
Chapter 13

Spectral Theorem for Unitary
Operators

The spectral theorem for unitary operators is a particular case of the spectral
theorem for bounded normal operators proved in Chapter 11. However, as in the
complex case, the spectral theorem for unitary operators can be deduced from the
quaternionic version of Herglotz’s theorem proved in [16]. The spectral theorem
for unitary operators based on Herglotz’s theorem was proved in [14].

13.1 Herglotz’s Theorem in the Quaternionic Setting

We recall some classical results and also their quaternionic analogues, which will
be useful in proving a spectral theorem for quaternionic unitary operators. We
need to recall some classical results in order to prove the quaternionic version of
Herglotz’s theorem.

Theorem 13.1.1 (Herglotz’s theorem). The function n 7→ r(n) from Z into Cs×s
is positive definite if and only if there exists a unique Cs×s-valued measure µ on
[0, 2π] such that

r(n) =

∫ 2π

0

eintdµ(t), n ∈ Z. (13.1)

Theorem 13.1.2. Let µ and ν be Cs×s-valued measures on [0, 2π]. If∫ 2π

0

eintdµ(t) =

∫ 2π

0

eintdν(t), n ∈ Z,

then µ = ν.

In the above theorems we used the imaginary unit i for the complex plane.
Given P ∈ Hs×s, there exist unique P1, P2 ∈ Cs×s such that P = P1 +P2j. Recall
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the bijective homomorphism χ : Hs×s → C2s×2s given by

χP =

(
P1 P2

−P 2 P 1

)
, where P = P1 + P2j. (13.2)

Definition 13.1.3. Given an H-valued measure ν, we may always write ν = ν1+ν2j,
where ν1 and ν2 are uniquely determined C-valued measures. We call a measure
dν on [0, 2π] q-positive if the C2×2-valued measure

µ =

(
ν1 ν2

ν∗2 ν3

)
, where ν3(t) = ν1(2π − t), t ∈ [0, 2π], (13.3)

is positive and in addition,

ν2(t) = −ν2(2π − t), t ∈ [0, 2π].

Remark 13.1.4. If ν is q-positive, then ν = ν1 + ν2j, where ν1 is a uniquely
determined positive measure and ν2 is a uniquely determined C-valued measure.

Remark 13.1.5. If r = (r(n))n∈Z is an H-valued sequence on Z such that

r(n) =

∫ 2π

0

eintdν(t),

where dν is a q-positive measure, then r is Hermitian, i.e., r(−n) = r(n).

The following result is a particular case of [16, Theorem 5.5] (Hs×s-valued
positive sequences for s > 1 were also considered in [16]).

Theorem 13.1.6 (Herglotz’s theorem for the quaternions). The function n 7→ r(n)
from Z into H is positive definite if and only if there exists a unique q-positive
measure ν on [0, 2π] such that

r(n) =

∫ 2π

0

eintdν(t), n ∈ Z. (13.4)

Proof. We give the proof for the general case. Let (r(n))n∈Z be a positive definite
sequence and write r(n) = r1(n) + r2(n)j, where r1(n), r2(n) ∈ Cs×s, n ∈ Z.
Put R(n) = χr(n), n ∈ Z. It is easily seen that (R(n))n∈Z is a positive definite
C2s×2s-valued sequence if and only if (r(n))n∈Z is a positive definite Hs×s-valued
sequence. Thus by Theorem 13.1.1, there exists a unique positive C2s×2s-valued
measure µ on [0, 2π] such that

R(n) =

∫ 2π

0

eintdµ(t), n ∈ Z. (13.5)

Write

µ =

(
µ11 µ12

µ∗12 µ22

)
:

Cs Cs
⊕ → ⊕
Cs Cs

.
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It follows from

R(n) =

(
r1(n) r2(n)

−r2(n) r1(n)

)
, n ∈ Z,

and (13.5) that

r1(n) =

∫ 2π

0

eintdµ11(t) =

∫ 2π

0

e−intdµ̄22(t), n ∈ Z,

and hence ∫ 2π

0

eintdµ11(t) =

∫ 2π

0

eintdµ̄22(2π − t), n ∈ Z.

Thus, Theorem 13.1.2 yields that dµ11(t) = dµ̄22(2π− t) for t ∈ [0, 2π). Similarly,

r2(n) =

∫ 2π

0

eintdµ12(t) = −
∫ 2π

0

e−intdµ12(t)T , n ∈ Z,

and hence ∫ 2π

0

eintdµ12(t) =

∫ 2π

0

eint(−dµ12(2π − t)T ), n ∈ Z.

Thus, Theorem 13.1.2 yields that dµ12(t) = −dµ12(2π − t)T for t ∈ [0, 2π).
It is easy to show that(

Is −jIs
)
R(n)

(
Is
jIs

)
= 2r(n),

and hence (13.5) yields

2r(n) =

∫ 2π

0

(
eint −jeint

)( dµ11(t) + dµ12(t)j
dµ12(t)∗ + dµ22(t)j

)
=

∫ 2π

0

eintdµ11(t) +

∫ 2π

0

eintdµ12(t)j −
∫ 2π

0

e−intdµ12(t)T j

+

∫ 2π

0

e−intdµ̄22(t)

=

∫ 2π

0

eintdµ11(t) +

∫ 2π

0

eintdµ12(t)j −
∫ 2π

0

eintdµ12(2π − t)T j

+

∫ 2π

0

eintdµ̄22(2π − t)

= 2

∫ 2π

0

eintdµ11(t) + 2

∫ 2π

0

eintdµ12(t)j, n ∈ Z,

where the last line follows from dµ11(t) = dµ̄22(2π− t) and dµ12(t) = −dµ12(2π−
t)T . If we put ν = µ11 + µ12j, then ν is a q-positive measure that satisfies (13.4).
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Conversely, suppose ν = ν1 + ν2j is a q-positive measure on [0, 2π] and put

r(n) =

∫ 2π

0

eintdν(t), n ∈ Z.

Since ν is q-positive,

µ =

(
ν1 ν2

ν∗2 ν3

)
, where dν3(t) = dν̄1(2π − t), t ∈ [0, 2π),

is a positive C2s×2s-valued measure on [0, 2π] and

dν2(t) = −dν2(2π − t)T , t ∈ [0, 2π).

Since µ is a positive C2s×2s-valued measure, (R(n))n∈Z is a positive definite
C2s×2s-valued sequence, where

R(n) :=

∫ 2π

0

eintdµ(t), n ∈ Z.

Moreover, R(n) can be written in the form

R(n) =

(
r1(n) r2(n)

−r2(n) r1(n)

)
, n ∈ Z,

where

r1(n) =

∫ 2π

0

eintdν1(t), n ∈ Z;

r2(n) =

∫ 2π

0

eintdν2(t), n ∈ Z.

Thus, R(n) = χr(n), where

r(n) = r1(n) + r2(n)j =

∫ 2π

0

eintdν(t).

Since (R(n))n∈Z is a positive definite C2s×2s-valued sequence, we get that
(r(n))n∈Z is a positive definite Hs×s-valued sequence.

Finally, suppose that the q-positive measure ν were not unique, i.e., that
there existed ν̃ such that ν̃ 6= ν and

r(n) =

∫ 2π

0

eintdν(t) =

∫ 2π

0

eintdν̃(t), n ∈ Z.

Write ν = ν1 + ν2j and ν̃ = ν̃1 + ν̃2j as in Remark 13.1.4. If we consider R(n) =
χr(n), n ∈ Z, then it follows from Theorem 13.1.1 that ν1 = ν̃1 and ν2 = ν̃2 and
hence that ν = ν̃, a contradiction. �
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Remark 13.1.7. For every i ∈ S, there exists j ∈ S such that ij = −ji. Thus,
H = Ci ⊕ Cij, and we may rewrite (13.4) as

r(n) =

∫ 2π

0

eintdν(t), n ∈ Z, (13.6)

where ν = ν1 + ν2j is a q-positive measure (in the sense that

µ =

(
ν1 ν2

ν∗2 ν3

)
is positive). Here ν3(t) = ν1(2π − t).

For our purpose the scalar case will be important.

13.2 Preliminaries for the Spectral Resolution

We start with a preliminary result.

Lemma 13.2.1. Let U be a unitary operator on H and let rx(n) = 〈Unx, x〉 for
x ∈ H. Then rx = (rx(n))n∈Z is an H-valued positive definite sequence.

Proof. If {p0, . . . , pN} ⊂ H, then

N∑
m,n=0

p̄mrx(n−m)pn =
N∑

m,n=0

p̄m〈Un−mx, x〉pn

=
N∑

m,n=0

〈Un−mxpn, xpm〉

=

N∑
m,n=0

〈Unxpn, Umxpm〉

= 〈
N∑
n=0

Unxpn,
N∑
m=0

Umxpm〉

=

∥∥∥∥∥
N∑
n=0

Unxpn

∥∥∥∥∥
2

≥ 0.

Thus, rx is a positive definite H-valued sequence. �

Let rx be as in Lemma 13.2.1. It follows from Theorem 13.1.6 that there
exists a unique q-positive measure dνx such that

rx(n) = 〈Unx, x〉 =

∫ 2π

0

eintdνx(t), n ∈ Z. (13.7)
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One can check that

4〈Unx, y〉 = 〈Un(x+ y), x+ y〉 − 〈Un(x− y), x− y〉 (13.8)

+ i〈Un(x+ yi), x+ yi〉
− i〈Un(x− yi), x− yi〉+ i〈Un(x− yj), x− yj〉k (13.9)

− i〈Un(x+ yj), x+ yj〉k
+ 〈Un(x+ yk), x+ yk〉k − 〈Un(x− yk), x− yk〉k, (13.10)

and hence letting

4νx,y := νx+y − νx−y + iνx+yi − iνx−yi + iνx−yjk − iνx+yjk

+ νx+ykk − νx−ykk, (13.11)

then

〈Unx, y〉 =

∫ 2π

0

eintdνx,y(t), x, y ∈ H and n ∈ Z. (13.12)

Theorem 13.2.2. The H-valued measures νx,y defined on B([0, 2π]) enjoy the fol-
lowing properties:

(i) νxα+yβ,z = νx,zα+ νy,zβ, α, β ∈ H;

(ii) νx,yα+zβ = ᾱνx,y + β̄νx,z, α, β ∈ Ci;
(iii) νx,y([0, 2π]) ≤ ‖x‖‖y‖;
where x, y, z ∈ H and α, β ∈ H.

Proof. Formula (13.12) yields∫ 2π

0

eintdνxα+yβ,z(t) = 〈Unx, z〉α+ 〈Uny, z〉β

=

∫ 2π

0

eint(dνx,z(t)α+ dνy,z(t)β), n ∈ Z.

The uniqueness of the q-positive measure proved in Theorem 13.1.6 allows us to
conclude that

νxα+yβ,z(t) = νx,z(t)α+ νy,z(t)β,

and hence we have proved (i). Property (ii) is proved in a similar fashion, observing
that ᾱ, β̄ commute with eint.

If n = 0 in (13.12), then

〈x, y〉 =

∫ 2π

0

dνx,y(t) = νx,y([0, 2π]),

and thus we can use an analogue of the Cauchy–Schwarz inequality (see Lemma
5.6 in [33]) to obtain

νx,y([0, 2π]) ≤ ‖x‖‖y‖,
and hence we have proved (iii). �
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Remark 13.2.3. In contrast to the classical complex Hilbert space setting, νx,y
need not equal ν̄y,x.

It follows from statements (i), (ii), and (iii) in Theorem 13.2.2 that φ(x) =
νx,y(σ), where y ∈ H and σ ∈ B([0, 2π]) are fixed, is a continuous right linear
functional. Moreover, an analogue of the Riesz representation theorem (see Theo-
rem 6.1 in [33] or Theorem 7.6 in [47]) gives that corresponding to every x ∈ H,
there exists a uniquely determined vector w ∈ H such that

φ(x) = 〈x,w〉,

i.e., νx,y(σ) = 〈x,w〉. Use (i) and (ii) in Theorem 13.2.2 to deduce that w =
E(σ)∗y. The uniqueness of E follows readily from the construction. Thus, we have

νx,y(σ) = 〈E(σ)x, y〉, x, y ∈ H and σ ∈ B([0, 2π]), (13.13)

whence

〈Unx, y〉 =

∫ 2π

0

eint〈dE(t)x, y〉. (13.14)

To prove the main properties of the operator E we need a uniqueness result
on quaternionic measures that is a corollary of the following:

Theorem 13.2.4. Let µ and ν be C-valued measures on [0, 2π]. If

r(n) =

∫ 2π

0

eintdµ(t) =

∫ 2π

0

eintdν(t), n ∈ Z, (13.15)

then µ = ν.

Proof. See, e.g., Theorem 1.9.5 in [186]. �

Theorem 13.2.5. Let µ and ν be H-valued measures on [0, 2π]. If

r(n) =

∫ 2π

0

eintdµ(t) =

∫ 2π

0

eintdν(t), n ∈ Z, (13.16)

then µ = ν.

Proof. Write r(n) = r1(n) + r2(n)j, µ = µ1 + µ2j, and ν = ν1 + ν2j, where
r1(n), r2(n) ∈ C and µ1, µ2, ν1, ν2 are C-valued measures on [0, 2π]. It follows from
(13.16) that

r1(n) =

∫ 2π

0

eintdµ1(t) =

∫ 2π

0

eintdν1(t), n ∈ Z,

and

r2(n) =

∫ 2π

0

eintdµ2(t) =

∫ 2π

0

eintdν2(t), n ∈ Z.

Use Theorem 13.2.4 to conclude that µ1 = ν1, µ2 = ν2 and hence that µ = ν. �
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Theorem 13.2.6. The operator E given in (13.13) enjoys the following properties:

(i) ‖E(σ)‖ ≤ 1;

(ii) E(∅) = 0 and E([0, 2π]) = I;

(iii) If σ ∩ τ = ∅, then E(σ ∪ τ) = E(σ) + E(τ);

(iv) E(σ ∩ τ) = E(σ)E(τ);

(v) E(σ)2 = E(σ);

(vi) E(σ) commutes with U for all σ ∈ B([0, 2π]).

Proof. Use (13.13) with y = E(σ)x and (iii) in Theorem (13.2.2) to obtain

‖E(σ)x‖2 ≤ ‖x‖‖E(σ)x‖,

whence we have shown (i). The first part of property (ii) follows directly from the
fact that νx,y(∅) = 0. The last part follows from (13.14) when n = 0. Statement
(iii) follows easily from the additivity of the measure νx,y.

We will now prove property (iv). It follows from (13.14) that

〈Un+mx, y〉 =

∫ 2π

0

einteimt〈dE(t)x, y〉

= 〈Un(Umx), y〉

=

∫ 2π

0

eintd〈E(t)Umx, y〉.

Using the uniqueness in Theorem 13.2.5 we obtain

eimtd〈E(t)x, y〉 = 〈dE(t)Umx, y〉,

and hence denoting by 1σ the characteristic function of the set σ, we have∫ 2π

0

1σ(t)eimt〈dE(t)x, y〉 = 〈E(σ)Umx, y〉.

But ∫ 2π

0

1σ(t)eimt〈dE(t)x, y〉 = 〈Ukx,E(σ)∗y〉 =

∫ 2π

0

eimtd〈E(t)x,E(σ)∗y〉.

Using the uniqueness in Theorem 13.2.5 once more, we get

1σ(t)d〈E(t)x, y〉 = 〈dE(t)x,E(σ)∗y〉

and hence ∫ 2π

0

1τ (t)1σ(t)〈dE(t)x, y〉 = 〈E(t)x,E(σ)∗y〉
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and thus
〈E(σ ∩ τ)x, y〉 = 〈E(σ)E(τ)x, y〉.

Property (v) is obtained from (iv) by letting σ = τ .
Finally, since U is unitary, one can check that

〈U(x± U∗y), x± U∗y〉 = 〈U(Ux± y), Ux± y〉,

and hence from (13.12) and the uniqueness in Theorem 13.2.5 we obtain νx±U∗y =
νUx±y. Similarly,

νx±U∗yi = νUx±yi,

νx±U∗yj = νUx±yj ,

and
νx±U∗yk = νUx±yk.

It follows from (13.11) that
νx,U∗y = νUx,y.

Now use (13.13) to obtain

〈E(σ)x, U∗y〉 = 〈E(σ)Ux, y〉,

i.e.,
〈UE(σ)x, y〉 = 〈E(σ)Ux, y〉, x, y ∈ H. �

Given any quaternionic Hilbert space H, there exists a subspace M⊂ H on
C such that for every x ∈ H we have

x = x1 + x2j, x1, x2 ∈M.

Theorem 13.2.7. Let U be a unitary operator on a quaternionic Hilbert space H
and let E be the corresponding operator given by (13.13). E is self-adjoint if and
only if U :M→M, where M is as above.

Proof. If E = E∗, then it follows from (13.13) that νx,y = ν̄y,x for all x, y ∈ H. In
particular, we get νx,x = ν̄x,x, i.e.,

νx = ν̄x, x ∈ H. (13.17)

Since νx is a q-positive measure, we may write νx = αx + βxj, where αx is a
positive Borel measure on [0, 2π] and βx is a complex Borel measure on [0, 2π]. It
follows from (13.17) that

βx = −βx,

i.e., βx = 0. Thus, we may make use of the spectral theorem for unitary operators
on a complex Hilbert space (see, e.g., Section 31.7 in [163]) to deduce that U :
M → M. Conversely, if U : M → M, then the spectral theorem for unitary
operators on a complex Hilbert space yields that E = E∗. �
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If U : Hn → Hn is unitary, then (13.14) and Theorem 13.2.6 assert that

U =

n∑
a=1

eiθaPa, (13.18)

where θ1, . . . , θn ∈ [0, 2π] and P1, . . . , Pn are oblique projections (i.e., (Pa)2 = Pa
but (Pa)∗ need not equal Pa). Corollary 6.2 in Zhang [199] asserts, in particular,
the existence of V : Hn → Hn that is unitary and θ1, . . . , θn ∈ [0, 2π] such that

U = V ∗diag(eiθ1 , . . . , eiθn)V. (13.19)

In the following remark we will explain how (13.18) and (13.19) are consistent.

Remark 13.2.8. Let U : Hn → Hn be unitary. Let V and θ1, . . . , θn be as above. If
we let ea = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Hn, where the 1 is the ath position, then we
can rewrite (13.19) as

U =
n∑
a=1

V ∗eiθaeae
∗
aV.

Note that V ∗eiθaeae
∗
aV = eiθaV ∗eae

∗
aV if and only if V : Cn → Cn. In this case

U : Cn → Cn and

U =
n∑
a=1

eiθaPa,

where Pa denotes the orthogonal projection given by V ∗eiθaeae
∗
aV .

Remark 13.2.9. Observe that in the proof of the spectral theorem for Un we have
taken the imaginary units i, j, k for the quaternions and we have determined
spectral measures 〈dE(t)x, y〉 that are supported on the unit circle in Ci. If one
uses other orthogonal units i′, j′, and k′ ∈ S to represent quaternions, then the
spectral measures are supported on the unit circle in Ci′ .

Observe that (13.14) provides a vehicle to define a functional calculus for
unitary operators on a quaternionic Hilbert space. For a continuous H-valued
function f on the unit circle, which will be approximated by the polynomials∑
k e

iktak. We will consider a subclass of continuous quaternionic-valued functions
defined as follows, see [142]: It is important to note that every polynomial of the
form P (u+ jv) =

∑n
k=0(u+ jv)nan, an ∈ H is a slice continuous function in the

whole of H. A trigonometric polynomial of the form P (ejt) =
∑n
m=−n e

jmtam is
a slice continuous function on ∂B, where B denotes the unit ball of quaternions.

Let us now denote by PS(σS(T )) the set of slice continuous functions f(u+
iv) = α(u, v) + iβ(u, v), where α, β are polynomials in the variables u, v.

In the sequel we will work in the complex plane Ci and we denote by Ti the
boundary of B ∩ Ci. Any other choice of an imaginary unit in the unit sphere S
will provide an analogous result.
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Remark 13.2.10. For every i ∈ S, there exists j ∈ S such that ij = −ji. Bearing in

mind Remark 13.1.7, we can construct ν
(j)
x,y such that (13.12) can also be written

as

〈Unx, y〉 =

∫ 2π

0

eintdν(j)
x,y(t), x, y ∈ H and n ∈ Z. (13.20)

Consequently, (13.14) can be written as

〈Unx, y〉 =

∫ 2π

0

eint〈Ej(t)x, y〉, (13.21)

where Ej is given by

ν(j)
x,y(σ) = 〈Ej(σ)x, y〉, x, y ∈ H and σ ∈ B(Ti).

Moreover, the Ej satisfy properties (i)–(v) listed in Theorem 13.2.6.

13.3 Further Properties of Quaternionic Riesz
Projectors

An axially symmetric set σ ⊆ σS(T ) that is both open and closed in σS(T ) in its
relative topology, is called an S-spectral set. Denote by Ωσ an axially symmetric
domain that contains the spectral set σ but not any other points of the S-spectrum.
We recall the Riesz projectors

P(σ) =
1

2π

∫
∂(Ωσ∩Cj)

S−1
L (s, T )dsj

and the fact that P(σ) can be given using the right S-resolvent operator S−1
R (s, T ),

that is,

P(σ) =
1

2π

∫
∂(Ωσ∩Cj)

dsjS
−1
R (s, T ).

We have the following properties.

Theorem 13.3.1. Let T be a quaternionic linear operator. Then the family of op-
erators P(σ) has the following properties:

(i) (P(σ))2 = P(σ);

(ii) TP(σ) = P(σ)T ;

(iii) P(σS(T )) = I;

(iv) P(∅) = 0;

(v) P(σ ∪ δ) = P(σ) + P(δ); σ ∩ δ = ∅;

(vi) P(σ ∩ δ) = P(σ)P(δ).
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Proof. Properties (i) and (ii) are proved in Theorem 4.1.5. Property (iii) follows
from the quaternionic functional calculus, since

Tm =
1

2π

∫
∂(Ω∩Cj)

S−1
L (s, T )dsj s

m, m ∈ N0,

for σS(T ) ⊂ Ω, which for m = 0 gives

I =
1

2π

∫
∂(Ω∩Cj)

S−1
L (s, T )dsj .

Property (iv) is a consequence of the functional calculus as well.

Property (v) follows from

P(σ ∪ δ) =
1

2π

∫
∂(Ωσ∪δ∩Cj)

S−1
L (s, T )dsj

=
1

2π

∫
∂(Ωσ∩Cj)

S−1
L (s, T )dsj +

1

2π

∫
∂(Ωδ∩Cj)

S−1
L (s, T )dsj

= P(σ) + P(δ).

To prove (vi), assume that σ ∩ δ 6= ∅, and for simplicity set

Qs(p)−1 := (p2 − 2Re(s)p+ |s|2)−1, p 6∈ [s],

and consider

P(σ)P(δ) =
1

(2π)2

∫
∂(Ωσ∩Cj)

dsjS
−1
R (s, T )

∫
∂(Ωδ∩Cj)

S−1
L (p, T )dpj

=
1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[S−1
R (s, T )− S−1

L (p, T )]pQs(p)−1dpj

− 1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

s[S−1
R (s, T )− S−1

L (p, T )]Qs(p)−1dpj ,

where we have used the S-resolvent equation (see Theorem 3.1.15). We rewrite
the above relation as

P(σ)P(δ) = − 1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[sS−1
R (s, T )− S−1

R (s, T )p]Qs(p)−1dpj

+
1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[sS−1
L (p, T )− S−1

L (p, T )p]Qs(p)−1dpj

:= J1 + J2.
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Moreover, we have

J1 = − 1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[sS−1
R (s, T )− S−1

R (s, T )p]Qs(p)−1dpj

=
1

2π

∫
∂(Ωσ∩Cj)

dsjS
−1
R (s, T ), for s ∈ Ωδ ∩ Cj

=
1

2π

∫
∂(Ωσ∩Cj)

S−1
L (s, T )dsj , for s ∈ Ωδ ∩ Cj ,

while J1 = 0 when s 6∈ Ωδ ∩ Cj , since∫
∂(Ωδ∩Cj)

[sS−1
R (s, T )− S−1

R (s, T )p]Qs(p)−1dpj = 0.

Similarly, one can show that

J2 =
1

2π

∫
∂(Ωδ∩Cj)

S−1
L (p, T )dpj , for p ∈ Ωσ ∩ Cj ,

while J2 = 0 when p 6∈ Ωσ ∩Cj . The integrals J1, J2 are either both zero or both
nonzero, so with a change of variable we get

J1 + J2 =
1

2π

∫
∂(Ωσ∩δ∩Cj)

S−1
L (r, T )drj = P(σ ∩ δ). �

We recall that if U is a unitary operator on H, then the S-spectrum of U
belongs to the unit sphere of the quaternions; see Theorem 9.2.7. We denote the
Borel sets in [0, 2π] by B([0, 2π]).

Lemma 13.3.2. Let x, y ∈ H and let P(σ) be the projector associated with the
unitary operator U . We define

mx,y(σ) := 〈P(σ)x, y〉, x, y ∈ H, σ ∈ B([0, 2π]).

Then the H-valued measures mx,y defined on B([0, 2π]) enjoy the following prop-
erties:

(i) mxα+yβ,z = mx,zα+my,zβ;

(ii) mx,yα+zβ = αmx,y + βmx,z;

(iii) mx,y([0, 2π]) ≤ ‖x‖‖y‖;

where x, y, z ∈ H and α, β ∈ H.

Proof. Properties (i) and (ii) follow from the properties of the quaternionic scalar
product, while (iii) follows from Property (iii) in Theorem 13.3.1 and the Cauchy–
Schwarz inequality. �
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13.4 The Spectral Resolution

We are now in a position to prove the spectral theorem for quaternionic unitary
operators.

Theorem 13.4.1 (The spectral theorem for quaternionic unitary operators). Let U
be a unitary operator on a right linear quaternionic Hilbert space H. Let i, j ∈ S,
i orthogonal to j. Then there exists a unique spectral measure Ej defined on the
Borel sets of Ti such that for every slice continuous function f ∈ S(σS(U)), we
have

f(U) =

∫ 2π

0

f(eit)dEj(t).

Proof. Let us consider a polynomial P (t) =
∑n
m=−n e

imtam defined on Ti. Then
using (13.21), we have

〈Umx, y〉 =

∫ 2π

0

eimt〈dEj(t)x, y〉, x, y,∈ H.

By linearity, we can define

〈P (U)x, y〉 =

∫ 2π

0

P (eit)〈dEj(t)x, y〉, x, y,∈ H.

The map Ψ : PS(σS(U)) → H defined by ψU (P ) = P (U) is R-linear. By
fixing a basis for H, e.g., the basis 1, i′, j′, k′, each slice continuous function f can
be decomposed using intrinsic functions, i.e., f = f0 + f1i

′ + f2j
′ + f3k

′ with
f` ∈ SR(σS(U)), ` = 0, . . . , 3. For these functions the spectral mapping theorem
holds; thus f`(σS(U)) = σS(f`(U)), and so ‖f`(U)‖ = ‖f`‖∞. The map ψ is
continuous, and so there exists C > 0, which does not depend on `, such that

‖P (U)‖H ≤ C max
t∈σS(U)

|P (t)|.

A slice continuous function f ∈ S(σS(U)) is defined on an axially symmetric
subset K ⊆ T, and thus it can be written as a function f(ejt) = α(cos t, sin t) +
jβ(cos t, sin t). By fixing a basis of H, e.g., 1, i′, j′, k′, f can be decomposed into four
slice continuous intrinsic functions f`(cos t, sin t) = α`(cos t, sin t)+jβ`(cos t, sin t),
` = 0, . . . , 3, such that f = f0 + f1i

′ + f2j
′ + f3k

′.
By the Weierstrass approximation theorem for trigonometric polynomials,

see, e.g., Theorem 8.15 in [183], each function f` can be approximated by a se-
quence of polynomials

R̃`n = ã`n(cos t, sin t) + jb̃`n(cos t, sin t),

` = 0, . . . , 3, which tend uniformly to f`. These polynomials do not necessarily
belong to the class of the continuous slice functions, since ã`n, b̃`n do not satisfy,



13.4. The Spectral Resolution 269

in general, the even and odd conditions of slice continuous functions. However, by
setting

a`n(u, v) =
1

2
(ã`n(u, v) + ã`n(u,−v)),

b`n(u, v) =
1

2
(b̃`n(u,−v)− b̃`n(u, v)),

we obtain that the sequence of polynomials a`n + j′b`n still converges to f`, ` =
0, . . . , 3. By putting R`n = a`n(cos t, sin t)+jb`n(cos t, sin t), ` = 0, . . . , 3, and Rn =
R0n + R1ni

′ + R2nj
′ + R3nk

′ we have a sequence of slice continuous polynomials
Rn(ejt) converging to f(ejt) uniformly on R.

By the previous discussion, {Rn(U)} is a Cauchy sequence in the space of
bounded linear operators, since

‖Rn(U)−Rm(U)‖ ≤ C max
t∈σS(U)

|Rn(t)−Rm(t)|;

so Rn(U) has a limit, which we denote by f(U). �

Remark 13.4.2. Fix j ∈ S. It is worth pointing out that f(u+ jv) = (u+ jv)−1 is
an intrinsic function on Cj ∩ ∂B, where ∂B = {q ∈ H : |q| = 1}, since

f(u+ jv) =
u

u2 + v2
+

(
−v

u2 + v2

)
j.

Thus, using Theorem 13.4.1, we may write

U−1 =

∫ 2π

0

e−itdEj(t) (13.1)

and

U =

∫ 2π

0

eitdEj(t). (13.2)

We are now ready to prove the following fundamental result, which shows
the relation between the spectral measures and the S-spectrum.

Theorem 13.4.3. Fix i, j ∈ S, with i orthogonal to j. Let U be a unitary operator
on a right linear quaternionic Hilbert space H and let E(t) = Ej(t) be its spectral
measure. Assume that σ0

S(U) ∩ Ci is contained in the arc of the unit circle in Ci
with endpoints t0 and t1. Then

P(σ0
S(U)) = E(t1)− E(t0).

Proof. The spectral theorem implies that the operator S−1
R (s, U) can be written

as

S−1
R (s, U) =

∫ 2π

0

S−1
R (eit, s)dE(t).
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The Riesz projector is given by

P(σ0
S(U)) =

1

2π

∫
∂(Ω0∩Ci)

dsiS
−1
R (s, U),

where Ω0 is an open set containing σ0
S(U) such that ∂(Ω0 ∩Ci) is a smooth closed

curve in Ci. Write

P(σ0
S(U)) =

1

2π

∫
∂(Ω0∩Ci)

dsi

(∫ 2π

0

S−1
R (eit, s)dE(t)

)
and use Fubini’s theorem to obtain

P(σ0
S(U)) =

∫ 2π

0

( 1

2π

∫
∂(Ω0∩Ci)

dsiS
−1
R (eit, s)

)
dE(t).

It follows from the Cauchy formula that

1

2π

∫
∂(Ω0∩Ci)

dsiS
−1
R (eit, s) = 1[t0,t1],

where 1[t0,t1] is the characteristic function of the set [t0, t1], and thus the statement
follows, since

P(σ0
S(U)) =

∫ 2π

0

1[t0,t1]dE(t) = E(t1)− E(t2). �

We will close by establishing a connection between the spectral resolutions for
a unitary operator presented in Theorem 11.2.1 and Theorem 13.4.1. Let U ∈ B(H)
be unitary. Since U ∈ B(H) is normal, we may write

U = A+ JB,

where A, J , and B are as in Theorem 9.3.5. Thus, Theorem 11.2.1 asserts the
existence of a spectral measure E (in the usual sense) on Ω := [0, π]∩ σS(U) such
that if n ∈ Z, then

〈Unx, y〉 =

∫
Ω

cos(nθ)d〈E(θ)x, y〉+

∫
Ω

sin(nθ)d〈JE(θ)x, y〉, x, y ∈ H. (13.3)

On the other hand, Theorem 13.4.1 asserts the existence of a B(H)-valued measure
F that satisfies most of the properties of a spectral measure (see Theorem 13.2.6)
such that if n ∈ Z, then

〈Unx, y〉 =

∫ 2π

0

einθd〈F (θ)x, y〉, x, y ∈ H. (13.4)



13.5. Comments and Remarks 271

Consequently, if we let dνx(θ) := d〈E(θ)x, x〉 and dµx(θ) := d〈F (θ)x, x〉,
then dνx is a positive measure and dµx := dµ

(0)
x + dµ

(1)
x j is a q-positive measure

(and hence dµ
(0)
x is a positive measure). Now (13.3) implies that

1

2
〈(Un + U∗n)x, x〉 =

∫ π

0

cos(nθ)dνx(θ),

while (13.4) implies that

1

2
〈(Un + U∗n)x, x〉 =

∫ 2π

0

cos(nθ)dµ(0)
x (θ).

Since dµ
(0)
x and dνx are positive measures, the uniqueness assertion in Theorem

13.1.1 forces dµ
(0)
x = dνx and hence d〈E(θ)x, x〉 = Re〈F (θ)x, x〉.

13.5 Comments and Remarks

Theorem 13.1.6 is taken from [16], and it helped give rise to a spectral theorem for
unitary operators based on the S-spectrum in [14]. In addition, Theorem 13.1.6
can be used to generate a quaternionic analogue of the Herglotz representation on
a slice (see Theorem 8.1 in [16]). More precisely, if f : B → H is slice hyperholo-
morphic with Re(f(p)) ≥ 0 for all p ∈ B := {p ∈ H : |p| < 1} and i, j ∈ S with i
and j orthogonal, then there exists a Cj-valued measure dµj(t) = dµ1(t)+dµ2(t)j
of finite total variation with µ1 positive and µ2 signed such that the restriction
fj(z) = f |Cj = F (z) +G(z)j admits the representation

fj(z) = i[ImF (0) + ImG(0)j] +

∫ 2π

0

eit + z

eit − z
dµj(t). (13.5)

A half-space analogue of (13.5) was treated in [9] (albeit with stronger conditions
on f and the corresponding measure).
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