decreasing the ability to use a 
given tissue fragment for multiple experimental indications. Thus, thorough plan-
ning is essential to allow parallel evaluation of structural and biochemical endpoints 
that are relevant to gene therapy. In the following sections, we discuss consider-
ations for tissue collection.

12.1.1  Natural History of the Disease State

Primary muscle disorders display a range of degenerative and non-degenerative 
phenotypes associated with weakness. In some of the non-degenerative disor-
ders like XLMTM, a given fragment of muscle tissue will contain a large num-
ber of myofibers, but the overall tissue size available for a study may be very 
small. In contrast, more degenerative disorders like DMD may produce 
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myofiber loss and replacement with fibrous and fatty tissue, to the extent that 
only a subset of the collected tissue is suitable for further study. These consid-
erations related to disease natural history may affect the range of studies pro-
posed on a given tissue type or the study timepoint at which tissue collection is 
performed.

12.1.2  Method of Tissue Collection

The appropriate method of tissue collection can depend on the size of the 
experimental model in use. Murine studies are frequently associated with 
postmortem tissue collections and some flexibility with respect to tissue use. 
Some mouse muscles, however, have an asymmetric distribution of oxidative 
and glycolytic fibers. In such cases, the most appropriate tissue triage strategy 
involves the subdivision of muscle fragments transversely, as a longitudinally 
divided muscle may be excessively enriched in one fiber type and skew exper-
imental results.

Larger animal (such as canine) studies offer the opportunity for longitudinal 
studies of treatment effects with serial muscle biopsies. Important areas of decision- 
making include the site(s) of biopsy and the tissue collection method used. Selection 
of biopsy site(s) can be complicated by variation in pathology and fiber-type distri-
bution between muscles or even between different areas of the same muscle. There 
is also some likelihood of sampling old/healed biopsy sites if muscles are repeatedly 
biopsied, and the histological features of muscle regeneration (endomysial fibrosis, 
fiber size variation, internally nucleated myofibers) may complicate the evaluation 
of treatment efficacy or primary disease pathology.

12.1.3  Freezing Versus Fixation

At the time of tissue acquisition, it is often necessary to either freeze or fix tissue in 
what may correspond to an irreversible commitment to certain assays. Many assays 
require frozen tissue, but the freezing technique may impact assay results. For 
instance, frozen tissue collected for the purpose of RNA expression studies should 
be collected quickly and in RNase-free conditions, whereas frozen muscle histology 
studies require freezing in isopentane that can take considerably longer time [1]. In 
both of these instances, using tissue prepared for the other indication is likely to 
significantly impact the quality of the results. Additionally, it is easier to subdivide 
muscle while it is in the fresh (rather than frozen) state, so effective collection plans 
should also integrate likely tissue distribution plans into the initial collection and 
freezing strategy.

12 Histological and Biochemical Evaluation of Muscle Gene Therapy
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12.1.4  Fixation for Histological Studies

A variety of fixatives are available for the preservation of tissues, and the correct 
choice depends on the study endpoints and the tools intended for use. For general 
surveys of organ histology, it is generally sufficient to fix organs in 10% neutral- 
buffered formalin with subsequent paraffin embedding, sectioning, and staining. 
This approach may not be ideal for the evaluation of skeletal muscle in a given 
study, however, as fixation and processing affect fiber size and shape while also 
rendering the muscle tissue enzymatically inactive. Thus, isopentane-frozen skele-
tal muscle is most often used for histological studies due to the ability to preserve 
morphology and enzymatic activity in an appropriately frozen specimen. In some 
cases, however, fixed muscle tissue may be preferable because some antibodies and 
stains are designed for fixed tissue and do not work in frozen tissue. Additionally, if 
electron microscopy (EM) studies are planned, then optimal tissue quality is 
obtained by glutaraldehyde fixation fairly quickly after tissue excision [1]. While it 
is possible to perform electron microscopy on glutaraldehyde-fixed tissue that has 
previously been frozen or formalin-fixed, there are often significant preparation arti-
facts, and this approach should be avoided when possible.

12.2  Pathological Assessments in Skeletal Muscle Disease

Skeletal muscle histology is typically evaluated using hematoxylin and eosin (H&E) or 
other histochemical stains on sections of frozen muscle tissue. The H&E stain is a main-
stay of most studies, as it allows the identification of myofiber size, areas of inflamma-
tion, myofiber degeneration, and myofiber regeneration [2]. The selection of additional 
stains will depend on the disease under study but may include Gomori trichrome stain-
ing to identify a variety of aggregates and inclusions, oxidative stains (NADH, COX, 
SDH) to identify abnormalities of organelle distribution, ATPase stains or myosin sub-
type immunostains to assess oxidative vs. glycolytic fibers, or substrate-specific stains 
(PAS, Oil Red O) to identify abnormal material in storage diseases [2]. An enormous 
number of antibodies are also available for immunostaining, and these techniques can be 
used to document expression of specific proteins, identify structural abnormalities that 
are not clearly distinguishable using histochemical stains, or generate datasets that are 
more easily interpretable using automated quantification algorithms.

12.2.1  Histochemical Stains

The selection of pathological endpoints to assess disease progression or recovery is 
usually simplified by natural history studies in the experimental models proposed 
for study. Some studies also use constructs that provide enzymatic activity (such as 
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alkaline phosphatase) to serve as a marker of tissue distribution of the therapeutic 
agent [3–6]. Even when using well-established experimental models and tech-
niques, however, it is important to validate the measurements and tools proposed for 
use in the animal colony proposed for study. Differences between published pheno-
types and the phenotype of the animal colony intended for use should be identified 
during the design period of treatment studies. It is also helpful to perform compara-
tive studies of different models before pursuing treatment studies in a new model or 
species, as this can affect endpoint selection. For instance, in our work on murine, 
canine, and human XLMTM, we have observed that species differences cause dif-
ferent pathological patterns of abnormality despite the fact that similar biological 
processes are likely responsible [7]. When translating studies from the murine to the 
dog and human stage, such differences must be taken into account when planning 
study endpoints, or there will be a danger of missing key disease- or recovery- 
related phenotypes.

In our work on XLMTM and DMD, the construction of pathological grading 
systems has been extremely helpful for recognizing treatment or dose-related differ-
ences in muscle pathology. These grading systems are most reliably constructed 
following a blinded evaluation of a full range of pathologies, so the study design 
should include non-diseased samples and samples displaying severe disease pheno-
types. Assessment of abnormalities with respect to the estimated proportion of 
fibers involved is often very useful in correlating disease pathology to treatment 
doses or groups. For instance, in our studies of XLMTM, the percentage of fibers 
involved would be an estimation of fibers displaying central nucleation, myofiber 
smallness, and/or organelle mislocalization [7, 8] (Fig. 12.1a). In DMD, the per-
centage of fibers involved would be a reflection of the percentage of fibers or area 
where myofiber degeneration, active regeneration, and inflammation are present [9] 
(Fig. 12.1b). In our studies of both of these diseases, divisions between different 
grades of pathology (ranging between 0 and 4) were made based on the distribution 
of data from our blinded assessments, and then each sample was given a score. This 
somewhat simple approach allows significant flexibility for different experimental 
designs, as it allows (1) the comparison or pooling of pathological grading data 
across multiple muscles from a given animal and (2) some flexibility in the defini-
tion of “active disease” to account for differences in the phenotype of different 
experimental models.

12.2.2  Immunohistochemistry

Immunohistochemical studies offer an opportunity to establish the expression of 
key proteins or highlight features that are not apparent on routine histochemistry. 
Antibodies (if they are available) are useful in the assessment of disease-related 
proteins (such as dystrophin in DMD) to monitor the degree of protein loss in the 
disease state or the degree of restoration following gene therapy (Fig.  12.1b). 
Immunohistochemistry has been useful in demonstrating low levels of 
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Fig. 12.1 Skeletal muscle histology and immunohistochemistry in evaluating therapeutic efficacy. 
(a) Comparison of pathological features between wild-type (WT) and XLMTM canines in the 
presence and absence of AAV gene therapy. WT muscle shows limited variation in fiber size and 
peripherally located nuclei on H&E staining. NADH staining illustrated an even distribution of 
organelles (primarily mitochondria and t-tubules) across the myofiber cytoplasm. Electron micros-
copy in longitudinal section can identify well-constructed triads (black arrows). Untreated 
XLMTM canines at similar ages show marked myofiber smallness and internally located nuclei on
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microdystrophin expression in early human gene therapy studies of DMD [10], as 
well as more promising positive expression patterns of dystrophin in other DMD 
studies [3, 4, 6, 11–21], alpha sarcoglycan in limb-girdle muscular dystrophy 
(LGMD) type 2D [22–24], dysferlin in LGMD type 2B [25–28], and FKRP in 
LGMD 2I [29]. While this approach can be straightforward, the selection of the 
appropriate antibodies for study can at times be challenging. Using the example of 
dystrophinopathy, the usefulness of immunohistochemistry is highly dependent on 
the impact of a given mutation on dystrophin levels and structure. Dystrophin is a 
very large protein (approximately 427 kDa and 79 exons) [25], and mutations in this 
protein can cause a loss of nearly all dystrophin expression or changes in only a 
subset of dystrophin epitopes. Additionally, as microdystrophin and minidystrophin 
gene therapy strategies restore only a portion of the full-length dystrophin molecule 
[4, 25, 30], the successful expression of these constructs will only restore immuno-
reactivity for antibodies that bind to the microdystrophin or minidystrophin protein 
(Fig. 12.1b). This creates a situation where multiple anti-dystrophin antibodies can 
be used to evaluate minidystrophin/microdystrophin expression and distinguish it 
from fibers that express dystrophin even in the context of significant mutations 
(revertant fibers).

With respect to the quantification of immunohistochemical findings, this is an 
area of recent debate and technological development, and once again the DMD field 
provides some useful examples. There is evidence that dystrophin levels in the 
range of 20–30% of normal can lead to significantly milder clinical severity [31–
34], resulting in a goal of at least 20% dystrophin restoration as a therapeutic target 
for gene therapy [35]. Immunofluorescence intensity can be measured in a variety 
of ways, but standardization of approaches can be problematic because most micro-
scopes and slide scanners have not been designed with the quality control of immu-
nofluorescence intensity in mind. When immunofluorescence intensity is a desired 
study endpoint, extensive quality control evaluation and response strategies are rec-
ommended to ensure the acquisition of high-quality data that can be compared 
across multiple measurement dates. A more straightforward semiquantitative mea-
surement used in numerous studies is the estimation of dystrophin-positive fibers 
within a sample [3], but this also suffers from subjectivity due to potential variations 
in the threshold for positive fibers. This was a concern in a recent trial of exon skip-
ping using eteplirsen in a clinical trial for DMD [36], where additional data collec-
tion on dystrophin positivity was required in response to Food and Drug 

Fig. 12.1 (continued) H&E staining. NADH staining shows marked mislocalization of organelles, 
and triads are rare or may appear abnormal on EM. Successful gene therapy with AAV reverses 
these pathological abnormalities. (b) Comparison of muscle histology between WT mice and 
DMD mice (in the presence or absence of AAV gene therapy). H&E staining shows dystrophic 
pathology including myofiber degeneration and basophilic fibers consistent with active regenera-
tion in the mdx mouse model of DMD. The DYS2 antigen which is absent in microdystrophin is 
used to illustrate the number of naturally occurring fibers expressing dystrophin (revertant fibers) 
in these DMD mice. AAV gene therapy of these mice results in a decrease in dystrophic pathology 
and a marked upregulation of micro-dystrophin expression by immunofluorescence staining, with-
out affecting the expression of DYS2
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Administration (FDA) review comments [37]. In our experience, quantitative or 
semiquantitative expressions of immunohistochemical results can be extremely 
informative but are also best counterbalanced by other quantitative assays such as 
western blot or mass spectrometry. Additionally, assessments of the percentage of 
dystrophin-positive fibers may be strengthened by counts performed by multiple 
blinded investigators in parallel in the generation of datasets.

Immunohistochemistry can also be used to assist in the quantification of general 
structural features in muscle, such as myofiber size, fiber type, or the percentage of 
fibers with internally located nuclei. Measurement of myofiber size can be of par-
ticular importance when evaluating disorders where myofiber smallness is a pri-
mary pathological finding (such as XLMTM) [7, 38–40] (Fig.  12.1a) or where 
myofiber growth is a principal mechanism of action (such as follistatin gene ther-
apy) [41–43]. Recognition of myofiber edges for these measurements can be 
improved using antibodies against proteins located at or adjacent to the sarcolemma, 
such as laminin or dystrophin. Once the fibers are clearly defined, myofiber size is 
often measured through determinations of MinFeret diameter (the diameter along 
the minor axis of the fiber cross section) or cross-sectional area. While both of these 
measurements provide useful information in well-controlled situations where myo-
fibers are cut in well-oriented cross sections, the cross-sectional area will vary dra-
matically in areas where longitudinally or obliquely oriented fibers are present. As 
suboptimal orientation has a much less dramatic impact on MinFeret diameter, our 
work has usually focused on this measurement when determining myofiber size. 
Integration of additional antibodies or stains can also be useful in determining 
whether specific fiber size populations correlate with fiber types (using anti-myosin 
antibodies) or for nuclear position (using 4′6-diamidino-2-phenylindole, or DAPI). 
As far as quantification of myofiber size and internal nucleation is concerned, it is 
feasible to perform these measurements either manually or using automated soft-
ware. To allow optimal efficiency of measurement and quality control, we use auto-
mated measurement with rigorous manual comparisons between the measured 
values and the quantified images.

12.2.3  Electron Microscopy (EM)

EM can be useful when determining the structural impact of gene therapy in some 
disease states. However, in comparison to light microscopy, EM can be consider-
ably more difficult to perform in a systematic way. Issues related to sampling are 
more of a concern in EM studies because tissue fragments are much smaller. Also, 
while the entire fragment of tissue for EM can be evaluated at the light microscopic 
level on 1-micron-thick “scout sections,” it can often be difficult to ensure that the 
entire specimen has been viewed at higher magnifications using the EM scope. For 
some diseases (such as Pompe disease and some peripheral nerve disorders) [44–
48], the processing and Epon embedding used for EM is more useful than other 
processing methods, and so these scout sections can be stained to evaluate for 
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specific structures. In these instances, the processing may be more useful than the 
magnification, and there may be little real need for EM studies. In other situations 
(such as XLMTM), EM is performed to identify the organization of structures that 
cannot be adequately visualized at the light microscopic level, and so systematic 
approaches must be used. Our EM work in XLMTM has focused on counts of triad 
structures in longitudinal sections of muscle [7, 49, 50]. To provide some means of 
reproducible quantitation, our approach involved photographing a single well- 
oriented area in each fiber in a longitudinally oriented muscle specimen at several 
magnifications. Manual counts of triads, T-tubules, and L-tubules at a standard mag-
nification were capable of distinguishing XLMTM animals from wild-type animals 
when the specimens were processed appropriately. This approach was also capable 
of identifying restoration of triad structures with gene therapy [8, 51] and targeted 
enzyme replacement therapy [38] in several studies. However, even this relatively 
simple measurement strategy has been difficult to maintain as studies have expanded 
to include laboratories that were not experts in EM tissue collection. Variations in 
tissue handling practices, age of fixative, and duration of fixation can complicate the 
evaluation of many organelles at the EM level. Our experience has identified a need 
for significant training of tissue collection sites and caution in endpoint selection 
when multi-site studies involving EM are proposed.

12.2.4  Histological Assessments Related to Inflammation

Tissue pathology also plays an important role in the evaluation of possible immune 
or inflammatory reactions due to muscle gene therapy (the mechanisms of which are 
well-reviewed in [30, 52]). While the potential for immune responses in muscle 
gene therapy is dependent on the vector, promoter, transgene, and species involved, 
surveillance for immunological reactions is a necessary component of study plan-
ning. Fortunately, the evaluation of inflammatory reactions in muscle tissue is fairly 
straightforward, owing greatly to the numerous sensitive, non-histological methods 
for evaluating immune activation. In general, histology-focused studies have inves-
tigated (1) whether inflammation or myofiber degeneration is associated with a 
given experimental condition and (2) whether this inflammation shows any relation-
ship to transgene expression. Additional immunohistochemical studies are possible 
to better understand the nature of a given inflammatory infiltrate, but these studies 
are usually performed in support of techniques that more clearly define the status of 
immune signaling and humoral versus cellular immune responses.

In the context of prior muscle gene therapy studies, several general categories of 
immune response exist, and an appropriate pathological evaluation strategy would 
vary in each instance. In a disorder where muscle inflammation is not part of the 
characteristic disease pathology (such as XLMTM [51, 53], hemophilia B [54, 55], 
or lipoprotein lipase deficiency [56]), evaluation of H&E stained sections or screen-
ing with a pan-lymphocyte marker (CD3) may be sufficient to evaluate immune 
cellular infiltrates. In a disorder such as DMD, however, it can be challenging to 
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distinguish inflammation and myofiber degeneration associated with the disease 
itself from similar changes that may be the result of treatment. A number of studies 
have demonstrated the potential for marked cellular infiltration after gene therapy 
for DMD, although these inflammatory reactions could be mitigated by alternate 
vector, construct, or immunosuppression strategies [4, 30]. These studies differenti-
ated treatment-induced inflammation from DMD-associated inflammation because 
the treatment responses tended to be much more diffusely spread than one typically 
sees in DMD. Additionally, some studies of microdystrophin therapy using well- 
tolerated AAV constructs show a marked decrease in myofiber degeneration and 
inflammation as a result of successful correction of the underlying disease process 
(Fig. 12.1b).

When inflammation is present, it may be necessary to determine whether an 
inflammatory response is affecting transgene expression. Several studies in DMD 
canines have identified severe inflammatory reactions on histology occurring at 
2–4 weeks posttreatment [57–61]. While this reaction is accompanied by a loss of 
treatment efficacy in some cases [58–61], there are other instances where there was 
no significant impact on transgene expression [20, 59, 60]. The distinction between 
these two subtypes of cellular inflammatory reaction should be straightforward in 
cases with good histological endpoints for transgene expression. It may also be use-
ful to further characterize the inflammatory infiltrate with further immunohisto-
chemical testing, which can be done with inflammatory cell markers including 
CD3, CD4, CD8, CD11b, CD20, CD68, granzyme B, and Fas ligand. Additionally, 
other limited assessments of immune function can be performed through evalua-
tions of major histocompatibility complexes (I and II) and the C5b-9 membrane 
attack complex. Practically speaking, most evaluations of inflammatory tissue reac-
tions in DMD gene therapy have focused on H&E and immunostaining for CD4 and 
CD8 cells (used in support of more complex serological and biochemical testing), 
but histological evaluations of inflammatory infiltrates are likely to be expanded as 
exploratory endpoints in muscle gene therapies continue to progress to the human 
clinical trial stage.

12.3  Planning Biochemical Assays and Endpoints

As the use of histological methods for quantitative endpoints can be problematic, it 
is very useful to have additional, more quantitative techniques such as western blot 
and mass spectrometry to provide additional correlative data. For some disorders 
related to enzymatic function (such as Pompe disease), it may also be possible to 
use biopsy tissue to demonstrate restoration of biochemical processes with success-
ful therapy [62]. This section will focus specifically on the use of western blot and 
mass spectrometry assays to provide complementary information to muscle histol-
ogy using our recent work in DMD as an illustration.
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12.3.1  Western Blot

While advances have been made recently to allow the use of immunofluorescence 
staining intensity as a quantitative or semiquantitative measure of protein expres-
sion, western blot has also been used as a supplementary and more easily quantifi-
able measurement of protein expression in some gene therapy studies [63, 64], as 
well as in the recent human clinical trial of eteplirsen for DMD [36]. As with any 
rigorous quantitative study, obtaining optimal quantitative data requires the use of 
appropriate control conditions. This section will focus on the lessons learned in our 
experience of using western blot to quantify dystrophin intensity following micro-
dystrophin gene therapy in DMD.

12.3.1.1  Critical Decisions in Western Blot Design

Optimal western blot performance requires a thorough knowledge of the target pro-
teins, antibodies, tissues under evaluation, and the disease state under study. Careful 
planning of assay strategy can significantly improve the quality of the data and the 
overall pace of data acquisition. It is also essential to identify the optimal antibodies 
and quality control conditions, as this will allow consistent measurement through-
out the study.

The isolation of high-quality protein for western blot studies can be performed 
after either crushing or cryosectioning the tissue. Cryosectioning is more labor- 
intensive, but it does offer the potential to fine-tune the amount of tissue collected, 
while also offering the opportunity for histological/western blot correlations. The 
method of protein extraction can also affect the amount of dystrophin extracted rela-
tive to other proteins or may impact the background observed in high molecular 
weight regions, so it is useful to evaluate different extraction protocols (including 
protocols comparing manual vs. blender-assisted homogenization and using stan-
dard extraction buffers vs. those containing urea) to optimize signals in a given study.

With respect to the western blot technique, it may be necessary to fine-tune the 
conditions under which gels are run (amount of protein loaded, type of gel used, 
voltage settings, etc.) based on the protein of interest. Large proteins like dystrophin 
often run better on lower percentage tris-acetate gels, but this may not offer an ideal 
resolution of lower molecular weight proteins in some situations. Similar consider-
ations can affect the transfer of proteins, and we have found that some strategies 
providing adequate transfer of low molecular weight proteins do not work well for 
large proteins. In addition, blocking conditions may be of particular importance in 
situations requiring the detection of very low levels of dystrophin. Blocking agents 
containing sodium azide as a preservative can impact chemiluminescence signals, 
and so exposure of these agents to the secondary antibody should be avoided. 
Blocking solutions made using 5% milk in the laboratory do not have this issue, but 
may have increased background in comparison to some commercially available 
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agents. Once again, the correct choice for a given study requires an assessment of 
tissues and conditions relevant to the needs of that study.

Testing of western blot conditions prior to beginning a gene therapy study is 
highly recommended, as troubleshooting western blot protocol in the middle of the 
study can exhaust tissue quickly. Additionally, if a scaling-up of sample numbers is 
planned, we would recommend testing western blot procedures at the highest 
 sample number planned to ensure that the workflow and equipment can handle the 
sample volume. In some cases, western blot protocol that works well with low num-
bers of samples may run or transfer poorly when both the size of the gels and the 
number of gels running in parallel are increased. The assessment of protein transfer 
using Coomassie blue staining of gels and Ponceau S staining of membranes can be 
useful to determine whether proteins are being fully transferred.

12.3.1.2  Factors Impacting Western Blot Quantification

When designing western blot experiments for quantitative comparisons across mul-
tiple blots, it is important to have a rigorous quality control system in place. Most 
western blot experiments incorporate some sort of “loading control” assessment to 
account for errors in lane loading (Fig. 12.2). In many cases, the post-transfer myo-
sin heavy chain band (by Ponceau S membrane staining or Coomassie gel staining) 
can be used as a reliable loading control that does not appear to be affected by dis-
ease process, although it should be noted that it is not suitable to use this band when 
comparing different tissue types. Other commonly used loading controls include 
skeletal muscle actin and GAPDH, and a comparison of these bands between lanes 
allows the identification of lanes with too much or too little protein. The expression 
of proteins used as loading controls may be affected by disease processes or may be 
tissue-specific, however, so the most appropriate loading control may depend highly 
on the experimental situation. Additionally, it can be difficult to use high-abundance 
proteins (like actin) as loading controls for low-abundance proteins because of dra-
matic differences in signals between the proteins of interest. For western blot stud-
ies where quantitation is key, it is additionally advisable to incorporate standard 
curve conditions on the blot (Fig. 12.2b). The inclusion of standard curve conditions 
allows optimal comparison between gels in a study and helps account for variability 
associated with antibody reactivity and chemiluminescence from one blot to another. 
In our DMD work, we include a standard curve of wild-type dystrophin, using mix-
tures of wild-type and dystrophin-deficient protein. The proportion of wild-type to 
dystrophin-deficient protein on a given gel depends on the likely range of 

Fig. 12.2 (continued) in comparison to a calibration curve of full-length dystrophin using canine 
tissue. Full-length dystrophin is detected by the same antibody at 427 kDa in the control curve 
using canine tissue. Microdystrophin is shown at 150 kDa, and the bottom of the membrane was 
probed for loading using GAPDH at 37 kDa. (c) Mass spectrometry of samples from the same 
experiment, each spiked with a constant internal standard (blue), reveals a similar dose-dependent 
increase in microdystrophin (red) as doses increase from dose level 1 to dose level 6. The intensity 
seen in wild-type (WT) mice is also shown
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Fig. 12.2 Use of western blot and mass spectrometry in the quantitative evaluation of dystrophin 
expression. (a) Comparison of various antibodies for the detection of mouse and canine full-length 
dystrophin, loaded at an equivalent protein concentration. Mass spectrometric analysis confirms 
that the amount of dystrophin is comparable in each species, so differences reflect species- 
dependent differences in antibody affinity. A black bar for ab15277 denotes lanes that were not 
adjacent on the original blot. (b) Western blot studies of a dose-response experiment show increas-
ing micro-dystrophin levels with increasing doses of AAV (across increasing doses labeled 1–6),
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dystrophin expression within the set of samples. A 5-point curve ranging from 0 to 
100% is useful if high levels of dystrophin expression are expected, whereas a 
5-point curve ranging from 0 to 25% may be more useful when sensitivity for low 
levels of expression is desired. The use of this standard curve and the application of 
a clear quality control standard (such as the visibility of the lowest control curve 
condition, adequate signals in four of the five control curve conditions, and/or 
R-squared values of the standard curve greater than 0.9) have allowed us to maintain 
a high level of reproducibility and comparability to our other quantitative studies.

As in immunohistochemistry, primary antibodies for western blot must be care-
fully selected to obtain high-quality data. The identical antibody can sometimes be 
used for the detection of proteins by both immunohistochemistry and western blot, 
but an independent assessment of other antibodies can often be highly informative. 
One area for caution is the potential for species-related differences in immunoreac-
tivity with certain antibodies, as this can be much more of a factor on western blot 
in comparison to immunohistochemistry. While this is not a particular area of con-
cern when using a dystrophin construct from the same species as the experimental 
animal, it is a particular concern in the gene therapy field because human or canine 
dystrophin constructs may first be tested in mice. For instance, certain anti- dystrophin 
antibodies have higher affinity for canine and human dystrophin in comparison to 
mouse dystrophin (Fig. 12.2a). As a result, the signal obtained on western blot for 
human or canine microdystrophin constructs is very high when compared to mouse 
wild-type dystrophin, whereas other antibodies with more equivalent affinity will 
display more equivalent levels of immunoreactivity. When such a situation occurs, 
consideration should be made to switching the antibody of choice or switching the 
source of tissue for control curve lanes to be of equivalent affinity to the dystrophin 
construct of interest. Sequence homology at the reactivity region of the antibody 
should be mapped and accounted for with respect to cross species western blotting.

12.3.2  Mass Spectrometry

Mass spectrometry, typically coupled online to liquid chromatography, is widely 
used in drug development. The liquid chromatography-mass spectrometry (LC-MS) 
platform is capable of separating analytes by retention time and mass with high 
analytical accuracy, precision, and reproducibility that far exceed the immunofluo-
rescence staining or western blot approaches. The vast majority of the assays in use 
are small molecule quantitation, but the field has been rapidly expanding to include 
biomolecules. Quantitative mass spectrometry requires the inclusion of an internal 
standard, which is typically a stable isotope-labeled version of the analyte of inter-
est. A quantitative mass spectrometry assay for a protein typically requires the 
digestion of the protein into smaller peptides, and the peptides are measured to 
report the protein level. The application of LC-MS to muscle tissue has been slow 
to develop due to the inherit limitations of muscle, i.e., large dynamic range, limited 
solubility, and limited sample sizes. These limitations are being overcome, however, 
with recent improvement to modern mass spectrometers for sensitivity, speed, and 
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resolution [65, 66]. To date, the majority of muscle mass spectrometry assays have 
been academic. For example, dystrophin was readily quantified using a full-length 
stable isotope standard in both normal and dystrophic muscle tissues [67, 68]. But, 
despite steps to reduce dynamic range limitations and using state-of-the-art instru-
mentation, the limit of detection was approximately 5% of normal and therefore not 
applicable for Duchenne reverent fiber dystrophin levels or low-level restoration 
therapies. The immunofluorescence and western blot techniques remain the optimal 
approach for dystrophin evaluation at these low levels. Gene therapy approaches 
now hold promise for restoring dystrophin to easily quantifiable levels, however, 
making quantification using mass spectrometry highly relevant.

For our studies, the mass spectrometry platform applied to the quantification of 
micro-dystrophin has been invaluable as a stand-alone assay or as confirmation of 
immunofluorescence and western blot efforts (Fig. 12.2c). The wide-dynamic range 
enables clear dose-response measurements from 5% to manyfold above normal 
without saturation effect. Mass spectrometry is a direct detection approach that does 
not involve the use of antibodies, so all species and mutations can be evaluated 
equivalently. Currently, immunofluorescence, western blot, and mass spectrometry 
all report data as a percentage of normal, but mass spectrometry serves as a unique 
tool to fully characterize “normal.” Since every sample analyzed is spiked with the 
same internal standard, this generates an endogenous-to-standard ratio for every 
analysis. There is therefore no limitation on the number of possible comparisons, 
whereas comparisons using western blot may be limited by tissue availability for 
multiple blots. For instance, mass spectrometry enables comparison across multiple 
donors and species to better understand the level of normal dystrophin in different 
muscle types, ages, and genders. Such studies will be critical in benchmarking nor-
mal ranges and potential variability seen in restorative clinical trials.
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Chapter 13
Optical Polarization Tractography Imaging 
of Structural Changes in the Skeletal 
and Cardiac Muscles of the mdx4cv Mice

Gang Yao

Abstract Optical polarization tractography (OPT) is a recently developed imaging 
technology that can quantitatively evaluate the three-dimensional fiber organization 
in tissue with microscopic resolution. In this chapter, we first introduce the basic 
principle and system design of this technology. We then show its applications for 
imaging skeletal muscle damage and heart structural remodeling in the mdx4cv 
mice, a mouse model for Duchenne muscular dystrophy. Because of its relatively low 
system cost, high imaging speed, and cellular-level resolution, OPT may become an 
effective tool for phenotype assessment in the research of neuromuscular diseases.

Keywords Imaging · Fiber · Tractography · Muscle · Heart · Mouse · Remodel 
Polarization

13.1  Introduction

Duchenne muscular dystrophy (DMD) is the most common and severe muscle dis-
ease caused by mutations in the dystrophin gene [1]. It affects approximately every 
one of ~5000 male infants. The absence of the dystrophin gene affects the integrity 
of the muscle cell membrane, which leads to body-wide muscle degeneration and 
necrosis. Both skeletal and cardiac muscles are affected in DMD. Most patients 
eventually die from respiratory and/or cardiac failure. Although a cure is still 
unavailable, several treatment options are under active investigation and have shown 
great promise [2].

The ultimate function of the muscular tissue is to produce mechanical force. This 
is realized by a sophisticated biophysiological mechanism that coordinates and inte-
grates the actions from all tissue constituents. In particular, the structural organiza-
tion and integrity of the myofibers play a key role in effective force generation. 
Structural changes in muscle such as fiber branching have important pathological 
implications in dystrophinopathies [3]. The myocardial fiber structure is especially 
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critical for the heart to function normally [4, 5]. The cardiac myofibers are organized 
in a delicate helix architecture which changes in response to the progression of heart 
disease as a part of the cardiac remodeling process [6]. Clinical evidence indicates 
that progressive remodeling is always pathogenic and reverse remodeling is associ-
ated with a better prognosis. It has now been recognized that an ideal therapy should 
slow or/and reverse the remodeling rather than simply relieving local symptoms [6].

Due to the importance of disease-related myofiber structural changes, visualiz-
ing the myofiber organization may provide valuable information for elucidating 
pathogenic mechanisms and evaluating treatment outcomes. Histological staining- 
based examination is conventionally used to visualize tissue structures. However, it 
requires serial sections and is only practical for imaging a very small area. In addi-
tion, myofiber structural features are inherently three-dimensional (3D), which 
makes them difficult to assess using current 2D-based histological methods. 
Diffusion magnetic resonance imaging (MRI) methods such as diffusion-tensor 
MRI (DTI) and diffusion spectrum MRI have achieved great success in imaging 
myofiber structure [7, 8]. Unfortunately, the spatial resolution of MRI-based meth-
ods is limited to 100~200 μm or worse [9, 10], which makes it impossible to reveal 
important cellular-level details.

A high spatial resolution becomes especially important for imaging small animal 
tissues. Animal models are indispensable for the understanding of and for develop-
ing treatment for DMD [11]. In particular, mouse models are widely used due to 
their good accessibility and low cost. Preclinical mouse studies provide crucial 
information on potential risks and effectiveness of an experimental therapy, which 
is a critical step prior to human clinical studies. Due to the small size of mouse tis-
sues, a high-resolution imaging modality is needed to reveal detailed structural 
changes in muscular tissues in mice.

Optical polarization tractography (OPT) is an emerging optical imaging technol-
ogy that shows potential for routine imaging of fibrous tissue structure [12, 13]. 
OPT can image large tissue samples with cellular-level spatial resolution at high 
imaging speed. Its applications have been recently demonstrated in a variety of tis-
sues such as the muscle [13], heart [14–16], artery [17], and cartilage [18]. In this 
chapter, we will introduce this technology and show its potential application for 
visualization of myofiber organization in the skeletal muscle and heart of the 
mdx4cv mouse, a widely used DMD mouse model.

13.2  An Overview of the OPT Technology

13.2.1  Optical Birefringence and OPT

Fibrous tissues such as muscle often show a strong optical birefringence, where the 
light experiences different optical refractive indices depending on the relative direc-
tion between the polarization of the light and the orientation of the fiber axis. The 
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refractive index is referred to as the “ordinary” index (no) when the light polarization 
is perpendicular to the fiber axis, whereas it is referred to as the “extraordinary” 
index (ne) when the light polarization is parallel to the fiber axis. The optical birefrin-
gence is defined as the difference Δn = ne − no which has a positive value in myofi-
bers. A higher optical refractive index results in a slower light speed. Therefore, the 
birefringence Δn can be calculated from the relative “phase delay” (δ) measured 
between the parallel and perpendicular polarization components of the incident light:

 
∆

∆
n

z
=

δ λ
π2
,
 

(13.1)

where λ is the optical wavelength and Δz is the light path length. The fiber orienta-
tion (or “optic axis”) can be determined based on the polarization direction that 
leads to the longest delay, i.e., when it is parallel to the fiber.

The major advantage of the OPT technology lies in its capability to image the 3D 
fiber orientation and birefringence inside the tissue with high resolution and speed. 
OPT is based on polarization-sensitive optical coherence tomography (PSOCT) 
[19]. Optical coherence tomography (OCT) is an emerging tissue imaging modality 
using low-coherence optical interferometry [20, 21]. OCT is analog to conventional 
“pulse-echo”-based ultrasonic imaging but uses light instead of sound to achieve 
significantly better resolution. OCT can achieve a micrometer-scale spatial resolu-
tion with an extremely high imaging speed that is sufficient for in vivo applications. 
Conventional OCT uses the optical reflectance as the image contrast to differentiate 
various tissue structural features at different depths inside the tissue. Polarization- 
sensitive OCT (PSOCT) extends conventional OCT by providing additional image 
contrast from the polarization properties of the tissue [22, 23].

A challenging issue in PSOCT imaging is that the light backscattered from a 
particular depth is affected by the sample properties from the tissue surface to the 
signal depth. Therefore, the measured optical birefringence and fiber orientation 
do not accurately represent the true fiber organization at that particular depth. This 
is especially troublesome when the tissue fiber orientation changes with depth, 
which is the case in most biological samples. In this case, the directly measured 
phase delay in PSOCT cannot simply be used to infer the “local” birefringence or 
optic axis.

OPT provides an effective way to solve this issue and can accurately derive the 
true local, depth-resolved fiber orientation in tissue. It images the tissue Jones 
matrix [24] which uses a rigorous mathematic framework to describe the optical 
polarization properties in materials. The measured Jones matrix provides a compre-
hensive characterization of tissue optical polarization properties. In OPT, the tissue 
is modeled using a series of general Jones matrices from the surface to a specific 
imaging depth [19]. Jones calculus-based algorithms are then used to derive the 
depth-resolved birefringence [14, 25] and fiber orientation [14, 26].

The smallest tissue volume (i.e., a single image pixel) that can be imaged in OPT 
is determined by the system resolution. It is likely that the fiber content and direction 
may be inhomogeneous within this small volume. In this case, the OPT measures the 
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assemble-averaged fiber orientation which represents the predominant fiber orienta-
tion. Similarly, the birefringence obtained represents the mean value of the overall 
fiber distribution. Therefore, a small birefringence value is an indicator of an “iso-
tropic” region with either no directional fibers or randomly distributed fibers.

13.2.2  OPT System Implementation

The OPT methodology can be implemented in any Jones matrix-based PSOCT sys-
tems. Figure 13.1 illustrates an example single-camera Fourier domain Jones matrix 
PSOCT system that was used to obtain the images shown in Fig. 13.2 in this chapter 
[19, 27]. This imaging system is a spectral/Fourier domain bulk-optical OCT sys-
tem using an 847.8 nm wavelength (Δλ = 58.3 nm) superluminescent diode as the 
light source. At the sample arm, a 5× telecentric scan lens (LSM03-BB, Thorlabs, 
Newton, NJ) is used as the objective lens. The light intensity at the sample surface 
is 5.0 mW. This imaging system has a measured lateral resolution of 12.4 μm and a 
measured axial resolution of <5.9 μm in tissue within a 1.5 mm imaging depth.

The incident light can be scanned over the sample using a 2D galvanometer scan-
ner (Fig. 13.1a). To image the Jones matrix of the sample, the polarization state of 
the incident light is modulated using an electric optical modulator to achieve alter-
nating right- and left-circular polarizations [19]. At each incident polarization, the 
backscattered light from different depths inside the sample is combined with the 

Fig. 13.1 Single-camera Fourier domain Jones matrix PSOCT system. (a) A schematic illustra-
tion of the 3D OPT system. BS beam splitter, CCD charge-coupled device (line-scan camera), 
EOM electro-optic modulator, GS galvanometer scanner, IL image lens, L lens, M mirror, P polar-
izer, PBS polarized beam splitter, PG phase grating, SLD superluminescent diode. (b) An alterna-
tive scanning scheme for imaging a whole mouse heart
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two co-aligned reference lights with orthogonal linear polarization states (horizon-
tal and vertical polarization). The interference signals are then acquired at the 
 detection arm using a custom spectrometer equipped with a 1024-pixel line-scan 
CCD camera (Fig.  13.1a). Fourier transform is then applied to extract the two 
orthogonal polarization components of the interference signals for each incident 
polarization [27]. From these four signals, the Jones matrix at each pixel can be 
constructed [19], and the OPT algorithms described above are applied to derive the 
birefringence and fiber orientation images.

As a convention, the depth-resolved signal acquired at each scanning position on 
the sample surface is referred to as an A-scan. By scanning the light over a 1D line 
on the sample surface, multiple A-scans are acquired to form a 2D B-scan image. 
The second mirror of the 2D galvanometer scanner (Fig. 13.1a) can change the posi-

Fig. 13.2 OPT imaging of mouse skeletal muscle and heart. (Panel-I) OPT imaging of the 
mdx4cv tibialis anterior (TA) muscle. (a) 3D intensity images. (b) Tractography and (c) fiber disar-
ray index (FDI) image within the en face projection plane shown in (a). (d) FDI image and (e) H&E 
histology (red-filtered) of the cross-sectional plane shown in (a). (f) The 3D OPT image with 
muscle damaged areas highlighted. (Panel-II) OPT imaging of freshly excised whole hearts from 
(a) a C57BL/6 mouse and (b) an mdx4cv mouse. The curves show the change of myocardial fiber 
orientation with depth from a representative 100 × 100 μm2 region of interest in the left ventricle 
(LV) and right ventricle (RV) of the heart, respectively
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tion of the B-scan lines to form a C-scan so that multiple B-scans can be acquired to 
form a 3D image. This standard imaging scheme can be also modified to accom-
modate different samples. Figure 13.1b shows a setup for imaging the whole heart 
[15]. The excised heart can be mounted on a rotational stage via a 20-gauge needle 
passing through the long axis of the heart (between the apex and center of the base). 
The needle is fixed on the base of the stage and aligned with the rotational axis. The 
stage can rotate continuously to form a C-scan while repeating the synchronized 
B-scans along the long axis of the heart (Fig. 13.1b).

13.3  Applications of OPT in Studying Myofiber Structural 
Changes in a Mouse DMD Model

We show in the following two subsections some example applications of OPT for 
imaging the tibialis anterior muscle and heart of a mouse. All animal experiments 
were approved by the institutional animal care and use committee. All the imaging 
processing was implemented in MATLAB.  The tractographic image was con-
structed using the fiber orientation data and visualized using the 3DSlicer software 
available from www.slicer.org [28].

13.3.1  Imaging the Whole Tibialis Anterior (TA) Muscle 
of the mdx4cv Mouse

Figure 13.2-I shows an example OPT result obtained in a freshly excised whole TA 
muscle from a 7-m-old mdx4cv mouse. The experimental details have been 
described in a previous publication [13]. The entire 3D image dataset had a total 
280 × 2000 × 1000 pixels along the A-, B-, and C-scan directions and covered an 
imaging area of 1.1 × 8.0 × 8.0 mm3 (A × B × C). Images were acquired at a speed 
of 50  k A-lines/s which was limited by the speed of the line-scan CCD used 
(Fig. 13.1). The final 3D datasets of local optical properties were resized using cubic 
spline interpolation to produce the same pixel size of 3.9 μm in A-, B-, and C-scan. 
The 3D image data was filtered using a 3 × 3 × 3 (pixel) median filter to improve the 
signal-to-noise ratio. When visualizing and analyzing the en face images, a 5 × 5 
median filter was applied to further reduce noise. Figure 13.2-I(a) shows 3D inten-
sity image which can also be obtained from current OCT technology. Although the 
intensity image shows the overall morphology of the TA muscle, it does not reveal 
any obvious abnormalities.

The 3D image volume can be examined in detail by computationally sectioning 
through the entire image dataset. Figure 13.2-I(b) shows a tractographic illustra-
tion inside an en face plane (Fig. 13.2-I(a)). In most areas, the myofibers appeared 
well- organized. However, the fiber organization at the lower-left part of the image 
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(dotted box) showed signs of disruption with randomized fiber orientation. Such 
“randomness” feature can be quantified using image processing [17]. For example, 
the “fiber disarray index” (FDI) can be calculated using the standard deviation of 
the local optical axis within a small 3D evaluation window [13]:
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where θi,j,k is the fiber orientation at the pixel location of (i,j,k) and θi j k, , is the aver-
age fiber orientation within the evaluation window. A “fiber disarray” image can 
then be constructed using the FDI values calculated for each image pixel while 
“sliding” the evaluation windows over the entire 3D image volume.

Figure 13.2-I(c) shows the quantification result by assigning a single gray color 
to all image pixels with a FDI higher than 16° calculated using small evaluation 
windows of 35 × 35 × 35 μm3. Areas with organized fibers (i.e., small FDI values) 
are shown in black. The small region with disrupted (with a high FDI) myofibers 
can now be clearly visualized. Figure 13.2-I(d) shows the FDI image obtained in a 
cross-sectional cutting plane (Fig. 13.2-I(a)). Using the same segmentation thresh-
old as in Fig. 13.2-I(c), a small disrupted region was revealed close to the upper- 
right side of the tissue.

The OPT images obtained in the cross-sectional planes (Fig. 13.2-I(d)) can be 
directly compared with the conventional histology results acquired at the same sec-
tioning position. Figure 13.2-I(e) shows the corresponding histology image (H&E 
stain). The histology image was red-filtered for display in the gray scale. The histol-
ogy result revealed striking abnormalities at the same location with higher FDI. A 
close examination of the histology results indicated significant muscle damages 
including necrosis and inflammation within the segmented regions with high FDI 
values.

The results shown in Fig. 13.2-I demonstrated that the 3D OPT images can be 
conveniently analyzed in any evaluation plane in the software. As a comparison, 
conventional histology evaluation is destructive and can only be obtained in a spe-
cific cutting plane. Figure 13.2-I(f) further illustrated the power of 3D OPT for visu-
alization 3D muscle damages in the entire TA muscle, where the damaged regions 
are highlighted using a lighter gray shade. Once all damaged areas within the entire 
3D TA muscle were segmented using FDI, additional quantitative assessment can 
be performed. Table 13.1 shows a comparison of the fiber disarray index and optical 
birefringence obtained in normal C57BL/6 mice and the damaged and non- damaged 
regions of mdx4cv mice. The results were group-averaged from the TA samples 
excised from four mdx4cv mice and four C57BL/6 mice (Table 13.1).

Damaged mdx4cv muscles appeared to have slightly lower imaging intensities 
(Table 13.1). However, the difference did not reach statistical significance due to the 
variations in the intensity. In contrast, damaged mdx4cv muscles showed a signifi-
cantly higher FDI than those of non-damaged mdx4cv muscles and muscles from 
C57BL/6 (p < 0.0001, one-way ANOVA with Bonferroni’s post hoc test). Damaged 

13 Optical Polarization Tractography Imaging of Structural Changes in the Skeletal…



234

mdx4cv muscles also had a significantly smaller birefringence value than non- 
damaged mdx4cv muscles and C57BL/6 muscles (p < 0.0001). Both FDI and bire-
fringence values had higher variations in non-damaged mdx4cv muscles than in 
muscles from normal C57BL/6 mice. No significant difference (p > 0.05) was found 
in either the fiber disarray index or local birefringence between non-damaged 
mdx4cv muscles and muscles from normal C57BL/6 mice.

13.3.2  Imaging the Whole Heart of the mdx4cv Mouse

Figure 13.2-II shows the example OPT images obtained in freshly excised mdx4cv 
and C57BL/6 hearts. Both animals are 7-month-old males. The experimental details 
have been described previously [15, 16]. Briefly, these results were obtained using 
the scanning scheme illustrated in Fig.  13.1(b). During imaging, the stage was 
rotated continuously over 360° at a speed of 1.25°/s while the incident light repeat-
edly scanned along the long axis of the heart (as the B-scan). Each B-scan covered 
8 mm with 2000 A-scans. A total of 3600 B-scans were acquired at a recording 
speed of 12.5 B-scans/s. It took 288 s to image a whole heart.

The constructed 3D dataset of fiber orientation had 280 × 2000 × 3600 pixels (in 
A × B × C scans) and covered a corresponding imaging area of 1.1 mm × 8.0 mm × 360°. 
The 2D “planar” tractography was first built at each en face plane using MATLAB 
streamline functions [15]. A 5 × 5 (pixels) median filter was applied to reduce the 
speckle noise in the calculation. The stack of the “planar” 2D tractography was then 
polar-transformed into the 3D coordinates from the measured heart diameter and 
heart surface as described previously [15]. The accuracy of OPT technology in 
imaging fiber orientation in heart tissues has been rigorously validated by compar-
ing directly with histology images in a previous study [12].

Figure 13.2-II(b) shows that the mdx4cv heart was clearly enlarged. In addition, 
OPT can reveal global fiber architecture at various transmural depths inside the 
ventricular wall. Figure 13.2-II(a), II(b) shows example images of fiber orientation 
after “peeling” off 100 μm and 500 μm cardiac tissue from the surface. These image 
results revealed that the cardiac fiber orientation changes with the depth. In all trac-
tographic images, the zero degree was aligned in the horizontal direction toward the 
right. In the left ventricle (LV), the myocardial fibers had negative orientation close 
to epicardium; the orientation transited to positive angles toward the endocardium. 

Table 13.1 Quantitative comparison of OPT results (intensity, birefringence, and FDI)

Intensity (dB) Δn (×10−4) FDI (°)

C57BL/6 55.1 ± 8.4 8.1 ± 0.2 8.1 ± 0.7
mdx4cv (damaged) 48.1 ± 8.1 3.1 ± 0.1a 32.8 ± 2.0a

mdx4cv (non-damaged) 55.4 ± 9.1 7.3 ± 0.6 7.8 ± 1.3

Values are represented as mean ± standard deviation
aSignificantly different from the other groups (p < 0.001)
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This trend was in good agreement with the unique cross-helical fiber structure 
expected in the LV of the heart. Detailed examination suggested that the overall 
fiber orientation in LV appeared to be similar in both the mdx4cv and C57BL/6 
hearts although the fiber structure had more variations inside the mdx4cv heart 
(Fig. 13.2-II(b)) [16].

The RV of the mdx4cv heart showed more differences in fiber organization from 
the C57BL/6 RV. Some vertically oriented fibers were observed in the C57BL/6 RV 
at ~100 μm depth from the heart surface. This RV location coincided with the right 
ventricle vein in the mouse heart. Such a feature was not as clear in the mdx4cv 
RV. In addition, the fiber organization in the mdx4cv RV had much greater varia-
tions than the C57BL/6 RV at both 100 μm and 500 μm depths from the heart 
surface.

To further quantitatively assess the fiber organization, Fig. 13.2-II also shows the 
representative curves of fiber orientation changes with transmural depth in both the 
LV and RV of the heart. The “zero” depth was at the epicardium of the heart. These 
curves indicated that the fiber orientation over the depth was greater in the LV than 
in the RV. There was a reversed trend within the first 100 μm beneath the epicardium 
in the C57BL/6 LV which was reported in a previous OPT study and was confirmed 
in histology. This pattern was absent in this mdx4cv heart. The quantitative curves 
also suggested that the slope of the orientation change with depth was smaller in the 
mdx4cv heart than the C57BL/6 heart (Table 13.2).

The above observation was confirmed in a total of six mdx4cv hearts and six 
C57BL/6 hearts (Table 13.2). As a whole, the mdx4cv mice had a larger heart than 
the C57BL/6 mice (p = 0.013, Student’s t-test). Table 13.2 also shows the group 
comparison of the slope of fiber orientation with depth obtained inside a large evalu-
ation window (2.8 mm × 70°, or 700 × 700 pixels in B × C) located at the center of 
the LV and RV [16]. The data indicated that the fiber orientation increased with depth 
in the LV of all hearts in both groups, resulting in “positive” slopes (i.e., the classic 
double-helical profile). The slope values had significantly bigger variations in the 
mdx4cv LV than in the C57BL/6 LV (p = 0.018, Levene’s test). The slopes were 
smaller in both the LV and RV of the mdx4cv heart than those of the C57BL/6 heart. 
Such a difference in slope reached statistical significance in the RV (p  =  0.004, 
Student’s t-test). The overall observation of greater myofiber organization changes in 
the mdx4cv RV is consistent with the emerging evidence that DMD cardiomyopathy 
in mouse starts from the right ventricle (RV), which is likely a result of the severe 
diaphragm dystrophy in the mouse DMD model [29, 30].

Table 13.2 Group comparison from six mdx4cv hearts and six C57BL/6 hearts

Diameter (mm)
Slope of orientation (°/mm)
RV LV

mdx4cv 6.9 ± 0.5a 20.0 ± 28.4b 86.4 ± 20.4
C57BL/6 6.2 ± 0.3a 67.9 ± 12.6b 104.4 ± 7.0

Values are represented as mean ± standard deviation
a,bThe difference between mdx4cv and C57BL/6 was significant (p < 0.05)
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13.4  Conclusion

We show in this chapter that the newly developed OPT technology can effectively 
visualize fiber structural changes in the skeletal and cardiac muscles of a mouse DMD 
model. OPT can rapidly and nondestructively examine the entire sample in 3D and 
with histology-like resolution. We demonstrated that “virtual” histology can be real-
ized using the 3D OPT data to evaluate and quantify the muscular structures in great 
details. This technology may find potential applications in muscle disease and muscle 
gene therapy research as a practical tool for phenotype assessment. It can be used for 
routine assessment of the biopsied muscle specimen, which helps to improve the cur-
rent labor-intensive histology practice. Because OPT is nondestructive, the same tissue 
sample can still be used for other standard histochemical examinations. The capability 
of visualizing muscle damages nondestructively is valuable for researchers/clinicians 
to better allocate the proper tissue segments for further detailed and targeted analysis.

In addition to the skeletal muscle and heart, fibrous tissues exist in many other 
parts of the body, for example, in neural fibers, dental tissues, skin, and cartilage. 
Disruption of the normal fibrous structure in these tissues is an important indication 
of tissue dysfunction, whereas the recovery of a normal fiber organization can be 
indicators of positive treatment outcome. Therefore, OPT may find many important 
biomedical applications in many tissues and diseases beyond imaging mouse skel-
etal and cardiac muscle as demonstrated in this chapter.
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Chapter 14
Biomarkers for Muscle Disease Gene 
Therapy

Yetrib Hathout, Kristy J. Brown, Kanneboyina Nagaraju, 
and Eric P. Hoffman

Abstract Molecular biomarkers are becoming increasingly attractive in drug 
development programs for muscle diseases especially for Duchenne muscular dys-
trophy (DMD). Robust and validated blood and muscle biomarkers that are sensi-
tive to drug treatment (e.g., pharmacodynamic biomarkers) and that can predict 
later clinical outcomes (e.g., surrogate biomarkers) will likely aid in developing 
effective therapies for DMD at several levels. Peripheral blood biomarkers can serve 
as more objective and acute readouts of drug effects relative to clinical outcome 
measures. Furthermore, they may minimize the burden on patients and families 
regarding participating in trials and can help with go-no-go decisionmaking at early 
stages of drug development possibly reducing the length and cost of the clinical 
development program. Lastly, they may provide insights into pathobiochemical 
pathways and help define novel therapeutic targets. In this chapter, we will focus 
mainly on molecular biomarker advances in DMD with the emphasis on their utility 
to assess efficacy of gene therapy in this disease.

Keywords Duchenne muscular dystrophy · Gene therapy · Dystrophin 
Pharmacodynamic biomarkers · Surrogate biomarkers

14.1  Introduction

The term biomarker in the clinical setting remains broadly defined and often refers 
to a measurable indicator of the health status of an individual. Depending on the 
disease and/or the condition, these indicators could be functional, physiological, 
biological, molecular, or imaging. The intent of use is often for diagnosis or 
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prognosis, but recently drug developers have found biomarkers, especially molecu-
lar biomarkers, useful to assess safety and efficacy of new drugs. In the case of 
DMD, a number of biomarkers and outcome measures have been developed and 
implemented by clinicians since the discovery of the disease [1]. Throughout the 
years, these biomarkers have evolved from an observational nature to more precise 
diagnostic biomarker such as DNA genotyping for DMD gene mutations [2], dystro-
phin protein testing for biochemical diagnosis [3], and imaging using NMR [4]. 
However, over the past 5 years, clinicians and regulatory agencies such as US Food 
and Drug Administration (FDA) and European Medicines Agency (EMA) have rec-
ognized the need of more robust and reliable outcome measures to aid drug develop-
ment programs in DMD and other disorders. As highlighted by the US Congress in 
the recent twenty-first century Cures Act—Provisions to Promote Drug Development 
(https://www.ropesgray.com/newsroom/alerts/2016/December/21st-Century-Cures-
Act-Provisions-Relating-to-Promoting-Drug-Development.aspx), the FDA is willing 
to consider novel clinical trial designs and surrogate endpoints, such as molecular 
biomarkers, in the drug development process. This is especially true for DMD where 
numerous examples of very expensive DMD clinical trials have failed despite the fact 
that the investigational drugs showed efficacy in animal models. This paradox leads 
families, their physicians, and scientists scratching their heads: “What is going on?” 
Unfortunately, it is often not known if the failed trial was due to the drug simply not 
working or, alternatively, that the clinical trial was unable to clearly detect a beneficial 
effect. For example, the key clinical test used in most DMD trials to date is the “6-min 
walk test” [5], where a weak and easily tired young child is asked to walk up and down 
a hospital hallway for 6 min. Parents of most any 5-year-old boy will suggest this 
seems a better test for the mood of the child than their strength and improvement by a 
drug! Furthermore, the 6-min walk test can only be administered to cooperative boys 
that are still walking—this excludes very young children 1–4 years of age (generally 
uncooperative) and older boys 10–18 years (who may not be able to walk).

For these reasons, there is a need for additional unbiased outcome measures that 
are more sensitive and reliable to detect whether or not a drug is working days or 
weeks after treatment (e.g., detecting “acute” responses compared to clinical out-
comes that may take a year or more of treatment to show significant change). In this 
context, serum molecular biomarkers might help overcome some of these issues: (1) 
early readout to detect response to a drug and go-no-go decisionmaking at early 
stages of a clinical trial; (2) cost reduction in clinical trials, which is an important 
consideration given that development of new drugs has become increasingly chal-
lenging and resource intensive as defined in section 2021(e) of the twenty-first 
Century Cures Act—enacted December 2016; (3) decrease invasiveness and mini-
mize burden on patients; (4) determination of optimal dosing; (5) easy implementa-
tion across different stages of the disease and across different preclinical and clinical 
studies; and (6) the need for further insights about the mechanism of disease pro-
gression and novel therapeutic targets. It should be noted these biomarkers are not 
intended to replace the 6-min walk test or other meaningful clinical endpoints but 
rather used as additional outcome measures to help gauge decisionmaking and espe-
cially assess if a treatment has engaged its target.
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In this chapter, we provide readers with a comprehensive review of biomarker 
development in DMD with a special emphasis on the development of blood and/or 
urine accessible biomarkers in DMD and how they can help assess gene therapies. 
Other biomarkers such as functional, physiological, and imaging are described in 
more details elsewhere and are not covered in this chapter.

14.2  Status of Molecular Biomarker Development 
and Implementation in DMD

Thanks to the advances in “omics” technologies, a comprehensive list of candidate 
serum biomarkers has been identified for dystrophinopathies. These included miR-
NAs, proteins, and metabolites [6–10].

A key distinction when discussing biomarkers is whether or not the biomarker is 
directly related to disease pathogenesis or a downstream secondary change associated 
with the disease. It is well accepted that lack of expression or expression of an aber-
rant dystrophin protein in skeletal muscle is the primary cause of two well- known 
dystrophinopathies, Becker muscular dystrophy (BMD) and DMD [3]. Dystrophin 
protein is present in very low amount or completely absent in skeletal muscle of 
DMD patients and expressed in varied truncated forms and amounts in BMD, hence 
the difference in disease severity between DMD and BMD patients [3]. While diag-
nosis of these diseases is done via genetic analysis these days, assessing levels of 
restored dystrophin protein in skeletal muscle has become a primary outcome mea-
sure in clinical trials of dystrophin restoration therapies. Below, we begin with the 
status of using dystrophin protein in muscle as a biomarker. We then discuss serum 
proteins that reflect more downstream disease pathogenesis and/or drug efficacy.

14.2.1  Dystrophin Levels in Muscle as a Pharmacodynamic 
Biomarker and Surrogate Outcome Measure for DMD

Restoration of dystrophin expression in DMD patient muscle is targeted to the pri-
mary defect of this disease (namely, dystrophin deficiency). Strategies for dystro-
phin restoration have included gene therapy, exon skipping, and stop codon 
read-through and have been shown to be effective in animal models for DMD. These 
strategies are covered in more detail by other chapters in this book, and we only 
briefly mention them in this chapter in the context of biomarker studies. When a 
biomarker, such as dystrophin, is the cause of the disease and it is the intended target 
in dystrophin replacement therapies, it makes complete sense to check its levels 
before and after treatment.

Ataluren, a stop codon read-through drug [11], and eteplirsen (Exondys 51), an 
exon-skipping antisense oligonucleotide [12], have received conditional approval 
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from EMA and FDA, respectively [13, 14]. Both drugs faced significant challenges 
in gaining approval due to the very low amount of restored dystrophin in DMD 
clinical trials (<1% of the levels seen in healthy muscle). This modest increase 
raised questions whether it is clinically meaningful or not. How much of dystrophin 
is enough remains an ongoing debate among clinicians, the DMD community, and 
regulatory agencies. However, one may argue some dystrophin is better than none.

Another setback during approval of these two drugs was associated with the 
methods used to measure levels of restored dystrophin in muscle biopsies. 
Dystrophin was measured mainly by western blot and immunofluorescence staining 
in these clinical trials. While straightforward, these methods suffer from large vari-
ability from laboratory to laboratory and even within the same laboratory [15] mak-
ing it challenging to meet FDA draft guidance for industry “Bioanalytical Method 
Validation” [16] that requires a bioassay to have less than 15% CV to be valid.

In March 20, 2015, a scientific workshop cosponsored by the FDA and NIH 
discussed dystrophin protein quantification methodologies and gaps. The workshop 
was open to the public, and about 180 people including scientists in the field of 
muscular dystrophy research as well as patients and families attended the workshop. 
Twenty investigators were invited to present the different methods to quantify dys-
trophin followed by questions/answers moderated by FDA and NIH representatives. 
The three methods that were highlighted and discussed during the workshop 
included western blot, immunofluorescence staining, and liquid chromatography 
tandem-mass spectrometry (LC-MS). A panel of experts in these fields facilitated 
the discussion and concluded that the three methods are complementary, and there 
are strengths and weaknesses associated with each one (Table 14.1). A fourth dys-
trophin assay included in Table 14.1, which was not extensively discussed during 

Table 14.1 Existing dystrophin quantification methods

Dystrophin assay Advantages Disadvantages Literature

Western blot • Simple
• Sensitive

• Semiquantitative
• Challenge balancing 
between detection and 
saturation
• Large CVs

[15, 17]

Immunofluorescence 
staining

• Sensitive
• Spatial localization
• Differentiate between 
positive and negative 
muscle fibers

• Requires several steps
• Background issues
• Poor linearity
• Large CVs

[15, 18]

LC-MS • Specific
• Accurate
• Excellent linearity
• Good CVs

• Technically complex
• Requires state-of-the-art 
instrument and expertise

[19]

Reverse transcriptase 
PCR

• Simple
• Very sensitive

• Risks of sample degradation
• May not reflect the amount 
of functional dystrophin

[20–22]

LC-MS liquid chromatography tandem-mass spectrometry, PCR polymerase chain reaction, CV 
coefficient of variation
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the workshop, relies on measuring mRNA transcripts of the restored dystrophin. 
While this assay is simple, it has not been widely implemented in clinical studies 
perhaps due the fact that mRNA levels may not directly reflect functionality while 
dystrophin protein does.

Key steps in implementing a specific assay for any specific biomarker include 
method development, a validation plan, and method validation (completing the 
plan). This provides information on selectivity, sensitivity, accuracy, reproducibil-
ity, and stability of the assay. Each dystrophin bioanalytical assay, whether it is an 
affinity-based assay such as western blot and immunofluorescence staining or a 
chromatographic-based assay such as LC-MS, should be validated prior to use in a 
clinical trial setting. As described in more details in the FDA draft guidance for 
industry “Bioanalytical Method Validation” [16], selectivity refers to the ability of 
an analytical method to specifically detect and quantify the intended target in a 
complex mixture. Sensitivity refers to the lowest amount of the target that can be 
accurately measured by the assay, while accuracy refers to how close the measured 
value is to the actual value in the samples. Reproducibility of the assay refers to 
repeatability of the assay. Furthermore, a good assay should give the same results on 
replicate analysis, a parameter that is also dependent on the stability of the target 
analyte. For example, the stability of the analyte or target in a given matrix under 
different conditions for a given time is often influenced by sample handling, ship-
ment, and storage and should ideally be consistent over time.

14.2.2  Circulating Molecular Biomarkers to Monitor 
Dystrophin Replacement Therapies in DMD

Defining the success of dystrophin replacement in DMD patient muscle typically 
requires a muscle biopsy. Muscle biopsies are a significant burden on DMD boys 
and their families and are considered quite invasive. Furthermore, there is signifi-
cant sampling error in all muscle biopsies, where the very small muscle biopsy 
specimen may not represent what is happening to muscle body-wide. Circulating 
biomarkers may not directly measure dystrophin in muscle but may provide an 
indirect readout of overall skeletal muscle health. However, such circulating bio-
markers must be shown to be associated with the disease and respond to dystrophin 
restoration.

Circulating serum biomarkers identified in DMD have been studied for many 
years and include cytoplasmic enzymes of the myofibers that become released into 
the circulation due to the dystrophic process (membrane leakage and degeneration 
of myofibers). These include creatine kinase (CK) [23], myoglobin (MB) [24], and 
carbonic anhydrase III (CA3) [25]. These biomarkers are found at their highest 
levels in DMD patients at younger ages and then gradually decrease with age toward 
the levels seen in healthy subjects [9]. The age-related normalization of these myo-
fiber enzymes reflects the progressive loss of skeletal muscle and replacement with 
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fibrotic and adipose tissue. As the patient ages, there is less and less skeletal muscle 
to release these biomarkers into the peripheral circulation.

CK is a useful diagnostic biomarker for DMD at younger ages, inclusive of new-
born screening [26, 27]. The utility of CK as a prognostic biomarker in drug trials is 
less well-supported, as levels are quite variable and are highly age-related. 
Nevertheless, in preclinical drug trials in the mdx mouse model of DMD, CK has 
been shown to respond very well to some experimental therapies. It significantly 
decreased by more than 50% in mdx mice treated with AAV-U1#23 (an adeno- 
associated virus-mediated antisense exon-skipping therapy) relative to untreated 
mice [28] and also decreased in mdx mice treated with phosphorodiamidate mor-
pholino oligomers (PMO) for exon skipping [29]. In this latter study, the CK 
decreased in a dose-dependent manner with PMO.  It was moderately decreased 
without reaching significance in mice treated with a clinical dose of PMO (30 mg/
kg) but significantly decreased by more than 70% when mice were treated with a 
higher dose of PMO (1.5 g/kg). This suggests that more systemic dystrophin resto-
ration is needed to see meaningful change in the level of circulating CK.

Preclinical studies testing AAV micro-dystrophin gene therapy often use dystro-
phin expression as a surrogate endpoint because it directly reflects the drug mecha-
nism of action. Micro-dystrophin shows expression in skeletal muscle body-wide, 
and levels of expression correlated well with the improvement in muscle strength in 
treated animals [30, 31]. Nevertheless, CK could still prove to be a useful pharma-
codynamic biomarker to assess efficacy of dystrophin replacement therapies and for 
dose selection as shown in the mdx PMO study above. This will require a careful 
correlation between the levels of restored dystrophin and decrease in CK levels to 
validate CK as a pharmacodynamic biomarker. Future integration of dystrophin, 
CK, and other biomarkers into the clinical development of drugs may provide suf-
ficient evidentiary data as required by the FDA to expedite the translation of pre-
clinical drugs.

14.2.3  Other Serum Biomarkers to Assess Gene Therapies 
in DMD

Over the last few years, “omics” technologies, such as next-generation sequencing, 
metabolomics, and proteomics (mass spectrometry and SOMAscan technologies), 
have been applied to both DMD patients and the mdx mouse model, leading to 
comprehensive discovery of circulating molecular biomarkers. These biomarkers 
are now being implemented as candidates for aspects of safety, efficacy, and drug 
mechanism of action in clinical drug development programs for DMD.

These candidate biomarkers provide instruction on different pathobiochemical 
pathways involved in the dystrophic process in patient muscle. These biomarkers 
are expected to respond to different treatment modalities targeting different aspects 
of the disease (e.g., sarcolemma stabilization, inflammation, and fibrosis). Logically, 
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one would expect that biomarkers associated with sarcolemma leakage should 
respond acutely to dystrophin replacement therapies. Dystrophin replacement 
directly addresses the primary genetic and biochemical defect, as well as the cellu-
lar phenotype of membrane leakage and CK release. On the other hand, anti- 
inflammatory drugs such as glucocorticoids and vamorolone may show acute 
responses of inflammatory biomarkers [32].

14.2.3.1  Response of Serum Circulating MicroRNA (miRNA) to Gene 
Therapy in DMD

miRNAs are small noncoding RNAs composed of approximately 22 oligonucle-
otides. They regulate gene expression at the posttranscriptional level. miRNAs are 
increasingly viewed as an important aspect of DMD muscle pathogenesis and thus 
potential therapeutic targets [33]. Muscle miRNAs are also released by dystrophic 
muscle into the blood and are seen as candidate serum biomarkers for DMD and 
drug treatment [34–36]. Most of these circulating miRNAs increased with age in 
young DMD patients, from 4 to 6 years of age, and then gradually decreased with 
age in DMD patients older than 6 years [37, 38]. Thus, it is important to take age 
into consideration when assessing miRNAs as pharmacodynamic biomarkers.

To provide specific examples in the context of gene therapy, there was a marked 
decrease in the serum levels of miR-1 and miR-206 in mdx mice treated with AAV- 
U1#23 exon skipping [34]. However, these same miRNAs showed only a moderate 
trend toward normalization without reaching statistical significance in DMD 
patients treated with the antisense oligomer eteplirsen for 12 weeks [38]. This dif-
ference in outcomes could be due to an actual difference in dystrophin restoration in 
an individual muscle, the ability of each treatment to treat all muscles in the body, 
and other stochastic effects of the respective therapies. Indeed, a low amount of 
dystrophin was restored by the dose of eteplirsen used in the clinical trial (<1% of 
the normal) [13], compared to the high levels of dystrophin resulting from mdx 
mice treated with AAV-U1#23. Specifically, AAV-U1#23 showed not only higher 
levels of dystrophin but dystrophin restoration was systemic [34].

14.2.3.2  Response of Serum Circulating Protein Biomarkers 
to Dystrophin Replacement Therapies

Comprehensive studies of serum protein biomarkers in DMD patients and the mdx 
mouse model have been published [6, 9, 10, 39]. The pharmacodynamic responses 
of these serum protein biomarkers have been reported in a limited number of studies 
(mostly preclinical). Serum protein biomarkers that responded to dystrophin 
replacement therapies in mdx mice treated with Pip6a-PMO (12.5  mg/kg) have 
been reported [39, 40], and these are listed in Table 14.2 with their relative response 
and their change with age in DMD patients.
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Cross-referencing these mdx mouse pharmacodynamic biomarkers to human 
DMD natural history data shows that the same biomarkers that responded to dystro-
phin replacement therapy in the mdx mouse model are also decreased as a function 
of patient age (Fig. 14.1). Thus, if these biomarkers were to be used in a DMD drug 
development program, the decreases due to drug effect would need to take into 
account the decreases due to advancing age. Although some biomarkers declined 
less sharply than others (see left and right panel, Fig. 14.1), it may be challenging to 
differentiate between the decline due to the natural course of the disease and the 
decline due to the actual benefit of a treatment. So far, only cytochrome C (CYCS) 
seems to show longitudinal stability over time in young DMD boys.

In this case an ideal pharmacodynamic biomarker candidate for gene therapy is 
a biomarker that is altered in its levels in DMD relative to healthy controls but has a 
trajectory that remains stable or positively correlated with disease progression over 
a period of time suitable to conduct a clinical trial. Such biomarkers remain to be 
selected and tested longitudinally in both preclinical and clinical studies.

Table 14.2 List of serum protein biomarkers that responded to dystrophin replacement therapies 
in the mdx mouse model

Protein 
biomarker

Fold change (mdx vs 
wt)

Response to Pip6a-PMO 
treatment

Decline with age in 
DMD

Myomesin 3 >100 ↓↓ Yes
PGAM1 136 ↓↓ nsa

TNNI3 53 ↓↓↓ Yes
MB 15 ↓↓ Yes
LDHB 8.4 ↓↓ Yes
FABP3 7.8 ↓↓ Yes
CAMK2B 5.3 ↓↓ Yes
ANP32B 5.7 ↓↓ Yes
CYCS 3.6 ↓↓↓ Yes
CAMK2D 3.6 ↓↓ Yes
PCNA 3.3 ↓↓ ns
HTRA2 3.1 ↓↓↓ Yes
ADAMTS5 2.8 ↓↓↓ nsa

PTPN11 2.8 ↓↓ Yes
LYN 2.7 ↓↓ nsa

Calpain I 2.4 ↓↓↓ Yes
THBS4 2.2 ↓↓ Yes
EDA2R 2.1 ↓↓ nsa

SFN −3.2 ↑↑ nsa

ans: not significant when comparing DMD to age matched healthy controls. Number of arrows 
refers to degree of response of the biomarker to Pip6a-PMO treatment [39, 40]
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14.3  Validation and Qualification of Biomarkers for DMD 
Gene Therapy

The regulatory terms “validation” and “qualification” can be disorienting to inves-
tigators in the field of biomarker development. From a regulatory point of view, 
the terms validation and qualification of a biomarker do not mean replicating the 
biomarker in another study or a cohort but instead defining a specific context or 
use of the biomarker in a clinical drug development program and then carrying out 
studies that ensure the reliability of the assays used to measure the biomarker. For 
more detail about the definition of these terms, see a review article about develop-
ment of biomarkers for osteoarthritis [41] and the draft “Guidance for Industry and 
FDA Staff Qualification Process for Drug Development Tools” assembled and con-
tinuously updated by the FDA’s Center for Drug Evaluation and Research (FDA-
CDER) (https://www.fda.gov/downloads/drugs/guidances/ucm230597.pdf).
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Fig. 14.1 Longitudinal trajectory of potential dystrophin replacement pharmacodynamic bio-
marker candidates in the natural history study of DMD patients. The dashed trend line shows the 
overall trajectory of the biomarker. Left panel list biomarkers that declined sharply with age and 
right panel lists those that declined slowly with age. Unpublished data
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14.3.1  Biomarker Validation

Validation of a biomarker is a process to ensure that a method used to measure the 
biomarker is reliable (will provide accurate and reproducible data). To validate a 
biomarker, it is important to first define the type of the biomarker, the context of use, 
and the method or assay planned to measure it. The method or assay to measure the 
biomarker needs to be validated in terms of dynamic range, selectivity, specificity, 
sensitivity, limit of detection and quantification, accuracy, linearity, repeatability, 
reproducibility, and stability. If a biomarker is to be utilized as a clinical trial end-
point in a quantitative manner, then demonstrating the precision of the assay is criti-
cal. As outlined in Fig. 14.2, validation of a biomarker is one part of the qualification 
process.

14.3.2  Biomarker Qualification

According to the FDA definition, qualification of a biomarker refers to a regula-
tory process to transition an exploratory biomarker from the laboratory bench to a 
well- defined use of that biomarker in a clinical drug development program (con-
text of use and fit for purpose [42]). A qualified biomarker should be reliable in 
providing a specific interpretation within the stated context of use. The context of 
use could be prediction of disease progression, prediction of safety and efficacy of 
new treatment, dose selection, or use as a surrogate outcome (endpoint). Thus, the 
qualification process of a biomarker is tightly tied to its context of use. The strate-
gic paths to qualify a biomarker are clearly described in the draft guidance under 

Fig. 14.2 Biomarker qualification process
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Biomarker Qualification Program that is maintained and periodically revised by 
CDER of the FDA guidance web page. From the time of the submission of letter 
of intent to the final qualification and clearance of a biomarker, it takes an average 
of 2–3 years [42].

There is often the perception that a biomarker must be “qualified” before integra-
tion of that biomarker into a drug development program. This is not true—for exam-
ple, measurement of the dystrophin protein in patient muscle biopsies after exon 
skipping has been accepted by the FDA as a surrogate endpoint in DMD without 
qualification. However, the assays utilized to measure dystrophin (or other non-
qualified biomarkers) should still be validated for reliability of the assays used for 
detection. That said, a qualified biomarker might be expected to show consistent and 
robust clinical utility having gone through the 2-year qualification process. 
Successful completion of the qualification process, inclusive of rigorous validation 
and tests that adhere to predefined regulatory guidelines, is more likely to be 
accepted as a robust endpoint by regulatory authorities in drug development. 
Furthermore, a validated and qualified biomarker can be used in multiple drug 
development programs as long as the same original context of use is used according 
the FDA guidance for industry.

14.4  Conclusion

Currently, there is no qualified molecular biomarker for dystrophin replacement 
therapies in DMD. But with the variety of biomarkers identified in DMD and the 
number of preclinical studies testing new gene therapies, we are in a position to 
select the best candidate biomarkers and evaluate their utility to accurately access 
safety and efficacy of various gene therapies. A validated and qualified biomarker 
can be implemented not only to aid the therapy development but can also be imple-
mented in a long-term standard of care once the drug or a therapy is approved. 
Overall, validated and qualified biomarkers will speed up drug development pro-
grams, reduce the cost of clinical trials, and most importantly improve the public 
health.
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Chapter 15
Large-Scale Clinical Manufacturing 
of AAV Vectors for Systemic Muscle Gene 
Therapy

Nathalie Clément

Abstract Gene therapy targeting the muscle using adeno-associated vectors (AAV) 
has a long track record starting from the first vector design in the 1980s until today 
where systemic delivery to the muscle mass has become perhaps one of the most 
sought-after therapy designs. The unparalleled efficacy of AAV vectors to deliver 
robust and long-term expression of the desired therapeutic gene into the different 
muscle cell types remains one of the top assets of this viral drug. However, it also 
created one of its biggest challenges: manufacturing recombinant AAV stocks to 
scale sufficient to fulfill the needs of preclinical studies and phase I to III clinical 
trials. Ultimately, commercial manufacturing remains a major hurdle, if not a road-
block, toward its full implementation for clinical uses in humans. Nevertheless, 
robust processes have recently emerged to produce phase I- to III-enabling, clinical- 
grade AAV drugs and present with promising paths toward commercial use.

Keywords AAV · Gene therapy · Manufacturing · Clinical

15.1  Introduction

Muscle is perhaps the most suitable organ for gene therapy applications using 
adeno-associated vectors (AAV) or recombinant AAV (rAAV). Quickly upon dis-
covery of AAV serotype 2 (AAV-2) and its engineering as a recombinant vector, 
investigators explored using AAV-2 as a vector for muscle gene delivery. Compared 
to other viral and non-viral vectors, AAV-2 has resulted in high and persistent trans-
duction in muscle [1]. The isolation and cloning of numerous capsid sequences, 
which is responsible for the virus cellular tropism, has further improved the portfo-
lio of biological delivery tools to achieve high and sometimes highly specific, mus-
cle transduction efficacy. Among them, serotypes 1, 6, 8, and 9 have become the 
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leading vectors to promote gene transfer to muscle fibers from rodents to non-
human primates and are currently being evaluated in humans for a variety of genetic 
diseases [1, 2].

On a sidenote, but perhaps meaningful, the AAV life cycle is also intimately inter-
twined with muscle cell biology, although indirectly. AAV-2 is the only human virus 
capable of site-specific integration in the human genome during its latent phase. 
Molecular characterization of the AAV-2 integration locus (AAVS1) revealed that it 
lies within the coding region of the human myosin-binding subunit 85 (MBS85) 
gene. MSBS85 is a protein expressed in muscle cells and involved in actin-myosin 
fiber assembly [3]. Interestingly, integration of AAV-2 within AAVS1 does not dis-
turb the cell phenotype or survival [4]. Recombinant AAV, on the other side, does not 
integrate site specifically due to the lack of the Rep protein expression. AAV is widely 
accepted as one of the safest vectors available to date for clinical gene therapy.

While several serotypes support efficient muscle transduction, each presents 
with specific features that make the choice of AAV vector even more resourceful for 
gene therapists. AAV serotype transduction capability may differ in terms of the 
muscle type (skeletal or cardiac), myofiber subtype, kinetics of expression, and abil-
ity to spread to other organs [1, 5]. In some cases, serotype features also vary across 
species and gender [6, 7]. Further, AAV muscle transduction profile can be orches-
trated by the use of various regulatory sequences, including but not limited to 
muscle- specific promoters such as the muscle creatinine-kinase promoter [8] and 
the desmin promoter [9, 10], as well as the vector genome design (single-stranded 
or double-stranded forms) [11].

Altogether, this panoply of AAV vectors creates an unrivaled source of delivery 
tools for successful gene transfer in human patients. As a result, AAV is one of the 
most sought-after delivery vehicles to support muscle gene transfer. Consequently, 
the demand for high-titer, high-quality AAV vector preparations, both for preclini-
cal and clinical applications, is booming. The biggest, and perhaps the least 
expected, challenge facing AAV gene therapy applications to the muscle lies in our 
ability to manufacture at scales to meet the demand [12].

The purpose of this chapter is to review the current processes that have been 
utilized to manufacture clinical-grade AAV and to provide an updated overview of 
the methods currently developed and implemented both by academic and industry 
groups to support the needs for muscle gene therapy.

15.2  Manufacturing for Clinical Applications: Needs 
and Challenges

Whether the muscle tissue is specifically targeted to treat a muscle disorder, or alter-
natively, to provide a consistent and long-term expression of a systematically 
secreted therapeutic protein for treating metabolic disorders, the goal is often identi-
cal: deliver AAV to most of the body muscle mass. Muscular and cardio-muscular 
dystrophies, such Duchenne muscular dystrophy (DMD), Becker muscular 
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dystrophy, limb-girdle muscular dystrophy (LGMD), Pompe disease, myotubular 
myopathy (MTM), Crigler-Najjar disease, spinal muscular atrophy (SMA), or Barth 
syndrome, will require high-dose body-wide correction targeting most of the 
affected muscles, with systemic administration via intravenous delivery. Metabolic 
diseases, such as hemophilia A and B, alpha-1 antitrypsin deficiency (AAT), diabe-
tes, atherosclerosis, or even vaccines for cancer or infectious diseases, also require 
high-dose delivery via local intramuscular administration. The needs for high doses 
and systemic delivery approaches, combined with the first clinically relevant data 
established during the first trials of the past decade, further exacerbated the needs 
for high-titer AAV production at large scales.

The first clinical trials using AAV for muscle delivery date back to the mid-1990s 
and early 2000, notably for AAT, LGMD, Pompe disease, and DMD. In these trials, 
clinical doses ranged between 1 × 1011 and 1 × 1013 vector genome (vg) units per 
patient with doses as low as 2 × 1010 vg/kg [8–10, 13–16]. The phase I/II trial for 
Pompe disease initiated in 2009 at the University of Florida required about 
2  ×  1014  vg of rAAV1-CMV-hGAA to support the trial, toxicology, and bio- 
distribution studies and subsequent multi-year stability study. The vector was pre-
pared by transient transfection in human embryonic kidney 293 (HEK293) cells at 
the University of Florida Powell Gene Therapy Center (UF PGTC, Gainesville, FL) 
and requested approximately 50 10-layer CellSTACKs (CS10®) for a period of 
about 12 months for the preclinical and clinical manufacturing [9, 17]. The produc-
tion of clinical-grade rAAV1-CB-hAAT generated close to 4 × 1014 vg from 120 
CS10® in about 12 months [16]. Similar production scales were performed at other 
academic and industry facilities at the time (Clinical Manufacturing Facility at 
Nationwide Children’s Hospital, Columbus, OH; Targeted Genetics, Seattle, WA; 
Asklepios BioTherapeutics, Chapel Hill, NC, among others). The St. Jude Children’s 
Hospital (Memphis, TE) processed as many as 432 CS10® to generate approxi-
mately 2  ×  1015  vg GMP-grade scAAV8-factor IX clinical vector [18]. Despite 
encouraging clinical outcomes, increasing the clinical doses became one critical 
requirement to ensure a path toward clinical efficacy and larger cohorts. In that line 
of effort, our group had implemented a full-GMP scale process for clinical manu-
facturing of AAV9 [19], which led to the production of about 2 × 1015 vg of clinical 
drug product from 120 CS10® over a 12-month period (Cleaver B.D., Clément N., 
et  al.; unpublished data). The associated preclinical studies utilized close to 
1 × 1016 vg, generated by two entities in several test article lots over a 2-year period 
(UF PGTC, University of Pennsylvania Vector Core).

Clinical doses proposed for muscle dystrophies, such DMD, MTM, or Pompe 
disease, are approaching, and may soon exceed, the 1 × 1016 vg/patient range, and 
demands for clinical batches exceeding 1 × 1017 vg are not so uncommon anymore. 
In other words, in the lapse of two decades, the manufacturing needs for clinical 
AAV have increased by almost three logs, while the development of technologies 
capable of supporting these scales has not followed this steady pace. The field is 
now faced with an unprecedented technical challenge to develop the production 
platforms and purification processes that will support the clinical needs for research 
and commercial requirements for the next decade.
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15.3  Current Manufacturing Methods for Clinical-Grade 
AAV Drug Products

In the next few paragraphs, the main protocols utilized for producing AAV at the 
clinical grade will be presented. For the purpose of simplification, this review will 
mainly focus on processes utilized or currently developed for clinical manufactur-
ing of AAV drug products. Many variations and alternative protocols have been 
utilized to make research-grade AAV and have been previously reviewed exten-
sively [20–24].

AAV production methods all rely on a simple biological mechanism: AAV 
genome replication and packaging into a virion require both the AAV trans func-
tions, that consist in the AAV Rep and Cap proteins (aka VPs), as well as the AAV 
helper virus functions, mostly from adenovirus or herpesvirus, to be introduced to 
the same host cell. AAV production methods can be classified into three  major 
groups based on the mechanism used to introduce the genetic material to the pro-
ducer cells: (1) chemical, by transfection of plasmid materials; (2) biological, by 
viral infection (HSV, baculovirus); and (3) stable cell lines which may combine 
some steps of the other two approaches [2, 22–26].

15.3.1  Transient Transfection

15.3.1.1  Adherent Platform

In transient transfection protocols, AAV Rep/Cap and helper functions are pro-
vided from plasmids, either combined onto one large plasmid molecule such pDG 
or pXYZ [27–29] or separated onto a Rep/Cap plasmid (pAAV Rep/Cap type) and 
a helper plasmid containing the adenovirus serotype 5 functions (pXX6-80) [23]. 
The transfection process relies on chemical precipitation, mostly by calcium phos-
phate (CaPO4) [17, 18, 25, 30] or polyethylenimine (PEI) [30]. The most utilized 
cell lines for AAV production by transfection are the HEK293, HEK293-derived 
HEK293-T that expresses SV40 T antigen, and HeLa cells. The advantage of 
HEK293 is that they express the Ad5 E1A/B gene which is required for AAV 
replication.

Transient transfection protocols are by far the most utilized to support AAV clini-
cal manufacturing with more than 75% clinical trials using drugs generated by 
transfection [2]. Among the clear advantages of this method are (1) safety, with the 
longest track records to date; (2) simplicity, with materials and reagents commer-
cially available, including GMP-grade plasmid stocks; (3) versatility, with plasmid 
engineering and production relying on rapid and low-cost procedures; (4) relatively 
low cost associated with the material and reagent production; and (5) protocols that 
are free of intellectual property restrictions, a consideration that could favor its 
choice for the industry setting.
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The majority of the trials for muscle-targeted gene therapy have been achieved 
by transfection, which demonstrated this process capability as well as safety, both 
for intramuscular delivery approaches, as for DMD [14], LGMD [8], and Pompe 
disease [31], and, more recently, by systemic delivery for Sanfilippo syndrome 
(ABO-101 and 102, Abeona Therapeutics, Cleveland, OH) or SMA [32]. Other 
major trials utilizing the transfection method for muscle delivery include the AAT 
trial and the hemophilia B trial [2, 13, 18, 33]. The biggest challenge for this method 
is its inherent lack of scalability. Until recently, transfection of HEK293, or HeLa 
cells, has always been performed on adherent cell lines grown in culture flasks, 
generally Cell factories (Nunc) or CellSTACKs (Corning). In this setting, the 
amount of AAV produced is a linear relationship with the number of flasks or cell 
growth surface area. The GMP-grade scAAV9 vector from St. Jude Children’s 
Hospital reported using 432 CS10® to generate 2 × 1015 vg or ~ 4.6 × 1012 vg per 
flask [18]. We produced the same amount from 120 CS10® for an AAV9 product or 
~ 1.7 × 1013 vg per flask (Cleaver, Clément et al., UF PGTC, unpublished). These 
manufacturing scales typically require months if not years for completion, adding 
significant cost for facility maintenance and personnel dedication to one project. 
When considering the current needs for midsize preclinical and phase I/II clinical 
studies and for patient dose ranging from 5 × 1013 to or above 2 × 1014 vg/kg, each 
patient could receive between 3.5 × 1015 and 1.4 × 1016 vg per dose. If we assume 
that an average of 1–2 × 1013 vg of purified clinically ready AAV drug can be gener-
ated from each CS10® (PGTC, AAV9 [34], and unpublished), each patient would 
necessitate a production scale of 500 to as many as 1000 CS10®. Production at such 
a scale could take several years to complete at an academic facility or even at a 
contract research/manufacturing organization (CRO/CMO). Transfection using 
adherent platforms has proven simply not a feasible approach for AAV clinical man-
ufacturing for scales exceeding 1–5 × 1015 vg per patient.

15.3.1.2  Suspension Platform

More recently, the transfection model has been adapted for suspension cell cultures 
that provide a far more convenient, less cumbersome, and scalable platform. 
Suspension-adapted HEK293 may be derived either from an in-house cell line [30] 
or commercially available (EXPI293F®, Thermo Fisher, or similar derivatives). 
Triple transfection in suspension platforms is mediated by the use of PEI and cells 
that are grown in disposable WAVE GE Healthcare bioreactors [30]. This method 
was utilized for multiple clinical drugs [30]. Reported yields from multiple sero-
types range from as low as ~ 3 × 1012 to as high as 3 × 1013 vg/L of purified product 
[30] or ~ 1 × 1014 vg/L in crude harvests for the better producers. The major benefit 
of this method is its scalability. However, the overall yield may prove challenging 
for manufacturing scales above 1  ×  1017  vg since it would be in excess of 
3000 L. Another potential drawback for this method is the significant amount of 
GMP-Source plasmid required. It is to date, however, the best option for transfection- 
based AAV manufacturing and has had significant appeal for both academic and 
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industry facilities (Vector Core, University of North Carolina, Chapel Hill, NC; 
Bamboo-Pfizer, Chapel Hill, NC; Audentes, San Francisco, CA; and Généthon, 
Every, FR, among others).

15.3.2  Packaging and Producer Cell Lines for AAV Clinical 
Manufacturing

Several clinical AAV products have been successfully manufactured using stable 
cell lines (for review [2]). Detailed manufacturing protocols or production data are 
not readily available for review, rendering a side-by-side comparison with other 
methods difficult. Typically established in HeLa cells, stable cell lines are stably 
transformed by integrating either the AAV vector genome (producer cell lines) or 
the AAV Rep/Cap sequences (packaging cell lines). AAV production is triggered by 
delivering the complementing sequences, AAV Rep/Cap and helper adenovirus 
(typically with a recombinant adenovirus/AAV hybrid virus), or by introducing the 
AAV genome sequences (typically by transfection or infection by adenovirus/AAV 
hybrid virus) (reviewed in [24, 35–38]). The main advantage to the stable cell lines 
is the presence of the AAV genetic material in every cell, statistically increasing the 
number of cells producing AAV. For this reason, it is widely thought that stable cell 
lines are capable of generating higher AAV yield per cell when compared to other 
systems. However, a side-by-side comparison of the same construct in different 
platforms is still lacking. HeLaS3, a variant of HeLa cells that can be grown both in 
adherent and suspension formats, has been adopted for AAV production. The use of 
HeLaS3 cells greatly facilitates production scale-up. Several trials have been com-
pleted using stable cell lines by groups including the Clinical Manufacturing Facility 
at Nationwide Children’s Hospital (Columbus, OH).

A major drawback (Table 15.1) of this approach is that, it requires a significant 
upfront effort to establish and screen the cell lines and generate and fully qualify the 
master and working cell banks for GMP production, which includes demonstrating 
the cell line stability during cell passaging [39]. Complementing helper viral stocks 
also need to be produced and fully characterized. Lastly, the use of either wild-type 
or recombinant adenovirus variants warrants powerful purification protocols to 
remove this highly immunogenic virus and assays to demonstrate the absence of 
adenovirus-derived impurities.

15.3.3  Infection Using Recombinant Viral Vectors

The genetic information required to produce AAV, namely, the AAV vector genome 
containing the gene of interest (GOI) and the AAV Rep/Cap, can also be biologi-
cally introduced into the host cell by viral infection. The two currently utilized 
viruses are the human herpesvirus type 1 (HSV-1) and the insect baculovirus (BV). 
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There are at least three major advantages to the infection-based approach: (1) a 
highly efficient delivery mechanism that relies on natural infection of a host cell 
by the virus, (2) the shuttle virus (HSV or BV) also serves as the helper virus, and 
(3) infection is a highly scalable platform that works very efficiently in cell sus-
pension formats.

Though the HSV and BV procedures are very similar in principle, they differ by 
at least three major biological aspects: (1) HSV uses eukaryotic mammalian cell 
lines, the natural host species for wild-type AAV, while the BV system uses insect 
cell lines; (2) HSV is a genuine helper virus for wild-type AAV, closely mimicking 
the AAV natural cycle, while BV uses an insect virus; and (3) HSV system is a 
replication-deficient system in that the recombinant HSV used to produce AAV 
does not replicate during the production phase, while the BV may use a self- 
amplifying approach where the recombinant BV inputs can be amplified during 
AAV production. Both systems have been used to produce clinical AAV.

15.3.3.1  HSV System

Three clinical trials have been initiated in the USA using AAV produced by the 
HSV system for retinal diseases (AGTC), AAT [40] and very recently Duchenne 
Muscular Dystrophy (Solid Bio.), and several additional INDs are in preparation 
for systemic diseases targeting the muscle and/or the CNS, including but not lim-
ited to, Pompe disease (Byrne et al., UF), Friedreich’s ataxia (Byrne et al., UF), 
and other retinal diseases (AGTC). The first trial using this method was initiated 
in 2010 for AAT [40–42], in which the muscle was the primary organ to support a 
continuous production and secretion of alpha-1 antitrypsin for body-wide therapy. 
Currently, there are two ongoing trials for achromatopsia and X-linked retinoschi-
sis, two retinal diseases with intraocular administration [43–46]. To date, the trials 
confirmed safety of the clinical drugs often with little or no side effects, further 
validating the use of this method when combined with appropriate purification 
processes.

HSV-mediated production relies on coinfection with two engineered recombi-
nant HSV viruses that carry either the rAAV vector genome with gene of interest 
(rHSV-GOI) or the AAV Rep and Cap sequences (rHSV-AAVR/C). AAV produc-
tion is initiated by coinfection of the host cells, either baby hamster kidney cells or 
HEK293 cells grown in adherent layer or in suspension, with an appropriate multi-
plicity of infection [34, 47–49]. AAV virions are recovered from the cells [34] or the 
cell and supernatants [41, 48] at 48–72 h post-infection and purified by multistep 
filtration and chromatography processes [34, 41, 48].

The first established benefit of this method was the noticeable yield increase, 
independent of the cell platform used. In suspension-cultured baby hamster kid-
ney cells, yields as high as 1 × 1014 vg/L in crude harvests were reported [48], 
and a 100 L clinical batch in the WAVE bioreactor was performed for the AAT 
trial [41], generating about 1 × 1016 vg in crude harvest (or 1 × 1014 vg/L) and 
2 × 1015 vg of clinical material (2 × 1013 vg/L). We were able to increase the 
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overall yields between 3.5 and 4.7  ×  1014  vg/L in crude harvests when using 
optimized production conditions in suspension-adapted EXPI293F and in excess 
of 1 × 1014 vg/L of purified AAV9 [47] (Clément et al., unpublished) and are in 
the process of implementing this method for clinical manufacturing (PGTC, 
Gainesville, FL). Based on such yields, clinical batches of 1 × 1016 vg could 
easily be achieved in a laboratory-scale format (50–100 L), and multiple 250–
500 L batches would suffice for generating >1 × 1017 vg in the industry/CROs 
settings. To date, scalability has been demonstrated in various formats, from 
spinner flasks to shaker flasks [47, 48] and to single- use bioreactors such as the 
WAVE [48].

The second major benefit is that the biological potency of the purified AAV 
appears improved for all the serotypes tested to date when directly compared to 
transfection-made material, the gold standard for AAV production [34, 41, 48]. 
AAV-1 showed a fivefold increase infectivity when compared to transfection-made 
product [41], and AAV-9 was shown to have ~ three- to fivefold in vitro potency 
increase [34]. This is in sharp contract with other methods, notably the BV system, 
that often results in the loss of AAV particle infectivity. The HSV system appears, 
therefore, more versatile and lenient to support production of various AAV sero-
types without the need to modify the expression cassettes, an often lengthy and 
cumbersome effort aimed at tailoring the expression ratio of the various AAV Rep 
and Cap proteins in the BV system.

Another benefit of the HSV method is the apparent increase in the percentage of 
full capsids as compared to empty capsids [34, 41] (Clément et al., to be published). 
It is yet to be demonstrated whether the increase in the number of full particles and 
potency is mechanistically related. The basis for improved potency in HSV-produced 
AAV batches is yet unknown. However, the clinical relevance of these findings 
could be major since it may result in lowering clinical doses to achieve a therapeutic 
benefit in patients.

The major drawback of the HSV method is the need to produce master and 
working viral banks for both rHSVs, sometimes in significant amounts. The current 
production platform for rHSV relies on adherent VERO-derived complementing 
V27 cells, and its scalability is limited due to the challenges of implementing 
suspension- based production, such as the use of microcarriers [50]. However, the 
current achievable scales using adherent V27 in multilayer flasks largely support 
the current AAV needs 1 × 1016– 1 × 1017 [47] (Clément et al., unpublished). Due 
to its relative simplicity, rHSV production protocols could easily be subcontracted 
from CROs upon technology transfer. Importantly, rHSV stocks have been shown 
stable over a period of several years (Clément et  al., unpublished) when stored 
frozen and genetic stability has been demonstrated over at least ten serial passages 
[47, 50, 51] (Clément et al., unpublished). This amplification series would support 
the production of  thousands of liters of rHSV batches well beyond the current 
needs for rAAV manufacturing. Lastly, rAAV stocks must be thoroughly tested for 
the presence of process-derived impurities as further described in the section below. 
To date, preclinical and clinical studies have confirmed the safety profile of this 
method [34, 42, 45, 52–54].
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15.3.3.2  BV Expression System for AAV Clinical Manufacturing

The first BV system for AAV production was developed at the NIH by Kotin et al. 
[55] and relied on a somewhat unexpected finding that the insect baculovirus could 
serve as helper for AAV replication in producing cells. This original system used 
three rBVs to deliver the AAV functions to Spodoptera frugiperda (Sf9) insect cells: 
one carrying the AAV vector genome with GOI, one with AAV Rep (typically from 
AAV2), and the third with AAV Cap of a chosen serotype. The production phase 
starts by infecting the Sf9 cells with these three rBVs at the appropriate multiplicity 
of infection. The first market-approved AAV gene therapy drug Glybera was pro-
duced using the BV system. Glybera was developed by uniQure. It is an AAV-1 
vector for treating familial lipoprotein lipase deficiency by intramuscular injection 
[56]. To support their commercial needs, uniQure moved from the HEK293 trans-
fection method they used in phase I/II to the BV system to produce Glybera. The 
clinical product Glybera met all the release criteria per the European Medicines 
Agency (EMA) policy and was used once in one patient in May 2016. Production 
protocols and data such as the yield of physical particles and the biological potency 
are not publicly available at this time. The design of Glybera phase I/II reveals that 
patients treated at a dose 1 × 1012 vg/kg would respond positively to the gene ther-
apy [57–59]. For an average size adult of 70 kg, this would require 7 × 1013 vg per 
patient, which is within the capability of this method at mid-scale (<100 L) based 
on other studies (see below). However, this drug recently qualified as the world’s 
most expensive medicine with one single patient treated for a cost of $1 million 
[60]. This first commercial production provided significant knowledge and paved 
the way for future products, notably in the USA (uniQure, Lexington, MA).

Despite this pioneering success, the BV production platform has suffered many 
setbacks since its first description in 2002 [55]. Among the more significant hurdles 
were (1) the instability of the rBV during amplification to generate viral stocks, 
resulting in loss of functions [61], and (2) partial or complete reduction of AAV 
particle infectivity for almost every serotype tested [61–63], mostly due to the low 
expression of VP1. There is another challenge for the BV system: unlike in mam-
malian cells, endogenous AAV promoters are not fully active in insect cells and had 
to be replaced with BV promoters or regulatory sequences [55, 62]. These chal-
lenges have been partially overcome in recent designs that include genetic engineer-
ing of various expression cassettes with modified ATG start codons, various 
baculoviral promoters and introns, or other regulatory sequences, to restore the level 
of VP1 expression similar to that observed in mammalian cells [22, 24, 61, 62, 64, 
65]. In addition, the number of rBV was reduced to two or one when stable insect 
cell lines carrying the AAV Rep/Cap functions were created [62, 63, 66]. Another 
unique aspect of this method is the amplification of the rBV during the AAV produc-
tion run when using BV-infected Sf9 cells (BIIC system) which could reduce the 
need for large stocks of rBV [24, 26, 67, 68]. Current yields of the BV system 
approach 1 × 1014 vg/L in crude harvests [68] with infectivity in most cases compa-
rable to that of transfection-generated AAV [63] and with reduced amount of empty 
capsids. While none of these recent developments have been implemented to GMP 
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for clinical manufacturing, their potential benefits, as well as the lack of major road-
blocks related to intellectual properties, have rendered this approach attractive to 
several companies that are in the process of implementing this platform to support 
their commercial-scale manufacturing in the years to come (uniQure, Voyager 
Therapeutics, Abeona Therapeutics, Adverum, etc.).

15.4  Purification of Clinical AAV

A successful manufacturing platform must guarantee that the final biological drug 
is sterile and of high purity for use in humans. Ideally, AAV clinical product should 
also meet two additional biological features: high titer and high potency, to deliver 
the most effective therapeutic drug to the patient in a low volume. Requirements for 
final product release testing are well documented in the FDA guidelines (Table 15.2) 
[21]. The purification process should guarantee the removal of process-derived 
impurities and contaminants, such as serum, antibiotic or Benzonase® residuals, 

Table 15.2 Final product release tests

Transfection HEK293 Cell lines Infection rHSV System Infection rBV System

Sterility, bacteriostasis and fungistasis
Benzonase® residual
In vitro adventitious agentsa

Host cell DNA (293, HeLa, BHK, Sf9)
Host cell proteins (293, HeLa, BHK, Sf9)
Endotoxins
Mycoplasmaa

Vector genome titer
Infectious titer
Identity
Purity
Osmolality or conductivity
pH
Vector genome sequencing
rcAAV
Transgene activity/identity
Total capsids (when available)
% Empty capsid
BSA residual
Gentamycin residual
Host cell proteins
N/A N/A rHSV residual

rcHSV residual
HSV DNA
HSV proteins
V27 DNA
V27 proteins

rBV residual
rcBV residual
BV DNA
BV proteins

aPerformed in unprocessed harvest or intermediates
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host-cell proteins and DNA, helper virus proteins, DNA and replication-competent 
viral particles (HSV, adenovirus, BV), as well as product-related impurities, such as 
empty capsids or replication-competent AAV. The sterility of the final product and 
process intermediates is guaranteed by adhering to strict aseptic conditions through 
the purification steps under the GMP setting.

One unique challenge is the diversity of AAV serotypes, whether naturally occur-
ring or laboratory-engineered, with different physical properties that necessitate 
highly capsid-specific protocols. The FDA identifies each new AAV drug, including 
those with changes in their capsid, as a new product, warranting exhaustive preclini-
cal evaluation and release testing for each new variant. Capsid-tailored protocols 
typically include one capture step, based on their natural binding receptors if known, 
and/or chemo-physical properties of the capsids (pH, pI, stability, size, etc.), fol-
lowed by subsequent polishing steps to increase product purity. Processes resulting 
in high overall recovery from crude material to final purified product will have the 
most chances of success for large-scale manufacturing and commercial production. 
Current clinical manufacturing protocols are characterized by overall low recovery, 
ranging between 5% and 25% [18, 30, 34, 40]. The challenge in balancing recovery 
versus purity is evident and must be evaluated carefully.

15.4.1  Harvest

There are two main strategies to harvest AAV-containing production material. AAV 
particles can either be extracted from the producer cells, upon harvest by traditional 
centrifugation, or alternatively from the entire production pool, combining cells and 
media [2]. Historically, AAV was purified from cell harvests after simple media 
removal from adherent cells, limiting the overall volume to be processed. Removal 
of the media may have also reduced the need for highly stringent purification pro-
cesses with this upfront removal of the majority of process-derived impurities (serum, 
antibiotics, plasmids, helper virus, etc.). However, with the recent implementation of 
suspension culture platforms, extraction of virus particles from the cell and media 
pool harvest has become more popular, eliminating the need for long and cumber-
some centrifugation steps, and may increase the overall AAV yield. Suspension har-
vests require stringent clarification by serial filtration steps to remove cell debris, as 
well as concentration steps to generate workable volumes for downstream purifica-
tion. The risk of vector loss, by direct volume loss or particle loss, increases with 
each step added. Proper storage conditions must be evaluated for each step. During 
harvest, the cells, whether isolated or in culture media, must be disrupted to release 
AAV virions. This is achieved either chemically, with the use of detergent (triton) or 
high osmolality with the use of salt, or physically, by successive freeze-thaws, micro-
fluidization, and sonication or in combination [17, 23, 25, 41]. Typically, crudes are 
subjected to stringent enzymatic treatment such Benzonase® to remove the majority 
of cellular DNA/RNA and plasmid DNA, which additionally helps release the mem-
brane-bound virus prior to clarification. Harvests can be stored frozen.
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15.4.2  Bulk Purification

The particle extraction from the crude lysate, or harvest, relies on a series of puri-
fication steps that promote binding of the AAV capsids to chromatography resins 
or, inversely, binding of the non-AAV proteins and recovery of AAV particles in 
the flow through. To date, only a handful of AAV serotypes have been produced 
for the clinic: AAV-1, AAV-2, AAV-5, AAV-8, AAV-9, and AAV-rh10 and capsid 
variants 2i8, 2.5, and AAV-2 tyrosine mutant (reviewed in [2]). Capsid variant 
typically can rely on protocols already in place for the serotype they are derived 
from with no or minor changes. The AAV-2 triple trypsin mutant was purified 
using the protocol established at UF PGTC for AAV-2 (Cleaver, Clément et al., 
unpublished).

For serotype of known cellular receptors, affinity chromatography is a standard 
and powerful first capture step. Heparin affinity chromatography was used to purify 
clinical AAV-2 and hydroxyapatite for AAV-1. AVB sepharose high performance 
using Camelidae-derived single-domain anti-AAV capsid antibody fragments was 
used to purify AAV-1 (GE Healthcare Life Sciences) [17, 18, 30, 41]. More recently 
affinity resins derived from AAV-8 or AAV-9 immunized llamas (POROS 
CaptureSelect AAV8, POROS CaptureSelect AAV9, Thermo Fisher) were specifi-
cally developed for serotypes 8 and 9. Published data on established protocols is 
still very limited at this time [69], but these resins will likely be used for future clini-
cal AAV manufacturing.

Until recently, AAV-9 was considered one of the most challenging serotypes for 
its inability to efficiently bind to any commercially available resin, before the 
POROS CaptureSelect method was developed. We developed a one-column clinical 
process for AAV-9 based on protein flocculation as pre-purification step followed by 
anion exchange under acidic conditions [19, 34] which was used for the production 
of two clinical AAVs (Byrne, Cleaver, Clément et al., unpublished).

 Historically, a chromatography-only approach prevented complete removal of 
AAV empty capsids. Density gradient centrifugation based on cesium chloride or 
iodixanol has been used to remove empty capsids for some clinical products. This 
approach has multiple disadvantages with the first and foremost being product loss 
(often as high as 50–90% of infectious particles), inherent lack of scalability, chal-
lenge to perform under strict aseptic conditions, and poor consistency since it 
relies on highly trained operators. For these reasons many clinical products used to 
date do contain a significant amount of empty capsids [2]. It is noteworthy that the 
need for AAV empty capsid removal is still actively debated, as it has not been 
formerly demonstrated that the presence of empties is detrimental related to safety 
and/or efficacy of the drug. It seems accepted however that the FDA may soon 
request empties to be removed in the majority of products and much effort is 
invested toward the development of optimal chromatography removal. Noteworthy 
methods such the BV or HSV system have been shown to increase the percentage 
of full capsids in final AAV stocks, which may render the need for empty capsid 
removal less critical.
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15.4.3  Bulk Concentration and Final Product

The last step of any purification process is concentration of the particles, often com-
bined to a formulation or buffer-exchange step. The most utilized method is tangen-
tial flow filtration (TFF), which may be combined with a dialysis step [9, 18, 30, 
34]. The choice of excipient is critical to the success of the product potency and 
stability over time. Current clinical drugs have been formulated in PBS, PBS with 
various supplements such as magnesium, calcium, pluronic acid, salt, detergent, 
balanced salt solution, lactated Ringer’s solution, or citrate buffer, that ensure multi- 
year stability and reduce capsid aggregation for highly concentrated stocks. If the 
storage excipient is not ideally suited for in vivo administration, additional process 
and development work must be in place to demonstrate product stability and buffer-
ing of the drug upon thaw and dilution in a more suitable excipient.

15.5  Quality Control and Stability Testing

Clinical product safety and biological parameters must be fully tested prior to FDA- 
approved release. Testing guidance is provided by the FDA (for the USA), or equiv-
alent agencies in different countries, and must be conducted in compliance with 
cGMP (Table 15.2) (also reviewed in [2, 70, 71]. The final release testing results are 
summarized on the certificate of analysis and include an extensive list of parameter 
assessment that covers safety, product concentration, purity, potency, and stability. 
In-house or subcontracted assays are conducted using qualified procedures or stan-
dard operating procedures and include internal parameters to assess the validity of 
each independent assay based on pre-established criteria, such as positive and nega-
tive controls. Full qualification should include an extensive assay characterization to 
include linearity, reproducibility, specificity, sensitivity, and robustness.

Safety assessments are determined from a series of product-independent assays, 
including sterility, endotoxins, mycoplasma, adventitious agents, in process reagent- 
residual when applicable (antibiotic, Benzonase, and serum residual when applica-
ble), pH, conductivity or osmolality, and appearance. Purity is a critical assessment 
that is highly dependent on the processes utilized to both produce and purify AAV 
drug products. Process-related impurities are by definition process-specific and 
include host-cell DNA and protein residuals (293, HeLa, BHK, etc.), helper virus 
DNA and protein residuals, when applicable (HSV, BV, adenovirus), as well as the 
presence of helper virus and/or replication-competent helper viruses (Table 15.2).

AAV-specific, or product-specific, testing includes identity, GOI expression and 
activity, vector genome titer, infectious titer, and ratio of full-versus-empty capsids, 
when possible. Product-related impurities will consist of replication-competent 
AAV (rcAAV) that would have been generated via homologous recombination 
between the AAV-GOI cassette and the AAV Rep/Cap helpers. In some instances, 
packaging of nonspecific sequences in AAV capsids can also be quantified and 
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determined, although this is not yet a prerequisite for phase I/II drugs. Product iden-
tity is finally confirmed by full genome sequencing [71, 72].

As mentioned above, viral-based production systems, like the HSV, BV, or ade-
novirus system, must undergo further assessments with additional assays to evaluate 
the presence of virus-derived impurities. As the clinical program progresses toward 
phase III and commercial production, these methods also warrant extensive viral 
clearance studies to demonstrate the inactivation and/or elimination of the helper 
viral particles. A thorough viral clearance study was published for the HSV plat-
form demonstrating the complete removal of the HSV virus during downstream 
purification steps, further consolidating the safety of this method [73].

It is obvious however that in addition to a strong in vitro assessment and charac-
terization of any drug product, the product safety is largely determined during 
extensive preclinical toxicology and bio-distribution studies. To date, most if not all 
preclinical test articles or clinical AAV drug products have met the safety require-
ments, with each of the production methods described in this chapter.

In addition to final product release testing, each IND must be subject to formal 
short-term and long-term stability studies, as required by the FDA. These quality 
control assessments must demonstrate the product stability upon pre-defined stor-
age conditions (excipient, temperature, pH). Long-term stability studies are often 
carried multiple years to cover the duration of the clinical trial. Standard time points 
are 3, 6, 9, and 12 months post-manufacturing and then 18 and 24 months and every 
year thereafter until the last patient is dosed.

One of the current challenges for the field is the lack of standardized analytical 
procedures. Past and current clinical AAV drugs have been evaluated using in-house 
or outsourced methods that are highly specific to each manufacturing facility. The 
lack of standardized assays clearly prevents an objective and thorough comparison 
of the production and purification processes used to date in the clinic, as well as the 
final product characterization. Of the most variable assays across laboratories are 
the vector genome titers (quantitative PCR, droplet digital PCR, dot blot or slot blot) 
as well as the infectious titers (TCID50 or infectious center assay). Stability 
 protocols typically include evaluation at 3, 6, 9, 12, 18, and 24 months and then 
every year thereafter, until the last patient is dosed. In our laboratory, we have con-
ducted stability of multiple products for up to 7 years post-manufacturing (Clément, 
Cleaver, Byrne et  al., unpublished). Additional stability evaluation must include 
clinical handling and dosing preparation, as well as, when applicable, during 
temperature- controlled drug shipment.

15.6  Conclusion

Clinical manufacturing for AAV gene therapy started over two decades ago and has 
supported several hundreds of clinical trials to date. Until recently, the most utilized 
method was based on transfection of adherent cell lines. In the light of several recent 
clinical successes, the demand for high amounts of clinical AAV quickly surpassed 
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the manufacturing capability, both due to technologies that could not meet the needs 
and the limited number of manufacturing facilities specialized in AAV production 
and testing. Today, multiple companies, academic cores, and CROs are specializing 
in AAV production to meet the demand and are investing, often jointly, in the devel-
opment of novel methods to support large-scale manufacturing, with commercial 
production in mind. Methods based on suspension platforms have proven robust 
enough for the next-generation products and are by far the most promising, but it is 
unclear whether one of these methods or their variants will be used, as each presents 
with advantages and disadvantages.
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Chapter 16
Genome Editing for Muscle Gene Therapy

Alan O’Brien and Ronald D. Cohn

Abstract Gene editing is defined as creating targeted changes in the genome using 
sequence-specific nucleases. The CRISPR (clustered regularly interspaced short 
palindromic repeats)/Cas9 (CRISPR-associated protein 9) system provides a gene 
editing tool that has led to significant advances in this field and the development of 
potentially curative strategies for a variety of disorders. Most of the research on 
gene therapy and gene editing for muscle disorders has focused on Duchenne mus-
cular dystrophy (DMD), a fatal, progressive X-linked neuromuscular disorder 
resulting from the absence of dystrophin. The molecular aspects of DMD present 
challenging obstacles to gene therapy; however, the versatility of the CRISPR sys-
tem is providing ingenious ways of circumventing those obstacles. In this chapter, 
we review gene editing tools, notably zinc-finger nucleases, transcription activator- 
like effector nucleases, and CRISPR. We then discuss the uses of CRISPR in muscle 
disorders, focusing on DMD, as well as challenges inherent to gene editing of mus-
cle cells.

Keywords Duchenne muscular dystrophy · DMD · CRISPR · Gene editing

16.1  Introduction

Gene therapy is a broad term that encompasses multiple strategies, notably gene 
replacement, gene addition, and alteration of gene expression [1]. Gene editing is 
another such strategy and refers to the making of targeted changes to the genome 
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using sequence-specific nucleases that induce double-strand breaks at specific loci, 
which are then repaired by homologous recombination (HR) or nonhomologous end 
joining (NHEJ).

Gene editing has distinct advantages compared to the other abovementioned 
gene therapy strategies. The changes made to the genome are potentially permanent 
(compared to the transient expression obtained with some other methods), and there 
is no loss of transgene expression in highly mitotic cells. Also, because the changes 
are made directly to the target gene, the surrounding regulatory sequences and envi-
ronment are kept, allowing more optimal gene expression. There is also no risk of 
insertional mutagenesis, but there are risks of off-target cuts, as will be discussed 
below.

16.2  Gene Editing Nucleases

Nucleases used for gene editing include meganucleases, zinc-finger nucleases 
(ZFNs), transcription activator-like effector nucleases (TALENs), and clustered 
regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 
(CRISPR/Cas9) [2]. Meganuclease use has been restricted by their long and chal-
lenging engineering process. In this chapter, we will briefly review ZFNs and 
TALENs and then focus more extensively on CRISPR/Cas9 and its uses for muscle 
gene editing, mainly for Duchenne muscular dystrophy.

16.2.1  Zinc-Finger Nucleases

Developed in the early 2000s, ZFNs are artificial constructs comprised of (1) a zinc- 
finger protein domain, composed of a tandem arrangement of zinc-finger motifs 
(which are naturally occurring DNA-binding motifs in eukaryotic cells), and (2) a 
nuclease domain derived from the Fok1 restriction enzyme (present in Flavobacterium 
okeanokoites), the two separated by a short inter-domain linker [2, 3]. The Fok1 
nuclease domain must dimerize to cleave DNA; thus two ZFN monomers, each 
binding adjacent half-sites, are required to form an active nuclease. Zinc-finger 
motifs each recognize a 3 bp DNA sequence; thus each ZFN dimer recognizes an 
18–36 bp sequence depending on the number of motifs present (generally 3–6) [4].

The heterodimer arrangement of ZFNs increases their binding specificity. It is 
possible to customize the binding specificity of ZFNs by altering the type of zinc- 
finger motifs present in the DNA-binding domain. However, designing ZFNs is 
difficult and time-consuming. Furthermore, the incomplete repertoire of recognized 
triplet sequences and the requirement of guanine-rich 5′ GNN 3′ motifs in the target 
sequence limit the flexibility of this method [2, 5].

In terms of preclinical studies on muscle disorders, Ousterout et al. [6] showed 
that ZFN-mediated removal of dystrophin’s exon 51 restored proper dystrophin 
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expression in patient cells harboring a deletion of exons 48–50. Clinical trials using 
ZFNs are being developed, however not for muscle disorders at the time of writing 
of this chapter. One particular trial is currently underway for HIV patients using the 
strategy of ZFN-mediated disruption of the CCR5 co-receptor in CD4+ T-cells [7].

16.2.2  TALENs

Transcription activator-like effector nucleases are composed of (1) a Fok1 nuclease, 
as described above, and (2) a DNA-binding domain called a transcription activator- 
like effector (TALE), derived from Xanthomonas spp. bacteria, which is itself com-
posed of a tandem array of 33–35 amino acid modules, each of which recognizes a 
specific nucleotide in the major groove [8]. This recognition is made possible by the 
presence of two amino acids at positions 12 and 13 of each module, named the 
repeat variable diresidues (RVDs). Four different RVD modules are used to recog-
nize the four nucleotides in DNA, making it possible for TALENs to recognize any 
desired sequence. TALENs, like ZFNs, need to dimerize, and each pair recognizes 
a target sequence of approximately 30–40 base pairs. The targeting flexibility of 
TALENs is an advantage over ZFNs; however their design does remain challenging 
and time-consuming [2].

TALENs have notably been used for generation of CAR T-cells used in recent 
clinical trials [9]. They have not been used in clinical trials for muscle disorders; 
however, preclinical studies have shown their capacity to restore proper dystrophin 
expression. The reading frame is restored by the creation of indels of specific lengths 
(stochastically) [10, 11] or by indel-mediated disruption of a splicing-acceptor site, 
inducing skipping of exon 45 [11].

16.2.3  CRISPR/Cas9

The CRISPR system is a naturally occurring bacterial immune mechanism whose 
purpose is defense against bacteriophages and plasmids. Its discovery, characteriza-
tion, and development as a biotechnological tool span close to three decades. For a 
detailed historical overview, we refer the reader to published review articles, such as 
the one from Hsu et al. [12].

CRISPR systems are based on RNA-directed endonuclease cleavage of foreign 
nucleic acid sequences. The invading foreign sequence is initially captured and 
inserted into the genome of the host organism at a CRISPR locus, which is com-
posed of CRISPR-associated (Cas) genes (coding for endonucleases) followed by 
the CRISPR array, itself consisting of a series of direct repeat sequences interspaced 
by “spacer” sequences [2, 12]. These spacers correspond to the sequences of incor-
porated foreign nucleic acids, which are themselves called protospacers before their 
incorporation. The CRISPR locus is then transcribed and processed and serves as a 
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guide for endonucleases to target foreign nucleic acids based on complementarity 
with the RNA. Three different types of CRISPR systems have been described [13], 
although the basic principles outlined above apply to all of them. They differ, among 
other things, by the amount and types of associated proteins and the processing of 
the CRISPR locus. The type II CRISPR system is the simplest version and has been 
the one harnessed as a biotechnological tool to date.

In the type II system, the CRISPR array is transcribed and then processed into 
smaller CRISPR RNA’s (crRNA), consisting of one direct repeat and one spacer 
sequence. The direct repeat portion then hybridizes with a trans-activating CRISPR 
RNA (tracrRNA). The crRNA-tracrRNA complex is further processed by RNase III 
and complexes with endonuclease Cas9; this potentially releases Cas9’s self- 
inhibitory conformation [14] and guides it toward the target DNA sequence to be 
cleaved. Cas9 contains two nuclease domains, RuvC and HNH, each responsible for 
nicking one of the two strands of DNA at the target site. Cas9 searches target sites by 
looking for and binding to protospacer-adjacent motifs (PAMs) which are short 
sequences flanking the 3′ end of the DNA target site. These PAM sequences are abso-
lutely necessary for Cas9 binding and cleavage of DNA and are absent from the endog-
enous CRISPR loci in bacteria, allowing self- versus nonself-discrimination [12].

The most commonly used version of CRISPR/Cas9 for gene editing requires 
Cas9 from Streptococcus pyogenes (SpCas9) and a chimeric single-guide RNA 
(sgRNA) made up of a crRNA fused with a tracrRNA. Generally, guide sequences 
are 17–20 bp long. Target sequences must have at their 3′ end the PAM sequence for 
SpCas9: 5′ NGG 3′. Once expressed in cells, the Cas9 nuclease and the sgRNA 
form a complex, bind to the target sequence, and create a double-strand break. The 
break can then be repaired via NHEJ, which is an error-prone process that intro-
duces insertions and deletions (indels) into the target sequence. Another repair path-
way, named homology-directed repair (HDR), can be used to introduce targeted 
mutations, by co-transfecting single- or double-stranded DNA templates [2, 12]. 
One strategy is to use an engineered Cas9 with one of its two nuclease domains 
inactivated, thus resulting in a “nickase” that can only create a single-strand break. 
A single DNA nick, in the presence of a template strand, can be used to promote 
HDR instead of NHEJ [15].

There are several common variations to the above-outlined method. For exam-
ple, the Cas9 from Staphylococcus aureus (SaCas9) is frequently used because of its 
smaller size compared to SpCas9, which makes packaging into viral vectors or 
other delivery vehicles easier. However, its PAM sequence (5′ NNGRRT 3′) is lon-
ger, which can make targeting of a specific region more difficult [16]. A novel 
CRISPR-associated endonuclease named Cpf1 (for CRISPR from Prevotella and 
Francisella 1) was described in 2015 [17] and has several specificities, notably its 
use of a single shorter gRNA (instead of a chimeric sgRNA or crRNA-tracrRNA 
hybrid), its use of a T-rich PAM at the 5′ end of the target sequence (making it more 
useful to target A-T-rich regions), and its creation of double-strand breaks with 
sticky ends rather than the blunt ends created by Cas9.

The CRISPR/Cas9 tool also allows the regulation of gene expression. This 
approach requires the use of a catalytically inactive or “dead” (dCas9), with both the 
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RuvC and HNH domains inactivated, which when bound to DNA elements represses 
transcription by sterically hindering the RNA polymerase machinery [18]. Another 
strategy is the conversion of Cas9 into a synthetic transcriptional activator by fusing 
it to multiple copies of VP16 activator [19].

The targeting specificity of the CRISPR/Cas9 system is not perfect, and several 
studies show that Cas9 will tolerate several base pair mismatches [12]. This raises 
concerns because this tool potentially leads to permanent modification of the 
genome. If Cas9 binds to sites with sequence similarity but which are not the 
intended target site, this could lead to what is called “off-target” cuts in other regions 
of the genome. One method used to detect those off-target cuts is to assess the 
sequence of genomic regions which have been predetermined based on sequence 
similarity to the desired target locus. This type of assessment is biased, however, 
because off-target cuts will only be found if they occur in one of the specific regions 
of the genome that the research team analyzes. Unbiased, nontargeted search meth-
ods for off-target cuts, based on whole-genome sequencing or other strategies, will 
be needed. Tsai et al. [20] and Kim et al. [21] have already demonstrated the feasi-
bility of this. There are strategies to minimize the risk of off-target cuts, for exam-
ple, the use of paired guide RNAs coupled with a nickase mutant of Cas9 (described 
above and reviewed in Hsu et al. [12]), the titration of Cas9 dosage (as high concen-
trations of Cas9 lead to increased mismatch tolerance), and the use of tissue-specific 
expression cassettes, which prevents off-target cuts in cell types that are not neces-
sary targets of gene editing.

In recent years, CRISPR-Cas9 has been used as an efficient gene editing tool in 
a variety of species and cell types. Contrary to ZFNs and TALENs, which depend 
on protein-DNA interaction, CRISPR/Cas9 sequence recognition depends on DNA- 
RNA Watson-Crick base pairing. Targeting of a specific DNA sequence thus only 
requires modification of the sgRNA, a relatively easy and straightforward process, 
while the Cas9 nuclease needs no modification. The ease of use and versatility of 
the CRISPR system are major advantages over other methods of gene editing.

16.3  Use of CRISPR/Cas9 for Muscle Gene Editing

Muscle cells present specific challenges for gene therapy and gene editing. 
Importantly, HDR is very inefficient in postmitotic cells such as myofibers, leaving 
NHEJ as the preferred mechanism to repair double-strand breaks [22]. Satellite 
cells, which are muscle-specific stem cells, are however not affected by this prob-
lem. At the current time, muscle disorders are not amenable to ex vivo gene therapy, 
unlike other disorders affecting cells that are hematopoietically derived. Hence, 
delivery vehicles must be used. Naked DNA delivery, such as electroporation and 
hydrodynamic injection, is not ideal for in vivo human gene therapy. Viral vectors 
are generally used to deliver the CRISPR/Cas9 components to target cells. Several 
types of viral vectors have been used, such as lentivirus or adenovirus; however 
recombinant adeno-associated virus (AAV) vectors are often preferred because of 
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their safety profile, lack of genome integration, and wide variety of available sub-
types with different tissue tropisms [3, 23, 24]. We refer the reader to other chapters 
in this book that describe viral vectors and delivery methods in more detail.

16.3.1  Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a fatal X-linked disorder affecting between 
1/3500 and 1/5000 males, characterized by progressive deterioration of skeletal and 
cardiac muscle due to the absence of dystrophin, coded by the DMD gene [25]. 
Dystrophin is present in muscle cells as part of the dystrophin-associated glycopro-
tein complex (DGC), which anchors the intracellular cytoskeleton to the extracel-
lular matrix [26]. The absence of dystrophin and the DGC causes sarcolemmal 
instability, eventually resulting in muscle degeneration and fibrosis. The clinical 
consequences include loss of ambulation, respiratory weakness, and dilated cardio-
myopathy. Loss of ambulation typically occurs during adolescence, and death, usu-
ally from respiratory or cardiac complications, occurs in the third decade. DMD 
results in dystrophin mutations causing an out-of-frame transcript leading to the 
absence of the protein. Approximately 60–70% of patients have a large deletion 
encompassing one or more exons; most of them occur in a mutation “hotspot” span-
ning exons 45–55. Becker muscular dystrophy (BMD) is a milder form of DMD 
resulting from mutations leading to an in-frame transcript, yielding a truncated but 
functional protein [27].

DMD is the largest human gene, spanning 2.4 Mb and 79 exons, which encode 
14 kb of cDNA. This large size creates challenges for gene delivery. Importantly, 
AAVs can only carry up to 4.7 kb of DNA [28]. The fact that a truncated dystrophin 
can still be functional, as seen in BMD patients, has prompted the strategy of using 
truncated versions of DMD (mini-/microdystrophin) for delivery by AAVs, and the 
removal and/or inducing of skipping of exons harboring mutations, using antisense 
oligonucleotides or other means as outlined below [29]. Another approach has been 
to use NHEJ to create indels, creating frameshifts which restore the original reading 
frame; however, as described earlier in this chapter regarding Ousterout’s study with 
TALENs, the stochastic nature of this process indicates that not all cells will be 
edited with indels of the appropriate length needed to restore the reading frame.

Out of all the animal models used for studies of DMD, the mdx mouse is the most 
widely used and known. It harbors a nonsense point mutation in exon 23 of the 
DMD gene, which disrupts transcription and causes the absence of dystrophin. 
Various authors have shown how CRISPR can be used to remove the DMD mutation 
from mdx mice, using AAV dual vector approaches, with one vector carrying Cas9 
and another vector carrying the sgRNAs. Nelson et al. [30] used an AAV8 system to 
deliver SaCas9 and two sgRNAs, targeting introns 22 and 23, and were able to 
remove exon 23 in the mdx mouse, leading to expression of truncated but functional 
dystrophin in cardiac and skeletal muscle, as well as increased skeletal muscle func-
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tion. Tabebordbar et al. [31] used AAV9 to deliver SaCas9 and sgRNAs flanking the 
5′ and 3′ terminal regions of exon 23, showing similar results, as well as the 
 successful targeting of satellite cells, which also showed recovered dystrophin 
expression without loss of their regenerative capacity. Long et al. [32] used AAV9 
to deliver a humanized SpCas9 and two sgRNAs (targeting the 3′ end of exon 23 
and the mutant sequence in exon 23); the resultant NHEJ-mediated disruption of the 
3′ splice site resulted in skipping of exon 23.

Bengtsson et al. [33] used a different mouse model (mdx4cv, harboring a nonsense 
mutation in exon 53) and used sgRNAs targeting intronic regions to excise exons 52 
and 53, resulting in a shortened but in-frame transcript and recovered dystrophin 
expression leading to increased muscle function. They also showed that HDR can 
occur in muscle cells, although at a low frequency, and did not succeed in increasing 
muscle force. It was also not clear if these HDR-edited cells were postmitotic myo-
fibers or proliferating precursors.

Zhang et al. [34] showed similar results using the Cpf1 endonuclease and patient 
fibroblast-derived-induced pluripotent stem cells that harbor a deletion of exons 
48–50 (creating a premature stop codon in exon 51) and were differentiated into 
cardiomyocytes. They used a single-gRNA “reframing” strategy to target the splice 
acceptor site of exon 51, causing indels through NHEJ, thus restoring the appropri-
ate open reading frame in part of the targeted cells. They also used a two-gRNA 
strategy to disrupt the acceptor splice site of exon 51, thus restoring the reading 
frame in a truncated dystrophin with joining of exons 47 and 52. They also show 
rescue of dystrophin expression in a variety of tissues after HDR-mediated correc-
tion in mdx mouse zygotes.

Other studies have shown the development of a research pipeline for genome 
editing of various genetic conditions, by demonstrating CRISPR-mediated correc-
tion of cells acquired from patients with genetic conditions. A paper from 2016 
details some of those strategies, including two for DMD [35]. One of those two 
strategies is to upregulate utrophin in cells of a DMD patient. Utrophin is a paralog 
of dystrophin present in humans and mice which can compensate for the loss of 
dystrophin at the DGC. Studies have already shown that the increase of utrophin 
expression in mice decreases the severity of the pathology, and clinical trials are 
underway using small molecules to pharmacologically upregulate utrophin produc-
tion. In the abovementioned article, myoblasts of a DMD patient harboring a dele-
tion of exons 45–52 are transfected with a catalytically inactive SpCas9 fused to ten 
tandem repeats of transcriptional transactivator VP16, guided to the utrophin pro-
moter A or B. The results show increased utrophin expression, especially with tar-
geting of promoter B.  Interestingly, a combination of several sgRNAs targeting 
promoter B was able to increase utrophin expression up to 15 times the basal amount 
(Fig. 16.1). These data suggest the feasibility of using CRISPR for modulating the 
expression of disease-modifying genes as a treatment for various disorders, includ-
ing DMD. A second approach for DMD described in this study refers to the removal 
of a tandem duplication of exons 18–30 in DMD in myoblasts differentiated from 
patient fibroblasts, by using a single sgRNA targeting a sequence well inside the 
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duplication. This resulted in restoration of full-length dystrophin in the treated cells 
(Fig.  16.2), suggesting that this could be a feasible treatment approach for the 
approximately 10–15% of DMD patients that have a duplication of one or more 
exons [36].

Fig. 16.1 Utilizing CRISPR/Cas9 to modulate expression of UTRN, a disease-modifying gene in 
DMD myoblasts. (a) Schematic diagram (not to scale) of sgRNAs targeting regions upstream of 
UTRN A (A1–A3) and B (B1–B4) TSSs. (b) CRISPR-/Cas9-mediated transcriptional activation of 
UTRN in DMD myoblasts. Amounts of utrophin, β-dystroglycan, and tubulin were analyzed by 
Western blot 4 days after transfection with dCas9-VP160 plasmid containing each sgRNA. (c) The 
amount of utrophin was normalized to that of tubulin by densitometric analysis of four different 
experiments. (d) Location of sgRNAs in relation to UTRN TSS, DNase I hypersensitivity foot-
prints, and chromatin-state maps. sgRNAs are plotted above experimentally determined TSSs 
obtained from a FANTOM5 assay of over 300 primary tissues. The maximum signal at each pro-
moter region is shown below the TSSs (CAGE tags). Digital DNase Footprinting (DGF) assays for 
fetal muscle and primary CD3 cells are shown in blue (ENCODE). DGF assays for skeletal muscle 
cells, skeletal muscle, and naive CD4 cells are shown in black. Chromatin-state maps from the 
Roadmap Epigenomic Consortium are shown for skeletal muscle cells (SkM), skeletal muscle 
(SM), and naive CD4 cells (CD4N). Red indicates TSSs, and yellow indicates enhancer states. The 
A guides all fall within muscle promoter regions. The B guides fall into an enhancer region imme-
diately upstream of an annotated promoter region. In CD4 cells, this region is considered an active 
promoter. At promoter B, the DGF footprint in muscle cells is weak in comparison to that in CD4 
cells. Data were plotted according to positions from the UCSC Genome Browser. FANTOM5, 
DGF, and chromatin-state data were obtained from UCSC “Track Hubs” (Reproduced from Wojtal 
et al. [35])

A. O’Brien and R. D. Cohn



283

Fig. 16.2 Genome-editing strategies for individuals with duplication of DMD exons 18–30. (a) 
Electropherogram of the junction of the duplication of DMD exons 18–30; highlighted in blue is the 
insertion of AAAT at the junction. (b) Schematic of the position of DMD sgRNA 1 and the duplica-
tion-removal strategy. (c) Schematic of the three-primer duplication-removal strategy. (d) Targeted 
deletion of a 139 kb duplication in DMD. PCR was performed on DNA from three replicate experi-
ments in which affected myoblasts were transduced with LentiGFP or lentiCRISPR Cas9 nuclease 
with DMD sgRNA 1. The top band was amplified with universal primers (P1 + P3) to both an allele 
with the duplication and a control. The bottom band is specific to alleles harboring the duplication 
(P1 + P2). A decrease in the bottom band, indicating removal of the duplicated region, was only 
observed when Cas9 and sgRNA 1 were present. (e) Western blot with antibodies Fig. 16.2 (con-
tinued) against dystrophin, α-dystroglycan, and tubulin as a loading control. The amount of dystro-
phin was normalized to that of tubulin by densitometric analysis. ∗p < 0.05, ∗∗p < 0.01 (Student’s 
t-test from three independent experiments) (Reproduced from Wojtal et al. [35])
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16.3.2  Congenital Muscular Dystrophy Type 1a

Congenital muscular dystrophy type 1a (MDC1a) is a severe, neonatal-onset disor-
der, characterized by significant hypotonia, weakness, dysmyelinating neuropathy, 
and CNS white matter lesions. Respiratory failure is common, as well as feeding 
difficulties, aspirations, and recurrent respiratory infections. MDC1a is caused by 
biallelic mutations in LAMA2, which encodes the α2 chain (LAMA2) of the lam-
inin- 211 (formerly merosin) complex, an essential component of the basement 
membrane of muscle and Schwann cells. Its deficiency leads to loss of integrity of 
those cells, resulting in muscle degeneration and fibrosis. There is good genotype- 
phenotype correlation, with the degree of LAMA2 deficiency being related to the 
severity of clinical presentation [37]. Approximately 40% of patients with MDC1a 
have splice-site mutations, leading to exon skipping and a truncated protein [37, 38].

A mouse model for MDC1a, dy2J/dy2J, has a splice-site mutation (c.417 + 1 g → a) 
at the beginning of intron 2 of Lama2, leading to skipping of exon 2 and a truncated 
N-terminal domain [39, 40]; this causes muscle atrophy and hind limb atrophy. The 
g → a mutation in the first nucleotide of intron 2 leads to disruption of the consensus 
splice-site sequence A/C-A-G-g-t-a/g-a-g-u, where the first intronic g-t nucleotides 
are invariant.

An AAV-based gene replacement approach might not be feasible in the case of 
MDC1a, given the large size of the LAMA2 coding region, which exceeds the carrying 
capacity of AAV vectors. A recent paper described a CRISPR-/NHEJ-based approach 
to fix the splice-site mutation in the abovementioned mouse model of MDC1a [41]. 
The study team hypothesized that removal of the proximal part of that intron by cutting 
just immediately before that g → a mutation would allow reconstitution of the consen-
sus splice site by joining with a g-t nucleotide sequence downstream in the intron. This 
required the design of two sgRNA. Three-week-old dy2J/dy2J mice were treated with an 
intramuscular or intraperitoneal injection of AAV9 encoding hemagglutinin-tagged 
SaCas9 and either sgRNA1 or sgRNA2. This leads to recovery of full-length LAMA2 in 
muscles as well as improvement of muscle morphology; however, no improvement of 
locomotion or paralysis was shown, and no full-length LAMA2 recovery occurred in 
the sciatic nerve. Systemic delivery through the temporal vein resulted in LAMA2 
recovery in muscle and sciatic nerve, improved muscle morphology as well as 
decreased paralysis and improved locomotion. Overall, this study reveals the feasibil-
ity of CRISPR-mediated correction of splice-site mutations without the use of homol-
ogy-directed repair, paving the way toward therapeutic applications in patients with 
such mutations, either with MDC1a or other genetic disorders.

16.4  Conclusion

In summary, the ease of use and flexibility of the CRISPR method has led to excit-
ing developments in the field of gene editing. Challenges remain, such as diminish-
ing the risk of off-target cuts or working around the inefficiency of HDR in muscle 
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cells, but significant progress has already been made in those areas. Regarding 
DMD, the proof of concept has already been established for treatment of a variety 
of different mutations, paving the way toward clinical trials in the future. However, 
multiple issues need to be resolved before this technology moves to the clinic, 
among other things the risk of off-target effects. Unbiased, comprehensive genome- 
wide search methodologies will need to be used to assess for off-target cuts. 
Furthermore, research into delivery vehicles that are nonviral in nature may be nec-
essary to develop in the near future. However, new developments in CRISPR meth-
odology are opening up a number of potential treatment avenues, and the next few 
years will likely see the number of genetic disorders amenable to CRISPR-mediated 
correction expand significantly.
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Chapter 17
Considerations on Preclinical 
Neuromuscular Disease Gene Therapy 
Studies

Dongsheng Duan

Abstract Numerous neuromuscular and non-neuromuscular diseases are amena-
ble to gene therapy. Rigorously designed and carefully conducted preclinical stud-
ies are essential to translate these muscle gene therapies to human patients. Many 
general guidelines have been published in recent years on how to enhance reproduc-
ibility and improve predictive value of preclinical studies. These are excellent 
guidelines to follow in preclinical gene therapy studies. However, they are not tailed 
specifically for muscle gene therapy. In this chapter, I discuss considerations in the 
design of a preclinical neuromuscular disease gene therapy study based on our 
experience in the preclinical development of adeno-associated virus (AAV) micro-
dystrophin gene therapy. I also discuss adapting the design of phase III clinical trials 
to animal studies to improve their reproducibility. This chapter is not intended to be 
all-inclusive and to cover all possible scenarios. Due to the complexity of the candi-
date diseases that can be treated by muscle gene therapy, it is critical to consider 
disease-specific issues in the design of each preclinical muscle gene therapy study.
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17.1  Introduction

Muscle gene therapy refers to therapies that are based on delivering genetic materi-
als (nucleic acids) to muscle to treat diseases. While the majority of muscle gene 
therapy aims at treating neuromuscular diseases (such as muscular dystrophy), 
investigators have also explored treating non-muscle diseases with muscle gene 
therapy. In the latter case, the muscle is used as a platform to produce and secrete a 
therapeutic protein such as factor IX, antitrypsin, or lipoprotein lipase [1–4]. In this 
chapter, I limit the discussion to preclinical gene therapy studies for treating neuro-
muscular diseases. Currently, clinical muscle gene therapy has only been conducted 
in a few neuromuscular diseases. Among these, Duchenne muscular dystrophy 
(DMD) gene therapy, specifically systemic adeno-associated virus (AAV)-mediated 
micro-dystrophin gene therapy, has attracted significant attention in recent years 
[5]. For this reason, I focus on experiences gained and lessons learned in the pre-
clinical development of AAV micro-dystrophin gene therapy to illustrate bench-to-
bedside translation of muscle gene therapy. Specifically, I discuss issues related to 
animal models, gene delivery vectors, and outcome measurements. I also highlight 
some common misconceptions and important precautions in statistical analysis and 
data interpretation. Finally, I discuss the preclinical randomized controlled trial 
(pRCT), a new strategy to conduct late-stage animal studies using best practices 
learned from human trials.

17.2  Overview of Preclinical Muscle Gene Therapy

Broadly speaking, preclinical studies can be divided into early explorative studies 
and late investigational new drug (IND)-enabling studies. Early explorative studies 
establish the proof of principle. Late IND-enabling studies define the risk-benefit 
profile of the therapy to support regulatory approval of a human trial. In the context 
of neuromuscular disease gene therapy, early explorative studies have four major 
goals. The first goal is to identify the therapeutic gene. This can be the disease-
causing gene (a gene causing disease when mutated, e.g., the DMD gene, the gene 
that encodes dystrophin), a homologue of the disease gene (e.g., the utrophin gene), 
or a disease-modifying gene (e.g., the follistatin gene) [6–8]. This gene can also be 
an endogenous gene (e.g., the alpha-sarcoglycan gene) or an engineered synthetic 
gene (e.g., the micro-dystrophin gene) [9, 10]. In some neuromuscular diseases, the 
disease-causing mutation occurs in the untranslated region (UTR). For example, 
type I myotonic dystrophy is due to CTG repeat expansion in the 3′-UTR of the 
DMPK gene. For these diseases, the goal should include the identification of dis-
ease-causing mutations.

The second goal of early explorative studies is to determine the optimal gene 
therapy strategy. The most commonly used gene therapy strategies are gene replace-
ment, gene knockdown, gene repair, and disease-modifying gene therapy. Gene 
replacement therapy is used to treat a recessive disease by providing a functional 
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copy of the mutated gene (e.g., treating autosomal recessive limb-girdle muscular 
dystrophy 2D by expressing the alpha-sarcoglycan gene) [9]. Gene knockdown 
therapy is used to treat dominant muscle diseases (e.g., treating autosomal dominant 
limb-girdle muscular dystrophy 1D with RNA interference-mediated silencing of 
the mutated myotilin gene) [11]. Gene repair therapy aims to remove or correct the 
mutation. The recently developed clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) editing has yielded promis-
ing results in removing the dystrophin gene mutation in animal models of DMD 
[12, 13]. It should be pointed out that gene repair therapy is not limited to DNA 
level modification. RNA-level modifications such as RNA trans-splicing and exon 
skipping are powerful gene therapy tools to bypass the DNA mutation and produce 
a functional protein [14, 15]. Disease-modifying genes are genes that do not cause 
the disease themselves but rather they modify disease severity [16]. Disease-
modifying gene therapy hence does not target the mutated disease gene directly. 
Instead, it aims at genes that regulate downstream pathogenic events such as degen-
eration/regeneration, muscle atrophy, necrosis, and fibrosis. Cytosolic calcium 
overloading is a common feature in muscular dystrophies. Supraphysiological lev-
els of calcium kill muscle cells by activating proteases and phospholipases. 
Overexpression of the calcium pump, the sarco/endoplasmic reticulum calcium 
ATPase (SERCA) gene, or silencing of the SERCA inhibitor sarcolipin has been 
shown to mitigate muscular dystrophy in mice [17–19].

The third goal of early explorative studies is to select the gene transfer vector and 
the delivery route. A number of non-viral and viral vectors have been explored for 
muscle gene therapy. After several decades of research, AAV now stands out as the 
leading vector for muscle gene therapy (see Chaps. 10 and 11 for additional discus-
sion on AAV) [20]. The delivery route of muscle gene therapy has evolved from 
early direct intramuscular injection to regional perfusion and now to whole-body 
systemic delivery. The muscle is one of the most widely distributed tissues in the 
body. Many muscle diseases not only affect the skeletal muscle but also compro-
mise the heart. Hence, body-wide systemic delivery via intravenous injection is the 
preferred delivery route for many neuromuscular disorders [21, 22]. A small num-
ber of muscle diseases only affect a selective set of muscles (e.g., oculopharyngeal 
muscular dystrophy). In these cases, direct muscle injection will meet the therapeu-
tic need [23].

The fourth and perhaps the most important goal of early explorative studies is to 
demonstrate therapeutic efficacy in a relevant animal model. Ideally, this should 
include demonstration of the intended molecular and biochemical changes, amelio-
ration of histopathology, improvement of physiological functions, and/or the sur-
vival rate or lifespan following administration of the candidate gene therapy vector. 
Early explorative studies are often conduced in academic laboratories. These stud-
ies establish the proof of principle for treating a particular neuromuscular disease 
with a tailored gene therapy approach.

IND-enabling studies are prompted by the positive findings from early explor-
ative studies. The aim is to generate adequate data to support the safety and the 
scientific basis for an early-phase clinical trial (see Chap. 39 for additional discus-
sion on IND-enabling study). These studies are usually designed with significant 
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input from the regulatory agency such as the Pre-IND Consultation Program at the 
Center for Biologics Evaluation and Research (CBER) and the Food and Drug 
Administration (FDA) (https://www.fda.gov/Drugs/DevelopmentApprovalProcess/
HowDrugsareDevelopedandApproved/ApprovalApplications/Investigational 
NewDrugINDApplication/Overview/default.htm) [24]. Some IND-enabling studies 
are conducted in accordance with good laboratory practice (GLP). IND-enabling 
studies are expected to generate efficacy, pharmacology, and toxicology data. The 
pharmacology includes pharmacodynamics (PD) and pharmacokinetics (PK). PD 
refers to the effects a drug has on the body, or simply, drug effects. PK describes 
how a drug moves through the body, including absorption, distribution, metabolism, 
and excretion. In the context of gene therapy, these often include but are not limited 
to dose finding, vector biodistribution in target and nontarget tissues, vector replica-
tion, vector shedding, transgene expression in target and nontarget tissues, immune 
response (T-cell and B-cell responses to the viral capsid and/or transgene product 
and the innate immune response), blood chemistry, histopathology, insertional 
mutagenesis, germline transmission, and, in certain cases, long-term evaluation 
[25]. For gene therapy studies, IND-enabling studies also include characterization 
and validation of the method used for vector production and purification [25].

17.3  Preclinical Development of AAV Micro-Dystrophin 
Gene Therapy for DMD

17.3.1  Dystrophin and DMD

DMD is caused by frameshift or frame-aborting mutations in the dystrophin gene. 
These mutations eliminate production of the dystrophin protein, a subsarcolemmal 
cytoskeletal protein that stabilizes the muscle cell membrane and protects muscle 
from contraction-induced injury. In the absence of dystrophin, muscle undergoes 
degeneration and necrosis and eventually is replaced by fibrofatty tissue. DMD is an 
X-linked recessive disease. It occurs at a frequency of 1 in 5000 newborn boys [26]. 
Without medical intervention, patients die prematurely in their 20s to 30s from 
respiratory and/or cardiac muscle failure. Currently, there is no cure for DMD.

17.3.2  Animal Model

The dystrophin gene was discovered in 1987 [7]. Right around the time of dystro-
phin gene cloning, two naturally existing dystrophin-deficient animal models 
were identified, including the mdx mouse and the golden retriever muscular dys-
trophy (GRMD) dog [27, 28]. Subsequently, a large collection of additional DMD 
models were discovered in nature or developed using chemical induction or 
genetic engineering. Currently, ~100 DMD models exist in a broad range of 
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species including invertebrates (worms and flies), zebrafish, mice, rats, cats, rab-
bits, dogs, pigs, and nonhuman primates [29, 30]. For mouse and dog models, 
there also exists a great variety of strains/breeds that differ either in the genetic 
background or in the mutation type (see Chap. 3 for additional discussion on the 
DMD model). In addition to the existing models, new DMD models are continu-
ously being generated [31–33]. The existence of so many options allows for a 
maximal coverage of the entire spectrum of the human disease and makes it pos-
sible to meet different experimental needs. However, this also makes it challeng-
ing to decide on the best model to use.

In the development of AAV micro-dystrophin gene therapy, several parameters 
have been considered in model selection. The most important one is the study pur-
pose or the study question. The chosen animal model should allow investigators to 
answer the question being asked in the study. Selection is further narrowed by the 
cost, availability, genetic background, age, sex, and existing knowledge on the 
model (e.g., do we know the natural history of the model? Are there robust outcome 
measurement assays to study the model? Has the model being utilized previously in 
testing other experimental therapies?). It should be pointed out that DMD is not the 
only neuromuscular disease that has multiple animal models. This is also the case 
for many other neuromuscular diseases such as myotonic dystrophy, facioscapulo-
humeral muscular dystrophy, and spinal muscular atrophy. The considerations dis-
cussed here may also help model selection in designing preclinical gene therapy 
studies for other neuromuscular diseases.

At the early exploratory stage of AAV micro-dystrophin gene therapy, the pri-
mary question is whether the highly abbreviated micro-dystrophin gene can treat 
muscle disease [10]. In this context, young adult mdx mice become the most appro-
priate model because (a) the model is readily available, easy to handle and breed, 
and low-cost (hence, no problem for designing experiments with a meaningful sam-
ple size); (b) an array of outcome measurements have been developed to study bio-
chemical, histological, and physiological changes following experimental 
intervention; (c) mdx mice have been extensively used in transgenic studies to dem-
onstrate therapeutic benefits of the full-length dystrophin gene and various trun-
cated dystrophin genes; (d) mdx mice have been widely used in cell therapy studies 
and adenoviral vector-based gene therapy studies; (e) mdx mice have also been used 
to test various drug therapies; (f) the natural history data is available for mdx mice; 
and (g) there exists a background-matched normal control, the C57Bl/10 mouse. 
Indeed, all early AAV micro-dystrophin gene therapy studies were performed in 
mdx mice [34–41].

Despite positive results from young adult mdx mice, there are caveats with 
using this model. For example, these mice do not manifest the dystrophic clinical 
phenotype and do not model classic dilated cardiomyopathy of DMD. To deter-
mine whether AAV micro-dystrophin therapy can ameliorate disease in a symp-
tomatic model, investigators turned to more severe mouse models such as aged 
mdx mice, dystrophin/utrophin double knockout mice, dystrophin/MyoD double 
knockout mice, and DBA/2J-mdx mice [39, 42–46]. Cardiac function of young 
mdx mice is well preserved. These mice also lack heart pathology. Interestingly, 
the heart of the aged female mdx mouse displays dilated cardiomyopathy similar 
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to that seen in DMD patients [47]. Aged female mdx mice are thus used to deter-
mine whether AAV micro-dystrophin therapy can mitigate Duchenne cardiomy-
opathy [48, 49].

Following the proof-of-principle studies in mice, the next challenge is whether 
AAV micro-dystrophin therapy can be scaled up to treat affected boys. This ques-
tion is addressed in the canine DMD model [50]. The body weight of a boy is ~700- 
to 800-fold higher than that of a mouse but only ~2- to 4-fold higher than that of a 
dog. Importantly, the clinical course and manifestations of dystrophin-deficient 
dogs are similar to those of DMD patients [29]. AAV micro-dystrophin gene ther-
apy in the dog model bridges the gap between mice and human patients [50–55]. 
Together, efficacy and pharmacokinetic and dose-finding studies in different animal 
models pave the way to the regulatory approval of three early-phase systemic AAV 
micro-dystrophin gene therapy trials in DMD patients [10].

It is worth pointing out that preclinical studies are not only limited to the dis-
ease model. They are also performed in normal animals. For example, FDA 
requires toxicology data from at least two species (one rodent and one non-rodent). 
In the case of systemic AAV micro-dystrophin gene therapy, normal nonhuman 
primates were used as the non-rodent species for toxicology and biodistribution 
study [56].

The discussion above mainly focused on animal models used in the development 
of systemic AAV micro-dystrophin gene therapy. However, these models may not 
be ideal for testing other DMD gene therapy approaches. The most common muta-
tions in DMD patients are deletion mutations between exons 43 and 55 [57]. 
However, the majority of early DMD models carry point mutations outside this 
hotspot region. For example, mdx mice carry a nonsense point mutation in exon 23, 
and GRMD dogs carry a point mutation in intron 6 that disrupts splicing [27, 28]. 
For exon skipping and CRISPR/Cas9 gene-editing therapy, models that share muta-
tions similar to those of DMD patients would be more useful for translational pur-
poses. To meet these needs, several new models carrying a deletion mutation in this 
region were generated recently [30–33]. To study the human dystrophin gene in the 
mouse genome, a transgenic hDMD mouse, which carries the full-length human 
dystrophin gene, was generated on the background of the mdx mouse [58, 59]. 
Subsequently, a deletion mutation was introduced in the mutation hotspot region 
(exons 43–55) in the human dystrophin gene [31, 33]. There is a high likelihood that 
gene repair reagents developed in these models can be directly used in human stud-
ies because of the sequence identity.

Some DMD gene therapy-related questions can also be addressed without 
applying gene therapy to diseased animals. For example, one of the fundamental 
questions in dystrophin gene replacement therapy is the level of expression. Will 
low-level expression offer any benefit? Will high-level expression cause toxicity? 
To study whether low-level dystrophin expression can ameliorate DMD, we used 
the chemically induced mdx3cv mice which express 4–5% dystrophin in all muscle 
cells [60–62]. The Aartsma-Rus lab crossed mdx mice with Xist∆h mice. Due to 
random X-chromosome inactivation, the resulting mdx-Xist∆hs mice showed a wide 
range of low-level dystrophin expression [63–65]. These studies echo well with 
clinical findings and suggest that marginal level dystrophin expression is still ben-
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eficial [66, 67]. The toxicity of supraphysiological dystrophin overexpression was 
studied in transgenic mdx mice [68, 69]. These studies suggest that 50-fold overex-
pression is not toxic. However, ≥100-fold overexpression is associated with car-
diac toxicity.

The age, gender, and genetic background are known factors that greatly affect 
study outcome [70–75]. Mdx display an acute necrotic phase between the age of 2 
and 6 weeks. This phase does not exist in human patients [29]. It is thus advisable 
to avoid performing gene therapy studies in this age range. It has been demon-
strated that mouse sex may greatly impact skeletal muscle function, cardiomyopa-
thy manifestation, and inflammation [76–79]. We also noticed that sex profoundly 
influences disease severity in mdx mice. Male mdx mice show more severe skeletal 
muscle disease, while female mice display more advanced cardiomyopathy [47, 
80]. It is worthwhile to point out that animal sex may not only modify disease mani-
festations but may also change transduction profile of the AAV vector [81, 82]. 
Hence, depending on the study question, animal sex should be carefully considered 
in experimental design. One often made mistake is mixing male and female animals 
in the same experimental group. This is especially problematic when the ratios of 
male and female animals are not equal between the gene therapy group and control 
groups (untreated controls and normal controls). Such a design can greatly con-
found data interpretation.

There are ample publications documenting the influence of the genetic back-
ground on animal behaviors, activities, organ/tissue functions, and disease pheno-
type [70, 71, 83–88]. Of particular interests to muscle gene therapy are the 
publications that demonstrate the impact of the genetic background on muscle and 
heart function [75, 89–93]. In the context of mdx mice, it has been shown that the 
genetic background profoundly influences the frequency and expansion of revertant 
fibers, the rarely occurring dystrophin positive fibers seen in dystrophin-deficient 
muscle [94]. Tachycardia is a characteristic feature in DMD patients. Interestingly, 
we found that this phenotype is preserved in C57Bl/10 background mdx mice but 
not in FVB background mdx mice [95, 96].

Collectively, these findings underscore the importance of model selection as a 
critical aspect in the design of preclinical muscle gene therapy studies. As a rule of 
thumb, one should keep in mind that no model is perfect because humans are not 
animals. The other point that can never be overemphasized is the nature history 
study. Such studies should begin as soon as the model becomes available and con-
tinue through the course of preclinical development and after the completion of a 
preclinical gene therapy study.

17.3.3  Gene Delivery Vector

Gene therapy vectors can be broadly classified as viral and non-viral vectors. Viral 
vectors can be further divided into DNA viral vectors and RNA viral rectors [97]. 
All these vectors have been tested in human patients for different gene therapy 
needs [98]. A number of factors are considered when determining which vector is 
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the best for a particular application. These include, but are not limited to, the nature 
of the disease (recessive or dominant, affected organ(s) and tissues(s), disease gene 
and gene product, etc.), biological features of the vector (carrying capacity, tropism, 
replication competence, persistence, immunogenicity, genotoxicity, etc.), and vec-
tor manufacture (production, purification, storage, etc.).

DMD gene therapy faces several unique challenges. First, the dystrophin gene is 
one of the largest genes in the genome, and the dystrophin coding sequence exceeds 
11 kb. Second, the disease affects both skeletal and cardiac muscle. Skeletal muscle 
accounts for ~40% body weight and spreads throughout the body. The heart is 
located in the chest cavity, and it beats continuously. Third, the dystrophic muscle is 
highly inflamed. Fourth, DMD is a chronic disease, and an effective therapy requires 
lifelong expression of a therapeutic dystrophin gene. To meet these needs, an ideal 
vector for DMD gene therapy should have a large packaging capacity, have the abil-
ity to efficiently transduce all body striated muscle, result in persistent transduction, 
and be non- or minimally immunogenic.

Since the discovery of the dystrophin gene in 1987, many different vector sys-
tems have been tested for DMD gene therapy. The non-viral plasmid vector did not 
meet the needs because it only led to poor and transient transduction in the muscle 
[99, 100]. The retroviral vector did not work because it could not transduce postmi-
totic muscle tissue [101]. The adenoviral vector failed because of its immune toxic-
ity [102]. AAV seems to meet most of the needs of DMD gene therapy. AAV can 
lead to high-level, persistent, whole-body muscle transduction without inducing a 
strong cellular immune response. Further, AAV is now considered a medicine [103]. 
Several AAV-based gene therapy drugs have received regulatory approval for com-
mercial use, such as Luxturna for treating an inherited childhood blindness disease 
called Leber congenital amaurosis and Glybera (also called Alipogene tiparvovec) 
for treating lipoprotein lipase deficiency. The only shortcoming of the AAV vector 
is its less than 5 kb packaging capacity. Fortunately, this problem is solved with the 
development of the micro-dystrophin gene (≤ 4 kb).

The wild-type AAV virus is composed of an approximately 4.7 kb single-stranded 
DNA genome and a ~25 nm icosahedral capsid. An intact AAV virus genome has 
two inverted terminal repeats (ITRs) at the 5′ and 3′ end. In the middle are the 
expression cassettes for making AAV replication proteins, capsid proteins, and the 
assembly-activating protein. In a recombinant AAV vector, viral gene expression 
cassettes are replaced by a transgene (reporter gene or therapeutic gene) expression 
cassette. The ITR serves as the AAV replication origin and packaging signal. The 
ITR is the only viral element present in an AAV vector.

Two decisions are made in AAV vector selection, one for the vector genome and 
the other for the viral capsid. For the vector genome, we need to decide on the 
genome configuration and expression cassette. Two genome configurations exist 
including single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) 
[104]. The ssAAV has the exactly same single-stranded genome configuration as 
that of wild-type AAV. In the scAAV vector, the terminal resolution site from one 
ITR is deleted [105]. This allows packaging of a double-stranded vector genome 
with two wild-type ITRs at the ends and the mutated ITR in the middle. This con-
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figuration bypasses single-strand to double-strand conversion, a rate-limiting step in 
AAV transduction, and yields rapid-onset and higher-level transduction in the mus-
cle [104, 106, 107]. The trade-off of the scAAV vector is the reduction of the pack-
aging capacity from 5  kb to 2.5  kb. A number of therapeutic genes have been 
packaged in scAAV such as the factor IX gene for treating hemophilia B and the 
survival motor neuron gene for treating spinal muscular atrophy [108, 109]. The 
size of a functional micro-dystrophin gene is in the range of 3.8–4 kb [10]. This 
exceeds the 2.5 kb packaging capacity of scAAV. Hence, only ssAAV is used for 
micro-dystrophin gene therapy.

A basic expression cassette is composed of a promoter, a transgene, and a poly-
adenylation (pA) signal. Sometimes, additional regulatory elements (such as the 
microRNA target site) are included to fine-tune transgene expression (see Chap. 8 
for additional discussion on expression cassette design). At the early exploratory 
stage, investigators often use a ubiquitous promoter such as the cytomegalovirus 
(CMV) promoter. However, tissue-specific promoters (if available) should be used 
for large animal studies and IND-enabling studies. In the case of AAV micro-dys-
trophin gene therapy, a variety of muscle-specific promoters have been used includ-
ing abbreviated promoters derived from the muscle creatine kinase gene (e.g., 
CK6, CK8, MHCK7, and minimized MCK) and synthetic promoters (e.g., Spc5-
12) [10, 110, 111]. The transgene refers to the cDNA rather than the intron-con-
taining full-length gene. Several strategies have been used to improve expression. 
These include codon optimization of the cDNA sequence [40], inclusion of a small 
intron between the promoter and the transgene [112], and utilization of a gene vari-
ant that shows an increased activity (e.g., the Padua variant of the factor IX gene 
for hemophilia B gene therapy) [113]. To minimize the immunogenicity of the 
transgene, one may also consider removing CpG motifs by introducing silent 
mutations [114, 115]. A unique issue for AAV micro-dystrophin gene therapy is the 
configuration of the microgene. In the microgene, ~70% of the dystrophin coding 
sequence is removed. More than 30 different microgene configurations have been 
published [10]. The difference in the constitution of the microgene may greatly 
impact its biological activity. For example, inclusion of dystrophin spectrin-like 
repeats 16 and 17 in the microgene allows restoration of neuronal nitric oxide syn-
thase to the sarcolemma [39, 116]. Polyadenylation is critical for nuclear export of 
the RNA transcript and the stability/translation of mRNA. A variety of pA signals 
are available [117]. SV40 virus late pA (SV40 pA) and bovine growth hormone pA 
(bGH pA) are commonly used strong pA signals [118]. In the case of the AAV 
micro-dystrophin vector, a 49 bp synthetic pA is used due to the packaging limit of 
the AAV vector [119].

Another important decision to make in AAV vector selection is the viral capsid. 
Capsid not only determines tissue tropism but also influences intracellular traffick-
ing and processing of the viral particle. The triangulation number T reflects the size 
and complexity of the capsid. Although the T-number for AAV is merely 1, the AAV 
capsid still comes with many different “flavors.” Twelve AAV serotypes and hun-
dreds of AAV variants have been published [120]. Newer AAV capsids are continu-
ously being generated.
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Among existing AAV serotypes, AAV1 and AAV6 (especially tyrosine-modified 
AAV6) are the best for direct intramuscular injection [121]. AAV6, AAV8, and 
AAV9 are the top serotypes for intravascular delivery [21]. For the purpose of sys-
temic muscle gene therapy, a capsid with enhanced muscle transduction and reduced 
non-muscle transduction would be very appealing. Hence, there have been continu-
ous efforts from many academic laboratories as well as industry to further improve 
the existing serotypes. Using AAV8 and/or AAV9 as the benchmark, several new 
muscle tropic AAV capsids were developed in the last few years. These new capsids 
were engineered either by rational design or by forced evolution [122]. They include 
AAV2i8, AAVB1, AAV587MTP, AAVM41, AAV9.45, AAV9.61, AAVMyo, and 
AAVNP22 and AAVNP66 [123–129]. Except for AAVNP22 and AAVNP66 [128], 
most of these newly developed muscle tropic AAVs are developed and tested in 
mice. It should be mentioned that AAV tropism may exhibit significant interspecies 
difference. For example, AAV8 is the best for the mouse liver, but AAV3B is the best 
for human liver cells [130, 131]. AAV9 is considered as a cardiotropic capsid in 
murine studies, but AAV8 outperforms AAV9 in the neonatal dog heart [132–134]). 
Because the same AAV serotype may exhibit distinctive behavior in different spe-
cies, additional studies are needed to determine whether these newly developed 
muscle tropic AAV variants can outperform existing serotypes (AAV8 and AAV9) 
in large animals and human patients.

At the time when the first micro-dystrophin gene was engineered [135], the best 
studied AAV was AAV serotype 2 (AAV2). Methods have also been developed for 
the production and purification of AAV2 vectors. Hence, AAV2 was used in early 
micro-dystrophin studies [34–36]. The discovery of the systemic transduction prop-
erty of several newer AAV serotypes (AAV6, AAV8, and AAV9) opens the door to 
whole-body muscle therapy [136–138]. These serotypes (especially AAV8 and 
AAV9) are now not only the most popular AAV capsids in preclinical muscle gene 
therapy studies but are also the chosen serotypes in several ongoing human trials. 
For example, AAV9 was used in type 1 spinal muscular atrophy patients and DMD 
patients [10, 22], AAV8 was used in X-linked myotubular myopathy patients and 
hemophilia B patients [139, 140], and AAVrh74 (a serotype similar to AAV8) was 
used in DMD patients [10, 141].

Additional issues to consider in AAV capsid selection are the pre-existing neu-
tralizing antibody (NAb) titer, AAV purity, AAV production methods, and AAV titer 
determination. The preinjection NAb titer is usually not measured in murine studies 
(unless the study goal is to test readministration). However, it is essential to measure 
the preinjection NAb titer in large animal studies because of the high prevalence of 
NAb in these animals and the high cost of the large animal study [142–145]. It has 
been shown that even a relatively low NAb titer may compromise AAV transduction 
[146–148]. AAV purity has been shown to significantly influence its transduction 
efficiency in a serotype- and tissue-independent manner [149]. For this reason, the 
stock AAV vector should be checked for purity, at least, by silver stain for capsid 
purity and by quantifying the endotoxin level for contamination before dosing large 
animals [150]. Numerous methods have been developed to produce and purify AAV 
[151–153]. Research grade AAV is usually made using the transient transfection 
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method in adherent 293 cells. For systemic delivery in human patients, scalable 
methods (such as baculovirus production system, herpes simplex virus production 
system, and transient transfection in suspension 293 cells) are often used to generate 
clinical grade AAV [154–156]. Research grade AAV can be used in most preclinical 
studies. However, clinical grade AAV should be used for IND-enabling toxicity 
study. The AAV titer is usually determined by quantitative PCR (qPCR) and 
expressed as viral genome particles per milliliter (vg particles/ml or vg/ml). Despite 
a seemingly simple technique, significant inter- and intra-laboratory variations have 
been reported [157–160]. Some technical issues in the design of the qPCR protocol 
may have contributed to this inconsistency. For example, using ITR-specific qPCR 
may lead to the overestimation of the titer [158]. The conventional method that is 
used for titrating ssAAV may underestimate the scAAV titer [161]. Hence, optimi-
zation and validation of the AAV titration protocol should be an integral component 
of a preclinical muscle gene therapy study [162].

17.3.4  Outcome Measurements

In addition to the correct animal model, vector and delivery route, rigorous out-
come measurements, and data analysis are also essential to get meaningful results 
and correct conclusions (either positive or negative). For some outcome measure-
ments, there are established methods/assays widely used in the field. In this case, it 
is essential to strictly follow published protocols or use established standard opera-
tion procedures (SOPs). For protocols described only in the method section of 
research articles, it is always helpful to contact the authors and get the working 
protocol. The working protocol often contains more details that are critical for con-
ducting the assay. Sometimes, a detailed protocol may have already been published 
in a different format in method journals such as Methods in Molecular Biology 
(Springer protocols; published by the Humana Press) [163–165]; Journal of 
Visualized Experiments (JoVE; published by MyJove Corporation) [166–168]; 
Current Protocols series such as Current Protocols in Molecular Biology, Current 
Protocols in Mouse Biology, and Current Protocols in Immunology (published by 
John Wiley & Sons Inc); and Nature Protocols (published by Nature Publishing 
Group) [169–172]. A number of SOPs have been established for studying neuro-
muscular diseases. These SOPs are freely accessible at the Treat-NMD 
Neuromuscular Network website (http://www.treat-nmd.eu/research/preclinical/
overview/) and Parent Project Muscular Dystrophy website (http://join.parentpro-
jectmd.org/site/PageServer?pagename=Advance_researchers_sops) [173–176].

While many functional assays exist for studying neuromuscular diseases in mice, 
few are available for studying large animals. To fill the gap, we and others have 
begun to develop protocols for evaluating muscle function in canines over the last 
few years. These include dog gait analysis [177–180], noninvasive dog activity 
quantification [177, 181], electrical impedance myography [182], in situ single 
muscle force measurement [183], and, most recently, a physiological assay to study 
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functional ischemia in dog muscle in vivo [184]. Several points should be consid-
ered in the development of a new assay. These include selectivity (the new method 
is specific for the intended purpose), sensitivity (the lowest value the new method 
can accurately measure), accuracy (the value obtained from the new method should 
reflect the actual value in the sample), and reproducibility (the new method can 
yield the same results on replicates). It should be pointed out that the development, 
optimization, and validation of a new protocol should not be considered as a trivial 
undertaking. It often requires multidisciplinary collaboration among investigators 
who have expertise in different fields including, but not limited to, neuromuscular 
disease, muscle physiology, veterinary medicine, computer science, bioengineer-
ing, and statistics.

Failure to validate/authenticate experimental reagents contributes to irreproduc-
ibility in biomedical research. Authentication of key biological and chemical 
reagents has now attracted a lot of attention from major funding agencies (such as 
NIH) and publishers [185–189]. Online guidelines and checklists are readily avail-
able on NIH (https://grants.nih.gov/grants/guide/notice-files/NOT-OD-17-068.
html), journal, academic society, and institution websites and will not be discussed 
in depth in this chapter. However, I’d like to emphasize the importance of antibody 
validation. Antibodies are among the most commonly used reagents in research. 
Unfortunately, many commercially available and self-generated antibodies are 
poorly validated and/or characterized. This has become a major concern in the 
research community because data generated with these antibodies vary greatly and 
conclusions drawn are often misleading due to frequent false-positive and false-
negative results.

In the case of DMD, we recently evaluated 65 epitope-specific dystrophin mono-
clonal antibodies in murine and canine muscles by immunostaining and Western 
blot [190]. These antibodies were originally developed for diagnostic use in human 
patients [191, 192]. Their research use in the mouse and dog DMD models has 
never been validated. Interestingly, we found some antibodies work well for immu-
nostaining/Western blot in murine/canine muscle (e.g., Mandys 1), some antibodies 
work well only for immunostaining in murine/canine muscle (e.g., Mandys 105), 
some antibodies work well only for Western blot in murine/canine muscle (e.g., 
Mandra 13), some antibodies work well for immunostaining/Western blot in murine 
muscle only (e.g., Mandnex 45B), and some antibodies work well for immunostain-
ing/Western blot in canine muscle only (e.g., Mannex 4850D) (Fig. 17.1). There are 
also antibodies that do not work for immunostaining/Western blot in murine/canine 
muscle (e.g., Mandhinge 2C) (Fig. 17.1).

Various strategies have been suggested on how to validate an antibody [193–
197]. Several working groups and consortium have developed online resources that 
allow users to search for validation information of an antibody. These online anti-
body databases include, but are not limited to, Antibodypedia (https://www.anti-
bodypedia.com/) [198, 199], Human Protein Atlas (https://www.proteinatlas.org/) 
[200], CiteAb (https://www.citeab.com/) [201], AbMiner (https://discover.nci.nih.
gov/abminer/) [202], EuroMAbNet (https://www.euromabnet.com/guidelines/
example1.php) [203], Biocompare (https://www.biocompare.com/Antibodies/) 
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[204], SelectScience (https://www.selectscience.net/antibodies/product-directory/) 
[204], and BenchSci (https://www.benchsci.com/).

17.3.5  Statistics

Statistical considerations for preclinical muscle gene therapy studies are not differ-
ent from those used for other studies. Several recent review articles have thoroughly 
elaborated these considerations [205, 206]. Here I only outline some important 
points.

Statistical methods should be introduced at the study planning stage rather than 
just for data analysis. Prior to animal experiments, the sample size should be deter-
mined using the power analysis. Methods for sample size calculation can be found in 
publications cited here [207–211]. A number of free online programs are also avail-
able such as G*Power (https://download.cnet.com/G-Power/3000-2054_4-10647044.
html) and Sample Size Calculator (http://powerandsamplesize.com/) [212].

Fig. 17.1 Validation of dystrophin monoclonal antibodies in the muscle of normal and affected 
mice and dogs by immunostaining and Western blot. Representative photomicrographs illustrate 
different behaviors of different antibodies. Some (e.g., Mandys 1) can recognize dystrophin in both 
murine and canine muscle irrespective of detection methods. Some (e.g., Mandys 105, Mandra 13, 
Mandnex 45B, and Mannex 4850D) recognize dystrophin in a species- and method-dependent 
manner. In extreme cases (e.g., Mandhinge 2C), an antibody may completely fail to recognize 
dystrophin in mouse and dog muscle
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Randomization is another important strategy to improve the stringency and 
reproducibility of preclinical studies [213, 214]. Depending on the study design, 
randomization can be achieved with a variety of methods such as simple random-
ization, block randomization, stratified randomization, and covariate adaptive ran-
domization [215]. Similar to the power analysis used for sample size calculation, 
several online programs such as Randomization (http://www.randomization.com/) 
and Research Randomizer (https://www.randomizer.org/) are available for 
randomization.

The t-test and analysis of variance (ANOVA) are commonly used statistic meth-
ods to compare the mean value between two groups and among multiple groups, 
respectively [216, 217]. It should be noted that these methods are only applicable to 
parametric data. When the sample size is small, data may not always follow normal 
distribution. Most animal studies have a sample size of ≤10  in each experiment 
group. Therefore it is important to check if the data is parametric before applying 
the t-test or ANOVA. Sometimes skewed data can be converted to parametric by 
logarithm transformation. If data are not parametric or if there are outliers, nonpara-
metric tests should be used. The Wilcoxon rank-sum test (also called the Mann–
Whitney test) and the Wilcoxon signed-rank test are nonparametric tests for two 
non-paired and paired group comparison, respectively. The Kruskal–Wallis test is 
the nonparametric test for multiple group comparison [218]. Very often, multiple 
outcomes are measured in the same study, or a single outcome is measured repeat-
edly in a longitudinal study. In the former, the Bonferroni adjustment should be 
used. In the latter, mixed models should be considered. In these cases, it is always 
advisable to consult with a statistician.

The p value is perhaps the most commonly used but also the most controversial 
and misused statistical concept [219–223]. In statistical analysis, one usually con-
cerns two types of errors, false positive (type I error) and false negative (type II 
error). The p value quantifies the probability of making a type I error, i.e., the chance 
of rejecting a null hypothesis that is actually true. The smaller the p value, the 
smaller the chance of the results being false positive. The p value does not reflect 
clinical significance. Interpretation on clinical implications of a statistically signifi-
cant finding requires input from clinicians and experts in the related field. For exam-
ple, in hemophilia B gene therapy, ≥5% factor IX activity is required for a clinically 
meaningful improvement. A candidate gene therapy may result in a statistically 
significant increase of 0.5% activity (e.g., from 1% activity to 1.5% activity). 
Although this is statistically significant, we cannot consider this gene therapy suc-
cessful because the improvement is not therapeutically relevant. The p value should 
always be considered with the type II error or power (1-type II error). A p value of 
larger than 0.05 does not necessarily suggest a therapy is not effective. The 0.05 
threshold of the p value is only based on a somewhat arbitrary convention. A p value 
of >0.05 can also be caused by a small sample size or a lack of statistical power. The 
power reflects the probability of making (or avoiding) a type II error. The higher the 
power, the lesser the likelihood of the result being a false negative.
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17.3.6  Data Interpretation

Misinterpretation and over-interpretation of animal study results contribute to the 
poor translation of preclinical research findings to clinical benefits [224–226]. 
Below I illustrate some commonly encountered issues in preclinical muscle gene 
therapy studies.

The creatine kinase (CK) level is a commonly used blood biomarker for muscle 
injury. The enzyme is released from muscle to the circulation when muscle is 
injured. The reduction in the CK level is often considered as an indication of muscle 
protection by the candidate therapy. However, the CK level can be skewed by a 
number of factors such as the method used in blood collection, body condition and 
age of the animal, and the genetic background of the animal [227–230]. For exam-
ple, the CK level can be artificially raised because of dehydration or inappropriate 
handling of the animal at the time of blood collection [231]. It should also be noted 
that the CK level will go down with age in dystrophic subjects even in the absence 
of any therapy (likely due to the replacement of muscle by fibrofatty tissue) [227].

The context of the experimental setting (such as the strain, age, and sex of the 
animal or detection method) should be carefully considered in data interpretation. 
For example, optical imaging of cathepsin activity in live mice is an excellent tool 
to sensitively monitor muscle inflammation in a noninvasive way [232]. The value 
in mdx limb muscle is two- to threefold higher than that of aged-matched BL10 
mice at 7 weeks. However, the difference between two strains becomes negligible at 
52 weeks although mdx mice still have muscle inflammation [233]. Conclusions 
drawn without the consideration of the mouse age will be misleading in this exam-
ple. In dystrophin restoration gene therapy, an increase in the percentage of the 
dystrophin level may have different meanings depending on the detection method 
(Western blot or immunostaining). Western blot reflects total dystrophin in the 
whole muscle lysate, while immunostaining reflects dystrophin expression in indi-
vidual myofibers. A moderate increase detected by Western blot could suggest a 
uniform low-level increase in all myofibers or a high-level increase in a subset of 
myofibers (mosaic expression).

Muscle histology is essential for the evaluation of the therapeutic effect. However, 
there could be significant individual variations among strain-, age-, and sex-matched 
animals (Fig. 17.2a). Further, since muscle damage is not uniform in mdx mice, 
there are often huge differences in different regions of the same section from the 
same muscle (Fig. 17.2a). Correct interpretation can only be obtained from a thor-
ough evaluation of the entire muscle section from all experimental animals.

Degeneration and regeneration are characteristic features in muscular dystrophy. 
This is frequently evaluated by quantifying the percentage of centrally localized 
nuclei (% CN). A reduction in the % CN after gene therapy is often considered as 
an indication of improved muscle protection. In other words, the candidate gene 
therapy is effective in treating muscle disease. However, this may not always hold 
true because the % CN will also decrease if the candidate therapy negatively impacts 
muscle regeneration (a detrimental effect).
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A commonly held misconception by inexperienced researchers is that “muscle 
histology should always correlate with muscle function (and vice versa).” This 
might be true in some occasions, but there are many exceptions. For example, 
removing collagen VI from γ-sarcoglycan-deficient mice (a model for limb-girdle 
muscular dystrophy 2C) attenuates muscle pathology, but muscle force is not 
improved [234]. Marginal level dystrophin expression improves skeletal muscle 
function, heart function, and survival in mouse DMD models, but it does not 
improve muscle histology [60–62].

Fig. 17.2 Heterogeneity of the pathology in dystrophic muscle. (a) Diaphragm HE staining from 
three age- and sex-matched untreated young adult mdx mice. (b) HE staining revealing dramatic 
differences of muscle pathology in different regions of the same muscle section in the diaphragm 
of a young adult mdx mouse
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17.4  Phase III: A New Concept in Preclinical Study

Clinical studies are divided into different phases. Phase I evaluates the safety. Phase 
II establishes the efficacy. Phase III confirms the safety and efficacy in a large group 
of patients through a multicenter randomized controlled trial (RCT). Phase IV is 
post-marketing surveillance. The FDA makes the decision on whether a candidate 
drug should be approved or not based on the results from the first three phases of the 
trial (since a go no-go decision has to be made after each phase, the final FDA deci-
sion is usually based on the results of the phase III trial). To improve translation 
from animal studies to human trials, a similar paradigm was proposed recently to 
divide preclinical studies into four phases [235, 236]. Preclinical phase I is the dis-
covery phase. At this phase, the focus is to elucidate disease mechanism(s) and to 
identify therapeutic targets (drug targets). Preclinical phase II refers to initial effi-
cacy studies performed by independent (often individual) academic laboratories. 
Traditionally, a preclinical exploratory study will stop here and move to the stage of 
the IND-enabling study. It is believed that this approach has contributed to the 
reproducibility crisis in translational research. To address this issue, a new concept 
called “preclinical phase III study” is introduced. When positive results are obtained 
in a preclinical phase II study, the study moves to a large-scale preclinical phase III 
study instead of an IND-enabling study. In preclinical phase III, multicenter pre-
clinical randomized controlled trials (pRCT) are conducted to confirm and validate 
the efficacy data obtained from preclinical phase II [235–238]. Preclinical phase IV 
is initiated based on positive findings from preclinical phase III studies. In preclini-
cal phase IV, IND-enabling PK, PD, and toxicology studies are carried out by aca-
demia, industry, or academia/industry collaboration to pave the way for IND 
application.

Numerous clinical trials that were based on the efficacy data of animal studies 
have failed to yield a therapeutic drug [224–226]. Among many factors that have 
caused this translational crisis is poor reproducibility. In fact, it was suggested that 
more than 70% of published studies cannot be reproduced [239–242]. It is believed 
that the high failure rate of replication studies is due to the limited sample size (lack 
of power), lack of blinding and/or randomization, inadequate data report, and flaws 
in statistical analysis. Two approaches have been used to address this issue, sys-
temic review/meta-analysis and pRCT [237, 243, 244]. In systemic review/meta-
analysis, individual published studies are reviewed, and data from each study are 
pooled together and reanalyzed as a whole [244–248]. Systemic review/meta-anal-
ysis provides a less biased opinion on a candidate therapy (or drug). However, its 
conclusion is limited by the lack of a predefined study protocol, lack of inclusion/
exclusion criteria, heterogeneity in materials and methods, inconsistence in data 
collection and reporting, and difference in study end points [249, 250]. This is fur-
ther aggravated by publication bias in favor of positive data.
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The recently introduced pRCT approach is modeled after the RCT, the gold stan-
dard in clinical trials. The pRCT utilizes the same rigorous design and standardized 
protocols as the RCT. The pRCT utilizes a centralized management structure. It has 
a study steering committee, a coordinating center, a data monitoring committee, an 
adjudication committee, a statistical center, and a training center. The study is 
designed by the statistical center in collaboration with participating laboratories. All 
participating laboratories use identical animal models, (strain/genetic background, 
age, sex, animal supplier, and husbandry), reagents (chemical and biological), stan-
dardized methodologies, key equipment, and animal protocols. All participating 
researchers receive centralized training on procedures (data generation, blood/tissue 
collection and transportation). All participating researchers agree to every aspect of 
the study design such as blinding, randomization, placebo control, concealment of 
allocation, and sharing of the original data. Data generated in all participating labo-
ratories are sent to the statistical center for data analysis. Inclusion and exclusion 
criteria for animals and data points are determined prior to the study. All participat-
ing researchers agree on publication (even if results are negative) [236, 237]. The 
pRCT addresses a number of issues that have contributed to the reproducibility 
crisis such as the small sample size, inconsistent data handling, publication pressure 
and bias, and deficiency in methodology reporting. However, the pRCT also faces 
significant challenges including coordination, standardization, and financial cost. 
The first pRCT was published recently [251]. This study establishes feasibility of 
the pRCT. Despite the pRCT being considered a major advance in the field of trans-
lational research, it is yet unknown whether and how much the pRCT will improve 
validity of animal studies and prevent unnecessary (or even harmful) clinical trials 
in the future. A recent publication argues that excessive standardization in animal 
studies may undermine translation from bench to bedside due to ignorance of inher-
ent biological variations in animals and humans [252].

Preclinical muscle gene therapy is at the dawn of a rapid growing phase. 
Incorporating the concept and practice of the pRCT may give us a better chance of 
success when translating from animal studies to human trials.

17.5  Conclusion

Irreproducibility in preclinical research has placed a significant socioeconomic bur-
den on therapeutic drug development. It is estimated that ~$28 billion is spent every 
year in the United State of America on preclinical studies that cannot be reproduced 
[253]. Concerns on the reliability of preclinical studies have sparked intense discus-
sions in the biomedical research field. To address this critical issue, many excellent 
general guidelines have been published in recent years on how to rigorously design 
a preclinical study to improve reproducibility and enhance predictive value for clini-
cal trials [188, 254–258]. These papers have thoroughly discussed fundamental 
principles, commonly encountered problems, and solutions regarding sample size 
determination, randomization, blinding, data handling, statistical analysis, 
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reporting, biological variables, standard operating protocols in outcome measure-
ment, and validation/authentication of experimental reagents [205, 259–266]. These 
guidelines should always be strictly followed in a preclinical muscle gene therapy 
study.

According to the gene table of neuromuscular disorders (www.musclegenetable.
fr/), nearly 500 disease genes have been identified for ~900 neuromuscular diseases 
[267]. It is conceivable that many of these diseases are eligible for muscle gene 
therapy. The considerations discussed in this chapter may serve as a starting point to 
shape the design of a preclinical gene therapy study for treating these neuromuscu-
lar diseases. However, it should be pointed out that every preclinical muscle gene 
therapy study has its unique features. There is no one-size-fits-all. Disease-specific 
issues should always be considered in the design and implementation of a preclini-
cal muscle gene therapy study. There are numerous examples where costly clinical 
trials have failed despite promising efficacy data in animal models. In light of this, 
perhaps it is more important to carefully design and rigorously conduct preclinical 
studies to exclude ineffective candidate gene therapy drugs from going to more 
expensive and potentially detrimental human trials.

Acknowledgment Muscle gene therapy research in the Duan lab is currently supported by the 
National Institutes of Health (NS-90634, AR-70571, AR-69085), the Department of Defense 
(MD150133), Jesse’s Journey: The Foundation for Gene and Cell Therapy, Hope for Javier, 
Jackson Freel DMD Research Fund, Parent Project Muscular Dystrophy, and Solid Biosciences. 
The author thanks the Duan lab members for helpful discussion. The author thanks Drs. Jianguo 
(Tony) Sun and Gang (Gary) Yao for their helpful advices on the statistics section (Sect. 17.3.5). 
The author thanks Emily Million and John D’Alessandro for the help with proofreading the 
manuscript.

Disclosure The author is a member of the scientific advisory board for Solid 
Biosciences and an equity holder of Solid Biosciences. The Duan lab has received 
research support from Solid Biosciences.

References

 1. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, Maas MM, 
Zwinderman AH, Ross C, Aronica E, High KA, Levi MM, Hayden MR, Kastelein JJ, 
Kuivenhoven JA (2008) Intramuscular administration of AAV1-lipoprotein lipase S447X 
lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 
28(12):2303–2304. https://doi.org/10.1161/ATVBAHA.108.175620

 2. Herzog RW, Mount JD, Arruda VR, High KA, Lothrop CD Jr (2001) Muscle-directed gene 
transfer and transient immune suppression result in sustained partial correction of canine 
hemophilia B caused by a null mutation. Mol Ther 4(3):192–200

 3. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, 
Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, 
Skarsgard E, Flake AW, Kay MA, High KA, Glader B (2003) AAV-mediated factor IX gene 
transfer to skeletal muscle in patients with severe hemophilia B. Blood 101(8):2963–2972

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

http://www.musclegenetable.fr/
http://www.musclegenetable.fr/
https://doi.org/10.1161/ATVBAHA.108.175620


310

 4. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, Campbell-Thompson 
M, Yachnis AT, Sandhaus RA, McElvaney NG, Mueller C, Messina LM, Wilson JM, Brantly 
M, Knop DR, Ye GJ, Chulay JD (2011) Phase 2 clinical trial of a recombinant Adeno-
associated virus vector expressing alpha 1 antitrypsin: interim results. Hum Gene Ther 
22(10):1239–1247. https://doi.org/10.1089/hum.2011.053

 5. Duan D (2018) Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystro-
phy patients. Hum Gene Ther 29(7):733–736. https://doi.org/10.1089/hum.2018.012

 6. Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, NA L, Berry K, 
Meadows E, Lewis S, Braun L, Shontz K, Rouhana M, Clark KR, Rosales XQ, Al-Zaidy 
S, Govoni A, Rodino-Klapac LR, Hogan MJ, Kaspar BK (2015) A phase I/IIa follistatin 
gene therapy trial for Becker muscular dystrophy. Mol Ther 23(1):192–201. https://doi.
org/10.1038/mt.2014.200

 7. Kunkel LM (2005) 2004 William Allan award address. Cloning of the DMD gene. Am J Hum 
Genet 76(2):205–214

 8. Gilbert R, Nalbantoglu J, Petrof BJ, Ebihara S, Guibinga GH, Tinsley JM, Kamen A, Massie 
B, Davies KE, Karpati G (1999) Adenovirus-mediated utrophin gene transfer mitigates the 
dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 10(8):1299–1310

 9. Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, Kota J, Coley BD, Galloway G, 
Craenen JM, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, 
Viollet L, Walker CM, Sahenk Z, Clark KR (2009) Limb-girdle muscular dystrophy type 2D 
gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol 66(3):290–297. 
https://doi.org/10.1002/ana.21732

 10. Duan D (2018) Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dys-
trophy. Mol Ther 26(10):2337–2356.  https://doi.org/10.1016/j.ymthe.2018.07.011 . 

 11. Liu J, Wallace LM, Garwick-Coppens SE, Sloboda DD, Davis CS, Hakim CH, Hauser MA, 
Brooks SV, Mendell JR, Harper SQ (2014) RNAi-mediated gene silencing of mutant myo-
tilin improves myopathy in LGMD1A mice. Mol Ther Nucleic Acids 3:e160. https://doi.
org/10.1038/mtna.2014.13

 12. Zhang Y, Long C, Bassel-Duby R, Olson EN (2018) Myoediting: toward prevention of mus-
cular dystrophy by therapeutic genome editing. Physiol Rev 98(3):1205–1240. https://doi.
org/10.1152/physrev.00046.2017

 13. Nelson CE, Robinson-Hamm JN, Gersbach CA (2017) Genome engineering: a new approach 
to gene therapy for neuromuscular disorders. Nat Rev Neurol 13(11):647–661. https://doi.
org/10.1038/nrneurol.2017.126

 14. Berger A, Maire S, Gaillard MC, Sahel JA, Hantraye P, Bemelmans AP (2016) mRNA trans-
splicing in gene therapy for genetic diseases. Wiley Interdiscip Rev RNA 7(4):487–498. 
https://doi.org/10.1002/wrna.1347

 15. Spitali P, Aartsma-Rus A (2012) Splice modulating therapies for human disease. Cell 
148(6):1085–1088. https://doi.org/10.1016/j.cell.2012.02.014. S0092-8674(12)00214-0 [pii]

 16. Vo AH, McNally EM (2015) Modifier genes and their effect on Duchenne muscular dystro-
phy. Curr Opin Neurol 28(5):528–534. https://doi.org/10.1097/WCO.0000000000000240

 17. Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD 
(2011) Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal mus-
cle. J Clin Investig 121(3):1044–1052. https://doi.org/10.1172/JCI43844. 43844 [pii]

 18. Voit A, Patel V, Pachon R, Shah V, Bakhutma M, Kohlbrenner E, McArdle JJ, Dell’Italia LJ, 
Mendell JR, Xie LH, Hajjar RJ, Duan D, Fraidenraich D, Babu GJ (2017) Reducing sarco-
lipin expression mitigates Duchenne muscular dystrophy and associated cardiomyopathy in 
mice. Nat Commun 8(1):1068. https://doi.org/10.1038/s41467-017-01146-7

 19. Shin J-H, Bostick B, Yue Y, Hajjar R, Duan D (2011) SERCA2a gene transfer improves 
electrocardiographic performance in aged mdx mice. J  Transl Med 9:132. https://doi.
org/10.1186/1479-5876-9-132. 1479-5876-9-132 [pii]

 20. Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors 
for gene delivery to muscle tissue. Expert Opin Drug Deliv 11(3):345–364. https://doi.org/1
0.1517/17425247.2014.871258

D. Duan

https://doi.org/10.1089/hum.2011.053
https://doi.org/10.1089/hum.2018.012
https://doi.org/10.1038/mt.2014.200
https://doi.org/10.1038/mt.2014.200
https://doi.org/10.1002/ana.21732
https://doi.org/10.1016/j.ymthe.2018.07.011
https://doi.org/10.1038/mtna.2014.13
https://doi.org/10.1038/mtna.2014.13
https://doi.org/10.1152/physrev.00046.2017
https://doi.org/10.1152/physrev.00046.2017
https://doi.org/10.1038/nrneurol.2017.126
https://doi.org/10.1038/nrneurol.2017.126
https://doi.org/10.1002/wrna.1347
https://doi.org/10.1016/j.cell.2012.02.014
https://doi.org/10.1097/WCO.0000000000000240
https://doi.org/10.1172/JCI43844
https://doi.org/10.1038/s41467-017-01146-7
https://doi.org/10.1186/1479-5876-9-132
https://doi.org/10.1186/1479-5876-9-132
https://doi.org/10.1517/17425247.2014.871258
https://doi.org/10.1517/17425247.2014.871258


311

 21. Duan D (2016) Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 21:16–
25. https://doi.org/10.1016/j.coviro.2016.07.006

 22. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano 
L, Berry K, Church K, Kissel JT, Nagendran S, L’Italien J, Sproule DM, Wells C, Cardenas 
JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, 
Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular 
atrophy. N Engl J Med 377(18):1713–1722. https://doi.org/10.1056/NEJMoa1706198

 23. Malerba A, Klein P, Bachtarzi H, Jarmin SA, Cordova G, Ferry A, Strings V, Espinoza MP, 
Mamchaoui K, Blumen SC, St Guily JL, Mouly V, Graham M, Butler-Browne G, Suhy DA, 
Trollet C, Dickson G (2017) PABPN1 gene therapy for oculopharyngeal muscular dystrophy. 
Nat Commun 8:14848. https://doi.org/10.1038/ncomms14848

 24. FDA (2013) Guidance for industry: preclinical assessment of investigational cellular and 
gene therapy products. https://www.federalregister.gov/documents/2013/11/25/2013-28173/
guidance-for-industry-preclinical-assessment-of-investigational-cellular-and-gene-therapy-
products

 25. Lima BS, Videira MA (2018) Toxicology and biodistribution: the clinical value of animal 
biodistribution studies. Mol Ther-Meth Clin Dev 8:183–197. https://doi.org/10.1016/j.
omtm.2018.01.003

 26. Mendell JR, Lloyd-Puryear M (2013) Report of MDA muscle disease symposium on new-
born screening for Duchenne muscular dystrophy. Muscle Nerve 48(1):21–26. https://doi.
org/10.1002/mus.23810

 27. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The 
molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 
244(4912):1578–1580

 28. Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott MO, 
Fischbeck KH, Kornegay JN, Avery RJ et al (1988) The homologue of the Duchenne locus is 
defective in X-linked muscular dystrophy of dogs. Nature 334(6178):154–156

 29. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne mus-
cular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213. 
https://doi.org/10.1242/dmm.018424

 30. Sui T, Lau YS, Liu D, Liu T, Xu L, Gao Y, Lai L, Li Z, Han R (2018) A novel rabbit 
model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech 
11(6):dmm032201. https://doi.org/10.1242/dmm.032201

 31. Veltrop M, van Vliet L, Hulsker M, Claassens J, Brouwers C, Breukel C, van der Kaa J, 
Linssen MM, den Dunnen JT, Verbeek S, Aartsma-Rus A, van Putten M (2018) A dys-
trophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS One 
13(2):e0193289. https://doi.org/10.1371/journal.pone.0193289. ARTN e0193289

 32. Amoasii L, Long C, Li H, Mireault AA, Shelton JM, Sanchez-Ortiz E, McAnally JR, 
Bhattacharyya S, Schmidt F, Grimm D, Hauschka SD, Bassel-Duby R, Olson EN (2017) 
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular 
dystrophy. Sci Transl Med 9(418):eaan8081. https://doi.org/10.1126/scitranslmed.aan8081

 33. Young CS, Mokhonova E, Quinonez M, Pyle AD, Spencer MJ (2017) Creation of a novel 
humanized dystrophic mouse model of Duchenne muscular dystrophy and application 
of a CRISPR/Cas9 gene editing therapy. J  Neuromuscul Dis 4(2):139–145. https://doi.
org/10.3233/JND-170218

 34. Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin 
genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci 
U S A 97(25):13714–13719

 35. Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, 
Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS (2002) Modular flexibility of 
dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 
8(3):253–261

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1016/j.coviro.2016.07.006
https://doi.org/10.1056/NEJMoa1706198
https://doi.org/10.1038/ncomms14848
https://doi.org/10.1016/j.omtm.2018.01.003
https://doi.org/10.1016/j.omtm.2018.01.003
https://doi.org/10.1002/mus.23810
https://doi.org/10.1002/mus.23810
https://doi.org/10.1242/dmm.018424
https://doi.org/10.1242/dmm.032201
https://doi.org/10.1371/journal.pone.0193289
https://doi.org/10.1126/scitranslmed.aan8081
https://doi.org/10.3233/JND-170218
https://doi.org/10.3233/JND-170218


312

 36. Fabb SA, Wells DJ, Serpente P, Dickson G (2002) Adeno-associated virus vector gene trans-
fer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dys-
trophin- associated protein complex and inhibits myofibre degeneration in nude/mdx mice. 
Hum Mol Genet 11(7):733–741

 37. Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D (2003) Microdystrophin 
gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sar-
colemma integrity in the mdx mouse heart. Circulation 108(13):1626–1632

 38. Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D (2005) Adeno-associated 
virus-mediated microdystrophin expression protects young mdx muscle from contraction-
induced injury. Mol Ther 11(2):245–256. https://doi.org/10.1016/j.ymthe.2004.09.013. 
S1525-0016(04)01461-3 [pii]

 39. Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, 
Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor 
nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular 
dystrophy. J Clin Investig 119(3):624–635. https://doi.org/10.1172/JCI36612

 40. Foster H, Sharp PS, Athanasopoulos T, Trollet C, Graham IR, Foster K, Wells DJ, Dickson 
G (2008) Codon and mRNA sequence optimization of microdystrophin transgenes improves 
expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene trans-
fer. Mol Ther 16(11):1825–1832. https://doi.org/10.1038/mt.2008.186

 41. Townsend D, Blankinship MJ, Allen JM, Gregorevic P, Chamberlain JS, Metzger JM (2007) 
Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobuta-
mine-induced cardiac pump failure. Mol Ther 15(6):1086–1092

 42. Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L, Finn E, Adams 
ME, Froehner SC, Murry CE, Chamberlain JS (2006) rAAV6-microdystrophin preserves 
muscle function and extends lifespan in severely dystrophic mice. Nat Med 12(7):787–789

 43. Gregorevic P, Blankinship MJ, Allen JM, Chamberlain JS (2008) Systemic microdystrophin 
gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. 
Mol Ther 16(4):657–664. https://doi.org/10.1038/mt.2008.28

 44. Yue Y, Liu M, Duan D (2006) C-terminal truncated microdystrophin recruits dystrobrevin 
and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dys-
trophy in symptomatic utrophin/dystrophin double knock-out mice. Mol Ther 14(1):79–87

 45. Wang B, Li J, Fu FH, Xiao X (2009) Systemic human minidystrophin gene transfer improves 
functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res 
27(4):421–426. https://doi.org/10.1002/jor.20781

 46. Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, Yao G, Haffner B, Duan SX, 
Ramos J, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) A five-repeat micro-
dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model 
of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 6:216–230. https://doi.
org/10.1016/j.omtm.2017.06.006

 47. Bostick B, Yue Y, Duan D (2010) Gender influences cardiac function in the mdx model 
of Duchenne cardiomyopathy. Muscle Nerve 42(4):600–603. https://doi.org/10.1002/
mus.21763

 48. Bostick B, Shin J-H, Yue Y, Duan D (2011) AAV-microdystrophin therapy improves cardiac 
performance in aged female mdx mice. Mol Ther 19(10):1826–1832

 49. Bostick B, Shin J-H, Yue Y, Wasala NB, Lai Y, Duan D (2012) AAV micro-dystrophin 
gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-
m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. 
J  Mol Cell Cardiol 53(2):217–222. https://doi.org/10.1016/j.yjmcc.2012.05.002. S0022-
2828(12)00179-4 [pii]

 50. Duan D (2015) Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene 
Ther Clin Dev 26(1):57–69. https://doi.org/10.1089/humc.2015.006

 51. Shin J-H, Pan X, Hakim CH, Yang HT, Yue Y, Zhang K, Terjung RL, Duan D (2013) 
Microdystrophin ameliorates muscular dystrophy in the canine model of Duchenne muscular 
dystrophy. Mol Ther 21(4):750–757. https://doi.org/10.1038/mt.2012.283

D. Duan

https://doi.org/10.1016/j.ymthe.2004.09.013
https://doi.org/10.1172/JCI36612
https://doi.org/10.1038/mt.2008.186
https://doi.org/10.1038/mt.2008.28
https://doi.org/10.1002/jor.20781
https://doi.org/10.1016/j.omtm.2017.06.006
https://doi.org/10.1016/j.omtm.2017.06.006
https://doi.org/10.1002/mus.21763
https://doi.org/10.1002/mus.21763
https://doi.org/10.1016/j.yjmcc.2012.05.002
https://doi.org/10.1089/humc.2015.006
https://doi.org/10.1038/mt.2012.283


313

 52. Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin J-H, Yang HT, McDonald T, Duan D 
(2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy 
dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890

 53. Hakim CH, Kodippili K, Jenkins G, Yang HT, Pan X, Lessa TB, Leach SB, Emter C, Yue 
Y, Zhang K, Duan XS, Yao G, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) 
Single systemic AAV micro-dystrophin therapy ameliorates muscular dystrophy in young 
adult Duchenne muscular dystrophy dogs for up to two years. Mol Ther 25(S1):192–193

 54. Hakim CH, Kodippili K, Jenkins G, Yang HT, Pan X, Lessa TB, Leach SB, Emter C, Yue Y, 
Zhang K, Duan XS, Yao G, Schneider JS, Yang NN, Chamberlain JS, Duan D (2018) AAV 
micro-dystrophin therapy ameliorates muscular dystrophy in young adult Duchenne muscu-
lar dystrophy dogs for up to 30 months following injection. Mol Ther 26(S1):5

 55. Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B, Moullec S, Allais M, Francois 
V, Dutilleul M, Malerba A, Koo T, Thibaut JL, Matot B, Devaux M, Le Duff J, Deschamps 
JY, Barthelemy I, Blot S, Testault I, Wahbi K, Ederhy S, Martin S, Veron P, Georger C, 
Athanasopoulos T, Masurier C, Mingozzi F, Carlier P, Gjata B, Hogrel JY, Adjali O, Mavilio 
F, Voit T, Moullier P, Dickson G (2017) Long-term microdystrophin gene therapy is effec-
tive in a canine model of Duchenne muscular dystrophy. Nat Commun 8:16105. https://doi.
org/10.1038/ncomms16105

 56. Gonzalez JP, Schneider JS, Brown KJ, Golebiowski D, Shanks C, Ricotti V, Laforet G, 
Quiroz J, Morris CA (2018) Preclinical evaluation of SGT-001 Microdystrophin gene trans-
fer for Duchenne muscular dystrophy. Mol Ther 26(S1):390

 57. Oudet C, Hanauer A, Clemens P, Caskey T, Mandel JL (1992) Two hot spots of recombination 
in the DMD gene correlate with the deletion prone regions. Hum Mol Genet 1(8):599–603

 58. ‘t Hoen PA, de Meijer EJ, Boer JM, Vossen RH, Turk R, Maatman RG, Davies KE, van 
Ommen GJ, van Deutekom JC, den Dunnen JT (2008) Generation and characterization of 
transgenic mice with the full-length human DMD gene. J  Biol Chem 283(9):5899–5907. 
https://doi.org/10.1074/jbc.M709410200

 59. Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ, Kaman WE, Janson AA, Vossen RH, van 
Ommen GJ, den Dunnen JT, van Deutekom JC (2004) Targeted exon skipping in transgenic 
hDMD mice: a model for direct preclinical screening of human-specific antisense oligonucle-
otides. Mol Ther 10(2):232–240. https://doi.org/10.1016/j.ymthe.2004.05.031

 60. Li D, Yue Y, Duan D (2010) Marginal level dystrophin expression improves clinical outcome 
in a strain of dystrophin/utrophin double knockout mice. PLoS One 5(12):e15286. https://doi.
org/10.1371/journal.pone.0015286

 61. Li D, Yue Y, Duan D (2008) Preservation of muscle force in mdx3cv mice correlates with 
low-level expression of a near full-length dystrophin protein. Am J Pathol 172(5):1332–1341. 
https://doi.org/10.2353/ajpath.2008.071042

 62. Wasala NB, Yue Y, Vance J, Duan D (2017) Uniform low-level dystrophin expression in the 
heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomy-
opathy. J Mol Cell Cardiol 102:45–52. https://doi.org/10.1016/j.yjmcc.2016.11.011

 63. van Putten M, van der Pijl EM, Hulsker M, Verhaart IE, Nadarajah VD, van der Weerd L, 
Aartsma-Rus A (2014) Low dystrophin levels in heart can delay heart failure in mdx mice. 
J Mol Cell Cardiol 69:17–23. https://doi.org/10.1016/j.yjmcc.2014.01.009

 64. van Putten M, Hulsker M, Young C, Nadarajah VD, Heemskerk H, van der Weerd L, t Hoen 
PA, van Ommen GJ, Aartsma-Rus AM (2013) Low dystrophin levels increase survival and 
improve muscle pathology and function in dystrophin/utrophin double-knockout mice. 
FASEB J 27(6):2484–2495. https://doi.org/10.1096/fj.12-224170

 65. van Putten M, Hulsker M, Nadarajah VD, van Heiningen SH, van Huizen E, van Iterson M, 
Admiraal P, Messemaker T, den Dunnen JT, t Hoen PA, Aartsma-Rus A (2012) The effects of 
low levels of dystrophin on mouse muscle function and pathology. PLoS One 7(2):e31937. 
https://doi.org/10.1371/journal.pone.0031937

 66. Nicholson LV, Johnson MA, Bushby KM, Gardner-Medwin D (1993) Functional significance 
of dystrophin positive fibres in Duchenne muscular dystrophy. Arch Dis Child 68(5):632–636

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1038/ncomms16105
https://doi.org/10.1038/ncomms16105
https://doi.org/10.1074/jbc.M709410200
https://doi.org/10.1016/j.ymthe.2004.05.031
https://doi.org/10.1371/journal.pone.0015286
https://doi.org/10.1371/journal.pone.0015286
https://doi.org/10.2353/ajpath.2008.071042
https://doi.org/10.1016/j.yjmcc.2016.11.011
https://doi.org/10.1016/j.yjmcc.2014.01.009
https://doi.org/10.1096/fj.12-224170
https://doi.org/10.1371/journal.pone.0031937


314

 67. Waldrop MA, Gumienny F, El Husayni S, Frank DE, Weiss RB, Flanigan KM (2018) Low-
level dystrophin expression attenuating the dystrophinopathy phenotype. Neuromuscul 
Disord 28(2):116–121. https://doi.org/10.1016/j.nmd.2017.11.007

 68. Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP, Faulkner JA, 
Chamberlain JS (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dys-
trophic symptoms without toxicity. Nature 364(6439):725–729

 69. Yue Y, Wasala NB, Bostick B, Duan D (2016) 100-fold but not 50-fold dystrophin overex-
pression aggravates electrocardiographic defects in the mdx model of Duchenne muscular 
dystrophy. Mol Ther Methods Clin Dev 3:16045. https://doi.org/10.1038/mtm.2016.45

 70. Yoshiki A, Moriwaki K (2006) Mouse phenome research: implications of genetic back-
ground. ILAR J 47(2):94–102

 71. Linder CC (2001) The influence of genetic background on spontaneous and genetically engi-
neered mouse models of complex diseases. Lab Anim 30(5):34–39

 72. Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 465(7299):690. 
https://doi.org/10.1038/465690a

 73. Wald C, Wu C (2010) Biomedical research. Of mice and women: the bias in animal models. 
Science 327(5973):1571–1572. https://doi.org/10.1126/science.327.5973.1571

 74. Leinwand LA (2003) Sex is a potent modifier of the cardiovascular system. J Clin Investig 
112(3):302–307

 75. Turner MJ, Kleeberger SR, Lightfoot JT (2005) Influence of genetic background on daily 
running-wheel activity differs with aging. Physiol Genomics 22(1):76–85. https://doi.
org/10.1152/physiolgenomics.00243.2004

 76. Glenmark B, Nilsson M, Gao H, Gustafsson JA, Dahlman-Wright K, Westerblad H (2004) 
Difference in skeletal muscle function in males vs. females: role of estrogen receptor-beta. Am 
J Phys Endocrinol Metab 287(6):E1125–E1131. https://doi.org/10.1152/ajpendo.00098.2004. 
00098.2004 [pii]

 77. Meyer S, van der Meer P, van Tintelen JP, van den Berg MP (2014) Sex differences in cardio-
myopathies. Eur J Heart Fail 16(3):238–247. https://doi.org/10.1002/ejhf.15

 78. Pergola C, Dodt G, Rossi A, Neunhoeffer E, Lawrenz B, Northoff H, Samuelsson B, 
Radmark O, Sautebin L, Werz O (2008) ERK-mediated regulation of leukotriene biosynthe-
sis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc 
Natl Acad Sci U S A 105(50):19881–19886. https://doi.org/10.1073/pnas.0809120105

 79. Du XJ, Samuel CS, Gao XM, Zhao L, Parry LJ, Tregear GW (2003) Increased myocardial 
collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific 
phenotype. Cardiovasc Res 57(2):395–404

 80. Hakim CH, Duan D (2012) Gender differences in contractile and passive properties of mdx 
extensor digitorum longus muscle. Muscle Nerve 45(2):250–256. https://doi.org/10.1002/
mus.22275

 81. Dane AP, Cunningham SC, Graf NS, Alexander IE (2009) Sexually dimorphic patterns of 
episomal rAAV genome persistence in the adult mouse liver and correlation with hepatocel-
lular proliferation. Mol Ther 17(9):1548–1554. https://doi.org/10.1038/mt.2009.139

 82. Voutetakis A, Zheng C, Wang J, Goldsmith CM, Afione S, Chiorini JA, Wenk ML, Vallant M, 
Irwin RD, Baum BJ (2007) Gender differences in serotype 2 adeno-associated virus biodis-
tribution after administration to rodent salivary glands. Hum Gene Ther 18(11):1109–1118. 
https://doi.org/10.1089/hum.2007.072

 83. Chandler CH, Chari S, Dworkin I (2013) Does your gene need a background check? How 
genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet 
29(6):358–366. https://doi.org/10.1016/j.tig.2013.01.009

 84. Brayton CF, Treuting PM, Ward JM (2012) Pathobiology of aging mice and GEM: 
background strains and experimental design. Vet Pathol 49(1):85–105. https://doi.
org/10.1177/0300985811430696

 85. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, 
Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral 

D. Duan

https://doi.org/10.1016/j.nmd.2017.11.007
https://doi.org/10.1038/mtm.2016.45
https://doi.org/10.1038/465690a
https://doi.org/10.1126/science.327.5973.1571
https://doi.org/10.1152/physiolgenomics.00243.2004
https://doi.org/10.1152/physiolgenomics.00243.2004
https://doi.org/10.1152/ajpendo.00098.2004
https://doi.org/10.1002/ejhf.15
https://doi.org/10.1073/pnas.0809120105
https://doi.org/10.1002/mus.22275
https://doi.org/10.1002/mus.22275
https://doi.org/10.1038/mt.2009.139
https://doi.org/10.1089/hum.2007.072
https://doi.org/10.1016/j.tig.2013.01.009
https://doi.org/10.1177/0300985811430696
https://doi.org/10.1177/0300985811430696


315

phenotypes of inbred mouse strains: implications and recommendations for molecular stud-
ies. Psychopharmacology 132(2):107–124

 86. Erickson RP (1996) Mouse models of human genetic disease: which mouse is more like a 
man? BioEssays 18(12):993–998. https://doi.org/10.1002/bies.950181209

 87. Montagutelli X (2000) Effect of the genetic background on the phenotype of mouse muta-
tions. J Am Soc Nephrol 11(11):S101–S105

 88. Schauwecker PE (2002) Complications associated with genetic background effects in models 
of experimental epilepsy. Prog Brain Res 135:139–148

 89. Lerman I, Harrison BC, Freeman K, Hewett TE, Allen DL, Robbins J, Leinwand LA 
(2002) Genetic variability in forced and voluntary endurance exercise performance in 
seven inbred mouse strains. J  Appl Physiol 92(6):2245–2255. https://doi.org/10.1152/
japplphysiol.01045.2001

 90. Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR (2004) Genetic influ-
ence on daily wheel running activity level. Physiol Genomics 19(3):270–276. https://doi.
org/10.1152/physiolgenomics.00125.2004

 91. Xing S, Tsaih SW, Yuan R, Svenson KL, Jorgenson LM, So M, Paigen BJ, Korstanje R 
(2009) Genetic influence on electrocardiogram time intervals and heart rate in aging 
mice. Am J  Physiol Heart Circ Physiol 296(6):H1907–H1913. https://doi.org/10.1152/
ajpheart.00681.2008

 92. Kadambi VJ, Ball N, Kranias EG, Walsh RA, Hoit BD (1999) Modulation of force-frequency 
relation by phospholamban in genetically engineered mice. Am J Physiol-Heart Circ Physiol 
276(6):H2245–H2250

 93. Shusterman V, Usiene I, Harrigal C, Lee JS, Kubota T, Feldman AM, London B (2002) 
Strain-specific patterns of autonomic nervous system activity and heart failure susceptibil-
ity in mice. Am J Physiol-Heart Circ Physiol 282(6):H2076–H2083. https://doi.org/10.1152/
ajpheart.00917.2001

 94. Rodrigues M, Echigoya Y, Maruyama R, Lim KRQ, Fukada S, Yokota T (2016) Impaired 
regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx mus-
cles on DBA/2 background. Sci Rep 6:38371. https://doi.org/10.1038/srep38371. ARTN 
38371

 95. Bostick B, Yue Y, Lai Y, Long C, Li D, Duan D (2008) Adeno-associated virus serotype-9 
microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. 
Hum Gene Ther 19(8):851–856. https://doi.org/10.1089/hum.2008.058

 96. Wasala NB, Lai Y, Shin J-H, Zhao J, Yue Y, Duan D (2016) Genomic removal of a therapeutic 
mini-dystrophin gene from adult mice elicits a Duchenne muscular dystrophy-like pheno-
type. Hum Mol Genet 25(13):2633–2644. https://doi.org/10.1093/hmg/ddw123

 97. Nance ME, Duan D (2018) Gene therapy: use of viruses as vectors. Reference module in 
biomedical sciences: Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.95711-8

 98. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clini-
cal trials worldwide to 2017: an update. J Gene Med 20(5):e3015. https://doi.org/10.1002/
jgm.3015. ARTN e3015

 99. Duan D (2008) Myodys, a full-length dystrophin plasmid vector for Duchenne and Becker 
muscular dystrophy gene therapy. Curr Opin Mol Ther 10(1):86–94

 100. Braun S (2008) Muscular gene transfer using nonviral vectors. Curr Gene Ther 8(5):391–405
 101. Fassati A, Bresolin N (2000) Retroviral vectors for gene therapy of Duchenne muscular dys-

trophy. Neurol Sci 21(5):S925–S927
 102. Karpati G, Gilbert R, Petrof BJ, Nalbantoglu J (1997) Gene therapy research for Duchenne 

and Becker muscular dystrophies. Curr Opin Neurol 10(5):430–435
 103. Flotte TR, Gao GP (2017) AAV is now a medicine: we had better get this right. Hum Gene 

Ther 28(4):307–307. https://doi.org/10.1089/hum.2017.29041.trf
 104. McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 

16(10):1648–1656. https://doi.org/10.1038/mt.2008.171. mt2008171 [pii]

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1002/bies.950181209
https://doi.org/10.1152/japplphysiol.01045.2001
https://doi.org/10.1152/japplphysiol.01045.2001
https://doi.org/10.1152/physiolgenomics.00125.2004
https://doi.org/10.1152/physiolgenomics.00125.2004
https://doi.org/10.1152/ajpheart.00681.2008
https://doi.org/10.1152/ajpheart.00681.2008
https://doi.org/10.1152/ajpheart.00917.2001
https://doi.org/10.1152/ajpheart.00917.2001
https://doi.org/10.1038/srep38371
https://doi.org/10.1089/hum.2008.058
https://doi.org/10.1093/hmg/ddw123
https://doi.org/10.1002/jgm.3015
https://doi.org/10.1002/jgm.3015
https://doi.org/10.1089/hum.2017.29041.trf
https://doi.org/10.1038/mt.2008.171


316

 105. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ (2003) Adeno-
associated virus terminal repeat (TR) mutant generates self-complementary vectors to over-
come the rate-limiting step to transduction in vivo. Gene Ther 10(26):2112–2118. https://doi.
org/10.1038/sj.gt.3302134

 106. Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-
limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 
70(5):3227–3234

 107. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM (1996) Transduction 
with recombinant adeno-associated virus for gene therapy is limited by leading-strand syn-
thesis. J Virol 70(1):520–532

 108. Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, Marais T, Barkats 
M (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the 
spinal cord and decreases disease severity in SMA mice. Mol Ther 21(2):282–290. https://
doi.org/10.1038/mt.2012.261

 109. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, Tuddenham EG, Kemball-
Cook G, McIntosh J, Boon-Spijker M, Mertens K, Davidoff AM (2006) Self-complementary 
adeno-associated virus vectors containing a novel liver-specific human factor IX expression 
cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 
107(7):2653–2661. https://doi.org/10.1182/blood-2005-10-4035

 110. Li X, Eastman EM, Schwartz RJ, Draghia-Akli R (1999) Synthetic muscle promoters: activi-
ties exceeding naturally occurring regulatory sequences. Nat Biotechnol 17(3):241–245

 111. Jaynes JB, Chamberlain JS, Buskin JN, Johnson JE, Hauschka SD (1986) Transcriptional 
regulation of the muscle creatine kinase gene and regulated expression in transfected mouse 
myoblasts. Mol Cell Biol 6(8):2855–2864

 112. Shaul O (2017) How introns enhance gene expression. Int J Biochem Cell Biol 91(Pt B):145–
155. https://doi.org/10.1016/j.biocel.2017.06.016

 113. Lozier JN (2012) Gene therapy. Factor IX Padua: them that have, give. Blood 120(23):4452–
4453. https://doi.org/10.1182/blood-2012-09-452821

 114. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, 
Klinman DM (1995) Cpg motifs in bacterial-DNA trigger direct B-cell activation. Nature 
374(6522):546–549. https://doi.org/10.1038/374546a0

 115. Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y, Rabinowitz JE, Wilson JM (2013) CpG-
depleted adeno-associated virus vectors evade immune detection. J Clin Investig 123(7):2994–
3001. https://doi.org/10.1172/JCI68205

 116. Lai Y, Zhao J, Yue Y, Duan D (2013) alpha2 and alpha3 helices of dystrophin R16 and 
R17 frame a microdomain in the alpha1 helix of dystrophin R17 for neuronal NOS bind-
ing. Proc Natl Acad Sci U S A 110(2):525–530. https://doi.org/10.1073/pnas.1211431109. 
1211431109 [pii]

 117. Proudfoot N, O’Sullivan J  (2002) Polyadenylation: a tail of two complexes. Curr Biol 
12(24):R855–R857

 118. Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance 
transgene target specificity and expression in gene therapy. Discov Med 19(102):49–57

 119. Levitt N, Briggs D, Gil A, Proudfoot NJ (1989) Definition of an efficient synthetic poly(A) 
site. Genes Dev 3(7):1019–1025

 120. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene 
therapy. Nat Rev Genet 15(7):445–451. https://doi.org/10.1038/nrg3742

 121. Qiao C, Zhang W, Yuan Z, Shin J-H, Li J, Jayandharan GR, Zhong L, Srivastava A, Xiao X, 
Duan D (2010) AAV6 capsid tyrosine to phenylalanine mutations improve gene transfer to 
skeletal muscle. Hum Gene Ther 21(10):1343–1348. https://doi.org/10.1089/hum.2010.003

 122. Nance ME, Duan D (2015) Perspective on adeno-associated virus (AAV) capsid modification 
for Duchenne muscular dystrophy gene therapy. Hum Gene Ther 26(12):786–800

 123. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S, DiPrimio N, Nam HJ, 
Agbandje-McKenna M, McPhee S, Wolff J, Samulski RJ (2010) Reengineering a receptor 

D. Duan

https://doi.org/10.1038/sj.gt.3302134
https://doi.org/10.1038/sj.gt.3302134
https://doi.org/10.1038/mt.2012.261
https://doi.org/10.1038/mt.2012.261
https://doi.org/10.1182/blood-2005-10-4035
https://doi.org/10.1016/j.biocel.2017.06.016
https://doi.org/10.1182/blood-2012-09-452821
https://doi.org/10.1038/374546a0
https://doi.org/10.1172/JCI68205
https://doi.org/10.1073/pnas.1211431109
https://doi.org/10.1038/nrg3742
https://doi.org/10.1089/hum.2010.003


317

footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. 
Nat Biotechnol 28(1):79–82. https://doi.org/10.1038/nbt.1599

 124. Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-McKenna M, Asokan 
A (2011) Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene 
transfer. Mol Ther 19(6):1070–1078. https://doi.org/10.1038/mt.2011.22. mt201122 [pii]

 125. Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, Ma S, Sharma 
RB, Gray-Edwards HL, Johnson JA, Johnson AK, Alonso LC, Punzo C, Wagner KR, Maguire 
CA, Kotin RM, Martin DR, Sena-Esteves M (2016) In vivo selection yields AAV-B1 capsid 
for central nervous system and muscle gene therapy. Mol Ther 24(7):1247–1257. https://doi.
org/10.1038/mt.2016.84

 126. Yu CY, Yuan Z, Cao Z, Wang B, Qiao C, Li J, Xiao X (2009) A muscle-targeting peptide dis-
played on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16(8):953–962. 
https://doi.org/10.1038/gt.2009.59

 127. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, Pu D, Hu X, Wang DZ, 
Li J, Xiao X (2009) A myocardium tropic adeno-associated virus (AAV) evolved by DNA 
shuffling and in vivo selection. Proc Natl Acad Sci U S A 106(10):3946–3951. https://doi.
org/10.1073/pnas.0813207106

 128. Paulk NK, Pekrun K, Charville GW, Maguire-Nguyen K, Wosczyna MN, Xu J, Zhang 
Y, Lisowski L, Yoo B, Vilches-Moure JG, Lee GK, Shrager JB, Rando TA, Kay MA 
(2018) Bioengineered viral platform for intramuscular passive vaccine delivery to human 
skeletal muscle. Mol Ther Methods Clin Dev 10:144–155. https://doi.org/10.1016/j.
omtm.2018.06.001

 129. Weinmann J, Weis S, Sippel J, Lenter M, Lamla T, Grimm D (2018) Massively parallel 
in vivo characterization of >150 Adeno-Associated Viral (AAV) capsids using DNA/RNA 
barcoding and next-generation sequencing. Mol Ther 26(S1):319–318

 130. Wang L, Bell P, Somanathan S, Wang Q, He Z, Yu H, McMenamin D, Goode T, Calcedo 
R, Wilson JM (2015) Comparative study of liver gene transfer with AAV vectors based on 
natural and engineered AAV capsids. Mol Ther 23(12):1877–1887. https://doi.org/10.1038/
mt.2015.179

 131. Li S, Ling C, Zhong L, Li M, Su Q, He R, Tang Q, Greiner DL, Shultz LD, Brehm MA, 
Flotte TR, Mueller C, Srivastava A, Gao G (2015) Efficient and targeted transduction of 
nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol Ther 
23(12):1867–1876. https://doi.org/10.1038/mt.2015.174

 132. Pan X, Yue Y, Zhang K, Hakim CH, Kodippili K, McDonald T, Duan D (2015) AAV-8 is 
more efficient than AAV-9  in transducing neonatal dog heart. Hum Gene Ther Methods 
26(4):54–61

 133. Pan X, Yue Y, Zhang K, Lostal W, Shin JH, Duan D (2013) Long-term robust myocardial 
transduction of the dog heart from a peripheral vein by adeno-associated virus serotype-8. 
Hum Gene Ther 24(6):584–594. https://doi.org/10.1089/hum.2013.044

 134. Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN, Duan D (2008) A single intra-
venous injection of adeno-associated virus serotype-9 leads to whole-body skeletal muscle 
transduction in dogs. Mol Ther 16(12):1944–1952. https://doi.org/10.1038/mt.2008.207

 135. Yuasa K, Ishii A, Miyagoe Y, Takeda S (1997) Introduction of rod-deleted dystrophin 
cDNA, delta DysM3, into mdx skeletal muscle using adenovirus vector. Nihon Rinsho 
55(12):3148–3153

 136. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, 
Chamberlain JS (2004) Systemic delivery of genes to striated muscles using adeno-associ-
ated viral vectors. Nat Med 10(8):828–834

 137. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-
associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 
23(3):321–328

 138. Bostick B, Ghosh A, Yue Y, Long C, Duan D (2007) Systemic AAV-9 transduction in mice is 
influenced by animal age but not by the route of administration. Gene Ther 14(22):1605–1609

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1038/nbt.1599
https://doi.org/10.1038/mt.2011.22
https://doi.org/10.1038/mt.2016.84
https://doi.org/10.1038/mt.2016.84
https://doi.org/10.1038/gt.2009.59
https://doi.org/10.1073/pnas.0813207106
https://doi.org/10.1073/pnas.0813207106
https://doi.org/10.1016/j.omtm.2018.06.001
https://doi.org/10.1016/j.omtm.2018.06.001
https://doi.org/10.1038/mt.2015.179
https://doi.org/10.1038/mt.2015.179
https://doi.org/10.1038/mt.2015.174
https://doi.org/10.1089/hum.2013.044
https://doi.org/10.1038/mt.2008.207


318

 139. Kuntz N, Shieh PB, Smith B, Bonnemann CG, Dowling JJ, Lawlor MW, Muller-Felber W, 
Noursalehi M, Rico S, Servais L, Prasad S (2018) ASPIRO phase 1/2 gene therapy trail in 
X-linked myotubular myopathy (XLMTM): preliminary safety and efficacy findings. Mol 
Ther 26(S1):4

 140. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, Della Peruta 
M, Lheriteau E, Patel N, Raj D, Riddell A, Pie J, Rangarajan S, Bevan D, Recht M, Shen YM, 
Halka KG, Basner-Tschakarjan E, Mingozzi F, High KA, Allay J, Kay MA, Ng CY, Zhou J, 
Cancio M, Morton CL, Gray JT, Srivastava D, Nienhuis AW, Davidoff AM (2014) Long-term 
safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371(21):1994–
2004. https://doi.org/10.1056/NEJMoa1407309

 141. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray 
S, Li C, Galloway G, Malik V, Coley B, Clark KR, Li J, Xiao X, Samulski J, McPhee SW, 
Samulski RJ, Walker CM (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N 
Engl J Med 363(15):1429–1437. https://doi.org/10.1056/NEJMoa1000228

 142. Mingozzi F (2018) AAV immunogenicity: a matter of sensitivity. Mol Ther 26(10):2335–
2336. https://doi.org/10.1016/j.ymthe.2018.09.001

 143. Calcedo R, Franco J, Qin Q, Richardson DW, Mason JB, Boyd S, Wilson JM (2015) 
Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals 
other than monkeys may confound in vivo gene therapy studies. Hum Gene Ther Methods 
26(3):103–105. https://doi.org/10.1089/hgtb.2015.082

 144. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, Hajjar RJ, 
Weber T (2011) Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9  in sera of 
commonly used animal models. Mol Ther 20(1):73–83. https://doi.org/10.1038/mt.2011.177. 
mt2011177 [pii]

 145. Shin J-H, Yue Y, Smith B, Duan D (2012) Humoral immunity to AAV-6, 8, and 9 in normal 
and dystrophic dogs. Hum Gene Ther 23(3):287–294. https://doi.org/10.1089/hum.2011.125

 146. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, Couto LB, Pierce 
GF (2006) Human immunoglobulin inhibits liver transduction by AAV vectors at low 
AAV2 neutralizing titers in SCID mice. Blood 107(5):1810–1817. https://doi.org/10.1182/
blood-2005-08-3229

 147. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, Zhou S, Scallan CD, 
Sommer J, Vijay S, Mingozzi F, High KA, Pierce GF (2006) Effects of transient immu-
nosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus 
macaques and implications for human gene therapy. Blood 108(10):3321–3328. https://doi.
org/10.1182/blood-2006-04-017913

 148. Hurlbut GD, Ziegler RJ, Nietupski JB, Foley JW, Woodworth LA, Meyers E, Bercury SD, 
Pande NN, Souza DW, Bree MP, Lukason MJ, Marshall J, Cheng SH, Scheule RK (2010) 
Preexisting immunity and low expression in primates highlight translational challenges 
for liver-directed AAV8-mediated gene therapy. Mol Ther 18(11):1983–1994. https://doi.
org/10.1038/mt.2010.175. mt2010175 [pii]

 149. Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, Edmonson SA, Africa 
L, Zhou S, High KA, Bosch F, Wright JF (2010) High AAV vector purity results in serotype- 
and tissue-independent enhancement of transduction efficiency. Gene Ther 17(4):503–510. 
https://doi.org/10.1038/gt.2009.157

 150. Schnodt M, Buning H (2017) Improving the quality of adeno-associated viral vector prepara-
tions: the challenge of product-related impurities. Hum Gene Ther Methods 28(3):101–108. 
https://doi.org/10.1089/hgtb.2016.188

 151. Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol 
Genet 20(R1):R2–R6. https://doi.org/10.1093/hmg/ddr141

 152. Clement N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors 
for clinical trials. Mol Ther Methods Clin Dev 3:16002. https://doi.org/10.1038/mtm.2016.2

 153. Penaud-Budloo M, Francois A, Clement N, Ayuso E (2018) Pharmacology of recombinant 
adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180. https://doi.
org/10.1016/j.omtm.2018.01.002

D. Duan

https://doi.org/10.1056/NEJMoa1407309
https://doi.org/10.1056/NEJMoa1000228
https://doi.org/10.1016/j.ymthe.2018.09.001
https://doi.org/10.1089/hgtb.2015.082
https://doi.org/10.1038/mt.2011.177
https://doi.org/10.1089/hum.2011.125
https://doi.org/10.1182/blood-2005-08-3229
https://doi.org/10.1182/blood-2005-08-3229
https://doi.org/10.1182/blood-2006-04-017913
https://doi.org/10.1182/blood-2006-04-017913
https://doi.org/10.1038/mt.2010.175
https://doi.org/10.1038/mt.2010.175
https://doi.org/10.1038/gt.2009.157
https://doi.org/10.1089/hgtb.2016.188
https://doi.org/10.1093/hmg/ddr141
https://doi.org/10.1038/mtm.2016.2
https://doi.org/10.1016/j.omtm.2018.01.002
https://doi.org/10.1016/j.omtm.2018.01.002


319

 154. Grieger JC, Soltys SM, Samulski RJ (2016) Production of recombinant adeno-associated 
virus vectors using suspension HEK293 cells and continuous harvest of vector from the cul-
ture media for GMP FIX and FLT1 clinical vector. Mol Ther 24(2):287–297. https://doi.
org/10.1038/mt.2015.187

 155. Kotin RM, Snyder RO (2017) Manufacturing clinical grade recombinant adeno-associated 
virus using invertebrate cell lines. Hum Gene Ther 28(4):350–360. https://doi.org/10.1089/
hum.2017.042

 156. Clement N, Knop DR, Byrne BJ (2009) Large-scale adeno-associated viral vector production 
using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 
20(8):796–806. https://doi.org/10.1089/hum.2009.094

 157. Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM (2010) 
Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at 
scale. Hum Gene Ther 21(10):1259–1271. https://doi.org/10.1089/hum.2010.055

 158. D’Costa S, Blouin V, Broucque F, Penaud-Budloo M, Francois A, Perez IC, Le Bec C, 
Moullier P, Snyder RO, Ayuso E (2016) Practical utilization of recombinant AAV vector 
reference standards: focus on vector genomes titration by free ITR qPCR. Mol Ther Methods 
Clin Dev 5:16019. https://doi.org/10.1038/mtm.2016.19

 159. Ayuso E, Blouin V, Lock M, McGorray S, Leon X, Alvira MR, Auricchio A, Bucher S, Chtarto 
A, Clark KR, Darmon C, Doria M, Fountain W, Gao GP, Gao K, Giacca M, Kleinschmidt J, 
Leuchs B, Melas C, Mizukami H, Muller M, Noordman Y, Bockstael O, Ozawa K, Pythoud 
C, Sumaroka M, Surosky R, Tenenbaum L, van der Linden I, Weins B, Wright JF, Zhang XH, 
Zentilin L, Bosch F, Snyder RO, Moullier P (2014) Manufacturing and characterization of 
a recombinant Adeno-associated virus type 8 reference standard material. Hum Gene Ther 
25(11):977–987. https://doi.org/10.1089/hum.2014.057

 160. Moullier P, Snyder RO (2008) International efforts for recombinant adeno-associated viral 
vector reference standards. Mol Ther 16(7):1185–1188. https://doi.org/10.1038/mt.2008.125

 161. Fagone P, Wright JF, Nathwani AC, Nienhuis AW, Davidoff AM, Gray JT (2012) Systemic 
errors in quantitative polymerase chain reaction titration of self-complementary adeno-asso-
ciated viral vectors and improved alternative methods. Hum Gene Ther Methods 23(1):1–7. 
https://doi.org/10.1089/hgtb.2011.104

 162. Werling NJ, Satkunanathan S, Thorpe R, Zhao Y (2015) Systematic comparison and valida-
tion of quantitative real-time PCR methods for the quantitation of adeno-associated viral 
products. Hum Gene Ther Methods 26(3):82–92. https://doi.org/10.1089/hgtb.2015.013

 163. Duan D (2011) Muscle gene therapy: methods and protocols. Methods in molecular biology, 
vol 709. Humana, New York

 164. Kyba M (2016) Skeletal muscle regeneration in the mouse: methods and protocols. Springer 
Protocols, vol 1460. Humana Press, New York

 165. DiMario JX (2012) Myogenesis: methods and protocols. Methods in molecular biology, vol 
798. Humana Press/Springer, New York

 166. Moorwood C, Liu M, Tian Z, Barton ER (2013) Isometric and eccentric force generation 
assessment of skeletal muscles isolated from murine models of muscular dystrophies. J Vis 
Exp (71):e50036. https://doi.org/10.3791/50036

 167. Hakim CH, Wasala NB, Duan D (2013) Evaluation of muscle function of the extensor digito-
rum longus muscle ex vivo and tibialis anterior muscle in situ in mice. J Vis Exp (72):e50183. 
https://doi.org/10.3791/50183

 168. Kumar A, Accorsi A, Rhee Y, Girgenrath M (2015) Do’s and don’ts in the preparation 
of muscle cryosections for histological analysis. J  Vis Exp (99):e52793. https://doi.
org/10.3791/52793

 169. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associ-
ated viral vectors. Nat Protoc 1(3):1412–1428

 170. Duricki DA, Soleman S, Moon LD (2016) Analysis of longitudinal data from animals 
with missing values using SPSS.  Nat Protoc 11(6):1112–1129. https://doi.org/10.1038/
nprot.2016.048

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1038/mt.2015.187
https://doi.org/10.1038/mt.2015.187
https://doi.org/10.1089/hum.2017.042
https://doi.org/10.1089/hum.2017.042
https://doi.org/10.1089/hum.2009.094
https://doi.org/10.1089/hum.2010.055
https://doi.org/10.1038/mtm.2016.19
https://doi.org/10.1089/hum.2014.057
https://doi.org/10.1038/mt.2008.125
https://doi.org/10.1089/hgtb.2011.104
https://doi.org/10.1089/hgtb.2015.013
https://doi.org/10.3791/50036
https://doi.org/10.3791/50183
https://doi.org/10.3791/52793
https://doi.org/10.3791/52793
https://doi.org/10.1038/nprot.2016.048
https://doi.org/10.1038/nprot.2016.048


320

 171. Bagasra O (2007) Protocols for the in situ PCR-amplification and detection of mRNA and 
DNA sequences. Nat Protoc 2(11):2782–2795. https://doi.org/10.1038/nprot.2007.395

 172. Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA, Ehrhardt A (2009) A rapid protocol 
for construction and production of high-capacity adenoviral vectors. Nat Protoc 4(4):547–
564. https://doi.org/10.1038/nprot.2009.4

 173. Duan D, Rafael-Fortney JA, Blain A, Kass DA, McNally EM, Metzger JM, Spurney CF, 
Kinnett K (2016) Standard operating procedures (SOPs) for evaluating the heart in preclini-
cal studies of Duchenne muscular dystrophy. J Cardiovasc Transl Res 9(1):85–86. https://doi.
org/10.1007/s12265-015-9669-6

 174. Briguet A, Courdier-Fruh I, Foster M, Meier T, Magyar JP (2004) Histological parameters for 
the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul Disord 
14(10):675–682. https://doi.org/10.1016/j.nmd.2004.06.008

 175. Nagaraju K, Willmann R, Network T-N, the Wellstone Muscular Dystrophy Cooperative 
Research Network (2009) Developing standard procedures for murine and canine efficacy 
studies of DMD therapeutics: report of two expert workshops on “pre-clinical testing for 
Duchenne dystrophy”: Washington DC, October 27th-28th 2007 and Zurich, June 30th-July 
1st 2008. Neuromuscul Disord 19(7):502–506. https://doi.org/10.1016/j.nmd.2009.05.003

 176. van Putten M, Aartsma-Rus A, Grounds MD, Kornegay JN, Mayhew A, Gillingwater TH, 
Takeda S, Ruegg MA, De Luca A, Nagaraju K, Willmann R (2018) Update on standard oper-
ating procedures in preclinical research for DMD and SMA report of TREAT-NMD Alliance 
workshop, Schiphol airport, 26 April 2015, the Netherlands. J Neuromuscul Dis 5(1):29–34. 
https://doi.org/10.3233/JND-170288

 177. Shin J-H, Greer B, Hakim CH, Zhou Z, Chung YC, Duan Y, He Z, Duan D (2013) Quantitative 
phenotyping of Duchenne muscular dystrophy dogs by comprehensive gait analysis and over-
night activity monitoring. PLoS One 8(3):e59875

 178. Jenkins GJ, Hakim CH, Yang NN, Yao G, Duan D (2018) Automatic characterization of stride 
parameters in canines with a single wearable inertial sensor. PLoS One 13(6):e0198893. 
https://doi.org/10.1371/journal.pone.0198893

 179. Marsh AP, Eggebeen JD, Kornegay JN, Markert CD, Childers MK (2010) Kinematics of 
gait in golden retriever muscular dystrophy. Neuromuscul Disord 20(1):16–20. https://doi.
org/10.1016/j.nmd.2009.10.007. S0960-8966(09)00660-9 [pii]

 180. Barthelemy I, Barrey E, Thibaud JL, Uriarte A, Voit T, Blot S, Hogrel JY (2009) Gait analy-
sis using accelerometry in dystrophin-deficient dogs. Neuromuscul Disord 19(11):788–796. 
https://doi.org/10.1016/j.nmd.2009.07.014. S0960-8966(09)00578-1 [pii]

 181. Hakim CH, Peters AA, Feng F, Yao G, Duan D (2015) Night activity reduction is a signa-
ture physiological biomarker for Duchenne muscular dystroophy dogs. J Neuromuscul Dis 
2(4):397–407. https://doi.org/10.3233/JND-150114

 182. Hakim CH, Mijailovic A, Lessa TB, Coates JR, Shin C, Rutkove SB, Duan D (2017) Non-
invasive evaluation of muscle disease in the canine model of Duchenne muscular dystrophy 
by electrical impedance myography. PLoS One 12(3):e0173557. https://doi.org/10.1371/
journal.pone.0173557

 183. Yang HT, Shin J-H, Hakim CH, Pan X, Terjung RL, Duan D (2012) Dystrophin deficiency 
compromises force production of the extensor carpi ulnaris muscle in the canine model of 
Duchenne muscular dystrophy. PLoS One 7(9):e44438

 184. Kodippili K, Hakim CH, Yang HT, Pan X, Yang NN, Laughlin MH, Terjung RL, Duan D 
(2018) Nitric oxide dependent attenuation of norepinephrine-induced vasoconstriction is 
impaired in the canine model of Duchenne muscular dystrophy. J  Physiol 596(21):5199–
5216. https://doi.org/10.1113/JP275672

 185. Capes-Davis A, Neve RM (2016) Authentication: a standard problem or a problem of stan-
dards? PLoS Biol 14(6):e1002477. https://doi.org/10.1371/journal.pbio.1002477

 186. Williams M (2018) Reagent validation to facilitate experimental reproducibility. Curr Protoc 
Pharmacol 81(1):e40. https://doi.org/10.1002/cpph.40

D. Duan

https://doi.org/10.1038/nprot.2007.395
https://doi.org/10.1038/nprot.2009.4
https://doi.org/10.1007/s12265-015-9669-6
https://doi.org/10.1007/s12265-015-9669-6
https://doi.org/10.1016/j.nmd.2004.06.008
https://doi.org/10.1016/j.nmd.2009.05.003
https://doi.org/10.3233/JND-170288
https://doi.org/10.1371/journal.pone.0198893
https://doi.org/10.1016/j.nmd.2009.10.007
https://doi.org/10.1016/j.nmd.2009.10.007
https://doi.org/10.1016/j.nmd.2009.07.014
https://doi.org/10.3233/JND-150114
https://doi.org/10.1371/journal.pone.0173557
https://doi.org/10.1371/journal.pone.0173557
https://doi.org/10.1113/JP275672
https://doi.org/10.1371/journal.pbio.1002477
https://doi.org/10.1002/cpph.40


321

 187. Casadevall A, Ellis LM, Davies EW, McFall-Ngai M, Fang FC (2016) A framework 
for improving the quality of research in the biological sciences. MBio 7(4). https://doi.
org/10.1128/mBio.01256-16

 188. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, 
Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, 
Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, 
Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT 3rd, 
Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD 
(2012) A call for transparent reporting to optimize the predictive value of preclinical research. 
Nature 490(7419):187–191. https://doi.org/10.1038/nature11556

 189. Freedman LP, Inglese J  (2014) The increasing urgency for standards in basic biologic 
research. Cancer Res 74(15):4024–4029. https://doi.org/10.1158/0008-5472.Can-14-0925

 190. Kodippili K, Vince L, Shin JH, Yue Y, Morris GE, McIntosh MA, Duan D (2014) 
Characterization of 65 epitope-specific dystrophin monoclonal antibodies in canine and 
murine models of Duchenne muscular dystrophy by immunostaining and western blot. PLoS 
One 9(2):e88280. https://doi.org/10.1371/journal.pone.0088280

 191. Morris GE, Man NT, Sewry CA (2011) Monitoring Duchenne muscular dystrophy gene ther-
apy with epitope-specific monoclonal antibodies. Methods Mol Biol 709:39–61. https://doi.
org/10.1007/978-1-61737-982-6_3

 192. Nguyen TM, Ginjaar IB, van Ommen GJ, Morris GE (1992) Monoclonal antibodies for dys-
trophin analysis. Epitope mapping and improved binding to SDS-treated muscle sections. 
Biochem J 288(Pt 2):663–668

 193. Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez 
H, Hiltke T, Snyder M, Yamamoto T (2016) A proposal for validation of antibodies. Nat 
Methods 13(10):823–827. https://doi.org/10.1038/Nmeth.3995

 194. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, 
Rimm D (2010) Antibody validation. BioTechniques 48(3):197–209. https://doi.
org/10.2144/000113382

 195. Marx V (2013) Finding the right antibody for the job. Nat Methods 10(8):703–707. https://
doi.org/10.1038/nmeth.2570

 196. Taussig MJ, Fonseca C, Trimmer JS (2018) Antibody validation: a view from the mountains. 
New Biotechnol 45:1–8. https://doi.org/10.1016/j.nbt.2018.08.002

 197. Bradbury A, Pluckthun A (2015) Standardize antibodies used in research. Nature 
518(7537):27–29. https://doi.org/10.1038/518027a

 198. Alm TL, von Feilitzen K, Uhlen M (2016) Antibodypedia - the Wiki of Antibodies. Poster pre-
sented at the 2016 American Society for Cell Biology (ASCB) Annual Meeting, San Francisco, 
CA, Dec. 3-7, 2016. https://www.ascb.org/wp-content/uploads/2016/04/2016ASCBMeeting-
PosterAbstracts.pdf. urn:nbn:se:kth:diva-204763

 199. Bjorling E, Uhlen M (2008) Antibodypedia, a portal for sharing antibody and antigen 
validation data. Mol Cell Proteomics 7(10):2028–2037. https://doi.org/10.1074/mcp.
M800264-MCP200

 200. Colwill K, Renewable Protein Binder Working Group, Graslund S (2011) A roadmap to gen-
erate renewable protein binders to the human proteome. Nat Methods 8(7):551–558. https://
doi.org/10.1038/nmeth.1607

 201. Helsby MA, Leader PM, Fenn JR, Gulsen T, Bryant C, Doughton G, Sharpe B, Whitley P, 
Caunt CJ, James K, Pope AD, Kelly DH, Chalmers AD (2014) CiteAb: a searchable antibody 
database that ranks antibodies by the number of times they have been cited. BMC Cell Biol 
15:6. https://doi.org/10.1186/1471-2121-15-6

 202. Major SM, Nishizuka S, Morita D, Rowland R, Sunshine M, Shankavaram U, Washburn F, Asin 
D, Kouros-Mehr H, Kane D, Weinstein JN (2006) AbMiner: a bioinformatic resource on avail-
able monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and 
immunologic studies. BMC Bioinformatics 7:192. https://doi.org/10.1186/1471-2105-7-192

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1128/mBio.01256-16
https://doi.org/10.1128/mBio.01256-16
https://doi.org/10.1038/nature11556
https://doi.org/10.1158/0008-5472.Can-14-0925
https://doi.org/10.1371/journal.pone.0088280
https://doi.org/10.1007/978-1-61737-982-6_3
https://doi.org/10.1007/978-1-61737-982-6_3
https://doi.org/10.1038/Nmeth.3995
https://doi.org/10.2144/000113382
https://doi.org/10.2144/000113382
https://doi.org/10.1038/nmeth.2570
https://doi.org/10.1038/nmeth.2570
https://doi.org/10.1016/j.nbt.2018.08.002
https://doi.org/10.1038/518027a
https://doi.org/10.1074/mcp.M800264-MCP200
https://doi.org/10.1074/mcp.M800264-MCP200
https://doi.org/10.1038/nmeth.1607
https://doi.org/10.1038/nmeth.1607
https://doi.org/10.1186/1471-2121-15-6
https://doi.org/10.1186/1471-2105-7-192


322

 203. Roncador G, Engel P, Maestre L, Anderson AP, Cordell JL, Cragg MS, Serbec VC, Jones M, 
Lisnic VJ, Kremer L, Li D, Koch-Nolte F, Pascual N, Rodriguez-Barbosa JI, Torensma R, 
Turley H, Pulford K, Banham AH (2016) The European antibody network’s practical guide 
to finding and validating suitable antibodies for research. MAbs 8(1):27–36. https://doi.org/1
0.1080/19420862.2015.1100787

 204. Acharya P, Quinlan A, Neumeister V (2017) The ABCs of finding a good antibody: how to 
find a good antibody, validate it, and publish meaningful data. F1000Res 6:851. https://doi.
org/10.12688/f1000research.11774.1

 205. Aban IB, George B (2015) Statistical considerations for preclinical studies. Exp Neurol 
270:82–87. https://doi.org/10.1016/j.expneurol.2015.02.024

 206. Liu C, Cripe TP, Kim MO (2010) Statistical issues in longitudinal data analysis for treat-
ment efficacy studies in the biomedical sciences. Mol Ther 18(9):1724–1730. https://doi.
org/10.1038/mt.2010.127

 207. Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J  43(4): 
207–213

 208. Fitts DA (2011) Ethics and animal numbers: informal analyses, uncertain sample sizes, inef-
ficient replications, and type I errors. J Am Assoc Lab Anim Sci 50(4):445–453

 209. Lenth RV (2001) Some practical guidelines for effective sample size determination. Am Stat 
55(3):187–193. https://doi.org/10.1198/000313001317098149

 210. Hardouin JB, Amri S, Feddag ML, Sebille V (2012) Towards power and sample size calcula-
tions for the comparison of two groups of patients with item response theory models. Stat 
Med 31(11–12):1277–1290. https://doi.org/10.1002/sim.4387

 211. Whitley E, Ball J (2002) Statistics review 4: sample size calculations. Crit Care 6(4):335–341
 212. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power 

analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 
39(2):175–191

 213. Hirst JA, Howick J, Aronson JK, Roberts N, Perera R, Koshiaris C, Heneghan C (2014) 
The need for randomization in animal trials: an overview of systematic reviews. PLoS One 
9(6):e98856. https://doi.org/10.1371/journal.pone.0098856

 214. Macleod MR (2014) Design animal studies better. Nature 510(7503):35–35. https://doi.
org/10.1038/510035a

 215. Suresh K (2011) An overview of randomization techniques: an unbiased assessment of outcome 
in clinical research. J Hum Reprod Sci 4(1):8–11. https://doi.org/10.4103/0974-1208.82352

 216. Whitley E, Ball J (2002) Statistics review 5: comparison of means. Crit Care 6(5):424–428
 217. Bewick V, Cheek L, Ball J (2004) Statistics review 9: one-way analysis of variance. Crit Care 

8(2):130–136. https://doi.org/10.1186/cc2836
 218. Whitley E, Bai J (2002) Statistics review 6: nonparametric methods. Crit Care 6(6):509–513. 

https://doi.org/10.1186/cc1820
 219. Baker M (2016) Statisticians issue warning over misuse of P values. Nature 531(7593):151. 

https://doi.org/10.1038/nature.2016.19503
 220. Wasserstein RL, Assoc AS (2016) ASA statement on statistical significance and P-values. Am 

Stat 70(2):131–133
 221. Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and 

purpose. Am Stat 70(2):129–131. https://doi.org/10.1080/00031305.2016.1154108
 222. Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG (2016) 

Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur 
J Epidemiol 31(4):337–350. https://doi.org/10.1007/s10654-016-0149-3

 223. Nuzzo R (2014) Scientific method: statistical errors. Nature 506(7487):150–152. https://doi.
org/10.1038/506150a

 224. Couzin-Frankel J (2013) When mice mislead. Science 342(6161):922–923, 925. https://doi.
org/10.1126/science.342.6161.922

 225. Perrin S (2014) Preclinical research: make mouse studies work. Nature 507(7493):423–425. 
https://doi.org/10.1038/507423a

D. Duan

https://doi.org/10.1080/19420862.2015.1100787
https://doi.org/10.1080/19420862.2015.1100787
https://doi.org/10.12688/f1000research.11774.1
https://doi.org/10.12688/f1000research.11774.1
https://doi.org/10.1016/j.expneurol.2015.02.024
https://doi.org/10.1038/mt.2010.127
https://doi.org/10.1038/mt.2010.127
https://doi.org/10.1198/000313001317098149
https://doi.org/10.1002/sim.4387
https://doi.org/10.1371/journal.pone.0098856
https://doi.org/10.1038/510035a
https://doi.org/10.1038/510035a
https://doi.org/10.4103/0974-1208.82352
https://doi.org/10.1186/cc2836
https://doi.org/10.1186/cc1820
https://doi.org/10.1038/nature.2016.19503
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.1038/506150a
https://doi.org/10.1038/506150a
https://doi.org/10.1126/science.342.6161.922
https://doi.org/10.1126/science.342.6161.922
https://doi.org/10.1038/507423a


323

 226. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod 
MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 
7(3):e1000245. https://doi.org/10.1371/journal.pmed.1000245. ARTN e1000245

 227. Hathout Y, Brody E, Clemens PR, Cripe L, DeLisle RK, Furlong P, Gordish-Dressman H, 
Hache L, Henricson E, Hoffman EP, Kobayashi YM, Lorts A, Mah JK, McDonald C, Mehler 
B, Nelson S, Nikrad M, Singer B, Steele F, Sterling D, Sweeney HL, Williams S, Gold L 
(2015) Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. 
Proc Natl Acad Sci U S A 112(23):7153–7158. https://doi.org/10.1073/pnas.1507719112

 228. Meltzer HY (1971) Factors affecting serum creatine phosphokinase levels in the general 
population: the role of race, activity and age. Clin Chim Acta 33(1):165–172

 229. Gledhill RF, Van der Merwe CA, Greyling M, Van Niekerk MM (1988) Race-gender differ-
ences in serum creatine kinase activity: a study among South Africans. J Neurol Neurosurg 
Psychiatry 51(2):301–304

 230. Neal RC, Ferdinand KC, Ycas J, Miller E (2009) Relationship of ethnic origin, gender, 
and age to blood creatine kinase levels. Am J Med 122(1):73–78. https://doi.org/10.1016/j.
amjmed.2008.08.033

 231. Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory 
animals. J Pharmacol Pharmacother 1(2):87–93. https://doi.org/10.4103/0976-500X.72350

 232. Baudy AR, Sali A, Jordan S, Kesari A, Johnston HK, Hoffman EP, Nagaraju K (2011) Non-
invasive optical imaging of muscle pathology in mdx mice using cathepsin caged near-infra-
red imaging. Mol Imaging Biol 13(3):462–470. https://doi.org/10.1007/s11307-010-0376-z

 233. Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, Novak JS, 
Nearing M, Quinn JL, Saunders A, Dolan C, Andrews W, Lammert C, Austin A, Partridge 
TA, Cox GA, Lutz C, Nagaraju K (2016) Effect of genetic background on the dystrophic phe-
notype in mdx mice. Hum Mol Genet 25(1):130–145. https://doi.org/10.1093/hmg/ddv460

 234. de Greef JC, Hamlyn R, Jensen BS, O’Campo Landa R, Levy JR, Kobuke K, Campbell KP 
(2016) Collagen VI deficiency reduces muscle pathology, but does not improve muscle func-
tion, in the gamma-sarcoglycan-null mouse. Hum Mol Genet 25(7):1357–1369. https://doi.
org/10.1093/hmg/ddw018

 235. Dirnagl U, Fisher M (2012) International, multicenter randomized preclinical trials in trans-
lational stroke research: it’s time to act. J Cereb Blood Flow Metab 32(6):933–935. https://
doi.org/10.1038/jcbfm.2012.51

 236. Bath PM, Macleod MR, Green AR (2009) Emulating multicentre clinical stroke trials: a new 
paradigm for studying novel interventions in experimental models of stroke. Int J  Stroke 
4(6):471–479. https://doi.org/10.1111/j.1747-4949.2009.00386.x

 237. Llovera G, Liesz A (2016) The next step in translational research: lessons learned from 
the first preclinical randomized controlled trial. J  Neurochem 139:271–279. https://doi.
org/10.1111/jnc.13516

 238. Amaro S, Llull L (2016) Preclinical randomized controlled multicenter trials in translational 
stroke research. Ann Transl Med 4(Suppl 1):S58. https://doi.org/10.21037/atm.2016.10.66

 239. Mullard A (2011) Reliability of ‘new drug target’ claims called into question. Nat Rev Drug 
Discov 10(9):643–644. https://doi.org/10.1038/nrd3545. nrd3545 [pii]

 240. Baker M (2016) Biotech giant publishes failures to confirm high-profile science. Nature 
530(7589):141. https://doi.org/10.1038/nature.2016.19269

 241. Aarts AA, Anderson JE, Anderson CJ, Attridge PR, Attwood A, Axt J, Babel M, Bahnik 
S, Baranski E, Barnett-Cowan M, Bartmess E, Beer J, Bell R, Bentley H, Beyan L, Binion 
G, Borsboom D, Bosch A, Bosco FA, Bowman SD, Brandt MJ, Braswell E, Brohmer H, 
Brown BT, Brown K, Bruning J, Calhoun-Sauls A, Callahan SP, Chagnon E, Chandler J, 
Chartier CR, Cheung F, Christopherson CD, Cillessen L, Clay R, Cleary H, Cloud MD, 
Cohn M, Cohoon J, Columbus S, Cordes A, Costantini G, Alvarez LDC, Cremata E, Crusius 
J, De Coster J, De Gaetano MA, Della Penna N, den Bezemer B, Deserno MK, Devitt O, 
Dewitte L, Dobolyi DG, Dodson GT, Donnellan MB, Donohue R, Dore RA, Dorrough A, 
Dreber A, Dugas M, Dunn EW, Easey K, Eboigbe S, Eggleston C, Embley J, Epskamp S, 

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1371/journal.pmed.1000245
https://doi.org/10.1073/pnas.1507719112
https://doi.org/10.1016/j.amjmed.2008.08.033
https://doi.org/10.1016/j.amjmed.2008.08.033
https://doi.org/10.4103/0976-500X.72350
https://doi.org/10.1007/s11307-010-0376-z
https://doi.org/10.1093/hmg/ddv460
https://doi.org/10.1093/hmg/ddw018
https://doi.org/10.1093/hmg/ddw018
https://doi.org/10.1038/jcbfm.2012.51
https://doi.org/10.1038/jcbfm.2012.51
https://doi.org/10.1111/j.1747-4949.2009.00386.x
https://doi.org/10.1111/jnc.13516
https://doi.org/10.1111/jnc.13516
https://doi.org/10.21037/atm.2016.10.66
https://doi.org/10.1038/nrd3545
https://doi.org/10.1038/nature.2016.19269


324

Errington TM, Estel V, Farach FJ, Feather J, Fedor A, Fernandez-Castilla B, Fiedler S, Field 
JG, Fitneva SA, Flagan T, Forest AL, Forsell E, Foster JD, Frank MC, Frazier RS, Fuchs H, 
Gable P, Galak J, Galliani EM, Gampa A, Garcia S, Gazarian D, Gilbert E, Giner-Sorolla R, 
Glockner A, Goellner L, Goh JX, Goldberg R, Goodbourn PT, Gordon-McKeon S, Gorges 
B, Gorges J, Goss J, Graham J, Grange JA, Gray J, Hartgerink C, Hartshorne J, Hasselman 
F, Hayes T, Heikensten E, Henninger F, Hodsoll J, Holubar T, Hoogendoorn G, Humphries 
DJ, Hung COY, Immelman N, Irsik VC, Jahn G, Jakel F, Jekel M, Johannesson M, Johnson 
LG, Johnson DJ, Johnson KM, Johnston WJ, Jonas K, Joy-Gaba JA, Kappes HB, Kelso K, 
Kidwell MC, Kim SK, Kirkhart M, Kleinberg B, Knezevic G, Kolorz FM, Kossakowski JJ, 
Krause RW, Krijnen J, Kuhlmann T, Kunkels YK, Kyc MM, Lai CK, Laique A, Lakens D, 
Lane KA, Lassetter B, Lazarevic LB, EP LB, Lee KJ, Lee M, Lemm K, Levitan CA, Lewis 
M, Lin L, Lin S, Lippold M, Loureiro D, Luteijn I, Mackinnon S, Mainard HN, Marigold 
DC, Martin DP, Martinez T, Masicampo EJ, Matacotta J, Mathur M, May M, Mechin N, 
Mehta P, Meixner J, Melinger A, Miller JK, Miller M, Moore K, Moschl M, Motyl M, Muller 
SM, Munafo M, Neijenhuijs KI, Nervi T, Nicolas G, Nilsonne G, Nosek BA, Nuijten MB, 
Olsson C, Osborne C, Ostkamp L, Pavel M, Penton-Voak IS, Perna O, Pernet C, Perugini 
M, Pipitone RN, Pitts M, Plessow F, Prenoveau JM, Rahal RM, Ratliff KA, Reinhard D, 
Renkewitz F, Ricker AA, Rigney A, Rivers AM, Roebke M, Rutchick AM, Ryan RS, Sahin 
O, Saide A, Sandstrom GM, Santos D, Saxe R, Schlegelmilch R, Schmidt K, Scholz S, Seibel 
L, Selterman DF, Shaki S, Simpson WB, Sinclair HC, Skorinko JLM, Slowik A, Snyder 
JS, Soderberg C, Sonnleitner C, Spencer N, Spies JR, Steegen S, Stieger S, Strohminger N, 
Sullivan GB, Talhelm T, Tapia M, te Dorsthorst A, Thomae M, Thomas SL, Tio P, Traets F, 
Tsang S, Tuerlinckx F, Turchan P, Valasek M, van ‘t Veer AE, Van Aert R, van Assen M, van 
Bork R, van de Ven M, van den Bergh D, van der Hulst M, van Dooren R, van Doorn J, van 
Renswoude DR, van Rijn H, Vanpaemel W, Echeverria AV, Vazquez M, Velez N, Vermue 
M, Verschoor M, Vianello M, Voracek M, Vuu G, Wagenmakers EJ, Weerdmeester J, Welsh 
A, Westgate EC, Wissink J, Wood M, Woods A, Wright E, Wu S, Zeelenberg M, Zuni K, 
Collaboration OS (2015) Estimating the reproducibility of psychological science. Science 
349(6251):aac4716. https://doi.org/10.1126/science.aac4716. ARTN aac4716

 242. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published 
data on potential drug targets? Nat Rev Drug Discov 10(9):712. https://doi.org/10.1038/
nrd3439-c1

 243. Boltze J, Ayata C, Wagner DC, Plesnila N (2014) Preclinical phase III trials in translational 
stroke research: call for collective design of framework and guidelines. Stroke 45(2):357. 
https://doi.org/10.1161/STROKEAHA.113.004148

 244. Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental 
data reveals influence of study design and publication bias. Stroke 35(5):1203–1208. https://
doi.org/10.1161/01.STR.0000125719.25853.20

 245. Sena ES, Currie GL, McCann SK, Macleod MR, Howells DW (2014) Systematic reviews and 
meta-analysis of preclinical studies: why perform them and how to appraise them critically. 
J Cereb Blood Flow Metab 34(5):737–742. https://doi.org/10.1038/jcbfm.2014.28

 246. Vesterinen HM, Sena ES, Egan KJ, Hirst TC, Churolov L, Currie GL, Antonic A, Howells 
DW, Macleod MR (2014) Meta-analysis of data from animal studies: a practical guide. 
J Neurosci Methods 221:92–102. https://doi.org/10.1016/j.jneumeth.2013.09.010

 247. Hooijmans CR, IntHout J, Ritskes-Hoitinga M, Rovers MM (2014) Meta-analyses of ani-
mal studies: an introduction of a valuable instrument to further improve healthcare. ILAR 
J 55(3):418–426. https://doi.org/10.1093/ilar/ilu042

 248. Normand SL (1999) Meta-analysis: formulating, evaluating, combining, and reporting. Stat 
Med 18(3):321–359

 249. Esterhuizen TM, Thabane L (2016) Con: meta-analysis: some key limitations and potential 
solutions. Nephrol Dial Transplant 31(6):882–885. https://doi.org/10.1093/ndt/gfw092

 250. Zoccali C (2016) Moderator’s view: meta-analysis: the best knowledge but not always shin-
ing gold. Nephrol Dial Transplant 31(6):886–889. https://doi.org/10.1093/ndt/gfw093

D. Duan

https://doi.org/10.1126/science.aac4716
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1161/STROKEAHA.113.004148
https://doi.org/10.1161/01.STR.0000125719.25853.20
https://doi.org/10.1161/01.STR.0000125719.25853.20
https://doi.org/10.1038/jcbfm.2014.28
https://doi.org/10.1016/j.jneumeth.2013.09.010
https://doi.org/10.1093/ilar/ilu042
https://doi.org/10.1093/ndt/gfw092
https://doi.org/10.1093/ndt/gfw093


325

 251. Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, Zanier ER, 
Mamrak U, Rex A, Party H, Agin V, Fauchon C, Orset C, Haelewyn B, De Simoni MG, 
Dirnagl U, Grittner U, Planas AM, Plesnila N, Vivien D, Liesz A (2015) Results of a preclini-
cal randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain 
ischemia. Sci Transl Med 7(299):299ra121. https://doi.org/10.1126/scitranslmed.aaa9853. 
ARTN 299ra121

 252. Voelkl B, Vogt L, Sena ES, Wurbel H (2018) Reproducibility of preclinical animal research 
improves with heterogeneity of study samples. PLoS Biol 16(2):e2003693. https://doi.
org/10.1371/journal.pbio.2003693

 253. Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclini-
cal research. PLoS Biol 13(6):e1002165. https://doi.org/10.1371/journal.pbio.1002165

 254. Moher D, Avey M, Antes G, Altman DG (2015) The National Institutes of Health and 
guidance for reporting preclinical research. BMC Med 13:34. https://doi.org/10.1186/
s12916-015-0284-9

 255. Hsieh T, Vaickus MH, Remick DG (2018) Enhancing scientific foundations to ensure 
reproducibility: a new paradigm. Am J  Pathol 188(1):6–10. https://doi.org/10.1016/j.
ajpath.2017.08.028

 256. Goodman SN, Fanelli D, Ioannidis JP (2016) What does research reproducibility mean? Sci 
Transl Med 8(341):341ps312. https://doi.org/10.1126/scitranslmed.aaf5027

 257. Wieschowski S, Chin WWL, Federico C, Sievers S, Kimmelman J, Strech D (2018) 
Preclinical efficacy studies in investigator brochures: do they enable risk-benefit assessment? 
PLoS Biol 16(4):e2004879. https://doi.org/10.1371/journal.pbio.2004879

 258. Jarvis MF, Williams M (2016) Irreproducibility in preclinical biomedical research: percep-
tions, uncertainties, and knowledge gaps. Trends Pharmacol Sci 37(4):290–302. https://doi.
org/10.1016/j.tips.2015.12.001

 259. Han S, Olonisakin TF, Pribis JP, Zupetic J, Yoon JH, Holleran KM, Jeong K, Shaikh N, 
Rubio DM, Lee JS (2017) A checklist is associated with increased quality of reporting pre-
clinical biomedical research: a systematic review. PLoS One 12(9):e0183591. https://doi.
org/10.1371/journal.pone.0183591

 260. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving biosci-
ence research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 
8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

 261. Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald ZD, Moreland R, Simard T, 
Clancy AA, Russo JJ, Welch VA, Wells GA, Hibbert B (2017) Methodological rigor in pre-
clinical cardiovascular studies: targets to enhance reproducibility and promote research trans-
lation. Circ Res 120(12):1916–1926. https://doi.org/10.1161/CIRCRESAHA.117.310628

 262. Gerdes AM (2015) How to improve the overall quality of cardiac morphometric data. Am 
J Physiol Heart Circ Physiol 309(1):H9–H14. https://doi.org/10.1152/ajpheart.00232.2015

 263. Burgoon LD (2006) The need for standards, not guidelines, in biological data reporting and 
sharing. Nat Biotechnol 24(11):1369–1373. https://doi.org/10.1038/nbt1106-1369

 264. Deutsch EW, Ball CA, Berman JJ, Bova GS, Brazma A, Bumgarner RE, Campbell D, Causton 
HC, Christiansen JH, Daian F, Dauga D, Davidson DR, Gimenez G, Goo YA, Grimmond S, 
Henrich T, Herrmann BG, Johnson MH, Korb M, Mills JC, Oudes AJ, Parkinson HE, Pascal 
LE, Pollet N, Quackenbush J, Ramialison M, Ringwald M, Salgado D, Sansone SA, Sherlock 
G, Stoeckert CJ Jr, Swedlow J, Taylor RC, Walashek L, Warford A, Wilkinson DG, Zhou Y, 
Zon LI, Liu AY, True LD (2008) Minimum information specification for in situ hybridiza-
tion and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol 26(3):305–312. 
https://doi.org/10.1038/nbt1391

 265. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, 
Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel 
J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK 
Jr, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novere N, Leebens-Mack J, 
Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison 

17 Considerations on Preclinical Neuromuscular Disease Gene Therapy Studies

https://doi.org/10.1126/scitranslmed.aaa9853
https://doi.org/10.1371/journal.pbio.2003693
https://doi.org/10.1371/journal.pbio.2003693
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1186/s12916-015-0284-9
https://doi.org/10.1186/s12916-015-0284-9
https://doi.org/10.1016/j.ajpath.2017.08.028
https://doi.org/10.1016/j.ajpath.2017.08.028
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1371/journal.pbio.2004879
https://doi.org/10.1016/j.tips.2015.12.001
https://doi.org/10.1016/j.tips.2015.12.001
https://doi.org/10.1371/journal.pone.0183591
https://doi.org/10.1371/journal.pone.0183591
https://doi.org/10.1371/journal.pbio.1000412
https://doi.org/10.1161/CIRCRESAHA.117.310628
https://doi.org/10.1152/ajpheart.00232.2015
https://doi.org/10.1038/nbt1106-1369
https://doi.org/10.1038/nbt1391


326

N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, 
Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert 
CJ Jr, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting 
coherent minimum reporting guidelines for biological and biomedical investigations: the 
MIBBI project. Nat Biotechnol 26(8):889–896. https://doi.org/10.1038/nbt.1411

 266. Zeiss CJ, Allore HG, Beck AP (2017) Established patterns of animal study design under-
mine translation of disease-modifying therapies for Parkinson’s disease. PLoS One 
12(2):e0171790. https://doi.org/10.1371/journal.pone.0171790. ARTN e0171790

 267. Bonne G, Rivier F, Hamroun D (2017) The 2018 version of the gene table of monogenic 
neuromuscular disorders (nuclear genome). Neuromuscul Disord 27(12):1152–1183. https://
doi.org/10.1016/j.nmd.2017.10.005

D. Duan

https://doi.org/10.1038/nbt.1411
https://doi.org/10.1371/journal.pone.0171790
https://doi.org/10.1016/j.nmd.2017.10.005
https://doi.org/10.1016/j.nmd.2017.10.005


327© Springer Nature Switzerland AG 2019 
D. Duan, J. R. Mendell (eds.), Muscle Gene Therapy, 
https://doi.org/10.1007/978-3-030-03095-7_18

Chapter 18
Gene Replacement Therapy for Duchenne 
Muscular Dystrophy

Katrin Hollinger, Julie M. Crudele, and Jeffrey S. Chamberlain

Abstract Duchenne muscular dystrophy (DMD) is a fatal, X-linked disease 
caused by mutations in the massive dystrophin gene that lead to extremely low or 
non- detectable levels of dystrophin. Conversely, Becker muscular dystrophy 
(BMD) is a highly variable and significantly less severe disease that results from 
truncated or poorly expressed dystrophin variants. Based on the insights from 
BMD patient mutations and knowledge of the working domains of dystrophin, 
various miniaturized mini- and micro-dystrophin constructs have been developed 
for gene therapy and tested in preclinical animal models. Much of the central rod 
domain can be deleted with minimal loss of function, provided that spectrin-like 
repeats 16 and 17, which contain the neuronal nitric oxide synthase localization 
domain, are maintained. The N-terminal actin-binding domain and the C-terminal 
dystroglycan- binding domain (covering parts of “hinge 4” and the cysteine-rich 
domain) provide important functions and stability, while the function of the 
C-terminal domain appears redundant. While a range of viral vectors expressing 
these miniaturized genes have been utilized for DMD gene therapy, the recent 
focus has been on recombinant adeno-associated viral vectors (rAAV), which have 
now been tested extensively in mdx mouse and DMD dog models, and have own 
entered clinical trials. These vectors have shown significant improvement in the 
DMD pathology of mice and dogs, although complete correction has yet to be 
attained. Gene editing through exon-skipping oligonucleotides and CRISPR/Cas9 
is also being developed, with varying success and a sense that both technologies are 
still in their infancy. While promising rAAV clinical trials have begun, there is still 
work to be done to advance the field of gene replacement for DMD.
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18.1  Introduction

Duchenne muscular dystrophy (DMD) is the most common fatal, genetic, child-
hood disease, affecting 1:5000 newborn boys. It is caused by mutations in the 
X-linked dystrophin gene that lead to a complete or near complete absence of the 
dystrophin protein. DMD leads to progressive muscle damage resulting in wheel-
chair dependency around the ages of 8–13 and ultimately death due to respiratory or 
cardiac failure, usually in the third decade of life [1, 2]. Conversely, Becker muscu-
lar dystrophy (BMD) is a milder disease caused by mutations in the same gene that 
generally result in 5–20% levels of full-length dystrophin or by expression of an 
altered dystrophin protein, usually the result of an internal deletion. BMD disease 
severity varies widely, ranging from patients with almost no motor impairment to 
those with impairments similar to that of DMD.

The dystrophin gene is 2.2 megabases in length, has a cDNA of 14 kb, and 
contains 79 exons (not including 6 additional non-muscle first exons), making it 
one of the largest genes in nature [3]. Full-length dystrophin is expressed pri-
marily in the muscle, explaining the severe muscle pathology involved in 
DMD. The dystrophin gene has seven different promoters, which, together with 
alternative splicing, lead to several isoforms of different lengths in different tis-
sues [4]. The full-length, muscle- specific dystrophin is a 427 kDa protein con-
sisting of four distinct regions: the N-terminal domain, central rod domain, 
cysteine-rich (CR) domain, and C-terminal (CT) domain [5]. Each domain has 
its own functional role. The N-terminal domain is the primary binding site for 
cytoskeletal F-actin [6]. The rod domain is postulated to give some flexibility to 
the protein through 24 spectrin-like repeats (R) and 4 hinge regions [7, 8]. There 
is also an additional F-actin-binding site in the rod domain that is necessary for 
full dystrophin function [9, 10], and more recently it has been established that 
spectrin-like repeats 16 and 17 in the rod domain facilitate neuronal nitric oxide 
synthase (nNOS) localization to the sarcolemma [11, 12]. The cysteine-rich 
domain together with a “WW” motif in hinge 4 participates in the interaction of 
dystrophin with β-dystroglycan [13]. Finally, the C-terminal domain facilitates 
protein-protein interactions with multiple isoforms of α-dystrobrevin and syn-
trophin [14, 15].

Through these linkages with F-actin, β-dystroglycan, α-dystrobrevin, and syn-
trophin, dystrophin nucleates the assembly of and anchors the dystrophin- 
glycoprotein complex (DGC), which serves to connect the intracellular and 
extracellular environments [16]. This link allows for lateral force transmission from 
the inside of a muscle cell to the extracellular matrix during muscle contractions as 
well as outside-in signal transduction [17]. Without functional dystrophin protein, 
as in DMD, the DGC will not assemble [18] leading to loss of its signaling function 
and inadequate force transduction.

Interestingly, some BMD patients with mild disease progression have substantial 
deletions in the dystrophin gene [19, 20], resulting in proteins as small as half the 
size of full-length dystrophin. These findings suggested that “mini-” and “micro-” 
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versions of the dystrophin gene—developed based on BMD patients’ truncated 
 dystrophins and the known functions of the dystrophin domains—can be utilized in 
gene therapy applications to ameliorate a DMD phenotype, converting severe DMD 
patients into mild BMD patients. This is especially relevant for recombinant adeno- 
associated viral vector (rAAV)-based gene therapy, the first gene therapy for DMD 
to reach the clinic.

18.2  Mini-dystrophin Constructs

The first mini-dystrophin used in preclinical studies was discovered in a family of 
BMD patients with very mild disease, including an ambulatory 61-year-old [20]. 
The patients’ dystrophin gene had a central rod domain deletion of exons 17–48 
(5106 bp of coding sequence corresponding to spectrin-like repeats 3–19 and the 
second hinge), which maintained the open reading frame and reduced the dystro-
phin mRNA to approximately 8.8 kb. Removal of most of the 2.7 kb 3′ untranslated 
region of the mRNA enabled generation of 6.3 kb synthetic cDNAs that were based 
on this “BMD” gene [21]. Extensive preclinical studies utilizing this mini- 
dystrophin were conducted in mdx mice. Direct intramuscular injection of plasmids 
encoding the mini-dystrophin gene led to expression in approximately 1% of myo-
fibers and reduced the number of centrally located nuclei [22]. Intramuscular injec-
tion of retroviruses with the same transgene was associated with expression in 
approximately 6% of myofibers and reconstitution of components of the DGC [23]. 
Adenoviral vectors were also used, leading to protection against degeneration from 
natural progression [24] and stretch-induced damage during tetanic contractions 
[25] while also increasing muscle force generation compared to untreated mice 
[26]. Transgenic mdx mice expressing the patient mini-dystrophin at near-normal 
levels had almost complete phenotypic rescue, similar to that of the full-length 
protein [21, 27], while those expressing only 20–30% of normal levels still had 
significantly corrected phenotypes [28], an especially encouraging result for gene 
therapy prospects.

While the patient-derived mini-gene had demonstrated that much of the central 
rod domain was expendable, additional transgenic mdx lines were developed to 
interrogate the necessity of the N- and C-terminal regions. Guided by the fact that 
the main dystrophin isoform in the brain lacks exons 71–74 (encoding the major 
syntrophin-binding domain), a transgenic mouse expressing the murine mini-gene 
in muscle was developed [29]. These mice had normal muscle physiology, morphol-
ogy, and expression and localization of the DGC with no signs of muscular dystro-
phy. Further studies showed that the dystrobrevin-binding domains (exons 75–78) 
could also be deleted with no loss of function [30], and the entire C-terminal domain 
was shown to be redundant with other portions of the DGC [31]. Thus, the CT 
domain can be removed from therapeutic constructs, reducing the overall size by 
819 bps [31, 32]. While deletion of the C-terminal domain was not detrimental, 
deletion of the cysteine-rich region resulted in severely dystrophic muscles [30]; 
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this latter region has therefore been included in all preclinical iterations of mini- and 
micro-dystrophins. Transgenic mdx mice expressing a dystrophin without amino 
acids 45–273 (encoding 2 of the 3 actin-binding sites and part of hinge 1, similar to 
a BMD exon 3–7 deletion) had greatly reduced pathology provided the expression 
levels were near normal [33]. However, N-terminal domain deletions are associated 
with reduced protein levels in patients [34], likely due to protein instability, and at 
low levels of expression, the transgenic mice exhibited severe disease. Therefore, 
the N-terminal actin-binding domain (ABD1) has likewise been a standard inclu-
sion in mini- and micro-dystrophins.

18.3  AAV Micro-dystrophin Constructs

While some vectors derived from viruses, such as retroviruses, lentiviruses, and 
adenoviruses, can accommodate the large size of mini-dystrophins, each has its 
drawbacks. Meanwhile, one of the most promising viral vectors, rAAV, has its own 
challenge: a packaging capacity of approximately 5  kb, which must include the 
transgene as well as promoter, regulatory, and polyadenylation sequences. Thus, 
labs began developing micro-dystrophins, demonstrating their feasibility through 
improved pathology and force transduction in animal models.

An early micro-dystrophin construct, ΔR3−R21 + H3/ΔCT, also called 3990, 
contains the ABD1; 5 spectrin-like repeat; hinges 1, 3, and 4; and CR domains [35]. 
rAAV delivery of 3990 led to dystrophin expression that protected myofiber mem-
branes from Evans blue dye infiltration in mdx mice. Unfortunately, in an rAAV 
clinical trial delivering 3990 micro-dystrophin to DMD patients by an intramuscu-
lar injection, dystrophin expression was detected in only 2 out of 6 patients, with 
only 1–3 positive fibers detected in those patients’ biopsies [36]. An immune 
response to dystrophin epitopes may have eliminated transgene expression. As was 
covered in a previous chapter, cytotoxic T-cell responses to both the transgene and 
the viral vector can result in loss of transgene expression following AAV gene 
therapy [37, 38].

One of the first constructs developed by our lab was ΔR4−R23/ΔCT, also called 
hinge 2-micro-dystrophin (H2-μDys), which contains the ABD1; 4 spectrin-like 
repeat; hinges 1, 2, and 4; and CR domains [32]. This construct led to functional and 
morphological improvements in mdx mice and canine models [32, 39, 40], including 
in a large-scale canine study by Genethon meant to pave the way to the clinic [41]. 
However, it was later discovered that the inclusion of hinge 2 leads to ringbinden 
and smaller muscle fibers in a subset of muscles [42]. Exchanging hinge 2 for hinge 
3, which is less proline rich, resolved these issues. The resulting construct, called 
hinge 3-micro-dystrophin (ΔH2-R23 + H3/ΔCT; H3-μDys), significantly enhanced 
muscle fiber size, maintenance of neuromuscular junctions, and protection against 
muscle degeneration compared to that of hinge 2 micro-dystrophin in mice [42].
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After the discovery that spectrin-like repeats 16 and 17 anchor nNOS to the 
DGC [12], many newly developed constructs included R16 and R17. The 5 spec-
trin-like repeat construct ΔR3–15/ΔR18–23/ΔCT, which included the nNOS-
binding domain in addition to the ABD1, hinges 1 and 4, and CR domain, was able 
to successfully localize nNOS to the sarcolemma in dystrophic mice [11]. A 
smaller 4 spectrin-like repeat construct ΔR2–15/R18–19/R20–23/ΔCT, also con-
taining the nNOS-binding domain, was systemically transduced in DMD dogs 
[43], resulting in body-wide dystrophin expression and reduced histopathology. 
Localization of nNOS was unfortunately not evaluated. Finally, the newest con-
struct from our lab also contains nNOS-localizing repeats 16–17: ΔR2–15/Δ18–
22/ΔCT, also called μDys5, contains the ABD1, 5 spectrin-like repeats, hinges 1 
and 4, and CR domains [44]. μDys5 was able to localize nNOS and improve mus-
cle function in mdx mice [44, 45]. It has also been used extensively in preclinical 
studies in numerous DMD dogs [46, 47] in conjunction with Solid Biosciences, who 
is currently evaluating it in the clinic. Examples of some of these micro-dystrophin 
constructs are illustrated in Fig. 18.1.

Fig. 18.1 Structure of full-length dystrophin and various mini- and micro-versions of dystrophin. 
“Dystrophin” is the structure of the full-length protein. BMD-∆exons17–48 illustrate the structure 
of the protein made from the exon 17–48 deletion in a patient with a mild case of BMD [20]. Note 
that R19 is encoded by both exons 48 and 49, such that this dystrophin carries a partial R19. 
Dystrophins with partial spectrin-like repeats can have reduced function [32]. Mini-Dys is a syn-
thetic construct derived from the exon 17–48 deletion but lacking all of R19, improving overall 
stability and function [32]. Also shown are three different micro-dystrophins. Abbreviations are H 
hinge, R spectrin-like repeat, ABD actin-binding domain, CR cysteine-rich domain, CT C-terminal 
domain, nNOS neuronal nitric oxide synthase localization domain, DgBD dystroglycan-binding 
domain, SBD syntrophin-binding domain, DbBD dystrobrevin-binding domain
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18.4  Delivery of Full-Length Dystrophin

Ideally larger, even full-length dystrophins would be delivered to dystrophic mus-
cle. To address that, multiple AAVs have been administered simultaneously to cre-
ate a larger dystrophin gene via homologous recombination or trans-splicing (e.g., 
Fig. 18.2) [48–51]. In all studies, longer transcripts, including full-length dystro-
phin [50, 51], were observed. However, efficacy was limited due to the require-
ment that multiple vectors must co-transduce each cell and then successfully 
recombine. While the original 6.3 kb “BMD” mini-dystrophin was made at about 
90% of the levels of μDys, the full-length protein was produced at levels around 
5% of normal.

An alternative way to deliver full-length dystrophin is through the utilization 
of larger vectors. In proof of principal studies, both lentiviral vectors and foamy 
viral vectors have been tested. Both systems were able to deliver full-length dys-
trophin to patient-derived cells in  vitro. However, the large size of the cDNA, 
which is approaching the upper packaging limit of both vectors, leads to markedly 
reduced vector production titers [52, 53]. In contrast, “gutted” adenoviral vectors 
(gAd) achieved higher titers and were able to deliver full-length dystrophin to 
mdx mice via intramuscular injection; unfortunately, these gAd vectors have not 
been adapted for systemic delivery due to high uptake by the liver and residual 
immunogenicity [54].

Editing of the mutant dystrophin DNA and RNA can also lead to the produc-
tion of near-full-length dystrophin. One such example is exon skipping, where 
antisense oligonucleotides are continuously administered to induce alternative 
splicing and restoration of the open reading frame in patients with frameshift 
mutations. To avoid frequent readministration, AAV could be used to deliver the 
antisense oligonucleotides; this approach was successfully tested in DMD dogs 

Fig. 18.2 Generating mini-dystrophins by a dual rAAV delivery strategy. In this example, two 
rAAV (top) that each carries one half of a mini-dystrophin gene are delivered to the muscles via 
systemic infusion. After the single-stranded vector DNA is released from the rAAV particle inside 
of a muscle cell, the two half-dystrophin genes can undergo homologous recombination via a small 
region of shared sequence identity (here the sequence around spectrin repeat 20 is used) to gener-
ate a larger piece of DNA carrying the entire mini-dystrophin gene (bottom). The various dystro-
phin domains are as described in the legend to Fig. 18.1. Yellow ovals represent the AAV inverted 
terminal repeats (ITRs); MCK, mouse muscle creatine kinase enhancer plus promoter element; 
pA+, polyadenylation signal. Adapted from [49]
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[55]. In an alternative approach, recent gene editing with CRISPR/Cas9 was suc-
cessful in restoring near-full-length dystrophin in mdx and mdx4cv mice [56–59]. 
The nuclease is targeted to the site of action on the DNA by guide RNAs and 
causes a double-stranded brake. The double-stranded brake gets fixed by nonho-
mologous end joining, restoring the reading frame.

Both gene-editing techniques only work for known mutations and for a limited 
number of patients, since the antisense oligonucleotides and the guide RNA 
 recognize a specific site and thus restore frameshifts caused by mutations in specific 
exons. Therefore, new antisense oligos or guide RNAs need to be designed and 
tested for different mutations, but even then they will be limited in which mutations 
can be treated, especially in patients lacking portions of the essential dystroglycan- 
binding domain.

18.5  Methods of Delivery

In large animal models, vector delivery to multiple muscles had been challenging. 
In some earlier studies, vector delivery was localized to a limb by excluding blood 
flow to the rest of the animal and perfusing the vector in the limb, resulting in local-
ized muscle transduction. A dialysis system seemed to improve local muscle trans-
duction in nonhuman primates [60]. However, in order to achieve lifesaving and 
quality-of-life-improving treatment levels, systemic transduction needs to occur. In 
2-month-old dogs, intravenous injection of AAV9 expressing the alkaline phospha-
tase reporter construct Y731F leads to body-wide gene expression [43]. The possi-
bility of direct intravenous administration in large animals opens the door to clinical 
trials treating all the muscles in patients at once.

18.6  Summary and Future Direction

Since the first miniaturized dystrophins were tested in mice, the design has been 
continuously improved upon. Current micro-dystrophins contain an nNOS-binding 
site that had yet to be discovered when the first mini-dystrophin was made and show 
significant improvements in muscle pathology, morphology, and force transduction. 
At the time of this writing, Solid Biosciences, Sarepta and Pfizer are all conducting 
clinical trials with rAAV micro-dystrophins (μDys5 for the former and variations of 
H2-μDys for the two latter). However, even with the advances made over the previ-
ous decades, the micro-dystrophins currently in use do not completely restore wild- 
type dystrophin function, especially in the heart. At best, one would be converting 
DMD disease pathology to a mild BMD.

Larger dystrophins delivered with multiple rAAV vectors are less successful, 
mainly due to low recombination efficiency, and alternative vectors are limited by 
severe immune responses (adenoviral vectors), the risk of insertional mutagenesis 
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(retroviruses), and production limitations (lentiviruses). Gene editing with CRISPR/
Cas9, while intriguing, is still in its infancy and has safety concerns that must be 
addressed before potential human trails. Off-target effects need to be carefully char-
acterized, and the immunologic risk of expressing a bacterial enzyme in humans 
needs to be thoroughly assessed. Meanwhile, exon skipping has shown some lim-
ited success in patients; Sarepta’s Exondys 51™ (eteplirsen) became the first drug 
ever approved to directly treat DMD. Unfortunately, skipping exon 51 with Exondys 
51 can be used to treat just 13% of DMD patients.

While multiple promising clinical trials are underway, advances in gene replace-
ment therapy for DMD must continue to be made.
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Chapter 19
Recent Advances in AON-Mediated  
Exon-Skipping Therapy for Duchenne 
Muscular Dystrophy

Xianjun Gao, Gang Han, and HaiFang Yin

Abstract The accelerated approval of eteplirsen (renamed Exondys51™) by US Food 
and Drug Administration (FDA) garnered renewed enthusiasm for antisense oligonu-
cleotide (AON)-mediated exon-skipping therapies within the Duchenne muscular dys-
trophy (DMD) community. However, this approval is not without dissent, particularly 
from within the FDA committee, originating from the discordance between functional 
improvements seen in patients and lack of efficacy at the cellular level. Undoubtedly, 
improvements in exon-skipping efficiency and delivery of AONs would go a long way 
to quell doubts on the applicability of this approach in DMD. Several novel strategies 
have been developed to enhance exon-skipping efficiency. These include modification 
of the backbone chemistry of AONs (e.g. tricyclo- DNA and peptide nucleic acid) or 
conjugation of a peptide (e.g. cell- penetrating peptide or muscle-targeting peptide) 
with AON and the use of adjuvants including hexose and dantrolene. Here, we 
examine recent developments in these areas and discuss the likelihood of future 
clinical application and limitations of these approaches.

Keywords Exon skipping · Antisense oligonucleotide · Peptide · Duchenne 
muscular dystrophy · Adjuvant

19.1  Introduction

Duchenne muscular dystrophy (DMD) is one of the most prevalent and devastating 
muscular dystrophies, and it is caused by frame-disrupting deletions (65%), dupli-
cations (15%), nonsense and other mutations (20%) in the dystrophin gene [1]. To 
the credit and hard work of clinicians, research groups and the DMD community, 
particularly TREAT-NMD network, a DMD mutation database has been estab-
lished and made available to the public. Detailed genetic dissection of the dystro-
phin gene and deepening understanding of DMD pathologies provide a cornerstone 
for the development of therapeutic interventions. Different modalities of 
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therapeutic approaches for DMD have been attempted, including gene replacement 
[2, 3], terminal codon read-through [4, 5], cell therapy [6–8], genomic correction 
with the CRISPR-Cas9 genome editing system [9–11], utrophin up-regulation [12, 
13] and antisense oligonucleotide (AON)-mediated exon skipping [14–21]. After 
more than a decade of research, AON-mediated exon-skipping therapy has moved 
into the clinic with the first AON drug receiving accelerated approval from the US 
Food and Drug Administration (FDA) in 2016 [22, 23].

Although the approval is encouraging and brings the first ever DMD nucleic acid 
drug to reality, insufficient systemic delivery efficiency of PMO and lack of activity 
in the heart mean that there is plenty of room for improvement. This necessitates the 
development of more potent AON chemistries and tools to enhance AON activities. 
In this chapter, we focus on progress achieved for AON-mediated exon-skipping 
therapy in the past decade. Emphasis is placed on alternative AON chemistries such 
as tricyclo-(tc)-DNA [24], peptide nucleic acid (PNA) [18] and peptide-modified 
PMO [25–29] (Table 19.1). We also discuss the use of adjuvants, particularly hex-
ose and dantrolene, to enhance AON efficacy and clinical safety [30, 31]. Finally, 
we touch on early development stage nanoscale carriers for AON delivery [32–39].

19.2  AON Chemistries Used in DMD Exon-Skipping 
Therapy

Since the first proof-of-concept demonstration for AON-mediated exon skipping in 
the mouse model of DMD, a number of different chemistries have been developed 
and tested. Two lead compounds including 2′-O-methyl phosphorothioated RNA 
(2′OMe) and phosphorodiamidate morpholino oligomer (PMO) have undergone 
clinical trials. The most representative 2′OMe and PMO are PRO015 (also called 
drisapersen or kyndrisa) and eteplirsen (originally known as AVI-4658), respec-
tively [40, 41]. PNA and tc-DNA AONs are the most promising next-generation 
nucleic acid backbones that are likely to improve exon-skipping activity in future 
clinical trials. We focus our discussion on these two chemistries in this section.

PNA uses a peptide backbone to replace the ribose-phosphate backbones in RNA 
and is characterized by high binding affinity to PNA, DNA and RNA, sequence 
specificity and protease and nuclease resistance [42–44]. PNAs are also preferen-
tially localized to the nucleus, and they can be easily modified with peptides [45–48]. 

Table 19.1 Oligonucleotide and peptide nomenclature and sequence

Sequence Ref.

PMO GGCCAAACCTCGGCTTACCTGAAAT [14]
B-PMO (RXRRBR)2XB-PMO [25]
P007-PMO (RXR)4XB-PMO [25]
B-MSP-PMO (RXRRBR)2-ASSLNIAX-PMO [26, 27]
Pip5e-PMO RXRRBRRXR-ILFQY-RXRBRXRB-PMO [29]
Pip6a-PMO RXRRBRRXR-YQFLI-RXRBRXRB-PMO [57, 58]
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Initial assessment of PNA AONs in DMD cells and mdx mice by intramuscular 
injection demonstrated an activity comparable to that of PMO but much higher than 
that of 2′OMe AONs at the same dose [18]. The nuclease-/protease-resistant PNA 
AONs result in persistent exon skipping, peaking 4 weeks after single injection into 
the tibialis anterior (TA) muscle in mdx mice. This suggests that a single dosing with 
PNA AONs may result in relatively persistent dystrophin restoration. If this is con-
firmed in human patients, it will greatly reduce the frequency of dosing and hence 
become clinically much more appealing to patients [19]. Similar to PMO, PNA 
AONs were shown to be length-dependent with longer PNA AONs outperforming 
shorter ones; however the length of PNA AONs is limited by inefficient synthesis 
resulting in an exponential increase in price for each extra base added; thus there 
will be always a compromise between efficacy and cost [19]. Recent studies dem-
onstrated that up to 40% of normal level of dystrophin could be induced in periph-
eral muscles in mdx mice with repeated intravenous administration of PNA AONs 
(20 mer) at the dose of 100 mg/kg/week for 5 weeks, without any detectable toxicity 
[20]. This level of dystrophin restoration is similar to what was achieved with PMO 
at the dose of 100 mg/kg/week for 7 weeks [16]. When PNA AONs were compared 
with PMO side by side, comparable systemic activities were observed under identi-
cal conditions, indicating the potential of PNA AON as an alternative chemistry 
candidate for treating DMD. Intriguingly, although both PMO and PNA are neutral 
AONs, peptides that enhanced delivery of PMO after covalent conjugation lost 
function when conjugated to PNA AONs [49]. The reason for this remains a mys-
tery, but it is consistent across a number of peptides tested, so perhaps the nature of 
the amide bond results in some form of interaction between the PNA and peptides. 
A potential concern of PNA use in the clinic is that the synthesis and purification of 
PNA requires the presence of trifluoroacetic acid (TFA). TFA makes PNA AON 
solution acidic upon resuspension of the lyophilized powder.

A conformationally constrained oligonucleotide analogue, tc-DNA, was able to 
cross the blood-brain barrier and elicit dystrophin restoration in the brain with 
improved cognitive ability in mdx mice after repeated intravenous injections at the 
dose of 200 mg/kg/week for 12 weeks [24]. The cost of manufacturing tc-DNA is 
unclear as it is not commercially available; thus it is difficult to predict its potential 
cost to patients for clinical application. As the monomers are not easily available, 
the cost per treatment for patients would likely be much higher than the established 
2′OMe and PMO backbones. However, this may be offset by lower doses required, 
but it is unknown if tc-DNA is effective at lower doses. The inaccessibility of this 
chemistry also prevents other labs from easily modifying the AON with targeting 
peptides and other moieties that could improve delivery and efficacy. Without a 
commercial manufacturer that can supply the chemistry to research labs, the prog-
ress of tc-DNA’s development may be limited.

In summary, both PNA and tc-DNA appear to be promising second-generation 
AONs for clinical translation and are in the initial assessment stages. A thorough 
investigation on their efficacy and safety profiles needs to be established prior to 
their clinical use. Beyond these chemistries, the development of other novel back-
bone chemistries for DMD may result in surprising improvements in efficacy and 
delivery; thus this is a good direction for future studies.
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19.3  AON Nanoparticles

Low systemic delivery efficiency is the biggest challenge and hurdle for clinical 
translation of AONs. It was assumed that the low molecular weight of AONs results 
in rapid renal clearance and this partially accounts for its low systemic efficacy. 
Complexing nucleic acids into nanoparticles can lead to a longer circulation half- 
life and the enhanced permeability and retention (EPR) effect. For these reasons, 
AON nanoparticles have been extensively applied to cancer therapeutics [50]. More 
recently, investigators have begun to apply this strategy to DMD AONs. Negatively 
charged 2′OMe AONs were complexed with copolymers of cationic poly(ethylene 
imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) and delivered into TA mus-
cles of mdx mice, resulting in sixfold more dystrophin-positive fibres compared to 
AON alone [33]. Buoyed by these results, PEI2K-PEG550 and PEI2K-PEG5K 
copolymers were conjugated to nanogold (NG) or adsorbed onto colloidal gold 
(CG) to improve cellular uptake. Disappointingly, no significant improvement was 
found [32]. In order to improve the bio-distribution of PEG-PEI-AON polyplex, 
Sirsi and coworkers encapsulated this polyplex into degradable polylactide-co- 
glycolic acid (PLGA) nanospheres and tested efficacy in TA muscles of mdx mice. 
Intramuscular administration of nanospheres loaded with PEG-PEI-AON poly-
plexes showed a 3.4-fold higher number of dystrophin-positive fibres than AON 
alone without any overt toxicity [34]. However, the efficacy of PLGA and PEG-PEI- 
AON polyplex was much lower than PEG-PEI2K copolymer. Approaches to 
improve uptake were attempted by incorporating oxidation- or hydrolysis-sensitive 
controlled release with block copolymers PEG polycaprolactone (PCL), PEG- 
polylactic acid (PLA) and inert PEG polybutadiene (BR) to form polymersomes. 
The rationale of this was to reduce degradation in circulation. These polymersomes 
were able to deliver negatively charged 2′OMe AONs but only showed marginal 
improvement over AON alone in vitro and in mdx mice by intramuscular injection 
[35]. These results suggest that getting AONs into muscle cells, rather than degrada-
tion of AONs in body fluids, was the bottleneck. Other nanomaterials such as cat-
ionic polymethyl methacrylate (PMMA) were used for systemic intraperitoneal 
delivery of 2′OMe AONs in mdx mice but only improved delivery slightly over 
AONs alone [36]. The PMMA cores of PMMA-based nanoparticles were then mod-
ified with a random copolymer shell, derived from N-isopropil-acrylamide+ 
(NIPAM), and reactive methacrylate-bearing cationic groups to form PMMA/N- -
isopropil- acrylamide+ (NIPAM) nanoparticles (ZM2). Strikingly, ZM2 could effi-
ciently absorb 2′OMe AONs to form ZM2-AON complexes, and this significantly 
increased the level of dystrophin expression in peripheral muscles of mdx mice with 
some effects in the heart [37]. The effect persisted for 90 days after systemic admin-
istration of ZM2-AON complexes in mdx mice at the dose of 7.5 mg/kg/week for 
7 weeks [38]. Based on the encouraging results, the authors attempted oral delivery 
for ZM2-AON complexes in mdx mice but failed to achieve any effect [39].

Unlike siRNAs that are prone to degradation, AONs typically are stable in the 
blood and do not require protection for degradation in the form of nanoparticles. 
Furthermore, neutral nucleic acid backbones will not be complex with cationic 
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polymers; thus this restricts the choice of AON chemistry. Therefore, the researchers 
involved in developing AONs have carefully balanced the pros and cons of the com-
plexed AONs. While complexation improves AON uptake nonspecifically, the bigger 
challenge is to ensure that as much of the available AON ends up in the organs that 
require it, namely, the muscle and brain. Thus, the likely direction for the develop-
ment of AON nanoparticles for DMD will be towards adding targeting moieties on 
these nanoparticles. If that can be achieved, the combination of AON and a targeted 
nanoparticle shell may prove to be a winning combination for DMD patients.

19.4  Peptide-Conjugated AONs

Cell-penetrating peptides (CPPs) are positively charged peptides that can penetrate 
the negatively charged cell membrane and thus facilitate the uptake of AONs conju-
gated to them [51, 52]. CPP conjugation is synthetically easy for neutral PMO and 
PNA, but negatively charged AONs are hard to modify, and the resultant conjugates 
can flocculate due to intermolecular interactions. The first CPP used to modify 
PMO (namely, PPMO) and tested in mdx mice was (RXR)4 peptide (also named as 
P007 or R peptide, Table 19.1) [25]. Intraperitoneal injection of R-PMO in neonatal 
mdx mice at the dose of 25 mg/kg restored near-normal level of dystrophin expres-
sion in the diaphragm and peripheral muscles. Further, dystrophin restoration per-
sisted for approximately 26 weeks. Despite these encouraging results, no dystrophin 
expression was detected in the heart. The inefficiency of R-PMO in restoring dys-
trophin expression in the heart suggests that there are endogenous barriers in the 
heart for this AON delivery approach. Follow-up studies from three different groups 
suggest that this problem may be due to the injection route. Switching from intra-
peritoneal injection to intravenous injection greatly enhanced exon skipping in the 
heart. Following a single intravenous injection of R-PMO at the dose of 25 mg/kg, 
investigators not only observed near-normal levels of dystrophin restoration in 
body-wide peripheral muscles but also found approximately 20% of normal level of 
dystrophin expression in the heart of mdx mice [25]. The same effect was also seen 
with B-PMO, a variant of R peptide (Table 19.1), with sustainable expression of 
dystrophin protein in skeletal and cardiac muscles after repeated administration at 
12 mg/kg/day for 4 days [53]. Functional improvement in mdx heart was also dem-
onstrated by Wu and coworkers after repeated administration of B-PMO at the dose 
of 30 mg/kg biweekly for 12 weeks, which is the first evidence showing exon skip-
ping can improve cardiac function [54]. These findings suggest that CPP may have 
solved a nagging issue (i.e. inefficiency in the heart) plaguing AON-mediated exon- 
skipping therapy for DMD.

Although PPMO shows great promise in restoring dystrophin in skeletal and 
cardiac muscles, investigations in healthy non-human primates (rhesus monkey) 
showed detectable nephritic tube degeneration with 6 mg/kg B-PMO [55], which 
hints at the potential toxicity of PPMOs. Although CPPs are effective in penetrating 
cell membrane, the lack of targeting is a drawback. To confer CPPs’ muscle- 
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targeting property and thus reduce toxicity, a new form of chimeric peptide, consist-
ing of CPPs and muscle-targeting peptides (herein B-MSP), was conceived and 
assessed in mdx mice systemically [26]. The chimeric peptide-modified PMO 
(B-MSP-PMO) demonstrated greater activity and induced significantly higher level 
of dystrophin restoration in body-wide muscles than its counterpart (B-PMO) in 
mdx mice at the dose of 6 mg/kg/week for 3 weeks intravenously [27]. Notably, the 
incorporation of MSP into B peptide increased cellular uptake in muscles and 
reduced amounts of PMO in non-muscle tissues [56]. An interesting observation is 
that chimeric peptides function in a context-dependent manner with one orientation 
outperforming the other [56]. However, there was no dystrophin found in the heart 
with B-MSP-PMO at the dose of 6 mg/kg, which can possibly be attributed to the 
low doses used and the low affinity of MSP to the heart [26]. Subsequently, more 
efforts have been directed to search for more potent peptides with heart-targeting 
properties such as the PNA/PMO internalization peptide (Pip) [29, 57, 58]. The Pip 
series of peptides are characterized by a central ILFQY hydrophobic motif flanked 
on each side by Arg-rich domains containing only arginine, aminohexyl (X) and 
beta-alanine (B) residues [29]. After systematic screening and evaluation, Pip5e 
showed the strongest heart homing property in mdx mice. Much higher level of 
dystrophin expression was induced in the heart with Pip5e-PMO compared to 
B-PMO and other Pip-modified PMOs under identical conditions [59]. Interestingly, 
one of Pip5e variants, Pip6a containing reverse order of the hydrophobic core, pre-
sented a stronger heart-targeting property than Pip5e in mdx mice [57, 58]. Despite 
the unique heart-targeting feature conferred by the hydrophobic core, enrichment of 
positively charged amino acids remains a concern for the potential toxicity.

Guanidinium head groups of arginine-rich peptides are principally responsible 
for the uptake of PMO into cells; thus a tri-functional triazine was used as a core 
scaffold to assemble non-peptide dendrimers by presenting guanidinium head 
groups in a nonlinear pattern with a total of eight guanidine head groups at the end 
of each side chain. The dendrimeric octaguanidine moiety (named as Vivo porter) 
was coupled to PMO (Vivo-morpholino) and tested in mdx mice systemically [60, 61]. 
Effective dystrophin expression was achieved in body-wide peripheral muscles at 
the dose of 6 mg/kg, though negligible level of dystrophin expression was detected 
in the heart [60, 61].

An increasing appreciation of muscle-targeting peptides has led to identification 
of novel candidate peptides. M12, a novel muscle-targeting peptide identified by 
phage display screening, showed the ability to direct targeted delivery of PMO to 
muscle in mdx mice when conjugated with PMO [62]. Compared to MSP-PMO, 
significantly higher level of dystrophin expression was obtained in body-wide 
peripheral muscles from mdx mice treated with M12-PMO under identical dosing 
conditions (Fig. 19.1). This is the first evidence showing that muscle-targeting pep-
tide alone is sufficient to direct targeted delivery of PMO to muscle in DMD.

Fig. 19.1 (continued) of dystrophin expression in the indicated muscle groups from normal (C57), 
untreated mdx and mdx mice treated with M12-PMO (top panel) and MSP-PMO (bottom panel). 
20% and 10% C57 represent 20% and 10% of the wild-type level, respectively. α-Actinin was used 
as a loading control
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Fig. 19.1 Restoration of dystrophin expression after systemic administration of M12-PMO  conjugates 
for 3 weeks at the dose of 25 mg/kg/week in mdx mice. Dystrophin expression  following 3 weekly 
injections of M12-PMO conjugates at 25 mg/kg in adult mdx mice. (a) Immunofluorescence staining 
for dystrophin expression in mdx mice treated with the unmodified PMO, MSP-PMO and M12-
PMO conjugates. Data from control normal C57BL6 and untreated mdx mice are shown for com-
parison (scale bar = 100 μm). TA denotes the tibialis anterior muscle. (b) Western blot examination 
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Peptide conjugation presents the best avenue to improve delivery and efficiency 
of PMO.  The increase in synthesis costs can easily offset with the lower doses 
required, and if targeted delivery is possible, toxicity will be significantly reduced. 
However, none of the studies so far have demonstrated effective delivery to the brain 
and heart; thus targeting further developments along these lines may yield the most 
clinical benefits.

19.5  Adjuvants Potentiate AON Activities

Strategies that can potentiate AON activities without the need for extensive test-
ing that accompanies covalent modifications of the AONs would greatly acceler-
ate clinical translation. Adjuvants for DMD are relatively under-explored with 
the initial attempt reported in 2003 [14]. Co-administration of pluronic copoly-
mers F127 with 2′OMe AONs was shown to enhance its activities in the TA 
muscle of mdx mice [63]. However, subsequent systemic assessment resulted in 
very limited level of dystrophin expression in peripheral muscles from mdx mice 
after repeated administration of F127 with 2′OMe AONs at the dose of 100 mg/
kg/week for 3  weeks [64]. Further modification was carried out on available 
pharmaceutical adjuvants such as modification on pluronic copolymers with PEI 
to form PEI-pluronic copolymers (PCMs). PCMs consisting of low molecular 
weight (Mw) PEI (LPEI) (Mw, 0.8–1.2 k) and a range of different Mws of plu-
ronics were tried with hydrophilic- lipophilic balance (HLB). Examination on 
PCMs indicated that PCMs composed of pluronics with a Mw of 2–6 k and mod-
erate HLB (7–23) increased PMO-mediated exon-skipping efficiency and dystro-
phin expression in the TA muscle of mdx mice [64]. An enhancement in the 
number of dystrophin-positive fibres was observed in peripheral muscles, but 
disappointingly, not in the heart from mdx mice systemically administered with 
PCMs and PMO. In contrast, polyelectrolytes (PEs) are polymers with ionizable 
groups, which results in ions on the polymer chain and counterions in polar solu-
tion when dissociated. A series of PEs were tested, and PE-3 and PE-4 enhanced 
PMO delivery and induced a fourfold higher level of exon skipping in mdx mice 
compared to PMO alone [65]. Besides PEs, a series of poly(esteramine)s (PEAs) 
constructed from LPEI and pluronics were evaluated for their ability to deliver 
AONs in DMD cells and in mdx mice, with PEA 02 showing a fourfold higher 
level of exon skipping than PMO formulated in Endo-Porter, a commercial deliv-
ery vehicle. Systemic investigation confirmed the enhancement effect of PEA on 
PMO delivery in body-wide peripheral muscles in mdx mice [66]. Thorough 
studies are warranted to verify the viability of these polymers as adjuvants for 
AON delivery in DMD.

Recently, high-throughput screening based on small-compound library has 
been actively pursued in DMD. Hu and coworkers developed a green fluorescent 
protein (GFP)-based reporter drug screening system and identified 6-thioguanine 
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(6TG) from a library consisting of 2000 bioactive compounds. Enhanced exon-
skipping efficiency was observed when PMO was co-delivered with 6TG in vitro 
and in mdx mice intramuscularly, with approximately a twofold higher level of 
exon skipping compared to PMO alone in the TA muscle of mdx mice [67]. 
Unfortunately, the authors did not follow up with systemic administration; thus it 
is unknown if this compound can enhance exon skipping if administered systemi-
cally. Genevieve and coworkers made use of the same screening system with 
another drug library consisting of 300 compounds. A few candidate compounds 
were identified with dantrolene showing more appreciable clinical profiles and 
thus were chosen for detailed examination. Dantrolene is a compound already 
used for malignant hyperthermia and DMD for other purposes with few side 
effects reported. A synergistic effect was observed in most peripheral muscles 
except for triceps when dantrolene was co- administered with PMO into mdx mice 
systemically, but no improvement could be seen in the heart. Further mechanistic 
dissection revealed that dantrolene potentiates AONs by increasing exon-skipping 
frequency and the ryanodine receptor plays an important role for the functionality 
of dantrolene [31].

DMD was regarded as a metabolic disease before the identification of the 
causal dystrophin gene. Consequently, nutraceuticals (including coenzyme Q10, 
melatonin, green tea extract, soybeans and curcumin) have been extensively 
studied for DMD therapy [68]. Excitingly, Han and coworkers recently demon-
strated a new concept that nutrients such as hexose can enhance the delivery of 
AONs to the energy-deficient muscles of mdx mice. Up to a tenfold higher level 
of dystrophin expression was achieved in body-wide peripheral muscles from 
mdx mice following co-administration of PMO in an excipient containing glu-
cose and fructose (GF) at a 1:1 ratio, compared to PMO in saline (Fig. 19.2) [30]. 
GF enhanced the bioavailability of a range of oligonucleotides in muscle includ-
ing AONs and siRNAs without altering their distribution patterns. Detailed 
mechanistic studies suggest that GF functions through cellular energy replenish-
ment in energy-deficient muscles as evidenced by improved cellular uptake of 
AONs in mouse models of DMD and amyotrophic lateral sclerosis but not in 
normal wild-type C57BL6 mice [69] (Fig. 19.3). Similarly, fructose alone also 
potentiated activities of different AONs in a context- dependent manner with the 
strongest synergistic effect observed with PMO. Intriguingly, although fructose 
potentiated the activity of PMO in the short- term use, in the long run, it failed to 
provide any dramatic beneficial effect on PMO uptake [59]. The mechanisms that 
orchestrate energy supply and enhanced PMO activity have not been fully eluci-
dated, but evidence suggests that energy-deficient conditions in mdx mice and an 
energy-dependent pathway for PMO uptake might account for it. This finding 
has significant implications for AON-based exon- skipping therapy in DMD as 
GF has been extensively used in the clinic as infusion buffer and could be put to 
clinical use relatively quickly. Importantly, the enhancement effect of GF on 
PMO activity will significantly reduce the dose required and also ease the eco-
nomical burden for patients with DMD [30].
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Fig. 19.2 Systemic efficacy of PMO-GF in mdx mice. Dystrophin restoration in mdx mice treated 
with PMO-GF at 50 mg/kg/week for 3 weeks followed by 50 mg/kg/month for 5 months intrave-
nously. (a) Immunofluorescence staining for dystrophin expression in body-wide muscles from 
mdx mice treated with PMO-GF (scale bar = 200 μm). TA tibialis anterior. (b). Representative 
western blots show dystrophin restoration in mdx mice treated with PMO-S (saline) and PMO-GF 
(GF). 20%, 50% and 100% C57 represent 20%, 50% and 100% of the wild-type level, respectively. 
α-Actinin was used as a loading control. Bottom panel shows quantitative analysis of western blot 
results with Image J. TA tibialis anterior, A abdominal muscle, D diaphragm, G gastrocnemius, Q 
quadriceps, T triceps
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19.6  Summary and Future Direction

Overall, substantial progress has been achieved in the past decade for AON-
mediated exon-skipping therapy, with the first-in-human clinical trial completed 
and first AON drug (Exondys51™) approved by FDA. Exondys51™ can be a good 
start- point, and more thorough investigations on Exondys51™ will provide a par-
adigm for other drugs under similar situations. But we have to bear in mind that 
the biggest challenge for Exondys51™ is the low systemic efficacy, particularly in 
the heart and brain. Currently, each approach developed for enhancing the activi-
ties of AONs faces different drawbacks, and thus a combinatorial therapy would 
be ideal and likely maximize the clinical benefits for exon-skipping therapy in 
DMD. Therefore, potent AONs developed can be tested with new clinically appli-
cable adjuvants or novel muscle-targeting peptides. Similarly, AONs and mus-
cle-targeting moieties can be loaded on nanoparticles simultaneously and then 
applied with adjuvants without covalent conjugation. Such combinations may 
ultimately result in a therapeutic AON product that combines low toxicity, high 
efficiency at a lower dose and cheap, accessible synthesis to improve the progno-
sis of the DMD sufferers in the clinic. Another highly promising delivery is to use 
exosomes. Exosomes are cell- derived nanovesicles which are taken up naturally 
by a large variety of cells and can be targeted. Exosomes may supplant the other 
delivery modes for AONs in the future.

Fig. 19.3 Schematic illustration of the proposed mechanism underpinning GF-based PMO deliv-
ery. In the presence of sufficient GF (C6H12O6), muscle cells can readily take up GF and thus facili-
tate impaired mitochondria to produce more ATP. The availability of ATP in the cytoplasm will 
promote PMO uptake in an energy-dependent manner
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Chapter 20
AAV-Mediated Exon Skipping 
for Duchenne Muscular Dystrophy

Rachid Benchaouir and Aurelie Goyenvalle

Abstract Antisense-mediated exon skipping is one of the most promising 
therapeutic approaches for the treatment of Duchenne muscular dystrophy 
(DMD). In the past few years, this RNA-based strategy, mostly mediated by 
antisense oligonucleotides (AOs), has moved toward clinical evaluation, has dem-
onstrated encouraging results, and has led the FDA to grant accelerated approval to 
one of these compounds recently. However significant clinical improvement in 
DMD patients has not been shown thus far, and AO-mediated exon skipping still 
faces major hurdles such as low efficacy in targeted tissues, poor cellular uptake, 
and relatively rapid clearance from circulation. These properties drive the need for 
repeated administrations in order to achieve a therapeutic response, with the nega-
tive consequence of accumulation in tissues and associated toxicity. To overcome 
these limitations, small nuclear RNAs (snRNAs) have been used to shuttle the anti-
sense sequences, offering the advantage of a correct subcellular localization with 
pre-mRNAs and the potential for long-term correction when introduced into viral 
vectors such as adeno- associated virus (AAV) vectors. In this chapter, we review the 
development of the AAV-snRNA-mediated splicing modulation for DMD, focusing 
on the advantages offered by this technology over classical AOs as well as the chal-
lenges limiting their clinical application.
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nuclear RNA · Splicing modulation · Viral vectors

R. Benchaouir 
Université de Versailles St Quentin en Yvelines, U1179 INSERM/UVSQ,  
UFR des Sciences de la Santé, Montigny-le-Bretonneux, France 

LIA BAHN, Centre Scientifique de Monaco, Monaco, Monaco 

SQY Therapeutics, UFR des Sciences de la Santé, Montigny-le-Bretonneux, France
e-mail: rachid.benchaouir@uvsq.fr 

A. Goyenvalle (*) 
Université de Versailles St Quentin en Yvelines, U1179 INSERM/UVSQ,  
UFR des Sciences de la Santé, Montigny-le-Bretonneux, France 

LIA BAHN, Centre Scientifique de Monaco, Monaco, Monaco
e-mail: aurelie.goyenvalle@uvsq.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03095-7_20&domain=pdf
mailto:rachid.benchaouir@uvsq.fr
mailto:aurelie.goyenvalle@uvsq.fr


356

20.1  Introduction

Splice-modulation therapy aiming at correcting genetic defects by molecular 
manipulation of the pre-messenger RNA (pre-mRNA) is a promising novel thera-
peutic approach for numerous genetic diseases. It has previously been reported that 
more than 15% of mutations in the Human Gene Mutation Database affect splice 
sites [1], but this number does not take into account mutations in other splicing ele-
ments such as splicing enhancers, silencers, or mutations affecting RNA structure 
known to affect splicing patterns. Current estimates suggest that as many as 50% of 
the human-disease-causing mutations affect splice site selection [2], which high-
lights the increasing number of disease candidates for these novel RNA-based strat-
egies. Antisense-mediated splice modulation is mostly mediated by antisense 
oligonucleotides (AOs) and has demonstrated encouraging results for Duchenne 
muscular dystrophy (DMD) in particular. Synthetic AOs have indeed been used to 
skip exons of the dystrophin pre-mRNA in order to reframe transcripts and enable 
the synthesis of a slightly shorter but yet functional dystrophin protein. Two chem-
istries of AO targeting human dystrophin exon 51 have been evaluated in clinical 
trials, and one of these compounds (Eteplirsen, a phosphorodiamidate morpholino 
oligomer AO) has recently and surprisingly been granted an accelerated approval by 
the US Food and Drug Administration (FDA). However additional clinical trials 
have been requested to confirm the drug’s clinical benefit and await further study to 
establish efficacy in DMD. There is widespread consensus that there is a critical 
need to improve current antisense tools and their delivery. This is particularly 
important for DMD where most muscles, including the diaphragm and heart, need 
to be targeted. Furthermore, repeated injections of AOs are required to maintain 
splice-switching effects, leading to their accumulation in tissues such as the kidney 
and liver and subsequent potential long-term toxicities [3].

An intuitive alternative to overcome these limitations would be a continuous 
production of antisense sequences in situ. This can be achieved by gene transfer 
of small nuclear RNAs (snRNAs) appropriately modified with specific antisense 
sequences. snRNAs comprise a small group of highly abundant, non- 
polyadenylated, noncoding transcripts that function in the nucleoplasm. They can 
be divided into two classes on the basis of common sequence features and protein 
cofactors: the Sm-class RNAs (comprised of U1, U2, U4, U4atac, U5, U7, U11, 
and U12) and the Lsm-class RNAs (comprised of U6 and U6atac) (for review, see 
[4]). Apart from U7 snRNP which functions in histone pre-mRNA 3′ processing, 
the other uridine-rich snRNPs form the core of the spliceosome and catalyze the 
removal of introns from pre-mRNA [5]. Sm class of snRNAs is transcribed by 
RNA Pol II, 5′ monomethylguanosine capped in the nucleus and exported to the 
cytoplasm for further processing. After the cytoplasmic formation of the so-called 
Sm core structure by the survival of motor neurons (SMN) protein complex 
around the conserved Sm-binding site of the spliceosomal snRNAs [6] and the 
hypermethylation of 5′ cap (trimethylguanosine) and 3′ trimming, the snRNP is 
translocated back into the nucleus for its activity.

R. Benchaouir and A. Goyenvalle



357

The use of snRNA for splicing modulation offers many advantages such as the 
stability of the antisense sequence embedded into a snRNP particle, its specific 
subcellular colocalization with target pre-mRNAs, and the potential for permanent 
correction when introduced into viral vectors. In this chapter, we summarize the 
recent advances in viral vector-mediated antisense therapy using snRNAs for DMD. 
Following a description of the versatility of the snRNA approach, we discuss the 
strength and weakness of this strategy compared to synthetic oligonucleotides and 
conventional gene therapy.

20.2  The Emergence of the snRNA-Mediated Splicing 
Modulation Approach

Basic studies investigating the function of U7 snRNA have progressively led to the 
idea that snRNA derivatives could be used for specific antisense approaches. U7 
snRNA is normally involved in the histone pre-mRNA processing through a com-
plementary sequence to the histone downstream element (HDE) and a specific Sm 
core structure (Fig. 20.1). The U7 Sm-binding site recruits five Sm proteins that are 
also found in spliceosomal snRNPs and two specific proteins, Lsm10 and Lsm11 
[7]. Studies from Daniel Schumperli’s laboratory have shown that converting the 
noncanonical Sm-binding site of U7 snRNA (U7 Sm WT) into the consensus 
sequence derived from spliceosomal snRNPs (U7 SmOPT) resulted in assembly 
with Sm proteins D1 and D2 instead of Lsm10 and Lsm11 (Fig. 20.1). Moreover, 
the resulting U7 SmOPT snRNPs particles were found to accumulate more effi-
ciently in the nucleus and could not process the histone pre-mRNA any longer [8, 
9]. Based on these observations, the group suggested for the first time that U7 Sm 
OPT-derived RNAs equipped with antisense sequences targeting specific splice 
sites, with their exclusively nuclear location and their inability to cleave the target 
pre-mRNA, should be ideally suited to manipulate the splicing patterns of individ-
ual target genes. This hypothesis was first tested to correct the altered splicing of the 
β-globin gene in tissue culture model for β-thalassemia [10]. This approach was 
modeled on a strategy pioneered by Kole et al. where antisense oligonucleotides 
were used to target specific splice sites in pre-mRNAs and, hence, to redirect alter-
native splicing decisions (reviewed in [11]). The advantage of this type of approach 
was intuitive: while oligonucleotide-based redirection of splicing can be beneficial 
for many inherited diseases, the expression of antisense sequences from a snRNA- 
encoding gene such as a modified U7 SmOPT derivative could achieve more sus-
tained or even permanent nuclear antisense effects. Initial work using the 
β-thalassemia model confirmed the feasibility of the U7 snRNA-mediated splicing 
modulation approach [10], and improved efficiency was obtained with U7 snRNA 
constructs carrying two tandem antisense sequences, targeting the two different 
splicing elements [12]. These so-called “double-target” constructs were thought to 
increase exon-skipping efficacy by maybe inducing a loop between the two base- 
pairing sites (Fig. 20.1).
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Modified derivatives of the spliceosomal U1 snRNA have similarly been used to 
target nuclear splicing events. The attractiveness of U1 as a therapeutic target is due 
to the fact that U1 snRNA expression is sixfold higher than U7 snRNA expression 
per gene copy [13, 14] and because of its central role in splicing. Research however 
suggests that targeting U1 snRNA over the other snRNA constructs does not result 
in superior efficacy, perhaps due to the inability of the modified U1 to compete with 
the largely expressed wild-type U1 for specific binding sites [13]. Gorman and col-
leagues also investigated in this study the replacement of the U7 promoter by U1 
promoter, which did not significantly increase the expression levels of snRNAs or 
the actual splicing modulation. These findings were consistent with previous work 
showing that the ~100-fold difference in steady-state levels between endogenous 

Fig. 20.1 Structure of the wild-type (WT) and modified U7 snRNA used to perform splicing 
modulations. WT U7 snRNA (top left) is a single-strand RNA molecule with a hairpin structure at 
the 3′ end and linked with a protein complex, the U7 Sm core. Altogether the U7 snRNA and the 
U7 Sm core form the U7 snRNA (ribonucleoprotein complex), playing a role in histone pre-mRNA 
processing. The Sm core of the U7 snRNA consists of seven proteins encircled around the snRNA- 
binding site and forming a torus structure. The 5′ part of the snRNA is complementary of the HDE 
(histone downstream element), sequence found in the 3′ end of the histone pre-mRNA. For splic-
ing modulation, in particular in exon-skipping approaches, the U7 snRNA is genetically modified 
for a better subcellular localization (nucleus) and to avoid the cleavage of the histone pre- 
mRNA. To allow these properties, the U7 Sm-binding site is replaced by the consensus sequence 
derived from the spliceosomal snRNPs called the U7 Sm OPT.  This modification leads to the 
replacement of two Sm proteins (represented in white in WT U7 snRNP figure), Lsm10 and Lsm 
11, by D1 and D2 Sm proteins (schematized in dark gray in the three other modified structures). To 
specifically modify the splicing pattern of targeted pre-mRNAs, the HDE sequence is replaced by 
specific antisense sequences. The “single-target” snRNP (bottom left) contains only one specific 
complementary sequence, while the “double-target” snRNP (top right) is able to target two distinct 
regions. A 5′ end tail can be added to the U7 snRNA sequence to form a “bifunctional” U7 snRNA 
(bottom right). This structure carries exonic splicing enhancer (ESE) or silencer (ESS) sequence 
able to bind specific splicing enhancer (SE) or silencer (SS) factors to optimize the desired splicing 
modulation effect
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U1 and U7 snRNAs could be accounted for by differences in functional gene copy 
number (~30-fold) and snRNP assembly (twofold to fourfold) [8]. Altogether, these 
pioneered studies established the proof of concept of the snRNP-mediated splicing 
modulation approach which has since then been investigated for many other disor-
ders and DMD in particular.

20.3  Therapeutic Exon Skipping Mediated by snRNA 
for DMD

20.3.1  In Vitro Proof of Concept and Preclinical Studies 
on Mouse Models

Most mutations causing DMD disrupt the open reading frame, leading to aberrant 
translation and therefore to the absence of the essential muscle protein dystrophin. 
Interestingly, the allelic disease Becker muscular dystrophy (BMD), which results 
in a much milder phenotype, is mainly caused by mutations maintaining the open 
reading frame and allowing the production of a partially deleted but functional dys-
trophin [15]. This observation has led to one of the most promising therapeutic 
strategies for DMD which aims to convert an out-of-frame mutation into an in- 
frame mutation [15, 16]. This can be achieved using AOs that interfere with splice 
sites or regulatory elements within the exon and was first demonstrated by Pramono 
and colleagues in 1996 in lymphoblastoid cells and by Dunckley and colleagues in 
1998 in cultured mouse cells in vitro [17, 18]. Since then, numerous in vivo studies 
have provided preclinical evidence for the therapeutic potential of this antisense 
strategy for DMD in several animal models. One model in particular, the mdx mouse 
(carrying a nonsense mutation in exon 23), is being widely used to test the efficacy 
of the exon-skipping approach using various oligonucleotide chemistries such as 
2′OMethyl phosphorothiate (2′OMePS), phosphorodiamidate morpholino oligo-
mers (PMO), locked nucleic acid (LNA), or tricyclo-DNA (tcDNA) [18–20]. 
However, despite previous encouraging clinical results obtained with some oligo-
nucleotide chemistries (Drisapersen [14–19] and Eteplirsen [19–23]), the latest 
studies have shown significant limitations in terms of body-wide delivery, a particu-
larly important point for pathologies such as DMD where most muscles, including 
the diaphragm and heart, need to be efficiently targeted. Moreover, in order to main-
tain high exon-skipping levels, repeated injections of AOs are required, leading to 
their progressive accumulation in tissues such as the kidney and liver and subse-
quent potential long-term toxicities [3]. To overcome these issues, several groups 
have attempted to achieve permanent in situ expression of antisense sequences 
using viral vectors to maintain therapeutic levels of dystrophin (Table 20.1).

Based on the pioneered work done on the β-globin gene, De Angelis and col-
leagues investigated the use of different snRNAs as antisense shuttles and compared 
U1 snRNA, U2 snRNA, and U7 snRNA derivatives targeting the dystrophin exon 
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Table 20.1 SnRNA-mediated splice-switching approaches for Duchenne muscular dystrophy

Authors and 
year Model U snRNA Summary

In vitro studies
De Angelis 
et al. 2002 [21]

DMD 
myoblasts

U1, U2, U7 
snRNA

First demonstration of U snRNA-mediated 
exon- skipping approach for DMD in vitro 
(retroviral vector)

Brun et al. 
2003 [22]

C2C12 and 
mdx myoblasts

U7 snRNA Proof of principle of U7 snRNA-mediated exon 
23 skipping in mdx myoblasts by transfection

Goyenvalle 
et al. 2009 [33]

DMD 
myoblasts and 
hDMD mouse

U7 snRNA Development of bifunctional U7 snRNA for exon 
51 skipping (lentiviral and AAV vectors)

Incitti et al. 
2010 [60]

DMD 
myoblasts

U1 snRNA Optimization of U1 snRNA constructs for exon 
51 skipping (lentiviral vectors)

Goyenvalle 
et al. 2012 [42]

DMD 
myoblasts and 
hDMD mouse

U7 snRNA Optimization of 11 U7 snRNA constructs for 
skipping of human exons and proof of principle 
of multiple exon skipping (lentiviral and AAV 
vectors)

In vivo studies
Goyenvalle 
et al. 2004 [24]

Mdx mouse U7 snRNA First efficient rescue of dystrophin in vivo in mdx 
mouse using AAV-U7 snRNA

Denti et al. 
2006 [23]

Mdx mouse U1, U7 
snRNA

Efficient exon 23 skipping in mdx mice after 
local AAV-U1 or U7 snRNA gene transfer

Denti et al. 
2006 [25]

Mdx mouse U1 snRNA First body-wide gene therapy of mdx mouse 
model using AAV-U1 snRNA

Benchaouir 
et al. 2007 [61]

Scid/mdx 
mouse

U7 snRNA Restoration of human dystrophin following 
transplantation of exon-skipping-engineered 
DMD patient stem cells into dystrophic mice 
(lentiviral vectors)

Denti et al. 
2008 [26]

Mdx mouse U1 snRNA Persistent exon skipping and functional benefit 
observed 74 weeks after a single systemic 
administration of AAV-U1 snRNA

Bish et al. 
2011 [62]

GRMD dog U7 snRNA Long-term restoration of cardiac dystrophin 
expression in GRMD model following AAV6-U7 
snRNA treatment

Vulin et al. 
2012 [29]

GRMD dog U7 snRNA Muscle function recovery in golden retriever 
muscular dystrophy after AAV1-U7 exon 
skipping

Goyenvalle 
et al. 2012 [31]

DKO mouse 
(dys-/utr-)

U7 snRNA Rescue of severely affected dystrophin-/
utrophin- deficient mice through scAAV-U7 
snRNA-mediated exon skipping

Eckenfelder 
et al. 2012 [63]

C2C12 
myoblasts and 
mdx mouse

U7 snRNA The cellular processing capacity limits the 
amounts of chimeric U7 snRNA available for 
antisense delivery

Le Hir et al. 
2013 [55]

DKO mouse 
and GRMD 
dog

U7 snRNA AAV genome loss from dystrophic mouse 
muscles during AAV-U7 snRNA-mediated 
exon-skipping therapy

(continued)
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51 in vitro. Following transduction of DMD-derived cells with recombinant retrovi-
ral vectors, they demonstrated efficient skipping of exon 51 and partial rescue of 
dystrophin synthesis with U1 snRNA and U7 snRNA.  Interestingly, the highest 
level of exon skipping was obtained with a U7 snRNA vector carrying two antisense 
sequences, which was called “double-target U7” [21]. This result was later con-
firmed by Brun and colleagues [22]. While these in vitro studies used stable trans-
fection and retroviral transduction to express the chimeric snRNA continuously into 
the cells, snRNA systems have also been used in vivo to restore dystrophin expres-
sion in the mdx mouse model of DMD [23, 24]. The U7 snRNA engineered to target 
the exon 23 of the mouse dystrophin pre-mRNA was introduced in mdx muscles 
using adeno-associated virus (AAV) vectors which allow efficient gene transfer in 
skeletal muscle. A single administration of AAV-U7 resulted in persistent exon 23 
skipping, leading to permanent rescue of dystrophin and muscle function [24]. 
Similar work using U1 derivatives also demonstrated efficient restoration of dystro-
phin in mdx muscles following AAV injections [23]. Systemic administration of 
AAV-snRNA was shown to induce body-wide restoration of dystrophin [25] and a 
lifelong beneficial effect in the mdx model [26] as well as in the severely affected 
dys-/utr- (dKO) mouse model [27].

20.3.2  Preclinical Work on Large Animal Model

The viral vector-mediated exon-skipping strategy has also been investigated in a 
larger animal model, the golden retriever muscular dystrophy (GRMD) dog, which 
presents a dystrophic phenotype very similar to DMD patients [28]. Interestingly, 
the GRMD mutation (a single-base change in the 3′ consensus splice site of intron 
6 of the dystrophin gene) provokes inaccurate mRNA processing and exclusion of 
exon 7, which predicts a termination of the dystrophin reading frame within its 
N-terminal domain in exon 8. Due to exon phasing, both exons 6 and 8 need to be 

Table 20.1 (continued)

Authors and 
year Model U snRNA Summary

Le Guiner 
et al. 2014 [30]

GRMD dog U7 snRNA Forelimb treatment in a large cohort of 
dystrophic dogs supports delivery of a 
recombinant AAV for exon skipping in 
Duchenne patients

Peccate et al. 
2016 [59]

Mdx mouse U7 snRNA Antisense pre-treatment increases gene therapy 
efficacy in dystrophic muscles

Gentil et al. 
2016 [64]

GRMD dog U7 snRNA Dystrophin threshold level necessary for 
normalization of neuronal nitric oxide synthase, 
inducible nitric oxide synthase, and ryanodine 
receptor-calcium release channel type 1 
nitrosylation in golden retriever muscular 
dystrophy dystrophinopathy
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skipped in order to restore the open reading frame of the GRMD dystrophin 
mRNA. Therefore, an AAV vector carrying two engineered U7 snRNA-targeting 
exons 6 and 8, respectively, was used to demonstrate efficient dystrophin rescue and 
muscle function recovery [29]. These results were later confirmed in a larger cohort 
of GRMD dogs following locoregional transvenous perfusion of the forelimb, sup-
porting the concept of a future phase1/2 trial of locoregional delivery into the upper 
limbs of non-ambulatory DMD patients [30].

Restoration of cardiac dystrophin expression was also shown in the GRMD 
model following percutaneous transendocardial delivery of rAAV6 expressing a 
modified U7 [31]. This was accompanied by improved cardiac function as assessed 
by cardiac magnetic resonance imaging (MRI), suggesting this type of injection was 
a safe, effective method for restoration of dystrophin expression and improvement 
of cardiac function in the GRMD.

20.3.3  Translation to Human Dystrophin Exon Skipping 
and New Developments

Altogether these preclinical results have undoubtedly advanced the feasibility of 
exon skipping in different animal models, suggesting promising therapeutic out-
comes based on AAV-snRNA. Consequently, different groups have tried to identify 
the most appropriate antisense sequences targeting the human dystrophin pre- 
mRNA that could induce the highest level of skip. For example, Incitti and col-
leagues have achieved skipping of exon 51  in human cells carrying deletions of 
exons 48–50 or 45–50 using U1 snRNA derivatives [38]. Appreciating that DMD is 
caused by mutations at different gene loci and that 70% are located between exons 
45 and 55, our group has previously designed 11 U7 snRNAs targeting these differ-
ent human dystrophin exons and demonstrated very encouraging results in DMD 
patient myoblasts and in a human DMD transgenic mouse model (hDMD) [39].

Since the optimization of the target sequences can be a long and expensive pro-
cess for each snRNA derivatives, we also investigated the possibility of using a 
more universal system based on the previously described bifunctional AOs. It has 
indeed been demonstrated that tailed AOs carrying a splicing silencer sequence 
could induce splicing modulation even more efficiently than oligonucleotides acting 
through duplex formation only [32]. We therefore engineered U7 snRNA with splic-
ing silencer motifs and demonstrated that bifunctional U7 snRNA constructs can 
achieve efficient exon 51 skipping in human myoblasts as well as in vivo in the 
hDMD mouse model [33] (Fig. 20.1).

Overall, these studies have not only demonstrated the feasibility of snRNA- 
mediated exon skipping but achieved impressive and long-lasting restoration of dys-
trophin, which represent crucial milestones for the clinical application of this 
strategy. Clinical evaluation of the AAV-snRNA-mediated exon-skipping approach 
is currently being planned by the French consortium sponsored by the Association 
Française contre les Myopathies (AFM).
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20.4  Advantages and Challenges of the snRNA-Mediated 
Splicing Modulation

20.4.1  Advantages

The AAV-snRNA tandem confers several advantages to design a promising gene 
therapy approach for DMD. As previously mentioned, this pathology requires an 
efficient body-wide treatment to expect clinically relevant outcomes. The limited 
delivery and the need for repeated administration of synthetic AOs represent signifi-
cant drawbacks of the classical exon-skipping strategy. The snRNA genes, includ-
ing their natural promoters, are relatively short-sized expression cassettes (around 
500 bp) which can easily be packaged in the recombinant AAV vector. These viral 
vectors offer advantageously a large panel of serotypes characterized by different 
tissue targeting, in particular, for the skeletal muscle as previously described [24]. 
The heart tropism of AAV vectors has also been well documented and is of particu-
lar interest since the cardiac physiopathology in DMD is one of the frequent causes 
of death [31, 34, 35]. Recently, a customized AAV variant has been positively tested 
for its capacity to transduce the central nervous system with high efficiency after 
intravenous injection [36]. The crossing of the blood-brain barrier, leading to poten-
tial correction of the DMD cognitive defects, provides a definite advantage of AAV 
compared to the synthetic AOs whose efficacy to enter the CNS remains very 
limited.

The robustness of the viral capsid also provides a protective environment for the 
snRNA molecules, allowing it to be delivered through the vascular system to the 
target cells without undergoing physical, chemical, or enzymatic degradation. 
Moreover, AAV vectors enable the introduction of several episomal copies of the 
snRNA transgene in the cell nuclei. These extrachromosomal copies allow a long- 
term transgene expression and avoid the periodic repeated administration required 
for synthetic AOs to achieve the same optimal levels of functional molecules. This 
characteristic is all the more advantageous when it applies to postmitotic tissues 
such as the principal target cells of the neuromuscular system (muscle fibers, car-
diomyocytes, neurons). Additionally, embedding of the snRNA by cellular proteins 
to form the snRNP complexes provides their stability and more importantly their 
subcellular colocalization with the target pre-RNAs [9, 10]. These properties make 
the modulation of splicing by U7 snRNA very specific, and no toxic effect has ever 
been described [37]. Furthermore, the snRNA transgenes are transcribed from their 
natural promoter, which limits their level of expression from a quantitative point of 
view (endogenous levels) but also qualitatively (expression in cells having the 
 correct transcriptional machinery). The latter advantage is used to prevent any side 
effects that may result from an overexpression of the protein of interest (dystro-
phin), which could occur in the case of gene transfer strategies using mini- or micro- 
dystrophins expressed from strong viral promoters. A T-cell immune response has 
previously been observed against dystrophin itself [38]. One of the hypotheses sug-
gested was the production of the transgene by antigen-presenting cells that would 
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have been transduced by the AAV mini-dystrophin vectors. The advantage of AAV- 
snRNA system is its capacity to restore the protein of interest only in cells naturally 
expressing the mRNA, reducing the chances untoward T-cell activation through the 
transduction of antigen-presenting cells.

In view of the small size of snRNA constructs and their ease of cloning into AAV 
vectors, the idea of double or multiexon skipping has emerged to increase the num-
ber of eligible patients for gene therapy (Fig. 20.2). Indeed, the multiexon skipping 
of exons 45–55 would not only be applicable to a large proportion of DMD patients 
but would also be associated with a mild phenotype [39, 40]. While this strategy can 
be challenging using AOs [41], AAV vectors provide the advantage to introduce 
 different antisense constructs (snRNA) into the same cell nucleus, making the viral 
approach much more appealing to achieve this strategy [42].

Implementation of a gene therapy approach for DMD by the use of AAV vectors 
requires modes of production compatible with clinical and industrial needs. Since at 
least 1015 viral genome particles are needed to treat a patient, new processes have 
supplanted the traditional research scale productions to reach these levels. Among 
these developments, we can mention the process using the baculovirus/insect cell 

Fig. 20.2 Structure of the single-strand DNA genomes packaged in recombinant AAV (rAAV) 
capsids (hexagon). A single U7 snRNA molecule can be cloned and then transcribed from a single 
U7 snRNA gene under the control of its natural U7 promoter (top). The relatively short size of the 
U7 snRNA cassette authorizes the duplication of these constructions in a same and unique rAAV 
genome. This approach allows multiexon-skipping strategies through the expression of a different 
U7 snRNA from a single rAAV backbone (bottom)
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system as one of the most promising methods since it has already been used in indus-
try for the production of human recombinant proteins [43]. Efficient downstream 
processes are now available to be compatible with the good manufacturing practices 
guidelines. Other current developments are attempting to minimize the cost of pro-
cesses which is also an important element in the perspective of moving this technol-
ogy to industry and the clinic [44]. By comparison, the costs of AO synthesis are 
very high because some of these synthetic chemistries require multistage manufac-
ture in production. Finally, it is important to note that many clinical trials are based 
on AAV approaches and that the first marketing approval for rAAV gene therapy has 
recently been delivered, calling for vector production improvements [45–47].

20.4.2  Limitations and Challenges of Viral Vector-Mediated 
Exon Skipping

Despite the advantages conferred by AAVs for the transfer of snRNAs, some limita-
tions complicate their use as gene carriers. The major disadvantage concerns the 
incompatible relationship between the viral nature of the vectors and the immune 
system of the host. Two types of immune rejection are concerned. The pre-existing 
host immunity to viral capsids is the first barrier against AAV-mediated gene trans-
fer [48]. Neutralizing antibodies are the main immune response that can thwart 
therapeutic efficacy, particularly for serotype 2 whose prevalence reaches nearly 
70% of the human population [49]. To circumvent this seroprevalence, some have 
proposed the use of AAV variants that have a weak homology with classical sero-
types [50]. Another alternative is to create chimeric AAV variants having the prop-
erty to both escape antibody neutralization and improve tissue tropism [51]. Directed 
evolution (error-prone PCR, DNA shuffling) or rational capsid engineering is part 
of the most popular techniques for the development of these new vector generations 
with high therapeutic potential [52–54].

The second immunological barrier relates to the challenge of reinjecting the AAV 
vectors due to the vaccinating effect of the primary injection. Indeed, the degeneration/
regeneration cycles that occur in dystrophin-deficient muscles lead to rapid loss of vec-
tor when suboptimal doses of recombinant AAV have been applied [29, 55]. For this 
reason, repeated injection of therapeutic vectors may lead to reinforcement of the initial 
rescue, allowing long-term phenotype stabilization. The problem of the vector read-
ministration can be transiently circumvented by immune- modulation approaches. 
Application of transient immunosuppression has resulted in long-term expression of 
micro-dystrophin in naïve dystrophic dog models [56, 57]. It is possible that immuno-
suppression may also help readministration. Indeed, it was found that co-stimulation 
blockade enabled repeated AAV-1 injection in mdx mice [58]. However, immunosup-
pression poses problems of applicability when it concerns individuals already highly 
affected by their pathology, in particular DMD patients. As previously discussed, read-
ministration strategies including different successive serotypes or hybrid vectors could 
represent an interesting alternative for a long-term muscle protection.
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Alternatively, combined therapy using AOs and AAV vectors has been proposed 
to enhance the therapeutic efficacy of splicing modulation strategies. A recent study 
investigated the effect of a pre-treatment of muscle fibers with a single dose of the 
peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides. The 
PPMO pre-treatment, inducing temporary dystrophin expression at the sarcolemma, 
promoted the efficient maintenance of AAV genomes in dystrophic muscles and 
improved the AAV-U7 therapy benefits with an increase of the protein level sus-
tained for at least 6 months [59].

20.5  Conclusion

SnRNA-mediated exon skipping is considerably enhanced by the use of AAV- 
derived vectors which enable optimized in  vivo biodistribution. The numerous 
proofs of concepts reported in laboratory mouse models as well as in preclinical 
larger animal models (dogs) make it possible today to accelerate the passage of this 
approach toward the clinic. The low immunogenicity of AAV vectors, the diversity 
of serotypes and newly engineered particles available, and their capacity to be 
industrially processed, in addition to their recent first marketing approval, make the 
AAV a vector of choice for future splicing modulation-mediated gene therapy 
approaches. Immunological barriers should be solved by the implementation of 
alternative strategies consisting in transient blocking of the immune response effec-
tors, by using variants allowing vector readministration, or by combining approaches 
with AAV and AOs molecules. SnRNAs represent very promising tools for the treat-
ment of inherited diseases such as muscular dystrophies, and their upcoming clini-
cal evaluation will be extremely informative for numerous other pathologies.
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Chapter 21
Alternate Translational Initiation 
of Dystrophin: A Novel Therapeutic 
Approach

Nicolas Wein and Kevin M. Flanigan

Abstract A founder allele in the DMD gene results in a syndrome ranging from 
minimally symptomatic Becker muscular dystrophy to asymptomatic hyperCKemia 
via expression of a highly functional N-terminal deleted version of the dystrophin 
protein (the ΔCH1 isoform). Translation of this protein results from utilization of a 
recently discovered internal ribosome entry site (IRES) within exon 5. The IRES is 
not active in the presence of a duplication of exon 2—the most common single-exon 
duplication—but is active in its absence. We have developed an AAV-encapsidated 
U7snRNA vector that targets and induces skipping of exon 2, resulting in either 
expression of a wild-type dystrophin or of the ΔCH1 isoform, either of which is 
therapeutic.

Keywords Duchenne muscular dystrophy · Actin-binding domain · Exon skipping 
· Internal ribosome entry site

21.1  Introduction

The DMD gene, comprising 79 exons, is one of the largest known genes, as it 
encompasses 2.22 Mb localized to chromosome Xp21. Three promoters have been 
described that drive expression of full-length 427 kDa dystrophin isoforms that 
predominate in different tissues, each differing only in the first exon: Dp427m 
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(muscle) [1], Dp427c (cerebral) [2], and Dp427p (Purkinje cells) [3]. Altogether the 
locus produces at least eight different transcripts that result from the use of distinct 
and often tissue-specific promoters, by the mechanism of alternative splicing or by 
the use of different polyA tails.

The Dp427m isoform is of most relevance to the pathogenesis and treatment of 
muscular dystrophy. Dp427m is primarily expressed in the skeletal muscle and 
heart, where it forms a critical part of the dystrophin-associated glycoprotein 
(DAG) complex that connects the cytoskeleton of a muscle fiber to the surrounding 
extracellular matrix. Absence of this isoform leads to the more severe Duchenne 
muscular dystrophy (DMD), whereas expression of a partially functional version—
detectable on Western blot as a diminished size or amount—leads to the milder 
Becker muscular dystrophy (BMD) [4]. Both are characterized by necrotic degen-
eration of muscle fibers, fatty replacement, and increased fibrosis, with the severity 
of pathology related to the severity of resulting muscle weakness. DMD is the more 
common form, affecting around 1 in 5200 boys [5], and historically led to loss of 
ambulation by age 12, although with the use of corticosteroids ambulation is often 
maintained until age 15 [6]. BMD is associated with a wide spectrum of clinical 
phenotypes, ranging from weakness similar to DMD but showing a delayed onset 
of symptoms and a slower rate of progression compared to DMD, to limb-girdle 
weakness presenting in late adolescence, to isolated quadriceps weakness and 
hyperCKemia (reviewed in [7]).

Deletions of one or more exons account for around 65% of all DMD mutations, 
exon duplications account for around 6–11%, and nonsense mutations account for 
around 15% [8, 9]. The effects of DMD mutations on phenotype can largely be 
predicted based on the reading frame rule, which proposes that mutations maintain-
ing an open reading frame will lead to truncated proteins that will be at least par-
tially functional and result in the less severe BMD phenotypes [7]. This is true for 
even large in-frame deletions, especially when it involves the rod domain of the 
protein. On the other hand, if the mutations lead to translational frameshifts, a pre-
mature termination codon occurs downstream in the new reading frame, resulting 
in no dystrophin protein. Based upon observations of the associated phenotypes, 
mutations that disrupt the reading frame but still allow the production of truncated 
dystrophin lacking specific domains provide important clues about the particular 
function and importance of such domains. For example, truncating mutations 
upstream of the cysteine-rich region have been shown to result in severe dystrophic 
phenotypes despite normal levels of dystrophin expression, thus highlighting the 
importance of the C-terminal part of dystrophin [10]. Despite predicting 90% of 
genotype-phenotype correlation, ~10% of mutations are found to escape the read-
ing frame rule [11]. Such exceptions include nonsense-associated BMD, in which 
the predicted nonsense mutations affect splice suppressor or enhancer sequences, 
and lead to alternative splicing; in a context in which the flanking exons maintain 
an open reading frame (such as the entire regions between exons 23 and 42), the 
result may be relatively mild BMD rather than the DMD predicted by the nonsense 
allele [12].
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21.2  The p.Trp3X Allele Results in Expression of a ΔCH1 
Isoform

One such exception to the predicted reading frame rule leads to our current approach, 
which stems from the identification of the first North American founder allele in 
DMD, a predicted nonsense mutation with exon 1 (c.9G  >  A; p.Trp3X), which 
resulted in very mild Becker muscular dystrophy. It was first identified in several 
families in a cohort of 1100 dystrophinopathy patients [13], who along with other 
families were then shown to share a 3.7 million base pair region extending across 
exon 1, confirming that it was a founder allele in this population [14]. Despite the 
fact that a nonsense mutation should result in expression of no dystrophin, symp-
toms in those with the allele were minimal. Most patients had only myalgias with 
exertion; the most severely affected individual stopped walking at age 62, while 
others had no symptoms into their eighth decade [14].

We demonstrated that this mild phenotype was due to the expression of signifi-
cant amounts of an isoform of dystrophin resulting from translational initiation 
from an AUG codon within exon 6 of DMD [13] (Fig. 21.1). The resulting isoform 

Fig. 21.1 Patients with nonsense mutations in exon 1 express an N-truncated dystrophin. 
Immunostaining of a muscle biopsy from a DMD patient, a Trp3X patient, and a healthy subject 
using three antibodies. Epitope mapping using exon-specific antibodies demonstrated that transla-
tion is initiated earlier than the exon 8 AUG codon
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is approximately 412 kilodaltons (kD) in size but is expressed in significant amounts 
in muscle biopsies from p.Trp3X patients. Epitope mapping using exon-specific 
antibodies demonstrated that translation initiated earlier than the exon 8 AUG 
codon. This codon was invoked as an alternative initiation site to account for the 
variability seen in dystrophinopathy patients with deletions of exons 3–7, some of 
whom have typical DMD and others mild BMD [15, 16]. The absence of staining 
with the exon 1-specific antibody MANEX1A excluded readthrough of the putative 
nonsense mutation as an explanation [13]. We demonstrated instead that initiation 
occurs at one or both of two AUG codons within exon 6 (codons M124 and M128). 
The resultant protein, which we term ΔCH1, lacks the calponin homology domain 
1 (CH1) that makes up the first half of the actin-binding domain 1 (ABD1) at the 
N-terminus of dystrophin.

21.3  The DMD Exon 5 Internal Ribosome Entry Site (IRES)

In our original description of the alternate translational initiation [13], we postu-
lated that the mechanism responsible might be due to the presence of an IRES and 
that it might be a more generalizable feature of frame-interrupting mutations within 
the 5′ end of the gene. Eukaryotic translational initiation is commonly understood 
to occur in what is termed cap-dependent initiation, which begins with binding of 
the mRNA 5′-m7G cap to the cap-binding protein complex eIF4F. Cap-dependent 
translational initiation is considered to account for most translational initiation 
under physiologic conditions (for a detailed review [17]). However, several alterna-
tive translational mechanisms have been described, including upstream open read-
ing frames, 3′ cap-independent translation elements, and internal ribosome entry 
sites (IRESs), which are RNA regulatory sequences that govern cap-independent 
translation initiation in eukaryotic cells when cap-dependent translation is compro-
mised—i.e., during cell stress. IRESs are particularly well-defined in many viruses. 
For example, they drive internal initiation in all members of the Picornaviridae 
family, and among the earliest characterized was the encephalomyocarditis virus 
(EMCV) IRES. Eukaryotic cells use IRESs as well, and an increasing number of 
cellular IRESs have been identified. Many are found within the 5′ UTR of genes; 
however, examples exist of IRESs that are found downstream of the canonical ini-
tiation codon, resulting in the translation of proteins of diminished size. In some 
cases, these have been shown to be active in a pathophysiological context. For 
example, the presence of such an element in the APC coding sequence has been 
linked to a mild version of familial adenomatous polyposis coli in which patients 
with certain 5′ mutations still produce a partially functional protein through the use 
of a downstream initiation codon [18].

We demonstrated the presence of a dystrophin IRES by use of the dicistronic 
reporter construct pRDEF, which contains two luciferase genes: an upstream cistron 
consisting of a Renilla luciferase under the control of the SV40 promoter, signaling 
cap-dependent translation, and a downstream cistron consisting of firefly luciferase, 
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under the control of a sequence of interest [19, 20]. These cistrons are separated by 
a mutated nonfunctional defective EMCV (dEMCV) sequence that forms a second-
ary structure that has previously been demonstrated to prevent readthrough of the 
translation-competent ribosomal complex; downstream translation thus proceeds in 
a cap-independent fashion and can be normalized (as a transfection control) to the 
upstream reporter signal. Using this luciferase assay, we demonstrated that the pres-
ence of the DMD exon 5 coding sequence was sufficient to produce cap- independent 
translation, with activity of around 50% of the functional EMCV IRES, suggesting 
that the DMD IRES is relatively strong for a mammalian IRES [19]. As we excluded 
aberrant splicing or cryptic promoter activation, these data strongly support the 
presence of an IRES within DMD exon 5 (Fig. 21.2). Of particular interest in con-
sidering the therapeutic implication of this IRES, we demonstrated that it was 
glucocorticoid- responsive in a dose-dependent fashion in cell culture and impor-
tantly was active in patients with other 5′ frameshifting mutations who express the 
ΔCH1 isoform [21].

21.4  Therapeutic Exon 2 Skipping

Exon 2 duplications are the most common single-exon duplication associated with 
DMD, accounting for around 10% of all duplications [9]. We noted that duplica-
tions of exon 2 were nearly always associated with DMD, even though the duplica-
tion resulted in an altered reading frame and hence a premature termination codon 
in the second copy. At the same time, we noted that deletions of exon 2, which are 
similarly out of frame, had never been reported in either our large cohort or in the 
exhaustive dystrophinopathy mutational databases available [22, 23]. Assuming 
that such a mutation had never been ascertained because of IRES activity, we 
hypothesized that the IRES was active in the absence of exon 2 but not in the 
presence of a duplicated exon 2; consistent with this hypothesis (and the clinical 

Fig. 21.2 Schematic representation of Dp427m and the IRES-driven isoform Dp412. The first ten 
exons of the human DMD gene are represented in blue. Red boxes correspond to the 5′ and 3′ 
UTR. Numbers above each exon indicate the length in base pairs. Red numbers correspond to the 
position of the first and last residue. Box below each exon corresponds to protein domains 
(NP_003997.1 putative domain represented by dotted box). The two start codons are represented 
by arrows
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observation), studies with the dual luciferase reporter showed this to be the case, 
and an essentially asymptomatic patient with a deletion of exon 2 was identified 
[19, 37] who expressed the same isoform (Fig. 21.3) [20]. The reason for the inac-
tivity of the IRES in the presence of a duplicated exon 2 remains unclear, although 
we postulate that it may be due to secondary structure of the mRNA that precludes 
IRES recognition or function.

An obvious therapeutic implication of these results is that skipping of exon 2 
would be expected to result in IRES activation. Furthermore, it is important to 
emphasize that for patients with DMD due to a duplication of exon 2, the presence 
of a functional IRES provides a wide margin of safety, as boys with exon 2 duplica-
tions cannot be “overtreated” to be made worse. Exon 2 skipping will result in either 
the wild-type transcript containing one copy of exon 2 or in the complete exclusion 
of exon 2, resulting in IRES activation and the expression of the ΔCH1 isoform 
which is highly protective. Finally, we note that among the 5′ exons, only exclusion 
of exon 2 results in an out-of-frame transcript. The effect of point mutations within 
the first 5′ exons varies, with some mutations (such as the exon 2 frameshift we 
reported in [20]) being associated with BMD leading to loss of ambulation in mid-
dle age. However, other 5′ mutations are more severe, such as point mutations 
within exons 3 and 4 resulting in a more severe BMD phenotype, with loss of ambu-
lation in the third decade, an effect that may be due to the proximity of the prema-
ture termination codon to the IRES element, which might be predicted to affect 
efficiency of ribosomal reentry [24]. Similarly, some in-frame 5′ mutations (such as 

Fig. 21.3 Patient with a deletion of exon 2 expresses the IRES-driven isoform, but a patient with 
exon 2 duplication does not. (a) Dual luciferase assay demonstrating IRES activity in the presence 
of either a duplicated or deleted exon 2. Only absence of exon 2 allows IRES activity. (b) Western 
blot result obtained from muscle protein of a patient with a DMD exon 2 deletion (DEL2). A pro-
tein of smaller size is being expressed in this patient, which corresponds to the IRES-driven 
isoform [19]
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a duplication of exons 3–4) result in moderately severe BMD, presumably due to 
protein instability. We might predict that in either such scenario, exon 2 skipping 
would result in increased IRES activity and increased protein translation, with a 
resultant amelioration of phenotype in patients.

Exon skipping is a promising therapeutic strategy for DMD. In its more common 
usage, as with the FDA-approved drug eteplirsen, the intent is to transform a severe 
DMD phenotype into a milder BMD phenotype by altering pre-mRNA splicing 
such that an out-of-frame deletion is changed to a larger but in-frame deletion. In 
the case of eteplirsen, the targeted exon is exon 51, found within the central rod 
domain, where in-frame deletions are relatively well-tolerated [25, 26]. Exon skip-
ping can be produced by use of synthetically manufactured small RNA molecules, 
such as antisense oligonucleotides or phosphorodiamidate morpholino oligomers 
[27]. Alternatively, the antisense sequence can be carried by a small nuclear RNA 
(snRNA) and delivered using viral vectors such as adeno-associated virus (AAV). 
U7snRNA is normally involved in histone pre-mRNA 3′ end processing but can be 
converted into a versatile tool for splicing modulation [28–31]. The advantage of 
using U7 derivatives is that the antisense sequence is embedded into a small nuclear 
ribonucleoprotein (snRNP) complex, thereby protecting it from degradation and 
enforcing accumulation in the nucleus where splicing occurs. In contrast to the exon 
skipping approaches that are currently approved or in trials, which seek to restore an 
open reading frame, in the case of exon 2 skipping, we seek to induce either a wild- 
type transcript or an out-of-frame (del2) transcript.

In order to establish the potential clinical utility of exon 2 skipping in the activa-
tion of this IRES, we made a new mouse model of DMD carrying a duplication of 
the mouse dmd exon 2 [32]. This mouse (the Dup2 mouse) essentially mimics the 
phenotypic features of the standard mdx model (which contains a nonsense muta-
tion in exon 23) [32] and provides a platform for testing skipping therapies. This 
model is complemented by studies in myofibroblasts, which are immortalized fibro-
blasts derived from duplication exon 2 patients and infected with a tetracycline- 
inducible MyoD construct, induction of which results in transdifferentiation into 
myoblasts that can be further differentiated into myotubes, allowing studies of 
DMD mRNA [29].

Our U7snRNA vector includes four copies of U7snRNA into a single AAV plas-
mid, which we term U7-ACCA. Two copies each contain sequence tails targeting 
either the exon 2 splice donor or acceptor sites, and each represents an individual 
cistron. Initial experiments using AAV1 delivery of the U7-ACCA system during 
in vitro differentiation to myofibroblasts resulted in significant expression of the 
IRES-initiated isoform by day 14. Delivery of AAV1.U7-ACCA to the tibialis ante-
rior muscle of Dup 2 mice via intramuscular (IM) injection leads to highly efficient 
(~90%) exon 2 skipping at the mRNA level [30] (Fig. 21.4). Importantly, it leads to 
robust production of a protein that lacks the CH1 domain but nevertheless appropri-
ately localizes to the sarcolemmal membrane, restores components of the dystro-
phin complex, and corrects the pathologic and physiologic defects of the TA muscle 
(Fig. 21.4) [30].
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21.5  Biologic and Therapeutic Implications of the ΔCH1 
Isoform

We believe these results hold significant promise for patients with exon 2 duplica-
tions but also may be extendable to other mutations. Mutations prior to exon 6 
comprise ~6% of dystrophinopathy patients but represent a population ignored by 
current mutation-specific approaches directed toward rod-domain mutations. We 
note that exon 2 deletion may prove beneficial in activating the IRES for many such 
mutations, a hypothesis currently under study in cell culture models.

Exon 2 skipping may be induced by antisense oligonucleotides, as we have dem-
onstrated in cell culture [21]. However, the use of an AAV-mediated exon skipping 
approach may represent many advantages. The U7snRNP used in this study con-
tains its own promoter, allowing continual expression of the antisense, which avoids 
the need for repeat injections. If readministration is required, one may use alterna-
tive AAV capsids. This system can in principle also be used for multi-exon skipping, 
as several copies of U7 targeting different exons can be cloned into a single AAV. 

Fig. 21.4 Expression of the IRES-driven isoform following exon 2 skipping results in muscle 
improvement. (a) RT-PCR results indicate efficient exon 2 skipping in the treatment animals. (b) 
Western blot from treated animal demonstrates the presence of the IRES-driven isoform. This 
isoform can also be induced in Bl6 animals (isoform is indicated by a star). (c) and (d) represent 
specific force and eccentric contraction force assessments. These two tests demonstrated that mus-
cle from treated animal gains force after treatment. PDN glucocorticoid, Bl6 WT mouse, Dup2 
mouse carrying an exon 2 duplication, U7-ACCA AAV1-treated mice with a construct mediating 
exon 2 skipping [19]
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AAV9 as a delivery tool is particularly valued based on excellent muscle  tropism, 
including the heart and diaphragm, which are responsible for the end-stage morbidity 
and mortality in DMD [33].

We believe that our results raise fundamental questions regarding the biology of 
the dystrophin protein. The identification of a highly functional N-deleted isoform 
is in contradiction with the current assumption that the entire ABD1 domain is 
required for actin binding of dystrophin. A key cellular role for Dp427m is the trans-
mission of contraction force across the sarcolemma to extracellular structures by 
serving as bridge between the F-actin cytoskeleton and the muscle plasma mem-
brane. Two regions within dystrophin are responsible for F-actin binding: ABD1, 
which is encoded by exons 2 through 8, and ABD2, which lies within the hinge 
repeat 10–17 [34, 35]. ABD1 consists of two calponin homology (CH) domains, 
CH1 and CH2. A central dogma in the dystrophin field is the requirement of an 
intact ABD1 in order to bind F-actin as a number of studies have shown a lack of 
stability of dystrophin in the setting of deletions within the ABD1 domain. However, 
most of these studies were performed with micro-dystrophin constructs lacking the 
ABD2 domain [36]. Such microproteins may bind actin and modify actin dynamics 
in a different manner compared to the full-length version [37–39]. Despite the 
canonical view that an intact ABD1 is required for dystrophin functionality, the 
human “experiment”—the presence of the founder allele in humans without signifi-
cant symptoms and clearly no effect on reproductive fitness—argues that impor-
tance of an intact CH1 is not required or that ABD2 is sufficient for significant 
preservation of muscle function.

Another outstanding question remains regarding the evolutionary function of the 
IRES-driven isoform. The high degree of conservation of the IRES-containing exon 
5 in 39 species indicates that this isoform may play a role outside a pathological 
context, although many cellular IRESs are active under stress conditions, suggest-
ing a potential role of this isoform under conditions such as regeneration [6]. Of 
interest is the recent report of a novel embryonically expressed promoter and exon 
1 that results in the expression of the same protein isoform, detectable with BMP- 
induced transition of induced pluripotent cells into the mesenchymal pathway [40]. 
We have confirmed that this promoter is not activated in U7snRNA-ACCA-treated 
muscle-derived mRNA (unpublished data), but these findings suggest that the 
Dp412/ΔCH1 isoform can be expressed by both transcriptional and translational 
regulatory mechanisms.

21.6  Summary

Although the native function and mechanisms of regulation of the ΔCH1 isoform 
remain to be clarified, the data from human expression clearly suggest a potential to 
benefit to patients. Together, the clinical and experimental data demonstrated that 
this protein—as the clinical course in patients makes clear—is highly functional 
and that deletion of a part of ABD1 can be well-tolerated. We anticipate that this 
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strategy can be extended beyond exon 2 duplication patients into those carrying 
missense mutations or in-frame deletion/duplications within exons 1–4—represent-
ing altogether up to 6% of patients. In the meantime, we are pursuing clinical devel-
opment of this vector, including in-life toxicity studies, in support of an anticipated 
trial in subjects with duplications of exon 2.
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Chapter 22
Genome Editing for Duchenne Muscular 
Dystrophy

Christopher E. Nelson and Charles A. Gersbach

Abstract The recent genome editing revolution has been fueled by the discovery 
and adaptation of highly specific endonucleases including meganucleases, zinc fin-
ger nucleases (ZFNs), TALENs, and CRISPR/Cas9. These genome editing tech-
nologies permit user-defined genome modifications by creating double-strand DNA 
breaks and exploiting endogenous DNA repair pathways to introduce DNA sequence 
changes. Genome editing has entered multiple clinical trials in a range of diseases 
including HIV, cancer, and hemophilia, and several preclinical successes have been 
reported for treating models of neuromuscular diseases, including Duchenne mus-
cular dystrophy (DMD). These studies include correction of numerous different 
mutations in patient-derived muscle cells and stem cells by a variety of genome 
editing strategies and endonuclease technologies. Preclinical studies have also 
shown efficacy of genome editing by restoring dystrophin protein expression and 
improving skeletal muscle physiology in animal models of DMD. This preclinical 
work highlights the potential for DNA repair therapy to treat DMD and other debili-
tating and fatal genetic diseases. Ongoing work seeks to address remaining issues 
including efficient delivery, addressing potential immune response or off- target 
interactions, and characterizing long-term safety and efficacy.
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22.1  Introduction

The genetic basis of Duchenne muscular dystrophy (DMD) was first identified in 
1986 as a monogenic mutation in the Xp21 locus of the X chromosome [1, 2]. This 
mutation leads to the loss of functional dystrophin protein which presents clinically 
as progressive muscle wasting, loss of ambulation, and premature death [3]. Since 
this discovery, various gene therapy approaches have been pursued to treat this dev-
astating disease. Recently, an exon skipping therapy, eteplirsen, was conditionally 
approved by the FDA for treating a subset of DMD patients amenable to exon 51 
skipping (~13% of DMD patients, see Chap. 19). Gene-replacement therapy delivers 
an engineered and shortened dystrophin gene compatible with the size restrictions of 
adeno-associated virus (AAV) and is discussed in more detail in Chap. 18. Genome 
editing technologies have recently been developed that facilitate site- specific genome 
sequence modifications. These tools have enabled researchers to repair the native 
dystrophin gene in cultured human cells and in animal models of DMD. This chapter 
highlights the genome engineering approaches investigators have used to correct the 
DMD gene and the most recent preclinical advances and ongoing challenges.

22.1.1  Site-Specific Nucleases

The genome editing revolution has been fueled by the discovery and adaptation of 
site-specific endonucleases. These include meganucleases, zinc finger nucleases 
(ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/
Cas9 [4, 5]. These targeted nucleases are designed to form double-strand breaks 
(DSBs) in the desired genomic loci. Meganucleases, ZFNs, and TALENs rely on 
protein-DNA interactions for targeting specific DNA sequences [6–9]. In contrast, 
CRISPR/Cas9 is an RNA-guided endonuclease that is programed by RNA:DNA 
base pairing [10]. CRISPR/Cas9 targeting is limited by the proximity of a proto-
spacer adjacent motif (PAM), a short sequence recognized by the Cas9 enzyme, to 
the desired target. For example, Cas9 derived from Streptococcus pyogenes (SpCas9) 
requires the presence of 5′-NGG-3′ at the 3′ end of the targeted sequence. However, 
the diversity of characterized CRISPR systems and associated PAM requirements 
are continually increasing, thus broadening the number of possible targets.

22.1.2  DNA Repair

After a DSB is formed in the genome, endogenous cell machinery repairs the break 
typically through one of two major pathways: homology-directed repair (HDR) or 
non-homologous end joining (NHEJ). Homologous recombination has been used 
to modify cultured cells and mouse embryos with correction efficiencies too low 
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for therapeutic use. However, in the presence of a DSB, homologous recombina-
tion efficiency is increased by several orders of magnitude [11]. By delivering a 
DNA repair template containing the intended sequence change flanked by 
sequences homologous to the nuclease target site, HDR can be used to exchange 
single nucleotides, repair larger mutations, or insert entire genes. However, HDR 
machinery is typically downregulated in post-mitotic cells including skeletal and 
cardiac muscle, leading to low efficiencies of genome editing by this mechanism in 
these tissues [12]. In the absence of a donor repair template, the NHEJ process is 
used to mend the break. The error-prone nature of NHEJ often results in small 
insertions or deletions (indels) at the target site [13]. The spectrum of indels that 
occur at a particular site is context-specific depending on the nuclease and the local 
sequence at the target loci. NHEJ can be used to disrupt target genes by introducing 
frameshifting indels [14]. Alternatively, dual DSBs can delete targeted genomic 
regions to remove mutated regions of a gene [15, 16]. A limitation of NHEJ for 
DNA repair therapy is that NHEJ does not precisely repair or replace absent genes. 
In addition to genome editing, zinc finger proteins, TALEs, and nuclease-deacti-
vated CRISPR/Cas9 (dCas9) have been used as highly specific DNA-binding pro-
teins and fused with a broad range of DNA-effector molecules that includes gene 
activation, gene repression, and epigenetic modification [17, 18]. dCas9 has also 
been fused with cytidine deaminases that specifically alter a single cytosine base 
pair at a desired site without making a DSB [19, 20]. An advantage of this base 
editing approach is that the DNA is not broken and greatly reduces the risk of off-
target indel formation.

22.2  DNA Repair Therapy for DMD

22.2.1  Introduction to DMD Gene Repair Therapy

Patients with DMD are characterized by heterogeneous mutations including dele-
tions, duplications, and small polymorphisms (Box 22.1). Natural history studies of 
Becker muscular dystrophy (BMD) patients, who harbor in-frame internal deletions 
of the dystrophin gene, have suggested that portions of the dystrophin protein are 
dispensable without substantial loss of function. In fact, large internal deletions 
with a preserved reading frame have been described in BMD patients with mild 
phenotypes [21]. Restoring the disrupted reading frame in DMD patients by inter-
nally shortening the dystrophin protein to create a BMD-like genotype is the prem-
ise behind exon skipping therapies in which nonessential exons are removed from 
the transcript. Micro-dystrophin gene-replacement therapy also benefits from the 
use of an internally shortened dystrophin protein that is amenable to packaging 
within AAV vectors (see Chap. 18). In contrast to micro-dystrophin gene therapy, 
genome editing uses engineered nucleases and the endogenous DNA repair path-
ways to restore dystrophin expression from the native DMD gene (Fig.  22.1). 
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Reported DNA repair strategies attempt to strike a balance between maximizing 
the efficiency of restoration of the dystrophin protein and maintaining as much of 
the original sequence of the native gene as possible.

Box 22.1 Large Deletions to Address Patient Heterogeneity
The heterogeneity of mutations in DMD complicates the design of a one-size- 
fits-all genome editing strategy. The primary strategy employed in cultured 
cells and in vivo for DMD gene editing has been deletions of one or more 
exons (Fig.  22.1d). Several studies have indicated the potential utility of 
genetic deletion of several exons to treat larger cohorts of patients including 
the regional hotspot of exons 45–55 [22, 23] or exons 43–55 [24]. Deletion of 
exons 45–55 is applicable to ~47% of patients based on patient transcript data 
collected from the Universal Mutation Database [25] on 3/1/2017 (Fig. 22.2), 
while some other reports from smaller patient databases indicated that this 
segment of the patient population was ~63% [25, 26]. Other noteworthy muta-
tions include a high prevalence of exon 2 duplication [27] and a high indel 
percentage in exon 70. The exon 45–55 mutational hotspot can be seen in 
Fig.  22.2. When designing gene editing strategies, potential considerations 
include (1) the percent of patients amenable to the strategy, (2) the structure 
and function of the residual protein, and (3) gene deletion efficiency generally 
decreasing with the size of the deletion.

Fig. 22.2 Mutational hotspot region of exons 45–55. Mutations are annotated along the 
length of the transcript on the x-axis. The percent of patients with the indels (yellow), dupli-
cations (blue), or deletions (red) for each exon are shown. The data in the figure was derived 
from the Universal Mutation Database [25]
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22.2.2  NHEJ-Based Methods

22.2.2.1  Frame Shift

Most DMD patients have large genetic deletions of one or more exons which disrupt 
the reading frame leading to a completely dysfunctional protein. One approach is to 
use a nuclease targeting the DNA between the splice acceptor of the first exon fol-
lowing the deletion and the premature stop codon that is typically introduced in this 
incorrect reading frame. Indel formation in this region will restore the reading frame 
in a fraction of these edited cells (Fig. 22.1b). Using this approach, meganucleases, 
TALENs, and CRISPR/Cas9 have been adapted to restore the reading frame in 
patient-derived IPSCs and myoblasts [28–31]. These reports showed reading frame 
restoration in a fraction of analyzed cells. In some reports, about one third of indels 
resulted in the desired frameshift. Clonal cell populations contain indels that restore 
the correct reading frame of dystrophin protein after differentiation. An advantage 
of this approach is that only a single nuclease is required and no repair template is 
necessary. Drawbacks include stochastic indel formation resulting in only a fraction 
of edited genes restoring the reading frame, the unknown effect of the novel amino 
acid sequence generated by the indels, and the limited sequence space available for 

Table 22.1 Approaches for genome editing for DMD

Approach
Applicable 
mutations

Residual 
structure Advantages/disadvantages Reports

NHEJ frameshift Customized for 
each exon

Internally 
shortened

– Small genomic regions 
available for targeting

– One nuclease needed

[28–31]

NHEJ splice site Customized for 
each exon

Internally 
shortened

– Small genomic regions 
available for targeting

– One nuclease needed

[30, 31]

NHEJ deletion Customized for 
larger segments of 
gene (Box 22.1)

Internally 
shortened

– Deletions may be large 
and less efficient to 
capture large numbers 
of patients

– Two nucleases needed

[22, 23, 
30–38]

HDR repair Customized for 
each mutation

Normal – HDR in muscle is 
inefficient

[30, 37, 
39, 40]

HDR replace ~100% of patients Truncated or 
full length

– HDR in muscle is 
inefficient

[41, 42]

Gene capture 
repair

Customized for 
each group of 
missing exons

Normal Untested Untested

Gene capture 
replace

~100% of patients Truncated or 
full length

Untested Untested

Gene regulation 
(e.g., utrophin)

~100% of patients NA – Does not restore 
dystrophin expression

[43–46]
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designing nucleases and finding optimal target sites. To address some of these con-
cerns, edited cells could be selected for ideal characteristics, expanded, and screened 
extensively for off-target modifications for cell therapy applications (Table 22.1).

22.2.2.2  Splice-Site Targeting

In an approach analogous to exon skipping, targeted indel formation within canoni-
cal splice motifs in the DMD gene can exclude target exons from the mature tran-
script and restore the proper reading frame (Fig. 22.1c). One study used TALENs or 
Cas9 to target the spice acceptor for exon 45 to correct patient-derived iPSCs [30], 
and another used Cas9 targeted to exon 51 or 53 in patient-derived myoblasts [31]. 
These reports showed dystrophin restoration in the patient-derived cells. However, 
these studies did not distinguish between frameshifting mutations and splice accep-
tor knockout. An advantage of this approach is only a single nuclease is needed and 
no correction template is required. One drawback is the unpredictable nature of 
splicing including activation of cryptic splice sites [47]. This can be addressed for 
cell therapy by screening corrected cells for the desired transcript and dystrophin 
restoration. Another drawback is the limited sequence space available for targeting 
near the canonical splice sites. For CRISPR/Cas9, this approach would be limited 
by the proximity of PAM sites to the splicing motif of interest. However, several 
CRISPR systems have been described with a broad spectrum of PAM requirements 
[48, 49], and the number of available systems is expected to continue to expand. To 
illustrate the potential of this approach, genome editing techniques have been suc-
cessful in preclinical models of other diseases, including correcting splicing muta-
tions as a therapy for tyrosinemia type I [50], spinal muscular atrophy [51], and 
β-thalassemia [52].

22.2.2.3  Genetic Deletions to Remove Exons

Genetic deletions can also be used to remove target exons from the genome and 
transcript by providing two nucleases flanking a target exon or group of exons 
(Fig. 22.1d). This is the most pursued method thus far with several studies using 
ZFNs, TALENs, and CRISPR/Cas9 for removal of target exons from the genome in 
patient-derived iPSCs and myoblasts [22, 23, 31–33, 43, 53]. Collectively, these 
reports showed restored dystrophin protein expression in corrected cells in culture, 
in vivo following transplantation into immunodeficient mice, and following plasmid 
electroporation in vivo.

Gene deletion has been demonstrated with CRISPR/Cas9  in the mdx mouse 
using adenoviral delivery [38] or adeno-associated virus (AAV) delivery [34–36] to 
remove exon 23, which carries a premature stop codon. AAV-delivered CRISPR 
showed restored dystrophin expression in local injections to ~5–10% of wild-type 
levels and improved skeletal muscle function with ~50% recovery of muscle strength 
relative to controls. Systemic AAV administration showed dystrophin restoration in 
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multiple skeletal and cardiac muscles [34–36]. A subsequent study demonstrated 
efficacy of a similar approach in an alternate mouse model (mdx4cv) which carries a 
nonsense mutation in exon 53 [37]. Genetic correction was achieved by deletion of 
a 45 kb region spanning exons 52 and 53. Local administration led to abundant 
dystrophin restoration and improvements in muscle function. Systemic administra-
tion rescued dystrophin expression in multiple skeletal and cardiac muscles.

An advantage of a deletion approach is that indel formation is within introns and 
will not affect the reading frame. An additional advantage is that gene deletions can 
be extended to larger genetic regions to capture a larger patient base with a single 
treatment (Fig. 22.1e and Box 22.1). Disadvantages include the requirement for two 
nucleases to create the deletion, which may necessitate using multiple vectors for 
some strategies, and increased potential for off-target modifications.

22.2.2.4  Gene Capture

Gene capture techniques including homology-independent targeted integration 
(HITI), microhomology-mediated end joining (MMEJ), and obligate ligation-gated 
recombination (ObLiGaRe) have also been used to add large sections of DNA 
through NHEJ-mediated integration [54–57]. In these approaches, a donor vector 
containing nuclease target sites is provided, subsequently cleaved by the co- 
delivered nuclease, and incorporated into the genomic nuclease target site. This 
approach could be applied to restore missing exons or an engineered dystrophin 
cDNA. Although this has not been applied for DMD, one study reported DNA inte-
gration efficiencies in skeletal muscle with this approach of 3.4% in cardiac muscle 
and 10.0% in the quadriceps muscle [56].

22.2.3  HDR-Based Methods

HDR can be used to correct point mutations, replace absent exons to restore the 
wild-type dystrophin protein, or integrate a complete or truncated dystrophin cDNA 
into a safe-harbor locus (Fig. 22.1f, g) [41, 58–63]. Advantages of HDR gene cor-
rection include the potential to restore the entire structure of the dystrophin protein 
and applicability to a wide range of patients. A significant disadvantage of this 
approach is the lower efficiency of HDR in post-mitotic cells. For this reason, cur-
rent HDR-based repair strategies are likely limited to cell therapy, where corrected 
cells can be selected and expanded, unless methods to increase HDR efficiencies in 
muscle are described. Importantly, methods to increase HDR efficiency are under 
widespread investigation for genome editing applications.

Meganucleases have been used to incorporate exons 45–52 into the dystrophin 
gene in vitro [39]. TALENs and CRISPR/Cas9 have been used to incorporate exon 
44 in iPSCs [30]. For whole gene replacement, a microdystrophin expression cas-
sette was integrated into the CCR5 locus in human myoblasts, which were then 
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transplanted and expressed dystrophin in vivo [41]. HDR has also been performed 
in mouse embryos to precisely correct the C to T transition in the mdx mouse [40]. 
This study also generated mosaic mice with gene correction ranging from 2 to 
100%, allowing phenotypic comparisons at varying gene correction levels. However 
embryonic correction is not currently a feasible approach for human DMD patients. 
In addition to nucleases, triplex-forming molecules including peptide nucleic acids 
have been shown to facilitate HDR at target genomic loci [64].

HDR is active primarily during S/G2 phase which excludes nondividing cells 
[65] including skeletal and cardiac muscle. Bengtsson and co-authors recently 
described HDR in murine skeletal muscle, albeit at a low frequency [37]. Two 
CRISPR gRNAs targeting within exon 53 in the mdx4cv mouse were provided with a 
repair template on an AAV donor vector to encourage precise repair of the premature 
stop codon located in exon 53. Deep sequencing showed 0.18% of extracted genomes 
had the successful HDR event. Although dystrophin was observed by staining aris-
ing from HDR or frame-corrected deletions, little functional benefit was observed 
compared to the larger deletion of the region with two gRNAs by an NHEJ-based 
mechanism [37]. HDR has been shown effective in vivo in other contexts including 
liver-directed repair [66] and hematopoietic stem cells in vivo [52], which have the 
advantages of targeting smaller numbers of cells and using methods of more efficient 
delivery to those tissues. Methods to encourage upregulating HDR machinery in 
skeletal muscle could be pursued to increase the efficiency of HDR in this tissue.

22.2.4  Other Genome Engineering Methods

Other genome engineering methods besides genome editing are emerging as strate-
gies to treat DMD. One approach uses zinc finger proteins (ZFPs) or deactivated 
Cas9 (dCas9) fused to transcriptional activation domains to generate synthetic tran-
scription factors that can be targeted to any gene promoter. This approach can be 
used to specifically increase expression of compensatory or modifier genes of the 
DMD phenotype. For example, ZFPs have been used to increase expression of utro-
phin, a protein with similar structure to dystrophin that is downregulated in adult 
muscle. In this work, utrophin upregulation improved the phenotype in mdx mice by 
partially compensating for dystrophin function [44, 45]. dCas9 has also been used 
to increase utrophin expression and laminin subunit alpha 1 [43, 46].

Using CRISPR-based base editing [19, 20], specific mutations can be targeted 
for repair, or exons can be excluded by modifying cytosines to disrupt splice motifs. 
Base editing has been applied to alter mRNA splicing [67], including the DMD 
transcript in patient derived iPSCs [68]. It is possible that this technique could be 
used to repair point mutations in DMD patients correctable by a C to T transition. 
The limitation of this approach is the proximity of available PAM sites to the desired 
C to T transition, but the continued development of new base editing tools is likely 
to expand the capabilities of this technology.
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22.3  Preclinical Development Considerations

Considerations for preclinical development of genome editing technologies for 
neuromuscular disease include selection of appropriate animal models, safe and 
efficient delivery of genome editing tools, the potential for immunogenicity, and 
off-target nuclease activity. Advances in each of these areas will create more oppor-
tunity for DNA repair therapy for DMD and other diseases.

22.3.1  Animal Models

Numerous animal models exist for preclinical studies for DMD [69]. Many of these 
animal models may be applied for studying genome editing for DMD. Considerations 
for choice in animal model include the underlying genetics, the disease phenotype, 
presence of revertant fibers, and the condition of the immune system.

22.3.1.1  The mdx and mdx Variant Mouse Models

The most common DMD mouse model is the mdx mouse which has a C to T transi-
tion creating a premature stop codon in exon 23 terminating protein production [70, 
71]. Multiple groups have used this mouse model for correction by genome editing 
by excising exon 23 in neonatal and adult mice [34–36, 38]. Exon 23 has also been 
precisely repaired by HDR in mouse embryos [40]. Another example is the mdx4cv 
mouse which has a C to T transition in exon 53 creating a premature stop codon. 
Correction of this mutation by genome editing was demonstrated by creating a 
45 kb deletion of exons 52 and 53 [37]. One advantage of the mdx4cv mouse is a 
lower frequency of revertant fibers than the mdx mouse, which facilitates easier 
detection of dystrophin restored via genome editing. Additionally, the mdx4cv muta-
tion exists within the same mutational hotspot from the human gene (Fig. 22.2). 
Other mdx variants are available with various mutations and levels of background 
dystrophin expression from revertant fibers (see [69] supplemental Table S1). 
Dystrophin null mice can be crossed with immune compromised lines to evaluate 
dystrophin expression following human cell transplantation [22, 32].

22.3.1.2  Severe Phenotypes

A drawback of many of dystrophin knockout mouse models is the very mild pheno-
type in these animals relative to the human DMD phenotype. These models typically 
have only slight weakening of the skeletal muscle and cardiac deficiencies that take 
more than a year to develop. Multiple mouse models have been generated to more 
faithfully model the severity of DMD disease progression. Double knockout mice 
in which the absence of dystrophin is combined with loss of utrophin, α7-integrin, 
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MyoD, or other genes are available with a range of phenotypic severity [69]. A 
mouse mimicking the human deactivating mutation in cytidine monophosphate- 
sialic acid hydroxylase (Cmah) has also been used to better recapitulate the human 
DMD phenotype [72].

22.3.1.3  Genetically Humanized Mouse

A specific need for exon skipping and genome editing clinical development is the 
availability of an animal model harboring the human dystrophin sequence for gen-
erating molecules that specifically target human mutations. Because the mouse 
Dmd gene differs significantly from the human DMD gene, an hDMD/mdx mouse 
was created that contains the entire 2.5 Mb human dystrophin gene and was used for 
exon skipping studies [73]. Although this mouse contains a wild-type copy of the 
human gene, modifications of the humanized gene have been introduced to generate 
a DMD model that was also treated by genome editing [74, 75]. Other approaches 
could include humanizing small stretches of the mouse DMD gene to create a target 
for nucleases applicable to the human gene.

22.3.1.4  Larger Animal Models

Dogs are the more common large animal model for DMD preclinical studies that 
have a phenotype more representative of the human condition [76]. A recent report 
showed systemic dystrophin restoration and improvements in muscle histology in 
the deltaE50-MD dog model of DMD [77]. Other large animal models of DMD 
have recently been developed using genome editing including a rat [78], a pig [79], 
and a rhesus monkey model [80].

22.3.2  Delivery

The primary challenge for translation of genome editing for neuromuscular disease 
including DMD is the safe and efficient delivery of genome editing tools to skeletal 
muscles and cardiac tissue [81]. To date, AAV, adenovirus, electroporation, and cell 
therapy have shown variable levels of dystrophin restoration in mouse models of 
DMD following local or systemic delivery. Other delivery vehicles may be pursued 
that demonstrate effective muscle delivery in the future.

22.3.2.1  Adeno-Associated Virus (AAV)

AAV is a small, non-pathogenic, episomal virus that has been used for gene deliv-
ery in over more than 100 gene therapy clinical trials [82]. AAV has been used pre-
clinically to deliver ZFNs to mouse models of hemophilia [83], a strategy which 
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has now advanced to clinical trials (NCT03061201/NCT02695160/NCT02702115/
NCT03041324). AAV has also been used in several studies to deliver CRISPR/Cas9 to 
the mdx mouse [34–36]. Advantages of AAV include preferential tropism for skeletal 
and cardiac muscle, lack of any documented pathogenicity in humans, and a growing 
body of efficacy and safety in clinical trials. Potential drawbacks include the limited 
packaging size (~4.7 kb) which can prevent the efficient packaging of Cas9 and gRNA 
expression cassettes, as well as TALENs. An additional drawback is the potential for 
humoral and cellular response generated to delivered transgenes including Cas9 [84].

22.3.2.2  Adenovirus

Adenovirus has also been used to deliver genome editing components for cell ther-
apy applications and in vivo. For cell therapy, adenovirus was used to deliver ZFNs 
[41] or Cas9 with gRNAs for selection-free editing of patient myoblasts [24, 31]. 
Adenovirus has also been used in local skeletal muscle injections in the mdx mouse 
to delete exon 23 and restore dystrophin protein expression [38]. This report also 
showed a significant decrease in Evans blue dye uptake at rest and after downhill 
treadmill runs. Advantages of adenoviral delivery include the large packaging size 
that accommodates all CRISPR gene-editing components or large dCas9-based 
fusion proteins. A disadvantage of using adenovirus includes a pronounced immune 
response to transduced cells [85]. More research is needed, as one report showed 
successful genome editing in the liver with adenoviral delivery of CRISPR compo-
nents despite an immune response [86].

22.3.2.3  Lentivirus

Lentivirus has been used to deliver genome editing technologies in vitro and in vivo. 
Concerns regarding insertional mutagenesis and the inability to achieve systemic 
administration with lentivirus have limited development for DMD treatment. 
However, there is a clinical precedent for an integrating virus with a gamma- 
retrovirus product that was recently approved in Europe for a stem cell therapy for 
adenosine deaminase (ADA) deficiency [87]. Integrase-deficient lentivirus (IDLV) 
is a potential option to avoid the risks of insertional mutagenesis [88, 89], and tran-
sient expression originating from IDLV may work well for ex vivo genome editing 
components. In addition, IDLV can function as a repair template for HDR [90]; this 
approach has been used to deliver a microdystrophin cassette [41] and also could be 
used to incorporate specific exons.

22.3.2.4  Other Delivery Vehicles

Non-viral delivery strategies have not been as widely reported for systemic skeletal 
and cardiac transfection in vivo owing to lower efficiency compared to viral trans-
duction. Electroporation in vivo has been shown as a proof-of-principle for CRISPR 
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components in local skeletal muscle injections [33], but will be challenging in the 
clinical setting due to resulting inflammation and is not compatible with systemic 
delivery. A nanoparticle formulation has been used to deliver recombinant Cas9 
protein, gRNA, and a homology repair template by intramuscular injection into the 
mdx mouse, leading to dystrophin restoration as observed by histological analysis 
[91]. Non-viral delivery has been pursued for genome editing in other applications, 
including delivery to the liver and ex vivo cell modification [52, 92]. New viral and 
non-viral vectors are being described and applied to genome editing and may find 
utility in skeletal and cardiac muscle in the future [81].

22.3.2.5  Cell Therapy

Another delivery method is to repopulate skeletal and cardiac muscle cells with cor-
rected myogenic progenitor cells to restore dystrophin expression and muscle func-
tion. Encouraging results have been shown in  local tissue repopulation with 
dystrophin-expressing myogenic progenitors, including dystrophin restoration and 
improved contractility [93]. Patient myoblasts have been corrected with genome 
editing technologies showing dystrophin expression in local transplantations in vivo 
[22, 32]. The Sleeping Beauty transposon was used to engineer iPSCs from a dys-
trophic mouse to express a micro-utrophin gene, leading to biochemical restoration 
of the dystrophin-glycoprotein complex and improved contractility after local trans-
plantation in dystrophin/utrophin knockout mice [42]. However, a significant chal-
lenge remains in developing protocols for efficient systemic repopulation of skeletal 
and cardiac muscle as current methods lack the efficiency needed for DMD therapy 
[94]. Other muscle progenitors including CD133+ cells can be administered locally 
or systemically and contribute to muscle repair and dystrophin restoration [95–100]. 
One notable advantage of cell therapy is the ability to screen edited cells extensively 
for off-target modifications. There are also lower risks of immunogenicity of viral 
vectors and gene-editing components. Intracellular delivery barriers are also 
decreased ex vivo, and RNA or protein-based delivery are more feasible, which can 
decrease off-target activity [101].

22.3.3  Muscle Progenitors and Long-Term Efficacy

The permanence of correction will depend on the ability to target and correct the 
population of satellite cells that repopulate skeletal muscle. A previous report had 
indicated that AAV had limited ability to target satellite cells based on expression 
of reporter genes [102]. However, a recent report showed successful gene editing in 
isolated and expanded satellite cells after a single administration of AAV9 carrying 
CRISPR components [35]. These two reports can be reconciled if transgene expres-
sion from satellite cells is lost quickly after transduction, but genome marking by 
gene editing is retained. In fact, sustained dystrophin expression was observed 
18 months after a single administration of AAV-CRISPR [103]. Nevertheless the 
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limits of satellite cell editing are still unknown, and it is not yet clear to what extent 
edited satellite cells are participating in muscle regeneration. Future work will likely 
focus on long-term maintenance of dystrophin expression and improved phenotype.

22.3.4  Immunogenicity and Off-Target Activity

Immune responses can be generated to foreign genome editing components includ-
ing Cas9, gRNAs, ZFPs, TALE proteins, or meganucleases. In a similar fashion to 
siRNA, gRNAs could potentially activate toll-like receptors. A few reports have 
documented immune response to CRISPR components including humoral and cel-
lular responses. Adenoviral delivery of CRISPR/Cas9 to the liver generated Cas9-
specific antibodies [86] and AAV delivery of CRISPR/Cas9 led to Cas9-specific 
antibodies and T-cells [84, 104]. More research is needed to determine routes to 
avoid immune activation including limiting gene expression to muscle cells with 
muscle-specific promoters [37], using self-inactivating vectors [105], applying tran-
sient immune suppression, or inducing tolerance.

In contrast to ex vivo gene editing, where edited cells can be screened exten-
sively for off-target modifications, in  vivo genome editing has the potential for 
every cell in the body to be edited at on- or off-target genes. Unintended on-target 
modifications may occur including large deletions [106], genomic rearrangements, 
or integration of the DNA genome of the viral vector [104]. To examine off-target 
modifications, extensive screening is now possible with next-generation sequencing 
techniques including in  vitro screening (Guide-seq [107]) and ex  vivo genome 
digestions (Digenome-seq [108]). Methods to determine the biological consequence 
of potential off-target modifications will be needed to determine safety. Other meth-
ods to reduce off-target modifications can be pursued including high-fidelity Cas9 
molecules [109, 110] or alternate CRISPR systems with reported higher specificity, 
such as Cas12a [111]. Finally, muscle-specific promoters limit expression of gene-
editing constructs to skeletal and cardiac muscle limiting off-target modifications in 
other tissues [37].

22.4  Conclusions

DNA repair has been successfully applied to correct the genetic basis of DMD with 
multiple reports of phenotype improvement in murine models of DMD.  Future 
work will be needed to evaluate long-term functional improvement, cardiac physiol-
ogy, safety, and efficacy. Also, comparisons will need to be made with other meth-
ods to restore dystrophin expression, including exon skipping and microdystrophin 
gene therapy. Clinical development will also be informed by the results from other 
ongoing genome editing clinical trials. If the challenges can be addressed, genome 
editing has the potential to become an exciting new class of therapies for DMD and 
other debilitating neuromuscular disorders.
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Chapter 23
Sarcolipin Knockdown Therapy 
for Duchenne Muscular Dystrophy

Satvik Mareedu, Shalini Dwivedi, Nandita Niranjan, and Gopal J. Babu

Abstract Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder 
caused by mutations in the DMD gene which encodes dystrophin, a sarcolemmal 
protein. Although loss of dystrophin is the primary cause of this disease, activation 
of several secondary mechanisms contributes to the disease progression. The dys-
regulation of Ca2+ cycling and elevation of intracellular Ca2+ concentration is sug-
gested to play a central role in disease pathogenesis in DMD. The sarco/endoplasmic 
reticulum Ca2+ ATPase (SERCA) activity, which accounts for >70% cytoplasmic 
Ca2+ removal during muscle contraction, is significantly decreased and majorly con-
tributes for the intracellular Ca2+ overload in DMD. We have shown that abnormally 
high-level expression of sarcolipin (SLN), an inhibitor of SERCA pump, is the 
cause of SERCA dysfunction in dystrophic muscles. Here we review the recent 
findings from genetically modified mouse models which demonstrated that reduc-
ing SLN expression is sufficient to improve the SERCA function and mitigate the 
severe muscular dystrophy phenotype in mouse models of DMD. The concept of 
SLN knockdown in mitigating DMD should be helpful to identify new drugs as well 
as generating novel gene therapy-based approaches for the treatment of DMD.

Keywords Sarcolipin · SR Ca2+ ATPase · Duchenne muscular dystrophy · Mouse 
models · AAV · Gene therapy

23.1  Introduction

Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle-wasting dis-
order which affects one in 5000 live births [1–3]. DMD is caused by mutations in 
the DMD gene which encodes dystrophin [4, 5], a protein that contributes to mem-
brane stability during muscle contraction [6, 7]. Lack of dystrophin causes muscle 
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to undergo stretch-induced damage, loss of sarcolemmal integrity, and membrane 
rupture. These changes lead to progressive muscle wasting with repeated muscle 
damage and inadequate repair [8, 9]. The progressive nature of this disease leads to 
restrictive pulmonary function, diaphragm dysfunction, and cardiomyopathy [10–
13]. Despite the availability of extensive clinical management practice, currently 
there is no curative treatment for this devastating disease. Many of the therapeutic 
strategies followed in the preclinical studies and clinical trials were based on the 
concept of either replacing or skipping the mutated exon(s) in DMD gene. These 
strategies include exon skipping, gene replacement, stem cell replacement therapy, 
membrane stabilization and/or upregulation of compensatory proteins, and reduc-
tion of the inflammation [14–17]. Even though therapeutic potential of mini- or 
micro-dystrophin administrations to compensate the loss of dystrophin was efficient 
and reached phase I trials, there were many limitations such as inefficient protein 
expression and development of neutralizing antibodies against the vector and the 
gene transduced [18–20]. On the other side, usage of a corticosteroid that could 
potentially delay disease progression by retarding the collateral consequences was 
recently approved by the United States Food and Drug Administration (FDA) [21]. 
However, steroids couldn’t alleviate the pathology, and long-term corticosteroid 
therapy is also associated with a compromised immune system. Recent develop-
ments in antisense oligonucleotide therapy provide a novel approach to target- 
specific gene mutations. The recently FDA-approved drug, Exondys 51, specifically 
targets Exon 51 mutation, and Translarna, the European Medicines Agency- 
approved drug, specifically targets nonsense mutation in the dystrophin gene. 
However, these drugs are restricted in their generic usage. Furthermore, these drugs 
also face major challenges such as targeting the heart and respiratory tissues and 
adverse side effects. Therefore, identification of new therapeutic targets based on 
disease mechanism is necessary to complement the existing strategies for the effec-
tive treatment of this lethal disease.

23.2  Abnormal Ca2+ Cycling in Dystrophic Muscles

Abnormal elevation of cytosolic Ca2+ concentration is a hallmark of DMD and con-
tributes to the pathophysiology and progression of the disease [22–25]. Several 
mechanisms could contribute to the elevation of cytoplasmic Ca2+ concentration in 
dystrophic muscles. The lack of dystrophin makes the sarcolemma more susceptible 
to rupture. Transient micro-ruptures recruit proteolytically activated Ca2+ leak chan-
nels around the area of ruptures during the resealing process and trigger localized 
elevation of Ca2+ ions [22, 26]. In dystrophic muscles, the Ca2+ flux occurs through 
Ca2+-permeable growth factor-regulated channels and transient receptor potential 
channels [27–30]. The increased Na+ overload due to the enhanced Na+/H+ exchanger 
type I activity in dystrophic muscle has been suggested to indirectly cause Ca2+ 
overload [31, 32].
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Defects in sarco/endoplasmic reticulum (SR) Ca2+ cycling majorly contributes to 
the cytosolic Ca2+ overload and muscle pathogenesis in DMD.  Although some 
 studies have reported no change in the total SR Ca2+ content [33], many studies have 
found reductions in the rate of Ca2+ transients [34, 35] and reductions in SR Ca2+ 
release [36, 37] in dystrophic muscle fibers. It has been suggested that SR Ca2+ leak 
via defective ryanodine receptor 1 (RyR1) and decreased levels of its modulator, 
FKBP12, can contribute to muscle weakness in DMD [38]. We have recently shown 
that the SR Ca2+ uptake was significantly decreased in the diaphragm, slow- and 
fast-twitch skeletal muscles [39], and ventricles [40] of dystrophin mutant (mdx) 
and dystrophin/utrophin double mutant (mdx:utr−/−) mouse models of DMD. 
Goonasekera et al. [41] have shown that the SR Ca2+ ATPase (SERCA) activity, SR 
Ca2+ content, and Ca2+ transient amplitude were significantly reduced in the skeletal 
muscles of mdx mice. Apart from the role in regulating muscle relaxation, SERCA 
plays an important role in maintaining the cytosolic Ca2+ levels. In muscle, SERCA 
activity accounts for 70–90% of cytosolic Ca2+ removal [42]. Thus the decreased 
SERCA activity could significantly contribute to the cytoplasmic Ca2+ overload in 
DMD. Consistent with this notion, overexpression of SERCA1 in the skeletal mus-
cles of mdx mice mitigated dystrophic phenotypes and contraction- induced muscle 
damage [41, 43]. Similarly, stabilization of the SERCA pump via heat-shock 
protein 72 overexpression has been shown to mitigate the muscular dystrophy in 
mdx:utr−/− mice [44]. However, the mechanism(s) causing SERCA dysfunction 
in dystrophic muscle is not fully understood.

23.3  Sarcolipin Inhibits SERCA Pump and Causes Cytosolic 
Ca2+ Overload in DMD

In muscle, SERCA function is modulated by a family of small molecular weight 
membrane proteins: phospholamban (PLN), sarcolipin (SLN), and myoregulin 
(MLN) [45–48]. In rodents, MLN is primarily expressed in skeletal muscles [47, 48], 
whereas SLN is predominantly expressed in the tongue, diaphragm, and slow- 
skeletal muscles but not expressed in the fast-twitch skeletal muscles [48, 49]. On the 
other hand, in larger mammals, SLN is expressed in all skeletal muscle tissues [49]. 
In the heart, PLN expression is high in the ventricles and low in the atria [48], while 
SLN expression is high in atria and very low in the ventricles of both rodents and 
larger mammals [49]. Recent mouse genome screening studies have identified endo-
regulin (ELN) and another-regulin (ALN), which resembled other muscle- specific 
SERCA regulators [48]. Together these studies suggest the complex interplay of 
these regulators in affecting SERCA function in various muscles.

Among the various regulators, pathophysiological relevance of PLN and SLN in 
SERCA regulation was extensively studied [50]. In relevance to DMD, decreased 
expression of SLN and increased expression of PLN at the mRNA levels were 
reported in the tongue muscle and increased PLN protein expression in the masseter 
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muscle of mdx mice [51]. In our studies, we did not find PLN protein expression in 
dystrophic diaphragm, quadriceps, and soleus muscles [39]. The PLN levels were 
also unaltered in atria and in the ventricles of mdx and mdx:utr−/− mice compared 
to that of wild-type (WT) control mice [40]. On the other hand, SLN protein expres-
sion was abnormally high in the diaphragm, slow- and fast-twitch skeletal muscles 
[39], and atria and ventricles [40] of mdx and mdx:utr−/− mice. These findings cor-
roborate with a report on the upregulation of SLN mRNA in the muscles of mdx mice 
[52]. Similar to mouse models, SLN protein levels were elevated in the muscles of a 
canine model of DMD and in the skeletal muscle and ventricles of DMD patients 
[40]. Together these findings suggested that SLN upregulation is a common molecu-
lar change in dystrophic muscles of human and animal models of DMD. Studies 
using transgenic and knockout mouse models have demonstrated that changes in 
SLN levels can affect the SERCA function in cardiac and skeletal muscles [53–56]. 
We therefore hypothesized that in dystrophin-deficient skeletal and cardiac muscles, 
high-level expression of SLN can chronically inhibit SERCA function and cause 
cytosolic Ca2+ overload. These changes could lead to a plethora of downstream 
effects like activation of Ca2+-dependent proteases, improper muscle regeneration, 
mitochondrial dysfunction, muscle weakness, and cardiomyopathy (Fig.  23.1). 
Accordingly, reduction or ablation of SLN expression is anticipated to improve the 
SERCA function and mitigate DMD.

Fig. 23.1 Schematic diagram emphasizing the role of SLN upregulation in abnormal Ca2+ cycling 
and muscle pathogenesis in DMD.  Abnormally high-level expression of SLN can chronically 
inhibit SERCA function and cause cytosolic Ca2+ overload in the dystrophin-deficient skeletal 
muscle and heart. These changes could lead to a plethora of downstream effects like activation of 
Ca2+-dependent proteases, improper muscle regeneration, mitochondrial dysfunction, diaphragm 
and skeletal muscle dysfunction, and cardiomyopathy, resulting in DMD
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23.4  Ablation of SLN Expression Mitigates DMD in Mouse 
Models

To test the above hypothesis, we took the genetic approach and ablated SLN gene in 
mdx and mdx:utr−/− mice. The mdx and mdx:utr−/− [40] pups deficient for SLN 
were alive and delivered normally in a Mendelian ratio and were undistinguished 
from the wild-type (WT) control mice. The survival of the SLN-deficient DMD 
mice was also significantly improved [40]. These findings suggest that germline 
deletion of SLN expression has no effect on the growth and development of dystro-
phic mice. Further these findings implicated the beneficial effect of SLN reduction 
in mitigating the DMD phenotype.

The haploinsufficiency or total loss of SLN gene improved the SERCA function 
as evidenced by the increased rate of Ca2+-dependent Ca2+ uptake in dystrophic 
muscles of both mdx (Fig.  23.2a) and mdx:utr−/− mice [40]. Furthermore, the 

Fig. 23.2 Ablation of SLN improved SERCA function and mitigates muscle pathology in mdx 
mice. (a) The Ca2+-dependent SR Ca2+ uptake and (b) Vmax of Ca2+ uptake which are significantly 
decreased in the diaphragm of mdx mice are restored in the mdx:sln+/− and mdx:sln−/− mice. (c) 
H&E staining of the diaphragm and quadriceps show decreased mononuclear invasion (indicated 
by arrows) in the mdx:sln+/− and mdx:sln−/− mice compared to mdx littermates. Scale bar is 
100 μm

23 Sarcolipin Knockdown Therapy for Duchenne Muscular Dystrophy



410

 maximum velocity (Vmax) of SR Ca2+ uptake was significantly increased in the 
SLN- deficient dystrophic muscles of both mdx (Fig. 23.2b) and mdx:utr−/− [40] 
mice. Unlike other SERCA inhibitors, SLN levels can uniquely affect the Vmax of 
Ca2+ uptake [54, 57]. The improved rate and Vmax of SR Ca2+ uptake in SLN deficient 
dystrophic muscles therefore suggest that SLN upregulation could be the major 
cause of SERCA dysfunction in DMD.

Reduction or ablation of SLN expression also attenuated the activation of Ca2+-
dependent protease, calpain, in the dystrophic muscle [40]. Histopathological anal-
ysis of tissues from SLN deficient mdx and mdx:utr−/− mice revealed that reduction 
in SLN expression is sufficient to mitigate the severe muscular dystrophy pheno-
type. Hematoxylin and eosin (H&E) staining of the diaphragm and quadriceps from 
4 to 5-month-old mdx mice demonstrated central nucleation, necrotic areas, and 
extensive mononuclear invasion and disorganized muscle fibers, whereas in the dia-
phragm and quadriceps of 4–5-month-old mdx:sln+/− and mdx:sln−/− mice, 
although central nucleation was evident, the muscle fibers were well organized, and 
necrotic areas were diminished (Fig. 23.2c). Similar improvements were also found 
in the mdx:utr−/− mice mutant for one SLN allele (mdx:utr−/−:sln+/−) and 
mdx:utr−/− deficient for SLN (mdx:utr−/−:sln−/−) [40]. In addition, the fibrosis 
was significantly reduced in these muscles [40]. Furthermore, ablation of SLN 
expression improved the muscle regeneration process as well as prevented the fiber- 
type transition in dystrophic muscles [40].

In addition to these structural improvements, beneficial effects also occur at the 
molecular levels. Reduction or complete loss of SLN restored the SERCA isoform 
expression as well as normalized CSQ levels in dystrophic muscles [40]. Structural 
mitigation also reflected in functional improvements in DMD mice deficient for 
SLN. Ablation of SLN improved the forelimb muscle strength in the mdx:utr−/− 
mice. Studies using isolated muscle preparations have demonstrated that reduction 
in SLN expression is sufficient to improve the functional properties of dystrophic 
diaphragm and skeletal muscles in mdx:utr−/− mice [40]. Taken together these 
studies have shown that reducing SLN expression is sufficient to mitigate the patho-
physiological changes in DMD mice.

23.5  Amelioration of Cardiomyopathy in DMD Mice

Our recent studies have demonstrated that SLN protein expression also significantly 
increased in the ventricles of DMD patients and in mouse models [40]. These find-
ings suggest that SLN upregulation is a common secondary change in skeletal and 
cardiac muscles of DMD. Thus, SLN ablation is anticipated to ameliorate the dystro-
phic cardiomyopathy in DMD mice. Consistent with this notion, germline reduction 
or ablation of SLN expression improved the cardiac function and ameliorated the 
cardiomyopathy in mdx:utr−/− mice [40]. Indeed, these improvements were greater 
than the skeletal muscle recovery and suggesting that SLN ablation is beneficial to 
cardiac function in DMD mice.

S. Mareedu et al.



411

23.6  Sarcolipin Gene Therapy in Mouse Models

The proof of concept experiments using the germline gene knockout mice have led 
to test the gene therapy studies in DMD mice. As a first step toward this goal, SLN 
expression was knocked down in 1-month-old mdx:utr−/− mice using adeno- 
associated virus 9 (AAV9) expressing short-hairpin RNA specific for SLN (AAV9.
shSLN) and studied whether reducing SLN expression during postnatal period 
mitigates DMD and associated cardiomyopathy [40]. The AAV9-mediated SLN 
gene therapy in mdx:utr−/− mice showed that intravenous delivery of AAV9.shSLN 
led to significant reduction in SLN expression in both skeletal and cardiac muscles. 
Furthermore our findings demonstrated that AAV treatment resulted in (1) improved 
SERCA function, (2) reduced diaphragm and muscle pathology, (3) enhanced 
muscle mechanics, and (4) prevention of cardiomyopathy in mdx:utr−/− mice. 
These findings enabled the evaluation of AAV-mediated SLN gene knockdown ther-
apy as a potentially effective clinical therapy for the treatment of DMD.

23.7  Future Directions

In conclusion, our studies using mouse models provided initial evidence that SLN 
could be a potential therapeutic target for the treatment of DMD. However, data 
from larger animal models are still needed to validate the therapeutic potential of 
targeting SLN in treating DMD before going for clinical trials. Furthermore, the 
beneficial effects of reducing SLN expression will not address the primary issue of 
loss of dystrophin in DMD. Therefore, to enhance the treatment efficiency, the com-
bination therapies including but not limited to expressing mini- or micro-dystrophin 
along with SLN gene silencing must be explored. Finally, it is necessary to under-
stand the biology of SLN and the molecular mechanisms associated with its activa-
tion in dystrophic muscles. Currently, all this information are missing and are equally 
important to validate SLN targeting as a safe therapy for the treatment of DMD.
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Chapter 24
Gene Therapy for Central Nervous System 
in Duchenne Muscular Dystrophy

Cyrille Vaillend, Faouzi Zarrouki, and Ophélie Vacca

Abstract The development of molecular therapies enabling compensation of brain 
alterations in Duchenne muscular dystrophy is a major objective given the high 
level of functional impairment associated with intellectual disability and neuropsy-
chiatric disorders in this syndrome. Functional and preclinical studies in mice lack-
ing distinct brain dystrophins identified an accurate set of phenotypes, from the 
molecular to neurophysiological and behavioral levels, which can be used as mark-
ers of efficacy for brain gene therapy. Pioneer studies in this past decade provided 
encouraging results, demonstrating that both dmd-gene splice-switching correction 
and replacement strategies hold realistic prospects to rescue expression and func-
tion of the brain full-length (Dp427) or short C-terminal (Dp71) dystrophins respon-
sible for variable degrees of cognitive impairment in DMD. Strategies that could 
correct or alleviate both muscle and brain dysfunctions entail selection of molecular 
tools able to cross the blood-brain barrier following systemic delivery, to largely 
spread in neural tissues, and to selectively target the neural cell types (neurons, 
astrocytes) that require rescued expression of distinct brain dystrophins. Recent 
breakthroughs show that this can be achieved by engineering naked antisense oligo-
nucleotides with specific chemistries and/or adeno-associated virus vectors with 
selective capsid properties, thus raising new hopes to bring gene therapy closer to 
whole-body delivery and full treatment of DMD symptoms.
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24.1  Needs and Obstacles to Treat Brain Dysfunction 
in Duchenne Muscular Dystrophy

Evaluation and characterization of cognitive and brain functioning in Duchenne 
muscular dystrophy (DMD) have been partly overlooked for many years. 
Nevertheless, it is undisputable that this multifactorial handicap comes along with 
significant cognitive and behavioral disturbances associated with important health-
care, educational, and quality-of-life concerns. The presence of intellectual disability, 
as well as the underdiagnosed comorbidity with autism spectrum, attention-deficit 
hyperactivity, and obsessive-compulsive disorders, is a major concern given the 
high level of functional impairment and compromised academic achievement 
associated with these conditions [1–4]. Developing therapeutic and accompany-
ing strategies to alleviate non-motor aspects of DMD is even more critical since 
medical advances have extended the lifespan of patients considerably.

The finding that dystrophin is normally expressed not only in muscle but also in 
brain structures involved in cognitive functions led to the hypothesis that the cogni-
tive impairment is a primary brain defect resulting from the same mutations that 
cause myopathy [5]. Hence the assumption that brain dysfunction in DMD could 
be treated using gene correction or replacement strategies comparable to those 
designed for muscle therapy. The past decades of research have indeed witnessed 
acceleration in our understanding of the dystrophin-dependent physiological 
mechanisms responsible for muscular dystrophy, leading to the development of 
innovative tools for molecular therapies and the start of early-phase clinical tri-
als. However, much less is known on the efficacy of these approaches to alleviate 
the cognitive deficits associated with this syndrome. One major issue is the high 
clinical heterogeneity, likely due to the presence of several internal promoters 
within the dystrophin gene, giving rise in the brain to a range of dystrophin pro-
teins expressed in different cell types and involved in distinct brain mechanisms. 
The variety of mutation patterns in patients may thus result in distinct phenotypic 
profiles, and a robust natural history taking into account the complex genomic 
organization of the dmd gene seems essential to correctly design therapeutic 
approaches [6]. Phenotypic variability has also been addressed by means of multi-
disciplinary studies in mouse models expressing a selective loss of different dystro-
phins. This enabled characterization of an accurate set of mutation-specific 
phenotypes that can be used to validate the efficiency of brain therapies in preclini-
cal studies [7]. Treatment strategies entail development of separate molecular tools 
in order to rescue expression of specific dystrophin-gene products and to target 
specific cell types in mature nervous tissues. Another main technical challenge is to 
improve the capacity of such molecular tools to cross the blood-brain barrier, either 
through systemic or local delivery. The capacity to target both muscle and brain 
alterations can be considered as a key factor to narrow the selection of the molecu-
lar tools that could bring gene therapy closer to a full compensation of functional 
impairment in DMD patients.
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24.2  Cognitive Dysfunction in Duchenne Muscular 
Dystrophy

Cognitive dysfunction in DMD is documented in several single-case reports, clinical 
follow-up, and meta-analyses of patient cohorts [1, 8, 9]. It is associated with a 
significant reduction of adaptive-skill and schooling performance but is indepen-
dent from progression of the muscular handicap. The distribution of full-scale 
intelligence quotient (IQ) scores shows a leftward shift of one standard deviation 
compared to scores measured in siblings, normal population, and children with 
other muscular pathologies, with about one third of DMD patients displaying IQ 
scores below 70, which defines intellectual disability (mental retardation). However, 
global IQ scores do not necessarily provide an accurate picture of cognitive func-
tioning, and several studies showed the presence of memory processing and atten-
tion deficits regardless of whether the patients displayed high or low IQs [10]. 
Moreover, the literature is often contradictory regarding the exact nature of the 
DMD neuropsychological profile, which encompasses a variety of alterations in 
language skills, learning and memory, executive functions, and visuospatial and 
fine-motor skills, with lower performance in both verbal and non-verbal tests and 
variable comorbid diagnosis of neuropsychiatric disorders. Evaluation accuracy has 
progressively improved by accounting for age, physical status, familial factors, and 
sample sizes and by the use of meta-analytical statistical methods and longitudinal 
studies [11–13]. Nevertheless, conclusions of many studies remain elusive or 
incomplete when patients with different mutation profiles are intermingled within 
cohorts, because mutations preventing expression of distinct dystrophin-gene prod-
ucts likely induce separate cognitive defects. As a result, the deficits exhibited by 
small subpopulations of patients may be underestimated, while those expressed in 
larger subgroups may lead to overgeneralization.

24.3  Genotype-Phenotype Relationships

Early reports showed that deletions of exon 52 [14] and mutations affecting the 
carboxyl terminus of dystrophin [15] were associated with intellectual disability. 
Studies in larger cohorts of DMD patients further supported the hypothesis that 
mutation location determines cognitive disability, but not motor outcomes [16, 17], 
and that heterogeneity of cognitive deficits mainly relies on the distinct phenotypes 
exhibited by patients with proximal versus distal mutations in the dmd gene 
(Fig. 24.1). It is now well admitted that mutations preventing expression of the full- 
length brain dystrophin (Dp427) may lead to mild cognitive and behavioral distur-
bances with an IQ most frequently in the normal range, while a cumulative lack of 
Dp140 and Dp71 is associated with higher incidence of intellectual disability. Dp71 
loss is a clear aggravating factor systematically resulting in severe intellectual 
disability (IQ < 55) [18].
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Considerable progress has been made in recent years to achieve reliable detection 
of mutations and comprehensive analysis and/or inference of the expression profiles 
of the distinct brain dystrophins in patients’ cohorts, which is critical for diagnosis, 
prognosis, and development of adapted therapeutic approaches. Fine combinations 
of clinical, cognitive, molecular, and protein data in large cohort studies recently 
enabled emergence of consistent genotype-phenotype relationships that converge 
with mouse-model studies to the hypothesis that each brain dystrophin contributes 
to the cognitive and behavioral deficits in DMD [6, 19]. These studies showing 
association of specific mutations sites with distinct cognitive and neurobehavioral 
profiles enable more rigorous comparisons with the results obtained in mouse 
models in which a selective loss of Dp427 or Dp71 was associated with specific 

Fig. 24.1 The human dystrophin gene and corresponding protein products. Top drawing shows 
exon numbers (yellow boxes) and intronic regions (black line) flanking transcription start sites of 
distinct internal promoters (arrows). Alternatively spliced first exons give rise to distinct full- 
length forms of dystrophin (1B, brain; 1M, muscle; 1P, Purkinje neurons of the cerebellum), 
whereas the shorter dystrophin-gene products derive from distinct internal promoters, as indicated. 
Dp427 is found in principal neurons of the brain and cerebellum, Dp260 is a retinal dystrophin, 
Dp116 is expressed in peripheral nerves, Dp140 is mainly expressed in fetal brain, and Dp71 is 
expressed in glial cells of the adult brain. Dp140 and Dp71 are the main brain dystrophins which 
mutations were associated with intellectual disability. The main protein structural domains are 
shown, including the specific NH2-terminus domain (N), the central rod domain (green bar), the 
cysteine-rich domain (CYS, blue), and the COOH-terminus (red). Adapted from Perronnet and 
Vaillend [7] with permission

C. Vaillend et al.



421

brain dysfunctions [7, 20, 21]. Translational research refined in light of clinical data 
will likely help to achieve such a fine-level characterization of the core endophe-
notypes leading to intellectual disability and neuropsychiatric disorders in DMD. 
Identification of common phenotypes in patients and mice is critical for preclinical 
studies, and mouse models are valuable tools to characterize the cellular and molec-
ular mechanisms underlying brain dysfunction and to define reliable markers of 
treatment efficacy.

24.4  Phenotypes of Mouse Models Lacking Dystrophins

24.4.1  The mdx Mouse Lacking Full-Length Dystrophin 
(Dp427)

The mdx mouse holds a nonsense mutation in exon 23 of the dystrophin gene which 
results in the absence of the full-length dystrophin (Dp427) in both muscle and brain 
tissues. This genetic model is suitable to evaluate the core brain and cognitive altera-
tions that are common to all DMD patients, even though aggravation of the pheno-
type and presence of intellectual disability is generally associated with mutations in 
more distal parts of the gene leading to cumulative loss of other brain dystrophins. 
In the mdx model, the absence of muscle dystrophin causes a degeneration of skel-
etal muscle fibers, but muscle wasting is delayed compared with the human condi-
tion, likely due to higher efficiency of chronic regeneration cycles, and mdx mice 
only show strong motor impairment after more than 1 year of age [22]. Nevertheless, 
appropriate behavioral evaluation in young-adult mdx mice enables identification of 
enhanced fatigability, reduced muscle resistance, and impaired motor coordination, 
which can be quantified using the rotarod, inverted grid, and grip tests to discrimi-
nate and follow the effect of a therapy on muscle function [23–27]. Because this 
constitutes a potential risk of biased reliability in cognitive tests, it is important to 
select behavioral tests and parameters with low sensitivity to motor dysfunction. 
Conversely, central dysfunctions might also contribute to altered brain control of 
motor functions, due to the role of the cerebellum in motor coordination [24] or that 
of the amygdala in the emotional control of locomotor activity [28]. While mdx mice 
may display normal spontaneous locomotor activity in some experimental condi-
tions [29, 30], they may also show enhanced fearfulness in responses to mild stress-
ors such as standard manual restraint [31]. This particular phenotype, attributed to 
altered amygdala function, is associated with a drastic reduction in motor activity 
characterized by long periods of immobility (freezing). It has to be taken into 
account in preclinical studies at several levels: First, fear- related immobility due to 
experimental stress may lead to underestimation of treatment effects on muscular 
dystrophy, as quantification of treatment effectiveness often depends on improved 
locomotion in mdx mice. Second, this behavioral phenotype can be used as a pertinent 
marker of therapy effectiveness on brain functions.
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Because brain Dp427 is normally expressed in several brain structures involved in 
cognition and emotional behavior, such as the hippocampus, amygdala, cerebellum, 
and associative cortical areas, the mdx mouse may display a variety of cognitive defi-
cits depending on these different structures. Fine-level behavioral analyses have been 
performed during the past 20 years in order to specify the nature and severity of these 
deficits and to select the most severe and replicable phenotypes that could be used as 
relevant markers of treatment efficacy in preclinical studies. Beyond the emotional 
disturbances described above, presence of specific cognitive deficits has been high-
lighted: While learning performance of mdx mice is preserved in some tasks, delayed 
acquisition has been demonstrated in specific conditioning paradigms involving cue-
outcome associative learning. Moreover, deficits in long- term memory and/or cogni-
tive flexibility were identified in both spatial and nonspatial tasks, even when initial 
learning was unaffected, while short-term memory was largely unimpaired [21, 29, 
32–34]. The deficits in hippocampal-dependent and amygdala-dependent long-term 
memories suggested that Dp427 loss could specifically impair memory consolida-
tion processes. In support of this hypothesis, mdx mice display alterations in synapse 
ultrastructural organization and hippocampal synaptic plasticity, which are considered 
as specific neurophysiological features and mechanisms required for learning-
induced remodeling of neuronal networks during memory consolidation [35–37].

The molecular mechanisms underlying behavioral disturbances in mdx mice are 
still unclear. Brain Dp427 is normally expressed in postsynaptic densities of central 
inhibitory synapses in principal neurons. Its loss induces aberrant molecular, struc-
tural, and physiological changes in synapses and compensatory changes in interneu-
ron density [38], which likely contribute to the altered synaptic plasticity and 
memory deficits in this model [24, 31, 36, 39–42]. It is believed that Dp427 is a key 
component of the molecular scaffold that regulates clustering and/or properties of 
postsynaptic GABAA receptors in inhibitory synapses [43]. The loss of Dp427 
would thus lead to impaired GABAergic inhibition and consequent enhancement of 
plasticity at glutamatergic synapses [36, 42, 44]. A drastic decrease in the number 
of α-subunit-containing GABAA receptor clusters (30–70% decrease among stud-
ies) has been reported in the various brain structures that normally express Dp427, 
including the amygdala, hippocampus, and cerebellum [31]. However, because the 
total amount of GABAA receptors is not significantly decreased, it is believed that 
Dp427 is dispensable for anchoring of these receptors but rather involved in their 
stabilization in large clusters at the synapse. The loss of dystrophin would thus 
result in an apparent loss of large synaptic clusters, due to the lateral diffusion of 
unstable receptors to extrasynaptic sites [28, 45].

24.4.2  The Dp71-Null Mouse

This transgenic mouse is a unique model to unravel the specific brain dysfunctions 
and behavioral phenotypes due to Dp71 loss, which are thought to aggravate the 
cognitive impairment and lead to the most severe cases of intellectual disability. 

C. Vaillend et al.



423

A selective absence of Dp71 is not typically observed in DMD patients, for whom 
distal mutations normally lead to cumulative loss of all dystrophins. However, a 
recent case report revealed that a rare but selective dysfunction of Dp71 can result 
in intellectual disability without muscular dystrophy [46], which further supports 
the importance of the Dp71-null mouse to decipher the mechanisms of intellectual 
disability associated with mutations in the dmd gene. The Dp71-null mouse does 
not have muscular dystrophy, as Dp71 is not expressed in skeletal muscles, but it 
displays cognitive deficits in visuospatial navigation and recognition tasks involv-
ing hippocampal-dependent long-term memory [47], which is reminiscent of some 
deficits reported in DMD patients with mutations upstream of exon 63 [19]. These 
deficits have been associated with enhanced hippocampal excitatory neurotransmis-
sion, suggesting that hyperexcitability of neuronal networks could be a basis of the 
brain dysfunctions due to Dp71 loss. A range of synaptic alterations have been 
described in this model, including postsynaptic disorganization of glutamatergic 
synapses, reduced synapse plasticity, and changes in synapse ultrastructure [37, 47], 
thus providing additional cellular and neurophysiological markers of brain dysfunc-
tion in this model.

The molecular basis of synaptic and cognitive dysfunctions in Dp71-null mice is 
still unclear. Dp71 is the main dmd-gene product expressed in the central nervous 
system (CNS), where it likely endorses multiple functions due to expression in both 
neuronal and glial subdomains [48]. One recent and most exciting finding of medical 
importance for DMD is the role that Dp71 appears to play at the glial-vascular inter-
face in clustering and/or stabilizing potassium (Kir4.1) and water (aquaporin 4, or 
AQP4) channels. Dp71 expression is clearly enriched in perivascular-astrocyte end-
feet throughout the brain, and it is believed that its loss may significantly alter potas-
sium and water homeostasis as well as vascular permeability, with putative effects on 
neuronal excitability [49]. Considerable advances have been made in understanding 
the role of Dp71 in retinal glial cells and its involvement in blood- retinal barrier func-
tion. Despite structural and functional differences between the retina and brain, it is 
believed that Dp71 may play a common role in glial-vascular mechanisms through-
out the CNS [50–53]. In the neural retina, macroglial cells (Müller glial cells and 
astrocytes) express Dp71 at the inner limiting membrane (ILM) and around blood 
vessels [54, 55]. The altered expression and/or distribution of AQP4 and Kir4.1 in the 
retina of Dp71-null mice appears to have functional implications in both astrocyte 
and vascular network development [55], as well as in retinal osmoregulation and 
vascular permeability [56]. This parallels the observation of retinal vascular abnor-
malities with diagnosis of retinal ischemia and proliferative retinal vasculopathy in 
some DMD patients [57–59]. Furthermore, the deletion of Dp71 was associated with 
retinal vascular inflammation, vascular lesions with increased leukocyte adhesion, 
and capillary degeneration, suggesting a role for Dp71-dependent mechanisms in 
retinal vascular inflammation diseases [60]. Impaired polarization of Kir4.1 channels 
in Müller glial cells was proposed to underlie a slight reduction in b-wave ampli-
tudes of the scotopic electroretinogram [61]. Thus, a range of molecular and cellular 
alterations related to the disruption of Dp71-dependent neuronal/glial/vascular 
interactions are being identified, which could be used as markers of treatment efficacy 
in future studies aimed at rescuing Dp71 function.
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24.5  Exon-Skipping Strategies to Rescue Brain Full-Length 
Dystrophin

24.5.1  Intracerebral Administration of Adeno-associated Virus 
(AAV) to Mediate Skipping of Exon 23 in mdx Mice

During the past decade, the development of molecular tools enabling rescue of 
dystrophin (Dp427) in the mdx mouse by exon skipping has shown a rapid evolu-
tion. The first successful rescue of brain Dp427 function was achieved using U7 
small nuclear RNAs modified to encode antisense sequences expressed from 
recombinant AAV (rAAV) vectors [40]. As the structure of brain Dp427 is similar 
to that of muscle Dp427, the AAV 2/1-U7 system was used. AAV 2/1-U7 has 
proven efficient to induce skipping of the mutated exon 23 and to rescue expression 
of a functional dystrophin-like product in muscle tissues of mdx mice to about 
50–80% of normal dystrophin expression levels from 4 to 13 weeks after injection 
[62]. In this pioneer study, intra-hippocampal administration of the AAV 2/1-U7 
system also led to the skipping of exon 23 in the pre-mRNA of Dp427 in this brain 
structure, thus restoring an open reading frame and expression of a truncated brain 
dystrophin (Fig. 24.2a).

Interestingly, dystrophin expression was also recovered in adjacent, afferent, 
cortical areas such as the entorhinal cortex, likely due to efficient retrograde transport 
of rAAV2/1 vectors. Four months after a single stereotaxic injection of rAAV2/1-
 U7 in the hippocampus of mdx mice, dystrophin rescue was only partial (estimated 
at 15–25% of WT levels) and much lower than the levels obtained in muscle tissues. 
However, an immunofluorescence study of treated hippocampal cryo-sections 
revealed typical punctate dystrophin immunoreactivity (Fig. 24.2b, c) and colocal-
ization with GABAA receptors, indicating that the rescued dystrophin was correctly 
localized at inhibitory synapses of hippocampal pyramidal neurons. Surprisingly, the 
partial rescue of brain Dp427 expression was sufficient to obtain a complete recovery 
of GABAA receptor clusters (Fig. 24.2d), as both the size and number of clusters 
were normalized by the treatment. This demonstrated the possibility to reach thera-
peutic threshold in the brain with this approach and to reverse the molecular synaptic 
defects in mdx mice. A follow-up study [63] showed that 25%  dystrophin rescue is 
also sufficient to normalize synaptic plasticity in the hippocampus of the mdx mouse 
2 months after intra-hippocampal injection (Fig. 24.2e, f). These studies showing 
that AAV-mediated exon skipping in the brain could rescue Dp427 expression and 
reverse synaptic dysfunctions in mdx mice without overt toxic effects opened the way 
to vectorized antisense-mediated therapy for the neuronal and cognitive defects in 
DMD. However, the spread of AAV transduction area was limited to ~1 mm away 
from injection sites, suggesting that multiple injection sites and/or the use of distinct 
delivery routes, different AAV serotypes, or naked antisense oligonucleotides (AONs) 
would be required to achieve transduction of the larger network of brain structures 
underlying cognitive deficits in mdx mice.
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24.5.2  Intracerebral Administration of Antisense 
Oligonucleotides (AONs) to Mediate Skipping of Exon 
23 in mdx Mice

The potential of naked AONs to correct brain dysfunction in mdx mice was first 
addressed using phosphorodiamidate morpholino oligomers (PMO) [31], which are 
currently under clinical trials for treatment of muscular dystrophy. Such morpholino 
oligomers have better diffusion properties than AAV vectors [64], do not induce 
immunological responses, and may display longer half-life in the CNS than in other 
tissues. In this study, intracerebroventricular infusion of antisense morpholino dur-
ing 1 week allowed a restoration of ~25% of brain dystrophin 35 and 50 days after 
administration. Dystrophin rescue was effective in several distant brain structures, 
thus demonstrating that PMO has a good diffusion in the CNS following intraven-
tricular delivery. This was accompanied by a substantial reduction of the abnormal 
stress-induced fear responses of mdx mice, which demonstrated the important role 
played by Dp427 in controlling amygdala-dependent emotional behavior. Analysis 
of the kinetics of Dp427 rescue revealed that the dystrophin protein was not yet 
expressed 3–4 weeks after treatment and no longer detected at delays >12 weeks. 
Importantly, significant reductions of fear responses were only effective when the 
dystrophin protein was readily detectable 5–7 weeks postinjection. This temporal 
window of dystrophin protein re-expression following AON administration likely is 
a critical factor of success in brain gene therapy for DMD, suggesting that chronic 
therapy will be required to maintain stable compensation of brain dysfunction.

24.5.3  Systemic Administration of New Classes of AONs 
to Mediate Skipping of Exon 23 in mdx Mice

In order to satisfy the requirements for systemic treatment by exon skipping, there 
was a need to develop new AON chemistries that could target both peripheral and 
central tissues affected by dystrophin loss, i.e., having the capacity to cross the blood-
brain barrier (BBB). In spite of the advances made in AON chemistry and design, the 
efficiency of systemic administration was limited due to poor tissue uptake and 
inability to cross the BBB, and brain dystrophin rescue had only been achieved by 
means of intracerebral administration, as described above. A new class of AONs 
made of tricyclo-DNA (Tc-DNA AONs) was recently characterized that showed 
unique pharmacological properties and uptake by many tissues including the brain 
after systemic administration, making this new tool very attractive for whole-body 
treatment strategies in DMD [27]. Mdx mice injected intravenously in the retro-
orbital sinus for 12  weeks with 200  mg/kg/week Tc-DNA AONs showed strong 
expression of exon 23-skipped dystrophin mRNA (up to ~30% of WT levels) and 
Dp427 protein (up to ~50%) in various muscles including the heart and diaphragm, 
which was five- to sixfold higher than expression induced by high doses of 2′OMe 
and PMO AONs. Detection of the skipped mRNA in brain tissues, including cortical, 
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hippocampal, and cerebellar areas, was only found in mice treated with Tc-DNA 
AONs, thus demonstrating unprecedented capacity to cross the BBB (Fig. 24.3a).

Although the brain expression levels of exon 23-skipped mRNA were relatively 
low (on average below 6%), the dystrophin protein was readily detectable in west-
ern blots (Fig. 24.3b) and in immunofluorescence analysis of brain cryosections as 
typical punctate staining suggesting synaptic relocalization. Most importantly, this 
partial rescue of brain Dp427 expression enabled full restoration of a normal emo-
tional behavior in mdx mice treated with Tc-DNA AONs (Fig. 24.3c), which did not 
display the enhanced fearfulness observed in untreated mice or in mice treated with 
2′OMe and PMO AONs. Thus, systemic administration of Tc-DNA AONs enabled 
re-expression of a functional Dp427-like protein in both muscle and non-muscle 
tissues. This demonstrates the potential of Tc-DNA AONs for future therapy 
aimed at treating both the predominant musculo-cardiorespiratory defects and the 
cognitive impairment of DMD patients.

24.6  New Prospects for AAV-Mediated Dp71 Replacement 
Therapy

Molecular tools and gene therapy approaches specifically targeting the Dp71 protein 
have long been lacking, which precluded interventions aimed at modulating and/or 
rescuing Dp71 expression in mouse models of DMD. Recently, a new AAV vector, 

Fig. 24.3 Brain Dp427 rescue by systemic administration of naked Tc-DNA AONs. (a) 
Quantification of exon 23-skipped Dp427 mRNA in the hippocampus (Hippo), cortex, and cer-
ebellum (Cbl) following IV injection of 200  mg/kg/week Tc-DNA, 2′OMe, and PMO for 
12  weeks. Only Tc-DNA AONs crossed the BBB. (b) Western blot showing detection of the 
Dp427 protein (arrowhead) in the cerebellum from TcDNA-treated mdx mice compared with WT 
and untreated mdx mice. 120 μg of total protein were loaded for the tcDNA and control mdx 
samples and 20  μg for the WT control. (c) Restraint-induced unconditioned fear responses 
expressed as the percentage of tonic immobility (freezing) in 5  min. Only Tc-DNA AONs 
(200 mg/kg/week) enabled normalization of the freezing behavior in mdx mice. Adapted with 
permission from Goyenvalle et al. [27]
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the ShH10, engineered in vitro by directed evolution to specifically target glial cells, 
has been shown to transduce almost exclusively Müller glial cells (MGCs) in both 
rat [65] and mouse retina (Fig. 24.4a) [66]. In mouse retina, transduction of MGCs 
was more efficient in Dp71-null mice than in wild-type mice (Fig.  24.4b, c), 
suggesting high suitability for rescue strategies in this transgenic model.

The complete murine Dp71 sequence from exon 63 to exon 79 without splicing 
was then cloned under control of a strong ubiquitous CBA promoter, to develop the 
first tool for Dp71 replacement strategies in CNS (Fig. 24.4d). The ShH10 vector 
expressing Dp71 was highly efficient following intravitreal injection to induce 
re- expression of Dp71  in MGCs of Dp71-null mice [67]. Indeed, this treatment 

Fig. 24.4 AAV-mediated Dp71 rescue. (a) Retinal cryosection showing GFP expression (green) 
selectively in Müller glial cells (MGCs), thus demonstrating the glial specificity of the ShH10 
capsid. The superimposed drawing represents a MGC crossing the retina from outer limiting mem-
brane (OLM) to ILM. The white asterisk shows the z level at which confocal images in (b) and (c) 
were taken. (b, c) GFP immunoreactivity in MGC cell bodies of WT (b) and Dp71-null (c) retinas 
showing a much better transduction in Dp71-null mice. (d) Dp71 expression plasmid containing a 
CBA promoter, a GFP reporter gene linked to Dp71 coding sequence with the viral 2A peptide, and 
two ITR for encapsidation in the ShH10 vector. (e) Western blots showing expression of Dp71 in 
WT but not Dp71-null mice (DP) and re-expression of Dp71  in treated Dp71-null mice (T) 
2 months after intravitreal injection of the ShH10-GFP-2A-Dp71 vector. Histograms show quanti-
tative data highlighting the sevenfold overexpression in Dp71-null mice. (f) Retinal cryosection of 
Dp71-null retina labeled with anti- dystrophins antibody (H4, red) showing relocalization of Dp71 
around vessels (white open arrows) and at the ILM (white arrow). (g) BRB permeability quantified 
by the Evans blue (EB) method, showing increased EB-albumin leakage in retinal tissue due to 
BRB breakdown in Dp71-null compared to WT mice (PBS) and rescue of BRB function following 
Dp71 overexpression (Mann-Whitney test; *p < 0.05, †p < 0.001; n ≥ 9). Adapted with permission 
from Vacca et al. [66] (Panels a–c) and Vacca et al. [67] (Panels e–g)
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induced an overexpression of Dp71 (Fig.  24.4e) and a relocalization of Dp71 
(Fig. 24.4f) and of critical components of the Dp71-associated protein complex at 
the MGC endfeet, such as AQP4 and Kir4.1 channels. Functionally, this led to the 
restoration of blood-retinal barrier (BRB) function (Fig. 24.4g) and enabled effi-
cient reabsorption of an experimentally induced retinal edema. Although a putative 
application for brain gene delivery remains to be tested, these results open new 
routes for the development of molecular tools that could specifically rescue Dp71 
expression in CNS glial cells and give hope for compensation of the most severe 
cognitive deficits associated with the DMD syndrome.

24.7  Treating the Nervous System Versus Treating Other 
Organs

24.7.1  Developmental Stage and Brain Plasticity

Alterations of critical mechanisms taking place during vulnerable periods of brain 
development, such as neurogenesis, cell migration, and neuronal connectivity, are 
thought to underlie irreversible neurodevelopmental disorders. This suggests that 
the brain dysfunctions associated with intellectual disability and other neurological 
disorders may not be accessible to pharmacological or genetic correction when 
treatments start in postnatal periods. Strikingly, however, a number of studies in 
mouse models indicate that reversing the underlying molecular mechanisms can 
overcome or at least alleviate cognitive deficits, even if treatments are started in 
adulthood and do not necessarily rescue all brain structural abnormalities. One 
likely hypothesis is that the same genes involved in brain development also play a 
critical role during learning-induced activity-dependent remodeling of neuronal 
networks, i.e., during adult brain plasticity, and/or that particular treatment strate-
gies may reactivate some features of developmental plasticity that facilitate recov-
ery [68, 69]. In DMD, brain imaging studies and autopsies yielded uneven 
conclusions, suggesting that macroscopic brain abnormalities are not features of all 
patients [70, 71]. Studies in mdx mice unveiled that brain alterations due to dystro-
phin loss are mainly located at the cellular level and are associated with substantial 
rearrangements of synapse density and ultrastructure [35–37]. Yet, rescuing stable 
expression of Dp427 in the adult brain of mdx mice resulted in successful normal-
ization of GABAA receptor clustering, hippocampal synaptic plasticity, and behav-
ioral features [27, 40, 63]. This suggests that at least part of the behavioral deficits 
in this model are reversible because they result from alterations of Dp427-dependent 
mechanisms involved in the modulation of synaptic plasticity by GABA receptor in 
the adult brain.
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24.7.2  The Vascular Barrier

The design of specific AON chemistries and AAV vectors able to cross the CNS 
barriers, such as the vascular barrier, appears as an important challenge for develop-
ment of therapies for whole-body treatment in DMD. Because of the difficulty to 
package large dystrophin coding sequences in an AAV vector, correction using 
small vectorized or naked AONs mediating skipping of the mutated exon constitutes 
the most promising strategy for Dp427 rescue. Some naked AONs showing good 
therapeutic effects for muscle treatment in preclinical studies may eventually pass 
the blood-cerebrospinal fluid barrier [31]. However, most of them cannot cross the 
vascular barrier following systemic administration, with the exception of the 
recently engineered Tc-DNA AON, likely due to unique properties associated with 
the tricyclo-DNA chemistry (i.e., higher resistance to RNase, strong hydrophobic-
ity, and capacity to form nanoparticles in solutions) [27]. Strikingly, only the 
Tc-DNA AON demonstrated capacity for functional correction of neurobehavioral 
deficits in mdx mice in a comparative study.

For AAV vectors, systemic delivery routes have to be tested to target CNS, because 
invasive intracerebral injections resulting in a small transduced area and putative 
cerebral damages are less desirable options for human gene therapy. Some natural or 
designed AAV vectors have shown the capacity to cross the blood-brain barrier 
(BBB) after intravenous delivery even in adult animals and may therefore offer a 
good opportunity for noninvasive brain delivery in DMD [72]. However, this has not 
been tested yet to rescue brain dystrophins. Moreover, recent reports indicate that a 
lack of brain dystrophins and/or associated proteins may increase the capacity of 
some circulating molecules to cross the BBB.  Indeed, a blood barrier breakdown 
with fluid leakage into the neural tissue was shown in Dp427-deficient mdx mice [73, 
74], Dp71-null mice [56, 60], α-dystrobrevin knockout mice [75], and laminin-α2-
deficient mice [76]. Although the vascular barrier in these models is abnormally 
permeable to high molecular weight proteins such as serum albumin, a putative per-
meability to AAV particles has not been demonstrated to date. In the retina of Dp71-
null mice, which exhibit a blood-retinal barrier (BRB) breakdown [56], no virus 
leakage has been observed into the bloodstream when AAV particles were injected 
into the vitreous. This is an important result regarding AAV-mediated retinal gene 
therapy, as intravitreal administration may thus only target retinal territories even if 
the BRB is compromised. Importantly, the inner limiting membrane (ILM) of the 
retina also constitutes a physical barrier for penetration of AAV particles following 
intravitreal injection [77], even though this delivery route is safer than subretinal 
injections that may cause retinal detachment. To date, all clinical trials seeking to 
treat retinopathies using AAVs were performed by subretinal injections [78], and the 
development of therapeutic tools able to cross the ILM is a critical challenge. 
Strikingly, Dp71 loss alters the expression and/or localization of major glial compo-
nents of the ILM such as β-dystroglycan and laminin [66], leading to increased ILM 
permeability to AAV particles (Fig. 24.4b, c). Future studies in Dp71-null mice will 
determine whether such alterations of extracellular matrix integrity could also facilitate 
AAV-mediated brain gene therapy following systemic administration.
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24.7.3  Targeting Specific Neural Cell Types

Even though both naked AONs and AAV vectors are promising tools to target all 
organs, even the brain and its impenetrable BBB, another critical challenge for brain 
gene therapy in DMD is to target precisely and efficiently the desired cell types to 
avoid off-target responses. This may not be an issue for antisense-mediated exon- 
skipping approaches, as splicing of the dystrophin pre-mRNA will only occur in the 
cells that would normally express dystrophin. With vectorized transgenes, such as 
for Dp71 rescue experiments, off-target responses might occur, as AAV in the brain 
may transduce a range of different cell populations. Although distinct AAV sero-
types may show specific cell-type preferences, they have the general ability to trans-
duce all major cell types in the brain, including neuronal, microglial, and macroglial 
cell subtypes, oligodendrocytes, and endothelial cells [79]. Driving expression of 
the transgene from a specific promoter of the targeted cell population can circum-
vent this problem [72, 80]. Recent advances in AAV capsid engineering have 
resulted in the generation of new AAV vectors with improved properties such as 
increased transduction efficiency, targeted transduction of naturally inaccessible 
cell types, reduced immunogenicity, and very low off-target responses [81, 82]. 
These important achievements are expected to improve and pave the way for new 
clinical applications based on AAV gene therapy.

24.7.4  Therapeutic Threshold

Earlier exploitation of AAV technology has shown that even modest changes in a 
brain protein expression level may have significant functional impact in animal 
models of genetic diseases. For example, in a mouse model of spinocerebellar ataxia 
type 1, a genetic dominant neurodegenerative disease, AAV-shRNA-based therapy 
enabled improvement of motor coordination by repressing expression of mutant 
ataxin-1  in cerebellar neurons by less than 10%, likely because the shRNA was 
allele-specific and did not alter the wild-type copy needed for normal cell function 
[83]. In recessive diseases characterized by lack of expression or loss of function of 
a protein, partial re-expression may also induce significant functional improve-
ments, suggesting that only a small quantity of protein is required to ensure cellular 
function. Thus, in mice expressing low dystrophin levels due to skewed X-inactivation 
[84] or after muscle gene therapy in dystrophin-deficient DMD models [85, 86], 
only a partial expression of dystrophin was sufficient to improve muscle function. 
In muscle gene therapy, however, a minimum threshold of dystrophin-expressing 
fibers is likely required to achieve efficient therapeutic effect. Most clearly in brain 
gene therapy studies in mdx mice, rescuing brain Dp427 expression to 15–25% of 
WT levels with the AAV2/1-U7 system enabled full normalization of both molecular 
(GABAA receptor clusters) and neurophysiological (synaptic plasticity) brain 
defects. Likewise, rescuing less than 10% of brain Dp427 with systemic delivery of 
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Tc-DNA AONs normalized the stress-induced abnormal enhancement of fear 
responses [27, 40, 63]. Thus, less than 25% re-expression of brain Dp427 appears to 
be sufficient to correct brain and behavioral functions.

In contrast, the first attempt to rescue Dp71 expression and function in the retina 
of Dp71-null mice through AAV-mediated gene delivery was associated with a 
sevenfold overexpression of Dp71 (Fig. 24.4e). The main effect of this treatment 
was to relocalize critical channels involved in retinal ion homeostasis and rescue 
BRB function without any overt detrimental side effect [67]. The high efficiency of 
the ShH10 capsid and strong ubiquitous CBA promoter may likely explain why 
Dp71 was overexpressed compared to wild-type Dp71 expression levels. To induce 
a more physiological restoration, smaller amounts of viral particles could be tested 
for dose-response effects, and the use of a glial-specific promoter to drive Dp71 
glial expression may also help to reach more reasonable expression levels [87]. 
These investigations could inform us about the therapeutic threshold of the Dp71 
restoration, in other words at what amount of Dp71 the BRB permeability can be 
restored.

24.8  Summary and Future Directions

The current results from CNS-targeted gene delivery in mouse preclinical studies are 
encouraging, showing that both splice-switching correction and replacement strate-
gies hold realistic prospects to rescue expression and function of the brain full- length/
large and short C-terminal dystrophins, respectively. Functional and preclinical stud-
ies undertaken in this laboratory helped establishing an accurate set of biomarkers 
and phenotypes in DMD mouse models, from the molecular to neurophysiological 
and behavioral levels, which can be used to determine if molecular therapies devel-
oped to treat DMD may also correct brain, cognitive, and neurobehavioral defects in 
this disease. More studies are needed, however, to precisely characterize the multi-
farious roles played by the different brain dystrophins and to identify specific tar-
gets relevant to distinct patients’ mutation profiles. Perspectives of bench to bedside 
gene therapy translation also poses the challenge to engineer specific chemistries 
for naked AON and novel properties for AAV vectors, in order to minimize neuro-
toxicity, to target selective neural cell types, and to ensure penetration of CNS bar-
rier and deep spread in neural tissues following systemic delivery. This will help to 
circumvent current hurdles and bring gene therapy closer to whole- body delivery 
and full treatment of the DMD syndrome.
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Chapter 25
Therapeutic Approaches 
for Dysferlinopathy in Animal Models

William Lostal and Isabelle Richard

Abstract Dysferlin deficiencies are responsible for muscular dystrophies with dif-
ferent presentations with the most frequent being limb-girdle muscular dystrophy 
type 2B and Miyoshi myopathy. The dysferlin (DYSF) gene is expressed through a 
6.2 kb coding sequence, a size that impedes classical gene transfer approach using 
adeno-associated vectors (AAVs). There is no treatment for dysferlin deficiencies, 
but in the last decade, a large spectrum of strategies has been evaluated in different 
setups. In this review, we present the different models that are available for preclini-
cal studies as well as the different therapeutic approaches evaluated so far. Among 
the latter, the most extensively studied strategies are AAV-mediated transfer of 
either full-length or truncated dysferlin using two or one AAV, RNA-based strate-
gies such as exon skipping and trans-splicing, and overexpression of a protein pro-
posed to compensate the absence of dysferlin. Gene editing and cell therapy have 
also been set off.

Keywords Dysferlin · In vivo · Treatment · Mouse · Skeletal muscle

25.1  Introduction

Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies due 
to mutations in dysferlin [1–3]. The most frequent presentations are the limb-girdle 
muscular dystrophy type 2B (LGMD2B) [1, 3, 4] and the Miyoshi myopathy (MM) 
[3, 4]. Additional minor phenotypes were also reported: distal myopathy with ante-
rior tibial onset (DMAT) [5], proximo-distal dysferlinopathy [6], pseudometabolic 
myopathy, or isolated hyperCKemia [7]. The age of onset is variable from child-
hood to the fourth decade [8, 9], and patients usually lose their ability to walk 
10–30 years after [8]. There is no treatment today for these diseases.
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The human dysferlin is a 237-kDa tail-anchored type II transmembrane protein. 
It has 13 domains including 7 C2 domains and 6 specific domains: FerI, FerA, FerB, 
a double DysF internal Nter, a double DysF internal Cter, and a C-terminal trans-
membrane domain (TM) [10] (see Fig. 25.1a). It was shown that dysferlin plays a 
major role in muscle membrane repair [11], especially due to the C-ter part [12]. 
The gene is expressed as a 6.2-kb cDNA, composed of 55 exons (see Fig. 25.1a) and 
predominantly present in skeletal muscle and in peripheral blood monocytes [13]. 
Importantly, transgenic overexpression of dysferlin in the sole skeletal muscle of 
A/J mice demonstrated a complete rescue of the muscular dystrophy phenotype, 
indicating that correcting the deficit in muscle is sufficient [14]. In addition, Roche 
et al. showed that macrophage infiltration in impaired muscle is a consequence and 
not a cause of the myofiber damage [15].

There is no treatment for dysferlinopathies to date, but a large number of different 
approaches based on genetic intervention are being investigated in dysferlin- deficient 
animals. The variety of proposed approaches is in line with the large size of its cod-
ing sequence, which imposes adaptations or alternatives of the classic approach of 
gene transfer. Indeed, most of the strategies that were tested in experimental studies 
in Duchenne muscular dystrophy, another example of a disease with a large gene, 
have also been investigated in dysferlin-deficient models. These approaches include 
AAV-mediated transfer of either a full-length or partial dysferlin, RNA-based strate-
gies such as exon skipping or trans-splicing, the overexpression of an alternative 
protein proposed to compensate at least some of the function of dysferlin, or more 
specific approaches such as gene editing, cell therapy, or naked DNA transfer. This 
chapter highlights the available dysferlin-deficient animal models that are useful for 
determining outputs and evaluating treatments and the different engineered 
approaches evaluated so far to correct the deficiency in dysferlin (see Fig. 25.1b).

25.2  Available Dysferlin-Deficient Animal Models

Three mouse models deficient in dysferlin have been described: two are naturally occur-
ring animal models, SJL and A/J mice [16], and the last one is an engineered knockout 
(KO) [11]. All these strains are available in the Jackson laboratory (www.jax.org).

The SJL genome presents a splice site mutation, leading to the removal of exon 
45 corresponding to the C2E protein domain in dysferlin [17–19]. Since this corre-
sponds to an in-frame deletion, a residual protein can still be present in the muscle. 

Fig. 25.1 (continued) for the 3′ vector, with an overlapped sequence up to 1475 bp. Two different 
sets of overlapped vectors have been tested experimentally and showed a high efficiency after 
systemic delivery (# from Ex24 to 30 [36] and $ from the middle of Ex24 to the middle of Ex31 
[38]). (d) The minidysferlin vectors that were tested experimentally were depicted. * = this vector 
was used in a rAAV vector in dysferlin-deficient mice [39]. ** = constructs evaluated C2D, C2E, 
and C2F removal [24]. (e) RNA-mediated strategies based on exon skipping and trans-splicing. 
Nota bene: for Philippi et al. evaluated four different PTM targeting introns 30, 31, 35, or 36
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Fig. 25.1 Schematic illustration of the dysferlin gene structure and dysferlinopathy therapy. (a) 
Scheme of the 237 kDa human dysferlin protein including functions and interactions of distinct 
regions (adapted from [49]). Dysferlin is composed of 13 domains including 7 C2 domains and 6 
specific domains: FerI, FerA, FerB, a double DysF internal Nter, a double DysF internal Cter, and 
a C-terminal transmembrane domain (TM). The corresponding exons are depicted below. (b) 
Gene-based therapeutic approaches presented in this review. (c) For dual AAV overlapped vectors, 
in an optimal design (removing all unnecessary sequences and considering the minimal size of 
regulatory sequences), the maximal dysferlin sequence in the 5′ vector will be 4047 bp and 4520 bp
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The mutation leads to a dystrophic phenotype including centronucleated fibers 
(CNF), size variation, inflammatory infiltrates, and eventually muscle fat replace-
ment. A progressive loss of muscle mass and strength was observed. The A/J mice 
present an insertion of a unique early transposon (ETn), a retransposon in intron 4 
of the DYSF gene [19], leading to a complete absence of the dysferlin protein. This 
mutation is associated with a late-onset progressive muscular dystrophy. A/J was 
questioned as an adequate model for dysferlinopathies because it carries a null 
allele for the complement element C5 and the fact that abnormality of the comple-
ment pathway was proposed to play a role in the pathophysiology of dysferlin defi-
ciency [20, 21].

A backcross onto the C57BL/6 background was performed for the A/J strain, 
allowing the possibility to use strain-matched control and eliminating the additional 
mutation in C5. The resulting model is called B6.A/J-Dysf prmd (aka BLA/J) [22] 
and has been widely characterized and used in different studies [23–25]. The first 
dystrophic features appear at 2 months of age, with CNF and inflammation areas. 
This model presents differences in the locomotor activity and membrane repair 
process [22]. Interestingly, the phenotype resembles more the LGMD2B pheno-
type than the Miyoshi myopathy with the gluteus and the psoas as the most affected 
muscles. This model was also crossed in two different immune-deficient back-
grounds: scid (Prkdcscid) and NRG (NOD.Cj-Rag1tm1Mom Il2rgtm1Wjl) [26, 27].

The engineered KO called Dysftm1Kcam was generated using a targeting vector to 
replace a 12-kb region carrying exon 51–54 in the 3′ part of dysferlin gene [11]. 
However, it was recently defined that the cassette inserted itself in exon 48 [28]. 
This model showed a slowly progressive muscular dystrophy with presence of cen-
tronucleated and necrotic fibers as soon as 2 months of age.

Besides mouse models, dysferlin-deficient zebrafish were generated using mor-
pholino [29, 30]. A reduced level of expression was observed in the different mor-
phants, leading to a disorganization and impairment of the zebrafish muscle. Such 
model can be very useful in pharmacological screenings, for example. Because a 
large animal model can present an interest in preclinical studies for evaluation of 
biodistribution, for example, the Jain Foundation (https://www.jain-foundation.
org/) in collaboration with the Comparative Neuromuscular Laboratory (CNL) of 
San Diego, USA, undertook a screening of biopsies in order to identify a canine or 
a feline model for LGMD2B, without any success as of today.

25.3  AAV-Mediated Transfer of Partial or Full-Length 
Dysferlin

25.3.1  AAV as Vector for Transfer

Recombinant vectors based on the adeno-associated virus (AAV) are valuable and 
widely used tools to introduce genes in vivo, in particular in a gene therapy perspec-
tive. This vector has been used in more than 100 clinical trials worldwide with 
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promising results obtained in genetic diseases affecting the retina, skeletal muscle, 
and liver among others. AAV is a small replication defective, non-enveloped virus 
belonging to the genus Dependoparvovirus. It is composed of an icosahedral proteic 
capsid and a ~4.7-kb genome comprising two inverted terminal repeats (ITR) and 
two open reading frames (ORF), rep and cap, that can be replaced by a recombinant 
cassette to generate a vector. The packaging size of AAV limits the applications of 
its use to genes with a size lower than 5 kb. It can nevertheless be diverted to transfer 
large disease genes. As exemplified in the case of dystrophin, one possibility is to 
reconstitute a larger ORF with two or three AAVs through the use of homologous 
recombination [31, 32]. The second possibility is to transfer truncated versions of 
the gene that would have conserved at least part of its function [33, 34].

25.3.2  Large Gene Delivery Strategies

In this strategy, fragments of the desired large ORF are inserted in independent 
AAVs that are then injected at the same time. The reconstitution is achieved by the 
cell machinery, thanks to the recombinogenic properties of sequences carried by the 
cassettes (i.e., ITR, overlapping fragment, recombinogenic sequence that can be 
associated with splicing of the excedent sequences). For the transfer of the full- 
length dysferlin, several approaches have been tested over the past decade. The first 
study based on concatemerization and splicing was a proof of concept for dysferlin 
with spectacular dysferlin expression and correction of the pathological signs after 
intramuscular (IM) injection and restoration of dysferlin functions in dysferlin- 
deficient mouse model [22]. The positive results obtained in a second study based 
on the use of a single vector where the full-length cDNA was incorporated, while 
initially reported as showing a high capacity of the specific serotype, highlighted 
that it is possible to reconstitute dysferlin from fragmented and randomly packaged 
AAV [35]. Then, we published in 2015 a comparative study of four commonly large 
gene AAV approaches (concatemerization/splicing, overlapping vectors, hybrid and 
full-length fragmented AAV) [36]. Details of the packaged dysferlin fragments are 
presented in Fig. 25.1c. The overlap strategy was demonstrated as the more efficient 
approach to deliver dysferlin into the skeletal muscle. The level of protein was 0.5- to 
2-fold compared to wild-type (wt) level after systemic delivery in upper and lower 
limbs muscle; and the expression was associated with correction of histopathology 
and functional capacities of dysferlin-deficient mouse. More recently, a preclinical 
study in mice and nonhuman primates (NHP) evaluating such vectors confirmed 
this efficiency with no toxicity or immune response [37, 38], paving the path to the 
clinical trial.

A phase I trial (NCT02710500) is ongoing, with estimated completion date in 
March 2018. It is a double-blind, randomized controlled study with direct intramus-
cular injection of dual AAV gene vector (rAAVrh.74.MHCK7.DYSF.DV) to the 
extensor digitorum brevis muscle (EDB). Two doses will be evaluated, with three 
patients in each cohort.
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25.3.3  Truncated Proteins

In that case, the ORF inserted in the vector codes for a smaller version of the protein 
deleted of certain domains but which has conserved at least a partial capacity to cor-
rect the consequences of the genetic defects. The demonstration of the potential of 
minidysferlin was obtained, thanks to the observation that a patient presenting a 
mild phenotype was expressing a very short form of dysferlin with a deletion from 
exons 2–40 [39]. A rAAV minidysferlin based on this ~73-kDa protein was evalu-
ated in dysferlin-deficient mice. It led to membrane repair restoration [39] but no 
full restoration of the phenotype of deficient animals [40], indicating that the addi-
tion sequences in dysferlin are required for a therapeutic effect.

These observations led to the need to define the best combination of dysferlin 
domains to transfer. A recent publication evaluated a nano-dysferlin construct with 
a removal of three C2 domains (C2D, C2E, C2F) based on 3D structural modeling 
and C2 domain redundancy [24]. After AAV injection in muscle of young BLA/J 
animals, the authors observed improvement of muscle integrity and reduction of 
damaged fibers as detected by Evans blue permeability after 3 weeks of expression. 
More impressively, the nano-dysferlin after systemic injection and 8  months of 
expression, albeit with only 10% of dysferlin-positive fibers, led to improved mus-
cle tissue with fewer Evans blue dye (EBD) fibers and an increase of locomotor 
activity on rearing capacity.

Besides these proof-of-principle studies modifying dysferlin, these findings 
showed that identifying and understanding the role of each of dysferlin domains is a 
prerequisite to determine truncated isoforms for a potential clinic perspective. All the 
described constructs are presented in Fig. 25.1d.

25.4  RNA-Based Strategies

Besides the strategies based on gene transfer, a number of approaches relying on 
modulating pre-mRNA splicing have been tested in cellular and animal models 
deficient in dysferlin. In the exon-skipping approach, the exon or region carrying 
a frameshift mutation is deleted using antisense sequences to restore the reading 
frame, leading to a truncated form of protein that can still be functional. A sec-
ond option that was explored is the use of the trans-splicing system, where a 
mutated part of the endogenous mRNA sequence is replaced by a normal 
sequence, during the maturation of the pre-messenger, by forcing splicing toward 
a pre-trans-splicing molecule (PTM). The evaluated strategies are described in 
Fig. 25.1e.
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25.4.1  Exon Skipping

Thanks to the demonstration of modulatory aspect of the protein [39], the exon- 
skipping strategy was thought as potential strategy for dysferlinopathies. However, 
the domains of dysferlin are usually encoded by several exons, suggesting that mul-
tiple exon skipping should be considered taking into account structural information. 
This is supported by the severe clinical presentation associated with large deletions, 
such as covering exons 14–18 or 15–18 [41]. It seems therefore that this strategy will 
be limited to very specific situations. For the different studies performed so far, the 
selection of the exon to be targeted was based on clinical or genetic observations. 
First, the observation of a mildly affected patient with an in-frame skipping of exon 32 
[42] led Wein et al. to target this exon. The authors successfully skipped exon 32 on 
patient cells [43] with functional restoration of membrane repair capacity [44]. In the 
second case, the mutation consisted of a deep intronic mutation, creating a strong 
splice donor consensus sequence and secondarily a pseudoexon identified as PE44.1 
[45]. An antisense oligonucleotide (AON) was used in mutated patient cells to target 
potential exonic splicing enhancers in PE44.1, leading to its skipping out of the 
PE44.1 and an increase of normal dysferlin expression [45]. In a third example, the 
authors designed a frame restoration strategy to target exons 22–23, 25–29, and 22–29 
by AON on CD133+ stem cells isolated from patients. A low efficiency in myoblasts 
was observed but did not lead to detection of dysferlin- positive fibers, after in vivo 
intramuscular injection of these modified cells in scid/blA/J mice [46].

25.4.2  Trans-splicing

Trans-splicing strategies can be performed to replace either the 5′ part or the 3′ part of 
the defected mRNA. For dysferlin, all trans-splicing strategies reported have utilized 
therapeutic RNAs to replace the 3′ part of the transcript to be repaired. A first study 
used a pre-trans-splicing molecule (PTM) carrying a complementary region to intron 
48, an acceptor splice site, and the cDNA region covering exons 49–55 [47]. We 
showed in vitro efficacy by detection of a corrected mRNA. In addition, we provided 
the first demonstration of DYSF trans-splicing reprogramming in vivo after intramus-
cular injection in WT animals. However, we were also able to demonstrate a major 
drawback of the technique: generation of undesirable translated products of RNA-
trans-splicing molecules from putative start codon in PTM. A second study evaluated 
four different PTMs carrying sequences corresponding to exons 31–55, 32–55, 36–55, 
or 37–55. Two of them (Ex32–55 and Ex36–55) were evaluated in vivo in WT and 
BLA/J animals [48]. By targeting specific intronic regions with weakly defined 3′ 
splice site, they successfully restored the trans-spliced mRNA in LGMD2B myoblasts 
and, for the first time, expression of the dysferlin protein with up to 35% of positive 
fibers after local injection in muscle of dysferlin- deficient mice.
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25.5  Use of Proteins that Can Compensate the Absence 
of Dysferlin

Because dysferlin belongs to the large ferlin family, a group of six single-pass trans-
membrane proteins with a short C-terminal extracellular domain and multiple cyto-
solic C2 domains makes it possible to propose that some members of the family, if 
expressed in the right cells at the right time, could compensate for at least some of 
the functions of dysferlin. The ferlin proteins closest to dysferlin are otoferlin and 
myoferlin. They share a high domain homology (at least 6 C2 domains, FerB, which 
is a specific ferlin domain) [49]. Since myoferlin is highly expressed in developing 
skeletal muscle where it regulates fusion and muscle regeneration [50, 51], whereas 
otoferlin is mainly expressed in the inner ear and involved in SNARE-mediated exo-
cytosis [52], myoferlin was selected for a compensatory study [40]. We generated a 
mouse strain overexpressing myoferlin and crossed it with the dysferlin- deficient 
strain, BLA/J. We observed a rescue of the membrane fusion defect but with no cor-
rection at histology level, suggesting that the pathogenicity of dysferlin deficiency is 
not only due to membrane repair capacity, but there is a unique function of dysferlin 
important for muscle homeostasis.

A complementary approach was also performed using anoctamin 5 (ANO5). 
This protein, also called TMEM16E, belongs to the anoctamin protein family that 
includes calcium-activated chloride channels. Recessive mutations in ANO5 lead to 
both a proximal limb-girdle muscular dystrophy (LGMD2L) and a distal Miyoshi- 
like phenotype (MMD3) [53]. This protein was selected because of the similarity of 
the dual clinical presentations seen in both ANO5 and DYSF deficiencies. In addi-
tion, low level of anoctamin 5 was observed in BLA/J animals compared to WT. A 
gene transfer strategy using rAAV vector to deliver Ano5 was evaluated [54]. While 
no toxic effect was observed related to the expression of the transgene, no therapeu-
tic effect was observed in dysferlin-deficient mouse.

A third approach involved Mitsugumin53 (MG53), also called TRIM72 
(Tripartite motif containing protein 72), known to play an important role in mem-
brane repair and to interact with dysferlin [55]. In a first study, MG53 gene delivery 
was performed on γ-sarcoglycan-deficient hamster model [56], presenting a defect 
in membrane repair capacity [57]. After systemic delivery, the authors showed an 
increase of membrane repair resealing, ameliorated pathology, and improved mus-
cle. Based on these observations, a recombinant human MG53 protein treatment 
was evaluated on dysferlin-deficient mouse [58], leading to a less permissive mus-
cle fiber to EBD and a better sarcolemmal membrane integrity of dysferlin-deficient 
muscle fibers in mice. These studies demonstrated MG53 treatment as a possible 
compensatory approach, for membrane repair defect.

25.6  Additional Approaches

Besides the approaches presented above, additional studies may be more anecdotal 
for now but with some potential as demonstrated (see Fig. 25.1b).
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25.6.1  Full-Length Delivery of Naked DNA

A recent paper described the use of naked DNA as a potential simple approach to 
transfer the full-length dysferlin cDNA [27]. The authors performed a locoregional 
delivery of dysferlin plasmid into hind limbs in the immunodeficient Bla/J/NRG 
mice. In co-injection with follistatin plasmid, significant reduction of EBD uptake 
was observed showing the restored membrane repair function up to 3  months 
postinjection.

25.6.2  Cell Therapy

A first ex vivo cell therapy using the full-length dysferlin has been reported. In this 
strategy, the authors used Sleeping Beauty (SB), a system widely used for stable 
gene transfer [59]. This approach was based on the use of a plasmid carrying the 
transgene flanked by transposon sequences and the transposase SB coding 
sequence. SB activity excises the transposon and integrates it into the target 
genome. The authors developed a SB dysferlin system to correct dysferlin-defi-
cient mouse myoblasts and engrafted them in immunodeficient mouse [60]. They 
showed a successful in situ engraftment, with numerous dysferlin-positive fibers in 
scid/blA/J muscle after 6 weeks.

25.6.3  Gene Editing

With the wake of the CRISPR/Cas9 tsunami, it is obvious to think about edition of 
the large dysferlin gene. Only one study has reported efforts in that sense using 
patients iPSc carrying a nonsense mutation (c.5713C > T;p.R1905X). A TALEN 
nuclease was associated with a donor sequence for inserting the full-length WT 
human dysferlin in the H11 safe harbor locus of chromosome 22 [61]. The authors 
also evaluated gene editing using CRISPR/Cas9 on the same cells but with limited 
efficiency.

25.7  Additional Considerations and Conclusions

Obviously, the most advanced approach to date is the full-length gene replacement 
using the dual AAV since presently at the level of clinical trial. This translation into 
the clinics is supported by a tremendous effort on the natural history of dysfer-
linopathies ([62]; COS study is currently ongoing under the umbrella of the Jain 
Foundation https://www.jain-foundation.org/) and enables the establishment of 
patient registries. It is, indeed, mandatory to define sensitive outcome measures for 
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therapeutic evaluation. A central question is also the level of dysferlin required for 
a therapeutic benefit. We showed that 1–4% of expressed dysferlin after systemic 
injection of AAV is enough to improve significantly the phenotype of Bla/J mice 
[22], suggesting that a minimal dose of vector could be sufficient.

For other approaches, additional studies are required. For example, it would be 
necessary to understand better the function and structure of the different domains of 
dysferlin for a rational design of minidysferlin. It can be predicted that we will see 
more experimental works in the future on correction of deep intronic mutations 
through exon skipping and on gene editing. The combination of the large number of 
introns and the evolution of genetic diagnosis through genome sequencing will 
probably uncover more mutations leading to inclusion of intronic sequences. The 
genetic information will also help to identify areas of hotspots that may be targeted 
by gene editing. Besides the approaches presented in this review, which focuses 
mainly on gene-based strategies, additional efforts are being pursued as well on 
pharmacological therapies.
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Chapter 26
Muscle Cell Membrane Repair 
and Therapeutic Implications

Renzhi Han

Abstract Plasma membrane forms the physical barrier that separates the cellular 
interior from the exterior environment, and its integrity is essential for cell survival 
and function. Mammalian cells have evolved efficient membrane repair mecha-
nisms that are activated to reseal injured plasma membrane and maintain cell viabil-
ity. Many of the membrane repair proteins have first been identified in skeletal 
muscle, where defects in the genes encoding these proteins often lead to myopa-
thies. Dysferlin is a muscle-specific protein implicated in mediating Ca2+-activated 
membrane-membrane fusion to facilitate membrane repair. Genetic mutations in 
dysferlin gene are linked to several forms of muscular dystrophy. Likewise, anocta-
min 5 (Ano5), synaptotagmin VII (Syt7), and TRPML1 have been found to play 
roles in muscle membrane repair, and their genetic defects have been shown to 
cause various forms of myopathies. Other proteins such as MG53 and annexins 
were found to interact with dysferlin and modulate the membrane repair process 
and other membrane tracking events in muscle. Given the importance of membrane 
integrity in human health and disease in general, the membrane repair proteins have 
become promising targets for therapeutic development that are aimed to boost the 
intrinsic membrane repair function of the cells.

Keywords Anoctamin 5 · Dysferlin · Gene therapy · Membrane repair · MG53 
Muscular dystrophy · TMEM16E

26.1  Muscle Membrane Repair Machinery

As the physical barrier to encapsulate the cellular contents in a closed space, the 
plasma membrane is essential for cell survival and function. Any insult to the plasma 
membrane integrity would be disastrous if left unrepaired. Since the membrane 
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damage occurs physiologically and pathologically all the time [1], the cells have 
evolved efficient mechanisms to rapidly reseal injured membrane. The importance 
of such an emergency response is underscored by the work in the last two decades 
that have revealed several key membrane repair components are linked to human 
myopathies. These include dysferlin [2–4], synaptotagmin VII (Syt7) [5], transient 
receptor potential cation channel (TRPML1, also known as mucolipin-1 [MCOLN1]) 
[6], and anoctamin 5 (Ano5, also known as TMEM16E) [7–9]. Recent studies have 
identified additional proteins involved in the  membrane repair  process, such as 
MG53 [10], annexins (A1, A2, A5, and A6) [11–16], calpain [17–20], and ESCRT III 
[21, 22]. These studies together have now painted a clearer picture of the membrane 
repair machinery and how they work for membrane repair.

26.1.1  Dysferlin and Synaptotagmin VII

Genetic mutations in the dysferlin gene were identified in patients with limb girdle 
muscular dystrophy type 2B (LGMD2B) [3], Miyoshi myopathy (MM) [2], or distal 
anterior compartment myopathy [23]. Dysferlin is a 230-kDa protein that is highly 
expressed in striated muscles and located at the sarcolemma and transverse tubules 
(T-tubules) [3]. As a member of the ferlin family, dysferlin contains a single trans-
membrane domain at its carboxyl-terminus and multiple C2 domains (Fig. 26.1a), 
which are about 130 amino acids in length with Ca2+-sensitive phospholipid- binding 
activities. In addition, dysferlin also carries Ferlin-specific motifs, FerI, FerA, and 
FerB, although the functions of these structures have not yet been defined.

The C2 domains in dysferlin are highly similar to those in synaptotagmins (Syts) 
[24, 4, 25, 26, 19] and can mediate the dimerization of dysferlin [27]. Syts generally 
contain two C2 domains (Fig.  26.1a) and play important roles in Ca2+-triggered 
vesicle fusion at the synapse for neurotransmission [28]. Interestingly, the Syt7-null 
mice develop autoimmune myositis with defective membrane resealing [5]. The 
amino-terminal C2 domain (C2A) in dysferlin mediates Ca2+-sensitive phospholipid 
binding, thus likely involved in vesicle fusion within the cell [26, 29]. For all these 
and the pathological features of patient skeletal muscles with dysferlin gene muta-
tions, it was hypothesized that dysferlin plays a role in membrane repair of skeletal 
muscle by regulating Ca2+-mediated vesicle fusion. Bansal et  al. [4] designed a 
series of experiments to test this hypothesis in the skeletal muscle of a mouse model 
with dysferlin gene disruption using laser-induced membrane injury/repair. Isolated 
myofibers were injured at a small region of the plasma membrane with a beam of 
laser irradiation in the presence of a membrane-impermeable lipophilic dye FM1-43 
to monitor the membrane repair process [4]. FM1-43 is nonfluorescent in saline 
but exhibits increased fluorescence intensity upon binding phospholipids. 
Dysferlin- null myofibers allowed more entry of FM1-43 dye after injury than 
control cells, indicating that dysferlin-null myofibers have slower membrane 
resealing kinetics [4, 30]. Control myofibers damaged in the absence of Ca2+ dis-
played similar repair defects, thus supporting the role of dysferlin in Ca2+-regulated 
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membrane repair response. Moreover, by flushing the control myofibers through a 
syringe to mechanically damage the cell membrane, Bansal et al. observed dysfer-
lin-enriched membrane “patch” formation at the damage site [4], consistent with the 
“patch” hypothesis for membrane repair. It is believed that dysferlin functions as a 
Ca2+ sensor to promote vesicle-membrane fusion via its C2 domains like Syts and 
form a resealing membrane patch.

Interestingly, Cooper and her colleagues found that dysferlin is proteolytically 
cleaved by ubiquitous calpains, which were previously shown to be involved in 
membrane repair [17, 31, 18, 32], to release a 72-kDa, Syt-like carboxyl-terminal 
fragment containing the last two C2 domains and the transmembrane domain [19, 20]. 
This 72-kDa mini-dysferlin is specifically recruited to the injury site, highlighting 
the similarity between dysferlin and Syts in mediating Ca2+-regulated vesicle fusion. 
Different from the hypothesis that dysferlin mediates Ca2+-regulated vesicle fusion 
for membrane repair, a recent study showed that dysferlin is involved in phosphati-
dylserine (PS) accumulation at the damage site [33], which may be sensed by mac-
rophages to remove the repair patch and restore the cell membrane integrity. 
Therefore, dysferlin may participate in different steps during the membrane resealing 
response.

Fig. 26.1 (a) Schematic of dysferlin, calpain-released mini-dysferlin, and Syt7. Dysferlin con-
tains multiple C2 domains (C2A-C2G), which confers Ca2+-dependent phospholipid binding, and 
a carboxyl-terminal transmembrane domain. Dysferlin also has Fer domains (FerI, FerA, and 
FerB) and DysF domains with their functions undetermined. Calpain cleaves dysferlin between 
C2E and C2F to release a syt-like carboxyl-terminal fragment (mini-dysferlin) with only the last 
two C2 domains and the transmembrane domain. Syt7 carries an amino-terminal transmembrane 
domain and two tandem C2 domains. (b) Structural characteristics of Ano5. Ano5 carries ten trans-
membrane helices with a large amino-terminal region and a relatively short carboxyl-terminal 
region facing the cytosol. The second intracellular loop between TM4 and TM5 forms a functional 
lipid-scrambling domain (SCRD). Several Ca2+-binding sites are present in TM 6–8 (red stars)
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26.1.2  Anoctamin 5 (TMEM16E)

Anoctamin 5 (Ano5, or TMEM16E) belongs to the anoctamin protein family, con-
sisting of ten homologous members [34]. Anoctamin proteins are predicted to contain 
eight transmembrane domains. But the crystal structure of a TMEM16 family mem-
ber from the fungus Nectria haematococca was found to contain ten transmembrane 
domains [35] (Fig. 26.1b). The anoctamin proteins have been shown to function as 
Ca2+-activated chloride channels (CaCCs), phospholipid scramblases, or both [34].

Recessive mutations in ANO5 result in LGMD2L and Miyoshi myopathy 3 
(MMD-3) [7], while dominant mutations lead to gnathodiaphyseal dysplasia, a dis-
order of bone dystrophy [36, 37]. The clinical manifestations in LGMD2L and 
MMD-3 resemble those in dysferlinopathies [7]. The Ano5 protein is localized to the 
ER and intracellular vesicles, and its expression is upregulated during muscle dif-
ferentiation similar to dysferlin [38, 39]. Interestingly, even before the gene was 
identified in an LGMD2L patient, the fibroblasts derived from this patient were 
shown to have a membrane repair defect [9]. Recently, several lines of mouse models 
with Ano5 gene disruption were found to have distinct pathological presentations. 
Two of these lines with complete disruption of Ano5 showed no obvious muscular 
dystrophy at up to 80 weeks of age [40, 41]. However, the third line of Ano5-knockout 
(KO) mice carrying a gene trap cassette in the 8th intron showed some features of 
muscular dystrophy, intracellular aggregates, and defective membrane repair [42]. 
It is not clear what exactly underlies the different presentation of pathology in these 
animals. But clearly, complete loss of Ano5 protein in mice does not seem to cause 
obvious muscle pathology as seen in the LGMD2L and MMD3 patients. This may be 
due to the presence of a more effective compensatory mechanism in mice than in 
humans. Another possibility is that the truncated Ano5 peptides expressed from the 
mutations result in membrane repair defect and muscle necrosis.

As a membrane protein located primarily at the ER/SR and intracellular vesicles, 
it is unclear how Ano5 may be involved in cell membrane repair. Adeno-associated 
virus (AAV)-mediated Ano5 gene transfer into dysferlin-null mice showed that the 
presence of Ano5 did not significantly improve the membrane repair capacities of 
dysferlin-null myofibers or the muscle histopathology in these animals [43], sug-
gesting that Ano5 plays a distinct role from dysferlin in the membrane repair pro-
cess. Ano5 carries a functional lipid scramblase domain (Fig. 26.1b), suggesting 
that Ano5 may regulate lipid translocation across membranes. But how the lipid 
scramblase activity is linked to membrane repair requires future investigations.

26.1.3  TRPML1

TRPML1 (also known as mucolipin 1, MCOLN1) belongs to the mucolipin sub-
family of transient receptor potential (TRP) channels, which include two other 
members, TRPML2 (MCOLN2) and TRPM3 (MCOLN3) [44]. Like other TRP 
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channels, TRPML proteins consist of six putative transmembrane domains with the 
amino- and carboxyl-termini facing the cytosol [45] (Fig. 26.2a). TRPML1 is ubiq-
uitously expressed in almost every tissue and cell type, while TRPML2 and 
TRPML3 are restricted in particular cell types [45]. TRPML channels are localized 
predominately on the membranes of late endosomes and lysosomes [45, 46]. Loss- 
of- function mutations in TRPML1 result in mucolipidosis type IV, a severe lyso-
somal storage disorder that is characterized by neurodegeneration and psychomotor 
disabilities [47–49].

TRPML1 is a nonselective cation channel that releases Ca2+ from the endolyso-
somal lumen. Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], which is localized 
on endosomes and lysosomes, is known to be an endogenous activator of TRPML1 
channel [50]. In contrast, PI(4,5)P2 and sphingomyelins (SMs) in the plasma 

Fig. 26.2 (a) Structural aspects of TRPML1. TRPML1 consists of six transmembrane domains 
with the amino-terminal and carboxyl-terminal tails facing the cytosol. The first luminal loop is 
uniquely large and contains four N-glycosylation sites. Two di-leucine motifs are located at each 
tail to mediate the localization of TRPML1 to late endosomes and lysosomes. Two negatively 
charged amino acid residues (D471 and D472) within the last luminal loop are potential pore- 
forming determinants. (b, c) Schematic of MG53 (b) and annexin proteins (c). MG53 contains an 
amino-terminal tripartite motif, a RING finger domain conferring ubiquitination activity, a Zn2+-
binding B-box specific for TRIM family proteins thought to mediate protein-protein interactions, 
a coiled-coiled domain that mediates hetero- and homo-oligomerization, and a carboxyl-terminal 
PRY-SPRY domain. The annexin proteins contain an amino-terminal variable and four annexin 
repeats (Anx). AnxA6 is an atypical annexin containing eight annexin repeats. The annexin repeats 
coordinate Ca2+ binding despite the lack of EF hands
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membrane inhibit TRPML1 [51, 52]. Genetic disruption of TRPML1 in mice reca-
pitulates many aspects of mucolipidosis type IV disease [53]. Interestingly, the 
TRPML1-KO mice also display membrane repair defect in skeletal muscle and 
develop a muscular dystrophy phenotype [6]. Several lines of evidence support a 
direct role of TRPML1 in lysosomal exocytosis, which has been implicated in mem-
brane repair. A gain-of-function mutation in TRPML1 results in enhanced lyso-
somal exocytosis in cells [54]. Acute stimulation of TRPML1 with a synthetic small 
molecule activator ML-SA1 induces cell surface expression of the  lysosomal- 
associated membrane protein 1 (Lamp1) and lysosomal enzyme release in control 
but not TRPML1-KO macrophages [55]. Moreover, lysosomal exocytosis upon 
membrane injury is impaired when TRPML1 is genetically disrupted or pharmaco-
logically inhibited [6]. The question remains as for how TRPML1 is activated by 
membrane damage. TRPML1 is unlikely to be directly activated by Ca2+ [50] but 
could be indirectly activated by a Ca2+-dependent signal (e.g., lipid reorganization 
through a Ca2+-regulated lipid scramblase; see Ano5 above). In addition, oxidative 
levels are known to be increased at damage sites [10], and it is possible that intracel-
lular reactive species, which are known to activate several members of the TRP 
channels [56], may activate TRPML1 when the membrane is injured.

26.1.4  Mitsugumin 53 (Trim72)

Mitsugumin 53 (MG53, also known as TRIM72) is a member of the large family of 
E3 ubiquitin ligases, tripartite motif (TRIM) proteins [57]. MG53 contains an 
amino-terminal TRIM domain and a carboxyl-terminal PRY-SPRY domain 
(Fig. 26.2b), which commonly exists in most of TRIM family proteins. MG53 is 
abundantly expressed in striated muscles and to a lower level in the epithelia of lung 
and kidney [10, 58, 59]. Although MG53 does not contain transmembrane domains, 
it is associated with intracellular vesicles and the sarcolemma in striated muscles 
likely through its binding to PS, which is enriched in these membranes [10, 60].

Substantial evidence exists to support a central role of MG53  in membrane 
repair. Cai et al. first observed that MG53-containing vesicles translocate toward the 
sites of membrane damage following mechanical or laser-induced injury via an 
oxidation-dependent manner [10]. Disruption of MG53 leads to defective mem-
brane repair and increases cell death with such membrane insults. Ultrastructural 
analysis using electron microscopy revealed a lack of vesicle accumulation at sites 
of injury in MG53-null muscle fibers. In response to increased oxidation, as it 
occurs during acute damage of the cell membrane, MG53 forms oligomer  complexes 
[10]. The cysteine 242 residue of MG53 plays an essential role in its oxidation- 
mediated oligomerization and membrane repair [10]. Modification of cysteine resi-
dues with alkylating reagents prevents the nucleation process of MG53- mediated 
membrane repair [61]. Zn2+ binding to the RING and B-box motifs of MG53 is also 
essential for the assembly of membrane repair machinery [62, 63]. MG53 was also 
found to colocalize with annexin A5, another PS-binding protein involved in mem-
brane repair [10]. Moreover, MG53 interacts with dysferlin through the C2A domain 
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in a Ca2+-sensitive manner [64, 65]. These data suggest that MG53 senses the entry 
of oxidized milieu to form oligomeric complexes and facilitate vesicle translocation 
to the damage sites, where it also coordinates with other membrane repair proteins 
(e.g., dysferlin and annexins) to create a membrane resealing patch.

26.1.5  Annexins

The annexin proteins are able to bind phospholipids and actin in a Ca2+-dependent 
manner. The annexin repeat domains contain Ca2+- binding sites (Fig.  26.2c). 
Annexins preferentially bind PS, phosphatidylinositols (PtdIns), and cholesterol 
[66]. There are 12 annexin genes in humans, with each showing distinct tissue 
distribution. Different Ca2+ affinity allows each annexin protein to respond to 
changes in intracellular Ca2+ levels under unique spatiotemporal conditions [67].

The annexins contain a conserved carboxyl-terminal core domain formed by 
multiple annexin repeats and a variable amino-terminal head, which differs in length 
and sequence compositions among the family members. Both the amino- and 
carboxyl- terminal regions can bind lipid membrane in a Ca2+-dependent manner 
[68]. Because of their membrane- binding capacity, annexins have broad roles in 
regulating membrane trafficking and actin organization.

Several annexins have been shown to directly regulate membrane repair. 
Annexins (Anx) A1, A2, A5, and A6 translocate to the sites of muscle membrane 
damage in zebrafish muscle [69]. This translocation occurs in a sequential manner 
with AnxA6 arriving first. AnxA6 is also observed to move to the damage site in 
mouse skeletal muscle [14]. AnxA6 is unique among the annexin family members, 
as it contains two core domains (eight annexin repeats), while all other annexins 
contain only one core domain (four annexin repeats) [70]. Like other annexins, 
AnxA6 is capable of membrane binding through both the amino- and carboxyl- 
terminal annexin core domains, thus facilitating coalescence of two opposing mem-
branes, a step required for vesicle-membrane fusion during membrane repair [71]. 
Although AnxA6-null mice do not exhibit any overt phenotype [72], a genetic vari-
ant in AnxA6 was found to modify the disease severity in a mouse model of muscu-
lar dystrophy, Sgcg-KO mouse that lacks γ-sarcoglycan [14].

Additionally, Marg et al. (2012) observed that AnxA1 migrates to the membrane 
damage site in cultured human muscle cells [73]. Such a translocation of annexins 
in response to membrane injury does not seem to be muscle specific, as Jaiswal 
et al. found AnxA1 and AnxA2 at the membrane injury site in human cancer cell 
lines, MCF and HeLa cells [74]. Both AnxA1 and AnxA2 were found to directly 
bind dysferlin [12, 69] and contribute to membrane repair.

AnxA5, the smallest annexin, assembles to oligomers in a Ca2+ and PS-dependent 
manner [75], and accumulates at the membrane damage site [13]. In neuroblastoma 
cells, AnxA5 was shown to assemble into complexes that also contain AnxA1 and 
AnxA2 in a time-dependent manner at the plasma membrane upon increased Ca2+ 
levels [76]. AnxA5-null perivascular cells showed increased dye uptake upon mem-
brane injury [13], suggesting that AnxA5 is involved in the membrane resealing 
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process. Preventing AnxA5 from forming two-dimensional membrane-associated 
arrays also resulted in defective membrane repair [13]. Interestingly, the introduc-
tion of extracellular recombinant AnxA5 prior to laser-induced membrane damage 
was sufficient to improve the membrane repair capacity of AnxA5-null cells to near 
wild-type levels [13], suggesting that AnxA5 can act from the exterior of the cells, 
similar to MG53 [77]. These studies suggest that AnxA5 is a membrane repair pro-
tein, which can work from both the interior and exterior of the cell.

26.1.6  Other Membrane Repair Proteins

Besides the membrane patching hypothesis, there is also substantial evidence to sup-
port the removal of a damaged membrane for repair via endocytosis [78, 79, 16] and/
or extracellular budding [16, 22, 21]. It was observed that uncoated, irregularly shaped 
endosomes appeared intracellularly within a few minutes after cell injury [78]. These 
endosomes are morphologically similar to vesicles formed at the periphery of cells 
exposed to bacterial sphingomyelinase [78], suggesting a mechanism by which Ca2+-
triggered exocytosis of lysosomes might promote lesion removal by endocytosis. 
Lysosomal acid sphingomyelinase (ASM) is released to the cell surface in response to 
Ca2+ influx in wounded cells [80] and removes the phosphorylcholine head group of 
sphingomyelin to generate ceramide-enriched microdomains [81], which drive mem-
brane invagination for endocytosis. ASM inhibitors block the formation of the plasma 
membrane-associated ceramide microdomains triggered by Ca2+ influx in cells treated 
with pore-forming toxin streptolysin O [82] and attenuate membrane repair [79].

More recently, removal of the  damaged membrane has been shown to occur 
through membrane budding mediated by the endosomal sorting complex required 
for transport (ESCRT) complex [22, 21]. It was found that ESCRT III components 
are required for the repair of small (<100  nm) but not large plasma membrane 
lesions [22]. Membrane injury-triggered Ca2+ elevation results in assembly of 
ESCRT III and accessory proteins at the site of injury, initiated by apoptosis-linked 
gene (ALG)-2, a Ca2+-binding protein [21]. ALG-2 facilitates the accumulation of 
ALG-2-interacting protein X (ALIX), ESCRT III, and Vps4 complex at the injured 
cell membrane, which in turn results in cleavage and shedding of the damaged por-
tion of the cell membrane [21].

26.2  Therapeutic Development to Boost Membrane Repair

Maintaining the plasma membrane integrity is crucial for cell survival and thus 
alleviation or prevention of diseases. Skeletal muscle membranes, in particular, are 
constantly under mechanical stress, damaged and repaired during physiological 
activities. Disturbance of the membrane repair process in skeletal muscle often 
leads to muscular diseases. Identification of the membrane repair machinery and 
their underlying mechanisms offers new opportunities to target the membrane repair 
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process for the treatment of these diseases and potentially others as well. A good 
example is MG53, which has emerged as a promising therapeutic target for a num-
ber of diseases.

An extensive body of work by Ma and colleagues has demonstrated the critical 
role of MG53 for membrane repair in a variety of cell types. AAV-mediated deliv-
ery of MG53 in the δ-sarcoglycan-deficient hamsters improved membrane repair 
and ameliorated muscular dystrophy and heart failure in this animal model [83], 
highlighting the potential of MG53 gene therapy for muscular dystrophy. Moreover, 
application of recombinant MG53 (rhMG53) to the exterior of the muscle fibers is 
rapidly attracted to the site of injury, effectively preventing the influx of membrane- 
impermeable dye [77]. In addition, MG53 is a soluble protein and can be produced 
from bacterial cells. These features make MG53 an ideal candidate for protein 
therapy. Indeed, intravenous administration of rhMG53 in a short-term study was 
shown to improve the membrane integrity of myofibers as evidenced by reduced 
dye uptake after eccentric running in the mdx mice and also reduce muscle necrosis 
[77]. Similar protective effects of rhMG53 are seen in myocardial infarction [84], 
acute lung injury [59], and acute kidney injury [58] in rodent and large animal 
models. These findings support the concept of targeting cell membrane repair in 
regenerative medicine and highlight MG53 as a potential therapy for restoration of 
membrane integrity in a broad range of human diseases.

Although being an attractive therapeutic target for membrane repair, MG53 has 
also been found to mediate a number of other actions in the body. For example, it was 
recently shown that MG53-mediated skeletal muscle insulin resistance is the initiating 
and major factor of the pathogenic process of global metabolic disorders [85, 86]. 
Increased levels of MG53 were detected in the skeletal muscle of multiple animal 
models of insulin resistance and obese humans [85]. Metabolic disorders induced by 
over-nutrition are profoundly alleviated by MG53 disruption [85, 86], and transgenic 
overexpression of MG53 in mice promotes insulin resistance and other metabolic dis-
orders [85]. Moreover, cardiac-specific transgenic expression of MG53 leads to dia-
betic cardiomyopathy by upregulation of peroxisome proliferation- activated receptor 
alpha and impairment of insulin signaling [87]. Finally, MG53 has been found to play 
a negative role in IGF-1-induced myogenesis [86, 88, 89]. Future clinical applications 
of MG53 will need to carefully evaluate these potential side effects. It is noteworthy 
that many of the adverse effects of MG53 seem to be associated with relatively chronic 
processes, while the protective effects of MG53 to promote membrane repair are via 
its acute action. Therefore, it is possible to maximize the beneficial effects of MG53 
while minimizing its negative impact by controlling the treatment timeframe.

26.3  Conclusions and Future Directions

The genetic and cellular studies in mouse models and other organisms have pro-
duced a better understanding of the membrane repair process. Many of the key 
proteins involved in membrane repair have been identified, particularly in skeletal 
muscle likely due to the high levels of mechanical stress during their physiological 
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activities. The basic membrane repair machinery seems to be shared by many differ-
ent types of cells and tissues. Ca2+-regulated exocytosis, endocytosis, and extracel-
lular membrane budding may work in concert to effectively reseal the damaged 
membrane. Targeting the membrane repair process will likely yield promising ther-
apeutics for many human diseases.
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Chapter 27
Dystroglycanopathy Gene Therapy: 
Unlocking the Potential of Genetic 
Engineering

Charles H. Vannoy, Anthony Blaeser, and Qi L. Lu

Abstract Muscular dystrophy-dystroglycanopathies (MDDGs) are neuromuscular 
disorders associated with aberrant O-glycosylation of α-dystroglycan—an extracel-
lular peripheral membrane glycoprotein central to the dystrophin-glycoprotein com-
plex. The majority of these disorders are caused by loss-of-function mutations in a 
multitude of genes that disrupt the posttranslational modification of α-dystroglycan, 
affecting its ability to function as a receptor for extracellular matrix proteins con-
taining laminin globular domains. As a result, clinical manifestations of MDDGs are 
highly variable, exhibiting a wide spectrum of clinical phenotypes including mild to 
severe defects in the development of the muscles, brain, and/or eyes. Over the last 
couple of decades, significant progress has been made in the elucidation of 
O-mannosyl glycan structures on α-dystroglycan and characterization of the under-
lying mechanisms of MDDGs, which has prompted concerted efforts toward the 
development and evaluation of potential clinical treatment options. Current genetic 
engineering efforts designed to treat MDDGs employ adeno-associated virus 
(AAV)-mediated delivery of expression vectors for gene replacement/supplementa-
tion and antisense oligonucleotide (AON) splice- modulation therapy to suppress 
exon trapping. Future therapeutic strategies are focused on the optimization of these 
current technologies and exploration of newer technologies such as genome editing. 
In this chapter, we address the disruption of functional α-dystroglycan as it relates 
to various clinical manifestations and highlight the potential genetic engineering 
strategies for treating MDDGs with an emphasis on preclinical data. We also discuss 
the problems that must be solved before effective treatment options are readily 
available.
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27.1  Introduction

Dystroglycan is a complex protein involved in physiological processes responsible 
for maintaining skeletal muscle membrane integrity and functional development of 
the central nervous system [1–3]. This protein is encoded by a solitary gene (DAG1) 
that maps to chromosome 3p21.31  in humans [4]. During transcription, a 5.8-kb 
mRNA transcript is translated into a single polypeptide and then posttranslationally 
cleaved to yield two mature protein chains: a cell-surface α subunit (156 kDa) and a 
transmembrane β subunit (43 kDa) [5–8]. Both proteins are ubiquitously expressed, 
and each protein has distinct surface characteristics that determine how they interact 
with other molecules [6]. β-Dystroglycan associates with dystrophin via its cyto-
plasmic carboxy-terminal region, which in turn binds to the filamentous actin 
(F-actin) cytoskeleton [9]. The amino-terminal region of β-dystroglycan couples 
with the carboxy-terminal region of α-dystroglycan, securing this soluble subunit to 
the outer surface of the cell. α-Dystroglycan is extensively glycosylated and acts as 
a cellular receptor for extracellular matrix proteins containing laminin globular 
domains [10–12]. As a result, dystroglycan is a central component of a multimeric 
protein complex that creates a physical linkage between the cytoskeleton and the 
basement membrane. Given the complex nature of α-dystroglycan and its direct cor-
relation with muscular dystrophy-dystroglycanopathies (MDDGs), this chapter will 
focus on the biochemical composition and subsequent disruption of α-dystroglycan 
as it relates to various clinical manifestations and potential treatment options.

An in-depth look at the structural aspects of α-dystroglycan at the molecular 
level helps to facilitate a better understanding of the physiological and pathological 
functions of the protein. The core α-dystroglycan protein is predicted to be approxi-
mately 72 kDa in size, yet the native α-dystroglycan protein migrates as a diffuse 
band anywhere from 120 to 250 kDa, depending on tissue type [4–6]. Previous stud-
ies have determined that a majority of the protein molecular weight is due to a 
diverse carbohydrate composition that is heterogeneous in various tissues and cell 
types, including both N- and O-linked glycans [5, 13–15]. In the case of O-linked 
glycosylation, glycans are attached via an O-glycosidic linkage to the free hydroxyl 
group of specific amino acids (e.g., serine (Ser), threonine (Thr), or tyrosine (Tyr)). 
More specifically, α-dystroglycan contains a clustered Ser/Thr-rich domain in the 
central region of the protein, which affords numerous sites for O-linked glycosyl-
ation [16, 17]. A variety of sugar residues can be attached to these Ser/Thr sites [18], 
yet it is the O-mannosylation that is of particular interest with regard to dystrogly-
canopathies. In Fig.  27.1, we depict three O-mannosyl glycans identified on 
α-dystroglycan (designated as M1, M2, and M3 by Yoshida-Moriguchi et al. [19]).

Over the past couple of decades, many researchers have contributed to the elucida-
tion of a biosynthetic pathway for these O-mannosyl glycans on α-dystroglycan, iden-
tifying at least 18 associated genes (listed in Table  27.1). Before the addition of 
mannose to the Ser/Thr residues takes place, various genes are involved in mannose 
and dolichol metabolisms, which include DPM1/2/3 [24, 25, 31], DOLK [34], and 
GMPPB [38]. Once mannose has been properly modified into an acceptable sugar 
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donor (dolichol-phosphate-mannose), the formation of the glycan begins with the 
transfer of mannose to Ser/Thr residues via POMT1/POMT2 in the lumen of the endo-
plasmic reticulum [41]. At this point, there is some divergence in elongation, which 
creates three distinct glycans. A majority of the O-mannosyl sites are extended in the 
Golgi complex via a β-1, 2 linkage with N-acetylglucosamine (GlcNAc) by 
POMGNT1 [56], which can then be further branched by an additional GlcNAc at the 
β-1,6 position and/or elaborated by fucose (Fuc) or galactose (Gal) [106 –109]. These 
terminal Gal residues are then further modified with sulfated glucuronic acid (GlcA) 
and/or neuraminic acid (Neu5Ac) to generate the M1 and M2 glycans [55, 106, 110]. 
On the other hand, a small number of O-mannosyl sites, considered exclusive to 
α-dystroglycan, undergo subsequent elongation in the ER with the β-1,4 addition of 
GlcNAc by POMGNT2, the β-1,3 addition of N-acetylgalactosamine (GalNAc)  
to GlcNAc by B3GALNT2, and phosphorylation of the O-linked mannose at the 

Fig. 27.1 Schematic representation of O-mannosyl glycans associated with α-dystroglycan. The 
glycan structures are designated as M1, M2, and M3 with the core sugar sequence connected by 
solid lines. Additional sugar modifications to each respective core glycan are connected by dotted 
lines. Genes/glycosyltransferases involved in the biosynthetic pathway are identified at the site of 
action. Sugar residues are initially attached to serine (Ser) and/or threonine (Thr) amino acids. 
Symbolic representation of monosaccharides and other small molecules is described in the side 
panel. Fuc fucose, Gal galactose, GalNAc N-acetylgalactosamine, GlcA glucuronic acid, GlcNAc 
N-acetylglucosamine, Man mannose, Neu5Ac N-acetylneuraminic acid, P phosphate, Rbo5P 
ribitol-5- phosphate, Xyl xylose, 3S 3-O-sulfation

27 Dystroglycanopathy Gene Therapy: Unlocking the Potential of Genetic Engineering
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Table 27.1 Overview of genes associated with MDDG

Encoding 
gene OMIMa Molecular functionb Phenotype (OMIM)c Reference

DAG1 128239 Encodes for α- and β-dystroglycan MDDGA9 (616538)
MDDGC9 (613818)

[6, 20–23]

DPM1 603503 Dolichyl-phosphate 
mannosyltransferase

CDG1E (608799) [24–30]

DPM2 603564 Dolichyl-phosphate 
mannosyltransferase

CDG1U (615042) [25, 31, 32]

DPM3 605951 Dolichyl-phosphate 
mannosyltransferase

CDG1O (612937) [25, 33]

DOLK 610746 Dolichol kinase CDG1M (610768) [34–37]
GMPPB 615320 GDP-Man pyrophosphorylase MDDGA14 (615350)

MDDGB14 (615351)
MDDGC14 (615352)

[38–40]

POMT1 607423 Forms a complex with POMT2 
known as POMT that adds the first 
Man sugar to the Ser/Thr in the 
peptide chain of the O-mannosyl 
glycan

MDDGA1 (236670)
MDDGB1 (613155)
MDDGC1 (609308)

[41–50]

POMT2 607439 Forms a complex with POMT1 
known as POMT that adds the first 
Man sugar to the Ser/Thr in the 
peptide chain of the O-mannosyl 
glycan

MDDGA2 (613150)
MDDGB2 (613156)
MDDGC2 (613158)

[41, 42, 
49–54]

POMGNT1 606822 Transfers GlcNAc in a β-1,2 
linkage to O-linked Man

MDDGA3 (253280)
MDDGB3 (613151)
MDDGC3 (613157)
RP76 (617123)

[42, 49, 50, 
55–63]

POMGNT2 
(formerly 
GTDC2)

614828 Transfers GlcNAc in a β-1,4 
linkage to O-linked Man

MDDGA8 (614830) [19, 64]

POMK
(formerly 
SGK196)

615247 Phosphorylates the 6-position of 
O-linked Man

MDDGA12 (615249)
MDDGC12 (616094)

[19, 65–67]

B3GALNT2 610194 Transfers GalNAc in a β-1,3 
linkage to GlcNAc on the 
O-mannosyl glycan

MDDGA11 (615181) [19, 68, 69]

ISPD 614631 CDP-Rbo synthase MDDGA7 (614643)
MDDGC7 (616052)

[70–74]

FKTN 607440 Rbo5P transferase that uses 
CDP-Rbo

CMD1X (611615)
MDDGA4 (253800)
MDDGB4 (613152)
MDDGC4 (611588)

[42, 50, 70, 
75–88]

FKRP 606596 Rbo5P transferase that uses 
CDP-Rbo

MDDGA5 (613153)
MDDGB5 (606612)
MDDGC5 (607155)

[50, 70, 80, 
89–91]

TMEM5 605862 Transfers Xyl in a β-1,4 linkage to 
Rbo5P on the O-mannosyl glycan

MDDGA10 (615041) [65, 71, 92]

(continued)
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6-position by POMK to generate the core M3 glycan [19, 64]. The continued exten-
sion of the M3 glycan proceeds to the Golgi where two ribitol 5-phosphate (Rbo5P) 
molecules are added on to the GlcNAc, the first by fukutin and the second by FKRP 
[70]. TMEM5 and B4GAT1 continue the sugar chain elongation process by adding a 
xylose (Xyl) residue to the terminal Rbo5P via a β-1,4 linkage and a GlcA via a β-1,4 
linkage to Xyl, respectively [92–94]. Finally, the process  culminates with repeating 
units of [-GlcA-β-1,3-Xyl-α-1,3-] added onto the terminal GlcA residue via LARGE 
[97]. These repeating disaccharide units are responsible for the functional binding of 
α-dystroglycan to extracellular matrix proteins containing laminin globular domains 
[12]. The authors refer the reader to other reviews for a more comprehensive summary 
detailing the posttranslational modifications of α-dystroglycan [111–114].

27.2  Clinical Manifestation of Muscular Dystrophy- 
Dystroglycanopathy (MDDG)

Abnormal synthesis of the peptide chain or O-mannosyl glycans on α-dystroglycan 
leads to disruption of the dystrophin-glycoprotein complex and subsequently results 
in various forms of dystroglycanopathies, which can be divided into two classes. 
Primary MDDGs are caused by mutations in the DAG1 gene and are extremely rare 
[20–22], whereas secondary MDDGs are caused by mutations in the other 17 identi-
fied genes that are responsible for coding the proteins or enzymes involved in the 
O-glycosylation pathway of α-dystroglycan without directly affecting the expres-
sion of α-dystroglycan. MDDGs present a wide range of disease phenotypes that are 
broadly divided into three types (A, B, and C) based on clinical and pathological 
severity.

Table 27.1 (continued)

Encoding 
gene OMIMa Molecular functionb Phenotype (OMIM)c Reference

B4GAT1 
(formerly 
B3GNT1)

605517 Transfers GlcA in a β-1,4 linkage 
to Xyl on the O-mannosyl glycan

MDDGA13 (615287) [93–96]

LARGE 603590 Transfers repeating units of 
[-3-Xyl-α- 1,3-GlcA-β-1-] to GlcA 
on the O-mannosyl glycan

MDDGA6 (613154)
MDDGB6 (608840)

[50, 
97–105]

aOnline Mendelian Inheritance in Man (OMIM) is a continuously updated catalog of human genes 
and genetic disorders and traits, with a particular focus on the gene-phenotype relationship
bCDP-Rbo cytidine diphosphate ribitol, GalNAc N-acetylgalactosamine, GDP guanosine diphos-
phate, GlcA glucuronic acid, GlcNAc N-acetylglucosamine, Man mannose, POMT protein 
O-mannosyltransferase, Rbo5P ribitol- 5- phosphate, Ser/Thr serine/threonine, Xyl xylose
cCDG congenital disorder of glycosylation, CMD cardiomyopathy—dilated, MDDGA muscular 
dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), MDDGB muscular 
dystrophy-dystroglycanopathy (congenital with mental retardation), MDDGC muscular dystrophy- 
dystroglycanopathy (limb-girdle), RP retinitis pigmentosa
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On the most severe end of the clinical spectrum, MDDGA disorders, previously 
designated as Walker-Warburg syndrome (WWS) or muscle-eye-brain disease 
(MEB), exhibit significant defects in the central nervous system including distinc-
tive structural changes in the brain (lissencephaly type II or cerebellar cysts) and eye 
(retinal hypoplasia) in addition to the typical myopathic changes [42, 98, 115, 116]. 
These disorders frequently result in early lethality while surviving patients often 
suffer varying degrees of mental retardation. MDDGB disorders are less severe than 
MDDGA, showing evidence of cognitive impairment but a structurally normal 
brain on imaging [117]. Typical findings on brain MRI reveal that patients are 
afflicted with milder central nervous system abnormalities that include microceph-
aly or minor white matter changes. MDDGC disorders, previously designated as 
limb-girdle muscular dystrophy, are the most common form of the disease and pres-
ent with predominantly milder myopathic phenotypes that may or may not involve 
the central nervous system and/or eye abnormalities [89]. Initial symptoms are 
mostly muscle weakness as a result of progressive muscle degeneration followed by 
infiltration and accumulation of fibrotic and adipose tissues. This process affects the 
majority of skeletal muscles with a variable degree of severity, affecting the 
 diaphragm muscle most aggressively. Histopathological changes in cardiac muscles 
are limited, but dilated cardiomyopathy is a frequent observation in clinics, espe-
cially in MDDGC5 patients [118–120].

The range of clinical severities can be attributed to several factors including the 
site of mutations and levels of gene expression, both of which affect the functionality 
of the genes. Variation in the genetic background is also considered a potential dis-
ease modifier. Since the direct cause of the diseases may be associated with the 
abnormal O-mannosyl glycosylation of α-dystroglycan, the levels of residual 
O-mannosyl glycans in diseased muscles, representing the degree of functionality of 
the pathogenic gene, are likely the key factor in determining the disease severity. 
However, this correlation, although strongly supported by data from animal model 
studies, has not yet been firmly established from clinical data [121]. This discrep-
ancy is largely due to the fact that muscle biopsy samples from patients are very 
limited in size and do not represent overall levels of glycosylated α-dystroglycan in 
body-wide muscles. In general, the glycosylation pattern of α-dystroglycan is vari-
able between tissue types and developmental stages [122]. This variation is also 
affected by varying degrees of muscle regeneration [123, 124]. Furthermore, the 
gene mutation and severity of skeletal myopathy is not predictive of other prominent 
complications such as respiratory and cardiac failure [119, 120].

As a consequence, a clear genotype-phenotype correlation has yet to be estab-
lished in the clinic. Further investigations that can reveal additional knowledge will 
be required to fully understand genotype-phenotype relationships and the natural 
history of dystroglycanopathies. These factors, along with the variable age of onset, 
the presence of central nervous system and/or eye abnormalities, as well as the 
severity of cardiomyopathies along the spectrum, complicate the development of 
treatment options. Therefore, it is crucial that these issues are factored into the 
design of genetic engineering strategies.
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27.3  Genetic Therapy for Dystroglycanopathies

27.3.1  Gene Therapy

Since most types of MDDGs arise from defects that are associated with single-gene 
mutations, gene therapy is considered to be a viable therapeutic approach that does 
not require correction of the mutant allele. The concept of gene therapy is fairly 
straightforward, and several different approaches are currently being investigated, 
including (1) replacement of the defective gene that causes disease with a normal 
version of the gene, (2) introducing a “surrogate” gene to help ameliorate the dis-
ease caused by the defective gene, or (3) inactivating or “knocking out” the defec-
tive gene. It would seem that the latter of these strategies is impractical for MDDGs 
because all known genes in the biomimetic pathway of α-dystroglycan are essential 
for proper function. However, the two primary approaches are quite feasible and 
will be discussed in detail in this section.

Gene replacement therapy with a normal copy of the gene is clearly the ideal 
therapeutic approach for loss-of-function mutations in MDDGs, the results of 
which have been investigated in several animal models. One of the first gene ther-
apy studies revealed that LARGE gene transfer was able to restore α-dystroglycan 
function in the skeletal muscles and ameliorate the dystrophic phenotype of 
LARGEMYD mice, a model with a mutation in the same gene as and clinical pheno-
type similar to the MDDGA6 [125]. This study provided evidence that LARGE 
expression plays a critical role in the glycosylation of α-dystroglycan. In addition, 
the LARGE- modulated glycosylation had a direct effect on the morphological and 
pathological phenotype of the muscles. In another study, recombinant FKTN was 
injected into knock-in mice with a retrotransposal FKTN insertion, a phenomenon 
evident in a majority of FCMD (Fukuyama-type congenital muscular dystrophy) 
cases, and subsequently analyzed for glycosylation and laminin-binding activity 
[126]. Results indicated that FKTN gene transfer reduced the amount of hypogly-
cosylated α-dystroglycan and increased levels of the normal-sized α-dystroglycan 
species. However, the mouse model used in this study retained a modicum of intact 
α-dystroglycan, which was sufficient in preventing the development of histopatho-
logical features commonly associated with MDDG. As a result, no therapeutic 
consequence could be evaluated. In a continuation of their FKTN studies, Kanagawa 
et al. focused on rescuing the intrinsic defects of satellite cells as an alternative 
therapy in two distinct FKTN conditional knockout mice that exhibited phenotypes 
reminiscent of MDDG [127]. AAV-mediated delivery of FKTN cDNA restored 
fukutin expression in satellite cells with improvement in their regenerative poten-
tial, suggesting that fukutin is important for muscle regeneration. Around the same 
time, therapeutic approaches aimed at replacing mutated FKRP with normal pro-
tein to restore the link between the extracellular matrix and the cell receptors were 
developed in an FKRP-deficient mouse model that contains a proline-to-leucine 
missense mutation at position 448 (FKRPP448L) and is clinically relevant to MDDGC5, 
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also known as LGMD2I [128]. The therapeutic potential of AAV- mediated FKRP 
gene therapy was evidenced by the restoration of functionally glycosylated 
α-dystroglycan in skeletal and cardiac muscles. The transgene expression led to a 
significant improvement in muscle pathology and function. Additionally, overex-
pression of exogenous FKRP protein did not induce secondary expression of func-
tional glycosylation of α-dystroglycan in non-muscle tissues, such as the liver and 
kidney. A similar study was conducted by Qiao et al., which used an AAV- mediated 
FKRP gene therapy in an FKRP-deficient mouse model that contains a common 
amino acid change from leucine to isoleucine at position 276 (FKRPL276I) and 
mimics the milder, late-onset phenotype of LGMD2I [129]. Systemic delivery of 
the human FKRP gene into FKRPL276I mice at multiple ages rendered body-wide 
FKRP protein expression and restored glycosylation of α-dystroglycan in both 
skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathol-
ogy and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber 
membrane leakage, resulting in restoration of skeletal muscle and heart contractile 
functions. To further expound on FKRP gene therapy studies, Vannoy et al. reported 
an age- dependent response to FKRP gene replacement therapy that addressed the 
effectiveness of the treatment at different stages of disease progression [130]. 
Specifically, the researchers administered AAV vectors incorporating a codon-
optimized FKRP gene intravenously to FKRPP448L mutant mice at various age 
groups spanning the course of the disease. In the early stages of the disease pro-
gression, the treatment was highly effective. At the middle stages of disease pro-
gression, the treatment was capable of halting disease progression with some 
beneficial improvements to pathology and function. However, at the later stages, 
the treatment seemed to halt disease progression but had minimal pathological 
benefit to the mice. Overall, the study suggests that restoration of FKRP gene func-
tion in an FKRP-deficient mouse model can essentially halt disease progression at 
whatever stage it has reached but has limited ability to reverse secondary patholo-
gies including fibrosis. Gene replacement studies involving LARGE, FKTN, and 
FKRP help to lay the groundwork for the preclinical evaluation of these therapeu-
tic strategies related to dystroglycanopathies. These studies give evidence to sug-
gest that small quantities of exogenously delivered genes that express normal 
enzymatic activity might be sufficient to restore enzymatic function or that partial 
restoration of α-dystroglycan glycosylation may be effective in reducing disease 
severity in dystroglycanopathies. Additionally, results helped support the notion 
that each of these proteins/glycosyltransferases is essential in the O-mannosylation 
of α-dystroglycan.

Given the involvement of a multitude of genes in MDDG disorders, the develop-
ment of gene replacement therapies to target every individual gene is a considerable 
obstacle that would require a significant amount of time, energy, and funding. One 
potential solution is the application of a functionally dominant glycosyltransferase 
to rescue multi-gene defects. Multiple research groups have suggested that LARGE 
overexpression can compensate for the lack of function of several other MDDG- 
related genes, including FKRP, FKTN, POMT1, and POMGnT1, which account for 
a majority of the clinically diagnosed dystroglycanopathies. Barresi et al. were the 
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first to show that overexpression of LARGE led to a recovery of α-dystroglycan 
function as a receptor in cell cultures derived from individuals diagnosed with 
FCMD, MEB, and WWS [125]. A few years later, the first in vivo study provided 
evidence that LARGE gene transfer can bypass the glycosylation defects of 
α-dystroglycan in MDDG models other than LARGEmyd mice [126]. Several other 
reports subsequently showed that the overexpression of LARGE induced hypergly-
cosylation of α-dystroglycan with a high affinity for extracellular ligands in other 
MDDG mouse models such as POMGnT1 knockout and FKRP-deficient mice [131, 
132]. In the POMGnT1 knockout model, AAV-mediated LARGE treatment yielded 
partial restoration of α-dystroglycan glycosylation and ligand-binding activity. The 
dystrophic phenotype in skeletal muscles was ameliorated as revealed by signifi-
cantly reduced fibrosis, necrosis, and numbers of centrally located nuclei with an 
overall improved motor function. Similar results were demonstrated in the FKRP- 
deficient mouse model where ectopic expression of LARGE led to the restoration of 
α-dystroglycan glycosylation and laminin-binding activity. However, this study also 
showed that overexpression of FKRP was unable to correct the glycosylation defects 
and improve pathology in muscles of the LARGEmyd mice. These results suggest 
that modulation of LARGE activity can be a versatile treatment for dystroglycanop-
athies, regardless of the causative gene.

Conversely, given the demonstration that overexpression of LARGE can mod-
ify the core glycans by attachment of the [-GlcA-β-1,3-Xyl-α-1,3-] disaccharide 
to various complex N- and O-glycans on non-dystroglycan proteins or by contin-
ued elongation of the repeating units [133, 134], other studies have cast doubt 
about the potential efficacy of LARGE gene therapy to unrelated dystroglycanopa-
thies [135, 136]. For example, one group reported that transgenic expression of 
LARGE exacerbates the muscle pathology of FKRP-deficient mice [135]. The 
overexpression of LARGE produced no pathology but led to a loss of force in 
response to eccentric exercise in the older normal mice. This result indicates a 
functional impairment, albeit limited, introduced by LARGE overexpression over 
time, although the loss was not observed in the younger mice. Other studies sug-
gest that the detrimental effect of LARGE overexpression might be related to the 
LARGE-mediated suppression of muscle regeneration via downregulation of insu-
lin-like growth factor 1 and that excess glycosylation may disturb cellular homeo-
stasis [136, 137]. Furthermore, it is now understood that LARGE-mediated rescue 
of disease phenotypes requires at least partial function of some of the MDDG-
associated genes such as FKRP, FKTN, POMT1, and POMGnT1. So, even though 
the exogenous expression of LARGE would thus appear to exhibit a very broad 
therapeutic window, this strategy would require extremely careful modulation to 
avoid unwarranted side effects. Clearly, more comprehensive investigations are 
required to understand the potential therapeutic windows for LARGE gene therapy 
and its applicability to non-LARGE- related MDDGs [138].

Gene therapies for dystroglycanopathies are not limited to replacement of the 
defective gene but also include alternative strategies that utilize surrogate genes not 
directly involved in the biosynthetic pathway of O-mannosyl glycans on 
α-dystroglycan. For example, Thomas et al. [139] utilized the B4GALNT2 (formerly 
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GALGT2) gene that, when overexpressed, inhibits the development of muscle 
pathology associated with various forms of muscular dystrophy [140–142]. 
Mechanistically, B4GALNT2 overexpression induces glycosylation of 
α-dystroglycan with the cytotoxic T cell glycan (GalNAcβ1,4-[Neu5Ac/Gcα2,3]-
Galβ1,4-GlcNAcβ-) concomitantly promoting dystrophin or surrogate gene/protein 
expression. Treatment of FKRPP448L mutant mice with AAV-mediated B4GALNT2 
inhibited downstream pathological events, despite a lack of functional O-mannosyl 
glycans on α-dystroglycan. Efforts to rescue dystrophic phenotypes with a surrogate 
gene have also been made by Vannoy et al. [143], which used a miniature form of 
agrin (mAgrin). Results in vitro demonstrated that overexpression of mAgrin was 
able to enhance laminin binding to primary myoblasts and fibroblasts from an 
FKRPP448L model and that this enhancement is diminished when mAgrin is in molar 
excess relative to laminin. However, in vivo results failed to demonstrate a histo-
logical or functional improvement in the dystrophic pathology when mAgrin was 
delivered into FKRPP448L mice. These results likely reflect an insufficient binding 
affinity of mAgrin to hypoglycosylated α-dystroglycan and the possibility of abnor-
mal binding and disruption due to a molar excess of mAgrin.

27.3.2  Antisense Oligonucleotide Therapy

An alternative to gene replacement therapy is gene manipulation using short single- 
stranded pieces of chemically modified nucleotides, also known as antisense oligo-
nucleotides (AONs). AONs are designed to be complementary to specific mRNA 
targeted gene and thus can be used as therapeutic agents that block the disease 
processes by altering the synthesis of a particular protein. This approach has been 
used previously to alter splicing events in other disease states, including Duchenne 
muscular dystrophy [144–146].

MDDGA4 (alternatively referred to as FCMD) disorders are caused by ancestral 
insertion of an SINE-VNTR-Alu (SVA) retrotransposon within the final coding 
exon (exon 10). This insertion activates a rare alternative “donor” site, which is 
normally inaccessible and creates a new splice “acceptor site” in the retrotranspo-
son sequence. This “exon trapping” event results in the incorrect splicing of the 
FKTN mRNA transcript and generates an alternative fukutin protein with a modi-
fied carboxy-terminus. As a result, the aberrant form of fukutin is displaced from the 
Golgi apparatus to the endoplasmic reticulum, which subsequently disrupts the gly-
cosylation pathway of α-dystroglycan. Taniguchi-Ikeda et al. have been able to cor-
rect the disorder by utilizing specifically designed AONs to suppress this exon 
trapping event [75]. In this approach, the AONs bind to the fukutin transcript before 
it is spliced, thereby favorably restoring its normal splicing pattern and expression 
of fukutin. In mice carrying the retrotransposon insertion, introduction of these 
AONs partially restored functional fukutin protein in skeletal muscle tissue with an 
observed recovery of normal  levels of glycosylated α-dystroglycan. Additionally, 
administration of AONs also had the intended effect of blocking the deleterious 
splicing event in lymphoblasts and myotubes derived from patients with FCMD. 
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As predicted, the rescue of normal fukutin protein expression restored the link 
between α-dystroglycan and extracellular matrix proteins. This study demonstrates 
the capability of using antisense-mediated splicing modulation in molecular therapy 
to rescue fukutin function and potentially creates a treatment option for FCMD.

27.3.3  Genome Editing

Another potential therapy for MDDGs utilizing genetic engineering is genome edit-
ing—the process by which engineered nucleases work like molecular scissors to 
insert, delete, or replace DNA in the genome of a living organism. In theory, genome 
editing is advantageous over gene replacement therapy because there is no need to 
include extra genetic material (i.e., complete coding sequences and regulatory 
sequences) when only single nucleotide polymorphisms or small proportions of the 
gene need to be altered, which represent the majority of MDDGs. Over the past few 
decades, various mechanisms have been identified and modified for use in genome 
editing, which includes meganucleases, zinc finger nucleases (ZFNs), and transcrip-
tion activator-like effector nucleases (TALENs). However, these methods have been 
quickly eclipsed by a more sophisticated technology based on CRISPR (clustered 
regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) systems, 
which can achieve target specificity through small synthetic guide RNAs that can be 
easily interchangeable for targeting new sites in the genome of interest. A simpler 
version of this system, commonly referred to as CRISPR/Cas9, was developed for 
genome editing purposes [147] and has been applied with varying degrees of success 
to numerous cell lines as well as in the generation of animal models of human dis-
eases. With regard to dystroglycanopathies, one research group studied the effect of 
CRISPR/Cas9-mediated TMEM5 gene deletion on core M3 glycan processing [92]. 
Generation of TMEM5-deficient cells disrupted the posttranslational modification of 
α-dystroglycan, resulting in abnormal glycosylation patterns. Ultimately, this helped 
to identify the enzymatic function of TMEM5 as a xylosyltransferase that forms the 
Xylβ1-4Rbo5P linkage on O-mannosyl glycan.

Use of the CRISPR/Cas9 system approach for the correction of disorders related 
to MDDGs remains in the early development stage, thus significant challenges and 
obstacles still exist before the approach can be clinically relevant. However, these 
technologies are developing at a rapid pace, and the continued advancement of this 
novel, programmable genome editing platform brings it one step closer to being a 
viable genetic engineering tool that could potentially revolutionize the field.

27.4  Summary and Future Direction

Significant progress has been achieved in the genetic and clinical characterization of 
various MDDG disorders caused by aberrant glycosylation of α-dystroglycan. 
Through numerous extensive studies, researchers have been able to elucidate the 
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molecular structure of multiple O-mannosyl glycans found on α-dystroglycan and 
identify at least 18 causative genes involved in the biosynthetic pathway. The iden-
tification of each newly associated gene helps to facilitate a deeper understanding of 
the mechanisms that underlie each one of these clinical disorders, while simultane-
ously creating a more complex system. Given this complexity, it is perhaps obvious 
that MDDG disorders involving various types of mutations would require distinct 
therapeutic strategies. A number of successful preclinical studies focused on the 
treatment of MDDGs have been reported, including gene therapies utilizing LARGE, 
FKTN, and FKRP and splice-blocking AON therapy for FCMD. Additionally, the 
emergence of genome editing technologies—ZNFs, TALENs, and CRISPR/Cas9—
offers an alternative method with the potential for targeted and precise correction of 
genes associated with MDDG.  However, none of these therapeutic strategies is 
without limitations or associated complications. For gene replacement therapy, sus-
tained or long-term tissue-specific gene expression has yet to be evaluated in the 
clinical setting. Off-target effects and issues related to specificity, efficiency, and 
translatability of in vivo delivery methods present serious impediments for the gene 
editing technology moving forward. Furthermore, all of these genetic engineering 
approaches only address the underlying issue and do not take into account the sec-
ondary pathologies associated with the genetic defect, which may cause potentially 
irreversible damage.

So far, the majority of studies related to MDDGs have only been conducted in 
animal models or cell lines, but efforts to accelerate these technologies into a clini-
cal trial setting are progressively increasing. Future advancement of this field will 
depend on the continued development of safe and efficient delivery strategies capa-
ble of achieving body-wide gene transduction, timely intervention, and appropriate 
functional assessment of each therapy. This, coupled with a better understanding of 
the physiopathological mechanisms of each disorder, will undoubtedly lead to suc-
cessful clinical trials in the future.
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Chapter 28
RNAi Therapy for Dominant Muscular 
Dystrophies and Other Myopathies

Scott Q. Harper

Abstract Historically, the muscle gene therapy field has been primarily focused on 
replacing defective or missing genes underlying recessive disorders and has matured 
to the point where several gene replacement strategies have now been tested or are 
underway in human clinical trials. Unfortunately, gene replacement strategies are 
not indicated for treating dominant diseases, where reduction or elimination of an 
abnormal allele would be needed, and as a result, gene therapies for dominant mus-
cular dystrophies have lagged behind. Importantly, the emergence of RNA interfer-
ence (RNAi) as a gene-silencing tool provided a means to begin closing this 
development gap. In the first edition of this chapter of Muscle Gene Therapy, we 
discussed the prospects of combining RNAi and gene therapy to treat dominant 
muscle diseases, but proof of concept for its practical usage had not been demon-
strated at the time. Here, in this second edition, we update our current understanding 
of the mechanisms underlying RNAi, compile several preclinical examples of 
RNAi-based gene therapies for muscle diseases, and discuss current prospects for 
translating these strategies toward the clinic.

Keywords RNA interference · RNAi · Dominant myopathy · Gene silencing · 
microRNA · miRNA · Short hairpin RNA · shRNAs · Small inhibitory RNA · siRNAs

28.1  Prevalence of Dominant Myopathies

Individually, all myopathies are classified as rare disorders by the NIH Office of 
Rare Diseases and Orphanet, which, respectively, define rare diseases as those 
affecting <200,000 people in the USA or 1  in 2000 Europeans [1, 2]. X-linked 
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recessive DMD has been historically considered the most common (1/3500 with 
recent updates defining incidence more accurately at 1/5000 newborn males) [3], 
followed by the dominant disorders myotonic dystrophy type 1 (DM1; 1/8000 to 
1 in 15,000) [1, 4] and facioscapulohumeral muscular dystrophy (FSHD; 1 in 8333–
20,000) [5–7]. In addition to FSHD and myotonic dystrophy, other dominant mus-
cular dystrophies and myopathies arise from mutations in at least 42 other known 
genes (Table 28.1). The relative abundance of dominant muscle disease genes and 
the fact that two of the top three most prevalent muscular dystrophies are domi-
nantly inherited supports that this class of disorders is important. Thus, therapeutic 
approaches for suppressing dominant disease genes should be explored more 
broadly, and RNAi-based gene therapies are a leading candidate strategy to accom-
plish such a goal.

Table 28.1 Mutations causing dominant muscular dystrophies and other myopathies

Gene Clinical disorder OMIM Epidemiology

ACTA1 Congenital myopathy with Fiber 
type disproportion

255,310

ACTA1 Congenital myopathy with excess 
of thin myofilaments

161,800

ACTA1 Congenital myopathy, with cores 161,800
ACTA1 Nemaline myopathy-3 161,800
ACTA1 Scapulohumeroperoneal myopathy 102,610
APOE Sporadic inclusion body myositis 147,421
APP Sporadic inclusion body myositis 147,421
BAG3 Dilated cardiomyopathy 1HH 613,881
BAG3 Myofibrillar myopathy type 6 603,883
CAV3 Distal myopathy 607,801
CAV3 Distal myopathy, Tateyama type 614,321 <1 in 1000,000
CAV3 Familial hypertrophic 

cardiomyopathy
192,600

CAV3 LGMD1C 601,253 192,600
CAV3 Long QT syndrome 9 611,818
CAV3 Rippling muscle disease 606,072
CHRNA1 Congential slow-channel 

myasthenic syndrome
601,462

CHRNA2 Congential slow-channel 
myasthenic syndrome

601,462

CHRNA3 Congential slow-channel 
myasthenic syndrome

601,462

CHRNA4 Congential slow-channel 
myasthenic syndrome

601,462

(continued)
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Table 28.1 (continued)

Gene Clinical disorder OMIM Epidemiology

Chrom 19p13 Vacuolar neuromyopathy 601,846
CLCN1 Thomsen myotonia congenita 160,800
CRYAB Dilated cardiomyopathy, 1II 615,184
CRYAB Myofibrillar myopathy type 2 608,810
DES LGMD1E (now MFM1) 602,067/now 

601,419
DES Myofibrillar myopathy type 1 601,419
DES Scapuloperoneal syndrome, 

neurogenic, Kaeser type
181,400

DMPK Myotonic dystrophy type 1 160,900
DNAJB6 LGMD1E (formerly LGMD1D) 603,511
DNM2 Myotubular (or centronuclear) 

myopathy
160,150

DNMT3B FSHD Unassigned
DUX4 FSHD 158,900
FHL1 Reducing body myopathy, 

X-linked 1a
300,717

FHL1 Scapuloperoneal amyotrophy 300,695
FLNC Cardiomyopathy, familial 

restrictive 5
617,047

FLNC Distal myopathy type 4 614,065
FLNC Myofibrillar myopathy type 5 609,524
GSK3B Sporadic inclusion body myositis 147,421
HNRNPDL LGMD1G 609,115
KBTBD13 Nemaline myopathy type 6 609,273
LDB3 Cardiomyopathy, dilated, 1C 601,493
LDB3 Cardiomyopathy, hypertrophic, 24 601,493
LDB3 Left ventricular noncompaction 601,493
LDB3 Myofibrillar myopathy 4 609,452
LMNA Congenital muscular dystrophy 613,205
LMNA Dilated cardiomyopathy 1A 115,200
LMNA Emery-dreifuss muscular 

dystrophy type 2
181,350

LMNA LGMD1B 159,001
MTMR14 Myotubular (or centronuclear) 

myopathy
160,150

MYF6 Myotubular (or centronuclear) 
myopathy

159,991

MYH2 Proximal myopathy and 
ophthalmoplegia

605,637

MYH7 Dilated cardiomyopathy 1S 613,426
MYH7 Hypertrophic cardiomyopathy 1 192,600

(continued)
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Table 28.1 (continued)

Gene Clinical disorder OMIM Epidemiology

MYH7 Laing distal myopathy 160,500
MYH7 Left ventricular noncompaction 5 613,426
MYH7 Myosin storage myopathy 608,358
MYH7 Scapuloperoneal syndrome, 

myopathic type
181,430

MYOT LGMD1A 604,103
MYOT Myofibrillar myopathy 3 609,200
MYOT Spheroid body myopathy 182,920
PABPN1 Oculopharyngeal muscular 

dystrophy
164,300

PSEN1 Dilated cardiomyopathy 1 U 613,694
PSEN1 Sporadic inclusion body myositis 147,421
RYR1 Central core disease 117,000
SCN4A Hyperkalemic periodic paralysis, 

type 2
170,500

SCN4A Hypokalemic periodic paralysis, 
type 2

613,345 Baltic Sea countires: 
Sweden, Finland, 
England; 1 in 1000 in 
Sweden; 1 in 
300,000 in England; 
1 in 5000 in Finland

SCN4A Myotonia congenita, atypical 603,967
SCN4A Paramyotonia congenita 168,300
SMCHD1 FSHD type 2 158,901
TAU Sporadic inclusion body myositis 147,421
TIA1 Welander distal myopathy 604,454
TNPO3 LGMD1F 608,423
TPM2 Arthrogryposis multiplex 

congenita, distal, type 1
108,120

TPM2 Arthrogryposis, distal, type 2B 610,680
TPM2 Cap myopathy-2 (CAPM2) 609,285
TPM2 Nemaline myopathy type 4 609,285
TPM3 Cap myopathy-1 (CAPM1) 609,284
TPM3 Myopathy, congenital, with 

fiber-type disproportion
255,310

TPM3 Nemaline myopathy type 1 609,284
TTN Hypertrophic cardiomyopathy, 

familial type 9
613,765

TTN Tibial muscular dystrophy (Udd 
distal myopathy)

600,334

ZNF9 Myotonic dystrophy type 2 602,668

At least 42 different genes are associated with dominant muscular dystrophies and other myopa-
thies. This list includes Alzheimer’s disease-related genes, TAU, APP, PSEN1, GSK3B, and APOE 
that are overexpressed in sporadic inclusion body myositis (IBM)
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28.2  RNA Interference

RNA interference (RNAi) is a cellular mechanism to control gene expression prior 
to translation [8]. RNAi is mediated by small (~21–25 nucleotide, nt) noncoding 
RNAs (microRNAs or miRNAs) as well as several proteins involved in miRNA 
processing and gene silencing [9–11]. A key feature of RNAi is sequence specificity: 
miRNAs share nucleotide sequence homology and base pair with 3′ untranslated 
(UTR) regions of cognate mRNAs [12]. These base pairing interactions allow 
miRNAs to act as guides that direct cellular gene-silencing machinery to target 
mRNAs and prevent their translation.

Naturally occurring miRNAs arise as relatively long primary transcripts from 
eukaryotic genomes ranging in complexity from single-celled algae to mammals 
[10, 11, 13–16]. Over the last several years, a large amount of work has focused on 
understanding how miRNAs are expressed and processed to a biologically func-
tional form. An important consequence of this growing knowledge has been the 
development of RNAi therapeutics. Designed RNAi molecules can be engineered to 
mimic natural miRNAs and subsequently used to suppress any gene of interest. It is 
therefore important to understand the biology underlying natural microRNA bio-
genesis when developing RNAi as a therapeutic tool.

28.3  RNAi Pathway

Rationally designed RNAi molecules are based on the structure and, in some cases, 
the nucleotide sequence of natural miRNAs (Figs.  28.1 and 28.2) [17–19]. Like 
other coding and noncoding transcripts in the cell, primary miRNA (pri-miRNA) 
precursors vary in size and how they are transcribed: most miRNAs are RNA poly-
merase II (pol II) transcripts, while others may be transcribed by RNA polymerase 
III (pol III), and expression may be tissue-specific [19–22]. Transcription of the 
pri-miRNA is the first step in the miRNA biogenesis pathway. The pri-miRNA is 
generated as a single-stranded transcript that forms an intramolecular stem-loop 
structure. Subsequent posttranscriptional processing steps, catalyzed by several 
evolutionarily conserved proteins, serve to trim the pri-miRNA to a smaller, func-
tional form and ultimately create a double-stranded miRNA from the single-stranded 
primary transcript. Simplistically, the pri-miRNA contains important sequence and 
structural elements that direct a nuclear microprocessor complex composed of 
Drosha and DGCR8 to cleave the RNA at a specific location [23–27]. DGCR8 rec-
ognizes and binds an important miRNA structural feature—a characteristic junction 
between the miRNA double-stranded stem and flanking single-stranded sequences 
[27]. DGCR8 binding serves as a ruler to correctly position Drosha at the base of the 
miRNA stem, where it then makes a staggered cleavage to produce a characteristi-
cally shorter (~65–70 nucleotide, nt) hairpin pre-miRNA containing a 2 nt 3′ over-
hang [26, 27]. The nuclear export factor, exportin-5 (Exp5), in complex with 
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RAN-GTP, binds this overhang and then shuttles the pre-miRNA to the cytoplasm 
[28]. There, GTP hydrolysis provides energy to dissociate the complex, thereby 
releasing the pre-miRNA for association with the enzyme Dicer and its cofactor 
TAR RNA-binding protein (TRBP). The Dicer/TRBP complex recognizes the 
Drosha-generated 3′ nt overhang and initiates another staggered cleavage event ~22 
nt away (~2 RNA helical turns), which removes the loop from the hairpin and pro-
duces a second 2 nt 3′ overhang at the opposite end [29–33]. The final result is the 
mature, ~21–25 nt duplex miRNA containing 2 nt 3′ overhangs at both ends. This 
small range in mature miRNA size may be partly accounted for by bulged, looped- 
out mismatches in the miRNA stem. Since a Dicer cut is ~21 nts long, stem mis-
matches that do not extend the length of the RNA helices may still be incorporated 
in the primary mature guide strand, which may, as a result, be slightly longer in 
some natural miRNAs. One strand of the mature miRNA duplex (the antisense 
“guide” strand) becomes the RNA component of the RNA-induced silencing com-
plex (RISC), which is ultimately responsible for sequence-specific gene silencing. 
The sense or “passenger” strand of the miRNA may be degraded or used to program 
a second RISC [34, 35]. Indeed, some miRNAs are bifunctional, and both strands 
can direct gene silencing [35]. For therapeutic RNAi strategies, it is therefore impor-
tant to validate that only the intended guide strand is directing gene silencing, as this 
will reduce risks of nonspecific, “off-target” effects.

Fig. 28.1 MicroRNA biogenesis pathway. See text for details. Designed therapeutic microRNA 
shuttles, shRNAs, and siRNAs mimic pri-, pre-, and mature-miRNAs, respectively. Upon delivery 
to cells, exogenous inhibitory RNAs therefore enter the microRNA biogenesis pathway at different 
points, but all elicit gene-silencing effects
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The degree of complementarity between the guide strand miRNA and an mRNA 
determines (1) whether the transcript will be regulated at all by a programmed 
RISC complex and (2) if so, which of two gene-silencing mechanisms will be 
induced (translational inhibition or transcript degradation). In general, incomplete 
pairing of an inhibitory RNA and a target mRNA will produce gene silencing 
through translational inhibition. In this case, target mRNA levels change little or 
not at all. In some instances, only 7 nt of complementarity between the guide 

Fig. 28.2 Natural microRNA sequences and structures are used to design therapeutic inhibitory 
RNAs. (a) Human mir-30a. Gray and black triangles point to Drosha and Dicer nuclease sites, 
respectively. Note the staggered cuts leaving 2 nucleotide 3′ overhangs. Underlined sequence indi-
cates the mature antisense guide strand sequence. (b) Example of designed inhibitory RNAs. 
Messenger RNA target sequence from E. coli LacZ gene. Mature mir-30 sequences are replaced by 
complementary LacZ-targeted inhibitory RNAs. In a miRNA shuttle, some mir-30 stem and loop 
sequences are maintained. The former help direct DGCR8/Drosha processing. ShRNAs are not 
Drosha processed; instead the 5′ end of the hairpin is defined by the transcription start site. An 
siRNA is produced in vitro and designed to mimic the final mature miRNA duplex
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strand and a target mRNA (miRNA nts 2–8; called the seed match) may be required 
to elicit gene- silencing effects [36]. Base pairing outside the seed region may 
serve to stabilize the miRNA-mRNA interaction and help produce a more robust 
knockdown. In contrast, perfect miRNA-mRNA complementarity across the ~21–25 
nt stretch results in mRNA degradation, and thus the pool of target mRNAs in 
the cell is depleted. The degradation mechanism is associated with more robust 
gene silencing.

28.4  RNAi Triggers for RNAi Therapeutics

Small inhibitory RNAs (called RNAi triggers) can be engineered to suppress any 
gene. Numerous strategies to design inhibitory RNAs have been developed and 
all share two common features: artificial RNAi molecules are double-stranded 
and comprised of sequences cognate to an mRNA of interest. Artificial inhibitory 
RNAs can be designed to mimic mature, pre-, or pri-miRNAs and will thus, upon 
delivery to cells, enter the miRNA pathway at different points (Fig. 28.1). There 
are three major classes of designed inhibitory RNAs (Fig. 28.2). (1) Small inhibi-
tory RNAs (siRNAs) are in vitro synthesized, dsRNAs that are structurally identi-
cal to miRNA duplexes [10]. When delivered to cells, all siRNAs bypass the 
transcription and nuclear processing steps of the miRNA pathway. Some designed 
siRNAs are processed by Dicer [37], while others avoid this step and are imme-
diately available to complex with RISC proteins after delivery to the cytosol. (2) 
Short hairpin RNAs (shRNAs) are structurally similar to stem-loop pre-miRNAs. 
They are typically designed to contain ~21 nt of paired stem sequence connected 
by an unpaired loop that is often derived from natural microRNA sequences [38]. 
ShRNAs are produced intracellularly, arising as transcripts from DNA expression 
cassettes using RNA pol III and, very rarely, pol II promoters. ShRNAs mimic 
Drosha-processed miRNAs and thus, following transcription, are immediately 
shuttled by Exp-5 to the cytoplasm for Dicer processing and incorporation into 
RISC. (3) Artificial miRNA shuttles resemble pri-miRNAs [17, 18]. Like shR-
NAs, miRNA shuttles are transcribed from DNA expression cassettes but are 
amenable to regulation by both pol II and pol III promoters. In this design, 
miRNA sequences required to direct Drosha and Dicer processing are main-
tained, but the natural, mature, 21–25 nt miRNA sequence is replaced by an 
inhibitory RNA sequence targeting the gene of interest. Thus, a natural microRNA 
is used to deliver an artificial siRNA. MiRNA shuttle transcripts are produced 
intracellularly and utilize all processing steps required for natural miRNA bio-
genesis. In addition to these three main systems, mirtrons are another interesting 
system worth mentioning. These hairpin RNAs bypass the Drosha step and rely 
upon RNA splicing to generate the pre-miRNA, which then becomes a substrate 
for Exp-5 and Dicer [39].

Each of the three main systems described above is capable of eliciting strong 
RNAi responses in  vitro and in  vivo. The key difference between siRNAs and 
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shRNA/miRNAs is duration of expression. In vitro synthesized siRNAs are transient, 
and long-term disease-gene suppression requires repeated administration; expressed 
shRNAs or miRNA shuttles are longer lasting and, if delivered via an appropriate 
viral vector, may produce permanent gene-silencing effects. Importantly, muscle-
directed gene delivery systems are well-developed, especially those using adeno-
associated viral (AAV) vectors, which have been used extensively in the last few 
years to deliver shRNA/miRNA to numerous tissues, including muscle [40–49]. As 
described above, shRNAs and miRNAs differ in the level of processing required by 
endogenous miRNA biogenesis machinery. This differential processing has direct 
implications for how each is expressed. Because shRNAs are not Drosha processed, 
their 5′ end must be defined by the start of transcription. This is important because 
Dicer binds the “Drosha-cut” end of the pre-miRNA and makes a defined cut 
approximately two helical turns downstream, which ultimately determines the 
sequence of the mature guide strand molecule (Fig. 28.2). As a result, shRNAs must 
be positioned near a promoter’s transcription start site to ensure proper processing 
and gene-silencing function. This restriction is not necessary for miRNA shuttles 
because Drosha processing, not transcription, defines the critical 5′ Dicer binding 
site. As a result, artificial miRNAs can be expressed from any promoter. Moreover, 
several bifunctional expression vectors have been described, in which a coding 
gene and intron- or UTR-embedded miRNA arise from the same pol II promoter-
driven transcript [50, 51]. Another difference between shRNAs and miRNAs is 
potential for nonspecific toxicity; miRNAs may be safer than shRNAs in vivo [18]. 
ShRNAs were the first generation of plasmid- or vector-expressed artificial inhibi-
tory RNAs used in vivo. Several studies have demonstrated shRNA efficacy for 
silencing disease genes and improving associated pathologies in, for example, 
models of neurodegenerative disease and viral infection [40–42, 52]. However, a 
few studies have raised concerns about shRNA safety. Specifically, uncontrolled, 
high-level shRNA expression from constitutively active pol III promoters caused 
liver failure and brain striatal loss in mouse models of hepatitis and Huntington’s 
disease (HD), respectively [42, 53]. This observed toxicity seems to be related to 
shRNA-induced saturation of endogenous microRNA biogenesis pathways, thereby 
interfering with natural microRNA function [18, 42, 53, 54]. Importantly, lowering 
the dose of vector-expressed shRNAs in the liver, or using a less-powerful 
microRNA shuttle system in the brain, mitigated these toxic effects [42, 53]. Both 
strategies ultimately led to significant gene silencing without overexpression- 
associated toxicity. Although not all shRNAs are overtly toxic, and sufficient safety 
data regarding long-term artificial miRNA is lacking, miRNA shuttles may be safer 
than shRNAs simply because they are more efficiently processed and amenable to 
expression by tissue-specific, regulated, or weaker RNA pol II promoters, while 
shRNAs are dependent upon strong, constitutively active pol III promoter expres-
sion. Regardless of the system used, RNAi therapy has shown promise in preclini-
cal models of neurodegenerative disease, viral infection, cancer, and—since the 
publication of the first edition of Muscle Gene Therapy—models of muscular 
dystrophy [40–49, 52, 55–57].
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28.5  Necessity for Disease Allele-Specific Silencing

With the exception of extremely rare cases of X-linked dominant FHL1 mutations 
in males [58], patients with dominant disorders possess one mutant and one normal 
copy of their specific myopathy-related gene. Since normal copies of disease genes 
often encode essential proteins, normal allele haploinsufficiency may contribute to 
myopathic phenotypes as well. Thus, therapy development for many dominant mus-
cular dystrophies may require specific silencing of the dominant allele while avoid-
ing the normal allele. Loss-of-function contributions to dominant disease can be 
predicted from knockout mouse models and by examining genetic case studies, in 
which different mutations in the same gene give rise to dominant and recessive 
myopathies. For example, nemaline myopathy type 1 (NEM1; OMIM #609284) can 
arise from autosomal dominant or recessive TPM3 mutations [59–67]. Patients with 
dominant NEM1 have one mutant and one normal TPM3 gene copy, while human 
carriers of recessive alleles and TPM3 +/− mice are normal, and TPM3 −/− animals 
die as embryos [67, 68]. These observations support two conclusions: only one 
normal TPM3 allele is required to maintain normal muscle, and gain-of-function 
TPM3 mutations are most likely the sole pathogenic event in dominant NM forms. 
Therefore, an RNAi strategy that specifically suppresses mutant TPM3 while leav-
ing the normal allele untouched may improve myopathy in NM patients with domi-
nant disease. In this example, it would be advantageous to restrict gene knockdown 
to the affected allele while leaving the normal allele unperturbed (Fig. 28.3).

Since many dominant myopathies are caused by single point mutations in one 
allele, the question arises: can inhibitory RNAs be designed to distinguish two tran-
scripts differing by one base pair? In short, the answer is yes, but it can be difficult. 
As previously discussed, perfect sequence complementarity between an inhibitory 
RNA and target mRNA causes message degradation; imperfect base pairing leads to 
translational inhibition [69]. However, this rule is not absolute. Complementarity 
does not ensure inhibitory RNA efficacy; not all inhibitory RNAs containing perfect 
homology with a target mRNA actually cause gene silencing. Conversely, more 
mismatch does not necessarily reflect reduced potency; microRNAs can have sev-
eral mismatches with a target mRNA and still cause gene silencing, but a single 
nucleotide difference may be sufficient to prevent silencing altogether [36, 70–72]. 
Thus, well-designed inhibitory RNAs can specifically silence disease genes by dis-
tinguishing between normal and mutant alleles differing by one nucleotide. Although 
each allele-discriminating miRNA must be uniquely designed and empirically vali-
dated, some general guidelines can be followed. Specifically, the discriminating 
nucleotide should be placed centrally within the inhibitory RNA duplex, and if suf-
ficient disease allele-specific silencing is not produced, optimal specificity can be 
achieved by including additional peripheral mismatches in the inhibitory RNA 
sequence. If allele-specificity cannot be achieved, alternative strategies can be pur-
sued, including non-allele-specific knockdown of both mutant and wild-type 
alleles coupled with replacement of an RNAi-resistant wild-type cDNA (Fig. 28.3). 
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A second approach may involve identifying polymorphisms that may co-segregate 
with the mutant allele and then designing inhibitory RNAs to those proxy regions 
of a disease-causing transcript [73]. Finally, allele-specific silencing may not be 
necessary in some cases (Fig. 28.3).

Fig. 28.3 Gene-silencing strategies to treat dominant myopathies. For each figure, two alleles of 
a hypothetical gene are shown: a wild-type (WT) and mutant. Grey bars denote 3′ UTRs. (a) Two 
strategies can be undertaken to direct disease allele-specific silencing with RNAi. The example at 
the top shows a mature microRNA sitting atop a stretch of sequencing containing a single base 
disease mutation. In this example, the wild-type allele contains a U, while the mutant has a G at the 
same position. A microRNA could be designed with perfect complementarity to the mutant allele 
but have a central mismatch with the wild-type. In some cases, this may permit specific silencing 
of only the mutant transcript while leaving the normal copy unperturbed. The bottom of panel A 
shows a second set of WT and mutant gene alleles, where the single base change associated with 
disease changes from a U (in WT) to C (in mutant). Importantly, G:U base pairs occur naturally in 
double-stranded RNA molecules, so designing a microRNA to discriminate between the two allele 
at the mutation site would be difficult. An alternative strategy would rely upon identifying silent 
polymorphisms that co-segregate with the mutant allele and then designing microRNAs that target 
those polymorphic regions. (b) Non-allele-specific gene silencing. (c) Non-allele-specific gene 
silencing combined with replacement of an RNAi-resistant, codon-optimized, wild-type 
cDNA. This strategy was employed in [47]
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28.6  Progress in Preclinical Development of RNAi Therapy 
for Dominant Muscular Dystrophies and Other 
Myopathies

Among the first applications of RNAi therapy using AAV vectors were preclinical 
strategies to suppress genes involved in neurodegenerative disease and hepatitis 
virus infection in the liver [40, 41, 74]. When the first edition of Muscle Gene 
Therapy was published, no such studies had yet been published targeting dominant 
muscle disease genes. Importantly, progress has been made in the field, and there 
are now six studies published between 2011 and 2017 demonstrating proof of prin-
ciple for RNAi-based gene therapy of FSHD, limb-girdle muscular dystrophy type 
1A (LGMD1A), DM1, and oculopharyngeal muscular dystrophy (OPMD) 
(Table 28.2) [44–49]. Each of these studies was performed in mice, and, impor-
tantly, each demonstrated the ability to improve different molecular, histopathologi-
cal, and functional aspects associated with the various myopathies in animal models 
using both intramuscular and intravascular delivery routes (Table  28.2). Perhaps 
equally as important is that no obvious deleterious effects were observed due to the 
RNAi treatment, supporting translation of these strategies in the near future. Of 
note, while the first five published studies specifically targeted dominant disease 
alleles using RNAi, the OPMD study utilized a combination non-allele-specific 
gene knockdown plus gene replacement strategy (Fig. 28.3c), as expression of both 
mutant PABPN1 and haploinsufficiency of the WT gene contributed to OPMD 
pathology in mice [47]. The specific strategy utilized will vary depending upon the 
pathogenic mechanisms underlying each disease.

28.7  Summary

RNAi therapeutics is an emerging field. Several preclinical studies demonstrated 
its immense potential for treating dominant neurodegenerative diseases, chronic 
viral infection, and cancer. We are now able to add dominant muscular dystro-
phies to the list of diseases for which RNAi-based gene therapy may be a prospec-
tive treatment. Importantly, there is now clinical precedence for applying 
AAV-based RNAi, with a recent clinical trial using AAV and shRNAs targeting 
hepatitis B virus in the liver of humans with chronic hepatitis [57]. This work sets 
the stage for translation of this approach more broadly, to attack a range of dis-
eases. Although currently in its infancy as a technology, the potential for disease 
allele specificity may someday allow RNAi therapeutics to be an important tool 
for personalized medicine.
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Chapter 29
Gene Therapy for Facioscapulohumeral 
Muscular Dystrophy (FSHD)

Daniel G. Miller

Abstract Facioscapulohumeral muscular dystrophy (FSHD) is a relatively com-
mon myopathy affecting 1/8500–15,000 individuals. FSHD is caused by inappro-
priate expression of the transcription factor double homeobox protein 4 (DUX4) so 
gene therapies must either prevent expression of DUX4 or interrupt the patho-
genic downstream effectors of DUX4. The autosomal dominant inheritance pattern 
and the fact that the primary pathology is limited to multinucleate muscle fibers 
make gene therapies a challenging prospect for this important dystrophy without a 
treatment. Genetic correction of even a large percentage of myonuclei may not be 
sufficient to produce a phenotypic change in the setting of multinucleate myofibers 
when the disease is caused by a dominant-negative mechanism. In this chapter, I 
outline what is known about the molecular pathology of FSHD and discuss several 
gene therapy approaches to interrupting the cycle of DUX4 expression and muscle 
cell death.

Keywords Facioscapulohumeral muscular dystrophy · FSHD · Double homeobox 
protein 4 · DUX4 · Autosomal dominant · SMCHD1 · Gene therapy

29.1  Genetics of Facioscapulohumeral Muscular Dystrophy 
(FSHD)

FSHD is an adult-onset myopathy with incidence of 1 in 15,000 and prevalence of 
1 in 8300 individuals [1]. FSHD occurs secondary to epigenetic changes resulting 
most commonly from a reduction in the number of 3.3 kb D4Z4 units arrayed on 
chromosome 4 to less than 11 units [2–6] (Fig. 29.1a). Approximately 5% of FSHD- 
affected individuals have a mutation producing SMCHD1 haploinsufficiency result-
ing in an alteration of the chromatin structure of the D4Z4 macrosatellite array on 
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Fig. 29.1 Genetics and epigenetics of FSHD. (a) Diagram of human chromosome 4 showing short 
(p) and long (q) arms with the position of the FSHD-causing D4Z4 array indicated by a line and 
the band number 35. Beneath the chromosome is a blowup of the chromatin consequence of vari-
ous genetic alterations that produce FSHD. Normal D4Z4 arrays have a length greater than 10 
D4Z4 units and become compacted as heterochromatin during development. FSHD-prone arrays 
are either shortened by intrachromosomal recombination and contraction of the number of D4Z4 
units to less than 11 or intermediate length arrays (11–25 units) remain as euchromatin due to 
mutations that cause haploinsufficiency of SMCHD1. In the context of a euchromatinized array, a 
permissive haplotype is also necessary for the production of DUX4 and consequent muscle pathol-
ogy. 4A and 4A-L haplotypes are the most common and are present in ~50% of North Americans. 
The critical change is the presence of a polyadenylation signal (PAS) in a sequence that becomes 
exon 3 distal telomeric to the D4Z4 array. (b). Diagram of the exon structure of the most distal full 
D4Z4 unit and the last partial D4Z4 unit in permissive 4A and 4A-L arrays. Introns are indicated 
by dashed “splicing” lines
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chromosome 4 [7]. The contraction- or SMCHD1-induced epigenetic profile results 
in the possibility of transcription of the normally repressed DUX4 retrogene [8]. 
Additional events [9]  result in DUX4 transcription in <5% of cultured myocyte 
nuclei [8–11]. When array contractions occur on permissive haplotypes containing 
a functional polyadenylation signal present in ~50% of the population [12, 13], 
DUX4 protein is made and results in myopathology that manifests as muscle weak-
ness (Fig. 29.1). The small percentage of DUX4-expressing cells suggests that even 
in the diseased state, there is significant (>95%) suppression of DUX4 transcription, 
and FSHD appears to be driven by the occasional nucleus that overcomes suppres-
sive mechanisms and begins to produce DUX4 [9]. Once produced, DUX4 spreads 
from the cytoplasm to adjacent nuclei within the same myofiber [11, 14]. Thus, 
genetic strategies that alter the cytoplasmic makeup of the myofiber (RNAi, etc.) 
may be more effective at preventing DUX4-mediated pathology than strategies that 
rely on altering the DNA of individual nuclei. These unique disease characteristics 
along with the location of diseased myonuclei in muscle fiber syncytia make gene 
therapy approaches challenging for this prevalent muscular dystrophy without a 
current treatment.

29.2  Platforms for Testing Gene Therapy Approaches

The DUX4 retrogene is unique to the primate lineage [15–17] so the mRNA struc-
ture and chromosomal context surrounding the D4Z4 macrosatellite array are unique 
to humans. Likewise, most DUX4 DNA binding sites are unique to the human 
genome [18–22], suggesting that the cellular consequence of DUX4 expression var-
ies from species to species. Human myocytes from biopsies of FSHD- affected mus-
cles die within 24 h of endogenous DUX4 activation making them a useful model for 
assessing chromatin and contextual gene-expression effects of therapies [11]. 
However, arrayed “retro-orthologs” exist in other species including mouse [16, 17], 
and FSHD-like pathology has been modeled by forced expression of human DUX4 in 
human or mouse [23, 24] cells where cell death occurs 12–24 h after DUX4 induc-
tion [23]. Mouse [19, 25, 26] and zebrafish [27] models have also been constructed 
allowing the use of these model systems to assess in  vivo delivery of therapies 
designed to disrupt the function of mature DUX4 mRNAs [28].

29.2.1  Mouse Models of FSHD as Gene Therapy Testing 
Platforms

Mouse models showing FSHD-like muscle pathology constitutively produce low 
levels of human DUX4 from an X-linked [25, 26] or ROSA-inserted transgene that 
can be further induced with doxycycline via a tet-responsive promoter driving 
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DUX4 or Cre-recombinase-mediated excision of stop codons between promoter 
and DUX4 at the ROSA locus [60]. Forced overexpression of human DUX4 using 
adeno-associated virus (AAV) vectors has also been shown to create myopathology 
in mice and serves as a testing platform for therapies targeting DUX4 transcripts 
[25, 29, 30]. These models will be useful for studying in vivo administration of 
therapies designed to reduce DUX4 transcript levels or block DUX4 translation 
since the human mRNA structure has been retained in the engineered mice and 
expression vectors.

29.2.2  Cell Culture Models of FSHD as Gene Therapy Testing 
Platforms

Strategies designed to alter transcriptional activity of DUX4 promoter sequences 
within D4Z4 require the arrayed context of the macrosatellite repeat, perhaps the 
subtelomeric location of the array on chromosome 4, and other epigenetic media-
tors such as small RNAs that direct chromatin formation at D4Z4 arrays. Therefore, 
gene therapy strategies that affect epigenetic properties of D4Z4 will need to be 
tested in human cells and then taken directly to human clinical trials after safety and 
toxicity studies have been conducted in animals. Studying human DUX4 in human 
muscle tissue or in cultured human myocytes can also be difficult due to low, infre-
quent DUX4 expression [8–11]. DUX4 mRNA can be detected in muscle biopsies 
from FSHD-affected individuals [31], but protein staining has been difficult to dem-
onstrate. Alternatively, DUX4 expression can be observed in cultured human myo-
cytes, but DUX4 protein from endogenous DUX4 genes in their arrayed context on 
chromosome 4 is present in 0.5–4.3% of cultured differentiated FSHD myocytes 
with variability seen between individuals [8, 11]. More sensitive biomarkers will be 
essential for human clinical trials [31–33].

29.2.3  Zebrafish Models of FSHD as a Gene Therapy Testing 
Platforms

Zebrafish have been engineered to contain human DUX4-expressing sequences 
[27], and zebrafish muscles show DUX4-associated pathology [27, 29, 31]. While 
this organism is perhaps best utilized for genetic and small molecule screens, rapid 
development and readily observable muscle phenotypes make it an important 
model organism and allow quick testing of gene therapy strategies in the context of 
organized muscle tissue in vivo.
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29.3  Gene Therapy Approaches

Gene therapy for a dominantly inherited myopathy requires a different approach 
than the more classic application of gene addition therapies for recessively inherited 
conditions. FSHD is caused by the aberrant production of a toxic protein rather than 
the lack of sufficient protein levels typical of recessively inherited conditions. 
Muscle disease adds a layer of complexity because muscle tissue is made up of 
myofiber syncytia where multiple nuclei share a common cytoplasm so modifica-
tion of a fraction of nuclei may not be sufficient to overcome the toxicity produced 
by a few DUX4-expressing nuclei. With these caveats in mind, we explore several 
strategies that may be feasible despite these added complexities.

29.3.1  Destabilization of the DUX4-Coding mRNA

Gene therapy targets for FSHD treatment are limited by our partial understanding of 
the disease process. Currently, very little is known about how DUX4 expression 
results in cell death, making the prevention of DUX4 transcription, translation, or 
localization, the primary targets for gene therapy strategies. The DUX4 mRNA pro-
duced from permissive chromosome 4 haplotypes has a unique 5′ untranslated 
region allowing for some specificity in targeting strategies [8, 31].

29.3.1.1  RNAi-Based Approaches

One approach to reducing DUX4 mRNA levels in muscle fibers is to express an 
inhibitory RNA from a viral vector that mediates destruction of DUX4 mRNA 
through the RNA-induced silencing complex and the associated pathways. This 
approach has the added benefit of cytoplasmic activity so mRNAs can be degraded 
regardless of the nucleus of origin. The fact that myofibers are postmitotic also 
makes RNA interference an attractive approach because inhibitory RNAs will not 
be diluted with each cell division. Finally, muscle diseases have been a primary 
focus of AAV-mediated gene therapy, and AAV vectors are ideal vehicles for RNAi 
delivery [34, 35]. AAV serotypes that selectively target muscle exist, and efficient 
transduction of muscle tissue has been demonstrated in a variety of small and large 
animal models [36–38]. Human clinical trials for Duchenne Muscular Dystrophy 
are currently underway and use AAV vector delivery of microdystrophin transgenes 
as a technique for gene replacement.

In addition to expression in early development [62, 63],  DUX4 is normally 
expressed in testes [8] and thymus [39] tissue, but these transcripts are spliced dif-
ferently to contain 3′ exons distal to the D4Z4 array [8]. DUX4 mRNAs produced 
pathologically from permissive chromosome 4 haplotypes have a unique 3′ end due 
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to the termination of exon 3 at a polyadenylation signal present only on permissive 
haplotypes [2] (Fig. 29.1). Thus, the unique sequence of exon 3 and splice junctions 
necessary for its incorporation can be used to develop specific reagents for DUX4 
mRNA reduction.

The expression of multiple RNAi molecules targeting several different regions of 
the DUX4 gene would likely be an effective strategy for DUX4 mRNA reduction. 
Using this approach multiple gene therapy vectors or a single multi-cistronic vector 
could be constructed that contains micro-RNA expression cassettes for targeting 
multiple regions of the DUX4 gene. This approach has the added benefit of redun-
dancy assuring continued transcript destruction even if mutations develop that pre-
vent the activity of one or several miRNAs. Additional safety can be achieved by 
using AAV serotypes that preferentially transduce muscle and muscle-specific pro-
moters for transcription of DUX4 miRNAs.

29.3.1.2  Exon-Skipping Strategies to Prevent Polyadenylation

Forced exon skipping has been a popular strategy investigated for the treatment of 
Duchenne muscular dystrophy (DMD) [40–42]. The approach involves the produc-
tion and delivery of small modified oligonucleotides that mask splice donor and/or 
acceptor sites within the gene [43] forcing frameshift mutations in mutated dystro-
phin exons to be spliced out resulting in a shortened yet functional dystrophin 
molecule. Here we propose to utilize similar techniques to skip the distal 3′ exon 
containing the cryptic polyadenylation signal in permissive D4Z4 arrays 
(Fig. 29.1b). Removal of the polyadenylation signal for the DUX4 transcript should 
reduce the stability of pathogenic RNAs arising from euchromatinized permissive 
D4Z4 arrays. This approach also has the benefit of being relatively specific for 
pathogenic transcripts because the most distal 3′ exon is uniquely expressed in 
individuals with FSHD.

29.3.2  Gene-Editing Approach to Mutate DUX4

FSHD is caused by aberrant expression of DUX4 so gene-editing strategies that 
mutate DUX4 or prevent protein production should be therapeutic. DUX4 expres-
sion occurs in one in >50 nuclei in human FSHD myocyte cultures, and this infre-
quent expression is sufficient to result in myotube destruction [11] so the thresholds 
for a therapeutic benefit are unknown for an approach that attempts DUX4 muta-
tion. Since DUX4 expression appears to be stochastic, preventing DUX4 expres-
sion in a subset of nuclei may be sufficient to reduce the probability of DUX4 
production to a point where an overall change in myofiber survival is realized 
despite correction rates below 100%. Quantitative studies to determine disease 
thresholds in cell culture, animal models, or mosaic individuals will be important to 
determine modification efficiencies that would predict a phenotypic change in 
FSHD-affected individuals.
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The CRISPR/Cas9 system for creating targeted double-stranded DNA breaks in 
the genome has received recent public and scientific attention. The most enticing 
potential of this technology is the ability to “edit” the genome in precise directed 
ways. Gene editing generally means providing both a targeted break mediated by a 
guide RNA sequence and the Cas9 nuclease and a template for repair so that small 
changes can be incorporated. DNA double-stranded breaks produced in the absence 
of a repair template are quickly repaired by an alternate pathway called nonhomolo-
gous end joining (NHEJ), a process where DNA ends are bound by repair proteins, 
polished by the addition or removal of nucleotides, and pasted back together with-
out reference to the reading frame of the gene. While this reaction produces undesir-
able outcomes for gene-editing applications, NHEJ is more efficient than 
template-directed repair and often results in a frameshift at the site of the break. 
Thus a significant application of CRISPR/Cas9 approach is the production of muta-
tions at specific genomic sites (Fig. 29.2a).

DUX4 mutagenesis could be targeted to several critical sites within sequences 
unique to the most distal D4Z4 unit in the array. Targeting the distal unit minimizes 
competition with the 100s of DUX4 copies present on both alleles of chromosome 
10, the nonpathogenic chromosome 4 allele, and scattered in the telomeric region of 
multiple acrocentric chromosomes [44]. The most obvious target is the polyadenyl-
ation signal since a functional polyadenylation site determines whether a D4Z4 array 
haplotype is permissive for causing FSHD, and polymorphisms in this sequence are 
central to the production of DUX4 [2]. Changing the sequence to a nonpermissive 
haplotype or mutating the sequence altogether should neutralize the pathogenicity of 
a shortened D4Z4 array as evidenced by multiple asymptomatic individuals with 
short nonpermissive euchromatinized arrays [13]. The splice donor and acceptor 
sites leading to inclusion of the polyadenylation sequence are also important tar-
gets where production of DUX4 could be disrupted. In particular the splice acceptor 
at the intron/exon 3 junction is unique to 4qA-type permissive alleles accounting for 
the vast majority of permissive haplotypes (Fig. 29.1b).

Mutations could also be introduced into the coding sequence of DUX4 by insert-
ing a premature stop codon or other frameshift mutation. Utilizing CRISPR-/Cas9- 
mediated DNA cleavage for this approach has the added danger of generating DNA 
breaks in permissive nonpathogenic long D4Z4 arrays. Such off-target breaks would 
likely induce intrachromosomal rearrangements that generate short DUX4- 
producing permissive arrays. Therefore, mutation of DUX4-coding sequences with 
CRISPR/Cas9 should be limited to the most distal copy of DUX4 within the array. 
With current technology it is difficult to imagine how the coding region of DUX4 in 
the most distal copy could be targeted while excluding the 100s of other copies 
presented at other locations.

29.3.3  Inhibition of DUX4-mRNA Expression

Once DUX4 protein is produced, the effects are amplified by the spread of mole-
cules to adjacent nuclei within myotube syncytia where transcription at multiple 
DUX4 target sites is activated. Therefore, preventing expression of DUX4 mRNA 
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may be a more effective therapy than promoting the destruction of DUX4-coding 
mRNAs. Transcriptional inhibition has the added benefit of reducing the possibility 
that transcripts that escape destruction are translated and contribute to the produc-
tion of DUX4.

Fig. 29.2 CRISPR/Cas9 approaches to FSHD therapies. (a) Diagram of various CRISPR/Cas9 
and dCas9 constructs designed to alter transcriptional activity of DUX4. VP64, herpes simplex 
virus transcriptional activation domain. KRAB, Kruppel-associated box transcriptional silencing 
domain. LSD1, lysine-specific demethylase 1 domain. (b) Diagram of a short permissive D4Z4 
array with 3 units. Small circles are used to depict histone complexes and their associated chemical 
modifications (acetyl O=C-CH3) and methyl (CH3). PAS polyadenylation signal. A stands for an 
A-type haplotype that generally indicates a permissive allele containing a polyadenylation signal 
when located on chromosome 4. (c) Diagram of the SMCHD1 promoter region and first three 
exons of the gene. Also shown is the association of a guide RNA (gRNA)-directed dCas9-VP64 
fusion protein used to activate transcription of the SMCHD1 gene
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29.3.3.1  Inhibition of DUX4 Transcriptional Initiation

Genetic approaches for transcriptional repression have not been investigated as 
thoroughly as approaches for transcriptional activation largely because recessively 
inherited disease has been the predominant focus of gene therapy over the past 
20–30 years. Recently, an increased understanding of cancer genetics and the role 
of epigenetics in the propagation of cancer have attracted the attention of scien-
tists in other fields [45]. Targeted transcriptional inhibition could involve disruption 
of the formation of the transcription initiation complex within the D4Z4 promoter 
by mutation of enhancer binding sites [46] or core transcriptional initiation 
sequences such as the TATA box (TACAA at the DUX4 promoter). Although it is 
clear that DUX4 production requires exon 3 from the most terminal portion of the 
D4Z4 array, it is not clear whether DUX4 transcription can be initiated at multiple 
upstream D4Z4 units and spliced into the single distal exon 3 sequence for termina-
tion. Thus, inhibition of transcription initiation may be difficult both due to multiple 
initiation sites within D4Z4 arrays and the lack of sequence specificity in promoters 
associated with permissive shortened D4Z4 arrays. Tools for this approach might 
include the CRISPR/Cas9 mutagenic strategies described in Sect. 29.3.2 or steric 
interference of transcription by designing proteins that specifically bind and block 
the assembly of the transcription initiation complex.

29.3.3.2  siRNA Expression to Induce Locus-Specific Epigenetic Changes

Production of noncoding RNAs from D4Z4 that direct the assembly of inhibitory 
chromatin is believed to be central to DUX4 transcriptional repression [31, 47]. 
Both long [48] and short [31, 61] noncoding RNAs have been identified, and trans-
fection of several sequences results in transcriptional repression of DUX4. 
Production of shRNAs in muscle fibers in an attempt to force the chromatin struc-
ture of shortened D4Z4 arrays into an inhibitory conformation could be a viable 
strategy for DUX4 transcriptional repression [47] (Fig. 29.2b). AAV vectors have 
been shown to be effective for delivery of shRNA expression cassettes to mature 
muscle fibers in mice and large animals [30, 49].

29.3.3.3  dCas9-Targeted Transcriptional Silencing

A transcriptional silencing approach gaining traction involves the use of a mutated 
form of Cas9 (dCas9) that allows association of cleavage-deficient Cas9 with spe-
cific gRNA-directed sequence targets. Fusion of dCas9 with protein domains that 
facilitate transcriptional repression such as the Kruppel-associated box (KRAB) 
domain allows targeted transcriptional repression at specific promoters (Fig. 29.2a). 
The KRAB domain generally works by recruitment of other corepressors and direct 
inhibition of RNA polymerase so it would appear that these complexes must remain 
associated with D4Z4 to maintain suppression [50–52].
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29.3.3.4  dCas9-Targeted Histone Modifications

Association of chromatin-modifying domains such as LSD1 with dCas9 results in 
the removal of H3K4me2 histone modifications resulting in reduced transcription 
and chromatin changes that may persist after the complex has disassociated from 
the promoter [53]. Persistent expression of these constructs in myofibers may result 
in successive silencing of active loci enhancing the efficiency of the approach. 
Small versions of Cas9 isolated from S. aureus (SaCas9) [54] or C. jejuni (CjCas9) 
[55] can be used so that these constructs can be expressed from AAV vectors again 
allowing efficient and somewhat targeted delivery to adult muscles.

29.3.4  Alteration of SMCHD1 Expression Levels

An alternative approach to specific chromatin modification at D4Z4 is to alter 
SMCHD1 expression. FSHD2-causing SMCHD1 mutations result in haploinsuffi-
ciency of SMCHD1, and reduced SMCHD1 levels prevent efficient chromatin- 
mediated repression of intermediate length (~11 to 30  units) D4Z4 arrays 
(Fig. 29.1a). Furthermore, rare individuals with both a permissive short D4Z4 array 
(<11  units) and SMCHD1 haploinsufficiency have more severe phenotypes than 
D4Z4 genetic alteration alone indicating that SMCHD1 levels affect disease sever-
ity in individuals with a type I mechanism as well. It stands to reason that increasing 
SMCHD1 levels in the setting of FSHD1 may also ameliorate the disease and pro-
duce a milder phenotype.

29.3.4.1  Augmented Transcription of SMCHD1

SMCHD1 is a large protein with a cDNA of 8672 bps precluding it from efficient 
expression from most retroviral vector systems and putting it well beyond the 4.5 kb 
packaging capacity of AAV. Although retroviral vectors based on both spumaviridae 
[56] and lentiviridae can package RNAs larger than 8.6 kb, the production of high- 
titer vector preparations for efficient in vivo gene therapy is perhaps overly optimis-
tic, and efficient in vivo transduction of muscle fibers has not been achieved with 
retroviral vectors. Therefore, SMCHD1-mediated gene therapies for FSHD need to 
be realized by augmented transcription of the endogenous sequence or stabilization 
of the SMCHD1 mRNA or protein. Additional precautions need to be taken with 
this approach because increased expression of SMCHD1 in myoblasts inhibits their 
fusion and differentiation in culture (Miller DG, unpublished results) so modeling 
this approach in the context of muscle repair and/or developmental muscle growth 
will be important prior to testing in humans.
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29.3.4.2  dCas9-Targeted Transcriptional Induction of SMCHD1

Targeted delivery of transcriptional enhancers could result in increased SMCHD1 
transcription. dCas9 fusions to transcriptional enhancers such as VP64 have been 
shown to facilitate targeted activation of a number of genomic targets in cell culture 
[57] (Fig. 29.2b, c). As with transcriptional inhibition approaches, specific guide 
RNA-directed binding of a mutated Cas9 (dCas9) is utilized to deliver the activation 
domain of a transcriptional enhancer such as VP64. Using this approach transcrip-
tional activation of eight different genes was shown with increases ranging from 2- 
to 250-fold [57]. Although the authors showed significant specificity of gene 
activation, VP64 is a strong viral transcriptional enhancer from herpes simplex 
virus, and unregulated delivery of such transcriptional activators should immedi-
ately raise concerns of off-target effects that have the potential for oncogenesis. 
Therefore, this approach should either incorporate a mechanism for deactivation of 
the dCas9-VP64 fusion or removal of cells containing the expression vector by use 
of “suicide genes” such as HSV-TK.

29.3.4.3  Targeted Stabilization of SMCHD1 mRNA

Protein activity within the cell is partly a function of the intracellular concentration 
of the protein. Protein concentration is dependent on the rate of transcription, the 
half-life of the mRNA, and the half-life of the protein. mRNA half-life is partly 
determined by sequences present in the 5′ and 3′ untranslated regions so these 
sequences could be changed to facilitate mRNA stability. The 3′ untranslated regions 
of many mRNAs contain destabilizing sequences that upon removal increase mRNA 
half-life. These can include AU-rich elements (AUREs), stem-loop secondary struc-
tures, intron response elements (IREs), and sequences that facilitate long range fold-
ing [58]. Removal (using CRISPR/Cas9 mutagenesis) or disruption of secondary 
structures could result in increased half-life and increased SMCHD1 expression. 
Alternatively, some mRNAs contain sequences that promote the binding of pro-
teins or miRNAs that increase mRNA stability, and the incorporation of these 
sequences in the DNA sequence encoding the 3′ UTR of SMCHD1 using gene 
editing technologies could potentially have therapeutic effects for FSHD.

29.4  Summary

FSHD has an epigenetic mechanism where genetic mutations (D4Z4 array contrac-
tion or SMCHD1 mutations) result in a change in chromatin conformation at D4Z4 
arrays on chromosome 4. These conformational changes ultimately result in inap-
propriate DUX4 expression in muscles when they occur on arrays with permissive 
haplotypes. The DUX4 transcription factor targets hundreds of genes in the human 
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genome but it remains unclear which pathways are responsible for the cell death 
that occurs ~24 h after DUX4 activation. The prevention of DUX4 transcription and 
the destruction of DUX4 mRNA once it is produced are primary targets for gene 
therapy approaches to FSHD.

Important considerations for FSHD gene therapy include the dominant pattern of 
inheritance, the fact that muscle fibers are syncytia containing multiple nuclei and 
observations that a single DUX4-expressing nucleus is sufficient to result in the 
death of a multinucleate myotube in cell culture. Thus gene therapy approaches that 
abrogate the effects of DUX4 expression must either act on cytoplasmic targets 
obviating the need to alter every nucleus within a myofiber or have an extremely 
high efficiency. Despite the epigenetic changes resulting from inherited or sponta-
neous mutations, most myonuclei do not express DUX4, and FSHD appears to 
progress due to stochastic expression of DUX4 in myonuclei throughout the life-
time of the individual. An attractive gene therapy approach is to reduce the likeli-
hood that a nucleus will begin expressing DUX4 and reduce the odds that DUX4 
will ever be expressed in any particular fiber. This logic would suggest that it may 
be possible to modify a fraction of nuclei and produce a change in the FSHD phe-
notype. One study compared percent mosaicism in blood lymphocytes and age of 
onset of FSHD symptoms and found an inverse correlation [59]. A careful compari-
son of D4Z4 array length mosaicism in the muscle with clinical severity might be 
more informative and could shed light on thresholds for phenotypic change that will 
be necessary to achieve success with gene therapy.
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Chapter 30
Gene Therapy and Gene Editing 
for Myotonic Dystrophy

Marinee Chuah, Yoke Chin Chai, Sumitava Dastidar, 
and Thierry VandenDriessche

Abstract Myotonic dystrophy is one of the most common dominant neuromuscular 
disorders that results in muscle dysfunction. Myotonic dystrophy type 1 (DM1) or 
Steinert’s disease is caused by an expanded CTG repeats in the 3′ untranslated 
region of the dystrophia myotonica protein kinase (DMPK) gene, whereas myotonic 
dystrophy type (DM2) is caused by expanded CCTG repeats in the first intron of the 
CCHC-type zinc finger, nucleic acid-binding protein (CNBP) gene. The clinical 
manifestations worsen with each generation (anticipation) consistent with an expan-
sion of the repeats. The tri- or tetranucleotide repeat expansion results in gain-of- 
function pathogenic RNAs which are retained in the nuclei and sequester 
RNA-binding proteins such as MBNL and CUGBP that interfere with splicing. 
Unfortunately, there is currently no cure available for these dominant neuromuscu-
lar diseases. Nevertheless, some promising therapeutic strategies have been devel-
oped that are aimed at directly tackling the genetic cause of the disease. In particular, 
antisense oligonucleotide technologies, gene therapy, and gene editing or small 
molecules are being explored. Recently, a phase 1/2a clinical trial has been com-
pleted that is based on the premise of promoting RNase-H-mediated degradation of 
the expanded CUG transcripts using antisense oligonucleotides. In this review, we 
summarize the current progress on different cellular and animal models as well as 
various therapeutic strategies for DM with specific emphasis on gene therapy and 
gene editing approaches using TALENs and CRISPR/Cas9. Lastly, translational 
challenges and future promising therapeutic avenues are discussed.
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30.1  Prevalence and Pathogenesis of Myotonic 
Dystrophy (DM)

Myotonic dystrophy (DM) is an autosomal dominant muscle disorder caused by 
mutations in two different genomic loci, which result in two forms of genetically 
distinct diseases—DM type 1 (DM1) and type 2 (DM2). It is one of the most com-
mon neuromuscular disorders with a prevalence ranges from 5 to 10 patients per 
100,000 individuals [1, 2]. In some restricted areas, such as the Lac-St-Jean region 
(Quebec, Canada), a higher prevalence (up to 1 per 600 individuals) has been 
reported due to a founder effect [3]. At the genetic level, DM1 (also known as 
Steinert’s disease, MIM #160900) is caused by an unstable expanded trinucleotide 
CTG repeats in the 3′ untranslated region (UTR) of the dystrophia myotonica pro-
tein kinase (DMPK) gene on chromosome 19q13.3 [4–6]. The number of CTG 
repeats expanded between 80 and several thousand units in DM1 patients [2, 4], in 
contrast to only between 5 and 37 units in healthy individuals. The expanded CTG 
repeats are pathogenic, and its length increases during the patient’s lifetime with 
intra- or intertissue variability [7]. Additionally, the repeat size also increases with 
successive generations, which ultimately gives rise to severe disease phenotypes, a 
phenomenon defined as anticipation. In particular, the severe congenital form of 
DM1 is associated with large CTG expansions (>1000 triplet repeats) [8], though 
other epigenetic mechanisms also play a role [9]. This represents a unique charac-
teristic which provides a molecular basis for the pathogenesis of DM1 [10, 11]. The 
pathogenesis of DM2 (also referred as proximal myotonic myopathy, PROMM, 
MIM #602668) is different from DM1. It is caused by the expansion of extremely 
unstable tetranucleotide CCTG repeats in intron 1 of the CCHC-type zinc finger, 
nucleic acid-binding protein (CNBP; also known as ZNF9) gene on chromosome 
3q21 [12]. The CCTG repeat size ranges from 75 to 11,000 units in patients as com-
pared to <30 units in healthy individuals [12, 13]. Studies in nonhuman primates 
suggest that this unprecedented large variability of CCTG repeats expansion origi-
nates from an AluSx element insertion into an early primate genome [14] and is 
responsible for variable clinical manifestations. This complicates disease diagnosis. 
Interestingly, by using high-resolution nuclear magnetic resonance (NMR) spec-
troscopy, a recent study revealed a mini-dumbbell structure potentially formed by 
two CCTG repeats at single or multiple sites of the expanded CCTG repeats during 
DNA replication. This facilitates the occurrence of large CCTG repeats expansion 
in DM2 [15]. Although DM2 patients represent <10% of DM patients overall, it was 
recently found that DM2 exhibits similar or higher prevalence than DM1 in some 
countries, such as in Finland and Germany, due to undiagnosed patients with symptoms 
frequently occurring in the elderly population [16].
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Clinically, DM1 and DM2 are multisystem disorders characterized by myotonia, 
progressive muscle weakness and wasting, heart conduction defects, cognitive 
impairments, endocrine disorders, insulin resistance, cataracts, and gastrointestinal 
manifestations [17, 18]. In men, there may be early balding and risk of sterility. 
Albeit bearing distinctive genetic mutations, DM1 and DM2 patients share many of 
these clinical symptoms. Nevertheless, the symptoms are usually more severe in 
DM1 than in DM2 [2]. Depending on the severity of the symptoms, the patient’s life 
expectancy is reduced correspondingly, especially when confronting irreversible 
respiratory and/or cardiac failures [17]. Despite these similarities, the two DM 
forms are not identical with regard to the affected muscle types, disease onset [19], 
and the type of muscle fiber atrophy [20]. Additionally, the pathogenic mechanism 
for muscle atrophy in DM1 is triggered by the large CTG repeats via the p16 stress 
pathway (but not in DM2 [21]). This accounts for the premature senescence or 
lower proliferation capacity of the satellite cell-derived myoblasts [22]. DM1 
patients are categorized into late-onset, adult-onset, juvenile-onset, childhood- 
onset, and congenital subgroups based on the age of onset and clinical severity [2, 
23], whereas the clinical subgroups of DM2 are less well defined. The congenital 
form of DM1 is more severe and associated with fetal hypotonia, sleep disorders, 
and respiratory distress at birth, whereas no congenital form is associated with 
DM2. However, the surviving children with congenital DM1 present with motor 
and mental retardation. Recently, this motor and mental retardation was revealed to 
be associated with a reduced connectivity in a large brain network and the loss of 
compensatory mechanisms that correlated with isolated impairment in visuospatial 
reasoning in patients’ daily life [24]. Furthermore, an in vitro study using pluripo-
tent human embryonic-derived neuronal stem cells model revealed a reduced prolif-
erative capacity, and an increase in autophagy linked to mTOR signaling pathway 
alterations further corroborated a mechanism by which DM1 mutation leads to cog-
nitive impairments [25]. Unfortunately, clinical management in congenital and 
childhood DM1 remains supportive and requires regular surveillance and treatment 
of the disease manifestations, as well as genetic counseling, family planning, and 
undertaking by the affected family members [26].

At the molecular level, the pathogenic expanded repeats harbored in both DMPK 
and CNBP genes are transcribed, resulting in mutant RNAs which are retained in 
the nuclei as discrete ribonuclear foci/aggregates [12, 27, 28]. Both DM1 and DM2 
share a common molecular mechanism of toxic RNA gain-of-function due to a sim-
ilar characteristic between the expanded CUG- and CCUG-transcripts (C/CUGexp- 
RNA) (Fig. 30.1). Early studies reported that the expression of ribonuclear foci was 
the key determinant for the development of DM1 phenotypes in the transgenic HSA 
mice (bearing either 220 or 300 CTG repeats in the 3′ UTR of human skeletal 
muscle alpha-actin (HSA) or the human DMPK gene, respectively) [29, 30]. Later 
on, members of the muscleblind-like (MBNL) protein family (including MBNL1, 
MBNL2, and MBNL3) were found to have high binding affinity to the CUG 
expanded repeats. This binding results in its sequestration in the C/CUGexp-RNA 
nuclear aggregates which in turn causes functional loss of the MBNL proteins [31–34]. 
This is corroborated by the appearance of several cardinal features of DM in  
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studies involving mice models carrying Mbnl deficiencies such as myotonia (in 
Mbnl1−/− mice) [35], cognitive impairment (in Mbnl2−/− mice) [36, 37], and heart 
and muscle defects (in Mbnl1:Mbnl2 double knockout mice) [38]. Indeed, MBNL 
proteins play many crucial roles in RNA homeostasis during fetal and postnatal 
development, in particular on the regulation of alternative splicing during gene 
expression [39, 40]. Consequently, the loss of functional MBNL in adult tissues 
causes deregulation of alternative splicing or missplicing of a subset of pre-mRNAs 
and therefore leads to re-expression of a fetal splicing pattern of specific transcripts 
[41, 42]. Interestingly, knockdown of MBNL proteins greatly reduced ribonuclear 
foci in DM1 fibroblasts [43], suggesting a role of MBNL proteins in ribonuclear 
foci formation. In fact, nuclear retention of the C/CUGexp-RNA nuclear aggregates 
was promoted by the MBNL1, which subsequently resulted in repression of aber-
rant protein expression from the expanded repeats [44]. Recently, Gourdon et al. 
reported the detection of abundant ribonuclear foci formed by the sense DMPK 
RNA in human DM1 fetal tissues, which was clearly co-localized with MBNL1 and 
MBNL2 proteins. Additionally, they also found that DMPK sense and antisense 
transcripts were expressed in the heart, muscle, and brain of the transgenic mice 
from embryonic to fetal stages. These findings suggested that the congenital form of 
DM1 (the most severe form of the disease) and postnatal DM1 share a common 
pathogenic mechanism including the formation of toxic nuclear foci at the early 
stages during development [45]. Moreover, the mutated DMPK gene may also 
affect other vital developmental pathways associated with DM1 pathogenesis. For 
instance, the wild-type DMPK is required  by the serum response factor (SRF) to 
co-regulate normal skeletal and cardiac tissue growth and maturation [46], and to 
maintain smooth muscle contractility (manifested as DM1-associated gastrointesti-
nal hypomotility) [47]. Furthermore, hypermethylation of a differentially methyl-
ated region (DMR) due to CTG expansion in DMPK was uncovered recently to be 
linked to DM1 pathogenesis by causing haplo-insufficiency of a neighboring gene 
SIX5 in DM1-derived human embryonic stem cell lines. In fact, depletion or dele-
tion of SIX5 in mice has been reported to directly contribute to premature cataracts 
[48, 49], cardiac conduction defects, and testicular atrophy [50, 51]. Meanwhile, 
DM1- and DM2-associated cataracts were also reported to be attributed to the acti-
vation of the innate immune response and interferon signaling by the accumulated 
double-stranded RNA in DM cells, indicating a complex mechanism of DM patho-
genesis [52].

DM is also considered a spliceopathy as missplicing events have been found in 
affected tissues of DM1 patients [53]. Indeed, the loss of functional MBNL1 
alone was reported to be associated with more than 40 splicing changes in affected 
muscles of DM1 patients, and some of them were found to be associated with DM 
symptoms. For instance, myotonia was associated with the missplicing of chlo-
ride voltage-gated channel 1 (CLCN1) pre-mRNA [54, 55], muscle weakness with 
bridging integrator 1 (BIN1) and a voltage-dependent calcium channel (Cav1.1) 
pre-mRNAs [56, 57], muscle fiber disorganization with DMD exon 78 [58], insu-
lin resistance with insulin receptor (INSR) pre-mRNA [59], and brain lesions with 
microtubule-associated Tau isoforms aggregation [60]. Additionally, sequestra-
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tion of MBNL also has a significant impact on other biochemical and physiologi-
cal functions of these RNA-binding proteins including mRNA stability, 
transportation, and localization, as well as miRNA processing [61]. Moreover, the 
expression of CUGexp-RNA deregulates the activity of another RNA-binding pro-
tein, CELF1 (CUGBP, Elav-like family member 1, also known as CUGBP1). 
Hyperphosphorylation of CELF1 through an inappropriate activation of the pro-
tein kinase C (PKC) pathway in DM1 cells has been reported to stabilize CELF, 
which in turn results in alternative splicing deregulation and translation defects 
[62, 63]. Furthermore, alterations of additional disease modifiers, such as p68, 
multifunctional RNA-binding protein Staufen1 (Stau1), NKX2.5, SMART/
HDAC1-associated repressor protein (SHARP), and MEF2c, have also been 
linked to DM1 pathogenesis. Several studies have been undertaken to reveal their 
contribution to the progressive degenerative process of DM1 [64–68]. It has been 
recently demonstrated that Stau1 may have a broad impact as a splicing regulator 
in DM1 myoblasts. In this study, Stau1 rescued the alternative splicing profile of 
INSR and CLC1 pre-mRNAs but also shifted the splicing patterns away from 
wild-type conditions when overexpressed [69]. All of these findings suggested 
that besides modifying the alternative splicing of a subset of pre-mRNAs, the 
expression of CUGexp-RNAs also has a profound negative impact on other mecha-
nisms that leads to adverse changes at transcriptional, posttranscriptional, and 
translational levels [70, 71]. For DM2 pathogenesis, a genome- wide analysis on a 
small cohort of DM2 patients resulted in the identification of a panel of alternative 
spliced exons in 218 genes. These genes were associated with the deregulation of 
development, cell survival, metabolism, calcium signaling, and contractility 
through numerous pathways and networks important for muscle physiopathology. 
These events suggested potential roles of the identified spliced variants in DM2 
pathogenesis [72]. Nevertheless, by performing exon-array profiling and RT-PCR 
validation on DM patients as compared to other neuromuscular disorder patients 
(including Duchenne, Becker, and tibial muscular dystrophy), Bachinski et  al. 
concluded that there was no evidence on qualitative splicing differences between 
DM1 and DM2 [73].

Though some of the complications of the disease (e.g., cataracts) can be treated, 
there is unfortunately no cure for DM1 or DM2. Therefore, developing therapeutic 
approaches that target the primary cause of the disease should theoretically provide 
better treatment outcomes and—by default—normalize all of the aforementioned 
secondary consequences of the disease. Current therapeutic approaches focus pri-
marily at the RNA and protein levels and have moved beyond the initial proof-of- 
concept stage into translational studies and even a phase 1/2 clinical trial. Correcting 
the cause of the disease at the DNA level is now emerging due to breakthrough 
developments of potential novel genome engineering tools, such as single-stranded 
oligonucleotides and zinc-finger nucleases [74–76], TALENs [77–79], and CRISPR/
Cas9 [80, 81]. In the following sections, we will discuss the various state-of-the-art 
preclinical and clinical therapeutic approaches, as well as various in vitro cellular 
and clinically relevant animal models to validate and consolidate an effective thera-
peutic platform for DM1 or DM2.
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30.2  Cellular and Animal Models for DM Therapies

In vitro and in vivo DM1 and DM2 models are not only useful for deciphering the 
underlying molecular pathophysiological mechanisms, but they are instrumental 
toward validating safe and effective therapeutic strategies. DM1 primary cells [59, 
82], immortalized muscle cell lines [64, 83, 84], and embryonic stem (ES) cell lines 
have been described. Several cell lines have been developed containing DMPK 
alleles with varying lengths of CTG repeats and/or exhibit different molecular 
changes [9, 67, 85–87]. Immortalized human DM2 myoblast cell lines were com-
pared with immortalized human DM1 myoblast cell lines [88], revealing differences 
in fusion capacity. Upon myogenic differentiation, alternative splicing defects were 
observed in differentiated DM1 which were absent in the DM2 muscle cell lines. 
The emergence of inducible pluripotent stem cell (iPS) technology has also provided 
unprecedented opportunities to unravel the pathogenic mechanism of DM1 and DM2 
in vitro. We and others have generated patient-specific iPS, myogenic progenitor 
cells, or differentiated myotubes. Through the generation of iPS cell lines from 
DM1-patient fibroblasts, a correlation between the repeat lengths and cellular 
expansion rate was apparent [89].

Several complementary transgenic DM1 mouse models have been generated 
that have been described in detail elsewhere [90]. A few of the key models will be 
outlined here. The DM300/SXL mouse model was generated through the inser-
tion of 45 kb of the DM1 locus in order to express the human DMPK gene with 
300 CTG repeats [30]. These mice display DM1-associated phenotypes, including 
high mortality, growth retardation, muscle defects, and cognitive impairments 
[85, 91, 92]. Interestingly, the length of the CTG can be expanded to more than 
1500 repeats in DMSXL mice due to intergenerational instability [93]. It is note-
worthy that the promoter of the human DMPK transgene has an almost ubiquitous 
expression and similar expression pattern to that of the murine Dmpk gene. 
However, the level of expression of human DMPK is low in skeletal muscles and 
high in the brain as compared to murine Dmpk in adult DMSXL mice. Nonetheless, 
nuclear CUGexp- RNA aggregates are detected in several tissues including the mus-
cle and brain. The human skeletal alpha-actin long repeat (HSA-LR) mouse model 
bears a 220 CTG repeat in a non-DMPK gene (i.e., 3′ UTR of the human skeletal 
alpha-actin (HSA) gene), in which its expression is restricted to skeletal muscles 
only [29]. As a functional outcome, the HSA-LR mice display numerous CUGexp-
RNA nuclear aggregates, robust DM-specific molecular defects (e.g., alternative 
splicing deregulation), and myotonia. Lastly, the EpA960 mouse model is an 
inducible and tissue-specific transgenic mouse model that expresses 960 interrupted 
CTG repeats within the DMPK 3′ UTR [94]. These interrupted CTG repeats are 
expressed highly in both cardiac and skeletal muscle which causes a number of 
molecular changes including splicing deregulation and CELF1 upregulation. 
Consequently, this leads to severe cardiac phenotypes and muscle wasting within a 
few weeks [63, 94].
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DM2-HSAtg mice expressing an intronic (CCTG)121 expansion were generated 
based on analogy to HAS-LR mice [95] (R.  Krahe, unpublished data). This 
 DM2- HSAtg mice exhibited ribonuclear inclusions, CELF1 upregulation, and DM2 
muscle pathogenic phenotypes but no missplicing. Alternatively, DM2 mouse 
models were developed based on the inactivation of the alternative CNBP/ZNF9 
pathway. Zfn9+/− mice displayed myotonia, muscle wasting, cardiac conduction 
defect, and cataracts but without repeat expansion and missplicing [96]. However, 
the clinical relevance of the Cnbp-deficient mice model was challenged by contra-
dictory studies reporting on the effects of CCTG expansion on CNBP/ZNF9 expres-
sion in DM2 patients [97, 98]. The development of improved transgenic DM2 
animal models that replicate most if not all of the known pathophysiology of the 
cognate human disorder may foster the development and preclinical validation of 
new therapeutic approaches.

30.3  Therapeutic Approaches for DM1 and DM2

Several therapeutic approaches have been developed to rectify the toxic RNA gain- 
of- function mechanism of DM1. These strategies include the use of antisense syn-
thetic oligonucleotides (ASO), the use of pharmacologic compounds such as small 
molecules or peptides, and the use of gene therapy or gene editing approaches. This 
could be accomplished either by degradation of the CUGexp-RNA or steric blocking 
to unfold the secondary structure of the CUGexp-RNA. Alternatively, the undesirable 
binding of MBLN proteins to the CUGexp was inhibited. Finally, editing the patho-
genic alleles at the DNA level itself by genome engineering is also being consid-
ered. In the following section, we summarize the different therapeutic approaches in 
respect to their molecular targets, therapeutic efficacies, and their modes of 
administration.

30.3.1  Degradation of the Pathogenic RNA Expanded 
Transcripts

30.3.1.1  Gapmer-Antisense Oligonucleotides (Gapmer-ASOs)

The working principle of antisense oligonucleotides (ASOs) [99] is based on its 
specific binding to targeted RNA through complementary nucleotide base pairing. 
Several chemical modifications have been developed to improve their RNA/DNA 
binding properties and their tissue penetration while reducing their sensitivity to 
nucleases [100]. In fact, the use of gapmer-ASOs has recently been proved to have 
strong therapeutic potential by exploiting an RNase-H mechanism that activates deg-
radation of the cognate target RNA transcripts. In general, gapmer-ASOs are made 
up of 8–10 DNA nucleotides surrounded by chemically modified nucleotides at both 
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5′ and 3′ ends. In the formed ASO/RNA heteroduplex, the presence of non- modified 
nucleotides represents a “gap” which allows the RNAse-H1 to recognize and subse-
quently degrade the DNA/RNA duplex. This molecular recognition results in cleav-
age of the target RNA counterpart followed by exonuclease degradation of the RNA 
fragments. CAG-gapmer-ASOs have been specifically designed to target CUG 
repeats in the DM1 CUGexp-RNA. The CAG-gapmer-ASOs have been modified with 
locked nucleic acid (LNA) or 2′-O-methoxyethyl (2These CAG-gapmer- ASOs trig-
gereMOE). These CAG-gapmer-ASOs triggered efficient RNase-H-mediated degra-
dation of the CUGexp-RNA in cellular models of DM1 [38]. It is particularly 
encouraging that intramuscular delivery of these ASOs leads to 50% reduction of 
CUGexp-RNA levels in the EpA960 mouse model, consistent with a reduction in 
ribonuclear foci and a partial rescue of splicing defects. In parallel, systemic admin-
istration of MOE gapmer-ASOs targeting CUGexp-independent sequences within the 
mutant transcript has also been demonstrated to lead to an efficient degradation of 
CUGexp-RNAs. Consequently, relatively robust correction of both molecular and 
functional phenotypes in HSA-LR mice could be achieved [101]. Furthermore, 
2′,4′-constrained ethyl (cEt)-modified ASOs were developed by Seth et al., and they 
reported a significantly enhanced in vivo potency of cEt- modified ASOs as com-
pared to MOE gapmer-ASOs with a favorable safety profile [102, 103]. Interestingly, 
by systemic administration, this group demonstrated that cEt-modified ASOs 
showed potent activity against DMPK that was specific to the skeletal and cardiac 
muscle in wild-type mice, human DMPK transgenic mice, and nonhuman primates 
[104]. Recently, short synthetic ASO composed exclusively of 8–10 subunits of 
LNA (designated as all-LNAs) was developed and found to bind efficiently to long 
CUGexp of the mutated DMPK transcripts in cells derived from DM1 patients and in 
skeletal muscle of DM1 mouse model [105]. As a result, ribonuclei foci formation 
was significantly reduced along with a correction of the abnormal alternative splic-
ing of MBNL exons due to prevention of MBNLs sequestration by the all-LNAs. 
Additionally, all-LNAs exhibited high molecular stability, a relatively low immuno-
genicity, and relatively long-acting activity (that lasted a minimum of 14 days in 
HSA-LR mice), at least when administered at relatively high doses intramuscularly. 
Therefore, developing ASO-based drugs that are highly complementary to the 
pathogenic CUGexp repeats may represent a promising strategy to treat DM1. 
Interestingly, some studies show that the beneficial effects of gapmer-ASOs in post-
mitotic skeletal muscle tissue were sustained for a relatively long period of time 
(up to 1 year) after treatment was discontinued.

30.3.1.2  Antisense RNA

In the field of gene therapy, antisense RNA (asRNA) has generally been adopted 
[106], as a means to “silence” pathogenic gene expression in order to alleviate 
the disease symptoms. In the case of DM1, asRNA has been designed to bind to 
a complementary sequence upstream of the expanded repeats in the 3′ UTR of 
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the DMPK transcript. This strategy was shown to significantly reduce the level of 
DMPK mRNA, consequently restoring some cellular functions in DM1 muscle cells 
[107]. Nevertheless, a 50% reduction of wild-type DMPK mRNAs was also 
observed since the asRNA recognized a nucleotide sequence that was common 
between the pathogenic and wild-type DMPK mRNA. To overcome the lack of spec-
ificity of this asRNA-based approach on silencing pathogenic DMPK transcripts, 
Francois and colleagues developed a modified human U7 small nuclear RNA (hU7- 
snRNA) that could selectively silence only the mutated DMPK mRNAs in DM1 
cells [108]. Specifically, this modified hU7-snRNA was conjugated to a (CAG)n 
antisense sequence and packaged into lentiviral vectors. Upon delivery, the con-
structs enabled nuclear localization of the antisense sequence, subsequently leading 
to specific targeting of the expanded CUG repeat tract. Remarkably, this strategy 
resulted in specific degradation of CUGexp-RNAs with almost no effect on the wild- 
type DMPK mRNAs in DM1 muscle cells. The precise mechanism of this silencing 
is not fully understood. Nevertheless, it is particularly encouraging that this silenc-
ing has enabled correction of some typical DM1 features, consistent with the rever-
sion of splicing misregulation, disappearance of ribonuclei foci, and even an 
improvement in myogenic differentiation of the diseased DM1 muscle cells. These 
in vitro studies provided strong scientific evidence on the feasibility of developing 
antisense-based gene therapy approaches for DM1. It is tempting to speculate that 
the incorporation of this CUGexp-RNA-targeted hU7-snRNA expression cassette in 
AAV vector could allow for sustained expression, body-wide transduction of skel-
etal muscle, and possibly even cardiac tissue, in DM1. This could obviate some of 
the limitations of ASOs and other strategies that have only transient effects and do 
not effectively reach the afflicted muscle with comparable high efficiency as in the 
case of AAV. This would still need to be validated in preclinical models.

30.3.1.3  RNA Interference

RNA interference (RNAi) has been exploited to silence nuclear-retained DMPK 
transcripts in DM1. Lentiviral vectors have been designed that expressed short hair-
pin RNA (shRNA) complementary to DMPK mRNA sequences (either in the cod-
ing or 3′ UTR region but excluding the CUG repeats) [109]. This resulted in a 
significant reduction of the intended target, namely, the nuclear-retained pathogenic 
CUGexp transcripts in DM1 cells. However, the normal cytoplasmic DMPK tran-
scripts were also targeted since the design of the shRNA did not allow the patho-
genic and wild-type mRNAs to be discriminated. An alternative strategy based on 
small interfering RNA (siRNA) oligonucleotides was also explored to degrade 
nuclear CUGexp-RNA transcripts through RNA interference. These siRNA oligo-
nucleotides were designed to specifically target CUG repeats. For instance, a recent 
study showed that introduction of CAG/CUG siRNA duplex in skeletal muscles of 
HSA-LR mice by in  vivo electroporation resulted in a significant reduction of 
expanded CUGexp-transcripts [110]. However, the specificity of these siRNA was 
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not restricted to the DMPK CUGexp since other transcripts containing such CUG 
repeats were also targeted. Chamberlain and co-workers demonstrated recently that 
systemic delivery of miRNA-based RNAi using a muscle-tropic AAV6 vector could 
efficiently mitigate DM1 phenotypes of terminally differentiated myofibers in 
HAS-LR mice [111]. This efficient AAV-mediated delivery of RNAi may provide a 
long-term therapy for DM1.

30.3.1.4  Ribozymes

Ribozymes are catalytic RNAs that have been used as therapeutic agents to repair 
RNA transcripts or to degrade RNA by cleaving the RNA targets [112, 113]. For 
gene therapy of DM1, scientists have reported on the use of group I intron ribo-
zyme to target and reduce CUG repeats in the 3′ UTR of human DMPK tran-
scripts. Consequently, the 12 CUG repeats were replaced by 5 repeats, both in an 
in vitro assay and in cultured human fibroblasts [114]. In another study, a lentivi-
ral vector expressing the nuclear-retained hammerhead ribozyme was used to 
induce endonucleolytic cleavage of the DMPK 3′ UTR sequence [115]. This 
resulted in a significant reduction of pathogenic DMPK CUGexp-transcripts in 
DM1 myoblasts, consistent with a reduction of the number of CUGexp-RNA 
nuclear foci and the partial restoration of alternative missplicing of insulin recep-
tor (INSR) transcripts. However, the intrinsic design of the ribozyme did not allow 
discrimination between wild-type and pathogenic DMPK mRNA to the extent that 
the wild-type mRNA was also cleaved. Since ribozymes typically have a relatively 
short half-life, it will be important to design strategies to overcome this and/or to 
express higher levels. It will also be necessary to validate their therapeutic poten-
tial in vivo, for example, following de novo expression in the afflicted muscle 
using AAV vectors.

30.3.1.5  RNA Endonuclease

Artificial site-specific RNA endonuclease (ASRE) are customized synthetic endori-
bonucleases that demonstrated high specificity and efficiency in cleaving RNA tar-
gets [116]. They have also been engineered to treat DM1 by directing the endonuclease 
against the CUGexp repeats in the DMPK RNA [117]. This DM1- ASRE contains a 
specific RNA recognition domain specific to the (CUG)8 sequence and conjugated to 
an RNA endonuclease domain resulting in efficient cleavage of the CUGexp-
RNA. Expression of this ASRE in DM1 cells resulted in a reduction of the number 
of nuclear foci as well as the restoration of splicing profiles of the bridging integrator 
1 (BIN1), cardiac troponin T (cTnT), and insulin receptor (INSR) transcripts. 
Although ASRE-based strategies could provide an alternate gene therapy approach 
for DM1, their potential off-target effects would need to be carefully assessed and 
optimized in order to address some of the prevailing safety concerns.
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30.3.2  Steric Blocking

30.3.2.1  ASOs

ASOs (typically sized between 15 and 30 nucleotides) have also been used to mask 
specific regulatory nucleotide sequences by modulating the splicing machinery and 
forcing inclusion or exclusion of a specific exon [118, 119]. These regulatory 
sequences typically include splice acceptor or donor sites, exonic splicing enhanc-
ers, and intronic splicing enhancers and allow for “exon skipping.” Wheeler and 
colleagues reported on the restoration of the splicing profile of the Clcn1 channel 
and subsequent reversion of myotonia by ASO-mediated exon skipping in an 
HSA-LR mice model [120]. ASOs can be rendered relatively nuclease-resistant in 
order to improve their efficacy. Such a CAG25 “morpholino” (PMO) has been 
designed to target the CUGexp tract. In vivo electroporation into the muscle of 
HSA-LR mice resulted in a reversion of quintessential DM1-associated phenotypes, 
including splicing deregulation and myotonia [121]. Interestingly, these ASOs were 
specifically engineered to sterically block the MBNL1 factor from the pathogenic 
nuclear CUGexp-RNA aggregates. Steric blockade of CUGexp repeats by the CAG25- 
PMOs killed two birds with one stone: it could overcome the nuclear sequestration 
of MBLN1 restoring its intracellular distribution and functional activity but, at the 
same time, also decreased the pathogenic CUGexp-RNA levels by increasing nuclear 
export and cytoplasmic degradation. Similarly, fully modified 2′O-Methyl (2′OMe) 
phosphorothioate (CAG)7-ASO (PS58) could degrade CUGexp-RNAs in DM1 mus-
cle cells [122]. In fact, 50–60% reduction of CUGexp-RNA levels in muscles was 
obtained by this strategy when (CAG)7-ASO was injected intramuscularly in 
DM300 and HSA-LR mice. This finding suggested a partial normalization of alter-
native splicing defects by the (CAG)7-ASO. Subsequently, (CAG)n-ASO was fur-
ther optimized in function of the molecular length, and the studies showed that CAG 
sequences shorter than 20 nucleotides were effective in correcting DM molecular 
defects in vitro and in vivo [84, 123]. In this respect, both the type of chemical 
modifications and the length of the ASO influenced efficacy.

Despite their promise, there are still a number of key issues that would need to 
be further optimized. It is ultimately not realistic to treat DM1 patients by local 
injection of ASOs. In addition, since the effect is expected to be transient, these 
injections would need to be repeated on a regular basis which complicates clinical 
translation. Moreover, in vivo biodistribution and cell/tissue penetration of ASOs 
are not optimal. This is compounded by the fact that morpholinos exhibit a rela-
tively poor tissue penetration in DM1 mice [124]. Nevertheless, it is encouraging 
that tissue uptake of these ASOs upon systemic delivery by IV injection into the 
HSA-LR mice was greatly improved by coupling a cell-penetrating peptide (CPP) 
to the morpholino. Consequently, relatively efficient MBNL1 redistribution and 
correction of abnormal splicing were achieved in the skeletal muscle, even alleviat-
ing some of the quintessential disease manifestations like myotonia. However, 
comprehensive toxicity studies are required to further address the safety of this 
approach, particularly since some CPP-conjugated ASOs could potentially contrib-
ute to cellular toxicity [125].
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30.3.2.2  Small Molecules/Peptides

The interaction between MBNL1 and the pathogenic CUGexp-RNA is a crucial step in 
the pathophysiological process that contributes to DM1. Consequently, disrupting this 
interaction using small molecules or peptides may overturn some of the adverse 
effects of this interaction. Using comprehensive library screens, attempts were made 
to identify molecules that are either competitive antagonists of MBNL1 on the bind-
ing site of the C/CUG repeats [126–129], effective blockers that prevent binding of 
MBNL1 to C/CUG repeats [86, 130–134], specific effectors that perturb the forma-
tion of RNA foci in cellular models [83], or therapeutic agents that correct some of the 
specific deleterious phenotypes in animal models [135]. Though some potentially 
interesting leads were identified, it is beyond the scope of this gene therapy review to 
provide a comprehensive discussion of these more conventional pharmaceutical 
approaches. To our knowledge, none of these compounds have been tested in clinical 
trials yet, and it remains to be seen how their efficacy and safety profile compare to 
that of the most promising gene therapy approaches described herein.

30.3.3  MBLN1 Overexpression

A central mechanism in DM1 pathogenesis is the loss of function of the MBNL1 
due to its sequestration to the CUGexp-RNA complex in the cell nucleus. Several 
studies have demonstrated that MBNL1 loss-of-function accounted for more than 
80% of the alternative splicing changes in the HSA-LR mouse model of DM1 [35, 
42]. Consequently, overexpressing MBLN1 may potentially mitigate some of the 
pathophysiological consequences of the CUGexp-RNA in DM1. This was supported 
by transgenic mouse studies, revealing that the DM1-associated phenotypes could 
be reversed after crossing HSA-LR mice with transgenic mice that were specifically 
designed to overexpress MBNL1 in the muscle [136]. This justified developing an 
AAV-based strategy to treat DM1 by overexpressing MBLN1 after gene therapy in 
DM1 mouse models. AAV vectors encoding MBLN1 were therefore injected intra-
muscularly in HSA-LR mice [137]. Though only a relatively modest twofold 
increase of MBNL1 protein level was apparent, it was associated with a reversion of 
some of the DM1 phenotypes in the injected target muscle. This would need to be 
corroborated by systemic AAV-MBLN1 administration in the hope to achieve effi-
cient MBLN1 overexpression in the skeletal muscle and heart.

30.3.4  Gene Editing

Genome editing using TALENs, ZFNs, homing endonucleases, and CRISPR/Cas9 
represents a powerful approach for the correction of various disease mutations 
[138]. This strategy is highly suitable for treating DM1 as removal of the CTGexp 
repeat tract or insertion of regulatory sequence in the DMPK gene will abolish the 
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transcription of the pathogenic CTGexp. Hence, all of the downstream pathogenic 
events associated with DM1 would be rectified. A recent study reported in vitro 
correction of DM1 phenotypes in neural stem cells (NSCs) generated from DM1-
iPS cells via TALEN-mediated homologous recombination (HR) [79]. This is an 
interesting proof-of-concept study demonstrating the potential of TALENs to pro-
duce DM1-corrected progenitor cells. We have recently explored the use of 
CRISPR/Cas9 to completely excise the expanded trinucleotide CTG repeats 
(CTGexp) in the DMPK gene in order to generate DM1-corrected myogenic cells 
derived from DM1 patient-specific iPS cells [139]. Relatively robust phenotypic 
correction was observed after gene editing in the CRISPR/Cas9-corrected DM1- 
HIDEMs, consistent with the disappearance of ribonuclear foci, one of the hall-
marks of DM1. This paralleled the reversion of the abnormal splicing patterns in 
DM1. Similarly, Wieringa and co-workers have shown that CRISPR/Cas9 enabled 
complete and precise removal of the CTGexp alleles in myoblasts from DM1 mice 
and patients. This resulted in normalization of the myogenic capacity, nucleocyto-
plasmic distribution, and abnormal RNP-binding behavior of transcripts from the 
edited DMPK gene [80].

Though the overall efficiency of gene editing is currently not as high as with 
more conventional gene addition strategies, incremental changes in technology may 
eventually bridge this gap. It will be important to conduct the necessary in vivo 
studies using these various gene editing platforms to establish safety and efficacy in 
the appropriate preclinical models described above. Finally, comprehensive 
genome-wide analysis of off-target effects would be required to formally rule out 
any off-target effects.

30.4  Translational Challenges and Concluding Remarks

Since the genetic etiology of DM1 and DM2 has been identified, a lot of progress 
has been made at attempting to block the pathogenic effects of the cognate mRNAs 
containing the nucleotide repeat expansions. Some of these emerging therapeutic 
approaches were validated in vitro in cellular models of DM1 or DM2, whereas oth-
ers are already matured toward preclinical validation in in vivo models that mimic 
the cognate human disease. Though the available animal models are not perfect in 
the sense that they do not replicate all of the key pathogenic features of DM1 or 
DM2, they are complementary and provide useful tools to assess efficacy and safety 
of the different therapeutic modalities that are currently under development. It is 
particularly encouraging that the first safety clinical trials have started in DM1 
patients with ASOs and that no adverse effects were reported. However, further 
studies in patients with DM1 (or DM2) are needed to convincingly demonstrate 
efficacy based on validated functional endpoints or surrogate markers. Nevertheless, 
several challenges would still need to be addressed. The consequences of modu-
lating or inactivating the wild-type alleles are, at present, not fully understood. 
The selected therapeutic approaches should therefore ideally only target the patho-
genic RNA. However, this is not always the case as the wild-type transcript can 
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sometimes also be targeted, due to the lack of specificity of the targeting modality. 
Similarly, gene editing approaches typically do not discriminate between the wild-
type and pathogenic allele since the DNA sequences flanking the pathogenic repeat 
expansion are usually identical. Nevertheless, the presence of single nucleotide 
polymorphisms (SNPs) could potentially be exploited to discriminate between the 
two alleles and develop a more refined and specific targeting strategy. It is also 
important to ensure that only the desired locus is targeted, while off-target effects in 
other genomic loci should be minimized. The gene editing technology is evolving 
rapidly, and it is likely that the next-generation editing tools will become increas-
ingly more specific. For instance, the latest-generation Cas9 proteins (e.g., HF-Cas9) 
already show reduced off-target effects, compared to the early-generation versions 
[140]. There are also some important challenges remaining regarding the efficiency 
of delivering the therapeutics to the desired target tissues since DM1 and DM2 are 
a multisystem disorder affecting many tissues and organs. This is compounded by 
the need to obtain sustained therapeutic effects while minimizing the risk for poten-
tial toxicities. Though oligonucleotide-based approaches will require repeated 
administration to sustain long-term benefits to the patient, AAV vector-based 
approaches will likely allow prolonged expression of the therapeutic gene, at least 
in the skeletal muscle. Though, multi-year expression has been achieved in different 
tissues after AAV-based gene therapy in clinical trials, it is currently not known if 
expression will be lifelong and if vector re-administration would be required. It is 
important to continue to explore this diverse array of gene therapy and gene editing 
strategies in parallel in preclinical studies and to move the most promising strategies 
forward into the clinic. This ultimately offers the best hope to those patients and 
their families that are blighted by these dominant genetic diseases.

Acknowledgments Some of the research described herein was conducted in the laboratories of 
TV and MC. This research was supported by grants from the Research Foundation of Flanders 
(FWO), Association Française contre les Myopathies (AFM), Scientific Fund Willy Gepts 
(WFWG, VUB), and King Boudewijn Foundation—Walter Pyleman Fund. YCC is supported by 
the IOF-GEAR grant (Vrije Universiteit Brussel); SD is supported by the PhD studentship of the 
Willy Gepts Fund (Wetenschappelijk Fonds Willy Gepts—Vrije Universiteit Brussel) and the King 
Boudewijn Foundation Walter Pyleman Fund. This project has received funding from the European 
Union’s Horizon 2020 research and innovation program under grant agreement No 667751 
(MYOCURE).

Conflicts of Interest The authors have no conflicts of interest to report.

References

 1. Musova Z, Mazanec R, Krepelova A, Ehler E, Vales J, Jaklova R, Prochazka T, Koukal P, 
Marikova T, Kraus J, Havlovicova M, Sedlacek Z (2009) Highly unstable sequence interrup-
tions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet A 149A(7):1365–
1374. https://doi.org/10.1002/ajmg.a.32987

 2. Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic chal-
lenges. Lancet Neurol 11(10):891–905. https://doi.org/10.1016/S1474-4422(12)70204-1

30 Gene Therapy and Gene Editing for Myotonic Dystrophy

https://doi.org/10.1002/ajmg.a.32987
https://doi.org/10.1016/S1474-4422(12)70204-1


540

 3. Mathieu J, De Braekeleer M, Prevost C (1990) Genealogical reconstruction of myotonic 
dystrophy in the Saguenay-Lac-Saint-Jean area (Quebec, Canada). Neurology 40(5):839–842

 4. Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, 
Ashizawa T, de Jong P et al (1992) An unstable triplet repeat in a gene related to myotonic 
muscular dystrophy. Science 255(5049):1256–1258

 5. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang 
M, Barcelo J, O’Hoy K et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat 
in the 3’ untranslated region of the gene. Science 255(5049):1253–1255

 6. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, 
Stanton VP, Thirion JP, Hudson T et al (1992) Molecular basis of myotonic dystrophy: expan-
sion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase 
family member. Cell 68(4):799–808

 7. Savic Pavicevic D, Miladinovic J, Brkusanin M, Svikovic S, Djurica S, Brajuskovic G, Romac 
S (2013) Molecular genetics and genetic testing in myotonic dystrophy type 1. Biomed Res 
Int 2013:391821. https://doi.org/10.1155/2013/391821

 8. Groh WJ, Groh MR, Shen C, Monckton DG, Bodkin CL, Pascuzzi RM (2011) Survival and 
CTG repeat expansion in adults with myotonic dystrophy type 1. Muscle Nerve 43(5):648–
651. https://doi.org/10.1002/mus.21934

 9. Barbe L, Lanni S, Lopez-Castel A, Franck S, Spits C, Keymolen K, Seneca S, Tome S, Miron 
I, Letourneau J, Liang M, Choufani S, Weksberg R, Wilson MD, Sedlacek Z, Gagnon C, 
Musova Z, Chitayat D, Shannon P, Mathieu J, Sermon K, Pearson CE (2017) CpG meth-
ylation, a parent-of-origin effect for maternal-biased transmission of congenital myotonic 
dystrophy. Am J Hum Genet 100(3):488–505. https://doi.org/10.1016/j.ajhg.2017.01.033

 10. Harper PS, Harley HG, Reardon W, Shaw DJ (1992) Anticipation in myotonic dystrophy: 
new light on an old problem. Am J Hum Genet 51(1):10–16

 11. Lavedan C, Hofmann-Radvanyi H, Shelbourne P, Rabes JP, Duros C, Savoy D, Dehaupas I, 
Luce S, Johnson K, Junien C (1993) Myotonic dystrophy: size- and sex-dependent dynamics 
of CTG meiotic instability, and somatic mosaicism. Am J Hum Genet 52(5):875–883

 12. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP 
(2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 
293(5531):864–867. https://doi.org/10.1126/science.1062125

 13. Liquori CL, Ikeda Y, Weatherspoon M, Ricker K, Schoser BG, Dalton JC, Day JW, Ranum 
LP (2003) Myotonic dystrophy type 2: human founder haplotype and evolutionary conserva-
tion of the repeat tract. Am J Hum Genet 73(4):849–862. https://doi.org/10.1086/378720

 14. Kurosaki T, Ueda S, Ishida T, Abe K, Ohno K, Matsuura T (2012) The unstable CCTG 
repeat responsible for myotonic dystrophy type 2 originates from an AluSx element inser-
tion into an early primate genome. PLoS One 7(6):e38379. https://doi.org/10.1371/journal.
pone.0038379

 15. Guo P, Lam SL (2015) New insights into the genetic instability in CCTG repeats. FEBS Lett 
589(20 Pt B):3058–3063. https://doi.org/10.1016/j.febslet.2015.09.007

 16. Suominen T, Bachinski LL, Auvinen S, Hackman P, Baggerly KA, Angelini C, Peltonen L, 
Krahe R, Udd B (2011) Population frequency of myotonic dystrophy: higher than expected 
frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J  Hum Genet 
19(7):776–782. https://doi.org/10.1038/ejhg.2011.23

 17. Harper PS (2001) The genetic basis of myotonic dystrophy. In: Harper PS (ed) Myotonic 
dystrophy, 3rd edn. W.B. Saunders, London, pp 307–363

 18. Bellini M, Biagi S, Stasi C, Costa F, Mumolo MG, Ricchiuti A, Marchi S (2006) 
Gastrointestinal manifestations in myotonic muscular dystrophy. World J Gastroenterol 12 
(12):1821–1828

 19. Meola G, Cardani R (2017) Myotonic dystrophy type 2 and modifier genes: an update on 
clinical and pathomolecular aspects. Neurol Sci 38(4):535–546. https://doi.org/10.1007/
s10072-016-2805-5

 20. Day JW, Ranum LP (2005) RNA pathogenesis of the myotonic dystrophies. Neuromuscul 
Disord 15(1):5–16. https://doi.org/10.1016/j.nmd.2004.09.012

M. Chuah et al.

https://doi.org/10.1155/2013/391821
https://doi.org/10.1002/mus.21934
https://doi.org/10.1016/j.ajhg.2017.01.033
https://doi.org/10.1126/science.1062125
https://doi.org/10.1086/378720
https://doi.org/10.1371/journal.pone.0038379
https://doi.org/10.1371/journal.pone.0038379
https://doi.org/10.1016/j.febslet.2015.09.007
https://doi.org/10.1038/ejhg.2011.23
https://doi.org/10.1007/s10072-016-2805-5
https://doi.org/10.1007/s10072-016-2805-5
https://doi.org/10.1016/j.nmd.2004.09.012


541

 21. Renna LV, Cardani R, Botta A, Rossi G, Fossati B, Costa E, Meola G (2014) Premature 
senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with 
p16 induction. Eur J Histochem 58(4):2444. https://doi.org/10.4081/ejh.2014.2444

 22. Bigot A, Klein AF, Gasnier E, Jacquemin V, Ravassard P, Butler-Browne G, Mouly V, Furling 
D (2009) Large CTG repeats trigger p16-dependent premature senescence in myotonic dys-
trophy type 1 muscle precursor cells. Am J Pathol 174(4):1435–1442. https://doi.org/10.2353/
ajpath.2009.080560

 23. Arsenault ME, Prevost C, Lescault A, Laberge C, Puymirat J, Mathieu J  (2006) Clinical 
characteristics of myotonic dystrophy type 1 patients with small CTG expansions. Neurology 
66(8):1248–1250. https://doi.org/10.1212/01.wnl.0000208513.48550.08

 24. Serra L, Mancini M, Silvestri G, Petrucci A, Masciullo M, Spano B, Torso M, Mastropasqua 
C, Giacanelli M, Caltagirone C, Cercignani M, Meola G, Bozzali M (2016) Brain connec-
tomics’ modification to clarify motor and nonmotor features of myotonic dystrophy type 1. 
Neural Plast 2016:2696085. https://doi.org/10.1155/2016/2696085

 25. Denis JA, Gauthier M, Rachdi L, Aubert S, Giraud-Triboult K, Poydenot P, Benchoua A, 
Champon B, Maury Y, Baldeschi C, Scharfmann R, Pietu G, Peschanski M, Martinat C 
(2013) mTOR-dependent proliferation defect in human ES-derived neural stem cells affected 
by myotonic dystrophy type 1. J  Cell Sci 126(Pt 8):1763–1772. https://doi.org/10.1242/
jcs.116285

 26. Ho G, Cardamone M, Farrar M (2015) Congenital and childhood myotonic dystrophy: cur-
rent aspects of disease and future directions. World J Clin Pediatr 4(4):66–80. https://doi.
org/10.5409/wjcp.v4.i4.66

 27. Davis BM, McCurrach ME, Taneja KL, Singer RH, Housman DE (1997) Expansion of 
a CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein 
kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci U S A 
94(14):7388–7393

 28. Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH (1995) Foci of trinu-
cleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J  Cell Biol 
128(6):995–1002

 29. Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, Krym M, Thornton 
CA (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. 
Science 289(5485):1769–1773

 30. Seznec H, Agbulut O, Sergeant N, Savouret C, Ghestem A, Tabti N, Willer JC, Ourth L, Duros 
C, Brisson E, Fouquet C, Butler-Browne G, Delacourte A, Junien C, Gourdon G (2001) Mice 
transgenic for the human myotonic dystrophy region with expanded CTG repeats display 
muscular and brain abnormalities. Hum Mol Genet 10(23):2717–2726

 31. Michalowski S, Miller JW, Urbinati CR, Paliouras M, Swanson MS, Griffith J  (1999) 
Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene 
and interactions with CUG-binding protein. Nucleic Acids Res 27(17):3534–3542

 32. Mooers BH, Logue JS, Berglund JA (2005) The structural basis of myotonic dystrophy 
from the crystal structure of CUG repeats. Proc Natl Acad Sci U S A 102(46):16626–16631. 
https://doi.org/10.1073/pnas.0505873102

 33. Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson 
MS (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associ-
ated with myotonic dystrophy. EMBO J 19(17):4439–4448. https://doi.org/10.1093/emboj/ 
19.17.4439

 34. Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB, Thornton CA (2000) Expanded 
CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein 
kinase PKR. RNA 6(1):79–87

 35. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, 
Hauswirth WW, Swanson MS (2003) A muscleblind knockout model for myotonic dystro-
phy. Science 302(5652):1978–1980. https://doi.org/10.1126/science.1088583

 36. Charizanis K, Lee KY, Batra R, Goodwin M, Zhang C, Yuan Y, Shiue L, Cline M, Scotti 
MM, Xia G, Kumar A, Ashizawa T, Clark HB, Kimura T, Takahashi MP, Fujimura H, Jinnai 

30 Gene Therapy and Gene Editing for Myotonic Dystrophy

https://doi.org/10.4081/ejh.2014.2444
https://doi.org/10.2353/ajpath.2009.080560
https://doi.org/10.2353/ajpath.2009.080560
https://doi.org/10.1212/01.wnl.0000208513.48550.08
https://doi.org/10.1155/2016/2696085
https://doi.org/10.1242/jcs.116285
https://doi.org/10.1242/jcs.116285
https://doi.org/10.5409/wjcp.v4.i4.66
https://doi.org/10.5409/wjcp.v4.i4.66
https://doi.org/10.1073/pnas.0505873102
https://doi.org/10.1093/emboj/19.17.4439
https://doi.org/10.1093/emboj/19.17.4439
https://doi.org/10.1126/science.1088583


542

K, Yoshikawa H, Gomes-Pereira M, Gourdon G, Sakai N, Nishino S, Foster TC, Ares M Jr, 
Darnell RB, Swanson MS (2012) Muscleblind-like 2-mediated alternative splicing in the 
developing brain and dysregulation in myotonic dystrophy. Neuron 75(3):437–450. https://
doi.org/10.1016/j.neuron.2012.05.029

 37. Hao M, Akrami K, Wei K, De Diego C, Che N, Ku JH, Tidball J, Graves MC, Shieh PB, 
Chen F (2008) Muscleblind-like 2 (Mbnl2) -deficient mice as a model for myotonic dystrophy. 
Dev Dyn 237(2):403–410. https://doi.org/10.1002/dvdy.21428

 38. Lee KY, Li M, Manchanda M, Batra R, Charizanis K, Mohan A, Warren SA, Chamberlain 
CM, Finn D, Hong H, Ashraf H, Kasahara H, Ranum LP, Swanson MS (2013) Compound 
loss of muscleblind-like function in myotonic dystrophy. EMBO Mol Med 5(12):1887–1900. 
https://doi.org/10.1002/emmm.201303275

 39. Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB, Cooper TA (2008) A post-
natal switch of CELF and MBNL proteins reprograms alternative splicing in the develop-
ing heart. Proc Natl Acad Sci U S A 105(51):20333–20338. https://doi.org/10.1073/pnas. 
0809045105

 40. Konieczny P, Stepniak-Konieczna E, Sobczak K (2015) MBNL proteins and their target 
RNAs, interaction and splicing regulation. Nucleic Acids Res 42(17):10873–10887. https://
doi.org/10.1093/nar/gku767

 41. Kanadia RN, Urbinati CR, Crusselle VJ, Luo D, Lee YJ, Harrison JK, Oh SP, Swanson MS 
(2003) Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. 
Gene Expr Patterns 3(4):459–462

 42. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA 
(2006) Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. 
Hum Mol Genet 15(13):2087–2097. https://doi.org/10.1093/hmg/ddl132

 43. Dansithong W, Paul S, Comai L, Reddy S (2005) MBNL1 is the primary determinant of focus 
formation and aberrant insulin receptor splicing in DM1. J Biol Chem 280(7):5773–5780. 
https://doi.org/10.1074/jbc.M410781200

 44. Kino Y, Washizu C, Kurosawa M, Oma Y, Hattori N, Ishiura S, Nukina N (2015) Nuclear 
localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived 
aberrant proteins. Hum Mol Genet 24(3):740–756. https://doi.org/10.1093/hmg/ddu492

 45. Michel L, Huguet-Lachon A, Gourdon G (2015) Sense and antisense DMPK RNA foci 
accumulate in DM1 tissues during development. PLoS One 10(9):e0137620. https://doi.
org/10.1371/journal.pone.0137620

 46. Iyer D, Belaguli N, Fluck M, Rowan BG, Wei L, Weigel NL, Booth FW, Epstein HF, Schwartz 
RJ, Balasubramanyam A (2003) Novel phosphorylation target in the serum response factor 
MADS box regulates alpha-actin transcription. Biochemistry 42(24):7477–7486. https://doi.
org/10.1021/bi030045n

 47. Lee MY, Park C, Ha SE, Park PJ, Berent RM, Jorgensen BG, Corrigan RD, Grainger N, 
Blair PJ, Slivano OJ, Miano JM, Ward SM, Smith TK, Sanders KM, Ro S (2017) Serum 
response factor regulates smooth muscle contractility via myotonic dystrophy protein kinases 
and L-type calcium channels. PLoS One 12(2):e0171262. https://doi.org/10.1371/journal.
pone.0171262

 48. Klesert TR, Cho DH, Clark JI, Maylie J, Adelman J, Snider L, Yuen EC, Soriano P, Tapscott 
SJ (2000) Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat 
Genet 25(1):105–109. https://doi.org/10.1038/75490

 49. Sarkar PS, Appukuttan B, Han J, Ito Y, Ai C, Tsai W, Chai Y, Stout JT, Reddy S (2000) 
Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat Genet 25(1): 
110–114. https://doi.org/10.1038/75500

 50. Wakimoto H, Maguire CT, Sherwood MC, Vargas MM, Sarkar PS, Han J, Reddy S, Berul 
CI (2002) Characterization of cardiac conduction system abnormalities in mice with targeted 
disruption of Six5 gene. J Interv Card Electrophysiol 7(2):127–135

 51. Personius KE, Nautiyal J, Reddy S (2005) Myotonia and muscle contractile properties 
in mice with SIX5 deficiency. Muscle Nerve 31(4):503–505. https://doi.org/10.1002/
mus.20239

M. Chuah et al.

https://doi.org/10.1016/j.neuron.2012.05.029
https://doi.org/10.1016/j.neuron.2012.05.029
https://doi.org/10.1002/dvdy.21428
https://doi.org/10.1002/emmm.201303275
https://doi.org/10.1073/pnas.0809045105
https://doi.org/10.1073/pnas.0809045105
https://doi.org/10.1093/nar/gku767
https://doi.org/10.1093/nar/gku767
https://doi.org/10.1093/hmg/ddl132
https://doi.org/10.1074/jbc.M410781200
https://doi.org/10.1093/hmg/ddu492
https://doi.org/10.1371/journal.pone.0137620
https://doi.org/10.1371/journal.pone.0137620
https://doi.org/10.1021/bi030045n
https://doi.org/10.1021/bi030045n
https://doi.org/10.1371/journal.pone.0171262
https://doi.org/10.1371/journal.pone.0171262
https://doi.org/10.1038/75490
https://doi.org/10.1038/75500
https://doi.org/10.1002/mus.20239
https://doi.org/10.1002/mus.20239


543

 52. Rhodes JD, Lott MC, Russell SL, Moulton V, Sanderson J, Wormstone IM, Broadway DC 
(2012) Activation of the innate immune response and interferon signalling in myotonic dys-
trophy type 1 and type 2 cataracts. Hum Mol Genet 21(4):852–862. https://doi.org/10.1093/
hmg/ddr515

 53. Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S, Dekdebrun 
J, Heatwole CR, McDermott MP, Chen T, Cline M, Tawil R, Osborne RJ, Wheeler TM, 
Swanson MS, Moxley RT 3rd, Thornton CA (2013) Splicing biomarkers of disease severity 
in myotonic dystrophy. Ann Neurol 74(6):862–872. https://doi.org/10.1002/ana.23992

 54. Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the 
muscle- specific chloride channel in type 1 myotonic dystrophy due to misregulated alterna-
tive splicing. Mol Cell 10(1):45–53

 55. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton 
CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre- 
mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10(1):35–44

 56. Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A, Tosch V, Vignaud 
A, Ferry A, Messaddeq N, Kokunai Y, Tsuburaya R, de la Grange P, Dembele D, Francois V, 
Precigout G, Boulade-Ladame C, Hummel MC, de Munain AL, Sergeant N, Laquerriere A, 
Thibault C, Deryckere F, Auboeuf D, Garcia L, Zimmermann P, Udd B, Schoser B, Takahashi 
MP, Nishino I, Bassez G, Laporte J, Furling D, Charlet-Berguerand N (2011) Misregulated 
alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in 
myotonic dystrophy. Nat Med 17(6):720–725. https://doi.org/10.1038/nm.2374

 57. Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen 
RT, Thornton CA (2012) Muscle weakness in myotonic dystrophy associated with misregu-
lated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 21(6):1312–
1324. https://doi.org/10.1093/hmg/ddr568

 58. Rau F, Lainé J, Ramanoudjame L, Ferry A, Arandel L, Delalande O, Jollet A, Dingli F, Lee 
K-Y, Peccate C, Lorain S, Kabashi E, Athanasopoulos T, Koo T, Loew D, Swanson MS, Le 
Rumeur E, Dickson G, Allamand V, Marie J, Furling D (2015) Abnormal splicing switch of 
DMD’s penultimate exon compromises muscle fiber maintenance in myotonic dystrophy. Nat 
Commun 6:7205

 59. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative 
splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29(1):40–47. 
https://doi.org/10.1038/ng704

 60. Sergeant N, Sablonniere B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A, 
Vermersch P, Delacourte A (2001) Dysregulation of human brain microtubule-associated tau 
mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 10(19):2143–2155

 61. Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B, Dembele D, Gourdon G, 
Nicole A, Duboc D, Wahbi K, Day JW, Fujimura H, Takahashi MP, Auboeuf D, Dreumont 
N, Furling D, Charlet-Berguerand N (2011) Misregulation of miR-1 processing is associated 
with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18(7):840–845. https://doi.
org/10.1038/nsmb.2067

 62. Wang GS, Kuyumcu-Martinez MN, Sarma S, Mathur N, Wehrens XH, Cooper TA (2009) 
PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy 
type 1. J Clin Invest 119(12):3797–3806. https://doi.org/10.1172/JCI37976

 63. Kuyumcu-Martinez NM, Wang GS, Cooper TA (2007) Increased steady-state levels of 
CUGBP1  in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol 
Cell 28(1):68–78. https://doi.org/10.1016/j.molcel.2007.07.027

 64. Dansithong W, Jog SP, Paul S, Mohammadzadeh R, Tring S, Kwok Y, Fry RC, Marjoram 
P, Comai L, Reddy S (2011) RNA steady-state defects in myotonic dystrophy are linked to 
nuclear exclusion of SHARP.  EMBO Rep 12(7):735–742. https://doi.org/10.1038/embor. 
2011.86

 65. Gladman JT, Yadava RS, Mandal M, Yu Q, Kim YK, Mahadevan MS (2015) NKX2-5, a 
modifier of skeletal muscle pathology due to RNA toxicity. Hum Mol Genet 24(1):251–264. 
https://doi.org/10.1093/hmg/ddu443

30 Gene Therapy and Gene Editing for Myotonic Dystrophy

https://doi.org/10.1093/hmg/ddr515
https://doi.org/10.1093/hmg/ddr515
https://doi.org/10.1002/ana.23992
https://doi.org/10.1038/nm.2374
https://doi.org/10.1093/hmg/ddr568
https://doi.org/10.1038/ng704
https://doi.org/10.1038/nsmb.2067
https://doi.org/10.1038/nsmb.2067
https://doi.org/10.1172/JCI37976
https://doi.org/10.1016/j.molcel.2007.07.027
https://doi.org/10.1038/embor.2011.86
https://doi.org/10.1038/embor.2011.86
https://doi.org/10.1093/hmg/ddu443


544

 66. Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, Marie J  (2012) New 
function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded 
CUG repeats. Nucleic Acids Res 40(7):3159–3171. https://doi.org/10.1093/nar/gkr1228

 67. Ravel-Chapuis A, Belanger G, Yadava RS, Mahadevan MS, DesGroseillers L, Cote J, Jasmin 
BJ (2012) The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and pro-
motes alternative pre-mRNA splicing. J Cell Biol 196(6):699–712. https://doi.org/10.1083/
jcb.201108113

 68. Yadava RS, Frenzel-McCardell CD, Yu Q, Srinivasan V, Tucker AL, Puymirat J, Thornton 
CA, Prall OW, Harvey RP, Mahadevan MS (2008) RNA toxicity in myotonic muscular dys-
trophy induces NKX2-5 expression. Nat Genet 40(1):61–68. https://doi.org/10.1038/ng. 
2007.28

 69. Bondy-Chorney E, Crawford Parks TE, Ravel-Chapuis A, Klinck R, Rocheleau L, Pelchat M, 
Chabot B, Jasmin BJ, Cote J (2016) Staufen1 regulates multiple alternative splicing events 
either positively or negatively in DM1 indicating its role as a disease modifier. PLoS Genet 
12(1):e1005827. https://doi.org/10.1371/journal.pgen.1005827

 70. Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA, Donohue JP, Hall MP, Shiue L, Swanson 
MS, Thornton CA, Ares M Jr (2010) Aberrant alternative splicing and extracellular matrix 
gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol 17(2):187–
193. https://doi.org/10.1038/nsmb.1720

 71. Osborne RJ, Lin X, Welle S, Sobczak K, O’Rourke JR, Swanson MS, Thornton CA (2009) 
Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum 
Mol Genet 18(8):1471–1481. https://doi.org/10.1093/hmg/ddp058

 72. Perfetti A, Greco S, Fasanaro P, Bugiardini E, Cardani R, Garcia-Manteiga JM, Riba M, 
Cittaro D, Stupka E, Meola G, Martelli F (2014) Genome wide identification of aberrant 
alternative splicing events in myotonic dystrophy type 2. PLoS One 9(4):e93983. https://doi.
org/10.1371/journal.pone.0093983

 73. Bachinski LL, Baggerly KA, Neubauer VL, Nixon TJ, Raheem O, Sirito M, Unruh AK, 
Zhang J, Nagarajan L, Timchenko LT, Bassez G, Eymard B, Gamez J, Ashizawa T, Mendell 
JR, Udd B, Krahe R (2014) Most expression and splicing changes in myotonic dystrophy 
type 1 and type 2 skeletal muscle are shared with other muscular dystrophies. Neuromuscul 
Disord 24(3):227–240. https://doi.org/10.1016/j.nmd.2013.11.001

 74. An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) 
Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell 
Stem Cell 11(2):253–263. https://doi.org/10.1016/j.stem.2012.04.026

 75. Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH (2009) Zinc- 
finger directed double-strand breaks within CAG repeat tracts promote repeat instability 
in human cells. Proc Natl Acad Sci U S A 106(24):9607–9612. https://doi.org/10.1073/
pnas.0902420106

 76. Olsen PA, Solhaug A, Booth JA, Gelazauskaite M, Krauss S (2009) Cellular responses to tar-
geted genomic sequence modification using single-stranded oligonucleotides and zinc-finger 
nucleases. DNA Repair (Amst) 8(3):298–308. https://doi.org/10.1016/j.dnarep.2008.11.011

 77. Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B (2014) Highly spe-
cific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 
9(4):e95611. https://doi.org/10.1371/journal.pone.0095611

 78. Gao Y, Guo X, Santostefano K, Wang Y, Reid T, Zeng D, Terada N, Ashizawa T, Xia G (2016) 
Genome therapy of myotonic dystrophy type 1 iPS cells for development of autologous stem 
cell therapy. Mol Ther 24(8):1378–1387. https://doi.org/10.1038/mt.2016.97

 79. Xia G, Gao Y, Jin S, Subramony S, Terada N, Ranum LP, Swanson MS, Ashizawa T (2015) 
Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 
iPS-cell derived neural stem cells. Stem Cells 33(6):1829–1838. https://doi.org/10.1002/
stem.1970

 80. van Agtmaal EL, Andre LM, Willemse M, Cumming SA, van Kessel ID, van den Broek WJ, 
Gourdon G, Furling D, Mouly V, Monckton DG, Wansink DG, Wieringa B (2017) CRISPR/
Cas9-induced (CTGCAG)n repeat instability in the myotonic dystrophy type 1 locus: impli-

M. Chuah et al.

https://doi.org/10.1093/nar/gkr1228
https://doi.org/10.1083/jcb.201108113
https://doi.org/10.1083/jcb.201108113
https://doi.org/10.1038/ng.2007.28
https://doi.org/10.1038/ng.2007.28
https://doi.org/10.1371/journal.pgen.1005827
https://doi.org/10.1038/nsmb.1720
https://doi.org/10.1093/hmg/ddp058
https://doi.org/10.1371/journal.pone.0093983
https://doi.org/10.1371/journal.pone.0093983
https://doi.org/10.1016/j.nmd.2013.11.001
https://doi.org/10.1016/j.stem.2012.04.026
https://doi.org/10.1073/pnas.0902420106
https://doi.org/10.1073/pnas.0902420106
https://doi.org/10.1016/j.dnarep.2008.11.011
https://doi.org/10.1371/journal.pone.0095611
https://doi.org/10.1038/mt.2016.97
https://doi.org/10.1002/stem.1970
https://doi.org/10.1002/stem.1970


545

cations for therapeutic genome editing. Mol Ther 25(1):24–43. https://doi.org/10.1016/j.
ymthe.2016.10.014

 81. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA- 
guided activation of endogenous human genes. Nat Methods 10(10):977–979. https://doi.
org/10.1038/nmeth.2598

 82. Furling D, Coiffier L, Mouly V, Barbet JP, St Guily JL, Taneja K, Gourdon G, Junien C, 
Butler-Browne GS (2001) Defective satellite cells in congenital myotonic dystrophy. Hum 
Mol Genet 10(19):2079–2087

 83. Ketley A, Chen CZ, Li X, Arya S, Robinson TE, Granados-Riveron J, Udosen I, Morris GE, 
Holt I, Furling D, Chaouch S, Haworth B, Southall N, Shinn P, Zheng W, Austin CP, Hayes 
CJ, Brook JD (2014) High-content screening identifies small molecules that remove nuclear 
foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway 
in myotonic dystrophy cell lines. Hum Mol Genet 23(6):1551–1562. https://doi.org/10.1093/
hmg/ddt542

 84. Gonzalez-Barriga A, Mulders SA, van de Giessen J, Hooijer JD, Bijl S, van Kessel ID, van 
Beers J, van Deutekom JC, Fransen JA, Wieringa B, Wansink DG (2013) Design and analysis 
of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy. Mol Ther 
Nucleic Acids 2:e81. https://doi.org/10.1038/mtna.2013.9

 85. Hernandez-Hernandez O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, Saenger 
S, Marciniak E, Obriot H, Chevarin C, Nicole A, Revillod L, Charizanis K, Lee KY, Suzuki Y, 
Kimura T, Matsuura T, Cisneros B, Swanson MS, Trovero F, Buisson B, Bizot JC, Hamon M, 
Humez S, Bassez G, Metzger F, Buee L, Munnich A, Sergeant N, Gourdon G, Gomes- Pereira 
M (2013) Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmis-
sion and mouse behaviour. Brain 136(Pt 3):957–970. https://doi.org/10.1093/brain/aws367

 86. Hoskins JW, Ofori LO, Chen CZ, Kumar A, Sobczak K, Nakamori M, Southall N, Patnaik S, 
Marugan JJ, Zheng W, Austin CP, Disney MD, Miller BL, Thornton CA (2014) Lomofungin 
and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. 
Nucleic Acids Res 42(10):6591–6602. https://doi.org/10.1093/nar/gku275

 87. Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, Woodgett J, Killian J, 
Timchenko NA, Timchenko LT (2012) GSK3beta mediates muscle pathology in myotonic 
dystrophy. J Clin Invest 122(12):4461–4472. https://doi.org/10.1172/JCI64081

 88. Arandel L, Polay-Espinosa M, Matloka M, Bazinet A, De Dea Diniz D, Naouar N, Rau F, 
Jollet A, Edom-Vovard F, Mamchaoui K, Tarnopolsky M, Puymirat J, Battail C, Boland A, 
Deleuze JF, Mouly V, Klein AF, Furling D (2017) Immortalized human myotonic dystrophy 
muscle cell lines to assess therapeutic compounds. Dis Model Mech 10(4):487–497. https://
doi.org/10.1242/dmm.027367

 89. Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM (2013) Length-dependent CTG.
CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent 
stem cells. Hum Mol Genet 22(25):5276–5287. https://doi.org/10.1093/hmg/ddt386

 90. Gomes-Pereira M, Cooper TA, Gourdon G (2011) Myotonic dystrophy mouse models: 
towards rational therapy development. Trends Mol Med 17(9):506–517. https://doi.org/10. 
1016/j.molmed.2011.05.004

 91. Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, Decostre V, Hogrel 
JY, Metzger F, Hoeflich A, Baraibar M, Gomes-Pereira M, Puymirat J, Bassez G, Furling D, 
Munnich A, Gourdon G (2012) Molecular, physiological, and motor performance defects 
in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet 
8(11):e1003043. https://doi.org/10.1371/journal.pgen.1003043

 92. Vignaud A, Ferry A, Huguet A, Baraibar M, Trollet C, Hyzewicz J, Butler-Browne G, 
Puymirat J, Gourdon G, Furling D (2010) Progressive skeletal muscle weakness in transgenic 
mice expressing CTG expansions is associated with the activation of the ubiquitin-proteasome 
pathway. Neuromuscul Disord 20(5):319–325. https://doi.org/10.1016/j.nmd.2010.03.006

 93. Gomes-Pereira M, Foiry L, Nicole A, Huguet A, Junien C, Munnich A, Gourdon G (2007) 
CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet 3(4):e52. 
https://doi.org/10.1371/journal.pgen.0030052

30 Gene Therapy and Gene Editing for Myotonic Dystrophy

https://doi.org/10.1016/j.ymthe.2016.10.014
https://doi.org/10.1016/j.ymthe.2016.10.014
https://doi.org/10.1038/nmeth.2598
https://doi.org/10.1038/nmeth.2598
https://doi.org/10.1093/hmg/ddt542
https://doi.org/10.1093/hmg/ddt542
https://doi.org/10.1038/mtna.2013.9
https://doi.org/10.1093/brain/aws367
https://doi.org/10.1093/nar/gku275
https://doi.org/10.1172/JCI64081
https://doi.org/10.1242/dmm.027367
https://doi.org/10.1242/dmm.027367
https://doi.org/10.1093/hmg/ddt386
https://doi.org/10.1016/j.molmed.2011.05.004
https://doi.org/10.1016/j.molmed.2011.05.004
https://doi.org/10.1371/journal.pgen.1003043
https://doi.org/10.1016/j.nmd.2010.03.006
https://doi.org/10.1371/journal.pgen.0030052


546

 94. Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA (2007) Elevation of RNA-binding 
protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic 
dystrophy. J Clin Invest 117(10):2802–2811. https://doi.org/10.1172/JCI32308

 95. Salisbury E, Schoser B, Schneider-Gold C, Wang GL, Huichalaf C, Jin B, Sirito M, Sarkar P, 
Krahe R, Timchenko NA, Timchenko LT (2009) Expression of RNA CCUG repeats dysregu-
lates translation and degradation of proteins in myotonic dystrophy 2 patients. Am J Pathol 
175(2):748–762. https://doi.org/10.2353/ajpath.2009.090047

 96. Chen W, Wang Y, Abe Y, Cheney L, Udd B, Li YP (2007) Haploinsuffciency for Znf9  in 
Znf9+/− mice is associated with multiorgan abnormalities resembling myotonic dystrophy. 
J Mol Biol 368(1):8–17. https://doi.org/10.1016/j.jmb.2007.01.088

 97. Margolis JM, Schoser BG, Moseley ML, Day JW, Ranum LP (2006) DM2 intronic expan-
sions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 
mRNA processing or protein expression. Hum Mol Genet 15(11):1808–1815. https://doi.
org/10.1093/hmg/ddl103

 98. Raheem O, Olufemi SE, Bachinski LL, Vihola A, Sirito M, Holmlund-Hampf J, Haapasalo 
H, Li YP, Udd B, Krahe R (2010) Mutant (CCTG)n expansion causes abnormal expression of 
zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2. Am J Pathol 177(6):3025–3036. 
https://doi.org/10.2353/ajpath.2010.100179

 99. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell 
transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75(1):280–284

 100. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and anti-
sense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. https://doi.org/10.1038/nrd3625

 101. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, 
Bennett CF, Thornton CA (2012) Targeting nuclear RNA for in vivo correction of myotonic 
dystrophy. Nature 488(7409):111–115. https://doi.org/10.1038/nature11362

 102. Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S, Prakash TP, Wancewicz EV, Witchell 
D, Swayze EE (2009) Short antisense oligonucleotides with novel 2′-4′ conformationaly 
restricted nucleoside analogues show improved potency without increased toxicity in ani-
mals. J Med Chem 52(1):10–13. https://doi.org/10.1021/jm801294h

 103. Burel SA, Han SR, Lee HS, Norris DA, Lee BS, Machemer T, Park SY, Zhou T, He G, Kim 
Y, MacLeod AR, Monia BP, Lio S, Kim TW, Henry SP (2013) Preclinical evaluation of the 
toxicological effects of a novel constrained ethyl modified antisense compound targeting 
signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic 
Acid Ther 23(3):213–227. https://doi.org/10.1089/nat.2013.0422

 104. Pandey SK, Wheeler TM, Justice SL, Kim A, Younis HS, Gattis D, Jauvin D, Puymirat 
J, Swayze EE, Freier SM, Bennett CF, Thornton CA, MacLeod AR (2015) Identification 
and characterization of modified antisense oligonucleotides targeting DMPK in mice and 
nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 
355(2):329–340. https://doi.org/10.1124/jpet.115.226969

 105. Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E, Sznajder LJ, Mykowska A, Sroka 
J, Thornton CA, Sobczak K (2015) Short antisense-locked nucleic acids (all-LNAs) correct 
alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43(6):3318–
3331. https://doi.org/10.1093/nar/gkv163

 106. Weiss B, Davidkova G, Zhou LW (1999) Antisense RNA gene therapy for studying and 
modulating biological processes. Cell Mol Life Sci 55(3):334–358. https://doi.org/10.1007/
s000180050296

 107. Furling D, Doucet G, Langlois MA, Timchenko L, Belanger E, Cossette L, Puymirat J (2003) 
Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene 
Ther 10(9):795–802. https://doi.org/10.1038/sj.gt.3301955

 108. Francois V, Klein AF, Beley C, Jollet A, Lemercier C, Garcia L, Furling D (2011) Selective 
silencing of mutated mRNAs in DM1 by using modified hU7-snRNAs. Nat Struct Mol Biol 
18(1):85–87. https://doi.org/10.1038/nsmb.1958

 109. Langlois MA, Boniface C, Wang G, Alluin J, Salvaterra PM, Puymirat J, Rossi JJ, Lee NS 
(2005) Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in 

M. Chuah et al.

https://doi.org/10.1172/JCI32308
https://doi.org/10.2353/ajpath.2009.090047
https://doi.org/10.1016/j.jmb.2007.01.088
https://doi.org/10.1093/hmg/ddl103
https://doi.org/10.1093/hmg/ddl103
https://doi.org/10.2353/ajpath.2010.100179
https://doi.org/10.1038/nrd3625
https://doi.org/10.1038/nature11362
https://doi.org/10.1021/jm801294h
https://doi.org/10.1089/nat.2013.0422
https://doi.org/10.1124/jpet.115.226969
https://doi.org/10.1093/nar/gkv163
https://doi.org/10.1007/s000180050296
https://doi.org/10.1007/s000180050296
https://doi.org/10.1038/sj.gt.3301955
https://doi.org/10.1038/nsmb.1958


547

myotonic dystrophy cells. J Biol Chem 280(17):16949–16954. https://doi.org/10.1074/jbc.
M501591200

 110. Sobczak K, Wheeler TM, Wang W, Thornton CA (2013) RNA interference targeting CUG 
repeats in a mouse model of myotonic dystrophy. Mol Ther 21(2):380–387. https://doi.org/10. 
1038/mt.2012.222

 111. Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, Wei J, Carter GT, Weiss MD, 
Chamberlain JR (2015) Therapeutic impact of systemic AAV-mediated RNA interference 
in a mouse model of myotonic dystrophy. Hum Mol Genet 24(17):4971–4983. https://doi.
org/10.1093/hmg/ddv219

 112. Sioud M (2004) Ribozyme- and siRNA-mediated mRNA degradation: a general introduction. 
Methods Mol Biol 252:1–8. https://doi.org/10.1385/1-59259-746-7:001

 113. Fedor MJ, Williamson JR (2005) The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 
6(5):399–412. https://doi.org/10.1038/nrm1647

 114. Phylactou LA, Darrah C, Wood MJ (1998) Ribozyme-mediated trans-splicing of a trinucleo-
tide repeat. Nat Genet 18(4):378–381. https://doi.org/10.1038/ng0498-378

 115. Langlois MA, Lee NS, Rossi JJ, Puymirat J (2003) Hammerhead ribozyme-mediated destruc-
tion of nuclear foci in myotonic dystrophy myoblasts. Mol Ther 7(5 Pt 1):670–680

 116. Choudhury R, Tsai YS, Dominguez D, Wang Y, Wang Z (2012) Engineering RNA endonucle-
ases with customized sequence specificities. Nat Commun 3:1147. https://doi.org/10.1038/
ncomms2154

 117. Zhang W, Wang Y, Dong S, Choudhury R, Jin Y, Wang Z (2014) Treatment of type 1 myotonic 
dystrophy by engineering site-specific RNA endonucleases that target (CUG)(n) repeats. Mol 
Ther 22(2):312–320. https://doi.org/10.1038/mt.2013.251

 118. Goyenvalle A, Davies KE (2011) Challenges to oligonucleotides-based therapeutics for 
Duchenne muscular dystrophy. Skelet Muscle 1(1):8. https://doi.org/10.1186/2044-5040-1-8

 119. Arechavala-Gomeza V, Anthony K, Morgan J, Muntoni F (2012) Antisense oligonucleotide- 
mediated exon skipping for Duchenne muscular dystrophy: progress and challenges. Curr 
Gene Ther 12(3):152–160

 120. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA (2007) Correction of ClC-1 
splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dys-
trophy. J Clin Invest 117(12):3952–3957. https://doi.org/10.1172/JCI33355

 121. Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT, Thornton CA (2009) 
Reversal of RNA dominance by displacement of protein sequestered on triplet repeat 
RNA. Science 325(5938):336–339. https://doi.org/10.1126/science.1173110

 122. Mulders SA, van den Broek WJ, Wheeler TM, Croes HJ, van Kuik-Romeijn P, de Kimpe 
SJ, Furling D, Platenburg GJ, Gourdon G, Thornton CA, Wieringa B, Wansink DG 
(2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic 
dystrophy. Proc Natl Acad Sci U S A 106(33):13915–13920. https://doi.org/10.1073/
pnas.0905780106

 123. Wojtkowiak JW, Cornnell HC, Matsumoto S, Saito K, Takakusagi Y, Dutta P, Kim M, Zhang 
X, Leos R, Bailey KM, Martinez G, Lloyd MC, Weber C, Mitchell JB, Lynch RM, Baker 
AF, Gatenby RA, Rejniak KA, Hart C, Krishna MC, Gillies RJ (2015) Pyruvate sensitizes 
pancreatic tumors to hypoxia-activated prodrug TH-302. Cancer Metab 3(1):2. https://doi.
org/10.1186/s40170-014-0026-z

 124. Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, 
Piepenhagen PA, Cheng SH, Wentworth BM (2013) Systemic delivery of a peptide-linked 
morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic 
dystrophy. Nucleic Acid Ther 23(2):109–117. https://doi.org/10.1089/nat.2012.0404

 125. El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, 
Sargent IL, Wood MJ (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat 
Protoc 7(12):2112–2126. https://doi.org/10.1038/nprot.2012.131

 126. Arambula JF, Ramisetty SR, Baranger AM, Zimmerman SC (2009) A simple ligand that 
selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. Proc Natl 
Acad Sci U S A 106(38):16068–16073. https://doi.org/10.1073/pnas.0901824106

30 Gene Therapy and Gene Editing for Myotonic Dystrophy

https://doi.org/10.1074/jbc.M501591200
https://doi.org/10.1074/jbc.M501591200
https://doi.org/10.1038/mt.2012.222
https://doi.org/10.1038/mt.2012.222
https://doi.org/10.1093/hmg/ddv219
https://doi.org/10.1093/hmg/ddv219
https://doi.org/10.1385/1-59259-746-7:001
https://doi.org/10.1038/nrm1647
https://doi.org/10.1038/ng0498-378
https://doi.org/10.1038/ncomms2154
https://doi.org/10.1038/ncomms2154
https://doi.org/10.1038/mt.2013.251
https://doi.org/10.1186/2044-5040-1-8
https://doi.org/10.1172/JCI33355
https://doi.org/10.1126/science.1173110
https://doi.org/10.1073/pnas.0905780106
https://doi.org/10.1073/pnas.0905780106
https://doi.org/10.1186/s40170-014-0026-z
https://doi.org/10.1186/s40170-014-0026-z
https://doi.org/10.1089/nat.2012.0404
https://doi.org/10.1038/nprot.2012.131
https://doi.org/10.1073/pnas.0901824106


548

 127. Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter 
AG, Haley MM, Thornton CA, Berglund JA (2013) Reducing levels of toxic RNA with small 
molecules. ACS Chem Biol 8(11):2528–2537. https://doi.org/10.1021/cb400431f

 128. Ofori LO, Hoskins J, Nakamori M, Thornton CA, Miller BL (2012) From dynamic combina-
torial ‘hit’ to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs 
that cause myotonic dystrophy. Nucleic Acids Res 40(13):6380–6390. https://doi.org/10. 
1093/nar/gks298

 129. Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA (2009) Pentamidine 
reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 
106(44):18551–18556. https://doi.org/10.1073/pnas.0903234106

 130. Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD (2012) Rationally 
designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are 
potently bioactive. ACS Chem Biol 7(5):856–862. https://doi.org/10.1021/cb200408a

 131. Childs-Disney JL, Parkesh R, Nakamori M, Thornton CA, Disney MD (2012) Rational design 
of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic 
dystrophy type 1. ACS Chem Biol 7(12):1984–1993. https://doi.org/10.1021/cb3001606

 132. Childs-Disney JL, Stepniak-Konieczna E, Tran T, Yildirim I, Park H, Chen CZ, Hoskins J, 
Southall N, Marugan JJ, Patnaik S, Zheng W, Austin CP, Schatz GC, Sobczak K, Thornton 
CA, Disney MD (2013) Induction and reversal of myotonic dystrophy type 1 pre-mRNA splic-
ing defects by small molecules. Nat Commun 4:2044. https://doi.org/10.1038/ncomms3044

 133. Gareiss PC, Sobczak K, McNaughton BR, Palde PB, Thornton CA, Miller BL (2008) 
Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA- 
MBNL1 interaction in  vitro: discovery of lead compounds targeting myotonic dystrophy 
(DM1). J Am Chem Soc 130(48):16254–16261. https://doi.org/10.1021/ja804398y

 134. Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French JM, Thornton CA, Disney 
MD (2009) Rational design of ligands targeting triplet repeating transcripts that cause RNA 
dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar 
ataxia type 3. J Am Chem Soc 131(28):9767–9779. https://doi.org/10.1021/ja9020149

 135. Garcia-Lopez A, Llamusi B, Orzaez M, Perez-Paya E, Artero RD (2011) In vivo discovery of 
a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic 
dystrophy models. Proc Natl Acad Sci U S A 108(29):11866–11871. https://doi.org/10.1073/
pnas.1018213108

 136. Chamberlain CM, Ranum LP (2012) Mouse model of muscleblind-like 1 overexpression: 
skeletal muscle effects and therapeutic promise. Hum Mol Genet 21(21):4645–4654. https://
doi.org/10.1093/hmg/dds306

 137. Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS (2006) 
Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse 
poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 103(31):11748–11753. 
https://doi.org/10.1073/pnas.0604970103

 138. Cai L, Koppanati BM, Bertoni C, Clemens PR (2014) In utero delivery of oligodeoxynucleo-
tides for gene correction. Methods Mol Biol 1114:399–411. https://doi.org/10.1007/978-1- 
62703-761-7_26

 139. Dastidar S, Ardui S, Singh K, Majumdar D, Nair N, Fu Y, Reyon D, Samara E, Gerli MFM, 
Klein AF, De Schrijver W, Tipanee J, Seneca S, Tulalamba W, Wang H, Chai YC, In’t Veld 
P, Furling D, Tedesco FS, Vermeesch JR, Joung JK, Chuah MK, VandenDriessche T (2018) 
Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic 
dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res 46(16):8275–8298

 140. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) 
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. 
Nature 529(7587):490–495. https://doi.org/10.1038/nature16526

M. Chuah et al.

https://doi.org/10.1021/cb400431f
https://doi.org/10.1093/nar/gks298
https://doi.org/10.1093/nar/gks298
https://doi.org/10.1073/pnas.0903234106
https://doi.org/10.1021/cb200408a
https://doi.org/10.1021/cb3001606
https://doi.org/10.1038/ncomms3044
https://doi.org/10.1021/ja804398y
https://doi.org/10.1021/ja9020149
https://doi.org/10.1073/pnas.1018213108
https://doi.org/10.1073/pnas.1018213108
https://doi.org/10.1093/hmg/dds306
https://doi.org/10.1093/hmg/dds306
https://doi.org/10.1073/pnas.0604970103
https://doi.org/10.1007/978-1-62703-761-7_26
https://doi.org/10.1007/978-1-62703-761-7_26
https://doi.org/10.1038/nature16526


549© Springer Nature Switzerland AG 2019 
D. Duan, J. R. Mendell (eds.), Muscle Gene Therapy, 
https://doi.org/10.1007/978-3-030-03095-7_31

Chapter 31
Gene Therapy for Oculopharyngeal 
Muscular Dystrophy

Alberto Malerba, Fanny Roth, Vanessa Strings, Pradeep Harish,  
David Suhy, Capucine Trollet, and George Dickson

Abstract Oculopharyngeal muscular dystrophy (OPMD) is a rare, late-onset, 
autosomal- dominant disease affecting 1:100,000 individuals in Europe. OPMD is 
due to mutation in the N-terminal domain of exon 1 of the polyA-binding protein 
nuclear 1 (PABPN1). Patients with the disease express an expanded PABPN1 (exp-
PABPN1) ranging from 11 to 18 alanines instead of the normal 10. OPMD is mainly 
characterized by ptosis and dysphagia, although muscles of the lower limbs can also 
be affected late in life. Currently, OPMD patients are referred to surgeons for a cri-
copharyngeal myotomy or corrective surgery to extraocular muscles to ease ptosis. 
Pharmacological treatments are not commercially available, but several compounds 
are in preclinical and clinical stages of development. A gene therapy approach 
designed to inhibit the expression of expPABPN1 is an appealing strategy. However, 
due to the type of mutation, genetic strategies to knock down expPABPN1 invari-
ably affect the expression of wild-type PABPN1 with potential negative conse-
quences for the treated muscles. We recently demonstrated that a dual gene therapy 
approach designed to inhibit mutant and wild-type endogenous PABPN1 by shRNA, 
in combination with expression of an RNAi-resistant sequence-optimized recombi-
nant PABPN1 gene, substantially rescues the pathology in the A17 mouse model of 
OPMD. This is currently the only preclinical gene therapy study for OPMD. In this 
chapter, we describe this approach in a general context of other possible treatments 
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for OPMD, and we discuss the likely future developments that may allow the trans-
lation of such an approach towards a therapeutic treatment for OPMD in humans.

Keywords Gene therapy · Oculopharyngeal muscular dystrophy · Intranuclear 
inclusions · PABPN1 · OPMD

31.1  Pathogenesis and Molecular Genetics

Oculopharyngeal muscular dystrophy (OPMD) (MIM #164300) is an autosomal- 
dominant inherited disease that is clinically characterized by ptosis of the eyelids 
and dysphagia. Furthermore, at later stages of the disease, proximal limb weakness 
may also occur. OPMD is a late-onset disease with symptoms usually appearing in 
the fifth decade of life. Since the description in 1966 in a cluster of patients from 
Quebec, many cases have been described. OPMD patients have now been found in 
more than 33 countries around the world [1–12]. In Europe, the estimated preva-
lence of disease is 1:100,000, but the largest OPMD clusters are in the French- 
Canadian population in the province of Quebec [13, 14], where the estimated 
prevalence is 1:1000 and amongst the Bukhara Jews in Israel where this disease 
affects 1:600 people [15]. The peculiar distribution is undoubtedly due to founder 
effects as highlighted by the initial work of the Canadian neurologist André Barbeau 
in 1966 [16].

The degenerative dystrophy and progressive onset of fibrosis in the pharyngeal 
muscles create difficulties for the patient in swallowing the food bolus. This issue, 
together with a decreased relaxation of the cricopharyngeal muscle (the main mus-
cle of the upper oesophageal sphincter located between the pharynx and the oesoph-
agus), can delay the transfer of the bolus through the upper oesophageal sphincter 
and possibly occlude the trachea resulting in increased risk of choking and pulmo-
nary infection. Extraocular muscles may become gradually affected, but complete 
external ophthalmoplegia is rare [14]. Weakness and atrophy occur in limb-girdle 
muscles, with symmetric and non-selective muscle involvement. Because muscles 
are mainly affected in OPMD, the disease is considered a primary muscle disorder. 
However, it has been described that the nervous system might also be affected, for 
example, the peripheral nerves (such as pharyngeal nerves [17, 18]) or the central 
nervous system with correlated functional consequences [19, 20]. The presence of 
cognitive impairments in patients is still a largely unexplored aspect of the disease 
that should be more extensively studied in the future with specific tests as performed 
by Dubbioso et al. [19].

OPMD is usually transmitted as an autosomal-dominant trait with complete pen-
etrance. In 1995, the locus was mapped to the chromosome 14q11.2–q13 containing 
the polyadenylate-binding protein nuclear 1 gene (PABPN1). Brais et al. [21] was 
the first to identify the molecular defects responsible for OPMD.  The normal 
PABPN1 gene (NG_008239) has a repeat of six trinucleotides (GCG) ((GCG)6) 
coding for an alanine stretch at the 5′end of exon 1. The existence of a (GCA)3 
(GCG) coding sequence adjacent to the (GCG)6 repeat leads to a wild-type PABPN1 
protein with a 10 alanine residue stretch, whereas the mutated PABPN1 (called 
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expanded PABPN1 or expPABPN1) has (GCN)11–18 repeats corresponding to a 
stretch of 11–18 alanine residues in the N-terminal domain [21–23] (Table 31.1). 
Since four different codons—GCA, GCT, GCC and GCG—encode the amino acid 
alanine, GCN, where N represents any A/C/G/T nucleotide, is a generic designation 
for these four possible codons. Homozygous patients are characterized by a more 
severe phenotype and earlier onset of symptoms (approximately 18 years earlier 
[24]). Furthermore, rare cases of recessive transmission have been described where 
patients have a homozygous mutation in both alleles due to one extra (GCN) triplet 
added to each allele (named (GCN)11). These patients have a milder phenotype 
compared to the other affected patients as well as a later onset of the disease.

Because of the rarity of the disease, it has until recently been difficult to sample 
enough OPMD patients to establish phenotype–genotype correlations, particularly 
for the ‘rarest’ genotypes including homozygotes and GCN11 subjects. Previous 
clinical studies in cohorts of 17–86 patients [12, 25–31] have suggested that the 
variability in the age of onset and severity of weakness may depend on the size of 
the (GCN)n mutations. This finding has recently been confirmed on a large French 
cohort of 354 OPMD patients: despite a high dispersion of age within each geno-
type (ranging from 1 to 11 years of deviation), the mean age at diagnosis and the 
severity of the clinical symptoms correlate to the number of (GCN) repeats [23].

31.2  Polyadenylate-Binding Protein Nuclear 1 (PABPN1) 
and Intranuclear Inclusions

PABPN1 encodes an ubiquitously expressed polyadenylation factor involved in 
many biological processes [32]. PABPN1 has firstly been described for its role in 
the stimulation of the polyA polymerase (PAP) and the control of the poly(A) tail 
length on RNA transcripts [33–36]. Over the last few decades, several other roles of 
the protein have been described including a role of the protein to regulate the use of 
alternative polyadenylation (APA) sites [37, 38], which in turn affects mRNA levels 
and stability. PABPN1 is also involved in the long non-coding RNA (lncRNA) [39] 

Table 31.1 Allelic frequency 
of the expanded alleles of 
PABPN1 described in two 
studies [21, 23]

Allelic frequency (%)

Brais et al. [21] Richard et al. [23]
(GCN)11 N/A 9
(GCN)12 5 12
(GCN)13 40 48
(GCN)14 26 14.5
(GCN)15 21 15
(GCN)16 7 1
(GCN)17 1 0.5
(GCN)18 0 0

For clarity, only the frequencies of expanded alleles are 
presented
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and small nucleolar RNA (snoRNA) [40] processing and in the nuclear surveillance 
that leads to hyperadenylation and decay of RNA [41]. A role for PABPN1 in splic-
ing regulation has also been demonstrated [42, 43]. While most of PABPN1 func-
tions have been identified using induction of a loss of function of PABPN1, only 
few studies so far have analysed these functions in OPMD patients. Although the 
global analysis of the poly(A) tail length of RNA samples from OPMD patients did 
not reveal any significant changes [44], specific defects in poly(A) tail length regu-
lation of nuclear-encoded mitochondrial mRNAs were found [45]. Given that 
poly(A) tails play an essential role in mRNA stability, these defects result in accel-
erated decay of these mRNAs. APA was found deregulated in an OPMD mouse 
model [37] but so far has not been confirmed in OPMD patients.

OPMD is also considered an aggregopathy as expPABPN1 is misfolded and 
prone to form nuclear insoluble aggregates, and intranuclear inclusions (INI) are the 
main histopathological hallmark of the disease [46, 47]. However, similar to other 
neurodegenerative diseases [48, 49], it is still unclear whether INIs have a patho-
logic function or a protective role in OPMD as a consequence of a cellular defence 
mechanism [50–52]. INIs contain several proteins including heat-shock proteins, 
splicing factors, poly(A) RNA and both normal and expanded PABPN1 [44, 53].

31.3  Experimental Approaches to Therapy

The monogenic nature of OPMD presents the disease as an ideal candidate for gene 
therapy-based strategies. However, other experimental approaches across the cell 
therapy, pharmacological and surgical spectra, have also been shown to reduce dis-
ease symptoms in clinical trials and animal models.

In the absence of a curative treatment, most surgical approaches have been pal-
liative. Surgical techniques used to alleviate ptosis include blepharoplasty to remove 
excessive skin and the orbicularis muscle from upper eyelids, external advancement 
on the levator palpebrae superioris (wherein the muscle is tightened), the resection 
and tightening of the Muller’s muscle (unaffected muscle controlled by the auto-
nomic nervous system) or in severe cases a frontalis sling can be performed where 
the frontalis muscle is coupled directly to the eyelid, allowing opening the eyes by 
raising the forehead [54–57]. The disease pathophysiology results in persistent 
spasm/failure of relaxation of the cricopharyngeus muscle, which narrows the upper 
oesophageal pathway. The application of cricopharyngeal myotomy has been 
widely adopted as the primary procedure administered to dysphagic patients in the 
case of OPMD. However, the nature of the disease presents various complications: 
the late onset of the disease may render the patient either medically unsuitable or 
unwilling to undertake the procedure; furthermore, the high risk of symptom recur-
rence and the nature surgery can only be performed once presents no long-term 
solution to the symptoms. The recently reported cricopharyngeal dilatation is cur-
rently under investigation as a relatively non-invasive repeatable procedure to alle-
viate dysphagic symptoms [58].

A. Malerba et al.



553

Myoblast transplantation has been considered as an appealing therapeutic strat-
egy for muscular dystrophies. Myoblasts are indeed well-characterized muscle pro-
genitors, for which isolation and expansion are feasible in vitro and were the first 
cell candidates to be tested for cell therapy in the muscle. OPMD, which only has a 
small subset of muscles initially impacted, is an ideal muscle disease to be 
approached with autologous myoblast transplantation. Perie et al. [59] proposed and 
advanced an autologous myoblast transplantation therapeutic strategy into a suc-
cessful Phase I/II clinical trial, in a process which could be performed in addition to 
and simultaneously with the cricopharyngeal myotomy. Myoblasts derived from the 
neighbouring clinically unaffected sternocleidomastoid muscles were implanted 
into the affected pharyngeal muscles. The transplantation was reported to be well 
tolerated, with a greater than 15% improvements in clinical trial readouts (such as 
the 80  ml drinking test) being observed and quality of life questionnaires. The 
authors also reported that the extent of amelioration of disease symptoms directly 
correlated with the amount of myoblasts implanted into the muscles.

Disrupting the formation of nuclear aggregates, thereby freeing the trapped 
RNAs and proteins including normal PABPN1, has also been considered a possible 
therapeutic approach. Small-molecule drugs that reduce nuclear aggregates have 
been well-studied in both animal models of OPMD and clinical trials conducted. 
Specifically, the disaccharide compound trehalose has been shown to be particularly 
effective in reducing the formation of INIs and also permitting protein clearance 
through increased autophagy. In a recent clinical trial, the drug was reported to be 
well tolerated, and the authors demonstrated a greater than 35% increase in the 
80 ml drinking test, with improvements also reported in muscle power, functional 
tests and quality of life [60]. Other strategies employ the use of chemical and molec-
ular chaperones [61], chemotherapeutic agents such as heat-shock protein inducers 
(ZnSO4, 8-hydroxyquinoline) or anti-inflammatory agents (ibuprofen and indo-
methacin) [62] and have been investigated in various cell models of OPMD. Anti- 
prion agents (6-aminophenanthridine and guanabenz) have known antagonistic 
actions against prion protein-associated amyloid fibre formation and have also been 
shown to alleviate symptoms in cell and animal models of OPMD [63].

31.4  DNA-Directed RNA Interference (ddRNAi) for Genetic 
and Acquired Disorders

Although a myotomy or the transplantation of autologous myoblasts may temporar-
ily provide some benefit to relieving the clinical manifestation of OPMD in the 
patient, the underlying root cause of the disease, the genetic mutation in PABPN1, 
has not been rectified. Inevitably, the disease symptoms may eventually reappear. 
Thus, a gene therapy-based approach could provide the only viable mechanism for 
a long-term treatment of this disease.
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Traditionally, in the field of gene therapy, the correction of genetic disorders has 
been rooted in the principle of expressing corrective genes to produce normal pro-
teins in cells or tissues where there was a defective copy of that same gene. Such 
approaches have been applied to autosomal recessive disorders where products like 
Glybera work by replacing a copy of the lipoprotein lipase (LPL) gene in muscle 
cells of patients lacking the ability to produce the functional enzyme [64]. 
Haemophilia is another disease where gene therapy-based approaches have been 
used to introduce factor IX [65]. In addition to providing a mechanism to restore 
function by introducing a healthy copy of the gene, a gene therapy approach often 
confers the ability to use tissue-specific viral capsids as well as permit long-term 
sustained expression of the delivered gene. Autosomal-dominant diseases, where 
only one mutant allele contributes to the disease pathology, can be significantly 
more challenging to treat. Well-known examples of autosomal-dominant diseases 
include Huntington’s disease, transthyretin-related hereditary amyloidosis as well 
as retinitis pigmentosa. OPMD is also classified as an autosomal-dominant disease. 
As the mutant allele produces a protein product which is either toxic or detrimental 
to the disease phenotype, gene therapy treatments are geared towards preventing the 
expression of the diseased gene. Several genetics-based therapeutic modalities can 
be used to directly downregulate expression of the mutant protein including anti-
sense oligonucleotides, ribozymes, genome editing as well as RNA interference 
(RNAi). In genome editing, enzymes with the ability to cleave nucleic acids can be 
directed to specific target genes through modalities like zinc finger nucleases, mega-
nucleases or systems such as the CRISPR/Cas9, in order to create site-specific 
double- stranded breaks rendering the mutant gene susceptible to disruption. 
Likewise, the application of small interfering RNA (siRNA) approaches to inhibit 
gene expression via RNAi has been considered for a number of these diseases [66, 
67]. Eventually, like other oligonucleotide approaches, siRNAs are metabolized 
with the cells, and the compound must be readministered to maintain long-term 
therapeutic benefit. For diseases arising from mutations within patient’s genes, this 
likely will require a lifetime of receiving these medications on a regular schedule. 
Alternatively, one can elicit RNAi from a vector-based approach. This is termed 
ddRNAi. In this process, a DNA template that encodes for short hairpin RNAs 
(shRNA) is introduced into the nucleus of transduced cells and uses the endogenous 
transcriptional machinery of the cells to produce a constantly replenishing pool of 
shRNA [68]. Once produced in the nucleus, the shRNAs are exported into the cyto-
plasm and the looped sequences are cleaved, the resultant siRNAs that are produced 
enter into the same cellular machinery utilized by chemically synthesized siRNA. In 
cases in which the shRNA expression cassettes are introduced into the target tissues 
within the context of the recombinant viral vectors, transduction can result in 
months or years of durable, steady-state levels of therapeutic shRNA expression in 
order to suppress the mRNA produced from mutant alleles. A wide variety of muta-
tions can lead to autosomal-dominant disorders including trinucleotide repeat disor-
ders that lead to the insertional mutations that may cause a frameshift in the protein 
or alternatively lead to an expansion of a single amino acid in the context of an 
otherwise normal protein. PolyQ expansion disorders in which a CAG sequence 
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repeats lead to multiple additions of a glutamine residue are commonly associated 
with Huntington’s disease and certain types of spinocerebellar ataxia [69]. Because 
RNAi recognizes and cleaves the target mRNA via sequence specificity, the nature 
of these mutations often makes it difficult to design an RNAi approach that can 
selectively target the mutant allele and leave the wild-type allele untouched [70]. 
Although a significant amount of progress has been made to develop allele-specific 
approaches [71, 72] to be able to selectively target the disease-causing gene while 
leaving the expression of the wild-type gene intact, there are a large number of dif-
ferent mutations as well as different types of mutations (point mutants, insertions, 
deletions, etc.) that may lead to the diseased protein. For instance, over 150 different 
mutations have been noted in subjects diagnosed with retinitis pigmentosa [73]. 
Because many of these genetic diseases are classified as rare or orphan indications, 
development of allelic specific approaches can significantly limit the number of 
patients that can be treated. More recently, Farrar and colleagues have described a 
tact in which they have used a dual-vector system where two adeno-associated virus 
(AAV) vectors have been employed in what could be termed a ‘silence and replace’-
based approach to treat dominant retinitis pigmentosa [74]. One AAV was designed 
to express shRNA designed to target and knock down both the mutant and wild-type 
alleles of the rhodopsin gene (RHO). By targeting both diseased and wild-type 
alleles, the approach to suppression of the mutant phenotypes can be broadly applied 
across all of the disease mutants. Yet, rhodopsin must ultimately be restored as it is 
a critical protein involved in transducing light signals into the electrical signals that 
are interpreted by the brain as vision. Thus, a second AAV vector comprised of the 
wild-type sequences of the RHO gene is co-administered to restore normal rhodop-
sin function. In order to prevent suppression of RHO provided in trans from the 
second AAV vector, one can take advantage of codon degeneracy to produce a wild- 
type protein at the amino acid level from a genetic sequence that is insensitive to the 
shRNA being produced [75]. The use of recombinant viruses for the efficient deliv-
ery of genetic elements comes with limitations, including a finite packaging capac-
ity of the recombinant genome. Typically, the delivered construct must accommodate 
therapeutic sequences as well as the transcriptional regulatory elements that drive 
their expression. Thus, if the size of the replacement gene is sufficiently large, it can 
restrict the ability to add additional regulatory elements on the same recombinant 
expression constructs. In the aforementioned silence- and replace-based approach 
for treating retinitis pigmentosa, the size of the RHO gene necessitates the use of 
two vectors. Furthermore, because many of the genome editing techniques require 
co-expression of foreign proteins to achieve their effects, there is little room left in 
the molecular design of these drugs to combine both gene silencing and gene 
replacement. Thus, therapeutic administration of two different gene therapy prod-
ucts would require the manufacture of two independent viral vectors, each needing 
to pass independent CMC scrutiny before it can be administered into humans. RNA 
interference has a distinct advantage in this regard in that the transcriptional cas-
settes required to produce shRNA are comparatively small, as little as 350 nucleo-
tides, and the inhibition takes advantage of existing cellular machinery of the 
RNA-induced silencing complex; co-expression of foreign proteins to achieve gene 
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silencing is not required. Depending on the size of the corresponding codon- 
optimized gene to be expressed, there is ample capacity to co-express the healthy 
gene on the same cassette as the shRNA. Thus, in an optimal setting from a clinical 
and commercial perspective, the therapeutic vector to treat the autosomal-dominant 
disorder would be composed of sequences encoding for both the ‘silence’ and 
‘replace’ functions.

31.5  Gene Therapy for OPMD

Here, we describe the design of an AAV-based ‘silence and replace’ strategy for the 
treatment of OPMD which combines the robust knockdown of the expPABPN1 
coupled with the co-expression of a codon-optimized, wild-type PABPN1 [76]. This 
is the only preclinical study of gene therapy for OPMD published thus far. In this 
study, gene therapy was performed in the most common murine model of OPMD, 
the A17 mouse model. This mouse was generated in the FvB background by over-
expressing a bovine-expanded (17 alanine residues) PABPN1 (expPABPN1) [52, 
77]. expPABPN1 is placed under control of the human alpha-actin muscle-specific 
promoter (HSA1) which drives gene overexpression in only skeletal muscle. Both 
endogenous murine PABPN1 alleles are functional and express normal murine 
PABPN1. Therefore, the mouse phenotype is due to the overexpression of exp-
PABPN1 over the normal protein. Heterozygous mice recapitulate most of the fea-
tures of human OPMD patients such as progressive muscle weakness and atrophy, 
fibrosis deposition and a substantial (and progressively increasing with age) pres-
ence of nuclei containing INIs [45, 52, 77]. As mentioned previously, the primary 
target of a gene therapy approach is the downregulation of expPABPN1 with the 
aim of reducing aggregates freeing the normal PABPN1 associated with the INIs. 
However, the transcript with the additional 7 GCG triplets at the 5′end of exp-
PABPN1 gene cannot be specifically targeted. DNA-directed RNA interference 
(ddRNAi) is a strategy that has the ability to downregulate a specific target mRNA. In 
this gene therapy application, ddRNAi has been used to knockdown all endogenous 
PABPN1. In particular, three shRNA sequences (designated as sh-1, sh-2 and sh-3) 
driven by U61, U69 and H1 polymerase-III promoters, respectively, were designed 
to target PABPN1 mRNA in regions of conserved identity between mouse, bovine 
and human species (sh-1 and sh-3) or specifically bovine and human PABPN1 (sh- 
2). These shRNA were assembled into a tricistronic expression cassette (named 
shRNA3X) to provide strong knockdown of PABPN1 transcript levels. shRNA3X 
was packaged in adeno-associated viral vector (AAV-shRNA3X). Because PABPN1 
is such an important protein for cell survival and it is associated to multiple crucial 
biological pathways, the expression of functional PABPN1 is required in muscle 
cells. Therefore, a second AAV vector was used to deliver sequence-optimized 
human PABPN1 (named AAV-optPABPN1) in tandem. The use of a sequence- 
optimized normal PABPN1 is crucial as the redundancy of the genetic code is 
exploited to largely modify the nucleic acid sequence of PABPN1 (i.e. 230 out of 
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921 nucleotides mismatch, corresponding to 25% difference) which makes the pri-
mary nucleic acid sequence resistant to the ddRNAi-induced cleavage.

After preliminary in vitro studies to screen effective siRNAs against PABPN1 
and to verify that the sequence-optimized PABPN1 was resistant to the cleavage by 
the shRNA3X, AAV-shRNA3X, AAV-optPABPN1 or a combination of the 2 AAVs 
were injected in tibialis anterior (TA) muscles of 10–12-week-old male A17 mice. 
Muscles were analysed 18 weeks after injection in order to observe the effect of the 
gene therapy treatment in a medium/long term. This study provided crucial infor-
mation about the need of normal PABPN1 in muscle cells. First, while intranuclear 
aggregates in shRNA3X-treated muscles are greatly reduced, muscles do undergo a 
massive process of tissue degeneration/regeneration meaning that at least a small 
amount of normal PABPN1 is needed for muscle cell survival. Secondly, AAV- 
mediated expression of a sequence-optimized human PABPN1 alone was not suffi-
cient to ameliorate the disease, although we cannot exclude that these results were 
affected by the mouse model we used that is clearly a pro-gain-of-toxic function 
model. Only the combined treatment to suppress the endogenous PABPN1 and 
express the normal protein abrogated the INI and the related toxic gain of function 
and simultaneously provided the needed normal PABPN1 to significantly reduce 
the loss of function and correct the pathological phenotype. Histology of muscles 
treated with the combined vectors showed the almost complete abrogation of KCl- 
resistant intranuclear inclusions, while the muscle architecture was preserved and 

Fig. 31.1 Co-administration of AAVs expressing shRNA3X and optPABPN1 inhibits intranuclear 
aggregates in A17 muscles. Detection of PABPN1 inclusions (green) and laminin (red) by immu-
nofluorescence in sections of treated muscles. Sections were pretreated with 1 M KCl to discard all 
soluble PABPN1 from the tissue. Nuclei are counterstained with DAPI (blue). The bottom panel 
shows representative images of histological staining for hematoxylin and eosin: several centrally 
nucleated fibres are shown in shRNA3X-treated muscles indicating muscle degeneration/regenera-
tion processes ongoing in these muscles. Co-expression of optPABPN1 prevents muscle degenera-
tion as indicated by the normal histology detected in muscles treated with both AAV-shRNA3X 
and AAV-optPABPN1. Bar, 200 μm
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no signs of tissue degeneration were detectable (Fig. 31.1). Furthermore, crucial 
markers of muscle fibrosis such as collagens I, III and VI and fibronectin were 
decreased, while the average myofibre cross-sectional area was increased suggest-
ing that the gene therapy treatment was able to partially counteract some pathologi-
cal features of human OPMD, muscle fibrosis and atrophy. Muscle strength was 
assessed in TA muscles by in situ muscle physiology. While muscle weight was 
unchanged after treatments, the maximal tetanic force of muscles treated with the 
combination of AAV-shRNA3X and AAV-optPBAPN1 was increased, and the max-
imal specific force was normalized to the level of wild-type FvB muscles. Finally, a 
detailed analysis of the general muscle transcriptome was performed using microar-
ray Affymetrix. 865 genes were differentially (452 up- and 413 down-, respectively) 
regulated (>1.5-fold change and p < 0.05) between wild-type and A17 tibialis ante-
rior muscles. The single treatments only induced limited changes in gene expres-
sion, with some of them being actually detrimental as shown by downregulated 
muscle-specific genes in degenerating muscles after treatment with AA-shRNA3X 

Fig. 31.2 Transcriptome of A17 muscles: examples of transcript expression for some selected 
genes after treatments. Example of genes detected in the transcriptomic analysis. Some transcripts 
were unchanged in A17 and FvB muscles (e.g. Dtnb1). Others were changed after treatment with 
AAV-shRNA3X where muscle degeneration was induced (e.g. Fn1, Col3a1, Myl4, Myh3). Most 
of the transcripts that were dysregulated (either up- or downregulated) in A17 mice or A17 mice 
treated with only optPABPN1 showed a complete return to normal expression after the gene ther-
apy treatment (e.g. Capn3, Irs1, Ndufa3, Ckmt1, Uchl1)
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(Fig. 31.2). On the other hand, the pathophysiological improvements observed with 
the combination of the two vectors were accompanied by the almost complete nor-
malization of gene expression to wild-type muscles with 98% of deregulated genes 
that were correctly expressed after the treatment (Fig. 31.2). In order to demonstrate 
the applicability of such an approach in human subjects, myoblasts extracted from 
biopsies of OPMD patients were cultured in vitro. OPMD myoblasts do not show an 
obvious phenotype in vitro (i.e. no difference in proliferation/differentiation ability 
compared to myoblasts from normal muscles and absence of aggregates). However, 
when transduced with lentiviral vectors expressing the same shRNA3X cassette 
used in vivo, cell survival was strongly compromised, suggesting that human cells 
are sensitive to lower than normal levels of PABPN1. However, the transduction 
with lentiviral vectors delivering both shRNA3X and optPABPN1 cassettes rescued 
survival of human OPMD myoblasts showing that this combined suppression/
replacement strategy is also functional in a human context.

31.6  Future Perspectives of Gene Therapy for OPMD

OPMD, with a limited number of muscles to treat, is particularly well-suited for a 
gene therapy approach as only a local administration directly into affected muscles 
would likely be required. Adeno-associated virus (AAV) is currently amongst the 
most promising of viral vectors for in vivo gene therapy applications due to its non- 
pathogenicity, natural efficient infection in primates for some serotypes and negli-
gible risk of insertional mutagenesis and would be an ideal vector for gene therapy 
applications in OPMD. In this chapter, we described the most advanced gene ther-
apy strategy for OPMD which is based on delivering two AAV vectors to down-
regulate endogenous PABPN1 and newly express a cleavage-resistant human 
PABPN1 as targeting expPABPN1 invariably affects wild-type PABPN1 expres-
sion. Within the 4.7 kb vector packaging capacity, AAV vectors can accommodate 
both transgenes and shRNA/miRNA expression cassettes. The generation of a sin-
gle construct, incorporating both suppression and replacement cassettes, is feasible 
and required for the translation of the approach into the clinic. A single construct 
would also increase the safety profile. Furthermore, the ddRNAi strategy can be 
modified to include the siRNA sequences modelled into a microRNA (miRNA)-
based cassette mimicking the natural structure of miRNA [78]. This allows the 
enhanced control by a muscle-specific polymerase II promoter, a faster cleavage of 
the shRNA which prevents massive build-up of unprocessed, potentially toxic 
shRNA as well as a substantial reduction in the amount of unspecific siRNA pro-
duced. Benitec Biopharma is currently pursuing the advancement of BB-301, a 
next-generation, follow-up ddRNAi therapeutic for the treatment of OPMD that 
combines both the ‘silence and replace strategy’ of mutant PABPN1 into a miRNA-
based single vector.
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Chapter 32
Gene Therapy for X-Linked Myotubular 
Myopathy

Jean-Baptiste Dupont, Michael W. Lawlor, and Martin K. Childers

Abstract X-linked myotubular myopathy (XLMTM) emerges from mutations in the 
MTM1 gene and affects around 1 in 50,000 live-born male infants. This congenital 
myopathy has currently no treatment and leads to a severe impairment of motor skills 
and ventilation and premature death. In this chapter, we synthetize the results of gene 
therapy studies using recombinant adeno-associated vectors in preclinical models of 
X-linked myotubular myopathy. Over the past few years, the field has rapidly moved 
from myotubularin-deficient mice to dogs and has now begun the first clinical gene 
therapy trial for XLMTM. In both mice and dogs, a single intravenous injection of 
adeno-associated vector leads to a complete rescue of key pathological phenotypes, 
including motor and respiratory functions, and life expectancy. Despite the treatment 
being well tolerated in both animal models, we also interrogated some of the issues 
commonly encountered in gene therapy studies, notably immune responses against 
the vector capsid or the transgene product, genotoxicity, and off-target effects.

Keywords XLMTM · MTM1 · Myotubularin · Gene therapy · Adeno-associated 
virus · rAAV

32.1  Introduction

The use of adeno-associated virus (AAV)-derived vectors as molecular carriers to 
deliver transgenes in vivo has shown tremendous developments in the last 10 years 
for the treatment of monogenic disorders [1]. Patients suffering from some forms of 
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blindness or hemophilia B and treated by recombinant AAV (rAAV)-mediated gene 
therapy have experienced drastic improvements of their life conditions, and suc-
cessful preclinical studies have raised hope for a cure to numerous additional dis-
eases. To fulfill these early promises, researchers must manage the difficult 
translation to human patients by keeping similar therapeutic efficiency while devot-
ing extra attention to the biosafety in this innovative area of molecular medicine. In 
the context of inherited muscular disorders, several interspecies differences—nota-
bly the overall morphology and the severity of the disease—often make it difficult 
to determine effective rAAV doses and therapeutic windows. The need to target a 
widespread territory that can encompass the entire axial, appendicular, and respira-
tory musculature is particularly challenging, and another layer of complexity arises 
sometimes from the continuous degeneration of target cells. This is particularly true 
for muscular dystrophies caused by mutations in genes coding for structural pro-
teins involved in the generation or transmission of cell contraction, and in which 
muscle wasting is a prominent feature [2–4]. In contrast, rAAV vectors have shown 
spectacular efficiency in animal models of X-linked myotubular myopathy 
(XLMTM), a form of congenital centronuclear myopathy. In the past few years, the 
field has moved from the first proof of concept in mice to its translation in a large 
animal model [5, 6], and to initiation of the first clinical trial, which began in 2017. 
The goals of this chapter are to understand how this fast and efficient preclinical 
development was realized and to try to identify potential hurdles that might occur in 
clinical translation.

32.2  Characteristics of XLMTM Pathophysiology

XLMTM (OMIM #310400) results from mutations in the MTM1 gene and occurs 
in around 1 in 50,000 live-born male infants [7]. Patients exhibit hypotonia at birth 
and rapidly develop severe impairment of motor and respiratory function. Many 
do not survive beyond their second birthday, and the majority of surviving patients 
experience disabling symptoms and a reduced lifespan despite intensive medical 
support [8, 9]. MTM1 encodes the founding member of the myotubularin family 
of phosphoinositide phosphatases and transforms phosphatidylinositol 3-phos-
phate (PtdIns3P) and PtdIns(3,5)P2 into PtdIns and PtdIns5P, respectively. These 
lipids are important constituents of cellular membranes, playing various roles in 
vesicle trafficking and signaling cascades, and thus myotubularin is considered a 
crucial factor controlling membrane maintenance and integrity [10]. This feature 
can explain at least part of the pathological phenotypes observed in XLMTM 
patients and in the different animal models of the disease, such as Mtm1-deficient 
mice and XLMTM (p.N155K) dogs, or in mtm knockout and knockdown zebra 
fish models [11].

Even though MTM1 is expressed ubiquitously, its absence results exclusively in 
neuromuscular phenotypes in most patients and all animal models. Myotubularin- 
deficient muscle fibers are small (likely due to a combination of hypotrophy and 
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atrophy) and display abnormal localization of nuclei and other organelles (mito-
chondria, sarcoplasmic reticulum, Golgi apparatus). This mislocalization of organ-
elles results in central or internal placement of nuclei within myofibers (placing 
XLMTM in the “centronuclear myopathy” category of congenital myopathies), and 
oxidative histochemical stains reveal a variety of organelle aggregation patterns 
reflective of aggregations and abnormal placement of mitochondria and sarcotubu-
lar components (Fig. 32.1) [11, 12]. In contrast with muscular dystrophies, scant 
myofiber degeneration, fibrosis, or fat accumulation is seen in XLMTM muscles 
until terminal stages of disease. Yet, the number of satellite cells is significantly 
reduced in patients [12] and Mtm1-deficient mice [13], suggesting the inability to 
maintain or self-renew the muscle stem cell pool. While these abnormalities have 
the potential to affect muscle function, an overwhelming cause of weakness in 
XLMTM is a marked impairment of muscle contraction despite adequate innerva-
tion, and impairment of neuromuscular transmission and excitation-contraction 

Fig. 32.1 Pathological findings in human XLMTM. Hematoxylin and eosin (H&E) staining 
reveals myofiber smallness and increased numbers of internally nucleated fibers in an XLMTM 
patient in comparison to a normal biopsy from an age-matched patient. NADH staining illustrates 
aggregation of organelles in some myofibers in XLMTM, in comparison to a regular and diffuse 
distribution of organelles in the normal biopsy. Electron microscopy (EM) reveals numerous triad 
structures with appropriate morphology (black arrows, inset) in the normal biopsy. While some 
normal triads are present in XLMTM, they are decreased in number, and abnormally formed and 
oriented triads (white arrow, inset) may be apparent
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coupling have been described. Mtm1-deficient mice show enlarged and less com-
plex neuromuscular junctions, leading to inefficient neurotransmission [14]. Of 
note, treatment with the acetylcholinesterase inhibitor, pyridostigmine, can improve 
several motor phenotypes such as grip fatigue and, to a greater extent, treadmill 
endurance up to 40% of the WT level [14]. In addition, the close associations 
between the transverse tubules and the SR terminal cisternae—called muscle tri-
ads—are less abundant and have an abnormal morphology (Fig. 32.1) [15, 16]. In 
normal skeletal muscle myofibers, these triads are an essential component that 
translates sarcolemmal depolarization into cytoplasmic calcium release. 
Abnormalities of triad formation and structure in XLMTM cells lead to marked 
defects in excitation-contraction coupling [15, 16], producing weakness far more 
profound than would be expected of the other pathology (such as myofiber small-
ness) that is observed in XLMTM [17]. The importance of excitation-contraction 
coupling is further underscored by several studies of myostatin inhibition in Mtm1- 
deficient mice [13], where marked treatment-associated myofiber growth was not 
capable of improving muscle strength [18, 19]. Finally, specific signaling pathways 
classically associated with denervation-induced muscle atrophy are found dysregu-
lated, notably the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of 
rapamycin (mTOR) hub and the ubiquitin-proteasome pathway [20–22]. It remains 
elusive how mutations in a lipid phosphatase lead to XLMTM pathophysiology, but 
a recent study brought strong evidence that it could be prevented by crossing Mtm1- 
deficient mice with mice knocked-out for phosphoinositide 3-kinase (PI3K), which 
reduces PtdIns3P accumulation [23]. Furthermore, the pharmacological inhibition 
of PI3K using wortmannin led to a partial improvement of the phenotype and the 
survival of Mtm1-deficient mice [23]. Overall, these findings indicate that XLMTM 
might be treated pharmacologically, at least to some extent. However, the most suc-
cessful preclinical studies so far have attempted to increase the amount of intracel-
lular myotubularin, either directly by enzyme replacement therapy [17] or by gene 
therapy using rAAV-derived vectors. The following sections of this chapter are spe-
cifically focused on the latter strategy.

32.3  Preclinical Studies Using rAAV Vectors in XLMTM 
Animal Models

Gene therapy in the context of XLMTM aims at delivering an expression cassette 
encoding myotubularin to skeletal myofibers. For this purpose, rAAV-derived vectors 
have proved particularly efficient [24]. The AAV was first characterized as a by-prod-
uct in Adenovirus-infected cells and has subsequently been established as an ideal 
vector for in vivo gene transfer in postmitotic cells [25, 26]. To date, 173 clinical trials 
have been initiated with rAAV vectors for a wide range of diseases such as retinal 
disorders, neurological diseases, or hemophilia B (http://www.abedia.com/wiley/). 
In addition, the first medicine based on the use of this vector—Glybera®—was 
approved by the European Medicines Agency in 2012 for lipoprotein lipase 
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deficiency [27]. The existence of a dozen natural AAV serotypes and multiple artificial 
variants that all exhibit a specific tropism allows the targeting of numerous key 
organs and the transduction of specific cell populations [28, 29]. Concerning the 
neuromuscular and cardiac systems, rAAV vectors (composed mostly of serotypes 
1, 6, 8, or 9) have been used in animal models of multiple genetic disorders includ-
ing Duchenne muscular dystrophy (DMD) [30–32], limb girdle muscular dystro-
phies (LGMD) [33, 34], spinal muscular atrophy (SMA) [35, 36], or Pompe disease 
[37]. Most studies have reported gene transfer efficiency for weeks to months 
following rAAV injection, sometimes correlated with a drastic improvement of the 
pathological phenotypes.

The initial gene transfer attempt in the context of XLMTM was published in 
2008 by the team of Jean-Louis Mandel [5]. Myotubularin-deficient mice created by 
knocking out the Mtm1 gene normally exhibit a progressive myopathic phenotype 
that faithfully recapitulates the human pathology [38]. Their muscle fibers show 
typical XLMTM features at the histological level, such as a marked hypotrophy and 
mislocalized or aggregated organelles. These mice develop severe motor impair-
ment associated with sharply reduced survival to no more than 14  weeks. 
Myotubularin-deficient mice that received a single intramuscular injection of a 
rAAV1 vector expressing a recombinant Mtm1 cDNA resulted in an improved path-
ological phenotype. Both the structure (muscle weight and cellular architecture) and 
the function (contractile activity) of the injected muscle were markedly improved. 
In a later study, Mtm1-KO mice were injected intravenously with a rAAV8 vector 
expressing a similar transgene under the control of a muscle-specific promoter (des-
min) [6]. Strikingly, the phenotype of treated mice was completely rescued, and 
their survival was normal, whether they received the vector at an early or late dis-
ease stage. Other physiological and functional parameters such as body weight and 
global strength or muscle architecture and specific force were also substantially 
improved at 6 months post-rAAV injection. Of note, mutant forms of myotubularin 
disrupting the phosphatase activity of the enzyme were shown to be as efficient as 
the WT protein at improving most of the muscle phenotypes in mutant mice [39]. 
The authors suggested that myotubularin enzyme activity is important at the age of 
XLMTM onset but that the maintenance of the pathological state in adult muscle 
cells rather depends upon other functions of this protein. A link between myotubu-
larin and important signaling pathways, particularly those controlling muscle cell 
growth or atrophy, may explain this observation. Indeed, results published in 2013 
demonstrated that rAAV-mediated transfer of a WT copy of Mtm1 corrected the 
molecular signature associated with atrophy in XLMTM mice [22]. The same 
experiment with a phosphatase-dead enzyme was not carried out but could be of 
interest to decipher additional structure-function relationships in myotubularin.

While results of AAV gene transfer in small rodents were already very promising, 
similar results were subsequently observed in much larger animals with a muscle 
volume and morphology more representative of what would be found in XLMTM 
patients. In 2010, a naturally occurring p.N155K missense mutation in the MTM1 
gene was identified in Labrador Retrievers, and a colony of XLMTM dogs harbor-
ing this mutation was established by one of the authors (MKC) [40]. These dogs 
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display patellar hyporeflexia, dysphagia, dropped jaw, and a hoarse bark that develops 
over time. Unlike the golden retriever muscular dystrophy (GRMD) model, we have 
observed little variation in the phenotype of XLMTM dogs in the research setting, 
despite detailed physiological and clinical observations in ~ 30 affected dogs since 
2009. Moreover, the disease onset in canine XLMTM is more rapid than in GRMD 
and universally results in markedly progressive weakness and muscle atrophy lead-
ing to loss of ambulation, necessitating euthanasia by 4–6  months of age [41]. 
Histological evaluation confirms some of the findings made in patients, notably a 
severe hypotrophy with internal nucleation, myofibril disarray, and triad abnormali-
ties (Fig. 32.1) [11, 40]. Muscle function is also profoundly altered in this model, as 
assessed by isometric torque measurement or by scoring multiple neuromuscular 
parameters [42, 43]. Using an in vivo system to measure tibiotarsal joint torque, 
forces generated by XLMTM dogs at 10 weeks are ~40% lower than normal. By 
18 weeks of age, torque generated by affected dogs is only ~15% of that of wild-
type dogs [42].

Myotubularin-deficient dogs were first treated with a rAAV8 vector expressing 
the canine MTM1 cDNA downstream the muscle-specific desmin promoter (rAAV8- 
cMTM1) injected into the Cranial tibialis muscle [6]. Similar to the results obtained 
in mice, the growth and the cellular architecture of the injected muscle were sub-
stantially improved compared with the saline-injected contralateral muscle, with 
particularly significant improvement by 4–6 weeks postinjection. This prompted the 
authors to assess the efficacy of gene therapy in an entire limb isolated from the 
general circulation by a tourniquet. In this condition, the injection of the vector 
under pressure allows its widespread dissemination in muscle groups of the injected 
limb and also leads to a slight leakage into the circulation and in distant tissues and 
organs [44, 45]. Three XLMTM dogs were injected by this “locoregional” route, 
which resulted in systemic beneficial effects, dramatic improvement of breathing 
functions, and survival, with treated dogs remaining ambulant and healthy beyond 
1 year of age [6].

Subsequent to this surprising observation of phenotype rescue following “quasi- 
systemic” infusion, an AAV dose-finding experiment was conducted in a large cohort 
of XLMTM dogs. rAAV8-cMTM1 was administered by simple peripheral venous 
infusion in XLMTM dogs at 10 weeks of age, when signs of the disease were begin-
ning to become evident. A comprehensive analysis of survival, limb strength, gait, 
respiratory function, neurological assessment, histology, vector biodistribution, 
transgene expression, and immune response was performed over a 9-month study 
period. Escalating doses of rAAV8-cMTM1 (0.3, 2, and 5 × 1014 vg/kg) were given 
into the cephalic vein of XLMTM dogs (n = 3 per dose), and saline was given in age-
matched mutant and normal littermates (n = 6 per group) as controls. Results indi-
cated that, in a dose-responsive manner, rAAV8-mediated gene therapy effectively 
corrected the entire skeletal musculature in a large animal model of an inherited fatal 
myopathy following a single intravenous vector administration [46].

In this large cohort study of XLMTM dogs, intravenous administration of 
rAAV8-cMTM1 at mid (2 × 1014 vg/kg) and high (5 × 1014 vg/kg) doses conferred 
long-term survival until the end of the 9-month observation period, whereas rAAV8- 
cMTM1 at low dose (0.3 × 1014 vg/kg) did not provide a major survival benefit. A 
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dose-dependent improvement in strength followed MTM1 gene transfer. Because 
severe weakness is the key clinical characteristic of the disease, restoration to nor-
mal levels of muscle strength (measured by limb torque) following gene transfer 
represented the most important readout in this study. Similar to the response seen in 
torque, we observed a dose-response to AAV in walking gait. Gait assessment pro-
vides a functional, behavioral measure in awake animals, while muscle torque iso-
lates function of a given muscle (or muscle group) and is assessed in anesthetized 
animals. Similarly, respiratory function, which involves the strength of various skel-
etal muscles including the diaphragm, was also comparable to normal controls fol-
lowing mid- and high-dose AAV.

XLMTM dogs that received either the mid or high dose of rAAV8-cMTM1 dem-
onstrated near-complete reversal of XLMTM-related pathology, displaying essen-
tially normal skeletal muscle histology in the majority of samples evaluated (also 
discussed and shown in Chap. 12). The normalized myofiber morphology and orienta-
tion of the triads suggest excitation-contraction coupling (ECC), organelle function, 
and myofiber size improvement to support greater muscle torque production. Finally, 
dogs were assessed for improvement in neurological function using a validated clini-
cal scoring instrument developed for dogs, the neurological assessment score (NAS) 
[43]. Results clearly demonstrated a dose-dependent effect of rAAV8-cMTM1. Before 
infusion, XLMTM dogs scored slightly lower than normal controls. After infusion, at 
the 17-week time point, NAS declined markedly in saline- and low-dose-infused 
dogs, whereas normal controls and XLMTM dogs given mid- or high-dose rAAV8-
cMTM1 achieved comparable neurological scores. By the end of the 9-month study, 
XLMTM dogs in the mid- and high-dose groups maintained neurological scores 
comparable to their age-matched normal controls, with dogs treated at high-dose 
performing the best of the three dosing groups. Together, these results identified an 
effective threshold dose of 2 × 1014 vg/kg of rAAV8-cMTM1 in dogs, consistently 
measured by separate and distinct study endpoints, a finding similar to the dose 
(2 × 1014 vg/kg) that we initially tested in our previous locoregional studies.

Table 32.1 recapitulates the main parameters of the gene therapy studies pub-
lished so far and describes the use of rAAV vectors in animal models of XLMTM. 
The spectacular recovery observed in two of these models has highlighted the 
strong potential of rAAV-mediated gene therapy for this disease, which has now 
moved to clinical phase. For this purpose, longitudinal studies in XLMTM patients 
are ongoing and should help document the natural history of the disease before 
any intervention (https://clinicaltrials.gov/, NCT02704273, NCT02231697, and 
NCT02453152).

32.4  Remaining Challenges Toward a Successful Clinical 
Transfer

Despite intensive efforts, the safety and efficiency of gene therapy in human clinical 
trials are difficult to anticipate from preclinical studies in animal models. Even if mice 
or larger animal models faithfully reproduce the pathological state described in patients, 
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species-specific features related to host-virus (rAAV vector in this case) interactions 
may lead to dramatically different outcomes. Serious adverse events after gene therapy 
clinical trials using retroviral and adenoviral vectors have already been observed in the 
past and had not been anticipated in preclinical studies [47, 48]. In the context of AAV, 
natural infections with the wild-type virus prior to gene therapy can cause the forma-
tion of neutralizing antibodies and memory T cells directed against the capsid, which 
have the potential to limit gene transfer efficacy in patients [49, 50]. In addition, the 
immune reactions mounted against the vector capsid or the recombinant transgene pro-
tein after the injection of the vector are crucial issues to consider in terms of interspe-
cies differences. This was notably the case during the initial clinical trials for hemophilia 
B or Duchenne muscular dystrophy [49, 51, 52]. In the latter, several patients showed 
preexisting immunity against dystrophin, most likely due to the spontaneous formation 
of revertant fibers. These patients developed a T-cell-mediated immune response which 
might have led to the destruction of transduced cells [52]. This immunity against the 
recombinant protein had not been described in animal models of DMD, highlighting 
the difficulties to translate preclinical studies in human patients. Thus, the last part of 
this chapter intends to anticipate potential pitfalls that gene therapy for XLMTM may 
encounter, in the light of previous data on rAAV vectors and muscle disorders.

In XLMTM dogs, anti-AAV8 capsid antibodies can also be detected after vector 
injection—independent of the dose and the delivery route—but are not associated 
with any T-cell-mediated immune response against either the rAAV capsid or the 
transgene protein [6, 46]. However, tackling this issue will be critical in view of a 
potential readministration of the vector in XLMTM patients.

One major challenge to address for gene transfer in the entire striated muscular 
system relates to the ability to deliver the vector and express the transgene in a wide-
spread territory with high and long-lasting efficacy. Previous reports of rAAV gene 
therapy in animal models of dystrophic disorders showed a progressive loss of trans-
duced cells when transgene expression is sub-therapeutic and not sufficient to coun-
teract muscle wasting [2–4]. As previously mentioned, the absence of myotubularin 
has not been associated with muscle fiber degeneration, and thus rAAV genomes 
should be maintained in target cells for the long-term persistence. The initial study 
conducted in XLMTM dogs treated by locoregional injection suggested that func-
tional benefits could last at least over 1 year, even though transgene expression was 
measured well under the WT level at necropsy in one of the treated dogs [6]. An 
additional study in our laboratory has confirmed and extended this observation: at 
4 years postinjection, intravenously injected XLMTM dogs still show a robust phe-
notype correction and maintain a stable muscle transduction [53]. Nevertheless, this 
long-lasting effect depends on the initial dose of rAAV delivered in vivo, as previ-
ously suggested in Mtm1-deficient mice [6] and confirmed in another recent study in 
our laboratory [46]. In this latter publication, our team has demonstrated that 
2 × 1014 vg/kg are required to achieve phenotype correction in XLMTM dogs, which 
should inform the dose to be injected in the first XLMTM patients.

Given this large vector dose, another concern is the potential for rAAV genome 
integration in the vicinity of oncogenes/tumor suppressors, which could lead to 
genotoxicity and tumorigenesis [54]. In muscle cells, rAAV is mostly maintained as 
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circularized and concatemerized episomes and does not actively integrate [55, 56]. 
However, muscle samples from nonhuman primates and human patients injected 
with rAAV have shown random integration profiles into the host genome at a low 
frequency estimated between 1 × 10–4 to 1 × 10−5 vg [57, 58]. If the vector loads 
delivered to patients led to an optimal transduction, this would give rise to at least 
1 × 109 independent integration events at random genomic locations. Despite this 
high frequency, no genotoxicity relative to vector genome insertion in muscle nuclei 
has been reported in preclinical studies.

Additional adverse events of rAAV overdosing can result from the toxic expression 
of the transgene in tissues which accumulate high amounts of rAAV vectors, whether 
they are therapeutic targets or not. In the first XLMTM gene therapy study, mice were 
injected intramuscularly with a high dose of rAAV vector expressing Mtm1 down-
stream of a strong and constitutive promoter to force the overexpression of the trans-
gene. This led to the accumulation of membrane stacks in transduced muscle fibers, 
but the functional significance of these structures is unclear [5]. In addition, mice 
treated intravenously with the highest dose of vector showed scar tissue and focal 
inflammation in the heart [6]. These two adverse events had no detectable functional 
impact, and none of them was ever reproduced in XLMTM dogs, even at a dose two-
fold higher than the therapeutic dose [46]. In addition to striated muscles, AAV8 is 
known to have a high tropism for the liver, as shown by the high vector genome copy 
numbers detected in injected XLMTM mice and dogs. The use of a muscle-oriented 
promoter (desmin) resulted in a very low hepatic expression of the transgene and did 
not alter its functions or the level of liver- specific enzymes in the blood [6, 46].

Finally, these concerns bring an interesting question about the identity of target 
organs. It is well accepted that XLMTM is primarily a muscle disorder, and so far, 
the prime objective has been to target the skeletal musculature. However, MTM1 is 
ubiquitously expressed, and the effect of myotubularin deficiency in other tissues 
may be masked by the severity of the muscle pathology. What are these tissues and 
to what extent will they suffer from secondary phenotypes if transgene expression 
is maintained long enough only in skeletal muscles are currently unknown and will 
need to be carefully monitored as XLMTM gene therapy moves to clinical trials.

Previous studies have often shown the difficulty to translate preclinical gene 
therapy studies to human application, which can be explained by inherent interspe-
cies differences in size and morphology, disease manifestation, and host-vector 
interactions. To ensure the success of this translation, it seems critical to broaden 
our understanding of basic XLMTM phenotypes in muscles and other organs, 
together with the biology of rAAV vectors specifically in this pathological context.

32.5  Conclusion

XLMTM gene therapy has known a fast development in preclinical studies follow-
ing the systemic delivery of therapeutic rAAV vectors in affected mice and dogs. 
These spectacular preclinical results, with a complete and long-term rescue of the 
pathological phenotypes, have allowed the translation of rAAV gene therapy to a 
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clinical trial. As gene therapy for XLMTM has entered the clinic, the results look 
very promising. In May 2018, Audentes Therapeutics, the sponsor of the clinical 
trial, reported significant improvement in neuromuscular function, including respi-
ratory function, in a treated subject at week 24 and three others as early as the 
4-week time point. The clinical trial is still underway.
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Chapter 33
Preclinical Gene Therapy Studies 
for Metabolic Myopathy

Stephanie Salabarria, Barry J. Byrne, Cristina Liberati, and Manuela Corti

Abstract The application of adeno-associated virus (AAV) and adenovirus (AdV) 
gene therapy has become increasingly important as a therapeutic modality since its 
first application in humans in 1990. However, over the past 20 years, the field has 
matured, and tangible clinical outcomes have been achieved in a limited number of 
studies. Establishing proof of concept and overcoming some of the technical chal-
lenges and establishing safety are the focus of preclinical studies on gene therapy to 
date. Gene therapy has been extensively investigated for some metabolic myopa-
thies such as Pompe, but it has just begun for many others. This chapter will evalu-
ate animal models for future research in metabolic myopathies as well as preclinical 
gene therapy trials for glycogen storage diseases (GSD) I, III, and V, Barth syn-
drome, Friedreich’s ataxia, and very long-chain acyl-CoA dehydrogenase (VLCAD) 
deficiency . These animal models will provide a great opportunity to test novel 
forms of gene editing and gene replacement therapies.

Keywords Metabolic myopathies · Glycogen storage diseases · Mitochondrial 
disorders · Vector

33.1  Introduction

Metabolic myopathies refer to a group of hereditary muscle disorders due to genetic 
defects leading to a specific enzymatic deficiency. Metabolic myopathies are hetero-
geneous conditions that have common abnormalities of muscle energy metabolism 
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that result in skeletal muscle dysfunction [1]. As referenced by Berardo et al. [2], 
there are three main classes of metabolic myopathies including glycogen storage 
diseases (glycogenosis), mitochondrial disorders, and fatty oxidation defects. In this 
chapter, we review the development of gene therapy for all three classes of meta-
bolic myopathies.

33.2  Glycogen Storage Diseases (Glycogenosis)

Glycogen storage diseases are caused by a genetic deficiency in the enzymes that 
either degrade or synthesize glycogen [3]. The glycogen storage diseases that will 
be discussed in this section are glycogenosis types I, II, III, and V.

33.2.1  Glycogenosis Type I

33.2.1.1  Clinical Aspects of Glycogenosis Type Ia

Glycogen storage disease type Ia (GSDIa), also known as von Gierke disease, is an 
inherited metabolic storage disorder with life-threatening complications due to 
hypoglycemia. Even though GSDIa is predominantly a liver glycogenosis, there 
are lessons learned from the gene therapy approach to GSDIa which are applicable 
in this category of disease. The condition is due to a deficiency of glucose 
6- phosphatase (G6Pase), a key enzyme that controls the breakdown of glycogen to 
glucose for energy production [4]. The deficiency in G6Pase results in secondary 
accumulation of glycogen and lipids in tissues especially the liver, kidneys, and 
small intestine. Individuals affected by GSDIa suffer from severe hypoglycemia 
during fasting, excess production of lactic acid from increased glycolysis, and 
hyperlipidemia. Long-term complications include growth failure, pulmonary 
hypertension, formation of hepatic adenomas, and, occasionally, hepatocellular 
carcinoma (HCC) and renal failure within the first year of life [5]. The only treat-
ment available for GSDIa is a strict dietary supplementation or intragastric infusion 
of carbohydrates [6].

33.2.1.2  Adeno-associated Virus (AAV) Vectors in a Murine Model of von 
Gierke Disease

Gene therapy is currently the only promising treatment option to correct the pri-
mary metabolic defect by delivering G6Pase to the cells of target tissues. Initial 
studies in mice and dogs used AAV serotype 2 (AAV2) vectors containing either 
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the cytomegalovirus (CMV) or mouse albumin promoter/enhancer and led to 
incomplete correction of G6Pase deficiency [7]. The efficacy of the gene therapy 
treatment was improved with the discovery of new AAV serotypes and promoters/
enhancers. Improvements were also observed with the use of self-complementary 
(sc), double- stranded, AAV vectors. Since the liver is the main target tissue for 
gene therapy delivery in GSDIa, a highly liver-tropic vector such as AAV serotype 
8 (AAV8) has been preferred. In fact, scAAV8 vector expressing human G6Pase-α 
from a minimal human G6Pase promoter led to restoration of hepatic G6Pase-α 
and normalization of fasting glucose and other biochemical parameters in G6pc−/− 
mice and GSDIa dogs [8]. The best results were obtained by another study in 
G6pc−/− mice using AAV8-GPE, expressing human G6Pase-α driven by an extended 
human region of the human G6Pase promoter (GPE), which showed improved 
G6Pase-α expression and complete normalization of G6Pase-α deficiency in the 
liver for 24 weeks [9]. The use of human G6Pase promoter regulates G6Pase-α 
expression preventing potential overexpression of the enzyme. Further, the use of 
G6Pase promoter has some advantages including expression in other target tissues 
besides the liver such as the kidney and with limited cytotoxic T-cell response. The 
extensive non-clinical studies published to date are expected to lead to human clini-
cal studies [10, 11].

33.2.2  Pompe Disease

Pompe disease (also known as glycogenosis type II (GSDII)) is a glycogen storage 
disorder due to a deficiency or absence in acid α-glucosidase (GAA) [12, 13]. This 
autosomal recessive disorder has been traditionally thought to occur in every 
1:40,000 live births and is characterized by glycogen accumulation causing muscle 
atrophy and severe cardiopulmonary dysfunction [14]. Recently, newborn screening 
efforts have discovered a significantly higher incidence of up to 1:9500. The sever-
ity of the disease is inversely correlated to GAA activity, and therefore, there are 
two broad categories of note—severe/early onset that results from a complete 
absence of the GAA enzyme and mild/late onset that results from 5 to 15% of nor-
mal GAA activity [15–17]. Common clinical pathology includes profound weak-
ness and hypotonia, cardiac hypertrophy, and cardiorespiratory failure in patients 
with severe-/early-onset Pompe disease, as well as skeletal muscle and neuronal 
dysfunction leading to ventilatory insufficiency [16, 18–20].

Current treatment for Pompe disease involves replacement of the missing enzyme 
by repeated protein infusions, known as enzyme replacement therapy (ERT). 
However, ERT does not cross the blood-brain barrier only mitigating the cardiomy-
opathy and skeletal myopathy associated with Pompe disease [14, 17, 21].

For a more detailed description of the non-clinical and clinical studies for Pompe 
disease, please refer to Chap. 44.
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33.2.3  Glycogenosis Type III

33.2.3.1  Clinical Aspects of Glycogenosis Type III

Glycogenosis type III (GSDIII), also known as debrancher enzyme deficiency and 
Cori-Forbes disease, is a glycogen storage disease due to a mutation in the Agl gene 
triggering a deficiency in the glycogen debranching debrancher  enzyme (GDE). 
GDE, in tandem with glycogen phosphorylase, is responsible for degrading non- 
membranous glycogen [22–26]. This genetic deficiency causes an accretion of cyto-
plasmic glycogen disturbing glucose homeostasis and the accumulation and storage 
of phosphorylase-limit dextrin (PLD) in the tissues [3, 26–28]. There are two types 
of GSDIII—GSDIIIa and GSDIIIb. The difference between the two is GSDIIIa 
involves the liver and muscle, while GSDIIIb only involves the liver [3]. This rare 
autosomal recessive disorder occurs in 1:100,000 births [28, 29].

Clinical signs and symptoms vary from one patient to the next depending on 
disease phenotype; however, the most common symptoms for a patient with GSDIIIa 
are progressive skeletal myopathy, hypoglycemia, hepatomegaly, hyperlipidemia, 
cardiac hypertrophy, short stature, and elevated serum concentrations of liver trans-
aminases (ALT, AST, and ALP) and muscle enzymes (creatine kinase, CK) [3, 23, 
25, 30]. Of note, progressive skeletal myopathy is one of the major causes of mor-
bidity in this population. Muscle weakness begins in late childhood and becomes 
more predominant with age [23, 25, 31, 32].

Currently, there is no effective treatment or adequate therapy for GSDIII, only 
dietary interventions. In efforts to promote normoglycemia, control hypoglycemia, 
and prevent hyperketonemia, patients with GSDIII are encouraged to either have 
frequent meals, high in carbohydrates with additional proteins, or nocturnal gastric 
feedings. Additionally, a high-protein diet is recommended for patients with myopa-
thy, growth retardation, and cardiomyopathy [3, 23, 26, 33, 34].

33.2.3.2  Cori-Forbes Disease Animal Models for Future Research

To date there are only two GSDIIIa animal models—the first is a large animal model 
in curly-coated retriever (CCR) dogs and the second is a murine model in Agl 
knockout mice.

The study identifying the GDE frameshift mutation in CCR dogs was initially 
conducted by Gregory et al. [3, 27]. They followed a liter of six purebred CCR dogs 
for 42 months [27]. Of the six dogs, both females had elevated aspartate transami-
nase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and CK CPK 
levels. Following liver biopsies, both affected dogs were found to have hepatomeg-
aly and severe glycogen accumulation in their liver hepatocytes. Both CRC females 
also exhibited signs of skeletal myopathy. Serum enzymes and glucose concentra-
tion indicated leakage of liver enzymes and hypoglycemia. Biochemical studies 
showed an increase in glycogen content in the liver. Glycogen structure analysis 
exhibited glycogen with short outer chains and suggested debrancher enzyme defi-
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ciency [27]. The protein coding sequence for the CCR Agl cDNA showed a deletion 
of an adenine in exon 32 leading to the curtail of the debranching enzyme by 126 
amino acids [3, 27]. Absence of enzyme activity in the muscle and liver samples 
confirmed the GSDIIIa diagnosis [27].

A long-term follow-up study was later conducted by Brooks et al. [30] on the 
same six CCR dogs with GSDIIIa used by Gregory and colleagues aimed at col-
lecting biochemical data and further information on organ and tissue involvement 
[27, 29].

Brooks et al. found glycogen deposition in the diaphragm, gastrocnemius, and 
quadriceps of all three dogs and in the cardiomyocytes of the eldest dog. Hepatic 
and muscle glycogen content decreased over time in conjunction with a decrease in 
CK levels in all affected canines. Biochemistry and urinary biomarker analysis 
showed liver enzymes AST and ALT decreasing over time, a sign of progressive 
hepatic disease [29, 35, 36]. The trend of decreased liver enzymes is like that found 
in GSDIIIa patients [32, 37, 38]. Hepatomegaly was also found in three of the 
affected dogs and was shown to decrease over time as in affected patients. Heart- 
associated abnormalities in this cohort were limited to the single case of cardiomyo-
cytes in the eldest dog providing some supporting evidence that a high-protein diet 
can slow the progression of cardiac disease in GSDIIIa patients [29, 39, 40].

Likewise, Yi and colleagues performed a 16-month observational study to better 
understand the GSDIIIa phenotype and pathophysiology in eight curly-coated 
retrievers [25]. Biochemistry panels revealed gradually increasing ALT, AST, ALP, 
and CK with increasing age, and biopsies revealed high glycogen content in the 
liver and muscle of all dogs. Elevated AST, more so ALT, was found to be a strong 
indicator of liver impairment. Liver glycogen content was more than fourfold of that 
found in controls; however, its eventual decrease could be attributed to an increase 
in fibrous tissue. Liver biopsies revealed moderately smooth surfaces at baseline 
with an increase in the number of nodules on the surface with age. By 16 months, 
livers were engorged with evidence of cirrhosis and hepatocellular disorganization. 
As the CCR colony aged, glycogen accumulation increased in the skeletal muscle 
causing symptomatic myopathy much like in patients with GSDIIIa [23, 25].

In addition to these large animal models, two murine models have been gen-
erated to understand the pathology of GSDIII and recapitulate humanlike dis-
ease signs and symptoms—the first by Liu et  al. [26] and the second by 
Pagliarani et al. [41].

In efforts to find a small animal model to study the pathology of GSDIIIa, Liu 
and colleagues generated the first GDE-deficient murine model that reiterated 
humanlike GSDIIIa by removing exons downstream of exon 5 deleting 1310 
amino acids in the Agl gene, effectively deleting the GDE [26]. Muscle weakness 
was detected in both the forelimb and hind legs, and blood chemistry revealed 
elevated AST, ALT, ALP, and CK levels in affected mice. Hypoglycemia was pres-
ent just as it is in human GSDIIIa patients; however, there was no evidence of 
hyperlipidemia [23, 26]. Western blot analysis illustrated the lack of GDE protein 
and a reduction of GDE enzyme activity in the knockout mice. Hepatomegaly, 
enlarged  hepatocytes, and liver fibrosis were all observed, and heavy glycogen 
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accumulation was found in the liver, in the heart, and some in the skeletal muscle. 
In fact, glycogen accumulation by weight in the liver, heart, diaphragm, quadri-
ceps, and gastrocnemius in homozygous mice was 2–20 times higher than in wild-
type or heterozygous mice [26].

Pagliarani et al. also generated a novel Agl knockout (KO) mouse by introducing 
a Neo cassette that deleted the last 114 amino acids of the debranching enzyme 
containing the glucosidase domain and the glycogen-binding domain [41]. No GDE 
activity was found in the skeletal muscle, brain, liver, and heart of the Agl-KO mice. 
Livers of the Agl-KO mice were also found to be enlarged; however, there were no 
nodules, unlike in Yi et al.’s canines. Quantification revealed a large amount of gly-
cogen in the skeletal muscle, liver, and heart tissue. Likewise, small periodic acid- 
Schiff (PAS)-positive glycogen deposits were found in the cerebellum of the Agl-KO 
mice. Of note glycogen accumulation was found in the diaphragm and tongue. 
Glycogen infiltration in both of these muscles has also been found in patients with 
GSDIII and in the canine model by Yi and colleagues’ [25, 41, 42]. Additionally, 
AST, ALT, CK, and ALP levels were found to be significantly elevated. Muscle 
performance evaluations revealed Agl-KO to be slower and less coordinated. The 
decrease in coordination and defective equilibrium could be attributed to the PAS- 
positive glycogen deposits found in the cerebellum, a feature of the hindbrain that 
plays a critical role in motor coordination and balance [41]. Unlike in previously 
reported GSDIII animal models [25, 26], there were no signs of liver fibrosis present 
in the Agl-KO mice. Additionally, unlike in human GSDIII patients, hyperlipidemia 
was not observed. The Agl-KO murine models generated by Pagliarani et al. and 
Liu et al., as well as the canine models generated by Yi et al. and Gregory et al., all 
proved to be reliable models for GSDIIIa and suitable for the development of future 
gene therapies [23, 26, 41].

33.2.4  Glycogenosis Type V

33.2.4.1  Clinical Aspects of Glycogenosis Type V

Glycogenosis type V (GSDV), also known as myophosphorylase deficiency and 
McArdle disease, is a glycogen storage disease due to a mutation in Pygm gene, 
encoding the skeletal muscle isoform of glycogen phosphorylase GP-MM, also 
known as myophosphorylase [43, 44]. Myophosphorylase is responsible for initiat-
ing the breakdown of glycogen in muscles, without which patients are unable to 
obtain energy from their endogenous muscle glycogen stores impairing muscle 
function and basic cellular events [43, 45, 46]. This recessive disorder is the most 
common muscle glycogenolysis and one of the most frequently encountered genetic 
myopathies [43, 44].

Clinically, patients with GSDV present with exercise intolerance in the form of 
reversible, acute crises of premature muscle fatigue and contracture, which can be 
accompanied by a breakdown of muscle tissue releasing myoglobin into the blood 
inducing myoglobinuria [43, 44]. Although muscle glycogenolysis is blocked, 
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glucose utilization is not; therefore, patients with McArdle disease can still uti-
lize blood glucose. Sufficient oral carbohydrates prior to exercise can improve 
exercise tolerance [43, 47].

33.2.4.2  McArdle Disease Animal Models for Future Research

Currently, there are only three GSDV animal models [3]. The first animal model 
was discovered in Charolais cattle which had a C-to-T substitution, a conservative 
mutation that caused arginine, and aliphatic amino acid, to change into tryptophan, 
an aromatic amino acid at codon 489 [3, 48].

The second model was discovered in a Merino sheep flock by Tan and colleagues 
[3, 49]. In sequencing the ovine cDNA, polymorphisms were detected in two of the 
six overlapping fragments using single-strand conformation polymorphism analy-
sis. The second of the polymorphisms contained an eight-base deletion in exon 20 
that lead to the removal of the last 31 amino acids from the protein. The creation of 
this splice site mutation was the most likely cause of the ovine McArdle’s disease 
and is similar to a previously reported case in humans [49, 50].

Following the sequencing of the GSDV ovine myophosphorylase cDNAs, the 
cDNA was found to be 91.1% homologous to the human sequence and 95.7% 
homologous at the amino acid level [49, 51]. Additionally, the Merino sheep have 
similar anthropometric proportions to humans displaying similar GSDV disease 
phenotypes ideal for testing new therapeutic approaches [49].

The third is the murine model that has been described by both Nogales-Gadea 
et al. and Brull et al. [3, 44, 52]. Nogales-Gadea and colleagues developed a knock-
 in mouse model by replacing the wild-type Pygm with a modified allele carrying a 
p.R50X mutation, the most common Pygm mutation among Caucasian GSDV 
patients [44, 53]. Biochemical and histochemical analysis revealed glycogen phos-
phorylase activity was absent in the skeletal muscle of all knock-in mice studied. 
Periodic acid-Schiff staining of glycogen findings reported accumulation of glyco-
gen beneath the cell membranes of muscle cells like those reported in patients with 
McArdle disease. Following a wired grip test and the treadmill test, the p.R50X/p.
R50X mice showed clear exercise intolerance and exercise-induced myoglobinuria, 
a clinical phenotype that is present in all GSDV patients [43, 44].

To further analyze the effects of myophosphorylase dysfunction in different 
muscle types, Brull and colleagues used the knock-in mouse model developed by 
Nogales-Gadea et al. to analyze the consequences of the absence of myophosphory-
lase on slow-twitch, intermediate, and fast-twitch muscles [44, 52]. The study cor-
roborated the finding that knock-in mice exhibited a McArdle-like phenotype in the 
same way as the line developed by Brull et al., confirming impaired exercise capac-
ity and hyperCKemia, and proved that glycogen regulatory enzyme expression dif-
fered depending on the muscle fiber type. The fast-twitch muscles extensor 
digitorum longus (EDL) exhibited the highest catabolic enzyme levels and glycogen 
content, while the oxidative, or slow-twitch, muscles (soleus) displayed the highest 
glycogen anabolic enzyme levels [44].
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All three models recapitulate the main features of human GSDV and can serve as 
valuable tool for evaluating which of the current delivery systems would be best for 
future gene therapy studies of McArdle disease [44, 49, 52, 53].

33.2.4.3  Adenovirus (AdV) and AAV Vectors in the Ovine Model 
of McArdle Disease

Presently, there is no definitive treatment for McArdle’s disease; however, new ther-
apeutic approaches are being evaluated using the animal models described in Sect. 
33.2.4.2. One such study was conducted by Howell et  al., who used the in vivo 
application of myophosphorylase gene transfer by using adenovirus 5 (AdV5) vec-
tor and AAV2 in the ovine model of McArdle’s disease [54].

For the experiments using the AdV constructs, 16 affected neonatal lambs were 
injected with the AdV5 carrying LacZ reporter gene, and the other 19 were injected 
with AdV5 carrying human myophosphorylase cDNA. For the experiments involv-
ing the use of the AAV constructs, AAV2 was used as a vector to transport either the 
LacZ reporter gene or the human myophosphorylase cDNA into the semitendinosus 
muscle of 26 affected lambs. AdV5 constructs were regulated and transduced using 
either a CMV or a Rous sarcoma virus (RVS), and the AAV2 vector was regulated 
using a CMV promoter [3, 54].

Both AdV5 and AAV2 vectors produced expression of functional myophosphor-
ylase in the area surrounding the injection site and were able to transduce ovine 
skeletal muscle; however, AdV5 was identified as the better vector for transduction 
of phosphorylase-positive fibers. AdV5 had both a higher percentage of sections 
with phosphorylase-positive fibers and a higher percentage of sections with 1000 or 
more positive fibers following injections. Expression of functional myophosphory-
lase lessened with time [3, 54].

33.3  Mitochondrial Disorders

Mitochondrial disorders are collectively one of the most common types of inherited 
metabolic disorders affecting around 1:5000 live births [55–59]. The pathogenic 
mechanisms of this multisystemic condition are heterogeneous, and the variability 
of disease onset makes generating novel therapies challenging [2, 60]. Clinically, 
organs that are highly dependent on aerobic metabolism are most likely to be 
affected. The mitochondrial dysfunction as a result of disruption in ATP synthesis in 
the skeletal muscle and the nervous system is most commonly expressed as exercise 
intolerance [55, 61].

Symptomatic therapy has become the standard of care for mitochondrial disor-
ders since no effective therapies have been identified.
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33.3.1  Barth Syndrome

33.3.1.1  Clinical Aspects of Barth Syndrome

Barth syndrome (BTHS, also called 3-methylglutaconic aciduria type II) is a rare 
(prevalence of 1:300,000–400,000 live births) X-linked disorder caused by defects 
in the tafazzin (TAZ) gene. The mutation results in the loss of function of tafazzin, 
an acyltransferase highly expressed in the cardiac and skeletal muscles and involved 
in the metabolism of the cardiolipin, one of the major phospholipids of the inner 
mitochondrial membrane. Tafazzin deficiency results in abnormal cardiolipin con-
tent and a reduction in mature tetralinoleoyl-cardiolipin [62, 63]. Clinical presenta-
tion of the disease is variable, but symptoms include cardiomyopathy, extreme 
fatigue, exercise intolerance, skeletal myopathy, neutropenia, early diminished 
growth, and associated biochemical abnormalities such as low plasma cholesterol 
and 3-methylglutaconic aciduria. Currently there are no effective therapies for 
BTHS other than supportive cardiac care [64–66].

The natural history of BTHS is variable; however, the onset of cardio-skeletal 
myopathy typically occurs by 2 years of age with fluctuating morbidity severity 
throughout childhood, adolescence, and young adulthood [64]. BTHS is a particu-
larly devastating disease as it is often fatal in childhood, with the highest risk during 
infancy and adolescence [67]. Even after infancy, many patients experience unpre-
dictable deterioration in cardiac function in adolescence or young adulthood, result-
ing in premature death.

33.3.1.2  Preclinical Studies of Barth Syndrome

Several models have been generated, including yeast, flies, zebrafish, and patients’ 
cell lines in order to understand the role of TAZ and the mechanisms involved in 
TAZ deficiency. However, advances in development and testing of potential thera-
pies came from a partial knockdown of TAZ function via RNA interference technol-
ogy (TaconicArtemis GmbH, Cologne, Germany). The model shows alteration of 
cardiolipin profiles, abnormal mitochondrial morphology, skeletal muscle weak-
ness, and cardiomyopathy [68].

Preliminary data on the effect of AAV-mediated gene therapy in the shRNA 
knockdown model was presented at the 20th American Society of Gene and Cell 
Therapy, Washington, DC, 2017 [69]. Suzuki-Hatano et al. compared intravenous 
injection of 1x1013 vg/kg of dsAAV9-desmin-TAZ, dsAAV9-cytomegalovirus-
TAZ, or dsAAV9-tafazzin-TAZ. Mice from all treatment groups displayed improve-
ments in multiple parameters including cardiac dimensions, body weight, muscle 
strength and fatigability, oxygen consumption, and mitochondrial quality. Results 
from this preliminary work suggest that gene therapy is a promising therapeutic 
treatment for Barth syndrome.
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33.3.2  Friedreich’s Ataxia (FRDA)

33.3.2.1  Clinical Aspects of FRDA

FRDA is an autosomal recessive and progressive condition caused by abnormal 
expansion of GAA repeat in intron 1 of the frataxin (FXN) gene. The mutation 
results in reduction of frataxin levels in mitochondria, a mitochondrial protein that 
is responsible for regulating iron-sulfur cluster enzymes within the cell. Reduced 
levels of frataxin lead to iron accumulation and oxidative stress [70, 71].

The clinical manifestation of the disease is variable, but symptoms include 
slowly progressive ataxia, dysarthria, muscle weakness, spasticity particularly in 
the lower limbs, scoliosis, bladder dysfunction, absent lower limb reflexes, and 
loss of position and vibration sense. In addition, approximately two thirds of indi-
viduals with FRDA have cardiomyopathy, as many as 30% have diabetes melli-
tus, and approximately 25% have an “atypical” presentation with later onset or 
retained tendon reflexes [72, 73]. Individuals with typical FRDA develop progres-
sive ataxia with onset from early childhood through to early adulthood, starting 
with poor balance when walking, followed by slurred speech and upper-limb 
ataxia. The rate of progression of FRDA is variable with an average time from 
symptom onset to wheelchair dependence around 10 years and with a more rapid 
progression in those with earlier disease onset. The mean and the median age of 
death is 36.5 and 30, respectively. The most common cause of death is related to 
cardiac events [74].

33.3.2.2  Preclinical Studies of FRDA

Currently, there is no definitive therapy for FRDA. Over the past several years, mul-
tiple mouse models of frataxin deficiency have been generated [75] including a 
knock-in knockout model and repeat expansion knock-in model [76]; transgenic 
mice containing the entire Fxn gene within a human yeast artificial chromosome, 
YG8R and YG22R [77–79]; as well as a conditional Fxn knockout mouse, includ-
ing the cardiac-specific [80, 81] and a neuron-specific model [82]. These transgenic 
and heterozygous knockout FRDA animal models have the limitations to be mildly 
symptomatic and/or restricted to specific tissues. Recently, a frataxin knockdown 
model via RNA interference technology, like the shRNA BTHS model, was devel-
oped. The shRNA model presents multiple features observed in human patients and 
enables to control onset and progression of the disease phenotype by modulation of 
frataxin levels [83].

Presently, the potential of gene therapy for the treatment of FRDA has been 
investigated using several approaches. Perdomini et al.[84] showed that intrave-
nous (IV) delivery of an adeno-associated virus rh10 vector expressing human 
frataxin could prevent the onset of cardiac disease in a conditional model of FA 
with partial frataxin depletion in cardiac muscle. Although this approach may 
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pave the way for an isolated cardiac gene therapy-based clinical trial, it does not 
address the  neurological degeneration, which is one of the most debilitating 
aspects of FA.  Similar work was described after intraperitoneal injection of 
AAV9-hFXN [85].

The use of lentivirus-meditated frataxin gene delivery to reverse genome 
instability in Friedreich ataxia patient and mouse model fibroblasts has also 
been tested [86]. Lentivirus frataxin gene delivery to FRDA patient and YG8sR 
FRDA mouse model fibroblast cells induced long-term overexpression of FXN 
mRNA and frataxin protein levels with reduced double-strand break levels 
toward normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells 
revealed impaired double-strand break repair that was recovered on FXN gene 
transfer.

Ouellet et al. recently reported the use of the clustered regularly interspaced short 
palindromic repeat (CRISPR) system, using either SpCas9 or SaCas9 in combina-
tion with a pair of single-guide RNA (sgRNA), to delete the GAA trinucleotide 
repeats in vitro in YG8R26 and YG8sR29 mouse fibroblasts and in vivo in a YG8R- 
derived mouse line. The authors identified the YG8sR as a more suitable in vitro 
model to study CRISPR edition for FRDA as it has only one copy of the human 
FRDA FXN transgene. The authors suggest the use of YG8sR mouse model to study 
GAA correction using an AAV vector coding for the SaCas9 and two sgRNAs tar-
geting the pre- and the post-GAA repeat [87].

Preliminary data on the effect of AAV-mediated gene therapy in the shRNA 
knockdown model was presented at the 20th American Society of Gene and Cell 
Therapy [88]. Nair et al. showed that IV injection of AAV9-CBA-FXN prevented 
weight loss and death in the conditional knockdown model. Additional work from 
the same group was presented at the International Ataxia Research Conference. 
Byrne and Corti showed the combination of IV and intrathecal (IT) injections of 
AAV9-CBA-FXN in the conditional knockdown model and in nonhuman primates 
to treat both the cardiac and neurological symptoms of the disease. Besides the dual 
route of administration, an additional novelty of this approach is the implementation 
of a large-scale manufacturing process using a recombinant herpes simplex virus 
(rHSV) for AAV production described in Chap. 15.

33.4  Fatty Oxidation Defects

Mitochondrial fatty acid oxidation defects account for a substantial amount of both 
acute and chronic liver, heart, and skeletal muscle diseases in patients of all ages 
[89]. Clinically, the defects mimic Reye’s syndrome and are characterized by epi-
sodic nonketotic hypoglycemia and periods of decompensation when carbohydrate 
levels are low [90]. The fatty acid oxidation disorder reviewed in this section will be 
very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency.
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33.4.1  Clinical Aspects of VLCAD

According to Leslie and colleagues, VLCAD deficiency, a deficiency affecting 
between 1:40,000 and 1:120,000 persons, is associated with three phenotypes 
including severe-/early-onset multisystem failure, hypoketotic hypoglycemia, and 
later-onset recurrent rhabdomyolysis [91, 92].

Clinically, all three phenotypes present differently. The first phenotype presents 
as a Reye-like syndrome characterized by severe cardiomyopathy, pericardial effu-
sion, muscle weakness, enlarged livers, and periodic hypoglycemia. This phenotype 
is often considered lethal without early intervention. The second phenotype lacks 
cardiomyopathy but presents with hepatomegaly and episodic hypoglycemia due to 
hypoketosis, which refers to reduced levels of ketones produced during the break-
down of fats and used for energy. The final and most common phenotype is charac-
terized by exercise intolerance resulting in rhabdomyolysis accompanied by an 
increase in serum and urine myoglobin [89, 91].

33.4.2  AAV Gene Therapy in Murine Models for VLCAD

Currently, there is no curative treatment for VLCAD, only dietary therapies [89, 
91]. In an effort to find a human gene replacement strategy for VLCAD deficiency, 
Merritt and colleagues designed an AAV stereotype 2/8 vector (AAV2/8) containing 
human VLCAD cDNA (AAV8-hvLCAD). AAV8-hvLCAD, regulated by a CMV 
promoter expressed in murine hepatocytes, was administered into the tail vein of 
VLCAD knockout mice in vivo [93].

Postinjection Western blot analysis revealed hvLCAD in the liver of the early 
treatment group but absent in the late treatment group. However, the histological 
analysis of both treatment groups revealed no adipose degeneration. PCR analysis 
demonstrated more vector sequences and a greater proportion of hepatocytes 
expressing AAV8-hvLCAD in the VLCAD knockout mice than in the VLCAD- 
deficient mice. Furthermore, strong expression of hvLCAD was seen in the heart 
and liver with further increases in the heart as time passed. However, the vector 
seemed unable to cross the blood-muscle barrier seeing as there was no expression 
in the skeletal muscle. VLCAD knockout mice also exhibited a reduction in acylcar-
nitines and demonstrated fasting serum glucose levels with no hypoglycemia [93]. 
Merritt et al. were able to demonstrate limited biochemical correction in VLCAD- 
deficient mice.

Keeler et al. also demonstrated a transduction profile for AAV inclusive of a wide 
distribution of tissues using AAV9. The authors treated VLCAD−/− mice with an 
AAV9-CBA-VLCAD vector and compared them to both VLCAD−/− PBS controls 
and VLCAD+/+ mice. The AAV9-treated VLCAD−/− mice displayed concentrations 
of rAAV9-VLCAD in the liver and cardiac and skeletal muscle and transduced a 
wider network of organs than seen with AAV8-hvLCAD. Additionally,  AAV9- treated 
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VLCAD−/− mice also demonstrated both blood and tissue biochemical correction. 
Acyl carnitine accumulation in the blood was largely reduced in the rAAV9-treated 
group as well as in the liver, skeletal (EDL and soleus), and cardiac muscle [94].

Phenotypically, the AAV9-treated VLCAD−/− mice also saw disease correction 
when compared to both VLCAD−/− PBS controls and VLCAD+/+ mice. The AAV9- 
treated VLCAD−/− mice challenged by cold exposure were able to maintain average 
core temperature, did not display lethargy or muscle weakness, and were able to 
maintain glucose levels without signs of hypoglycemia [94]. Taken together, the 
results do show promise using AAV9 gene therapy as a possible treatment for this 
Reye-like syndrome.
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Chapter 34
Elimination of Mutant Mitochondrial DNA 
in Mitochondrial Myopathies Using  
Gene- Editing Enzymes

Sandra R. Bacman and Carlos T. Moraes

Abstract Mitochondrial diseases form a genetically and clinically heterogeneous 
group of disorders that result in the dysfunction of the mitochondria oxidative phos-
phorylation (OXPHOS). This system is responsible for the generation of the cellular 
energy required for the function of cells, tissues, and organs. Skeletal and cardiac 
muscle dysfunction is also a common feature of mitochondrial diseases. Effective 
treatments have not been developed and are mostly related to supportive manage-
ment and palliative therapies. Most pathogenic mitochondrial DNA (mtDNA) muta-
tions are in a heteroplasmic state, and high levels of mutated mtDNA within a cell 
are required to exceed a critical threshold to cause a phenotype. Therefore, the goal 
of a therapeutic intervention would be to eliminate or decrease the amount of 
mutated mtDNA below a certain threshold to avoid clinical and biochemical mani-
festations of the disease. Our group and others have made several advances over the 
last 15 years inducing heteroplasmy shift as a potential strategy to treat mtDNA 
disorders. Although mitochondrial-targeted restriction endonucleases can efficiently 
change mtDNA heteroplasmy both ex vivo and in vivo, this approach can be used 
therapeutically only if a unique restriction site is created by a mtDNA mutation. To 
overcome this, non-specific endonucleases targeted to mitochondrial mutations 
have been developed using gene-editing nucleases such as zinc finger nucleases 
(ZFNs) and transcription activator-like effector nucleases (TALENs). These are 
being used to reduce mutant mtDNA in the muscle and heart of mouse models. 
Although some limitations and concerns exist, future experiments should make this 
approach safe to treat patients.
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34.1  Introduction

Mitochondrial diseases form a genetically and clinically heterogeneous group of 
disorders that result in the dysfunction of the mitochondria oxidative phosphoryla-
tion (OXPHOS), which is responsible for the generation of the cellular energy 
required for the function of cells, tissues, and organs [1]. As skeletal and cardiac 
tissues demand high energy, mitochondrial diseases present very frequently as 
myopathies and cardiomyopathies [2]. They also present as syndromes with vari-
able clinical features [3] with onset in either adult or childhood [4].

Cardiomyopathies can present with arrhythmias and conduction defects, pulmo-
nary hypertension, pericardial effusion, dilated aortic root, and coronary heart dis-
ease [5]. Myopathies and cardiomyopathies are frequent manifestations of 
mitochondrial diseases associated with defects in OXPHOS, involving complex 
subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal pro-
teins, translation factors, mtDNA maintenance, and CoQ10 synthesis [1]. For exam-
ple, complex I deficiency can present with hypertrophic cardiomyopathy as the sole 
symptom or associated with a multi-organ disease. Cardiomyopathy can be caused 
by mutations in the mitochondrial DNA involving complex I subunits (MTND1 and 
MTND5) or nuclear gene mutations encoding subunits (NDUFS2, NDUFV2, 
NDUFA2, and NDUFA4) [6] or assembly factors (ACAD9 and NDUFAF1) [7, 8]. 
Mutations in complex II subunit genes (SDHA and SDHD) have been described in 
patients with hypertrophic and dilated cardiomyopathies [9]. Mutations in the 
MTCYB gene that encodes cytochrome b were also reported in patients with hyper-
trophic and dilated cardiomyopathies [10] as well as in patients with isolated myop-
athies and exercise intolerance [11, 12]. Mutations in COX6B1 manifest with 
encephalomyopathy, hydrocephalus, and cardiomyopathy [13]. Heart involvement 
was also observed in patients with mutations in complex IV assembly factor genes 
(COX10, SURF1, SCO2, and C2orf64) [13–15].

Mutations in mitochondrial tRNA genes, such as the m.8344A> G in MTTK 
(encoding mitochondrial tRNA lysine) responsible for myoclonic epilepsy with 
ragged-red fiber (MERRF) [16], or MTTL1 m.3243A> G mutation, causing 
MELAS syndrome [17–19], were found in patients with multi-organ mitochondrial 
diseases or isolated cardiomyopathies [20]. Mutations in the mt-tRNAAla are also 
associated with isolated myopathy [21].

Mutations in mitochondrial-encoded MT-ATP6 (mitochondrial ATP synthase 6), 
associated with maternally inherited Leigh syndrome (MILS) [22], neurogenic 
muscle weakness, ataxia and retinitis pigmentosa (NARP) [23], and chronic pro-
gressive external ophthalmalgia (CPEO) [24], caused complex clinical presenta-
tions also including severe heart and skeletal muscle involvement [25].

Skeletal muscle dysfunction is also a common feature of mitochondrial diseases, 
resulting in progressive external ophthalmoplegia and exercise intolerance [2, 26]. 
Mutations in the mtDNA commonly cause myopathies and are diagnosed by the 
presence of ragged-red fibers and cytochrome oxidase-negative fibers in muscle 
biopsies [27, 28]. Large deletions of mtDNA as well as point mutations in some 
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tRNA genes are frequently observed in patients with PEO or a more severe and 
generalized Kearns-Sayre syndrome [29, 30]. Mutations in cytochrome b have been 
associated with exercise intolerance, proximal weakness, and occasional myoglo-
binuria [31, 32].

Although the speed of mitochondrial research has increased since the first 
description of pathogenic mtDNA mutations in the late 1980s, and great progress 
has been made in understanding the fundamental pathogenic processes causal of 
mitochondrial disease, effective treatments have not been developed and are mostly 
related to supportive management and palliative therapies [33, 34]. Therefore, gene 
therapy is an attractive therapeutic strategy for the treatment of mitochondrial dis-
eases. In sections below, we review strategies that have been developed to replace 
the mutated gene and to manipulate mtDNA heteroplasmy by restriction enzymes 
and gene-editing enzymes and selective elimination of mtDNA mutations in the 
germline by genome editing. We also discuss limitations, concerns, and future 
direction of mitochondrial disease gene therapy.

34.2  Re-expression of Mutated Genes

Expressing the wild-type gene to correct mutation in critical organs or tissues and 
produce normal proteins has long been used to treat genetic diseases [34]. One 
example is its applicability to mitochondrial neurogastrointestinal encephalopathy 
(MNGIE) syndrome, which is caused by mutations in the thymidine phosphorylase 
(TYMP) gene. The TP deficiency results in systemic accumulation of thymidine 
and deoxyuridine, interfering with mitochondrial DNA replication and leading to 
mitochondrial dysfunction. Previous treatments available for MNGIE patients were 
allogeneic hematopoietic stem cell transplantation, which was associated with high 
morbidity and mortality [35, 36]. Other work done on a murine model of MNGIE 
demonstrated that gene therapy-expressing TYMP was a useful approach to normal-
ize the biochemical abnormalities using either ex vivo transduction of a lentiviral 
vector targeted at hematopoietic stem cells [37] or an adeno-associated virus vector 
(AAV) with targeted expression at the liver [38]. TYMP was able to restore nucleo-
side homeostasis in the animal model of MNGIE during the entire life of the mice 
using AAV2/8 vector targeted to the liver with long-term restoration of dCTP and 
dTTP levels in plasma and tissue for up to 8 months [39]. The nucleoside reduction 
achieved by the treatment prevented deoxycytidine triphosphate (dCTP) depletion, 
which is the limiting factor affecting mtDNA replication in this disease [40].

In another example of re-expressing mutated genes, the heart-muscle isoform 
of the mitochondrial adenine nucleotide translocator (ANT1), associated with 
mitochondrial myopathy, was reintroduced in a mouse model. An AAV2 vector 
carrying the mouse Ant1 cDNA was used to transduce muscle cells and muscle 
from Ant1 mutant mice, which has a mitochondrial myopathy. AAV-ANT1 injec-
tion in the heart and muscle resulted in long-term, stable expression of the Ant1 
transgene and functional ADP/ATP carrier increasing the mitochondrial export of 
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ATP and  reversing the histopathological changes associated with the mitochon-
drial myopathy. This approach has the potential to provide symptomatic relief for 
the ophthalmoplegia and ptosis resulting from paralysis of the extraocular eye 
muscles caused by mutations in the Ant1 gene [41].

Ethylmalonic encephalopathy (EE) is an invariably fatal disease, characterized 
by the accumulation of hydrogen sulfide, a highly toxic compound. ETHE1 “ethyl-
malonic encephalopathy 1 protein and per sulfur dioxygenase (SDO)” encodes for 
a protein which takes part in the mitochondrial pathway that converts sulfide into 
harmless sulfate. A mouse model was described lacking the Ethe1 gene, Ethe1(−/−) 
that showed features of ethylmalonic encephalopathy with thiosulfate excreted in 
massive amounts in urine, resembling humans with ethylmalonic encephalopathy. 
Sulfur dioxygenase activity was absent in Ethe1(−/−) mice [42]. Using AAV2/8- 
mediated, ETHE1-gene transfer to the liver of Ethe1(−/−) mouse resulted in full 
restoration of sulfur dioxygenase (SDO) activity, correction of plasma thiosulfate, 
and clinical improvement with increased survival [43].

34.3  Manipulation of mtDNA Heteroplasmy

Most pathogenic mitochondrial DNA mutations are in a heteroplasmic state 
(mutated and WT mtDNA coexist in the same cell). The levels of mtDNA mutation 
within a cell or tissue required to exceed a critical threshold to cause a phenotype 
are relatively high (>70% mutant) [44, 45]. As most pathogenic mutations of 
mtDNA behave as “recessive-like” mutations, the principal goal of therapeutic 
intervention would be to eliminate or decrease the amount of mutated mitochondrial 
DNA below a certain threshold to avoid clinical and biochemical manifestations of 
the disease. This threshold level varies for each mutation and tissue and is depen-
dent on several factors including OXPHOS requirements [46]. In general, mtDNA 
deletions cause disease at lower tissue mutation loads than point mutations, 60% 
versus 80% [33]. Even within the tissue of the same individual, higher mutation 
loads are associated with strong biochemical phenotypes [47].

34.3.1  Manipulating mtDNA Heteroplasmy with Specific 
Restriction Endonucleases

Heteroplasmy shift is a potentially useful strategy to treat mtDNA disorders, and our 
group has made several observations over the last 15 years. Table 34.1 summarizes the 
models published. The first study using restriction endonucleases (RE) to modify 
mtDNA heteroplasmy was published by Srivastava and Moraes [48]. In this case, PstI 
was used to differentiate between mouse and rat mtDNA (rat mtDNA does not have PstI 
sites). This interesting model allowed RE to be manipulated to reduce the levels of the 
mouse mtDNA in xenomitochondrial cybrids harboring both rat and mouse mtDNA.
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RE was also used to target the human mtDNA mutation T8993G (also known as 
the NARP mutation in the MT-ATP6 gene) [49]. This mtDNA mutation is associ-
ated with neuropathy ataxia and retinitis pigmentosa (NARP) or maternally inher-
ited Leigh syndrome (MILS) [50, 51]. The authors were able to reduce the level of 
the mutation in heteroplasmic cybrids cells using a mitochondria-targeted SmaI 
restriction endonuclease. Further studies were done using the SmaI isoschizomer 
XmaI RE expressed from an adenovirus system. Mitochondria-targeted XmaI lead 
to selective destruction of the mutant mtDNA in a time and dose-dependent manner, 
restoring some of the phenotypes caused by the mutation. These included oxygen 
consumption and ATP levels that were decreased in the original cybrids carrying the 
mtDNA mutation. In addition, lactic acid production was decreased after the treat-
ment showing that this approach can be useful for the treatment of NARP and MILS 
[52]. Another approach using restriction endonucleases to digest mtDNA was devel-
oped by Bayona-Bafaluy et  al. in our laboratory [53]. The goal was to decrease 
specific mtDNA haplotypes by expressing a mitochondrially targeted restriction 
endonuclease, ApaLI, in cells of heteroplasmic mice that carry two mtDNA haplo-
types (BALB/NZB) [54], only one of which contains an ApaLI site (BALB mtDNA). 
After transfection of cultured hepatocytes derived from the heteroplasmy mice with 
mitochondrially targeted ApaLI, the authors found a rapid, directional, and robust 
shift in mtDNA heteroplasmy in 2–6 h after transfection, with an increase in the 
NZB haplotype. The approach was also tested in vivo, by using recombinant viral 
vectors expressing the mitochondrially targeted ApaLI. A significant shift in mtDNA 
heteroplasmy was observed in the muscle and brain transduced with recombinant 
viruses (rAd and rAAV1 and 2, respectively). The use of restriction endonucleases 
to specifically digest the mtDNA in vivo was further explored in our laboratory. 
Bacman and colleagues published a system of a “differential multiple cleavage-site” 
in the same heteroplasmic mouse model described above, using a different restric-
tion endonuclease. In this study the authors used ScaI that recognizes five sites in 
the BALB mtDNA and three sites in the NZB mtDNA [55]. The mitochondrial- 
targeted Scal restriction endonuclease was delivered to different mouse tissues and 
showed that changes in mtDNA heteroplasmy were obtained after expression of 
mitochondria-targeted ScaI, in both livers after intravenous injection and in skeletal 
muscle after intramuscular injection using a recombinant adenovirus as a vector.

Continuing with this line of investigation, we took advantage of the specificity of 
AAV serotypes to target different tissues in vivo [56]. In this case, the mitochondrial- 
targeted ApaLI was able to increase the proportion of NZB mtDNA in targeted tis-
sues. This was observed after systemic injections of a cardiotropic AAV6 or in the 
liver, using the hepatotropic adenovirus type-5 (Ad5). No loss of cytochrome c oxi-
dase activity was observed in any of these tissues. The same principle was used with 
neonates [57]. In this case, a single injection in P2-P3 mice was delivered intraperi-
toneal (IP) or in the temporal vein (TV) using a recombinant AAV9 carrying the 
mito-ApaLI construct described above. The same heteroplasmic mice NZB/BALB 
were used, and the shift of heteroplasmy was found in all the skeletal muscle tissues 
and heart, confirming previous reports which showed a robust muscle transduction 
with AAV9 when injected systemically [58, 59]. These experiments showed that not 
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only the use of mitochondrial-targeted restriction endonuclease is a useful tool to 
change mtDNA heteroplasmy for specific mtDNA mutations but also revealed its 
applicability in vivo and the benefit that a unique injection, when using the adequate 
viral vector, could be enough to promote a long-lasting and probably definite change 
in heteroplasmy.

The approach requires a highly specific nuclease that recognizes one haplotype 
but not the other(s). Upon double-strand breaks, linearized mtDNA is quickly 
degraded [53]. The residual mtDNA will replicate to make up for the possible 
depletion.

34.3.2  Manipulating mtDNA Heteroplasmy  
with Gene-Editing Enzymes

Although mitochondrial-targeted restriction endonucleases can efficiently change 
mtDNA heteroplasmy both ex vivo and in vivo, this approach can be used therapeu-
tically only if a unique restriction site is created by a mtDNA mutation, as in the 
case of the T>G NARP mutation. This has limited their further development. 
However, the recent development of gene-editing nucleases has broadened the spec-
trum of mtDNA mutation that can be targeted [60].

Our group and others have investigated the use of endonucleases with modular 
DNA recognition domains, which can be designed to bind almost any predeter-
mined DNA sequence. Various gene-editing nucleases are actually available to 
modify nuclear genes, such as bacterial Streptococcus pyogenes clustered regularly 
interspaced short palindromic repeats, CRISPR-associated protein-9 nuclease 
(Cas9) [61]. Other available tools include zinc finger nucleases (ZFNs), artificial 
restriction enzymes generated by fusing a zinc finger DNA-binding domain to a 
DNA-cleavage domain [62], and transcription activator-like effector nucleases 
(TALENs) that are secreted by Xanthomonas bacteria via their type III secretion 
system [63] (Figs. 34.1 and 34.2; Table 34.1).

These gene-editing tools are commonly used to modify nuclear genes. Because 
the goal is usually to knock out the gene, nuclear DNA can be targeted at different 
positions of the genome to achieve optimal recognition sites, avoiding sites with 
similar sequences elsewhere in the genome. The use of these gene-editing tools to 
eliminate mutant mtDNA is more challenging as mtDNA point mutations require 
the specific recognition of one base to be discriminated from the non-targeted 
DNA.  Furthermore, import of endonucleases to mitochondria is also not trivial, 
especially for ZFNs which have strong nuclear tropism [64, 65]. Even more chal-
lenging, CRISPR-Cas9 requires an RNA template, which cannot be easily imported 
into the mitochondria. In fact, we have attempted to use CRISPR-Cas9 in our lab, 
but were not able to promote mutant mtDNA elimination, even if Cas9 was imported 
into mitochondria (unpublished).

Both the TALEN and the zinc finger systems share a common basic structure 
utilizing sequencing-independent endonuclease domain from FokI coupled to a 
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Fig. 34.1 Changing mtDNA heteroplasmy with site-specific mitochondrial-targeted nucleases. 
Cells with predominant levels of mutant mtDNA are subjected to mitochondrial-targeted nucleases 
that specifically promote the elimination of mutant genomes. Residual mtDNA replicates and 
restores the normal copy number, which will contain lower percentages of mutant mtDNA

sequence-specific modular DNA-binding domain [65, 66]. As FokI creates double- 
strand breaks (DSBs) as a dimer, both enzyme systems require the design of pairs of 
monomers that bind specifically the region of interest in close proximity, enabling 
the dimerization of FokI domains and double-strand cleavage between the monomer- 
binding sites. Once the DSB has been made, at least in nuclear genes, the lesion may 
be repaired by either nonhomologous end joining (NHEJ) or homologous recombi-
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nation [67]. Mutations can be permanently introduced into the genome upon repair. 
Since NHEJ is error-prone, repair can result in deletions or insertions at the break 
site, potentially resulting in frameshifts. During homologous recombination, if a 
repair template is introduced that contains a mutation, that mutation will be perma-
nently introduced into the genome upon repair.

34.3.2.1  Zinc Finger Nucleases Targeted to Mitochondria

Zinc finger nucleases (ZFNs) are chimeric enzymes in which the modular Cys2- 
His2- zinc finger protein (ZFP) forms three to six individual zinc finger repeats that 
account for a total recognition of a unique 9–18 bp sequence [71–73]. Fusing a 
particular ZFP to a nuclease domain creates a zinc finger nuclease (ZFN) that can 
cleave DNA adjacent to the specific ZFP-binding site, providing sequence specific-
ity to cleave the DNA [66]. This specific DNA sequence when conjugated with a 
type II restriction enzyme such as FokI, after dimerization, can cleave the double- 
strand DNA [69]. To achieve dimerization, pairs of ZFNs are used to bind adjacent 
sequences of the double-strand DNA to cleave it [70]. Zinc finger nucleases (ZFNs) 

Fig. 34.2 MitoTALEN structure and function. Genes coding for mitoTALENs are introduced in 
the nuclear genome, where it is expressed according to its promoter. The protein is made in the 
cytosolic ribosomes and imported into the mitochondria through the translocases of the inner and 
outer membrane complexes (TIM/TOM). Once imported, the mitochondrial targeting sequence 
(MTS) is cleaved by endogenous peptidases and the TALENs find their target in the mtDNA. Double- 
strand break is performed by the FokI domain that works as an obligatory heterodimer, increasing 
specificity. The DNA-binding domain is formed by 34 amino acid repeats (RVDs), where two of 
the variable residues define specificity (A = NI; T = NG; C=HD; G = NN)
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improved the efficiency of gene targeting by generating DSBs at preselected sites on 
the chromosome [71, 72]. The custom-designed ZFN modules recognize 3–4 bp 
that account for a total recognition of a unique 9–18 bp DNA target sequences [68] 
with 4–7 bp spacers between each of the half sites. ZFN technology has been suc-
cessfully applied to nuclear genome editing in many organisms including human 
cell lines [73] to correct specific genes via homologous recombination after achiev-
ing double-strand brakes of nuclear DNA [64]. ZF-based DNA modifications were 
successfully achieved in mtDNA by Minczuk et  al. [74] to specifically modify 
methylation in mtDNA using a chimeric zinc finger methylase. Later on, the same 
group developed a strategy with a single-chain ZFNs conjugating two FokI nuclease 
domains, connected by a flexible linker to a ZFP with an N-terminal mitochondrial 
targeting sequence (MTS) and nuclear export signal (NES) peptides to be targeted 
specifically to mitochondria [75]. ZFNs were shown to be efficiently transported 
and expressed into the mitochondria in heteroplasmic human cybrids carrying the 
m.8993T>C mutation and bind the DNA in a sequence-specific manner discriminat-
ing between two 12-bp-long sequences that differ in a unique base pair. With an 
improved design of mtZFNs, two single monomers of the engineered ZFNs were 
targeted to bind adjacent sites on complementary DNA strands spanning the tar-
geted sequences and allowing the dimerization of the FokI nuclease domains needed 
to cleave double-strand DNA [76]. This approach was successfully used to shift 
heteroplasmy in the human cybrids carrying the m.8993T>C mutation, accompa-
nied by biochemical phenotype improvements such as restoring mitochondrial res-
piration, oxygen consumption, and ATP production and improving energy states 
[77]. They also applied this gene-editing technique in the large-scale mtDNA dele-
tion of 4977 bp, called “common deletion,” which is associated with adult-onset 
chronic progressive ophthalmoplegia (CPEO) and in Kearns-Sayre and Pearson’s 
syndromes [76, 78]. The defect in mtDNA gene expression was corrected by 
mtZFNs and resulted in rescue of oxygen consumption rate and increased abun-
dance of respiratory complex subunits.

34.3.2.2  TALE Nucleases Targeted to Mitochondria

Transcription activator-like (TAL) effectors recognize DNA in a modular fashion. 
Found in plant pathogenic bacteria as members of the genus Xanthomonas, TAL 
effectors are positive-acting transcription factors activating expression of down-
stream genes, which may contribute to bacterial colonization, symptom develop-
ment, or pathogen dissemination [63]. TAL effectors recognize DNA through the 
amino acid repeats as the targeting domain of the protein, composed of 34 amino 
acids. Because the last repeat is truncated and contains only 20 amino acids (instead 
of 34), it is referred to as 0.5 repeat. Most TAL effectors have between 15.5 and 22.5 
TALE repeats per monomer to avoid off-target cleavage [79, 80] with a recognition 
site of 14–20 bp per TALEN monomer, 28–40 bp per TALEN pair [68].

Each repeat is identical, and the polymorphism among the repeats is almost 
exclusively localized to a pair of residues at positions 12 and 13, called the repeat- 
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variable di-residue (RVD), with the four most common RVDs (HD, NG, NI, and 
NN) accounting for binding to each of the four nucleotides (C, T, A, and G, respec-
tively) providing the basis to engineering novel specificities [81–83]. This simple 
DNA recognition code and its modular nature makes TALEs an ideal platform for 
constructing custom-designed artificial DNA nucleases [84, 85]. The traditional 
TAL N-terminus requires a “T” base at position 0 for binding (Fig. 34.2). We often 
take advantage of this requirement when designing mutant-specific mitoTALENs 
[86]. The high specificity of the TALENs is due to, in great part, the combination of 
both sequence specificity of TALE binding and the positional requirements of FokI 
cleavage (Fig. 34.2). The two monomers that bind to the DNA are attached to FokI 
endonucleases that work as dimers. Therefore, double-strand breaks can be gener-
ated similarly to the ones formed by ZFNs. In both ZFN and mitoTALENs, the FokI 
moieties have been engineered to work as obligatory heterodimers, minimizing off- 
target DSB [87, 88]

This approach was used to specifically target mtDNA mutations by our group 
[89]. We designed mitochondrial-targeted transcription activator-like effector nucle-
ases or mitoTALENs to cleave specific sequences in the mtDNA with the goal of 
eliminating mtDNA-carrying pathogenic point mutations. The mitoTALEN con-
struct basically consist of the following:

 1. A basic TAL-binding domain [86], which is relatively short (10–16 repeats)
 2. A mitochondrial localization signal in the N-terminus
 3. Each TALEN monomer has a unique tag (hemagglutinin (HA) or Flag) for 

immunological detection
 4. Each construct also contains a GFP or mCherry for sorting of transfected cells
 5. Inclusion of 3’UTR untranslated region from a nuclear gene (ATP5B or SOD2 

mRNA) known to localize mRNA to ribosomes contacting mitochondria
 6. Both mitoTALEN and the fluorescence marker genes are expressed from a 

unique promoter (CMV) using of a recoded picoviral 2A-like sequence (T2A) 
[90] between the mitoTALEN and the fluorescence marker that allows transla-
tion of different proteins from a unique transcript.

We tested a mitoTALEN in human osteosarcoma cells heteroplasmic for the mtDNA 
“common deletion” (m.8483_13459del4977) that is presented in approximately 30% 
of all patients with mtDNA deletions [91] and also in normal aging tissues [92]. The 
monomers bind specifically to a WT-sequence flanking the region to be removed. 
When bound to the deletion-mutant DNA, the mitoTALENs are close enough to 
allow the FokI dimerization and subsequent cleavage. The “common deletion”-mito-
TALEN (Δ5-mitoTALEN) co-localized to mitochondria and was tested in human 
heteroplasmic cybrids for the deletion by transfecting two monomer- containing plas-
mids. This analysis showed that the Δ5-mitoTALEN was effective in reducing the 
mtDNA deletion load and changing mtDNA heteroplasmy to a predominance of 
wild-type mtDNA. We then measured the levels of the different mtDNA species by 
quantitative PCR (qPCR) and found that the change in heteroplasmy was primarily 
caused by a reduction in the absolute levels of deletion- mutant mtDNA with the trend 
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toward a reduction in the total mtDNA levels after 2 days, compensated by an increase 
in wild-type mtDNA levels at 14 days.

The other mtDNA mutation that we tested was the point mutation m.14459G>A 
in MT-ND6 that causes the Leber’s hereditary optic neuropathy plus dystonia [93]. 
In this case one monomer binds the wild-type sequence adjacent to the mutation (or 
wild-type strand), and the cleavage is dictated by the binding of the recognition 
sequence where the m.14459A is present (mutant strand). Transfection of hetero-
plasmic cells showed a significant increase in the wild-type mtDNA that persisted 
for 14 days, and complex I activity, which was defective in the cells carrying the 
point mutation in the MT-ND6 before the mitoTALENs transfection was improved 
after the mitoTALENs treatment [89].

The ability of TALENs to differentiate targets with only single nucleotide differ-
ences can be difficult, but we showed that this can be accomplished for different 
point mutations. Besides the m.14459A, we designed mitoTALENs [94] to target 
two relatively common pathogenic mtDNA point mutations associated with mito-
chondrial diseases: the m.8344A>G tRNALys gene mutation associated with myo-
clonic epilepsy with ragged-red fibers (MERRF) [95, 96] and the m.13513G>A 
ND5 mutation associated with MELAS/Leigh syndrome [97, 98]. MitoTALENs 
were co-localized to mitochondria and were able to promote a robust change in 
mtDNA heteroplasmy in both mtDNA point mutations while improving the 
OXPHOS function in the case of the m.8344A>G tRNALys gene mutation associ-
ated with MERRF syndrome.

We were able to reduce the size of the TALE-binding domain, downsizing the 
original m.8344A>G mitoTALEN sense and antisense monomers, which originally 
had 15.5 and 9.5 RVDs, to 10.5 and 7.5 RVDs, respectively. These shorter mito-
TALENs were still very effective in recognizing a single base difference and shift-
ing heteroplasmy. This is important because mitoTALENs are possible tools for 
gene therapy in patients, and size of constructs are limiting for viral vectors, particu-
larly AAV.

34.3.2.3  CRISPR-Cas9 Targeted to Mitochondria

Jo et al. [99] express FLAG-Cas9 together with gRNA-targeting Cox1 and Cox3 in 
HEK-293 cells which lead to cleavage of the specific mtDNA loci. With a 
mitochondria- targeted Cas9 (mitoCas9) added together with gRNA-targeting Cox1 
and Cox3, they reported specific cleavage of mtDNA, leading to decrease copy 
number, mitochondrial membrane potential disruption, and cell growth inhibition. 
We have not been able to observe mtDNA cleavage in our lab when using a similar 
approach. Cas9 was imported into mitochondria, but no change in heteroplasmy 
was observed for two different mtDNA mutations (Hashimoto, Bacman, and 
Moraes, unpublished). Even though we used different forms of gRNA, which 
included RNA structures previously described as import structures, we suspect that 
the gRNA cannot be efficiently imported into mammalian mitochondria.
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34.4  Selective Elimination of mtDNA Mutations 
in the Germline by Genome Editing

Reddy, Ocampo, and colleagues using the NZB/BALB heteroplasmic mice, which 
contain two mtDNA haplotypes, selectively reduced one of the haplotypes and pre-
vented their germline transmission using either mitochondria-targeted restriction 
endonucleases or mitoTALENs [100]. They were able to specifically reduce mito-
chondrial genomes in oocytes and embryos using the mito-ApaLI construct previ-
ously developed in our lab [56, 101]. Mitochondrial localization was observed in the 
NZB/BALB metaphase II in oocyte injected with mRNA encoding mito-ApaLI by 
immunocytochemistry and showed specific reduction of BALB mtDNA after 48 h. 
The studies in 1-cell NZB/BALB embryos also showed decrease in the BALB 
mtDNA. The embryos injected were grown in culture and transferred to pseudo-
pregnant mice that gave birth to healthy pups with significant reduction of BALB 
mtDNA in different tissues. They also used mitoTALENs against the NZB mtDNA, 
which triggered a heteroplasmy shift in NZB/BALB toward a decrease of the NZB 
haplotype when tested in MII oocytes.

By generating artificial mammalian oocytes carrying mutated human mitochon-
drial genomes by cellular fusion of patient cells and mouse oocytes, they were able to 
test mitoTALENs specific for two mitochondrial diseases: Leber’s hereditary optic 
neuropathy and dystonia (LHOND) m.14459G>A [89] and NARP [102, 103]. After 
injection of RNA coding for mitoTALENs, they were able to reduce of LHOND 
mtDNA in MII oocytes. The same approach was used against the mutation NARP 
m.9176T>C using mitoTALENs in immortalized NARP patient cells. Again, patient 
cells harboring the NARP m.9176T>C mutation were fused to MII oocytes, and 48 h 
after mRNA injection, a specific reduction of NARP mtDNA was achieved, but they 
failed to detect a significant increase in wild-type human mtDNA [100]. This report 
expanded the use of specific and non-specific nucleases to germline transmission.

34.5  Limitations and Concerns for Gene Therapy 
of Mitochondrial Diseases

Here we have described novel strategies to reduce or eliminate mitochondrial DNA 
mutations from patient cells or from germline transmission in models of mtDNA 
heteroplasmy. As a proof of principle, these engineering nucleases open the possi-
bility to treat mtDNA diseases. However, many questions and limitations remain. 
Below we discuss some of these concerns.

 1. There are some limitations in the design of the TALENs that may limit its appli-
cability to all mtDNA mutations. It is generally accepted that the N-terminus 
proximal bases have a higher impact on binding [104], such as the presence of a 
T at position 0 (before the first repeat module-RVD binds) that is a required fea-
ture for the N-terminus of most TALEN architectures [86]. Different specificities 
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for N-terminus binding have also been developed [105] to expand the potential 
binding sites. Limitations in the construct of zinc finger nucleases reside on the 
lack of binding of guanine-poor sequences and also requiring some substantial 
protein engineering [68].

 2. The delivery of therapeutic genes and proteins with high titer remains a barrier to the 
fast implementation of genetic therapies. However, the application of gene transfer in 
mitochondrial diseases has the advantage that transient expression of the mito-
TALEN should be sufficient to produce lasting effects and changes in heteroplasmy 
[56, 89], what is not true for gene therapy of nuclear genes. For in vivo applications, 
the most promising delivery systems are viral vectors, particularly AAV, which have 
been approved for clinical use [106]. Several serotypes of AAV have been described 
to efficiently target a variety of tissues [107], including the eye, brain, liver, heart, and 
muscle [56, 108, 109]. The use of viral vectors as vehicles has been explored for both 
adults and neonates: adenovirus [110–112], AAV [108, 113, 114], lentivirus [115], 
retrovirus [116], etc. as well as the different delivery options to reach the affected 
organs and tissues involved in mitochondrial diseases [117–119].

 3. The size of the monomer or monomers to be delivered should be suitable to pack-
age in a vector system, such as AAV that have relatively small packaging capac-
ity. While ZFNs are relatively small and they can be packaged into a single AAV, 
a dimeric TALEN pair is much larger. This limitation can be resolved by packag-
ing each monomer into two separate AAV vectors, decreasing the numbers of 
RVDs in the TALEN monomers [94], or using monomeric TALENs [120].

 4. The absence of available animal models with heteroplasmic mtDNA mutations has 
been an obstacle to study gene therapy approaches in vivo. A mouse model carrying 
the common deletion has been published but was not made available to the scientific 
community at large [121]. Recently, a mouse model with a pathogenic mutation in 
the mitochondrial tRNAAla gene, with defects in mtDNA translation and histochem-
ical symptoms of a human mitochondrial disease [122], has been described [123].

 5. Mitochondrial DNA depletion could be a problem when targeting mtDNA muta-
tions, especially if the load of the mutant mtDNA is very high [89]. More con-
trolled delivery systems may need to be developed to overcome this concern and 
minimize the in vivo risk [60, 124].

 6. A major complication with engineered nucleases is the binding to unintended 
genomic sites that share sequence homology with the on-target site. Cleavage of 
these off-target sites followed by DNA repair can cause gene mutation or gross 
chromosome rearrangement. Bioinformatics analysis can be used to identify and 
avoid the most likely putative off-target sites and modifications of the structure 
of the nucleases to boost the nuclease-targeting specificity [125–127].

 7. Immunological and toxicity reaction has always been a concern when viral vec-
tors are used. These include humoral response of memory B cells when AAV 
vectors are used for gene therapies [108] and an immunological barrier composed 
of pre-existing neutralizing antibodies and CD8(+) T-cell response against AAV 
capsid in humans [128]. Furthermore, recent studies have demonstrated that Cas9 
(part of the CRISPR-Cas9 system) evokes cellular immune responses [129], 
whereas TALENs showed less undesired immune responses [130].
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34.6  Conclusions and Future Perspectives

The approaches described in this chapter show that it is possible to reduce the levels 
of mutated mtDNA in a targeted manner and give new hope for genetic therapies. 
However, these advances are still limited by the efficiency of delivery mechanisms, 
something that must be solved in order to deliver mitochondrial nucleases to all 
affected tissues, including skeletal and cardiac muscles. Furthermore, it is important 
to avoid off-target sequences (both in mitochondria and the nucleus) and demon-
strate that this approach can be used safely in vivo.

During the production of this book, two important studies were published. These 
reports showed that either mitoTALEN or mitoZFN could change mtDNA hetero-
plasmy in a mouse model harboring a pathogenic heteroplasmic mtDNA mutation. 
Recombinant AAV9 delivered these gene editing enzymes to skeletal muscle and 
heart reducing the molecular phenotypes [131, 132].
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Chapter 35
Gene Therapy for CMT Inherited 
Neuropathy

Kleopas A. Kleopa, Alexia Kagiava, and Irene Sargiannidou

Abstract Non-syndromic inherited neuropathies of the peripheral nervous system, 
collectively known as Charcot-Marie-Tooth (CMT) disease, with prevalence as high 
as 1:2500 worldwide, are genetically extremely heterogeneous. Most CMT forms 
share the clinical features of gait dysfunction, progressive muscle weakness, and 
atrophy with sensory loss in distal limbs, leading to variable degrees of disability 
over the lifespan. So far, genetic studies in CMT have identified mutations in at least 
80 different causative genes with all inheritance patterns and highly variable molec-
ular genetic mechanisms including both loss-of-function and gain-of-function 
effects. Mutations in neuronal genes usually cause axonal neuropathies, while 
mutations in genes expressed in myelinating Schwann cells cause demyelinating 
neuropathies. Treatment for CMT has so far been supportive, and there are currently 
no effective therapies for any of the CMT forms. The discovery of causative genes 
and increasing insights into CMT molecular mechanisms facilitated also by the 
study of disease models provide new possibilities for the development of gene ther-
apy approaches to treat CMT. Recent progress in optimizing gene delivery methods, 
including vectors and administration routes to target the peripheral nerves, offers 
promise for future therapies. This chapter summarizes the molecular genetic mech-
anisms of the disease and what has been developed in recent years toward a gene 
therapy for some of the CMT forms.
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35.1  Introduction

Charcot-Marie-Tooth (CMT) disease encompasses numerous types of non- 
syndromic inherited neuropathies, which all together are considered to be one of the 
most common neurogenetic disorders, with a frequency of affected individuals 
reaching 1:2500 of the general population [1, 2]. CMT neuropathies are character-
ized by an ever increasing number of causative genes involved and overlapping 
phenotypes caused by different genes (Table  35.1). Moreover, several different 
genes may cause identical phenotypes making a consistent phenotype-genotype 
correlation as well as an overall classification of CMT forms challenging. Databases 
that offer updated list of CMT genes and associated phenotypes include, besides the 
Online Mendelian Inheritance in Man (OMIM; http://www.ncbi.nlm.nih.gov/
omim), the Inherited Neuropathies Consortium (http://rarediseasesnetwork.epi.usf.
edu/INC/) and GeneReviews (http://www.ncbi.nlm.nih.gov/books/NBK1358/), 

Table 35.1 Classification and genetics of CMT disease

Inheritance Pathology
Type and 
frequency

Common 
genes (subtype 
frequency)

Other associated genes (rare or 
frequency unknown)

Autosomal 
dominant

Myelinopathy CMT1 
(40–50%)

PMP22 
(CMT1A, 
70–80%)
MPZ 
(CMT1B, 
10–12%)

LITAF/SIMPLE, EGR2, NEFL, 
FBLN5

Axonopathy CMT2 
(10–15%)

MFN2 
(CMT2A2 
20%)

KIF1B, RAB7, TRPV4, GARS, 
NEFL, HSPB1, MPZ, GDAP1, 
HSPB8, DNM2, AARS, DYNC1H1, 
LRSAM1, DHTKD1, DNAJB2, 
HARS, MARS, MT-ATP6, TFG

Intermediatea CMTDI 
(rare)

DNM2, YARS, MPZ, IFN2, GNB4

Autosomal 
recessive

Myelinopathy CMT4 
(rare)

SH3TC2 
(CMT4C 
43%)

GDAP1, MTMR2, MTMR13 
(SBF2), SBF1, NDRG1, EGR2, 
PRX, HK1, FGD4, FIG4, SURF1

Axonopathy CMT2b 
(rare)

LMNA, MED25, GDAP1, MFN2, 
NEFL, HINT1, TRIM2, IGHMBP2, 
GAN

Intermediatea CMTRI 
(rare)

GDAP1, KARS, PLEKHG5, 
COX6A1

X-linked Intermediatea 
or axonal

CMTX 
(10–15%)

GJB1 
(CMTX1, 
90%)

AIFM1, PRPS1, PDK3

Subtype frequencies are based on reports by Saporta et al. [6] and Fridman et al. [74]. For complete 
classification of CMT neuropathies, see GeneReviews (http://www.ncbi.nlm.nih.gov/books/
NBK1358/, last updated in 2018) and Scherer et al. [12]
aCombination of myelinopathy and axonopathy
bAlso referred to as CMT3
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while the inherited neuropathy variant browser (http://hihg.med.miami.edu/code/
http/cmt/public_html/index.html#/) is a valuable tool to make sense out of the 
increasing number of mutations in CMT-related genes. Despite the increasing 
understanding of the complex genetic basis and diverse disease mechanisms under-
pinning CMT neuropathies, there is currently no effective treatment for any of the 
CMT forms, and only symptomatic and supportive therapy can be offered to 
patients. Thus, there is a great need for new treatment strategies for CMT. In the last 
two decades, there has been an effort to develop gene therapies for the treatment of 
CMT. While different gene therapy approaches hold promise for the future to treat 
diseases of the central and peripheral nervous system (PNS), multiple challenges 
remain to be overcome along this effort. In this review, we will first discuss the 
genetic and biological basis of CMT neuropathies followed by some recent advances 
in the development of gene therapy approaches.

35.2  Clinical Manifestations and Classification of CMT 
Neuropathies

Patients with CMT neuropathies typically present within the first or second decade 
of life with a history of abnormal gait, tripping, and falling. The foot and foreleg 
muscle atrophy and weakness cause characteristic foot deformities with high arches 
(pes cavus) and hammer toes that may appear even in childhood. Weakness pro-
gresses slowly to more proximal lower limb muscles and to the distal upper limbs 
with subsequent “claw hand” deformities resulting from weakness and atrophy of 
intrinsic hand muscles. Deep tendon reflexes are diminished or absent [3]. Sensory 
nerves are involved in most typical CMT forms, but sensory disturbances such as 
paresthesias and neuropathic pain are rarely reported by patients, except in certain 
variants with predominantly sensory neuropathy. These clinical manifestations 
reflect the underlying slowly progressive, length-dependent axonal degeneration, 
which occurs as primary pathology in axonal types and secondary to demyelination 
in the demyelinating types, correlating with the overall disability [4].

Since the first description of the disease in the late 1800s by Charcot, Marie, and 
Tooth, the heterogeneity of CMT neuropathies has expanded to a large number of 
genetic types, with partly overlapping clinical phenotypes and mode of inheritance 
[1, 5, 6] resulting in increasing challenges to classify them (Table 35.1). The term 
hereditary motor and sensory neuropathy (HMSN) was introduced based on clini-
cal, electrophysiological, and histological features. Dominantly inherited HMSN/
CMT1/2 forms are the most common. CMT1/HMSN-I is characterized by upper 
limb motor nerve conduction velocities (NCVs) below 38 m/s and segmental demy-
elination and remyelination with onion bulb formation in nerve biopsies [7]. CMT2/
HMSN-II forms show NCVs above 38 m/s and loss of myelinated axons in nerve 
biopsies. Certain CMT types with NCVs in the intermediate range (25–45 m/s) did 
not fit these categories and were grouped under “dominant-intermediate” CMT 
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(CMTDI). CMT1X, some cases of CMT1B, and even some CMT2 and autosomal 
recessive types with mixed axonal and demyelinating findings also show intermedi-
ate NCVs (Table 35.1).

Recessive CMT forms are much rarer than dominant ones and extend across 
the whole spectrum of demyelinating, intermediate, and axonal phenotypes. 
Interestingly, some of the recessive forms share the same genes with dominant 
forms. The term CMT4/HMSN-IV described initially recessive demyelinating 
CMT forms but is also used for recessive axonal forms [8]. Déjérine-Sottas neu-
ropathy (DSN)/CMT3/HMSN-III and congenital hypomyelinating neuropathy 
(CHN) are the most severe CMT phenotypes. DSN presents with delayed motor 
development before 3 years of age and progressive weakness leading to wheel-
chair dependency, kyphoscoliosis, short stature, foot deformities, profound sen-
sory loss, and even respiratory failure. Motor NCVs are below 10 m/s, and nerve 
biopsies show a complete absence of normally myelinated axons. CHN presents 
with hypotonic weakness at birth, arthrogryposis caused by a prenatal onset, and 
swallowing or respiratory difficulties. NCVs are often below 5  m/s. DSN and 
CHN may overlap with severe CMT1 and CMT4 forms and are often caused by 
mutations in the same genes [9].

Some CMT forms affect predominantly sensory neurons and their axons and are 
called hereditary sensory and autonomic neuropathies (HSAN), or hereditary sen-
sory neuropathy (HSN) since symptoms of autonomic dysfunction are mostly subtle 
[10]. Disorders that affect mainly motor axons in a length-dependent manner are 
called hereditary motor neuropathies (HMN) or distal spinal muscular atrophy 
(DSMA). Given the complexity of CMT classification that relies on phenotypes, a 
genetic and neurobiological classification according to causative genes and disease 
mechanisms (Fig. 35.1, Table 35.2) is more relevant for planning future gene ther-
apy approaches.

35.3  Molecular Genetics and Neurobiology of CMT 
Neuropathies

CMT-associated genes show a great diversity of cellular functions spanning both 
neurons and Schwann cells leading to a multitude of disease-causing pathomecha-
nisms [11, 12]. Most demyelinating CMT types result from mutations in genes 
expressed by Schwann cells, whereas axonal types result from mutations expressed 
by neurons and their axons. Demyelinating CMT forms are the most common and 
result from cell autonomous effects of the mutations in myelinating Schwann cells 
[12, 13]. Furthermore, dominantly inherited types are likely to be caused by gain- 
of- function mechanisms, while recessively inherited forms result from loss-of- 
function mutations. The importance of the specific cellular mechanisms of particular 
mutations is highlighted by the fact that both dominant and recessive mutations 
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have been described in the same genes, while different phenotypes and nerve 
pathologies are sometimes caused by mutations in the same gene (Table 35.1).

In order to plan an effective gene therapy approach for CMT, the functional 
effects of the mutations in each type and often in each patient have to be clarified, 
since different approaches may be needed for loss-of-function mutations (e.g., gene 
replacement, gene addition) as opposed to gain-of-function dominant ones (e.g., 
gene editing, silencing approaches, etc.). Examples of common and representative 
forms of CMT and associated genes are discussed in more detail below, while an 
overview of known molecular mechanisms in different CMT forms is shown in 
Table 35.2 and Fig. 35.1.

Fig. 35.1 CMT-associated genes and their function. Diagram showing schematically a neuron 
with its axon with myelinating Schwann cells. Neuropathy-associated genes and proteins are indi-
cated in blue and categorized according to cellular function. Associated CMT types can be found 
in Tables 1 and 2 and in OMIM (https://www.omim.org/)

35 Gene Therapy for CMT Inherited Neuropathy
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Table 35.2 Basic neurobiological mechanisms in CMT and related neuropathies

Gene function 
category

Examples of genesa (and 
associated CMT typesb) Cellular mechanisms of diseaseb

Genes expressed mainly in Schwann cells (mostly demyelinating or intermediate CMT)

Myelin proteins PMP22 601097 (CMT1A, 
CMT1E, HNPP, DSS)

Impaired regulation of myelin biosynthesis, 
alteration of mRNA processing, 
demyelination

MPZ 159440 (CMT1B, 
CMT2I, CMT2J, DSS)

Myelin discompaction, unfolded protein 
response, demyelination

Gap junction 
channel protein

GJB1/Cx32 (304040) 
(CMT1X)

Disturbed axonal and myelin homeostasis, 
impaired Schwann cell-axon signaling, axonal 
degeneration and demyelination

Transcription and 
mRNA processing

EGR2 (129010) (CMT1D, 
DSS, CHN)

Impaired expression of myelin-related genes
Phosphatase of RNA polymerase II, impaired

CTDP1 (604927) (CCFDN, 
604168)

Disturbed RNA processing

Schwann cell 
cytoskeleton and 
basal lamina 
adhesion

INF2 (610982) (CMTDIE) Disruption of actin dynamics in Schwann 
cells, disturbed myelin formation and 
maintenance

FGD4 (611104) (CMT4H) Actin binding, disturbed cytoskeleton
PRX (605725) (CMT4F, 
DSS)

Interacts with dystroglycan complex: 
disrupted link between Schwann cell 
cytoskeleton and basal membrane

FBLN5 (604580) 
(HNARMD 608895)

Impaired extracellular matrix

Endosomal 
sorting and cell 
signaling

LITAF/SIMPLE (603795)
(CMT1C)

Impaired protein degradation in early 
endosomes

SH3TC2 (608206) 
(CMT4C)

Impaired perinuclear endocytic recycling 
compartment, dysregulation of myelination

MTMR2 (603557) 
(CMT4B1) MTMR13 
(607697) (CMT4B2)
SBF1 (603560) (CMT4B3)

Dysregulated membrane homeostasis

DMN2 (602378 (CMT2M, 
CMTDIB) 

Impaired endocytosis and intracellular 
membrane trafficking

NDRG1 (605262) (CMT4D) Impaired Schwann cell signaling and 
demyelination

Genes expressed mainly in neurons and their axons (mostly axonal CMT, HMN/distal SMA, or 
HSAN)

Ion channels TRPV4 (605427) (CMT2C, 
distal SMA)

Cation channel mediating calcium influx: 
mutations cause gain of function

ATP7A (300011) (SMAX3, 
300489)

Dysfunction of transmembrane copper- 
transporting P-type ATPase

SCN9A (603415) 
(HSAN2D, congenital 
insensitivity to pain 243000) 
(paroxysmal extreme pain 
disorder 167400)

Voltage-gated sodium channel: gain of 
function causing axonal degeneration, loss of 
function causes insensitivity to pain, impaired 
inactivation causes paroxysmal extreme pain

(continued)
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Table 35.2 (continued)

Gene function 
category

Examples of genesa (and 
associated CMT typesb) Cellular mechanisms of diseaseb

Nuclear envelope 
and mRNA 
processing

LMNA (150330) (CMT2B1) Nuclear envelope protein: impaired 
transcriptional regulation, axonal 
degeneration

GARS (600287) (CMT2D, 
HMN5A)
AARS (601065) (CMT2N), 
YARS (603623)(CMTDIC), 
KARS (601421) (CMTRIB), 
MARS (156560)(CMT2U), 
HARS (142810) (CMT2W)

Various tRNA synthetases: impaired mRNA 
processing and translation

HINT1 (601314) (NMAN; 
137200)

Histidine binding: gene expression 
dysregulation

PRPS1 (311850) (CMTX5) Phosphoribosylpyrophosphate synthetase: 
impaired purine and pyrimidine biosynthesis, 
reduced GTP and possibly ATP levels

IGHMBP2 (600502) 
(CMT2S, HMN VI/
SMARD1, 604320)

Transcription factor and component of 
translational machinery

DNMT1 (126375) (HSN1E 
614116)

DNA (cytosine-5)-methyltransferase, role in 
transcriptional gene silencing

MED25 (610197) 
(ARCMT2B2) 

RNA polymerase II transcriptional regulator 
complex

PLEKHG5 (611101) 
(CMTRIC, AR distal SMA 
4)

Activates the nuclear factor kappa-B 
(NFKB1; 164011) signaling pathway

Endosomal 
sorting and cell 
signaling

RAB7 (602298) (CMT2B) GTPase regulating trafficking, maturation, 
and fusion of endocytic and autophagic 
vesicles: impaired transition of early 
endosomes into the late endosomal/lysosomal 
system

DNM2 (602378 ) (CMT2M, 
CMTDIB)

GTPase involved in endocytosis and 
intracellular membrane trafficking

GNB4 (610863) (CMTDIF) G protein subunit, signals from cell surface 
receptors to internal effectors

WNK1 (605232) (HSAN2) Interacts with the endocytic scaffold protein
IKBKAP (603722) 
(HSAN3/familial 
dysautonomia)

Transcription elongation factor: transcription 
impairment and cell migration defects

NTRK1 (191315) 
(HSANIV/CIPA) 

Neurotrophic tyrosine kinase receptor: 
impaired survival of sensory neurons

NGF-B (162030) (HSAN5) Nerve growth factor regulating growth and 
differentiation of sympathetic and certain 
sensory neurons

(continued)
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35.3.1  CMT1A

CMT1A (OMIM 118220) is the most common subtype accounting for the majority 
of CMT1 cases and results from an intrachromosomal duplication spanning 1.4 Mb 
on human chromosome 17p12 [14]. The genetically related hereditary neuropathy 
with pressure palsies (HNPP) resulting from deletion or point mutations in PMP22 
gene is equally common but milder and likely underdiagnosed. The responsible 
disease gene within this duplicated or deleted region encodes the peripheral myelin 
protein of 22  kDa (PMP22) [15–18]. Patients with CMT1A develop the typical 

Table 35.2 (continued)

Gene function 
category

Examples of genesa (and 
associated CMT typesb) Cellular mechanisms of diseaseb

Axonal transport HSPB1 (602195) (CMT2F, 
distal HMN)

Disrupted neurofilament network, impaired 
mitochondrial axonal transport

NEFL (162280) (CMT2E, 
CMT1F)

Aberrant neurofilament assembly and 
transport, protein aggregations

KIF1A (601255) (HSN2C, 
(614213))

Impaired anterograde axonal transport of 
membranous organelles and synaptic vesicles

DYNC1H1 (600112) 
(CMT2O, SMALED1, 
158600)

Impaired retrograde axonal transport and 
protein sorting

BICD2 (609797) 
(SMALED2, 615290)

Impaired dynein-mediated retrograde axonal 
and Golgi dynamics

Synaptic 
transmission

DCTN1 (601143), HMN 
VIIB (607641)

Microtubule binding, loss of synapse stability 
at the neuromuscular junction

SLC5A7 (608761), HMB 
VIIA (158580) 

Disturbed choline transport at the 
neuromuscular junction

Genes expressed in both Schwann cells and neurons or ubiquitously

Mitochondrial 
proteins

MFN2 (608507) (CMT2A, 
ARCMT2)

Impaired fusion and distribution of 
mitochondria, reduced efficiency of oxidative 
phosphorylation

GDAP1 (606598) (CMT4A, 
CMT2K, CMTRIA)

Protein of the outer mitochondrial membrane, 
regulates mitochondrial dynamics in both 
axons and Schwann cells, both axonal and 
demyelinating CMT

HK1 (CMT4G) (142600) Glucose metabolism at the outer 
mitochondrial membrane

DHTKD1 (CMT2Q) 
(614984) 

Axonal neuropathy, mitochondrial 
vacuolization

HNPP hereditary neuropathy with liability to pressure palsies, CCFDN congenital cataracts, facial 
dysmorphism, and neuropathy, HMN hereditary motor neuropathy, HS(A)N hereditary sensory 
(and autonomic) neuropathy, SMA spinal muscular atrophy, SMALED SMA lower extremity pre-
dominant, NMAN neuromyotonia and axonal neuropathy, CIPA congenital insensitivity to pain 
with anhidrosis
aHyperlinked OMIM gene numbers for gene function
bHyperlinked OMIM disease numbers for some included syndromic neuropathies sharing molecu-
lar mechanisms with non-syndromic CMT types
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CMT1 phenotype, with slow progression and high variability in disease severity 
even within the same family [19, 20]. NCVs are typically around 20 m/s and do not 
change significantly over decades in contrast to motor amplitudes that decrease 
slowly reflecting axonal loss, correlating with clinical disability.

PMP22 is a 22-kDa tetraspan glycoprotein mainly expressed by myelinating 
Schwann cells and localized in compact myelin [21] but also in other cell types [22]. 
In normal myelinating and non-myelinating Schwann cells, approximately 20% of 
the newly synthesized PMP22 is glycosylated, while the remaining ~80% is tar-
geted for proteasomal endoplasmic reticulum (ER)-associated degradation (ERAD) 
[23]. Overexpression of PMP22 mRNA and protein in CMT1A nerve biopsies sug-
gested that an increased dosage of PMP22 is the most likely disease mechanism in 
PMP22 duplication-related CMT1A patients [24–26]. However, PMP22 was not 
overexpressed in nerve and skin biopsies from adult CMT1A patients, and expres-
sion levels did not correlate with disease severity [27]. The exact consequences of 
PMP22 overexpression remain unclear. Increased amount of protein is thought to 
exceed the capacity of the proteasome for degradation, resulting in PMP22 accumu-
lation in perinuclear aggresomes [28, 29] and in reduced overall proteasome activity 
[30], likely destabilizing the myelin sheath and Schwann cells. However, studies in 
PMP220/0 mice [31, 32], as well as natural mouse mutants [33] and overexpressing 
mutants (below), indicate that PMP22 is also involved in early steps of myelinogen-
esis, in the determination myelin thickness and maintenance. CMT1A models show 
persistent differentiation defect in Schwann cells during early postnatal develop-
ment with imbalanced activity of the PI3K-Akt and Mek-Erk signaling pathways, 
which could be overcome by soluble neuregulin-1 [34]. Altered mRNA processing 
with changes in the ratio of different PMP22 transcripts [35], as well as posttransla-
tional modifications, may also play a role in disease pathogenesis.

Despite the complexity of CMT1A pathogenesis beyond the gene dosage effect, 
therapeutic efforts undertaken so far to treat CMT1A have focused on the gene dos-
age factor and aim to silence PMP22 overexpression. In this regard transgenic 
rodent CMT1A models have confirmed that PMP22 overexpression causes periph-
eral neuropathy [36–39] and have been used for developing treatments. Transgenic 
CMT rats harbor three copies of the mouse Pmp22 gene, resulting in a 1.6-fold 
mRNA expression and closely reproduce the CMT1A pathology and phenotype 
[39, 40]. CMT1A transgenic mouse lines have been generated by the integration of 
extra copies of the PMP22 gene [36, 37, 41]. High copy number PMP22 transgenic 
lines [42] display severe developmental histological and behavioral phenotypes [38] 
providing more relevant models for severe and early-onset CMT1A, DSS, or CHN, 
while low copy number PMP22 transgenic models show a milder phenotype and 
reproduce more faithfully classic CMT1A. An inducible overexpressing CMT1A 
model demonstrated that demyelinating pathology is reversible if overexpression is 
interrupted [43]. Thus, overexpressing CMT1A models are a valuable resource for 
developing gene and other therapies for this CMT type. Given the emerging devel-
opmental effects of PMP22 overexpression, the earliest possible intervention to 
silence PMP22 expression may be needed to achieve a therapeutic benefit in 
CMT1A models and patients.
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35.3.2  CMT1X

CMT1X (OMIM 302800) is the next most common CMT form [44, 45], after 
CMT1A and HNPP. More than 400 different mutations in the GJB1 gene encoding 
the gap junction (GJ) protein Cx32 cause CMT1X. Cx32 is expressed by several 
cell types besides myelinating Schwann cells and oligodendrocytes [46–48]. 
However, peripheral neuropathy and in some cases mild or transient CNS pheno-
types are usually the only clinical manifestations of CMT1X. GJB1 mutations are 
mostly missense, but also nonsense and deletions, affecting all domains of the 
protein and sometimes noncoding regions including the promoter sequence. Cx32 
is a gap junction (GJ) protein forming hexameric hemichannels which establish a 
full GJ channel by interacting with another hemichannel from an apposing mem-
brane. Cx32 GJ channels are formed in the non-compact myelin areas of paranodal 
loops and Schmidt-Lantermann incisures and provide a communication pathway 
serving homeostatic and signaling functions that are essential for both the myelin 
and axon [49, 50].

CMT1X affects male patients earlier and more severely with a phenotype and 
clinical course characteristic of most dominant CMT forms [51–53], while hetero-
zygous females are usually asymptomatic, subclinically or mildly affected at an 
older age [54, 55]. Acute transient CNS manifestations may occur in a subset of 
mostly younger CMT1X patients [56]. Motor NCVs usually show intermediate 
slowing (30–40  m/s) reflecting a mixed axonal and demyelinating pathology 
revealed by nerve biopsies [57–59]. Clinical studies of large CMT1X cohorts with 
different GJB1 mutations showed that disability increases with age and that the 
degree of disability is comparable with that observed in patients with a documented 
GJB1 deletion [53]. Thus, most GJB1 mutations likely cause loss of Cx32 function. 
Likewise, pathological studies showed that the severity of changes in CMT1X nerve 
biopsies are not associated with particular GJB1 mutations [58, 60].

Expression of CMT1X mutations in vitro revealed that many Cx32 mutants are 
often retained intracellularly [61–63] in the ER and/or Golgi [63–67] and fail to 
form functional GJ channels or form channels with altered biophysical characteris-
tics [65]. Cx32 knockout (KO) mice with deletion of the Gjb1/cx32 gene develop a 
progressive, predominantly motor demyelinating peripheral neuropathy beginning 
at about 3 months of age [68, 69], which can be prevented by transgenic expression 
of wild-type (WT) Cx32 protein in Schwann cells [70], confirming that Schwann 
cell autonomous loss of Cx32 function is sufficient to cause CMT1X pathology. 
CMT1X mutants expressed in transgenic mice showed similar intracellular local-
ization as in vitro and no other toxic effects or trans-dominant effects on other con-
nexins expressed by myelinating cells. However, certain Golgi-retained mutants had 
a dominant negative effect on co-expressed WT Cx32 [71, 72]. Although this is not 
clinically relevant in patients with CMT1X as only one GJB1 allele is expressed in 
each cell, it should be taken into account when planning a gene therapy approach. 
Cx32 KO mice as well as mice expressing CMT1X mutants on Cx32 KO back-
ground provide useful models to test gene therapy approaches for CMT1X.
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35.3.3  CMT2A

CMT2A (OMIM 609260) is the most prevalent axonal CMT form with a frequency 
of up to 30% among all CMT2 patients and 10–15% among all CMT forms [73, 74]. 
Patients present with progressive distal limb muscle weakness and atrophy, foot 
deformities, and gait difficulty which can lead to wheelchair dependency [75, 76]. 
Age at disease onset is variable, but most patients present within the first decade of 
life [77]. Early onset of disease is associated with a more severe phenotype and 
development of proximal weakness and optic neuropathy. Later onset after 10 years 
of age is associated with a more benign course and a higher frequency of unusual 
findings such as tremor, pain, and hearing loss [78].

More than 60 mutations in the MFN2 gene encoding mitofusin-2 have been iden-
tified so far in CMT2A patients. Mitofusin-2 is a GTPase protein anchored in the 
outer mitochondrial membrane through two transmembrane domains situated close 
to the C-terminus. Mutations are preferentially located within the GTPase domain 
and in the downstream region before the hydrophobic heptad repeat domain 1 (HR1) 
localized at the base of the protein arm [73]. Recessive compound heterozygous 
MFN2 mutations have been rarely reported, with early disease onset [79].

Mitofusin-2 plays a fundamental role in the mitochondrial fusion, fission, and 
trafficking [80]. Cellular mechanisms proposed to play a role in CMT2A pathogen-
esis include a deficiency in energy production and altered axonal transport of mito-
chondria [81], reduction of mitochondrial membrane potentials and coupling 
efficiency [82], and impaired ER-mitochondrial apposition [83]. Transgenic models 
of CMT2A include the T105M-expressing mouse under the control of HB9 motor- 
neuronal promoter [84] which showed hind limb gait defects, severe muscle atro-
phy, and motor axon degeneration. R94Q transgenic animals showed motor defects 
also mimicking CMT2A neuropathy [85]. However, these mice became symptom-
atic after 5 months of age, representing a model of late-onset CMT2A. A knock-in 
model of the R94W mutation displayed many of the pathological defects that char-
acterize the human disease [86]. CMT2A models provide insights into the patho-
physiology of the disease and highlight the dominant effects of the mutated MFN2 
causing dysregulation of mitochondrial dynamics and ultimately axonal degenera-
tion. Thus, gene editing and allele-specific silencing approaches are more likely to 
address the disease pathogenesis.

35.3.4  CMT4C

CMT4C (OMIM 601596) is the most prevalent among the rare recessive neuropa-
thies accounting for almost half of all CMT4 cases [74]. In addition to typical early 
CMT manifestations, almost all CMT4C patients develop foot deformities and sco-
liosis, often requiring surgery [87–89]. Many have cranial nerve involvement with 
deafness, while phenotypic variations are common in patients with identical 
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mutations [90–92]. A combination of proprioceptive loss and vestibular neuropathy 
may cause profound and disabling imbalance early in disease evolution [93]. Several 
truncating but also missense mutations affecting the SH3TC2 gene have been 
described in CMT4C patients [94], with higher frequency among certain ethnic 
groups with likely founder effects [90, 95]. SH3TC2 encodes a protein of 1288 aa 
containing 2 Src homology 3 (SH3) and 10 tetratricopeptide repeat (TPR) domains 
sharing no overall significant similarity to any other human protein with known 
function. The SH3 and TPR domains suggest that SH3TC2 could act as a scaffold 
protein [94]. SH3TC2 is present in several components of the endocytic pathway 
including early and late endosomes, in clathrin-coated vesicles close to the trans- 
Golgi network, and in the plasma membrane. This localization is altered in CMT4C 
mutants examined in vitro [96].

Sh3tc2 KO mice developed an early-onset (by P5) but progressive hypomyelin-
ating neuropathy [97]. In addition they showed abnormal organization of the node 
of Ranvier present already at P4, a phenotype that was confirmed in CMT4C patient 
nerve biopsies. These alterations were associated with changes in the Nrg1/ErbB 
pathway involved in control of myelination [98]. SH3TC2 was also found to be an 
effector of the small GTPase Rab11, a key regulator of recycling endosome func-
tions. CMT4C mutations disrupt this interaction [99], a likely mechanism for the 
progressive nature of CMT4C neuropathy. Both the clinical phenotype and molecu-
lar basis of CMT4C suggest loss of function of SH3TC2, resulting in early-onset 
and slowly progressive hypomyelination. The Sh3tc2 KO mouse model recapitu-
lates all major aspects of the disease and offers the opportunity to test potential 
treatments for CMT4C including a gene replacement approach as a paradigm for 
recessive CMT forms.

35.4  Gene Therapy for CMT Neuropathies

35.4.1  Vectors for Gene Delivery to Peripheral Nerves

One of the main challenges in gene therapy for CMT neuropathies is the need for 
cell-targeted gene expression since most CMT forms result from mutations in genes 
expressed by myelinating Schwann cells or by neurons with cell autonomous 
effects. Targeting of gene expression can be achieved either by using vectors with 
highly selective cell tropism, such as certain AAV serotypes, or by the use of cell- 
specific promoters largely restricting gene expression to the targeted cell type. A 
variety of delivery systems such as viral vectors and non-viral plasmids have been 
studied for the transfer of therapeutic genes to the PNS [100]. Viral vectors have 
proven to be the most efficient approach for gene delivery in different neuropathy 
models. Herpes simplex viral (HSV) vectors, adenoviral (Ad) vectors, adeno- 
associated viral (AAV) vectors, and lentiviral (LV) vectors are currently the most 
commonly used vectors for gene delivery.
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Earlier studies of gene delivery to peripheral nerves for expression in Schwann cells 
used mostly Ad vectors and ubiquitous promoters [101–104]. Immunological reaction 
limited the duration of expression in most of these studies [102, 103, 105, 106]. 
Intraneural gene transfer of a replication-defective Ad vector expressing lacZ driven by 
a myelin protein zero/P0 (Mpz) promoter resulted in Schwann cell expression only for 
2 weeks that could be extended to 8 weeks with immunosuppression. Although P0 
protein was detected in P0 KO mice, no improvement of nerve pathology was reported 
[103]. In another study Ad-delivered reporter gene expression was only detectable in 
injured nerves or under immunosuppression [102]. HSV vectors have been used mainly 
for infecting DRG cells because of their tropism for sensory neurons to treat models of 
mostly acquired and predominantly sensory neuropathies [107]. Drawbacks include 
their limited tropism for other types of neurons and toxicity to target cells.

AAV vectors have the advantage of high tropism for PNS neurons and much 
lower immunogenicity compared to Ad vectors. The risk for insertional mutagene-
sis is low since most of the virally delivered DNA remains episomal. A number of 
different AAV serotypes have been studied showing different cell tropism profiles in 
the PNS and CNS [108–110]. After intrasciatic injection, AAV2/1 transduced both 
Schwann cells and neurons, AAV2/2 infected only sensory neurons, and AAV2/8 
preferentially transduced Schwann cells. Although expression was detected up to 10 
weeks after administration, neutralizing antibodies against all AAVs tested were 
detected [111]. For expression in sensory neurons, injecting AAV vectors directly 
into the dorsal root ganglia (DRG) was superior to intraneural injection. Expression 
lasted for 50 days and could be extended up to 100 days with immunosuppression 
[104]. Overall, AAVs and especially AAV2/8 may be promising tools for targeted 
gene delivery to PNS [111, 112].

LV vectors have been increasingly tried because of their larger transgene 
capacity and ability to integrate into the host genome providing stable long-term 
gene expression. They cause no significant immunogenicity, and there is no evi-
dence so far of insertional mutagenesis in preclinical [113, 114] or clinical [115] 
studies. LV vector delivery to sciatic nerve has been used for gene silencing to 
study gene function [116] or for reporter gene expression [105]. Although initial 
reports suggested that VSV-G-pseudotyped LV vectors infect Schwann cells only 
at early stages of development, subsequent studies showed infection of up to 50% 
of Schwann cells in adult mouse sciatic nerve as well using a myelin-specific 
instead of an ubiquitous promoter [117].

Although not extensively studied for the PNS, gene therapy approaches using 
non-viral vectors may offer a promising alternative to overcome some of the prob-
lems associated with the use of viral vectors such as insertional mutagenesis and 
immunogenicity [118]. The primary concerns of the non-viral vectors are the poor 
transfection efficiency, the endosomal degradation, and low specificity of cell tar-
geting. Nevertheless, recent advances in the development of more stable nanoparti-
cles [119] or modifications on the lipopolyplexes have overcome many of the 
biological barriers in the use of the non-viral vectors treating neurons. Progress 
remains to be made in directing the nanoparticles to specific cell types or intracel-
lular organelles in the PNS [120, 121].
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35.4.2  Gene Delivery Routes Targeting the PNS

For gene therapy of CMT neuropathies, the gene of interest will have to be delivered 
either to Schwann cells or to neurons (motor and sensory) or to both cell types, depend-
ing on the biological basis of the specific form (Table 35.2). Peripheral nerves are not 
easily accessible to systemically delivered viral vectors due to the presence of the 
blood-nerve barrier. Therefore, various delivery approaches directly to the PNS have 
been tried for the successful targeting either of Schwann cells or neurons in a variety of 
preclinical studies. Intramuscular, intrathecal, intraneural, and even intraganglial injec-
tions have been used for the delivery of plasmids and viral vectors to the PNS.

Direct injection of AAV vector into the DRGs of the pig resulted in expression of 
the viral vector only in the injected DRG transducing about 30% of neurons [122], 
while injection of LV vector led to 20% expression of the viral vector in the rat DRG 
neurons [123] and resulted in suppression of neuropathic pain factors expressed in 
DRGs by delivering a silencing RNA [124]. Although this method proved to be suc-
cessful, there are limitations for clinical use due to safety concerns for placing a 
needle into the human DRG for the infusion.

Intraneural injection directly into the sciatic nerve has been used successfully for 
gene delivery in Schwann cells using AAV [111] and LV [117] vectors as well as 
free plasmids with the aid of electroporation [125]. Although intraneural injections 
using atraumatic methods did not produce detectable demyelination or Wallerian 
degeneration [104, 105, 117], their utility for clinical translation remains limited 
due to the invasiveness of the technique and the fact that multiple nerves will need 
to be injected to achieve a therapeutic result. Intramuscular injections are clinically 
more feasible and have been used for plasmid and viral vector delivery [126]. The 
rationale for intramuscular delivery is that vectors can be taken up by the supplying 
peripheral nerve through the neuromuscular junction [127].

Intrathecal delivery has been tried based on the fact that the cerebrospinal fluid 
(CSF) and endoneurial fluid are in continuity. The epineurial connective tissue lay-
ers merge with the dura matter at the central ends of peripheral nerves [128] so that 
the subarachnoid and endoneurial space merge [129] allowing CSF to enter the 
endoneurial fluid. Diffusion of molecules injected into the mid-sciatic nerve has 
been shown up to 10 mm proximal and distal to the injection site, consistent with 
flow of endoneurial fluid [130, 131]. Particles may diffuse from subarachnoid space 
into the peripheral nerves due to pressure gradients. Intrathecal CSF pressure is 
higher at about 10 mmHg compared to 3–5 mmHg in DRGs and 1–2 mmHg in 
peripheral nerves [132]. Different studies demonstrated that AAV and LV can be 
easily delivered by lumbar intrathecal injection and can access both the CNS and 
PNS resulting in efficient gene expression [104, 133–139]. Overall, gene delivery 
methods used in preclinical trials have a variable potential to be applied in humans, 
with intrathecal injections being the most translatable. In contrast, direct intraneural 
or intraganglial injections are limited due to the invasiveness and because they are 
likely to achieve only localized gene expression. The latter is also a limitation for 
intramuscular injection. Further validation and optimization of gene delivery meth-
ods to PNS will be needed because of significant size and anatomical differences 
between humans and animal models.
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35.4.3  Gene Therapy Studies in Neuropathy Models

Intraneural injection of AAV2/8, which preferentially transduces Schwann cells, 
delivering the ciliary neurotrophic factor (CNTF) gene led to an upregulation of 
P0 and PMP22 myelin proteins 4  weeks after transduction of injured sciatic 
nerves. CNTF-injected mice showed a significant increase in both GAP43 expres-
sion in sensory neurons, a marker of axonal regeneration, and functional improve-
ment as indicated by the increased muscle compound action potential (CMAP) 
[111], suggesting a potential gene therapy approach for treating myelin 
disorders.

In an attempt to treat the most common form of CMT, CMT1A, an AAV vector, 
was injected intramuscularly in the tremblerJ (Trj) mouse model of CMT1A. AAV1 
carrying the gene for neurotrophin-3 (NT-3) driven by the CMV promoter was 
administered in the gastrocnemius muscle, and NT-3 levels were monitored. Higher 
vector titers and the use of the CMV promoter proved to be more efficient for obtain-
ing long-lasting (up to 10  months) expression. NT-3 expression ameliorated the 
hypomyelination and increased myelin fiber density. Furthermore, NT-3 improved 
the abnormality of increased neurofilament packing density that is characteristic of 
the Trj mice. Electrophysiological results were in accordance with the histological 
findings showing increased CMAPs and faster NCVs accompanied by improved 
grip strength of treated mice [127].

Based on the fact that most CMT1X mutations appear to cause loss of function, 
recent efforts have focused on a Schwann cell-targeted gene replacement therapy 
using the Cx32 KO model of CMT1X. To achieve stable and cell-specific expres-
sion, a third-generation LV vector carrying the human GJB1 gene encoding Cx32 
driven by the rat Mpz promoter was used to achieve expression in myelinating 
Schwann cells. This LV vector was delivered once directly into the mid-sciatic 
nerve. Expression analysis showed that the vector was transported and expressed 
throughout the length of the nerve. Up to 50% of myelinating Schwann cells showed 
expression in injected nerves lasting at least 16 weeks [117]. A treatment trial in the 
Gjb1-null/Cx32 KO mouse model of CMT1X using the intraneural LV vector injec-
tion resulted in expression of virally delivered Cx32  in the sciatic nerve and 
improvement of demyelination and inflammation that is characteristic of this model.

In order to develop a less invasive and more widespread gene therapy approach, 
the same LV vector was injected in the intrathecal space at L5–L6 spinal level 
resulting in Schwann cell-specific expression not only in lumbar spinal roots but 
also in sciatic, femoral, and trigeminal nerves and intramuscular nerves. Expression 
rates throughout the PNS were similar to those achieved by intraneural delivery and 
remained stable for at least 16 weeks [139]. A treatment trial using the CMT1X 
model resulted not only in improved pathology in peripheral nerves and spinal roots 
but also in improved performance in motor behavioral tests. Sciatic NCV and quad-
riceps muscle force generation were also significantly improved in treated com-
pared to mock-treated animals [139]. Thus, intrathecal gene delivery using LV or 
AAV vectors may hold promise for a clinically translatable gene therapy for CMT1X 
and other CMT forms.
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35.5  Conclusions and Future Perspectives

CMT neuropathies are a phenotypically and genetically very diverse group of disor-
ders characterized by a variety of cellular and molecular mechanisms that ultimately 
lead to peripheral nerve degeneration. This plethora of underlying mechanisms 
means that different approaches will be needed for each CMT type that should be 
tailored to the function of specific gene or even to effects of different mutations 
occurring in the same gene. Thus, gene replacement will be needed for loss-of- 
function mutations, whereas gene silencing or gene editing will have to be devel-
oped for gene overexpression with dosage effect or for expression of toxic mutants. 
Recent advances in optimizing and characterizing vectors and administration meth-
ods for efficient gene delivery to PNS hold promise for developing effective treat-
ments that may benefit several CMT types.

Despite this progress many challenges remain along the way to offer treatments 
to patients. Besides further optimization and validation of clinically applicable vec-
tors, delivery methods, and stability of expression, as well as safety concerns with 
some vectors, one of the major challenges is the variability in the age of onset and 
severity, even between patients with the same mutation. Future clinical trials will 
need to include sensitive outcome measures because of the variable and slow pro-
gression of the disease in most cases making the demonstration of a therapeutic 
benefit more difficult. Furthermore, gene therapy will need to be offered as early in 
the disease course as possible because several CMT genes appear to have a devel-
opmentally crucial role, with early-onset pathological changes that cannot be 
reversed at later stages. Even in types with later onset of pathology, gene therapy 
will need to be offered before chronic axonal loss, and disability has been estab-
lished, as this may not be reversible despite effective gene delivery methods. 
Nevertheless, gene therapy remains the major hope for treating CMT neuropathies 
in the near future, and the steps already taken have opened the way for further 
research and progress ahead.
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Chapter 36
Muscle as a Potent Target in Vaccination

Axel Rossi and Hildegard Büning

Abstract “Immunology” and “vaccines” are terms inevitably connected with the 
name of Edward Jenner, a country doctor from Berkley (UK), who submitted back 
in 1796 a report on 13 cases of protection against small pox infection through inocu-
lation with cowpox. Since then vaccination has become the most efficient strategy 
to protect humans and livestock from infectious diseases. With exception of Japan, 
intramuscular injection serves as a standard vaccination route. Besides its easy 
accessibility, skeletal muscle presents several unique properties marking this tissue 
an ideal theater for vaccination. Muscle cells or more specifically myofibers act as 
unconventional antigen-presenting cells (APCs) supporting the activity of conven-
tional APCs (e.g., dendritic cells (DCs)) rapidly recruited to the site of “damage.” 
Depending on the vaccine, humoral and/or cytotoxic T cell responses are elicited. 
Moreover, unique control circuits involving hormone regulation and unconventional 
co-stimulatory molecules as well as muscle resident stem cells permit balanced 
immune responses and tissue integrity. The plasticity of this tissue regarding recruit-
ment and regulation of immune cells as well as its regenerative capacity holds 
promise for the advent of new sophisticated vaccination strategies for targets that so 
far “escaped” from vaccine-mediated protection or treatment.
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36.1  Introduction

Incited by the success of the vaccinia virus-based vaccine eradicating small pox [1], 
vaccination programs have been brought to life to protect humans and livestock from 
severe and/or life-threatening infections [2, 3]. The latter has dramatically reduced the 
level of poliovirus infection and demonstrated efficacy in preventing a broad range of 
diseases caused by viruses (e.g., yellow fever, measles, rubella, mumps) or bacteria 
(e.g., tuberculosis, plague, cholera) [3]. This success has fostered efforts to develop 
both preventive and therapeutic vaccines to enhance pathogen clearance and protect 
against/treat cancer, respectively [3–6]. In the early days of vaccination, attenuated 
pathogens were the vaccines of choice. They induce a mild, commonly asymptomatic, 
infection that owing to the presence of the full set of pathogen-specific antigens elicits 
the most appropriate kind of immune response conferring durable immunity against its 
pathogenic counterpart. Since they are attenuated, but biologically active, such vac-
cines may sometime cause severe side effects if mutations responsible for the attenu-
ated pathogenicity are reverted to the wild type. In addition, attenuated pathogens 
cannot be applied to children, the elderly or immunocompromised patients as a fully 
competent immune system is required for their control. As an alternative, killed or 
inactivated pathogens have been explored as vaccines. They are safe, but less immuno-
genic, and are therefore applied together with an adjuvant that either directly enhances 
innate immune responses or indirectly supports pathogen uptake into antigen-present-
ing cells (APCs) [7]. In addition, booster immunization is required to induce a long-
term protection [3]. With the advent of genetic engineering, a cornucopia of new 
opportunities became available resembling a “tool box” for the design of safe and effi-
cacious vaccines [7, 8]. This offered moving from trial and error approaches to rational 
design in which a combination of features provided by the vaccine itself and the choice 
of the adjuvant/s as well as target tissue are used for shaping the adaptive immune 
response toward its humoral and/or cellular arm [9]. Co-administration of MF59 (squa-
lene-in-water emulsions) or Alum (aluminum salt), for example, is reported to polarize 
the immune response toward antibody production, while antigen- specific cytotoxic T 
cell responses are enhanced by adjuvants like ISCOMs (saponins) or agonists of endo-
some-located sensors of the innate immune system (reviewed in [9]). Regarding target 
tissue accessibility, the ability to recover from vaccine treatment without detrimental 
effects for the host as well as the specific set of resident professional and nonprofes-
sional APCs and thus the potency of a given target tissue to promote the desired immu-
nological response are generally considered as decision-making parameters.

36.2  Skeletal Muscle: A Singular Immunological 
Environment

Skeletal muscle tissue has emerged as the most used target tissue for clinical vac-
cination in humans. It is easily accessible, possesses a remarkable regenerative 
potential, and orchestrates potent immune responses (Fig. 36.1) [10]. The muscle 
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parenchymal cells are myofibers, terminally differentiated from myoblast to multi-
nuclear cells and responsible for the mechanical functions of the muscle [10]. 
Myofibers are interspersed with satellite cells, the muscle stem cells, and resident 
immune cells. Compared to the skin (epidermal, dermal, and subcutaneous layers) 
or mucosa, the proportion of resident immune cells in muscle tissue is low. Upon 
inflammation, however, the pool of professional APCs becomes enlarged by recruit-
ing immune cells such as monocytes to the site of tissue damage [10]. In addition, 
myofibers, which are per definition nonprofessional APCs, are turned into impor-
tant regulators of the immune responses during inflammation [10–12].

Fig. 36.1 Skeletal muscle as immune theater upon vaccination. Upon intramuscular vaccination, 
immune sensors (PRRs) recognize PAMPs or DAMPs of the vaccine and activate signal cascades 
that result in upregulation of pro-inflammatory cytokines and chemokines. As a consequence, resi-
dent immune cells and unconventional APCs (myofibers) are activated, and further immune cells 
are recruited, which support the local inflammation process. The reaction leads eventually to a 
cytotoxic or humoral adaptive immune response. Myofibers themselves and satellite cells allow 
control of tissue integrity by anti-inflammatory pathways or tissue repairing mechanism, 
respectively
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36.2.1  A Brief Introduction to the Innate and Adaptive 
Immune Response

The innate immune system is referred to as the body’s first line of defense. Its function 
comprises recognition of pathogens or of danger signals and mounting responses to 
clear the injured site and to induce and shape adaptive immune responses against the 
culprit. Innate immune sensors are pattern recognition receptors (PRRs) [13]. They are 
germ line encoded, and the repertoire as well as level of expression varies between cell 
types. In addition, depending on specific environmental conditions, expression becomes 
up- or downregulated. PRRs recognize distinct patterns (pathogen-associated molecu-
lar patterns (PAMPs), danger-associated molecular pattern (DAMP)) that are hallmarks 
of classes of stress such as pathogens (PAMP) or dysregulation of cell homeostasis 
(DAMPs). The best-characterized PRRs are the Toll-like-receptors (TLRs) which 
induce inflammatory responses after ligand binding [14]. TLRs are type I transmem-
brane glycoproteins composed of extracellular leucine-rich repeat (LRR) motifs serv-
ing as recognition domains, a single transmembrane domain, and a cytoplasmic toll/
interleukin (IL)-1 receptor homology (TIR) signaling domain [13, 15]. To date, ten 
different human TLRs (TLR-1–TLR-10) have been described. They form homo- or 
heterodimers and are either located at the cell membrane (e.g., TLR-1, TLR-2, TLR-4, 
TLR-5, TLR-6, and TLR-10) for recognizing distinct sets of PAMPs derived from the 
microbial outer surface or in the membranes of intracellular vesicles (TLR-3, TLR-7, 
TLR-8, and TLR-9) for detecting “nonself” nucleic acids. PAMP sensing activates a 
downstream signaling mediated by TIR domain containing adaptor molecules inclu-
sive of a myeloid differentiation factor 88 (MyD88), the MyD88 adaptor-like protein 
(MAL or TIRAP), or the TIR domain-containing adaptor-inducing IFN-β (TRIF). 
TLRs differ in the choice of adaptor molecules and thereby in the respective innate 
immune response. TLR-2, for example, signals through MyD88 inducing upregulation 
of inflammatory cytokine and chemokine expression and secretion via nuclear factor 
kappa B (NFκB) and mitogen-activated protein kinases (MAPKs), while TLR-3 sig-
nals through TRIF leading to expression of type I interferon (IFN) as well as inflamma-
tory cytokines. According to the released cytokine cocktail, various cell effectors 
including macrophages or granulocytes are recruited to participate in the clearance of 
the infection site [16]. In parallel, APCs activate naïve T lymphocytes to initiate adap-
tive immune responses directed against the presented antigen/s. Vaccination strategies 
use this immune response cascade from detection of the antigen down to the shaped 
adaptive immune response to induce the desired preventive or therapeutic effect.

36.2.2  Antigen Detection and Inflammation in Skeletal Muscle

Although it is difficult to trace the precise cellular origin of the different immune 
components (e.g., immune receptors, cytokines, chemokines, and other messen-
gers) regulated in response to vaccine administration, gene expression arrays 
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revealed that in principle the whole subset of innate immune receptors is 
expressed in the muscle [17]. Examples of PRR in skeletal muscle, which 
responded toward stimuli confirming functionality, are TLR-2, TLR-3, TLR-5, 
and TLR-9. In addition, several intracellular sensors termed NLR (NOD-like 
receptors), including NOD1, sensitive to the bacterial component d-glu-
tamyl-meso-diaminopimelic acid, and NRLX1, a negative regulator of the TLR/
MyD88 pathway, are expressed. As already implied by NRLX1, innate immune 
activation is the subject of tight regulation to restrict tissue damage. Besides 
negative regulators such as NRLX1 or feedback loops (see below), sensitivity or 
reactivity is controlled by TLR expression, which differs depending on differen-
tiation status (e.g., myofibers vs. myoblasts) and muscle type (e.g., soleus mus-
cles vs. gastrocnemius muscle) [10, 17].

In addition to its function as a pathogen sensor, the muscle also plays an active 
role in the inflammation process itself by upregulating expression of cytokines, 
chemokines, and cell adhesion molecules. Of particular importance in this regard 
is interleukin (IL)-6 released by muscle cells in response to tumor necrosis factor 
(TNF)-α, IL-1α, IL1-β, lipopolysaccharide (LPS), or IFN-γ [10]. This pro- 
inflammatory cytokine triggers expression of monocyte chemoattractant protein 
(MCP)-1 and the intracellular adhesion molecule (ICAM)-1 by the muscle cells 
themselves (autocrine loop) using a mechanism termed trans-signaling mediated 
by IL-6R and gp130, both also expressed by the myofibers [10]. MCP-1 acts as a 
chemoattractant of monocytes and lymphocytes, leading to recruitment of fur-
ther immune effector cells. Moreover, two different forms of ICAM-1 are over-
expressed in response to IL-6; one is bound to the cell membrane and promotes 
the interaction between T lymphocytes and APCs or the cytotoxic effect of T 
lymphocytes on infected muscle cells, while the other one is secreted and func-
tions as a competitor of the bound membrane form, triggering an inhibitory effect 
[18, 19]. The presence of pro-inflammatory cytokines such as IFN-γ in the skel-
etal muscle tissue also induces expression of the neutrophil chemoattractant IL-8 
leading to the recruitment of neutrophils, which further replenishes the pool of 
secreted IL-6 [10].

Exaggeration of the immune response is avoided by secretion of anti- inflammatory 
cytokines, such as transforming growth factor (TGF)-β and IL-10, which counteract 
in particular the pro-inflammatory activities of IL-6. Moreover, evidence has been 
provided that besides anti-inflammatory cytokines, the hormone adiponectin (ApN) 
functions as a key regulator of immune responses against LPS in mice and in human 
primary myofibers. As a target for ApN, microRNA (miRNA) 711 was identified. 
This miRNA inhibits toll-interacting protein (TOLLIP), Fas-associated protein with 
death domain (FADD), TGF-β activated kinase 1-binding protein 1 (TAB1), 
phosphatidylinositol- 4,5-bisphosphate 3-kinase, catalytic subunit delta (PI3Kδ) and 
TNF-α, representing the TLR-4 downstream signaling cascade, thereby blocking 
NFκB and/or MAP kinase activation [20]. This and probably other to be identified 
pathways are maybe harnessed for providing a better control of the immunity for 
vaccination strategies [20, 21].
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36.2.3  Promotion and Control of Adaptive Immune Responses 
in Skeletal Muscle

Vaccine strategies aim to induce antigen-specific cytotoxic and/or humoral immune 
responses. While CD8+ T lymphocytes are the effector cells for the former, activated 
CD4+ T helper cells and effector B cells are required for the latter. The quality of 
cellular as well as humoral immune responses depends, among others, on the mag-
nitude of the local inflammation and the ability of the inflamed tissue to present 
antigens through major histocompatibility complex (MHC) classes I and 
II.  Generally, MHC class I ligands are peptides newly produced within the cell, 
while peptides derived from exogenous sources are loaded on class II. However, 
antigens from the extracellular environment can also be presented on MHC class I, 
a phenomenon termed cross-presentation [22].

Recognition of antigens presented by MHC molecules lead to activation and 
clonal expansion of respective effector lymphocytes. Critical players in this process 
are the APCs. They possess a battery of PPRs, present antigens via MHC class I and 
II molecules, are particularly effective in cross-presentation, and link innate and 
adaptive immunity. The best characterized APCs are DCs. DCs maintain local 
inflammation by pro-inflammatory cytokine cocktail release and antigen uptake and 
presentation. As noted before, the skeletal muscle tissue contains a limited number 
of resident APCs compared with other vaccination targets such as the skin. This, 
however, is compensated by the muscle’s ability to function as an “alternative” or 
nonprofessional APC in conditions of local inflammation (Fig. 36.1). Specifically, 
muscle cells gain the ability to express MHC class II molecules, and expression of 
class I molecules is upregulated. In addition, a nonconventional MHC-I molecule, 
the HLA-G, is expressed in muscle cells [23, 24]. This nonconventional MHC-I 
molecule is able to downregulate activity of immune cells including cytotoxic CD8+ 
T cells and helper CD4+ T cells providing thereby an effective regulation system 
involved in inducing antigen tolerance. Besides antigen presentation by MHC mol-
ecules, co-stimulatory molecules present on APCs and recognized by lymphocytes 
are required. Muscle cells are special in this regard as they lack the classical co- 
stimulatory molecules CD80 (B7-1) and CD86 (B7-2) but express instead BB1 and 
B7-H2—also B7 family members with a potential co-stimulatory role. Further, 
muscle expresses B7 homologs including B7-H1 and B7-H3 known for their capac-
ity to reduce immune responses, a further example of a muscle-specific fine regula-
tion mechanism to protect the integrity of the tissue. Skeletal muscle cells also differ 
from other non-APC cells in constitutively expressing CD40, a key molecule 
employed by APCs to communicate with CD4+ and CD8+ lymphocytes through 
CD40L. Local inflammation enhances expression of CD40 on myofibers resulting 
in a positive feedback loop through which further immune cells are recruited.

According to these unique immune properties, skeletal muscle tissue appears 
fully equipped as a potent target for human vaccination. Specifically, it recognizes a 
broad range of antigens through PRRs. Myofibers induce a local inflammation, are 
capable of antigen presentation, and fine regulate—together with several immune 
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effectors recruited to the site of injury/pathogen invasion—the local inflammatory 
response. As a consequence, an antigen-specific adaptive immune response is initi-
ated which allows pathogen clearance and establishes a memory response, offering 
an effective protection against a potential second infection. Moreover, the skeletal 
muscle is a highly dynamic tissue. Thus, in case of cell loss, tissue repair mecha-
nisms are initiated to maintain the tissue integrity.

36.3  Vaccination Strategies Using Muscles

Intramuscular (i.m.) injection is the standard method for vaccination in Europe, the 
United States, and other countries [25, 26]. Indeed, i.m. injection as delivery route 
appears safe (no serious side effects) and efficacious in inducing antigen-specific 
humoral and/or T cell-mediated immune responses. Examples of currently avail-
able vaccine treatments are shown in Table 36.1. In most of the cases, more than 
one vaccine is available to protect against a given pathogen, and combined vac-
cines have received marketing authorization (e.g., in Germany (http://www.pei.de/

Table 36.1 Availablea viral and bacterial vaccines for use in human

Live attenuated Killed inactivated Subunit

Viral Vaccinia
Polio (OPV)
Yellow Fever
Measles
Mumps
Rubella
Influenza
Rotavirus
Dengue virus

Polio (IPV)
Rabies
Influenza
Hepatitis A

Hepatitis B (HeB-surface antigen)
Human papilloma virus (HPV)

Bacterial BCG 
(tuberculosis)
Salmonella typhi 
(oral)

Bordetella pertussis 
(whole cell)
Cholera
Bacillus anthracis
Leptospira 
interrogans

Tetanus (toxoid)
Diphteria (toxoid)
Neisseha meningitidis (polysaccharide)
Bordetella pertussis (acellular)
Streptococcis pneumoniae, 23 valent 
(polysaccharide)
Hemophilus influenzae, type b (Hib) 
(polysaccharide)
Neisseha meningitidis (polysaccharide 
conjugate)
Streptococcis pneumoniae, heptvalent 
(polysaccharide conjugate)
Salmonella typhi Vi (capsular 
polysaccharide)
Borrelia burgdorferi (outer-surface 
protein A (OspA))
Leptospira interrogans

aPrincipal available vaccines in West World. Adapted from Nascimento and Leite [8]

36 Muscle as a Potent Target in Vaccination

http://www.pei.de/EN/medicinal-products/vaccines-human/vaccines-human-node.html


652

EN/medicinal-products/vaccines-human/vaccines-human-node.html)). Despite 
these achievements, infectious diseases remain one of the main causes of death 
around the world, and this is particularly true for low-income countries. In addi-
tion, in developed countries, the increase in life span calls for vaccines that can be 
applied to immunocompromised patients, patients with chronic infection or the 
elderly. In addition, cancer has been identified as a novel target in vaccine develop-
ment [3]. This does not only include vaccination against pathogens related to can-
cer development such as hepatitis B virus (HBV) or human papillomavirus (HPV) 
but also employs vaccine strategies to induce adaptive immune responses against 
tumor cells itself. The latter is challenging as tolerance against “self” needs to be 
overcome. Finally, conventional vaccine strategies suffer from various drawbacks 
including failure to protect against major health burdens such as malaria, human 
immunodeficiency virus (HIV), hepatitis C virus (HCV), or influenza virus [27]. 
These challenges call for a new class of vaccines, designed on a rational basis and 
directed against pre-defined antigen(s) specifically inducing the type(s) of immune 
response required to confer protection or treatment. To develop this type of “mod-
ern vaccine,” input from multiple disciplines is required. Specifically, there is a 
need for obtaining a deep understanding on the pathogenicity of microbes (“dan-
ger” to be addressed), on the type of immune responses that needs to be elicited, 
and on how these immune responses can be induced. Additionally, a “toolbox” 
must be available enabling designing a vaccine that can manipulate the host’s 
immune system accordingly.

DNA-based vaccines represent one of the first examples of these modern vac-
cines. They are composed of plasmid DNA—produced in bacteria—that encode for 
the antigen along with a strong eukaryotic promoter to drive its continuous expres-
sion in the target cells [28]. Obvious advantages compared to attenuated pathogens 
or recombinant protein-based vaccines are high stability at room temperature (easy 
for storage and shipping) and the convenient way of developing and producing 
them. Specifically, antigen-coding sequences can be introduced by standard cloning 
techniques. Its sequence can de designed to function as innate immune activators 
along with plasmid backbone sequences. In addition, plasmids can be produced 
even in large amounts in bioreactors in an easy and cost-effective manner. Regarding 
gene transfer, muscle appears as an excellent target tissue. The large number of 
T-tubules and the caveolae structures of the myofibers promote uptake of DNA 
 vaccines into the cell, while the unique organization of this tissue with peripheral 
location of the nuclei beneficially impacts on efficacy of transduction. The anti-
gen—when designed as a secreted protein—is released from the transduced muscle 
cells and subsequently processed by APCs (e.g., DCs) or B cells triggering a 
humoral immune response. DCs may also cross-present secreted antigens inducing 
antigen-specific T cell responses. In addition, antigen is presented through MHC 
classes I and class II either by the muscle cells or following APC uptake to directly 
activate T cells. In animal models, DNA vaccines thereby trigger, both efficacious 
antigen-specific humoral and cellular immune responses. DNA vaccines received 
marketing authorization in veterinary medicine in Canada in 2005 [28, 29]. The first 
DNA vaccine in Europe was licensed in 2016 and is recommended for protecting 
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Atlantic salmon against salmon alphavirus subtype 3 (EMA/CVMP/281226/2016). 
The efficacy of DNA vaccines reported in veterinary medicine, however, is not 
translatable to humans [30]. A lower immunogenicity of DNA in humans as com-
pared to other mammals is proposed as most likely explanation, although the under-
lining mechanism remains to be fully elucidated [28, 31]. Of interest in this regard 
is perhaps a recent report on species-specific differences in the cGAS/STING DNA 
sensing system [32, 33]. STING (stimulator of interferon gene) is the main PRR for 
DNA in muscle tissue [31]. STING is either directly activated by cyclic dinucleo-
tides or upon binding of the second messenger cyclic GMP-AMP, produced by 
cyclic GMP- AMP synthase (cGAS) in response to cytosolic double-stranded DNA 
[34]. STING is located in the endoplasmic reticulum and mounts via TBK1 (TANK-
binding kinase 1), a type I IFN response, the typical innate immune response toward 
nucleic acids. In addition, STING has been reported to activate NFκB, MAP kinase, 
and STAT6 immune signal pathways and may induce autophagy, an ancient cell 
response pathway that among others clears cells from invading pathogens [33, 35].

A totally different strategy for the design of modern vaccines is based on the use 
of antigens as recombinant proteins applied together with adjuvants or in form of 
so-called viruslike particles (VLP). An example for the latter is HPV vaccines. The 
purified L1 capsid protein of HPV self-assembles into icosahedral particles, which 
are recognized by the immune system after intramuscular injection. Following this 
line, L1 proteins of different HPV serotypes can be combined in a single vaccine 
such as in case of Gardasil9 [36, 37]. The latter contains L1 self-assembled VLP 
derived from nine different HPV serotypes and is reported to provide an efficient 
and reliable protection against HPV infection, which is cancer-associated. A very 
potent variation of this concept is the use of recombinant viral or bacterial vectors, 
for example, from adenovirus (AdV) or bacille Calmette-Guérin (BCG), as delivery 
tools. They encode for the target antigen/s and function simultaneously as multi-
modal adjuvants. In line, compared to DNA vaccines, these recombinant vectors/
bacteria-based vaccines demonstrated significantly higher immunogenicity because 
multiple PRRs are addressed and antigen expression is improved as they possess a 
natural ability to efficiently cross host barriers. A more recent example targeting 
Nipah virus (NiV) uses vectors based on the adeno-associated virus (AAV), a non- 
pathogenic parvovirus otherwise used as delivery tool for in vivo gene therapy [38]. 
The natural hosts of NiV are fruit bats. NiV infection—classified by the WHO as 
emerging zoonosis—can cause fatal encephalitis in humans (http://www.who.int/
csr/disease/nipah/en/). So far, no vaccine is available. An AAV serotype 8-derived 
vector was developed and tested in a proof-of-concept study [39]. The vector 
encoded for the G-glycoprotein gene of NiV and was applied by intramuscular 
injection. Of note, a single injection of this vaccine was sufficient to induce an 
effective protection in a hamster model. Interestingly, this vaccine also induced a 
cross-protective immune response in 50% of the hamsters against Hendra virus 
(HeV), another member of the Henipavirus family [39]. Recombinant viral vectors 
were also used in the battle against other emerging pathogens, the recent Ebola 
outbreak in West Africa being one example [40]. Ebola virus is a member of the 
Filoviridae that causes lethal hemorrhagic fever. In the most severe epidemic that 
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occurred between 2013 and 2016, 28,600 cases of Ebola virus disease (EVD) with 
more than 11,300 deaths were reported [40]. In a combined effort, already available 
vaccines—all belonging to the class of modern vaccines—were rapidly approved 
for clinical trials. They all focused on Ebola virus surface glycoprotein located on 
the envelope. Specifically, single-dose as well as prime-boost regimes were tested 
with vaccines based on AdV, vesicular stomatitis virus (VSV), and minute virus of 
mice (MVM) (for details see [40]). All vaccines proved to be safe with VSV-based 
vaccines likely being the most effective [40]. Although evaluations and develop-
ments are ongoing, results obtained from these trials allow concluding that in case 
of a new EVD emergency, outbreak control will be faster and more efficient. 
Similarly, the recent Zika virus outbreak fostered interdisciplinary collaborations to 
understand its pathogenicity, decipher its transmission route, and develop potent 
vaccine strategies [41].

36.4  Enhancing Vaccine Immunogenicity

Remarkable efforts are underway to address the WHO’s list of emerging infections 
[42] in particular by using the abovementioned strategies of modern vaccine designs. 
However, a barrier toward reaching modern vaccine’s full potential is frequently 
their comparison to live attenuated vaccines and lower immunogenicity. Besides 
further improvements in vector design (e.g., [43]) and adjuvants (for a recent review, 
see [16]), variations in application strategies are assayed to tackle this challenge. 
One strategy that resulted in considerable success regarding DNA vaccines is intra-
muscular electroporation (EP). Short electric pulses that destabilize the myofiber 
membranes, promoting DNA uptake and thus expression of the heterologous gene 
[44, 45]. Furthermore, EP enhances the strength of immune response due to local 
inflammation resulting from the electric stress and upregulation of TLR-9 and the 
inflammasome. The potency of such improved vaccine design may be well illus-
trated by a clinical vaccine trial for patients with chronic infection by HCV, a condi-
tion characterized by a dysregulated humoral and cellular immune responses [46]. 
Despite the abovementioned challenging condition, EP-mediated application of a 
DNA vaccine encoding for a conserved HCV antigen induced a CD8+ T cell 
response and inhibited (albeit transient) HCV replication. Of note, no injury was 
reported allowing one to consider intramuscular EP as safe delivery strategy through 
which immunogenicity of a vaccine can be improved significantly.

Another approach to enhance the immunogenicity of vaccine consists of prime- 
boost strategies. For heterologous prime-boost strategies, antigen is inoculated into 
the host successively using two different formulations. DNA vaccines, for example, 
appear as excellent priming vehicles, while recombinant vectors showed promise as 
boosters [8, 47]. Alternatively, single-shot prime boost vaccines are developed in 
which capsid modified vectors are applied. The capsid of such vectors serve as scaf-
folds for antigen display (similarly to VLP) for priming an antigen-specific immune 
response upon vector administration. This maintains expression and secretion of 
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antigen/s following vector-mediated cell transduction and enhances the adaptive 
immune response [48]. To date, such prime-boost strategies are discussed as the 
most promising strategy to induce a strong and persistent adaptive immune response.

36.5  Skeletal Muscle vs. Alternative Vaccination Targets

The magnitude, the nature, and the kinetics of the immune responses are largely 
influenced by the delivery route [49]. Tissues localized at the interface between the 
host and its environment such as the skin and the mucosa appear more “immune 
competent” compared to the muscle. The inflammatory response is initiated faster 
and is stronger, mediated by a broader range of immune effectors (e.g., resident 
cells, immune sensors). This higher susceptibility, which is likely the cause of its 
function as natural barrier toward pathogens, is a clear advantage compared to the 
muscle as a vaccine target and is of importance in cases in which protective antigen- 
specific immune responses are difficult to achieve. However, this higher reactivity 
comes with the increased risk of unwanted local reactions. Skeletal muscle, on the 
contrary, while being in the “naïve” state and less “immune competent” than the 
skin or mucosa, fully compensates this disadvantage by efficient recruitment of 
APCs as well as by the potency of muscle cells in functioning as nonprofessional 
APCs. Thus, when receiving the correct “cocktail” of stimulation, skeletal muscle is 
equally competent to mount protective antigen-specific humoral and/or cellular 
immune responses. When comparing skeletal muscle with other vaccine targets, its 
regenerative capacity as well as the muscle-specific immune regulation circuits 
needs to be highlighted as it represents a unique “safety net” for maintaining tissue 
integrity despite mounting antigen-specific immune responses upon vaccination. 
The muscle and skin/mucosa also differ in the quality of the immune response 
induced following vaccine administration [50]. Targeting the gut mucosa, for exam-
ple, results in a gut-associated cytotoxic T lymphocyte (CTL) response, while intra-
muscular administration allowed for CTL responses in blood and gut, revealing a 
distinct compartmentalization of the immune response [50]. Skeletal muscle also 
differs from the skin and mucosa in its turnover rate resulting in significant longer 
exposure of the immune system toward antigens expressed and released from DNA 
or vector-transduced cells. This seems to be a promising feature for vaccines 
designed for the elderly as exemplified by seasonal influenza vaccines [51].

36.6  Conclusion

The potency of vaccination programs in protecting humans and livestock from 
infectious diseases has been shown without doubt. Less efficient were attempts 
exploring therapeutic vaccines or vaccines that target tumors (not the cancer 
related pathogen). Further challenges comprise chronic infection, pathogens 
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with high antigenic variation, or use of vaccines in immune compromised sub-
jects. In order to tackle these challenges and—in addition—to improve safety of 
vaccines, modern vaccines are developed in an interdisciplinary approach. 
These rational design- based vaccines increase in complexity with our growing 
knowledge on how our immune system works and with the advent of sophisti-
cated techniques to mount (but also to control) antigen-specific immune 
responses required for long-term protection or efficient treatment. Here, we 
focused on the skeletal muscle, a tissue that represents itself with a long and 
successful record as a target for vaccine administration. This popularity is linked 
to its easy accessibility but also to its remarkable regenerative capacity. Owning 
to its natural function and location in the body, skeletal muscles are less well 
equipped with resident immune cells compared to other vaccine targets like the 
skin or mucosa and were therefore considered as being less competent in induc-
ing protection against weak antigens. However, upon vaccination, myofibers, 
the main muscle cell type, gain the ability to function as nonprofessional APCs 
and thus to mount together with recruited and resident APCs an innate immune 
response that eventually results in a potent antigen-specific immune response. 
Based on this positive feedback loop and the availability of a “toolbox” to tailor 
modern vaccines, even a weak antigen ought to be turned into a potent i.m.-
applicable vaccine. Moreover, in the muscle, tight regulation circuits are in 
place that—in conjunction with the regenerative capacity of skeletal muscles—
protect the host, making skeletal muscle not only a promising but also safe tar-
get of vaccination.
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Chapter 37
Patient and Family Perspective on Muscle 
Gene Therapy

Pat Furlong

Abstract Gene therapy for Duchenne muscular dystrophy (DMD) has been a long 
time coming. Duchenne first identified this disease more than 100 years ago. In 
1986, the genetic basis was identified, and the gene cloned was the largest in the 
human genome. In 1987, dystrophin, the protein product, was identified. Families 
watched as their sons lost the ability to walk and the ability to self-feed and died as 
teenagers. In the late 1980s and 1990s, the promise of gene therapy was thought to 
be “easy” through the use of a virus capable of delivering the 14.0 kilobases. 
Families were assured that restoring dystrophin would stop progression and delay 
the loss of motor milestones. Hope was high and “soon” seemed within reach. But 
many years have passed as the field moves forward, exploring both the safety and 
carrying capacity of viral vectors. And now, 30  years later and with intensive 
efforts to exploit gene therapy, we stand on the threshold. Gene therapy is on the 
horizon and the word “soon” is reality.

Keywords Duchenne · Rare disease · Genetic · Hope · Patients · Family  
Muscular dystrophy · Gene therapy

Hope is a good thing, maybe the best of things, and no good thing ever dies.
Shawshank Redemption

37.1  Rare Diseases: Legislation

Rare diseases affect more than 30 million Americans and 400 million people 
worldwide. In 1982, an informal coalition of patients and families with rare dis-
eases formed the National Organization of Rare Disorders. The National 
Organization for Rare Disorders (NORD) and many other activists impacted by 
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rare diseases called for change, advocating for legislation intended to encourage, 
support, and incentivize drug development for treating these rare or orphan dis-
eases. On January 4, 1983, President Ronald Reagan signed the Orphan Drug Act 
into law. Under the Orphan Drug Act, drugs, biologics, and vaccines qualify for 
orphan status if they are intended to treat a disease affecting less than 200,000 in 
the population. In an effort to encourage the development of drugs for rare dis-
eases, the Act contained incentives, including 7-year market exclusivity for com-
panies that developed orphan drug and tax credits that equal one half of the 
development costs. This was later changed to a 15-year carry-forward provision 
and a 3-year carry-back that can be applied in profitable years, grants for drug 
development, fast-track approvals of drugs indicated for rare diseases, and 
expanded access to the Investigational New Drug Program. The law was later 
amended to waive user fees charged under the Prescription Drug User Fee Act (or 
PDUFA). Until that time, only 38 orphan drugs had been approved by the US Food 
and Drug Administration (FDA). In 2014, 468 orphan designations covering 373 
drugs had been approved. In part, and because of this legislation, Japan adopted an 
Orphan Drug Act in 1993 and the European Union in 2000. In 2017, the sales fore-
cast for orphan drug sales is estimated to be $209 billion dollars and set to account 
for 21.4% of worldwide prescription sales by 2022.

Additional incentives have been put into place to ensure that more clinical 
studies are conducted on children. Congress enacted two laws that would serve to 
increase the study of drugs in children with rare diseases. First, the Best 
Pharmaceuticals for Children Act (BPCA) provides an incentive for drug compa-
nies to conduct FDA-requested pediatric studies by granting an additional 
6  months of marketing exclusivity. Second, the Pediatric Research Equity Act 
(PREA) requires drug companies to study their products in children under certain 
circumstances. When pediatric studies are required, they must be conducted with 
the same drug and for the same use for which they were approved in adults. While 
these incentives were not specific to rare diseases, they enabled the rare disease 
community to engage with industry on products that may target pathways relevant 
to a rare disease.

In 1998, Parent Project Muscular Dystrophy (PPMD), an advocacy organiza-
tion focused on Duchenne muscular dystrophy, made significant inroads within 
the National Institutes of Health (NIH) and Congress. In 2000, the NIH convened 
a workshop on Duchenne muscular dystrophy. It was the first time the NIH 
expressed any interest in this rare disease. The Muscular Dystrophy CARE Act 
(MDCA), legislation specifically focused on the muscular dystrophies, was intro-
duced into the US Congress, both the House and Senate, on February 14, 2001. 
This legislation was signed into law in December 2001; this legislation would 
galvanize research, incentivize companies to invest in Duchenne, and restore hope 
in families worldwide.
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37.2  Duchenne Muscular Dystrophy: Patients, Family, 
and Community

The dystrophin or DMD gene is the largest gene in the human genome consisting of 
2.5 million base pairs and 79 exons. The size of the gene makes it susceptible to 
random and frequent mutation. The protein product, dystrophin, is present in all 
muscle: skeletal, cardiac, and smooth muscle. Dystrophin functions as a shock 
absorber for muscle and an anchor of sorts, stabilizing muscle fibers. Without dys-
trophin, the muscle cannot survive. It is estimated that 12,000 individuals are living 
with Duchenne in the United States and 250,000 worldwide. One in 4600 boys will 
be born with Duchenne. Approximately 30% of those diagnoses are spontaneous 
mutations. Similarly, 1 in 4600 women will be born carrying the genetic mutation 
on their X chromosome and, blissfully unaware, carrying a 50% risk of having a 
male child who will be diagnosed with Duchenne. A significant proportion of these 
carriers develops muscle disease, in particular cardiomyopathy.

In the confines of a physician’s office, the diagnosis is made, translating concerns 
expressed by the parents into a single word: “Duchenne.” The physician describes 
the loss of the structural protein, dystrophin, as well as the subsequent cascade of 
events that occur based on the absence of this critical protein in the muscle. The 
physician then outlines what the parents might expect over the trajectory of the 
illness.

Duchenne is characterized by skeletal muscle weakness, though dystrophin is 
present in every tissue. Typically, individuals lose ambulation in the early teens, 
become unable to lift their arms to their mouth, and will require ventilation in their 
late teens. Duchenne is 100% fatal with the mean age of death in the mid-20s. Life 
plans are changed, revised, and revised again and again as function is lost. Each day, 
families watch and wait. Hope often feels out of reach.

Parents search the Internet, seek expertise, and connect with researchers, clini-
cians, industry, and other families. They set up Google alerts, RSS feeds, list serves, 
PubMed criteria, industry alerts, and Facebook pages—living each day hoping to 
receive news. They review their dictionary of terms: dystrophin, genetic mutation, 
exon, and introns. They calculate what clinical trial or potential treatment may slow 
or halt progression and what opportunity may be “on the horizon” and “in time” for 
their son.

37.3  Gene Therapy for Duchenne: Hope

For families, dystrophin is the “holy grail,” the belief that restoring dystrophin 
would have the potential to stop progression. Families become experts on their 
child’s disease-causing mutation. They explore opportunities that might result in the 
expression of a truncated form of dystrophin, full-length dystrophin, or a replace-
ment protein that may serve as an adequate substitute.

37 Patient and Family Perspective on Muscle Gene Therapy
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The cloning of the dystrophin gene in 1986, and the identification of the protein 
in 1987, was an exciting time—the potential to restore dystrophin seemed “soon” 
and “on the horizon.” And in September 1990, doctors infused genetically altered 
white blood cells back into a young girl to correct her fatal illness, severe combined 
immune deficiency (SCID), the first successful gene therapy study. The rare disease 
community witnessed a new revolution in medicine. News traveled quickly through-
out the Duchenne community; the hope and promise of restoring the missing dys-
trophin was within reach. But this was not to be the case. Setbacks and learnings 
occurred over the last 20 years. Today, though, promise and hope has reemerged.

During those intervening years, researchers have explored delivery vehicles, 
virus, plasmid, and other tools commonly used by molecular biologists (nanother-
apy) to deliver genetic material into cells. They have explored the dystrophin gene 
to understand how to construct a smaller but effective version of dystrophin, one 
that could be packaged in a virus and safely delivered systemically, with widespread 
integration into both the heart and skeletal muscle. The single goal is to significantly 
slow or halt progression. Clinical trials first targeted single muscles and moved 
rapidly into limb delivery. Standing on the shoulders of success in hemophilia and, 
more recently, SMA Type 1, the Duchenne community believes treatments are now 
within reach. Clinicians, companies, and regulatory authorities around the world are 
aligned. The word “soon” means this generation of individuals diagnosed has hope. 
The word “promising” refers to incredibly promising and reproducible data. The 
words “every single one” mean application of this technology will apply to all diag-
nosed individuals.

And the word “hope” is bright with promise for this generation of individuals 
and all future generations.
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Chapter 38
Design of Clinical Trials for Gene Therapy 
in Muscular Dystrophy

Jorge Quiroz and Kathryn Wagner

Abstract Gene therapy clinical trials in muscular dystrophy have commenced 
using intramuscular administration and have recently advanced to systemic admin-
istration of vector. This chapter will evaluate some of the elements of the design of 
clinical trials in gene therapy for muscular dystrophy that may optimize the safety 
and efficacy outcomes. Subject selection must consider preexisting immunity and 
the therapeutic window. While a placebo-controlled design is optimal, it may not be 
feasible in a pediatric trial. Efficacy outcome measures include muscle histology, 
muscle MRI, and functional tests. Safety outcome measures have special consider-
ations for those with muscular dystrophy. Finally, ethical considerations important 
in design of clinical trials of gene therapy in muscular dystrophy include the prin-
ciples of therapeutic misconception and justice.

Keywords Gene therapy · Clinical trials · Muscular dystrophy · Ethics

38.1  Introduction

Exogenous delivery of functional copies or knockdown of disease-causing genes is 
a leading therapeutic strategy for the muscular dystrophies. However, clinical gene 
therapy for muscle disorders is still in its infancy. While there have been thousands 
of gene therapy clinical trials, to date, only a handful have targeted skeletal muscle. 
Many of these trials were designed to use the muscle as a biofactory for a systemic 
disorder, while a smaller number were designed to test safety and efficacy in a 
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primary muscle disorder. While the technology of vectors and transgenes has 
evolved in the decades since the original gene therapy trials in humans, lessons can 
be gleaned from these early studies.

Long-term follow-up of gene therapy studies in lipoprotein lipase deficiency 
(LPLD) and hemophilia B provides significant information on the persistence of the 
effects of adeno-associated virus (AAV)-based gene therapy in muscle tissue. The 
first gene therapy to be approved in the Western world, alipogene tiparvovec 
(Glybera), is an AAV1 vector carrying the human LPLS447X gain-of-function variant 
for the treatment of a rare form of familial dyslipidemia (LPLD-induced pancreati-
tis). Individuals treated with a onetime intramuscular administration of alipogene 
tiparvovec had sustained transgene expression and were found to have an approxi-
mately 50% reduction in disease-related acute abdominal events in a 6-year follow-
 up [1, 2]. Despite pharmacological immune suppression, cellular infiltrates including 
CD8+ T cells were observed in the muscle injected with alipogene tiparvovec [2]. 
However, the lack of MHC molecules on muscle fiber membranes, elevation in 
serum creatine kinase (CK), or clinical symptoms suggests minimal immune- 
mediated damage to injected muscle [2]. The first hemophilia B gene therapy trial 
similarly used the muscle as a biofactory to produce human factor IX (hFIX) deliv-
ered by AAV2. Injections were well tolerated, and muscle biopsies showed no evi-
dence of inflammation or muscle injury [3, 4]. However, efficacy was limited with 
only one of eight participants having detectable circulating hFIX [3, 4]. Importantly, 
for this individual from a low-dose cohort, transgene expression was sustained for 
more than 10 years [5].

Trials designed to test the safety and efficacy of gene therapy in primary muscle 
disorders have also all employed AAV. While trials of systemic delivery of AAV for 
primary muscle disorders have recently been initiated, to date, completed trials have 
all utilized local intramuscular delivery. In Duchenne muscular dystrophy (DMD), 
a modified AAV2 capsid with an insertion of five amino acids from AAV1 delivered 
a minidystrophin transgene, representing approximately 40% of the 11-kb coding 
sequence of the human dystrophin gene via intramuscular injection of the biceps 
[6]. Minidystrophin was detectable in two of the four subjects at 42 days but in 
neither of two subjects at 90 days postinjection. Although an immune response to 
AAV capsid was not observed, concern was raised for T-cell response to dystrophin 
epitopes resulting in low efficacy [6]. In limb-girdle muscular dystrophy (LGMD)2D, 
AAV1 was employed to deliver α-sarcoglycan to the extensor digitorum brevis [7]. 
Two of the three subjects displayed α-sarcoglycan expression at 6 months with the 
remaining subject exhibiting an early rise in neutralizing antibodies and early T-cell 
response to AAV1 capsid by interferon-γ enzyme-linked immunosorbent spot 
(ELISpot) [7]. Half the subjects exhibited local inflammatory cell infiltration at the 
site of injection, but these cells did not invade transduced myofibers [7]. In 
LGMD2C, AAV1 expressing γ-sarcoglycan was delivered locally to the extensor 
carpi radialis muscle [8]. At 30 days posttreatment, biopsies from low-dose cohorts 
did not express the transgene, while all of the biopsies from the high-dose cohort 
(4.5 × 1010 viral genomes) were positive for γ-sarcoglycan by immunohistochemis-
try but only one of the three by Western blot [8]. Although one subject receiving the 
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highest dose had a persistently detectable cytotoxic T lymphocyte response, there 
was no concomitant rise in creatine kinase, MHC class 1 overexpression, or inflam-
matory infiltration [8]. In Pompe disease, AAV1 expressing acid alpha-glucosidase 
(GAA) was delivered to the diaphragm muscle of five ventilator-dependent chil-
dren. Transgene expression levels are unknown as the diaphragm cannot be safely 
biopsied, but some measures of respiratory function improved with increased unas-
sisted tidal volumes and longer periods of unassisted breathing [9]. No T-cell- 
mediated immune responses to the vector were observed although one subject 
developed anti-GAA antibodies [9]. In a separate study, AAV1-CMV-GAA deliv-
ered to the diaphragms of Pompe children on partial/no mechanical ventilation and 
full-time mechanical ventilation were compared. Respiratory function as measured 
by flow and volume load compensation increased in those with a higher baseline 
respiratory function and was maintained for at least 6–12 months [10].

These early forays into gene therapy in skeletal muscle via local intramuscular 
injection of AAV demonstrated consistent safety but limited efficacy of persistent 
transgene expression. A combination of factors has been suggested to account for 
limited efficacy including preexisting immunity to AAV capsid proteins, preexisting 
immunity to transgene epitopes, development of immune response to AAV capsid 
proteins, dosing, or other factors. Here we discuss elements of the design of a clini-
cal trial of gene therapy in muscular dystrophy to optimize the chances of demon-
strating both safety and efficacy.

38.2  Subject Selection

Several parameters should be considered in patient selection in advance of the 
administration of novel gene transfer candidates: the level of preexisting immunity 
to the viral capsid, the potential immunogenic capacity of the expressed protein, the 
general condition of the patient, and the stage of disease. These are issues 
that may influence safety and efficacy of the gene transfer.

38.2.1  Preexisting Immunity

The response to the gene transfer candidate could be affected by mechanisms of 
innate immunity as well as adaptive immunity (humoral and cellular responses), 
both of which may affect the safety and efficacy of the drug candidate. While the 
former does not provide by itself  long-lasting protection to the individual, the 
humoral and cellular responses do.

Innate immunity might play an important role in the early inflammatory 
responses mostly through direct action of macrophages and other resident cells 
in target organs and other infected tissues (e.g., Kupffer cells in the liver). 
Humoral response, instead, is mediated by the presence of anti-AAV antibodies 
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that will appear within days after a naturally occurring infection or after drug 
candidate administration. The newly created memory against AAV antigens is 
lifelong which may preclude any future readministration of the drug. For this 
reason, it is relevant to characterize the presence of circulating antibodies before 
drug administration in order to exclude patients that have prior exposure as they 
could have an exaggerated response to the AAV vector. Although the cutoff lev-
els needed to induce life-threatening responses to AAV administration in previ-
ously immunized subjects have not been clearly established, experiments in 
nonhuman primates have shown that very high titers of circulating IgG antibod-
ies posed a relevant threat to the animals re-exposed to AAV (Corti and Byrne, 
personal communication, [11]). Although the translatability of these effects to 
humans still needs to be fully understood, patients with high titers should be 
precluded from participating in these types of experimental studies, unless meth-
ods to eliminate the antibodies from circulation are developed and offered in 
advance of any drug infusion.

Neutralizing antibodies are a subset of circulating antibodies that not only con-
tribute to the immune response but that can also effectively block the activity/
function of new protein after drug candidate administration [12]. The presence of 
neutralizing antibodies would make the infusion of drug into patients a futile 
effort, dramatically modifying the risk/benefit ratio for a potential participant in 
clinical studies. It is important to note that the extent by which circulating anti-
bodies and the subset of neutralizing antibodies are correlated may vary. Recent 
exploration of the strength of the correlation and prevalence of these two types of 
antibodies in nonhuman primates has shown great variation between colonies pro-
viding further evidence that neutralizing titer levels should be carefully evaluated 
and considered prior to patient selection [13]. The titer levels at which the neutral-
izing effects are observed (where the nature of the functional assays to evaluate 
the antibody neutralization may play an important role) have to be fully and spe-
cifically characterized for each drug candidate (vector and the gene of interest). 
Cutoff levels needed to significantly block translation after AAV administration 
have not been clearly established; however, in nonhuman primate experiments 
with an AAV8 vector, preexisting neutralizing antibodies at a titer of 1:20 were 
sufficient to reduce transduction considerably [14]. Importantly, in vivo neutral-
izing effects may depend greatly on the doses being administered, and therefore, 
it is theoretically possible that a higher dose of the drug candidate may initially 
surpass the neutralizing effect of antibodies before memory cells for these anti-
gens are reactivated.

Efforts to decrease the levels of circulating and neutralizing antibodies through 
plasmapheresis have been explored for some time. Most recently, an extracorpo-
real immune-adsorption procedure was shown to reduce the levels of anti-AAV 
neutralizing antibodies in NHPs that previously received an AAV reporter con-
struct (AAV5-hSEAP) by a mean factor of 12. Significantly, this reduction permit-
ted the successful readministration of an AAV5 vector containing a different 
transgene (hFIX in this case), indicating the potential utility of this approach in 
previously immunized patients but naïve to treatment or those in potential need of 
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future gene transfer readministration [15]. Another approach to potentially enable 
the repeated administration of a vector of the same AAV serotype was explored 
through  pharmacological modulation of the humoral immune response. In the 
study of AAV-GAA for Pompe disease, three subjects were treated daily with 
sirolimus, an inhibitor of the mammalian target of rapamycin (mTOR) which acts 
on B cells and T cells, and every 12 weeks with rituximab, a monoclonal antibody 
that induces B-cell depletion by binding CD20 found on the surface of B cells 
[16]. This strategy showed promising results in preventing immune responses to 
gene transfer [16].

38.2.2  Therapeutic Window

The muscular dystrophies are defined by their progressive nature and are character-
ized by fibrosis and fatty infiltration of affected muscles. It is reasonable to assume 
that gene transfer to adipose and fibrotic tissue will have no efficacy and that, there-
fore, the earlier the intervention, the better the probabilities of benefit in this popula-
tion. In addition, there are safety concerns in enrolling individuals who have 
advanced respiratory and cardiac disease (who tend to be older) and very young 
individuals before safety and efficacy are fully understood. It seems reasonable that 
at these initial stages of clinical research, children and adolescent may present the 
best risk/benefit ratio for receiving gene transfer. An expansion to older and younger 
populations is expected to follow shortly after.

38.3  The Intervention Phase

38.3.1  Use of Glucocorticosteroids

Transaminase elevations (ALT and AST) have been reported in some patients after 
AAV administration for gene transfer by different groups at the clinical research 
stage of development [17–19]. These elevations have been reported to be transient 
and asymptomatic, without reported increases of total bilirubin beyond the upper 
limit of normal or variations of other markers of liver functionality. In many cases, 
the use of glucocorticoids was reported to ameliorate these transient elevations and 
has been used prophylactically before and during AAV administration or in response 
to ALT abnormalities. It is not known if patients with muscular dystrophies under-
going steroid treatment (which is standard of care in DMD) would prophylactically 
benefit from an increase in the dose of glucocorticoids to supra-therapeutic levels 
immediately before gene transfer. It is thought that in patients already being treated 
with glucocorticoids, the risk/benefit of increasing the dose may be favorable 
through provision of additional protection when utilized during the gene transfer 
administration (returning to basal levels thereafter).

38 Design of Clinical Trials for Gene Therapy in Muscular Dystrophy
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38.3.2  Use of a Control Group

It has largely been established that a randomized double-blind placebo-controlled design 
in interventional clinical trials is the gold standard for generating the highest level of 
evidence when interpreting efficacy and safety signals. According to the FDA, “the pla-
cebo control design, by allowing blinding and randomization and including a group that 
receives an inert treatment, controls for all potential influences on the actual or apparent 
course of the disease other than those arising from the pharmacologic action of the test 
drug. These influences include spontaneous change (natural history of the disease and 
regression to the mean), subject or investigator expectations, the effect of being in a trial, 
use of other therapies, and subjective elements of diagnosis or assessment” [20]. 
However, the question of when it is possible to utilize such a design is a more controver-
sial issue that should take several factors into consideration. These include but are not 
limited to the age group of the population to be investigated (pediatric vs. non-pediatric), 
the diagnoses (natural history, including level of disability and life-span), the nature of 
the intervention and associated risks, the burden of procedures during clinical investiga-
tion (e.g., biopsies, venous ports, radiation), and the availability of alternative treat-
ments. Many muscular dystrophies are devastating pediatric diseases (where the 
majority of the patients affected with the disease are children and adolescents younger 
than 18 years old) with no efficacious and alternative therapeutic interventions that stop 
the advancement of the disease. Thus, any procedure associated with the placebo inter-
vention needs to represent a minor increase over minimal risk for pediatric patients. 
Interestingly, the definition of this threshold has recently been deemed unclear, and a 
joint meeting of the FDA’s Pediatric Advisory Committee and Pediatric Ethics 
Subcommittee was called to provide a recommendation on this respect [21]. It was 
asked if the placement of a central venous access port is considered to be beyond a 
minor increase over minimal risk for pediatric patients with DMD assigned to the pla-
cebo arm of a randomized, double-blind, placebo-controlled study. The committee rec-
ommended in this case that the use of central venous access ports in pediatric patients 
would be allowable in subjects randomized to receive investigational product or placebo 
(based on 21CFR50.54(b)(2) including that the clinical investigation presents a reason-
able opportunity to further the understanding, prevention or alleviation of a serious prob-
lem affecting the health or welfare of children, among other regulations). Currently, 
studies including different active treatments as a concurrent control, different dose or 
regimen of the study treatment as a concurrent control, or historical controls are consid-
ered to be less optimal alternative trial designs.

38.4  Efficacy Outcome Measures

38.4.1  Muscle Histology

Determination of the efficacy of gene transfer requires the quantification of the 
transgene or cognate protein. In addition to quantification of the protein through 
mass spectrometry or semiquantitatively through immunoblot, the cellular 
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localization of the protein by immunohistochemistry is critical to confirm its func-
tionality in muscle gene transfer. Unfortunately, the muscle community has not 
been consistently careful in the handling and analysis of muscle biopsies from 
research participants. Safeguards against degradation and artifact include detailed 
manual of procedures, surgeons’ and technicians’ experience with skeletal muscle, 
and a central laboratory with blinded readers.

Some skeletal muscles are affected disproportionately to others in the muscular 
dystrophies [22]. Many become replaced by fat and fibrosis early in the disease. In 
order to provide a true measure of efficacy, the specific muscle to be biopsied must 
be chosen with care as a fatty replaced muscle is unlikely to demonstrate transgene 
expression. Magnetic resonance imaging (MRI)-guided biopsy is helpful in this 
regard. However, even within an individual muscle, one should expect significant 
site-to-site variability which complicates analysis.

38.4.2  Muscle MRI

While muscle biopsy is invasive and provides information on a very limited region, 
MRI of the muscle is noninvasive and can provide information on several or all the 
muscles of the body. Transverse relaxation time (T2) MRI and magnetic resonance 
spectroscopy (MRS) are sensitive to extracellular water as occurs in inflammation 
and necrosis and to fatty replacement of the muscle. The MRI phenotype of most of 
the major muscular dystrophies has now been described [22]. Natural history stud-
ies have demonstrated disease progression by MRI in muscular dystrophies such as 
Duchenne, FSHD, and LGMD2I [23–27]. In ambulatory DMD, T2-MRI values and 
fat fraction (by H1-MRS) in muscles of the lower extremities increased significantly 
over 12 months in all age groups [26]. Importantly, T2-MRI values decreased in 
several leg muscles of boys within 3 months of initiation of corticosteroids [28]. 
Although it has yet to be demonstrated if MRI is sensitive to transgene expression 
in muscle gene transfer, these studies suggest the potential to capture a reversal of 
inflammation/necrosis or a reduction in intramuscular fat accumulation.

38.4.3  Muscle Function

Multiple outcome measures have been found to be feasible and reliable in the test-
ing of function in muscular dystrophy individuals. Most of these measures, such as 
the 10-m walk/run, timed up and go, rise from floor, four-stair climb, and the 6-min- 
walk test (6MWT), are focused on lower extremity function. Many lower extremity 
measures, often used routinely in clinical evaluations, have been extensively uti-
lized  in a number of clinical trials for various muscular dystrophies [29–32]. 
Measures of upper extremity function include the Performance of Upper Limb and 
more recently upper extremity reachable workspace outcome measures using a 3D 
vision-based sensor such as the Kinect system [33, 34]. Upper extremity function is 
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important to capture as an outcome measure that can be used across both ambula-
tory and nonambulatory populations. It also has special relevance to disorders such 
as FSHD with prominent arm and shoulder girdle involvement, in which the reach-
able workspace outcome measure has been found to be feasible and sensitive to 
differentiate a range of functional levels [35].

The 6MWT continues to be a frequent primary functional outcome measure in 
trials of muscular dystrophy. Originally developed as a global assessment of cardio-
pulmonary function, it was the basis for regulatory registration in Pompe and DMD 
[36, 37]. The 6MWT has been found to be reliable and correlate with the 10-m 
walk/run and the supine to stand time in BMD [30]. Similarly in FSHD, the 6MWT 
has been found to be reliable and correlates with other measures of disease severity 
[29]. In DMD it is considered by some to be an optimal test because of its low ratio 
of minimal clinically important difference to baseline relative to that of other end-
points [31]. However, like other timed function tests, it is not sensitive to disease 
progression in young DMD individuals under the age of 7 who are also an ideal age 
group for gene transfer studies [38].

Patient-reported outcome measures (PROMs) are instruments capable of obtain-
ing a patient’s insight into their own health state. If validated correctly, and used in 
the right setting, these instruments can be used to measure treatment benefits and 
risks. PROMs capture the status of the patient’s health directly from the patient, 
often without requiring implementation or interpretation from an investigator or 
evaluator. Ideally, a PROM focuses on the symptoms that are most important to the 
study population. The FDA has established PROMs as part of its criteria for drug 
approval and labeling [39]. PROMs have been developed for DM1, FSHD, and 
DMD and may soon be seen as the primary outcome measure of clinical trials in 
muscular dystrophy [40–42].

38.5  Safety Outcome Measures

Monitoring of the safety of gene transfer includes both acute and chronic outcome 
measures. This includes evaluations of vital signs, physical examination, electrocar-
diography, and serology. There are some special considerations for monitoring mus-
cular dystrophy patients.

38.5.1  Hepatotoxicity

It is important to note that patients with muscular dystrophies normally present 
with elevated levels of ALT and AST of muscular origin. These elevations may 
represent a potential confounder for signals of hepatic inflammation induced by 
candidate drug administrations. Therefore, efforts have been made to detect early 
abnormalities independent of transaminase level monitoring through more 
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specific biomarkers of hepatic integrity (in addition to monitoring levels of bili-
rubin, gamma-glutamyltransferase, or prothrombin time). It is postulated that 
exploratory biomarker measurements, including glutamate dehydrogenase 
(GLDH) levels, could be clinically relevant; in fact, GLDH serum levels elevated 
due to liver injury were shown to be unaffected by concurrent muscle disease in 
contrast to ALT levels, demonstrating the utility of this marker in this patient 
population [43].

38.5.2  Immune Response

In addition to a potential innate and humoral immune responses as described 
above, cellular responses to the capsid and transgene protein can also occur. 
These antigen- specific cytotoxic responses that are not mediated by antibodies 
may affect the efficacy and safety of the gene transfer drug candidate through 
destruction of the cells presenting antigenic segments of the vector or the anti-
genic segments of the new protein at the cell surfaces. These cytotoxic responses 
may be acute or chronic. One method to detect these responses is by measuring 
the frequency of cytokine- secreting cells, most commonly utilizing interferon-γ 
through ELISpot. This test is usually performed on easily accessible circulating 
cells (peripheral blood mononuclear cells) rather than on the tissue of interest 
(e.g., muscle). Intriguingly, in one account it was reported that circulating dys-
trophin-specific T cells were detected in patients with DMD not only after treat-
ment (although the new protein was not detected in muscle) but also in the blood 
of patients before vector treatment [6]. It was hypothesized by the authors that 
these findings were explained by the presence of antigens derived from revertant 
dystrophin fiber containing epitopes targeted by the autoreactive T cells. These 
findings and interpretation have been challenged, and, additionally, it has been 
pointed out that a positive ELISpot signal for AAV vectors may not necessarily 
represent meaningful cytotoxic T lymphocyte activity in patients, questioning 
the clinical translatability of the test in blood to guide medical decisions. More 
research is needed to further understand the nature of these relationships, and 
efforts are underway to further explore potential cytotoxicity in preclinical 
models [44].

38.6  Ethical Considerations

Gene therapy trials and especially those in pediatric populations present unique 
ethical challenges for researchers designing clinical trials. Two important areas for 
consideration concern the principle of  therapeutic misconception/misestimation 
and the principle of justice.
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38.6.1  Therapeutic Misconception/Misestimation

Therapeutic misconception occurs when a research participant or their substitute 
decision-maker confuses the purpose of research participation with therapy [45]. 
Perhaps more common, therapeutic misestimation occurs when the participant or 
decision-maker overestimates the probability of benefit or underestimates the prob-
ability of risk in participating in research [46]. The name “gene therapy” itself, 
rather than “gene transfer,” lends itself to therapeutic misconception. Researchers, 
patient advocates, and media may all contribute to the “hype” of a trial that inflates 
the probability and extent of benefit or minimizes potential risk. Decision-makers 
may agree to participation as a means to a disease cure. Compounding the difficulty 
in effectively communicating the true nature of research is that these facts must 
often be communicated to pediatric participants who potentially have a less- 
developed understanding of the medical world. In a telling example, Unguru et al. 
found that half the participants in a pediatric oncology trial did not understand they 
were participating in research rather than receiving a clinical treatment [47].

Therapeutic misconception and misestimation erode the process of meaningful 
informed consent and assent for research participation. True informed consent requires 
that not only does the participant have an understanding of the purpose of the research 
but also an understanding of how the research differs from clinical care. Moreover, 
researchers must ascertain that the potential research participant truly grasps the dis-
tinction, and this takes on particular importance in the pediatric population. Therapeutic 
misconception and misestimation alter the participants’ decision- making process by 
misunderstanding the likelihood of benefit to risk, and avoidance of such requires 
deliberate care during the recruitment and enrollment of participants.

38.6.2  Justice

The principle of justice in clinical research requires fair processes and fair outcomes 
[48]. Applying the principle of justice ensures that all groups in the society are given 
the opportunity to benefit from being involved in research. The National Institutes of 
Health in fact requires all sponsored clinical trials to include women and minorities 
when applicable. A special challenge in gene therapy trials, particularly for phase 1 
trials, is selecting a few participants of diverse backgrounds from the many interested 
and eligible. A “first-come, first-serve” approach as is employed in many trials bene-
fits those who are best informed and often have higher socioeconomic status and are 
more highly educated. An alternative approach that fairly allocates a very limited 
number of participant slots is a lottery. Such an approach was taken in the endostatin 
phase 1 trial in which 1400 patients were enrolled in a lottery for three places in the 
first cohort [49]. However, for a lottery to be used fairly, those enrolled need to be 
representative of the population. Here engagement of patient foundations and other 
stakeholders is critical to the successful and just recruitment of study participants.
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38.7  Conclusion

There have been only a handful of gene therapy clinical trials in muscular dystrophy 
to date, and the community is still on the steep slope of the learning curve. Lessons 
have been learned from these early trials as well as gene therapy trials in other dis-
orders and pharmacological clinical trials in muscular dystrophy. As the field moves 
from intramuscular administration to systemic administration of vector, there will 
doubtlessly be new unforeseen challenges. However, with the careful design of 
clinical trials, the potential of fulfilling safety and efficacy outcome measures and 
eventually providing a meaningful therapeutic agent is near.
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Chapter 39
Path to Clinical Trials: Trial Design, 
Development of the Clinical Product, 
and Safety Concerns in the Implementation 
of Clinical Trials

Jerry R. Mendell, Louise R. Rodino-Klapac, and Christopher J. Shilling

Abstract The path to an IND from conception of a potentially promising mode of 
treatment to a clinical trial is often not fully understood. This chapter attempts to 
provide a template from early considerations, through safety concerns and product 
development. The regulatory agencies play a major role in this process and are often 
accessible to advise researchers about specific issues that may be relevant in the 
planning phase. The message from this chapter is that if researchers want to pursue 
clinical translation, it should be considered even before any preclinical studies are 
done. This will save both time and funds and avoid duplication and modifying pre-
vious experiments that showed promise but had not satisfied regulatory require-
ments. The preclinical studies must consider the vector used in gene delivery, 
dosing, and safety issues that are applicable to clinical trial. Taking advantage of 
opportunities to explore toxicity to the fullest for later presentation to regulatory 
agencies is an important consideration. The pre-IND meeting with the FDA is a 
pivotal step to get to a clinical trial and will provide a template to follow in prepara-
tion and planning for the IND. All of the agencies that are critical to the translation 
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process are fully described in this chapter for fulfilling commitments to bring prom-
ising experiments from the laboratory to the clinic.

Keywords IND · FDA · Adeno-associated virus (AAV) · Toxicology  
Clinical trial

39.1  Designing and Implementing Clinical Gene Therapy 
Trials

Before the first experiment is done in the laboratory, the steps that are required to 
bring a project to the clinic (reviewed in the pages to follow) should be carefully 
considered. It is natural for the enthusiastic investigator initiating a novel approach 
that has the potential to advance to the clinic to overlook what will be required by 
the regulatory agencies for approval. Many of these considerations seem obvious 
but may be ignored because of lack of familiarity or simply ignored; however, care-
ful consideration of the steps to achieve full translation saves both time and money.

39.2  Choice of Vector for Gene Transfer

Obviously the gene transfer vehicle is a critical issue. In the world of neuromus-
cular diseases, the decision to use adeno-associated virus (AAV) is an obvious 
outgrowth of experience. The Jesse Gelsinger case illustrated the potential vulner-
ability of subjects to an immune response related to adenovirus that was far more 
extensive than ever previously encountered resulting in multiple organ failure and 
brain death [1, 2]. Adenovirus was the viral vector used in gene transfer for treat-
ment of ornithine transcarbamylase in Gelsinger, now steering investigators away 
from this vehicle.

Another major adverse event that framed future efforts for neuromuscular dis-
eases occurred in the treatment of human severe combined immunodeficiency 
(SCID)-X1. The initial results using retroviral vectors for delivery appeared to be 
successful without problems [3]. However, a major complication occurred 2.5 years 
post treatment with the development of leukemia from insertional mutagenesis of 
the first intron of the LIM domain only-2 (LMO2) gene, a known transcription start 
site previously associated with T-cell acute lymphoblastic leukemia [4–6]. Twenty 
patients were treated in French and UK trials. Unfortunately, four patients in the 
French study and one patient in the UK trial developed T-cell leukemia 2–5.5 years 
after gene therapy. Four remained in long-term remission after chemotherapy and 
have fully recovered after treatment. The remaining patient died despite a range of 
therapeutic approaches. In all cases, further study of the adverse event, resulting 
from insertional oncogenesis, showed that the retroviral vector had integrated into 
malignant cells within or near tumor-promoting genes (mainly the LMO2 gene).
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These studies directed the neuromuscular gene therapy community toward AAV as 
the delivery vehicle of choice for in vivo therapy targeted for treatment of inherited 
diseases of postmitotic tissues. A full discussion of AAV is provided in other chapters 
of the book (Chaps. 10 and 11), and comments here are only meant to guide the 
 investigators planning preclinical research studies. AAV has proven to be a safe vehicle 
for gene transfer, but the limitations of packaging capacity to <5 kb remain an obstacle. 
AAV vectors are currently the safest and most efficient platform for gene transfer in 
mammalian cells, and by 2017 AAV vectors have been used in 204 clinical trials [7]. 
Very few safety issues have emerged, but like with other viruses, immune responses 
remain a concern. There was a patient who died in a clinical AAV trial, but the virus 
was exonerated by the Food and Drug Administration (FDA) as the responsible agent. 
In this Phase I clinical trial, a 36-year-old woman became extremely ill the day after a 
second injection in the knee joint using AAV.tgAAC94 to combat inflammatory arthri-
tis. The death of this individual was due to disseminated Histoplasma capsulatum, a 
fungus endemic in the Midwest. The affected subject was simultaneously being treated 
for arthritis with adalimumab (Humira), a systemic anti-TNF-α antagonist. Fungal 
infections are known serious complications of this therapy. A Recombinant DNA 
Advisory Committee (RAC) investigation of the circumstances that surrounded the 
death concluded that the AAV vector carrying the transgene was not responsible and 
did not contribute to the untimely death. Thus, the FDA exonerated the AAV vector and 
permitted the clinical trial to resume [8].

39.2.1  Choice of AAV Serotype for Clinical Trial

There is a building literature and a growing experience demonstrating that the AAV 
serotype will target muscle and work well in clinic trial. Since gene therapy was 
introduced when AAV2 was the only choice, we are fortunate that the repertoire of 
serotypes has expanded significantly. Twelve human serotypes of AAV (AAV1 to 
AAV12) and more than 100 serotypes from nonhuman primates have been identi-
fied to date [9]. The lack of pathogenicity of this virus has increased AAV’s poten-
tial as a delivery vehicle for gene therapy. Compared to AAV2, greater gene 
expression has been validated for the targeting muscle and heart with AAV sero-
types 1, 6, 8, and 9. This increased expression extends to the central nervous system 
reflected in our own SMA type 1 trial demonstrating exceptional results in a cohort 
of 15 infants using AAV9 at Nationwide Children’s Hospital [10]. In addition, a 
serotype designated rh74 was isolated at Nationwide Children’s Hospital, sharing 
93% homology to AAV8 and 98% homology to AAVrh10. AAVrh74 efficiently tar-
gets skeletal and cardiac muscle.

In planning preclinical studies with AAV, it is incumbent on the investigator to 
look ahead to the clinical application(s). Dose, safety, and efficacy must be consid-
ered, and this will include a consideration of the cassette and the promoter (see 
Chap. 8 for more discussion on designing the cassette). The outcome in the preclini-
cal studies must be clearly defined in the animal model, and improvement following 
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delivery of recombinant AAV (rAAV) must be unequivocal. This can be challenging 
if there is no animal model or one with minimal manifestations. A muscle-specific 
promoter, including desmin, CK6, CK7, MCK, tMCK, and MHCK7, is not manda-
tory but may avoid off-target organ adversity.

Dosing issues cannot be overlooked and must be considered in relation to the 
target population. A major concern is whether the doses showing efficacy are appli-
cable to the disease population (infants, children, adults). Given that the single most 
expensive item getting to clinical trial will be vector production, it is critical that the 
minimally and maximally effective dose be known before moving the project for-
ward to the regulatory agencies.

One final issue to consider in vector planning is the potential benefit of new tech-
nologies developed to increase the genome capacity for AAV and enhance expres-
sion using a two-vector system. The trans-splicing approach takes advantage of 
AAV’s ability to form head-to-head concatemers via recombination in the ITRs. In 
this approach, the transgene cassette is split between two rAAV vectors containing 
adequately placed splice donor and acceptor sites. Transcription from recombined 
AAV molecules, followed by the correct splicing of the mRNA transcript, results in 
a functional gene product. This application becomes useful for using AAV to deliver 
therapeutic genes up to 9  kb in size. Attempts in multiple organ gene delivery 
include the retina [11], lung [12], and muscle [13]. An alternative two-vector rAAV 
system approach that we find highly efficient is homologous recombination. We 
have used this extensively for delivery of the dysferlin cDNA using AAV serotype 
rh74 [14]. Through the use of two discrete vectors (rAAVrh74.DYSF) defined by a 
1 kb region of homology, gene replacement via intramuscular and vascular delivery 
routes can be efficiently and safely delivered to dysferlin-deficient mice and nonhu-
man primates. This method is currently in clinical trial in LGMD2B patients.

39.3  Clinical Development for Biologics

At the time of Investigational New Drug (IND) application, documentation is 
required pertaining to product development (research, design, manufacturing) with 
assurance that safety has been thoroughly vetted in animal studies. The FDA has 
established a set of “good practices” that provide the framework for conduct of 
high-quality preclinical studies, product manufacture, and clinical trials, and these 
principles should be thoroughly understood by the sponsor of a gene therapy proto-
col. The Code of Federal Regulations (CFR) is posted annually at the US Government 
Publishing Office (http://www.gpo.gov/fdsys/). Title 21 of the CFR, Part 58, details 
the requirements for good laboratory practice (GLP), a set of standards for the con-
duct of nonclinical laboratory studies used to support an IND application. In sce-
narios where the target indication meets certain criteria—such as a rare and 
designated orphan, a severe or life-threatening disorder, and the absence of an 
approved alternative treatment—the FDA has allowed greater consideration of pre-
clinical studies that do not meet all the qualifications outlined in the GLPs. Title 21 
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of the CFR, Parts 210 and 211, describes the requirements for good manufacturing 
practice (GMP). The principles of GMP apply to the manufacturing process and the 
manufacturing facility. The FDA is amendable to certain exceptions to GMP prod-
ucts manufactured to support Phase I clinical trials as outlined in the 2008 FDA 
issued “Guidance for Industry: cGMP for Phase 1 Investigational Drugs.” Although 
there is some flexibility at early IND phases in the level of adherence to GLP and 
GMP regulations, application of these principles in the initial stages of product 
development establishes the guidelines necessary for the initiation of human clini-
cal trials. Good clinical practice (GCP) guidelines apply to the conduct of the clini-
cal trial and are described on the FDA Web site (http://www.fda.gov/oc/gcp/
regulations.html). GCP guidelines implicitly require that clinical research be con-
ducted for valid ethical and scientific reasons, performed by qualified investigators, 
and initiated only after Institutional Review Board (IRB) approval and valid 
informed consent have been obtained and documented. The objective of the 
International Conference on Harmonisation (ICH) on GCP is to provide a unified 
standard for the European Union (EU), Japan, and the United States to facilitate the 
mutual acceptance of clinical data by the regulatory authorities in these jurisdictions 
(http://www.ich.org/about/mission.html). There must also be periodic monitoring 
of the clinical trial to assess the quality of the research and integrity of the data. A 
second set of tools published by the FDA is available at the Center for Biologics 
Evaluation and Research (CBER) website descrbing specific policy, regulatory and 
expectations for gene therapy: (http://www.fda.gov/BiologicsBloodVaccines/
GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/
default.htm).

The initial administration into humans is a Phase I trial (human pharmacology) 
with focus on safety. In 2015, the FDA issued “Guidance for Industry: Considerations 
for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products” 
which provides FDA’s current recommendations regarding clinical trial design 
where the primary objectives are the initial assessments of safety, tolerability, or 
feasibility of administration of investigational products. Studies may be open, base-
line controlled, or randomized with blinding. Randomizing subjects is usually not 
appropriate for early phase gene therapy trials, especially for the dose-escalation 
design, the usual paradigm for Phase I trials. Depending on study strategy, however, 
it is possible to randomize extremities for treatment (e.g., gene injection vs vehicle 
only into opposite limbs) [15, 16]. At the Phase I level of development, nonthera-
peutic, pharmacologic objectives are paramount. Data collection focuses on (1) 
safety and tolerability, (2) distribution and clearance (pharmacokinetics) from local 
and remote sites (e.g., urine, semen, and saliva), and (3) estimates of activity of the 
recombinant agent (usually a secondary outcome measure).

A Phase II trial (therapeutic exploratory) assesses initial efficacy as its primary 
objective. Goals include determination of dose, protocol for delivery, and establish-
ing endpoints. Target populations can be clarified, such as mild vs severe disease. 
The Phase II concept of trial design may have safety as the primary outcome but 
includes a measurable functional outcome. It would be labeled a Phase I/IIa clinical 
trial if open label or a Phase I/IIb clinical trial with a control group. Substantiation 
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of efficacy is the goal of the Phase III trial (therapeutic confirmatory), providing a 
basis for licensure and marketing. Post marketing product modifications occur dur-
ing a Phase IV trial (therapeutic use). So far, only one gene therapy product was 
approved by the FDA for treating retinal dystrophy using AAV2-mediated gene 
replacement with a normal RPE65 gene. This paucity of approvals includes chal-
lenges related to multiple issues. The resources needed to bring a product to market 
lead to excessive costs as do safety concerns. Limited vector production capacity 
and technical issues of scale-up also impose obstacles for some vector systems. Of 
note, Glybera, delivering the lipoprotein lipase gene in AAV directly to muscle, was 
approved by the European Medicines Agency (EMA), but the company that devel-
oped the product dropped plans for approval in the United States because of the cost 
necessary to achieve approval from the FDA.

39.4  Planning the Clinical Trial Is a Collaborative Process

Seeking regulatory approval for a first inhuman Phase I gene therapy protocol is 
the initial consideration for the investigator. The most efficient approach for a 
translational gene therapy is to give thought in defining what the clinical protocol 
will include. This will take into account the vector and transgene to be used, the 
dosing regimen, route of administration, safety monitoring system, and outcome 
measures. The strategy is benefitted by collaboration between the preclinical and 
clinical scientists. With the strategy assembled, the research team begins work to 
support product development that must follow regulatory guidelines considering 
that it will be closely scrutinized by the FDA, IRB, and Institutional Biosafety 
Committee (IBC).

Once the full development plan is agreed upon, laboratory-based preclinical 
studies should define (a) a relevant animal species/model, (b) the biologically 
effective dose range inclusive of the minimally effective dose (MED) and opti-
mal biological dose (OBD) and/or a maximally tolerated dose (MTD), (c) opti-
mization of the route of administration (ROA), (d) timing of administration 
relative to the onset of disease/injury, and (e) characterization of the purported 
mechanism of action (MOA). It is also worth the time and effort to look beyond 
gene expression in limb skeletal muscle with consideration of critical tissues of 
interest like gene expression and functional benefit to the diaphragm and heart. 
In addition, animal studies (mouse, canine, feline, or nonhuman primate) 
designed to show efficacy should gather as much information as possible to dem-
onstrate a safety profile to defend the final product to be presented to the regula-
tory agencies. This includes immune studies for viral and transgene T-cell 
responses assessed by interferon gamma (IFN-γ) ELISpot assays and ELISA 
assays for antibody. In addition, complete autopsies with tissue studies on every 
major organ and chemistry batteries inclusive of assessment of the heart, liver, 
kidney, hematologic, and skeletal muscle should exclude adverse effects that can 
be presented with the pre-IND package or at the time of IND application to sup-
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port a safety profile. Careful documentation, monitoring, and reporting of these 
preclinical studies in the spirit of GLP are necessary to allow the FDA to rely on 
the data. Study reports should include a detailed prospectively designed proto-
col, record of all amendments and deviations from protocol, and transparent and 
traceable results for all parameters for each animal on study. For muscular dys-
trophy, animal models should recognize cystatin C as a measure of kidney func-
tion because creatinine is often low when muscle mass is decreased [17]. 
Assessment should also include serum gamma-glutamyl transferase [18] to 
assess hepatocellular damage rather than transaminases that will usually be ele-
vated when there is muscle damage related to the underlying disease. Having this 
information in well-defined data set will be necessary in moving things forward 
at every interaction with the FDA.

39.5  Regulatory Agencies Involved in Gene Therapy 
Protocols

It is important in translating basic or preclinical science to the clinic to understand 
the organizational structure of the Department of Health and Human Services 
(DHHS) (Fig. 39.1). The Secretary of DHHS is a Cabinet Post and is the chief pol-
icy officer and general manager who administers and oversees the organization, its 
programs, and its activities [19]. The Office of the Assistant Secretary of Health 
(OASH) is responsible for implementation of the goals of DHHS and protection of 
human subjects in biomedical and behavioral research. In collaboration with OASH, 
the Office for Human Research Protections (OHRP) and Secretary’s Advisory 
Committee on Human Research Protections (SACHRP) report to OASH and are the 
most relevant promoting the objectives for gene therapy.

39.5.1  OHRP and SACHRP

This OHRP was created in June 2000 to lead the DHHS’ efforts to protect human 
subjects in biomedical and behavioral research and to provide leadership for all 
federal agencies that conduct or support human subject’s research under the 
Federal Policy for the Protection of Human Subjects. OHRP helps ensure this by 
providing clarification and guidance, developing educational programs and mate-
rials, maintaining regulatory oversight, and providing advice on ethical and regu-
latory issues in biomedical and social-behavioral research. The Director of OHRP 
reports to the Assistant Secretary of Health. OHRP has oversight over more than 
13,000 institutions in the United States and worldwide that conduct HHS human 
subject research.

The SACHRP advises DHHS on issues related to protecting human subjects. The 
Committee advises, consults with, and makes recommendations on matters pertain-
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Fig. 39.1 Organizational chart for regulatory affairs. The Secretary of the Department of Health 
and Human Services (DHHS) is a Cabinet Post overseeing the programs and activities of this 
complex department. The Assistant Secretary of Health (ASH) is responsible for implementing the 
goals of HHS and protecting human subjects in biomedical and behavioral research. In relation to 
gene therapy, the Office for Human Research Protections (OHRP) and Secretary’s Advisory 
Committee on Human Research Protections (SACHRP) report to OASH and provide leadership to 
protect the rights, welfare, and well-being of subjects involved in research. On the opposite side of 
the organizational chart, two human service agencies (of a total of 11) directly involved in gene 
therapy include the NIH and the FDA. The NIH has a highly integrated program that establishes 
guidelines for genetic research and executes policy through the Office of Science Policy (http://
osp.od.nih.gov). OSP is the central site for planning, developing, and coordinating NIH-wide pol-
icy activities for clinical and healthcare research. The Office of Biotechnology Activities (OBA) 
reports to OSP regarding the conduct of clinical trials and oversight of gene therapy research. At 
the institutional level, the IBC updates OBA every year through the Institutional Biosafety 
Committee Registration Management System (IBC-RMS). The Center for Biologics Evaluation 
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ing to the continuance and improvement of functions within the authority of HHS 
directed toward protection for human subjects in research. Specifically, examples 
include advice relating to the responsible conduct of research involving human sub-
jects with particular emphasis on:

• Special populations, such as neonates and children, prisoners, and the decision-
ally impaired

Fig. 39.1 (continued) and Research (CBER), an integral part of FDA, regulates cellular therapy 
products, human gene therapy products, and certain devices related to cell and gene therapy. CBER 
uses both the Public Health Service Act and the Federal Food Drug and Cosmetic Act as enabling 
statutes for oversight. Human gene therapy refers to products that introduce genetic material into 
a person’s DNA to replace faulty or missing genetic material, thus treating a disease or abnormal 
medical condition. CBER has now approved one AAV-mediated product and sevaral cell-based 
products and the amount of cellular and gene therapy-related research and development occurring 
in the United States continues to grow at a rapid rate. All gene therapy clinical trial protocols must 
be conducted under Investigational New Drug (IND) application. The IND application is submit-
ted to Office of Tissue and Advanced Therapies (OTAT) in CBER if the product has not previously 
been authorized for marketing in the United States and is intended to be used for the purposes of 
clinical investigation or, in certain cases, for the purposes of clinical treatment when no approved 
therapies are available. The sponsor of an IND application is the party who submits the application 
to FDA. This can be a pharmaceutical company, but in the early stages of translational gene ther-
apy, it is the investigator conducting the proposed clinical trial who usually is the sponsor of the 
IND application. In collaboration with CBER, OBA has developed a registry of activities related 
to recombinant DNA research and human gene transfer: the Genetic Modification Clinical 
Research Information System (GeMCRIS), a Web-based information system for human gene 
transfer trials designed to facilitate safety reporting. Investigator and sponsors of a human gene 
transfer trials can utilize this system to report serious adverse events (SAEs) and annual reports. A 
hard copy of the electronic report can be printed and used as a template to fulfill FDA reporting 
requirements. GeMCRIS allows users to access an array of information about human gene transfer 
trials registered with the NIH, including medical conditions under study, institutions where trials 
are being conducted, investigators carrying out these trials, gene products being used, route of gene 
product delivery, and summaries of study protocols. This basic information is available to the 
public through GeMCRIS for gene transfer trials registered at the NIH. OBA provides guidelines 
for recombinant or synthetic nucleotides that have been published in the Federal Register on March 
22, 2016 (effective April 27, 2016 http://osp.od.nih.gov) and updated August 16, 2018. The recent 
update eliminated the Recombinant DNA Advisory Committee. Other committees remain and are 
operative at the institutional site (may be public or private): the Institutional Review Board (IRB) 
and the Institutional Biosafety Committee (IBC). All human research requires IRB approval, and 
the functions, operations, and IRB committee membership follow policy defined in Title 45 of the 
CFR, Part 46 (http://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/). This 
includes a requirement that IRBs register with OHRP. The IBC approves all experiments involving 
the transfer of recombinant DNA or DNA or RNA derived from recombinant DNA into human 
participants. The IBC is charged with the obligation to determine the risks and ensure public and 
environmental safety in the locale where the research takes place. Originally IBC oversight was 
restricted to recombinant DNA research, but over time responsibility has expanded to include a 
wide range of biohazardous materials (e.g., infectious agents and carcinogens). Members of the 
IBC committee must have expertise and training in recombinant DNA technology. Ad hoc consul-
tants participate as required. The IBC files an annual report to NIH Office of Biotechnology 
Activities (OBA) (http://osp.od.nih.gov/office-biotechnology-activities)
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• Pregnant women, embryos, and fetuses
• Individuals and populations in international studies
• Populations in which there are individually identifiable samples, data, or 

information
• Investigator conflicts of interest

39.5.2  National Institutes of Health (NIH) and Office 
of Science Policy (OSP)

On the opposite side of the organizational chart, two human service agencies (of 
a total of 11) directly involved in gene therapy include the NIH and the FDA 
(Fig. 39.1). The NIH has a highly integrated program that establishes guidelines 
for genetic research and executes policy through the OSP (http://osp.od.nih.gov). 
The OSP is the central site for planning, developing, and coordinating NIH-wide 
policy for clinical and healthcare research. The Office of Biotechnology Activities 
(OBA) reports to OSP regarding the conduct of clinical trials and oversight of 
gene therapy research. At the institutional level, the IBC updates OBA every year 
through the Institutional Biosafety Committee Registration Management System 
(IBC-RMS).

39.5.3  FDA

In 1993, the FDA issued a statement published in the Federal Register defining 
statutory authorities governing therapeutic products that apply to human cell 
therapy and gene therapy (http://www.fda.gov/cber/guidelines.htm) according to 
the Public Health Service Act and the Federal Food, Drug, and Cosmetic Act. 
The Center for Biologics Evaluation and Research (CBER), an integral part of 
the FDA, regulates cellular therapy products, human gene therapy products, and 
certain devices related to cell and gene therapy. CBER uses both the Public 
Health Service Act and the Federal Food Drug and Cosmetic Act as enabling 
statutes for oversight. Human gene therapy refers to products that introduce 
genetic material into a person’s DNA to replace faulty or missing genetic mate-
rial, thus treating a disease or abnormal medical condition. Although, CBER has 
only approved one human gene therapy product, the amount of cellular and gene 
therapy-related research and development occurring in the United States contin-
ues to grow at a fast rate.

All gene therapy clinical trial protocols must be conducted under Investigational 
New Drug (IND) application. The IND application is submitted to FDA’s Office 
of Tissue and Advanced Therapies (OTAT) in CBER if the product has not previ-
ously been authorized for marketing in the United States and is intended to be 
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used for the purposes of clinical investigation or, in certain cases, for the pur-
poses of clinical treatment when no approved therapies are available. The spon-
sor of an IND application is the party who submits the application to FDA and 
ultimately takes responsibility for the development of the investigational drug 
product. This can be a pharmaceutical company, but in the early stages of trans-
lational gene therapy, it is the academic-based investigator conducting the pro-
posed clinical trial who usually is the sponsor of the IND application. The review 
time for initial submission of an IND application is 30 days from the date FDA 
receives the IND. An IND applicant may proceed with a clinical investigation 
once the applicant has been notified by FDA that the research study may be initi-
ated or after 30 days from the FDA’s receipt of the IND if there is no notification 
that the trial is on clinical hold. Regulations pertaining to this process appear in 
Title 21 of the CFR, Part 312.

In collaboration with CBER, OBA has developed a registry of activities related 
to recombinant DNA research and human gene transfer: the Genetic Modification 
Clinical Research Information System (GeMCRIS), a Web-based information sys-
tem for human gene transfer trials designed to facilitate safety reporting (https://
www.gemcris.od.nih.gov). Investigator and sponsors of a human gene transfer trials 
can utilize this system to report serious adverse events (SAEs). A hard copy of the 
electronic report can be printed and used as a template to collect data that fulfills 
FDA reporting requirements. GeMCRIS allows users to access an array of informa-
tion about human gene transfer trials registered with the NIH, including medical 
conditions under study, institutions where trials are being conducted, investigators 
carrying out these trials, gene products being used, route of gene product delivery, 
and summaries of study protocols. This basic information is available to the public 
through GeMCRIS for gene transfer trials registered at the NIH.

39.5.4  RAC

RAC had been a critical agency under OBA management for review and registration 
of humna gene transfer protocols. This has now changed as of August 16, 2018 with 
the announcement by NIH that reporting requirements were captured by existing 
agencies and in order to eliminate duplication, protocol submission, review and 
reporting would be eliminated. Thus, new proposals would no longer be accept-
edand the NIH Office of Science Policy would no longer accept annual reports, 
safety reports, amendments or the documentation for any previously registered 
human gene transfer protocols.
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39.5.5  Investigative or Institutional Site

Two committees are operative at the institutional site (may be public or private): the 
IRB and the IBC. All human research requires IRB approval, and the functions, oper-
ations, and IRB committee membership follow policy defined in Title 45 of the CFR, 
Part 46 (http://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/). 
This includes a requirement that IRBs register with OHRP.  The IBC approves all 
experiments involving the transfer of recombinant DNA or RNA, and committee par-
ticipants must have expertise and training in recombinant DNA technology. The IBC 
is charged with the obligation to determine the risks and ensure public and environ-
mental safety in the locale where the research takes place. Originally IBC oversight 
was restricted to recombinant DNA research, but over time responsibility has expanded 
to include a wide range of biohazardous materials (e.g., infectious agents and carcino-
gens). Ad hoc consultants participate as required to provide insight for this expanded 
responsibility. The IBC files an annual report with OBA (http://osp.od.nih.gov/office-
biotechnology-activities/biosafety/institutional-biosafety-committees).

39.6  Summary of Sequential Steps in Implementation 
of a Clinical Gene Transfer Trial

Once there is understanding of the preclinical proof of concept data and there is 
intent to move to clinical trial with a well-defined protocol that matches the prelimi-
nary data that has been assembled, the investigators should seek guidance on the 
path forward for regulatory approval.

39.6.1  INitial Targeted Engagement for Regulatory Advice 
on CBER ProducTs (INTERACT)

In June 2018 the FDA implemented the INTERACT meeting program, designed to 
provide access to CBER regarding questions on the early development of products 
and clinical trials for gene therapy. This replaced the existing CBER pre-pre- 
Investigational New Drug (IND) meeting. The goal of these meetings was to allow 
sponsors to engage the FDA for advice on multiple phases of product development 
and in turn help facilitate progress and efficiency for bringing the product forward 
to the clinic. The INTERACT access to the FDA does not replace pre-IND meetings 
but allows potential sponsors to clarify expectations.
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39.6.2  Pre-IND Meeting

This meeting is arranged at the request of the sponsor/investigator through a 
formal written letter sent to the FDA and is intended to be limited to 1 h. It is the 
first official step toward initiation of a Phase I gene therapy protocol and accord-
ing to the FDA is considered a Type B meeting (21 CFR 312.82). Meetings 
should be scheduled to occur within 60 days of FDA receipt of the written request 
for a Type B meeting. The letter should request dates and times (morning and 
afternoon) and whether the meeting request is for a face-to-face or teleconfer-
ence. A meeting request should include the product name, proposed indication, 
and a brief statement of the purpose and objectives of the meeting including 
background, brief summary of completed or planned studies and comments on 
the clinical trials, and a list of individuals who will attend the meeting. Questions 
of the specifics to clinical development of the product need to be included and 
should be grouped by discipline (e.g., pertaining to preclinical, toxicology, vec-
tor manufacturing, and clinical protocol). Once the date is established, the pre-
IND package must be submitted by the sponsor 30 days before the meeting date. 
CBER can deny the meeting request based on what they consider a premature 
stage of development.

The meeting does not require a sponsor’s presentation, but rather the focus of the 
meeting is on the comments supplied by the FDA reviewers. The FDA will provide 
written minutes documenting the discussion ~30  days after the meeting. Going 
through this critical review process defines a clear path for IND preparation that 
might include recommendations for additional preclinical studies to be done. In 
addition, the pre-IND meeting will strengthen the application for other regulatory 
submissions to IRB, and IBC.

39.6.3  Requesting IBC Approval

The timing for submission to IBC is somewhat arbitrary, but the committee must 
consider the issues raised in the pre-IND meeting and the response of the inves-
tigator and team. Information to IBC must include the source of the DNA, the 
nature of the inserted DNA sequences, the vectors to be used, the transgene and 
protein product, and its containment. The IBC then makes a decision as to 
whether the protocol needs review and sends its recommendation to the NIH in 
electronic form to the NIH OSP, preferably by e-mail (HGTprotocols@mail.nih.
gov). The NIH will usually concur with IBC, but they reserve the right to over-
ride the decision if they feel there would be added benefit from a face-to-face 
meeting.
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39.6.4  Seeking IRB Approval

The IRB approves all human gene therapy protocols and the informed consent doc-
uments before beginning a study. The functions, operations, and IRB committee 
membership follow policy defined in Title 45 of the CFR, Part 46. This includes a 
requirement that IRBs register with OHRP. The timing for this request is left to the 
investigator, keeping in mind that the initial IRB approval can only be tentative until 
input from the FDA (IND), and IBC is received. This highlights the highly inte-
grated activities of these “independent” bodies in obtaining approval for gene 
therapy protocols.

39.6.5  IND Submission to the FDA (CBER)

Under current regulations, any product not previously authorized for marketing in 
the United States requires submission of an IND to the FDA. The specific require-
ments for content and format for an IND application are specified in Title 21 of the 
CFR, Part 312.23. In July 2003, the International Council for Harmonization intro-
duced the Common Technical Document (http://www.ich.org/products/ctd.html) 
format adopted for drug applications in the EU and Japan and also acceptable but 
not mandatory for US FDA IND approval. A summary of IND requirements for 
investigational drug or biological products can be found at the following Web site: 
http://www.fda.gov/BiologicsBloodVaccines/DevelopmentApprovalProcess/
InvestigationalNewDrugINDorDeviceExemptionIDEProcess/ucm094309.htm. 
Table 39.1 summarizes steps to IND submission and approval.

In May 2015, the FDA provided a draft guidance document titled 
“Investigational New Drug Applications Prepared and Submitted by Sponsor-
Investigators” which summarizes the IND process. The basic elements of the 
IND include the following broad areas: (1) preclinical animal pharmacology 
establishing proof of concept and toxicology studies assessing product safety for 
human trials, (2) chemistry and manufacturing information of the vector, and (3) 
investigator information assessing risks based on qualifications of clinical inves-
tigators and the safety of proposed protocol. A commitment must also be given 
to obtain informed consent, obtain IRB approval, and adhere to the IND regula-
tions. The IND application addresses all issues identified during the pre-IND 
meeting. The FDA is focused on the manufacturing summaries related to cell 
banks and viral banks, quality assurance and quality control programs for prod-
uct manufacturing, the procedures ensuring compliance with GCP, a clinical 
monitoring plan, an organizational chart defining the role of individuals involved 
in the clinical trial, and the need for continued reporting of animal safety data 
that may raise awareness regarding clinical risk.

The IND is submitted to the CBER Document Control Center in triplicate. On 
receipt, the sponsor will be issued an acknowledgment letter containing the date of 
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receipt and the assigned IND number. The sponsor’s point of contact within CBER 
is typically through the Regulatory Project Manager, who is responsible for coordi-
nating the review process. The sponsor will be contacted during the review if addi-
tional information is needed or to discuss deficiencies. INDs automatically become 
effective 30 days after receipt unless the FDA notifies the sponsor that the study is 
on clinical hold until concerns are resolved. This decision is communicated to the 

Table 39.1 Steps involved for IND approval for human gene transfer clinical trials

Description Implementation of process

1. Request type B 
meeting

Send cover letter requesting pre-IND meeting; letter should identify the 
product, the target disease, the indication, a proposed date, and the 
meeting attendees. Contact person for investigators should be identified; 
upon receiving a proposed date the meeting should be confirmed within 
60 days

2. Preparation for 
pre-IND meeting

Briefing package sent to CBER at least 30 days in advance of meeting; 
package includes: Product name, chemical name and structure, proposed 
indication, dosage and route of administration, status of product 
development; chemistry, manufacturing, and controls information; 
pre-clinical data in support of product development summarized and 
description of prior and planned clinical trial; list of sponsors and 
attendees for meeting; list of questions for discussion grouped by 
discipline (pre-clinical, toxicology-biodistribution, CMC, and clinical). 
Keep in mind that pre-IND meetings are restricted to 1 h

3. Hold pre-IND 
meeting

Meeting focuses on submitted questions. Upon completion, CBER sends 
back minutes of the meeting and addresses plans acceptable for 
implementation or describes deficiencies that must be considered for IND 
approval. Post meeting, the FDA is receptive to the need for further 
clarification of any issue

4. Initiate IND- 
enabling preclinical 
and toxicology—
biodistribution 
studies

Perform additional pre-clinical studies if necessary based on CBER 
recommendations; initiate toxicology-biodistribution studies according to 
recommendations from CBER

5. Initiate cGMP 
production to 
support clinical 
trials

Initiate cGMP vector production according to methods agreed upon with 
FDA. The FDA does not require manufacturing to be completed before 
approval of the IND

6. Submit IBC 
application

The IBC protocol is submitted at the site of the clinical trial; IBC will 
follow with recommendation to OSP for RAC meeting (determining if 
protocol requires a face to face RAC review)

7. Submit IND 
application

Submit full IND package inclusive of sections by discipline with careful 
consideration of all FDA pre-IND recommendations. Include all reports 
necessary to document safety and all data or certificates (if available) of 
the cGMP manufactured product

8. Submit IRB 
application

Following IND approval seek IRB approval for start of the clinical trial

9. Initiate trial 
enrollment

Approval by the FDA and IRB will dictate the timing of enrollment. If a 
DSMB is convened, timing may be altered at the committee’s request
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sponsor by telephone and is followed by a letter that provides the hold comments 
and requests for additional information.

As detailed in Title 21 of the CFR, Part 312.42, Phase I INDs may be placed on 
clinical hold if human subjects are exposed to unreasonable and substantial risk of 
illness or injury; sufficient information is lacking to allow adequate assessment of 
risk; the information in the investigator’s brochure is misleading, erroneous, or 
materially incomplete; or the clinical investigators are not qualified to conduct the 
study. In addition, Phase II and Phase III INDs may be put on hold if the protocol 
design is deficient to meet the objectives of the proposal. To proceed with the clini-
cal study, the sponsor must correct the hold deficiencies and submit a response as 
an amendment to the IND (Title 21 of the CFR, Part 312.30). This amendment will 
be reviewed at CBER within 30 calendar days, and if satisfactory, the sponsor will 
be notified by telephone that the clinical trial may begin. A written letter will also 
be sent for validation.

All IND amendments are submitted to FDA and are used to report protocol changes, 
new protocols, or the addition of a new investigator or clinical site, as well as changes in 
the manufacturing process or new toxicology data. Annual reports (Title 21 of the CFR, 
Part 312.33) are due within 60 days of the anniversary of the IND. The sponsor must 
provide IND safety reports at 15 days for any serious and unexpected adverse event or 
within 7 days for fatal or life-threatening events (Title 21 of the CFR, Part 312.32).

39.7  Long-Term Follow-Up Evaluation

The investigator is required to prepare and maintain adequate and accurate case 
histories that record all observations and other data pertinent to the investigation on 
each subject given the investigational agent (see 21 CFR 312.62). In addition, an 
annual report for the IND must be submitted and include information obtained dur-
ing the previous year’s clinical and nonclinical investigations, a summary of all IND 
safety reports submitted during the past year, and a narrative or tabular summary 
showing the most frequent and most serious adverse experiences by body system 
(21 CFR 312.33(b)) [19].

Based on the 2006 FDA “Guidance for Industry: Gene Therapy Clinical Trials—
Observing Subjects for Delayed Adverse Events,” the length of the long-term fol-
low- up will be influenced by the risk of integration of the viral vector and by the 
potential for adverse events. Considering the unlikely integration of AAV, CBER 
will not be overly demanding on length of follow-up. Investigators should clarify 
the demands at the time of presentation of the protocol in the pre-IND meeting. We 
have generally taken the position that a 2- to 3-year follow-up is a suitable time 
period to assess efficacy of gene transfer and is acceptable for assessing adverse 
events related to AAV gene transfer. It has been suitable for multiple gene therapy 
trials that have been done or are underway. CBER will provide written feedback 
following the pre-IND meeting and if they feel that longer follow-up should be 
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implemented. Their recommendation can be incorporated into the IND with a ratio-
nale for the need for longer follow-up.

In proposing a follow-up plan to CBER, investigators should keep in mind that 
monitoring patients post gene delivery should include toxicity to off-target organ 
systems (e.g., liver, renal, hematology, etc.) and the laboratory studies for monitor-
ing these tissues should be included in the annual report. In addition, the risk of a 
delayed immune response is enhanced by persistent gene expression and triggers 
the need for IFN-γ ELISpot assays targeting AAV and transgene. If a T-cell response 
persists, there might be a need for corticosteroid suppression. Such findings might 
alter the long-term follow-up plan with a shift to yearly evaluations. This should be 
discussed with the clinical reviewer at CBER for final recommendations.

Subjects participating in clinical gene therapy projects should also be instructed to 
maintain a wallet-sized card with investigator contact information and to assist in 
reporting adverse events through the use of diaries of health-related events inclusive of 
both serious and unexpected (21 CFR 312.32). Investigators should provide contact 
numbers for themselves and office personnel and staff so that subjects participating in 
clinical trials have easy access to address questions and be available for adverse events.
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Chapter 40
Muscle MRI as an Endpoint  
in Clinical Trials

Dirk Fischer, Ulrike Bonati, and Mike P. Wattjes

Abstract In the last decade, there has been substantial progress in the genetic char-
acterization and classification of inherited muscle disorders. In addition to clinical 
assessment, clinical neurophysiology, and the diagnostic gold standard of histopa-
thology including immunohistochemistry, muscle imaging, and particularly mag-
netic resonance imaging (MRI), has increasingly been used in the diagnostic 
work-up of inherited muscle disease. Novel quantitative muscle MRI techniques 
have been developed in order to characterize and quantify the severity and pattern 
of muscle involvement in clinical routine as well as in therapeutic trials. This chap-
ter provides a comprehensive overview of current MRI techniques in inherited mus-
cle diseases with special emphasis on the use of quantitative muscle MRI in clinical 
therapeutic trials.

Keywords Muscle imaging · Quantitative muscle magnetic resonance imaging 
Muscular dystrophy · Clinical trials

40.1  Introduction

Neuromuscular imaging is used as a routine tool in the diagnosis of acquired and 
inherited muscle disorders [1–3]. The term “neuromuscular imaging” encompasses 
a broad variety of imaging modalities such as ultrasound (including quantitative 
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ultrasound techniques), computed tomography (CT), conventional and quantitative 
magnetic resonance imaging (MRI), as well as nuclear medicine techniques. 
Various studies have shown that neuromuscular imaging, in particular MRI, can 
distinguish between different pathologic changes in the muscles such as fatty 
degeneration and signs suggestive of inflammation such as muscle edema. More 
advanced techniques allow the quantification and monitoring disease pathology in 
the individual muscle. Also, MRI helps to detect distinctive muscle involvement 
patterns that are sometimes specific for individual disease entities. This has coined 
the term “pattern recognition” aiding in the differential diagnostic work-up of 
inherited muscle diseases. Recently, advances in MRI techniques and the applica-
tion of higher magnetic field strengths have enabled high-resolution whole-body 
examination, providing information on almost all skeletal muscles and possible 
comorbidities [4, 5]. The implementation and standardization of quantitative mus-
cle MRI (qMRI) techniques allow monitoring disease progression and assessing 
treatment safety and efficacy in therapeutic trials [6, 7]. The following chapter will 
give an overview on some of the most widely used MRI techniques and their appli-
cation in clinical routine as well as in research.

40.2  Neuromuscular Imaging in Inherited Muscle Diseases

Muscle imaging is increasingly used in patients with progressive weakness to help 
identify the underlying muscle disease. Muscle imaging is used to identify an 
affected area not yet completely replaced with fatty tissue suitable for biopsy. In 
muscular dystrophies, even if the clinical presentation in terms of the pattern of 
muscle weakness is characteristic, e.g., in limb-girdle muscular dystrophy or distal 
myopathy, there is still a wide genetic heterogeneity with several identified genetic 
mutations. While genetic analyses and whole-genome sequencing are used for rou-
tine work-up, the search for a causative genetic mutation can still be time consum-
ing and expensive. At the present time, conventional muscle MRI (e.g., T2-weighted 
and T1-weighted (turbo/fast spin echo)) is used as an additional diagnostic tool to 
support the clinical diagnosis and to facilitate the identification of the underlying 
disease entity. Detecting a specific pattern of muscular involvement can help to nar-
row down the genes to be sequenced and evaluated. We and others have tried to 
identify pattern recognition algorithms as guidance for differential diagnosis. For 
more details the reader is referred to the following recently published reviews [1, 8]. 
An exhaustive description of known disorders, patterns, and algorithms was recently 
presented in a larger volume [3].

Conventional muscle MRI is capable of identifying characteristic patterns of 
muscle involvement in several neuromuscular disorders and has led to the devel-
opment of new diagnosis algorithms. However, conventional muscle MRI and 
related algorithms have considerable limitations. First, most of the algorithms are 
based on results from retrospective studies. Identified patterns of different inher-
ited muscle diseases may overlap and algorithms should therefore be verified and 

D. Fischer et al.



701

validated in prospective studies. Second, most studies were limited to lower leg 
muscles only and measured muscle fatty degeneration, and less often muscle atro-
phy. Third, pattern analyses have relied on qualitative and not on quantitative 
assessment of  muscle involvement. To overcome some of these drawbacks, prom-
ising new approaches such as whole-body MRI (WBMRI) assessing all muscles 
of the body and new techniques able to assess both fatty degeneration and muscle 
atrophy have recently been introduced [9, 10]. However, WBMRI evaluations can 
be difficult due to the large amount of data. Therefore, Hankiewicz et  al. sug-
gested the use of a consolidated graphical technique (heat map) allowing a visu-
alization of all data at a glance [11]. For the individual disorders it is then easy to 
comprehend which muscles are commonly involved and which are commonly 
spared. Once a specific WBMRI pattern has been established for a known disor-
der, it can be applied to match patterns of patients with uncertain diagnosis and 
potentially confirm or discard the diagnosis [10].

40.3  MR Imaging Techniques

40.3.1  Conventional MRI

In the recent past, conventional muscle MRI has become a useful diagnostic tool 
for some degenerative neuromuscular disorders. One particular example is in 
facioscapulohumeral muscular dystrophy which by MRI defines a typical pattern 
of involvement that is unique, involving the trapezius, teres major, and serratus 
anterior [12, 13]. In congenital myasthenic syndromes, there are also imaging fea-
tures such as a nonselective pattern of fat infiltration or a normal-appearing scan in 
the setting of significant weakness that favors this diagnosis [14]. Technological 
advances in image acquisition, such as whole-body MRI applying a high-spatial- 
resolution MRI acquisition, have contributed to the success of MRI in patient care 
and research. Since the introduction of WBMRI improvements in imaging hard-
ware, such as improved coil technologies, more homogeneous magnetic fields, 
even at higher magnetic field strengths, have led to higher image quality and diag-
nostic accuracy (e.g., homogenous fat suppression on T2-weighted images with fat 
suppression) [5, 15]. However, the standardization of conventional MR image 
acquisition is still one of the major challenging factors, limiting its use especially 
for research purposes. One important aspect of standardization is (re)positioning of 
patients and the use of defined anatomical landmarks to improve the reproducibil-
ity [16]. This is of particular importance for repeated measurements and longitudi-
nal assessments of disease progression and monitoring of treatment effects in 
therapeutic trials [17]. Therefore, standardized protocols or guidelines for image 
acquisition are needed to increase the validity of WBMRI for the scanning of the 
lower limbs but also other anatomic regions, such as the upper extremities. In terms 
of MRI acquisition protocols, T1 and fat-suppressed T2 (turbo/fast spin echo) 
sequences are the “work horses.” The degree of fatty degeneration should be 
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evaluated on the T1-weighted, while the possible presence and extent of muscle 
edema should be assessed on fat-suppressed T2-weighted images. Semiquantitative 
rating scales are helpful to further classify these changes. Figure 40.1 shows an 
example of a conventional thigh muscle T1-weighted image of a patient with 
Becker muscular dystrophy (BMD).

40.3.2  Quantitative MRI (qMRI) Techniques

In addition to conventional MRI, qMRI techniques are increasingly being used to 
assess muscle disease burden. It has been demonstrated that reliable fat quantifi-
cation techniques are crucial for disease monitoring in neuromuscular disorders. 
A comprehensive discussion of all these techniques is beyond the scope of this 
chapter. Briefly, the Dixon fat quantification technique makes use of the fact that 
protons within water and lipids resonate at different frequencies [18]. Another 
widely used technique to reliably assess disease activity and fatty degeneration 
includes T2 mapping of skeletal muscle without fat suppression (global T2) and 
with fat suppression techniques (water T2) [6, 7, 19]. Other promising techniques 
such as diffusion tensor imaging, T2 relaxation, and 35Cl and 23Na MRI time 
measurements have been applied in skeletal muscle tissue recently but require 
further validation in larger studies [20–22]. These sensitive quantitative tech-
niques could be of particular use in non-dystrophic muscle diseases with normal 
conventional MRI findings [23].

Fig. 40.1 T1-weighted thigh muscle MRI of a patient with Becker muscular dystrophy with prom-
inent involvement of the quadriceps muscle, while gracilis and sartorius muscles are relatively 
spared
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40.3.3  Nuclear Medicine Methods

Nuclear medicine methods such as scintigraphy, PET-computed tomography (CT), 
and single-photon emission CT have a certain value in the diagnosis of neoplastic, 
inflammatory, and degenerative muscle diseases. Interestingly, in addition to 18fluo-
rodeoxyglucose (FDG) PET, other PET tracers used for brain imaging such as 
Pittsburg compound B (11C-PIB) were shown to be able to detect muscle diseases as 
well. The detection of amyloid in heart muscles or in skeletal muscle in patients with 
inclusion body myositis underpins the potential of these new techniques [24, 25].

40.4  Neuromuscular Imaging for Monitoring Disease 
Progression

In neuromuscular diseases, muscle MRI has become an important diagnostic tool 
able to identify target muscles for muscle biopsy and patterns of muscle involve-
ment aiding diagnosis. With the development of new therapies for many forms of 
neuromuscular disorders, there is growing need for outcome measures highly 
sensitive to disease progression. Although validated functional scores exist for 
many neuromuscular disorders, they are all dependent on patient collaboration 
and fitness on the day of testing. In infants, ongoing fine and gross motor devel-
opment can additionally mask disease progression. Also, neuromuscular disor-
ders are rare diseases, progress slowly, and often have weak genotype-phenotype 
correlation.

In the recent past, semiquantitative and quantitative muscle MRI techniques 
were evaluated with regard to their sensitivity to detect disease progression, and 
these changes were correlated with and compared to changes in validated clinical 
assessments.

In most neuromuscular disorders, regardless of the underlying cause, accumula-
tion of tissue water in the muscle characterizes the early stages of most diseases, 
while the chronic or end stages are characterized by fatty replacement of muscle 
tissue [21, 26].

One of the first studies comparing qMRI to a functional score regarding 
responsiveness was done in OPMD, a rare and slowly progressing muscular dys-
trophy [27]. It was shown that the motor function measure (MFM) and T1 images 
using Fischer’s semiquantitative five-point (0–4) scale could not detect signifi-
cant changes. In contrast, quantitative T2 values using a multi-contrast sequence 
and the MRI-measured fat fraction (MFF) using a two-point Dixon method 
increased significantly despite the relative short follow-up period. This demon-
strated that quantitative muscle MRI is able to detect subclinical changes in 
patients with OPMD, while semiquantitative muscle MRI and functional scores 
remained stable.

40 Muscle MRI as an Endpoint in Clinical Trials



704

40.4.1  Dystrophinopathies

40.4.1.1  Duchenne Muscular Dystrophy (DMD)

DMD is an orphan disease affecting 1 in 3500–6000 male births. In boys under the 
age of 7, ongoing fine and gross motor development may mask disease progression 
when only functional scores are used. QMRI was shown to detect pathological 
changes of muscle tissue even in children under the age of 7 [28]. In a large cross- 
sectional study in DMD boys, age-dependent changes in muscle tissue could be 
shown by quantitative MRI and spectroscopy. Older boys (11–14 years) had longer 
MRI-T2 times and greater lipid fraction compared to younger boys (5–6.9 years). In 
contrast 1H2O T2, representing inflammation and edema, was lower in the oldest age 
group compared to the young age group [29].

In a longitudinal study in 20 DMD patients, an annual increase in two-point 
Dixon acquired mean fat fraction of 5% was calculated. A cutoff for mean fat frac-
tion of 50% predicted loss of ambulation with a sensitivity of 100% and a specificity 
of 91% [30].

MRI-measured fat fraction (MFF) in the skeletal muscles showed excellent cor-
relation with most of the validated functional scores such as the 6-min walk test 
(6MWT), the motor function measure or the North Star Ambulatory Assessment, as 
well as myometric measures [28, 31].

In a cohort of 20 boys with DMD, the MFF using a two-point Dixon method 
negatively correlated with the MFM and its D1 subscores (measuring ambulation) 
cross-sectionally. In addition, the increase in fatty replacement and the decline in 
MFM from baseline to 1-year follow-up were also correlated. Power analysis 
showed that the two-point Dixon MFF had a much larger effect size compared to the 
MFM.  For example, sample size estimations for qMRI data were up to 17-fold 
smaller compared to the MFM total score and up to sevenfold compared to the 
MFM D1 subscore, respectively [28].

40.4.1.2  Becker Muscular Dystrophy (BMD)

BMD is a less severe form of dystrophinopathy and with an incidence of 1  in 
16,000 male births, even rarer than DMD. In a longitudinal study in BMD, it was 
shown that qMRI can detect disease progression in a small sample size and at rela-
tively short imaging intervals [32]. In a natural history cross-sectional study in 20 
BMD patients, qMRI-acquired muscle fat fraction and T2 relaxation times were 
highly negatively correlated with the MFM total, the MFM D1 subscore and 
6MWT and positively correlated with the 10 m run/walk test. Age was not corre-
lated with MFF, global T2 relaxation time, or clinical assessments showing that 
disease progression is difficult to predict in BMD [33].
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40.4.2  Other Neuromuscular Disorders

In a recent 12-month natural history study in patients with Charcot-Marie-Tooth 
disease 1A and inclusion body myositis, the responsiveness of MRI outcome mea-
sures and their cross-sectional correlation with functionally relevant clinical mea-
sures, as well as the sensitivity of specific MRI indices to early muscle water 
changes before intramuscular fat accumulation, were studied [26]. Quantitative 
MRI measures of lower limb muscles changed significantly over the 12-month fol-
low- up period. Again, MRI-MMF showed greater responsiveness compared to the 
validated functional scores and correlated with muscle strength and function.

To date, it remains a question of debate how treatment-related effects will affect 
skeletal muscles. One might speculate that early changes of muscle pathology such 
as water tissue accumulation due to edema and inflammation might respond more 
quickly to treatment than tissue fat accumulation or muscle mass. In Charcot-Marie- 
Tooth A1 and inclusion body myositis, T2 times (adjusted to fat fraction) were 
increased, and magnetization transfer ratio (MTR) was reduced in muscles without 
substantial intramuscular fat accumulation compared to controls. As shown above, 
measures of muscle edema and inflammation were also increased in the muscle of 
young boys with DMD compared with older boys and longer disease duration [29] 
Thus, fat quantification techniques were shown to be more sensitive to monitor 
disease progression in many neuromuscular disorders. T2 times, MTR, and MR 
spectroscopy (MRS) have the potential to serve as sensitive outcome measures to 
detect early and potentially reversible changes in muscle water distribution in thera-
peutic trials.

40.5  Muscle MRI as Endpoint in Interventional Clinical 
Trials

Arpan et al. evaluated cross-sectionally the effects of corticosteroids on the lower 
extremity muscles in DMD.  They compared 15 DMD boys under corticosteroid 
treatment and 15 steroid naive boys using MRI and 1H-MRS at baseline and at 3, 6, 
and 12 months [34]. They demonstrated lower muscle global T2 tissue relaxation 
times and less intramuscular fat deposition in corticosteroid-treated patients at the 
baseline and a lower MFF increase at 1 year compared to steroid naive boys. In the 
group of boys starting steroid treatment during the trial, T2 tissue relaxation times 
acquired by MRI/MRS could detect effects of corticosteroids on muscle degenera-
tion only 3 months after initiation. In conclusion, MRI and MRS were able to mea-
sure the effect of corticosteroids which are assumed to reduce short-term 
inflammatory processes and to lessen long-term degenerative changes in skeletal 
muscles. Their findings were later confirmed by Willcocks et al. in a large multi-
center trial in 109 ambulatory DMD boys [35]. In this study, qMRI biomarkers were 
tested with regard to their responsiveness to disease progression. Measurements 
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were done at baseline and at 1-year follow-up. A subset of boys completed addi-
tional measurements after 3 or 6  months. Global T2 tissue relaxation times and 
MFF increased significantly over 12 months in all age groups, including in boys 
under the age of 7 as well as in boys who improved or remained stable in the 
6MWT.  Significant increases in vastus lateralis MFF were observed in 3 and 
6 months, too. Of all the muscles examined, the vastus lateralis and biceps femoris 
long head were the most responsive to disease progression. Thus, both studies 
showed that qMRI can measure putative treatment effects even at very short follow-
 up. In a recent randomized, double-blind, placebo-controlled therapeutic trial test-
ing the efficacy of L-citrulline and metformin versus placebo in DMD patients, 
qMRI was chosen as a surrogate endpoint alongside clinical assessments such as the 
MFM D1 subscore (primary endpoint) and other clinical and subclinical tests [36]. 
To the best of our knowledge, this is one of the first randomized, placebo-controlled 
trials in DMD using qMRI measured muscle fat fraction as an endpoint.

40.6  Summary

Today, the importance of muscle imaging in patients with inherited neuromuscular 
disorders is increasingly recognized. Conventional MRI has become the modality of 
choice in routine diagnostic work-up, often able to identify a distinctive pattern of 
muscle involvement. In the future, WBMRI protocols and hierarchical meta- 
analytical approaches with heat maps and fingerprints of individual diseases will 
probably further improve the validity of muscle MRI, especially for pattern recogni-
tion. Currently, MFF measurements using chemical shift differences and T2 relax-
ation times of separated fat and water components in skeletal muscle are the most 
reliable quantitative MRI techniques available. Recent research could prove for 
various disorders that qMRI is highly sensitive to changes and detects disease pro-
gression more sensitively than clinical scores. Therefore, in neuromuscular disor-
ders monitoring natural history changes and therapeutic effects in therapy trials, the 
use of qMRI will likely soon be regarded as “state of the art.”

References

 1. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. 
Eur Radiol 20:2447–2460

 2. Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M (2016) Muscle imaging 
in inherited and acquired muscle diseases. Eur J Neurol 23:688–703

 3. Wattjes MP, Fischer D (2013) Neuromuscular imaging. Springer, New York
 4. Quijano-Roy S, Avila-Smirnow D, Carlier RY (2012) Whole body muscle MRI protocol: pat-

tern recognition in early onset NM disorders. Neuromuscul Disord 22(Suppl 2):S68–S84
 5. Kornblum C, Lutterbey G, Bogdanow M et al (2006) Distinct neuromuscular phenotypes in 

myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol 253:753–761

D. Fischer et al.



707

 6. Eggers H, Bornert P (2014) Chemical shift encoding-based water-fat separation methods. 
J Magn Reson Imaging 40:251–268

 7. Janiczek RL, Gambarota G, Sinclair CD et al (2011) Simultaneous T(2) and lipid quantitation 
using IDEAL-CPMG. Magn Reson Med 66:1293–1302

 8. Quijano-Roy S, Carlier RY, Fischer D (2011) Muscle imaging in congenital myopathies. 
Semin Pediatr Neurol 18:221–229

 9. Hankiewicz K, Carlier RY, Lazaro L et  al (2015) Whole-body muscle magnetic resonance 
imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle 
Nerve 52:728–735

 10. Diaz-Manera J, Alejaldre A, Gonzalez L et al (2016) Muscle imaging in muscle dystrophies 
produced by mutations in the EMD and LMNA genes. Neuromuscul Disord 26:33–40

 11. Gomez-Andres D, Dabaj I, Mompoint D et al (2016) Pediatric laminopathies: Whole-body 
magnetic resonance imaging fingerprint and comparison with Sepn1 myopathy. Muscle Nerve 
54:192–202

 12. Gerevini S, Scarlato M, Maggi L et al (2016) Muscle MRI findings in facioscapulohumeral 
muscular dystrophy. Eur Radiol 26:693–705

 13. Tasca G, Monforte M, Ottaviani P et al (2016) Magnetic resonance imaging in a large cohort 
of facioscapulohumeral muscular dystrophy patients: pattern refinement and implications for 
clinical trials. Ann Neurol 79(5):854–864

 14. Finlayson S, Morrow JM, Rodriguez Cruz PM et al (2016) Muscle magnetic resonance imag-
ing in congenital myasthenic syndromes. Muscle Nerve 54:211–219

 15. Kesper K, Kornblum C, Reimann J, Lutterbey G, Schroder R, Wattjes MP (2009) Pattern of 
skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic reso-
nance imaging study. Acta Neurol Scand 120:111–118

 16. Morrow JM, Sinclair CD, Fischmann A et al (2014) Reproducibility, and age, body-weight and 
gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. 
Eur Radiol 24:1610–1620

 17. Fischmann A, Morrow JM, Sinclair CD et al (2013) Improved anatomical reproducibility in 
quantitative lower-limb muscle MRI. J Magn Reson Imaging 39(4):1033–1038

 18. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194
 19. Peterson P, Romu T, Brorson H, Dahlqvist Leinhard O, Mansson S (2016) Fat quantification 

in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references. 
J Magn Reson Imaging 43:203–212

 20. Hooijmans MT, Damon BM, Froeling M et al (2015) Evaluation of skeletal muscle DTI in 
patients with duchenne muscular dystrophy. NMR Biomed 28:1589–1597

 21. Wokke BH, van den Bergen JC, Hooijmans MT, Verschuuren JJ, Niks EH, Kan HE (2015) T2 
relaxation times are increased in skeletal muscle of DMD but not BMD patients. Muscle Nerve 
53(1):38–43

 22. Weber MA, Nagel AM, Marschar AM et al (2016) 7-T (35)Cl and (23)Na MR imaging for 
detection of mutation-dependent alterations in muscular edema and fat fraction with sodium 
and chloride concentrations in muscular periodic paralyses. Radiology 281:326

 23. Kornblum C, Lutterbey GG, Czermin B et al (2010) Whole-body high-field MRI shows no 
skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta 
Neurol Scand 121:131–135

 24. Antoni G, Lubberink M, Estrada S et al (2013) In vivo visualization of amyloid deposits in the 
heart with 11C-PIB and PET. J Nucl Med 54:213–220

 25. Maetzler W, Reimold M, Schittenhelm J et al (2011) Increased [11C]PIB-PET levels in inclu-
sion body myositis are indicative of amyloid beta deposition. J Neurol Neurosurg Psychiatry 
82:1060–1062

 26. Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromus-
cular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77

 27. Fischmann A, Hafner P, Fasler S et al (2012) Quantitative MRI can detect subclinical disease 
progression in muscular dystrophy. J Neurol 259:1648–1654

40 Muscle MRI as an Endpoint in Clinical Trials



708

 28. Bonati U, Hafner P, Schadelin S et al (2015) Quantitative muscle MRI: a powerful surrogate 
outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 25:679–685

 29. Forbes SC, Willcocks RJ, Triplett WT et  al (2014) Magnetic resonance imaging and spec-
troscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular 
dystrophy: a multicenter cross sectional study. PLoS One 9:e106435

 30. Fischmann A, Hafner P, Gloor M et al (2013) Quantitative MRI and loss of free ambulation in 
Duchenne muscular dystrophy. J Neurol 260:969–974

 31. Wokke BH, van den Bergen JC, Versluis MJ et al (2014) Quantitative MRI and strength mea-
surements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscul 
Disord 24:409–416

 32. Bonati U, Schmid M, Hafner P et al (2015) Longitudinal 2-point dixon muscle magnetic reso-
nance imaging in becker muscular dystrophy. Muscle Nerve 51:918–921

 33. Fischer D, Hafner P, Rubino D et al (2016) The 6-minute walk test, motor function measure 
and quantitative thigh muscle MRI in Becker muscular dystrophy: A cross-sectional study. 
Neuromuscul Disord 26:414–422

 34. Arpan I, Willcocks RJ, Forbes SC et al (2014) Examination of effects of corticosteroids on 
skeletal muscles of boys with DMD using MRI and MRS. Neurology 83:974–980

 35. Willcocks RJ, Arpan IA, Forbes SC et al (2014) Longitudinal measurements of MRI-T2 in 
boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul 
Disord 24:393–401

 36. Hafner P, Bonati U, Erne B et al (2016) Improved muscle function in Duchenne muscular dys-
trophy through L-arginine and metformin: an investigator-initiated, open-label, single-center, 
proof-of-concept-study. PLoS One 11:e0147634

D. Fischer et al.



709© Springer Nature Switzerland AG 2019 
D. Duan, J. R. Mendell (eds.), Muscle Gene Therapy, 
https://doi.org/10.1007/978-3-030-03095-7_41

Chapter 41
Gene Therapy Clinical Trials for Duchenne 
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Abstract This chapter reviews the discovery of the Duchenne muscular dystrophy 
(DMD) gene, early attempts at plasmid-mediated DMD gene delivery and its limita-
tions for clinical efficacy, and modifying the DMD cDNA to circumvent the obsta-
cle of packaging in adeno-associated virus (AAV). The unfortunate events of the 
Jesse Gelsinger death are briefly discussed. The essence of the chapter is the review 
of the first clinical experience of DMD gene therapy using a mini-dystrophin and 
the challenges for immune responses. The potential way forward where possible to 
avoid these problems is fully described. In addition to DMD, our experience in limb 
girdle muscular dystrophy 2D (LGMD2D), alpha-sarcoglycan, gene therapy in clin-
ical trial is also described. Success was achieved with long-term gene expression 
following intramuscular delivery, but again we encountered an obstacle for delivery 
related to pre-existing immunity to AAV. The lessons learned from these clinical 
trials provide a template and a path for additional clinical trials for muscular 
dystrophies.

Keywords DMD · Limb girdle muscular dystrophy · LGMD · Gene therapy 
clinical trials · Immune response

J. R. Mendell (*) 
Department of Pediatrics, Nationwide Children’s Hospital and Research Institute,  
The Ohio State University, Columbus, OH, USA

Department of Neurology, Nationwide Children’s Hospital and Research Institute,  
The Ohio State University, Columbus, OH, USA 
e-mail: Jerry.Mendell@nationwidechildrens.org 

L. R. Rodino-Klapac 
Department of Pediatrics, Nationwide Children’s Hospital and Research Institute,  
The Ohio State University, Columbus, OH, USA

Vice President Gene Therapy, Sarepta Therapeutics, Columbus, OH, USA
e-mail: LRodinoKlapac@Sarepta.com 

C. Walker 
Department of Pediatrics, Nationwide Children’s Hospital and Research Institute,  
The Ohio State University, Columbus, OH, USA
e-mail: Christopher.Walker@nationwidechildrens.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03095-7_41&domain=pdf
mailto:Jerry.Mendell@nationwidechildrens.org
mailto:LRodinoKlapac@Sarepta.com
mailto:Christopher.Walker@nationwidechildrens.org


710

41.1  Introduction to Gene Therapy for Duchenne Muscular 
Dystrophy (DMD)

DMD is caused by the absence of the muscle cytoskeleton protein, dystrophin 
encoded by the very large 2.4 Mb DMD gene [1]. Delivery of the cDNA encoding 
the full-length protein remains a major challenge and a potential obstacle to the suc-
cess of gene replacement therapy. For the past two decades, scientists have employed 
viral and non-viral gene replacement/gene restoration strategies to replace the miss-
ing dystrophin protein. Most of this chapter will review the status of viral gene 
delivery, but comments on non-viral approaches are of interest. The use of antisense 
oligonucleotides to induce exon skipping has merits because it can slow the prog-
ress of the disease and preserve ambulation for 1–2 years beyond the use of cortico-
steroids alone [2]. Eteplirsen, a phosphorodiamidate morpholino oligomer, has 
recently been approved for DMD (commercial name Exondys 51, Sarepta 
Therapeutics) and has been discussed in Chap. 20. Gene editing using CRISPR 
(scientific name: clustered regularly interspaced short palindromic repeats) is one of 
the most talked about methods of gene editing [3]. Its ability to delete, add, activate, 
or suppress targeted genes makes this a powerful tool for gene editing. Understanding 
grew from appreciating that an adaptive immune system of bacteria enabling a 
defense against specific phages relies on a protein called Cas9, a specialized nucle-
ase for cutting DNA. Since early recognition and its first applications for the devel-
opment of mouse models of disease, the system has now matured enough to provide 
potential translation for gene editing in clinical disease. Further sophistication has 
been introduced permitting CRISPR/Cas9 to be delivered by AAV [4–6]. CRISPR 
provides a promising tool for the potential treatment of DMD, a devastating disease 
of childhood [7]. Chapter 22 provides a full discussion of CRISPR/Cas9 explaining 
its potential and its limitations.

41.2  Delivery of Naked DNA to Replace the Missing Gene

Plasmid-mediated gene therapy was introduced with great enthusiasm more than 
two decades ago [8]. In the quadriceps muscle of the mouse, following direct injec-
tion of the Lac-Z DNA, β-galactosidase was expressed in 60 of 4000 muscle fibers 
(1.5%). A dose-dependent effect was observed, and DNA was present in muscle for 
at least 30 days. A number of advantages over viral gene delivery were considered. 
The potential for safety of naked DNA delivered to muscle was considered to be a 
clear advantage [9, 10]. Plasmid DNA is far less expensive than production of virus 
for gene transfer. Another attractive feature is the lack of a humoral immune 
response using plasmid DNA, thus, enabling repeat gene delivery to enhance gene 
expression over time. Delivery to mice by intramuscular injection and electropora-
tion also showed promise [11–13], but gene expression was limited to a few square 
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centimeters near the injection site. More ambitious methods of gene transfer using 
vascular delivery such as isolated limb infusion or delivery through the tail artery or 
vein of the mouse were also tried. Although more extensive gene expression was 
achieved, plasmid DNA-related gene expression peaked in 1–2 weeks and declined 
thereafter [14]. The duration of gene expression after intravascular infusion was 
disappointing, not much better than intramuscular injection. Limitations following 
plasmid DNA delivery were attributed to a vascular endothelial barrier limiting 
naked DNA access to muscle. Combating this obstacle requires infusion of rela-
tively large volumes of solution with delivery under high pressure [15–17], a poten-
tially unwanted introduction of safety concerns.

One point of interest for plasmid DNA is that, when introduced for the DMD 
gene, it was believed that in the absence of viral capsid, there would be little cause 
for concern for an immune response. Dystrophin expression from revertant fibers 
(muscle fibers with spontaneous somatic DMD mutations that restore the reading 
frame and DMD protein expression) was believed to be a built-in protection from 
newly expressed foreign protein introduced from naked DNA. However, gene trans-
fer of the full-length dog dystrophin cDNA in the canine model induced a T-cell 
inflammatory response at the site of gene transfer [18] refuting notions of immune 
tolerance induced by revertants. Further experience seen in clinical trial again dem-
onstrated an immune response to transgene supporting the notion that revertant fiber 
dystrophin expression did not induce tolerance [19].

The extensive preclinical work to establish plasmid-based DMD gene delivery 
as a viable option for clinical adaptation was tested in a phase I clinical trial in 
DMD and Becker muscular dystrophy (BMD) [20]. The aim of the study was to 
provide evidence demonstrating both safety and transgene expression following 
intramuscular delivery of pCMV-full-length dystrophin. Nine patients (three 
DMD, six BMD) were enrolled in the study and distributed into three cohorts. The 
first cohort received plasmid 200 μg, the second received 600 μg, and the third 
cohort was given two 600 μg injections separated by 2 weeks. The radialis muscle 
of the forearm was injected on one side, and biopsy was taken 3 weeks after plas-
mid injection. Control biopsies came from the opposite extremity or one previ-
ously available. Plasmid DNA was found in all patient biopsies indicative of the 
side of gene transfer. Overall, the efficiency of transfection for participating 
patients was modest. Plasmid DNA was found in six of nine patients, and a small 
percentage of muscle fibers expressed dystrophin (2–6% full sarcolemmal labeling 
and 3–26% weakly, partially labeled muscle fibers). This limited efficacy was 
attributed to both the dose and poor efficiency of local intramuscular administra-
tion of plasmid DNA. Clinically, no benefit was seen in wrist extension for these 
patients. Safety was the merit of this study, but without efficacy, moving forward 
proved to be a challenge. It was hoped at the time that plasmid DNA gene delivery 
pathway had been established for further DMD clinical trials, but additional trials 
have not yet been published.
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41.3  Viral-Mediated Gene Delivery for DMD

41.3.1  Introducing DMD Gene Therapy to the Clinic

The first consideration for bringing viral-mediated gene delivery to the clinic for 
DMD was the concern over the size of the DMD gene and how to mediate the great-
est potential for patients. The full-length cDNA of the DMD gene is approximately 
14 kb, larger than the packaging capacity of AAV. Adenovirus appeared attractive to 
carry the burden of this large cDNA, and the introduction of a “gutted” adenoviral 
vector system lacking all viral genes looked very promising [21, 22]. A full-length, 
muscle-specific dystrophin expression cassette transduced muscle fibers efficiently 
in1-year-old mdx mice with restoration of contraction-induced injury 40% of nor-
mal [21]. A concern regarding adenovirus was that over 70% of the population car-
ries antibodies impairing efficiency in transduction or associated with toxicity. 
Many of the concerns regarding gene therapy came to culmination when Jesse 
Gelsinger, an 18-year-old with deficiency of ornithine transcarbamylase (OTC) 
entered into a phase I OTC-adenoviral gene therapy clinical trial. Jesse was the first 
patient in whom death could be directly attributed to the vector-mediated gene ther-
apy. An autopsy showed that although the vector had been infused directly into the 
liver through the hepatic artery, substantial amounts had disseminated into the cir-
culation and accumulated in the spleen, lymph nodes, and bone marrow. The vector 
triggered a massive inflammatory response that led to disseminated intravascular 
coagulation, acute respiratory distress, and multiorgan failure [23–25]. Exactly why 
Gelsinger suffered such severe side effects, whereas a second patient tolerated a 
similar dose of the vector, remains unclear. However, it has been indicated that pre-
vious exposure to a wild-type virus infection might have sensitized his immune 
system to the vector [26]. The death of Jessie Gelsinger had a profound impact on 
the progress of gene therapy. For the most part, gene delivery for monogenic illness 
turned away from adenoviral vectors, and most of the entire field switched to the use 
of AAV. There was also more attention directed toward emphasizing the importance 
of pre-existing immunity especially to virus but also to transgene. Unfortunately, 
without the advantages of adenovirus, DMD gene therapy was handicapped, and the 
design of cassettes to circumvent cDNA size, while maintaining functional efficacy, 
became a primary focus.

41.3.2  Designing Cassettes for the DMD Gene

Attempts to develop gene therapy for DMD were dependent on developing small 
dystrophins that provided protection of sarcolemma. The Chamberlain laboratory 
showed that structural domains of the large dystrophin protein could be deleted 
creating mini- and micro-dystrophins that could be carried forward for clinical trials 
[27]. This was a major step in feasibility, potentially providing a path for gene 
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replacement for DMD, compatible with the limited packaging capacity of AAV. 
Varying the number of spectrin-like repeats and including or removing hinges 
enabled comparisons between constructs. Clones with four or fewer repeats were 
referred to as “micro-dystrophins” and the larger clones as “mini-dystrophins.” The 
constructs were tested in both transgenic mdx mice and by direct muscle injection 
using AAV in immunocompetent mice that already showed pathology. These injec-
tions resulted in a reversal of myofiber central nucleation and fiber size variation. In 
contrast to the AAV method, transgenic mouse studies enabled functional analysis 
of whole animals and entire muscles, especially the severely affected diaphragm. 
The message from these studies had particular relevance with regard to rod domain 
function including the phasing of the repeats, the number and periodicity of repeats, 
and the presence or absence of internal hinge domains. Quantitative data were 
obtained by counting centrally nucleated myofibers and measuring fiber diameters 
before and after virus injection. An attractive cassette removed most of the 5′ and 3′ 
untranslated regions and portions of the C-terminal domain (Δexon71–78) [28–30]. 
This was coupled with the addition of the Kozak consensus sequence [31] and a 
muscle-specific promoter. The ΔR4–R23/Δ71–78 (hinge 1, rods 1, 2, and 3, hinge 
2, rod 24, hinge 4) was most favorable reducing central nuclei to 14%, a reduction 
from 68% in mdx mice. More recent studies from the Chamberlain laboratory sug-
gested replacing hinge 2 of micro-dystrophin with hinge 3-improved functional 
capacity preventing muscle degeneration, increasing muscle fiber area, and better 
preserving the neuromuscular junction [32].

Similar studies were carried out over a parallel time period by the Xiao labora-
tory, also making strides in gene delivery to the mdx mouse [33, 34]. They used a 
gene construct, Δ3990 (N-terminus, hinge1, rods 1 and 2, hinge 3, rods 22, 23, and 
24, hinge 4 (Fig. 41.1), that would fall under the strict definition of a mini- dystrophin 
representing approximately 40% of the coding sequence of the human dystrophin 
gene. They demonstrated success in mdx mouse gene transfer by intramuscular 

Fig. 41.1 Mini-dystrophin gene Δ3990 shows the C-terminal deleted and elements preserved in 
rod domain including hinge (H)1, H3, and H4 and spectrin repeats R1, R2, R22, R23, and R24. 
The genomic DMD gene copy is illustrated above Δ3990. Below is seen the cassette with ITRs, 
CMV promoter, and mini-dystrophin
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injection to tibialis anterior muscle showing virtually no central nucleation when 
gene was delivered in the neonatal period and a 35–50% reduction when delivered 
to 45-day-old adult mdx mice. They also showed significant improvement in force 
generation and protection against eccentric contraction. These results were seen 
with either MCK or CMV promoters. The Xiao study laid the path for the first clini-
cal gene therapy trial in DMD.

41.3.3  First In-Human Gene Therapy for DMD

41.3.3.1  Methods

The first in-human gene therapy trial in DMD was initiated on March 15, 2006 [19]. 
Six boys with frame-shifting deletions in the dystrophin gene were enrolled 
(Table 41.1). At enrollment, four patients were receiving daily glucocorticoid ther-
apy, one deflazacort, two prednisone, and one taking weekend prednisone. Two oth-
ers were not on corticosteroids. The clinical trial was approved by the Institutional 
Review Board (IRB) at Nationwide Children’s Hospital. Written informed consent 
was obtained from the parents of all the patients, and participants 9 years of age and 
older provided assent in writing. The study was conducted under IND-BB #12936. 
Δ3990 under control of a CMV promoter (Fig. 41.1) was delivered in a modified 
rAAV2, referred to as AAV2.5. The objective was to diminish the potential for an 
immune response to neutralizing antibodies (Nab) through insertion of five amino 
acids of AAV type 1 into the type 2 capsid backbone. The biceps was the target of 
delivery by direct muscle injection. The sides for injection were randomized by the 
pharmacy, and one side received vector, while the opposite side was given placebo. 
In patients 1–4 the placebo consisted of saline, and in patients 5 and 6, empty cap-
sids were delivered. This strategy pertained to an effort to distinguish an immune 
response to vector versus mini-dystrophin transgene.

Table 41.1 Clinical trial participants for intramuscular Δ3990 mini-dystrophin gene therapy

Subject Age (years) Deletion mutation Corticosteroids Pre-Nab Viral dose

1 8 45 Deflazacort 18.0 mg/day ≤1:2 2.0 × 1010 vg/kg
2 9 50 Pred 18.0 mg/day 1:800 2.0 × 1010 vg/kg
3 9 46–50 None ≤1:2 2.0 × 1010 vg/kg
4 5 49–54 None ≤1:2 1.0 × 1011 vg/kg
5 11 3–17 Pred 150 mg Sat/Sun 1:100 1.0 × 1011 vg/kg
6 9 46–52 Pred 22.5 mg/day 1:2 1.0 × 1011 vg/kg

Participants in Δ3990 mini-dystrophin gene therapy trial showing subject number, ages at gene 
transfer, deletion mutations, corticosteroid doses and doses of rAAV.mini-dystrophin. Subject 2 
showed distinctly higher titer to AAV pre-gene transfer compared to other subjects and had little or 
no humoral response following gene delivery suggesting blunted (blocked) muscle fiber transduc-
tion by neutralizing antibodies (Nab)
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Treatment was done under conscious sedation in the interventional radiology 
suite (Fig. 41.2). Needle injection was guided by ultrasound and EMG monitoring 
to ensure skeletal muscle (not fibrotic tissue) vector delivery. A MyoJect hypoder-
mic needle (Oxford Instruments, Hawthorne, NY) was used to daeliver 1.2 ml of 
vector in three equivalent boluses spaced 0.5 cm apart along an injection tract that 
was placed in a longitudinal trajectory relative to the biceps muscle orientation. This 
was a dose escalation trial. Cohort 1 (patients 1, 2, and 3) received 2.0 × 1010 vector 
genomes per kilogram of body weight, and patients 4, 5, and 6 received a dose that 
was higher by a factor of five (1.0 × 1011 vector genomes per kilogram) (Table 41.1). 
Because gene transfer for this study was a direct muscle injection, and previous 
experience showed that needle insertion into muscle aroused an inflammatory 
response, patients received intravenous methylprednisolone (2  mg/kg, limited to 
<1 g total) 4 h prior to vector administration, with repeat doses the following two 
mornings.

Immune responses were monitored by serum-binding antibody titers and 
interferon-γ enzyme-linked immunosorbent spot (ELISPOT) assay for reactivity to 
mini-dystrophin. Three pools of 40 overlapping synthetic peptides (designated MDP1, 
MDP2, and MDP3) that spanned the entire mini-dystrophin sequence were used to 
stimulate peripheral-blood mononuclear cells (PBMCs) in the ELISPOT assay. The 
biceps muscles were biopsied on day 42 (patients 1, 3, 4, 6) and day 90 (patients 2 and 
5) and processed for gene expression, histology, and inflammatory reaction. Biopsies 
were read blindly without knowing the side receiving vector versus placebo.

Fig. 41.2 Picture shows 
gene transfer to biceps 
muscle guided by 
ultrasonographer viewing 
liquid-crystal display 
(LCD) screen to make sure 
that needle is in skeletal 
muscle. In the foreground 
is an electromyography 
(EMG) monitor that is also 
recording muscle action 
potentials confirming 
injection to muscle

41 Gene Therapy Clinical Trials for Duchenne and Limb Girdle Muscular Dystrophies…



716

41.3.3.2  Results

Given that this was the first gene therapy for DMD, physical and laboratory studies 
following gene delivery were important. There were no significant adverse events 
encountered and specifically no fever, lymphadenopathy, and organomegaly and no 
signs of inflammation at the injection site. During the 2-year active phase of the 
trial, only a few minor adverse events commonly seen in this age group were 
observed unrelated to gene delivery including sore throats, rashes, and nausea 
(Table 41.2). Hematology and chemistry panels that included an assessment of liver 
function also indicated that the vector was well tolerated in all subjects. All blood 
samples showed normal laboratory values for CK, GGT, alkaline phosphatase, and 
lymphocyte counts.

Transduction efficiency of gene transfer was assessed by vector genome copies 
and by dystrophin muscle expression. In all the patients, vector DNA was detected 
in amounts ranging from 0.01 to 2.56 genome copies per diploid genome in the 
treated muscles, and none were detected in the untreated contralateral biceps mus-
cles. Mini-dystrophin expression was not detected in myofibers in the two biopsy 
specimens examined on day 90 (patients 2 and 5). On day 42 muscle biopsies from 
only patients 3 and 6 showed a few mini-dystrophin-positive myofibers detected by 
N-terminus antibody (Dys3) while staining negative by C-terminus antibody 
(Dys2). No  mini-dystrophin-positive myofibers  (patients 1,2,4,5)  suggested  that 
transgene expression was either very poor or lost before the time of biopsy.

41.3.3.3  Humoral Immune Responses to Gene Transfer

In preparation for the mini-dystrophin gene therapy clinical trial, patients were 
screened for pre-existing antibody to AAV. Neutralizing antibodies (Nabs) to both 
AAV2 and the synthetic AAV2.5 capsids (Table 41.1) were found in Subject 2 with 
a baseline titer of 1:800. Titers for other subjects were very low (patients 1, 3, 4, and 
6), although patient 5 exhibited a borderline titer of 1:100 targeting AAV2 and 
AAV2.5. Not unexpectedly humoral responses peaked from week 2 to week 6 and 

Table 41.2 Clinical trial participants for intramuscular SGCA gene therapy

Subjects
Age gene transfer 
(years)

Age disease onset 
(years)

Post gene therapy 
muscle biopsy

AAV dose
rAAV1.tMCK.
hSGCA

1 13 9 6 weeks 3.25 × 1011 vg
2 12 3 3 months 3.25 × 1011 vg
3 14 8 6 weeks 3.25 × 1011 vg
4 43 10 6 months 3.25 × 1011 vg
5 34 10 6 months 3.25 × 1011 vg
6 23 10 6 months 3.25 × 1011 vg

Participants in SGCA gene therapy study are shown including age at gene transfer, age at onset of 
disease, timing of post gene therapy muscle biopsies and dose of viral mediated gene transfer
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ranged from 50- to 1000-times baseline titers with the exception of patient 2 with 
titers maintained within the pre-treatment range, 1:800 to 1:2000 (no more than a 
2.5× increase). This pre-treatment evidence of a pre-existing immunity may have 
significance given the rapid rise in the interferon-γ ELISPOT assay to mini- 
dystrophin described below.

41.3.3.4  Cellular Immune Responses to Transgene Expression: 
Pathogenic Mechanisms

From this mini-dystrophin gene therapy trial, two paths to cellular immunity 
were identified using the interferon-γ ELISPOT assay. Patient 5 had a large DMD 
mutation inclusive of exons 3–17. On day 60 post-gene delivery, three discrete 
HLA restricted epitopes were targeted to MDP1 derived from the mini-dystrophin. 
A CD8+-specific T-cell response targeting an epitope that spanned amino acids 
181–200, encoded by exon 7 (Fig. 41.3) was identified. We also found specificity 
for CD4+ T-cell immunogenesis with recognition of two epitopes that localized to 
amino acids 221–240 expressed from exon 8 and another that localized to amino 
acids 161–180 expressed from exon 6. These findings support the hypothesis that 
CD8+ and CD4+ T cells were primed by intramuscular gene transfer of the thera-
peutic mini-dystrophin cassette with expression into the domain of the patient’s 

Fig. 41.3 In subject 5 with exon 3–17 deletion of the DMD gene, the actin-binding domain 
(ABD), H1, and repeats 1 and 2 express directly into the patient’s gene deletion. We were able to 
identify a highly specific T-cell response using an IFN-γ ELISPOT assay. CD8+ T cells targeted an 
epitope in exon 8 [amino acids (aa) 181–200], and there were CD4+ cells targeting epitopes in 
exon 6 (aa 161–180) and exon 8 (aa 221–240)
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deletion. The inflammatory response would likely have invaded and cleared any 
muscle cells expressing the transgene product.

We have incorporated the lesson from this observation into the planning for 
forthcoming clinical trials. In upcoming DMD trials, we will exclude patients with 
DMD gene deletions directly in the path of an expressed domain of the miniature 
dystrophin cDNA. Studies like this will be necessary to further our chances for suc-
cess as we advance our efforts in gene delivery for DMD. Success using this strat-
egy can be followed by more inclusive protocols to establish the full range of 
patients amenable to mini- or micro-dystrophin gene delivery for DMD.

The second path resulting in cellular immunity that we observed in this initial 
DMD gene therapy trial is also of interest. At day 15 post-gene delivery, patient 2 
(exon 50 deletion) exhibited a rapid rise in cellular immune response to MDP2 
(Fig.  41.4). The pre-gene delivery interferon-γ ELISPOT assay showed no 
 pre- existing immunity to mini-dystrophin (<50 spot-forming cells (SPCs). Muscle 
biopsy post-gene transfer showed a small cluster of revertant myofibers [35] best 
explained by either spontaneous exon skipping or a second-site mutation that restores 
the reading frame in a patient with a frameshift mutation in exon 50 (Fig. 41.4b). As 
a general principle, the dystrophin expressed by revertant fibers is assumed to pro-
vide tolerance for DMD patients undergoing gene restoration or replacement. 
Observations in this trial do not support that hypothesis. In the post- gene transfer 
muscle biopsy from this patient, dystrophin expression initiates in exon 57 
(Fig. 41.4) as evidenced by monoclonal antibody staining (antibodies provided by 

Fig. 41.4 (a) Patient 2 with exon an 50 deletion (bottom graph) exhibited a rapid rise in cellular 
immune response to an epitope specific to MDP2 not apparent in pretesting. This immune response 
targeted an epitope in exon 57 in repeat 24. (b) Revertant fiber cluster is shown in upper panel that 
expresses exon 57 (repeat 24) using monoclonal exon-specific antibodies. The ELISPOT graph 
(below) shows that T cells from a highly specific epitope in MPD2 target a 20 aa sequence (labeled 
p74) that accelerated the cellular immune response following delivery of mini-dystrophin (From 
Mendell et al. N Engl J Med 2010;363:1429–37)
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Glen E Morris) [36]. The immunohistochemical profile favored that exon 57 encoded 
a highly specific 20 amino acid peptide sequence exhibiting pre-existing immunity 
that accelerated the cellular immune response following delivery of the therapeutic 
mini-dystrophin.

In summary, there are several lessons to be learned from this mini-dystrophin 
gene therapy trial. From patient 5 in the mini-dystrophin trial, we learned that a very 
large deletion of the DMD gene spanning exons 3–17 establishes a potential path for 
an immune response related to transgene expression. For future trials, investigators 
need to consider a protocol design that will prevent expression of the transgene into 
the deleted region of the host mutation. In the case of patient 5 in this trial, it may 
have been the large size of the mutation that predisposed to a problem, but as we 
move forward caution would be the best approach even for small deletions in rela-
tion to transgene expression. The situation is somewhat more complicated for 
patient 2 given that the immune response targeted a 20 amino acid epitope in an 
exon that is expressed in a small cluster of revertant fibers that was not initially 
identified. This highlights multiple factors that must be considered for patient 
enrollment into gene therapy trials.

41.4  Lessons from the First In-Human Limb Girdle 
Muscular Dystrophy 2D (LGMD2D) Gene Therapy 
Clinical Trial

41.4.1  Study Design

The trial design is similar to what has been presented in the DMD trial [19] and for 
the most part will not be reiterated. Six LGMD2D patients with proven alpha- 
sarcoglycan (SGCA, α-SG) mutations were enrolled in this clinical trial [37, 38] 
(Table 41.2). This was a double blind, randomized controlled trial of rAAV1 con-
taining the full-length human SGCA under control of the tMCK promoter (rAAV1.
tMCK.hSGCA) (Fig. 41.5) injected into the extensor digitorum brevis (EDB) muscle 
(3.25 × 1011 vector genomes). Gene transfer was performed in the intensive care unit 
at Nationwide Children’s Hospital. Approximately 4 h before gene transfer, subjects 
received a dose of intravenous methylprednisolone, 2  mg/kg (not to exceed 1  g 
total), and dosing was repeated at 24 and 48 h. Injection sides (vector vs placebo) 

Fig. 41.5 The cassette used for gene transfer of the human alpha-sarcoglycan (hSGCA) cDNA 
shows a tMCK promoter with the addition of a Kozak consensus sequence (red) that plays a role 
in the initiation of translation and an intron to enhance gene expression
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were determined by a computer-generated random number sequence. Gene delivery 
was guided by ultrasound and electromyography to ensure that muscle was the 
destination of the delivered product. EDB muscles were removed bilaterally from 
patients at varying times (Table 41.2).

41.4.2  Efficacy Evaluation

Efficacy was evaluated by blinded analyses assessing α-SG gene expression by 
immune stains to quantify the percentage of transduced muscle fibers and quantita-
tive western blot analysis. In this first study of LGMD2D gene therapy, we deliber-
ately studied gene expression by muscle biopsies post-gene delivery at intervals of 
6 weeks (43 and 50 days), 12 weeks (92 days), and 6 months (176 and 183 days). 
There had been reports that overexpression of α-SG via AAV-mediated gene trans-
fer resulted in poorly sustained gene expression related to transgene toxicity [39]. 
In our studies, we had not seen any signs of toxicity in any of the preclinical experi-
ments or in the toxicology studies in preparation for the Investigational New Drug 
(IND) [40]. The objective of these multiple time-point muscle biopsy studies for 
patients enrolled in this trial was to determine if early gene expression would persist 
throughout the trial. Figure 41.6 shows unequivocal differentiation between the side 
of gene transfer and placebo-injected EDB with sustained expression at 6 months 
(also positive at ~6 and 12 weeks, not shown). In the biopsies from 6 to 26 weeks, 
there was no loss of α-SG staining. There was robust staining on only one side in 
each case that was easily distinguishable from low level or background α-SG gene 
expression observed on the control side. A further sign of gene restoration was 
illustrated by the documentation of full sarcoglycan complex staining including β-, 
γ-, and δ-sarcoglycan on the side of gene transfer. In addition, a vector-specific 
primer probe set permitted amplification of a unique 5’ untranslated leader sequence 
of the α-SG cassette that differentiated transgene from endogenous alpha-sarcoglycan 
gene expression.

The single subject that departed from the findings of the first five receiving gene 
transfer was patient 6, the final patient enrolled in this study. In this case, the 
6-month EDB muscle biopsies showed low-level gene expression on both sides 
compatible with biallelic missense mutations, and the side of gene transfer (left) 
could not be differentiated by western blots (Fig. 41.6). There was also a very strik-
ing paucity of transgene copy numbers per nucleus that was 3–30-fold lower com-
pared to other patients in the trial. A one-time muscle biopsy makes it difficult to 
differentiate between loss of gene expression versus poor muscle transduction at 
the time of gene transfer. However, a distinctive feature in this muscle biopsy of 
patient 6 is the lack of expression of MHC I antigen on any muscle fiber in the 
biopsy. This is in direct contrast to the findings in all other patients in the trial. This 
patient also showed a well-defined and distinctive pattern of both early humoral and 
T-cell responses to AAV1 capsid. The IFN-γ ELISPOT assay demonstrated T-cell 
 activation to AAV1 capsid as early as day 2 after gene transfer (Fig. 41.7). This is 
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Fig. 41.6 Pre- and post-gene transfer muscle biopsies are shown on two patients in the LGMD2D 
clinical trial. (a) 6  months post-gene transfer with significant SGCA expression on individual 
muscle fibers compared to (b) pre-treatment from same patient showing all fibers negative for 
SGCA expression. (c) Post-gene transfer and (d) pre-gene transfer from same patient show no dif-
ference in SGCA expression. Partial expression of alpha-sarcoglycan related to patient’s missense 
mutation (figures previously published: Mendell et al. Ann Neurol 2010;68:629–638)
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in clear contradistinction to every other patient undergoing gene transfer in this 
trial, where responses if present were not seen until day 14. Accompanying the 
AAV capsid- induced T-cell response in patient 6, we found a very rapid rise in 
AAV-neutralizing antibody titers reaching >30-fold higher compared to other cases. 
Collectively, these findings favor an amnestic response related to pre-existing 
immunity to AAV.

We attribute the lack of α-SG transgene expression and the early and exagger-
ated IFN-γ ELISPOT PBMC responses to AAV capsid to pre-existing immunity 
to AAV. The finding was twofold greater Nab titer compared to any other patient 
seen in the trial. The most revealing evidence of pre-existing immunity was the 
rise in Nabs at day 7 after gene transfer (baseline 1:1600 to >1:102,400 post-gene 
therapy). The Nab titer at this time point rose over 30-fold compared to other 
subjects in the trial.

The take home message from this LGMD2D clinical trial is that pre-existing anti-
bodies to AAV capsid can preclude significant muscle fiber transduction. The exact 
titer resulting in poor outcome may vary between patients, but our results working 
with the Center for Biologics Evaluation and Research (CBER) provided a desig-
nated level for enrollment at no ≥1:50 to AAV, now typically used for enrollment in 
gene therapy trials employing AAV gene transfer. In the case under discussion, vali-
dation for the high antibody titer was demonstrated by binding antibody ratios against 
AAV1 that were >1000-fold higher compared to any other subject in the trial. The 
pre-existing AAV immunity predicted an amnestic response with early-onset humoral 
and T-cell immunity. It is also worth noting that the overall experience from this 
LGMD2D trial is different from our immunological findings related to the scenario 
observed in the DMD gene therapy trial [19]. In the DMD trial, we detected a T-cell 
response in the ELISPOT assay directed against an amino acid sequence present in 
the mini-dystrophin gene. This corresponded with a deleted region of the patient’s 
endogenous dystrophin gene. This situation is unlikely to be encountered in 
LGMD2D, an autosomal recessive disease requiring mutations on both alleles to 
produce a clinical phenotype. Because missense mutations predominate in LGMD, 
even a heterozygous deletion mutation at one allele is not likely to predispose to an 
immune response from transgene expression. In addition, novel immunogenic epit-
opes on revertant muscle fibers might be encountered in DMD but a parallel scenario 
would be unlikely in LGMD2D. One final point based on this clinical experience is 
that we did not see any clinical manifestations of the immune responses in either 
DMD or LGMD2D gene therapy clinical trials. There was no evidence of a systemic 
reaction manifesting in fever, organ system involvement, or lymphadenopathy that 
we could be detected clinically or in clinical laboratory findings. This provides a 
degree of assurance for the safety of AAV gene delivery for future trials.
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Chapter 42
Duchenne Muscular Dystrophy Exon- 
Skipping Trials

Jerry R. Mendell, Zarife Sahenk, and Louise R. Rodino-Klapac

Abstract This chapter demonstrates an alternative mode of molecular therapy 
with the goal of restoring the DMD gene to achieve clinical improvement using 
antisense oligonucleotides (AONs). Preclinical studies were successful in mdx 
mice showing persistent production of dystrophin at significant levels in large 
numbers of muscle fibers. These experimental studies led to the clinical introduc-
tion of a 2′-O-methyl- phosphorothioate oligonucleotide (2’OMePS) and a phos-
phorodiamidate morpholino oligonucleotide (PMO) to induce skipping of one or 
more exons, restoring the reading frame and allowing for the production of a 
BMD-like dystrophin. This chapter reviews the clinical trial experience, the side 
effect profiles, and the basis for FDA approval of the PMO product, introduced as 
eteplirsen. Following approval the product is identified as Exondys 51®. The 
results of the long-term, 36-month clinical trial are described. The findings 
included a change in the rate of decline and prolonged ambulation in DMD boys 
compared to natural history controls. Exondys 51™ represents the first drug other 
than deflazacort (Emflaza®) ever approved for DMD.
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42.1  Background

Kunkel and colleagues cloned the gene for Duchenne muscular dystrophy (DMD) 
in 1986 [1]. Its DNA sequence is encoded by 79 exons scattered along two and a half 
million base pairs of DNA. In DMD patients, a mutation shifts the reading frame so 
that the message cannot be read, and this abolishes the production of dystrophin. An 
allelic milder form of the disease is caused by in-frame mutations permitting pro-
duction of a truncated dystrophin leading to Becker muscular dystrophy (BMD). In 
DMD, gene restoration can be achieved using antisense oligonucleotides (AONs) 
that can induce skipping of one or more exons, restoring the reading frame and 
allowing for the production of a BMD-like dystrophin. In a proof-of-principle study 
in 1999, Wilton demonstrated that the nonsense mutation in exon 23 of the mdx 
mouse could be removed from myoblast cultures by antisense 2′-O-methyl- 
oligonucleotides (2′OMeAO) targeting pre-mRNA [2]. Within 24 h the majority of 
transcripts showed skipping of the mutated exon allowing for the production of 
truncated protein. Subsequently, in vivo proof-of-concept studies were performed in 
mdx mice again using the 2′OMeAO. The treated mice showed persistent produc-
tion of dystrophin at significant levels in large numbers of muscle fibers. Repeated 
administration enhanced dystrophin expression without eliciting an immune 
response [3]. The feasibility for translational studies was apparent demonstrating 
that skipping a single exon can induce a modified, smaller dystrophin without induc-
ing an immune response. The foundation established in these proof-of- concept stud-
ies has provided the rationale for moving to clinical trials using exon skipping to 
upregulate dystrophin as a tool with intention to change the natural history of DMD.

42.2  Introducing Exon Skipping to the Clinic

The first exon-skipping studies in boys with DMD have targeted exon 51 (Fig. 42.1). 
The particular target was intended to skip an exon with potential for impacting the 
largest subgroup of DMD patients (approximately 13%), including those with dele-
tions of exons 45–50, 48–50, 50 and 52 [4]. Drisapersen (introduced as PRO051 by 
Prosensa, later licensed to BioMarin under the commercial name Kyndrisa®) is a 
2′-O-methyl-phosphorothioate oligonucleotide (2′OMePS) (Fig.  42.2). Common 
problems that have emerged in clinical trials are attributed to the negative charges 
on the inter-subunit linker permitting binding to renal tubular epithelium leading to 
proteinuria [5, 6]. In addition, binding immune cell receptors potentially activating 
Toll-like receptors (TLRs) may account for the localized inflammatory injection- 
site reactions seen frequently with drisapersen [7]. Eteplirsen, developed by AVI 
BioPharma (company name changed to Sarepta Therapeutics in July 2012), has a 
morpholino backbone (PMO) and a charge-neutral phosphorodiamidate linker 
(Fig. 42.2). In clinical trials this has proven safer and associated with a minimal side 
effect profile. Drisapersen and eteplirsen were introduced into the clinic at about the 
same time. The products had a clear distinction in their path to commercialization. 
Each will be discussed separately below.
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42.3  Drisapersen Meets Resistance for FDA Approval

PRO051 with its phosphorothioate linkage entered the clinic as a product for intra-
muscular injection. It was injected into the tibialis anterior muscle in four DMD 
patients [7]. The initial studies looked promising on muscle biopsy performed 
28 days after direct muscle injection. Each patient showed precise skipping of exon 
51 confirmed by sequencing. Sarcolemmal dystrophin was seen in more than 50% 
of muscle fibers. The amount of dystrophin in total protein extracts ranged from 
3 to 12% of controls, and a quantitative ratio of dystrophin to laminin α2 showed 

Fig. 42.1 Example of exon skipping using eteplirsen (Exondys 51) for treatment of exons 49–50 
DMD gene deletion (X). Upper panel shows frameshift mutation preventing dystrophin transla-
tion. In lower panel skipping exon 51 puts the DMD gene in frame and permits translation of a 
smaller dystrophin without expression of exon 51 and exons 49–50. Other exons are highlighted 
that permit skipping exon 51 with in-frame restoration including exons 47–50 and 48–50. Other 
combinations also permit skipping exon 51 with restoration of frame (45–50, 50, 52)

Fig. 42.2 Phosphorodiamidate morpholino oligomer (PMO) compared to 2’OMe(PS), a phos-
phorothioate oligonucleotide. The PMO linker is charge-neutral, while the 2’OMe(PS) has nega-
tive charges on the inter-subunit linker permitting binding to the renal epithelium leading to 
proteinuria

42 Duchenne Muscular Dystrophy Exon-Skipping Trials
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17–35% of that of control specimens. The injections were safe with few adverse 
events. No functional improvement in muscle strength was observed in the tibialis 
anterior muscle.

In follow-up to the promising results of intramuscular injection, PRO051 was 
advanced to a systemically administered Phase I/IIa (uncontrolled, safety and effi-
cacy trial) dose-ranging study [8]. Weekly abdominal subcutaneous injections of 
PRO051 were administered, and after 12 weeks, at doses of 2.0–6.0 mg/kg, detect-
able exon 51 skipping-induced expression of dystrophin was seen in approximately 
60–100% of muscle fibers in 10 of the 12 patients. Expression increased in a dose- 
dependent manner up to 15.6% of normal expression. Functionally there was a 
mean improvement of 35.2 ± 28.7 m (from the baseline of 384 ± 121 m) on the 
6-min walk test (6MWT). Again the suggestion of a favorable exon-skipping prod-
uct encouraged investigators to move to a 48-week double-blind, placebo- controlled, 
multicenter trial study done between Sept 1, 2010, and Sept 12, 2012 [9]. Drisapersen 
was given subcutaneously at 6 mg/kg. Recruitment included 53 patients: 18 were 
given once-weekly injections, 17 received intermittent drisapersen (9 doses over 
10 weeks), and 18 were given placebo (participants received either continuous or 
intermittent). At week 25, mean distance on the 6MWT had increased by 31.5 ± 9.8 m 
from baseline for continuous drisapersen, with a mean difference in change from 
baseline of 35.09 m (95% confidence interval (CI) 7.59–62.60; p = 0·014) versus 
placebo. As the studies extended beyond the 25th week, the difference between 
treated and placebo cohorts was less apparent and no longer statistically significant 
(p = 0.051) at week 49.

Adverse events in this trial (and in others administering subcutaneous drisapersen 
injections for systemic distribution) included injection-site reactions with varying 
time for skin recovery and in some cases sclerotic/fibrotic changes in the skin or 
skin fragility. Mild proteinuria was common, and raised urinary α1-microglobulin 
levels were seen. Occasional patients had elevation of cystatin C with abnormalities 
reversed during drug-free periods, which may indicate mild reversible interference 
with protein reabsorption in the proximal tubule. Rarely reduced platelet counts 
were encountered.

In addition to the 48-week Phase II [9], GlaxoSmithKline/Prosensa sponsored a 
Phase III, pivotal, placebo-controlled trial of 186 patients [10]. In this study, DMD 
boys were randomized to either drisapersen at a dose of 6 mg/kg/week (n = 125) or 
to placebo (n = 61) for 48 weeks. On September 20, 2013, it was announced that the 
study failed to achieve statistical significance in its primary endpoint, the 6MWT 
[10]. Following the disappointing results, BioMarin purchased and licensed the 
product with the intent to move forward with Phase III testing of drisapersen 
(referred to as Kyndrisa™). On January 7, 2016, the FDA, composed of a panel of 
outside advisors, voted that there was no conclusive benefit from Kyndrisa, and a 
few months later, BioMarin announced on May 31, 2016, that it was withdrawing 
Kyndrisa™ from clinical testing (https://www.insidertracking.com/biomarin- 
announces-withdrawal-of-market-authorization-application-for-kyndrisa-dris-
apersen-in-europe).
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Any question about higher dosing of drisapersen to achieve greater benefit was 
addressed in a study assessing safety, tolerability, and pharmacokinetics after a single 
subcutaneous dose-ranging study (3–9 mg/kg) was completed in non- ambulatory 
DMD boys [11]. It was already known that antisense oligonucleotides with phos-
phorothioate linkage had potential adverse effects that fall into four main catego-
ries: inflammation, thrombocytopenia, accumulation in the kidneys and liver, and 
increases in activated partial thromboplastin time (aPTT). In this single administra-
tion trial, drisapersen at 3 and 6 mg/kg did not result in significant safety or tolera-
bility concerns; however, at the 9 mg/kg dose, pyrexia and transient elevations in 
inflammatory parameters were seen. All subjects in this high-dose group experi-
enced adverse effects (AEs) consisting of pyrexia and concomitant signs of inflam-
mation with increases in C-reactive protein (CRP), monocyte chemoattractant 
protein-1 (MCP), and IL-6. These effects were time-limited and self-resolving, 
without any further clinical sequelae. Based on these studies, it was concluded that 
the maximum tolerated dose of drisapersen, 6 mg/kg, had been reached without 
efficacy in the DMD population.

The news that drisapersen (Kyndrisa™) was not approved by the FDA was not 
well received in the DMD community nor the foundations that supported exon skip-
ping as a therapeutic strategy for this disease. CureDuchenne, the California-based 
nonprofit organization dedicated to finding cures for Duchenne muscular dystrophy, 
released a statement following the decision by the Food and Drug Administration. 
“We are disappointed that the FDA did not approve drisapersen, given the signifi-
cant benefit that many Duchenne boys experienced when they were on an early and 
consistent treatment protocol of the drug.” Valerie Cwik, President and Chief 
Medical and Scientific Officer at MDA at that time, also expressed frustration and 
disappointment on behalf of MDA families and study participants hoping for an 
effective treatment. “With more treatments staged to begin………, we remain 
optimistic that many of those living with DMD today will have safe and effective 
therapy options in the very near future.”

Shortly after the disappointing experience of BioMarin in January 2016, Sarepta 
Therapeutics, the sponsor of the PMO eteplirsen (now known as Exondys 51®), was 
granted approval for use of this drug for DMD boys with confirmed mutations of the 
dystrophin gene amenable to skipping exon 51. This was a major milestone given 
that the only drug approved for DMD by the FDA was deflazacort.

42.4  Clinical Trial with Eteplirsen

42.4.1  Intramuscular Injection Trial of Eteplirsen

Eteplirsen was initially introduced for clinical trial by AVI BioPharma under agree-
ment with the University of Western Australia. The PMO used for the trial was 
referred to as AVI-4658 (later eteplirsen) and injected directly into the extensor 
digitorum brevis in five DMD subjects [Phase I/II trial (NCT00159250)] [12]. 
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Immunostaining revealed that the mean intensity of dystrophin expression in ran-
domly chosen sections of eteplirsen-treated muscles was 22–32% of that seen in 
healthy muscles and 17% (p = 0.002) greater than in the saline-treated contralateral 
muscles. When only dystrophin-positive fibers were assessed, the intensity in the 
eteplirsen-treated muscles reached 42% of that in healthy muscle. The findings were 
confirmed in western blot and validated with co-localization of components of the 
dystrophin glycoprotein complex.

42.4.2  Systemic Delivery Clinical Trials with Eteplirsen

42.4.2.1  Great Ormond Street Hospital for Children

Following the direct intramuscular trial, an open-label, Phase II dose-escalation 
study of systemically delivered, intravenous (IV) eteplirsen was conducted in ambu-
latory DMD boys ages 5–15 (n = 19) [13]. This was a dose-ascending trial (0.5, 1.0, 
2.0, 4.0, 10.0, and 20.0  mg/kg) that was done at the Dubowitz Neuromuscular 
Centre at Great Ormond Street Hospital for Children, London, UK. Participants had 
a muscle biopsy before starting treatment. DMD patients were ambulatory, age 
5–15 years, and had mutations amenable to skipping exon 51. Nineteen patients 
received 12 weekly intravenous infusions of AVI-4658. The PMO was well toler-
ated with no drug-related serious adverse events. AVI-4658 induced exon 51 skip-
ping in all cohorts, and new dystrophin protein expression was seen in a 
dose-dependent (p = 0.0203), but variable, manner in boys from dosing 2 mg/kg 
onward. Seven patients responded to treatment, demonstrating increased dystrophin 
fluorescence intensity from 8.9% (95% CI 7.1–10.6) to 16.4% (95% CI 10.8–22.0) 
of normal (p = 0.0287). The three patients with the greatest responses to treatment 
had 21%, 15%, and 55% dystrophin-positive fibers, and these findings were con-
firmed with western blot, which showed an increase after treatment of protein levels 
from 2% to 18%, from 0.9% to 17%, and from 0% to 7.7% of normal muscle, 
respectively. The functional properties of restored dystrophin were confirmed by 
quantification of α-sarcoglycan and neuronal nitric oxide synthase (nNOS) expres-
sion. Dystrophin-positive fibers had roughly a 30% average increase in α-sarcoglycan 
expression compared with dystrophin-negative fibers in the patient with the best 
response (deletions 49–50). Dystrophin upregulation was followed by restoration of 
nNOS at the sarcolemma, more so in patients with exon 49–50 deletions than in 
those with 45–50 deletions, which is consistent with the observation that the nNOS- 
binding domain is located in dystrophin exons 42–45 [14, 15]. Muscle biopsies 
from patients receiving the 10 or 20 mg/kg dosages showed a reduction in inflam-
matory infiltrate. DMD boys remained stable in this study, but considering the 
short period of observation (12 weeks), assessment of clinical outcome measures 
was limited.
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42.4.2.2  Nationwide Children’s Hospital (NCH) Study in Year 1

In the next 48-week phase of testing, eteplirsen clinical trials moved to NCH, 
Columbus, OH [16]. Sarepta Therapeutics acquired the exclusive license from AVI 
BioPharma to complete clinical studies with eteplirsen establishing a path for poten-
tial commercialization. Concomitant with Sarepta’s leadership, the name eteplirsen 
became firmly associated with this PMO. A double-blind placebo-controlled proto-
col was introduced for further evaluation of treatment-induced dystrophin expression 
and possible effects on distance walked on the 6MWD. The next several years were 
devoted to clinical trials testing the efficacy of this exon-skipping agent (Fig. 42.3).

The trial at NCH (Eteplirsen 201 sponsored by Sarepta Therapeutics) began with 
enrollment of the first patient on July 18, 2011 [16]. A total of 12 DMD boys aged 
7–13  years with confirmed out-of-frame DMD deletions potentially correctable by 
skipping exon 51 (representing 5 different out-of-frame deletions) were included 
(Table  42.1). All were on stable glucocorticoids (prednisone or deflazacort) for 
≥24 weeks. Eteplirsen was introduced at NCH as a randomized, double-blind, placebo- 
controlled study consisting of three cohorts (placebo, 30  mg/kg/weeks, 50  mg/kg/
weeks) (Study 201). After 24  weeks of double-blind dosing, the placebo- treated 
patients were randomized 1:1 to weekly 30 mg (n = 2) or 50 mg/kg (n = 2) eteplirsen 

Fig. 42.3 Design of exon-skipping study inclusive of 168 weeks (3 years). Twelve subjects with 
mutations amenable to skipping exon 51 were enrolled into 3 cohorts receiving placebo vs 
eteplirsen 50  mg/kg and 30  mg/kg (blinded study). All patients had biceps muscle biopsies at 
baseline. Second muscle biopsies (opposite biceps) were done at week 12 (50 mg/kg cohort and 
two placebo-treated) and week 24 (30 mg/kg cohort and two placebo-treated patients). At week 48 
a fourth muscle biopsy was on the left deltoid in all 12 subjects. Functional clinical assessments 
including the 6-min walk test and pulmonary function tests were performed at weeks shown on the 
time axis (figure reproduced from Mendell et al. Ann Neurol 2016; 79:257–271)
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Table 42.1 Comparative groups eteplirsen-treated and historical controls

Group
Exon mutations 
each group

Age baseline
Mean SD

6MWT baseline
Mean SD

Historical controls amenable to exon 
51 skipping, ≥7 years old

n = 13
Ex 45–50 n = 3
Ex 48–50 n = 2
Ex 49–50 n = 3
Ex 50 n = 2
Ex 52 n = 3

9.45 (1.454) 357.6 (66.75)

Eteplirsen-treated (ITT) n = 12
Ex 45–50 n = 3
Ex 48–50 n = 1
Ex 49–50 n = 5
Ex 50 n = 1
Ex 52 n = 2

9.41 (1.183) 363.2 (42.19)

narrowing the study to two groups taking 30 mg/kg/weeks or 50 mg/kg/weeks (Study 
202). The patients originally on placebo for the first 24  weeks were now labeled 
“Placebo-delayed.” Because eteplirsen required weekly intravenous dosing and patients 
were traveling far distances to receive the IV dosing at NCH for the initial 24-week 
study, 10 additional research sites were asked to participate in an open-label extension 
of eteplirsen at 30  mg/kg/weeks or 50  mg/kg/weeks The evaluation of dystrophin 
expression by muscle biopsy and the functional motor assessments including the 
6MWT were performed for all study participants by the staff at NCH.

For the initial 48-week study, dystrophin expression was the primary outcome 
measure. The evaluation of dystrophin included three muscle biopsies. At baseline 
a biceps muscle (the side randomly chosen) provided initial counts of dystrophin- 
positive fibers. At week 12, a second biopsy from the opposite biceps was collected 
from patients taking 50 mg/kg along with two placebo-treated patients and at week 
24 patients taking 30 mg/kg/weeks, and the other two placebo-treated patients were 
sampled. To evaluate the effect of continued exposure to eteplirsen on dystrophin 
production, a third biopsy was done on the left deltoid in all 12 patients at week 48. 
The biopsies were read blindly by an experienced muscle pathologist without 
knowledge of trial assignment as to the cohorts: eteplirsen 50 mg/kg/weeks, 30 mg/
kg/weeks, and placebo-controlled.

The first muscle biopsies were done after treatment with 50 mg/kg for 12 weeks. 
There was no increase in percentage of dystrophin-positive fibers compared to pre-
treatment, and the change from baseline (mean = 0.8%, range = −9.3 to 7.4%) was 
not statistically different compared to the placebo cohorts. At week 24 (12 additional 
weeks of treatment with eteplirsen), the 30  mg/kg dose resulted in a 22.9% 
(range = 15.9–29.0%) increase in dystrophin-positive fibers from baseline (p ≤ 0.002) 
compared to the placebo-treated patients. These data suggest that at least 24 weeks 
of treatment with eteplirsen is needed to produce definite increases in dystrophin 
production in muscle biopsies. The baseline vs week 24 comparison of the percent-
age of dystrophin-positive fibers for the 30 mg/kg cohort was significantly different 
(p ≤ 0.004). At week 48 the 30 and 50 mg/kg cohorts showed significant increases 
(p ≤ 0.001) in percentage of dystrophin-positive fibers (mean = 47.3%, range = 29.8–
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60.3%). The four patients in the placebo-delayed cohort taking 30 mg/kg (n = 2) and 
50  mg/kg (n  =  2) of eteplirsen also showed significant increases (p  ≤  0.008, 
mean = 37.7%, range = 28.4–55.1%). In agreement with these findings, eteplirsen 
significantly increased mean fluorescence signal intensity of muscle fibers (Bioquant 
analysis) expressing MANDYS106 (a monoclonal antibody that recognizes exon 
43-encoded region in dystrophin) at week 48 compared to baseline in patients receiv-
ing 30 mg/kg (p ≤ 0.023) and 50 mg/kg (p ≤ 0.005) and in the placebo-delayed 
(p ≤ 0.001). Confirmatory to these findings was the restoration of sarcolemma nNOS 
and β- and γ-sarcoglycan. Dystrophin expression and exon skipping were confirmed 
by reverse transcription polymerase chain reaction RT-PCR and western blot.

42.4.2.3  Motor Function in Year 1 NCH Study

The initial 24 weeks (6 months) of the trial assessed the 6MWT comparing treated to 
placebo (Fig. 42.4). Two patients lost ambulation prior to the 6-month time point. The 
data is of interest providing insight for understanding the time for induction of dystro-
phin expression extrapolating from 6MWD for the ambulatory patients in the trial. This 
required a modified intent-to-treat analysis excluding the two boys who stopped walking 
by 6 months. Figure 42.4 shows that both the placebo controls and eteplirsen-treated 
were indistinguishable for the first 12 weeks before diverging. The placebo-treated then 
lost 20 m from baseline distance on the 6MWT. At 6 months this cohort rolled over to 
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Fig. 42.4 Functional efficacy of eteplirsen at year 1 for ambulatory subjects. The dark purple line 
shows minimal change from baseline in distance walked on the 6-min walk test (6MWT) through-
out year 1 for 6 patients receiving eteplirsen from the start of study. The dark gray line shows 
change from baseline in distance walked on the 6MWT for the 4 patients who received placebo for 
the first 24 weeks and then started eteplirsen at week 25 and continued through 48. Dystrophin 
expression studies and multiple biopsies support that dystrophin was produced after 12 weeks. The 
placebo-delayed cohort stabilized in function after week 36 (figure reproduced from Mendell et al. 
Ann Neurol 2013; 74:637–647)
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open-label treatment and continued to decline for another 12 weeks. At that point they 
showed an improvement of 10 m. In contrast the eteplirsen-treated essentially main-
tained their plateau for the entire first year (48 weeks) of the trial. From the eteplirsen-
treated, we learn that the effect of treatment takes approximately 12 weeks before a 
minimal efficacy is observed implying that dystrophin production will reach expression 
levels sufficient to maintain function. The course of the placebo-treated suggests confir-
mation of this conclusion. After week 12, they continue to decline, and then after start-
ing on eteplirsen at week 24, it then takes another 12  weeks before their course is 
reversed at week 36 after which the 6MWD maintains a plateau for the remainder of the 
first year study (out to week 48). The first year of the eteplirsen trial predicted the out-
come for the next 4 years showing efficacy compared to natural history controls [17].

42.4.2.4  NCH 36-Month Longitudinal Study

Following the first year of therapy, the eteplirsen study continued as an open-label 
clinical trial ending at week 168 (Fig. 42.3). The candidates initially enrolled (n = 12) 
continued for this entire period without dropouts and included the 2 boys who lost 
ambulation during the first 6 months of the trial (Table 42.1). The ability of eteplirsen 
to confer clinical benefit was primarily evaluated by the 6MWD with the addition of 
pulmonary functions including maximum inspiratory pressure (MIP), maximum expi-
ratory pressure (MEP), and forced vital capacity (FVC) [18, 19]. For all analyses, the 
data for the placebo patients (n = 4) was incorporated into the overall data set based on 
duration of time that drug was given to these patients from week 48 to week 168.

Historical control data (n = 116) were provided by Eugenio Mercuri on behalf of the 
Italian DMD Registry database with contributions from 11 neuromuscular centers in 
Italy [20] and from the Belgium Registry (Leuven’s Neuromuscular Reference Centre) 
provided by Nathalie Goemans [20, 21]. Historical control data complied with the eli-
gibility criteria inclusive of the key parameters enabling a statistical comparison to 
eteplirsen-treated patients: (1) age-matched, (2) corticosteroid use, and (3) genotype 
amenable to skipping exon 51. Of the 116 patients identified in Italy and Belgium, 91 
were ≥7 years old, 50 patients were amenable to exon skipping, and the final group 
fulfilling criteria included 13 subjects amenable to exon 51 skipping (Table 42.1).

The importance of the controls representing a cohort ≥7 and the same spectrum 
of mutations cannot be over emphasized. Consistent with previous reports, patients 
<7 years of age showed improvement over the first 2 years of observation, followed 
by a decline between months 24 and 36 [20, 21] (Fig. 42.5a). In contrast, the older 

Fig. 42.5 (continued) amenable to exon skipping compared to those not amenable to exon skip-
ping. Disease progression trajectory is compared in steroid-treated patients ≥7 years of age with 
genotypes amenable or not amenable to exon-skipping therapy. (c) 6MWT performance declines 
more rapidly in patients amenable to exon 51 skipping versus patients amenable to skipping other 
exons. Disease progression trajectory is shown in steroid-treated patients ≥7 years of age with 
genotypes amenable to exon 51 skipping or amenable to skipping other exons (figure reproduced 
from Mendell et al. Ann Neurol 2016; 79:257–271)
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Fig. 42.5 (a) Disease progression trajectory is shown for steroid-treated Duchenne muscular dys-
trophy historical controls who were older and younger than 7 years and amenable to skipping any 
exon. (b) 6-min walk test (6MWT) performance declines more rapidly in patients with mutations
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age group showed a disease progression trajectory characterized by greater declines 
at 24 and 36 months. Also of interest the comparison of patients ≥7 years old by 
genotype demonstrates that patients amenable to exon skipping experience more 
severe disease progression than those who are not (Fig. 42.5b). Further comparison 
of patients ≥7 years old by genotype demonstrates that patients amenable to exon 
51 skipping experience even more rapid disease progression than patients amenable 
to skipping other exons. This difference is statistically significant by 36  months 
(Fig. 42.5c), with patients amenable to exon 51 skipping showing a 94 m greater 
decrease in 6MWT distance (p < 0.05).

42.4.2.5  Comparison of 6MWT in Eteplirsen-Treated Patients 
to Historical Controls

Evaluation of 6MWT results of eteplirsen-treated patients and historical control 
showed comparable baseline 6MWT distances that diverged through the second 
and third year, culminating in a 75 m difference in 6MWT decline between the 
groups by 24  months and a statistically significant (p  <  0.01) and clinically 
meaningful [22] difference in 6MWT decline of 151 m between the groups by 
36 months (Fig. 42.6). The proportion of patients who lost ambulation was also 
evaluated. Individual patient data provide detailed comparison of eteplirsen 
patients and historical controls (Fig. 42.7). Over a 3-year period, eteplirsen treat-
ment markedly reduced loss of ambulation compared to matched historical con-
trols. After 3 years, 2 of 12 (16.7%) eteplirsen-treated patients lost ambulation, 
compared with 6 of 13 (46.2%) historical control patients ≥7 years of age ame-
nable to exon 51 skipping (Fig. 42.8).

Over 36 months of treatment, mean percentage of predicted MIP declined by 
2.2% (from 91.7% at baseline to 89.5%), mean percentage of predicted MEP 
declined by 5.0% (79.3–74.3%), and mean percentage of predicted FVC declined 
by 9.4% (101.3–91.9%). Pulmonary function data from recent natural history stud-
ies in patients with DMD suggest that MEP and MIP decline at a rate of 4% per year 
for patients in the age range of 6–19 years, and FVC declines at a rate of 5% per 
year for patients in the age range of 5–24 years [18, 23].

42.4.2.6  Safety of Eteplirsen Treatment over 36 Months

Safety assessments included adverse event monitoring and clinical laboratory tests 
assessing possible organ system toxicity commonly observed with other oligonucle-
otide therapeutics such as inflammatory events, coagulopathies, and hepatic and 
renal toxicity. In the eteplirsen study, no adverse event led to treatment interruption 
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Fig. 42.6 Longitudinal 6-min walk distance (mean ± SE of the mean) and loss of ambulation over 
3 years. (a) Eteplirsen-treated patients experience slower disease progression than matched histori-
cal controls. Disease progression trajectory is shown for steroid-treated historical controls, ≥7 
years old amenable to exon 51 skipping (n = 13) and eteplirsen-treated patients (n = 12); Exon 51 
amenable = 9.5 years old; eteplirsen-treated = 9.4 years old; †difference in mean change from 
baseline, **p < 0.01. Table insert: the distance lost on the 6MWT was 151 m less over 3 years 
compared to historical controls age-matched and amenable to skipping exon 51 (figure reproduced 
from Mendell, et al. Ann Neurol 2016; 79:257–271)
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Fig. 42.7 Individual patient data is plotted and shows relative stabilization over time in eteplirsen- 
treated patients (solid lines) compared to matched historical controls (dotted lines) (figure repro-
duced from Mendell et al. Ann Neurol 2016; 79:257–271)

or dose change. Weekly eteplirsen infusions were well tolerated, with no reports of 
systemic reactions and no serious adverse events related to treatment. The most 
frequently reported adverse events on eteplirsen were headaches (n = 8), procedural 
pain related to biopsy and catheter placement (n = 7), and proteinuria (n = 6). A total 
of eight adverse events (seven while receiving eteplirsen, one on placebo) occurring 
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in seven subjects were considered to be possibly or probably related to study drug. 
Treatment continued uninterrupted through these events, which involved two 
patients whose tunneled port catheters were observed to be thrombosed prior to 
study drug infusion; one placebo patient with mild nausea; one patient with two 
events of mild erythema (reddened cheeks); one patient with a previous history of 
low white blood cells whose counts fell to 3.70  ×  109/l (lower limit of normal 
range = 4.00 × 109/l); and two patients with mild, transient proteinuria that resolved 
spontaneously. There were no signs of renal toxicity or elevation of cystatin C. 
Hematology and coagulation parameters were generally within normal range. Blood 
chemistry reflected the expected disease-related abnormalities, with markedly ele-
vated creatine kinase, aspartate aminotransferase, and alanine aminotransferase, all 
of which decreased over the course of treatment with eteplirsen. There were no 
signs or symptoms of hepatic toxicity.

42.5  Conclusions

The major findings from this study were that eteplirsen-induced exon skipping pro-
longed ambulation and changed the rate of decline in the 6MWT compared to his-
torical controls matched for age, mutations amenable to skipping exon 51, and 
baseline motor function (distance walked on 6MWT). The relative stability of respi-
ratory muscle function over >3 years is supporting evidence of clinical efficacy for 
eteplirsen and may have contributed to the greater distance covered on the 6MWT. 
Two of 12 patients taking eteplirsen lost ambulation in the first 24 weeks of treatment 
(16.6%) vs 6 of 13 (46%) of historical controls. The final calculations of improved 
distance walked at 151 m for eteplirsen-treated vs historical controls included the 
data from these two unfortunate DMD boys losing ambulation early in the trial. The 
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early loss of ambulation of these two boys may have obscured differences in treat-
ment effect until year 2 because of the small sample size. The small sample size of 
the 12 DMD boys participating in this study from the outset could also reasonably be 
considered the most significant limitation of the observations presented here. 
Eteplirsen was also found to increase the number of dystrophin- positive muscle 
fibers at both 30 mg/kg and 50 mg/kg. FDA representatives challenged this finding 
and suggested a recount of the percent increase of dystrophin- positive fibers. 
However, newly imposed criteria for positivity were used for the recount [24]. A 
closer look though revealed that the fold increase in percent of dystrophin-positive 
fibers was actually higher following the rescoring by the FDA despite a more conser-
vative protocol reporting an overall fewer number of dystrophin- positive fibers than 
the values originally obtained [25].

It is also important to emphasize that eteplirsen treatment is not a cure for the 
disease but provides a path toward a milder phenotype. The low side effect profile of 
eteplirsen must be considered an advantage for this product compared to other RNA 
analogs that cause skin reactions at the site of injection, flu-like symptoms, coagu-
lopathies, inflammatory response, and renal or hepatic toxicity [8, 9]. The lack of 
toxicity of eteplirsen is attributed to PMO chemistry, which is charge- neutral, largely 
unmetabolized, and not linked to immune activation, platelet activation, or hepato-
toxicity [12, 26].

As a result of this study, Sarepta Therapeutics, the sponsor of eteplirsen (now 
known as Exondys 51), was granted approval for the use of this drug for DMD boys 
with confirmed mutations of the dystrophin gene amenable to exon 51 skipping. 
Coincident with the FDA approval, Janet Woodcock, M.D., Director of FDA’s 
Center for Drug Evaluation and Research, described the event as follows: “Patients 
with a particular type of Duchenne muscular dystrophy will now have access to an 
approved treatment for this rare and devastating disease. In rare diseases, new drug 
development is especially challenging due to the small numbers of people affected 
by each disease and the lack of medical understanding of many disorders. Accelerated 
approval makes this drug available to patients based on initial data, but we eagerly 
await learning more about the efficacy of this drug through a confirmatory clinical 
trial that the company is conducting.” In addition, similar exon-skipping protocols 
are in trial for exons 45 and 53.
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Chapter 43
What We Have Learned from 10 Years 
of DMD Exon-Skipping Trials

Svitlana Pasteuning-Vuhman and Annemieke Aartsma-Rus

Abstract Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder 
caused by truncating mutations in the DMD gene. These result in the absence of the 
muscle fibre stabilizing dystrophin protein and progressive loss of muscle tissue and 
function. In-frame mutations with partially functional dystrophin generally lead to 
Becker muscular dystrophy (BMD) with a milder disease phenotype. This was the 
inspiration for the antisense-mediated exon-skipping approach that restores the dys-
trophin reading frame to allow production of a Becker-type dystrophin. This approach 
is mutation specific. Since exon 51 skipping is applicable to the largest group of DMD 
patients, two antisense compounds targeting exon 51 were developed first, i.e. dris-
apersen and eteplirsen. Ten years have passed since the first exon- skipping antisense 
compound was tested clinically in DMD patients. If objectively evaluated, initial trials 
were suboptimal with modest clinical success. Major hurdles were that, at the time of 
trial planning, natural history data and reliable outcome measures to detect clinical 
benefit were not available. Moreover, the levels of dystrophin that are restored in 
DMD patients are lower than those observed in BMD patients. This chapter looks 
back at the lessons that were learned during the development of DMD exon skipping 
so far, to allow for more optimal exon-skipping trials in the future.

Keywords Duchenne muscular dystrophy · Exon skipping · Clinical trial 
Dystrophin level · Natural history · Outcome measure · Disease heterogeneity

43.1  Exon Skipping for Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder affecting 
around 1 in 5000 newborn males worldwide [1, 2]. Patients progressively lose mus-
cle and generally become wheelchair-dependent by the age of 12, require assisted 
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ventilation by the age of 20 and usually die in the third or fourth decade due to 
pulmonary or cardiac failure [3, 4].

DMD is caused by out-of-frame mutations in the DMD gene that prevent the 
production of the muscle fibre stabilizing dystrophin protein [5, 6]. Lack of func-
tional dystrophin makes muscle fibres more susceptible to damage resulting in 
chronic injury accompanied by inflammation and replacement of muscle fibres by 
adipose and fibrotic tissue [7]. Interestingly, the crucial functional parts of dystro-
phin are located at the beginning and at the end of the protein. Internal deletions or 
duplications in the DMD gene that maintain the reading frame give rise to partially 
functional dystrophins and generally lead to Becker muscular dystrophy (BMD) with 
a later onset and slower disease progression [4].

The finding that out-of-frame mutations generally lead to DMD while in-frame 
mutations generally lead to BMD was the inspiration for the antisense-mediated 
exon-skipping approach. Here, antisense oligonucleotides (AONs) are used as steric 
blockers that hide a targeted exon from the splicing machinery, causing it to be 
skipped so that the dystrophin reading frame is restored, allowing the production of 
a Becker-type dystrophin [8, 9]. The exon-skipping approach is mutation specific. 
DMD patients carry different types of mutations that vary in position and size within 
the DMD gene [5], and, as such, different exons need to be skipped to restore the 
reading frame for different mutations. In theory, the approach would be applicable 
to the majority of DMD gene mutations (55% of all patients and 80% of patients 
with deletions) [5, 10]. Moreover, the majority of the mutations are found at the ‘hot 
spot’ between exons 45 and 53; thus skipping of certain exons would apply to larger 
groups of patients, with exon 51 skipping being applicable to the largest group 
(13–14% of patients).

AONs are chemically modified DNA or RNA analogues. Early modifications 
involved phosphorothioate linkages to improve stability and pharmacokinetic prop-
erties and 2′-O-methyl RNA to render AONs RNase H resistant and making AONs 
suitable for splicing modulation [11]. These 2′-O-methyl RNA with a phosphoro-
thioate backbone (2OMePS) AONs were the initial tool to modify splicing and skip 
one or more exons, thereby restoring dystrophin production in patient-derived cell 
models and animal models [9]. Phosphorodiamidate morpholino oligomers (PMOs), 
containing a six-membered morpholine moiety instead of ribose and phosphorodi-
amidate linkages [12], have been explored as another chemistry for DMD exon 
skipping [13–17]. The mdx mouse model was helpful to explore exon-skipping effi-
ciency for both chemistries. Interestingly, the AON uptake after systemic delivery in 
dystrophic muscles was found to be tenfold higher than in healthy muscles. This 
suggests that the dystrophic phenotype of the muscles lacking dystrophin facilitates 
AON uptake [9].

After encouraging preclinical results, both chemistries were tested in DMD 
patients who were amenable to exon 51 skipping. It has now been more than 
10 years after the first exon-skipping AON was tested clinically in DMD patients. 
This chapter will give an overview of the decade-long clinical journey for AONs and 
will outline the lessons learned along the way.
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43.2  Clinical Trials

Since exon 51 skipping is applicable to the largest number of DMD patients, two 
antisense compounds targeting exon 51 were developed first, i.e. drisapersen and 
eteplirsen. These components differ in their oligonucleotide backbone chemistries 
(i.e. 2OMePS and PMO, respectively). Drisapersen was developed by Prosensa/
GSK/BioMarin, while eteplirsen was produced by AVI Biopharma/Sarepta. Since 
the exon-skipping approach is a mutation-specific genetic approach, it was not 
tested in healthy volunteers. First, safety data was available for both chemistries 
from trials for other indications. Secondly, exon 51 skipping would disrupt the 
reading frame in healthy volunteers and thus have the opposite effect compared to 
DMD patients.

43.2.1  Drisapersen

43.2.1.1  Local Injections

Drisapersen was administrated intramuscularly into tibialis anterior muscles of 
four DMD patients. The injection was tolerated well, and no side effects were 
observed beyond some redness and swelling at the injection site. A biopsy taken 
from the injection site 28 days later showed that in all four patients, drisapersen 
induced specific skipping of exon 51 during pre-messenger RNA splicing of the 
dystrophin transcript and restored dystrophin locally [18]. Patients did not show 
any functional improvement, nor was this expected due to the localized nature of 
the treatment. Interestingly, the oldest patient, who had the most advanced stage 
of the disease as assessed by magnetic resonance imaging, showed dystrophin 
restoration in almost all muscle fibres. However, since he had only a limited num-
ber of fibres left, the absolute amount of dystrophin restored was much lower than 
those observed for the three younger patients. This result underlines that the thera-
peutic effect of exon- skipping treatment relies on the muscle quality at the time of 
treatment.

43.2.1.2  Systemic Phase 1–2a Trials

DMD is a disease that affects all skeletal muscles, and lifelong repeated AON 
treatment is required due to dystrophin mRNA transcript and protein turnover. This 
makes intramuscular injection of each muscle unfeasible. Therefore, subsequent 
trials involved systemic treatment, using subcutaneous injections as studies in the 
mdx mouse model had revealed that this resulted in lower kidney and liver exposure 
than intravenous delivery and speculating that this would be more patient-friendly 
than intravenous infusions.

43 What We Have Learned from 10 Years of DMD Exon-Skipping Trials
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First, drisapersen was tested for safety and efficacy in an open-label, dose- 
escalation phase 1–2a study, where 12 DMD patients were treated by weekly sub-
cutaneous injections of drisapersen for 5 weeks, with groups of 3 patients receiving 
each of 4 possible doses (0.5, 2.0, 4.0 and 6.0  mg/kg) (PRO051-CLIN02, 
ClinicalTrials.gov Identifier NCT01910649) [19]. Treatment was tolerated well and 
resulted in detectable dystrophin production in patients treated with a dose of 
2.0  mg/kg or higher. No functional effects were anticipated or observed after 
5 weeks. After the dose-finding study, all 12 patients were enrolled in an open-label 
extension phase, during which they were treated subcutaneously weekly with a dose 
of 6.0 mg/kg (ClinicalTrials.gov identifier NCT01910649). Twelve weeks into this 
extension trial, drisapersen treatment was still well-tolerated without serious adverse 
events. Furthermore, the 10 ambulant patients showed a modest improvement in the 
distance walked in the 6-min walk test compared to the baseline at the initiation of 
the extension trial. Patients received weekly treatment for 72 weeks, followed by an 
8-week treatment break and then cycles of 8 weekly treatments and 4-week treat-
ment breaks of 6 mg/kg drisapersen for 188 weeks [20]. After 3.4 years, the most 
common observed adverse events were injection-site reactions and mild proteinuria 
and raised urinary α1-microglobulin levels. During the off-treatment periods, the 
proteinuria levels normalized. However, the injection-site reactions sometimes 
persisted.

Functionally, on average there was an improvement in 6-min walk test perfor-
mances compared to the expected decline found in natural history studies of age- 
matched patients [21]. The distance walked in 6  min was stable for 8 of the 10 
ambulant patients for the duration of the study, whereas 2 patients lost ambulation. 
While this finding was encouraging, it should be interpreted with caution, since it 
involved an open-label study and only a small number of patients.

43.2.1.3  Phase 2 Placebo-Controlled Trials

Prosensa had coordinated the local injection and the phase 2a dose-escalation trials. 
Following this, they in-licensed drisapersen to GlaxoSmithKline (GSK). GSK then 
planned and coordinated three placebo-controlled trials. In the first phase 2 double- 
blind, three-arm, placebo-controlled study, different dosing regimens were com-
pared in patients (DMD 114117, ClinicalTrials.gov Identifier NCT01153932). The 
study involved 53 DMD patients aged 5 years and older from 13 specialized centres 
in 9 countries. Patients were all in the early stage of the disease, since they had to be 
able to rise from the floor in less than 7  s [22]. All patients first received twice 
weekly doses of 6 mg/kg drisapersen or placebo during a 3-week period. After this 
period, patients were treated either continuously (once weekly) or intermittently 
(twice weekly at weeks 1, 3 and 5; once weekly at weeks 2, 4 and 6; and no active 
drug in weeks 7–10 of each 10-week cycle) for a total duration of 48 weeks. Patients 
from the drisapersen continuous group showed a significant increase in 6-min walk 
distance at 25 weeks (34 m; p = 0.01), while no significant differences were found 
for patients from the intermittent group. At week 49, the 6-min walk distance 
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differed between drisapersen and placebo in 36 m and 27 m for the continuous and 
intermittent group, respectively (not statistically significant). Some decline towards 
baseline was observed in the continuous group between 25 and 49 weeks, whereas 
the intermittent group was relatively stable.

The second phase 2 placebo-controlled study compared different doses of dris-
apersen and involved 51 DMD patients in an early stage of the disease (6–8 years of 
age; time to rise from floor <15  s) (DMD114876, ClinicalTrials.gov Identifier 
NCT01462292). Patients were treated with placebo, 3 or 6 mg/kg drisapersen for 
24 weeks. Patients treated with 6 mg/kg walked 27 m more than patients treated with 
placebo or 3 mg/kg; however this difference was not statistically significant [23].

Although ambulation improvements in this young population with early stage 
of the disease appear very encouraging, both phase 2 studies were exploratory and 
contained small numbers of patients in each treatment group. Moreover, both 
studies were not sufficiently powered to be able to detect significant differences 
and clinical benefits.

In all phase 2 trials and the following open-label studies using subcutaneous 
injections of drisapersen, injection-site reactions and proteinuria were more fre-
quently reported in drisapersen-treated patients. Similar injection-site reactions 
have also been reported for mipomersen, an AON of comparable chemistry that was 
approved by the Food and Drug Administration (FDA, USA) for the treatment of 
familial hypercholesterolaemia [24]. These injection-site reactions do not occur 
after intravenous delivery, which has been explored in clinical trials for AONs 
targeting exons 44, 45 and 53.

43.2.1.4  Phase 3 Placebo-Controlled Trial

In parallel with the two phase 2 trials, the safety and effectiveness of treatment with 
drisapersen were tested in a large phase 3 trial involving 186 ambulant patients 
between 5 and 16 years (DMD114044, ClinicalTrials.gov Identifier NCT01254019). 
Patients were treated with placebo (n = 61) or 6 mg/kg drisapersen (n = 125) for 
48 weeks, and the primary outcome measure was the 6-min walk test. At the end of 
the trial, drisapersen-treated patients walked 10.3 m more than the placebo group, 
which was not clinically relevant or statistically significant [25]. Consequently, GSK 
stopped the clinical development of drisapersen, and all rights returned to Prosensa. In 
early 2015, BioMarin acquired Prosensa and reanalysed the clinical data. Post hoc 
analysis of the data from the phase 2 and 3 trials revealed that patients in the phase 3 
trial were on average older and had a more advanced disease stage than patients in the 
phase 2 trials. Therefore, analysis was performed on the subset of patients who 
would have met the selection criteria for phase 2 trials, revealing that for this group 
the treatment difference in 6-min walk test was 21.5 m (p = 0.131) [25]. Given that 
all studies had open-label extension arms, for a substantial number of patients, 
96-week treatment data were available. Analysis of this data revealed that when 
compared to natural history data, longer-term drisapersen treatment appears to slow 
down disease progression in younger patients but also in older patients [26].
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Based on these findings, drug registration applications were filed with the FDA 
and the European Medicines Agency (EMA). FDA declined approval for dris-
apersen, saying the ‘standard of substantial evidence of effectiveness has not been 
met’. In May 2016, BioMarin announced they had withdrawn the application with 
EMA [27] and that they would stop the clinical developments of their current 
exon- skipping components, to focus on investing in research of next-generation 
oligonucleotides [28].

43.2.2  Eteplirsen

43.2.2.1  Local Injection Study

Like drisapersen, eteplirsen was also first tested in a local injection study. Here, the 
extensor digitorum brevis (EDB) muscles of seven DMD patients were injected 
with eteplirsen at doses of 0.09 mg (n = 2) and 0.9 mg (n = 5) (ClinicalTrials.gov 
Identifier NCT00159250). The contralateral EDB served as a control and received 
only saline injection [15]. EDB muscles were selected based on their preservation 
observed with magnetic resonance and the responsiveness to exon 51 skipping in 
cultured fibroblasts obtained from skin biopsies. Muscle biopsies taken between 3 
and 4 weeks after injections showed dystrophin restoration in all 5 patients treated 
with the higher dose. Intramuscular administration of eteplirsen appeared to be safe 
and on average intensity of dystrophin staining was 17% higher in treated muscles 
than the intensity in the contralateral control muscles. This proof-of-concept study 
led to systemic clinical trials in DMD patients.

43.2.2.2  Dose-Funding and Efficacy Phase 2 Trials

Following proof-of-concept after the local injection study, systemic trials were per-
formed for eteplirsen. The studies used intravenous infusion as a delivery route. 
Due to poorer solubility of the PMO compound, subcutaneous injections were not 
feasible.

The safety and biochemical efficacy of eteplirsen was first examined in an open- 
label, dose-escalation phase 2 study involving 19 ambulant patients with DMD aged 
5–15 years (ClinicalTrials.gov Identifier NCT00844597). Several doses of eteplirsen 
were tested (0.5, 1.0, 2.0, 4.0, 10.0 and 20.0 mg/kg body weight), and muscle biop-
sies were taken from the biceps at the start and from the contralateral biceps after 
12  weeks of weekly intravenous treatment [29]. Overall, eteplirsen was well- 
tolerated with no serious drug-related adverse effects. Seven patients responded to 
treatment showing exon 51 skipping and dystrophin restoration. Three patients 
showed a clear response to treatment with 21%, 15% and 55% of dystrophin- 
positive fibres, while the other four patients demonstrated only increases between 6 
and 8%. Notably, newly produced dystrophin was functional, as the dystrophin- 
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associated glycoprotein complex (DGC) was restored at the sarcolemma. However, 
since even in the 20 mg/kg dose group, there were patients in whom no increase in 
dystrophin expression was observed; the conclusion was that probably a higher dose 
was needed.

A subsequent trial involved 12 patients with DMD aged 7–13 years. The trial 
started as a placebo-controlled, double-blind trial. Patients were randomized to 
weekly intravenous infusions of 30 or 50 mg/kg/weeks eteplirsen or placebo (n = 4/
group) for 24 weeks [30]. At week 25, the study became an open-label trial, and 
placebo patients switched to 30 or 50 mg/kg eteplirsen (n = 2/group), and all patients 
have been receiving weekly intravenous infusions now for over 4  years 
(ClinicalTrials.gov Identifier NCT01396239). An increase in dystrophin production 
was the primary endpoint, but function was also assessed by the 6-min walk test. No 
increase in dystrophin was observed after 12 weeks of treatment with 50 mg/kg 
eteplirsen. In biopsies taken at week 24, however, the percentage of dystrophin- 
positive fibres was increased to 23% in patients treated with 30 mg/kg of eteplirsen, 
while no increase was found in placebo-treated patients. After longer treatment 
(48 weeks), even greater increases of dystrophin-positive fibres (52% and 43% in 
the 30 and 50 mg/kg cohorts, respectively) were observed. Furthermore, restored 
dystrophin appeared to be functional, since sarcoglycans and neuronal nitric oxide 
synthase were localized at the sarcolemma [31].

Two of the patients in the 30 mg/kg group lost ambulation within the first 3 months 
of the study. During the 3 years of follow-up, the 10 remaining ambulant patients 
showed a lower degree of decline in their 6-min walk distance than would be expected 
from the natural history. Namely, the eteplirsen-treated patients declined 100 m, while 
the cohort of 13 untreated Belgium and Italian DMD patients declined 250 m in a 
3-year time frame [31]. As mentioned before, comparisons of small groups of patients 
should be interpreted with caution. Nevertheless, Sarepta filed for accelerated 
approval with the FDA. However, the FDA was hesitant to approve eteplirsen based 
on such a small number of patients and also questioned the robustness of the dystro-
phin quantification method, which involved manual counting of dystrophin-positive 
fibres by a pathologist, while information on the quantity of dystrophin was lacking. 
A fourth biopsy was taken from patients after 188 weeks of treatment. Western blot 
analysis quantification revealed an increase of dystrophin of 0.9% [32, 33].

43.2.2.3  Open-Labelled Confirmatory Phase 3 Trial

In September 2014, Sarepta initiated an open-labelled phase 3 trial to provide confir-
matory evidence of eteplirsen efficacy (ClinicalTrials.gov Identifier: NCT02255552). 
The trial involved 80 ambulant DMD patients amenable to exon 51 skipping, who 
received weekly intravenous dosing of 30 mg/kg eteplirsen for up to 96 weeks, while 
80 matched DMD patients with mutations not amenable to exon 51 skipping served as 
controls for safety and functional outcome measures.

FDA requested Sarepta to confirm increased dystrophin expression by western 
blot analysis from biopsies taken from these patients before and after 48 weeks of 
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eteplirsen treatment [34]. Western blot analysis of 13 patients showed an increase in 
dystrophin in some patients, ranging from 0.22% to 0.32% of normal [35]. Notably 
about half of the patients had no or minimal apparent increases in dystrophin expres-
sion. Although the levels of dystrophin restoration were lower than anticipated, 
eteplirsen was granted accelerated approval under provisions that Sarepta will 
confirm the drug’s clinical benefit before 2021 [36].

43.3  Lesson Learned

There have been several lessons learnt from the exon-skipping studies. Sometimes 
things could not have been foreseen, e.g. the injection-site reactions after subcuta-
neous injections of drisapersen were never observed in mice. In retrospect, intrave-
nous delivery would have been preferred and probably should be considered for 
future trials using high doses of PS-modified AONs.

However, some of the lessons learned relate to the field being unprepared for 
clinical trials.

At the onset of the clinical trials, neither natural history data of the disease were 
available nor did functional outcome measures exist. This realization inspired mul-
tiple stakeholder collaboration meetings involving academics, regulators and repre-
sentatives from industry and patient advocacy groups to identify gaps, collect 
additional data and develop new outcome measures [3, 37, 38]. However, this is an 
effort that is still ongoing, while the first systemic trials were initiated in 2008.

The 6-min walk test was used in these trials, but this test was not developed for 
DMD but borrowed from the cardiovascular field to measure muscle function in 
ambulant patients. Since the test had not been performed by DMD patients and no 
natural history data for this test existed, the heterogeneity of the disease had not 
been fully appreciated. With the onset of therapy trials, the field started collecting 
natural history data for the 6-min walk test [39–41]. This revealed that generally the 
6-min walk distance declines nonlinearly and younger patients (≤7 years of age) are 
stable or can even increase in their walk distance within 1 year [39]. Later the 6-min 
walk distance stabilizes, followed by a slow decline and finally a rapid decline just 
before losing ambulation [42]. Given that the exon-skipping approach aims to 
slow down disease progression and prolong the ambulation period, ideally patients 
in the decline phase are selected for future clinical trials (it is not possible to mea-
sure a slower decline in stable patients) [32, 42]. However, once the rapid decline 
has started, it may be too late to achieve a therapeutic effect on walking function. 
Thus, currently a specific subset of patients is selected in clinical trials using the 
6-min walk test, i.e. the patients where one expects to be able to detect a slower 
disease progression in a 1-year trial. This is generally assumed to be patients with a 
baseline 6-min walk distance near 350 m [3].

Looking back on past trials with the current knowledge, it is clear to see how 
initial trials may have been suboptimal. For instance, the phase 2 drisapersen trials 
involved only very young patients in a relatively stable phase of the disease [20], 
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while the phase 3 trial involved patients between 5 and 16 years of age [25], result-
ing in high variability. The unexpected heterogeneity can also give rise to uncer-
tainty within trials, e.g. in the phase 2 drisapersen trial testing different dosing 
regimens, the continuous treatment regime appeared to contain higher number of 
younger and more functional patients compared to the intermitted regime explain-
ing improved 6-min walk distance in the continuous but not in the intermitted group 
at 25 weeks [25].

As mentioned, DMD progresses slowly when measured with the 6-min walk 
test, and the exon-skipping compounds aim to slow down disease progression. This 
has an impact on trial duration. The EMA guidance recommends DMD trials to be 
placebo-controlled and lasting at least 1 year [43], while the draft FDA guidance 
suggests 18–24 months [44]. The phase 2 trial design for eteplirsen was originally 
not set up for drug registration, as underlined by the small number of patients and 
the fact that there was no placebo group beyond the first 24  weeks. Therefore, 
results of the 6-min walk test had to be compared between eteplirsen-treated patients 
and historical controls selected from natural history data of baseline-matched 
patients from Belgium and Italy [31, 32]. This is a challenging exercise, because 
variation in care in different countries will influence disease progression. As such it 
is not surprising that FDA was not convinced by this data and requested Sarepta to 
provide compelling functional data in future study as a condition of the accelerated 
approval [32].

Currently, the 6-min walk is often selected as the primary functional endpoint in 
phase 2 and 3 trials for DMD. However, it has several disadvantages. First, it was 
not developed for DMD. As such, a lot of effort was needed to define the clinically 
meaningful difference for patients as 30 m [41]. Being able to walk 30 m more in 
6 min may not appear clinically relevant. However, it has become clear that the 
distance walked in 6 min is predictive for when patients will lose ambulation, which 
clearly is clinically relevant. Alternative outcome measures are now developed as 
well, such as the North Star Ambulatory Assessment, which captures multiple items 
that are relevant to patients, such as the ability to climb stairs (and therefore traverse 
thresholds) and get up from the floor. The performance upper limb (PUL) functional 
outcome measure was established in collaboration with patients and can also be 
used in non-ambulant patients. However, these outcome measures have been newly 
developed, and natural history data is only now being collected. If there is one 
 lesson from this all, it is that ideally outcome measures should be available at the 
time first trials are initiated.

Another thing that has become clear is that it is unlikely that exon skipping will 
convert a DMD patient into a BMD patient. First, the levels of dystrophin that are 
restored in patients after exon skipping are a lot lower than those expressed in BMD 
patients. However, preclinical studies in mouse models revealed that very low levels 
(less than 4%) of dystrophin are beneficial for survival [45]. Furthermore, patients 
amenable to exon 44 skipping show higher baseline levels of dystrophin due to 
spontaneous exon 44 skipping, which result in clinical benefits such as prolonged 
ambulation and slower disease progression [46, 47]. However, the higher dystrophin 
levels are present from birth, while dystrophin expression will only be induced at 
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the time of intervention in DMD patients. At that time muscle damage will already 
have accumulated. It is currently not known how much dystrophin is required to 
slow down disease progression in DMD patients, but it is likely that the levels may 
vary for young patients with relatively good muscle quality and for older patients 
with progressive muscle tissue loss.

43.4  Future Perspectives

New oligonucleotide chemistries are currently in development aiming to achieve 
more widespread restoration of dystrophin throughout the whole body’s muscle 
including the heart.

Heart failure is one of the main causes of death in DMD patients, and targeting 
heart remains one of the most significant challenges [14]. Among oligonucleotide 
chemistries tested in preclinical trials, cell-penetrating peptide-conjugated PMO 
(PPMO) efficiently induced dystrophin expression in whole body muscles and the 
heart and improved heart function [48, 49]. Although preclinical testing of PPMOs 
in mdx mice appeared to be safe, monkeys are more sensitive to dose-dependent 
PPMO-related toxicity, which can lead to kidney degeneration [50]. If it is possible 
to lower the toxicity, e.g. through structural modifications, PPMOs could be a 
promising therapeutic compound for DMD.

Another next-generation exon 51 DMD compound was recently developed by 
Wave Life Sciences Ltd. Wave has presented that their stereopure component 
induces higher exon-skipping levels and results in better uptake in skeletal muscle 
and the heart. Wave is planning to initiate their first clinical trial involving ambula-
tory and non-ambulatory DMD patients in 2017 [51].

A major hurdle of the exon-skipping approach is that the DMD mutations are 
very heterogeneous, while the exon-skipping approach is highly mutation specific. 
Each AON is considered as a new drug by the regulators. To address this, multi-exon 
skipping has been proposed as a method that is applicable for larger groups of 
patients. For example, skipping exons 45–55 would apply to 40% of all patients 
[10], and Becker patients with a deletion of exons 45–55 show a mild disease phe-
notype [52]. However, this approach needs 11 AONs targeting 11 exons, which is 
challenging [53]. Multi-exon skipping is currently at a preclinical stage, and several 
hurdles need to be addressed including low efficacy and potentially high toxicity. 
A better understanding of the DMD intron splicing order and usage of new-generation 
antisense oligonucleotides may reduce the number of AONs required to skip exons 
45–55 and reduce the therapeutic of individual AONs [54].

Exon-skipping therapy development for DMD is very dynamic. New AON 
chemistries and modifications are tested in cell and animal models, and outcome 
measures have been developed and natural history collected. While initial trials 
perhaps were not optimal, it is hoped that future AON trials will benefit from the 
work that has been done so far.
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Chapter 44
Clinical Gene Therapy Trials for Pompe 
Disease

Cristina Liberati, Stephanie Salabarria, Manuela Corti, and Barry J. Byrne

Abstract Pompe disease is a metabolic myopathy which leads to severe and 
 progressive weakness due to glycogen storage in striated muscle and neurons. 
Generalized weakness leads to cardiopulmonary insufficiency and early mortality. 
The spectrum of disease ranges from a fatal early-onset form to a more slowly pro-
gressive intermediate and adult-onset type. The severity of disease depends on the 
amount of residual acid α-glucosidase (GAA) activity which is determined by the 
nature of the two mutant alleles. The lack of GAA leads to accumulation of glyco-
gen in lysosomes of neurons and striated muscle (especially skeletal and cardiac 
muscle). Lysosomal dysfunction and cellular autophagy result in neuronal cell loss 
over time. Enzyme replacement therapy (ERT) is the only currently approved treat-
ment for Pompe disease; however, ERT does not effectively address the neural defi-
cits; therefore, alternative approaches using gene therapy must be considered. The 
principal objective of gene therapy in Pompe disease is to increase the intrinsic 
ability of the cells to produce GAA. A variety of recombinant adeno-associated 
viral vectors (rAAV) are being studied to complete this task. The efficacy of gene 
therapy not only depends on the efficiency of the gene therapy agent but also on the 
host's immune response. The most critical immunological challenges are anti-AAV 
capsid antibodies and anti-GAA antibodies. In this chapter, we review the current 
status of AAV-mediated gene therapy for Pompe disease.
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44.1  Introduction

Pompe disease is a rare, life-threatening, autosomal recessive, glycogen storage 
disorder caused by mutations in the acid α-glucosidase (GAA) gene located on the 
long arm of chromosome 17 [1]. Deficiency of the GAA enzyme leads to accumula-
tion of lysosomal glycogen in neurons and muscle cells, causing cellular dysfunc-
tion and apoptosis [2–4].

It is estimated that the incidence in the United States of individuals born with 
GAA mutations is approximately 1:40,000, but recently, new data has shown this 
estimate may not reflect the true incidence based on newborn screening [5]. Newborn 
screening efforts in several US states suggest there is a higher than anticipated dis-
ease frequency of 1:10,000, implying that there may be many subclinical cases of 
weakness attributed to other causes, especially among adult patients.

44.2  Clinical Findings

In unaffected individuals, normal GAA enzyme leads to degradation of lysosomal 
glycogen through the hydrolysis of α-1,4 and α-1,6 links [6], releasing glucose from 
the acidic lysosome. The cytosolic pathway, which operates at neutral pH, is unim-
paired in Pompe disease, and glucose homeostasis following fasting is normal. 
The relationship between fasting, autophagy, and lysosomal dysfunction may be an 
important factor in disease severity as well as a link to other neurodegenerative 
diseases where this mechanism is part of the pathobiology. Therefore, lysosomal 
accumulation of glycogen is the primary pathogenic mechanism, which leads to the 
clinical manifestations observed in Pompe. All striated muscles, especially the 
body-wide musculature and the heart, are affected. Additionally, neurons, princi-
pally lower motor neurons and the phrenic motoneuron pool, are impacted, leading 
to significant respiratory symptoms [7–14]. The severity of the disease and the onset 
of symptoms, ranging from the neonatal period (infantile) to adulthood (juvenile/
adult onset) [15], are usually related to amount of residual GAA.  The range of 
enzyme’s activity can vary between less than 1% and up to 20% of wild-type activ-
ity level [16–18], and those with 50% of wild-type activity level (GAA mutation 
carriers) are unaffected. Pompe disease patients face progressive muscle weakness, 
hypotonia, cardiomyopathy, and respiratory insufficiency. These symptoms eventu-
ally lead to respiratory distress and cardiorespiratory failure, which often results in 
early mortality [10, 19–22]. Even though infantile and late-onset patients have a 
different rate of progression, progressive respiratory insufficiency is one of the 
primary clinical findings. Ventilatory support is critical in management. However, 
prolonged use of mechanical ventilation has itself been associated with diaphragm 
dysfunction. It is important to consider that pediatric subjects are more susceptible 
to ventilator-induced diaphragm dysfunction [23–37].
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44.3  Diagnosis

To pursue the diagnosis of Pompe disease, an adequate level of clinical suspicion 
of the disease is necessary. In infants, feeding difficulties and hypotonia, otherwise 
termed “floppy baby syndrome,” and cardiomyopathy are most common initial 
findings of Pompe disease [38]. In adults, a limb-girdle pattern of weakness and 
nocturnal hypoventilation are common findings. Often, these symptoms contribute 
to fatigue and morning headaches as the respiratory insufficiency slowly becomes 
more severe. All patients have elevated blood levels of creatine kinase and the 
associated elevation of serum transaminase, which are often mistaken for liver 
disease. The mainstay of diagnosis is based on detecting deficient GAA activity in 
the peripheral blood or tissue samples, which is then confirmed by molecular diag-
nostics [16, 39].

Between 2013 and 2015, the Discretionary Advisory Committee on Heritable 
Disorders in Newborns and Children and the Secretary of Health and Human 
Services worked to add Pompe disease to the Recommended Uniform Screening 
Panel (RUSP), the statewide newborn screening program (more information is 
available on: www.hrsa.gov). Currently, seven states are using newborn screening to 
establish an early diagnosis of Pompe disease [39–42]. One important aspect of 
newborn screening is that some patients with late-onset disease will be identified 
during the newborn period.

44.4  Therapies

44.4.1  Enzyme Replacement Therapy

Enzyme replacement therapy (ERT) is the only currently approved treatment for 
Pompe disease. The strategy relies on IV infusion of the recombinant protein, on a 
weekly or biweekly basis. Alglucosidase alfa, marketed as Myozyme® and 
Lumizyme® by Genzyme Corporation (Cambridge, MA, USA), was approved in 
2006 by the EMA and FDA. Initial clinical studies in early-onset Pompe disease 
were successful in showing a strong survival advantage compared to historical 
cohorts where early mortality was observed in the untreated population. The initial 
approval was granted for early-onset patients and later expanded to late-onset 
patients. Over the 10-year history of ERT use, there is evidence for improved sur-
vival in some infantile patients, yet there continues to be significant deficits in 
speech, motor function, and ventilatory function in the treated population [43–47]. 
In adult patients, the co-primary endpoints of forced vital capacity and 6-minute 
walk test were studied in a pivotal studies. In general, patients on long-term therapy 
have shown slight improvement or reduction in decline rate, although no studies 
have demonstrated significant long-term gain in function.

44 Clinical Gene Therapy Trials for Pompe Disease
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Central nervous system (CNS) manifestations of Pompe disease have come 
to light, and peripheral ERT has been demonstrated to be not effective in treat-
ing the CNS since the product is unable to cross the blood-brain barrier [48, 
49]. Ongoing neural degeneration and motor unit dysfunction are major con-
tributing factors to the symptom complex in infantile and late-onset Pompe 
disease [11–14, 50, 51].

Additionally, ERT can lead to an immune response as would be expected in a 
recessive condition with limited endogenous GAA activity. Patients with severe or 
null mutations, otherwise known as CRIM (cross-reactive immunologic material)-
negative patients, have the least functional improvement following ERT [52–56]. A 
number of studies have been conducted to evaluate the impact of high-sustained 
antibodies against alglucosidase alfa and to design strategies to block antibody 
response. These studies are critical to the success of ERT in infants. Adult patients 
can also develop infusion reactions related to anti-GAA antibodies, but the full 
impact on efficacy versus safety is unknown. Another strategy to lower the immune 
response to ERT is to promote regulatory T-cells by gene transfer of GAA to the 
liver [57–61]. While this approach is very valuable for liver-derived proteins that 
function in the blood, hepatic-derived GAA will not substantially cross the blood- 
brain barrier, where a cell autonomous effect is required to rescue GAA deficiency 
in neurons. Finally, as the phenotype of long-term treated patients continues to be 
characterized, there is a distinct observation of the limitations to alglucosidase alfa 
effectiveness as a therapeutic strategy. Interest in developing alternative or second- 
generation therapies has led to additional clinical studies of alternatives or second- 
generation formulations.

44.4.2  Gene Therapy

Gene therapy is a rational solution for Pompe disease as well as for many other 
neuropathogenic lysosomal storage diseases. In the most common strategy of in 
vivo transduction, a viral vector is used to provide a supplemental copy of the cDNA 
for the dysfunctional allele in target cells. This approach should be distinguished 
from ex vivo gene therapy, where an integrating viral vector is used to modify a 
stem cell population for later delivery back to the patient. The most common viral 
vector currently used for in vivo gene transfer is the adeno-associated viral vector or 
recombinant AAV (rAAV). The primary benefit derived from this type of therapy in 
Pompe disease is an increase in the cell’s intrinsic ability to produce alpha glucosi-
dase. The processing of all lysosomal proteins involves a complex delivery process 
in which the new synthesized protein is moved from the rough endoplasmic reticu-
lum to the trans-Golgi and then trafficked to the mature lysosome. The elegant pro-
cess which results in delivery of a functional protein to the acidic compartment of 
the lysosome is most efficient when these proteins are delivered from within the cell 
in an autonomous manner. Exogenous supply of the protein, such as with ERT, 
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relies on a less efficient process of endocytosis after the binding of the mature pro-
tein to the mannose 6-phosphate receptor. Importantly, lysosomal proteins are inher-
ently unstable at neutral pH during transit in the blood. These same fundamental 
principles apply to liver-directed gene therapy of a lysosomal protein. The amount 
of expression from the liver is several orders of magnitude greater than is needed in 
a target cell, mostly to overcome the inefficiency of the alternative uptake pathway. 
A second aspect which must be considered is that most lysosomal proteins, GAA 
included, do not cross the blood-brain barrier. To combat this, some alternative 
transport mechanisms do exist, such as loading of the protein in leukocytes, but cur-
rently the efficiency is very low.

44.4.2.1  Immune Response

One of the most critical questions regarding the efficacy and durability of gene 
therapy in any recessive disease is the likelihood of an anti-transgene immune 
response. The antibody response to ERT, especially in infantile Pompe disease, is 
entirely responsible for infusion reactions and diminished efficacy. Therefore, in 
infantile Pompe disease, it is common clinical practice to initiate immune manage-
ment at the time of starting ERT. The amount of residual protein expression, or 
CRIM status, can then be investigate by further testing, and the duration of immune 
therapy can be established. Several immune management strategies have been eval-
uated in Pompe disease ERT, but the duration and precise regimen are still 
under investigation [59, 62, 63].

In addition to anti-GAA immune responses, it is also important to consider the 
anti-capsid response to the AAV vector. Viral shedding during natural AAV infec-
tion and the high rate of cross-reacting antibodies suggest that prior exposure to 
AAV often occurs in the early school-age years [64–66], resulting in acquired 
immunity to the vector capsid [67–70]. Anti-capsid antibodies are believed to have 
an impact on efficacy due to B-cell-mediated activation of cytotoxic T-lymphocytes 
and binding antibodies, which redirect vector capsids from the circulation. In addi-
tion to natural exposure to the virus, there may be a need for readministration of a 
therapeutic gene therapy vector when somatic growth or initial dose leads to inad-
equate expression at a later date [67–72].

To fully consider the immune challenges in Pompe disease gene therapy, we 
must address (a) how to control the humoral immune response to GAA in CRIM- 
negative subjects; (b) how to successfully deliver AAV in a patient population that 
may have pre-existing binding or neutralizing antibodies against AAV; (c) how to 
readminister the therapeutic agent to achieve lifelong correction of GAA deficiency. 
Our group has shown that attenuating or ablating the humoral immune response 
can (1) enhance initial safety of high-dose AAV by limiting immunotoxicity, (2) 
increase transgene expression by eliminating anti-GAA antibodies, and (3) allow 
subsequent exposure to AAV vectors [63, 71, 73–76].
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44.4.2.2  Preclinical Studies

The original mouse model of Pompe disease was generated in collaboration with 
Dr. Nina Raben in 1998 [77], and several novel derivations have been created since 
that time. The benefit of a mouse model is that the behavioral and biochemical phe-
notype can be readily established and used to analyze the change from baseline after 
a therapy. Using a variety of AAV vector serotypes, many vector-promoter-capsid 
combinations have been evaluated [78–81]. The initial experiment was to show that 
an E1-deleted adenoviral vector expressing human GAA (rAd-hGAA) could be 
used to demonstrate cross correction in vitro (in deficient fibroblasts and myoblasts) 
and in vivo (in deficient mice) [82–87]. Subsequently, a myriad of nonclinical stud-
ies with AAV vectors were initiated to demonstrate the biochemical, physiological, 
and clinical responses to gene therapy with AAV-GAA [11, 71, 77, 88–90]. The 
initial observations with AAV serotype 2 have been amplified through the availabil-
ity of second-generation AAV vectors, which have higher tropism for striated mus-
cle or neurons.

One of the key outcome measures of nonclinical studies in the GAA knockout 
(KO)  models assessed the effect of vector delivered systemically in the heart. 
Successful reversal of glycogen storage results in reduction in LV mass, restoration 
of the normal PR interval, and improvement in LV function [90–94].

Furthermore, important observations on the performance of skeletal muscle 
function showed that lysosomal glycogen levels can be reduced, facilitating the 
recovery of muscle function by several assays. An important area to assess is the 
ability to restore diaphragmatic and phrenic motor pool function [90, 95]. A novel 
delivery strategy for the correction of diaphragm muscle was described and helped 
establish the basis for a clinical study focused on the same outcomes (see below) 
[96–99].

Several nonclinical studies have focused on respiratory dysfunction, especially 
the impact of GAA deficiency on neuron motor units, neuromuscular junction, and 
the myofiber [12, 100]. Initial studies demonstrated the ability of AAV1 to transduce 
and impact all components of the motor unit [11, 98]. Lastly with both systemic and 
direct IM delivery, it has been possible to show that rAAV1-GAA leads to normal-
ization of the enzyme amount, reduction of glycogen accumulation, and gain of 
function of the muscular system [94, 101–103]. A human clinical trial based on 
these supportive findings has been completed with evidence of a positive effect (see 
next section).

Comparative efficacy of ERT versus rAAV-GAA treatment in GAA KO mice has 
also been investigated, demonstrating promising AAV-based gene therapy outcomes 
[104]. Additional studies addressed the question of how the humoral immunological 
response against hGAA could be reduced using a recombinant AAV8-GAA vector 
controlled by a liver-specific promoter [81, 105–107]. Plans to test these approaches 
are being considered by regulatory agencies.
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44.4.2.3  Clinical Trials

In Pompe disease gene therapy, only two gene therapy studies have achieved 
approval from the FDA, and no studies have been conducted thus far in the EU. The 
first gene therapy study in Pompe disease was for children with early-onset disease 
and is based on nonclinical studies described earlier in the chapter. The study, titled 
“Phase I/II Trial of Diaphragm Delivery of Recombinant Adeno-Associated Virus 
Acid Alpha-Glucosidase (rAAV1-CMV-GAA) Gene Vector in Patients with Pompe 
Disease” [NCT00976352], was initiated in 2010 [74, 76, 108]. This trial involved 
three cohorts of young patients (two dose cohorts) in a phase I/II open-label study. 
The purpose of the study was to test the safety and exploratory effects on ventilator 
function of an AAV1 vector expressing human GAA (rAAV1-CMV-hGAA) after 
intramuscular  (IM) delivery [74, 76, 96, 97, 109]. Study subjects were initially 
required to have progressed to invasive ventilatory support and be on stable ERT 
therapy. The proof-of-concept data has been discussed previously, and it should be 
further emphasized that the study population was considered to have failed 
ERT. Study participants were between 2 and 15 years of age, and all subjects were 
fully dependent on mechanical ventilatory support in cohort 1 and varying degrees 
of dependence in cohorts 2 and 3. Two dosing levels were studied, and the vector 
was administered bilaterally at the anterior, middle, and posterior parts of the dia-
phragm muscle. The primary outcome of initial early-onset ERT studies was 
ventilator- free survival. Therefore, in assessing the ventilatory outcome of these 
patients, any observed changes could be attributed to the study agent [75, 96, 97, 
110, 111]. The direct IM strategy was chosen because it has shown to be more suc-
cessful than IV delivery when working with AAV serotype 1 at the time these stud-
ies began. Early work with AAV serotype 9 was underway, but sufficient nonclinical 
data of AAV9 dosing and longer-term efficacy studies had not yet been completed. 
Subsequent studies with AAV9 have confirmed an advantage for certain cellular 
targets and a systemic route of administration (see below). The primary outcome 
measure of the study was safety [75], and the exploratory efficacy endpoints related 
to ventilatory function were also reported [74, 108].

A unique aspect of the study was to assess the importance of inspiratory muscle 
strength training as part of respiratory rehabilitation. In order to establish uniform 
baseline functional status, each subject was asked to follow a standardized inspira-
tory muscle strength training (IMST) effort up to 12 weeks before study agent dos-
ing. Several novel findings have been observed through direct and indirect observation 
of the study subjects. First, preconditioning with IMST was sufficient to improve any 
aspect of ventilatory function. In relation to safety, there were no study agent-related 
adverse events, although a number of adverse events and serious adverse events were 
described as related to disease progression [74, 75, 108]. An important distinction 
was made in the baseline status of subjects who had full-time mechanical ventilation 
versus part-time mechanical ventilatory support. Changes from baseline were only 
observed in the subjects with minimal or part-time ventilatory support, suggesting a 
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certain degree of disease burden may not be reversible [108]. Also, it is notable that 
subjects in the part-time mechanical ventilatory  support group had significant posi-
tive gains from baseline, rather than a reduction in the rate of decline, as it had been 
observed in ERT studies.

Since those subjects with infantile disease often have null mutations in the GAA 
gene, it may be necessary to consider immunotherapy in order for ERT to be toler-
ated. Of the subjects in the study, three had received chronic immune management 
to maximize the benefit of ongoing ERT, through treatment with rituximab and 
sirolimus [71, 73, 74, 76, 108]. Most importantly, these patients did not have 
immune responses to AAV1 following dosing, indicating the ability to undergo 
additional AAV treatment at a later time [75].

Given the findings from this first gene therapy study in Pompe disease, a new 
series of nonclinical studies were completed to directly demonstrate the ability to 
deliver AAV in two sequential doses. The corresponding clinical study is being con-
ducted in late-onset Pompe disease and is titled “Re-administration of Intramuscular 
AAV9 in Patients with Late-Onset Pompe Disease” [NCT02240407]. The study is a 
within-participant, double-blind, randomized, phase I controlled study where each 
participant will receive AAV dosing twice in a span of 4 months. The objectives are 
to evaluate the toxicology, biodistribution, and potential activity of rAAV9-DES- 
hGAA  (with the  Desmin promoter used to  drive  transgene expression) injected 
intramuscularly (IM) into the anterior muscle of the lower leg. Nine potential par-
ticipants will be selected and screened until six subjects (aged 18–50 years old) will 
receive the study agent. Inclusion requires that the patient has no prior exposure to 
AAV so that blocking B-cells prior to initial AAV exposure will prevent the forma-
tion of anti-AAV antibodies. To date, two subjects have been enrolled and safety 
dosed, and preliminary data are being analyzed. The primary outcome is safety; 
however, important clinical assessments are being performed to confirm the active 
dose and other evidence of efficacy including biomarker and imaging findings. A 
unique aspect of the study is that the subjects received the active agent in one leg at 
the first dosing visit along with excipient in the contralateral leg. At the second dos-
ing visit, the placebo-treated leg received the active agent.  Such a  study design 
allows for eventual redosing, which could ultimately lead to the possibility of initi-
ating new studies consisting of dose-escalating within the same subject.

This study in late-onset Pompe disease is an important step toward the ultimate 
goal of systemic delivery of AAV9 to achieve body-wide correction of GAA defi-
ciency. As noted earlier in the context of a recessive disease, immune response 
against the transgene product is a critical barrier to successful gene therapy, espe-
cially in Pompe disease. By applying the same principles described above and in the 
supporting nonclinical studies, we have established a strategy to allow for correc-
tion of GAA deficiency in infantile Pompe disease. An innovative study supported 
by the NHLBI Gene Therapy Resource Program and a new program at the NIH 
Clinical Center will study the systemic delivery of AAV9-GAA in infants with 
infantile Pompe disease and will use the same immune management strategy first 
observed to be effective in the AAV1 study and then evaluated with a series of non-
clinical studies using AAV9. Confirmation of the study principles will be completed 
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with the late-onset Pompe disease IM study, and in mid-2019, the study in  early- onset 
Pompe disease will be initiated. Six to eight subjects will be enrolled at the active 
dose, determined from the related study in adults.

To develop an effective treatment for Pompe disease, it is necessary to evaluate 
the findings in patients who have been managed by ERT alone and then establish 
strategies that confirm how vector-derived GAA expression will provide further 
benefit to this patient population. After 10 years of ERT experience, there are some 
clear benefits to patients; however, the effect is not sufficient to observe ongoing 
improvement and full restoration of neuromuscular function. Given the findings of 
neuronal and motor unit dysfunction, the approach to direct cellular transduction 
with AAV delivered systemically is a rational strategy to improve the long-term 
outcomes in Pompe disease. These important new strategies enabling early correc-
tion and maintenance of the effective level of gene expression have been developed 
and are being deployed in two studies. Future findings from these studies will 
impact the era of newborn screening for Pompe disease and early treatment of many 
other early-onset pediatric conditions.
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Chapter 45
Muscle-Directed Gene Therapy 
for Alpha-1 Antitrypsin Deficiency

Alisha M. Gruntman and Terence R. Flotte

Abstract Alpha-1 antitrypsin (AAT) deficiency is a common monogenic disorder 
resulting in emphysema, which is currently treated with weekly infusions of protein 
replacement. We have reported achieving plasma wild-type (M) AAT concentra-
tions at greater than 2% of the therapeutic level at 1 and 5 years after intramuscular 
(IM) administration of 6 × 1012 vg/kg of a recombinant adeno-associated virus sero-
type 1 (rAAV1)-AAT vector in AAT-deficient patients. This persistent expression 
was associated with a regulatory T cell (Treg) response to AAV1 capsid epitopes in 
the absence of any exogenous immune suppression. The patients also showed par-
tial correction of functional biomarkers of AAT expression, including an increase in 
antineutrophil elastase capacity and a decrease in markers of neutrophil degranula-
tion. Muscle-based gene therapy has allowed us to avoid targeting the liver, there-
fore preventing potential toxicity in patients where the hepatocytes are burdened 
with mutant AAT protein. Future muscle gene therapy will likely require dose esca-
lation using a limb perfusion delivery method in order to obtain therapeutic serum 
levels of AAT while still avoiding delivery to the liver.
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45.1  Background of Alpha-1 Antitrypsin Deficiency (AATD)

Alpha-1 antitrypsin (AAT) deficiency is a common single gene disorder first discov-
ered by Laurell and Eriksson in 1963 as a cause of familial clusters of emphysema 
correlated with the absence of the alpha-1 globulin band on serum protein electro-
phoresis [1]. The alpha-1 fraction was determined to have antiprotease activity in 
the laboratory setting against trypsin and so was named alpha-1 antitrypsin (AAT). 
Subsequently, it has been determined that AAT is a 52 kDa glycoprotein comprising 
the most abundant serum antiprotease, with physiologic serum levels ranging 
from 20–50 μM (1.0–2.6 mg/ml; 100–280 mg/dl). AAT is a member of the serpin 
family of antiproteases, with homology to antithrombin 3 (AT3) and serpins found 
in humans and other mammals.

The primary substrate for AAT antiprotease activity is neutrophil elastase (NE). 
AAT also has activity against a number of other neutrophil-derived proteases, such as 
cathepsin G and proteinase-3, and may play a direct role in the inhibition of apoptosis 
in alveolar endothelial cells [2, 3]. AAT is primarily produced in hepatocytes and to a 
lesser extent in monocytes and macrophages. AAT is an IL-6 inducible gene and func-
tions as an acute phase reactant [4–6]. Like other mammalian serpins, this acute 
increase in serum AAT facilitates its function in limiting the activity of NE to local 
tissue foci of infection where neutrophils accumulate and release granule contents as 
part of the innate immune response. AAT is inactivated by oxidation of methionine 
residues in its active site. Thus, reactive oxygen species released during the oxidative 
burst by clusters of neutrophils at foci of infection serve to counteract AAT within 
infected sites and allow NE to remain fully active against microbial invaders [7, 8].

Certain AAT deficiency alleles are very common in the populations 
of Scandinavia, Ireland, other countries of northern and western Europe, and North 
America [9–13]. The most common “severe” allele, glu342lys (E342K), is desig-
nated as proteinase inhibitor (Pi)-type Z, based on its migration on isoelectric 
focusing gel. PiZ AAT protein (Z-AAT) polymerizes by “loop-sheet” polymeriza-
tion, where the reactive loop of one molecule of AAT inserts itself into the beta-
sheet region of a neighboring molecule near the site where the E342K mutation 
interrupts a salt bridge [14, 15]. This polymerization process results in accumula-
tion of Z-AAT in the endoplasmic reticulum (ER) of hepatocytes and ultimately 
leads to the formation of very large aggregates, detectable by periodic acid-Schiff 
(PAS) staining and resistance to diastase (glycogenase) digestion.

The most common manifestation of AATD is lung disease in Pi-ZZ homozygous 
patients due to the relative paucity of AAT in serum, secondary to the impairment of 
release of AAT from hepatocytes. Normally, AAT is present in molar excess of NE 
in serum and healthy tissue. Low levels of AAT in serum result in unopposed action 
of NE on elastin fibers in the pulmonary interstitium. This results in progressive loss 
of lung elasticity and the clinical picture of emphysema. In addition, the presence of 
elastin degradation products in the lung leads to release of chemokines and further 
infiltration of inflammatory cells. The classic histopathologic picture of AATD is 
panacinar emphysema, with a predilection for the lower lobes [16]. In reality, the 
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pulmonary presentation is quite varied. Most patients experience an asthma-like 
picture for years preceding the correct diagnosis and may respond partially to anti- 
inflammatory therapy.

Genotype-phenotype studies have shown that individuals heterozygous for PiZ 
with one wild-type (PiM) or one less severe missense mutation (e.g., PiS, glu264val) 
who display levels of AAT in serum that are lower than normal but higher than 
11 μM (572 mcg/ml, 57 mg/dl) are at low risk of developing spontaneous lung dis-
ease (Fig. 45.1) [17]. Interestingly, such individuals are at increased risk of lung 
disease if they are exposed to tobacco smoking, either directly by smoking or as 
secondhand exposure. This may be due to oxidative inactivation of residual AAT 
within the lung by ROS released in response to smoke inhalation. Importantly, the 
11  μM levels established from such studies have set the benchmark for FDA 
approval of IV protein replacement products, most of which are derived from pooled 
human plasma [18]. Other than protein replacement therapy, options for AATD lung 
disease patients are limited, consisting of tobacco avoidance, prompt treatment of 
infectious and inflammatory processes in the lung, oxygen supplementation as 
needed, and lung transplant, the latter reserved for patients with end-stage lung 
disease (Table 45.1).

In a subset of patients with AATD, the accumulation of mutant Z-AAT within 
hepatocytes triggers an ER stress response further triggering hepatocyte injury and 
inflammation [19]. In a smaller subset of such patients (approximately 10% of total 
AATD population), liver inflammation progresses to more serious liver disease [20]. 
Liver disease in AATD can present at any age but generally can be considered as 
bimodal, with a more rapidly progressing form presenting in infancy and early 
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childhood with cholestasis and more rapid progression to cirrhosis and liver failure 
and an adult form, which is generally more slowly progressing and more often asso-
ciated with gradual accumulation of fibrosis and an increased risk of hepatocellular 
carcinoma (HCC). Treatment options for AATD liver disease are even more limited 
than for AATD lung disease. Protein replacement therapy would not be expected to 
help with AATD liver disease, and is not indicated for this purpose. Liver transplant 
is an option for patients with end-stage liver disease (Table 45.1).

45.2  Gene Therapy for AATD

AAT has been viewed as a particularly favorable target for gene therapy, because of 
its secreted nature, the ease with which the therapeutic endpoint may be measured 
(i.e., the serum or plasma level) and the very wide therapeutic window (Table 45.2). 
AAT is a secreted protein, with a signal peptide suitable for secretion for any of a 
variety of cells, and capable of functioning properly when present in serum, regard-
less of the source. Thus, once the AAT gene was identified, attempts were made to 
develop gene therapies directed toward multiple different target tissues, including 
hepatocytes, pulmonary airways, pleura, monocytes, salivary glands, and muscle 
[21–34]. A number of different viral and non-viral vectors were developed in these 
efforts, including cationic liposomes, gammaretroviruses, recombinant adenovi-
ruses, and recombinant adeno-associated virus (rAAV). Of these, the greatest 
promise to date has been with rAAV-based gene therapy vectors.

Table 45.2 Alpha-1 
antitrypsin deficiency as a 
target for gene therapy

Advantages for gene therapy

Single gene target
AAT coding sequence is within AAV’s packaging size
Multiple choices for target cells because AAT is a secreted 
protein
Easily assayed serum endpoint applicable for clinical trials
Wide therapeutic window based on protein replacement data

Table 45.1 Currently available therapeutic options for alpha-1 antitrypsin deficiency lung and 
liver disease

Therapeutic target 
organ Primary therapies Adjunct therapies

Lung Protein augmentation therapy—intravenous 
infusion of AAT protein

Inhaled bronchodilators and 
steroids

Lung transplant Pneumococcal and influenza 
vaccinations

Surgical lung volume reduction Supplemental oxygen
Smoking cessation
Pulmonary rehabilitation 
therapy

Liver Liver transplant

A. M. Gruntman and T. R. Flotte



779

45.3  Concept of “Liver-Sparing” AAT Gene Therapy

At first consideration, one may presume that rAAV-based gene therapy might best 
be achieved by systemic (IV) injection of a rAAV vector capable of expressing high 
levels of wild-type PiM-AAT within hepatocytes. This can readily be achieved in 
mice with a normal AAT genotype, using gammaretroviruses, adenovirus, or rAAV 
vectors. Our group has articulated concerns regarding this approach, however. First, 
the variable levels of subclinical liver disease that have been described in some stud-
ies suggest that the hepatocytes of PiZ homozygotes, even those without AATD 
liver disease, carry a large burden of accumulated mutant Z-AAT and thus may be 
more susceptible to liver injury from systemic rAAV administration. Second, stud-
ies with IV rAAV8 gene therapy for hemophilia have demonstrated transaminase 
elevations in many patients. This appears to be primarily due to an effector T cell 
response to AAV capsid epitopes and may be blunted by prednisolone therapy. 
However, it is not clear whether such toxicity would be as well tolerated in AATD 
patients with Z-AAT aggregates as it is in hemophilia patients with normal livers. 
Finally, a simple rAAV-based M-AAT augmentation vector would have no potential 
for treating patients that have already manifested with AATD liver disease.

In response to this, our group has developed a number of “liver-sparing” gene therapy 
approaches for AATD lung disease. One such approach is the so-called “dual-function” 
vector approach in which a rAAV8 or rAAV9 vector is used to continuously deliver both 
a synthetic miRNA designed to knock down the endogenous PiZ-AAT allele and a 
PiM-AAT encoding augmentation allele which has been rendered resistant to degrada-
tion by the miRNA by the introduction of silent nucleotide changes. The rAAV9 
dual-function construct was shown to be capable of 80% knockdown of PiZ mutant 
AAT in a PiZ-transgenic mouse with simultaneous, allele-specific augmentation [31].

45.4  Proof-of-Concept, Preclinical, and Clinical Studies 
of Muscle-Directed rAAV2-AAT Gene Therapy

The concept of using muscle-directed rAAV gene transfer for production of a 
secreted transfer was first developed in the mid-1990s with erythropoietin as the 
transgene [35]. The first proof of concept for intramuscular (IM) rAAV gene therapy 
for ectopic AAT secretion was performed with rAAV2 vectors expressing wild-type 
PiM-AAT from the cytomegalovirus immediate early promoter (CMV or CMV-IE), 
as compared with the elongation factor 1-alpha promoter, the U1a promoter, and the 
U1b promoter. The CMV promoter in these studies mediated the highest level of 
gene transfer [26], but subsequent studies were completed with the CBA cassette, 
consisting of the CMV-IE enhancer, the chicken beta actin promoter, and a hybrid 
intron consisting of portions of the beta actin first intron and the rabbit beta globin 
first intron [36]. In addition to providing evidence that a single IM injection of 
rAAV-AAT could mediate high-level expression of AAT for over a year, these studies 
demonstrated the episomal nature of rAAV and the fact that the DNA-PK pathway, 
important in nonhomologous end joining (NHEJ), is also involved in the formation 
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of stable episomal rAAV concatemers [37, 38]. Subsequently, rAAV2- AAT under-
went formal preclinical studies and a phase 1 clinical trial in AAT- deficient adults 
[39, 40]. The phase I study showed an excellent safety profile but only short-term, 
low-level transgene expression [39].

45.5  Proof-of-Concept and Preclinical Studies  
of rAAV1- AAT Gene Therapy

The relatively low efficiency of rAAV2-AAT gene transfer in human muscle led to 
a broader comparison of various AAV serotype capsids [41]. These studies showed 
that rAAV1 capsid was the most efficient. These studies, and all subsequent ones, 
utilized a vector cassette with AAV2-ITRs and packaged with complementing con-
structs that include AAV2-Rep and AAV1-Cap genes, producing cross-packaged 
vectors called “AAV2/1” by some authors but abbreviated as rAAV1 here. Such 
constructs were also used to demonstrate that muscle-produced AAT was biochemi-
cally active in complexing and neutralizing human NE [41] and in prevention of 
emphysema in a mouse model [3]. Formal preclinical toxicology and distribution 
studies showed that rAAV1 were positive and the vector was then moved forward 
into clinical trials [42].

45.6  Clinical Studies of rAAV1-AAT Gene Therapy by Direct 
Intramuscular Injection

Clinical testing of IM rAAV1-AAT began with a phase 1 study in AAT-deficient 
adults at a dose range up to approximately 8 × 1011 vg/kg [39]. All patients tested 
demonstrated effector T cell responses to the capsid. However, all patients also 
demonstrated gene transfer, stable for up to 1 year after a single IM injection. Based 
on this, the dose escalation was continued through a phase 2a study in which the 
vector manufacturing process was modified to an HSV1 helper system, as compared 
with co-transfection-based packaging used for the phase 1 trial [43]. The phase 2a 
trial included dose up to 6 × 1012 vg/kg by IM injection in the high-dose cohort. 
Because the vector could not be concentrated any further, this amounted to an injec-
tion volume of 135 ml, accomplished by 100 IM injections, completed in a single 
session of injections.

Both the phase 1 and phase 2a trials demonstrated an absence of vector-related 
serious adverse events [39, 43–46]. Furthermore, the highest-dose IM injection group 
in the phase 2a trial showed a peak level of approximately 0.5 μM, 5% of the thera-
peutic target, and then leveling off at 2.5–3.0% of the therapeutic target level. The 
peak of gene expression was seen at 45 days after vector injection, and patients all 
demonstrated positive gamma interferon ELISPOT responses at this time point. 
Patients in the high-dose cohort demonstrated a rise in the creatine kinase level at this 
time point. Transgene expression decreased modestly but then stabilized, despite the 
fact that no corticosteroids or immune suppressive drugs were used.

A. M. Gruntman and T. R. Flotte



781

A series of muscle biopsies were performed at 3 months, 12 months, and 5 years. 
At 3 and 12  months, there was very substantial immunohistochemical staining 
within the muscle that indicated robust gene expression was persisting at those time 
points, despite the fact that there were also substantial cellular infiltrates in those 
biopsy samples [45]. The explanation for this was provided by further studies, 
which indicated that infiltrating cells showed evidence of regulatory T cell markers. 
This was confirmed by bisulfite sequencing that showed that 10% of all T cells in 
the muscle were also FoxP3+, indicative of Treg function. Peripheral blood T cell 
studies showed AAV1 capsid epitope-specific Treg cells were present in these 
patients, and next-generation sequencing demonstrated identity between certain 
peripheral blood T cell clones and those persisting within the muscle. This strongly 
suggested that AAV1 capsid-specific Treg cells were induced by IM rAAV1-AAT, 
resulting in functional tolerance to rAAV1-hAAT-transduced cells.

Patients in the phase 2a study were further characterized in a 5-year follow-up 
study, including assays for PiM-specific serum AAT levels, which showed persis-
tence of levels from 2.5–3% of the therapeutic target (Fig. 45.2) [46]. In addition, 
muscle biopsy samples showed persistence of AAT-expressing myofibers and Treg 
cell infiltrates. Interestingly, these patients showed partial correction of functional 
biomarkers of AAT expression as well, including an increase in antineutrophil 
elastase capacity and a decrease in markers of neutrophil degranulation [46].

45.7  Future Directions of Muscle-Directed AAT Gene Therapy

In order to continue the dose escalation of muscle-directed AAT gene therapy, the 
injection methodology has been transitioned to isolated limb perfusion. Previous 
investigations have demonstrated that either venous or arterial infusion of rAAV 
vectors can mediate widespread gene transfer to muscle tissue (Table 45.3) [57]. 

Fig. 45.2 Sustained expression of AAT for 5 years after a single IM dose in AAT-deficient patients. 
Low dose = 6 × 1011 vg/kg; mid-dose = 2 × 1012 vg/kg; high dose = 6 × 1012 vg/kg. Reproduced 
with permission from Mueller et al., Molecular Therapy 2017
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In many of these studies, some method was used to enhance extravasation of the 
vector, either by co-administration of papaverine or histamine to endothelial tight 
junctions or by a high-pressure (regional hydrodynamic) infusion. In several cases 
these methods have been developed for use in patients with muscular dystrophies. 
It is hoped that in the future muscle-directed gene therapy with AAV can advance in 
parallel between primary muscle diseases and serum protein deficiencies, like 
AATD, which capitalize on the large mass of skeletal muscle as a site for production 
of large quantities of a secreted protein. Ideally, each approach can benefit from 
the lessons learned with the other, so that the use of muscle-directed therapy can 
be maximized in the creation of new therapies for both classes of diseases in 
future years.
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