
Chapter 6

The H∞H∞H∞-Functional Calculus

The H∞-functional calculus is an extension of the Riesz–Dunford functional calcu-
lus for bounded operators to unbounded sectorial operators, and it was introduced
by A. McIntosh in [165]; see also [5]. This calculus is connected with pseudo-
differential operators, with Kato’s square root problem, and with the study of
evolution equations and, in particular, the characterization of maximal regularity
and with the fractional powers of differential operators. For an overview and more
problems associated with this functional calculus for the classical case, see the
book [156] and the references therein.

In this chapter we consider the quaternionic version of the H∞-functional
calculus introduced in [30], where with suitable conditions on the operators T
we can study the quaternionic analogue of the results in [165]. A more general
treatment of the H∞-functional calculus for quaternionic operators has been done
in [51, 52], where also the fractional powers of quaternionic linear operators are
considered and new fractional diffusion and evolution processes are defined. We
will mention such applications at the end of this chapter, see also [128].

6.1 The Rational Functional Calculus

The H∞-functional calculus is defined using a version of the S-functional calculus
for sectorial operators and on the rational functional calculus for intrinsic rational
slice hyperholomorphic functions.

Definition 6.1.1 (Intrinsic rational slice hyperholomorphic function). Let P and Q
be intrinsic polynomials. An intrinsic rational slice hyperholomorphic function is
defined as

R(p) := P (p)Q(p)−1.

Observe that since P (p) and Q(p)−1 are intrinsic slice hyperholomorphic
functions, the ?-product of P (p) and Q(p)−1 is equal to P (p)Q(p)−1, and it is an
intrinsic slice hyperholomorphic function.
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Definition 6.1.2 (Rational functional calculus). Assume that the rational function
R(p) = P (p)Q(p)−1 has no poles on the S-spectrum of T . Let T be a closed densely
defined operator. We define the rational functional calculus as

R(T ) := P (T )Q(T )−1.

The operator R(T ) is closed and densely defined, and its domain is D(Tm),
where

m := max{0,degP − degQ}.

An important example of an intrinsic rational function, useful in the sequel, is

ψ(s) =
( s

1 + s2

)k
, k ∈ N.

We recall that slice hyperholomorphic rational functions have poles that are real
points and/or spheres. This is compatible with the structure of the S-spectrum of
T , which consists of real points and/or spheres. With ψ as above, we have

ψ(T ) =
(
T (I + T 2)−1

)k
, k ∈ N.

We summarize in the following the properties of the rational functional calculus.
The proofs are similar to the classical results, and for this reason we omit them.

Proposition 6.1.3. Let T be a linear quaternionic operator that is single-valued on a
quaternionic Banach space X. Let P and Q be intrinsic quaternionic polynomials
of order n and m, respectively. Then

(i) If P 6≡ 0 then P (T )Q(T ) = (PQ)(T ).

(ii) If P (T ) is injective and Q 6≡ 0, then

D(P (T )−1) ∩ D(Q(T )) ⊂ D(P (T )−1Q(T )) ∩ D(Q(T )P (T )−1)

and

P (T )−1Q(T )v = Q(T )P (T )−1v, ∀v ∈ D(Q(T )) ∩ D(P (T )−1).

(iii) Suppose that T is a closed linear operator with ρS(T ) 6= ∅. Then P (T ) is
closed and P (σS(T )) = σS(P (T )).

For rational functions we have the following result, whose proof is similar to
the classical case.

Proposition 6.1.4. Let T be a linear quaternionic operator that is single-valued
on a quaternionic Banach space X with ρS(T ) 6= ∅. Let 0 6≡ R = PQ−1 and
R1 = P1Q

−1
1 be intrinsic rational functions. Then we have:

(i) R(T ) is a closed operator.
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(ii) R(σS(T )) ⊂ σS(R(T )), where σS(T ) = σS(T ) ∪ {∞} denotes the extended
S-spectrum of T .

(iii) R(T )R1(T ) ⊂ (RR1)(T ) and equality holds if

(deg(P )− deg(Q))(deg(P1)− deg(Q1)) ≥ 0.

(iv) R(T ) +R1(T ) ⊂ (R+R1)(T ) and equality holds if

deg(PQ1 + P1Q) = max{deg(PQ1),deg(P1Q)}.

6.2 The SSS-Functional Calculus for Operators of Type ωωω

We show that at least for a suitable subclass of closed densely defined operators,
we can extend the formulas of the S-functional calculus for bounded operators. In
order to do this, we recall that the definitions the S-resolvent operators are given
in the previous chapter for unbounded operators.

Definition 6.2.1 (Argument function). Let s ∈ H \ {0}. We define arg(s) as the
unique number θ ∈ [0, π] such that s = |s|eθjs .

Observe that θ = arg(s) does not depend on the choice of js if s ∈ R \ {0},
since p = |p|e0j for every j ∈ S if p > 0 and p = |p|eπj for every j ∈ S if p < 0.
Let ϑ ∈ [0, π]. We define the sets

Sϑ = {s ∈ H : | arg(p)| ≤ ϑ or s = 0},
S0
ϑ = {s ∈ H : | arg(p)| < ϑ}. (6.1)

Definition 6.2.2 (Operator of type ω). Let ω ∈ [0, π). We say that the linear
operator T : D(T ) ⊂ X → X is of type ω if

(i) T is closed and densely defined,

(ii) σS(T ) ⊂ Sϑ ∪ {∞},
(iii) for every ϑ ∈ (ω, π] there exists a positive constant Cϑ such that

‖S−1
L (s, T )‖ ≤ Cϑ

|s|
, ‖S−1

R (s, T )‖ ≤ Cϑ
|s|

for all nonzero s ∈ S0
ϑ.

We now introduce the following subsets of the set of slice hyperholomorphic
functions, which consist of bounded slice hyperholomorphic functions.

Definition 6.2.3. Let µ ∈ (0, π]. We set

SH∞L (S0
µ) = {f ∈ SHL(S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞},

SH∞R (S0
µ) = {f ∈ SHR(S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞},

N∞(S0
µ) = {f ∈ N (S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞}.
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In order to define bounded functions of operators of type ω, we need to
introduce suitable subclasses of bounded slice hyperholomorphic functions:

Definition 6.2.4. With the notation introduced in Definition 6.2.3, we define

ΨL(S0
µ) = {f ∈ SH∞L (S0

µ) : ∃α > 0, c > 0 : |f(s)| ≤ c|s|α

1 + |s|2α
for all s ∈ S0

µ},

ΨR(S0
µ) = {f ∈ SH∞R (S0

µ) : ∃α > 0, c > 0 : |f(s)| ≤ c|s|α

1 + |s|2α
for all s ∈ S0

µ},

Ψ(S0
µ) = {f ∈ N∞(S0

µ) : ∃α > 0, c > 0 : |f(s)| ≤ c|s|α

1 + |s|2α
for all s ∈ S0

µ}.

The following theorem is a crucial step for the definition of the S-functional
calculus for operators of type ω, because it shows that the following integrals
depend neither on the path that we choose nor on the complex plane Cj , j ∈ S.

Theorem 6.2.5. Let T be an operator of type ω. Let j ∈ S, and let S0
µ be as in

(6.1). Choose a piecewise smooth path Γ in S0
µ∩Cj that goes from ∞ejθ to ∞e−jθ,

where ω < θ < µ. Then the integrals

1

2π

∫
Γ

S−1
L (s, T ) dsj ψ(s), for all ψ ∈ ΨL(S0

µ), (6.2)

1

2π

∫
Γ

ψ(s) dsj S
−1
R (s, T ), for all ψ ∈ ΨR(S0

µ), (6.3)

depend neither on Γ nor on j ∈ S, and they define bounded operators.

Proof. We reason on the integral (6.2), since (6.3) can be treated in a similar way.

The growth estimates on ψ and on the resolvent operator imply that the
integral (6.2) exists and defines a bounded right-linear operator.

The independence of the choice of θ and of the choice of the path Γ in the
complex plane Cj follows from Cauchy’s integral theorem.

In order to show that the integral (6.2) is independent of the choice of the
imaginary unit j ∈ S, we take an arbitrary i ∈ S with j 6= i.

Let B(0, r) be the ball centered at the origin with radius r; let a0 > 0 and
θ0 ∈ (0, π), n ∈ N. We define the sector Σ(θ0, a0) as

Σ(θ0, a0) := {s ∈ H : arg(s− an) ≥ θn}.

Let θ0 < θs < θp < π and set Us := Σ(θs, 0) ∪ B(0, a0/2) and Up := Σ(θp, 0) ∪
B(0, a0/3), where the indices s and p denote the variables of integration over the
boundary of the respective set. Suppose that Up and Us are Cauchy domains and
∂(Us∩Cj) and ∂(Up∩Ci) are paths that are contained in the sector. Observe that
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ψ(s) is right slice hyperholomorphic on Up, and hence by Theorem 2.1, we have

ψ(T ) =
1

2π

∫
∂(Us∩Cj)

ψ(s) dsj S
−1
R (s, T ) (6.4)

=
1

(2π)2

∫
∂(Us∩Cj)

(∫
∂(Up∩Ci)

ψ(p) dpi S
−1
R (p, s)

)
dsj S

−1
R (s, T ) (6.5)

=
1

2π

∫
∂(Up∩Cj)

ψ(p) dpi

(
1

2π

∫
∂(Us∩Cj)

S−1
R (p, s) dsj S

−1
R (s, T )

)
(6.6)

=
1

2π

∫
∂(Up∩Ci)

ψ(p) dpi S
−1
R (p, T ). (6.7)

To exchange the order of integration we apply Fubini’s theorem. The last equation
follows as an application of the S-functional calculus for unbounded operators,
introduced in the previous chapter, since S−1

R (p,∞) = lims→∞ S−1
R (p, s) = 0. So

we get the statement. �

Thanks to the above theorem the following definitions are well posed.

Definition 6.2.6 (The S-functional calculus for operators of type ω). Let T be an
operator of type ω. Let j ∈ S, and let S0

µ be the sector defined above. Choose a

piecewise smooth path Γ in S0
µ∩Cj that goes from∞ejθ to∞e−jθ, for ω < θ < µ.

Then

ψ(T ) :=
1

2π

∫
Γ

S−1
L (s, T ) dsj ψ(s), for all ψ ∈ ΨL(S0

µ), (6.8)

ψ(T ) :=
1

2π

∫
Γ

ψ(s) dsj S
−1
R (s, T ), for all ψ ∈ ΨR(S0

µ). (6.9)

From the definition of the functional calculus the linearity properties follow
immediately. In fact, if T is an operator of type ω, then ψ(T ), defined in (6.8) and
(6.9), satisfy

(ψa+ ϕb)(T ) = ψ(T )a+ ϕ(T )b, for all ψ,ϕ ∈ ΨL(S0
µ),

(aψ + bϕ)(T ) = aψ(T ) + bϕ(T ), for all ψ,ϕ ∈ ΨR(S0
µ).

For functions ψ that belong to Ψ(S0
µ) both representations can be used. Moreover,

ψ(T ) :=
1

2π

∫
Γ

ψ(s) dsi S
−1
R (s, T )

=
1

2π

∫
Γ

S−1
L (s, T ) dsi ψ(s), for all ψ ∈ Ψ(S0

µ).

Using the S-resolvent equation with similar computations as in the case of bounded
operators, adapted to this case, we can prove the product rule:
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Theorem 6.2.7. Let T be an operator of type ω. Then

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ Ψ(S0
µ), ϕ ∈ ΨL(S0

µ),

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ ΨR(S0
µ), ϕ ∈ Ψ(S0

µ).

6.3 The H∞H∞H∞-Functional Calculus

To define the H∞ functional calculus we suppose that T is an operator of type
ω, and moreover, we assume that it is one-to-one and with dense range. Here we
will consider slice hyperholomorphic functions defined on the open sector S0

µ, for

0 ≤ ω < µ ≤ π, which can grow at infinity as |s|k and at the origin as |s|−k for
k ∈ N. This enlarges the class of functions to which the functional calculus can be
applied. Precisely we make the following definition.

Definition 6.3.1 (Operators of type Ω). Let ω be a real number such that 0 ≤ ω ≤
π. We denote by Ω the set of linear operators T acting on a two-sided quaternionic
Banach space such that:

(i) T is a linear operator of type ω;

(ii) T is one-to-one and with dense range.

Then we define the following function spaces according to the set of operators
defined above:

Definition 6.3.2. Let ω and µ be real numbers such that 0 ≤ ω < µ ≤ π. We set

FL(S0
µ) = {f ∈ SHL(S0

µ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},
FR(S0

µ) = {f ∈ SHR(S0
µ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},

F(S0
µ) = {f ∈ N (S0

µ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0}.

To extend the functional calculus we consider a quaternionic two-sided Ba-
nach space X, the operators in the class Ω, and

• the noncommutative algebra FL(S0
µ) (resp. FR(S0

µ));

• the S-functional calculus Φ for operators of type ω:

Φ : ΨL(S0
µ) (resp. ΨR(S0

µ))→ B(X), Φ : φ→ φ(T );

• the commutative subalgebra of FL(S0
µ) consisting of intrinsic rational func-

tions;

Furthermore, the functions in FL(S0
µ) have at most polynomial growth. So taking

an intrinsic rational functions ψ, the operator ψ(T ) can be defined by the rational
functional calculus.

We assume also that ψ(T ) is injective.
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Definition 6.3.3 (H∞-functional calculus). Let X be a two-sided quaternionic Ba-
nach space and let T ∈ Ω. For k ∈ N consider the function

ψ(s) :=
( s

1 + s2

)k+1

.

For f ∈ FL(S0
µ) and T right linear, we define the extended functional calculus as

f(T ) := (ψ(T ))−1(ψf)(T ). (6.10)

For f ∈ FR(S0
µ) and T left linear, we define the extended functional calculus as

f(T ) := (fψ)(T )(ψ(T ))−1. (6.11)

We say that ψ regularizes f .

In the previous definition the operator (ψf)(T ) (resp. (fψ)(T )) is defined
using the S-functional calculus Φ for operators of type ω, and ψ(T ) is defined by
the rational functional calculus.

Theorem 6.3.4. The definition of the functional calculus in (6.10) and in (6.11)
does not depend on the choice of the intrinsic rational slice hyperholomorphic
function ψ.

Proof. Let us prove (6.10). Suppose that ψ and ψ′ are two different regularizers
and set

A := (ψ(T ))−1(ψf)(T ) and B := (ψ′(T ))−1(ψ′f)(T ).

Observe that since the functions ψ and ψ′ commute, because there are intrinsic
rational functions, one has

ψ(T )ψ′(T ) = (ψψ′)(T ) = (ψ′ψ)(T ) = ψ′(T )ψ(T ),

so we get
(ψ′(T ))−1(ψ(T ))−1 = (ψ(T ))−1(ψ′(T ))−1.

It is now easy to see that

A = (ψ(T ))−1(ψf)(T ) = (ψ(T ))−1(ψ′(T ))−1(ψ′(T ))(ψf)(T ) =

= (ψ′(T ))−1(ψ(T ))−1(ψψ′f)(T )

= (ψ′(T ))−1(ψ(T ))−1ψ(T )(ψ′f)(T )

= (ψ′(T ))−1(ψ′f)(T ) = B,

where we used the fact that from the product rule, see Proposition 6.1.4, we have
that the inverse of ψ(T ) is (1/ψ)(T ). The proof of (6.11) follows in a similar
way. �

We now state an important result for functions in FL(S0
µ) (the same result

with obvious changes holds for functions in FR(S0
µ)).
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Theorem 6.3.5. Let f ∈ F(S0
µ) and g ∈ FL(S0

µ). Then we have

f(T ) + g(T ) ⊂ (f + g)(T ),

f(T )g(T ) ⊂ (fg)(T ),

and D(f(T )g(T )) = D((fg)(T ))
⋂
D(g(T )).

Proof. Let us take ψ1 and ψ2 that regularize f and g, respectively. Observe that
the function ψ := ψ1ψ2 regularizes f , g, f + g, and fg because ψ1, ψ2, and f
commute among themselves. Observe that

f(T ) + g(T ) = (ψ(T ))−1(ψf)(T ) + (ψ(T ))−1(ψg)(T )

⊂ (ψ(T ))−1[(ψf)(T ) + (ψg)(T )]

= (ψ(T ))−1[ψ(f + g)](T ) = (f + g)(T ).

We can consider now the product rule

f(T )g(T ) = (ψ1(T ))−1(ψ1f)(T ) (ψ2(T ))−1(ψ2g)(T )

⊂ (ψ1(T ))−1(ψ2(T ))−1[(ψ1f)(T )(ψ2g)(T )]

= (ψ2(T )ψ1(T ))−1[ψ1(T )ψ2(T )(fg)](T )

= (ψ(T ))−1(ψfg)(T ) = (fg)(T ),

where we have used ψ := ψ1ψ2. Regarding the domains, it is as in the complex
case. �

6.4 Boundedness of the H∞H∞H∞-Functional Calculus

The following convergence theorem is stated for functions in SH∞L (S0
µ), but it holds

also for functions in SH∞R (S0
µ) and is the quaternionic analogue of the theorem

in Section 5 in [165]. The proof follows the proof of the convergence theorem
in [165, p. 216]; we just point out that the convergence theorem is based on the
principle of uniform boundedness that holds also for quaternionic operators.

Theorem 6.4.1 (A Convergence theorem). Suppose that 0 ≤ ω < µ ≤ π and that
T is a linear operator of type ω such that it is one-to-one and with dense range.
Let fα be a net in SH∞L (S0

µ) and let f ∈ SH∞L (S0
µ) and assume that:

(i) there exists a positive constant M such that ‖fα(T )‖ ≤M ;

(ii) for every 0 < δ < λ <∞,

sup{|fα(s)− f(s)| such that s ∈ S0
µ and δ ≤ |s| ≤ λ} → 0.

Then f(T ) ∈ B(V ) and fα(T )u → f(T )u for all u ∈ V , and moreover, ‖f(T )‖ ≤
M .
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In the following we discuss the boundedness of the H∞ functional calculus.
The crucial tool to show the boundedness of the H∞ functional calculus is the
so-called quadratic estimates; see [165].

Definition 6.4.2 (Quadratic estimate). Let T be a right linear operator of type ω
on a quaternionic Hilbert space H and let ψ ∈ Ψ(S0

µ), where 0 ≤ ω < µ ≤ π. We
say that T satisfies a quadratic estimate with respect to ψ if there exists a positive
constant β such that∫ ∞

0

‖ψ(tT )u‖2 dt
t
≤ β2‖u‖2, for all u ∈ H,

where we write ‖u‖ for ‖u‖H.

Let us introduce the notation

Ψ+(S0
µ) = {ψ ∈ Ψ(S0

µ) : ψ(t) > 0 for all t ∈ (0,∞)}

and
ψt(s) = ψ(ts), t ∈ (0,∞).

Theorem 6.4.3. Let 0 ≤ ω < µ ≤ π and assume that T is a right linear operator in
Ω. Suppose that T and its adjoint T ∗ satisfy the quadratic estimates with respect
to the functions ψ and ψ̃ ∈ Ψ+(S0

µ). Suppose that f belongs to SH∞L (S0
µ). Then

the operator f(T ) is bounded, and there exists a positive constant C such that

‖f(T )‖ ≤ C‖f‖∞ for all f ∈ SH∞L (S0
µ).

Proof. We follow the proof of Theorem on p. 221 in [165], and we point out the

differences. We observe that we choose the functions ψ, ψ̃, and η in the space of
intrinsic functions Ψ+(S0

µ) because the pointwise product

ϕ(s) := ψ(s)ψ̃(s)η(s)

has to be slice hyperholomorphic, and moreover, η has to be such that∫ ∞
0

ϕ(t)
dt

t
= 1.

For f ∈ SH∞L (S0
µ) let us define

fε,R(s) =

∫ R

ε

(ϕtf)(s)
dt

t
.

Using the quadratic estimates it follows that there exists a positive constant C
such that

‖fε,R(T )‖ ≤ C‖f‖∞.
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The convergence theorem (Theorem 6.4.1) gives the formula

f(T )u = lim
ε→0

lim
R→∞

fε,R(T )u for all u ∈ H,

where (ηtf)(T ) is defined by the S-functional calculus

(ηtf)(T ) =
1

2π

∫
Γ

S−1
L (s, T ) dsi ηt(s)f(s), for all f ∈ ΨL(S0

µ),

since ηtf ∈ ΨL(S0
µ) because ηt is intrinsic. Precisely, the quadratic estimates and

some computations show that there exists a positive constant Cβ such that

|〈fε,R(T )u, v〉| ≤ Cβ sup
t∈(0,∞)

‖(ηtf)(T )‖‖u‖‖v‖.

Since

‖(ηtf)(T )‖ ≤ 1

2π
‖f‖∞ sup

i∈S

∫
Γ

‖S−1
L (s, T )‖|dsi| |ηt(s)|

≤ 1

2π
sup
i∈S
‖f‖∞

∫
Γ

Cη
|s|
|dsi|

c|s|α

1 + |s|2α

≤ CT (µ, η)‖f‖∞,

from the above estimates we get the statement. �

6.5 Comments and Remarks

To study fractional diffusion and fractional evolution problems we need a more
involved and refined version of the H∞-functional calculus in the quaternionic
setting, which is beyond the aim of this book. For more details see the papers
[50–52], where the fractional powers of quaternionic operators and applications
are treated. In the paper [53], the authors introduced the so-called S-spectrum
approach to fractional diffusion processes, which allows one to study very general
fractional diffusion problems. This strategy is largely explained in the monograph
[56]. The new approach to fractional diffusion problems will be explained without
too many technical details in the following subsection.

6.5.1 Comments on Fractional Diffusion Processes

We denote by u the temperature on and by q the heat flow, and we set the thermal
diffusivity equal to 1. The heat equation is then deduced from the two laws

q = −∇u (Fourier’s law), (6.12)

∂tu+ divq = 0 (conservation of energy), (6.13)
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where u and q are defined on R3, and Fourier’s law is substituted into the equation
for conservation of energy, that is,

∂tu−∆u = 0.

The fractional heat equation is an alternative model that takes into account non-
local interactions, and it is obtained by replacing the negative Laplacian in the
heat equation by its fractional power, so that

∂tu+ (−∆)αu = 0, α ∈ (0, 1), (6.14)

where the fractional Laplacian is given by

(−∆)αu(x) = c(n, α)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy,

and the integral is defined in the sense of the principal value, c(n, α) is a known
constant, and u : Rn → R must belong to a suitable function space.

The approach with the fractional powers of quaternionic operators defined
via the H∞-functional calculus is different, very general, and in the case q = −∇u
it reduces to the fractional Laplace operator.

Precisely, we identify

R3 ∼= {s ∈ H : Re(s) = 0},

and we consider the gradient ∇ the quaternionic Nabla operator

∇ = e1∂x1 + e2∂x2 + e3∂x3 .

Instead of replacing the negative Laplacian in the heat equation by (−∆)α, we
want to replace the gradient in (6.12) by its fractional power ∇α, and then we
replace it in the law of conservation of energy. We proceed as follows:

• Since sα is not defined on (−∞, 0), and on L2(R3,H) it is σS(∇) = R, we
consider the projections of the fractional powers of ∇α, indicated by fα(∇),
to the subspace associated with the subset [0 +∞) of the S-spectrum of ∇,
on which the function sα is well defined.

• Then we take just the vector part Vect(fα(∇)) = e1T1 + e2T2 + e3T3 of the
quaternionic operator fα(∇) = T0 + e1T1 + e2T2 + e3T3 so that we can apply
the divergence operator.

We point out that the above procedure applied to the gradient operator gives the
classical result. Indeed, the definition of ∇α only on the subspace associated to
[0,∞) is given by

fα(∇)v =
1

2π

∫
−jR

S−1
L (s,∇) dsj s

α∇v,
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for v : R3 → H in D(∇). This corresponds to the Balakrishnan formula, which is
a consequence of the quaternionic H∞-functional calculus, in which only positive
spectral values are taken into account. With this definition and the surprising
expression for the left S-resolvent operator

S−1
L (−jt,∇) = (−jt+∇) (−t2 +Δ)−1

︸ ︷︷ ︸
=R−t2 (−Δ)

,

the operator fα(∇), with some computations, becomes

fα(∇)v =
1

2
(−Δ)

α
2 −1∇2v

︸ ︷︷ ︸
Scalfα(∇)v

+
1

2
(−Δ)

α−1
2 ∇v

︸ ︷︷ ︸
=Vecfα(∇)v

.

We define the scalar part of the operator fα(∇) applied to v as

Scalfα(∇)v :=
1

2
(−Δ)

α
2 −1∇2v,

and the vector part as

Vecfα(∇)v :=
1

2
(−Δ)

α−1
2 ∇v.

Now we observe hat

divVecfα(∇)v = −1

2
(−Δ)

α
2 +1v.

This proves that in the case of the gradient, we get the same result, which is the
fractional Laplacian. The fractional heat equation for α ∈ (1/2, 1),

∂tu(t, x) + (−Δ)αu(t, x) = 0,

can hence be written as

∂tu(t, x)− 2div (Vecfβ(∇)u) = 0, β = 2α− 1.

We point out that the operator fα(∇) can be applied to vector-valued functions v.
For an application to the heat equation it is applied to the scalar-valued function
u that represents the temperature. The quaternionic fractional powers approach
is very general, and it is applicable to a large class of operators such as

∇̃ = e1 a(x)∂x1
+ e2 b(x)∂x2

+ e3 c(x)∂x3
,

where a, b, c are suitable real-valued functions that depend on the space variables
x = (x1, x2, x3) and possibly also on time. For every suitable vector operator T ,
we define a new fractional evolution equation as

∂tu(t, x)− 2div (Vecfβ(T )u) = 0.
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For example, a new fractional evolution equation can be deduced when we consider
the following Fourier’s law:

T = e1x1∂x1 + e2x2∂x2 + e3x3∂x3 .

Working in the space L2(R3
+,H, dµ) with

R3
+ = {e1x1 + e2x2 + e3x3 : x` > 0}

and dµ = (x1x2x3)−1dx, we get the operator

Vecfβ(T )v(ξ)

=
1

2(2π)3

∫
R3

∫
R3

−|y|2αee1
∑3
k=1 ξkyke−e1x·y

ex1vξ1(ex1 , ex2 , ex3)
ex2vξ2(ex1 , ex2 , ex3)
ex3vξ3(ex1 , ex2 , ex3)

 dx dy.

We point out that the fractional powers of the operator q(x, ∂x) are very useful for
inhomogeneous materials, and this approach has several advantages: It modifies
the Fourier law but keeps the law of conservation of energy, and it is applicable
to a large class of operators that includes the gradient but also operators with
variable coefficients such as the operator q(x, ∂x). Moreover, q can also depend on
time.

The fact that we keep the evolution equation in divergence form allows an
immediate definition of the weak solution of the fractional evolution problem.

To represent the fractional powers of an operator T we have to write an
explicit expression for the inverse of the operator T 2 − 2s0T + |s|2I, and this can
be done on bounded or unbounded domains.
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