
Chapter 11

The Spectral Theorem for
Bounded Normal Operators

In this chapter we prove the spectral theorem for bounded normal operators T
in B(H). Our approach has analogies with the well-known approach for complex
bounded normal operators on a complex Hilbert space, see for example [163], but
it has to take into account the axially symmetric structure of the S-spectrum
of T and the (A, J,B)-decomposition T = A + JB of the quaternionic bounded
normal operators. As we will see, the spectral measures E are constructed using
just the two self-adjoint operators A and B, and only later, we take into account
the imaginary operator J for the spectral representation of T . We present the
original proof from [13] using the Teichmüller decomposition T = A + JB. The
following representation theorems will be used in the sequel.

Theorem 11.0.1 (Riesz representation theorem for real-valued functions). Let X be
a compact Hausdorff space and let C(X,R) denote the normed space of real-valued
continuous functions on X together with the supremum norm ‖·‖∞. Corresponding
to every bounded linear functional ψ : C(X,R) → R there exists a signed Borel
measure µ on X such that

ψ(f) =

∫
X

f(t)dµ(t) for all f ∈ C(X,R). (11.1)

If, in addition, ψ is a positive linear functional, then µ is a positive Borel measure
on X. In both cases µ is unique.

For a proof of Theorem 11.0.1 we refer to Theorem D in Section 56 of [157]
for the case in which ψ is a positive bounded linear functional on X and, e.g.,
Chapter 21 in [182] for the more general case.

Theorem 11.0.2 (Riesz representation theorem for quaternionic Hilbert spaces).
Let H be a quaternionic right Hilbert space with quaternionic inner product 〈·, ·〉,
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and let ϕ be a continuous right linear functional on H. Then there exists a unique
yϕ ∈ H such that

ϕ(x) = 〈x, yϕ〉, for all x ∈ H.

Theorem 11.0.2 can be found in [33]. We also want to mention Proposition
1.10 in [167] for a statement and proof in a more general Clifford algebra setting.

11.1 Construction of the Spectral Measure

We can now construct the spectral measures. We will use the Riesz representation
theorem for continuous real-valued functions and the Riesz representation theorem
for quaternionic Hilbert spaces.

In this chapter we consider a normal operator T ∈ B(H) and fixed imaginary
unit j ∈ S and define Ω = σS(T ) and

Ω+
j := Ω ∩ C+

j = σS(T ) ∩ C+
j .

We recall that C(Ω+
j ,R) denotes the space of continuous real-valued functions on

Ω+
j . By Lemma 9.4.3, every function fj ∈ C(Ω+

j ,R) is the restriction fj = f |Ω+
j

of a real-valued continuous slice function f on Ω = σS(T ). We denote the set of
continuous real-valued slice functions on Ω by SC(Ω,R), and in the following, we
do not distinguish between the function fj and the function f unless that could
cause confusion.

We consider for x ∈ H the mapping

`x(g) = 〈g(T )x, x〉, g ∈ C(Ω+
j ,R) ∼= SC(Ω,R),

where g(T ) is the operator obtained by the continuous function calculus intro-
duced in Theorem 9.4.11, where g(T ) stands for F0(T ) and F1(T ). Since T is a
bounded operator, its S-spectrum σS(T ) is a compact and nonempty set. It is
readily checked that `x is a real-valued bounded linear functional on C(Ω+

j ,R).
Moreover, `x is a positive functional. Indeed, if h is a continuous nonnegative
function on Ω+

j , then we can consider the function g(u, v) =
√
h(u, v) and find

g ∈ C(Ω+
j ,R) with g(T ) = g(T )∗. Thus

`x(h) = 〈h(T )x, x〉 = 〈g(T )x, g(T )x〉 = ‖g(T )x‖2 ≥ 0.

Theorem 11.0.1 yields the existence of a uniquely determined positive-valued mea-
sure µx on the Borel sets B(Ω+

j ), so that

`x(g) =

∫
Ω+
j

g(p) dµx(p), g ∈ C(Ω+
j ,R). (11.2)
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In view of (11.2), we may use the formula

4〈g(T )x, y〉 = 〈g(T )(x+ y), x+ y〉 − 〈g(T )(x− y), x− y〉
+ e1〈g(T )(x+ ye1), x+ ye1〉 − e1〈g(T )(x− ye1), x− ye1〉
+ e1〈g(T )(x− ye2), x− ye2〉e3 − e1〈g(T )(x+ ye2), x+ ye2〉e3

+ 〈g(T )(x+ ye3), x+ ye3〉e3 − 〈g(T )(x− ye3), x− ye3〉e3, (11.3)

where {1, e1, e2, e3} denotes the standard basis of H, to obtain for every x, y ∈ H
a uniquely determined H-valued measure µx,y such that

〈g(T )x, y〉 =

∫
Ω+
j

g(p)dµx,y(p), g ∈ C(Ω+
j ,R), (11.4)

where

4µx,y = µx+y − µx−y + e1µx+ye1 − e1µx−ye1 (11.5)

+ e1µx−ye2e3 − e1µx+ye2e3 + µx+ye3e3 − µx−ye3e3.

Lemma 11.1.1. Let x, y, z ∈ H and α, β ∈ H. The H-valued measures µx,y given
in (11.5) enjoy the following properties

(i) µxα+yβ,z = µx,zα+ µy,zβ,

(ii) µx,yα+zβ = ᾱµx,y + β̄µx,z,

(iii) |µx,y(Ω+
j )| ≤ ‖x‖‖y‖,

(iv) µ̄x,y = µy,x.

Proof. Properties (i)–(iii) are easily obtained from (11.4) using the uniqueness
of µx,y and the properties of 〈·, ·〉. Property (iv) follows from properties (i) and
(ii). �

It follows from properties (i) and (iii) in Lemma 11.1.1 that for every fixed
y ∈ H and every fixed σ ∈ B(Ω+

j ), the mapping

Φy(x) = µx,y(σ)

is a continuous right linear functional on H. Moreover, it follows from property
(ii) in Lemma 11.1.1 that

Φyα(x) = αΦy(x), α ∈ H.

It follows from the Riesz representation theorem for quaternionic Hilbert spaces,
see Theorem 11.0.2, that corresponding to every x ∈ H, there exists a unique
vector w ∈ H such that

Φy(x) = 〈x,w〉, (11.6)
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i.e., µx,y(σ) = 〈x,w〉. Since the left-hand side of (11.6) depends linearly on x and
anti-linearly on y and the right-hand side depends linearly on x, it follows that
Φy(x) depends linearly on x and anti-linearly on y, so

E(σ)y = w,

for some operator
E(σ) ∈ B(H).

Thus,
µx,y(σ) = 〈x,E(σ)y〉, σ ∈ B(Ω+

j ),

and in view of property (iv) in Lemma 11.1.1,

E(σ) = E(σ)∗, σ ∈ B(Ω+
j ), (11.7)

and hence
µx,y(σ) = 〈E(σ)x, y〉, σ ∈ B(Ω+

j ). (11.8)

Since µx is countably additive, µx,y is also countably additive. Consequently,
the B(H)-valued measure E is also countably additive, i.e.,

E

(
+∞⋃
n=0

σn

)
=

+∞∑
n=0

E(σn) (11.9)

for every sequence of pairwise disjoint sets (σn)n∈N in B(Ω+
j ). The limit in (11.9)

is intended with respect to the strong operator topology.
We recall that SC(Ω) denotes the space of all continuous intrinsic slice func-

tions on Ω, and we denote by

SCj(Ω+
j ) := {fj := f |Ω+

j
: f ∈ SC(Ω)}

the set of all restrictions of functions in SC(Ω). Again we do not distinguish be-
tween a function f and its restriction fj unless this could cause confusion.

Lemma 11.1.2. Let J be the imaginary component in the T = A+JB decomposition
(9.17) of the normal operator T ∈ B(H) and let E be the spectral measure on
B(Ω+

j ) with Ω+
j = σS(T ) ∩ C+

j defined above. The following statements hold:

(i) If g ∈ C(Ω+
j ,R) ∼= SC(Ω,R), then for all x, y ∈ H

〈g(T )x, y〉 =

∫
Ω+
j

g(p) d〈E(p)x, y〉. (11.10)

(ii) If f = f0 + jf1 ∈ SCj(Ω+
j ) ∼= SC(Ω), then we have for all x, y ∈ H,

〈f(T )x, y〉 =

∫
Ω+
j

f0(p) d〈E(p)x, y〉+

∫
Ω+
j

f1(p) d〈JE(p)x, y〉. (11.11)
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(iii) E(σ) and J commute for all σ ∈ B(Ω+
j ) and −J2 = E(Ω+

j \ R).

Proof. Assertion (i) follows directly from (11.4) and (11.8). We will now prove
assertion (11.11). In view of (11.10) and Theorems 9.4.9 and 9.4.11, we have

〈f(T )x, y〉 = 〈{f0(T ) + f1(T )J}x, y〉
= 〈f0(T )x, y〉+ 〈f1(T )Jx, y〉

=

∫
Ω+
j

f0(p)d〈E(p)x, y〉+

∫
Ω+
j

f1(p)d〈E(p)Jx, y〉, x, y ∈ H.

Thus, the proof of (11.11) will be complete on showing that

d〈E(p)Jx, y〉 = d〈JE(p)x, y〉, x, y ∈ H.

To see this, let g ∈ C(Ω+
j ,R) and use (11.10) and the fact that g(T ) and J commute

to obtain∫
Ω+
j

g(p)d〈E(p)Jx, y〉 = 〈g(T )Jx, y〉 = 〈Jg(T )x, y〉 =

∫
Ω+
j

g(p)d〈JE(p)x, y〉.

If we write ν = 〈E(p)Jx, y〉 and ν̃ = 〈JE(p)x, y〉 and then

ν = ν0e0 + ν1e1 + ν2e2 + ν3e3

and
ν̃ = ν̃0e0 + ν̃1e1 + ν̃2e2 + ν̃3e3,

where ν` and ν̃`, ` = 0, . . . , 3, are real signed measures and e`,= 0, . . . , 3 is the
standard basis for H, then it follows from Theorem 11.0.1 that ν` = ν̃` for ` =
0, . . . , 3. Therefore, items (iii) and (ii) hold.

Finally, we have due to (i) and due to Lemma 10.1.7(iii) that

BE(R) =

∫
Ω+
j

|Im(q)| dE(q)E(R) =

∫
Ω+
j

|Im(q)|χR dE(q) = 0,

so that
ranE(R) ⊂ kerB = ker J,

where B is the positive operator in the decomposition T = A + JB. If, on the
other hand, x ∈ ker J = kerB, then

0 = 〈Bx, x〉 =

∫
Ω+
j

|Imq|2dµx,x(q).

Since the measure µx,x(σ) = 〈E(σ)x, x〉 and the function ϕ(q) := |Im(q)|2 are
nonnegative, this implies

0 = µx,x(ϕ−1(R \ {0}) = µx,x(Ω+
j \ R) = 〈x,E(Ω+

j \ R)x〉 = ‖E(Ω+
j \ R)‖2.
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Hence E(Ω+
j \ R)x = 0, and in turn, x ∈ ranE(R). Therefore,

ranE(R) ⊃ kerB = ker J,

and in turn,
ranE(R) = kerJ.

Since −J2 is the orthogonal projection onto (kerJ)⊥ = ran J by Corollary 9.3.8
and E(Ω+

j \ R) is the orthogonal projection onto (ranE(R))⊥, we conclude that

−J2 = E(Ω+
j \ R). �

The properties of the spectral measure can be checked directly as in the
following result.

Theorem 11.1.3. The B(H)-valued countably additive measure E, given by (11.8),
for all σ, τ ∈ B(Ω+

j ), enjoys the following properties:

(i) E(σ) = E(σ)∗.

(ii) ‖E(σ)‖ ≤ 1.

(iii) E(∅) = 0 and E(σS(T ) ∩ C+
j ) = I.

(iv) E(σ ∩ τ) = E(σ)E(τ).

(v) E(σ)2 = E(σ).

(vi) E(σ) commutes with f(T ) for all f ∈ SCj(Ω+
j ) ∼= SC(Ω).

(vii) E(σ) and E(τ) commute.

Proof. The proof is broken into steps.

Step 1: Show (i) and (ii).

Property (i) has already been noted in (11.7). Property (ii) follows directly from
property (iii) in Lemma 11.1.1. Indeed, if x = y in property (iii) in Lemma 11.1.1,
then

µx,x(σ) ≤ µx,x(Ω+
j ) ≤ ‖x‖2

and hence
〈E(σ)x, x〉 ≤ ‖x‖2 for x ∈ H,

i.e., I − E(σ) is a positive operator for all σ ∈ B(Ω+
j ). Therefore, property (ii)

holds.

Step 2: Show (iii).

Since µx,y(∅) = 0, we may use (11.4) to deduce E(∅) = 0. Similarly, putting
g(p) = 1 in (11.4) yields g(T ) = I for all x, y ∈ H and thus

〈x, y〉 =

∫
Ω+
j

dµx,y = 〈E(Ω+
j )x, y〉,
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i.e., E(Ω+
j ) = I.

Step 3: Show (iv).

Recall that for all real-valued polynomials φ and ψ on Ω+
j , we have set φ(T ) :=

φ(A,B) and ψ(T ) := ψ(A,B). Clearly we have (φψ)(T ) = φ(T )ψ(T ), φ(T ) =
φ(T )∗, and ψ(T ) = ψ(T )∗. Thus,∫

σS(T )∩C+
j

φ(p) dµψ(T )x,x(p) = 〈φ(T )ψ(T )x, x〉

= 〈(φψ)(T )x, x〉 =

∫
σS(T )∩C+

j

φ(p)ψ(p)dµx,x(p).

(11.12)

Since E(σ) = E(σ)∗, (11.8) implies that

µx,x(σ) ∈ R for all σ ∈ B(Ω+
j ).

Similarly, since 〈ψ(T )x, x〉 is real, (11.8) implies that

µψ(T )x,x(σ) ∈ R for all σ ∈ B(σS(T ) ∩ C+
j ).

In view of the density of real-valued polynomials in the space C(Ω+
j ,R) and the

Riesz representation theorem given in Theorem 11.0.1, (11.12) implies that

dµψ(T )x,x(p) = ψ(p)dµx,x(p).

But then we may use the identity (11.5) and the fact that ψ(p) is real-valued to
obtain

dµψ(T )x,y(p) = ψ(p)dµx,y(p).

Thus, in view of (11.8),

〈E(σ)ψ(T )x, y〉 =

∫
σ

ψ(p) dµx,y(p) for σ ∈ B(Ω+
j ).

Since E(σ) = E(σ)∗ for σ ∈ B(Ω+
j ),∫

σS(T )∩C+
j

ψ dµx,E(σ)y = 〈ψ(T )x,E(σ)y〉

= 〈E(σ)ψ(T )x, y〉 =

∫
σS(T )∩C+

j

ψ χσ dµx,y,

where

χσ(p) =

{
1 if p ∈ σ,
0 if p /∈ σ.
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Since ψ is real-valued, we also have∫
σS(T )∩C+

j

ψ dµ
(m)
x,E(σ)y =

∫
σS(T )∩C+

j

ψ χσ dµ
(m)
x,y for m = 0, . . . , 3, (11.13)

where µ
(m)
x,y and µ

(m)
x,E(σ)y are real-valued signed measures given by

µx,y =
3∑

m=0

µ(m)
x,y em

and

µ
(m)
x,E(σ)y =

3∑
m=0

µ
(m)
x,E(σ)yem.

Recall that (em)`=0,...,3 is the standard basis for H.
In view of the density of real-valued polynomials in the space C(Ω+

j ,R) and
the Riesz representation theorem given in Theorem 11.0.1, the identity (11.13)
implies that

dµ
(m)
x,E(σ)y = χσ dµ

(m)
x,y for m = 0, . . . , 3,

and hence

dµx,E(σ)y = χσ dµx,y.

Therefore,

µx,E(σ)y(τ) =

∫
Ω+
j ∩ τ

χσdµx,y = µx,y(σ ∩ τ)

for σ, τ ∈ B(Ω+
j ). Since

µ(σ) = 〈E(σ)x, y〉 for σ ∈ B(Ω+
j ),

we obtain E(σ)E(τ) = E(σ ∩ τ) for σ, τ ∈ B(Ω+
j ).

Step 4: Show (v).

Property (v) can be obtained from Property (iv) when σ = τ .

Step 5: Show (vi).

Let A, B, and J be as in Theorem 9.3.5. We have already observed in item (iii) of
Lemma 11.1.2 that E(σ) and J commute. One can show in a similar fashion that
A and E(σ) commute and B and E(σ) commute. Thus, in view of the construction
of f(T ), we have that f(T ) and E(σ) commute.

Step 6: Show (vii).

Property (vii) follows from Property (iv) on interchanging τ and σ. �
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Remark 11.1.4. The spectral measure E was constructed using only operators
g(T ) that were generated by functions g ∈ C(Ω+

j ,R), that is, by real-valued func-
tions. By Theorem 9.4.11, for such functions, the operator g(T ), however, does not
depend on all the information we have about T , but only on the factors A and B in
the T = A+JB decomposition of T . Hence E is actually a joint spectral measure
of the self-adjoint operators A and B. This in particular implies that T = A+JB
and T ∗ = A− JB have the same spectral measure E.

In the quaternionic setting, invariant subspaces are not associated with in-
dividual eigenvalues, but with spheres [s] of equivalent eigenvalues, because the
eigenvalue equation T (x)− xs = 0 associated with a single (nonreal) eigenvalue is
not linear. The correct interpretation of the above observation is therefore that the
spectral measure E associates invariant subspaces of T to sets of spectral spheres,
while the imaginary operator J orients the spheres. It determines how the differ-
ent spectral values in these spheres need to be multiplied onto the vectors in the
associated subspaces in order to fit the operator T . A more detailed discussion of
this idea will be given in Chapter 14.

11.2 The Spectral Theorem and Some Consequences

We conclude this chapter with the main result, the spectral theorem for bounded
operators.

Theorem 11.2.1 (The spectral theorem for bounded normal operators). Let T ∈
B(H) be normal, let J ∈ B(H) be the imaginary operator in the Teichmüller de-
composition T = A+ JB of Theorem 9.3.5, and fix j ∈ S. Let Ω+

j = σS(T ) ∩ C+
j

and let Π0 and Πj
± denote the orthogonal Cj-linear projections defined in Defi-

nition 9.3.10 corresponding to the decomposition H = H0 ⊕ Hj+ ⊕ H
j
− given in

Lemma 9.3.9.

Then there exists a unique spectral measure Ej on Ω+
j such that for all x, y ∈

H,

〈Tx, y〉 =

∫
Ω+
j

Re(q) d〈E(q)x, y〉+

∫
Ω+
j

Im(q) d〈E(q)Jx, y〉. (11.14)

For every function f = f0 + jf1 ∈ SCj(Ω+
j ) and x, y ∈ H, we moreover have

〈f(T )x, y〉 =

∫
Ω+
j

f0(p) d〈Ej(p)x, y〉+

∫
Ω+
j

f1(p) d〈JEj(p)x, y〉, (11.15)
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or, equivalently,

〈f(T )x, y〉 =

∫
Ω+
j

d〈Π0Ej(p)x, y〉 f0(p)

+

∫
Ω+
j

d〈Πj
+Ej(p)x, y〉 f(p)

+

∫
Ω+
j

d〈Πj
−Ej(p)x, y〉f(p).

(11.16)

Moreover, on identifying the complex plane Ck with Cj in the natural way by
the mapping ϕkj : u+kv 7→ u+jv, we have Ej(ϕkj(σ)) = Ek(σ) for all σ ∈ B(Ω+

k )
for all j, k ∈ S.

Proof. Formula (11.15) was established in item (ii) of Lemma 11.1.2. Formula
(11.16) follows from (11.15). Indeed, if we write y = y0 + y+ + y− ∈ H with
respect to the decomposition H = H0 ⊕Hj+ ⊕H

j
− as in Lemma 9.3.9, then

〈f(T )x, y〉 =

∫
Ω+
j

f0(p)d〈Ej(p)x, y〉+

∫
Ω+
j

f1(p)d〈JEj(p)x, y)〉

=

∫
Ω+
j

f0(p)d〈Ej(p)x, y〉+

∫
Ω+
j

f1(p)d〈Ej(p)x+j, y〉

+

∫
Ω+
j

f1(p)d〈Ej(p)x−(−j), y〉

=

∫
Ω+
j

f0(p)d〈Ej(p)x0, y〉+

∫
Ω+
j

d〈Ej(p)x+, y〉(f0(q) + jf1(q))

+

∫
Ω+
j

d〈Ej(p)x−, y〉(f0(q)− jf1(q))

=

∫
Ω+
j

f0(p)d〈Ej(p)Π0x, y〉+

∫
Ω+
j

d〈Ej(p)Πj
+x, y〉f(q)

+

∫
Ω+
j

d〈Ej(p)Πj
−x, y〉f(q).

The fact that there is only one spectral measure Ej on σS(T ) ∩ C+
j such

that (11.15) holds follows directly from the uniqueness of the measure µx,y(σ) =
〈E(σ)x, y〉 on Ω+

j (see (11.5)). The claimed invariance Ej(ϕjk(σ)) = Ek(σ) relative
to j, k ∈ S drops out easily from the aforementioned uniqueness of Ej and Theorem
9.2.3. �

Corollary 11.2.2. In the setting of Theorem 11.2.1, the following statements hold:

(i) If T ∈ B(H) is a positive operator, then there exists a unique positive operator
T 1/2 := W ∈ B(H) such that W 2 = T .
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(ii) T ∈ B(H) is self-adjoint if and only if

〈Tx, y〉 =

∫
[−‖T‖,‖T‖]

t d〈Ej(t)x, y〉, x, y ∈ H. (11.17)

(iii) T ∈ B(H) is anti-self-adjoint if and only if

〈Tx, y〉 =

∫
[0,‖T‖]

t d〈JEj(t)x, y〉, x, y ∈ H. (11.18)

(iv) T ∈ B(H) is unitary if and only if

〈Tx, y〉 =

∫
[0,π]

cos(t)d〈Ej(t)x, y〉+

∫
[0,π]

sin(t)d〈JEj(t)x, y〉. (11.19)

Proof. If T ∈ B(H) is a positive operator, then σS(T ) ⊆ [0, ‖T‖]. Thus, using
Theorem 11.2.1, we have the existence of a uniquely determined spectral measure
Ej such that

〈Tx, y〉 =

∫
[0,‖T‖]

t d〈Ej(t)x, y〉. (11.20)

Let g(t) = t1/2 for t ∈ R. Since g ∈ C(σS(T ),R), it follows from Theorem 11.2.1
that

〈Wx, y〉 := 〈g(T )x, y〉 =

∫
[0,‖T‖]

t1/2 d〈Ej(t)x, y〉

satisfies W 2 = T . Thus, we have established the existence of a positive operator
W ∈ B(H) such that W 2 = T . The proof that W is unique follows from the
uniqueness of the spectral measure Ej , just as in the case that H is a complex
Hilbert space.

The proofs of (ii)–(iv) follow readily from Theorem 11.2.1 and (9.9). �

11.3 Comments and Remarks

The spectral theorem based on the S-spectrum was proved in the following papers:
the general case for bounded and unbounded normal operators was shown in [13].
A different proof for unitary operators was given in [14], and the simple case of
compact normal operators was shown in [143].

Results related to the quaternionic spectral theorem can furthermore be
found in [57, 74]. For quaternionic matrices, the spectral theorem based on the
right spectrum was proved in [108]. The right spectrum is in the finite-dimensional
case, however, equal to the S-spectrum.

The main application of the quaternionic spectral theorem is in quaternionic
quantum mechanics. In the list of references there are also papers related to quater-
nionic quantum mechanics [107], [109], [158] in which the notion of right spectrum
was used.
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