
Chapter 8

The FFF -Functional Calculus for
Unbounded Operators

Similar to the S-functional calculus, we can also extend the F -functional calculus
to unbounded operators by suitably transforming the operator and the function
and then applying the theory for bounded operators. Let us first specify the type
of operator for which this is possible.

Let X = XR ⊗ H be a quaternionic two-sided Banach space and let T` :
D(T`) ⊂ XR → XR be linear closed operators for ` = 0, . . . , 3 such that T`Tκ =
TκTκ on D(T`Tκ) ∩ D(TκT`) for `, κ = 0, . . . , 3. Then

D(T ) =

3⋂
`=0

D(T`)

is the domain of the quaternionic right linear operators

T = T0 +
3∑
`=1

e`T` : D(T ) ⊂ X → X

and

T = T0 −
3∑
`=1

e`T` : D(T ) ⊂ X → X.

Definition 8.0.1. We denote the set of closed right linear operators with commuting
components as discussed above by KC(X).

For operators in KC(X), we can characterize their S-resolvent set and S-
spectrum just as in Theorem 4.5.6 as

ρS(T ) =
{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
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with

Qc,s(T ) = (s2I − 2sT0 + TT )−1.

Definition 8.0.2 (The F -resolvent operators for the unbounded operators). Let
T ∈ KC(X). For s ∈ ρS(T ), we define the (left) F-resolvent operator as

FL(s, T ) := −4(sI − T )Qc,s(T )−2.

8.1 Relations Between FFF -Resolvent Operators

The following results are important since they will lead us to the definition of
F -functional calculus for unbounded operators.

Proposition 8.1.1. Let T ∈ KC(X) and assume that there exists a point α ∈
ρS(T ) ∩ R 6= ∅ and set A := (T − αI)−1 as in Theorem 5.2.3. For p = (s− α)−1,
we have

Qc,p(A)−1 =
(
AA
)−1Qc,s(T )−1p−2 = Qc,α(T )Qc,s(T )−1p−2

and

Qc,p(A)−2 =
(
AA
)−2Qc,s(T )−2p−4 = Qc,α(T )2Qc,s(T )−2p−4.

Proof. Observe that

p2I − p
(
A+A

)
+AA

=
(
p2
(
AA
)−1 − p

(
A+A

) (
AA
)−1

+ I
) (
AA
)

=
(
p2
(
AA
)−1 − p

(
A−1 +A

−1
)

+ I
) (
AA
)
,

where we have used the fact that
(
AA
)−1

= A−1A
−1

= A
−1
A−1. Recalling that

A := (T − αI)
−1

and A :=
(
T − αI

)−1
, we obtain

A
−1
A−1 = α2I − α

(
T + T

)
+ TT = Qc,α(T )

and

A−1 +A
−1

= T + T − 2αI,

so that we obtain

Qc,p(A)−1 =
(
p2I − p

(
A+A

)
+AA

)−1

=
(
AA
)−1

(
p2
(
AA
)−1 − p

(
A−1 +A

−1
)

+ I
)−1

= Qc,α(T )
(
p2 Qc,α(T )− p

(
T + T − 2αI

)
+ I

)−1
.
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Observe now that T + T = 2T0 and TT =
∑3
`=0 T

2
` are scalar operators and

thus commute with p, so we have

Qc,p(A)−1 = Qc,α(T )
(
Qc,α(T )− p−1

(
T + T − 2αI

)
+ p−2I

)−1
p−2.

Finally, we also get

Qc,α(T )− p−1
(
T + T − 2αI

)
+ p−2I

= α2I − α
(
T + T

)
+ TT − p−1

(
T + T

)
+ 2αp−1I + p−2I

= TT −
(
p−1 + α

) (
T + T

)
+
(
p−2 + α2 + 2αp−1

)
I

= TT − s
(
T + T

)
+ s2I = Qc,s(T ),

and so
Qc,p (A)

−1
= Qc,α(T )Qc,s (T )

−1
p−2.

Since α ∈ R, we have
sp = s (s− α)

−1
= ps,

and so Qc,α(T ), Qs (T ), and p−2 commute mutually. Therefore, we also obtain

Qc,p (A)
−2

= Qα(A)2Qs (T )
−2
p−4. �

From Proposition 8.1.1, we deduce now two important relations between the
F -resolvents of T and A.

Theorem 8.1.2. Let T ∈ KC(X), let α ∈ ρS(T )∩R 6= ∅, and define A = (T−αI)−1.
For s ∈ ρS(T ) with s /∈ σL(T ) and p = (s− α)−1, we have

FL(s, T ) = −AA2FL(p,A)p3. (8.1)

Proof. We recall that FL(p,A) = −4
(
pI −A

)
Qc,p(A)−2. Due to Proposition

8.1.1, we have

FL(p,A) = −4
(
pI −A

)
A
−2
A−2Qc,s(T )−2p−4.

Since s = p−1 + α commutes with p, we have

FL(p,A) = −4
(
pI −A

)
A
−2
A−2p−1Qc,s(T )−2p−3,

and so

FL(p,A) = −4
(
pI −A

)
A
−2
A−2p−1

(
sI − T

)−1 (
sI − T

)
Qc,s(T )2p−3.

Observe that A
−2
A−2 = Qα,s(T )2 is a scalar operator since α ∈ R and hence com-

mutes with p and so also with
(
pI −A

)
. Since FL(s, T ) = −4

(
sI − T

)
Qc,s(T )−2,

we obtain

FL(p,A) = A
−2
A−2

(
pI −A

)
p−1

(
sI − T

)−1
FL(s, T )p−3.
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Replacing s = p−1 + α, we get

FL(p,A) = A
−2
A−2

(
pI −A

)
p−1

(
p−1I + αI − T

)−1
FL(s, T )p−3

= A
−2
A−2

(
pI −A

)
p−1

(
p−1I −A−1

)−1

FL(s, T )p−3

and hence

FL(p,A) = −A−2
A−2

(
pI −A

)
p−1

(
p
(
pI −A

)−1
A
)
FL(s, T )p−3.

We thus get the statement because

FL(p,A) = −
(
A
)−2

A−2AFL(s, T )p−3

= −A
(
A
)−2

A−2FL(s, T )p−3 = −
(
A
)−1

A−2FL(s, T )p−3. �

Theorem 8.1.3. Let T ∈ KC(X), let α ∈ ρS(T )∩R 6= ∅, and define A = (T−αI)−1.
For s ∈ ρS(T ) and p = (s− α)−1, we have

(AA)−1FL(p,A)p4 = −4pQc,s(T )−1 − FL(s, T ). (8.2)

Proof. We recall that

AA = (α2I − α(T + T ) + TT )−1 : D(TT )→ V

and that
A+A = (T + T − 2αI)AA : D(TT )→ D(T ).

Using the relation s = p−1 + α, we get

p2I − p(A+A) +AA = p2
(
s2I − s(T + T ) + TT

)
(T − αI)−1(T − αI)−1, (8.3)

where the right-hand side of (8.3) is the composition of the maps

(T − αI)−1(T − αI)−1 : V → D(TT )

and (
s2I − s(T + T ) + TT

)
: D(TT )→ V.

We write FL(p,A) now in terms of the above positions and get

FL(p,A) = −4[(pI − (T − αI)−1)(T − αI)(T − αI)]

× (T − αI)(T − αI)
(
s2I − s(T + T ) + TT

)−2

p−8.

Due to s = p−1 + α, we have

[(pI − (T − αI)−1)(T − αI)(T − αI)]

= [p(α2I − α(T + T ) + TT ) + αI − T ]

= pQc,s(T )− (sI − T ),
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from which we conclude

FL(p,A) = −4(T − αI)(T − αI)[pQc,s(T )− (sI − T )]

×
(
s2I − s(T + T ) + TT

)−2

p−4,

which gives
(AA)−1FL(p,A)p4 = −4pQc,s(T )−1 − FL(s, T ). �

8.2 The FFF -Functional Calculus for Unbounded

Operators

Let T ∈ KC(X) with ρS(T ) ∩ R 6= ∅. For α ∈ ρS ∩ R, we define Φα : H→ H as

Φα(s) = (s− α)−1, Φα(α) =∞, Φα(∞) = 0, (8.4)

and set A := (T − αI)−1. We recall that by Theorem 5.2.3, we have Φ(σS(T )) =
σS(A) and that

SHL(σS(A)) =
{
f ◦ Φ−1

α : f ∈ SHL(σS(T ))
}
.

Definition 8.2.1 (F -functional calculus for unbounded operators). Let T ∈ KC(X)
with ρS(T ) ∩ R 6= ∅, let α ∈ ρS(T ) ∩ R, and define Φα and A as in (8.4). For
f ∈ SHL(σS(T )) with f(α) = 0, we consider the functions

φ(q) := (f ◦ Φ−1
α )(q),

ψ̆(q) := ∆(q2φ(q)),

and define the operator f̆(T ) for f̆ = ∆f as

f̆(T ) := (AA)−1ψ̆(A), (8.5)

where ψ̆(A) is intended in the sense of Definition 7.1.11.

Remark 8.2.2. Observe that the condition f(α) = 0 is not a restriction in the above
definition. Indeed, if f(α) 6= 0, then we can consider the function f̃(q) = f(q)−f(α)

and we find that also f̃ ∈ SHL(σS(T )) with f̆ = ∆f̃ , but now f̃ = 0. We will take
this fact into account in the next result.

Theorem 8.2.3. Let T ∈ KC(X) with ρS(T )∩R 6= ∅, let α ∈ ρS(T )∩R, and define

Φα and A as in (8.4). For f̆ = ∆f with f ∈ SHL(σS(T )) with f(α) = 0, the

operator f̆(T ) defined in (8.5) satisfies

f̆(T ) =

∫
∂(U∩Cj)

FL(s, T ) dsj f(s), (8.6)
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where U is any unbounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f)
and j is any imaginary unit in S.

In particular, f̆(T ) is independent of α. If f∗ = f − c with c ∈ H such that

f∗(β) = 0 with β ∈ ρS(T ) ∩ R, we can define f̆∗(T ) using β instead of α. Then

f̆ = f̆∗ and f̆(T ) = f̆∗(T ).

Proof. Let j ∈ S and let U be a slice Cauchy domain as above. Furthermore,
we assume that α /∈ U . If this is not the case, we can replace U by the axially
symmetric slice Cauchy domain U \ Bε(0) with sufficiently small ε > 0 without
altering the value of the integral in (8.6) by the Cauchy integral theorem.

The set V = Φα(U) is a bounded slice Cauchy domain with σS(T ) ⊂ V and
V ⊂ D(f ◦ Φ−1

α ) = Φ(D(f)).

Using the second relation between FL(p,A) and FL(s, T ), see formula (8.2),
we have ∫

∂(U∩Cj)

(
−4pQc,s(T )−1 − FL(s, T )

)
dsj f(s)

= (AA)−1

∫
∂(V ∩Cj)

FL(p,A) dpj p
2φ(p).

(8.7)

Now we work on the left-hand side:∫
∂(U∩Cj)

(
−4pQc,s(T )−1 − FL(s, T )

)
dsj f(s)

=

∫
∂(U∩Cj)

−4pQc,s(T )−1dsjf(s)−
∫
∂(U∩Cj)

FL(s, T )dsjf(s)

= −4

∫
∂(U∩Cj)

(s− α)−1 dsjQc,s(T )−1f(s)

−
∫
∂(U∩Cj)

FL(s, T )dsjf(s)

= −4(2π)Qα(T )−1f(α)−
∫
∂(U∩Cj)

FL(s, T ) dsj f(s).

The last identity follows because Qc,s(T )−1 dsj = dsj Qc,s(T )−1, since T + T and
TT are scalar operators, so that

− 4

∫
∂(U∩Cj)

(s− α)−1 dsj Qc,s(T )−1f(s)

= −4

∫
∂(U∩Cj)

S−1
L (s, α) dsj Qc,s(T )−1f(s) = −4(2π)Qc,α(T )−1f(α)

by Cauchy’s integral formula because s 7→ Qc,s(T )−1f(s) is left slice hyperholo-
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morphic. Indeed, for s = u+ jv, we have

1

2

(
∂

∂u
+ j

∂

∂v

)
Qc,s(T )−1f(s) =

(
1

2

(
∂

∂u
+ j

∂

∂v

)
Qc,s(T )−1

)
f(s)

+Qc,s(T )−1

(
1

2

(
∂

∂u
+ j

∂

∂v

)
f(s)

)
= 0

because Qs(T )−1 commutes with j, since T + T and TT are scalar operators.
The identity (8.7) therefore turns into

− 4(2π)Qα(T )−1f(α)−
∫
∂(U∩Cj)

FL(s, T ) dsj f(s)

= (AA)−1

∫
∂(V ∩Cj)

FL(p,A) dpj p
2φ(p).

Since by assumption f(α) = 0, we conclude that

1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s) =
1

2π
(AA)−1

∫
∂(V∩Cj)

FL(p,A) dpj p
2φ(p)

= (AA)−1ψ̆(A) = f̆(T ).

Finally, if f∗ = f + c with f∗(β) = 0 for some β ∈ ρS(T ) ∩ R, then we find that

f̆∗(T ) =
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f∗(s)

=
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s)

+
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj c = f̆(T ),

since
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj c = 0

by Cauchy’s integral theorem. �

8.3 Comments and Remarks

The definition of the F -functional calculus can be extended to the case of n-tuples
of unbounded operators. As is well known in the case of unbounded operators,
the notion of commutativity is more delicate, and one has to pay attention to the
domains of the operators. The situation is simpler when just one of the operators
Tj : D(Tj) ⊂ X → X, j = 0, 1, . . . , n, is unbounded; see [78].
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8.3.1 FFF -Functional Calculus for nnn-Tuples of Unbounded Operators

The definition of the F -functional calculus for unbounded operators is less intu-
itive than the S-functional calculus for unbounded operators. The reason is that
the S-functional calculus is defined by a Cauchy formula, while the F -functional
calculus is defined by an integral transform that maps slice monogenic functions
to monogenic functions.

Definition 8.3.1 (Admissible operators). Let X be a real Banach space and Xn =
X ⊗ Rn. Let Tj : D(Tj) ⊂ X → X be linear closed operators for j = 0, 1, . . . , n,
such that TjTix = TiTjx, for all x ∈ D(TjTi) ∩ D(TiTj) for i, j = 0, 1, . . . , n. Let
D(T ) =

⋂n
j=0 D(Tj) be the domain of the operator T = T0+

∑n
j=1 ejTj : D(T ) ⊂

Xn → Xn. We say that T is an admissible operator if

1)
⋂n

j=0 D(Tj) is dense in Xn,

2) sI − T is densely defined in Xn for s ∈ R
n+1,

3) D(TT ) ⊂ D(T ) is dense in Xn.

We need the following definitions:

• Let α ∈ ρS(T ) ∩ R �= ∅ and let n be an odd number and let p = (s − α)−1.
Set A := (T − αI)−1.

• Let α ∈ R and define the homeomorphism Φ : R
n+1 → R

n+1
,

p = Φ(s) = (s− α)−1, Φ(∞) = 0, Φ(α) = ∞. (8.8)

Definition 8.3.2 (The F -functional calculus for n-tuples of unbounded operators).
Let n be an odd number and let T : D(T ) → Xn be an admissible operator with
ρS(T ) ∩ R �= ∅ and suppose that f ∈ SML(σS(T )). Let us consider the functions

φ(p) := f(Φ−1(p)),

ψ̆(p) := Δ
n−1
2

p (pn−1φ(p)),

where Δp is the Laplace operator in dimension n+ 1, and recall that

A := (T − αI)−1, for some α ∈ ρS(T ) ∩ R.

With the notation above, we define

f̃(T ) := (AA)−
n−1
2 ψ̆(A) (8.9)

for functions f such that f(α) = 0.

The definition seems unnatural, but it is suggested by the two relations be-
tween the resolvents Fn(p,A) and Fn(s, T ).
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Theorem 8.3.3 (First relation between the F -resolvents). Let T be admissible, let
α ∈ ρS(T ) ∩ R �= ∅, let n be an odd number, and let p = (s − α)−1. Let us put
A := (T − αI)−1 and suppose that p ∈ ρS(A) and p �= 0. Then we have

Fn(s, T ) = −(A)
n−1
2 A

n+1
2 Fn(p,A)p

n. (8.10)

Theorem 8.3.4 (Second relation between Fn(p,A) and Fn(s, T )). Let α ∈ ρS(T )∩
R �= ∅ and let n be an odd number and let p = (s−α)−1. Recall that A := (T−αI)−1

for T admissible. Let s ∈ ρS(T ) and p �= 0. Then we have

(AA)−
n−1
2 Fn(p,A)pn+1 = γnp(s

2I − s(T + T ) + TT )−
n−1
2 − Fn(s, T ), (8.11)

where γn are defined in (7.29), i.e., γn := (−1)(n−1)/22(n−1)/2
[(

n−1
2

)
!
]2
.

Thanks to Theorem 8.3.3 and (8.11), we can prove that for n an odd number,
if k ∈ ρS(T ) ∩ R �= ∅ and Φ, φ are as above, then Φ(σS(T )) = σS(A), and the
relation φ(p) := f(Φ−1(p)) determines a one-to-one correspondence between f ∈
SML(σS(T )) and φ ∈ SM(σS(A)), and so the integral representation theorem of
the F -functional calculus is what we expect:

Theorem 8.3.5. Let n be an odd number and let T be admissible with ρS(T )∩R �= ∅
and suppose that f ∈ SML(σS(T )) and set dsj = −dsj for j ∈ S. If f(k) = 0,

then the operator f̃(T ) := (AA)−
n−1
2 ψ̆(A), defined in (8.9), does not depend on

k ∈ ρS(T ) ∩ R. Moreover, we have the integral formula

f̃(T ) =

∫
∂(W∩Cj)

FL
n (s, T )dsjf(s), (8.12)

where W is a suitable Cauchy domain.

The reason we have defined the F -functional calculus as in (8.9) is essentially
due to the relation in Theorems 8.3.3 and 8.3.4. Thanks to this relation, we can
prove that f̃(T ) is independent of k and admits the integral representation (8.12).
A similar definition can be found for f ∈ SMR(σS(T )).
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