
Chapter 14

Spectral Integration in the
Quaternionic Setting

Before we begin the study of quaternionic spectral operators, we discuss in this
chapter spectral integration in the quaternionic setting. There have existed several
different approaches to this topic in the literature, but these approaches required
the introduction of a left multiplication on the Hilbert space (even though this
multiplication was sometimes assumed to be defined only for quaternions in one
complex plane and not for all q ∈ H). This left multiplication was in general
only partially determined by the a priori given mathematical structures; cf. also
Remarks 9.3.7 and 9.4.12. It had to be extended randomly, and the necessary
procedure does not generalize to the Banach space setting, in which we want to
develop the theory of quaternionic spectral operators.

In this chapter we therefore develop an approach to spectral integration of
intrinsic slice functions on a quaternionic right Banach space. This integration is
done with respect to a spectral system instead of a spectral measure, a concept that
makes specific ideas of [197]. It has a clear and intuitive interpretation in terms
of the right linear structure of the space, and it is compatible with the complex
theory. The prototype of a spectral system is a pair (E, J) on a Hilbert space that
consists of a spectral measure E and an imaginary operator J with E(H \ R) =
−J2. This is exactly the structure that we used to define spectral integration
on Hilbert spaces in Chapter 10. In this chapter we consider, however, spectral
measures that are defined on axially symmetric subsets of H instead of subsets
of a complex half-plane C+

j . Both approaches are equivalent: we can identify any

axially symmetric set with its intersection with one complex half-plane C+
j in order

to obtain a bijective relation between these two types of sets. The two notations
stress, however, two different philosophies. While the imaginary operator J was in
Chapter 10 considered a multiplication by the imaginary unit j from the left, we
stress in this chapter that J can also be considered a right linear multiplication
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274 Chapter 14. Spectral Integration in the Quaternionic Setting

by the entire set of imaginary units S form the right. This allows us to give a clear
interpretation of spectral integration in terms of the right linear structure on the
space.

The results in this chapter are taken from [125] and [128]. We want to point
out that in this chapter and in the next one it is very important to distinguish
between left and right Banach spaces. So to avoid confusion with the previous
chapters we will denote the left Banach spaces by VL, right Banach spaces by VR
and the two-sided ones by V .

14.1 Spectral Integrals of Real-Valued Slice Functions

The basic idea of spectral integration is well known: it generates a multiplication
operator in a way that generalizes the multiplication by eigenvalues in the discrete
case. If, for instance, λ ∈ σ(A) of some normal operator A : Cn → Cn, then we can
define E({λ}) to be the orthogonal projection of Cn onto the eigenspace associated
with λ and we obtain A =

∑
λ∈σ(A) λE({λ}). Setting E(∆) =

∑
λ∈∆E({λ}), one

obtains a discrete measure on C, the values of which are orthogonal projections
on Cn, and A is the integral of the identity function with respect to this measure.
Changing the notation accordingly, we have

A =
∑

λ∈σ(A)

λE({λ}) =⇒ A =

∫
σ(A)

λ dE(λ). (14.1)

Via functional calculus it is possible to define functions of an operator. The fun-
damental intuition of a functional calculus is that f(A) should be defined by the
action of f on the spectral values (resp. the eigenvalues) of A. For our normal
operator A on Cn the operator f(A) is the operator with the following property:
if y ∈ Cn is an eigenvector of A with respect to λ, then y is an eigenvector of
f(A) with respect to f(λ), just as happens, for instance, naturally for powers and
polynomials of A. Using the above notation, we thus have

f(A) =
∑

λ∈σ(A)

f(λ)E({λ}) =⇒ f(A) =

∫
σ(A)

f(λ) dE(λ). (14.2)

In infinite-dimensional Hilbert spaces, the spectrum of a normal operator
might be not discrete, so that the expressions on the left-hand side of (14.1) and
(14.2) do not make sense. If E, however, is a suitable projection-valued measure,
then it is possible to give the expression (14.2) a meaning by following the usual
way of defining integrals via the approximation of f by simple functions. The spec-
tral theorem then shows that for every normal operator T there exists a spectral
measure such that (14.1) holds.

If we want to introduce similar concepts in the quaternionic setting, we are—
even in the discrete case—faced with several unexpected phenomena.
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(P1) The space of bounded linear operators on a quaternionic Banach space VR is
only a real Banach space and not a quaternionic one. Hence the expressions
in (14.1) and (14.2) are defined a priori only if λ and f(λ), respectively,
are real. Otherwise, one needs to give meaning to the multiplication of the
operator E({λ}) by nonreal scalars.

(P2) The multiplication by a (nonreal) scalar on the right is not linear, so that
aE({λ}) for a ∈ H cannot be defined as (aE({λ}))(ya) = (E({λ})y)a. More-
over, the set of eigenvectors associated with a specific eigenvalue does not
constitute a linear subspace of VR: if, for instance, Ty = ys with s = s0 +jss1

and i ∈ S with js ⊥ i, then T (yi) = (Ty)i = (ys)i = (yi)s 6= (yi)s.

(P3) Finally, the set of eigenvalues is in general not discrete: if s ∈ H is an eigen-
value of T with Ty = ys for some y 6= 0 and sj = s0 + js1 ∈ [s], then there
exists h ∈ H \ {0} such that sj = h−1sh, and so

T (yh) = T (y)h = ysh = (yh)h−1sh = (yh)sj . (14.3)

Thus, every sj ∈ [s] is also an eigenvalue of T .

As a first consequence of items (P2) and (P3), the notions of eigenvalue and
eigenspace have to be adapted: linear subspaces are in the quaternionic setting
not associated with individual eigenvalues s but with spheres [s] of equivalent
eigenvalues.

Definition 14.1.1. Let T ∈ L(VR) and let s ∈ H\R. We say that [s] is an eigensphere
of T if there exists a vector y ∈ VR \ {0} such that

(T 2 − 2s0T + |s|2I)y = Qs(T )y = 0. (14.4)

The eigenspace of T associated with [s] consists of all those vectors that satisfy
(14.4).

Remark 14.1.2. For real values, things remain as we know them from the classical
case: a quaternion s ∈ R is an eigenvalue of T if Ty − ys = 0 for some y 6= 0. The
quaternionic right linear subspace ker(T − sI) is then called the eigenspace of T
associated with s.

Every eigenvector y that satisfies T (y) = ysj with sj = s0 + js1 for some
j ∈ S belongs to the eigenspace associated with the eigensphere [s]. Note, however,
that the eigenspace associated with an eigensphere [s] does not consist only of
eigenvectors. It contains also linear combinations of eigenvectors associated with
different eigenvalues in [s], as the next lemma shows.

Lemma 14.1.3. Let T ∈ L(VR), let [s] be an eigensphere of T , and let j ∈ S. A
vector y belongs to the eigenspace associated with [s] if and only if y = y1 + y2

such that Ty1 = y1sj and Ty2 = y2sj, where sj = s0 + js1.
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Proof. Observe that

Qs(T )y = T 2y − Ty2s0 + y|s|2 = T (Ty − ysj)− (Ty − ysj)sj (14.5)

and

Qs(T )y = T 2y − Ty2s0 + y|s|2 = T (Ty − ysj)− (Ty − ysj)sj . (14.6)

Hence Qs(T )y = 0 for every eigenvector associated with sj or sj and in turn also
for every y that is the sum of two such vectors.

If, conversely, y satisfies (14.4), then we deduce from (14.5) that Ty − ysj is
a right eigenvector associated with sj and that Ty− ysj is a right eigenvalue of T
associated with sj . Since sj and j commute, the vectors y1 = (Ty − ysj) −j2s1

and

y2 = (Ty − ysj) j
2s1

are right eigenvectors associated with s resp. sj , too. Hence
we have obtained the desired decomposition as

y1 + y2 = (Ty − ysj)
−j
2s1

+ (Ty − ysj)
j

2s1
= y(sj − sj)

j

2s1
= y. �

Remark 14.1.4. If i ∈ S with i ⊥ j, then ỹ2 := y2(−i) is an eigenvector of T
associated with s. Hence we can write y also as y = y1 + ỹ2i, where y1, ỹ2 are both
eigenvectors associated with sj .

Since the eigenspaces of quaternionic linear operators are not associated with
individual eigenvalues but instead with eigenspheres, quaternionic spectral mea-
sures must not be defined on arbitrary subsets of the quaternions. Instead, their
natural domains of definition consist of axially symmetric subsets of H, so that
they associate subspaces of VR not to sets of spectral values but to sets of spectral
spheres. This is also consistent with the fact that the S-spectrum of an operator
is axially symmetric.

Definition 14.1.5. We denote the σ-algebra of axially symmetric Borel sets on
H by BS(H). Furthermore, we denote the set of all real-valued BS(H)-B(R)-
measurable functions defined on H byMS(H,R) and the set of all such functions
that are bounded by M∞S (H,R).

Remark 14.1.6. The restrictions of functions inM∞S (H,R) to a complex half-plane
C+
j are exactly the functions that were used to construct the spectral measure of

a quaternionic normal operator in the previous chapters.

Definition 14.1.7. A quaternionic spectral measure on a quaternionic right Banach
space VR is a function E : BS(H)→ B(VR) that satisfies

(i) E(∆) is a continuous projection and ‖E(∆)‖ ≤ K for every ∆ ∈ BS(H) with
a constant K > 0 independent of ∆,

(ii) E(∅) = 0 and E(H) = I,

(iii) E(∆1 ∩∆2) = E(∆1)E(∆2) for every ∆1,∆2 ∈ BS(H), and
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(iv) for every sequence (∆n)n∈N of pairwise disjoint sets in BS(H) we have

E

(⋃
n∈N

∆n

)
y =

+∞∑
n=1

E(∆n)y for all y ∈ VR.

Corollary 14.1.8. Let E be a spectral measure on VR and let V ∗R be its dual space,
the left Banach space consisting of all continuous right linear mappings from VR to
H. For every y ∈ VR and y∗ ∈ V ∗R, the mapping ∆ 7→ 〈y∗, E(∆)y〉 is a quaternion-
valued measure on BS(H).

Remark 14.1.9. In the literature, authors have considered quaternionic spectral
measures defined on the Borel sets B

(
C+
j

)
of one of the closed complex half-planes

C+
j = {s0 + js1 : s0 ∈ R, s1 ≥ 0}, and we also did this in Chapter 10. This is

equivalent to E being defined on BS(H). Indeed, if Ẽ is defined on B
(
C+
j

)
, then

setting
E(∆) := Ẽ

(
∆ ∩ C+

j

)
∀∆ ∈ BS(H)

yields a spectral measure in the sense of Definition 14.1.7 that is defined on BS(H).
If, on the other hand, we start with a spectral measure E defined on BS(H), then
setting

Ẽ(∆) := E([∆]) ∀∆ ∈ B
(
C+
j

)
yields the respective measure on B

(
C+
j

)
. Although both definitions are equivalent,

in this chapter we prefer BS(H) as the domain of E because it does not suggest
a dependence on the imaginary unit j.

For a function f ∈ M∞S (H,R), we can now define the spectral integral with
respect to a spectral measure E as in the classical case. If f is a simple function,
i.e., f(s) =

∑n
k=1 αkχ∆k

(s) with pairwise disjoint sets ∆k ∈ BS(H), where χ∆k

denotes the characteristic function of ∆k, then we set∫
H
f(s) dE(s) :=

n∑
k=1

αkE(∆k). (14.7)

There exists a constant CE > 0 that depends only on E such that∥∥∥∥∫
H
f(s) dE(s)

∥∥∥∥ ≤ CE‖f‖∞, (14.8)

where ‖.‖∞ denotes the supremum norm. If f ∈ M∞S (H,R) is arbitrary, then we
can find a sequence of simple functions (fn)n∈N such that ‖f − fn‖∞ → 0 as
n→ +∞. In this case we can set∫

H
f(s) dE(s) := lim

n→+∞

∫
H
fn(s) dE(s), (14.9)

where this sequence converges in the operator norm because of (14.8).
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Lemma 14.1.10. Let E be a quaternionic spectral measure on VR. The mapping
f 7→

∫
H f(s) dE(s) is a continuous homomorphism from M∞S (H,R) to B(VR).

Moreover, if T commutes with E, i.e., it satisfies TE(∆) = E(∆)T for all sets
∆ ∈ BS(H), then T commutes with

∫
H f(s) dE(s) for every f ∈M∞S (H,R).

Corollary 14.1.11. Let E be a quaternionic spectral measure on VR and let f ∈
M∞S (H,R). For every y ∈ VR and y∗ ∈ V ∗R, we have〈

y∗,

[∫
H
f dE

]
y

〉
=

∫
H
f(s) d〈y∗, E(s)y〉.

Proof. Let fn =
∑Nn
k=1 αn,kχ∆n,k

∈ M∞S (H,R) be such that ‖f − fn‖ → 0 as
n→ +∞. Since all coefficients αn,k are real, we have

〈
y∗,

[∫
H
f dE

]
y

〉
= lim
n→∞

〈
y∗,

[
Nn∑
k=1

αn,kE(∆n,k)

]
y

〉

= lim
n→∞

Nn∑
k=1

αn,k 〈y∗, E(∆n,k)y〉 =

∫
H
f(s) d〈y∗, E(s)y〉. �

Remark 14.1.12. The above definitions are well posed and the properties given in
Lemma 14.1.10 can be shown as in the classical case, so we omit their proofs. One
can also deduce them directly from the classical theory: if we consider VR a real Ba-
nach space and E a spectral measure with values in the space BR(VR) of bounded
R-linear operators on VR, which obviously contains B(VR), then

∫
H f(s) dE(s)

defined in (14.7), resp. (14.9), is nothing but the spectral integral of f with re-
spect to E in the classical sense. Since every αk in (14.7) is real and since each
E(∆) is a quaternionic right linear projection, the integral of every simple func-
tion f with respect to E is a quaternionic right linear operator and hence belongs
to B(VR). The space B(VR) is closed in BR(VR), and hence the property of be-
ing quaternionic linear survives the approximation by simple functions such that∫
H f(s) dE(s) ∈ B(VR) for every f ∈M∞S (H,R) even if we consider it the integral

with respect to a (real) spectral measure on the real Banach space VR.

14.2 Imaginary Operators

The techniques introduced so far allow us to integrate real-valued functions with
respect to a spectral measure. This is obviously insufficient, even for formulating
the statement corresponding to (14.1) in the quaternionic setting unless σS(T ) is
real. In order to define spectral integrals for functions that are not real-valued, we
need additional information.

This fits another observation: in contrast to the complex case, even for the
simple case of a normal operator on a finite-dimensional quaternionic Hilbert
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space, a decomposition of the space VR into the eigenspaces of T is not suffi-
cient to recover the entire operator T . Let j, i ∈ S with j 6= i and consider, for
instance, the operators T1, T2, and T3 on H2, which are given by their matrix
representations

T1 =

(
j 0
0 j

)
, T2 =

(
j 0
0 i

)
, T3 =

(
i 0
0 i

)
. (14.10)

For each ` = 1, 2, 3, we have σS(T`) = S and that the only eigenspace of T` is the
entire space H2. The spectral measure E that is associated with T` is hence given
by E(∆) = 0 if S 6⊂ ∆ and E(∆) = I if S ⊂ ∆. Obviously, the spectral measures
associated with these operators agree, although these operators do not coincide.

Since the eigenspace of an operator T that is associated with some eigen-
sphere [s] contains eigenvectors associated with different eigenvalues, we need some
additional information to understand how to multiply the eigensphere onto the
associated eigenspace, i.e., to understand which vector in the eigenspace must be
multiplied by which eigenvalue in the corresponding eigensphere [s]. This infor-
mation will be provided by a suitable imaginary operator. Such operators gen-
eralize the properties of the anti-self-adjoint partially unitary operator J in the
Teichmüller decomposition

T = A+ JB =
1

2
(T + T ∗) +

1

2
J |T − T ∗| (14.11)

(where J is an anti-self-adjoint partial isometry with kerJ = ker(T − T ∗) that is
determined by the polar decomposition of !

2 (T − T ∗)) of a normal operator on a
Hilbert space to the Banach space setting.

Definition 14.2.1. An operator J ∈ B(VR) is called imaginary if −J2 is the pro-
jection of VR onto ranJ along kerJ . We call J fully imaginary if −J2 = I, i.e., if
in addition, kerJ = {0}.
Corollary 14.2.2. An operator J ∈ B(VR) is an imaginary operator if and only if

(i) −J2 is a projection and

(ii) ker J = ker J2.

Proof. If J is an imaginary operator, then obviously item (i) and item (ii) hold.
Assume, on the other hand, that item (i) and item (ii) hold. Obviously ran(−J2) ⊂
ran J . For every x ∈ VR, we have (−J2)x− x ∈ ker(−J2) = kerJ because

(−J2)
(
(−J2)x− x

)
= (−J2)2x− (−J)2x = (−J2)x− (−J)2x = 0,

since (−J2) is a projection. Therefore

0 = J(−J2x− x) = (−J2)Jx− Jx,

and hence y = (−J2)y for every y = Jx ∈ ran J . Consequently, ran(−J2) ⊃ ran J ,
and in turn ran J = ran(−J2). Since ker J = ker(−J2), we find that −J2 is the
projection of VR onto ran J along kerJ , i.e., that J is an imaginary operator. �
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Remark 14.2.3. The above implies that every anti-self-adjoint partially unitary
operator J on a quaternionic Hilbert space H is an imaginary operator. Indeed,
for every y ∈ ker J , we obviously have −J2y = 0. Since the restriction of J to
H0 := ran J = ker J⊥ is unitary and J is anti-self-adjoint, we furthermore have
for y ∈ H0 that −J2y = J∗Jy = (J |H0

)
∗

(J |H0
) y = (J |H0

)
−1

(J |H0
) y = y. Hence

−J2 is the orthogonal projection onto H0 = ran J , and so J is an imaginary
operator. In particular, every unitary anti-self-adjoint operator is fully imaginary.
Cf. also Corollary 9.3.8.

Lemma 14.2.4. If J ∈ B(VR) is an imaginary operator, then σS(T ) ⊂ {0} ∪ {S}.

Proof. Since the operator −J2 is a projection, its S-spectrum σS(−J2) is a subset
of {0, 1}. Indeed, for every projection P ∈ B(V ), a simple calculation shows that
the pseudo-resolvent of P at every s ∈ H \ {0, 1} is given by

Qs(P )−1 = − 1

|s|2

(
1− 2Re(s)

1− 2Re(s) + |s|2
P − I

)
such that s ∈ ρS(P ). As a consequence of the spectral mapping theorem, we find
that

−σS(J)2 = {−s2 : s ∈ σS(J)} = σS(−J2) ⊂ {0, 1}.
But if −s2 ∈ {0, 1}, then s ∈ {0} ∪ S and hence σS(J) ⊂ {0} ∪ S. �

Remark 14.2.5. If J = 0, then J is an imaginary operator with σS(T ) = {0}. If,
on the other hand, kerJ = {0} (i.e., if J is fully imaginary), then σS(T ) = S. In
every other case we obviously have σS(T ) = {0} ∪ S.

Our next goal is to arrive at Theorem 14.2.10, which gives a complete charac-
terization of imaginary operators on VR. It is the analogue of Lemma 9.3.9. Before
we prove this result, however, we prove a crucial relation between the concepts of
quaternionic spectral theory and the concepts of classical complex operator theory.

Every quaternionic right Banach space VR can in a natural way be considered
a complex Banach space over any of the complex planes Cj by restricting the
multiplication by quaternionic scalars from the right to Cj . In order to deal with
the different structures on VR, we introduce the following notation.

Definition 14.2.6. Let VR be a quaternionic right Banach space. For j ∈ S, we
denote the space VR considered as a complex Banach space over the complex field
Cj by VR,j . If T is a quaternionic right linear operator on VR, then ρCj (T ) and
σCj (T ) shall denote its resolvent set and spectrum as a Cj-complex linear operator
on VR,j . If A is a Cj-complex linear, but not quaternionic linear, operator on VR,j ,
then we denote its spectrum as usual by σ(A).

If we want to distinguish between the identity operator on VR and the identity
operator on VR,j , we denote them by IVR and IVR,j . We point out that the operator
λIVR,j for λ ∈ Cj acts as λIVR,jy = yλ because the multiplication by scalars on
VR,j is defined as the quaternionic right scalar multiplication on VR restricted
to Cj .
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Theorem 14.2.7. Let T ∈ L(VR) and choose j ∈ S. The spectrum σCj (T ) of T
considered as a closed complex linear operator on VR,j equals σS(T ) ∩ Cj, i.e.,

σC
j
(T ) = σS(T ) ∩ Cj . (14.12)

For every λ in the resolvent set ρCj (T ) of T as a complex linear operator on VR,j,

the Cj-linear resolvent of T is given by Rλ(T ) =
(
λIVR,j − T

)
Qλ(T )−1, i.e.,

Rλ(T )y := Qλ(T )−1yλ− TQλ(T )−1y. (14.13)

For every i ∈ S with j ⊥ i, we moreover have

Rλ(T )y = −[Rλ(T )(yi)]i. (14.14)

Proof. Let λ ∈ ρS(T ) ∩ Cj . The resolvent (λIVR,j − T )−1 of T as a Cj-linear
operator on VR,j is then given by (14.13). Indeed, since T and Qλ(T )−1 commute,
we have for y ∈ D(T ) that

(λIVR,j − T )Qλ(T )−1(yλ− Ty)

= (λIVR,j − T )
(
Qλ(T )−1yλ− TQλ(T )−1y

)
= Qλ(T )−1yλλ− TQλ(T )−1yλ− TQλ(T )−1yλ+ T 2Qλ(T )−1y

= (|λ|2IVR,j − 2λ0T + T 2)Qλ(T )−1y = y.

Similarly, for y ∈ VR,j = VR, we have

(λIVR,j − T )Rλ(T )y

= (λIVR,j − T )
(
Qλ(T )−1yλ− TQλ(T )−1y

)
= Qλ(T )−1yλλ− TQλ(T )−1yλ− TQλ(T )−1yλ+ T 2Qλ(T )−1y

= (|λ|2IVR,j − 2λ0T + T 2)Qλ(T )−1y = y.

Since Qλ(T )−1 maps VR,j to D(T 2) ⊂ D(T ), we find that the operator Rλ(T ) =
(λIVR,j − T )Qλ(T )−1 is bounded, and so λ belongs to the resolvent setρCj (T ) of
T considered as a Cj-linear operator on VR,j . Hence, ρS(T )∩Cj ⊂ ρCj (T ), and in
turn σCj (T ) ⊂ σS(T ) ∩Cj . Together with the axial symmetry of the S-spectrum,
this further implies

σCj (T ) ∪ σCj (T ) ⊂ (σS(T ) ∩ Cj) ∪ (σS(T ) ∩ Cj) = σS(T ) ∩ Cj , (14.15)

where A = {z : z ∈ A}.
If λ and λ both belong to ρCj (T ), then [λ] ⊂ ρS(T ) because

(λIVR,j − T )(λIVR,j − T )y

= (yλ)λ− (Ty)λ− T (yλ) + T 2y

= (T 2 − 2λ0T + |λ|2)y
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and hence Qλ(T )−1 = Rλ(T )Rλ(T ) ∈ B(VR). Thus ρS(T )∩Cj ⊃ ρCj (T )∩ρCj (T ),
and in turn

σS(T ) ∩ Cj ⊂ σCj (T ) ∪ σCj (T ). (14.16)

The two relations (14.15) and (14.16) together yield

σS(T ) ∩ Cj = σCj (T ) ∪ σCj (T ). (14.17)

What remains to show is that ρCj (T ) and σCj (T ) are symmetric with respect to
the real axis, which then implies

σS(T ) ∩ Cj = σCj (T ) ∪ σCj (T ) = σCj (T ). (14.18)

Let λ ∈ ρCj (T ) and choose i ∈ S with j ⊥ i. We show that Rλ(T ) equals the

mapping Ay := − [Rλ(T )(yi)] i. Since λi = iλ and iλ = λi, we have for y ∈ D(T )
that

A
(
λIVR,j − T

)
y = A

(
yλ− Ty

)
= −

[
Rλ(T )

(
(yλ)i− (Ty)i

)]
i

= − [Rλ(T )((yi)λ− T (yi))] i

= −
[
Rλ(T )(λIVR,j − T )(yi)

]
i = −yii = y.

Similarly, for arbitrary y ∈ VR,j = VR, we have(
λIVR,j − T

)
Ay = (Ay)λ− T (Ay)

= − [Rλ(T )(yi)] iλ+ T ([Rλ(T )(yi)] i)

= − [Rλ(T )(yi)λ− T (Rλ(T )(yi))] i

= −
[
(λIVR,j − T )Rλ(T )(yi)

]
i = −yii = y.

Hence if λ ∈ ρCj (T ), then Rλ(T ) = − [Rλ(T )(yi)] i so that in particular, λ ∈
ρCj (T ). Consequently, ρCj (T ) and in turn also σCj (T ), are symmetric with respect
to the real axis, so that (14.18) holds. �

Definition 14.2.8. Let T ∈ L(VR). We define the VR-valued function

Rs(T ; y) = Qs(T )−1ys− TQs(T )−1y ∀y ∈ VR, s ∈ ρS(T ).

Remark 14.2.9. By Theorem 14.2.7, the mapping y 7→ Rs(T ; y) coincides with the
resolvent of T at s applied to y if T is considered a Cjs-linear operator on VR,js .

Let us now turn back to characterizing imaginary operators on Banach spaces.
Just as with imaginary operators on a Hilbert space, we can find three subspaces
of VR on which such an operator is simply multiplication by 0, j, or −j.
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Theorem 14.2.10. Let J ∈ B(VR) be an imaginary operator. For every j ∈ S, the
Banach space VR admits a direct sum decomposition as

VR = VJ,0 ⊕ V +
J,j ⊕ V

−
J,j (14.19)

with

VJ,0 = ker(J),

V +
J,j = {y ∈ V : Jy = yj},
V −J,j = {y ∈ V : Jy = y(−j)}.

(14.20)

The spaces V +
J,j and V −J,j are complex Banach spaces over Cj with the natural

structure inherited from VR, and for each i ∈ S with j ⊥ i, the map y 7→ yi is a
Cj-antilinear and isometric bijection between V +

J,j and V −J,j.
Conversely, let j, i ∈ S with j ⊥ i and assume that VR is the direct sum

VR = V0 ⊕ V+ ⊕ V− of a closed (H-linear) subspace V0 and two closed Cj-linear
subspaces V+ and V− of VR such that Ψ : y 7→ yi is a bijection between V+ and
V−. Let E+ and E− be the Cj-linear projections onto V+ and V− along V0 ⊕ V−,
resp. V0 ⊕ V+. The operator Jy := E+yj + E−y(−j) for y ∈ VR is an imaginary
operator on VR.

Proof. We first assume that J is an imaginary operator and show the existence of
the corresponding decomposition of VR. Let j ∈ S and let VR,j denote the space VR
considered as a complex Banach over Cj . Furthermore, let us assume that J 6= 0,
since the statement is obviously true in this case. Then J is a bounded Cj-linear
operator on VR,j , and by Theorem 14.2.7 and Lemma 14.2.4, the spectrum of J
as an element of B(VR,j) is σCj (J) = σS(J) ∩ Cj ⊂ {0, j,−j}. We define now for
τ ∈ {0, j,−j} the projection Eτ as the spectral projection associated with {τ}
obtained from the Riesz–Dunford functional calculus. If we choose 0 < ε < 1

2 ,
then the relation Rz(J) = (zIVR,j − J)Qz(J)−1 in Theorem 14.2.7 implies

Eτy =

∫
∂Uε(τ ;Cj)

Rz(J)y dz
1

2πi
=

∫
∂Uε(τ ;Cj)

Qz(J)−1(yz − Jy) dz
1

2πi
,

where Uε(τ ;Cj) denotes the ball of radius ε in Cj that is centered at τ . (Since we
assumed ker J 6= V , the projections Ej and E−j are not trivial. It might, however,
happen that E0 = 0, but this is not a problem in the following argumentation.)

We set

VJ,0 = E0VR,j , V +
J,j = EjVR,j , and V −J,j = E−jVR,j .

Obviously these are closed Cj-linear subspaces of VR,j , resp. VR, and (14.19) holds.
Let us now show that the relation (14.20) holds. We first consider the sub-

space V +
J,j . Since it is the range of the Riesz projector Ej associated with the

spectral set {j}, this is a Cj-linear subspace of VR,j that is invariant under J ,
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and the restriction J+ := J |V +
J,j

has spectrum σ(J+) = {j}. Now observe that

−J2
+ = −J2|V +

J,j
is the restriction of a projection onto an invariant subspace and

hence a projection itself. Since 0 /∈ σ(−J2
+) = −σ(J+)2 = {1}, we find that

ker−J2
+ = {0} and in turn I+ := IV +

J,j
= −J2

+. For y ∈ V +
J,j we therefore have

−y = J2
+y = (J+ − jI+ + jI+)2y = (J+ − jI+ + jI+)((J+ − jI+)y + yj)

= (J+ − jI+)2y + (J+ − jI+)yj + (J+ − jI+)yj + yj2.

Since j2 = −1, this is equivalent to

(J+ − jI+)2y = (J+ − jI+)y(−2j).

Hence (J+ − jI+)y is either 0 or an eigenvector of J+ − jI+ associated with the
eigenvalue −2j. By the spectral mapping theorem, σ(J+−jI+) = σ(J+)−j = {0}.
Hence J+ − jI+ cannot have an eigenvector with respect to the eigenvalue −2j,
and so (J+− jI+)y = 0. Therefore, J+ = I+i and Jy = J+y = yj for all y ∈ V +

J,j .

With similar arguments, one shows that Jy = y(−j) for every y ∈ V −J,j .

Finally, σ(−J2
0 ) = −σ(J0)2 = {0} for J0 := J |VJ,0 . Since −J2

0 = −J2|VJ,0 is the
restriction of a projection to an invariant subspace and thus a projection itself, we
find that −J2

0 is the zero operator, and hence VJ,0 = ker(−J0)2 ⊂ ker(J2) = kerJ .
On the other hand, ker J ⊂ VJ,0, since VJ,0 is the invariant subspace associated
with the spectral value 0 of J . Thus VJ,0 = ker J , and so (14.20) is true.

Finally, if i ∈ S with j ⊥ i and y ∈ V+ then (Jyi) = J(y)i = yji = (yi)(−j).
Hence Ψ : y → yi maps V +

J,j to V −J,j . It is obviously Cj-antilinear, isometric, and a
bijection, since y = −(yi)i, so that the proof of the first statement is finished.

Now let j, i ∈ S with j ⊥ i and assume that VR = V0 ⊕ V+ ⊕ V− with
subspaces V0, V+, and V− as in the assumptions. We define Jy := E+yj+E−y(−j).
Obviously, J is a continuous Cj-linear operator on VR,j . The mapping Ψ : y 7→ yi
maps V+ bijectively to V−, but since Ψ−1 = −Ψ, it also maps V− bijectively to V+.
Moreover, as an H-linear subspace, V0 is invariant under Ψ. For y = y0 +y+ +y− ∈
V0 ⊕ V+ ⊕ V− = VR, we therefore obtain

J(yi) = E+(yi)j + E−(yi)(−j) = y−ij + y+i(−j)
= y−(−j)i+ y+ji = (E−y(−j)) i+ (E+yj) i = (Jy)i.

If now a ∈ H, then we can write a = a1 + a2i with a1, a2 ∈ Cj and find due to the
Cj-linearity of J that

J(ya) = J(ya1) + J(ya2i) = J(y)a1 + J(y)a2i = J(y)(a1 + a2i) = J(y)a.

Hence J is quaternionic linear and therefore belongs to B(VR).
Since E+E− = E−E+ = 0, we furthermore observe that

−J2y = −J(E+yj + E−y(−j))
= −

(
E2

+yj
2 + E+E−y(−j2) + E−E+y(−j2) + E2

−y(−j)2
)

= (E+ + E−)y.
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Hence −J2 is the projection onto V+ ⊕ V− = ran(J) along kerJ = V0, so that J
is actually an imaginary operator. �

14.3 Spectral Systems and Spectral Integrals of

Intrinsic Slice Functions

As pointed out above, invariant subspaces of an operator are in the quaternionic
setting not associated with spectral values but with entire spectral spheres. Hence
quaternionic spectral measures associate subspaces of VR with sets of entire spec-
tral spheres and not with arbitrary sets of spectral values. If we want to integrate
a function f that takes nonreal values with respect to a spectral measure E, then
we need some additional information. We need to know how to multiply the dif-
ferent values that f takes on a spectral sphere onto the vectors associated with
the different spectral values in this sphere. This information is given by a suit-
able imaginary operator. Similar to [197], we hence introduce now the notion of a
spectral system.

Definition 14.3.1. A spectral system on VR is a pair (E, J) consisting of a spectral
measure and an imaginary operator J such that

(i) E and J commute, i.e., E(∆)J = JE(∆) for all ∆ ∈ BS(H) and

(ii) E(H \R) = −J2, that is, E(R) is the projection onto kerJ along ranJ , and
E(H \ R) is the projection onto ran J along ker J .

Definition 14.3.2. We denote by SM∞(H) the set of all bounded intrinsic slice
functions on H that are measurable with respect to the usual Borel sets B(H) on
H.

Lemma 14.3.3. A function f : H → H belongs to SM∞(H) if and only if it is of
the form f(s) = f0(s) + jsf1(s) with f0, f1 ∈M∞S (H,R) and f1(s) = 0 for s ∈ R.

Proof. If f(s) = f0(s) + jsf1(s) with f0, f1 ∈ M∞S (H,R) and f1(s) = 0 for s ∈
R, then we can set f0(s0, s1) := f0(s0 + js1) and f1(s0, s1) = f1(s + js1) and
f1(s0,−s1) := −f1(s0 + js1) with j ∈ S arbitrary. Since f0(s) and f1(s) are
BS(H)-measurable, they are constant on each sphere [s], and so this definition is
independent of the chosen imaginary unit j. Since f1(s) = 0 for real s, f1(s0, s1) is
moreover well defined for s1 = 0. We find that f(s) = f0(s)+jsf1(s) = f0(s0, s1)+
jsf1(s0, s1) with f0(s0, s1) and f1(s0, s1) taking real values and satisfying (2.4),
so that f is actually an intrinsic slice function. Moreover, the functions f0(s) and
f1(s) and the function ϕ(s) := js if s /∈ R and ϕ(s) := 0 if s ∈ R are B(H)-
B(H)-measurable. Since f1(s) = 0 if s ∈ R, we have f(s) = f0(s) + jsf1(s) =
f0(s) + ϕ(s)f1(s), and hence the function f is B(H)-B(H)-measurable too.

If, on the other hand, f ∈ SM∞(H) with f(s) = f0(s0, s1) + jsf1(s0, s1),
then also f0(s) := 1

2 (f(s) + f (s)) = f0(s0, s1) and f1(s) := 1
2ϕ(s) (f (s)− f(s)) =

f1(s0, s1) with ϕ(s) as above are B(H)-B(H)-measurable. Moreover f1(s) = 0 if
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s1 = 0. Since f is intrinsic, these functions take values in R, and hence they are
B(H)-B(R)-measurable. They are, moreover, constant on each sphere [s], so that
the preimages f−1

0 (A) and f−1
1 (A) of each set A ∈ B(R) are axially symmetric

Borel sets in H. Consequently, f0 and f1 are BS(H)-B(R)-measurable. Finally,
|f |2 = |f0|2 + |f1|2, so that f is bounded if and only if f0 and f1 are bounded. �

Corollary 14.3.4. Every function f ∈ SM∞(H) is BS(H)-BS(H)-measurable.

Proof. Let ∆ ∈ BS(H). Its inverse image f−1(∆) is a Borel set in H because f is
B(H)-B(H)-measurable. If s ∈ f−1(∆), then f(s) = f0(s0, s1) + jsf1(s0, s1) ∈ ∆.
The axial symmetry of ∆ implies then that for every sj = s0 + js1 ∈ [s] with
j ∈ S also f(sj) = f0(s0, s1) + jsf1(s0, s1) ∈ ∆ and hence sj ∈ f−1(∆). Thus
s ∈ f−1(∆) implies [s] ⊂ f−1(∆) and so f−1(∆) ∈ BS(H). �

We observe that Lemma 14.3.3 implies that the spectral integrals of the
component functions f0 and f1 of every f = f0 + jsf1 ∈ SM∞(H) are defined by
Definition 14.1.7.

Definition 14.3.5. Let (E, J) be a spectral system on VR. For f ∈ SM∞(H) with
f(s) = f0(s) + jsf1(s) we define the spectral integral of f with respect to (E, J) as∫

H
f(s) dEJ(s) :=

∫
H
f0(s) dE(s) + J

∫
H
f1(s) dE(s). (14.21)

The estimate (14.8) generalizes to∥∥∥∥∫
H
f(s) dE(s)

∥∥∥∥ ≤ CE‖f0‖∞ + CE‖J‖‖f1‖∞ ≤ CE,J‖f‖∞ (14.22)

with

CE,J := CE(1 + ‖J‖).

As a consequence of Lemma 14.1.10 and the fact that J and E commute, we
immediately obtain the following result.

Lemma 14.3.6. Let (E, J) be a spectral system on VR. The mapping

f 7→
∫
H
f(s) dEJ(s)

is a continuous homomorphism from (SM∞(H), ‖.‖∞) to B(VR). Moreover, if
T ∈ B(VR) commutes with E and J , then it commutes with

∫
H f(s) dEJ(s) for

every f ∈ SM∞(H).

From Corollary 14.1.11 we furthermore immediately obtain the following
lemma, which is an analogue of Lemma 5.3 in [13]. See also the chapter on spectral
integrals.
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Corollary 14.3.7. Let (E, J) be a spectral system on VR and let f = f0 + jf1 ∈
SM∞(H). For every y ∈ VR and y∗ ∈ V ∗R, we have〈

y∗,

[∫
H
f(s) dEJ(s)

]
y

〉
=

∫
H
f0(s) d 〈y∗, E(s)y〉+

∫
H
f1(s) d 〈y∗, E(s)Jy〉 .

Similar to the what happens for the S-functional calculus, there exists a deep
relation between quaternionic and complex spectral integrals on VR.

Lemma 14.3.8. Let (E, J) be a spectral system on VR, let j ∈ S, let E+ be the
projection of VR onto V +

J,j along VJ,0 ⊕ V −J,j, and let E− be the projection of VR
onto V −J,j along VJ,0 ⊕ V +

J,j; cf. Theorem 14.2.10. For ∆ ∈ B(Cj), we set

Ej(∆) :=


E+E([∆]) if ∆ ⊂ C+

j ,

E(∆) if ∆ ⊂ R,
E−E(∆) if ∆ ⊂ C−j ,
Ej(∆ ∩ C+

j ) + Ej(∆ ∩ R) + Ej(∆ ∩ C−j ) otherwise,

(14.23)

where C+
j and C−j are the open upper and lower half-plane in Cj. Then Ej is a

spectral measure on VR,j. For every f ∈ SM∞(H), we have with fj := f |Cj that∫
H
f(s) dEJ(s) =

∫
Cj
fj(z) dEj(s). (14.24)

Proof. Recall that E and J commute. For y+ ∈ V +
J,j , we thus have JE(∆)y+ =

E(∆)Jy+ = E(∆)y+j, so that E(∆)y+ ∈ V +
J,j and in turn E+E(∆)y+ = E(∆)y+.

Similarly, we see that E(∆)y∼∈VJ,0⊕V −J,ı for y∼∈VJ,0⊕V −J,j , so that E+E(∆)y∼ =

0. Hence if we decompose y ∈ VR as y = y++y∼ with y+ ∈ V +
J,j and y∼ ∈ VJ,0⊕V −J,j

according to Theorem 14.2.10, then E+E(∆)y = E+E(∆)y+ + E+E(∆)y∼ =
E(∆)y+ and E(∆)E+y = E(∆)y+, so that altogether, E(∆)E+y = E+E(∆)y.
Analogous arguments show that E−E(∆) = E(∆)E− and hence E+, E−, and
E(∆), ∆ ∈ BS(H), commute mutually.

Let us now show that Ej is actually a Cj-complex linear spectral measure on
VR,j . For each ∆ ∈ B(Cj) set ∆+ := ∆∩C+

j , ∆− := ∆∩C−j , and ∆R := ∆∩R for
neatness and recall that [ · ] denotes the axially symmetric hull of a set. For every
∆, σ ∈ BS(H), we have then

E([∆+])E(σR) = E(∆R)E([σ+]) = 0,

E([∆−])E(σR) = E(∆R)E([σ−]) = 0,
(14.25)

because of item (iii) in Definition 14.1.7. Moreover, E+ and E− as well as E([∆+]),
E([∆−]), and E(∆R) are projections that commute mutually, as we just showed.
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Since in addition, E+E− = E−E+ = 0, we have

Ej(∆)2 = (E+E([∆+]) + E(∆R) + E−E([∆−]))
2

= E2
+E([∆+])2 + E+E([∆+])E(∆R) + E+E−E([∆+])E([∆−])

+ E+E(∆R)E([∆+]) + E(∆R)2 + E−E(∆R)E([∆−])

+ E−E+E([∆−])E([∆+]) + E−E([∆−])E(∆R) + E2
−E([∆−])2

= E+E([∆+]) + E(∆R) + E−E([∆−]) = Ej(∆).

(14.26)

Hence Ej(∆) is a projection that is moreover continuous, since ‖Ej(∆)‖ ≤ K(1 +
‖E+‖ + ‖E−‖), where K > 0 is the constant in Definition 14.1.7. Altogether, we
find that E takes values that are uniformly bounded projections in B(VR,j).

We obviously have Ej(∅) = 0. Since E+ +E− = E(H\R) because of item (ii)
in Definition 14.3.1, also

Ej(Cj) = E+E([C+
j ]) + E(R) + E−E([C−j ])

= (E+ + E−)E(H \ R) + E(R) = E(H) = I.

Using the same properties of E+, E−, and E(∆) as in (14.26), we find that for
∆, σ ∈ B(Cj),

Ej(∆)E(σ)

=
(
E+E([∆+]) + E(∆R) + E−E([∆−])

)(
E+E([σ+]) + E(σR) + E−E([σ−])

)
= E2

+E([∆+])E([σ+]) + E+E([∆+])E(σR) + E+E−E([∆+])E([σ−])

+ E+E(∆R)E([σ+]) + E(∆R)E(σR) + E−E(∆R)E([σ−])

+ E−E+E([∆−])E([σ+]) + E−E([∆−])E(σR) + E2
−E([∆−])E([σ−])

= E+E([∆+] ∩ [σ+]) + E(∆R ∩ σR) + E−E([∆−] ∩ [σ−]).

In general it not true that [A] ∩ [B] = [A ∩ B] for A,B ⊂ Cj . (Just think, for
instance, about A = {j} and B = {−j} with [A] ∩ [B] = S ∩ S = S and [A ∩B] =
[∅] = ∅.) For every axially symmetric set C we have, however,

C =
[
C ∩ C+

i

]
∀i ∈ S.

If A and B belong to the same complex half-plane C+
i , then

[A] ∩ [B] =
[
([A] ∩ [B]) ∩ C+

i

]
=
[(

[A] ∩ C+
i

)
∩
(
[B] ∩ C+

i

)]
= [A ∩B].

(14.27)

Hence [∆+] ∩ [σ+] = [(∆ ∩ σ)+] and [∆−] ∩ [σ−] = [(∆ ∩ σ)−], so that altogether

Ej(∆)Ej(σ) = E+E([(∆ ∩ σ)+]) + E(∆R ∩ σR) + E−E([(∆ ∩ σ)−])

= Ej(∆ ∩ σ).
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Finally, we find for y ∈ VR,j = VR and every countable family (Δn)n∈N of pairwise
disjoint sets that

Ej

(⋃
n∈N

Δn

)
y

= E+E

([⋃
n∈N

Δn,+

])
y + E

(⋃
n∈N

Δn,R

)
y + E−E

([⋃
n∈N

Δn,−

])
y

= E+E

(⋃
n∈N

[Δn,+]

)
y + E

(⋃
n∈N

Δn,R

)
y + E−E

(⋃
n∈N

[Δn,−]

)
y.

Since the sets Δn,+, n ∈ N, are pairwise disjoint sets in the upper half-plane C
+
j ,

their axially symmetric hulls also are disjoint because of (14.27). Similarly, the
axially symmetric hulls of the sets Δn,−, n ∈ N are also pairwise disjoint, so that

Ej

(⋃
n∈N

Δn

)
y

=
∑
n∈N

E+Ej ([Δn,+]) y +
∑
n∈N

E (Δn,R) y +
∑
n∈N

E−E ([Δn,−]) y

=
∑
n∈N

Ej(Δn)y.

Altogether, we see that Ej is actually a Cj-linear spectral measure on VR,j .
Now let us consider spectral integrals. We start with the simplest real-valued

function possible: f = αχΔ with α ∈ R and Δ ∈ BS(H). Since fj = αχΔ∩Cj
and

E(Δ) = Ej(Δj ∩ Cj), we have for such a function∫
H

f(s) dE(s) = αE(Δ) = αEj(Δ ∩ Cj) =

∫
Cj

fj(z) dE(z).

By linearity we find that (14.24) holds for every simple function

f(s) =

n∑
�=1

αkχΔ(s)

in M∞
S (H,R). Since these functions are dense in M∞

S (H,R), it even holds for
every function in M∞

S (H,R). Now consider the function ϕ(s) = js if s ∈ H \ R

and ϕ(s) = 0 if s ∈ R. Since ϕj(z) = jχ
C

+
j
+ (−j)χ

C
−
j

and Ej(C
+
j ) = E+ and

E−
j = E−, the integral of ϕj with respect to Ej is∫

Cj

ϕ(z) dEj(z)y =
(
jEj(Cj)

)
y +

(
(−j)Ej(C

−
j )

)
y

= E+yj + E−y(−j) = Jy
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for all y ∈ VR,j = VR. If f is now an arbitrary function in SM∞(H), then
f(s) = f0(s) + ϕ(s)f1(s) with f0, f1 ∈ M∞S (H,R) and f1(s) = 0 if s ∈ R by
Lemma 14.3.3. By what we have shown so far and the homomorphism properties
of both quaternionic and the complex spectral integrals, we thus obtain∫

H
f(s) dEJ(s)

=

∫
H
f0(s) dE(s) + J

∫
H
f1(s) dE(s)

=

∫
Cj
f0,j(z) dEj(z) +

(∫
Cj
ϕj(z) dEj(z)

)(∫
Cj
f1,j(z) dEj(z)

)

=

∫
Cj
f0,j(z) + ϕj(z)f1,j(z) dEj(z) =

∫
Cj
fj(z) dEj(z). �

Working on a quaternionic Hilbert space, one might consider only spectral
measures whose values are orthogonal projections. If J is an anti-self-adjoint par-
tially unitary operator, as happens, for instance, in the spectral theorem for normal
operators in [13], then Ej has values that are orthogonal projections.

Corollary 14.3.9. Let H be a quaternionic Hilbert space, let (E, J) be a spectral
system on H, let j ∈ S, and let Ej be the spectral measure defined in (14.23). If
E(∆) is for every ∆ ∈ BS(H) an orthogonal projection on H and J is an anti-
self-adjoint partially unitary operator, then Ej(∆j) is for every ∆j ∈ B(Cj) an
orthogonal projection on (H, 〈·, ·, 〉j), where 〈x, y〉j := {〈x, y〉}j is the Cj-part of
〈x, y〉 defined as {a}j = a1 if a = a1 + a2i with a1, a2 ∈ Cj and i ∈ S with j ⊥ i.

Proof. If x, y ∈ H+
J,j , then

〈x, y〉 = 〈x,−J2y〉 = 〈Jx, Jy〉 = 〈xj, yj〉 = (−j)〈x, y〉j,

so that j〈x, y〉 = 〈x, y〉j. Since a quaternion commutes with j ∈ S if and only if
it belongs to Cj , we have 〈x, y〉 ∈ Cj . Hence if we choose i ∈ S with j ⊥ i, then
〈x, yi〉 = 〈x, y〉i ∈ Cji, so that in turn, 〈x, yi〉j = {〈x, y〉}j = 0 for x, y ∈ H+

J,j .

Since H−J,j = {yi : y ∈ H+
J,j} by Theorem 14.2.10, we obtain H−J,j ⊥j H

+
J,j , where

⊥j denotes orthogonality in Hj . Furthermore, we have for x ∈ H0 = ker J and
y ∈ H+

J,j that
〈x, y〉 = 〈x, Jy〉(−j) = 〈Jx, y〉j = 〈0, y〉j = 0,

and so 〈x, y〉j = {〈x, y〉}j = 0 and in turn H+
J,j ⊥ H0. Similarly, we see that also

H−J,j ⊥j H0. Hence the direct sum decomposition Hj = HJ,0 ⊕ H+
J,j ⊕ H

−
J,j in

(14.19) is actually a decomposition into orthogonal subspaces of Hj . The projec-
tion E+ of H onto H+

J,j along HJ,0 ⊕H−J,j and the projection E− of H onto H−J,j
along HJ,0 ⊕H+

J,j are hence orthogonal projections on Hj .
Since the operator E(∆) is for ∆ ∈ BS(H) an orthogonal projection on H,

it is an orthogonal projection on Hj . A projection is orthogonal if and only if it is
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self-adjoint. Since E+, E−, and E commute mutually, we find for every ∆ ∈ B(Cj)
and x, y ∈ Hj = H that

〈x,Ej(∆)y〉j
= 〈x,E+E([∆ ∩ C+

j ])y〉j + 〈x,E(∆ ∩ R)y〉j + 〈x,E−E([∆ ∩ C−j ])y〉j
= 〈E+E([∆ ∩ C+

j ])x, y〉j + 〈E(∆ ∩ R)x, y〉j + 〈E−E([∆ ∩ C−j ])x, y〉j
= 〈Ej(∆)x, y〉j .

Hence Ej(∆) is an orthogonal projection on Hj . �

We present two easy examples of spectral systems that illustrate the intuition
behind the concept of a spectral system.

Example 14.3.10. We consider a compact normal operator T on a quaternionic
Hilbert space H. The spectral theorem for compact normal operators in [143]
implies that the S-spectrum consists of a (possibly finite) sequence [sn] = sn,0 +
Ssn,1, n ∈ Υ ⊂ N, of spectral spheres that are (apart from possibly the sphere
[0]) isolated in H. Moreover, it implies the existence of an orthonormal basis of
eigenvectors (b`)`∈Λ associated with eigenvalues s` = s`,0 + js`s`,1 with js` = 0 if
s` ∈ R such that

Ty =
∑
`∈Λ

b`s`〈b`, y〉. (14.28)

Each eigenvalue s` obviously belongs to one spectral sphere, namely to [sn(`)] with
sn(`),0 = s`,0 and sn(`),1 = s`,1, and for [sn] 6= {0} only finitely many eigenvalues
belong to the spectral sphere [sn]. We can hence rewrite (14.28) as

Ty =
∑

[sn]∈σS(T )

∑
s`∈[sn]

b`s`〈b`, y〉 =
∑
n∈Υ

∑
n(`)=n

b`s`〈b`, y〉.

The spectral measure E of T is then given by

E(∆)y =
∑
n∈Υ

[sn]⊂∆

∑
n(`)=n

b`〈b`, y〉 ∀∆ ∈ BS(H).

If f ∈M∞S (H,R), then obviously∫
H
f(s) dE(s)y =

∑
n∈Υ

E([sn])yf(sn) =
∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉f(sn). (14.29)

In particular, ∫
H
s0 dE(s)y =

∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉s`,0
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and ∫
H
s1 dE(s)y =

∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉s`,1.

If we define
Jy :=

∑
n∈Υ

∑
n(`)=n

b`js`〈b`, y〉,

then J is an anti-self-adjoint partially unitary operator and (E, J) is a spectral
system. One can check easily that E and J commute, and since js` = 0 for s` ∈ R
and js` ∈ S with j2

s`
= −1 otherwise, one has

−J2y = −
∑
n∈Υ

∑
n(`)=n

b`j
2
s`
〈b`, y〉 =

∑
n∈Υ:[sn]⊂H\R

∑
n(`)=n

b`〈b`, y〉 = E(H \ R)y.

In particular, ker J = spanH{b` : s` ∈ R} = E(R). Note, moreover, that J is com-
pletely determined by T .

For every function f = f0 + jf1 ∈ SM∞(H), we have because of (14.29) and
〈b`, bκ〉 = δ`,κ that∫

H
f(s) dEJ(s)y =

∫
H
f0(s) dE(s)y + J

∫
H
f(s) dE(s)y

=
∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉f0(sn,0, sn,1)

+
∑

m,n∈Υ

∑
n(`)=n
n(κ)=m

b`js`〈b`, bκ〉〈bκ, y〉f1(sm,0, sm,1)

=
∑
n∈Υ

∑
n(`)=n

b`f0(s`,0, s`,1)〈b`, y〉

+
∑
n∈Υ

∑
n(`)=n

b`js`f1(s`,0, s`,1)〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

b`(f0(s`,0, s`,1) + js`f1(s`,0, s`,1))〈b`, y〉,

and so ∫
H
f(s) dEJ(s)y =

∑
n∈Υ

∑
n(`)=n

b`f(s`)〈b`, y〉. (14.30)

In particular, ∫
H
s dEJ(s) =

∑
n∈Υ

∑
n(`)=n

b`s`〈b`, y〉 = Ty.
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We have in particular T = A + JB with A =
∫
H s0 dE(s) self-adjoint, B =∫

H s1 dE(s) positive and J anti-self-adjoint and partially unitary as in (14.11).
Moreover, E corresponds via Remark 14.1.9 to the spectral measure obtained
from the spectral theorem for bounded normal operators.

We choose now j, i ∈ S with j ⊥ i, and for each ` ∈ Λ with s` /∈ R we choose
h` ∈ H with |h`| = 1 such that h−1

` js`h` = j and in turn

h−1
` s`h` = s`,0 + h−1

` js`h`s1 = s`,0 + js`,1 =: s`,j .

In order to simplify the notation we also set h` = 1 and js` = 0 if s` ∈ R. Then
b̃` := b`h`, ` ∈ Λ is another orthonormal basis consisting of eigenvectors of T , and
since h−1

` = h`/|h`|2 = h`, we have

Ty =
∑
n∈Υ

∑
n(`)=n

b`(h`h
−1
` )s`(h`h

−1
` )〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

(b`h`)(h
−1
` s`h`)〈b`h`, y〉 =

∑
n∈Υ

∑
n(`)=n

b̃`s`,j〈b̃`, y〉
(14.31)

and similarly

Jy =
∑
n∈Υ

∑
n(`)=n

b`(h`h
−1
` )j`(h`h

−1
` )〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

(b`h`)(h
−1
` j`h`)〈b`h`, y〉 =

∑
n∈Υ

∑
n(`)=n

b̃`j〈b̃`, y〉.

Recall that jλ = λj for every λ ∈ Cj and ji = −ij. The splitting of H obtained
from Theorem 14.2.10 is therefore given by

HJ,0 = ker J = spanH{b̃` : s` ∈ R}, H+
J,j := spanCj{b̃` : s` /∈ R},

and

H−J,j = spanCj{b̃`i : s` /∈ R} = H+
J,ji.

If 〈b`, y〉 = a` = a`,1 + a`,2i with a`,1, a`,2 ∈ Cj , then (14.31) implies

Ty =
∑
n∈Υ

∑
n(`)=n

b̃`s`,ja`

=
∑
n∈Υ

[sn]⊂R

∑
n(`)=n

b̃`a`s` +
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,1s`,j +
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,2is`,j .

(14.32)

If f ∈ SM∞(H), then the representation (14.30) of
∫
H f(s) dEJ(s) in the basis
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b̃�, � ∈ Λ implies∫
f(s) dEJ(s)y =

∑
n∈Υ

∑
n(�)=n

b̃�f(s�,j)a�

=
∑
n∈Υ

[sn]⊂R

∑
n(�)=n

b̃�a�f(s�)

+
∑
n∈Υ

[sn]⊂H\R

∑
n(�)=n

b̃�a�,1f(s�,j) +
∑
n∈Υ

[sn]⊂H\R

∑
n(�)=n

b̃�a�,2if(s�,j)

=
∑
n∈Υ

[sn]⊂R

∑
n(�)=n

b̃�a�f(s�)

+
∑
n∈Υ

[sn]⊂H\R

∑
n(�)=n

b̃�a�,1f(s�,j) +
∑
n∈Υ

[sn]⊂H\R

∑
n(�)=n

b̃�a�,2if(s�,j), (14.33)

since f(s�) ∈ R for s� ∈ R and f(s�,j) = f(s�,j) because f is intrinsic. Note that
the representations (14.32) and (14.33) show clearly that f(T ) is defined by letting
f act on the right eigenvalues of T .

Example 14.3.11. Let us consider the space L2(R,H) of all quaternion-valued func-
tions on R that are square-integrable with respect to the Lebesgue measure λ.
Endowed with the pointwise multiplication (fa)(t) = f(t)a for f ∈ L2(R,H) and
a ∈ H and with the scalar product

〈g, f〉 =
∫
R

g(t)f(t) dλ(t) ∀f, g ∈ L2(R,H), (14.34)

this space is a quaternionic Hilbert space. Let us now consider a bounded measur-
able function ϕ : R → H and the multiplication operator (Mϕf)(s) := ϕ(s)f(s).

This operator is normal with (Mϕ)
∗ = Mϕ, and its S-spectrum is the set ϕ(R).

Indeed, writing ϕ(t) = ϕ0(t) + jϕ(t)ϕ1(t) with ϕ0(t) ∈ R, ϕ1(t) > 0, and jϕ(t) ∈ S

for ϕ(t) ∈ H \ R and jϕ(t) = 0 for ϕ(t) ∈ R, we find that

Qs(Mϕ)f(t) = M2
ϕf(t)− 2s0Mϕf(t) + |s|2f(t)

= (ϕ2(t)− 2s0ϕ(t) + |s|2)f(t)
= (ϕ(t)− sjϕ(t)

)(ϕ(t)− sjϕ(t)
)f(t)

with sjϕ(t)
= s0 + jϕ(t)s1, and hence

Qs(Mϕ)
−1f(t) = (ϕ(t)− sjϕ(t)

)−1(ϕ(t)− sjϕ(t)
)−1f(t)

is a bounded operator if s /∈ ϕ(R). If we define E(Δ) = Mχϕ−1(Δ)
for all Δ ∈

BS(H), then we obtain a spectral measure on BS(H), namely

E(Δ)f(t) = χϕ−1(Δ)(t)f(t).
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If we set
J := Mjϕ i.e., (Jf)(t) = jϕ(t)f(t),

then we find that (E, J) is a spectral system. Obviously J is anti-self-adjoint and
partially unitary and hence an imaginary operator that commutes with E. Since
jϕ(t) = 0 if ϕ(t) ∈ R and jϕ(t) ∈ S otherwise, we have, moreover,

(−J2f)(t) = −j2ϕ(t)f(t) = χϕ−1(H\R)f(t) = (E(H \ R)f)(t).

If g ∈ M∞
S (H,R), then let gn(s) =

∑Nn

�=1 an,�χΔn,�
(s) ∈ M∞

S (H,R) be a
sequence of simple functions that converges uniformly to g. Then

∫

H

g(s) dE(s)f(t) = lim
n→∞

Nn∑

�=1

an,�E(Δn,�)f(t) = lim
n→∞

Nn∑

�=1

an,�χϕ−1(Δ)(t)f(t)

= lim
n→∞

Nn∑

�=1

an,�χΔ(ϕ(t))f(t) = lim
n→∞(gn ◦ ϕ)(t)f(t) = (g ◦ ϕ)(t)f(t).

Hence if g(s) =0 (s) + jsf1(s) ∈ SM∞(H), then

∫

H

g(s) dEJ(s)f(t) =

∫

H

g(s) dE(s)f(t)

=

∫

H

g0(s) dE(s)f(t) + J

∫

H

f1(s) dE(s)f(t)

= g0(ϕ(t))f(t) + jϕ(t)f1(ϕ(t))f(t)

= (g0(ϕ(t)) + jϕ(t)f1(ϕ(t))f(t) = (g ◦ ϕ)(t)f(t),
and so ∫

H

g(s) dEJ(s) = Mg◦ϕ.

Choosing g(s) = s, we find in particular that T = A + JB with A =
∫
H
s0 dE(s)

self-adjoint, B =
∫
H
s1 dE(s) positive, and J anti-self-adjoint and partially unitary

as in the Teichmüller decomposition. The spectral measure E corresponds via
Remark 14.1.9 to the spectral measure obtained in Theorem 11.2.1.

14.4 On the Different Approaches to Spectral
Integration

The approach to spectral integration presented in this chapter specifies some ideas
in [197]. We now compare this approach with the approaches in [13] and [144].
In [13], the authors consider a spectral measure E over C

+
j and a unitary and

anti-self-adjoint operator J (i.e., a fully imaginary operator J in the terminology
of this book) that commutes with E. They define a left multiplication on H by
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the imaginary unit J as jy := Jy for y ∈ H. (If one tries to develop the spectral
theory of a normal operator T , then J is simply the extension of the imaginary
operator in the Teichmüller decomposition of T to a fully imaginary operator; cf.
Remark 9.3.7.) One can then define the multiplication of an operator A in B(H)
by the imaginary unit j as jA = JA and Aj := AJ , and this makes the integration
of Cj-valued functions on f : C+

j → Cj possible. The procedure

∫
C+
j

f(s) dE(s) := lim
n→+∞

∫
C+
j

fn(s) dE(s) := lim
n→+∞

Nn∑
k=1

αn,kE(∆n,k), (14.35)

where fn :=
∑Nn
k=1 αn,kχ∆n,k

with ∆n,k ∈ B(C+
j ) is a sequence of simple functions

that uniformly converges to f , is in this case also well defined if the coefficients
αn,k belong to Cj , and not only if they belong to R.

The authors of [144] go one step further: they define a second unitary and
anti-self-adjoint operator K that commutes with E and anti-commutes with J ,
and they define a full left multiplication on H. They choose i ∈ S with j ⊥ i and
define Lj := J and Li := K and the left multiplication

L :

{
H → B(H),

a = a0 + a1j + a2i+ a3ji 7→ La := a0I + a1j + a2i+ a3ji,

so that

ay := Lay = ya0 +  Ljya1 + Liya2 + LjLiya3 ∀y ∈ H.

They call a pair E := (E,L) consisting of a spectral measure over C+
j and a

left multiplication that commutes with E an intertwining quaternionic projection-
valued measure (iqPVM for short). Such iqPVMs allow one to define spectral
integrals for functions f : C+

j → H with arbitrary values in H, since the coeffi-
cients an,k in (14.35) are in this case meaningful for arbitrary values an,k ∈ H. The
authors arrive then at the following version of the spectral theorem [144, Theo-
rem 4.1].

Theorem 14.4.1. Let T ∈ B(H) be normal and let j ∈ S. There exists an iqPVM
E = (E,L) over C+

j on H such that

T =

∫
C+
j

z dE(z). (14.36)

The spectral measure E is uniquely determined by T , and the left multiplication
is uniquely determined for a ∈ Cj on ker(T − T ∗)⊥. Precisely, we have for every
other left multiplication L′ such that E ′ = (E,L′) is an iqPVM satisfying (14.36)
that Lay = L′ay for every a ∈ Cj and y ∈ ker(T − T ∗)⊥. (Even more specifically,
we have jy = Jy for every y ∈ ker(T − T ∗)⊥ = ran J , where J is the imaginary
operator in the Teichmüller decomposition of T .)
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All three approaches are consistent if things are interpreted correctly. Let us
first consider a spectral measure E over C+

j for some j ∈ S, the values of which
are orthogonal projections on a quaternionic Hilbert space H. Furthermore, let
J be a unitary anti-self-adjoint operator on H that commutes with E and let us
interpret the application of J as multiplication by j from the left as in [13]. By
Remark 14.1.9, we obtain a quaternionic spectral measure on BS(H) if we set
Ẽ(∆) := E

(
∆ ∩ C+

j

)
for ∆ ∈ BS(H), and obviously we have∫

H
f(s) dẼ(s) =

∫
C+
j

fj(z) dE(z) ∀f ∈M∞S (H,R),

where fj = f |C+
j

. If we set J := JẼ(H \R) = JE(C+
j \R), then J is an imaginary

operator and we find that (Ẽ, J) is a spectral system on H. Now let f(s) =
f0(s) + jf1(s) ∈ SM∞(H) and let again fj = f |C+

j
, f0,j = α|C+

j
and f1,j = f1|C+

j
.

Since f1(s) = 0 if s ∈ R, we have f1(s) = χH\R(s)f1(s) and in turn∫
C+
j

fj(z) dE(z) =

∫
C+
j

f0,j(z) dE(z) + J

∫
C+
j

f1,j(z) dE(z)

=

∫
H
f0(s) dẼ(s) + J

∫
H
χH\R(s)f1(s) dẼ(s)

=

∫
H
f0(s) dẼ(s) + JE(H \ R)

∫
H
f1(s) dẼ(s)

=

∫
H
f0(s) dẼ(s) + J

∫
H
f1(s) dẼ(s) =

∫
H
f(s) dẼJ(s).

(14.37)

Hence for every measurable intrinsic slice function f , the spectral integral of f
with respect to the spectral system (Ẽ, J) coincides with the spectral integral of
f |C+

j
with respect to E, where we interpret the application of J as multiplication

by j from the left. Since the mapping f 7→ f |C+
j

is a bijection between the set

of all measurable intrinsic slice functions on H and the set of all measurable Cj-
valued functions on C+

j that map the real line into itself, both approaches are

equivalent for real slice functions if we identify Ẽ with E and f with fj . The same
identifications show that the approach in [144] is equivalent to our approach, as
long as we consider only intrinsic slice functions. Indeed, if E = (E,L) is an iqPVM
over C+

j on H, then Jy := Ljy = jy is a unitary and anti-self-adjoint operator on

H. As before, we can set Ẽ(∆) = E(∆∩C+
j ) and J := JẼ(H \R) = LjE(C+

j \R).
We then find as in (14.37) that∫

C+
j

fj(z) dE(z) =

∫
H
f(s) dẼJ(s) ∀f ∈ SM∞(H). (14.38)

For intrinsic slice functions, all three approaches are hence consistent.
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Let us continue our discussion of how our approach to spectral integration
fits into the existing theory. We recall that every normal operator T on H can be
decomposed as

T = A+ JB,

with the self-adjoint operator A = 1
2 (T+T ∗), the positive operator B = 1

2 |T−T
∗|,

and the imaginary operator J with kerJ = ker(T −T ∗) and ranJ = ker(T −T ∗)⊥.
Let E = (E,L) be an iqPVM of T obtained from Theorem 14.4.1. From [144, Theo-

rem 3.13], we know that
(∫

C+
j
ϕ(z) dE(z)

)∗
=
∫
C+
j
ϕ(z) dE(z) and ker

∫
C+
j
ϕ(z) dE(z)

= ranE(ϕ−1(0)). Hence

T − T ∗ =

∫
C+
j

z dE(z)−
∫
C+
j

z dE(z) =

∫
C+
j

2jz1 dE(z).

Since z1 = 0 if and only if z ∈ R, we find that kerJ = ker(T − T ∗) = ranE(R)
and in turn ranJ = ker(T − T ∗)⊥ = ranE

(
C+
j \ R

)
.

If we identify E with the spectral measure Ẽ on BS(H) that is given by
Ẽ(∆) = E

(
∆ ∩ C+

j

)
, then J = LjE(C+

j \ R) is an imaginary operator such that

(Ẽ,J) is a spectral system, as we showed above. The spectral integral of every
measurable intrinsic slice function f with respect to (Ẽ,J) coincides with the
spectral integral of f |C+

j
with respect to E . Since ranE(C+

j \R) = ker(T −T ∗)⊥ =

ran J and Ljy = Jy for all y ∈ ker(T − T ∗)⊥ (this follows from the construction

of L and in particular Lj in [144]), we moreover find that J = J. Therefore (Ẽ, J)
is the spectral system that for integration of intrinsic slice functions is equivalent
to E . We can hence rewrite the spectral theorem in the terminology of spectral
systems as follows.

Theorem 14.4.2. Let T = A + JB ∈ B(H) be a normal operator. There exists a
unique quaternionic spectral measure E on BS(H) with E(H \ σS(T )) = 0, the
values of which are orthogonal projections on H, such that (E, J) is a spectral
system and such that

T =

∫
H
s dEJ(s).

We want to point out that the spectral system (E, J) is completely deter-
mined by T—unlike the unitary anti-self-adjoint operator J that extends J used
in [13] and unlike the iqPVM used in [144]. We also want to stress that the proof
of the spectral theorem presented in Chapter 11 translates directly into the lan-
guage of spectral systems: one can pass to the language of spectral systems by the
identification described above without any problems.

Example 14.4.3. In order to discuss the relations described above, let us return to
Example 14.3.10, in which we considered normal compact operators on a quater-
nionic Hilbert space given by

Ty =
∑
n∈Υ

∑
n(`)=n

b`s`〈b`, y〉,
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whose spectral system (E, J) was

E(∆)y =
∑
n∈Υ

[sn]⊂∆

∑
n(`)=n

b`〈b`, y〉 and Jy =
∑
n∈Υ

∑
n(`)=n

b`js`〈b`, y〉.

The integral of a function f ∈ SM∞(H) with respect to (E, J) is then given by
(14.30) as ∫

H
f(s) dEJ(s)y =

∑
n∈Υ

∑
n(`)=n

b`f(s`)〈b`, y〉. (14.39)

Let j ∈ S. If we set Ẽ(∆) = E([∆]) for all ∆ ∈ B
(
C+
j

)
, then Ẽ is a quater-

nionic spectral measure over C+
j . In [13] the authors extend J to an anti-self-adjoint

and unitary operator J that commutes with T and interpret applying this opera-
tor as multiplication by j from the left in order to define spectral integrals. One
possibility to do this is to define ι(`) = js` if s` 6∈ R and ι(`) ∈ S arbitrary if
s` ∈ R and to set

Jy =
∑
n∈Υ

∑
n(`)=n

b`ι(`)〈b`, y〉

and iy = Jy.

In [144] the authors go even one step further and extend this multiplication
by scalars from the left to a full left multiplication L = (La)a∈H that commutes
with E in order obtain an iqPVM E = (E,L). We can do this by choosing for each
` ∈ Λ an imaginary unit (`) ∈ S with (`) ⊥ ι(`) and by defining

Ky =
∑
n∈Υ

∑
n(`)=n

b`(`)〈b`, y〉.

If we choose i ∈ S and define for a = a0 + a1j + a2i+ a3ji ∈ H,

ay = Lay := ya0 + iya1 + Kya2 + JKya3

=
∑
n∈Υ

∑
n(`)=n

b`(a0 + a1ι(`) + a2(`) + a3ι(`)(`)〈b`, y〉,

then L = (La)a∈H is obviously a left multiplication that commutes with E, and
hence E = (Ẽ,L) is an iqPVM over C+

j .
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Set sn,j = [sn]∩C+
j . For fj : C+

j → H, the integral of fj with respect to E is

∫
C+
j

fj(z) dE(z)

=
∑
n∈Υ

fj(sn,j)Ẽ({sn,j})y =
∑
n∈Υ

fj(sn,j)E([sn])y

=
∑
n∈Υ

(
F0(sn,j) + F1(sn,j)J + F2(sn,j)K + F3(sn,j)JK

) ∑
n(`)=n

b`〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

b`
(
F0(sn,j) + F1(sn,j)ι(`) + F2(sn,j)(`) + F3(sn,j)ι(`)(`)

)
〈b`, y〉,

(14.40)

where F0, . . . , F3 are the real-valued component functions such that

fj(z) = F0(z) + F1(z)j + F2(z)i+ F3(z)ji.

If now fj is the restriction of an intrinsic slice function f(s) = f0(s)+jsf1(s), then
F0(sn(`),j) = f0(s`,j) = f0(s`) and F1(sn(`),j) = f1(s`,j) = f1(s`) and F2(z) =
F3(z) = 0. Since moreover F1(sn(`),j) = f1(s`) = 0 if s` ∈ R and ι(`) = js` if
s` /∈ R, we find that (14.40) actually equals (14.39) in this case. Note, however,
that for every other function fj , the integral (14.40) depends on the random choice
of the functions ι(`) and (`), which are not fully determined by T .

Let us now investigate the relation between (14.40) and the right linear struc-
ture of T . Let us therefore change to the eigenbasis b̃`, ` ∈ Λ, with T b̃` = b̃`s`,j
defined in Example 14.3.10. For convenience let us furthermore choose ι(`) and
(`) such that

Jy =
∑
n∈Υ

∑
n(`)=n

b̃`j〈b̃`, y〉 and Ky =
∑
n∈Υ

∑
n(`)=n

b̃`i〈b̃`, y〉.

The left multiplication L is hence exactly the left multiplication induced by the
basis b̃`, ` ∈ Λ, and multiplication of y by a ∈ H from the left exactly cor-
responds to multiplying the coordinates 〈b̃`, y〉 by a from the left, i.e., ay =∑
n∈Υ

∑
n(`)=n b̃`a〈b̃`, y〉. (Note, however, that unlike multiplication by scalars

from the right, multiplication by scalars from the left corresponds to multipli-
cation of the coordinates only in this basis. This relation is lost if we change the
basis.)

Let us define 〈b̃`, y〉 = a` with a` = a`,1 + a`,2i with a`,1, a`,2 ∈ Cj and
let fj : C+

j → H. If we write fj(z) = f1(z) + f2(z)i, this time with Cj-valued
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components f1, f2 : C+
j → Cj , then (14.40) yields∫

C+
j

fj(z) dE(z) =
∑
n∈Υ

∑
n(`)=n

b̃`
(
f1(sn,j) + f2(sn,j)i

)
(a1 + a2i)

=
∑
n∈Υ

∑
n(`)=n

b̃`
(
a1f1(sn,j) + a1f2(sn,j)i

)
+
∑
n∈Υ

∑
n(`)=n

b̃`
(
a2if2(sn,j)− a2f2(sn,j)

)
.

(14.41)

If we compare this with (14.32), then we find that
∫
C+
j
fj(z) dE(z) corresponds to

an application of fj to the right eigenvalues of T only if f2 ≡ 0 and f1 can be

extended to a function on all of Cj such that f1(s`,j) = f1(s`,j). This is, however,
the case if and only if fj = f1 is the restriction of an intrinsic slice function to C+

j .

As pointed out above, spectral integrals of intrinsic slice functions defined
in the sense of [13] or [144] can be considered spectral integrals with respect to
a suitably chosen spectral system. The other two approaches—in particular the
approach using iqPVMs in [144]—allow, however, the integration of a larger class
of functions.

The authors of [144] argue in the introduction that the approach of spectral
integration in [13] is complex in nature, since it allows one to integrate only Cj-
valued functions defined on C+

j for some j ∈ S. They argue that their approach
using iqPVMs, on the other hand, is quaternionic in nature, since it allows one
to integrate functions that are defined on a complex half-plane and take arbitrary
values in the quaternions. It is rather the other way around. It is the approach to
spectral integration using spectral systems that is quaternionic in nature, although
they allow one to integrate only intrinsic slice functions, and we have three main
arguments in favor of this point of view:

(i) Spectral integration with respect to a spectral system does not require the
random introduction of any undetermined structure.

If we consider a normal operator T = A + JB on a quaternionic Hilbert
space, then only its spectral system J is uniquely defined. The extension
of J to a unitary anti-self-adjoint operator J that can be interpreted as
multiplication Lj = J by some j ∈ S from the left is not determined by T .
Also, multiplication Li by some i ∈ S with i ⊥ j that extends Lj to the left
multiplication L in an iqPVM E = (E,L) associated with T is not determined
by T . The construction in [142] and [144] is based on the spectral theorems for
quaternionic self-adjoint operators and for complex linear normal operators.

As we shall see in Chapter 15, the spectral orientation J of a spectral
operator T—that is, the imaginary operator in the spectral system (E, J)
associated with T—on a right Banach space can be constructed once the
spectral measure E associated with T is known. Since the spectral theorems
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for self-adjoint operators and for complex linear operators are not available on
Banach spaces, it is not clear how to extend J to a fully imaginary operator
or even further to something that generalizes an iqPVM and whether this is
possible at all.

(ii) Spectral integration with respect to a spectral system has a clear interpre-
tation in terms of the right linear structure on the space.

The natural domain of a right linear operator is a right Banach space. If a left
multiplication is defined on the Banach space, then the operator’s spectral
properties should be independent of this left multiplication. Integration with
respect to a spectral system (E, J) has a clear and intuitive interpretation
with respect to the right linear structure of the space: the spectral measure
E associates (right) linear subspaces to spectral spheres, and the spectral ori-
entation determines how to multiply the spectral values in the corresponding
spectral spheres (from the right) onto the vectors in these subspaces.

The role of the left multiplication in an iqPVM in terms of the right
linear structure is less clear. Indeed, we doubt that there exists a similarly
clear and intuitive interpretation in view of the fact that no relation between
left and right eigenvalues has been discovered up to now.

(iii) Extending the class of integrable functions toward non-intrinsic slice func-
tions does not seem to bring any benefit and might not even be meaningful.

Extending the class of admissible functions for spectral integration beyond
the class of measurable intrinsic slice functions seems to add little value to
the theory. As pointed out above, the proof of the spectral theorem in [13]
translates directly into the language of spectral systems, and hence spectral
systems offer a framework that is sufficient to prove the most powerful result
of spectral theory.

Even more, spectral integrals of functions that are not intrinsic slice
functions cannot follow the basic intuition of spectral integration. In partic-
ular, if we define a measurable functional calculus via spectral integration,
then this functional calculus only follows the fundamental intuition of a func-
tional calculus, namely that f(T ) should be defined by the action of f on the
spectral values of T if the underlying class of functions consists of intrinsic
slice functions.
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