
Chapter 7

The FFF -Functional Calculus for
Bounded Operators

The Fueter mapping theorem in integral form introduced in [86], see Chapter 2.2,
provides an integral transform that turns slice hyperholomorphic functions into
Fueter regular ones. By formally replacing the scalar variable in this integral trans-
form by an operator T , we obtain a functional calculus for Fueter regular functions
that is based on the theory of slice hyperholomorphic functions. The F -functional
calculus was introduced and studied in the following papers [54,78,81,86].

7.1 The FFF -Resolvent Operators and the FFF -Functional

Calculus

We begin our discussion with the feasibility of this functional calculus.

Definition 7.1.1. For m ∈ N and q ∈ H we consider the Fueter regular polynomials

Pm(q) := ∆qm. (7.1)

Lemma 7.1.2. We have P0 ≡ P1 ≡ 0 and P2 ≡ −4. Furthermore, for even m ≥ 2,
we have

Pm(q) = m(m− 1)qm−2 + 2Re

(
3∑
`=1

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ

)
, (7.2)

and for odd m ≥ 2 we have

Pm(q) = m(m− 1)qm−2 + 2Im

(
3∑
`=1

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ

)
. (7.3)
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Proof. The identities P0 ≡ P1 ≡ 0 and P2 = −4 follow by straightforward com-
putations. Thus assume that m ≥ 2.

For q = q0 + q = q0 +
∑3
`=1 q`e` ∈ H, we have

qm =
m∑
k=0

(
m

k

)
qk0q

m−k,

and so

∂2

∂q2
0

qm =
m∑
k=2

(
m

k

)
k(k − 1)qk−2

0 qm−k =
m∑
k=2

m!

(m− k)!(k − 2)!
qk−2
0 qm−k

= m(m− 1)
m−2∑
k=0

(m− 2)!

(m− k)!(k − 2)!
qk0q

m−2−k = m(m− 1)qm−2.

Furthermore, observe that for 1 ≤ ` ≤ 3 we have

∂

∂q`
qr =

r−1∑
κ=0

qκe`q
r−1−κ. (7.4)

For r = 1, we have ∂
∂q`

q = e`, and so (7.4) holds. If, on the other hand, (7.4)
holds for r − 1, then

∂

∂q`
qr =

(
∂

∂q`
q

)
qr−1 + q

(
∂

∂q`
qr−1

)
= e`q

r−1 +
r−2∑
κ=0

qk+1e`q
r−2−κ =

r−1∑
κ=0

qκe`q
r−1−κ.

Applying this identity twice, we obtain

∂

∂q`
qm =

m−1∑
κ=1

(
∂

∂q`
qκ
)
e`q

m−1−κ +
m−2∑
κ=0

qκe`

(
∂

∂q`
qm−1−κ

)

=

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ +

m−2∑
κ=0

m−2−κ∑
s=0

qκe`q
se`q

m−2−κ−s

=
m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ +
m−1∑
κ=1

κ−1∑
s=0

qm−1−κe`q
κ−1−se`q

s

=
m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ + (−1)m
m−1∑
κ=1

κ−1∑
s=0

qse`qκ−1−se`qm−1−κ,

where the last identity follows from

qm−1−κe`qκ−1−se`qs = qs e` qκ−1−s e` qm−1−κ

= (−1)mqse`q
κ−1−se`q

m−1−κ
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because q = −q, since q is purely imaginary. Therefore, we obtain

∆qm =
∂2

∂q2
0

qm +
3∑
`=1

∂

∂q2
`

qm = m(m− 1)qm−2

+
3∑
`=1

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ

+ (−1)m
m−1∑
κ=1

κ−1∑
s=0

qse`qκ−1−se`qm−1−κ,

which yields (7.2) resp. (7.3). �

Definition 7.1.3 (Fueter kernel series). Let s, q ∈ H. We define the left Fueter
kernel series as ∑

m≥2

Pm(q)s−1−m,

and the right Fueter kernel series as∑
m≥2

s−1−mPm(q).

Proposition 7.1.4. For s, q ∈ H with |q| < |s|, the left and right Fueter kernel
series converge.

Proof. Because of (7.2) and (7.3), we have for m ≥ 2 that

|Pm(q)| ≤ m(m− 1)|q|m−2 + 2
3∑
`=1

m−1∑
k=1

κ−1∑
s=0

|q|m−2

= m(m− 1)|q|m−2 + 3m(m− 1)|q|m−2 = 4m(m− 1)|q|m−2.

If |q| < |s|, we therefore have for the left Fueter kernel series∑
m≥2

|Pm(q)s−1−m| ≤ 4
∑
m≥2

m(m− 1)|q|m−2|s−1−m| < +∞,

and the convergence of the right Fueter kernel series is shown similarly. �

The Fueter kernel series are the Taylor series expansions of the Fueter kernels
FL(s, q) and FR(s, q) introduced in Definition 2.2.5. They are their slice hyper-
holomorphic Taylor expansions in the variable s at infinity and the Fueter regular
Taylor expansions in the variable q at 0; cf. the Comments and Remarks in Sec-
tion 7.6.



154 Chapter 7. The F -Functional Calculus for Bounded Operators

Lemma 7.1.5. For |q| < |s|, we have

FL(s, q) =
+∞∑
n=0

Pm(q)s−1−m and FR(s, q) =
+∞∑
n=0

s−1−mPm(q).

Proof. Due to the Taylor series expansion S−1
L (s, q) =

∑+∞
n=0 q

ns−1−n of the left
Cauchy kernel in Theorem 2.1.22, we have

FL(s, q) = ∆S−1
L (s, q) =

+∞∑
n=0

∆qns−1−n =

+∞∑
n=2

Pn(q)s−1−n,

where we are allowed to exchange the Laplacian with the sum because of the
uniform convergence shown in Proposition 7.1.4.

The series of the right Fueter kernel follows similarly from the Taylor series
expansion of the right Cauchy kernel. �

Because of the above considerations, we can define the Fueter kernel operator
series by formally replacing q in the Fueter kernel series by the operator T with
commuting components.

Definition 7.1.6 (Fueter kernel operator series). Let T = T0 +
∑3
`=1 T`e` ∈ BC(X).

For s ∈ H with ‖T‖ < |s|, we define the left Fueter kernel operator series as∑
m≥2

Pm(T )s−1−m

and the right Fueter kernel operator series as∑
m≥2

s−1−mPm(T ).

Proposition 7.1.7. Let T = T0 +
∑3
`=1 T`e` ∈ BC(X). For s ∈ H with ‖T‖ < |s|,

we have ∑
m≥2

Pm(T )s−1−m = −4(sI − T )Qc,s(T )−2 (7.5)

and ∑
m≥2

s−1−mPm(T ) = −4Qc,s(T )−2(sI − T ) (7.6)

with Qc,s(T ) = s2I − 2sT0 + TT , where T = T0 −
∑3
`=1 T`e`.

Proof. Using Theorem 2.1.22 and Theorem 2.2.2 we get∑
m≥2

Pm(q)s−1−m = ∆

+∞∑
m=0

qms−1−m

= ∆S−1
L (s, q) = −4(s− q)(s2 − 2Re(q)s+ |q|2)−2.

The fact that the components of T commute allows us to substitute T for q; thus
we get the statement. �
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Remark 7.1.8. We point out an important fact related to the Fueter mapping
theorem in integral form. As we could observe in the proof of Theorem 2.2.2, the
computation

−∆(q2 − 2qRe(s) + |s|2)−1(q − s)
= −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

can be carried out in a natural way only if we write S−1
L (s, q) in form II. The

function S−1
L (s, q) can be written in two different ways because the components

of q commute. Unfortunately, form II involves the term |q|2 = qq = qq, and this
identity requires that the components of x commute. This has implications on the
functional calculus when one tries to replace q by an operator T . In this case we
have to require that the components of T commute. When we write S−1

L (s, q) in
form I, then we can replace q by an operator T whose components do not neces-
sarily commute, because only actual powers q and not powers of its components
appear. But in this case the explicit computation of ∆S−1

L (s, q) does not yield a
simple closed from.

Recall that the S-resolvent set of T ∈ BC(X) can, by Theorem 4.5.6, be
characterized as

ρS(T ) =
{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
,

where
Qc,s(T ) = s2I − 2sT0 + TT .

Definition 7.1.9 (F -resolvent operators). Let T ∈ BC(X). For s ∈ ρS(T ), we define
the left F -resolvent operator as

FL(s, T ) := −4
(
sI − T

)
Qc,s(T )−2, (7.7)

and the right F -resolvent operator as

FR(s, T ) := −4Qc,s(T )−2
(
sI − T

)
. (7.8)

Lemma 7.1.10. Let T ∈ BC(X).

(i) The left F -resolvent operator FL(s, T ) is a B(X)-valued right slice hyperholo-
morphic function of the variable s on ρS(T ).

(ii) The right F -resolvent operator FR(s, T ) is a B(X)-valued left slice hyperholo-
morphic function of the variable s on ρS(T ).

Proof. The statement follows by computations that are similar to those in Lemma
3.1.11. �

If f is a left or right slice hyperholomorphic function, then the function
f̆ = ∆f is a left, resp. right, Fueter regular function by the Fueter mapping
theorem. We showed in Theorem 2.2.6 that f̆ can be represented as the integral
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transform of f involving the left, resp. right, Fueter kernel. If we replace in this
integral representation the Fueter kernel by the F -resolvent operator, we obtain
the F -functional calculus.

Definition 7.1.11 (The F -functional calculus for bounded operators). Let T ∈
BC(X) and set dsj = ds(−j) for j ∈ S. For every function f̆ = ∆f with f ∈
SHL(σS(T )), we set

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s), (7.9)

where U is an arbitrary bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂
D(f) and j ∈ S is an arbitrary imaginary unit.

For every function f̆ = ∆f with f ∈ SHR(σS(T )), we set

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj FR(s, T ) (7.10)

with U and j as above.

Theorem 7.1.12. The F -functional calculus is well defined, that is, the integrals
in (7.9) and (7.10) depend neither on the imaginary unit j ∈ S nor on the slice
Cauchy domain U .

Proof. We discuss only the case f̆ = ∆f with f ∈ SHL(σS(T )), since the other
one follows by analogous arguments.

Since FL(s, T ) is a right slice hyperholomorphic function in s and f is left
slice hyperholomorphic, the independence from U follows from the Cauchy integral
theorem, cf. also the proof of Theorem 3.2.6.

In order to show the independence from the imaginary unit, we choose j, i ∈ S
with j 6= i and two bounded slice Cauchy domains Up, Us with σS(T ) ⊂ Uq,
Uq ⊂ Us, and Us ⊂ D(f). Then every s ∈ ∂(Us ∩ Cj) belongs to the unbounded
slice Cauchy domain H \ Uq. Since we have limq→+∞ FL(q, T ) = 0, the slice hy-
perholomorphic Cauchy formula implies

FL(s, T ) =
1

2π

∫
∂(H\Uq∩Ci)

FL(q, T ) dqi S
−1
R (q, s)

=
1

2π

∫
∂(Uq∩Ci)

FL(q, T ) dqi S
−1
L (s, q),

where the last identity holds because ∂(H\Uq∩Ci) = −∂(Uq∩Ci) and S−1
R (q, s) =

−S−1
L (s, q). Thus

f̆(T ) =
1

2π

∫
∂(Us∩Cj)

FL(s, T ) dsjf(s)

=
1

2π

∫
∂(Us∩Cj)

(
1

2π

∫
∂(Uq∩Ci)

FL(q, T ) dqi S
−1
L (s, q)

)
dsjf(s).
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Since the integrand is continuous and the path of integration is bounded, Fubini’s
theorem allows us to exchange the order of integration, and we obtain

f̆(T ) =
1

2π

∫
∂(Uq∩Ci)

FL(q, T ) dqi

(
1

2π

∫
∂(Us∩Cj)

S−1
L (s, q) dsjf(s)

)

=
1

2π

∫
∂(Us∩Ci)

FL(q, T ) dqi f(q). �

Remark 7.1.13. In the above theorem we have shown that the F -functional cal-
culus is well defined, in the sense that the integrals in (7.9) and (7.10) depend
neither on the imaginary unit j ∈ S nor on the slice Cauchy domain U . However,
if f ∈ SHL(U), it might happen that f̆ = ∆f = ∆g = ğ for some g ∈ SHL(U)

with f 6= g, and we did not show that then f̆(T ) = ğ(T ). The function f − g is
in this case a left slice hyperholomorphic function in ker ∆. If U is connected, we
hence have f(s)− g(s) = sα+ β with α, β ∈ H and so

f̆(T )− ğ(T ) =
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj (f(s)− g(s))

=
1

2π

∫
∂(Br(0)∩Cj)

FL(s, T ) dsj (sα− β),

where we used Cauchy’s integral theorem and the slice hyperholomorphicity of
FL(s, T ) in s in order to change the domain of integration to Br(0) with ‖T‖ < r.
From the power series expansion FL(s, T ) =

∑
m≥2 Pm(T )s−1−m in (7.5), we

conclude now that

f̆(T )− ğ(T ) =
1

2π

∫
∂(Br(0)∩Cj)

∑
m≥2

Pm(T )s−1−mdsj(sα+ β)

=
∑
m≥2

Pm(T )
1

2π

∫
∂(Br(0)∩Cj)

s−1−mdsj(sα+ β) = 0

by Cauchy’s integral theorem since the integrand tends to 0 at infinity. If, however,
U is not connected, then f(s) − g(s) =

∑n
`=1 χU`(s)(sα` − β`), where U`, ` =

1, . . . , n are the connected components of U and χU` denotes the characteristic
function of U`. Hence, we have

f̆(T )− ğ(T ) =
n∑
`=1

1

2π

∫
∂(U`∩Cj)

FL(s, T ) dsj(sα` − β`),

and we cannot use the same arguments as above in order to show that the terms
in the sum vanish, because FL(s, T ) is not slice hyperholomorphic on H \U` since
this set contains part of the S-spectrum of T . In this case, the terms vanish
because of Lemma 7.4.1. The proof of this lemma makes, however, use of the
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monogenic functional calculus by A. McIntosh. This functional calculus makes
the assumptions that T = T1e1 + T2e2 + T3e3, that is, T0 = 0, with commuting
components T` that have real spectrum. Only if this condition is satisfied we have
f̆(T ) = ğ(T ) also if U is not connected. If this condition is not satisfied, it is in
general not true and it is easy to construct counter-examples even using matrices
in H2×2.

We conclude this section with some algebraic properties of the F -functional
calculus.

Proposition 7.1.14. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and
assume that the operators T`, ` = 1, 2, 3, have real spectrum.

(i) If f̆ = ∆f and ğ = ∆g with f, g ∈ SHL(σS(T )) and a ∈ H, then

(f̆a+ ğ)(T ) = f̆(T )a+ ğ(T ).

(ii) If f̆ = ∆f and ğ = ∆g with f, g ∈ SHR(σS(T )) and a ∈ H, then

(af̆ + ğ)(T ) = af̆(T ) + ğ(T ).

Proof. The above identities follow immediately from the linearity of the integrals
in (7.9), resp. (7.10). �

Proposition 7.1.15. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and
assume that the operators T`, ` = 1, 2, 3, have real spectrum.

(i) Let f̆ = ∆f with f ∈ SHL(σS(T )) and assume that f(q) =
∑+∞
`=0 q

`a` with
a` ∈ H, where this series converges on a ball Br(0) with σS(T ) ⊂ Br(0).
Then

f̆(T ) =
+∞∑
`=2

P`(T )a`.

(ii) Let f̆ = ∆f with f ∈ SHR(σS(T )) and assume that f(q) =
∑+∞
`=0 a`q

` with
a` ∈ H, where this series converges on a ball Br(0) with σS(T ) ⊂ Br(0).
Then

f̆(T ) =
+∞∑
`=2

a`P`(T ).

Proof. We prove (i), but (ii) is shown similarly. We choose an imaginary unit j ∈ S
and a radius 0 < R < r such that σS(T ) ⊂ BR(0). Then the series expansion of f
converges uniformly on ∂(BR(0) ∩ Cj), and so

f̆(T ) =
1

2π

∫
∂(BR(0)∩Cj)

FL(s, T ) dsj

+∞∑
`=0

s`a`

=
1

2π

+∞∑
`=0

∫
∂(BR(0)∩Cj)

FL(s, T ) dsj s
`a`.
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Replacing FL(s, T ) by its series expansion, we further obtain

f̆(T ) =
1

2π

+∞∑
`=0

∫
∂(BR(0)∩Cj)

+∞∑
k=2

Pk(T )s−1−k dsj s
`a`

=
1

2π

+∞∑
`=0

+∞∑
k=2

Pk(T )

∫
∂(BR(0)∩Cj)

s−1−k dsj s
`a` =

∑
`≥0

P`(T )a`,

because the integral
∫
∂(BR(0)∩Cj) s

−1−k dsj s
` equals 2π if ` = k, and 0 otherwise.

�

Theorem 7.1.16. Let T ∈ BC(X) be such that T = T1e1 +T2e2 +T3e3, and assume

that the operators T`, ` = 1, 2, 3, have real spectrum. Let f̆ = ∆f and f̆m =
∆fm,m ∈ N, with f, fm ∈ SHL(σS(T )) and assume that fm tends uniformly to f

on an axially symmetric open set O that contains σS(T ). Then f̆m tends uniformly

to f̆ on σS(T ) and f̆m(T )→ f̆(T ) in B(X).

Proof. Let U be a slice Cauchy domain with σS(T ) ⊂ U and U ⊂ O and choose
j ∈ S. Then

f̆m(q)− f̆(q) =
1

2π

∫
∂(U∩Cj)

(fm(s)− f(s)) dsj FL(s, q).

Since dist(σS(T ), ∂(U ∩ Cj)) > 0, we have

C := sup
s∈∂(U∩Cj)
q∈σS(T )

|FL(s, q)| < +∞,

and so ∣∣∣f̆m(q)− f̆(q)
∣∣∣ ≤ C

2π
|∂(U ∩ Cj)| sup

s∈∂(U∩Cj)
|fm(s)− f(s)|,

and hence f̆m → f̆ uniformly on σS(T ). Similarly, we have∥∥∥f̆m(T )− f̆(T )
∥∥∥ =

∥∥∥∥∥ 1

2π

∫
∂(U∩Cj)

(fm(s)− f(s)) dsj FL(s, T )

∥∥∥∥∥
≤ |∂(U ∩ Cj)|

2π
sup

s∈∂(U∩Cj)
‖FL(s, T )‖ sup

s∈∂(U∩Cj)
|fm(s)− f(s)| m→+∞−→ 0. �

7.2 Bounded Perturbations of the FFF -Resolvent

We point out that the inverses of the F -resolvents

FL(s, T )−1 = −1

4
Qc,s(T )SL(s, T ) = −1

4
Qc,s(T )2(sI − T )−1,

FR(s, T )−1 = −1

4
SR(s, T )Qc,s(T ) = −1

4
(sI − T )−1Qc,s(T )2,
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exist for every s /∈ σL(T ).

Lemma 7.2.1. Let T,Z ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, Z =
Z1e1 + Z2e2 + Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real
spectrum. Assume that s 6∈ σL(T ) ∪ σL(Z). Then there exists a positive constant
CZ,T (s) depending on s and also on the operators T and Z such that

‖FL(s, T )−1 − FL(s, Z)−1‖ ≤ CZ,T (s)(|s|+ ϑ)−2‖T − Z‖, (7.11)

‖FR(s, T )−1 − FR(s, Z)−1‖ ≤ CZ,T (s)(|s|+ ϑ)−2‖T − Z‖, (7.12)

where ϑ := max{‖T‖, ‖Z‖}.

Proof. Since we have for s ∈ ρS(T ) that

FL(s, T ) := −4S−1
L (s, T )Qc,s(T )−1, (7.13)

the inverse FL(s, T )−1 exists for s 6∈ σL(T ), and it is given by

FL(s, T )−1 = −1

4
Qc,s(T )SL(s, T ), (7.14)

while the inverse of the operator FL(s, Z) exists for s 6∈ σL(Z), and it is given by

FL(s, Z)−1 = −1

4
Qc,s(Z)SL(s, Z). (7.15)

We have

− 4
(
FL(s, T )−1 − FL(s, Z)−1

)
= Qc,s(T )SL(s, T )−Qc,s(Z)SL(s, Z)

= Qc,s(T )SL(s, T )−Qc,s(T )SL(s, Z)

+Qc,s(T )SL(s, Z)−Qc,s(Z)SL(s, Z)

= Qc,s(T ) [SL(s, T )− SL(s, Z)]

+ [−s(T + T ) + TT + s(Z + Z)− ZZ)] SL(s, Z)

= Qc,s(T ) [SL(s, T )− SL(s, Z)]

+ [s(Z − T + Z − T ) + (T − Z)T + Z(T − Z)] SL(s, Z),

and taking the norm, we get∥∥FL(s, T )−1 − FL(s, Z)−1
∥∥

≤ (|s|2 + 2|s| ‖T‖+ ‖TT‖)‖SL(s, T )− SL(s, Z)‖
+
[
2|s| ‖Z − T‖+ ‖T − Z‖(‖T‖+ ‖Z‖)

]
‖SL(s, Z)‖

≤ (|s|+ ϑ)2‖SL(s, T )− SL(s, Z)‖
+
[
2(|s|+ ϑ)‖Z − T‖)

]
‖SL(s, Z)‖.
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Now observe that

(|s|+ ϑ)−1‖SL(s, Z)‖
≤ (|s|+ ϑ)−1

[
|s|+ ‖(sI − Z)‖ ‖Z‖ ‖(sI − Z)−1‖

]
:= MZ(s),

(7.16)

where MZ(s) is a continuous function, since s 6∈ σL(Z). Using Lemma 4.6.3, we
get ∥∥FL(s, T )−1 − FL(s, Z)−1

∥∥ ≤ 1

4
[KZ(s) + 2M(s)](|s|+ ϑ)2‖Z − T‖, (7.17)

and KT,Z(s) is defined in (4.25). We can argue similarly for FR(s, T )−1. �

Lemma 7.2.2. Let T,Z ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, Z =
Z1e1 + Z2e2 + Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real
spectrum. Assume that s ∈ ρS(T ), let s 6∈ σL

(
T
)
∪ σL

(
Z
)
, and suppose that

‖T − Z‖ < 1

CZ,T (s)
(|s|+ ϑ)−2‖FL(s, T )‖−1,

where CZ,T (s) is defined in Lemma 7.2.1. Then s ∈ ρS(Z) and

FL(s, Z)− FL(s, T ) = FL(s, T )

+∞∑
m=1

[(
FL(s, T )−1 − FL(s, Z)−1

)
F−1
L (s, T )

]m
.

An analogous statement holds for F−1
R (s, T ).

Proof. By Lemma 3.1.12 and formula (3.2) with

A := (FL(s, T ))−1, B := (FL(s, Z))−1, A−1 = FL(s, T ), (7.18)

we have for B−1 = FL(s, Z) that

FL(s, Z) = FL(s, T )

+∞∑
m=0

[
(FL(s, T ))−1 − (FL(s, Z))−1FL(s, T )

]m
. (7.19)

Using the hypothesis, we find that the series converges, since

‖(FL(s, T )− FL(s, Z))F−1
L (s, T )‖

≤ ‖(FL(s, T )− FL(s, Z))‖ ‖F−1
L (s, T )‖

≤ CZ,T (s)(|s|+ ϑ)2‖Z − T‖ ‖F−1
L (s, T )‖ < 1. �

Theorem 7.2.3. Let T,Z ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, Z =
Z1e1 + Z2e2 + Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real
spectrum. Assume that s ∈ ρS(T ) and s 6∈ σL(T ) ∪ σL(Z). Let ε > 0 and let
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us consider the ε-neighborhood Bε(σS(T ) ∪ σL(T )) of σS(T ) ∪ σL(T ). Then there
exists δ > 0 such that, for ‖T − Z‖ < δ, we have

σS(Z) ⊆ Bε(σS(T ) ∪ σL(T ))

and
‖FL(s, Z)− FL(s, T )‖ < ε, for s 6∈ Bε(σS(T ) ∪ σL(T )).

An analogous statement holds for the right F -resolvent.

Proof. Let T,Z ∈ BC(X) and let ε > 0. Thanks to Lemma 3.1.12 there exists
η > 0 such that if

‖T − Z‖ < η,

then σL(Z)⊂Bε(σL(T )). So we can always choose η such that σL(Z) ⊂ Bε(σS(T )∪
σL(T )). Consider the function CZ,T (s) defined in Lemma 7.2.1. The constant

Cε := sup
s6∈Bε(σS(T )∪σL(T ))

CZ,T (s)

is finite because s 6∈ B(σS(T ) ∪ σL(T , ε) and

lim
s→∞

‖(sI − Z)−1‖ = lim
s→∞

‖(sI − T )−1‖ = 0.

Observe that since s ∈ ρS(T ), the map s 7→ ‖FL(s, T )‖ is continuous, and

lim
s→∞

‖FL(s, T )‖ = 0,

and so for s in the complement set of Bε(σS(T )∪ σL(T ) we have that there exists
a positive constant Mε such that

‖FL(s, T )‖ ≤Mε.

From Lemma 7.2.2, we find that if δ1 > 0 is such that

‖Z − T‖ < 1

CεMε
:= δ3,

then s ∈ ρS(Z) and

‖F−1
L (s, Z)− F−1

L (s, T )‖

≤
‖F−1

L (s, T )‖2 ‖FL(s, T )− FL(s, Z)‖
1− ‖F−1

L (s, T )‖ ‖FL(s, T )−F(s, Z)‖

≤ M2
εCn,ε‖Z − T‖

1−MεCn,ε‖Z − T‖
< ε

if we take
‖Z − T‖ < δ4 :=

ε

Cn,ε(M2
ε + εMε)

.

To get the statement it suffices to set δ = min{η, δ3, δ4}. �
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Theorem 7.2.4. Let T,Z ∈ BC(X) be such that T = T1e1+T2e2+T3e3, Z = Z1e1+
Z2e2 +Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real spectrum.
Let f ∈ SHL(σS(T )) (or f ∈ SHR(σS(T ))) and let ε > 0. Then there exists δ > 0
such that for ‖Z − T‖ < δ, we have f ∈ SHL(σS(Z)) (or f ∈ SHR(σS(Z))) and

‖f̆(Z)− f̆(T )‖ < ε.

Proof. We recall that

f̆(T ) =
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s),

where U ⊂ H is a bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f)
and where j ∈ S. Let furthermore Bε(σS(T )∪σL(T )) be contained in U . By Lemma
7.2.3 there exists δ1 > 0 such that σS(Z) ⊂ U for ‖Z − T‖ < δ1. Consequently
f ∈ SHL(σS(Z)) if ‖Z −T‖ < δ1. By Lemma 7.2.3, FL(s, T ) is uniformly close to
FL(s, Z) with respect to s ∈ ∂(U ∩ Cj) for j ∈ S if ‖Z − T‖ is small enough. So
for some positive δ ≤ δ1, we get

‖f̆(T )− f̆(Z)‖ ≤ 1

2π
‖
∫
∂(U∩Cj)

[FL(s, T )− FL(s, Z)] dsj f(s)‖ < ε.

We can argue similarly if f ∈ SHR(U). �

7.3 The FFF -Resolvent Equations

The F -resolvents satisfy a relation that can be considered a generalized resolvent
equation. In particular, they allow one to show that the F -functional calculus
is capable of generating projections onto subspaces that are invariant under the
operator.

Theorem 7.3.1 (Left and right F -resolvent equations). Let T ∈ BC(X) and let
s ∈ ρS(T ). The F-resolvent operators satisfy the equations

FL(s, T )s− TFL(s, T ) = −4Qc,s(T )−1 (7.20)

and
sFR(s, T )− FR(s, T )T = −4Qc,s(T )−1. (7.21)

Proof. We prove relation (7.20), since (7.21) follows with similar computations.
We have

FL(s, T )s = −4(sI − T )sQc,s(T )−2

and
TFL(s, T ) = −4(Ts− TT )Qc,s(T )−2.

Taking the difference, we obtain

FL(s, T )s− TFL(s, T ) = −4(s2I − s(T + T ) + TT )Qc,s(T )−2

= −4Qc,s(T )−1. �
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Lemma 7.3.2. Let T ∈ BC(X). For q, s ∈ ρS(T ), with s 6∈ [q] and with the position
Qs(q) = q2 − 2Re(s)q + |s|2, the following equation holds:

FR(s, T )S−1
L (q, T ) + S−1

R (s, T )FL(q, T )− 4Qc,s(T )−1Qc,q(T )−1

=
[

(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1. (7.22)

Proof. We consider the S-resolvent equation (3.7) and write the S-resolvent oper-
ators in the form (4.20) and (4.21) for operators with commuting components. If
we multiply it on the left by −4Qc,s(T )−1, we get

FR(s, T )S−1
L (q, T ) =

[ (
FR(s, T ) + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
FR(s, T ) + 4Qc,s(T )−1S−1

L (q, T )
) ]
Qs(q)−1.

If we multiply the S-resolvent equation on the right by −4Qc,q(T )−1, we get

S−1
R (s, T )FL(q, T ) =

[ (
S−1
R (s, T )(−4)Qc,q(T )−1 − FL(q, T )

)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 − FL(q, T )

) ]
Qs(q)−1.

Adding these two equations yields

FR(s, T )S−1
L (q, T ) + S−1

R (s, T )FL(q, T )

= [(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))]Qs(q)−1

+
[ (
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)]
Qs(q)−1.

The proof is concluded if we verify that[ (
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)]
Qs(q)−1

= 4Qc,s(T )−1Qc,q(T )−1.

This follows from(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)

= −4
[(
Qc,s(T )−1(sI − T )Qc,q(T )−1 −Qc,s(T )−1(qI − T )Qc,q(T )−1

)
q

− s̄
(
Qc,s(T )−1(sI − T )Qc,q(T )−1 −Qc,s(T )−1(qI − T )Qc,q(T )−1

)]
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= −4
[
Qc,s(T )−1(s− q)Qc,q(T )−1q − s̄Qc,s(T )−1(s− q)Qc,q(T )−1

]
= −4

[
Qc,s(T )−1(sq − q2)Qc,q(T )−1 −Qc,s(T )−1(s̄s− s̄q)Qc,q(T )−1

]
= −4

[
Qc,s(T )−1(sq − q2 − s̄s+ s̄q)Qc,q(T )−1

]
= 4Qc,s(T )−1(q2 − 2Re(s)q + |s|2)Qc,q(T )−1 = 4Qc,s(T )−1Qc,q(T )−1Qs(q).�

Theorem 7.3.3 (The F -resolvent equation). Let T ∈ BC(X). For all quaternions
q, s ∈ ρS(T ) with s 6∈ [q], the following equation holds:

FR(s, T )S−1
L (q, T ) + S−1

R (s, T )FL(q, T )

− 1

4

(
sFR(s, T )FL(q, T )q − sFR(s, T )TFL(q, T )

− FR(s, T )TFL(q, T )q + FR(s, T )T 2FL(q, T )
)

=
[

(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1.

(7.23)

Proof. The identities (7.20) and (7.21) yield

−42Qs(T )−1Qq(T )−1 = (sFR(s, T )− FR(s, T )T )(FL(q, T )q − TFL(q, T ))

= sFR(s, T )FL(q, T )q − sFR(s, T )TFL(q, T )

− FR(s, T )TFL(q, T )q + FR(s, T )T 2FL(q, T ).

Applying this identity in (7.22), we obtain (7.23). �

7.4 The Riesz Projectors for the FFF -Functional Calculus

In the sequel we will need the following lemma, which is based on the monogenic
functional calculus; see the book [159] for more details (or some of the papers
[160,161,166], where the calculus was introduced).

Lemma 7.4.1. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T`, ` = 1, 2, 3, have real spectrum. Let G be a bounded slice
Cauchy domain such that (∂G) ∩ σS(T ) = ∅. For every j ∈ S, we then have∫

∂(G∩Cj)
s dsj FR(s, T ) = 0 and

∫
∂(G∩Cj)

FL(q, T ) dqj q = 0.

Proof. Since P1(q) = ∆q = 0, we have∫
∂(G∩Cj)

s dsj FR(s, p) = P1(p) = 0

and ∫
∂(G∩Cj)

FL(q, p) dqj q = P1(q) = 0
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for all p /∈ ∂G and j ∈ S. We observe that at this point we need the Cauchy–
Fueter functional calculus, described in the next section, to represent FL(p, T ).
We consider only the case of FL(p, T ); the other case can be shown in a similar
way. We recall that FL(p, q) is left Fueter regular in q on H \ [p] for every p, so we
can use Definition 7.5.6 and write

FL(p, T ) =

∫
∂Ω

G(ω, T )DωFL(p, ω),

where the open set Ω contains the left spectrum of T , G(ω, T ) is the Cauchy–Fueter
resolvent operator. Using Fubini’s theorem, we obtain∫

∂(G∩Cj)
FL(q, T ) dqj q

=

∫
∂(G∩Cj)

∫
∂Ω

(
G(ω, T )DωFL(q, ω)

)
dqj q

=

∫
∂Ω

G(ω, T )Dω
(∫

∂(G∩Cj)
FL(p, ω) dpj q

)
= 0,

which concludes the proof. �

Theorem 7.4.2. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T`, ` = 1, 2, 3, have real spectrum. Let σS(T ) = σ1 ∪ σ2 with

dist(σ1, σ2) > 0.

Let G1, G2 ⊂ H be two bounded slice Cauchy domains such that σ1 ⊂ G1 and
G1 ⊂ G2 and such that dist(G2, σ2) > 0. Then the operator

P̆ := − 1

4(2π)

∫
∂(G1∩Cj)

FL(q, T ) dqjq
2

= − 1

4(2π)

∫
∂(G2∩Cj)

s2dsjFR(s, T )

is a projection that commutes with T , i.e., we have

P̆ 2 = P̆ and T P̆ = P̆ T.

Proof. If we multiply the F -resolvent equation (7.23) by s on the left and by q on
the right, we get

sFR(s, T )S−1
L (q, T )q + sS−1

R (s, T )FL(q, T )q

− 1

4

(
s2FR(s, T )FL(q, T )q2 − s2FR(s, T )TFL(q, T )q

− sFR(s, T )TFL(q, T )q2 + sFR(s, T )T 2FL(q, T )q
)

= s [(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))]Qs(q)−1q.
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If we multiply this equation by dsj on the left, integrate it over ∂(G2 ∩ Cj) with
respect to dsj , and then multiply it by dqj on the right and integrate over ∂(G1 ∩
Cj) with respect to dqj , we obtain∫

∂(G2∩Cj)
s dsj FR(s, T )

∫
∂(G1∩Cj)

S−1
L (q, T ) dqj q

+

∫
∂(G2∩Cj)

s dsj S
−1
R (s, T )

∫
∂(G1∩Cj)

FL(q, T ) dqj q

− 1

4

(∫
∂(G2∩Cj)

s2 dsj FR(s, T )

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2

−
∫
∂(G2∩Cj)

s2 dsj FR(s, T )T

∫
∂(G1∩Cj)

FL(q, T ) dqj q

−
∫
∂(G2∩Cj)

s dsj FR(s, T )T

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2

+

∫
∂(G2∩Cj)

s dsj FR(s, T )T 2

∫
∂(G1∩Cj)

FL(q, T ) dqj q

)
=

∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[

(FR(s, T )− FL(q, T )) q

− s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1 dqj q.

By Lemma 7.4.1, this simplifies to

− 1

4

∫
∂(G2∩Cj)

s2 dsj FR(s, T )

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2

=

∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[

(FR(s, T )− FL(q, T )) q

− s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1 dqjq,

which equals

4(2π)2P̆ 2 =

∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[
FR(s, T )q − s̄FR(s, T )

]
Qs(q)−1 dqj q

−
∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[
FL(q, T )q − s̄FL(q, T )

]
Qs(q)−1 dqj q.

Since G1 ⊂ G2, for every s ∈ ∂(G2 ∩ Cj) the functions

q 7→ qQs(q)−1 = q(q2 − 2Re(s)q + |s|2)−1

and
q 7→ Qs(q)−1 = (q2 − 2Re(s)q + |s|2)−1
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are intrinsic slice hyperholomorphic on G1. By the Cauchy integral theorem, we
therefore have∫

∂(G1∩Cj)
qQs(q)−1 dqj q = 0 and

∫
∂(G1∩Cj)

Qs(q)−1 dqj q = 0,

and it follows that∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[
FR(s, T )q − s̄FR(s, T )

]
Qs(q)−1 dqj q = 0.

Thus, we obtain

P̆ 2 = − 1

4(2π)2

∫
∂(G2∩Cj)

s dsj

×
∫
∂(G1∩Cj)

[
(FL(q, T )q − s̄FL(q, T ))

]
Qs(q)−1 dqjq,

and by exchanging the order of integration and applying Lemma 4.1.2, we finally
obtain

P̆ 2 = − 1

4(2π)

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2 = P̆ .

We furthermore deduce from (7.21) that

P̆ T = − 4

2π

∫
∂(G1∩Cj)

s2 dsj FR(s, T )T

= − 4

2π

∫
∂(G1∩Cj)

s3 dsj FR(s, T )− 16

2π

∫
∂(G1∩Cj)

s2 dsj Qs(T )−2.

Since s3χG1
(s) is intrinsic slice hyperholomorphic, this equals

P̆ = − 4

2π

∫
∂(G1∩Cj)

s2 dsj FR(s, T )T

= − 4

2π

∫
∂(G1∩Cj)

FL(s, T ) dsj s
3 − 16

2π

∫
∂(G1∩Cj)

Qs(T )−2 dsj s
2

= − 4

2π

∫
∂(G1∩Cj)

TFL(s, T ) dsj s
2 = T P̆ ,

where we applied (7.20) in the third identity. �

7.5 The Cauchy–Fueter Functional Calculus

We recall the Cauchy formula for Cauchy–Fueter regular functions (or Fueter
regular functions), and we use it to define the Cauchy–Fueter functional calculus.
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We will not give all the details but just the main definitions. The function G(q)
defined by

G(q) =
q−1

|q|2
=

q̄

|q|4
(7.24)

is called the Cauchy–Fueter kernel , and it is left and right Fueter regular on H\{0}.
Theorem 7.5.1 (Cauchy–Fueter formula). Let f be a left Fueter regular function on
an open set that contains U . If U is a four-dimensional compact, oriented manifold
with smooth boundary ∂U , then

f(q) =
1

2π2

∫
∂U

G(p− q)Dpf(p), q ∈ U, (7.25)

the differential form Dp is given by Dp = η(p)dS(p), where η(p) is the outer unit
normal to ∂U at the point p, and dS(p) is the scalar element of surface area on
∂U . If f is a right Fueter regular function on U , then

f(q) =
1

2π2

∫
∂U

f(p)DpG(p− q), q ∈ U. (7.26)

Fueter regular functions do not admit power series expansions, but there
exist series expansions in terms of suitable homogeneous functions. For every triple
ν = (n1, n2, n3) with |ν| := n1 + n2 + n3 = n, we define

∂ν =
∂n

∂xn1
1 ∂xn2

2 ∂xn3
3

and Gν(q) = ∂νG(q),

where G(q) is the Cauchy–Fueter kernel. Furthermore, we define the set Γ(ν) as
the set of all n-tuples (λ1, . . . , λn) with exactly n1 entries that equal 1, exactly n2

entries that equal 2, and exactly n3 entries that equal 3. In other words, if we set
λ1, . . . , λn1

= 1 and λn1+1, . . . , λn1+n2
= 2 and λn1+n2+1, . . . λn = 3, then

Γ(ν) = {(λσ(1), . . . , λσ(n)) : σ ∈ perm(n)},

where perm(n) denotes the group of permutations of n elements. Furthermore, let
us denote by σn the set of all triples ν = (n1, n2, n3) with |v| = n1 + n2 + n3 = n.

For every n > 0, the set σn contains
1

2
(n+ 1)(n+ 2) triples. If n = 0, we set ν = ∅

and Pν ≡ 1. For every ν ∈ σn and for q = q0 +
∑3
`=1 q`e`, we define

Pν(q) =
1

n!

∑
(λ1,...,λn)∈Γ(n)

(q0eλ1 − qλ1) · · · (q0iλn − qλn).

The polynomials Pν(q) play the role of the powers zn in the Taylor expansion
of a function

∑+∞
n=0 anz

n holomorphic at the origin.
Let Un be the quaternionic right vector space of functions f : H → H that

are left Fueter regular and homogeneous of degree n ≥ 0 over R, i.e., such that
f(αq) = αnf(q) for every α ∈ R. We have the following result.
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Theorem 7.5.2. The polynomials Pν , ν ∈ σn, are left Fueter regular and form a
basis for Un. Moreover, if f ∈ Un, then

f(q) =
∑
ν∈σn

(−1)nPν(q)∂νf(0). (7.27)

If f is right Fueter regular, then the polynomials Pν are right Fueter regular and

f(q) =
∑
ν∈σn

(−1)n∂νf(0)Pν(q).

The introduction of the polynomials Pν and the derivatives Gν allows one to
prove two results that generalize the Taylor and the Laurent expansion series.

Theorem 7.5.3. Let f : U ⊆ H → H be left Fueter regular, p ∈ U . Then there
exists a ball |q− p| < δ with radius δ < dist (p, ∂U) in which f can be represented
by a uniformly convergent series of the form

f(q) =
+∞∑
n=0

∑
ν∈σn

Pν(q − p)aν ,

where

aν = (−1)n∂νf(p) =
1

2π2

∫
|q−p|=δ

Gν(q − p) , Dq f(q).

If f : U → H is right Fueter regular, then

f(q) =
+∞∑
n=0

∑
ν∈σn

aνPν(q − p),

where

aν = (−1)n∂νf(p) =
1

2π2

∫
|q−p|=δ

f(q)Dq Gν(q − p).

Let T be a quaternionic bounded linear operator with commuting compo-
nents on a two-sided quaternionic Banach space X. Recall that such a set is de-
noted by BC(X). In this case, we consider the function G(q, p) := G(p− q) written
in series expansion, and we replace p by T . We get

G(q, T ) =
∑
n≥0

∑
ν∈σn

Pν(T )Gν(q) =
∑
n≥0

∑
ν∈σn

Gν(q)Pν(T ). (7.28)

The expansions hold for ‖T‖ < |q| and define a bounded operator. It is natural to
give the following definition:

Definition 7.5.4. The maximal open set ρ(T ) in H on which the series (7.28)
converges in the operator norm to a bounded operator is called the resolvent set
of T . The spectral set σ(T ) of T is defined as the complement set in H of the
resolvent set.
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Definition 7.5.5. A function f is said to be locally right Cauchy–Fueter regular
on the spectral set σ(T ) of an operator T ∈ BC(X) if there exists an open set
U ⊂ H containing σ(T ) whose boundary ∂U is a rectifiable 3-cell and such that f
is regular in every connected component of U . We denote by CFL(σ(T )) the set
of locally left Cauchy–Fueter regular functions on σ(T ). We denote by CFR(σ(T ))
the set of locally right Cauchy–Fueter regular functions on σ(T ).

Definition 7.5.6 (The Cauchy–Fueter functional calculus). Let f ∈ CFL(σ(T )) and
T ∈ BC(V ) be such that T = T1e1 + T2e2 + T3e3, and assume that the operators
T`, ` = 1, 2, 3, have real spectrum. We define

f(T ) :=
1

2π2

∫
∂U

G(q, T )Dqf(q).

Let f ∈ CFR(σ(T )) and T ∈ BC(V ). We define

f(T ) :=
1

2π2

∫
∂U

f(q)DqG(q, T ),

where U is an open set in H containing σ(T ) as in Definition 7.5.5.

The definition is well posed, since the integrals that define the Cauchy–Fueter
functional calculus do not depend on the open set U . This is a consequence of the
Cauchy–Fueter regularity of the operator-valued function G(q, T ). We point out
that the series expansion of the Cauchy-Fueter resolvent operator in (7.28) has a
closed form if T has commuting components, namely

G(q, T ) = (qI − T )−2(qI − T )−1.

This operator is then associated with the left spectrum of T . A closed form of the
sum G(q, T ) in the general case, without the assumption that the components of T
commute, would naturally lead to a notion of spectrum of the operator T for the
case of Fueter regularity. But if we want to replace operators with noncommuting
components, then it is not clear what is the closed formula for the Cauchy–Fueter
resolvent. Observe that for the slice hyperholomorphic case, a closed form of the
series

∑
n≥0 T

ns−1−n can be found. It is∑
n≥0

Tns−1−n = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI)

for ‖T‖ < |s|, and this identity does not depend on the commutativity of the
components of T . This is one of its great advantages.

7.6 Comments and Remarks

Comments on the references. The F -functional calculus has been developed in
the papers [20, 54, 78, 81, 86]. It is based on the Fueter mapping theorem in inte-
gral form, and it is a monogenic functional calculus in the spirit of McIntosh and
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collaborators, see [159–161,164,166], but it is associated with slice hyperholomor-
phicity. The W -functional calculus is also a monogenic functional calculus, and it
was introduced in the paper [70].

7.6.1 The FFF -Functional Calculus for nnn-Tuples of Operators

The F -functional calculus can be extended to the case of n-tuples of commuting
operators. Because of the structure of the Fueter–Sce mapping theorem in integral
form, the F -functional calculus depends on the dimension of the Clifford algebra.
The Fueter–Sce–Qian mapping theorem, one should say, was proved by Michele
Sce [187] for n odd and by Tao Qian [176] for the case in which n is even. Later on,
Fueter’s theorem was generalized to the case in which a slice hyperholomorphic
function f is multiplied by a monogenic homogeneous polynomial of degree k,
see [162] [172] [173], and to the case in which the function f is defined on an open
set U not necessarily chosen in the upper complex plane; see [175–177]. We need
to recall the definition of monogenic functions.

Definition 7.6.1 (Monogenic functions). Let U be an open set in Rn+1. A real
differentiable function f : U → Rn is left monogenic if

∂

∂x0
f(x) +

n∑
i=1

ei
∂

∂xi
f(x) = 0.

It is right monogenic if

∂

∂x0
f(x) +

n∑
i=1

∂

∂xi
f(x)ei = 0.

We recall the theorem of Sce to produce monogenic functions from complex-
valued functions (the case of odd dimension of Rn):

We consider a holomorphic function f(z) that depends on a complex variable
z = u+ ιv in an open set of the upper complex half-plane. We write

f(z) = f0(u, v) + ιf1(u, v),

where f0 and f1 are R-valued functions that satisfy the Cauchy–Riemann system.
For every paravector x such that u+ ιv belongs to the domain of f , we replace the
complex imaginary unit ι in f(z) = f0(u, v) + ιf1(u, v) by the Clifford imaginary
unit j = x/|x| and we set u = x0 and v = |x|. We then define

f(x) = f0(x0, |x|) + jf1(x0, |x|).

This function in slice hyperholomorphic with values in the Clifford algebra Rn (or
slice monogenic). Then we apply the (n − 1)/2th power of the Laplace operator
∆(n−1)/2 in dimension n+ 1 to f . The function

f̆(x0, |x|) := ∆(n−1)/2(f0(x0, |x|) + jf1(x0, |x|))
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is then left monogenic, i.e., it is in the kernel of the Dirac operator. If we replace
f0(x0, |x|) + jf1(x0, |x|) by f0(x0, |x|) + f1(x0, |x|)j in the above procedure, we
obtain a right monogenic function.

Proposition 7.6.2. Let n be an odd number and let x, s ∈ R
n+1 be such that x �∈ [s].

Let S−1
L (s, x) and S−1

R (s, x) be the slice hyperholomorphic Cauchy kernels in form
II. Then:

• The function Δ
n−1
2 S−1

L (s, x) is a left monogenic function in the variable x
and right slice hyperholomorphic in s.

• The function Δ
n−1
2 S−1

R (s, x) is a right monogenic function in the variable x
and left slice hyperholomorphic in s.

Based on the explicit computations of functions

(s, x) �→ Δ
n−1
2 S−1

L (s, x) and (s, x) �→ Δ
n−1
2 S−1

R (s, x),

for s �∈ [x], we define the Fn-kernels.

Definition 7.6.3 (The Fn-kernels). Let n be an odd number and let x, s ∈ R
n+1.

We define, for s �∈ [x], the FL
n -kernel as

FL
n (s, x) := Δ

n−1
2 S−1

L (s, x) = γn(s− x̄)(s2 − 2Re(x)s+ |x|2)−n+1
2 ,

and the FR
n -kernel as

FR
n (s, x) := Δ

n−1
2 S−1

R (s, x) = γn(s
2 − 2Re(x)s+ |x|2)−n+1

2 (s− x̄),

where

γn := (−1)(n−1)/22(n−1)/2
[(n− 1

2

)
!
]2
. (7.29)

Theorem 7.6.4 (The Fueter–Sce mapping theorem in integral form). Let U ⊂ R
n+1

be a slice Cauchy domain and choose j ∈ S. Let n be an odd number.

(a) If f ∈ SML(O) for some set O with U ⊂ O, then the left monogenic function

f̆(x) = Δ
n−1
2 f(x) admits the integral representation

f̆(x) =
1

2π

∫
∂(U∩Cj)

FL
n (s, x)dsjf(s). (7.30)

(b) If f ∈ SMR(O) for some set O with U ⊂ O, then the right monogenic

function f̆(x) = Δ
n−1
2 f(x) admits the integral representation

f̆(x) =
1

2π

∫
∂(U∩Cj)

f(s)dsjF
R
n (s, x). (7.31)

The integrals depend neither on U nor on the imaginary unit j ∈ S.
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We refer to the section on comments and remarks at the end of chapter on
the properties of the S-functional calculus for bounded operators for the definition
of the Clifford algebra Rn and for the functional setting on paravector operators
T = T0 + T1e1 + · · · + Tnen. In the sequel, we will consider bounded paravector
operators T , with commuting components T` ∈ B(X) for ` = 0, 1, . . . , n. Such
subsets of B(Xn) will be denoted by BC0,1(Xn). The F -functional calculus is based
on the commutative version of the S-spectrum (often called F -spectrum in the
literature). So we define the F -resolvent operators.

Definition 7.6.5 (F -resolvent operators). Let n be an odd number and let T ∈
BC0,1(Xn). For s ∈ ρS(T ) we define the left F -resolvent operator by

FLn (s, T ) := γn(sI − T )Qc,s(T )−
n+1

2 , (7.32)

and the right F -resolvent operator by

FRn (s, T ) := γnQc,s(T )−
n+1

2 (sI − T ), (7.33)

where the constants γn are given by (7.29).

Let T ∈ BC0,1(Xn). We denote by SML(σS(T )), SMR(σS(T )) the set of all
left (or right) slice hyperholomorphic functions f with σS(T ) ⊂ D(f).

Definition 7.6.6 (The F -functional calculus for bounded operators). Let n be an
odd number, let T ∈ BC0,1(Xn) be such that T = T1e1 +T2e2 +T3e3, and assume
that the operators T`, ` = 1, . . . , n, have real spectrum. Set dsj = ds/j. For every
function f ∈ SML(σS(T )), we define

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

FLn (s, T ) dsj f(s). (7.34)

For every f ∈ SMR(σS(T )), we define

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj F
R
n (s, T ), (7.35)

where j ∈ S and U is a slice Cauchy domain U .

The definition of the F -functional calculus is well posed, since the integrals
in (7.9) and (7.35) depend neither on U nor on the imaginary unit j ∈ S.

7.6.2 The Inverse Fueter–Sce Mapping Theorem

In recent years, new problems related to the inversion of the Fueter–Sce mapping
theorem have been solved. For the sake of simplicity here we mention the inversion
problem of axially monogenic functions. The results can be found in [83], while
more general cases are treated in the papers [84,85,87,103].
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Definition 7.6.7 (Axially monogenic function). Let U be an axially symmetric open

set in R
n+1, and let x = x0+x = x0+rω ∈ U , for ω ∈ S. Assume that f̆ : U → Rn

is a monogenic function, i.e., it is in the kernel of the Dirac operator. We say that
f̆ is an axially monogenic function if there exist two functions A = A(x0, r) and
B = B(x0, r), independent of ω ∈ S

n−1 and with values in Rn, such that

f̆(x) = A(x0, r) + ωB(x0, r).

We denote by AM(U) the set of left axially monogenic functions on the open set
U .

The problem is as follows: suppose that f̆ is an axially monogenic function

and f is a slice monogenic function such that f̆(x) = Δ
n−1
2 f(x). Determine a slice

monogenic function f in terms of the components A(x0, r) and B(x0, r) of the

axially monogenic function f̆(x) = A(x0, r) + ωB(x0, r). It is important to give
the definition of a Fueter–Sce primitive.

Definition 7.6.8 (Fueter–Sce primitive). Let n be an odd number and let U ⊆ R
n+1

be an axially symmetric domain. Suppose that f : U ⊆ R
n+1 → Rn is a left slice

monogenic function. We say that f is a Fueter–Sce primitive of f̆ ∈ M(U) if

Δ
n−1
2 f(x) = f̆(x) on U .

The definition of a Fueter–Sce primitive of f̆ is well posed, since slice mono-
genic functions are infinitely differentiable. The monogenic Cauchy kernel G(x) is
defined for x ∈ R

n+1 \ {0} as

G(x) = 1

An+1

x

|x|n+1
, (7.36)

where An+1 = 2π(n+1)/2

Γ(n+1
2 )

is the area of the unit sphere in R
n+1. As we will see,

G(x) plays a crucial role in the inversion formula of monogenic functions.

Definition 7.6.9 (The kernels N+
n (x) and N−

n (x)). Let G(x) be the monogenic
Cauchy kernel defined in (7.36) with x = x0 + x ∈ R

n+1, and for y = rω ∈ R
n we

assume r = 1 and ω ∈ S
n−1. We define the kernels

N+
n (x) =

∫
Sn−1

G(x− ω) dS(ω), N−
n (x) =

∫
Sn−1

G(x− ω)ω dS(ω), (7.37)

where dS(ω) is the scalar element of surface area of Sn−1.

Theorem 7.6.10 (The structure of the Fueter–Sce primitives of N+
n and N−

n ). Let
n be an odd number and denote by W+

n and W−
n the Fueter–Sce primitives of N+

n

and N−
n , respectively. Consider the functions

W+
n (x0) :=

Cn
Kn

D−(n−1) x0

(x2
0 + 1)(n+1)/2

,

W−
n (x0) := − Cn

Kn
D−(n−1) 1

(x2
0 + 1)(n+1)/2

,
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where CnKn is a given constant and the symbol D−(n−1) stands for (n−1) integrations

with respect to x0. Then, by replacing x0 by x in W+
n (x0) and in W−n (x0), we get

W+
n (x) and W−n (x), respectively. Moreover, the functions W+

n (x) and W−n (x) are
extendable to slice monogenic functions defined for all x ∈ {x0 + rω : (x0, r) 6=
(0, 1)}.

The Fueter–Sce primitives of N+
n and N−n can be explicitly computed. For

example, when n = 3 they are given by

W+
3 (x) =

1

2π
arctanx, W−3 (x) = − 1

2π
x arctanx.

Theorem 7.6.11 (The inverse Fueter–Sce mapping theorem). Let f̆(x) = A(x0, ρ)+
ωB(x0, ρ) be an axially monogenic function defined on an axially symmetric do-
main U ⊆ Rn+1. Let Γ be the boundary of an open bounded subset V of the half-
plane R + ωR+ and let

V = {x = u+ ωv, (u, v) ∈ V, ω ∈ Sn−1} ⊂ U.

Moreover, suppose that Γ is a regular curve whose parametric equations y0 = y0(s),
ρ = ρ(s) are expressed in terms of the arc length s ∈ [0, L], L > 0. Then the
function

f(x) =

∫
Γ

W−n
(1

ρ
(x− y0)

)
ρn−2(dy0A(y0, ρ)− dρB(y0, ρ))

−
∫

Γ

W+
n

(1

ρ
(x− y0)

)
ρn−2(dy0B(y0, ρ)− dρA(y0, ρ)). (7.38)

is a Fueter–Sce primitive of f̆(x) on V , where W+
n and W−n are as in Theorem

7.6.10.

This theorem has several generalizations, and this topic is still under inves-
tigation.
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