Chapter 15 ®

Check for
updates

Bounded Quaternionic Spectral
Operators

We turn our attention now to the study of quaternionic linear spectral operators,
in which we generalize the complex linear theory in [106]. The results presented
in this chapter can be found in [125] and in [128].

15.1 The Spectral Decomposition of a Spectral
Operator

A complex spectral operator is a bounded operator A that has a spectral resolution,
i.e., there exists a spectral measure E defined on the Borel sets B(C) on C such
that og(Ala) C A with Ay = Alyan p(a) for all A € B(C). Chapter 14 showed
that spectral systems take over the role of spectral measures in the quaternionic
setting. If F is a spectral measure that reduces an operator T' € B(Vg), then there
will in general exist infinitely many imaginary operators J such that (E,J) is a
spectral system. We thus have to find a criterion for identifying the one among
them that fits the operator 7' and that can hence serve as its spectral orientation.
A first and quite obvious requirement is that 7" and J commute. This is, however,
not sufficient. Indeed, if J and T" commute, then also —J and 7" commute. More
generally, every operator that is of the form J := —FE(A)J 4+ E(H \ A)J with
A € Bg(H) is an imaginary operator such that (FE, J ) is a spectral system that
commutes with 7.

We develop a second criterion by analogy with the finite-dimensional case.
Let T € B(H™) be the operator on H" that is given by the diagonal matrix
T= diag(A1,...,A,) and let us assume Ay ¢ R for ¢ = 1,...,n. We intuitively
identify the operator J = diag(jx,,.-.,jx,) as the spectral orientation for 7', cf.
also Example 14.3.10. Obviously J commutes with 7. Moreover, if so € R and
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s1 > 0 are arbitrary, then the operator (soZ — s1J) — T is invertible. Indeed, one
has
(s0Z — s1J) = T = diag(5j,, — A1,.--, 555, — An),

where Sjx, = S0 T Jx,S1. Since iy — Ao = (S0 — Ae,o) + Ja,(—s1 — A1) and both
s1 > 0 and Ap; > 0 for all £ = 1,...,n, each of the diagonal elements has an
inverse, and so

((soT —s1J) = T)" " =diag ((57,, = M), (S, — M) 7).

This invertibility is the criterion that uniquely identifies J.

Definition 15.1.1. An operator T € B(Vg) is called a spectral operator if there
exists a spectral decomposition for T, i.e., a spectral system (F,J) on Vi such
that the following three conditions hold:

(i) The spectral system (F,J) commutes with T, i.e., E(A)T = TE(A) for all
A € Bg(H) and TJ = JT.

(i) If we set Ta := Ty, with Va = E(A)Vg for A € Bg(H), then

Us(TA) CA forall Ae %s(H)

(iii) For all sp,s1 € R with s; > 0, the operator ((soZ — s1J) — T)|v, has a
bounded inverse on V; := E(H\ R)Vg =ran J.

The spectral measure E is called a spectral resolution for T, and the imaginary
operator J is called a spectral orientation of T'.

A first easy result, which we shall use frequently, is that the restriction of a
spectral operator to an invariant subspace E(A)Vy is again a spectral operator.

Lemma 15.1.2. Let T € B(Vg) be a spectral operator on Vi and let (E,J) be a
spectral decomposition for T. For every A € Bg(H), the operator Ta = Ty, with
Va =ran E(A) is a spectral operator on Va. A spectral decomposition for Ta is
(EA, JA) with EA(J) = E((T)|VA and Ja = J|VA,

Proof. Since E(A) commutes with E(o) for o € Bg(H) and J, the restrictions
Ex(o) = E(0)|v, and Ja = J|y, are right linear operators on Va. It is immediate
that Ea is a spectral measure on Va. Moreover,

ker Ja = ker J N Va =ran E(R) N Va = ran EA(R)

and
ranJa =ranJ NVa =ran E(H\ R) N VA =ran Ea(H \ R).

Since

—J3 = =T|vs = EM\R)|v, = Ea(H\R),
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the operator —JZ is the projection of Va onto ran Ja along ker Ja. Hence Ja is
an imaginary operator on Va. Moreover, (Ea, Ja) is a spectral system. Since

En(0)TAE(A) = E(0)TE(A) =TE(0)E(A) =TAEA(0)E(A),
and similarly
JATAE(A) = JTE(A) =TJE(A) = TaJAE(A),

this spectral system commutes with Ta.
If o € Bs(H) and we set Va , = ran Ea(o), then

Vao =ran E(o)|y, =ran E(0)E(A) =ran E(c N A) = Van,.

Thus Talv,, = T|v, s and 5o 05(Ta,s) = 05(Tans) C AUo C 0. Hence Ea
is a spectral resolution for Ta. Finally, for sg,s1 € R with s; > 0, the operator
soZ — s1J — T leaves the subspace Va1 := ran Eao(H\ R) = ran E(A N (H\ R))
invariant because it commutes with E. Hence the restriction of (s¢Z —s1J — T)|‘_,11
to Vaq € Vi =ran E(H \ R) is a bounded linear operator on Va ;. It obviously
is the inverse of (soZ — s1JA — Ta)|v, ,- Therefore (Ea,.Ja) is actually a spectral
decomposition for Ta, which hence is in turn a spectral operator. O

The remainder of this section considers the questions of uniqueness and ex-
istence of the spectral decomposition (E,J) of T. We recall the Vi-valued right
slice hyperholomorphic function R(T;y) := Qs(T)"tys — TQ4(T) ty on pg(T)
for T € L(Vg) and y € Vg, which was defined in Definition 14.2.8. If T" is bounded,
then Q,(7T)~! and T' commute, and we have

Rs (T; y) =0, (T)il(yg - Ty)'

Definition 15.1.3. Let 7" € B(Vg) and let y € Vg. A Vg-valued right slice hyper-
holomorphic function f defined on an axially symmetric open set D(f) C H with
ps(T) C D(f) is called a slice hyperholomorphic extension of Ry4(T;y) if

(T? — 25T + |s|*T) f(s) = y5— Ty Vs € D(f). (15.1)
Obviously such an extension satisfies
f(s) =Rs(Tyy) for s € ps(T).

Definition 15.1.4. Let T' € B(Vg) and let y € Vg. The function R, (T;y) is said
to have the single-valued extension property if every two slice hyperholomorphic
extensions f and g of Rs(T;y) satisfy f(s) = g(s) for s € D(f) N D(g). In this
case,

ps(y) == U{D(f) . f is a slice hyperholomorphic extension of Rs(T;y)}

is called the S-resolvent set of y, and og(y) = H \ ps(y) is called the S-spectrum
of y.
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Since it is the union of axially symmetric sets, pg(y) is axially symmetric.
Moreover, there exists a unique maximal extension of R4(T’;y) to ps(y). We shall
denote this extension by y(s).

We shall see soon that the single-valued extension property holds for R (T; y)
for every y € Vi if T is a spectral operator. This is, however, not true for an
arbitrary operator T' € B(Vg). A counterexample can be constructed analogously
to [106, p. 1932].

Lemma 15.1.5. Let T € B(Vg) be a spectral operator and let E be a spectral
resolution for T. Let s € H and let A C H be a closed axially symmetric set such
that s ¢ A. If y € Vg satisfies (T? — 2soT + |s|*Z)y = 0, then

E(A)y=0 and E([s]))y=y.

Proof. Assume that y € Vg satisfies (7% — 2597 + |s|>Z)y = 0 and let Ta be the
restriction of T to the subspace Va = E(A)V. Since s ¢ A, we have s € pg(Ta),
and so Q,(Ta) is invertible. Since Q4(Ta)™ = Q4(T) v, , we have

Qu(Ta) H(T? = 250T + [s|*T) E(A) = E(A),
from which we deduce

E(A)y = Qu(Ta) N(T? — 250T + |s]*T)E(A)y
= Q.(Ta) *E(A)(T? — 25T + |s|?T)y = 0.

b

(Z—-E([s]))y = lim E(Ay)y =0,

n—oo

Now define for n € N the closed axially symmetric set

S|

A, = {p e H: dist(p,[s]) >

By the above, we have E(A,)y = 0 and in turn

so that y = E([s])y. O

Lemma 15.1.6. If T € B(Vg) is a spectral operator, then for every y € Vg, the
function Rs(T;y) has the single-valued extension property.

Proof. Let y € Vi and let f and g be two slice hyperholomorphic extensions of
Rs(T;y). We set h(s) = f(s) — g(s) for s € D(h) =D(f) N D(g).

If s € D(h), then there exists an axially symmetric neighborhood U C D(h)
of s, and for every p € U we have

(T2 — 2poT + [p|*T)h(p) = (T* — 2poT + [p|*T) f(p) — (T* — 2poT + |p|*)g(p)
=(yp—Ty)— (yp—Ty) = 0.
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If E is a spectral resolution of T, then we can conclude from the above and
Lemma 15.1.5 that E([p])h(p) = h(p) for p € U. We consider now a sequence
sp € U with s, # s for n € U such that s, — s as n — 0o and obtain

0= E([s])E([sn])h(sn) = E([s])h(sn) = E([s])h(s) = h(s).
Hence f(s) = g(s), and Rs(T,y) has the single-valued extension property. O

Corollary 15.1.7. If T € B(Vg) is a spectral operator, then for every y € Vg,
the function Rs(T;y) has a unique mazimal slice hyperholomorphic extension to
ps(y). We denote this mazimal slice hyperholomorphic extension of Rs(T;y) by
y().

Corollary 15.1.8. Let T € B(Vg) be a spectral operator and let y € V. Then
os(y) =0 if and only if y = 0.

Proof. If y = 0, then y(s) = 0 is the maximal slice hyperholomorphic extension of
Rs(T;y). It is defined on all of H, and hence og(y) = 0.

Now assume that o5(y) = 0 for some y € Vg such that the maximal slice
hyperholomorphic extension y(-) of Rs(T;y) is defined on all of H. For every
w* € V5, the function s — (w*,y(s)) is an entire right slice hyperholomorphic
function. From the fact that Rs(T;y) equals the resolvent of T as a bounded
operator on Vg ;., we deduce lim,_, Rs(T;y) = 0 and then

Jim (W, y(s)) = lim (w*, Ry(T5y)) = 0.
Liouville’s theorem for slice hyperholomorphic functions therefore implies that
(w*,y(s)) = 0 for all s € H. Since w* was arbitrary, we obtain y(s) = 0 for all
s € H.

Finally, we can choose s € pg(T) such that the operator Q(T) = T?—2s¢T +
|s|2Z is invertible, and we find because of (15.1) that

0=1y(s)s — Ty(s) = Qs(T) ' Qu(T)y(s)s — TQs(T) " Qu(T)y(s)
= Q,(T) "1 (Qs(T)y(s)s — TQ(T)y(s))
= Q. (T) " ((ys — Ty)s — T(ys — Ty))
= Qu(T) M (T?y — Ty2s0 + yls|*) = Qu(T) ' Qu(T)y = y. O

Theorem 15.1.9. Let T € B(Vg) be a spectral operator and let E be a spectral
resolution for T. If A € Bg(H) is closed, then

EA)Vr={yeVr: os(y) C A}.

Proof. Let VAo = E(A)Vg and let Ta be the restriction of T to Va. Since A is
closed, Definition 15.1.1 implies o5(Ta) C A. Moreover Q4(Ta) = Qs(T)|v, for
s € H. If y € Va, then

Q(T)R(T;y) = Qs(Ta)Qs(Ta) ' (y5 — Tay) = ys — Ty
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for s € pg(Ta), and hence Rs(Ta;y) is a slice hyperholomorphic extension of
Rs(T;y) to ps(Ta) D H\ A. Thus og(y) C A. Since y € Vi was arbitrary, we
obtain E(A)Vg C {y € Vg : 05(y) C A}

In order to show the converse relation, we assume that og(y) C A. We
consider a closed subset o € Bg(H) of the complement of A and set T, = Ty,
with V, = E(0)Vg. As above, Rs(Ty; E(0)y) is then a slice hyperholomorphic
extension of Rs(T; E(o)y) to H\ o. If, on the other hand, y(s) is the unique
maximal slice hyperholomorphic extension of R, (7T';y), then

Qs(TE(0)y(s) = E(0)Qs(T)y(s)
= E(0)(ys —Ty) = (E(0)y)s — T(E(o)y)

for se H\A, and so E(0)y(s) is a slice hyperholomorphic extension of Rs(T'; E(0)y)
to H\ A. Combining these two extensions, we find that Rs(T; E(c)y) has a slice
hyperholomorphic extension to all of H. Hence og(E(0)y) = 0, so that E(A)y =0
by Corollary 15.1.8.

Let us now choose an increasing sequence of closed subsets o,, € Bg(H) of
H\ A such that |, .y 0n = H\ A. By the above arguments, FE(o,)y = 0 for every
n € N. Hence

neN

E(H\A)y = lim E(A,)y =0,

n—r00
so that in turn E(A)y = y. We thus obtain EF(A)Vg D {y € Vg :05(y) C A}. O
The following corollaries are immediate consequences of Theorem 15.1.9.

Corollary 15.1.10. Let T € B(VRg) be a spectral operator and let E be a spectral
resolution of T. Then E(og(T)) =T.

Corollary 15.1.11. Let T € B(Vg) be a spectral operator and let A € Bg(H) be
closed. The set of all y € Vg with os(y) C A is a closed right subspace of Vg.

Lemma 15.1.12. LetT € B(VR) be a spectral operator. If A € B(Vgr) commutes with
T, then A commutes with every spectral resolution E for T. Moreover, og(Ay) C

os(y) for ally € Vig.
Proof. For y € Vi we have

(T? — 250T + |s|*°T) Ay(s) = A(T? — 250T + |s|*T)y(s)
= A(ys — Ty) = (Ay)s — T(Ay).

The function Ay(s) is therefore a slice hyperholomorphic extension of R4(T; Ay)
to ps(y), and so o5(Ay) C os(y). From Theorem 15.1.9 we deduce that

AE(A)V € E(A)V

for every closed axially symmetric subset A of H.
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If 0 and A are two disjoint closed axially symmetric sets, we therefore have
E(A)AE(A) = AE(A) and E(A)AE(c) = E(A)E(0)AE(0) =0.

If we choose again an increasing sequence of closed sets A,, € Bg(H) with H\ A =
Unen An, we therefore have

E(A)AEH\ A)y = nl;ngo E(AAE(A))y=0 VYyeVgr
and hence
E(A)A = E(A)A[E(A)+ E(H\ A)] = E(A)AE(A) = AE(A). (15.2)

Since A was an arbitrary closed set in B¢ (H) and since the sigma-algebra 9B g (H)
is generated by sets of this type, we finally conclude that (15.2) holds for every
set o € Bg(H). O

Lemma 15.1.13. The spectral resolution E of a spectral operator T € B(Vg) is
uniquely determined.

Proof. Let E and E be two spectral resolutions of T'. For every closed set A €
B¢ (H), Theorem 15.1.9 implies

E(A)E(A) = E(A) and E(A)E(A) = E(A),

and we deduce from Lemma 15.1.12 that F(A) = E(A). Since the sigma algebra
Bs(H) is generated by the closed sets in Bg(H), we obtain £ = E, and hence the
spectral resolution of T is uniquely determined. (I

Before we consider the uniqueness of the spectral orientation, we observe
that for certain operators, the existence of a spectral resolution already implies
the existence of a spectral orientation and is hence sufficient for them to be a
spectral operator.

Proposition 15.1.14. Let T € B(Vg) and assume that there exists a spectral resolu-
tion E for T. If o5(T)NR = 0, then there exists an imaginary operator J € B(VR)
that is a spectral orientation for T such that T is a spectral operator with spectral
resolution (E,J). Moreover, this spectral orientation is unique.

Proof. Since o5(T) is closed with o5(T) NR = (), we have dist(os(T),R) > 0.
We choose j € S and consider T' a complex linear operator on Vg ;. Because of
Theorem 14.2.7, the spectrum of 7" as a Cj-linear operator on Vg ; is oc,(T) =
os(T) N C;. Since dist(og(T),R) > 0, the sets

or =oc,(T)N (Cj+ and o_ =oc,(T)NC;

are open and closed subsets of oc, (T') such that o, Uo_ = oc,(T'). Via the Riesz—
Dunford functional calculus we can hence associate spectral projections E and
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E_ onto closed invariant C;-linear subspaces of Vg ; to o1 and o_. The resolvent
of T as a Cj;-linear operator on Vg j at z € pc,(T) is R.(T)y := Q.(T) *(yz—Ty),
and hence these projections are given by

1
Eiy:i= [ Q.(T)'(yz —Ty)dz5—,
T, 2my
. (15.3)
Pp— _1 7_ —
E_y:= . Q.(T) (yz Ty)dzZﬂ_j7

where I'} is a positively oriented Jordan curve that surrounds o, in (Cj' and I'_
is a positively oriented Jordan curve that surrounds o in C;". We set

Jy = E_y(—j) + E+yj.

From Theorem 14.2.10 we deduce that J is an imaginary operator on Vg if ¥ :
y — yi is a bijection between V, := F, Vg and V_ := E_Vpg for i € S with ¢ L j.
This is indeed the case: due to the symmetry of oc,(T') = o5(T') NC; with respect
to the real axis, we obtain o, = &_, so that we can choose I'_(t) = T'; (1 —t) for
t € [0,1] in (15.3). Because of the relation (14.14) established in Theorem 14.2.7,

the resolvent R, (T') of T as an operator on Vg ; satisfies Rz(T)y = — [R.(T")(y1)] 4,
and so
E_y= R.(T)y dzi =— Rz(T)y d?i
- r 27 r, 21§
1 1
= R.(T szffz/ R,(T)(yi)] dz—(—1) = [E+(yi)] (—7).
L g = [ R0 e ) = () ()

Hence we have
(E_y)i=E,(yi) Vy¢€ Vg. (15.4)

If y € V_, then yi = (E_y)i = E(yi), and so yi € V. Replacing y by yi in
(15.4), we find that also (E_yi)i = —E(y) and in turn E_(yi) = E(y)i. For
y € V4 we thus find that yi = E,(y)i = F_(yi), and so yi € V_. Hence ¥ maps
V4 to V_ and V_ to V,, and since ¥=1 = —W, it is even bijective. We conclude
that J is actually an imaginary operator.

Let us now show that (i) in Definition 15.1.1 holds. For every A € Bg(H),
the operator Q. (T)~! commutes with E(A). Hence

BBy = | BA)QD) " (7 - T sy

= [ e.m Bz - T dz% — B, E(A)y

for every y € Vg = Vg, and so ELE(A) = E(A)E,. Similarly, one can show
that also E(A)E_ = E_E(A). By construction, the operator J hence commutes
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with T and with E(A) for every A € Bg(H), since
TJy=TE y(—j)+TEryj = E_Ty(—j)+ E+Tyj = JTy
and

E(A)Jy = E(A)E_y(—j) + E(A)ELyj
=E_E(A)y(=j) + E+E(A)yj = JE(A)y.
Moreover, since og(T) NR = @), Corollary 15.1.10 implies ran F(R) = {0} = ker J
and ran E(H \ R) = Vi = ranJ. Hence (E, J) is actually a spectral system that
moreover commutes with 7.

Let us now show condition (iii) of Definition 15.1.1. If sg, s1 € R with s; > 0,
then set s; := sg + jsi. Since B + E_ =1, we then have

((s0Z —s1J) = T)y

= (E+ + E-)yso — (E4y)js1 — (E-y)(=j)s1 = T(Ey+ + E_)y

= (E4y)(so — 51J) — T(Eqy) + (E-y))(so + su) T(E_y)

= (Byy)sj — T(Ery) + (E_y)s; — T(E_y)

= (5jZvy,;, — T)Eyy + (5;Zv,, — T)E_y.
Since F; and E_ are the Riesz projectors associated to ot and o_, the spectrum
o(Ty) of Ty := Ty, is 04 C Cj and the spectrum o(7_) of T_ := T|y_ is
o_ C C; . Since s; has positive imaginary part, we find that s € C;” C p(T4) and
55 € (C;' C p(T-), so that Rs,(Ty) := (5;Zv, — T+)_1 € B(V4) and R, (T)~ " :=
(stvf — T,)_1 € B(V_) exist. Since E|y, = Iy, and E_|y, = 0, they satisfy
the relations

EyRs:(Ty)Ey = Re:(Ty)E; and E_Rs(T{)Ey =0 (15.6)

and similarly also

E_R,,(T_)E_ =R, (T_)E_ and E,R, (T_)E_ =0. (15.7)

Setting R(so,s1) = Rs; (T} )E; + R, (T_)E_, we obtain a bounded C;-linear
operator that is defined on the entire space Vg ; = Vgr. Because E, and E_
commute with T and satisfy E; E_ = E_E; = 0 and because (15.6) and (15.7)
hold, we obtain for every y € Vg,

R(s0,51)((s0Z —s1J) = T)y

= [Rs5(T1)Ey + Ry (T-)E_] [(5iZvn,; — T)E+y + (siZvn, — T)E-y]
= Re;(14)(55Zvy,; — T4 )Eyy + Ry, (T-)E_(s;Zvy, , —T-)E_y
=Eyy+E y=y



312 Chapter 15. Bounded Quaternionic Spectral Operators

and

((s0Z — s1J) — T)R(s0, 1)y

= [5jZvi; = T)E+ + (8jZvn, — T)E-] [Re;(TH) By + Ry (T-)E_] y
= (57T, — To)Res (T3 ) Bsy + (sTv. — )Ry (T_)B_y

=Eiy+E y=y.

Hence R(sg,s1) € B(Vg,;) is the Cj-linear bounded inverse of (soZ — s1J) —
Since (s9Z — s1J) — T is quaternionic right linear, its inverse is quaternionic right
linear too, so that even ((soZ — s1J) — T)~! € B(Vg). Therefore, J is actually
a spectral orientation for 7', and T is in turn a spectral operator with spectral
decomposition (E, J).

Finally, we show the uniqueness of the spectral orientation .J. Assume that
J is an arbitrary spectral orientation for T. We show that V+ = V+ equals V; =

VJJ.. Theorem 14.2.10 implies then J = .J because ker J = ker J = ran E(R) = {0}
and VJjj = V+Z = V+’L = VL{]
Since J commutes with 7', we have JE, = EJ, since

1

JE :/ JO(T) Y (yz — Ty)dz—
+Y . (1) (y ) o]

(15.8)

~ ~ 1 ~
= AT Y (Jyz — TJy)dz— = E_ Jy.
F+Q( ) (Jyz = T Jy) 5 +Jy

The projection F; therefore leaves ‘,/: invariant because
J(Ery) = By (Jy) = (Eqy)j € Vs

for every y € XZ Hence E+|V~+ is a projection on ‘,/\':r

We show now that ker E+|V~+ = {0}, so that EJr|‘7Jr = Ty, and hence Vi C
ran £, = V,. We do this by constructing a slice hyperholomorphic extension
of Rs(T;y) that is defined on all of H and applying Corollary 15.1.8 tor any
y € ker E+|\Z'

Let y € kerE+|‘7:. Since ker E+|V~+ C ker By = ranE_ = V_, we obtain
y € V_. For 2z = 29 + z1j € C;, we define the function

RZ(T—)ya 21 Z Oa

i(2; = ~ -1
Jiz:y) (ZOI+ z1d — T)) y, 21 <O0.

This function is (right) holomorphic on C;. On (C;-|r this is obvious because the
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resolvent of T_ is a holomorphic function. For z; < 0, we have
1/ 0 0 .
5 <820fj(zay) + aﬁfj(%?/)])
1 ~ —2 - -2 _
= < (ZOIJrzlJfT)) y— (ZOIJFZlJfT)) Jyj)

= % (— (ZoI—Fle—T))iQy_ <Z01+Z1J—T)) Z/j2> =0,

since jy = yj because y € V+ Vi The slice extension f(s;y) of f;(s;y)

obtained from Lemma 2.1.11 is a slice hyperholomorphlc extension of R (T;y) to
all of H in the sense of Definition 15.1.3. Indeed, since

QMMv. =Q.(T-)=(Zv.z2-T)(Zv.z—-T-),
we find for s € (Cj+ that

Qs(T)f(s3y) = Qs(T-) f(s39)
=(8Zv. —T-)(sTv. —T-)Rs(T-)y
=Ly, —T)y=ys—T_y=ys—Ty.

On the other hand, the facts that T and J commute and that —J2 = T because
J is an imaginary operator with ran J= Vi imply

(soz+ s1J — T) <soz s — T)

= sgI — soslj— sol + 5051(77 s%jQ — sle — sol" + 51Tj+ T2
= |s]*Z — 2507 + T?% = Q4(T).

For s = s1 + (—j)s1 € C;, we find thus because of y € f/jr = V}fj that
Qs(T)f(s;y) = (SOI+ s1.J — T) (SOI —s51J — T) fi(s;y)
= (SOIJr sljf T) (8017 sljf T) (solf sljf T)_1 Y
= (soI+81j—T>y:yso+yj31 —T=ys—Ty.
Finally, for s ¢ C;, the representation formula yields

Q.(T)f(s5:9) = Qu(T) (s 9)(1 = 345 + QT (55:0) (1 + )y

_ 1 1
= (y5; — Ty) (1 *st)g + (ys; — Ty)(1 +st>§

NN

=y (8501 — 34 + (1 +35) 5 — Ty (1= go) + (1 +5.))

_ NN . _
=y(s; +355+ (55 — 5j)]]s)§ —Ty=vy(so—s1js) — Ty =ys —Ty.
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From Corollary 15.1.8, we hence deduce that y = 0, and so ker E“"‘Z = {0}.
Since EJF|V~+ is a projection on Vi, we have V. = ker E’Jr|v~+ @ ran E+|V~+ ={0}®

ran E+|‘Z. We conclude that V:r =ran E+|‘7:r C ran B, = V. We therefore have

Ve=V,&V,iCV,®Vyi="Vg

This implies V. = ‘7; and in turn J = .J. g

Corollary 15.1.15. Let T' € B(Vg) and assume that there exists a spectral resolution
for T as in Proposition 15.1.14. If o5(T) = A1 U Ag with closed sets A1,Ay €
Bg(H) such that Ay C R and Ay NR = 0, then there exists a unique imaginary
operator J € B(VR) that is a spectral orientation for T such that T is a spectral
operator with spectral decomposition (E,J).

Proof. Let Ty = Ts|y,, where Vo = ran E(H \ R) = ran E(Az). Then the spectral
measure Fy(A) := E(A)]y, for A € Bg(H) is by Lemma 15.1.2 a spectral resolu-
tion for Ty. Since gg(T5) C Ay and As NR = (), Proposition 15.1.14 implies the
existence of a unique spectral orientation J, for T5.

The fact that (Es, J2) is a spectral system implies ran J = ran Eo(H\R)V; =
Vo because E2(H\ R) = E(H\ R)|y, = Zy,. If we set J = JoE(H \ R), we find
that ker J = ran F(R) and ran J = V2 = ran E(H \ R). We also have

E(A)J = E(ANR)LEH\R) + E(A\ R)LE(H \ R)
— (A \R)LE(H\R) = JoF>(A \ R)E(H \ R)
= LEA\R)E(H\R) = LEMH\R)E(A\R) =JE(A),
where the last identity used that E(H \ R)E(A NR) = 0. Moreover, we have
—J? = —J,E(H\R)LEH\R) = —J2E(H\R) = E(H\R),

so that —J? is a projection onto ran.J = ran E(H \ R) along ker J = ran E(R).
Hence, J is an imaginary operator and (E, J) is a spectral system on Vg. Finally,
for every sg,s1 € R with s; > 0, we have

((s0Z — 51 — T)|vy) " = (50T, — s1J2 — To) "' € B(Va),

and hence (E, J) is actually a spectral decomposition for 7.
In order to show the uniqueness of J we consider an arbitrary spectral ori-
entation J for 7. Then

kerJ = E(R)Vg =kerJ and ranJ = E(H\R)Vg = ran J. (15.9)

By Lemma 15.1.2, the operator j|V2 is a spectral orientation for T5. The spectral
orientation of Ty is, however, unique by Proposition 15.1.14, and hence J|y, =
Jy = J|v,. We conclude that J = J. O
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Finally, we can now show the uniqueness of the spectral orientation of an
arbitrary spectral operator.

Theorem 15.1.16. The spectral decomposition (E,J) of a spectral operator T €
B(VR) is uniquely determined.

Proof. The uniqueness of the spectral resolution E has already been shown in
Lemma 15.1.13. Let J and J be two spectral orientations for T'. Since (15.9) holds
also in this case, we can reduce the problem to showing that J|y, = J| lv, with
Vi := ran E(H \ R). The operator T} := Ty, is a spectral operator on V;. By
Lemma 15.1.2, (Ey,J;) and (Ey, J;) with Ey(A) = E(A)|y, and J; = J|y, and
Jp := J|v, are spectral decompositions of T}. Since Eo(R) = 0, it is hence sufficient
to show the uniqueness of the spectral orientation of a spectral operator under the
assumption F(R) = 0.

Therefore, let T be a spectral operator with spectral decomposition (E,J)
such that E(R) = 0. If dist(cg(7T"),R) > 0, then we already know that the state-
ment holds. We have shown this in Proposition 15.1.14. Otherwise, we choose a
sequence of pairwise disjoint sets A,, € Bg(H) with dist(A,,R) > 0 that cover
os(T) \ R. We can choose, for instance,

1T

T
A, = {SGH: =T < s0 < ||T|l, ol <5 < |n|}

By Corollary 15.1.10 and since E(R) = 0, we have
E(0s(T)\R) = E(05(T) \R) + E(os(T) NR) = E(0s(T)) = I.

We therefore obtain 3,2 E(A,)y = E (U
we have 05(T) \ R C U, ey An-

Since E(A,) and J commute, the operator J leaves Va, := ran E(A,,) in-
variant. Hence Ja, = J|v,  is a bounded operator on Va,, and we have

neN An) y = y for every y € Vi because

n?

+o00 +o00 +o0
n=0 n=1

n=1

Similarly, we see that also JfZ = J| lva, is a bounded operator on Va, and that
Ty = 3020 Ja, B(An)y.

Now observe that Ta, is a spectral operator. Its spectral resolution is given
by E,.(A) := E(A)|y,, for A € Bg(H), as one can check easily. Its spectral
orientation is given by Ja,, : for every A € Bg(H), we have

and hence E,(A)Ja, = Ja,E(A,) on Va, . Since ker Ja, = {0} = E,(R) and
ranJa, = Va, = E,(H\ R), the pair (E,Ja,) is actually a spectral system.
Furthermore, the operators Th, and Ja, commute, since

Ta,Ja,E(A,) = TJE(A,) = JTE(A,) = Ja, Ta, E(A,).
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Finally, for all sg,s; € R with s; > 0, we obtain
(SOIVAn — Slen — TAW)il = (SOI —s1J — T)il‘VAn,

so that (E,, Ja, ) is actually a spectral decomposition for T, . However, the same
arguments show that also (En, jAn) is a spectral decomposition for Ta . Since,

however, os (Ta,) C A, and dist(A,,R) > 0, Proposition 15.1.14 implies that
the spectral orientation of Ta, is unique such that Ja, = Ja, . We thus obtain

Jy=>_Ja,B(A y—ZJA,L )y = Jy. O

Remark 15.1.17. In Proposition 15.1.14 and Corollary 15.1.15 we showed that
under certain assumptions the existence of a spectral resolution E for T already
implies the existence of a spectral orientation and is hence a sufficient condition for
T to be a spectral operator. One may wonder whether this is true in general. An
intuitive approach for showing this follows the idea of the proof of Theorem 15.1.16.
We can cover og(T)\R by pairwise disjoint sets A,, € Bg(H) with dist(A,,R) >0
for each n € N. On each of the subspaces V,, := ran E(A,,), the operator T induces
the operator T}, := Ty, with o5(T,,) C A,,. Since dist(A,,R) > 0, we can then
define A, == A, N (C;' and A, _ = A, N (Cj_ for an arbitrary imaginary unit
J € S and consider the Riesz projectors £, | := xa, , (Tn) and E, _ := xa, _(Ty)
of T, on V, ; associated with A, ; and A, _. Just as we did in the proof of
Proposition 15.1.14, we can then construct a spectral orientation for 7, by setting
Iny = En 4+yj + En, _y(—j) for y € V,,. The spectral orientation of J must then
be

Jy=>_ JnE(An)y = Z En 1 E(A)Y) + En_E(An)y(—j). (15.10)

If T' is a spectral operator, then E,, = E.|y, and E,, _ = E_|y,, where E
and FE_ are as usual the projections of Vi onto VJ+ and VJ_ along Vo @ VJ_ resp.
Vo & V FiT Hence the Riesz projectors E, ; and E, _ are uniformly bounded in
n € N, and the above series converges. The spectral orientation of T' can therefore
be constructed as described above if T is a spectral operator.

This procedure, however, fails if the Riesz projectors F,  and E, _ are not
uniformly bounded, because the convergence of the above series is in this case
not guaranteed. The next example presents an operator for which the above series
does actually not converge for this reason although the operator has a quaternionic
spectral resolution. Hence the existence of a spectral resolution does not in general
imply the existence of a spectral orientation.

Example 15.1.18. Let ¢?(H) be the space of all square-summable sequences with
quaternionic entries and choose j,i € S with j 1 i. We define an operator T on
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(2(H) by the following rule: if (b,)nen = T'(an)nen, then

bom—1\ _ L (7 2myj a2m—1

For neatness, let us denote the matrix in the above equation by J,, and let us set
T = 7izJm, that is,

_ (7 2my _ L (7 2mj
I = (0 _j ) and T, := 2 <0 i)
Since all matrix norms are equivalent, there exists a constant C' > 0 such that

IM|| < C max |me,.| VYM=("01 T12) cp2x2 (15.12)
£,ke{1,2} ’ ma1 M22

such that ||.J,,|| < 2Cm. We thus find for (15.11) that

20
[ (bam—1,b2m) T ||2 < E||(a2m717a2m)TH2 < 2C/|(azm—1,a2m)” |2,

and in turn

“+o0
IT(an)nenlZay = > [b2m—1]* + [boml”
m=1

o (15.13)

2
< 37402 (Jazm—1* + lazm[?) = 40 |[(an)nen 7o ) -

m=1

Hence T is a bounded right-linear operator on ¢2(H).

We show now that the S-spectrum of T is the set A = {0} U U,en-5S. For
s € H, the operator Q4(T) = T? — 2s¢T + |s|? is given by the following relation:
if (Cn)neN = Q; (T)(an)neNa then

1 - S 2 - S
Cam—1 —m2 2] 02 + ‘S‘ _4.7 m a2m—1
= m m S m . 15.14
( Com > ( 0 _77:::2 - 2,7 ;102 |3|2 a2m ( )

The inverse of the above matrix is

m? 4im7so
0 (T )_1 _ |s]2m*—2isom2—1 |5\4m8+2(sg—s%)m4+1
s\dm 0 4

SEm2isgm?—1
_1 : : disq : :
_(GR T ) ) () )

(s+52)(5+52)

with s; = so + js1. Hence Q4(T;,) ™" exists for s; # -13j. We have

s (- [2])

J
m2

o _J
J mg

Sj—

J
2 =g + L S —
m?2 7 m2 J
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and so

1 1 ‘80|
Qs(T,, < Cmax — - 5 (> 15.15
o < o s o (@i (5, []) fown

where C' is the constant in (15.12). If s ¢ A, then 0 < dist(s, 4) < dist (s, [-5])
and hence the matrices Q4(7T},)~! are for m € N uniformly bounded by

» 1 [0l
Qs (T) | ScmaX{Qdist (s,A)” dist (s,A)Q}'

The operator Q4(T) ™! is then given by the relation

agm-1Y\ -1 [ C2m—-1
(1) = o (227), 1519

for (an)nen = Qs(T) 71 (¢n)nen- A computation similar to the one in (15.13) shows
that this operator is bounded on ¢*(H). Thus s € ps(T) if s ¢ A and in turn
g (T) C A

For every m € N, we set s,, = -13j. The sphere [s,,] = -13S is an eigen-
sphere of T and the associated eigenspace V,,, is the right-linear span of es,,_1
and ez, where €, = (0,,¢)ren, as one can see easily from (15.14). A straightfor-
ward computation, moreover, shows that the vectors yo,,—1 := €2;,—1 and yo,, =
—e9m—11 + %egmi are eigenvectors of T' with respect to the eigenvalue s,,. Hence
[sm] C o5(T). Since o5(T) is closed, we finally obtain A = |J,,cy[5m] C os(T)
and in turn og(7T) = A.

Let E,, for m € N be the orthogonal projection of £?(H) onto the subspace
Vm = SpanH{emelveZm}a that i57 Em(an)nGN = €2m—-102m—1 T €2mad2m. We
define for every set A € Bg(H) the operator

1
E(A) = Z E,, with IA::{mEN:WSCA}.

mela

It is immediate that E is a spectral measure on ¢?(H), that [|[E(A)| < 1 for every
A € B5(H) and that E(A) commutes with T for every A € Bg(H). Moreover, if
s ¢ A, then the pseudo-resolvent Q(Ta)~! of Ta = Ty, with VA =ran E(A) is

given by
QS(TA)_I = (Z Qs(Tm)_lEm>

mela

ran E(A)

Since 0 < dist (s, Unern [#]) = inf,, ez, dist (s, [#]), the operators Qg (T},) ™!
are uniformly bounded for m € Ia. Computations similar to (15.13) show that

Q4(Ta)! is a bounded operator on Va. Hence s € pgs(Ta) and in turn og(Ta) C

A. Altogether we obtain that F is a spectral resolution for T
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In order to construct a spectral orientation for T, we first observe that .J,, is
a spectral orientation for T;,. For sg,s1 € R with s; > 0, we have

1 .
o = s hn = = (SO . (510+ m) So(—i1<l_1 + )1277%7) )

the inverse of which is given by the matrix

1 2jm( Ly +s1)
(s0Tp2 — 51w — Ti) L= [ 0= (s2452)d so+(ﬁ+s ?
0 So+( +81)

Since s; > 0, each entry has nonzero denominator, and hence we have that the
operator (soZg> — 51y — Tn) " belongs to B(H?2).

If J € B(¢%(H)) is a spectral orientation for T, then the restriction J|y,, of J
to Vi, = spang{eam—1,€am} is also a spectral orientation for T,. The uniqueness
of the spectral orientation implies J|y,, = J,, and hence

J= ZJ|Vm< ) ZJE

This series does not, however, converge, because the operators Jy, are not uni-

m

formly bounded. Hence, it does not define a bounded operator on ¢2(H). Indeed,
the sequence asy, 1 =0, asy, = m_%, for instance, belongs to EQ(H), but

6 ) ()

“+00 2

m(an)neN

02 (H) m=1 2

B +oo41 1 B
—22 %4‘@—4‘00
m=1

Hence there cannot exist a spectral orientation for 7', and in turn 7T is not a
spectral operator on ¢2(IH).

We conclude this example with a remark on its geometric intuition. Let us
identify H? 2 C}, which is for every i € S with ¢ L j spanned by the basis vectors

e S )

The vectors y,,1 = by and Y2 = —ba + L b4 are eigenvectors of J,, with respect
to j, and the vectors yi1% = by and yp,2 = b1 — —bg are elgenvectors of J,,, with
respect to —j. We thus obtain VJm, = spang, {by,—ba+— b4} and V; .= VJm J

However, as m tends to infinity, the vector y, tends to y1i and yo7 tends to yi.
Hence intuitively, in the limit V; J = Vj;’ji = me’j, and consequently the

projections of H? = (C;l- onto Vj‘m ; along V. become unbounded.
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Finally, the notion of quaternionic spectral operator is backward compatible
with the complex theory on Vg ;.

Theorem 15.1.19. An operator T € B(Vg) is a quaternionic spectral operator if
and only if it is a spectral operator on Vg j for some (and hence every) j € S. (See
[106] for the complex theory.) If furthermore (E,J) is the quaternionic spectral
decomposition of T' and Ej; is the spectral resolution of T as a complex C;-linear
operator on Vg j, then

E(A) = EJ(A ﬂ(Cj) VA € %S(H),

o o (15.17)
Jy = E;(C"\)yj+ E;(C;")y(—j) VyeVr

with
(Cji’o = CT\R: {Zo+j21 D 20 €R 2 > O}

Conversely, E; is the spectral measure on Vi determined by (E,J) that was con-
structed in Lemma 14.3.8.

Proof. Let us first assume that T' € B(VR) is a quaternionic spectral operator with
spectral decomposition (F,J) in the sense of Definition 15.1.1 and let j € S. Let
FE, be the projection of ran J = VJJ ®V;; onto ij along V. and let E_ be the
projection of ran J onto V,; along V, ; cf. Theorem 14.2.10. Since T' and E(A)
for A € Bg(H) commute Wlth J, they leave the spaces er and V. invariant,
and hence they commute with £ and E_. By Lemma 14.3. 8 the set function F;
on C; defined in (14.23), which is given by

E;j(A)=EyE([ANC]°])+ E(ANR)+ E_E ([ANC;"°]), (15.18)

for A € B(C;), is a spectral measure on Vg ;. Since the spectral measure E and
the projections £y and F_ commute with 7', the spectral measure F; commutes
with T too.

If A € B(C;) is a subset of (C?’O, then Jy = yj for y € Vj a :=ran E;(A),
since ran E;(A) = ran(EL E([A])) C Vjt'j. For z = zy+ jz1 € C; and y € VA, we
thus have

(2Zv, o = T)y = yzo +yjz1 — Ty
=yzo + Jyz1 — Ty = (20T, , +21J = T)y.

If z € (C;’O, then the inverse of (20Zvy, ; + 21J — T')|ran s exists because J is the
spectral orientation of T. We thus have R.(Ta) = (20Zv,, +21J —T) |y, 5, and
o) (Cj_’o C p(Ta). If, on the other hand, z € (C;' \ A, then z € pg(Ta)), where
Tia) = Tlvi,, with Via) = ran E([A]). Hence Q. (7)) has a bounded inverse
on Viaj. By the construction of E; we have Vj A = E+V[A], and since T} and

E, commute, Q,(Tja)) ! leaves Vj A invariant, so that QZ(T[A])’1|V_ . defines a



15.1. The Spectral Decomposition of a Spectral Operator 321

bounded Cj-linear operator on Vj A. Because of Theorem 14.2.7, the resolvent of
T at z is therefore given by

R.(T)y = Qs(Tia) ' (¥Z — Tay) Vy € Vja.

Altogether, we conclude that p(Ta) D C;° U (CJ \A) = C; \ A and in
turn o(Ta) C A. Similarly, we see that o(Ta) C A if A C C;°. If, on the other
hand, A C R, then E;(A) = E(A), so that Ta is a quaternionic linear operator
with 05(Ta) C A. By Theorem 14.2.7, we have 0(Ta) = oc,;(Ta) = 05(T) C A.
Finally, if A € B(C;) is arbitrary and z ¢ A, we can set Ay = AN (C;“O,
A_:=AnN (C;’o, and Ag := ANR. Then z belongs to the resolvent sets of each
of the operators Ta, Ta_, and Ta,, and we obtain

R.(T) = R.(Ta, )Ej(Ay) + Ro(Ta ) E(Ag) + Ro(Ta_)E;(AL).

We thus have o(Ta) C A. Hence T is a spectral operator on Vg ;, and E; is its
(Cj-complex) spectral resolution on Vg ;.

Now assume that T is a bounded quaternionic linear operator on Vi and
that for some j € S there exists a Cj-linear spectral resolution E; for T" as a C;-
linear operator on Vg ;. Following Definition 6 of [104, Chapter XV.2], an analytic
extension of R.(T")y with y € Vg ; = Vg is a holomorphic function f defined on a
set D(f) such that (2Zv, , — T)f(z) = y for z € D(f). The resolvent p(y) is the
domain of the unique maximal analytic extension of R,(7T)y, and the spectrum
o(y) is the complement of p(y) in C;. (We defined the quaternionic counterparts
of these concepts in Definition 15.1.3 and Definition 15.1.4.) Analogously to The-
orem 15.1.9, we have

Ej(A)VR,j = {y S VRJ =Vgr: O'(y) C A}, VA € %((CJ) (15.19)

Let y € Vg j, let i € S with j L ¢, and let f be the unique maximal analytic
extension of R, (T)y defined on p(y). The mapping z — f (Z) i is then holomorphic
on p(y): for every z € p(y), we have Z € p(y) and in turn

lim (f (z+h)i—f(Z)i)h~" =lim (fE+h) - f2) T i=f (3)i.

h—0 h—0

Since T is quaternionic linear, we moreover have for z € p(y) that

(Tvn, —T) (f(2)1) = F (2)iz—T(f (2)0) = (f (2) 2= T} (2)) )i = yi.
Hence z +— f(Z)i is an analytic extension of R.(7)(yi) that is defined on p(y).
Consequently p(yi) D p(y), and in turn o(yi) C o(y). If f is the maximal analytic
extension of R,(T')(yi), then similar arguments show that z — f(Z)(—%) is an
analytic extension of R,(T)y. Since this function is defined on p(yi), we obtain
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p(y) D p(yi) and in turn o(y) C o(yi). Altogether, we obtain o(y) = o(yi) and
f(z) = f(Z)i. From (15.19) we deduce

ran E; (A) = {y € Vg; =Vr: o(y) C A}

={yi€Vr,; =Vr: o(y) C A} = (ran E;(A))i. (15.20)

In order to construct the quaternionic spectral resolution of T', we define now
E(A) = Ej(Aﬂ(Cj), VA € %S(H)

Obviously this operator is a bounded C;-linear projection on Vg = Vz ;. We show
now that it is also quaternionic linear. Due to the axial symmetry of A, the identity
(15.20) implies

(ran E(A))i = (ran E;(ANC;))i =ran E; (ANC;)
=ranF; (ANC;) =ran E(A).
Similarly, we obtain
(ker E(A))i = (ker E;(ANC,))i = (ran E;(C; \ A))i
=ranE; (C;\ A) = ran E; (C; \ A)
=ker E;(ANC;) =ker E(A).
If we write y € Vg as y = yo + y1 with yo € ker E(A) and y; € ran E(A), we thus
have
E(A)(yi) = E(A)(yoi) + E(A)(y11) = yri = (E(A)y)i.

Writing a € H as a = a; + ia2 with a1, a2 € C;, we find due to the Cj-linearity of
E(A) that even

E(A)(ya) = (E(A)y)ar + (E(A)yi)az = (E(A)y)ar + (E(A)y)iaz = (E(A)y)a.

Hence the set function A — E(A) defined in (15.18) takes values that are bounded
quaternionic linear projections on Vg. It is immediate that it moreover satisfies
items (i) to (iv) in Definition 14.1.7 because E; is a spectral measure on Vg ;
and hence has the respective properties. Consequently, F is a quaternionic spec-
tral measure. Since E; commutes with 7', also £ commutes with 7. From Theo-
rem 14.2.7 and the fact that o(T|;an £,(a,)) C A; for Aj € B(C;), we deduce for

Th = T‘ranE(A) = T|ran E;(ANC;) that

Gs(TA) = [O'(cj (TA)] C [A ﬂ(CjJ = [AO(CJ] =A.

Therefore F is a spectral resolution for 7.
Let us now set Vy = ran E;(R) as well as V} := ran E; ((C;"O) and V_ :=

ran F; ((Cj_o) Then Vg ; = Vo @ V4 @ V_ is a decomposition of Vx into closed
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Cj-linear subspaces. The space V = ran E;(R) = ran E(R) is even a quaternionic
right linear subspace of Vi because E(R) is a quaternionic right linear operator.
Moreover, (15.20) shows that y +— yi is a bijection from Vi to V_. By Theo-
rem 14.2.10, the operator

Ty = E; (C]°) yj + E; (C;°) y(—j)

is an imaginary operator on Vg. Since E; commutes with T" and E(A) for A €
Bgs(H), also J commutes with T and E(A). Moreover, ker J = V = ran E(R)
and ranJ = ranEj(C;"o) @ ran E;(C;°) = ran E(H \ R), and hence (E, J) is a
spectral system that commutes with 7. Finally, we have o (T}) C CJ for T =
Ty, =T, By (C0) and hence the resolvent of R, (T ) exists for every z € C;°.
Similarly, the resolvent R.(T-) with T_ = T'|y_ =T, B (C°) exists for every

z € (C;"O. For sg,s1 € R with s; > 0 we can hence set s; = 5o + js1 and define by

R(So,Sl) = (RsT-(TJr)EJr + st (T—)E—)|v+@v,

with B, = E;(C;*°) and E_ = E;(C;*°) a bounded operator on V} & V_ =

ran E(H\ R). Since T leaves V. and V_ invariant, we then have for y =y, +y_ €
V+ (&) V_ that

R(s0,51)(80Z —s1J — T)y

= R(s0,51) (Y450 — Jy+s1 — Tyy +y—so — Jy_s1 — Ty_)

= R(s0,51) (y+5; — Ty+) + R(s0,51) (y—s; — Ty-)

= Rs;(T4) (y+55 — Thyy) + R, (T-) (y—s; = T-y-) = y+ +y- = v.

Similarly we find that

(s0Z — s1J —T)R(s0,51)y
= (80T — s1J — T)Rs; (T )y+ + (50T — s1J — T) R, (T-)y—
= Rs; (T4 )y+s0 — J(Rs; (T4 )y+)s1 — TRy (T4 )y+
+ R, (T-)y_so — J(Rs,;(T-)y—)s1 — TR, (T )y—
= Ry (T4 )y+(s0 — js1) — Rs; (T4 ) Thy+
Ry (T )y (s0 4+ js1) = Ry (T)T-y.
= Rs5(T4) (y+5 — Thyq) + Rs, (T-) (y-s = T_y-) =y +y- = y.
Hence R(so,51) is the bounded inverse of (s0Z — s1J — T')|van p\r), and so J is
actually a spectral orientation for 7. Consequently, T" is a quaternionic spectral

operator, and the relation (15.17) holds.
O

Remark 15.1.20. We want to stress that Theorem 15.1.19 showed a one-to-one
relation between quaternionic spectral operators on Vi and Cj-complex spectral
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operators on Vg ; that are furthermore compatible with the quaternionic scalar
multiplication. It did not show a one-to-one relation between quaternionic spec-
tral operators on Vg and C;-complex spectral operators on Vg ;. There exist C;-
complex spectral operators on Vg ; that are not quaternionic linear and hence
cannot be quaternionic spectral operators.

15.2 Canonical Reduction and Intrinsic S-Functional
Calculus for Quaternionic Spectral Operators

As in the complex case, every bounded quaternionic spectral operator T' can be
decomposed into the sum 7' = S 4+ N of a scalar operator S and a quasi-nilpotent
operator N. The intrinsic S-functional calculus for a spectral operator can then
be expressed as a Taylor series similar to the one that involves functions of S
obtained via spectral integration and powers of N. Analogously to the complex
case in [106], the operator f(T') is therefore already determined by the values of
f on 0g(T) and not only by its values on a neighborhood of og(T).

Definition 15.2.1. An operator S € B(Vg) is said to be of scalar type if it is a
spectral operator and satisfies the identity

S = /sdEJ(s)7 (15.21)

where (F,J) is the spectral decomposition of S.

Remark 15.2.2. If we start from a spectral system (E,J) and S is the operator
defined by (15.21), then S is an operator of scalar type and (E, J) is its spectral
decomposition. This can easily be checked by direct calculations or indirectly via
the following argument: by Lemma 14.3.8, we can choose j € S and obtain

sz/}HSdEJ(s):/Cjszj(z),

where E; is the spectral measure constructed in (14.23). From the complex theory
in [106], we deduce that S is a spectral operator on Vg ; with spectral decom-
position E; that is furthermore quaternionic linear. By Theorem 15.1.19, this is
equivalent to .S being a quaternionic spectral operator on Vi with spectral decom-
position (E,.J).

Lemma 15.2.3. Let S be an operator of scalar type with spectral decomposition
(E,J). An operator A € B(Vg) commutes with S if and only if it commutes with
the spectral system (E,J).

Proof. If A € B(Vg) commutes with (£, .J), then it commutes with S= [;; s dE;(s)
because of Lemma 14.3.6. If, on the other hand, A commutes with S, then it also
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commutes with F by Lemma 15 1 12 By Lemma 14.1.10, it commutes in turn
with the operator f(T) = [;; f( ) for every f € MOO(H R). If we define

So ::/HRe(s)dE(s) and S :z/H§dEJ(S)=J/H|§|dE(S)

where s = jss1 denotes the imaginary part of a quaternion s, then AS = SA and
ASy = SpA and in turn

AS; = A(S — Sg) = AS — ASy = SA — SpA = (S — Sp)A = S, A.
We can now choose pairwise disjoint sets A, € Bg(H), n € N, such that og(T') \

R = U,enAn and such that dist(A,,R) > 0 for every n € N. Then s
|s| 7 xa, (s) belongs to M (H,R) for every n € N, and in turn

Arm@) = 47 ([ sl xa, (00486 ) B )

a7 ([ 1145} ([ 15 v, ) 2 ) Ba)

— 48, ( 138, dE<s>) B(A)
=51 ([ 18 va.(08) ) (A4

7 ([11am@) ) ([ 197 e ()8 ) B4

= ([ Il s 6) 4B ) B4 = TE(A)A

Since 05(S)\R C U, ey An, we have 3520 E(A,)y = E(os(T)\R)y = E(H \ R)y
for all y € Vi by Corollary 15.1.10. Since J = JE(H \ R), we hence obtain

+oo
AJy=AJEH\R)y = AJE(A,)y

n=1

= Z JE(A,)Ay = JE(H \ R)Ay = J Ay,

which finishes the proof. O
Definition 15.2.4. An operator N € B(VR) is called quasi-nilpotent if

lim [N v =0. (15.22)
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The following corollaries are immediate consequences of Gelfand’s formula

r(T)= lim |T"|",

n—-+o0o
for the spectral radius r(7T") = max,ec,4(7) || of 7.

Corollary 15.2.5. An operator N € B(VRg) is quasi-nilpotent if and only if o5(T) =

{0}

Corollary 15.2.6. Let S,N € B(Vg) be commuting operators and let N be quasi-
nilpotent. Then o5(S + N) = 0g(S5).

We are now ready to show the main result of this section: the canonical
reduction of a spectral operator, the quaternionic analogue of Theorem 5 in [106,
Chapter XV.4.3].

Theorem 15.2.7. An operator T' € B(VR) is a spectral operator if and only if it is
the sum T = S + N of a bounded operator S of scalar type and a quasi-nilpotent
operator N that commutes with S. Furthermore, this decomposition is unique, and
T and S have the same S-spectrum and the same spectral decomposition (E,J).

Proof. Let us first show that every operator T' € B(Vg) that is the sum 7' = S+ N
of an operator S of scalar type and a quasi-nilpotent operator N commuting
with S is a spectral operator. If (E,J) is the spectral decomposition of S, then
Lemma 15.2.3 implies E(A)N = NE(A) for all A € Bg(H) and JN = NJ. Since
T =S5+ N, we find that also T' commutes with (F,J).

Let now A € Bg(H). Then To = Sa + Na, where as usual the subscript
A denotes the restriction of an operator to Va = E(A)Vg. Since Na inherits the
property of being quasi-nilpotent from N and commutes with Sa, we deduce from
Corollary 15.2.6,that

Us(TA) = Us(SA + NA) = Us(SA) Cc A.

Thus (E, J) satisfies items (i) and (ii) of Definition 15.1.1. It remains to show that
also item (iii) holds true. Therefore, let Vj = ran E(H \ R) and set Ty = Ty,
So = Slvys No = Nly,, and Jo = J|y, and choose sg,s1 € R with s; > 0.
Since (F,J) is the spectral resolution of S, the operator soZy, — s1Jo — Sy has
a bounded inverse R(sg,s1) = (s0Zv, — s1Jo — So)~* € B(Vp). The operator Ny
is quasi-nilpotent because N is quasi-nilpotent, and hence it satisfies (15.22). The
root test thus shows the convergence of the series :ioo NJ'R(s0,81)" T in B(Vp).
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Since Ty, Ny, Sy, and Jy commute mutually, we have

+oo

(s0Zve — s1Jo — To) > N§'R(so,51)"
n=0

= ZNO (s0,51)" " (s0Zv, — s1Jo — So — No)

= Z NO So, 81 (SOIVO — 81J0 — S() Z NO 80, 81 +1N0

—+o0

= ZNO 80,81 — ZN€+1R(80,51)H+1 :IV0~
n=0

We find that sgZo — s1Jg — 1o has a bounded inverse for sg, s; € R with s1 > 0, so
that J is a spectral orientation for T'. Hence, T' is a spectral operator and 7" and
S have the same spectral decomposition (E,.J).

Since the spectral decomposition of T is uniquely determined, S= fH sdEj(s)
and in turn also N = T — S are uniquely determined. Moreover, Corollary 15.2.6
implies that og(T) = 05(9).

Now assume that T is a spectral operator and let (F,J) be its spectral
decomposition. We set

S::/sdEJ(s) and N:=T-5.
H

By Remark 15.2.2, the operator S is of scalar type, and its spectral decomposition
s (E,J). Since T commutes with (E, J), it commutes with S by Lemma 15.2.3.
Consequently, N = T — S also commutes with S and with 7. What remains to
show is that N is quasi-nilpotent. In view of Corollary 15.2.5, it is sufficient to
show that og(N) is for every ¢ > 0 contained in the open ball B.(0) of radius ¢
centered at 0 .

For arbitrary ¢ > 0, we choose o > 0 such that 0 < (1 + Cg j)a < ¢,
where Cg, ; > 0 is the constant in (14.22). We decompose og(T) into the union
of disjoint axially symmetric Borel sets Aq,..., A, € Bg(H) such that for each
Le{l,...,n}, theset Ay is contained in a closed axially symmetric set whose inter-
section with every complex half-plane is a half-disk of diameter .. More precisely,
we assume that there exist points s1,...,s, € H such that forall / =1,...,n

Ay C Bl ([se])) ={peH: dist(p,[s¢]) < aand p; > sp1}.

Observe that we have either s, € R or B ([s¢]) "R = 0.
We set Va, = E(Ay)Vg. Since T and S commute with F(Ay), also N =T-S
does, and so NVa, C Va,. Hence Na, = N|y,, € B(Va,). If s belongs to ps(Na,)
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for all £ € {1,...,n}, we can set

Z Qs(Na,) " E(Ay),
=1
where
-1 2 2 -1
QS(NAz) = (NAE - 2SONAZ + |S| IVA£> € B(VAK)

is the pseudo-resolvent of Na, as s. The operator Q(s)~! commutes with E(A,)
for every £ € {1,...,n}, so that

(N2 — 2soN + |s|QIVR)Q(s)_1
= (NZ, = 250Na, + |sI°Tvs,)Qs(Na,) 'E(Ar) =Y E(Ag) = Ty,
/=1 =1
and
Q(s)*l(N2 — 259N + |s|QIVR)

= Z Qs(Na,) " E(A)(N? = 250N + [s[*Tvs,)
_ZQS NAZ NAZ_250NA2+| | IVA ) (Af)
= ZE(AZ) =Ty,.

Therefore, we find s € pg(N) such that (,_; ps(Na,) C ps(N) and in turn

os(N) € Uy, os(Na,). It is hence sufficient to show that og(Na,) C B.(0) for
all{=1,...,n

We distinguish two cases: if s, € R, then we write
Na, = (Ta, — SZIVAZ) + (SZIVAZ —Sa,)-
Since sy € R, we have for p € H that
QP(TAe - SZIVA,Z)
= (Tie —28¢Tn, + S%IVAK - ZPO(TAZ - SZIVAE) + (p% + p%)IVAZ
= ng - 2<p0 - SZ)TAZ + ((po - 55>2 +p%> IVAZ = QP*SZ(TAK)
and thus
05(Ta, —s¢Zv,) ={p—sc €H:p € os(Ta,)}

C{p—si€H:pe B}l (s))} = Ba(0). (15.23)
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Moreover, the function f(s) = (s, — $)xa,(s) is an intrinsic slice function because
s¢ € R. Since it is bounded, its integral with respect to (E, J) is defined and

seTvs, =S5, = ([ (50— 9na,(s) a5

VA@
We thus have
IsiZva, = Sa,l < Coall(se = )xar($llow < Coga (15.24)

because Ay C By([s¢])™ = Bal(se). Since the operator Ta, — s¢Zv,, and the
operator SgIVAz — Sa, commute, we conclude from Theorem 4.4.12 together with
(15.23) and (15.24) that

os(Tar) = o5 ((Ta, = siTva,) + (s¢Tva, = Sa,))
C {s € H: dist (s,os (Ta, — SZIVAE)) < CE,Ja} C Bagiscy ) (0) C B-(0).
If sy ¢ R, then let us write
Na, = (Ta, = seZva, — s01Ja,) + (sZva, + se1Jda, — Sa,) (15.25)

with Ja, = J|v,,. Since E(A;) and J commute, Ja, is an imaginary operator on
VA, and it moreover commutes with Ta,. Since —J3, = —J?|v, = E(H\R)|y,, =
Zv,, because Ay, CH\ R, we find for s = sg + js1 € H with s; > 0 that

(SOIVAZ + leAe — TA[) (SOIVA[ — 51JAZ — TA@)

(15.26)
= sg — s%Jil — 2507, + Tia = Qs(Tha,)-

Because of condition (iii) in Definition 15.1.1, the operator (s0Z—s1J—T)|;an p(m\R)
is invertible if s; > 0. Since this operator commutes with E(A,), the restriction
of its inverse to Va, is the inverse of (soZv,, — s1Ja, — Ta,) in B(Va,). Hence if
s1 > 0, then (soZv,, — s1Ja, — Ta,)”" € B(Va,), and we conclude from (15.26)
that

(s0Tva, +51Ja, —Ta,)  €B(Va,) <= Q(Ta,) ' €B(Va,). (15.27)

If, on the other hand, s; = 0, then both factors on the left-hand side of (15.26)
agree, and so (15.27) holds also in this case. Hence s € pg(Ta,) if and only if the
operator (soZv,, + s1Ja, —T') has an inverse in B(Va,). Since

Us(TA[') C E C B;'_([Sg]) C {S =59+ jss1 €EH: 51> 85’1},

the operator SOIVAZ + s1Ja, —Ta, is in particular invertible for every quaternion
s € H with 0 < s1 < s¢,1. Since Ja, is a spectral orientation for Ta,, this operator
is also invertible if s; < 0, and hence we even obtain

(SoszZ +s1Ja, — TAZ)_l S B(‘/Ag) Vsp,s1 €ER: 51 < s41. (15.28)



330 Chapter 15. Bounded Quaternionic Spectral Operators

We can use these observations to deduce a spectral mapping property: a
straightforward computation using the facts that Th, and Ja, commute and that
JX, = —Zvy,, shows that

Qs(Ta, — 800Zvy, — s01Ja,)
= ((So +800)Zva, + (51 +80,1)Ja, — TAZ) (15.29)

. ((50 + SE,O)IVA[ + (84’1 - Sl)JAg — TA[) .

If 51 > 0, then the second factor is invertible because of (15.28). Hence we have
s € ps(Ta, — SeonVAé — s¢1Ja,) if and only if the first factor in (15.29) is also
invertible, i.e., if and only if

((s0 + 500)Tva, + (51 +561)Ja, = Ta,) " € B(Va,) (15.30)
exists. If, on the other hand, s; = 0, then both factors in (15.29) agree. Hence also
in this case, s belongs to pg(Ta, — Se,OIVA[ — $¢,1Ja,) if and only if the operator
in (15.30) exists. By (15.27), the existence of (15.30) is, however, equivalent to

S0+ 80,0+ (81 +501)S C ps(Ta),
so that
ps(Ta, = s00Lva, — se1Jda,) = {s €H: s+ 500+ (51 +501)Js € ps(Ta,)}
and in turn
0s(Ta, = se0Zva, — senda,)

={seH: so+se1+(s1+501)js €s(Ta,)}
C{s€MH: so+s00+(51+501)js € BI(s0)} = Ba(0).

For the second operator in (15.25), we have again

)

SZIVAZ +5se1da, — A, = (/H(S&O +isS01 — 8)Xa,(S) dEJ(S))
Va,

and so

[seZva, + se1da, — Sa,ll < Cr,all(se,0 +isse1 — $)Xa, ()| < Cpon

Since the operators T, —SgIVAZ —50,1Ja, and SKIVAZ +5¢1Ja, —Sa, commute, we
conclude as before from Theorem 4.4.12 that 05(Ta,) C Ba(1+¢4.,)(0) = B(0).

Altogether, we obtain that N is quasi-nilpotent, which concludes the proof.

O
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Remark 15.2.8. Twice we applied Theorem 4.4.12 in the above proof, even though
we are working on a right Banach space and the theory in Chapter 4 was developed
on a two-sided Banach space. Using Theorem 14.2.7, one can, however, define
the S-functional calculus also on right-sided Banach spaces, so that this result is
actually applicable. For details, we refer to [125].

Definition 15.2.9. Let T' € B(VR) be a spectral operator and decompose T' = S+ N
as in Theorem 15.2.7. The scalar operator S is called the scalar part of T, and
the quasi-nilpotent operator N is called the radical part of T.

Remark 15.2.10. Let T € B(Vg) be a spectral operator. The canonical decompo-
sition of T into its scalar part and its radical part obviously coincides for every
j € S with the canonical decomposition of 1" as a C;-linear spectral operator on
V.

The remainder of this section discusses the S-functional calculus for spectral
operators. Similar to the complex case, one can express f(T) for every intrinsic
function f as a formal Taylor series in the radical part N of T. The Taylor coef-
ficients are spectral integrals of f with respect to the spectral decomposition of
T. Hence these coeflicients, and in turn also f(7'), depend only on the values of f
on the S-spectrum og(T") of T and not on the values of f on an entire neighbor-
hood of og(T). The operator f(T) is again a spectral operator, and its spectral
decomposition can easily be constructed from the spectral decomposition of 7'

In the following we consider an operator that is again defined on a two-sided
Banach space V.

Proposition 15.2.11. Let S € B(V) be an operator of scalar type on a two-sided
quaternionic Banach space V. If f € N'(c5(S)), then

£(8) = /H F(s) dE;(s). (15.31)

where f(S) is intended in the sense of the S-functional calculus.

Proof. Since 1(T) =1 = [;1dE;(s) and s(S) = S = [;sdE;(s), the product
rule and the R-linearity of both the S-functional calculus and the spectral integra-
tion imply that (15.31) holds for every intrinsic polynomial. It in turn also holds
for every intrinsic rational function in M (og(S)), i.e., for every function r of the
form 7(s) = p(s)q(s)~! with intrinsic polynomials p and ¢ such that g(s) # 0 for
every s € og(S).

Let now f € N(os(S)) be arbitrary and let U be a bounded axially sym-
metric open set such that o5(T) C U and U C D(f). Runge’s theorem for slice
hyperholomorphic functions implies the existence of a sequence of intrinsic rational
functions r,, € N (U) such that r,, — f uniformly on U. Because of Lemma 14.3.6,
we thus have

/H F(8)dEs(s) = Tim [ r(s)dEs(s) = Tim ra(S)=f(5). O

n—-+oo H n——+oo
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Theorem 15.2.12. Let T € B(V) be a spectral operator on a two-sided quaternionic
Banach space V' with spectral decomposition (E,J) and let T = S + N be the
decomposition of T into scalar and radical parts. If f € N(os(T)), then

+oo 1
=N [ 806 ams) (1.

where f(T) is intended in the sense of the S-functional calculus and the series
converges in the operator norm.

Proof. Since T = S + N with SN = NS and og(N) = {0}, it follows from
Theorem 4.4.14 that

Z N"  (951)(8)-
What remains to show is that

(@21)(S) = /H (O21)(s) dE(s), (15.33)

but this follows immediately from Proposition 15.2.11. O

The operator f(T) is again a spectral operator, and its radical part can be
easily obtained from the above series expansion.

Definition 15.2.13. A spectral operator T € B(V) on a two-sided quaternionic
Banach space V is said to be of type m € N if its radical part satisfies N™*! = 0.

Lemma 15.2.14. A spectral operator T € B(V') on a two-sided quaternionic Banach
space V' with spectral resolution (E,J) and radical part N is of type m if and only

if
1) =Y N [ 0N aBss) VS € Nos(T). (15.34)
n=0 !

In particular, T is a scalar operator if and only if it is of type 0.

Proof. If T is of type m, then the above formula follows immediately from Theo-
rem 15.2.12 and N™*! = 0. If, on the other hand, (15.34) holds, then we choose
f(s) = 2 s™ in (15.32) and (15.34) and subtract these two expressions. We obtain

0=Nm™H / dE;(s) = N™tL, O
H

Theorem 15.2.15. Let T' € B(Vg) be a spectral operator with spectral decomposi-
tion (E,J). If f € N(os(T)), then f(T) is a spectral operator, and the spectral
decomposition (E,J) of f(T) is given by

E(A)=E(f~'(A)) VA€ Bg(H) and J:/ij(s)dEJ(s),
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where jyy = 0 if f(s) € R and jp) = f(s)/|f(s)] if f(s) € H\R. For every
g € SM™(H) we have -

/ o(s) dB5(s) = / (g0 £)(s) dEy(s), (15.35)
H H

and if S is the scalar part of T, then f(S) is the scalar part of f(T).

Proof. We first show that f(S) is a scalar operator with spectral decomposition
(E,.J). By Corollary 14.3.4, the function f is B¢ (H)-%B g (H)-measurable, so that
E is a well-defined spectral measure on Bg(H).

The operator .J obviously commutes with E. Moreover, writing f(s) = fo(s)+
Jsf1(s) as in Lemma 14.3.3, we have j;(s) = jssgn(fi(s)). If weset Ay = {s € H:
fi(s) >0}, A_={seH: fi(s) <0}, and Ag = {s € H: f1(s) = 0}, we therefore
have ~

J=JE(A})—JE(AL).

Since f1(s) = 0 for every s € R, we have R C Ag and hence V. =ran E(A;) C
ran E(H \ R) = ran J and similarly also V_ = ran E(A_) C ran J. Since J and E
commute, V; and V_ are invariant subspaces of J contained in ran.J, so that J
and J_ define bounded surjective operators on V,, resp. V_. Moreover, ker J =
ran E(R), and hence ker J|y, = Vi Nker J = {0} and ker J|y. = V_nNker J = {0},
so that ker J = ran E(Ag) and ran .J = ran E(A )®ran E(A_) = ran E(ALUA_).

Now observe that f(s) € R if and only if f1(s) = 0. Hence f~!(R) = Aj and
FTHH\R) = Ay UA_, and we obtain

ranJ =ran E(A; UA_) =ran E (fTHH\R)) = ran E(H \ R)
and _ .
ker J = ran E(Ag) = ran E (f~'(R)) = ran E(R).
Moreover, since E(A)E(A_) = E(A_)E(A;) = 0and —J? = E(H\R), we have
—J2=—J?B(AL)? - (-J?)E(A)?

=EH\R)E(AL)+ EH\R)E(AL)

=E(Ay UA_) = E(H\R),
where we used that A, CH\Rand A_ C H\R as R C Ag. Hence —J? is the
projection onto ran J along ker J, and so J is actually an imaginary operator, and
(E,J) in turn is a spectral system.

Let g = Y, garxa, € MP(H,R) be a simple function. Then (g o f)(s) =
> i—o @eX f-1(a,)(8) is also a simple function in M (H, R) and

/ 9()dB(s) =S aB(A) = 3 acB (71 (A) = / (g0 £)(s) dE(s).
H =0 =0 =
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Due to the density of simple functions in (M (H, R), ||.||oc), we hence obtain

/ o(s) dB(s) = / (g0 f)(s)dE(s), Vg MZ(HR).
H H

If g € SM®(H), then we deduce from Lemma 14.3.3 that g(s) = v(s) + jsd(s)
with v,0 € MP(H,R) and j, = s/|s| if s ¢ R and js = §(s) = 0if s € R. We then
have (40 £)(s) = 7((5)) + 4 3(f(5)), and we obtain

/H o(s)dE ;(s) = /H ~(s)dE(s) + J /H 5(s) dE(s)
- / (vo £)(s)dE(s) +J / (60 f)(s) dE(s)
H H

- /H (7o £)(s) dEs(s) + /H Jre dEs(s) /H (60 f)(s) dE(s)
- / (0 £)(3) + (80 £)(s) dEs (s) = / (g0 F)(s) dE(5),
H H

and hence (15.35) holds. Choosing in particular g(s) = s, we deduce from Propo-

sition 15.2.11 that
:/f(s)dEJ(s):/sdEj(s).
H H

By Remark 15.2.2, f(S) is a scalar operator with spectral decomposition (E,J).
Theorem 15.2.12 implies f(T') = f(S) + © with

S —ZN” [ (95)(S).

If we can show that © is a quasi-nilpotent operator, then the statement of the
theorem follows from Theorem 15.2.7. We first observe that each term in the
sum is a quasi-nilpotent operator because N" and (0¢f)(S) commute due to
Lemmas 14.3.6 and 15.2.3, so that

(v Lenns)

Corollary 15.2.5 thus implies o (N" 5 (9% f(S))) = {0}.

By induction we conclude from Taylor’s formula and Corollary 15.2.5 that
for each m € Nm, the finite sum ©1(m) := >, N"1(8% £)(S) is quasi-nilpotent
and satisfies og(0(m)) = {0}.

Since the series © converges in the operator norm, for every € > 0 there exists
me € N such that Oy(m.) == S+ N™L (9% f)(S) satisfies [|©2(m.)|| < e.

n=mg+1

1
E

0 < lim

k—oco

1 . k)
<Hm(3§f)(S)H (klggoHN’“H ) —o.
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Hence 0g(©2(m.)) C B:(0), and since ©® = ©1(m.) + O2(m.) and ©1(m.) and
©2(m.) commute, we conclude from Theorem 4.4.12 that o05(0) C B.(0). Since
¢ > 0 was arbitrary, we obtain og5(0) = {0}. By Corollary 15.2.5, © is quasi-
nilpotent.

We have shown that f(T') = f(S) + ©, that f(S) is a scalar operator with
spectral decomposition (E J ), and that © is quasi-nilpotent. From Theorem 15.2.7
we therefore deduce that f(7T') is a spectral operator with spectral decomposition
(E,.J), that f(S) is its scalar part, and that © is its radical part. This concludes
the proof. O

Corollary 15.2.16. Let T € B(H) be a spectral operator and let f € N(os(T)). If
T is of type m € N, then f(T) is of type m too.

Proof. It T = S + N is the decomposition of T into its scalar and radical parts
and T is of type m such that N™*! = 0, then the radical part © of f(T) is given,
due to Lemma 15.2.14 and Theorem 15.2.15, by

—+oo m
O = J(T) ~ f(S) = 3 N"-(OL1)(8) = D N" - (L)(S).

Obviously also @™*1 = 0. O
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