
Chapter 1

Introduction

Since the discovery of the S-spectrum in 2006 the theory of slice hyperholomorphic
functions has become the underlining function theory on which new functional cal-
culi for quaternionic operators and for n-tuples of operators have been developed.
These calculi are the S-functional calculus and the F -functional calculus, and both
are based on the notion of S-spectrum. In 2014 it was proved that the quaternionic
spectral theorem is also naturally based on the S-spectrum. These facts restore
the analogy with the classical case in which the holomorphic functional calculus
and the spectral theorem are based on the same notion of spectrum.

So to replace complex spectral theory with quaternionic spectral theory we have
to replace the classical spectrum with the S-spectrum. The quaternionic spectral
theory contains as a particular case the complex spectral theory.

1.1 What is Quaternionic Spectral Theory?

To orient the reader in this new spectral theory we summarize some of the funda-
mental concepts and facts such as the notion of slice hyperholomorphic functions,
the problem of the spectrum of a quaternionic linear operator, the S-functional
calculus, the F -functional calculus, the spectral theorem on the S-spectrum, and
spectral operators.

Slice hyperholomorphicity is the crucial notion of hyperholomorphicity for the
quaternionic spectral theory based on the S-spectrum. We denote by H the algebra
of quaternions; the imaginary units in H are denoted by e1, e2, and e3, respectively;
and an element in H is of the form q = q0 + e1q1 + e2q2 + e3q3, for q` ∈ R,
` = 0, 1, 2, 3. The real part, the imaginary part, and the modulus of a quaternion
are defined as Re(q) = q0, q = Im(q) = e1q1+e2q2+e3q3, |q|2 = q2

0+q2
1+q2

2+q2
3 . The

conjugate of the quaternion q is defined by q̄ = Re(q)− Im(q) = q0− e1q1− e2q2−
e3q3 and it satisfies |q|2 = qq̄ = q̄q. Let us denote by S the unit sphere of purely

imaginary quaternions, i.e., S = {q = e1q1 + e2q2 + e3q3 such that
∑3
`=1 q

2
` = 1}.
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Every quaternion q belongs to a suitable complex plane: if we set

jq :=

{ q

|q| if q 6= 0,

any j ∈ S if q = 0,

then q = u + jqv with u = Re(q) and v = |Im(q)|. For every q = u + jqv ∈ H we
define the set [q] := {u+ jv | j ∈ S}.

Slice continuous functions. Let U ⊆ H be an axially symmetric open set and
let U = {(u, v) ∈ R2 : u + Sv ⊂ U}. A function f : U → H is called a left slice
function if it is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : U → H that satisfy the compatibility condition

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (1.1)

Slice hyperholomorphic function. If in addition the components f0 and f1 of
the slice function f satisfy the Cauchy–Riemann equations

∂

∂u
f0(u, v)− ∂

∂v
f1(u, v) = 0, (1.2)

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0, (1.3)

then f is called left slice hyperholomorphic. An analogous notion is given also for
right slice continuous and right slice hyperholomorphic functions. If f is a left (or
right) slice function such that f0 and f1 are real-valued, then f is called intrinsic.

The problem of the spectrum. Several attempts have been made by several
authors in the past decades to prove the quaternionic spectral theorem: see, e.g.,
[195, 197]. However, the notion of spectrum was unclear. It is easy to explain
the difficulties in giving an appropriate definition of spectrum of a quaternionic
linear operator if one tries to adapt the classical notion of spectrum. Consider, for
example, a right linear bounded quaternionic operator T : X → X acting on a
two-sided quaternionic Banach space X, that is,

T (w1α+ w2β) = T (w1)α+ T (w2)β,

for all α, β ∈ H and w1, w2 ∈ X. The symbol B(X) denotes the Banach space of
all bounded right linear operators endowed with the natural norm.

The left spectrum σL(T ) of T is related to the resolvent operator (sI−T )−1,
that is,

σL(T ) = {s ∈ H : sI − T is not invertible in B(X)},

where the notation sI in B(X) means that (sI)(v) = sv.
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The right spectrum σR(T ) of T is associated with the right eigenvalue prob-
lem, i.e., the search for quaternions s such that there exists a nonzero vector v ∈ X
satisfying

T (v) = vs.

Now observe that the operator Is−T associated with the right eigenvalue problem
is not linear, so it is not clear what resolvent operator is to be considered in this
case. There is just one case in which the quaternionic spectral theorem is proved
by specifying the spectrum, and it is the case of quaternionic normal matrices;
see [108] and [199]. In this case the right spectrum σR(T ) has been used, but this
is the case in which we have just the eigenvalues. The left spectrum σL(T ), which is
associated with a linear resolvent operator, is not useful because it is not clear what
notion of hyperholomorphicity is associated to the map s→ (sI−T )−1. Moreover,
in quaternionic quantum mechanics the right spectrum σR(T ) is the most useful
notion of spectrum for studying the bounded states of a systems (where there are
just the eigenvalues).

The S-functional calculus. The notion of S-spectrum for quaternionic linear
operators turned out to be the correct notion of spectrum, and it was discov-
ered from the Cauchy formulas of slice hyperholomorphic functions with slice
hyperholomorphic kernels. Moreover, the right spectrum σR of a matrix is equal
to the S-spectrum. More generally, the right eigenvalues σR are equal to the S-
eigenvalues. We limit the discussion to the case of quaternionic operators, but
the following definition of S-spectrum can be adapted to the case of n-tuples of
noncommuting operators. If T is a linear bounded quaternionic operator then the
S-spectrum is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},

while the S-resolvent set is ρS(T ) := H \ σS(T ). Due to the noncommutativity of
the quaternions, there are two resolvent operators associated with a quaternionic
linear operator T : the left S-resolvent operator is defined as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ ρS(T ), (1.4)

and the right S-resolvent operator is

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T ). (1.5)

The S-resolvent equation involves both the S-resolvent operators:

S−1
R (s, T )S−1

L (p, T ) = [[S−1
R (s, T )− S−1

L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]](p2 − 2s0p+ |s|2)−1,

for s, p ∈ ρS(T ). The S-functional calculus, or quaternionic functional calculus, is
based on the Cauchy formula for slice hyperholomorphic functions. We denote by
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SHL(σS(T )) the set of left slice hyperholomorphic functions f : U → H, where U
is a suitable open set that contains the S-spectrum of T ; in the case of bounded
operators, the S-spectrum is a bounded and nonempty set in H. Analogously, we
define SHR(σS(T )) for right slice hyperholomorphic functions. The formulations
of the quaternionic functional calculus are defined as

f(T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), f ∈ SHL(σS(T )), (1.6)

and

f(T ) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), f ∈ SHR(σS(T )), (1.7)

where dsj = −dsj, for j ∈ S. The functional calculus is well defined, since the
integrals depend neither on the open set U nor on j ∈ S. It is important to note
that in the definition of the quaternionic functional calculus it is not required that
the linear operator T be written in components T = T0 + e1T1 + e2T2 + e3T3

where T`, for ` = 0, 1, 2, 3, are bounded linear operators on a real Banach space.
Moreover, in the case that T is represented as T = T0 +e1T1 +e2T2 +e3T3, it is not
even required that the operators T`, for ` = 0, 1, 2, 3, commute among themselves.

The commutative version of the S-spectrum. We will denote by BC(X) the
subclass of B(X) that consists of those quaternionic operators T that can be
written as T = T0 + e1T1 + e2T2 + e3T3, where the operators T`, ` = 0, 1, 2, 3,
commute among themselves, and we set T = T0 − e1T1 − e2T2 − e3T3. In this
case, the S-spectrum has an alternative definition that takes into account the
commutativity of T`, for ` = 0, 1, 2, 3. In the literature the commutative definition
of the S-spectrum is often called the F -spectrum because it is used for the F -
functional calculus. Let T ∈ BC(X). We define the commutative version of the
S-spectrum (or F -spectrum σF (T )) of T as

σS(T ) = {s ∈ H : s2I − s(T + T ) + TT is not invertible}.

The S-resolvent set ρS(T ) is defined as ρS(T ) = H \ σS(T ).

The F -functional calculus. A deep result in hypercomplex analysis is the
Fueter-Sce mapping theorem, which in modern language says that if we apply the
Laplace operator to a slice hyperholomorphic function f : U ⊆ H → H, we obtain
a Cauchy–Fueter regular function f̆ : U ⊆ H→ H, that is,

f̆(q) = ∆f(q), q ∈ U.

Applying the Laplace operator to the Cauchy kernels of slice hyperholomorphic
functions, we obtain two new kernels that allow us to write the Fueter–Sce map-
ping theorem in integral form. Using such an integral transform, we define a
functional calculus that starting from slice hyperholomorphic functions, defines
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Cauchy-Fueter regular functions of a linear operator f̆(T ) for T ∈ BC(X). Pre-
cisely, for T ∈ BC(X), we define the left F -resolvent operator as

FL(s, T ) := −4(sI − T )(s2I − s(T + T ) + TT )−2, s ∈ ρS(T ),

and the right F -resolvent operator as

FR(s, T ) := −4(s2I − s(T + T ) + TT )−2(sI − T ), s ∈ ρS(T ).

So the formulations of the quaternionic F -functional calculus for bounded opera-
tors are defined as follows:

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s), f ∈ SHL(σS(T )), (1.8)

and

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj FR(s, T ), f ∈ SHR(σS(T )), (1.9)

where dsj = −dsj, for j ∈ S, and the integrals depends neither on the open set
U nor on j ∈ S. The F -resolvent equation in this case is more complicated, and
it also involves the two S-resolvent operators in their commutative version. We
point out that both the S-functional calculus and the F -functional calculus can be
extended to the case of unbounded operators; moreover, the S-functional calculus
can be used to define the quaternionic H∞-functional calculus.

The spectral theorem based on the S-spectrum. If T ∈ B(H) is a bounded
normal quaternionic linear operator on a quaternionic Hilbert space H, then there
exist three quaternionic linear operators A, J , B such that T = A+ JB, where A
is self-adjoint and B is positive, J is an anti-self-adjoint partial isometry (called
an imaginary operator). Moreover, A, B, and J mutually commute.

There exists a unique spectral measure Ej on Ω+
j := σS(T ) ∩ C+

j such that
for every slice continuous intrinsic function f = f0 + f1j,

〈f(T )x, y〉 =

∫
Ω+
j

f0(q) d〈Ej(q)x, y〉+
∫

Ω+
j

f1(q) d〈JEj(q)x, y〉, x, y ∈ H. (1.10)

In this book we treat also the spectral theorem for unbounded quaternionic
normal operators on a Hilbert space, and we define a functional calculus for a
much larger class of functions with respect to the class of continuous functions.
This functional calculus is deduced by the theory of spectral integrals depending
on an imaginary operator J .

Spectral operators in Banach spaces. We develop furthermore a concise the-
ory of spectral integration in quaternionic Banach spaces based on the notion
of spectral systems and use this tool to study quaternionic spectral operators.
Analogously to the classical theory of Dunford, such operators have a canonical
decomposition into a scalar and a radical part. The first one can be represented as
the spectral integral with respect to the spectral system of the operator, and the
second one is quasi-nilpotent. We also study the transformation of this decompo-
sition under the S-functional calculus.
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1.2 Some Historical Remarks on the SSS-Spectrum

It has been known since the 1930s, with the paper of G. Birkhoff and J. von
Neumann on the logic of quantum mechanics, that quantum mechanics can be
formulated over the real, the complex, and the quaternionic numbers. Since then,
several papers and books have treated this topic. However, it is interesting, and
somewhat surprising, that for a long time, an appropriate notion of quaternionic
spectrum was not present in the literature.

Thus we believe that it is interesting to explain the facts, presented several
times in some talks of the authors, that led to discovery of the S-spectrum for
quaternionic linear operators, of the S-functional calculus, and of some of the
difficulties that, in our opinion, prevented these objects from being found earlier.

The quaternionic spectral theory based on the notion of S-spectrum not only
is relevant for researchers in quaternionic analysis but is applicable, as a particular
case, to vector operators, such as the gradient operator or its variations, and has
applications, for example, to fractional diffusion processes.

1.2.1 The Discovery of the SSS-Spectrum

The S-spectrum was discovered by F. Colombo and I. Sabadini in 2006. They had
been working for several years on the spectral theory for quaternionic linear oper-
ators, starting with the aforementioned paper of G. Birkhoff and J. von Neumann;
see [36]. They soon realized that the notion of spectrum of a quaternionic linear
operator was poorly understood and as a consequence, the quaternionic spectral
theory could not be developed.

The only thing that was clear was that the existing notions of left spectrum
and right spectrum of a quaternionic linear operator were insufficient to construct
the quaternionic spectral theory. The main reason is that left spectrum and right
spectrum mimic the definition of eigenvalues in the complex case, but they do not
shed light on the true nature of the quaternionic spectrum.

Thus they started to investigate what could be the quaternionic version of the
Riesz–Dunford functional calculus, of the evolution operator, and of the spectral
theorem. After more then 10 years of exhausting research and 70 years after [36],
in 2006 they understood that the S-spectrum was the correct notion of spectrum
for quaternionic spectral theory.

A crucial fact in classical operator theory is that the holomorphic functional
calculus (called Riesz–Dunford functional calculus) and the spectral theorem are
based on the same notion of spectrum. In the quaternionic setting things were
different indeed: for right linear operators with commuting components, the func-
tional calculus based on the Cauchy–Fueter formula is based on the left spectrum.
However, in quaternionic quantum mechanics physicists used the notion of right
spectrum, which consists just of eigenvalues.

After several attempts in various directions they started to believe that since
the physicists were unable to deduce from physical arguments the quaternionic
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spectrum, they could use hypercomplex analysis to find it. More precisely, they
thought that from the Cauchy formula of a “suitable new notion of quaternionic
hyperholomorphicity” one could read the precise notion of quaternionic spectrum,
which, in analogy with the complex case, could have worked for both the new
hyperholomorphic functional calculus and the quaternionic spectral theorem.

In 1998 in the paper [82], F. Colombo and I. Sabadini investigated the quater-
nionic functional calculus based on the Cauchy formula for Fueter regular func-
tions, and it was clear that the Fueter spectrum was incompatible with the quater-
nionic spectral theorem. Moreover, it was realized that this calculus was to some
extent the quaternionic version of the monogenic functional calculus already in-
troduced and studied by A. McIntosh and his collaborators; see [160, 161] and
the book [159]. It was then clear that a different notion of hyperholomorphicity
was needed. After so many years of intensive and unfruitful research, in 2006 D.C.
Struppa showed them the new definition of slice regularity, and later they also dis-
cussed with G. Gentili this new notion of regularity introduced in the paper [135]
(which is an announcement of the paper [136]). This notion requires that all the
restrictions of a quaternionic-valued function to every complex plane are holomor-
phic maps. Thus the usual Cauchy formula for holomorphic functions holds on
each complex plane Cj and the Cauchy kernel has the series expansion

∞∑
n=0

qns−1−n =
1

s− q
, for q, s ∈ Cj , j ∈ S, |q| < |s|;

the above expansion obviously holds just for those quaternions q and s that belong
to ∈ Cj and such that |q| < |s|.

At this point, the crucial idea was to replace q in the series
∑∞
n=0 q

ns−1−n

by a quaternionic linear operator T , and to look for a closed formula for this
non-commutative power series. To obtain a closed formula for the formal power
series

∞∑
n=0

Tns−1−n

was not an easy task. F. Colombo and I. Sabadini proceeded as follows: first they
found a closed form for the series expansion

∑∞
n=0 q

ns−1−n, that is,

∞∑
n=0

qns−1−n = −(q2 − 2qRe(s) + |s|2)−1(q − s), for |q| < |s|, (1.11)

where formula (1.11) holds for all quaternions q, s ∈ H such that |q| < |s|, and
then they observed that the right-hand side of (1.11) does not depend on the
commutativity of the components of the quaternion q, because it contains just the
powers of q. This second crucial fact led to the natural definition of the so-called
S-spectrum

σS(T ) = {s ∈ H : T 2 − 2TRe(s) + |s|2I is not invertible},
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where I is the identity operator, and of the S-resolvent operator

S−1
L (s, T ) := −(T 2 − 2TRe(s) + |s|2I)−1(T − sI). (1.12)

It is also interesting to note that in 2006, when (1.12) was introduced, the Cauchy
formula with slice hyperholomorphic kernel was not known, and so the sum of the
series (1.11) was obtained with direct computations, using the Niven algorithm.
This procedure is explained in Note 4.18.3 of the book [89]. The fact that the notion
of slice hyperholomorphicity works very well for quaternionic operator theory was
one of our motivations for its development.

The existence of the S-spectrum, with further considerations, appeared in
2007 in the paper [66] with G. Gentili and D.C. Struppa. This paper is an an-
nouncement of the results of the paper [68] (unfortunately, as may happen, pub-
lished only in 2010), containing a version of the S-functional calculus defined
just for slice hyperholomorphic functions that admit a power series expansion at
the origin. This calculus is the starting point for the general definition of the
S-functional calculus based on the Cauchy formula with slice hyperholomorphic
kernels, which was completely described in [79]. The paper [79] together with the
formulations of the S-functional calculus, see [80], and the S-resolvent equation,
see [10], constitute the heart of the S-functional calculus. Finally, it is worthwhile
to mention that the case of unbounded operators was treated in [97], [67] and
with a direct approach in [124]. The study of the quaternionic evolution operator
is in the paper [76], while the H∞-functional calculus is in [30] and [52]. Finally,
the main results about the spectral theorem based on the S-spectrum are proved
in [13,14].

The authors would like to thank G. Gentili, I. Sabadini, and D.C. Struppa
for their comments on this note about the discovery of the S-spectrum.

1.2.2 Why Did It Take So Long to Understand the SSS-Spectrum?

After over 20 years of research, it is now clear that this new spectral theory
based on the S-spectrum is very natural because it generalizes complex spectral
theory and because the S-functional calculus (which is the slice hyperholomorphic
functional calculus) and the quaternionic spectral theorem are based on the same
notion of spectrum. There are several reasons why it took so long to discover the
S-spectrum. We recall two of them.

Complex analysis and Cauchy–Fueter analysis are based on functions in the
kernel of a constant-coefficient differential operator. This fact was misleading in
the search for a new definition of hyperholomorphicity because one is tempted
to look for a constant-coefficient quaternionic differential operator, not necessar-
ily of first order, in order to find a “new notion of hyperholomorphicity” from
which we could read the quaternionic spectrum. In [60] it was shown that slice hy-
perholomorphic functions are functions in the kernel of a first-order quaternionic
differential operator with nonconstant coefficients. This fact was unexpected.
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Another interesting fact is that in the paper of Fueter [111] there was a
partial solution to the problem. In fact, in [111] Fueter gives a procedure to con-
struct Fueter regular functions starting from holomorphic functions. His procedure
consists of two steps: from holomorphic functions he constructs what he calls hy-
peranalytic functions; then he applies the Laplace operator to such hyperanalytic
functions and thereby obtains Fueter regular functions. Fueter’s hyperanalytic
functions are what nowadays are called intrinsic slice hyperholomorphic functions
but for some reason these functions have never been systematically studied. The
Cauchy formula for hyperanalytic functions, which is the Cauchy formula for the
S-functional calculus and from which one could read the S-spectrum, has never
been investigated to the best of our knowledge.

1.3 The Fueter–Sce–Qian theorem and spectral

theories

In this section we want to put the spectral theory on the S-spectrum into the
perspective of the spectral theories that arise from the Fueter–Sce–Qian mapping
theorem. In classical complex operator theory, the Cauchy formula of holomorphic
functions is a fundamental tool for defining functions of operators. Moreover, the
Cauchy–Riemann operator factorizes the Laplace operator, so holomorphic func-
tions play also a crucial role in harmonic analysis and in boundary value prob-
lems. In higher dimensions, for quaternion-valued functions or, more generally, for
Clifford-valued functions, there appear two different notions of hyperholomorphic-
ity. The first one is called slice hyperholomorphicity and the second one is known
under different names, depending to the dimension of the algebra and the range of
the functions: Cauchy–Fueter regularity for quaternion-valued and monogenicity
for Clifford-algebra-valued functions. The Fueter–Sce–Qian mapping theorem re-
veals a fundamental relation between the different notions of hyperholomorphicity.
It will be explained in detail later on (see, for example, the section on the Fueter
mapping in integral form), but it can be illustrated by the following diagram:

Hol(Ω)
F1−−−−→ N (U)

F2−−−−→ AM(U).

Applying the mapping F1, we can use any function in the set Hol(Ω) of holomor-
phic functions on a suitable open set Ω in C to generate a function in the set N (U)
of all intrinsic slice hyperholomorphic functions on a certain open subset U of H.
Applying a second transformation F2, we can transform any intrinsic slice hyper-
holomorphic function into an axially Fueter-regular resp. an axially monogenic
function.

When considering quaternion-valued functions, the mapping F2 that trans-
forms an intrinsic slice hyperholomorphic function into a Fueter regular one is the
application of the Laplace operator, i.e., F2 = ∆. When we work with Clifford-
algebra-valued functions, then F2 = ∆(n−1)/2, where n is the number of gener-



10 Chapter 1. Introduction

ating units of the Clifford algebra. The Fueter–Sce–Qian mapping theorem can
be adapted to the more general case in which N (U) is replaced by slice hyper-
holomorphic functions and the axially regular (or axially monogenic) functions
AM(U) are replaced by monogenic functions. The generalization of holomorphic-
ity to quaternion- or Clifford-algebra-valued functions produces two different no-
tions of hyperholomorphicity that are useful for different purposes. Precisely, we
have that:

• The Cauchy formula for slice hyperholomorphic functions leads to the defini-
tion of the S-spectrum and the S-functional calculus for quaternionic linear
operators. Moreover, the spectral theorem for quaternionic linear operators
is based on the S-spectrum. The aim of this book and of the monograph [56],
is to give a systematic treatment of this theory and of its applications.

• The Cauchy formula associated with Cauchy–Fueter regularity resp. mono-
genicity leads to the notion of monogenic spectrum and produces the Cauchy–
Fueter functional calculus for quaternion-valued functions and the monogenic
functional calculus for Clifford-algebra-valued functions. This theory has ap-
plications in harmonic analysis in higher dimension and in boundary value
problems. For an overview on the monogenic functional calculus and its ap-
plications see [159] and for applications to boundary values problems see [155]
and the references contained in those books.

We want to stress that these two approaches start from two totally different per-
spectives: while the first one develops the spectral theory of a single quaternionic-
resp. Clifford-linear operator, the latter develops a joint spectral theory for n-
tuples of real-linear operators. However, the F -functional calculus provides a re-
lation between these two approaches and shows that they are consistent under
reasonable assumptions. In this book we treat the quaternionic spectral theory on
the S-spectrum, so very often we will refer to it as quaternionic spectral theory
because no confusion arises with respect to the monogenic spectral theory.


	Chapter 1 Introduction
	1.1 What is Quaternionic Spectral Theory?
	1.2 Some Historical Remarks on the S-Spectrum
	1.2.1 The Discovery of the S-Spectrum
	1.2.2 Why Did It Take So Long to Understand the S-Spectrum?

	1.3 The Fueter–Sce–Qian theorem and spectral theories




