
Chapter 2

Slice Hyperholomorphic
Functions

We will develop operator theory for quaternionic linear operators using the theory
of slice hyperholomorphic functions. The most important results are the structure
formula (or representation formula) and the Cauchy formulas with slice hyper-
holomorphic integral kernels. We will discuss the two Cauchy formulas and the
associated Cauchy kernels in detail because they are the starting point for defin-
ing the S-functional calculus (in the quaternionic setting the S-functional calculus
is often called the quaternionic functional calculus).

The Fueter mapping theorem is an important tool in hypercomplex anal-
ysis. It shows that the Laplace operator maps slice hyperholomorphic functions
to Fueter regular functions and hence provides a method for generating Fueter
regular functions. This theorem has been extended by Sce for the case of Clifford
algebras with odd dimension and by Qian in the even dimension. In the literature
it is often called the Fueter–Sce or Fueter–Sce–Qian theorem according to the
setting. Starting from the Cauchy formula for slice hyperholomorphic functions,
it is possible to give the Fueter mapping theorem an integral representation. One
obtains then an integral transform that can be used to define the F -functional
calculus.

We denote by H the algebra of quaternions. An element q of H is of the form

q = q0 + q1e1 + q2e2 + q3e3, q` ∈ R, ` = 0, 1, 2, 3,

where e1, e2 and e3 are the generating imaginary units of H. They satisfy the
relations

e2
1 = e2

2 = e2
3 = −1 (2.1)

and

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. (2.2)
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The real part, the imaginary part, and the modulus |q| of a quaternion q = q0 +
q1e1 + q2e2 + q3e3 are defined as Re(q) = q0, Im(q) = q1e1 + q2e2 + q3e3, and
|q|2 = q2

0 + q2
1 + q2

2 + q2
3 , respectively. The conjugate of the quaternion q is

q̄ = Re(q)− Im(q) = q0 − q1e1 − q2e2 − q3e3,

and it satisfies
|q|2 = qq̄ = q̄q.

The inverse of every nonzero element q is hence given by

q−1 =
q̄

|q|2
.

Let us denote by S the unit sphere of purely imaginary quaternions, i.e.,

S = {q = q1e1 + q2e2 + q3e3 : q2
1 + q2

2 + q2
3 = 1}.

Notice that if j ∈ S, then j2 = −1. For this reason the elements of S are also called
imaginary units. The set S is a 2-dimensional sphere in R4 ∼= H. Given a nonreal
quaternion q = q0+Im(q), we have q = u+jv with u = Re(q), j = Im(q)/|Im(q)| ∈
S, and v = |Im(q)|. We can associate to q the 2-dimensional sphere

[q] = {q0 + j|Im(q)| : j ∈ S} = {u+ jv : j ∈ S}.

This sphere is centered at the real point q0 = Re(q) and has radius |Im(q)|. The
next lemma, which can be found in every standard textbook treating quaternions,
shows that two quaternions belong to the same sphere if and only if they can be
transformed into each other by multiplication by a nonzero quaternion.

Lemma 2.0.1. Let q ∈ H. A quaternion p belongs to [q] if and only if there exists
h ∈ H \ {0} such that p = h−1qh.

If j ∈ S, then the set

Cj = {u+ jv : u, v ∈ R}

is an isomorphic copy of the complex numbers. If, moreover, i ∈ S with j ⊥ i,
then j, i, and k := ji form a generating basis of H, i.e., this basis also satisfies the
relations (2.1) and (2.2). Hence, every quaternion q ∈ H can be written as

q = z1 + z2i = z1 + iz̄2

with unique z1, z2 ∈ Cj , and so

H = Cj + iCj and H = Cj + Cji. (2.3)

Moreover, we observe that

H =
⋃
j∈S

Cj .

Finally, we introduce the notation C+
j := {u + jv : u ∈ R, v ≥ 0} for the upper

half-plane in Cj and H := H ∪ {∞}.
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2.1 Slice Hyperholomorphic Functions

The theory of slice hyperholomorphic functions is nowadays well developed. There
are three possible ways to define slice hyperholomorphic functions: using the defi-
nition in [135], using the global operator of slice hyperholomorphic functions intro-
duced in [60], or by the definition that comes from the Fueter–Sce–Qian mapping
theorem. This last definition is the most appropriate for operator theory, and it
is the one that we will use. In this section we therefore develop the part of the
theory that it is relevant for our purposes.

Definition 2.1.1. Let U ⊆ H.

(i) We say that U is axially symmetric if [q] ⊂ U for every q ∈ U .

(ii) We say that U is a slice domain if U ∩ R 6= ∅ and if U ∩ Cj is a domain in
Cj for every j ∈ S.

Definition 2.1.2 (Slice hyperholomorphic functions). Let U ⊆ H be an axially
symmetric open set and let U = {(u, v) ∈ R2 : u+Sv ⊂ U}. A function f : U → H
is called a left slice function if it is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : Ω→ H that satisfy the compatibility condition

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (2.4)

If in addition f0 and f1 satisfy the Cauchy–Riemann equations

∂

∂u
f0(u, v)− ∂

∂v
f1(u, v) = 0, (2.5)

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0, (2.6)

then f is called left slice hyperholomorphic. A function f : U → H is called a right
slice function if it is of the form

f(q) = f0(u, v) + f1(u, v)j for q = u+ jv ∈ U

with two functions f0, f1 : Ω→ H that satisfy (2.4). If in addition f0 and f1 satisfy
the Cauchy–Riemann equations, then f is called right slice hyperholomorphic.

If f is a left (or right) slice function such that f0 and f1 are real-valued, then
f is called intrinsic.

We denote the sets of left and right slice functions on U by SFL(U) and
SFR(U) and the sets of left and right slice hyperholomorphic functions on U by
SHL(U) and SHR(U), respectively. The set of intrinsic slice functions on U will
be denoted by FN (U) and the set of slice hyperholomorphic functions on U will
be denoted by N (U).
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Remark 2.1.3. Every quaternion q can be represented as an element of a complex
plane Cj using at least two different imaginary units j ∈ S. We have q = u+ jv =
u+(−j)(−v) and −j also belongs to S. If q is real, then we can use any imaginary
unit j ∈ S to consider q an element of Cj . The compatibility condition (2.4) ensures
that the choice of this imaginary unit is irrelevant. In particular, it forces f1(u, v)
to equal 0 if v = 0, that is if q ∈ R.

Multiplication and composition with intrinsic functions preserve the slice
structure and slice hyperholomorphicity. This is not true for arbitrary slice func-
tions.

Theorem 2.1.4. Let U ⊆ H be axially symmetric. The following statements hold:

(i) If f ∈ NF(U) and g ∈ SFL(U), then fg ∈ SFL(U). If f ∈ SFR(U) and
g ∈ NF(U), then fg ∈ SFR(U).

(ii) If f ∈ N (U) and g ∈ SHL(U), then fg ∈ SHL(U). If f ∈ SHR(U) and
g ∈ N (U), then fg ∈ SHR(U).

(iii) If g ∈ NF(U) and f ∈ SFL(g(U)), then f ◦ g ∈ SFL(U). If g ∈ NF(U)
and f ∈ SFR(g(U)), then f ◦ g ∈ SFR(U).

(iv) If g ∈ N (U) and f ∈ SHL(g(U)), then f ◦ g ∈ SHL(U). If g ∈ N (U) and
f ∈ SHR(g(U)), then f ◦ g ∈ SHR(U).

Proof. Let f = f0 +jf1 ∈ NF(U) and g = g0 +jg1 ∈ SFL(U). Since f is intrinsic,
the components f0, f1 take real values. Hence, they commute with j ∈ S, and we
find for q = u+ jv ∈ U that

f(q)g(q) = f0(u, v)g0(u, v) + jf1(u, v)g0(u, v)

+ f0(u, v)jg1(u, v) + jf1(u, v)jg1(u, v)

= f0(u, v)g0(u, v)− f1(u, v)g1(u, v)

+ j(f1(u, v)g0(u, v) + f0(u, v)g1(u, v)).

The functions

h0(u, v) := f0(u, v)g0(u, v)− f1(u, v)g1(u, v)

and

h1(u, v) := f1(u, v)g0(u, v) + f0(u, v)g1(u, v)

satisfy the compatibility condition (2.4), as one can check easily, and hence fg
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belongs to SFL(U). If, moreover, f and g are slice hyperholomorphic, then

∂

∂u
h0(u, v) =

(
∂

∂u
f0(u, v)

)
g0(u, v) + f0(u, v)

(
∂

∂u
g0(u, v)

)
−
(
∂

∂u
f1(u, v)

)
g1(u, v)− f1(u, v)

(
∂

∂u
g1(u, v)

)
=

(
∂

∂v
f1(u, v)

)
g0(u, v) + f0(u, v)

(
∂

∂v
g1(u, v)

)
+

(
∂

∂v
f0(u, v)

)
g1(u, v) + f1(u, v)

(
∂

∂v
g0(u, v)

)
=

∂

∂v
h1(u, v),

and similarly one shows that also

∂

∂v
h0(u, v) = − ∂

∂u
h1(u, v)

holds. Hence fg = h0 + jh1 is left slice hyperholomorphic.

Now let g = g0 + jg1 ∈ NF(U) and f = f0 + jf1 ∈ SFL(g(U)). For
q = u + jv ∈ U , we have g(q) = g0(u, v) + jg1(u, v) = ũ + iṽ with ũ = g0(u, v),
i = jsgn(g1(u, v)) ∈ S and ṽ = |g1(u, v)|. Thus

f(g(q)) = f0(ũ, ṽ) + ig1(ũ, ṽ)

= f0(g0(u, v), g1(u, v)) + jf1(g0(u, v), g1(u, v)),

because f1 is odd in the second variable. It is immediate that the functions
h0(u, v) = f0(g0(u, v), g1(u, v)) and h1(u, v) = f1(g0(u, v), g1(u, v)) satisfy the
compatibility condition (2.4), and so f ◦ g ∈ SFL(g(U)). If furthermore f and g
are slice hyperholomorphic, then

∂

∂u
h0(u, v) =

∂

∂g0
f0(g0(u, v), g1(u, v))

∂

∂u
g0(u, v)

+
∂

∂g1
f0(g0(u, v), g1(u, v))

∂

∂u
g1(u, v)

=
∂

∂g1
f1(g0(u, v), g1(u, v))

∂

∂v
g1(u, v)

+
∂

∂g0
f1(g0(u, v), g1(u, v))

∂

∂v
g0(u, v)

=
∂

∂v
h1(u, v)
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and

∂

∂u
h1(u, v) =

∂

∂g0
f1(g0(u, v), g1(u, v))

∂

∂u
g0(u, v)

+
∂

∂g1
f1(g0(u, v), g1(u, v))

∂

∂u
g1(u, v)

= − ∂

∂g1
f0(g0(u, v), g1(u, v))

∂

∂v
g1(u, v)

− ∂

∂g0
f0(g0(u, v), g1(u, v))

∂

∂v
g0(u, v)

= − ∂

∂v
h0(u, v).

Hence f ◦ g = h0 + jh1 is left slice hyperholomorphic.
Similar arguments show that the statements for right slice functions also

hold. �

Lemma 2.1.5. Let U ⊆ H be axially symmetric and let f be a left (or right) slice
function on U . The following statements are equivalent.

(i) The function f is intrinsic.

(ii) We have f(U ∩ Cj) ⊂ Cj for every j ∈ S.

(iii) We have f(q) = f(q) for all q ∈ U .

Proof. Assume that f = f0 + jf1 is a left slice function. (The other case follows
analogously.) The implications (i)⇒(ii) and (i)⇒(ii) are immediate. In order to
show the inverse relations, we first observe that for every q = u+ jv ∈ U ,

f(q) + f(q) = f0(u, v) + jf1(u, v) + f0(u, v)− jf1(u, v) = 2f0(u, v)

and

f(q)− f(q) = f0(u, v) + jf1(u, v)− f0(u, v) + jf0(u, v) = 2jf1(u, v).

If (ii) holds, then f(u + jv) ∈ Cj for every j ∈ S, and hence it commutes with j.
Thus

jf0(u, v) = j(f(u+ jv) + f(u− jv))

= (f(u+ jv) + f(u− jv))j = 2f0(u, v)j.

Since a quaternion commutes with j ∈ S if and only if it belongs to Cj , we have
f0(u, v) ∈

⋂
j∈S Cj = R. For every j ∈ S, we then have that

jf0(u, v)− f1(u, v) = j(f(u+ jv) = f(u+ jv)j

= f0(u, v)j + jf1(u, v)j = jf0(u, v) + jf1(u, v)j,
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and so f1(u, v) = −jf1(u, v)j. Thus f1(u, v) commutes with every j ∈ S and so
also f1(u, v) ∈ R. Hence, f is intrinsic.

If on the other hand, (iii) holds, then for q = u+ jv ∈ U we have

2f0(u, v) = f(q) + f(q) = f(q) + f(q) = 2f0(u, v)

and hence f0(u, v) ∈ R. We therefore also have

f0(u, v) + jf1(u, v) = f(q) = f(q)

= f0(u, v)− jf1(u, v) = f0(u, v) + f1(u, v)j,

and so jf1(u, v) = f1(u, v)j. Since j ∈ S was arbitrary, we find that also f1(u, v) ∈
R and that f is in turn intrinsic. �

If we restrict a slice hyperholomorphic function to one of the complex planes
Cj , then we obtain a function that is holomorphic in the usual sense.

Lemma 2.1.6 (The splitting lemma). Let U ⊆ H be an axially symmetric open
set and let j, i ∈ S with i ⊥ j. If f ∈ SHL(U), then the restriction fj = f |U∩Cj
satisfies

1

2

(
∂

∂u
fj(z) + j

∂

∂v
fj(z)

)
= 0 (2.7)

for all z = u+ jv ∈ U ∩ Cj. Hence

fj(z) = F1(z) + F2(z)i

with holomorphic functions F1, F2 : U ∩ Cj → Cj.
If f ∈ SHR(U), then the restriction fj = f |U∩Cj satisfies

1

2

(
∂

∂u
fj(z) +

∂

∂v
fj(z)j

)
= 0 (2.8)

for all z = u+ jv ∈ U ∩ Cj. Hence

fj(z) = F1(z) + iF2(z)

with holomorphic functions F1, F2 : U ∩ Cj → Cj.
Proof. If f = f0 + jf1 is left slice hyperholomorphic, then

1

2

(
∂

∂u
fj(z) + j

∂

∂v
fj(z)

)
=

1

2

(
∂

∂u
f0(u, v) + j

∂

∂u
f1(u, v) + j

∂

∂v
f0(u, v)− ∂

∂v
f1(u, v)

)
= 0

because f0 and f1 satisfy the Cauchy–Riemann equations (2.5). Due to (2.3), we
can write fj(z) = F1(z) + F2(z)i with Cj-valued component functions F1 and
F2. Since 1 and i are linearly independent over Cj , the above identity applies
componentwise, and hence F1 and F2 are holomorphic.

The right slice hyperholomorphic case can be proved similarly. �
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Remark 2.1.7. The splitting lemma states that the restriction of every left slice
hyperholomorphic function to a complex plane Cj is left holomorphic, i.e., it is
a holomorphic function with values in the left vector space H = Cj + Cji over
Cj . The restriction of a right slice hyperholomorphic function to a complex plane
Cj is right holomorphic, i.e., it is a holomorphic function with values in the right
vector space H = Cj + iCj over Cj .

Theorem 2.1.8 (Identity principle). Let U ⊆ H be an axially symmetric slice
domain, let f, g : U → H be left (or right) slice hyperholomorphic, and set
Z = {q ∈ U : f(q) = g(q)}. If there exists j ∈ S such that Z ∩ Cj has an
accumulation point in U ∩ Cj, then f = g.

Proof. Assume that f and g are left slice hyperholomorphic and that Z∩Cj has an
accumulation point in U ∩Cj . We can furthermore assume that g ≡ 0. (Otherwise,
we can simply replace f by f−g and g by the constant zero function.) Since U∩Cj
is a domain in Cj and fj = f |U∩Cj is an H-valued (left) holomorphic function
on this domain by Lemma 2.1.6, the identity theorem for holomorphic functions
implies fj ≡ 0. In particular, we have f |U∩R = fj |U∩R ≡ 0.

If i ∈ S is now an arbitrary imaginary unit, then fi = f |U∩Ci is again an
H-valued (left) holomorphic function on the domain U ∩Ci in Ci. Since f ≡ 0 on
U ∩ R 6= ∅ by the above arguments, the set of zeros of fi has an accumulation
point in U ∩ Ci. Hence, the identity theorem for holomorphic functions implies
that also fi ≡ 0 and in turn f ≡ 0 on all of U .

The right slice hyperholomorphic case follows with analogous arguments. �

The most important property of slice functions (and in particular for slice
hyperholomorphic functions) is the structure formula, which is often also called
representation formula.

Theorem 2.1.9 (The structure formula (or representation formula)). Let U ⊆ H
be axially symmetric and let i ∈ S. A function f : U → H is a left slice function
on U if and only if for every q = u+ jv ∈ U we have

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2
ji
[
f(z)− f(z)

]
(2.9)

with z = u + iv. A function f : U → H is a right slice function on U if and only
if for every q = u+ jv ∈ U we have

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2

[
f(z)− f(z)

]
ij (2.10)

with z = u+ iv.

Proof. For every left slice function f on U , we have

f(z) = f(u+ iv) = f0(u, v) + if1(u, v),

f(z) = f(u− iv) = f0(u, v)− if1(u, v),
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with functions f0 and f1 that satisfy the compatibility condition (2.4). Adding
and subtracting these two equations, we get

f0(u, v) =
1

2

[
f(z) + f(z)

]
, f1(u, v) =

1

2
i
[
f(z)− f(z)

]
. (2.11)

Since f(q) = f0(u, v) + jf1(u, v), we obtain (2.9). If, on the other hand, f satisfies
(2.9), then f(q) = f0(u, v)+jf1(u, v) with f0 and f1 as in (2.11). Obviously f0 and
f1 satisfy the compatibility condition (2.4), and hence f is a left slice function.

The statement about right slice functions can be shown with similar argu-
ments. �

Remark 2.1.10. It is sometimes useful to rewrite (2.9) as

f(q) =
1

2
(1− ij)f(z) +

1

2
(1 + ij)f(z)

and (2.10) as

f(q) = f(z)(1− ij)1

2
+ f(z)(1 + ij)

1

2
.

As a consequence of the structure formula, every holomorphic function that
is defined on a suitable open set in Cj has a slice hyperholomorphic extension.

Lemma 2.1.11. Let O ⊂ Cj be open and symmetric with respect to the real axis.
We call the set [O] =

⋃
z∈O[z] the axially symmetric hull of O.

(i) Every function f : O → H has a unique extension extL(f) to a left slice
function on [O] and a unique extension extR(f) to a right slice function on
[O].

(ii) If f : O → H is left holomorphic, i.e., it satisfies (2.7), then extL(f) is left
slice hyperholomorphic.

(iii) If f is right holomorphic, i.e., it satisfies (2.8), then extR(f) is right slice
hyperholomorphic.

Proof. The left and right slice extensions extL(f) and extR(f) are obviously given
by (2.9) resp. (2.10). Due to Theorem 2.1.9, they are also unique.

Assume that f is left holomorphic. Then extL(f)(q) = f0(u, v) + if1(u, v) for
q = u+ jv, with

f0(u, v) =
1

2
[f(u− jv) + f(u+ jv)]

and

f1(u, v) =
1

2
j [f(u− jv)− f(u+ jv)] .

It remains to show that this actually defines a left slice hyperholomorphic function,
i.e., that f0 and f1 satisfy the Cauchy–Riemann equations (2.5). Because of (2.7),
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we have

∂

∂u
f0(u, v) =

1

2

[
∂

∂u
f(u− jv) +

∂

∂u
f(u+ jv)

]
=

1

2

[
j
∂

∂v
f(u− jv)− j ∂

∂v
f(u+ jv)

]
=

∂

∂v
f1(u, v).

Similarly, we also have

∂

∂v
f0(u, v) =

1

2

[
∂

∂v
f(u− jv) +

∂

∂v
f(u+ jv)

]
=

1

2

[
−j ∂

∂u
f(u− jv) + j

∂

∂u
f(u+ jv)

]
= − ∂

∂u
f1(u, v).

Thus extL(f) is actually left slice hyperholomorphic. The right slice hyperholo-
morphic case can be shown with analogous arguments. �

Slice hyperholomorphic functions admit a special kind of derivative, which
again yields a slice hyperholomorphic function.

Definition 2.1.12. Let f : U ⊆ H → H and let q = u + jv ∈ U . If q is not real,
then we say that f admits a left slice derivative in q if

∂Sf(q) := lim
p→q, p∈Cj

(p− q)−1(fj(p)− fj(q)) (2.12)

exists and is finite. If q is real, then we say that f admits a left slice derivative in
q if (2.12) exists for every j ∈ S.

Similarly, we say that f admits a right slice derivative at a nonreal point
q = u+ jv ∈ U if

∂Sf(q) := lim
p→q, p∈Cj

(fj(p)− fj(q))(p− q)−1 (2.13)

exists and is finite, and we say that f admits a right slice derivative at a real point
q ∈ U if (2.13) exists and is finite for every j ∈ S.

Remark 2.1.13. Observe that ∂Sf(q) is uniquely defined and independent of the
choice of j ∈ S even if q is real. If f admits a slice derivative, then fj is Cj-complex
left resp. right differentiable, and we obtain

∂Sf(q) = f ′j(q) =
∂

∂u
fj(q) =

∂

∂u
f(q), q = u+ jv. (2.14)

Proposition 2.1.14. Let U ⊆ H be an axially symmetric open set and let f : U → H
be a real differentiable function.

(i) If f(q) = f0(u, v) + jf1(u, v) is left (or right) slice hyperholomorphic, then it
admits a left (resp. right) slice derivative and ∂Sf is again left (resp. right)
slice hyperholomorphic on U .
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(ii) If f is a left (or right) slice function that admits a left (resp. right) slice
derivative, then f is left (resp. right) slice hyperholomorphic.

(iii) If U is a slice domain, then every function that admits a left (resp. right)
slice derivative is left (resp. right) slice hyperholomorphic.

Proof. If f is a left slice hyperholomorphic function on U and q = u+jv ∈ U , then
its restriction to the complex plane Cj can be written as fj(q) = F1(q)+F2(q)i for
i ∈ S with i ⊥ j. By Lemma 2.1.6, the component functions F1, F2 : U ∩Cj → Cj
are holomorphic, and hence

lim
p→q, p∈Cj

(p− q)−1(fj(p)− fj(q))

= lim
p→q, p∈Cj

(p− q)−1(F1(p) + F2(p)i− F1(p)− F2(q)i)

= F ′1(q) + F ′2(q)i

exists. Therefore, f admits a left slice derivative. Moreover, this slice derivative
coincides with the derivative with respect to the real part of the quaternion by
(2.14), and hence

∂Sf(q) =
∂

∂u
f(q) =

∂

∂u
f0(u, v) + j

∂

∂u
f1(u, v), q = u+ jv.

The functions ∂
∂uf0(u, v) and ∂

∂uf1(u, v) obviously satisfy the compatibility con-
dition (2.4). Since f0 and f1 satisfy the Cauchy–Riemann equations, they are
infinitely differentiable. Hence ∂

∂u , and ∂
∂v commute with ∂

∂u and we obtain that

also ∂
∂uf0(u, v) and ∂

∂uf1(u, v) satisfy the Cauchy–Riemann equations (2.5). Thus
∂Sf is left slice hyperholomorphic too.

If, on the other hand, f(q) = f0(u, v) + jf1(u, v) is a left slice function that
admits a left slice derivative, we choose j ∈ S. Then fj is an H-valued left holomor-
phic function on U ∩ Cj . By Lemma 2.1.11, the left slice extension extL(fj) of fj
is therefore a left slice hyperholomorphic extension of fj . Since f is already a left
slice function, we find that f = extL(fj), and so f is left slice hyperholomorphic.

If, finally, U is an axially symmetric slice domain and f is an arbitrary func-
tion on U that admits a left slice derivative, then we can again choose an arbitrary
imaginary unit j ∈ S and find that fj is left holomorphic. We set f̃ = extL(fj) and

g = f − f̃ . Obviously g ≡ 0 on U ∩ Cj . Moreover, g admits a left slice derivative,

since f and f̃ both admit a left slice derivative. For every i ∈ S, the restriction
gi = g|U∩Ci is a (left) holomorphic function on the domain U ∩ Ci in Ci. More-
over, g|U∩R ≡ 0, and so the set of zeros of gi has an accumulation point in U ∩Ci.
By the identity theorem for holomorphic functions, we find that gi ≡ 0, and in
turn g ≡ 0 because i ∈ S was arbitrary. Therefore, f = f̃ = extL(fj) is left slice
hyperholomorphic.

The right slice hyperholomorphic case can be shown by analogous arguments.
�
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Important examples of slice hyperholomorphic functions are power series in
the quaternionic variable: power series of the form

∑+∞
n=0 q

nan with an ∈ H are

left slice hyperholomorphic, and power series of the form
∑+∞
n=0 anq

n are right slice
hyperholomorphic. Such a power series is intrinsic if and only if the coefficients
an are real. Conversely, every slice hyperholomorphic function can be expanded
at any real point into a power series due to the splitting lemma.

Theorem 2.1.15. Let a ∈ R, let r > 0, and let Br(a) = {q ∈ H : |q − a| < r}. If
f ∈ SHL(Br(a)), then

f(q) =
+∞∑
n=0

(q − a)n
1

n!
∂nSf(a) ∀q = u+ jv ∈ Br(a). (2.15)

If, on the other hand, f ∈ SHR(Br(a)), then

f(q) =
+∞∑
n=0

1

n!
(∂nSf(a)) (q − a)n ∀q = u+ jv ∈ Br(a).

Proof. Let f ∈ SHL(Br(a)) and q = u+jv ∈ Br(a). By Lemma 2.1.6, the function
fj = f |Br(a)∩Cj is left holomorphic on Br(a) and can hence be expanded into a
power series. We obtain

f(q) = fj(q) =
+∞∑
n=0

(q − a)n
1

n!
f

(n)
j (a).

But due to (2.14), we have

f
(n)
j (a) =

∂n

∂nu
fj(a) =

∂n

∂un
f(a) = ∂nSf(a).

The coefficients in the power series expansion are hence independent of the complex
plane in which they are computed, and (2.40) holds. The right slice hyperholo-
morphic case follows with similar arguments. �

As pointed out above, the product of two slice hyperholomorphic functions
is not slice hyperholomorphic unless the factor on the appropriate side is intrinsic.
However, there exists a regularized product that preserves slice hyperholomorphic-
ity.

Definition 2.1.16. For f = f0 + jf1, g = g0 + jg1 ∈ SHL(U), we define their left
slice hyperholomorphic product as

f ∗L g = (f0g0 − f1g1) + j(f0g1 + f1g0).

For f = f0 + f1j, g = g0 + g1j ∈ SHR(U), we define their right slice hyperholo-
morphic product as

f ∗R g = (f0g0 − f1g1) + (f0g1 + f1g0)j.
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Remark 2.1.17. The slice hyperholomorphic product is associative and distribu-
tive, but it is in general not commutative. If f is intrinsic, then f ∗L g coincides
with the pointwise product fg and

f ∗L g = fg = g ∗L f. (2.16)

Similarly, if g is intrinsic, then f ∗R g coincides with the pointwise product fg and

f ∗R g = fg = g ∗R f. (2.17)

Example 2.1.18. If f(q) =
∑+∞
n=0 q

nan and g(q) =
∑+∞
n=0 q

nbn are two left slice
hyperholomorphic power series, then their slice hyperholomorphic product equals
the usual product of formal power series with coefficients in a noncommutative
ring: (

+∞∑
n=0

qnan

)
∗L

(
+∞∑
n=0

qnbn

)
= (f ∗L g)(q) =

+∞∑
n=0

qn
n∑
k=0

akbn−k. (2.18)

Similarly, we have for right slice hyperholomorphic power series that(
+∞∑
n=0

anq
n

)
∗R

(
+∞∑
n=0

bnq
n

)
=

+∞∑
n=0

(
n∑
k=0

akbn−k

)
qn. (2.19)

Definition 2.1.19. We define for f = f0 +jf1 ∈ SHL(U) its slice hyperholomorphic
conjugate f c = f0 + jf1 and its symmetrization fs = f ∗L f c = f c ∗L f . Similarly,
we define for f = f0 + f1j ∈ SHR(U) its slice hyperholomorphic conjugate as
f c = f0 + f1j and its symmetrization as fs = f ∗R f c = f c ∗R f .

The symmetrization of a left slice hyperholomorphic function f = f0 + jf1

is explicitly given by

fs = |f0|2 − |f1|2 + j2Re
(
f0f1

)
.

Hence it is an intrinsic function. It is fs(q) = 0 if and only if f(q̃) = 0 for some
q̃ ∈ [q]. Furthermore, one has

f c(q) = f0(q0, q1) + jqf1(q0, q1) = f0(q0, q1) + f1(q0, q1)(−jq) = f(q), (2.20)

and an easy computation shows that

f ∗L g(q) = f(q)g
(
f(q)−1qf(q)

)
if f(q) 6= 0. (2.21)

For f(q) 6= 0, one has

fs(q) = f(q)f c
(
f(q)−1qf(q)

)
= f(q)f

(
f(q)−1qf(q)

)
= f(q)f (f(q)−1qf(q)).

(2.22)
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Similar computations hold in the right slice hyperholomorphic case. Finally, if f
is intrinsic, then f c(q) = f(q) and fs(q) = |f(q)|2.

As an immediate consequence of Definition 2.1.19 and the above discussion
we obtain the following corollary.

Corollary 2.1.20. The following statements are true:

(i) For f ∈ SHL(U) with f 6≡ 0, its slice hyperholomorphic inverse f−∗L , which
satisfies f−∗L ∗L f = f ∗L f−∗L = 1, is given by

f−∗L = (fs)−1 ∗L f c = (fs)−1f c,

and it is defined on U \ [Zf ], where Zf = {s ∈ U : f(s) = 0}.

(ii) For f ∈ SHR(U) with f 6≡ 0, its slice hyperholomorphic inverse f−∗R , which
satisfies f−∗R ∗R f = f ∗R f−∗R = 1, is given by

f−∗R = f c ∗R (fs)−1 = f c(fs)−1,

and it is defined on U \ [Zf ], where Zf = {s ∈ U : f(s) = 0}.

(iii) If f ∈ N (U) with f 6≡ 0, then f−∗L = f−∗R = f−1.

The modulus |f−∗L | is in a certain sense comparable to 1/|f |. Since fs is
intrinsic, we have |fs(q)| = |fs(q̃)| for every q̃ ∈ [q]. Since f(q)qf(q)−1 ∈ [q] by
Lemma 2.0.1, we find for f(q) 6= 0, because of (2.22), that

|fs(q)| =
∣∣fs (f(q)qf(q)−1

)∣∣
=
∣∣∣f (f(q)qf(q)−1

)
f (q)

∣∣∣ =
∣∣f (f(q)qf(q)−1

)∣∣ |f (q)| .

Therefore, we have, because of (2.20), that∣∣f−∗L(q)
∣∣ =

∣∣fs(q)−1
∣∣ |f c(q)|

=
1

|f (f(q)qf(q)−1)| |f (q)|
|f (q)| = 1

|f (f(q)qf(q)−1)|
,

and so ∣∣f−∗L(q)
∣∣ =

1

|f(q̃)|
with q̃ = f(q)qf(q)−1 ∈ [q]. (2.23)

An analogous estimate holds for the slice hyperholomorphic inverse of a right slice
hyperholomorphic function.

Slice hyperholomorphic functions satisfy a version of Cauchy’s integral theo-
rem and a Cauchy formula with a slice hyperholomorphic integral kernel.
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Theorem 2.1.21 (Cauchy’s integral theorem). Let U ⊂ H be open, let j ∈ S, and
let f ∈ SHL(U) and g ∈ SHR(U). Moreover, let Dj ⊂ U ∩ Cj be an open and
bounded subset of the complex plane Cj with Dj ⊂ U ∩Cj such that ∂Dj is a finite
union of piecewise continuously differentiable Jordan curves. Then

∫
∂Dj

g(s) dsj f(s) = 0,

where dsj = ds(−j).

Proof. If we choose i ∈ S with i ⊥ j, then we can write f(z) = F1(z) + F2(z)i
and g(z) = G1(z) + iG2(z) for z ∈ U ∩Cj with holomorphic component functions
F1, F2, G1, G2 : U ∩ Cj → Cj . By the Cauchy integral theorem for holomorphic
functions, we hence obtain

∫
∂Dj

g(s) dsj f(s)

=

∫
∂Dj

G1(s) dsj F1(s) +

(∫
∂Dj

G1(s) dsj F2(s)

)
i

+ i

∫
∂Dj

G2(s) dsj F1(s) + i

(∫
∂Dj

G1(s) dsj F2(s)

)
i = 0. �

In order to determine the left and right slice hyperholomorphic Cauchy ker-
nels, we start from an analogy with the classical complex case. We consider the
series expansion of the complex Cauchy kernel and determine its closed form under
the assumption that s and q are quaternions that do not commute.

Theorem 2.1.22. Let q, s ∈ H with |q| < |s|. Then

+∞∑
n=0

qns−n−1 = −(q2 − 2Re(s)q + |s|2)−1(q − s) (2.24)

and

+∞∑
n=0

s−n−1qn = −(q − s)(q2 − 2Re(s)q + |s|2)−1. (2.25)

Proof. We prove only (2.24), since (2.25) follows by analogous arguments. Due to
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the identities 2Re(s) = s+ s and |s|2 = ss, we have

(q2 − 2Re(s)q + |s|2)
+∞∑
n=0

qns−n−1 =

=
+∞∑
n=0

qn+2s−n−1 −
+∞∑
n=0

qn+1s−n−12Re(s) +
+∞∑
n=0

qns−n−1|s|2

=

+∞∑
n=1

qn+1s−n −
+∞∑
n=0

qn+1s−n

−
+∞∑
n=0

qn+1s−n−1s+

+∞∑
n=0

qns−ns = −q + s.

Multiplication by (q2 − 2Re(s)q − |s|2)−1 from the left yields (2.24). �

Definition 2.1.23. We define the left slice hyperholomorphic Cauchy kernel as

S−1
L (s, q) := −(q2 − 2Re(s)q + |s|2)−1(q − s), q /∈ [s],

and the right slice hyperholomorphic Cauchy kernel as

S−1
R (s, q) := −(q − s)(q2 − 2Re(s)q + |s|2)−1, q /∈ [s].

The slice hyperholomorphic Cauchy kernels S−1
L (s, q) and S−1

R (s, q) can be
written in two different ways, as the next proposition shows.

Proposition 2.1.24. If q, s ∈ H with q 6∈ [s], then

−(q2 − 2qRe(s) + |s|2)−1(q − s) = (s− q̄)(s2 − 2Re(q)s+ |q|2)−1 (2.26)

and

(s2 − 2Re(q)s+ |q|2)−1(s− q̄) = −(q − s̄)(q2 − 2Re(s)q + |s|2)−1. (2.27)

Proof. Due to the identities |q| = qq = qq and 2Re(q) = q + q, we have

− (q − s)(s2 − 2Re(q)s+ |q|2)

= −qs2 + q(q + q)s− q2q + ss2 − ss(q + q) + sqq

= q2(s− q) + |s|2(s− q)− qs2 + qqs− ssq + sqq.

Since

− qs2 + qqs− ssq + sqq = −qs2 + |q|2s− |s|2q + sqq

= −qs2 + s|q|2 − q|s|2 + sqq = −qs2 + sqq − qss+ sqq

= −q(s+ s)s+ (s+ s)qq = −2Re(s)q(s− q),
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we further conclude that

−(q − s)(s2 − 2Re(q)s+ |q|2) = (q2 − 2Re(s)q + |s|2)(s− q).

Multiplying this identity by (s2 − 2Re(q)s + |q|2)−1 on the right and by (q2 −
2Re(s)q + |s|2)−1 on the left, we obtain (2.26). Exchanging the roles of q and s
and multiplying by −1 then yields (2.27). �

Proposition 2.1.24 justifies the following definition.

Definition 2.1.25. Let q, s ∈ H with q 6∈ [s].

• We say that S−1
L (s, q) is written in the form I if

S−1
L (s, q) := −(q2 − 2Re(s)q + |s|2)−1(q − s).

• We say that S−1
L (s, q) is written in the form II if

S−1
L (s, q) := (s− q̄)(s2 − 2Re(q)s+ |q|2)−1.

• We say that S−1
R (s, q) is written in the form I if

S−1
R (s, q) := −(q − s̄)(q2 − 2Re(s)q + |s|2)−1.

• We say that S−1
R (s, q) is written in the form II if

S−1
R (s, q) := (s2 − 2Re(q)s+ |q|2)−1(s− q̄).

Corollary 2.1.26. For q, s ∈ H with s /∈ [q], we have

S−1
L (s, q) = −S−1

R (q, s).

Lemma 2.1.27. Let q, s ∈ H with s /∈ [q].
The left slice hyperholomorphic Cauchy kernel S−1

L (s, q) is left slice hyper-
holomorphic in q and right slice hyperholomorphic in s.

The right slice hyperholomorphic Cauchy kernel S−1
R (s, q) is left slice hyper-

holomorphic in s and right slice hyperholomorphic in q.

Proof. Let q = u+ jv. We write S−1
L (s, q) in the form II, i.e.,

S−1
L (s, q) = (s− q)(s2 − 2Re(q)s+ |q|2)−1.

Then S−1
L (s, q) = f0(u, v) + jf1(u, v) with

f0(u, v) = (s− u)(s2 − 2us+ u2 + v2)−1, (2.28)

f1(u, v) = v(s2 − 2us+ u2 + v2)−1. (2.29)
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Obviously, f0 and f1 satisfy the compatibility condition (2.4). Moreover,

∂

∂u
f0(u, v) = −(s2 − 2us+ u2 + v2)−1

− (s− u)(s2 − 2us+ u2 + v2)−2(−2s+ 2u)

= (s2 − 2us+ u2 + v2)−2
(
(s− u)2 − v2

)
,

∂

∂v
f0(u, v) = −(s− u)(s2 − 2us+ u2 + v2)−22v,

and

∂

∂u
f1(u, v) = −v(s2 − 2us+ u2 + v2)−22(−s+ u),

∂

∂v
f1(u, v) = (s2 − 2us+ u2 + v2)−1

− v(s2 − 2us+ u2 + v2)−22v

= (s2 − 2us+ u2 + v2)−2
(
(s− u)2 − v2

)
.

Hence they also satisfy the Cauchy–Riemann equations (2.5), and so the mapping
q 7→ S−1

L (s, q) is left slice hyperholomorphic.
In order to show that S−1

L (s, q) is right slice hyperholomorphic in s, we write
S−1
L (s, q) in form I, i.e.,

S−1
L (s, q) = −(q2 − 2Re(s)q + |s|2)−1(q − s).

For s = u+ jv, we hence have S−1
L (s, q) = f0(u, v) + f1(u, v)j with

f0(u, v) = (q2 − 2uq + u2 + v2)−1(q − u),

f1(u, v) = (q2 − 2uq + u2 + v2)−1v.

But these are exactly the functions (2.28) and (2.29) in which s is replaced by
q. As we showed above, they satisfy the compatibility condition (2.4) and the
Cauchy–Riemann equations (2.5), and so the mapping s 7→ S−1

L (s, q) is right slice
hyperholomorphic.

The properties of the right slice hyperholomorphic Cauchy kernel follow im-
mediately, since S−1

R (s, q) = −S−1
L (q, s) by Corollary 2.1.26. �

Lemma 2.1.28. If s and q commute, then the left and the right slice hyperholomor-
phic Cauchy kernels reduce to the complex Cauchy kernel, i.e.,

S−1
L (s, q) = (s− q)−1 = S−1

R (s, q) if sq = qs.

Proof. If q and s commute, then

q2 − 2Re(s)q + |s|2 = q2 − (s+ s)q + ss = (q − s)(q − s).
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Hence, we have

S−1
L (s, q) = −(q2 − 2Re(s)q + |s|2)−1(q − s)

= −(q − s)−1(q − s)−1(q − s) = (s− q)−1,

and similarly also

S−1
R (s, q) = −(q − s)(q2 − 2Re(s)q + |s|2)−1

= −(s− q)(q − s)−1(q − s)−1 = (s− q)−1. �

Remark 2.1.29. Observe that left and right slice hyperholomorphic functions sat-
isfy Cauchy formulas with different kernels. This is different from what happens
for Fueter regular functions, where both left and right Fueter regular functions
satisfy a Cauchy formula with the same integral kernel.

Definition 2.1.30 (Slice Cauchy domain). An axially symmetric open set U ⊂ H
is called a slice Cauchy domain if U ∩ Cj is a Cauchy domain in Cj for every
j ∈ S. More precisely, U is a slice Cauchy domain if for every j ∈ S the boundary
∂(U ∩ Cj) of U ∩ Cj is the union a finite number of nonintersecting piecewise
continuously differentiable Jordan curves in Cj .

Remark 2.1.31. Observe that every slice Cauchy domain has only finitely many
components (i.e., maximal connected subsets). Moreover, at most one of them
is unbounded, and if there exists an unbounded component, then it contains a
neighborhood of ∞ in H.

Theorem 2.1.32 (The Cauchy formulas). Let U ⊂ H be a bounded slice Cauchy
domain, let j ∈ S, and set dsj = ds(−j). If f is a (left) slice hyperholomorphic
function on a set that contains U , then

f(q) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s), for every q ∈ U. (2.30)

If f is a right slice hyperholomorphic function on a set that contains U , then

f(q) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, q), for every q ∈ U. (2.31)

These integrals depend neither on U nor on the imaginary unit j ∈ S.

Proof. Assume that f is left slice hyperholomorphic on a set that contains U and
let q = u+ iv ∈ U . Since S−1

L (s, q) is left slice hyperholomorphic in q, we deduce
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from Theorem 2.1.9 that with p = u+ jv,

1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s)

=
1

2
(1− ij)

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, p) dsj f(s)

)

+
1

2
(1 + ij)

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, p)dsjf(s)

)

=
1

2
(1− ij)

(
1

2πj

∫
∂(U∩Cj)

(p− s)−1 ds f(s)

)

+
1

2
(1 + ij)

(
1

2πj

∫
∂(U∩Cj)

(p− s)−1 ds f(s)

)
,

where the last identity follows from Lemma 2.1.28 because p, s, and j all belong
to Cj and hence commute mutually. By Lemma 2.1.6, the restriction of f to Cj
is left holomorphic. Hence it satisfies the classical Cauchy formula. Together with
Theorem 2.1.9, this implies that

1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) =

1

2
(1− ij)f(p) +

1

2
(1 + ij)f(p) = f(q).

Since f(q) is independent of U and j ∈ S, the integral in (4.39) is obviously
independent of U and j.

The right slice hyperholomorphic case is again shown by analogous argu-
ments. �

Theorem 2.1.33 (Cauchy formulas on unbounded slice Cauchy domains). Let U ⊂
H be an unbounded slice Cauchy domain and let j ∈ S. If f ∈ SHL(U) and
f(∞) := lim|q|→∞ f(q) exists, then

f(q) = f(∞) +
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) for every q ∈ U.

If f ∈ SHR(U) and f(∞) := lim|q|→∞ f(q) exists, then

f(q) = f(∞) +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, q) for every q ∈ U.

Proof. Let f ∈ SHL(U) such that f(∞) := lim|q|→∞ f(q) exists and let q ∈ U .
For sufficiently large r > 0, the set Ur := U ∩ Br(0) is a bounded slice Cauchy



2.1. Slice Hyperholomorphic Functions 31

domain with q ∈ Ur and H \ Ur ⊂ U . By

f(q) =
1

2π

∫
∂(Ur∩Cj)

S−1
L (s, q) dsj f(s)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) +

1

2π

∫
∂(Br(0)∩Cj)

S−1
L (s, q) dsj f(s).

Theorem 2.1.21 implies that we can vary r without changing the value of the
second integral. Letting r tend to infinity, we find that it equals f(∞), and we
obtain the statement. �

Finally, just like holomorphic functions, slice hyperholomorphic functions can
be approximated by rational funcitons.

Definition 2.1.34. A function r is called left rational if it is of the form r(q) =
P (q)−1Q(q) with polynomials P ∈ N (H) and Q ∈ SHL(H).

A function r is called right rational if it is of the form r(q) = Q(q)P (q)−1

with polynomials P ∈ N (H) and Q ∈ SHR(H).
Finally, a function r is called intrinsic rational if it is of the form r(q) =

P (q)−1Q(q) with two polynomials P,Q ∈ N (H).

Remark 2.1.35. The requirement that P be intrinsic is necessary because the
function P−1 is otherwise not slice hyperholomorphic; cf. Theorem 2.1.4.

Corollary 2.1.36. Let f ∈ SHL(U), let j, i ∈ S with i ⊥ j, and write fj = F1 +F2i
with holomorphic components F1, F2 : U ∩ Cj → Cj according to Lemma 2.1.6.
Then f is left rational if and only if F1 and F2 are rational functions on Cj.

Similarly, if f ∈ SHR(U) and we write fj = F1 + iF2 with holomorphic
components F1 and F2 according to Lemma 2.1.6, then f is right rational if and
only if F1, F2 are rational functions on Cj.

Proof. Let f ∈ SHL(U) be left rational, i.e., f(q) = P (q)−1Q(q) for some intrinsic

polynomial P (q) =
∑N
n=0 q

nan with an ∈ R and some left slice hyperholomorphic

polynomial Q(q) =
∑M
m=0 q

mbm with bm ∈ H. If we write bm = bm,1 + bm,2i with

bm,1, bm,2 ∈ Cj and set Q1(q) =
∑M
m=0 q

mbm,1 and Q2(q) =
∑M
m=0 q

mbm,2 for
q ∈ U ∩ Cj , we obtain Q = Q1 +Q2i and in turn

fj(q) = P (q)−1Q(q) = P (q)−1Q1(q) + P (q)−1Q2(q)i.

Since P has real coefficients and Q1 and Q2 have coefficients in Cj , they are
polynomials on Cj , and hence P−1Q1 and P−1Q2 are rational functions on Cj .
Since furthermore, 1 and i are linearly independent over Cj , we obtain F1 = P−1Q1

and F2 = P−1Q2.
In order to show the converse implication, let us assume that F1 = P−1

1 Q1

and F2 = P2Q2 are rational functions. If P1(q) =
∑N
n=0 q

nan,1 with an,1 in

Cj , then P1(q) is the polynomial P1(q) =
∑N
n=0 q

nan,1. The product P̃1(q) :=
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P1(q)P1(q) is again a polynomial, and since it satisfies P̃1(q) = P̃1(q), it has real
coefficients. Similarly, the function P̃2(q) := P2(q)P2(q) is also a polynomial with
real coefficients, and we have

F1(q) = P̃1(q)−1P1(q)Q1(q), F2(q) = P̃2(q)−1P2(q)Q2(q),

and in turn

fj(q) = F1(q) + F2(q)i

= P̃1(q)−1P̃2(q)−1
(
P̃2(q)P1(q)Q1(q) + P̃1(q)P2(q)Q2(q)i

)
.

The function P (q) := P̃1(q)P̃2(q) is a polynomial with real coefficients on Cj , the
function

Q(q) := P̃2(q)P1(q)Q1(q) + P̃1(q)P2(q)Q2(q)i

is a polynomial with quaternionic coefficients on Cj , and by construction, fj(q) =
P (q)−1Q(q).

Replacing the complex variable by a quaternionic variable, we can extend P
to an intrinsic polynomial on H and Q to a left slice hyperholomorphic polyno-
mial on H. Due to the uniqueness of the left slice hyperholomorphic extension in
Lemma 2.1.11, we then obtain

f = extL(fj) = extL(P−1Q) = P−1Q,

and so f is actually left rational. The right rational case can be shown similarly. �

Theorem 2.1.37 (Runge’s theorem). Let K ⊂ H be an axially symmetric compact
set and let A be an axially symmetric set such that A∩C 6= ∅ for every connected
component C of (H ∪ {∞}) \K.

If f is left slice hyperholomorphic on an axially symmetric open set U with
K ⊂ U , then for every ε > 0, there exists a left rational function r whose poles lie
in A such that

sup{|f(q)− r(q)| : q ∈ K} < ε. (2.32)

Similarly, if f is right slice hyperholomorphic on an axially symmetric open
set U with K ⊂ U , then for every ε > 0, there exists a right rational function r
whose poles lie in A such that (2.32) holds.

Finally, if f ∈ N (U) for some axially symmetric open set U with K ⊂ U ,
then for every ε > 0, there exists a real rational function r whose poles lie in A
such that (2.32) holds.

Proof. Let f ∈ SHL(U) for some axially symmetric open set U with K ⊂ U , let
j, i ∈ S with j ⊥ i, and let us write fj = F1 + F2i with holomorphic functions
F1, F2 : U ∩ Cj → Cj as in Lemma 2.1.6. The set K ∩ Cj is compact in Cj and
the set A ∩ Cj has, due to its axial symmetry, nonempty intersection with every
connected component of (Cj ∪ {∞}) \ (K ∩ Cj).
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For ε > 0, the classical Runge’s theorem for holomorphic functions implies
the existence of rational functions R1 and R2 with poles in A ∩ Cj such that

sup{|F`(z)−R`(z)| : z ∈ K ∩ Cj} <
ε

4
, ` = 1, 2. (2.33)

The left slice hyperholomorphic extension r(q) = extL(R1 + R2i) is then by
Lemma 3.2.10 a right rational function with poles in A, and

|f(z)− r(z)| ≤ |F1(z)−R1(z)|+ |F2(z)−R2(z)| < ε

2

for all z ∈ K ∩ Cj . From Theorem 2.1.9 we conclude for q = u + kv ∈ K after
setting z = u+ jv ∈ K ∩ Cj that

|f(q)− r(q)| =
∣∣∣∣12(1− kj)(f(z) + r(z)) +

1

2
(1 + kj)(f(z)− r(z))

∣∣∣∣
≤ |f(z) + r(z)|+ |f(z)− r(z)) < ε.

(2.34)

The right slice hyperholomorphic case can be shown by similar arguments.
What remains to show is that R can be chosen rational intrinsic if f is

intrinsic. In order to do that, we first observe that in this case, F2 ≡ 0, so that we
can choose R2 ≡ 0 in (2.33). If we set

R̃(z) =
1

2

(
R1(z) +R(z)

)
,

then R̃ is a rational function on Cj that satisfies R̃(z) = R̃(z). It is hence of the

form R̃(z) = P (z)−1Q(z) with polynomials P and Q with coefficients in R. Its
slice hyperholomorphic extension r(q) = P (q)−1Q(q) for q ∈ H with P (q) 6= 0 is
then an intrinsic rational function.

As an intrinsic function, f satisfies f(q) = f(q). Hence for z ∈ K ∪ Cj , we
have

|f(z)− r(z)| = 1

2

∣∣∣f(z)−R1(z) + f(z)−R1(z)
∣∣∣

≤ 1

2

(∣∣∣f(z)−R1(z)
∣∣∣+
∣∣∣f(z)−R1(z)

∣∣∣) < ε

2
.

As in (2.34), we see then that (2.32) holds with the intrinsic rational function
r. �

2.2 The Fueter Mapping Theorem in Integral Form

In order to define the F -functional calculus in Chapter 7 we recall now the Fueter
mapping theorem and show its integral form. The Fueter mapping theorem in
integral form was introduced in [86]. We start with recalling the definition of
Fueter regularity.



34 Chapter 2. Slice Hyperholomorphic Functions

Definition 2.2.1 (Cauchy–Fueter regular functions). Let U be an open set in H. A
real differentiable function f : U → H is left Fueter regular if

∂

∂q0
f(q) +

3∑
`=1

e`
∂

∂q`
f(q) = 0, for every q ∈ U.

It is right Fueter regular if

∂

∂q0
f(x) +

3∑
`=1

∂

∂q`
f(q)e` = 0, for every q ∈ U.

It was Fueter who introduced in his paper [111] the following method for
generating Fueter regular functions:

(1) We consider a holomorphic function f(z) that depends on a complex variable
z = u + ιv in an open set of the upper complex half-plane. (In order to
distinguish it from quaternionic imaginary units, we denote the imaginary
unit of the usual complex numbers by ι.) We write

f(z) = f0(u, v) + ιf1(u, v),

where f0 and f1 are R-valued functions that satisfy the Cauchy–Riemann
system.

(2) For every quaternion q such that u + ιv belongs to the domain of f , we
replace the complex imaginary unit ι in f(z) = f0(u, v) + ιf1(u, v) by the

quaternionic imaginary unit Im(q)
|Im(q)| , and we set u = Re(q) and v = |Im(q)|.

We then define

f(q) = f0(q0, |Im(q)|) +
Im(q)

|Im(q)|
f1(q0, |Im(q)|).

Observe that the function f(q) is slice hyperholomorphic by construction.

(3) We apply the Laplace operator ∆ =
∑3
`=0

∂2

∂q2
`

to f and define f̆(q) = ∆f(q).

It turns out that the function f̆(q) is then both left and right Fueter regular.
Observe that by construction, f(q) is an intrinsic slice hyperholomorphic

function on the open axially symmetric set of all quaternions q = u+ jv such that
u+ ιv belongs to the domain of f .

In modern language, the Fueter mapping theorem states that applying the
Laplace operator ∆ to a slice hyperholomorphic function f(q) yields the Fueter
regular function

f̆(q) = ∆f(q).

This function is left Fueter regular if f is left slice hyperholomorphic and right
Fueter regular if f is right slice hyperholomorphic.
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If we write f in terms of the slice hyperholomorphic Cauchy formula, we can
apply ∆ and commute it with the integral such that ∆ is actually applied to the
slice hyperholomorphic Cauchy kernel inside this integral. In this way, we obtain
an integral transform with respect to the kernel ∆S−1

L (s, p), resp. ∆S−1
R (s, p), that

maps slice hyperholomorphic functions to Fueter regular functions.

A simple formula for ∆S−1
L (s, p), resp. ∆S−1

R (s, p), is, however, obtained only
if we write the slice hyperholomorphic Cauchy kernels in form II. As a consequence,
the F -functional calculus, which is based on this integral transform, can be de-
fined only for operators with commuting components. Otherwise, the S-resolvents
cannot be written in a form that corresponds to form II of the Cauchy kernels.

Theorem 2.2.2. Let q, s ∈ H with q 6∈ [s] and let ∆ =
∑3
`=0

∂2

∂q2
`

be the Laplace

operator in the variable q.

(a) Consider the left slice hyperholomorphic Cauchy kernel S−1
L (s, q) written in

form II. Then we have

∆S−1
L (s, q) = −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2. (2.35)

(b) Consider the right slice hyperholomorphic Cauchy kernel S−1
R (s, q) written in

form II. Then we have

∆S−1
R (s, q) = −4(s2 − 2Re(q)s+ |q|2)−2(s− q̄). (2.36)

Proof. We show only the identity (2.35), the other one follows with similar argu-
ments. If we write S−1

L (s, q) in form II, then straightforward computations yield

∂2

∂q2
0

S−1
L (s, q) = 2(s2 − 2Re(q)s+ |q|2)−2(−2s+ 2q0)

+ 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(−2s+ 2q0)2

− 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

and

∂2

∂q2
`

S−1
L (s, q) = −4e`q`(s

2 − 2Re(q)s+ |q|2)−2

+ 8q2
` (s− q̄)(s2 − 2Re(q)s+ |q|2)−3

− 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−2
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for ` = 1, 2, 3. Thus, we obtain

∆S−1
L (s, x) = 2(s2 − 2Re(q)s+ |q|2)−2(−2s+ 2q0)

+ 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(−2s+ 2q0)2

−
3∑
`=1

4e`q`(s
2 − 2Re(q)s+ |q|2)−2

+

3∑
`=1

8q2
` (s− q)(s2 − 2Re(q)s+ |q|2)−3

− 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2.

Since (s2 − 2Re(q)s+ |q|2)−2 and (−2s+ 2q0) commute, we have

∆S−1
L (s, q)

= −4

(
s− q0 +

3∑
`=1

4e`q`

)
(s2 − 2Re(q)s+ |q|2)−2

+ 2(s− q̄)

[
(−2s+ 2q0)2 +

3∑
`=1

4q2
`

]
(s2 − 2Re(q)s+ |q|2)−3

− 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

= −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

+ 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

− 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

= −4(s− q̄)(s2 − 2Re[x]s+ |x|2)−2. �

Proposition 2.2.3. Let q ∈ H. The function s 7→ ∆S−1
L (s, q) is right slice hyperholo-

morphic on H \ [q] and the function s 7→ ∆S−1
R (s, q) is left slice hyperholomorphic

on H \ [q].

Proof. For s = u+ jv, we have

∂

∂u
∆S−1

L (s, q) = −4(s2 − 2Re(q)s+ |q|2)−2

+ 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(2s− 2Re(q))

and

∂

∂v
∆S−1

L (s, q) = −4j(s2 − 2Re(q)s+ |q|2)−2

+ 8(s− q̄)(s− 2Re(q)(u+ jv) + |q|2)−3(2sj − 2Re(q)j).

Since j commutes with (s2 − 2Re(q)s+ |q|2)−2, we conclude that

∂

∂u
∆S−1

L (s, q) +
∂

∂v
∆S−1

L (s, q)j = 0.
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Hence ∆S−1
L (s, q) is right slice hyperholomorphic in s by Proposition 2.1.14, be-

cause H \ [q] is an axially symmetric slice domain. The other case can be shown
with similar arguments. �

Proposition 2.2.4. Let s ∈ H. The function q 7→ ∆S−1
L (s, q) is left Fueter regular

on H \ [s] and the function q 7→ ∆S−1
R (s, q) is right Fueter regular on H \ [s].

Proof. We have

∂

∂q0
∆S−1

L (s, q) = 4(s2 − 2Re(q)s+ |q|2)−2

− 16(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(s− q0)

and

∂

∂q`
∆S−1

L (s, q) = −4e`(s
2 − 2Re(q)s+ |q|2)−2

+ 16q`(s− q̄)(s2 − 2Re(q)s+ |q|2)−3.

Therefore,

∂

∂q0
∆S−1

L (s, q) +
3∑
`=1

e`
∂

∂q`
∆S−1

L (s, q)

= 4(s2 − 2Re(q)s+ |q|2)−2

− 16(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(s− q0)

+

3∑
`=1

4(−e2
`)(s

2 − 2Re(q)s+ |q|2)−2

+

3∑
`=1

16e`q`(s− q̄)(s2 − 2Re(q)s+ |q|2)−3,

and since (s2 − 2Re(q)s+ |q|2)−1 commutes with s− q0, we finally obtain

∂

∂q0
∆S−1

L (s, q) +
3∑
`=1

e`
∂

∂q`
∆S−1

L (s, q)

= 16(s2 − 2Re(q)s+ |q|2)−2

+ 16

((
q0 +

3∑
`=1

q`e`

)
(s− q)− (s− q)s

)
(s2 − 2Re(q)s+ |q|2)−3

= 16(s2 − 2Re(q)s+ |q|2)−2 − 16(s2 − 2Re(q)s+ |q|2)−2 = 0.

Hence q 7→ ∆S−1
L (s, q) is left Fueter regular. The right Fueter regularity of q 7→

∆S−1
R (s, q) can be shown with analogous computations. �
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Definition 2.2.5 (The Fueter kernels). We define for s ∈ H with q /∈ [s] the FL-
kernel as

FL(s, q) := ∆S−1
L (s, q) = −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2,

and the FR-kernel as

FR(s, q) := ∆S−1
R (s, q) = −4(s2 − 2Re(q)s+ |q|2)−2(s− q̄).

Finally, we can now prove the Fueter mapping theorem in integral form.

Theorem 2.2.6 (The Fueter mapping theorem in integral form). Let U ⊂ H be a
slice Cauchy domain and choose j ∈ S.

(a) If f ∈ SHL(O) for some set O with U ⊂ O, then f̆(q) = ∆f(q) is left Fueter
regular on U , and it admits the integral representation

f̆(q) =
1

2π

∫
∂(U∩Cj)

FL(s, q) dsj f(s) ∀q ∈ U. (2.37)

(b) If f ∈ SHR(O) for some set O with U ⊂ O, then f̆(q) = ∆f(q) is right
Fueter regular on U , and it admits the integral representation

f̆(q) =
1

2π

∫
∂(U∩Cj)

f(s) dsj FR(s, q) ∀q ∈ U. (2.38)

The integrals depend neither on U nor on the imaginary unit j ∈ S.

Proof. The function f̆(q) = ∆f(q) is Fueter regular by the Fueter mapping theo-
rem. We can write f(q) for q ∈ U in terms of the corresponding slice hyperholo-
morphic Cauchy formula. If we apply the Laplacian and exchange the order of
integration and differentiation, we end up with (2.37), resp. (2.38). �

2.3 Vector-Valued Slice Hyperholomorphic Functions

In this section, we generalize the notion of slice hyperholomorphicity from scalar-
valued to vector-valued functions. In particular, similar to what happens for holo-
morphic functions, we show that the notions of weak and strong slice hyperholo-
morphicity are equivalent. Via the quaternionic Hahn–Banach theorem, one can
prove properties of vector-valued slice hyperholomorphic functions by reducing the
problems to the scalar case.

Definition 2.3.1. A quaternionic right vector space is an additive group (X,+) that
is endowed with a quaternionic right multiplication (X,H)→ X, (x, q) 7→ xq such
that for all x, y ∈ X and all p, q ∈ H,

x(p+ q), = xp+ xq (x+ y)q = xq + yq, (xp)q = x(pq).
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A quaternionic left vector space is an additive group (X,+) that is endowed with a
quaternionic left multiplication (H, X)→ X, (q, x) 7→ qx such that for all x, y ∈ X
and all p, q ∈ H,

(p+ q)x = px+ qx, q(x+ y) = qx+ qy, q(px) = (qp)x.

A two-sided quaternionic vector space is an additive group (X,+) endowed with
a quaternionic left and a quaternionic right multiplication such that X is both a
left and a right vector space and such that ax = xa for all a ∈ R and all x ∈ X.

Remark 2.3.2. If we start from a real vector space XR, then we can quaternionify
XR to obtain the two-sided quaternionic vector space X = XR ⊗H by setting

X = XR ⊗H =

{
3∑
`=0

x`e` : x` ∈ XR

}

with the scalar multiplications

qx =
3∑
`=0

x`(qe`), xq =
3∑
`=0

x`(e`q),

for x ∈ X and q ∈ H. Conversely, every two-sided quaternionic vector space X
is isomorphic to the quaternionification of a real vector space, namely to XR ⊗H
with the real vector space

XR = {x ∈ X : qx = xq ∀q ∈ H}.

Definition 2.3.3. A function ‖ · ‖ : XR → [0,+∞) on a quaternionic right vector
space XR is called a norm on XR, if it satisfies

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖xq‖ = ‖x‖|q| for all x ∈ X and all q ∈ H,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

If XR is complete with respect to the metric induced by ‖ · ‖, we call XR a
quaternionic right Banach space.

A function ‖ · ‖ : XL → [0,+∞) on a quaternionic left vector space XL is
called a norm on XL, if it satisfies (i), (iii), and

(ii′) ‖qx‖ = |q|‖x‖ for all x ∈ X and all q ∈ H.

If XL is complete with respect to the metric induced by ‖ · ‖, we call XL a quater-
nionic left Banach space.

Finally, a two-sided quaternionic vector space X is called a quaternionic two-
sided quaternionic Banach space if it is endowed with a norm ‖ · ‖ such that it is
both a left and a right Banach space, that is, such that (i), (ii), (ii′) and (iii) are
satisfied and such that X is complete with respect to the metric induced by ‖ · ‖.
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Corollary 2.3.4. A quaternionic left or right Banach space turns into a real Banach
space if we restrict the left, resp. right, scalar multiplication to R, and it turns into
a complex Banach space over Cj with j ∈ S if we restrict the left, resp. right, scalar
multiplication to Cj.

A two-sided quaternionic Banach space turns into a real Banach space if we
restrict the scalar multiplications to R, and it turns into a complex Banach space
over Cj with j ∈ S if we restrict either the left or the right scalar multiplication
to Cj.

Definition 2.3.5. A function ϕ : X1 → X2 between two quaternionic right vector
spaces X1, X2 is called right linear if

ϕ(xq + y) = ϕ(x)q + ϕ(y) ∀x, y ∈ X1, q ∈ H.

Similarly, a function ϕ : X1 → X2 between two quaternionic left vector spaces
X1, X2 is called left linear if

ϕ(qx+ y) = qϕ(x) + ϕ(y) ∀x, y ∈ X1, q ∈ H.

A right or left linear mapping ϕ : X1 → X2 between two quaternionic right, resp.
left, Banach spaces is called bounded if

‖ϕ‖ := sup
‖x‖X1

=1

‖ϕ(x)‖X2 < +∞.

Definition 2.3.6. The dual X ′R of a quaternionic right Banach space XR is the
quaternionic left Banach space of all bounded right linear mappings from XR to
H. The dual X ′L of a quaternionic left Banach space XL is the quaternionic right
Banach space of all bounded left linear mappings from XR to H. Finally, for a
two-sided quaternionic Banach space X, we distinguish two different dual spaces:
the right dual X ′R of X is the dual space of X as a right Banach space, and the
left dual X ′L of X is the dual space of X as a left Banach space.

We finally recall the quaternionic Hahn–Banach theorem, which will be im-
portant in the sequel. It was first proven in [194], but a proof in English can be
found in [89].

Theorem 2.3.7 (Hahn–Banach theorem). Let XR be a quaternionic right vector
space, let X0 be a right linear subspace of XR, and let ρ : XR → [0,+∞) satisfy
ρ(x + y) ≤ ρ(x) + ρ(y) and ρ(xq) = ρ(x)|q| for all x, y ∈ XR and all q ∈ H.
Moreover, let λ : X0 → H be a quaternionic right linear functional on X0 such
that |λ(x)| ≤ ρ(x) for all x ∈ X0. Then there exists a right linear functional
Λ : XR → H such that Λ(x) = λ(x) for all x ∈ X0 and such that

|Λ(x)| ≤ ρ(x) for all x ∈ XR.

An analogous statement holds for left linear vector spaces.
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Corollary 2.3.8. The dual space of a quaternionic left or right Banach space sepa-
rates points. Furthermore, both the left and the right duals of a two-sided quater-
nionic Banach space also separate points.

Let us now turn our attention to slice hyperholomorphic functions with val-
ues in a quaternionic Banach space. As in the complex case, one can distinguish
between strong and weak slice hyperholomorphicity.

Definition 2.3.9 (Slice hyperholomorphic vector-valued functions). Let U ⊆ H be
an axially symmetric open set and let

U = {(u, v) ∈ R2 : u+ Sv ⊂ U}.

A function f : U → XL with values in a quaternionic left Banach space XL is
called a left slice function, if is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : U → XL that satisfy the compatibility condition (2.4).
If in addition f0 and f1 satisfy the Cauchy–Riemann equations (2.5), then f is
called strongly left slice hyperholomorphic.

A function f : U → XR with values in a quaternionic right Banach space is
called a right slice function if it is of the form

f(q) = f0(u, v) + f1(u, v)j for q = u+ jv ∈ U

with two functions f0, f1 : U → XR that satisfy the compatibility condition (2.4).
If in addition f0 and f1 satisfy the Cauchy–Riemann equations (2.5), then f is
called strongly right slice hyperholomorphic.

Definition 2.3.10. Let U ⊂ H be an axially symmetric open set. A function f :
U → XL with values in a quaternionic left Banach space XL is called weakly left
slice hyperholomorphic if Λf is left slice hyperholomorphic for every Λ ∈ X ′L. A
function f : U → XR with values in a quaternionic right Banach space XR is
called weakly right slice hyperholomorphic if Λf is right slice hyperholomorphic
for every Λ ∈ X ′R.

Since the functionals Λ in the dual of XL, resp. XR, are continuous, every
strongly slice hyperholomorphic function is weakly slice hyperholomorphic. As in
the complex case, the converse also is true. In order to show this, we recall the
following lemma. We omit the proof, since it works exactly as in the complex case
(see, e.g., [179], p. 189).

Lemma 2.3.11. Let X be a two-sided quaternionic Banach space. A sequence
(xn)n∈N is Cauchy if and only if (Λ(xn))n∈N is uniformly Cauchy for Λ ∈ X ′,
‖Λ‖ ≤ 1.

Proposition 2.3.12. Let XL be a quaternionic left Banach space, let U be an open
axially symmetric subset of H, and let f : U → XL be a real differentiable left slice
function. Then the following statements are equivalent:
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(i) The function f is strongly left slice hyperholomorphic.

(ii) The function f admits a left slice derivative, that is,

∂Sf(q) := lim
p→q,p∈Cj

(p− q)−1(f(p)− f(q)) (2.39)

exists for all q = u + jv ∈ U in the topology of XL, and it exists for every
j ∈ S if q is real.

(iii) For every j ∈ S, the restriction fj = f |U∩Cj of f to U ∩ Cj satisfies

1

2

(
∂

∂u
f(q) + j

∂

∂v
f(q)

)
= 0, ∀q = u+ jv ∈ U ∩ Cj .

Let XR be a quaternionic right Banach space, let U be an open axially symmetric
subset of H, and let f : U → XR be a real differentiable right slice function. Then
the following statements are equivalent:

(i) The function f is strongly right slice hyperholomorphic.

(ii) The function f admits a right slice derivative, that is,

∂Sf(q) := lim
p→q,p∈Cj

(f(p)− f(q))(p− q)−1

exists for all q = u + jv ∈ U in the topology of XR, and it exists for every
j ∈ S if q is real.

(iii) For every j ∈ S, the restriction fj = f |U∩Cj of f to U ∩ Cj satisfies

1

2

(
∂

∂u
f(q) +

∂

∂v
f(q)j

)
= 0, ∀q = u+ jv ∈ U ∩ Cj .

Proof. Let f : U → XL be a left slice function. The equivalence of (ii) and (iii)
follows immediately from the complex theory and Corollary 2.3.4: the statement
(iii) is equivalent to fj being, for every j ∈ S, a (left) holomorphic function on Cj
with values in the complex Banach space XL over Cj . This is in turn equivalent
to the existence of the limit

f ′j(q) = lim
p→q,p∈Cj

(p− q)−1(f(p)− f(q)) = ∂Sf(q)

for every q = u+ jv ∈ U .
Let us now show the equivalence of (i) and (iii). If (i) holds, then

1

2

(
∂

∂u
fj(z) + j

∂

∂v
fj(z)

)
=

1

2

(
∂

∂u
f0(z) + j

∂

∂u
f1(z) + j

∂

∂v
f0(z)− ∂

∂v
f1(z)

)
= 0,
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because f0 and f1 satisfy the Cauchy–Riemann equations (2.5). If, on the other
hand, (iii) holds, then we have because of

f0(u, v) =
1

2
(f(u+ jv) + f(u− jv))

and

f1(u, v) =
1

2
j (f(u− jv)− f(u+ jv))

that

∂

∂u
f0(u, v) =

1

2

[
∂

∂u
f(u− jv) +

∂

∂u
f(u+ jv)

]
=

1

2

[
j
∂

∂v
f(u− jv)− j ∂

∂v
f(u+ jv)

]
=

∂

∂v
f1(u, v).

and

∂

∂v
f0(u, v) =

1

2

[
∂

∂v
f(u− jv) +

∂

∂v
f(u+ jv)

]
=

1

2

[
−j ∂

∂u
f(u− jv) + j

∂

∂u
f(u+ jv)

]
= − ∂

∂u
f1(u, v).

Hence f is actually left slice hyperholomorphic.
The right slice hyperholomorphic case can be shown with analogous argu-

ments. �

Theorem 2.3.13. Let U ⊂ H be an axially symmetric open set.

(i) Every weakly left slice hyperholomorphic function f : U → XL with values in
a quaternionic left Banach space is strongly left slice hyperholomorphic.

(ii) Every weakly right slice hyperholomorphic function f : U → XR with values
in a quaternionic right Banach space is strongly right slice hyperholomorphic.

Proof. Let f be a weakly left slice hyperholomorphic function on U with values in
a quaternionic left Banach space XL. We first observe that f is a left slice function.
If we choose i ∈ S and set

f0(u, v) =
1

2
(f(u+ iv) + f(u− iv))

and

f1(u, v) =
1

2
i(f(u− iv)− f(u+ iv))

for u, v ∈ R with u + iv ∈ U , then f0 and f1 obviously satisfy the compatibility
condition (2.4). If Λ ∈ X ′L, then (Λ◦f)(q) := Λ(f(q)) is left slice hyperholomorphic
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on U by our assumptions, and hence it satisfies the structure formula (2.9). If
q = u+ jv ∈ U , we can set z = u+ iv for netatness and obtain

Λ(f0(u, v) + jf1(u, v))

= Λ

(
1

2
(f(z) + f(z))) + ji

1

2
(f(z)− f(z))

)
=

1

2
(Λ(f(z)) + λ(f(z))) + ji

1

2
(Λ(f(z))− Λ(f(z)))

=
1

2
((Λ ◦ f)(z) + (Λ ◦ f)(z)) + j

1

2
((Λ ◦ f)(z)− (Λ ◦ f)(z))

= (Λ ◦ f)(q) = Λ(f(q)).

Since Λ ∈ V ′L was arbitrary and V ′L separates points by Corollary 2.3.8, we find
that f(q) = f0(u, v) + jf1(u, v) and hence f is a left slice function.

The rest of the proof follows the lines of the proof in the complex case in [179,
p. 189]. For every Λ ∈ X ′L, the function q 7→ Λ(f(q)) is left slice hyperholomorphic
on U . Its restriction to a plane Cj is hence left holomorphic and therefore admits
a representation in terms of the Cauchy formula. If q = u + jv ∈ U and p tends
to q in Cj , we can therefore choose r > 0 so small that Br(q) ⊂ U and find for
p ∈ Br(q) ∩ Cj that

Λ(f(p))− Λ(f(q))

=
1

2π

∫
Γ

(
(s− p)−1 − (s− q)−1

)
dsj Λ(f(s))

=
1

2π

∫
Γ

(p− q)(s− p)−1(s− q)−1 dsj Λ(f(s))

with Γ := ∂(Br(q) ∩ Cj). Moreover, since (Λ ◦ f)′j(q) = ∂
∂uΛ(f(q)), we also have

∂

∂u
Λ(f(q)) =

1

2π

∫
Γ

(s− q)−2dsjΛ(f(s))

and hence ∣∣∣∣(p− q)−1(Λ(f(p))− Λ(f(q)))− ∂

∂u
Λ(f(q))

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
Γ

(
(s− p)−1(s− q)−1 − (s− q)2

)
dsj Λ(f(s))

∣∣∣∣ .
The mapping s 7→ Λ(f(s)) is continuous on Γ. Since Γ is compact, we obtain

sup
s∈Γ
‖Λ(f(s))| < +∞.

The mappings Λ 7→ Λ(f(s)), s ∈ Γ, hence form a family of pointwise bounded lin-
ear maps from V ′L to H. By the uniform boundedness principle, they are therefore
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uniformly bounded such that

sup
s∈Γ,‖Λ‖VL≤1

|Λ(f(s))| := C < +∞.

Consequently, we have∣∣∣∣(p− q)−1(Λ(f(p))− Λ(f(q)))− ∂

∂u
Λ(f(q))

∣∣∣∣
≤ C

2π

∫
Γ

∣∣(s− p)−1(s− q)−1 − (s− q)2
∣∣ d|s| −→ 0

as p approaches q in Cj . Since the above estimate is independent of Λ, it follows
that

lim
p→q

Λ
(
(p− q)−1(f(p)− f(q))

)
=

∂

∂u
Λ(f(q)) =

∂

∂u
Λ(f(q))

uniformly for Λ ∈ V ′L with ‖Λ‖ ≤ 1. Thus Λ
(
(p− q)−1(f(p)− f(q)

)
is in particular

uniformly Cauchy as p→ q for ‖Λ‖ < 1, and we conclude from Lemma 2.3.11 that
the limit (2.39) exists, i.e., that f admits a left slice derivative at q. Since q ∈ U
was arbitrary and we already know that f is a left slice function, Proposition 2.3.12
implies that f is strongly left slice hyperholomorphic.

The right slice hyperholomorphic case can again be shown with similar ar-
guments. �

Since weak and strong slice hyperholomorphicity are equivalent, we will refer
to such functions simply as slice hyperholomorphic.

Definition 2.3.14. Let U ⊂ H be an axially symmetric open set. We denote the
set of all left slice hyperholomorphic functions on U with values in a quaternionic
left Banach space XL by SHL(U,XL) and the set of all right slice hyperholo-
morphic function on U with values in a quaternionic right Banach space XR by
SHR(U,XR).

Corollary 2.3.15. Let U ⊂ H be an axially symmetric open set. If XL is a quater-
nionic left Banach space, then SHL(U,XL) is a quaternionic right linear space. If
XR is a quaternionic right Banach space, then SHR(U,XR) is a quaternionic left
linear space.

Since weak and strong slice hyperholomorphicity are equivalent, several re-
sults for scalar-valued slice hyperholomorphic functions can be generalized to the
vector-valued case by applying functionals in the dual space in order to reduce the
problems to the scalar case.

Proposition 2.3.16 (Identity principle). Let U be an axially symmetric slice do-
main, let f and g be two left or right slice hyperholomorphic functions on U with
values in a quaternionic left, resp. right, Banach space X, and set Z := {q ∈ U :
f(q) = g(q)}. If there exists j ∈ S such that Z ∩ Cj has an accumulation point in
U ∩ Cj, then f ≡ g on all of U .
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Proof. The hypothesis implies Λf = Λg on Z ∩Cj for every element Λ ∈ X ′. The-
orem 2.1.8 thus implies that the left, resp. right, slice hyperholomorphic function
Λ(f −g) is identically zero on the entire axially symmetric slice domain U . By the
Hahn–Banach theorem, we obtain f − g = 0 on U . �

Computations as in the scalar case show, moreover, that vector-valued slice
hyperholomorphic functions also satisfy the structure formula and that they can
be expanded into a Taylor series at every real point.

Proposition 2.3.17 (Structure formula (or representation formula)). Let U ⊂ H be
an axially symmetric open set, let q = u+ jv ∈ U and z = u+ iv for some i ∈ S.
If f is a left slice function on U with values in a quaternionic left Banach space
XL, then

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2
ji
[
f(z)− f(z)

]
.

If f is a right slice function on U with values in a quaternionic right Banach space
XR, then

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2

[
f(z)− f(z)

]
ij.

Theorem 2.3.18. Let a ∈ R, let r > 0, and let Br(a) = {q ∈ H : |q − a| < r}. If
f ∈ SHL(Br(a), XL) with values in a quaternionic left Banach space XL, then

f(q) =
+∞∑
n=0

(q − a)n
1

n!
∂nSf(a) ∀q = u+ jv ∈ Br(a). (2.40)

If on the other hand f ∈ SHR(Br(a), XR) with values in a quaternionic right
Banach space XR, then

f(q) =
+∞∑
n=0

1

n!
(∂nSf(a)) (q − a)n ∀q = u+ jv ∈ Br(a).

Finally, the slice hyperholomorphic Cauchy formulas hold also in the scalar
case.

Theorem 2.3.19 (Vector-valued Cauchy formula). Let U ⊂ H be a bounded slice
Cauchy domain, let j ∈ S, and set dsj = −dsj. If f is a left slice hyperholomorphic
function with values in a quaternionic left Banach space XL that is defined on an
open axially symmetric set O with U ⊂ O, then

f(q) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) ∀q ∈ U. (2.41)

If f is a right slice hyperholomorphic function with values in a quaternionic right
Banach space XR that is defined on an open axially symmetric set O with U ⊂ O,
then

f(q) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, q), ∀q ∈ U.

These integrals depend neither on U nor on the imaginary unit j ∈ S.
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Proof. Let f ∈ SHL(U,XL) and let q ∈ U . Since ∂(U ∩ Cj) is compact and
the integrand is continuous, the integral in (2.41) converges. Moreover, for every
Λ ∈ X ′L, we have, due to the left slice hyperholomorphicity of q 7→ ∆(f(q)), that

Λ

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s)

)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj Λ(f(s)) = Λ(f(q)).

Since Λ ∈ X ′L was arbitrary and X ′L separates points by the Hahn–Banach theo-
rem, we obtain the statement. �

If one considers slice hyperholomorphic functions with values in a quater-
nionic Banach algebra, then the product of two slice hyperholomorphic functions
is, just as in the scalar case, in general not slice hyperholomorphic. It is, however,
possible to define a generalized product that preserves slice hyperholomorphicity.

Definition 2.3.20. A two-sided quaternionic Banach algebra is a quaternionic Ba-
nach space X that is endowed with a product X ×X → X such that:

(i) The product is associative and distributive over the sum in X.

(ii) One has (qx)y = q(xy) and x(yq) = (xy)q for all x, y ∈ X and all q ∈ H.

(iii) One has ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ X.

If in addition there exists a unit with respect to the product in X, then X is called
a two-sided quaternionic Banach algebra with unit.

Definition 2.3.21. Let U ⊂ H be an axially symmetric open set and let X be a
two-sided quaternionic Banach algebra. For two functions f, g ∈ SHL(U,X) with
f(q) = f0 + jf1 and g = g0 + jg1 for q = u + jv ∈ U , we define their left slice
hyperholomorphic product as

f ∗L g :=f0g0 − f1g1 + j (f0g1 + f1g0) . (2.42)

For two functions f, g ∈ SHR(U,X) with f(q) = f0(u, v) + f1(u, v)j and g(q) =
g0(u, v)+g1(u, v)j for q = u+ jv ∈ U , we define their right slice hyperholomorphic
product as

f ∗R g :=f0g0 − f1g1 + (f0g1 + f1g0) j. (2.43)

Remark 2.3.22. It is immediate that the ∗L-product of two left slice hyperholo-
morphic functions is again left slice hyperholomorphic and that the ∗R-product of
two right slice hyperholomorphic functions is again right slice hyperholomorphic.
If, moreover, U = Br(0), then f , g admit power series expansions. If f and g are
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left slice hyperholomorphic with f(q) =
∑+∞
n=0 q

nan and g(q) =
∑+∞
n=0 q

nbn with
an, bn ∈ X, then

(f ∗L g)(q) :=
+∞∑
n=0

qn

(
n∑
`=0

a`bn−`

)
.

Similarly, if f and g are right slice hyperholomorphic with f(q) =
∑+∞
n=0 anq

n and

g(q) =
∑+∞
n=0 bnq

n with an, bn ∈ X, then

(f ∗R g)(q) :=
+∞∑
n=0

(
n∑
`=0

a`bn−`

)
qn.

Remark 2.3.23. The slice hyperholomorphic product can be defined in even more
general settings than for functions with values in a quaternionic Banach algebra.
If, for instance, f ∈ SHL(U,H) and g ∈ SHL(U,XL) for some quaternionic left
Banach space, then we can define f ∗L g ∈ SHL(U,XL) also as in (2.42). For
another example, we consider f ∈ B(X1, X2) and g ∈ B(X2, X3), where X1, X2,
and X3 are two-sided quaternionic Banach spaces and B(X,Y ) denotes the set
of all bounded right linear operators from X to Y . Then we can again define
f ∗L g ∈ SHL(U,B(X1, X3)) by (2.42). The same can, of course, be done for right
slice hyperholomorphic functions.

2.4 Comments and Remarks

The results of this chapter are spread over several papers which are quoted below.
The treatment is sometimes different according to the definition of slice hyper-
holomorphicity that one takes. The interest in slice hyperholomorphic functions,
defined in [135], arose in 2006 because of their applications to operator theory. Sim-
ilar functions were, however, already used much earlier by Fueter, who considered
in [110] functions of the form

f(q) = f0(u+ iv) + jf1(u+ iv), q = u+ jv,

where f0, f1 are the real-valued components of the analytic function F (z) =
f0(z)+ ιf1(z), in order to define what he called hyperanalytic functions. These hy-
peranalytic functions are nothing but intrinsic slice hyperholomorphic functions.
In [111] the author generates Fueter regular functions by applying the Laplace

operator to such a class of functions. The relation f̆ = ∆f between Fueter regular
functions f̆ and slice hyperholomorphic functions f is nowadays a modern way to
state the Fueter mapping theorem. In [187], Sce extended this theorem to func-
tions with values in a Clifford algebras of odd dimension. The extension to Clifford
algebras of even dimensions needs more sophisticated arguments based on Fourier
multipliers. In [175], Qian introduced the even–odd condition (2.4) in order to
define entire slice hyperholomorphic functions, and he generalized the theorem of
Sce. For biaxial symmetric domains, see [174].
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In [135], slice hyperholomorphic functions were defined as functions that
satisfy the properties shown in Lemma 2.1.6, that is, they are functions whose
restrictions to complex planes Cj are left, resp. right, holomorphic. As we showed in
Proposition 2.1.14, on axially symmetric slice domains, this definition is equivalent
to Definition 2.1.2. Precisely, one can show that such functions satisfy the structure
formula when they are defined on an axially symmetric slice domain. Considering
only functions on axially symmetric slice domains is, however, not sufficient for
developing a rich theory of quaternionic linear operators. For operator theory it is
important to consider functions that are defined on axially symmetric open sets
that are not necessarily slice domains, so for this reason we use Definition 2.1.2
for slice hyperholomorphicity.

There is an other approach to slice hyperholomorphic functions that refers
to a global operator introduced in [60]. The global operator G(q) is defined by

G(q) := |q|2 ∂

∂q0
+ q

3∑
j=1

qj
∂

∂qj
,

and if U ⊆ H is an open set and f : U → H is a slice hyperholomorphic function,
then

G(q)f(q) = 0.

Using as a definition of slice hyperholomorphic those functions that are in the
kernel of the operators G, we have a possible definition of slice hyperholomorphic
functions in several variables. Here the theory is far from being developed, be-
cause we have a system of nonconstant differential operators, and the power series
expansion disappears, as the following example in [60] shows:

Example 2.4.1. Let U be an open set in H × H that does not intersect the real
line. Then the function

f(q1, q2) = −Im(q2)+
q

2

|q
2
|

(1

2
Re(q1)2− 1

2
Im(q1)2+Re(q2)

)
+
q

1

|q
1
|
q

2

|q
2
|
Re(q1)Im(q1)

(2.44)
satisfies the system{

|q
1
|2 ∂
∂q1,0

f(q1, q2) + q
1

∑3
j=1 q1,j

∂
∂q1,j

f(q1, q2) = 0,

|q
2
|2 ∂
∂q2,0

f(q1, q2) + q
2

∑3
j=1 q2,j

∂
∂q2,j

f(q1, q2) = 0.
(2.45)

In the paper [98] there are some results associated with the theory of slice
hyperholomorphic functions in several variables, but the global operator is not
used. The above example can be found also in [98].

References on function theory. The theory of slice hyperholomorphic functions is
nowadays very well developed. The main monographs on this topic or containing
this topic are [18,56,89,96,123,133].



50 Chapter 2. Slice Hyperholomorphic Functions

Slice hyperholomorphic functions can be defined not only over the quater-
nions but also over more general Clifford algebras. In the quaternionic setting,
slice hyperholomorphic functions are also called slice regular, and their theory has
been developed by several authors. Some of the most important contributions were
published in [37–39,58,101,112,113,130–132,134–141,154,180,181,188–190].

Slice hyperholomorphic functions with values in a Clifford algebra are also
called slice monogenic functions. The main results of their theory are contained in
the papers [64,65,73,90–95,152,198].

Several important approximation theorems for slice hyperholomorphic func-
tions are collected in the papers [114–122] and the monograph on quaternionic
approximation theory [123].

The Fueter mapping theorem provides a relation between slice hyperholomor-
phic functions and the classical theory of monogenic functions. Another relation is
provided by the Radon transform and the dual Radon transform. Intense studies
of these relations that go far beyond the results presented in Section 2.2 can be
found in [61,69,83].

The theory of slice hyperholomorphic functions of several variables is very
far from being developed, but some results can be found in the papers [3,98,145].
See also the paper on the Herglotz functions of several quaternionic variables [2].

Finally, the theory of slice hyperholomorphic functions has been extended to
the setting of functions with values in a real alternative ∗-algebra [34,146–149].

The Cauchy transform in the slice hyperholomorphic setting has been studied
in [71].

Quaternion-valued positive definite functions on locally compact abelian
groups and nuclear spaces have been considered in [17].

Slice hyperholomorphic functions are characterized by the slicewise differen-
tial equation (2.5). We, however, point out that slice hyperholomorphic functions
also lie in the kernel of a global differential operator with nonconstant coeffi-
cients [60,88,100,150].

References on function spaces of slice hyperholomorphic functions. Several func-
tion spaces have been extended to the slice hyperholomorphic setting. The quater-
nionic Hardy space H2(Ω), where Ω is either the quaternionic unit ball B or the
half space H+ of quaternions with positive real part, was introduced and studied
in [12,21,22,35]. We point out that the quaternionic Blaschke products were first
introduced in the seminal paper [22].

The Hardy spaces Hp(B) for arbitrary 0 < p < +∞ were studied in [185].
The slice hyperholomorphic Bergman spaces are studied in [59, 62, 63], the slice
hyperholomorphic Fock space is considered in [31] and weighted Bergman spaces,
Bloch, Besov, and Dirichlet spaces of slice hyperholomorphic functions on the
unit ball B were introduced in [48]. Inner product spaces and Krein spaces in
the quaternionic setting are studied in [26]. Carleson measures for Hardy and
Bergman spaces in the quaternionic unit ball are studied in [184]. The BMO
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and VMO spaces of slice hyperholomorphic functions are considered in [129]. For
slice hyperholomorphic fractional Hardy spaces, see [27]. A class of quaternionic
positive definite functions and their derivatives is studied in [29]. For a quaternionic
analogue of the Segal–Bargmann transform, see [102].

References on slice hyperholomorphic Schur analysis. In recent years, a slice
hyperholomorphic version of Schur analysis has also been developed in [1, 3, 7, 8,
12, 15, 16, 21–25, 32]. An overview of classical theory can, for example, be found
in [6]. In the book [18] there is an extended introduction to the theory of Schur
analysis in the slice hyperholomorphic setting. Recent results on Schur analysis,
related topics and quaternionic polynomials can be found in the papers [40–46].
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