
Chapter 12

The Spectral Theorem for
Unbounded Normal Operators

In this section we will consider normal operators T that are unbounded. The strat-
egy will be to transform T into a normal operator ZT ∈ B(H) and use Theorem
11.2.1 and a change of variable argument to obtain a spectral theorem for T based
on the S-spectrum. Obtaining a spectral theorem for unbounded operators in the
aforementioned way has been done in the classical case, i.e., when H is a complex
Hilbert space; see, e.g., the book of Schmüdgen [191].

12.1 Some Transformations of Operators

Given T ∈ L(H), we let

ZT = TC
1/2
T , (12.1)

where CT = (I +T ∗T )−1 ∈ B(H) (the proof that CT is bounded and positive can
be carried out in a similar manner to the classical complex Hilbert case; see, e.g.,
Proposition 3.18(i) in [191]).

Theorem 12.1.1. Let T ∈ L(H) be a densely defined closed operator on H. The
operator ZT has the following properties:

(i) ZT ∈ B(H), ‖ZT ‖ ≤ 1, and

CT = (I + T ∗T )−1 = I − Z∗TZT . (12.2)

(ii) (ZT )∗ = ZT∗ .

(iii) If T is normal, then ZT is normal.
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Proof. The proof is based on the proof of Lemma 5.8 in [191] and is broken into
three steps.

Step 1: Prove (i).

First note that

{CTx : x ∈ H} = D(I + T ∗T ) = D(T ∗T ). (12.3)

Consequently, if x ∈ H, then

‖TC1/2
T C

1/2
T x‖2 = 〈T ∗TCTx,CTx〉

≤ 〈(I + T ∗T )CTx,CTx〉
= 〈C−1

T CTx,CTx〉
= 〈x,CTx〉

= ‖C1/2
T x‖2.

Thus if y ∈ {C1/2
T x: x ∈ H}, then

‖ZT y‖ = ‖TC1/2
T y‖ ≤ ‖y‖. (12.4)

Since ker(CT ) = {0}, we have that ker(C
1/2
T ) = {0}, and thus {C1/2

T x: x ∈ H} is a

dense subset ofH. Since T is a closed operator by assumption and C
1/2
T ∈ B(H), we

get that ZT is closed as well. Thus, we have {C1/2
T x: x ∈ H} ⊆ D(T ), D(ZT ) = H,

and in view of (12.4), ‖ZT ‖ ≤ 1.
Next, it follows from (12.4) and C1/2T ∗ ⊆ Z∗T that

(I − CT )C
1/2
T = C

1/2
T (I + T ∗T )CT − C1/2

T CT

= C
1/2
T T ∗TC

1/2
T C

1/2
T

⊆ Z∗TZTC
1/2
T .

Thus, Z∗TZTC
1/2
T = (I − CT )C

1/2
T , and since {C1/2

T x: x ∈ H} is a dense subset of
H, we get (12.2).

Step 2: Prove (ii).

Using (12.2) we get that CT∗ = (I + TT ∗)−1. If x ∈ D(T ∗), then let y = CT∗x.
Therefore,

x = (I + TT ∗)y

and
T ∗x = T ∗(I + TT ∗)y = (I + T ∗T )T ∗y.

Thus, CT∗x ∈ D(T ∗) and hence

CTT
∗x = T ∗y = T ∗CT∗x. (12.5)
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It follows easily from (12.5) and (12.2) that p(CT∗)x ∈ D(T ∗) and

p(CT )T ∗x = T ∗p(CT∗)x

for every real polynomial p of a real variable. By the Weierstrass approximation
theorem, there exists a sequence of real polynomials {φn}+∞n=0 that converges uni-
formly to the function t 7→ t1/2 on [0, 1]. Since the continuous functional calculus
is norm-preserving, we find that

lim
n→+∞

‖φn(CT )− C1/2
T ‖ = lim

n→+∞
‖φn(CT∗)− C1/2

T∗ ‖ = 0.

Since T is a closed operator, T ∗ is also a closed operator. Thus, we have

C
1/2
T T ∗x = lim

n→+∞
φn(CT )T ∗x = lim

n→+∞
T ∗φn(CT∗)x

= T ∗(CT∗)
1/2x for x ∈ D(T ∗).

Since C
1/2
T T ∗ ⊆ (TC

1/2
T )∗ = ZT∗ , we get that

ZT∗x = C
1/2
T T ∗x = T ∗(CT∗)

1/2x = (ZT )∗x

for x ∈ D(T ∗). Finally, since D(T ∗) is dense in H, we have that ZT∗x = (ZT )∗x
for all x ∈ H, i.e., ZT∗ = (ZT )∗.

Step 3: Prove (iii).

Using (12.2) on T and T ∗ and the fact that TT ∗ = T ∗T , we have

I − Z∗TZT = (I + T ∗T )−1 = (I + TT ∗)−1 = I − Z∗T∗ZT∗ .

Making use of Property (ii), we have that

I − Z∗TZT = I − ZTZ∗T ,

i.e., ZT is normal. �

12.2 The Spectral Theorem for Unbounded Normal

Operators

We are now ready to state and prove a spectral theorem for unbounded normal
operators on a quaternionic Hilbert space.

Theorem 12.2.1. Let T be an unbounded right linear normal operator on H and
j ∈ S. There exists a uniquely determined spectral measure Ej on Ω+

j = σS(T )∩C+
j

such that for x ∈ D(T ) and y ∈ H,

〈Tx, y〉 =

∫
Ω+
j

Re(p)d〈Ej(p)x, y〉+

∫
Ω+
j

Im(p)d〈JEj(p)x, y〉, (12.6)
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or equivalently,

〈Tx, y〉 =

∫
Ω+
j

Re(p) d〈Π0Ej(p)x, y〉

+

∫
Ω+
j

d〈Πj
+Ej(p)x, y〉p

+

∫
Ω+
j

d〈Πj
−Ej(p)x, y〉p.

(12.7)

The operator J in the above equation is the imaginary operator appearing in the
Teichmüller decomposition ZT = A+ JB of ZT defined in Theorem 9.3.5 and Π0

and Πj
± are the associated projections defined in Definition 9.3.10. The operator

J commutes with E and satisfies −J2 = E(H \ R).
Moreover, on identifying the complex plane Ck with Cj in the natural way by

the mapping ϕkj, we have Ej(ϕkj(σ)) = Ek(σ), σ ∈ B(Ω+
k ), for all j, k ∈ S.

Proof. The proof is broken into two steps.

Step 1: Show that a spectral measure Ej exists such that (12.6) holds.

Let B = {p ∈ H : |p| < 1}, ∂B = {p ∈ H : |p| = 1}, and B = B∪∂B. If T is normal,
then using Properties (i) and (iii) in Theorem 12.1.1, we get that ‖ZT ‖ ≤ 1 and
ZT is normal, respectively. Thus, we may use Theorem 11.2.1 to obtain a uniquely
determined spectral measure F on σS(ZT ) ∩ C+

j such that

f(ZT ) = I(f) =

∫
σS(ZT )∩C+

j

f(p) dF (p) (12.8)

for f ∈ SCj(σS(ZT ) ∩ C+
j ). In addition, it follows from Theorem 3.1.13 that

σS(ZT ) ⊆ {p ∈ H : |p| ≤ ‖ZT ‖}

and hence
σS(ZT ) ∩ C+

j ⊆ B ∩ C+
j .

If x ∈ H and σ ∈ B(σS(ZT )∩C+
j ), then in view of item (v) in Lemma 10.1.7

and (12.8), we have

〈(I − Z∗TZT )F (σ)x, F (σ)x〉 =

∫
σ

(1− |p|2)d〈F (p)x, x〉. (12.9)

Recall that I − Z∗TZT = (I + T ∗T )−1, and so ker(I − Z∗TZT ) = {0}. Thus, using
(12.9) with

σ = B ∩ C+
j ,

we get that supp F ⊆ B ∩ C+
j and F (∂B ∩ C+

j ) = 0. Therefore,

F (B ∩ C+
j ) = F [(B ∩ C+

j ) \ ∂(B ∩ C+
j )] = I.
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If ϕ(p) = p(1− |p|2)−1/2, then ϕ ∈ SM#
F (σS(ZT )∩C+

j ). In view of item (iii)
and (v) of Theorem 10.2.7, we have

I(ϕ) = I(f)I(g),

where

f(p) = p and g(p) =
1√

1− |p|2
,

and D(I(ϕ)) = D(I(g)). Using Theorem 10.2.9, we have

I(g) = I(1/g)−1.

Consequently, we may use item (i) in Corollary 11.2.2 to obtain

I(g) = {(I(h))1/2}−1,

where
h(p) = 1− |p|2 ∈ SM∞j (σS(ZT ) ∩ C+

j ).

Putting these observations together, we obtain

I(ϕ) = ZT (C
1/2
T )−1. (12.10)

Since ZT = TC
1/2
T , we obtain ϕ(ZT ) ⊆ T . Using CT = (I − Z∗TZT )1/2, we

get that I(ϕ) ⊆ T . Thus, using Lemma 9.1.17, we get that

I(ϕ) = T.

Let Ej(σ) = F (ϕ−1(σ)), where

ϕ−1(σ) = {p ∈ H : ϕ(p) ∈ σ} for σ ∈ B(σS(T ) ∩ C+
j ).

It is readily checked that Ej = F (ϕ−1) defines a spectral measure on C+
j , and thus

using Lemma 10.2.11, we get (12.6). The equivalent assertion (12.7) is established
in much the same way as the analogous assertion in Theorem 11.2.1.

Since the imaginary operator J in the Teichmüller decomposition of ZT com-
mutes with the spectral measure F , it also commutes with Ej = F (ϕ−1). Further-
more, since ϕ maps R into itself and C+

j \ R into itself, we obtain

Ej(C+
j \ R) = F (ϕ−1(C+

j \ R)) = F (C+
j \ R) = −J2.

Step 2: Show that Ej from Step 1 is unique.

If Ej and Ẽj are spectral measures on σS(T ) ∩ C+
j that satisfy (12.6), then F =

Ej(ϕ) and F̃ = Ẽj(ϕ) are both spectral measures such that for x, y ∈ H,

〈ZT x, y〉 =

∫
B∩C+

j

Re(p) d〈F (p)x, y〉+

∫
B∩C+

j

Im(p) d〈JF (p)x, y〉

=

∫
B∩C+

j

Re(p) d〈F̃ (p)x, y〉+

∫
B∩C+

j

Im(p) d〈JF̃ (p)x, y〉. (12.11)
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Consider now a polynomial Φ(p) =
∑

0≤|`|≤n a`p
`1p`2 with real coefficients as in

(9.19). In view of Lemma 10.1.7 and Remark 10.1.8, the identity (12.11) implies

〈ψ(ZT )x, y〉 =

∫
σS(ZT )∩C+

j

ψ(p)d〈F (p)x, y〉

=

∫
σS(ZT )∩C+

j

ψ(p)d〈F̃ (p)x, y〉.

Since the set of polynomials of this type is by Theorem 9.4.5 dense in SCj(σS(ZT )∩
C+
j ), we have that∫

σS(ZT )∩C+
j

φ(p)d〈F (p)x, x〉 =

∫
σS(ZT )∩C+

j

φ(p)d〈F̃ (p)x, x〉

for all φ ∈ SCj(σS(ZT )∩C+
j ). Hence in view of construction of the spectral measure

given in Section 11, F = F̃ . Therefore, Ej = Ẽj . The final assertion concerning
Ej and Ek is proved in a similar manner to an analogous assertion in Theorem
11.2.1. �

12.3 Some Consequences of the Spectral Theorem

We conclude this chapter with some consequences of the spectral theorem for
unbounded normal operators, Moreover, in the last corollary we state the func-
tional calculus for unbounded normal operators, which is a direct consequence of
the definition and the properties of the spectral integrals, which depend of the
operator J .

Corollary 12.3.1. In the setting of Theorem 12.2.1, the following statements hold:

(i) If T ∈ L(H) is a positive operator, then there exists a unique positive operator
W ∈ L(H) such that W 2 = T .

(ii) T ∈ L(H) is self-adjoint if and only if

〈Tx, y〉 =

∫
R
t d〈E(t)x, y〉, x ∈ D(T ), y ∈ H. (12.12)

(iii) T ∈ L(H) is anti-self-adjoint if and only if

〈Tx, y〉 =

∫
[0,∞)

t d〈JE(t)x, y〉, x ∈ D(T ), y ∈ H. (12.13)

Proof. Using Theorem 12.2.1, the proof is completed as in Corollary 11.2.2. �
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Remark 12.3.2. We remind the reader that the functional calculus mentioned in
Section 10 is applicable to unbounded normal operators T ∈ L(H). We conclude
this section by stating, in the following corollary, such a functional calculus.

Corollary 12.3.3. Let T , Ej, and J be as in Theorem 12.2.1. If f, g ∈ SM#
E (Ω+

j )

with Ω+
j = σS(T ) ∩ C+

j and α, β ∈ R, then:

(i) I(f̄) = I(f)∗.

(ii) I(αf + βg) = αI(f) + βI(g).

(iii) I(fg) = I(f)I(g).

(iv) I(f) is a closed normal operator on H and

I(f)∗I(f) = I(ff̄) = I(f̄f).

(v) D(I(f)I(g)) = D(I(g)) ∩ D(I(fg)).

(vi) If x ∈ D(I(f)) and y ∈ D(I(g)), then

〈I(f)x, I(g)y〉 =

∫
Ω+
j

Re(f(p)g(p))d〈E(p)x, y〉+
∫

Ω+
j

Im(f(p)g(p))d〈JE(p)x, y〉.

(vii) If x ∈ D(I(f)), then

‖I(f)x‖2 =

∫
Ω+
j

|f(p)|2d〈E(p)x, x〉.

Theorem 12.3.4. Let T be as in Theorem 12.2.1 and let J be the imaginary opera-
tor in the Teichmüller decomposition of ZT . Then there exist strongly commuting
operators A and B that commute with J , where A ∈ L(H) is self-adjoint and
B ∈ L(H) is positive with kerB = ker J such that

T = A+ JB. (12.14)

Proof. To verify assertion (iv), let E be the spectral measure of T and define

Ax =

∫
σS(T )∩C+

j

Re(p) dE(p)x, x ∈ D(T ),

B x =

∫
σS(T )∩C+

j

Im(p) dE(p)x, x ∈ D(T ).

If we set E0(σ) =: E({z ∈ C+
j : Re(p) ∈ σ}) and E1(σ) := E({z ∈ C+

j : Im(p) ∈
σ}) for σ ∈ B(R), then the change of measure principle implies

Ax =

∫
R
t dE0(t)x, x ∈ D(T ),

B x =

∫ +∞

0

t dE1(t)x, x ∈ D(T ).
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Hence A and B are self-adjoint, and their spectral measures are E0 and E1. Since
all projections E(σ) with σ ∈ B(C+

j ) commute mutually and with J , we find that
also E0 and E1 commute mutually and with J . Hence, A and B commute strongly,
and they commute with J . Finally, we have

kerB = ranE1({0}) = ranE({z ∈ C+
j : Im(z) = 0}) = ranE(R) = kerJ. �

Theorem 12.3.5 (Spectral mapping theorem). Let T be as in Theorem 12.2.1 and
let f ∈ SC(σS(T )). Then

σS(f(T )) = f(σS(T )). (12.15)

Proof. First of all, observe that f(σS(T )) is an axially symmetric set because
σS(T ) is axially symmetric and f maps axially symmetric sets to axially symmetric

sets since it is intrinsic. Let λ ∈ f(σS(T )) ∩ C+
j , let ε > 0, and choose ε̃ > 0 such

that
ε̃(ε̃+ 2|Im(λ)|) < ε

2
.

We can then find zε ∈ σS(T ) such that

|λ− f(zε)| < ε̃,

and since λ ∈ C+
j and f maps each complex plane Ci into itself, we even find

that zε ∈ σS(T ) ∩ Cj . (The function f , however, does not necessarily map each
half-plane C+

i into itself, and hence zε might belong to C−j . In this case, zε ∈ C+
j .)

Then ∣∣f(zε)
2 − 2Re(λ)f(zε) + |λ|2

∣∣ = |f(zε)− λ|
∣∣f(zε)− λ

∣∣
≤ |f(zε)− λ| |f(zε)− λ|

∣∣λ− λ∣∣ < ε̃(ε̃+ 2|Im(λ)|) < ε

2
.

The map z 7→ Qλ(f(z)) := f(z)2 − 2Re(λ)f(z) + |λ|2 is continuous, and hence
there exists δ > 0 such that for z ∈ Cj with |z − zε| < δ, we have

|Qλ(f(z))−Qλ(f(zε))| <
ε

2

and in turn

|Qλ(f(z))| ≤ |Qλ(f(z))−Qλ(f(zε))|+ |Qλ(f(zε))| < ε.

Moreover,

|Qλ (f (z))| =
∣∣∣Qλ (f (z)

)∣∣∣ =
∣∣∣Qλ (f (z))

∣∣∣ = |Qλ (f (z))| < ε.

If zε,+ := [z]∩C+
j , that is, zε,+ = zε if zε ∈ C+

j and zε,+ = zε if zε ∈ C−j , it follows
that

Uδ := {z ∈ σS(T ) ∩ C+
j : |z − zε,+| < δ}

⊂ σε(λ) := {z ∈ σS(T ) ∩ C+
j : |Qz(f(z))| < ε}.
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Since Uδ is an open set in σS(T )∩C+
j , which is exactly the support of E, we find

that E(Uδ) 6= 0 and hence also E(σε) 6= 0. We conclude from Lemma 10.2.10 that
λ ∈ σS(f(T )), and so

f(σS(T )) ∩ C+
j ⊂ σS(f(T )) ∩ C+

j .

On the other hand, if λ /∈ f(σS(T )) ∩ C+
j , then

σε(λ) =
{
z ∈ σS(T ) ∩ C+

j : |Qλ(f(z))| < ε
}

⊂ {z ∈ σS(T ) ∩ Cj : |Qλ(f(z))| < ε}

is empty for ε > 0 sufficiently small. Thus, Lemma 10.2.10 yields that λ0 /∈
σS(f(T )) ∩ C+

j . We conclude that

f(σS(T )) ∩ C+
j ⊃ σS(f(T )) ∩ C+

j ,

and in turn,
f(σS(T )) ∩ C+

j = σS(f(T )) ∩ C+
j .

Taking the axially symmetric hull, we arrive at (12.15). �

12.4 Comments and Remarks

Several papers have appeared in the literature that claimed to introduce a spectral
theorem for normal operators on a quaternionic Hilbert space (see [107, 109, 195,
197]). However, in all of the aforementioned papers, a precise notion of spectrum
is not made clear. We will now enter into a discussion concerning the papers of
Teichmüller [195] and Viswanath [197].

Teichmüller’s paper [195] was the first to claim a spectral theorem for normal
operators; it appeared in 1936. Despite not making the notion of spectrum clear,
[195] does have a number of valid and important observations (even though some
details for the precise proofs may be missing) such as the decomposition T =
A + JB (see Theorem 9.3.5) and also the fact that H = H0 ⊕ Hj+ ⊕ H

j
− (see

(9.18)). Finally, the spectral resolution in [195] takes the form

N =

∫ ∞
−∞

∫ ∞
0

(λ′ + T0λ
′′)dQλ′′dPλ′ , (12.16)

where N is a normal operator, T0 is an “Imaginäroperator” on ranB, i.e., T0T
∗
0 =

IranB and T ∗0 = −T0 (thus T0 is playing the role of the operator J in Theorem
12.2.1), and Q and P are projection-valued measures. This bears some resemblance
to (11.15).

In 1971 the paper [197] of Viswanath also claimed to have a spectral theorem
for normal operators on a quaternionic Hilbert space. It is worth noting that [195]
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is not cited in Viswanath’s paper [197]. The approach of [197] is very different
from [195] in so far as the symplectic image of a normal operator is used and
the spectral theorem is allegedly deduced from the classical spectral theorem and
some kind of lifting argument. Viswanath’s spectral resolution takes the form

T =

∫
C+

λdE, (12.17)

where T is a normal operator, E is a projection-valued measure E. Viswanath
claims to deduce an antecedent to the decomposition in Theorem 9.3.5 from
(12.17). However, the details are not given.

Beyond the spectral theorem there is the theory of the characteristic operator
function, which was initiated in [28].

On the equivalent formulations of complex and quaternionic quantum me-
chanics see [126]. For recent applications of the spectral theory on the S-spectrum
to quantum mechanics see [170,171] and also [168,196]. For coherent state trans-
forms and the Weyl equation in Clifford analysis, see [169].
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