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Preface

Classical operator theory in Banach and Hilbert spaces has been stimulated by
several problems in mathematics and physics. Moreover, the theory of holomorphic
functions plays a crucial role in operator theory and in particular in the defini-
tion of functions of operators. A great impulse was given to the development of
operator theory at the beginning of the last century when quantum mechanics
was formulated; in particular, the spectral theorem for unbounded normal oper-
ators on a Hilbert space was one of the most important achievements. In 1936,
Birkhoff and von Neumann showed that quantum mechanics can be formulated
on real, complex, and quaternionic numbers. So a natural problem was to under-
stand what notion of spectrum one should use in quaternionic operator theory.
This problem was solved only in 2006 with the discovery of the S-spectrum for
quaternionic linear operators, and since then the quaternionic spectral theory has
grown rapidly. The aim of this book is to give a systematic foundation of quater-
nionic spectral theory based on the S-spectrum and to present the theory of slice
hyperholomorphic functions, which will be used in the treatment of quaternionic
operator theory.

This book treats four main topics: the S-functional calculus, the F-functional
calculus, the quaternionic spectral theorem, and the theory of quaternionic spectral
operators. The S-functional calculus is the natural extension to the quaternionic
setting of the Riesz—Dunford functional calculus, and it can be used to define the
quaternionic H*°-functional calculus for quaternionic or vector sectorial operators.
The H*°-functional calculus has important applications in fractional diffusion pro-
cesses because it allows one to define fractional powers of vector operators such
as the gradient or a generalization of the gradient operator with nonconstant co-
efficients. The F-functional calculus is based on an integral transform, called the
Fueter-Sce mapping theorem in integral form, and it defines Fueter-regular func-
tions of quaternionic operators. This calculus is based on slice hyperholomorphic
functions and on the so-called F-resolvent operators that allow us to define, via an
integral formula, functions of a quaternionic operator. We treat the spectral theo-
rem for quaternionic normal operators based on the S-spectrum, which was proved
in 2014 and published in 2016. The quaternionic spectral theorem for unbounded
anti-selfadjoint operators is a very important tool for formulating quaternionic
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quantum mechanics. We conclude the book with the theory of spectral operators
in Banach spaces that has been developed in the last two years.

To orient the reader who is not familiar with quaternionic or vectors analysis
we have summarized some of the fundamental concepts of this theory in the first
chapter of this book, with some historical comments on the discovery of the S-
spectrum.

Since the theory of slice hyperholomorphic functions is a crucial tool in
quaternionic operator theory, we dedicate the second chapter to the formulation
of the function theory, and we prove the most important results that are used in
the book.

Chapters 3—6 are devoted to the S-functional calculus, in Chapters 7 and 8
we develop the F-functional calculus, in Chapters 9-13 we treat the quaternionic
spectral theorem, and finally the theory of spectral operators in Banach spaces
is developed in Chapters 14 and 15. At the end of the chapters there are com-
ments and remarks about the extension of the theory of slice hyperholomorphic
functions with values in a Clifford algebra (slice monogenic functions) and its ap-
plications to the S-functional calculus for n-tuples of not necessarily commuting
operators and to the F-functional calculus for n-tuples of commuting operators.
We will also make comments on the links between the theory of slice hyperholo-
morphic functions and the classical theory of Cauchy—Fueter regular functions (or
the Dirac monogenic function theory). The natural continuation of this book is the
monograph [56], in which we further develop theoretical aspects of quaternionic
operator theory and give applications to fractional diffusion processes. At the end
of this book one can find a table of contents of the monograph [56].

Acknowledgments. It is a pleasure for the authors to thank Daniel Alpay, Vladimir
Bolotnikov, Paula Cerejeiras, Oscar Gonzalez-Cervantes, Roman Lavicka, Maria
Elena Luna-Elizarraras, Uwe Kéahler, Tao Qian, Irene Sabadini, Michael Shapiro,
Frank Sommen, Vladimir Souc¢ek, and Daniele C. Struppa for fruitful and pleas-
ant collaborations. In particular we want to thank Irene Sabadini, who with one
of the authors discovered the S-spectrum and the S-functional calculus, for all
her contributions to the hyperholomorphic function theories in one and in several
variables. The first author warmly thanks Daniele C. Struppa for his long-lasting
scientific collaboration and for his contribution to the theory of slice hyperholo-
morphic functions and to the classical theory of quaternionic functions in several
variables. Warm thanks go to Daniel Alpay for the great efforts in developing
Schur analysis in the slice hyperholomorphic setting and for the spectral theorem
based on the S-spectrum.
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Chapter 1 ®

Check for
updates

Introduction

Since the discovery of the S-spectrum in 2006 the theory of slice hyperholomorphic
functions has become the underlining function theory on which new functional cal-
culi for quaternionic operators and for n-tuples of operators have been developed.
These calculi are the S-functional calculus and the F-functional calculus, and both
are based on the notion of S-spectrum. In 2014 it was proved that the quaternionic
spectral theorem is also naturally based on the S-spectrum. These facts restore
the analogy with the classical case in which the holomorphic functional calculus
and the spectral theorem are based on the same notion of spectrum.

So to replace complex spectral theory with quaternionic spectral theory we have
to replace the classical spectrum with the S-spectrum. The quaternionic spectral
theory contains as a particular case the complex spectral theory.

1.1 What is Quaternionic Spectral Theory?

To orient the reader in this new spectral theory we summarize some of the funda-
mental concepts and facts such as the notion of slice hyperholomorphic functions,
the problem of the spectrum of a quaternionic linear operator, the S-functional
calculus, the F-functional calculus, the spectral theorem on the S-spectrum, and
spectral operators.

Slice hyperholomorphicity is the crucial notion of hyperholomorphicity for the
quaternionic spectral theory based on the S-spectrum. We denote by H the algebra
of quaternions; the imaginary units in H are denoted by ey, e2, and eg, respectively;
and an element in H is of the form ¢ = qo + e1q1 + e2q2 + e3qs, for ¢ € R,
¢ =0,1,2,3. The real part, the imaginary part, and the modulus of a quaternion
are defined as Re(q) = qo, ¢ = Im(q) = e1q1+eaga+e3qs, [q|* = ¢ +¢7+q5+43. The
conjugate of the quaternion ¢ is defined by § = Re(q) —Im(q) = qo — e1q1 — e2q2 —
e3qs and it satisfies |q|? = q7 = gq. Let us denote by S the unit sphere of purely
imaginary quaternions, i.e., S = {¢ = e1q1 + e2¢2 + e3gs such that 22:1 q =1}

© Springer Nature Switzerland AG 2018 1
F. Colombo et al., Spectral Theory on the S-Spectrum for Quaternionic Operators,
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Every quaternion g belongs to a suitable complex plane: if we set
i % if ¢ #0,
. any j € S if g =0,

then ¢ = u + jyv with u = Re(g) and v = |Im(q)|. For every ¢ = u + j,v € H we
define the set [g] := {u+ jv | j € S}.

Slice continuous functions. Let U C H be an axially symmetric open set and
let U = {(u,v) € R? : u+ Sv C U}. A function f : U — H is called a left slice
function if it is of the form

f(@) = fo(u,v) +jfi(u,v) forg=u+juvel
with two functions fy, f1 : Y — H that satisfy the compatibility condition
fO(ua —2)) :fO(va)v fl(uv _'U) = _fl(uvv)' (11)

Slice hyperholomorphic function. If in addition the components fy and f; of
the slice function f satisfy the Cauchy—Riemann equations

%fo(u,v) — %fl(u,v) =0, (1.2)
%fo(u,v) + %fl(u, v) =0, (1.3)

then f is called left slice hyperholomorphic. An analogous notion is given also for
right slice continuous and right slice hyperholomorphic functions. If f is a left (or
right) slice function such that fy and f; are real-valued, then f is called intrinsic.

The problem of the spectrum. Several attempts have been made by several
authors in the past decades to prove the quaternionic spectral theorem: see, e.g.,
[195, 197]. However, the notion of spectrum was unclear. It is easy to explain
the difficulties in giving an appropriate definition of spectrum of a quaternionic
linear operator if one tries to adapt the classical notion of spectrum. Consider, for
example, a right linear bounded quaternionic operator T : X — X acting on a
two-sided quaternionic Banach space X, that is,

T(wra+ wef) = T(wr)a + T'(w2) P,

for all o, 8 € H and wy, wy € X. The symbol B(X) denotes the Banach space of
all bounded right linear operators endowed with the natural norm.
The left spectrum o, (T) of T is related to the resolvent operator (sZ —T)71,
that is,
or(T)={s€H: sZ—1T is not invertible in B(X)},

where the notation sZ in B(X) means that (sZ)(v) = sv.
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The right spectrum o (T) of T is associated with the right eigenvalue prob-
lem, i.e., the search for quaternions s such that there exists a nonzero vector v € X
satisfying
T(v) = vs.

Now observe that the operator Zs—7T" associated with the right eigenvalue problem
is not linear, so it is not clear what resolvent operator is to be considered in this
case. There is just one case in which the quaternionic spectral theorem is proved
by specifying the spectrum, and it is the case of quaternionic normal matrices;
see [108] and [199]. In this case the right spectrum og(T") has been used, but this
is the case in which we have just the eigenvalues. The left spectrum o, (T"), which is
associated with a linear resolvent operator, is not useful because it is not clear what
notion of hyperholomorphicity is associated to the map s — (sZ—T)~!. Moreover,
in quaternionic quantum mechanics the right spectrum og(7) is the most useful
notion of spectrum for studying the bounded states of a systems (where there are
just the eigenvalues).

The S-functional calculus. The notion of S-spectrum for quaternionic linear
operators turned out to be the correct notion of spectrum, and it was discov-
ered from the Cauchy formulas of slice hyperholomorphic functions with slice
hyperholomorphic kernels. Moreover, the right spectrum or of a matrix is equal
to the S-spectrum. More generally, the right eigenvalues o are equal to the S-
eigenvalues. We limit the discussion to the case of quaternionic operators, but
the following definition of S-spectrum can be adapted to the case of n-tuples of
noncommuting operators. If 7" is a linear bounded quaternionic operator then the
S-spectrum is defined as

05(T) = {s € H: T? —2Re(s)T + |s|*T is not invertible},

while the S-resolvent set is pg(7T) := H \ 05(T"). Due to the noncommutativity of
the quaternions, there are two resolvent operators associated with a quaternionic
linear operator T': the left S-resolvent operator is defined as

S, T) i= —(T? — 2Re(s)T + |s|*T) YT —3Z), s € ps(T), (1.4)
and the right S-resolvent operator is

Spl(s,T) := —(T —3I)(T? — 2Re(s)T + |s|*T) ", s € ps(T). (1.5)
The S-resolvent equation involves both the S-resolvent operators:

Sg' (s, T)ST (0, T) = [[Sg* (s.T) = ST ' (0, T)Ip
- E[Slgl(saT) - SL_l(pa T)]](p2 - 250p + |S|2)717

for s, p € ps(T). The S-functional calculus, or quaternionic functional calculus, is
based on the Cauchy formula for slice hyperholomorphic functions. We denote by
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SHr(0s(T)) the set of left slice hyperholomorphic functions f : U — H, where U
is a suitable open set that contains the S-spectrum of T’; in the case of bounded
operators, the S-spectrum is a bounded and nonempty set in H. Analogously, we
define SHr(os(T)) for right slice hyperholomorphic functions. The formulations
of the quaternionic functional calculus are defined as

1
A(T) = o S (s, T) dsj f(s), f€SHL(os(T)), (1.6)
T Jawncy)
and )
f(r) = o f(s) ds; SEI(S7T), feSHR(os(T)), (1.7)
T Jo(uncy)
where ds; = —dsj, for j € S. The functional calculus is well defined, since the

integrals depend neither on the open set U nor on j € S. It is important to note
that in the definition of the quaternionic functional calculus it is not required that
the linear operator T' be written in components T = Ty + e1T1 + exTs + e3Ts
where Ty, for £ = 0,1, 2,3, are bounded linear operators on a real Banach space.
Moreover, in the case that T is represented as T' = To+e1T1 + e +e3T3, it is not
even required that the operators Ty, for £ = 0,1, 2,3, commute among themselves.

The commutative version of the S-spectrum. We will denote by BC(X) the
subclass of B(X) that consists of those quaternionic operators T' that can be
written as T = Ty + e11h + e21s + e3T5, where the operators Ty, ¢ = 0,1,2, 3,
commute among themselves, and we set T = Ty — e;T1 — eaTs — esTs. In this
case, the S-spectrum has an alternative definition that takes into account the
commutativity of Ty, for £ = 0,1, 2, 3. In the literature the commutative definition
of the S-spectrum is often called the F-spectrum because it is used for the F-
functional calculus. Let T' € BC(X). We define the commutative version of the
S-spectrum (or F-spectrum op(T')) of T as

os5(T)={s € H: s*T —s(T+T)+TT is not invertible}.
The S-resolvent set pg(T') is defined as pg(T) = H\ o5(T).

The F-functional calculus. A deep result in hypercomplex analysis is the
Fueter-Sce mapping theorem, which in modern language says that if we apply the
Laplace operator to a slice hyperholomorphic function f: U C H — H, we obtain
a Cauchy—Fueter reqular function f :U CH — H, that is,

v

fle) =Af(q), qeU.

Applying the Laplace operator to the Cauchy kernels of slice hyperholomorphic
functions, we obtain two new kernels that allow us to write the Fueter—Sce map-
ping theorem in integral form. Using such an integral transform, we define a
functional calculus that starting from slice hyperholomorphic functions, defines
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Cauchy-Fueter regular functions of a linear operator f(T') for T € BC(X). Pre-
cisely, for T' € BC(X), we define the left F-resolvent operator as

Fr(s,T) = —4A(sT —T)(s’T —s(T+T)+TT) 2, s¢€ ps(T),
and the right F-resolvent operator as
Fr(s,T) = —4(s’T — s(T+T)+TT) %(sT —T), sé€ ps(T).

So the formulations of the quaternionic F-functional calculus for bounded opera-
tors are defined as follows:
. 1

(1) = > Fr(s,T)ds; f(s), fe€SHL(os(T)), (1.8)
T Jouncy)
and )
1) = o f(s)ds;j Fr(s,T), f€SHRr(os(T)), (1.9)
27 Jawnc;)
where ds; = —dsj, for j € S, and the integrals depends neither on the open set

U nor on j € S. The F-resolvent equation in this case is more complicated, and
it also involves the two S-resolvent operators in their commutative version. We
point out that both the S-functional calculus and the F-functional calculus can be
extended to the case of unbounded operators; moreover, the S-functional calculus
can be used to define the quaternionic H°°-functional calculus.

The spectral theorem based on the S-spectrum. If T € B(H) is a bounded
normal quaternionic linear operator on a quaternionic Hilbert space H, then there
exist three quaternionic linear operators A, J, B such that T'= A+ JB, where A
is self-adjoint and B is positive, J is an anti-self-adjoint partial isometry (called
an imaginary operator). Moreover, A, B, and J mutually commute.

There exists a unique spectral measure F; on Qj =o0g(T)N (C;L such that
for every slice continuous intrinsic function f = fy + f17,

(T, y) = /Q @) dlE @)z ) + /Q H@AUE @)y € H. (L10)

In this book we treat also the spectral theorem for unbounded quaternionic
normal operators on a Hilbert space, and we define a functional calculus for a
much larger class of functions with respect to the class of continuous functions.
This functional calculus is deduced by the theory of spectral integrals depending
on an imaginary operator J.

Spectral operators in Banach spaces. We develop furthermore a concise the-
ory of spectral integration in quaternionic Banach spaces based on the notion
of spectral systems and use this tool to study quaternionic spectral operators.
Analogously to the classical theory of Dunford, such operators have a canonical
decomposition into a scalar and a radical part. The first one can be represented as
the spectral integral with respect to the spectral system of the operator, and the
second one is quasi-nilpotent. We also study the transformation of this decompo-
sition under the S-functional calculus.
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1.2 Some Historical Remarks on the S-Spectrum

It has been known since the 1930s, with the paper of G. Birkhoff and J. von
Neumann on the logic of quantum mechanics, that quantum mechanics can be
formulated over the real, the complex, and the quaternionic numbers. Since then,
several papers and books have treated this topic. However, it is interesting, and
somewhat surprising, that for a long time, an appropriate notion of quaternionic
spectrum was not present in the literature.

Thus we believe that it is interesting to explain the facts, presented several
times in some talks of the authors, that led to discovery of the S-spectrum for
quaternionic linear operators, of the S-functional calculus, and of some of the
difficulties that, in our opinion, prevented these objects from being found earlier.

The quaternionic spectral theory based on the notion of S-spectrum not only
is relevant for researchers in quaternionic analysis but is applicable, as a particular
case, to vector operators, such as the gradient operator or its variations, and has
applications, for example, to fractional diffusion processes.

1.2.1 The Discovery of the S-Spectrum

The S-spectrum was discovered by F. Colombo and I. Sabadini in 2006. They had
been working for several years on the spectral theory for quaternionic linear oper-
ators, starting with the aforementioned paper of G. Birkhoff and J. von Neumann;
see [36]. They soon realized that the notion of spectrum of a quaternionic linear
operator was poorly understood and as a consequence, the quaternionic spectral
theory could not be developed.

The only thing that was clear was that the existing notions of left spectrum
and right spectrum of a quaternionic linear operator were insufficient to construct
the quaternionic spectral theory. The main reason is that left spectrum and right
spectrum mimic the definition of eigenvalues in the complex case, but they do not
shed light on the true nature of the quaternionic spectrum.

Thus they started to investigate what could be the quaternionic version of the
Riesz—Dunford functional calculus, of the evolution operator, and of the spectral
theorem. After more then 10 years of exhausting research and 70 years after [36],
in 2006 they understood that the S-spectrum was the correct notion of spectrum
for quaternionic spectral theory.

A crucial fact in classical operator theory is that the holomorphic functional
calculus (called Riesz—Dunford functional calculus) and the spectral theorem are
based on the same notion of spectrum. In the quaternionic setting things were
different indeed: for right linear operators with commuting components, the func-
tional calculus based on the Cauchy—Fueter formula is based on the left spectrum.
However, in quaternionic quantum mechanics physicists used the notion of right
spectrum, which consists just of eigenvalues.

After several attempts in various directions they started to believe that since
the physicists were unable to deduce from physical arguments the quaternionic
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spectrum, they could use hypercomplex analysis to find it. More precisely, they
thought that from the Cauchy formula of a “suitable new notion of quaternionic
hyperholomorphicity” one could read the precise notion of quaternionic spectrum,
which, in analogy with the complex case, could have worked for both the new
hyperholomorphic functional calculus and the quaternionic spectral theorem.

In 1998 in the paper [82], F. Colombo and I. Sabadini investigated the quater-
nionic functional calculus based on the Cauchy formula for Fueter regular func-
tions, and it was clear that the Fueter spectrum was incompatible with the quater-
nionic spectral theorem. Moreover, it was realized that this calculus was to some
extent the quaternionic version of the monogenic functional calculus already in-
troduced and studied by A. McIntosh and his collaborators; see [160, 161] and
the book [159]. It was then clear that a different notion of hyperholomorphicity
was needed. After so many years of intensive and unfruitful research, in 2006 D.C.
Struppa showed them the new definition of slice regularity, and later they also dis-
cussed with G. Gentili this new notion of regularity introduced in the paper [135]
(which is an announcement of the paper [136]). This notion requires that all the
restrictions of a quaternionic-valued function to every complex plane are holomor-
phic maps. Thus the usual Cauchy formula for holomorphic functions holds on
each complex plane C; and the Cauchy kernel has the series expansion

= 1

ansilin = fOI‘ q, s € ij .] € S7 |Q| < |S|7
n=0 54

the above expansion obviously holds just for those quaternions g and s that belong

to € C; and such that |¢| < |s].

At this point, the crucial idea was to replace ¢ in the series Zfzo grsTin

by a quaternionic linear operator 7', and to look for a closed formula for this
non-commutative power series. To obtain a closed formula for the formal power

series
o0
E Tnsflfn
n=0

was not an easy task. F. Colombo and I. Sabadini proceeded as follows: first they
found a closed form for the series expansion EZOZO ¢"s~ 17", that is,

S s = —(q — 2qRe(s) + |sP) (g =), forlgl < sl (L11)
n=0

where formula (1.11) holds for all quaternions ¢, s € H such that |¢| < |s|, and
then they observed that the right-hand side of (1.11) does not depend on the
commutativity of the components of the quaternion ¢, because it contains just the
powers of g. This second crucial fact led to the natural definition of the so-called
S-spectrum

os(T) ={s € H: T? —2TRe(s) + |s|*Z is not invertible},
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where 7 is the identity operator, and of the S-resolvent operator
S (s, T) := —(T? — 2TRe(s) + |s[*T) (T — 3I). (1.12)

It is also interesting to note that in 2006, when (1.12) was introduced, the Cauchy
formula with slice hyperholomorphic kernel was not known, and so the sum of the
series (1.11) was obtained with direct computations, using the Niven algorithm.
This procedure is explained in Note 4.18.3 of the book [89]. The fact that the notion
of slice hyperholomorphicity works very well for quaternionic operator theory was
one of our motivations for its development.

The existence of the S-spectrum, with further considerations, appeared in
2007 in the paper [66] with G. Gentili and D.C. Struppa. This paper is an an-
nouncement of the results of the paper [68] (unfortunately, as may happen, pub-
lished only in 2010), containing a version of the S-functional calculus defined
just for slice hyperholomorphic functions that admit a power series expansion at
the origin. This calculus is the starting point for the general definition of the
S-functional calculus based on the Cauchy formula with slice hyperholomorphic
kernels, which was completely described in [79]. The paper [79] together with the
formulations of the S-functional calculus, see [80], and the S-resolvent equation,
see [10], constitute the heart of the S-functional calculus. Finally, it is worthwhile
to mention that the case of unbounded operators was treated in [97], [67] and
with a direct approach in [124]. The study of the quaternionic evolution operator
is in the paper [76], while the H*-functional calculus is in [30] and [52]. Finally,
the main results about the spectral theorem based on the S-spectrum are proved
in [13,14].

The authors would like to thank G. Gentili, I. Sabadini, and D.C. Struppa
for their comments on this note about the discovery of the S-spectrum.

1.2.2 Why Did It Take So Long to Understand the S-Spectrum?

After over 20 years of research, it is now clear that this new spectral theory
based on the S-spectrum is very natural because it generalizes complex spectral
theory and because the S-functional calculus (which is the slice hyperholomorphic
functional calculus) and the quaternionic spectral theorem are based on the same
notion of spectrum. There are several reasons why it took so long to discover the
S-spectrum. We recall two of them.

Complex analysis and Cauchy—Fueter analysis are based on functions in the
kernel of a constant-coefficient differential operator. This fact was misleading in
the search for a new definition of hyperholomorphicity because one is tempted
to look for a constant-coefficient quaternionic differential operator, not necessar-
ily of first order, in order to find a “new notion of hyperholomorphicity” from
which we could read the quaternionic spectrum. In [60] it was shown that slice hy-
perholomorphic functions are functions in the kernel of a first-order quaternionic
differential operator with nonconstant coefficients. This fact was unexpected.
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Another interesting fact is that in the paper of Fueter [111] there was a
partial solution to the problem. In fact, in [111] Fueter gives a procedure to con-
struct Fueter regular functions starting from holomorphic functions. His procedure
consists of two steps: from holomorphic functions he constructs what he calls hy-
peranalytic functions; then he applies the Laplace operator to such hyperanalytic
functions and thereby obtains Fueter regular functions. Fueter’s hyperanalytic
functions are what nowadays are called intrinsic slice hyperholomorphic functions
but for some reason these functions have never been systematically studied. The
Cauchy formula for hyperanalytic functions, which is the Cauchy formula for the
S-functional calculus and from which one could read the S-spectrum, has never
been investigated to the best of our knowledge.

1.3 The Fueter—Sce—Qian theorem and spectral
theories

In this section we want to put the spectral theory on the S-spectrum into the
perspective of the spectral theories that arise from the Fueter—Sce—Qian mapping
theorem. In classical complex operator theory, the Cauchy formula of holomorphic
functions is a fundamental tool for defining functions of operators. Moreover, the
Cauchy—Riemann operator factorizes the Laplace operator, so holomorphic func-
tions play also a crucial role in harmonic analysis and in boundary value prob-
lems. In higher dimensions, for quaternion-valued functions or, more generally, for
Clifford-valued functions, there appear two different notions of hyperholomorphic-
ity. The first one is called slice hyperholomorphicity and the second one is known
under different names, depending to the dimension of the algebra and the range of
the functions: Cauchy—-Fueter regularity for quaternion-valued and monogenicity
for Clifford-algebra-valued functions. The Fueter—Sce—Qian mapping theorem re-
veals a fundamental relation between the different notions of hyperholomorphicity.
It will be explained in detail later on (see, for example, the section on the Fueter
mapping in integral form), but it can be illustrated by the following diagram:

Hol(Q) — N(U) —2 AM(U).

Applying the mapping F;, we can use any function in the set Hol(2) of holomor-
phic functions on a suitable open set {2 in C to generate a function in the set N (U)
of all intrinsic slice hyperholomorphic functions on a certain open subset U of H.
Applying a second transformation F5, we can transform any intrinsic slice hyper-
holomorphic function into an axially Fueter-regular resp. an axially monogenic
function.

When considering quaternion-valued functions, the mapping Fs that trans-
forms an intrinsic slice hyperholomorphic function into a Fueter regular one is the
application of the Laplace operator, i.e., F» = A. When we work with Clifford-
algebra-valued functions, then F» = A(™~1/2 where n is the number of gener-
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ating units of the Clifford algebra. The Fueter—Sce—Qian mapping theorem can
be adapted to the more general case in which A(U) is replaced by slice hyper-
holomorphic functions and the axially regular (or axially monogenic) functions
AM(U) are replaced by monogenic functions. The generalization of holomorphic-
ity to quaternion- or Clifford-algebra-valued functions produces two different no-
tions of hyperholomorphicity that are useful for different purposes. Precisely, we
have that:

e The Cauchy formula for slice hyperholomorphic functions leads to the defini-
tion of the S-spectrum and the S-functional calculus for quaternionic linear
operators. Moreover, the spectral theorem for quaternionic linear operators
is based on the S-spectrum. The aim of this book and of the monograph [56],
is to give a systematic treatment of this theory and of its applications.

e The Cauchy formula associated with Cauchy—Fueter regularity resp. mono-
genicity leads to the notion of monogenic spectrum and produces the Cauchy—
Fueter functional calculus for quaternion-valued functions and the monogenic
functional calculus for Clifford-algebra-valued functions. This theory has ap-
plications in harmonic analysis in higher dimension and in boundary value
problems. For an overview on the monogenic functional calculus and its ap-
plications see [159] and for applications to boundary values problems see [155]
and the references contained in those books.

We want to stress that these two approaches start from two totally different per-
spectives: while the first one develops the spectral theory of a single quaternionic-
resp. Clifford-linear operator, the latter develops a joint spectral theory for n-
tuples of real-linear operators. However, the F-functional calculus provides a re-
lation between these two approaches and shows that they are consistent under
reasonable assumptions. In this book we treat the quaternionic spectral theory on
the S-spectrum, so very often we will refer to it as quaternionic spectral theory
because no confusion arises with respect to the monogenic spectral theory.



Chapter 2 ®

Check for
updates

Slice Hyperholomorphic
Functions

We will develop operator theory for quaternionic linear operators using the theory
of slice hyperholomorphic functions. The most important results are the structure
formula (or representation formula) and the Cauchy formulas with slice hyper-
holomorphic integral kernels. We will discuss the two Cauchy formulas and the
associated Cauchy kernels in detail because they are the starting point for defin-
ing the S-functional calculus (in the quaternionic setting the S-functional calculus
is often called the quaternionic functional calculus).

The Fueter mapping theorem is an important tool in hypercomplex anal-
ysis. It shows that the Laplace operator maps slice hyperholomorphic functions
to Fueter regular functions and hence provides a method for generating Fueter
regular functions. This theorem has been extended by Sce for the case of Clifford
algebras with odd dimension and by Qian in the even dimension. In the literature
it is often called the Fueter—Sce or Fueter—Sce—Qian theorem according to the
setting. Starting from the Cauchy formula for slice hyperholomorphic functions,
it is possible to give the Fueter mapping theorem an integral representation. One
obtains then an integral transform that can be used to define the F-functional
calculus.

We denote by H the algebra of quaternions. An element ¢ of H is of the form

QZQO+(]1€1 +Q2€2+Q3€3; QZ€R7 €:07172737

where ey, es and ez are the generating imaginary units of H. They satisfy the
relations

el=es=e3=—1 (2.1)

and
€1€2 = —€9€1 = €3, €2€3 — —€3€2 = €1, €3€1 — —€1€3 = €9. (2.2)
© Springer Nature Switzerland AG 2018 11
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The real part, the imaginary part, and the modulus |g| of a quaternion ¢ = ¢ +
gie1 + gaea + gzes are defined as Re(q) = qo, Im(q) = qre1 + goe2 + gses, and
lq|*> = 2 + ¢ + 43 + ¢3, respectively. The conjugate of the quaternion ¢ is

q = Re(q) —Im(q) = g0 — qie1 — qze2 — gzes,
and it satisfies
lg|* = 47 = qq.
The inverse of every nonzero element g is hence given by

-1 q
¢ =75
|q|?

Let us denote by S the unit sphere of purely imaginary quaternions, i.e.,

S={qg=qe1 +qes +azes: ¢ +q5+q5 =1}

Notice that if j € S, then j2 = —1. For this reason the elements of S are also called
imaginary units. The set S is a 2-dimensional sphere in R* = H. Given a nonreal
quaternion ¢ = go+1Im(q), we have ¢ = u+jv with u = Re(q), 7 = Im(q)/[Im(q)| €
S, and v = |Im(q)|. We can associate to ¢ the 2-dimensional sphere

lq) = {qo+jlIm(q)|: je€S}={ut+jv: jeS}

This sphere is centered at the real point ¢y = Re(q) and has radius [Im(q)|. The
next lemma, which can be found in every standard textbook treating quaternions,
shows that two quaternions belong to the same sphere if and only if they can be
transformed into each other by multiplication by a nonzero quaternion.

Lemma 2.0.1. Let ¢ € H. A quaternion p belongs to [q] if and only if there exists
h € H\ {0} such that p = h~1qh.

If j €S, then the set
Cj={u+jv: u,veR}

is an isomorphic copy of the complex numbers. If, moreover, ¢ € S with j 1 i,
then 7, 7, and k := ji form a generating basis of H, i.e., this basis also satisfies the
relations (2.1) and (2.2). Hence, every quaternion ¢ € H can be written as

q=2z1+ 220 =21 + 12

with unique 21, z2 € C;, and so

H = (Cj + iCj and H = (Cj + (CJZ (23)
Moreover, we observe that
H=|]JC;.
jes

Finally, we introduce the notation (C;' = {u+jv:u € Rv >0} for the upper
half-plane in C; and H := HU {oc}.
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2.1 Slice Hyperholomorphic Functions

The theory of slice hyperholomorphic functions is nowadays well developed. There
are three possible ways to define slice hyperholomorphic functions: using the defi-
nition in [135], using the global operator of slice hyperholomorphic functions intro-
duced in [60], or by the definition that comes from the Fueter-Sce-Qian mapping
theorem. This last definition is the most appropriate for operator theory, and it
is the one that we will use. In this section we therefore develop the part of the
theory that it is relevant for our purposes.

Definition 2.1.1. Let U C H.
(i) We say that U is azially symmetric if [q] C U for every g € U.

(i) We say that U is a slice domain if UNR # 0 and if U N C; is a domain in
C; for every j € S.

Definition 2.1.2 (Slice hyperholomorphic functions). Let U C H be an axially
symmetric open set and let U = {(u,v) € R* : u+Sv C U}. A function f: U — H
is called a left slice function if it is of the form

f(@) = fo(u,v) +jfi(u,v) forg=u+jvelU

with two functions fy, f1 : 2 — H that satisfy the compatibility condition

fO(u7 —’U) = fO(u7 U)7 fl (’U,, _/U) = _fl (u7 U)‘ (24)
If in addition fp and f; satisfy the Cauchy—Riemann equations
0 0
%fo(u, v) — %fl (u,v) =0, (2.5)
9 foluy0) + 2, v) =0 (2.6)
8’1} o\u, au 1 , V)=V, .

then f is called left slice hyperholomorphic. A function f : U — H is called a right
slice function if it is of the form

f(@) = folu,v) + fi(u,v)j forg=u+jvelU

with two functions fo, f1 : @ — H that satisfy (2.4). If in addition fp and f; satisfy
the Cauchy—Riemann equations, then f is called right slice hyperholomorphic.

If f is a left (or right) slice function such that fo and f; are real-valued, then
f is called intrinsic.

We denote the sets of left and right slice functions on U by SFr(U) and
SFr(U) and the sets of left and right slice hyperholomorphic functions on U by
SH(U) and SHR(U), respectively. The set of intrinsic slice functions on U will
be denoted by FA(U) and the set of slice hyperholomorphic functions on U will
be denoted by N (U).
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Remark 2.1.3. Every quaternion ¢ can be represented as an element of a complex
plane C; using at least two different imaginary units j € S. We have ¢ = u+ jv =
u+ (—j)(—v) and —j also belongs to S. If ¢ is real, then we can use any imaginary
unit j € S to consider ¢ an element of C;. The compatibility condition (2.4) ensures
that the choice of this imaginary unit is irrelevant. In particular, it forces fi(u,v)
to equal 0 if v = 0, that is if ¢ € R.

Multiplication and composition with intrinsic functions preserve the slice
structure and slice hyperholomorphicity. This is not true for arbitrary slice func-
tions.

Theorem 2.1.4. Let U C H be axially symmetric. The following statements hold:

(i) If fe NF(U) and g € SFL(U), then fg € SFL(U). If f € SFr(U) and
g e NFU), then fg € SFr(U).

Gi) If f e NU) and g € SHL(U), then fg € SHL(U). If f € SHr(U) and
g € N(U), then fg € SHR(U).

(iil) If g € NF(U) and f € SFr(9(U)), then fog e SFL(U). If g € NF(U)
and f € SFr(g(U)), then foge SFr(U).

(iv) If g e N(U) and f € SHL(g(U)), then fog € SHL(U). If g € N(U) and
feSHRr(g(U)), then foge SHRr(U).

Proof. Let f = fo+jfi e NF(U) and g = go+jg1 € SFL(U). Since f is intrinsic,
the components fy, f1 take real values. Hence, they commute with j € S, and we
find for ¢ = u + jv € U that

f(Q)g(Q) = fO(u> U)go (ua ”U) + jfl (uv 0)90 (u7 v)
=+ fO(u7 U).jgl (u7 U) + .]fl (uv U)jgl (uv U)
= fo(u,v)go(u,v) — fi(u,v)g1(u,v)
+ J(fl (uu U)go(w U) + fO(uv U)gl (uv v))
The functions
ho(u,v) == fo(u,v)go(u,v) — f1(u,v)g1(u,v)
and

hy (u7 ’U) = fl (u7 v>90 (U'7 U) + fO (u’ U)gl (uv U)

satisfy the compatibility condition (2.4), as one can check easily, and hence fg
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belongs to SF(U). If, moreover, f and g are slice hyperholomorphic, then
0 0 0
etoli.0) = (5mota0) ) o) + foluo) ( gmgolnn))

- (a0 ) o) = At (o)
= (;}h(um)) go(u,v) + fo(u,v) | z=g1(u >

0
ov
+ (;}fo(%v)) g1(u,v) + f1(u,v) <aavgo U, v >

0
- %hl(uvv)a

and similarly one shows that also

0 0
%ho(um) = —%hl(u,v)

holds. Hence fg = hg + jhy is left slice hyperholomorphic.

Now let g = go + jg1 € NF(U) and f = fo +jfi € SFr(g9(U)). For
g = u+ jv € U, we have g(¢) = go(u,v) + jg1(u,v) = &+ 0 with & = go(u, v),
i = jsgn(g1(u,v)) € S and 0 = |g1(u,v)|. Thus

f9(a)) = fo(a, ) + igi (@, D)
:fO(QO(U7U)7gl(U7U))+.jf1(go(u7v)7gl(u7v))v
because fi; is odd in the second variable. It is immediate that the functions
ho(u,v) = folgo(u,v),g1(u,v)) and hy(u,v) = fi(go(u,v),g1(u,v)) satisfy the

compatibility condition (2.4), and so fog € SFr(g(U)). If furthermore f and g
are slice hyperholomorphic, then

Suholis0) = 5 fo(gn(a, ). 911 ) (. 0)
+ 2 folgn(s0). 921 0) -1 )
— o g0 0), 91 (0,0) 51 (0,0)
+ 2 fulgo(s0). 910 0) 3 g0l:0)

0
- %hl (uv U)
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and

(0 0) = (gl ), 30l

+ 000 0), 1 0:0) 301 10

= —aimfo(go(uvv)agl (va))%gl(“’v)

0

= o falgo(u ), 911 ) 5 gn(a, )

0
= —%ho(u,v).

Hence f o g = hg + jhi is left slice hyperholomorphic.
Similar arguments show that the statements for right slice functions also
hold. O

Lemma 2.1.5. Let U C H be azially symmetric and let f be a left (or right) slice
function on U. The following statements are equivalent.

(i) The function f is intrinsic.
(ii) We have f(UNC;) C C; for every j € S.

(iii) We have f(g) = f(q) for allq € U.

Proof. Assume that f = fo + jf1 is a left slice function. (The other case follows
analogously.) The implications (i)=-(ii) and (i)=-(ii) are immediate. In order to
show the inverse relations, we first observe that for every ¢ = u + jv € U,

(@) + (@) = folu,v) + jfi(w,0) + fo(u,v) = jf1(u,v) = 2fo(u,v)

and

f(Q) - f(a) = fO(U" U) +jfl(uav) - fO(u7 U) +jf0(u,v) = ijl(uav)'
If (ii) holds, then f(u + jv) € C; for every j € S, and hence it commutes with j.
Thus
Jfo(u,v) =j(f(u+jv) + f(u—jv))
= (f(u+jv) + flu—jv))j = 2fo(u,v)j.

Since a quaternion commutes with j € S if and only if it belongs to C;, we have
fo(u,v) € ;c5 C; = R. For every j € S, we then have that

jfo(u,v) = fi(u,v) = j(f(u+jv) = flu+jv)j
= fO(u’U)j +jf1(u7v)j = jfo(u’ U) +jfl(uav)j7
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and so fi(u,v) = —jfi(u,v)j. Thus fi(u,v) commutes with every j € S and so
also f1(u,v) € R. Hence, f is intrinsic.
If on the other hand, (iii) holds, then for ¢ = u 4 jv € U we have

2fo(u,v) = fla) + f(@) = f(@) + f(a) = 2fo(u,v)
and hence fy(u,v) € R. We therefore also have
folu,v) + jfi(u,v) = f(g) = f(@)
= fo(u,U) _.jfl(u’ U) = fo(u,’U) +f1(u,v)j,

and so j f1(u,v) = f1(u,v)j. Since j € S was arbitrary, we find that also fi(u,v) €
R and that f is in turn intrinsic. O

If we restrict a slice hyperholomorphic function to one of the complex planes
C;, then we obtain a function that is holomorphic in the usual sense.

Lemma 2.1.6 (The splitting lemma). Let U C H be an azially symmetric open
set and let j,i € S with i L j. If f € SHL(U), then the restriction f; = flunc;
satisfies

3 (s +igesi) =0 2.)

for all z=u+jv e UNC;. Hence
fJ(Z) = Fl(Z) + FQ(Z)Z

with holomorphic functions Fy,F» : UNC; — C;.
If f € SHR(U), then the restriction f; = flunc, satisfies

3 (i) + e fi(2)) =0 (2.9
forall z=u+ jve UNC;. Hence
[i(z) = Fi(z) + iF3(2)
with holomorphic functions 1, Fy : UNC; — C;.
Proof. If f = fo+ jf1 is left slice hyperholomorphic, then
3 (i) + 55
1

=3 (;ufo(u,v) —|—j§uf1(u,v) +j%f0(u,v) - ;vfl(uvv)) =0

because fo and f; satisfy the Cauchy—Riemann equations (2.5). Due to (2.3), we
can write f;(z) = Fi(z) + Fa(z)i with C;-valued component functions F; and
F,. Since 1 and i are linearly independent over C;, the above identity applies

componentwise, and hence F; and F5 are holomorphic.
The right slice hyperholomorphic case can be proved similarly. U
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Remark 2.1.7. The splitting lemma states that the restriction of every left slice
hyperholomorphic function to a complex plane C; is left holomorphic, i.e., it is
a holomorphic function with values in the left vector space H = C; 4+ C;i over
C;. The restriction of a right slice hyperholomorphic function to a complex plane
C,; is right holomorphic, i.e., it is a holomorphic function with values in the right
vector space H = C; 4 iC; over C;.

Theorem 2.1.8 (Identity principle). Let U C H be an azially symmetric slice
domain, let f,g : U — H be left (or right) slice hyperholomorphic, and set
Z ={q€U: flg = g(q)}. If there exists j € S such that Z N C; has an
accumulation point in U NC;, then f = g.

Proof. Assume that f and g are left slice hyperholomorphic and that ZNC; has an
accumulation point in UNC;. We can furthermore assume that g = 0. (Otherwise,
we can simply replace f by f—g and g by the constant zero function.) Since UNC;
is a domain in C; and f; = flunc, is an H-valued (left) holomorphic function
on this domain by Lemma 2.1.6, the identity theorem for holomorphic functions
implies f; = 0. In particular, we have f|yrr = fj|lunr = 0.

If © € S is now an arbitrary imaginary unit, then f; = flync, is again an
H-valued (left) holomorphic function on the domain U N C; in C;. Since f =0 on
UNR # () by the above arguments, the set of zeros of f; has an accumulation
point in U N C;. Hence, the identity theorem for holomorphic functions implies
that also f; =0 and in turn f =0 on all of U.

The right slice hyperholomorphic case follows with analogous arguments. [

The most important property of slice functions (and in particular for slice
hyperholomorphic functions) is the structure formula, which is often also called
representation formula.

Theorem 2.1.9 (The structure formula (or representation formula)). Let U C H
be azially symmetric and let i € S. A function f : U — H is a left slice function
on U if and only if for every ¢ = u+ jv € U we have

f(@) = 5[£@)+ 1G] + iilr@) - £2)] (29)

with z = u +iv. A function f : U — H is a right slice function on U if and only
if for every ¢ = u+ jv € U we have

7(@) = 3[£@ + 1] + 5[F@) - 1))is (210)
with z = u + v.
Proof. For every left slice function f on U, we have

f(2) = flu+iv) = folu,v) + ifi(u,v),

f(Z) = f(u—iv) = fo(u,v) —ifi(u,v),
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with functions fy and f; that satisfy the compatibility condition (2.4). Adding
and subtracting these two equations, we get

folw) = 3 [1@ + £, A =5i[f@ -] @)

Since f(q) = fo(u,v)+ jf1(u,v), we obtain (2.9). If, on the other hand, f satisfies
(2.9), then f(q) = fo(u,v)+jf1(u,v) with fo and f; asin (2.11). Obviously fy and
f1 satisfy the compatibility condition (2.4), and hence f is a left slice function.
The statement about right slice functions can be shown with similar argu-
ments. (]

Remark 2.1.10. Tt is sometimes useful to rewrite (2.9) as

f@) = 50 = )I() + 50+ )1 3)

and (2.10) as
fla) = 1)1~ i) g + @1 +ij)5.

As a consequence of the structure formula, every holomorphic function that
is defined on a suitable open set in C; has a slice hyperholomorphic extension.

Lemma 2.1.11. Let O C C; be open and symmetric with respect to the real awxis.
We call the set [O] = U,cpl2] the azially symmetric hull of O.

(i) Every function f : O — H has a unique extension exty(f) to a left slice
function on [O] and a unique extension extgr(f) to a right slice function on

[O].
(ii) If f : O — H is left holomorphic, i.e., it satisfies (2.7), then extr(f) is left
slice hyperholomorphic.

(i) If f is right holomorphic, i.e., it satisfies (2.8), then extr(f) is right slice
hyperholomorphic.

Proof. The left and right slice extensions exty,(f) and extz(f) are obviously given
by (2.9) resp. (2.10). Due to Theorem 2.1.9, they are also unique.

Assume that f is left holomorphic. Then extr (f)(q) = fo(u,v) +1if1(u,v) for
q = u + jv, with

folw,v) = 5 [f(u = jv) + f(u+ jv)]

DN =

and

Fulusw) = 3 [ = jo) = Fu+ jo].

It remains to show that this actually defines a left slice hyperholomorphic function,
i.e., that fo and f; satisfy the Cauchy—Riemann equations (2.5). Because of (2.7),
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we have
g folut) = 5 | (0= o)+ 5 flu o)

N~ N~

0 0 0
e flu o) = i S+ 0)| = - wo)

Similarly, we also have

pudotune) = 3 |50t o)+ 3 flu+ o)

- % [—jaauf(u ~ jv) +ja%f(u +J’U>] - ‘a%fl(“’“)'

Thus exty(f) is actually left slice hyperholomorphic. The right slice hyperholo-
morphic case can be shown with analogous arguments. O

Slice hyperholomorphic functions admit a special kind of derivative, which
again yields a slice hyperholomorphic function.

Definition 2.1.12. Let f : U C H — H and let ¢ = v+ jv € U. If ¢ is not real,
then we say that f admits a left slice derivative in q if

dsf(a):= lim_ (p—a) ' (f;(p) - fi(a)) (2.12)
p—q,peC;
exists and is finite. If ¢ is real, then we say that f admits a left slice derivative in
q if (2.12) exists for every j € S.
Similarly, we say that f admits a right slice derivative at a nonreal point
qg=u-+jvelUif
dsf(g):== lim_ (f;(p) — fi(a))(p—a)™" (2.13)
p—q,peCy
exists and is finite, and we say that f admits a right slice derivative at a real point
q € U if (2.13) exists and is finite for every j € S.

Remark 2.1.13. Observe that dgf(q) is uniquely defined and independent of the
choice of j € S even if ¢ is real. If f admits a slice derivative, then f; is C;-complex
left resp. right differentiable, and we obtain

95 (0) = F}(@) = 5-F3(0) = o fla), a=u-t v, (214)

u ou

Proposition 2.1.14. Let U C H be an axially symmetric open set and let f : U — H
be a real differentiable function.

(i) If f(q) = fo(u,v) + jfi(u,v) is left (or right) slice hyperholomorphic, then it

admits a left (resp. right) slice derivative and Osf is again left (resp. right)
slice hyperholomorphic on U.
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(ii) If f is a left (or right) slice function that admits a left (resp. right) slice
derivative, then f is left (resp. right) slice hyperholomorphic.

(i) If U is a slice domain, then every function that admits a left (resp. right)
slice derivative is left (resp. right) slice hyperholomorphic.

Proof. If f is a left slice hyperholomorphic function on U and g = u+jv € U, then
its restriction to the complex plane C; can be written as f;(q) = Fi(q)+ F2(q)i for
i € S with ¢ L j. By Lemma 2.1.6, the component functions Fy, F, : UNC; = C;
are holomorphic, and hence

lim  (p—q) ' (f;(») — fi(q))

p—q, pEC;

= lim (p—q) ' (Fi(p) + F2(p)i — Fi(p) — F(q)i)

p—q,pEC;
= Fi(q) + F3(q)i

exists. Therefore, f admits a left slice derivative. Moreover, this slice derivative
coincides with the derivative with respect to the real part of the quaternion by
(2.14), and hence

05f(a) = 5-7(a) = 5-folw,0) + oL Fiws), a=ut jo.
The functions % fo(u,v) and a% fi(u,v) obviously satisfy the compatibility con-
dition (2.4). Since fy and f; satisfy the Cauchy-Riemann equations, they are
infinitely differentiable. Hence %, and % commute with a@u and we obtain that
also %fo(u,v) and %fl (u,v) satisfy the Cauchy—Riemann equations (2.5). Thus
Os f is left slice hyperholomorphic too.

If, on the other hand, f(q) = fo(u,v) + jfi(u,v) is a left slice function that
admits a left slice derivative, we choose j € S. Then f; is an H-valued left holomor-
phic function on U N C;. By Lemma 2.1.11, the left slice extension extr,(f;) of f;
is therefore a left slice hyperholomorphic extension of f;. Since f is already a left
slice function, we find that f = extz(f;), and so f is left slice hyperholomorphic.

If, finally, U is an axially symmetric slice domain and f is an arbitrary func-
tion on U that admits a left slice derivative, then we can again choose an arbitrary
imaginary unit j € S and find that f; is left holomorphic. We set f = extr(f;) and
g=1f— f . Obviously g = 0 on U N C;. Moreover, g admits a left slice derivative,
since f and f both admit a left slice derivative. For every i € S, the restriction
9i = 9lunc, is a (left) holomorphic function on the domain U N C; in C;. More-
over, glunr = 0, and so the set of zeros of g; has an accumulation point in U NC;.
By the identity theorem for holomorphic functions, we find that g; = 0, and in
turn g = 0 because ¢ € S was arbitrary. Therefore, f = f = extp(f;) is left slice
hyperholomorphic.

The right slice hyperholomorphic case can be shown by analogous arguments.

O
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Important examples of slice hyperholomorphic functions are power series in
the quaternionic variable: power series of the form E:i% q"a, with a, € H are
left slice hyperholomorphic, and power series of the form Z:Lrioo anq™ are right slice
hyperholomorphic. Such a power series is intrinsic if and only if the coefficients
an are real. Conversely, every slice hyperholomorphic function can be expanded
at any real point into a power series due to the splitting lemma.

Theorem 2.1.15. Let a € R, let r > 0, and let By(a) = {q € H: |¢g —a|] < r}. If
f € SHL(B.(a)), then

+oo
F@) =Y (a—a) LOkf(@) Ya=u+tjueByla)  (215)

n=0
If, on the other hand, f € SHr(B,(a)), then

+oo
f@)= Y~ (@8F@) (4 - a)" Ya=u+jv € Bua)

n=0

Proof. Let f € SH(B,(a)) and ¢ = u+jv € B,(a). By Lemma 2.1.6, the function
fi = flB,(a)nc, is left holomorphic on B,(a) and can hence be expanded into a
power series. We obtain

+oo

Fl@) = fi(@) = Yo(a — )" 7 ).

n=0

But due to (2.14), we have

n " o .
(@) = i fi(a) = 5 f(a) = 5 f(a).

The coeflicients in the power series expansion are hence independent of the complex
plane in which they are computed, and (2.40) holds. The right slice hyperholo-
morphic case follows with similar arguments. (|

As pointed out above, the product of two slice hyperholomorphic functions
is not slice hyperholomorphic unless the factor on the appropriate side is intrinsic.
However, there exists a regularized product that preserves slice hyperholomorphic-

ity.
Definition 2.1.16. For f = fo + jfi1,9 = go + jg1 € SHL(U), we define their left
slice hyperholomorphic product as
[ g=(fogo — fi91) +3(fogr + f190)-
For f = fo+ f1j,9 = 90 + 915 € SHRr(U), we define their right slice hyperholo-

morphic product as

[ *r g = (fogo — fi91) + (fog1 + f190)3.



2.1. Slice Hyperholomorphic Functions 23

Remark 2.1.17. The slice hyperholomorphic product is associative and distribu-
tive, but it is in general not commutative. If f is intrinsic, then f % g coincides
with the pointwise product fg and

f*rg=fg=gx*L [ (2.16)
Similarly, if ¢ is intrinsic, then f *g g coincides with the pointwise product fg and
fxrg=fg=g+*r[. (2.17)

Example 2.1.18. If f(q) = Zn 04" an and g(q) = Zn >0 q"by, are two left slice
hyperholomorphic power series, then their slice hyperholomorphic product equals
the usual product of formal power series with coefficients in a noncommutative
ring:

+oo 400 n
<Z qnan> L <Z q"bn ) (fr9)@) = q" Y arbn . (2.18)
n=0 n=0 n=0 k=0

Similarly, we have for right slice hyperholomorphic power series that

+oo +o0 +o0 n
<Z (lnqn) *R (Z bnqn> = Z (Z akbnk> q". (2.19)
n=0 n=0 n=0 \k=0

Definition 2.1.19. We define for f = fo+jf1 € SHL(U) its slice hyperholomorphic
conjugate f¢ = fo+ jfi and its symmetrization f* = fx;, f¢ = f¢x, f. Similarly,
we define for f = fo + fij € SHg(U) its slice hyperholomorphic conjugate as
f¢ = fo + fij and its symmetrization as f° = f xp ¢ = f° g f.

The symmetrization of a left slice hyperholomorphic function f = fo + jf1
is explicitly given by

= fol*> = |AAl* + j2Re (fof1)

Hence it is an intrinsic function. It is f*(¢) = 0 if and only if f(§) = 0 for some
G € [g]. Furthermore, one has

fe(@) = folao, a1) + jaf1(q0, @) = folgo, @) + fi1(q0, 1) (=) = f(@),  (2:20)
and an easy computation shows that
Frrg(a) = fla)g (fla)" af(q)) if fa) #0. (2.21)
For f(q) # 0, one has
(@) = F@)f° (fla) " af(a))
— 1@ (@) af@) = F@T Tl "2/ (@).

(2.22)



24 Chapter 2. Slice Hyperholomorphic Functions

Similar computations hold in the right slice hyperholomorphic case. Finally, if f
is intrinsic, then f¢(q) = f(q) and f*(q) = |f(q)|*.

As an immediate consequence of Definition 2.1.19 and the above discussion
we obtain the following corollary.

Corollary 2.1.20. The following statements are true:

(i) For f € SHL(U) with f # 0, its slice hyperholomorphic inverse f~*L  which
satisfies f~*L xp f = fxp f~* =1, is given by

ff*L _ (fs)71 . fc _ (fs)flfc’
and it is defined on U \ [Z¢], where Zy = {s € U : f(s) = 0}.

(ii) For f € SHRr(U) with f # 0, its slice hyperholomorphic inverse f~*R  which
satisfies f~*FE xg f = fxg f~*R =1, is given by

FR = R ()7 = e
and it is defined on U \ [Z¢], where Zy = {s € U : f(s) = 0}.
(iii) If f € N(U) with f #0, then f~*t = f~*r = f~1.
The modulus |f~*L| is in a certain sense comparable to 1/|f|. Since f* is

intrinsic, we have [ f*(q)] = |f*(3)| for every € [q). Since f(q)af(@)~" € 4] by
Lemma 2.0.1, we find for f(q) # 0, because of (2.22), that

@)= |1 (fl@af(@)™)]
= | (F@af@ ) F@| = If (F@af@) )] 1 @

Therefore, we have, because of (2.20), that

(@) =[5 1)
1 1

= Fo@a@ @ D= Freae
and so
T _ ! with ¢ = af(g)~ !
| f (q)\—‘f@| th ¢ = f(q)af(q)~" € [q]. (2.23)

An analogous estimate holds for the slice hyperholomorphic inverse of a right slice
hyperholomorphic function.

Slice hyperholomorphic functions satisfy a version of Cauchy’s integral theo-
rem and a Cauchy formula with a slice hyperholomorphic integral kernel.



2.1. Slice Hyperholomorphic Functions 25

Theorem 2.1.21 (Cauchy’s integral theorem). Let U C H be open, let j € S, and
let f e SHL(U) and g € SHR(U). Moreover, let D; C UNC; be an open and
bounded subset of the complex plane C; with D; C UNC; such that 0D; is a finite
union of piecewise continuously differentiable Jordan curves. Then

/ o(s)ds; f(s) = 0,
oD

where ds; = ds(—j).

Proof. If we choose ¢ € S with ¢ L j, then we can write f(z) = Fi(z) + Fa(2)i
and g(z) = G1(z) +iG2(z) for z € UNC; with holomorphic component functions
Fy, F>,G1,Gy : UNC; — C;. By the Cauchy integral theorem for holomorphic
functions, we hence obtain

/a ,, 90615 5

= Gi(s)dsj Fi(s) + (

oD,

G1(s) ds; Fg(S)) )

aD;

Gl(S) de FQ(S)) 1= 0. O

In order to determine the left and right slice hyperholomorphic Cauchy ker-
nels, we start from an analogy with the classical complex case. We consider the
series expansion of the complex Cauchy kernel and determine its closed form under
the assumption that s and ¢ are quaternions that do not commute.

Theorem 2.1.22. Let q,s € H with |q| < |s|. Then

+oo
D a"s T = —(¢" = 2Re(s)g + |s*) (g - 5) (2.24)
n=0

and
+oo
Y57 = —(a =3 — 2Re(s)g + |s[) 7 (2.25)
n=0

Proof. We prove only (2.24), since (2.25) follows by analogous arguments. Due to
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the identities 2Re(s) = s + 5 and |s|? = 53, we have

+oo
(¢* — 2Re(s)g +[s]*) D ¢"s™" " =
n=0
+oo +oo +oo
— Z qn+28—n—1 _ Z qn+1s—n—12Re(s) + Z qns—n—1|8|2
n=0 n=0 n=0

+oo —+oo
— Z qn+18—n _ Z qn+18—n
n=1 n=0
—+o0 —+oo
— Z ¢"TrsTn s 4 Z q"s"s=—q+5.
n=0 n=0

Multiplication by (g% — 2Re(s)q — |s|?)~! from the left yields (2.24). O
Definition 2.1.23. We define the left slice hyperholomorphic Cauchy kernel as
Sp'(s,0) == —(¢* — 2Re(s)g + [s*)"H(q —3), q ¢ [s,
and the right slice hyperholomorphic Cauchy kernel as
Sr'(s,0) == —(a=3)(¢" = 2Re(s)q + [s]*) 7", q ¢ [s].

The slice hyperholomorphic Cauchy kernels Sgl(s, q) and S’gl(s, q) can be
written in two different ways, as the next proposition shows.

Proposition 2.1.24. If q,s € H with q & [s], then
(¢ — 2qRe(s) + |s2) g —5) = (5 — 4) (> — 2Re(q)s + g®) " (2.26)
and
(s> = 2Re(q)s + q[*) "' (s — @) = —(¢ — 5)(¢° — 2Re(s)g + |s[*) ™. (2.27)
Proof. Due to the identities |q| = ¢g = Gq and 2Re(q) = 7+ ¢, we have
— (g —3)(s* — 2Re(q)s + |q|?)
= —qs” + q(q +7)s — ¢’ + 55> — 3s(¢ + ) + 347
=¢*(s —q) + |s*(s — 7) — 45 + qgs — 5sq + 547.
Since
—qs” + qgs — 55q +35qq = —qs” + |q|*s — |s]°q + 5qq
= —qs” + slq|* — qls|* +3¢7 = —q5” + sqq — ¢55 + 5qq
= —q(s +3)s + (s +3)qq = —2Re(s)q(s — ),



2.1. Slice Hyperholomorphic Functions 27

we further conclude that
—(q—35)(s* = 2Re(q)s + |q*) = (¢° — 2Re(s)q + |s|*) (s — 7).

Multiplying this identity by (s?> — 2Re(q)s + |¢|*)™! on the right and by (¢* —
2Re(s)q + |s|?)~! on the left, we obtain (2.26). Exchanging the roles of ¢ and s
and multiplying by —1 then yields (2.27). O

Proposition 2.1.24 justifies the following definition.
Definition 2.1.25. Let ¢, s € H with ¢ & [s].
e We say that S;l(s7q) is written in the form I if

S71(s,q) == —(¢* — 2Re(s)qg + |s|*) (g — 3).

e We say that S} '(s,q) is written in the form IT if

Sy (s.q) = (s — @)(s” — 2Re(q)s + *) "
e We say that Sgl(s7q) is written in the form I if
Sr'(s,9) = —(q = 3)(¢* — 2Re(s)g + |s|*) .
e We say that S;'(s,q) is written in the form II if
Sz'(s,q) = (s* = 2Re(q)s + |q|*) " (s — ).
Corollary 2.1.26. For q,s € H with s ¢ [q], we have

S7'(s.q) = —Sx'(q,5).

Lemma 2.1.27. Let q,s € H with s ¢ [q].

The left slice hyperholomorphic Cauchy kernel Sgl(s,q) is left slice hyper-
holomorphic in q and right slice hyperholomorphic in s.

The right slice hyperholomorphic Cauchy kernel Sgl(s,q) is left slice hyper-
holomorphic in s and right slice hyperholomorphic in q.

Proof. Let ¢ = u + jv. We write S;l(s,q) in the form II, i.e.,
S5 (s,9) = (s = )(s* — 2Re(q)s + [¢|*) .
Then S} *(s,q) = fo(u,v) + jfi(u,v) with

folu,v) = (s — u)(s* — 2us +u?® +v?) 71, (2.28)
fi(u,v) = v(s* — 2us +u? +0*) 7L (2.29)
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Obviously, fo and f; satisfy the compatibility condition (2.4). Moreover,

Efo(u,v): —(8% = 2us +u® +v?)7!

ou
— (s —u)(s* = 2us + u? +v?) "% (—2s + 2u)
= (s* —2us + u* +v?) 7% ((s —u)® —v?),
%fo(u, v) = —(5 — u)(s* — 2us + u* + v?) 220,

and

— filu,v) = —v(s? = 2us + u? + v?)7?2(—s + u),
u

— fi(u,v) = (s* = 2us + u? + )71
v
—v(s? = 2us +u® 4+ v?) %20
= (s> —2us + u> +v*) 72 ((s —u)® —v?).

Hence they also satisfy the Cauchy—Riemann equations (2.5), and so the mapping
q— S;l(s7 q) is left slice hyperholomorphic.

In order to show that Sgl (s, q) is right slice hyperholomorphic in s, we write
S; (s, q) in form 1, i.e.,

Sp'(s.q) = —(¢* — 2Re(s)q + |s*) "' (¢ — 9).

For s = u + jv, we hence have S;'(s,q) = fo(u,v) + fi(u,v)j with

fo(u,v) = (¢ — 2uq + u* +v?) "L (qg — u),

fi(u,v) = (¢® — 2uq + u* + v*) " to.
But these are exactly the functions (2.28) and (2.29) in which s is replaced by
g- As we showed above, they satisfy the compatibility condition (2.4) and the
Cauchy—Riemann equations (2.5), and so the mapping s SL_l(s, q) is right slice
hyperholomorphic.

The properties of the right slice hyperholomorphic Cauchy kernel follow im-
mediately, since Sy'(s,q) = —S; (g, s) by Corollary 2.1.26. O

Lemma 2.1.28. If s and g commute, then the left and the right slice hyperholomor-
phic Cauchy kernels reduce to the complexr Cauchy kernel, i.e.,

Sii(s,0) = (s =)' = Sp'(s,9) if sq=gs.
Proof. If ¢ and s commute, then

¢ — Me(s)g +[s|* = ¢* — (s +5)q + 55 = (¢ — 5)(¢ — 5).
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Hence, we have

S;(s,q) = —(a* — 2Re(s)q + |s]*) (g — 3)
~(q=95)"g=35)"g—5) =(s—q) 7",

and similarly also

Sp'(s.q) = —(q—3)(q° — 2Re(s)qg + |s|*) "
~(3-q)q—=9) g5 =(s—q)". O

Remark 2.1.29. Observe that left and right slice hyperholomorphic functions sat-
isfy Cauchy formulas with different kernels. This is different from what happens
for Fueter regular functions, where both left and right Fueter regular functions
satisfy a Cauchy formula with the same integral kernel.

Definition 2.1.30 (Slice Cauchy domain). An axially symmetric open set U C H
is called a slice Cauchy domain if U N C; is a Cauchy domain in C; for every
j € S. More precisely, U is a slice Cauchy domain if for every j € S the boundary
O(UNC;) of UNC, is the union a finite number of nonintersecting piecewise
continuously differentiable Jordan curves in C;.

Remark 2.1.31. Observe that every slice Cauchy domain has only finitely many
components (i.e., maximal connected subsets). Moreover, at most one of them
is unbounded, and if there exists an unbounded component, then it contains a
neighborhood of co in H.

Theorem 2.1.32 (The Cauchy formulas). Let U C H be a bounded slice Cauchy
domain, let j € S, and set ds; = ds(—j). If f is a (left) slice hyperholomorphic
function on a set that contains U, then

1

=— Sy (s,q)ds; f(s), for every q € U. (2.30)
2 Jawnc;)

f(q)

If f is a right slice hyperholomorphic function on a set that contains U, then

1

= — f(s)ds; Sg'(s,q), for every q € U. (2.31)
2 Jownc;)

f(a)

These integrals depend neither on U nor on the imaginary unit j € S.

Proof. Assume that f is left slice hyperholomorphic on a set that contains U and
let g =u+iv € U. Since Sgl(s, q) is left slice hyperholomorphic in ¢, we deduce
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from Theorem 2.1.9 that with p = u + jv,

1

— S7Y(s,q)ds; f(s
oo I A CULORO

N | =

.. 1 _ 1
(1+1) (27” /a e, P9 dsf<s>> ,

where the last identity follows from Lemma 2.1.28 because p, s, and j all belong
to C; and hence commute mutually. By Lemma 2.1.6, the restriction of f to C;
is left holomorphic. Hence it satisfies the classical Cauchy formula. Together with
Theorem 2.1.9, this implies that

1

o ST (5,a)ds; £(5) = 5 (1~ )7 (p) + 5 (1+)1(P) = f(a).
™ Jawne;)

Since f(q) is independent of U and j € S, the integral in (4.39) is obviously
independent of U and j.

The right slice hyperholomorphic case is again shown by analogous argu-
ments. (]

Theorem 2.1.33 (Cauchy formulas on unbounded slice Cauchy domains). Let U C
H be an unbounded slice Cauchy domain and let j € S. If f € SHL(U) and
f(o0) :=limg o f(q) ewists, then

1
2T

flg) = f(o0) + /E)(Uﬂ(Cv) Szl(s,q) ds; f(s) for every q € U.

If f € SHR(U) and f(c0) :=limg_yo0 f(q) eaists, then

1

F@) = F00) + 5 [ (5)dsy S5l seq) for cvery g € U
™ Jo(unc;)

Proof. Let f € SH1(U) such that f(oo) := limg e f(g) exists and let ¢ € U.
For sufficiently large » > 0, the set U, := U N B,(0) is a bounded slice Cauchy
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domain with ¢ € U, and H\ U, C U. By

1 _
fa) = 5 Sz (5,0) ds; £(5)
T Ja(U,nC;y)
1 - 1 _
_ 1 S~V (s, q) ds; £(s) + 7/ S~ (s, q) ds; f(s).
21 Jawncy) 21 Jas,(0)nc;)

Theorem 2.1.21 implies that we can vary r without changing the value of the
second integral. Letting r tend to infinity, we find that it equals f(c0), and we
obtain the statement. (]

Finally, just like holomorphic functions, slice hyperholomorphic functions can
be approximated by rational funcitons.

Definition 2.1.34. A function r is called left rational if it is of the form r(q) =
P(q)7*Q(q) with polynomials P € N'(H) and Q € SH(H).

A function 7 is called right rational if it is of the form r(q) = Q(q)P(q)~*
with polynomials P € N (H) and Q € SHr(H).

Finally, a function r is called intrinsic rational if it is of the form r(q) =
P(q)~*Q(q) with two polynomials P,Q € N (H).

Remark 2.1.35. The requirement that P be intrinsic is necessary because the
function P! is otherwise not slice hyperholomorphic; cf. Theorem 2.1.4.

Corollary 2.1.36. Let f € SHL(U), let j,i € S withi L j, and write f; = Fy + F5i
with holomorphic components F1,Fy : UNC; — C; according to Lemma 2.1.6.
Then f is left rational if and only if F1 and Fy are rational functions on C;.

Simalarly, if f € SHr(U) and we write f; = Fy + iFy with holomorphic
components Fy and Fs according to Lemma 2.1.6, then f is right rational if and
only if F1, Fy are rational functions on C;.

Proof. Let f € SH(U) be left rational, i.e., f(¢) = P(q)"'Q(q) for some intrinsic
polynomial P(q) = Zg:o q"a, with a,, € R and some left slice hyperholomorphic
polynomial Q(q) = Z%:o q" by, with by, € H. If we write by, = b1 + by 20 With

bm,1,bm2 € C; and set Q1(q) = Zf\r{:o q"bm1 and Q2(q) = Z%:o q"bp, 2 for
q € UNC;,, we obtain Q = Q1 + Q2¢ and in turn

fil@) = P(9)7'Q(q) = P(9)~'Q1(q) + P(q) ' Q2(q)i.

Since P has real coeflicients and ()1 and ()2 have coefficients in C;, they are
polynomials on C;, and hence P~'Q; and P~'Q> are rational functions on C;.
Since furthermore, 1 and i are linearly independent over C;, we obtain F; = P~1Q4
and Fy = PilQQ.

In order to show the converse implication, let us assume that F} = Pl_lQl
and Fp = PQ9 are rational functions. If Pi(q) = ZnN:O q"an1 with a, 1 in
C,, then Pi(q) is the polynomial P;(q) = 22;0 q"@n,1. The product F’l(q) =
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Py(q)P1(q) is again a polynomial, and since it satisfies P (@) = Py(q), it has real
coefficients. Similarly, the function Ps(q) := P»(q)P2(g) is also a polynomial with
real coefficients, and we have

Fi(q) = Pi(q) "PL@Q1(q), Fa(q) = P2(q) " Pa(q)Q2(q),
and in turn
filg) = F1(q) + Fa(q)i
= P97 P97 (P @ Q1 () + P P2[@Q2(a)i )

The function P(q) := Pi(g)P2(q) is a polynomial with real coefficients on C;, the
function

Q(q) = P2(q)P1(@)Q1(q) + P1(q) P2(7)Q2(q)i
is a polynomial with quaternionic coefficients on C;, and by construction, f;(¢g) =
P(q)"'Q(q)-

Replacing the complex variable by a quaternionic variable, we can extend P
to an intrinsic polynomial on H and @ to a left slice hyperholomorphic polyno-
mial on H. Due to the uniqueness of the left slice hyperholomorphic extension in
Lemma 2.1.11, we then obtain

f=extr(fj) = extr(P7'Q) = P'Q,
and so f is actually left rational. The right rational case can be shown similarly. [

Theorem 2.1.37 (Runge’s theorem). Let K C H be an azially symmetric compact
set and let A be an axially symmetric set such that ANC # () for every connected
component C of (HU {oo}) \ K.

If f is left slice hyperholomorphic on an azially symmetric open set U with
K C U, then for every e > 0, there exists a left rational function r whose poles lie
in A such that

sup{[f(q) —r(9)| : ¢€ K} <e. (2.32)

Similarly, if f is right slice hyperholomorphic on an axially symmetric open
set U with K C U, then for every € > 0, there exists a right rational function r
whose poles lie in A such that (2.32) holds.

Finally, if f € N(U) for some azially symmetric open set U with K C U,
then for every € > 0, there exists a real rational function r whose poles lie in A
such that (2.32) holds.

Proof. Let f € SHL(U) for some axially symmetric open set U with K C U, let
J,i € S with j L 4, and let us write f; = F; + Fui with holomorphic functions
Fi,F, : UNC; = C; as in Lemma 2.1.6. The set K N C; is compact in C; and
the set AN C; has, due to its axial symmetry, nonempty intersection with every
connected component of (C; U {occo}) \ (K NC;).
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For € > 0, the classical Runge’s theorem for holomorphic functions implies
the existence of rational functions R; and Ry with poles in AN C; such that

sup{|Fo(2) — Re(2)|: z€ KNC;} < Z =12 (2.33)

The left slice hyperholomorphic extension r(q) = extp(R; + Rei) is then by
Lemma 3.2.10 a right rational function with poles in A, and

€

2

for all z € K N C;. From Theorem 2.1.9 we conclude for ¢ = u + kv € K after
setting z = u + jv € K NC; that

1f(2) = r(2)] < F1(2) = Ra(2)| + [Fa(2) — Ra(2)] <

‘ 1 . - =
/(@) = ()] = |5 (1= k) (f(2) +7(2)) + 51+ k) (f(Z) = r(2)) (2.34)

<2 +r@I+1fR) -r(z) <e

The right slice hyperholomorphic case can be shown by similar arguments.

What remains to show is that R can be chosen rational intrinsic if f is
intrinsic. In order to do that, we first observe that in this case, F5 = 0, so that we
can choose Ry =0 in (2.33). If we set

1
)

| =

R(z) =5 (Ri(2) + R(Z))
then R is a rational function on C; that satisfies R(Z) = R(z). It is hence of the
form R(z) = P(z)~'Q(z) with polynomials P and Q with coefficients in R. Its
slice hyperholomorphic extension 7(q) = P(q)~1Q(q) for ¢ € H with P(q) # 0 is
then an intrinsic rational function. L

As an intrinsic function, f satisfies f(g) = f(q). Hence for z € K UC;, we
have

1E) — (@) = 5 |£(2) ~ Ral2) + T@) - FalE)|

1 S
<= - Z) — Ri(z -
<5 (@ - Re|+ [E-RE|) <3

As in (2.34), we see then that (2.32) holds with the intrinsic rational function

T. U

2.2 The Fueter Mapping Theorem in Integral Form

In order to define the F-functional calculus in Chapter 7 we recall now the Fueter
mapping theorem and show its integral form. The Fueter mapping theorem in
integral form was introduced in [86]. We start with recalling the definition of
Fueter regularity.
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Definition 2.2.1 (Cauchy—Fueter regular functions). Let U be an open set in H. A
real differentiable function f : U — H is left Fueter regular if

3
0
q) + es—f(q) =0, forevery q € U.
)+ 3 er 1)
It is right Fueter regular if

3
8
8q E — =0, foreveryqeU.
0

It was Fueter who introduced in his paper [111] the following method for
generating Fueter regular functions:

(1) We consider a holomorphic function f(z) that depends on a complex variable
z = u 4+ (w in an open set of the upper complex half-plane. (In order to
distinguish it from quaternionic imaginary units, we denote the imaginary
unit of the usual complex numbers by ¢.) We write

f(Z) = fO(ua 'U) + Lfl(uvv)v

where fo and f; are R-valued functions that satisfy the Cauchy—Riemann
system.

(2) For every quaternion ¢ such that u + wv belongs to the domain of f, we
replace the complex imaginary unit ¢ in f(z) = fo(u,v) + ¢f1(u,v) by the
(9)

quaternionic imaginary unit %, and we set u = Re(q) and v = |Im(q)|.
We then define

Im(q)
[Tm(q)|

Observe that the function f(q) is slice hyperholomorphic by construction.

f(a) = folqo, [Im(q)|) + f1(qo, [Tm(g)]).

(3) We apply the Laplace operator A = ZZ’:O g—:z to f and define f(q) = Af(q).
4

It turns out that the function f(q) is then both left and right Fueter regular.
Observe that by construction, f(g) is an intrinsic slice hyperholomorphic
function on the open axially symmetric set of all quaternions ¢ = u + jv such that
u + tv belongs to the domain of f.
In modern language, the Fueter mapping theorem states that applying the
Laplace operator A to a slice hyperholomorphic function f(q) yields the Fueter
regular function

fla) = Af(q).

This function is left Fueter regular if f is left slice hyperholomorphic and right
Fueter regular if f is right slice hyperholomorphic.
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If we write f in terms of the slice hyperholomorphic Cauchy formula, we can
apply A and commute it with the integral such that A is actually applied to the
slice hyperholomorphic Cauchy kernel inside this integral. In this way, we obtain
an integral transform with respect to the kernel AS;l(s,p), resp. ASEl(s,p), that
maps slice hyperholomorphic functions to Fueter regular functions.

A simple formula for ASL_l(s,p), resp. ASgl(s,p), is, however, obtained only
if we write the slice hyperholomorphic Cauchy kernels in form II. As a consequence,
the F-functional calculus, which is based on this integral transform, can be de-
fined only for operators with commuting components. Otherwise, the S-resolvents
cannot be written in a form that corresponds to form II of the Cauchy kernels.

Theorem 2.2.2. Let q,s € H with g & [s] and let A = Z?:o ;—; be the Laplace
4
operator in the variable q.

(a) Consider the left slice hyperholomorphic Cauchy kernel SZI(S, q) written in
form II. Then we have

ASp(s,q) = —4(s — q)(s* — 2Re(q)s + |¢|*) 7> (2.35)

(b) Consider the right slice hyperholomorphic Cauchy kernel Sg'(s,q) written in
form II. Then we have

ASR (s, q) = —4(s* — 2Re(q)s + |q|*) 72(s — @) (2.36)

Proof. We show only the identity (2.35), the other one follows with similar argu-
ments. If we write S;l(& q) in form II, then straightforward computations yield

0% _
9251 (5 0) = 205" = 2Re(@)s + ") (=25 + 200)
0

+2(s — 9)(5* — 2Re(q)s + |q]*) (=25 + 240)*
—2(s — )(s* — 2Re(q)s + |¢|*)
and

2

g} Spt(s,q) = —4esqe(s® — 2Re(q)s + |g|?)
+8¢2(s — §)(s> — 2Re(q)s + [¢|*)°

—2(s — q)(s> — 2Re(q)s + |q[*)
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for £ = 1,2, 3. Thus, we obtain
AS(s,2) = 2(s? — 2Re(q)s + |q|*) "2 (—2s + 2q0)

+2(s — @)(s* — 2Re(q)s + |q*) 7> (—2s + 20)°
3

— Y derqe(s® — 2Re(q)s + [q*)
(=1

3
+> 8q7(s —)(s” — 2Re(q)s + [q|*)
=1

—8(s — q)(s* — 2Re(q)s + |q*) 7>
Since (s — 2Re(q)s + |¢|?) ™2 and (—2s + 2qp) commute, we have
ASL(s.q)

3
=4 (8 —q+ Z4eeqe> (s — 2Re(q)s +[q*)
/=1
3
+2(s —q) [(—25 +2q0)? + Z4q?1 (s* — 2Re(q)s + |q|*)*
=1

=4 )2
+8(s — )(s” — 2Re(q)s + [q|*) ™
—8(s — q)(s* — 2Re(q)s + |q|*) 2
= —4(s — q)(s* — 2Re[z]s + |z]?) 2. O

Proposition 2.2.3. Let g € H. The function s — ASZI(S, q) is right slice hyperholo-
morphic on H\ [q] and the function s ASgl(s, q) 1is left slice hyperholomorphic
on H\ [q].

Proof. For s = u+ jv, we have
0 _ _
%ASLl(s,q) = —4(s* — 2Re(q)s + |q|*) 2
+8(s — q)(s* — 2Re(q)s + |q|?) (25 — 2Re(q))
and
0 1 . 9 2\—2
5850 (5,0) = —4j(s” = 2Re(g)s + [a]")
+8(s — 7)(s — 2Re(q)(u + jv) + [q|*) (255 — 2Re(q)j).

Since j commutes with (s> — 2Re(q)s + |¢|*) ™2, we conclude that

0 _ 0
7ASL1(37(]) + %

-1 .
% AS; (s,q)7 = 0.
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Hence ASgl(s,q) is right slice hyperholomorphic in s by Proposition 2.1.14, be-
cause H \ [¢] is an axially symmetric slice domain. The other case can be shown
with similar arguments. O

Proposition 2.2.4. Let s € H. The function q — ASZl(s,q) is left Fueter regular
on H\ [s] and the function q — ASy'(s,q) is right Fueter regular on H \ [s].

Proof. We have

0 _ _
a—ASLl(s7 q) = 4(s* — 2Re(q)s + |q|*) 2
q0
—16(s — q)(s* — 2Re(q)s + |¢|*) 3(s — qo)
and
0
90, A5L 7 (5,0) = —deels® = Re(@)s + o) 2
+16q(s — q)(s* — 2Re(q)s + |¢|*) >
Therefore,
iAS (s,q) + Ze (s,9)
B0 q) e 4

=4(s% - 2Re(q)8 + \ql )
—16(s — @)(s” — 2Re(q)s + |a|*) (s — a0)

3
+Y_4(=€})(s* — 2Re(q)s + [g*)
=1

3

+ Y 16erge(s — @)(s* — 2Re(q)s + |af*) ™%,
=1

and since (s? — 2Re(q)s + |q|?)~! commutes with s — qo, we finally obtain

0
—A
940 S (s,q) +Z€g (s,q)

= 16(s” — 2Re(q )S+ lal? )
+16 ((‘IO + qu> s—7) — (s — CI)«S) (s — 2Re(q)s +[q[*)
= 16(s* — 2Re(q)s + |q|*) 2 — 16(s* — 2Re(q)s + |¢|*) 2 = 0.

Hence g — ASZl(s,q) is left Fueter regular. The right Fueter regularity of ¢ —
ASgl(s, q) can be shown with analogous computations. O
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Definition 2.2.5 (The Fueter kernels). We define for s € H with ¢ ¢ [s] the Fp-
kernel as

Fr(s,q) == AS;'(s,q) = —4(s — q)(s* — 2Re(q)s + |q[*) 2,
and the Fr-kernel as
Fr(s,q) = ASR'(s,q) = —4(s* — 2Re(q)s + |g[*) *(s — ).
Finally, we can now prove the Fueter mapping theorem in integral form.

Theorem 2.2.6 (The Fueter mapping theorem in integral form). Let U C H be a
slice Cauchy domain and choose j € S.

(a) If f € SHL(O) for some set O withU C O, then f(q) = Af(q) is left Fueter
reqular on U, and it admits the integral representation

Y 1

f(qg) Fr(s,q)ds; f(s) YqeU. (2.37)

27 Jawney)

(b) If f € SHR(O) for some set O with U C O, then f(q) = Af(q) is right
Fueter regular on U, and it admits the integral representation

1

fle)=— f(s)ds; Fr(s,q) Vq€U. (2.38)
21 Jownc;)

The integrals depend neither on U nor on the imaginary unit j € S.

Proof. The function f (q) = Af(q) is Fueter regular by the Fueter mapping theo-
rem. We can write f(q) for ¢ € U in terms of the corresponding slice hyperholo-
morphic Cauchy formula. If we apply the Laplacian and exchange the order of
integration and differentiation, we end up with (2.37), resp. (2.38). O

2.3 Vector-Valued Slice Hyperholomorphic Functions

In this section, we generalize the notion of slice hyperholomorphicity from scalar-
valued to vector-valued functions. In particular, similar to what happens for holo-
morphic functions, we show that the notions of weak and strong slice hyperholo-
morphicity are equivalent. Via the quaternionic Hahn-Banach theorem, one can
prove properties of vector-valued slice hyperholomorphic functions by reducing the
problems to the scalar case.

Definition 2.3.1. A quaternionic right vector space is an additive group (X, +) that
is endowed with a quaternionic right multiplication (X, H) — X, (z,q) — zq such
that for all z,y € X and all p,q € H,

z(p+q), =xp+aq (x+y)q = xq+ yq, (xp)q = x(pq).



2.3. Vector-Valued Slice Hyperholomorphic Functions 39

A quaternionic left vector space is an additive group (X, +) that is endowed with a
quaternionic left multiplication (H, X) — X, (¢, «) — ¢z such that for all z,y € X
and all p,q € H,

(p+q)z = pz + qz, q(z +y) = qz + qy, a(pr) = (qp)z.

A two-sided quaternionic vector space is an additive group (X, +) endowed with
a quaternionic left and a quaternionic right multiplication such that X is both a
left and a right vector space and such that ax = za for all « € R and all z € X.

Remark 2.3.2. If we start from a real vector space Xg, then we can quaternionify
Xg to obtain the two-sided quaternionic vector space X = Xr ® H by setting

3
X =Xg®H= {ngeg: Ty EXR}
£=0

with the scalar multiplications

3 3

gr =Y wilger), xq=)y w(ecwq),

=0 =0

for x € X and ¢ € H. Conversely, every two-sided quaternionic vector space X
is isomorphic to the quaternionification of a real vector space, namely to Xg ® H
with the real vector space

Xp={2xe€eX: qv=2q VqeH}

Definition 2.3.3. A function | - || : Xg — [0,400) on a quaternionic right vector
space X is called a norm on Xg, if it satisfies

(i) |lz|| = 0 if and only if z =0,

(ii) ||lzg|| = l|z|||g| for all z € X and all ¢ € H,

(iil) ||z +yll < [lz]| + [Jy] for all z,y € X.

If Xp is complete with respect to the metric induced by || - ||, we call Xgr a
quaternionic right Banach space.
A function |- || : X — [0,400) on a quaternionic left vector space Xy, is

called a norm on X, if it satisfies (i), (iii), and
(ii") |lgz|| = |g|l|z|| for all z € X and all ¢ € H.

If X, is complete with respect to the metric induced by || - ||, we call X1, a quater-
nionic left Banach space.

Finally, a two-sided quaternionic vector space X is called a quaternionic two-
sided quaternionic Banach space if it is endowed with a norm || - || such that it is
both a left and a right Banach space, that is, such that (i), (ii), (ii’) and (iii) are
satisfied and such that X is complete with respect to the metric induced by || - ||.
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Corollary 2.3.4. A quaternionic left or right Banach space turns into a real Banach
space if we restrict the left, resp. right, scalar multiplication to R, and it turns into
a complex Banach space over C; with j € S if we restrict the left, resp. right, scalar
multiplication to C;.

A two-sided quaternionic Banach space turns into a real Banach space if we
restrict the scalar multiplications to R, and it turns into a complex Banach space
over C; with j € S if we restrict either the left or the right scalar multiplication
to (Cj .

Definition 2.3.5. A function ¢ : X7 — X5 between two quaternionic right vector
spaces X1, X5 is called right linear if

o(xq+y) =e()g+ply) Yr,ye Xi,qcH.

Similarly, a function ¢ : X; — X5 between two quaternionic left vector spaces
X4, X is called left linear if

o(gr +y) = qp(x) +o(y) Yo,y e Xi,qc H.

A right or left linear mapping ¢ : X7 — X5 between two quaternionic right, resp.
left, Banach spaces is called bounded if

el == sup lo(z)]x, < +oo.

xr Xl_l

Definition 2.3.6. The dual X3 of a quaternionic right Banach space Xp is the
quaternionic left Banach space of all bounded right linear mappings from Xy to
H. The dual X} of a quaternionic left Banach space X, is the quaternionic right
Banach space of all bounded left linear mappings from Xpg to H. Finally, for a
two-sided quaternionic Banach space X, we distinguish two different dual spaces:
the right dual X5, of X is the dual space of X as a right Banach space, and the
left dual X} of X is the dual space of X as a left Banach space.

We finally recall the quaternionic Hahn—Banach theorem, which will be im-
portant in the sequel. It was first proven in [194], but a proof in English can be
found in [89].

Theorem 2.3.7 (Hahn—Banach theorem). Let Xg be a quaternionic right vector
space, let Xy be a right linear subspace of Xg, and let p : Xp — [0,400) satisfy
p(x +y) < p(x) + p(y) and p(zq) = p()lq| for all x,y € Xg and all ¢ € H.
Moreover, let X\ : Xo — H be a quaternionic right linear functional on Xg such
that |A(z)| < p(x) for all x € Xo. Then there exists a right linear functional
A Xg — H such that A(z) = A(x) for all x € Xy and such that

[A(z)] < p(x) for all z € Xg.

An analogous statement holds for left linear vector spaces.
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Corollary 2.3.8. The dual space of a quaternionic left or right Banach space sepa-
rates points. Furthermore, both the left and the right duals of a two-sided quater-
nionic Banach space also separate points.

Let us now turn our attention to slice hyperholomorphic functions with val-
ues in a quaternionic Banach space. As in the complex case, one can distinguish
between strong and weak slice hyperholomorphicity.

Definition 2.3.9 (Slice hyperholomorphic vector-valued functions). Let U C H be
an axially symmetric open set and let

U={(u,v) eR*: u+SvcCU}.

A function f : U — X with values in a quaternionic left Banach space X, is
called a left slice function, if is of the form

f(@) = folu,v) + jfi(u,v) forg=u+jvelU

with two functions fy, f1 : Y — X, that satisfy the compatibility condition (2.4).
If in addition fy and f; satisfy the Cauchy—Riemann equations (2.5), then f is
called strongly left slice hyperholomorphic.

A function f : U — X with values in a quaternionic right Banach space is
called a right slice function if it is of the form

f(@) = fo(u,v) + fi(u,v)j forg=u+jvelU

with two functions fo, f1 : U — X that satisfy the compatibility condition (2.4).
If in addition fy and f; satisfy the Cauchy-Riemann equations (2.5), then f is
called strongly right slice hyperholomorphic.

Definition 2.3.10. Let U C H be an axially symmetric open set. A function f :
U — X with values in a quaternionic left Banach space X, is called weakly left
slice hyperholomorphic if Af is left slice hyperholomorphic for every A € X}. A
function f : U — Xpg with values in a quaternionic right Banach space Xpg is
called weakly right slice hyperholomorphic if Af is right slice hyperholomorphic
for every A € XJ,.

Since the functionals A in the dual of X, resp. Xg, are continuous, every
strongly slice hyperholomorphic function is weakly slice hyperholomorphic. As in
the complex case, the converse also is true. In order to show this, we recall the
following lemma. We omit the proof, since it works exactly as in the complex case
(see, e.g., [179], p. 189).

Lemma 2.3.11. Let X be a two-sided quaternionic Banach space. A sequence
(n)nen is Cauchy if and only if (A(zn))nen is uniformly Cauchy for A € X',
Al < 1.

Proposition 2.3.12. Let X be a quaternionic left Banach space, let U be an open
axially symmetric subset of H, and let f : U — X, be a real differentiable left slice
function. Then the following statements are equivalent:
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(i) The function f is strongly left slice hyperholomorphic.

(ii) The function f admits a left slice derivative, that is,

dsf(q):= lim (p—q) "(f(p) - f(q)) (2.39)

p—q,p€C;

exists for all ¢ = u+ jv € U in the topology of X, and it exists for every
j €S ifq is real.

(iii) For every j € S, the restriction f; = flunc, of f to UNC; satisfies

1790 .0 .
3 (3@ +ig @) =0, Va=utjvcvne,

Let Xr be a quaternionic right Banach space, let U be an open azially symmetric
subset of H, and let f : U — X be a real differentiable right slice function. Then
the following statements are equivalent:

(i) The function f is strongly right slice hyperholomorphic.

(ii) The function f admits a right slice derivative, that is,

9sf(q):= lim_(f(p)—fl@)p—a)"

p—q,p€C;

exists for all ¢ = w4 jv € U in the topology of Xr, and it exists for every
J €S if q is real.

(iii) For every j € S, the restriction f; = flunc, of f to UNC; satisfies

1/ 0 0 . .
3 (auf(q) + (%f(q)1> =0, Vg=u+jveUnC;.

Proof. Let f : U — X, be a left slice function. The equivalence of (ii) and (iii)
follows immediately from the complex theory and Corollary 2.3.4: the statement
(ili) is equivalent to f; being, for every j € S, a (left) holomorphic function on C;
with values in the complex Banach space X, over C;. This is in turn equivalent
to the existence of the limit

filg) = lim_(p—q) ' (f(p) — (@) = s f(q)

p—q,p€C;

for every g =u + jv e U.
Let us now show the equivalence of (i) and (iii). If (i) holds, then

% (aifj(z) + jaavfj(zo

1
2

(ool + i he) + i fole) = 5 a2)) =0
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because fo and f; satisfy the Cauchy—Riemann equations (2.5). If, on the other
hand, (iii) holds, then we have because of

fo(u,v) = % (flu+jv) + f(u— jv))
and )
o) = 2 (F(u—0) — f(u-+ )
that
o) = 3 | 5= g0+ 5 flat o)
— 5 [ o) = i flut o) = 5L i)
and
Sefotu) = 5 | 5 flu— o)+ 5t o)
— 5 |igafu o) gk o) = = ftwo)

Hence f is actually left slice hyperholomorphic.
The right slice hyperholomorphic case can be shown with analogous argu-
ments. U

Theorem 2.3.13. Let U C H be an axially symmetric open set.

(i) Every weakly left slice hyperholomorphic function f : U — X, with values in
a quaternionic left Banach space is strongly left slice hyperholomorphic.

(ii) Fvery weakly right slice hyperholomorphic function f : U — Xg with values
in a quaternionic right Banach space is strongly right slice hyperholomorphic.

Proof. Let f be a weakly left slice hyperholomorphic function on U with values in
a quaternionic left Banach space X . We first observe that f is a left slice function.
If we choose i € S and set

folu,v) = %(f(u—i—w) + f(u—w))

and

Filu,w) = GiCf(u — iv) ~ flut i)

for u,v € R with w + iv € U, then fy and f; obviously satisfy the compatibility
condition (2.4). If A € X7, then (Ao f)(q) := A(f(g)) is left slice hyperholomorphic
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on U by our assumptions, and hence it satisfies the structure formula (2.9). If
q=u+jv €U, we can set z = u + iv for netatness and obtain

A(fO(u7 U) +jf1(u?v>)

A5 UG+ 1) +i5 (16) - £:9))

2

—_

(A(f(2) + A(f(2)) + gi5 (A(f(2) — A(f(2)))

«AOfX@%%AOfX®)+j%«AOfX@A%AOfX@)
o f)(q) = A(f(q))-

Since A € V] was arbitrary and V] separates points by Corollary 2.3.8, we find
that f(q) = fo(u,v) + jf1(u,v) and hence f is a left slice function.

The rest of the proof follows the lines of the proof in the complex case in [179,
p. 189]. For every A € X7, the function ¢ — A(f(q)) is left slice hyperholomorphic
on U. Its restriction to a plane C; is hence left holomorphic and therefore admits
a representation in terms of the Cauchy formula. If ¢ = u + jv € U and p tends
to ¢ in C;, we can therefore choose r > 0 so small that B,(¢) C U and find for
p € By(q) NC; that

A(f(p)) — A(f(q))

[\

1
2
1
2
(

= [ (s —)) ds; AGT(s))
r
= o [0 =)~ ) s 0 ds; AT (s))
T Jr
with I' := 9(B.,(q) N C;). Moreover, since (Ao f)(q) = %A(f(q)), we also have
SoAT@) = 5= [ (6= ) 2ds;1(0)
and hence
-0 AU - AS@) - 5oA @)

1
27

/F (5—p) s — @) — (s — @)?) ds; A(F(5))] .

The mapping s — A(f(s)) is continuous on I'. Since I' is compact, we obtain

sup [A(f(s))] < +oe.

sel’

The mappings A — A(f(s)), s € T, hence form a family of pointwise bounded lin-
ear maps from V/ to H. By the uniform boundedness principle, they are therefore
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uniformly bounded such that

sup [A(f(9))] :=C < +o0.
s€T,[[Allv, <1

Consequently, we have

0
\<p 0 A B) - AT@) - A (@)
/‘s— Ys—q)t (s—q)2’d|s|—>0
as p approaches ¢ in C;. Since the above estimate is independent of A, it follows
that
. _ 0 0
lim A (p—a)H(f(p) — f(2)) = 5 M (@) = 5-Af(a))

uniformly for A € V/ with ||A]] < 1. Thus A ((p — ¢) ~*(f(p) — f(q)) is in particular
uniformly Cauchy as p — ¢ for |A]| < 1, and we conclude from Lemma 2.3.11 that
the limit (2.39) exists, i.e., that f admits a left slice derivative at g. Since ¢ € U
was arbitrary and we already know that f is a left slice function, Proposition 2.3.12
implies that f is strongly left slice hyperholomorphic.

The right slice hyperholomorphic case can again be shown with similar ar-
guments. O

Since weak and strong slice hyperholomorphicity are equivalent, we will refer
to such functions simply as slice hyperholomorphic.

Definition 2.3.14. Let U C H be an axially symmetric open set. We denote the
set of all left slice hyperholomorphic functions on U with values in a quaternionic
left Banach space X by SH (U, X1) and the set of all right slice hyperholo-
morphic function on U with values in a quaternionic right Banach space Xg by

SHR(U, Xg).

Corollary 2.3.15. Let U C H be an axially symmetric open set. If Xy is a quater-
nionic left Banach space, then SH(U, X1) is a quaternionic right linear space. If
Xg is a quaternionic right Banach space, then SHr(U, XR) is a quaternionic left
linear space.

Since weak and strong slice hyperholomorphicity are equivalent, several re-
sults for scalar-valued slice hyperholomorphic functions can be generalized to the
vector-valued case by applying functionals in the dual space in order to reduce the
problems to the scalar case.

Proposition 2.3.16 (Identity principle). Let U be an azially symmetric slice do-
main, let f and g be two left or right slice hyperholomorphic functions on U with
values in a quaternionic left, resp. right, Banach space X, and set Z :={q € U :
f(q) = g(q)}. If there exists j € S such that ZNC; has an accumulation point in
UNC;, then f=g on all of U.
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Proof. The hypothesis implies Af = Ag on ZNC; for every element A € X'. The-
orem 2.1.8 thus implies that the left, resp. right, slice hyperholomorphic function
A(f —g) is identically zero on the entire axially symmetric slice domain U. By the
Hahn—Banach theorem, we obtain f —g =0 on U. (|

Computations as in the scalar case show, moreover, that vector-valued slice
hyperholomorphic functions also satisfy the structure formula and that they can
be expanded into a Taylor series at every real point.

Proposition 2.3.17 (Structure formula (or representation formula)). Let U C H be
an axially symmetric open set, let g =u+ jv € U and z = u +iv for some i € S.
If f is a left slice function on U with values in a quaternionic left Banach space
Xy, then
11, 1o,
1@ = 5@+ 1()] + 541 1) - £2)].
If f is a right slice function on U with values in a quaternionic right Banach space
Xr, then
1., 17, .
f@) = 5[1@ + £&)] + 5]/ - 1)) is
Theorem 2.3.18. Let a € R, let r > 0, and let By(a) ={q € H: |¢—a| < r}. If
f € SHL(B (a),X) with values in a quaternionic left Banach space X, then

+oo
e 1 .
fla) =) (a—a)"~05f(a) Vg=u-+jv€ B(a). (2.40)
n=0
If on the other hand f € SHr(Br(a),Xr) with values in a quaternionic right
Banach space Xg, then
+oo 1
H@) ="~ (05f(@) (¢ —a)" Vg=u+jve Ba).
n=0
Finally, the slice hyperholomorphic Cauchy formulas hold also in the scalar
case.

Theorem 2.3.19 (Vector-valued Cauchy formula). Let U C H be a bounded slice
Cauchy domain, let j € S, and set ds; = —dsj. If f is a left slice hyperholomorphic
function with values in a quaternionic left Banach space Xy, that is defined on an
open axially symmetric set O with U C O, then

f(q) !

=5 S; (s, q)ds; f(s) VqeU. (2.41)
T Jawncy)

If f is a right slice hyperholomorphic function with values in a quaternionic right
Banach space X that is defined on an open azially symmetric set O with U C O,
then )

= — f(s)ds; Slgl(s,q), Vq € U.
27 Jawncy)

f(q)

These integrals depend neither on U nor on the imaginary unit j € S.
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Proof. Let f € SH1(U,Xr) and let ¢ € U. Since (U N C;) is compact and
the integrand is continuous, the integral in (2.41) converges. Moreover, for every
A € X}, we have, due to the left slice hyperholomorphicity of ¢ — A(f(q)), that

1 _

! S (s.9) ds; A(f(s)) = A(f(g))-

B % B(UD(CJ)

Since A € X} was arbitrary and X} separates points by the Hahn—-Banach theo-
rem, we obtain the statement. ]

If one considers slice hyperholomorphic functions with values in a quater-
nionic Banach algebra, then the product of two slice hyperholomorphic functions
is, just as in the scalar case, in general not slice hyperholomorphic. It is, however,
possible to define a generalized product that preserves slice hyperholomorphicity.

Definition 2.3.20. A two-sided quaternionic Banach algebra is a quaternionic Ba-
nach space X that is endowed with a product X x X — X such that:

(i) The product is associative and distributive over the sum in X.
(ii) Onme has (¢x)y = g(xy) and z(yq) = (xy)q for all x,y € X and all ¢ € H.
(iii) One has |Jzy|| < ||z|||ly|| for all z,y € X.

If in addition there exists a unit with respect to the product in X, then X is called
a two-sided quaternionic Banach algebra with unit.

Definition 2.3.21. Let U C H be an axially symmetric open set and let X be a
two-sided quaternionic Banach algebra. For two functions f,g € SH (U, X) with
fl@) = fo+jfi and g = go + jor for ¢ = u+ jv € U, we define their left slice
hyperholomorphic product as

f* 9 :=fogo — frg1 + 7 (fogr + fi90) - (2.42)

For two functions f,g € SHr(U, X) with f(q) = fo(u,v) + fi(u,v)j and g(q) =
go(u, v) + g1(u,v)j for ¢ = u+jv € U, we define their right slice hyperholomorphic
product as

f*rg:=fog0o — fre1 + (fogr + f190) J- (2.43)

Remark 2.3.22. It is immediate that the *p-product of two left slice hyperholo-
morphic functions is again left slice hyperholomorphic and that the *g-product of
two right slice hyperholomorphic functions is again right slice hyperholomorphic.
If, moreover, U = B,(0), then f, g admit power series expansions. If f and g are
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left slice hyperholomorphic with f(q) = Y2 ¢"a, and g(q) = Y2, ¢"b,, with

apn, b, € X, then
(f *L 9)( Z q" (Z aebne> .
=0

n=0

Similarly, if f and g are right slice hyperholomorphic with f(q) = Z::é an,q" and
9(q) = 320 bug™ with a,,, b, € X, then

(F sno) z (z b )

Remark 2.3.23. The slice hyperholomorphic product can be defined in even more
general settings than for functions with values in a quaternionic Banach algebra.
If, for instance, f € SH(U,H) and g € SH(U, X) for some quaternionic left
Banach space, then we can define f x5, g € SHL(U,X1) also as in (2.42). For
another example, we consider f € B(X1, Xs) and g € B(X3, X3), where X, Xs,
and X3 are two-sided quaternionic Banach spaces and B(X,Y) denotes the set
of all bounded right linear operators from X to Y. Then we can again define
f*rge SHL(U, B(Xy,X3)) by (2.42). The same can, of course, be done for right
slice hyperholomorphic functions.

2.4 Comments and Remarks

The results of this chapter are spread over several papers which are quoted below.
The treatment is sometimes different according to the definition of slice hyper-
holomorphicity that one takes. The interest in slice hyperholomorphic functions,
defined in [135], arose in 2006 because of their applications to operator theory. Sim-
ilar functions were, however, already used much earlier by Fueter, who considered
in [110] functions of the form

f(q) = folu+iv) +jfi(u+iv), q=u+ jv,

where fo, f1 are the real-valued components of the analytic function F(z) =
fo(z) +¢f1(z), in order to define what he called hyperanalytic functions. These hy-
peranalytic functions are nothing but intrinsic slice hyperholomorphic functions.
In [111] the author generates Fueter regular functions by applying the Laplace
operator to such a class of functions. The relation f = Af between Fueter regular
functions f and slice hyperholomorphic functions f is nowadays a modern way to
state the Fueter mapping theorem. In [187], Sce extended this theorem to func-
tions with values in a Clifford algebras of odd dimension. The extension to Clifford
algebras of even dimensions needs more sophisticated arguments based on Fourier
multipliers. In [175], Qian introduced the even—odd condition (2.4) in order to
define entire slice hyperholomorphic functions, and he generalized the theorem of
Sce. For biaxial symmetric domains, see [174].
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In [135], slice hyperholomorphic functions were defined as functions that
satisfy the properties shown in Lemma 2.1.6, that is, they are functions whose
restrictions to complex planes C; are left, resp. right, holomorphic. As we showed in
Proposition 2.1.14, on axially symmetric slice domains, this definition is equivalent
to Definition 2.1.2. Precisely, one can show that such functions satisfy the structure
formula when they are defined on an axially symmetric slice domain. Considering
only functions on axially symmetric slice domains is, however, not sufficient for
developing a rich theory of quaternionic linear operators. For operator theory it is
important to consider functions that are defined on axially symmetric open sets
that are not necessarily slice domains, so for this reason we use Definition 2.1.2
for slice hyperholomorphicity.

There is an other approach to slice hyperholomorphic functions that refers
to a global operator introduced in [60]. The global operator G(q) is defined by

0

) 3
— |q]2 )
G0 = a5y + 1 3 w7

and if U C H is an open set and f: U — H is a slice hyperholomorphic function,
then

G(q)f(q) =0.

Using as a definition of slice hyperholomorphic those functions that are in the
kernel of the operators G, we have a possible definition of slice hyperholomorphic
functions in several variables. Here the theory is far from being developed, be-
cause we have a system of nonconstant differential operators, and the power series
expansion disappears, as the following example in [60] shows:

Example 2.4.1. Let U be an open set in H x H that does not intersect the real
line. Then the function

Flarsaa) = ~Im(ao) 41,2 (GRe(an)* = S mian)* +Rel) + {11 2 Re(an)im(a)

(2.44)
satisfies the system
{ |q |28q{iof((h’q2) +g1 ZJ 19,555, aql f(q17QQ) 0 (2 45)
|q2|23qgo (q1,92) t4q, ijlch,jmf(fh,(h) 0.

In the paper [98] there are some results associated with the theory of slice
hyperholomorphic functions in several variables, but the global operator is not
used. The above example can be found also in [98].

References on function theory. The theory of slice hyperholomorphic functions is
nowadays very well developed. The main monographs on this topic or containing
this topic are [18,56,89,96,123,133].
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Slice hyperholomorphic functions can be defined not only over the quater-
nions but also over more general Clifford algebras. In the quaternionic setting,
slice hyperholomorphic functions are also called slice regular, and their theory has
been developed by several authors. Some of the most important contributions were
published in [37-39,58,101,112,113,130-132,134-141, 154,180, 181,188-190].

Slice hyperholomorphic functions with values in a Clifford algebra are also
called slice monogenic functions. The main results of their theory are contained in
the papers [64,65,73,90-95,152,198].

Several important approximation theorems for slice hyperholomorphic func-
tions are collected in the papers [114-122] and the monograph on quaternionic
approximation theory [123].

The Fueter mapping theorem provides a relation between slice hyperholomor-
phic functions and the classical theory of monogenic functions. Another relation is
provided by the Radon transform and the dual Radon transform. Intense studies
of these relations that go far beyond the results presented in Section 2.2 can be
found in [61, 69, 83].

The theory of slice hyperholomorphic functions of several variables is very
far from being developed, but some results can be found in the papers [3,98,145].
See also the paper on the Herglotz functions of several quaternionic variables [2].

Finally, the theory of slice hyperholomorphic functions has been extended to
the setting of functions with values in a real alternative x-algebra [34,146-149].

The Cauchy transform in the slice hyperholomorphic setting has been studied
in [71].

Quaternion-valued positive definite functions on locally compact abelian
groups and nuclear spaces have been considered in [17].

Slice hyperholomorphic functions are characterized by the slicewise differen-
tial equation (2.5). We, however, point out that slice hyperholomorphic functions
also lie in the kernel of a global differential operator with nonconstant coeffi-
cients [60,88,100, 150].

References on function spaces of slice hyperholomorphic functions. Several func-
tion spaces have been extended to the slice hyperholomorphic setting. The quater-
nionic Hardy space H2(f2), where 2 is either the quaternionic unit ball B or the
half space Ht of quaternions with positive real part, was introduced and studied
in [12,21,22,35]. We point out that the quaternionic Blaschke products were first
introduced in the seminal paper [22].

The Hardy spaces HP(B) for arbitrary 0 < p < 400 were studied in [185].
The slice hyperholomorphic Bergman spaces are studied in [59, 62, 63], the slice
hyperholomorphic Fock space is considered in [31] and weighted Bergman spaces,
Bloch, Besov, and Dirichlet spaces of slice hyperholomorphic functions on the
unit ball B were introduced in [48]. Inner product spaces and Krein spaces in
the quaternionic setting are studied in [26]. Carleson measures for Hardy and
Bergman spaces in the quaternionic unit ball are studied in [184]. The BMO
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and VMO spaces of slice hyperholomorphic functions are considered in [129]. For
slice hyperholomorphic fractional Hardy spaces, see [27]. A class of quaternionic
positive definite functions and their derivatives is studied in [29]. For a quaternionic
analogue of the Segal-Bargmann transform, see [102].

References on slice hyperholomorphic Schur analysis. In recent years, a slice
hyperholomorphic version of Schur analysis has also been developed in [1,3,7,8,
12,15,16,21-25,32]. An overview of classical theory can, for example, be found
in [6]. In the book [18] there is an extended introduction to the theory of Schur
analysis in the slice hyperholomorphic setting. Recent results on Schur analysis,
related topics and quaternionic polynomials can be found in the papers [40—46].
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Check for
updates

The S-Spectrum and the
S-Functional Calculus

The fundamental difficulty in developing a mathematically rigorous theory of
quaternionic linear operators was the identification of suitable notions of quater-
nionic spectrum and quaternionic resolvent operator. In this chapter we study the
properties of the S-spectrum and the S-resolvent operators, and we introduce the
quaternionic S-functional calculus.

3.1 The S-Spectrum and the S-Resolvent Operators

We begin with some remarks on the algebraic structure of the space of bounded
linear operators on a quaternionic Banach space.

Definition 3.1.1. We denote the set of all bounded right linear operators on a
quaternionic right Banach space X endowed with the natural norm by B(Xg).

Remark 3.1.2. One can also consider left linear operators instead of right linear
operators. The theory we develop in the following also applies in this case with
obvious modifications.

The set B(Xg) is a real Banach space with the operations
(T+U)(z)=T(z)+U(z), (Ta)(z)=T(za),

for x € X and a € R. However, defining (T'q)(z) = T(zq) does not yield a right
linear operator if ¢ € H \ R, since

(T'q)(zp) = T(xpq) # T(xqp) = T(zq)p = (Tq)x)p

if p and ¢ do not belong to the same complex plane C;, for 5 € S. The space
B(XRr) of all bounded right linear operators on a quaternionic right Banach space
Xg is therefore not a quaternionic linear space.

© Springer Nature Switzerland AG 2018 53
F. Colombo et al., Spectral Theory on the S-Spectrum for Quaternionic Operators,
Operator Theory: Advances and Applications 270, https://doi.org/10.1007/978-3-030-03074-2 3


https://doi.org/10.1007/978-3-030-03074-2_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03074-2_3&domain=pdf

54 Chapter 3. The S-Spectrum and the S-Functional Calculus

For this reason, in the following we work in a two-sided quaternionic Banach
space X. In this case, we can define

(Tq)x =T(qr) and (¢T)(z) = q(T' (7))

for ¢ € Hand T € B(X). Then B(X) is a two-sided quaternionic Banach space,
too. Together with the multiplication (TU)(z) = T(U(z)) it is also a two-sided
quaternionic Banach algebra.

Our first goal is to identify an appropriate notion of spectrum for quaternionic
linear operators and then to generalize the Riesz—Dunford functional calculus to
this setting. The spectrum of a complex linear operator A is the complement of
its resolvent set

p(A)={z€C: (2 — A)""is bounded}.

The resolvent operator R,(A) := (2Z — A)~! of A, which determines the resolvent
set and the spectrum of A, is the inverse of the operator associated with the
eigenvalue equation of A for z € C. However, as pointed out in the introduction,
if T' is a quaternionic right linear operator and ¢ is a nonreal quaternion, then the
right eigenvalue equation T'(z) — xq = 0 is not right linear. Hence its associated
operator cannot be used to determine a notion of spectrum of T'.

In order to determine the correct notion of spectrum for a quaternionic linear
operator, we follow a different path. The complex Cauchy kernel is the function
1/(z—&). We observe that formally replacing the scalar variable £ by the operator
A yields exactly the resolvent R,(A) of A at z. This analogy is the fundamental
principle on which the Riesz—Dunford functional calculus is built. In order to
determine the proper notion of a quaternionic resolvent and in turn a quaternionic
spectrum that allows us to generalize the Riesz—Dunford functional calculus, we
formally replace the quaternionic variable ¢ in the slice hyperholomorphic Cauchy
kernels by the operator T'. So we consider the series expansions (2.24) and (2.25),
that is, from the series

—+o0 +oo
§ qnsfnfl and E anflqn
n=0 n=0

and we give the following definition.

Definition 3.1.3. Let T € B(X) and s € H. We call the series

—+oo +oo
E T'ns—'n—l and § S—n—lT’rL
n=0 n=0

the left and right Cauchy kernel operator series, respectively.

Lemma 3.1.4. Let T € B(X). For ||T|| < |s|, the left and the right Cauchy kernel
operator series converge in the operator norm.
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Proof. We have
ZHT" T < sl 12 (FAllE N
n=0

Thus, the left Cauchy kernel operator series converges if || T|| < |s|. The same
argument shows the convergence of the right Cauchy kernel operator series. [

Our goal is now to determine the closed form of the Cauchy kernel operator
series. We start by showing the closed form of a second important series.

Theorem 3.1.5. Let T € B(X) and let s € H with ||T|| < |s|. Then

(T? = 2Re(s)T + |s]°T) ZT”Z“’“ 1g=ntk-1 (3.1)

where this series converges in the operator norm.

Proof. Let us denote the coefficients in (3.1) for neatness by

n

_ Z gfkflsfnJrkfl’

k=0
‘We have
Ian|<2\ F s TR = (n 4 1)]s[ 72,

and so
ZIIT"anII <ZHTII 8|72 (n + 1),
n=0

Since || T|| < |s|, the ratio test implies the convergence of this series, since

Tn+1 —n—3 2 NIT T
g T2 0 42) e 2T T
n—oo [ T|*[s[7"2(n+1)  nooo (n+1)[s| |

and hence the series (3.1) converges in the operator norm. Moreover, we have

—+o0
(T? = 2Re(s)T + |s]’T) > T"ay,
n=0
_ZT A ngT an—12Re(s ZT”an|s|2
“+o00
= Z T™(ap—2 — an—12Re(s) + an|s|?)
n=2

+ T(ap2Re(s) + ai1]s|?) + Zag|s|?.
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For n > 2, we have, because of 2Re(s) = s + 5 and |s|? = s5 = 8s, that

Un_2 — an_12Re(s) + an|s|?

n—2 n—1 n
— g—k—ls—n+l+k _ Zg—k—12Re(s)S—n+k + Zg—k—1|8|25—n+k—l
k=0 k=0 k=0
n—1 n—1 n—1 n
_ §7k87n+k: o Z gfksfnJrk o Z §7k7187n+k:+1 + ngktsfn+/€
k=1 k=0 k=0 k=0
=—s"4+s"=0.

Similarly, we also have, because of s™! = |s|725 and 5% = |s|~2s, that
a2Re(s) — arfsf? = [s|2(s +3) — (512 + 525 1) o]
=5 s s (s s ) s =0,
and so altogether,

“+oo
(T? — 2Re(s)T + |s[°Z) Y T"ay = Tao|s|> = T.
n=0
Since the coefficients a,, satisfy @, = a,, they are real, and hence they commute
with T'. Therefore, also

io T"an(T? — 2Re(s)T + |s|*T) = (T? — 2Re(s)T + |s|*T) f T™a, =1,
n=0 n=0
and hence (3.1) holds. O
Theorem 3.1.6. Let T € B(X) and let s € H with ||T|| < |s]|.
(i) The left Cauchy kernel series equals
+o00
> TnsT Tt = —(T? — 2Re(s)T + |s[*Z) (T — 5I).
n=0

(ii) The right Cauchy kernel series equals

“+o0
S 57T = (1~ ST)(T? — 2Re(s)T + |s°2) .
n=0

Proof. We show just (i), since the other case can be shown with similar arguments.
We prove the identity

+oo
5T —T = (T? - 2Re(s)T + |s]°Z) Y _T"s™' "

n=0
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Since T2 — 2Re(s)T + |s|*Z is invertible by Theorem 3.1.5, this is equivalent to
(i). The quaterions 2Re(s) = s + 5 and |s|?> = s5 = $s are real, and hence they
commute with the operator T', so we get

+oo
(T2 — 2Re(s)T + |s[’T) Y T"s !

n=0

+oo +oo +oo
= Z sl Z T s (s +3) + Z T's " lss
n=0 n=0 n=0

—+oo —+oo +oo +oo
— Z Tntlg—n _ Z Tntlg—n _ Z Tntlg—n—lg + Z TNg— "5
n=1 n=0 n=0 n=0
=sIZ-T. (]

The previous result motivates the following definition.

Definition 3.1.7. Let T € B(X). For s € H, we set
Q.(T) :=T? — 2Re(s)T + |s|*T.
We define the S-resolvent set ps(T) of T as
ps(T) :={seH: Q4 (T) is invertible in B(X)},
and we define the S-spectrum og(T') of T as
os(T) i= H\ ps(T).

For s € ps(T), the operator Q4(T)~1 € B(X) is called the pseudo-resolvent oper-
ator of T at s.

As the following result shows, the S-spectrum has a structure that is compat-
ible with the structure of slice hyperholomorphic functions and with the symmetry
of the set of right eigenvalues of T'. Moreover, it generalizes the set of right eigen-
values just as the classical spectrum generalizes the set of eigenvalues of a complex
linear operator.

Proposition 3.1.8. Let T' € B(X). The sets ps(T) and os(T) are azially symmetric.
Proof. If s=u+ jv € H and § = u+ v € [s], then

Q:(T) = T? — 2uT + (u® +v*)*T = Q,(T).

Hence Q3(T) is invertible if and only if Q4(T') is invertible, and so s € pg(T) if
and only if § € pg(T). Therefore, ps(T') and og(T) are axially symmetric. O

Proposition 3.1.9. Let T € B(X). Then ker Q4(T) # {0} if and only if s is a right
eigenvalue of T. In particular, every right eigenvalue belongs to og(T).
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Proof. If s is a right eigenvalue of T, then there exists « # 0 such that Tz = zs.
Since 2Re(s) = s + 3, we have

Q,(T)x = T?x — Tx2Re(s) + z|s|? = xs* — xs(s +35) + 255 = 0,

and so x € ker Q4(T) # {0}. In particular, this implies that Q4(7T') is not invertible,
and so s € og(T).

Assume on the other hand that = € ker Q4(T) for some = # 0. If Tz = xs,
then s is a right eigenvalue. Otherwise, T := Tx — s # 0 and

Ti— 35 =T — Tas — Tas + 255 = Q (T)x = 0.

Hence 5 is a right eigenvalue of 7', and since the set of right eigenvalues is axially
symmetric, we find that also s is a right eigenvalue. More precisely, if s = u+ jv €
C;, then we can choose ¢ € S with ¢ L j and obtain

T(#i) = (T7)i = (25)i = (wi)s. O

On the S-resolvent set we can now define the slice hyperholomorphic resol-
vents. Since we distinguish between left and right slice hyperholomorphicity, two
different resolvent operators are associated with an operator 7' in the quaternionic
setting.

Definition 3.1.10. Let T € B(X). For s € ps(T), we define the left S-resolvent
operator as
Sl (s, T) = —Q4(T)" T — 31),

and the right S-resolvent operator as
Spl(s,T) = —(T —37)Q,(T) .

Lemma 3.1.11. Let T € B(X).

(i) The left S-resolvent Sy ' (s, T) is a B(X)-valued right slice hyperholomorphic
function of the variable s on pg(T).

(ii) The right S-resolvent Si* (s, T) is a B(X)-valued left slice hyperholomorphic
function of the variable s on ps(T).

Proof. We prove only (i), since (ii) is shown similarly. We have
SL_1(57 T) = fo(’u, U) + fl(uv U).]
for every s = u + jv € pg(T') with the B(X)-valued functions

fo(u,v) = —(T? — 2uT + (v +v*)I) (T — uI),
filu,v) = —(T? = 2uT + (v +v*)I) 0.
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Since fo and f; obviously satisfy the compatibility condition (2.4), the function
S; (s, T) is a B(X)-valued right slice function on pg(T).

We verify that the restriction of SL_l(s, T) to any complex plane belongs to
the kernel of the Cauchy—Riemann operator on this plane if it is applied from the
right. This is, by Proposition 2.3.12, equivalent to the right slice hyperholomor-
phicity of S; (s, T). For s = u + ju € ps(T), we have

0 0

Hence Q(T), %Qs (T') and B%QS(T) commute, and standard computations give
9
an

for n = u,v. Therefore,

Qs(T) = 20T.

_ 5 0
Qs(T) T=— s(T) 28777Q3(T)

8%5;1(5, T) = Qu(T)"%(—2T + 2uI)(T — 5I) + Q,(T)~ !
and
aangl(s, T) = Qu(T)220(T —3I) — Qs(T) 5.

So finally we have
3 (o5 D)+ 5 T
= % (QS(T)‘Q(—QT +2uZ)(T — 35Z) + Q(T) "
+Q.(1)*20(T ~51)j - Qu(T)"'}?)
= Qu(T) 2 (~=T(T — (u+vj)T) + (T — (u+vj)I)3) + Qu(T) "
=—Q,(1) '+ Q1) =0. -

The S-spectrum has properties that are analogous to the properties of the
usual spectrum of a complex linear operator. We first need the following result on
invertibility of operators; see, for instance, Theorem 10.12 in [183].

Lemma 3.1.12. The set Inv(B(X)) of invertible elements in B(X) is an open set
in the uniform operator topology on B(X). If Inv(B(X)) contains an element A,
then it contains the ball

U(A) = {B €B(X): ||[A-B| < HA*H*} .

If B € U(A), then the inverse is given by the series

Bl =4 io [(A—B)A~' ™, (3.2)
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Furthermore, the map A A~' is a homeomorphism from Inv(B(X)) onto
Inv(B(X)) in the uniform operator topology.

Proof. If ||A — B < HA*IHA, then the series (3.2) converges and

+o0 =
Bt 55 (0= A" = (- a7 +2) 3 (4= 31

+00 oo
=Y [(A-BA "+ Y [(A-BA" =T
= m=0

Similarly, we also have

<A1 ;io [(A- B)Al]m> B= (f (A=Y A - B)™ A1> B

m=0
“+o0
= (Z [A71(A - B)]’”> (-A"(A-B)+1I]| =1
m=0

Now observe that the series (3.2) converges uniformly on every ball B.(A)

with 0 < e < ||A_1H_1. Hence if A, — A € Inv(B(X)) with respect to || - ||, then
for sufficiently large n we have

lim A;!= 12 lim )Ail}m:Afl.

n—-4o0o n~>+oo
The mapping A — A~! is therefore continuous on Inv(B(X)). Since it is self-
inverse, it is even a homeomorphism. O

Theorem 3.1.13 (Compactness of the S-spectrum). Let T € B(X). The S-spectrum
o5(T) of T is a nonempty compact set contained in the closed ball Byp)(0).

Proof. For ||T|| < r, the series S;*(s,T) = S./°% T™s~"~! converges uniformly
on 0B,.(0). For j € S, we therefore have

/ S;Y(s, T)ds; = ZT”/ s lds; =217, (3.3)
d(B,(0)NC;) (0)NC;)

because fa(Br(o)mcj) s~ 1ds; equals 27 if n = 0 and 0 otherwise. If B,.(0) were a

subset of ps(T), then S;*(s,T) would be right slice hyperholomorphic on B,.(0)
by Lemma 3.1.11. Cauchy’s integral theorem would then imply that the integral in
(3.3) vanishes. Since this is obviously not the case, we conclude that B,.(0) ¢ ps(T)
and in turn 0 # o5(T") N B,(0). In particular, os(T) is not empty.

We can consider B(X) a real Banach algebra if we restrict the scalar multipli-
cation to R. The set Inv(B(X)) of invertible elements of this real Banach algebra
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is open thanks to Lemma 3.1.12. Since 7 : s — Q4(T) is a continuous function
with values in B(X), we find that ps(T) = 7~ !(Inv(B(X))) is open in H and that
0s(T) in turn is closed.

Finally, Lemma 3.1.5 implies |s| < ||T|| for every s € og(T). Thus og(T) is a
closed subset of the compact set Bjjr(0) and therefore compact itself. g

In the quaternionic setting the S-resolvent equation contains both S-resolvent
operators. We need a preliminary result.

Theorem 3.1.14. Let T € B(X) and let s € ps(T). The left S-resolvent operator
satisfies the left S-resolvent equation

S (s, T)s —TS; (s,T) =1, (3.4)
and the right S-resolvent operator satisfies the right S-resolvent equation
sSp (s, T) — Sp' (s, T)T =1T. (3.5)

Proof. Since 2Re(s) and |s|? are real, they commute with the operator T. There-
fore,

TQ4(T) = Qs(T)T,

and in turn

QT 'T =TQ,(T) "

Thus
S (s, T)s —TS; (s, T)
= —Q,(T) YT —31)s + TQ,(T)" (T —3I)
= Q.(T) ' (—(T - 3I)s + T(T — 3I))
= Q4(T1)'Q,(T) =1.
The right S-resolvent equation follows by similar computations. O

The left and right S-resolvent equations cannot be considered generalizations
of the classical resolvent equation

Ry\(A) — R,(A) = (p—NRA(A)R,(A), for A\, € p(A), (3.6)

where Ry(A) = (AZ — A)~! is the resolvent operator of A at A € p(A). This
equation provides the possibility to split the product of two resolvent operators
into a sum of the factors. This is not the case for the left and the right S-resolvent
equations.

The proper generalization of (3.6), which preserves this philosophy, is the
S-resolvent equation that we show in the following theorem. It is remarkable that
this equation involves both the left and right S-resolvent operators and that no
generalization of (3.6) that includes just one of them has ever been found.
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Theorem 3.1.15 (The S-resolvent equation). Let T' € B(X) and let s,q € ps(T)
with q ¢ [s]. Then the equation
Sz (s, 1)S; (0, T) = [(S' (s,T) = S (qu)) q
—5(Sz'(s,T) — S (¢, 7))] (¢* — 2Re(s)g + |s]*) ™" (3.7)
holds. Equivalently, it can also be written as
Sp'(5.7)S; (¢, T) = (s* — 2Re(q)s + |¢*) ™"
Proof. We show that

Szt (s, T)S; (g, T)(¢* = 2500 + [s]*)
= (Sz'(s,T) = S; (0, T))g = 5(S5" (s, T) = S; (¢, 7)), (3.9)
which is equivalent to (3.7). The left S-resolvent equation (3.4) implies
Sy a.T)g =TS (¢.T) +T.
Applying this identity twice, we obtain
5_1(8 T)S7 ' (a: T)(a* — 2s0q + |s[*)
7 (5, DTSL (0, T) + I)g — 2505 (s, T)[TS; (¢, T) + I
+| 2k (s,1)S. (¢, T)
7 (s, T)T(TS; (0, T) + I+ S5 (s, T)q
—2805R (5, DTSL (¢, T) +I] + |s]*Sg' (5, T)S; (. T)
=[Sz' (s, T)TITS ( T)+Sg'(s,T)T + S5 (5, T)q
—~ 250[[Sk’ (S’T)T]SL (¢, T) + 85" (s, 7))
+1s12S% " (s, 1)S1 (¢, 7).
Now the right S-resolvent equation (3.5) implies
Spl(s,T)T = sSz'(s,T) — I.
Applying this identity twice, we obtain
Sp'(s,T)S; (4. T)(¢” — 2500 + |s%)
= [[sSk'(5,T) = T)T1S; (¢, T) + sS% ' (5,T) = I) + S ' (5, T)g
—2s0[[sSR" (s, T) = Z)S. (¢, T) + Sg' (5, 7))
+ |s? SR (s,T)Sy Y(q,T)
= [s[sSz' (s, T) = Z) = T|S; (¢, T) + 5% (5, T) = I} + Sz ' (5, T)q
— 2s0[[sSR' (s, 7)S7 (¢, T) — S (¢, T)] + Sz (5, T)]
+1s12S% " (s, 1)S1 (¢, 7).
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Collecting like terms, we end up with

Se'(s,T)S; g, T) (¢ — 2s0q + |s]*)
= (5% — 2505 + |s/? )Sk Y(s,7)S; ' (¢q,T)
+[Sg' (s, T) = S (¢, T))g = 5[SR (s, T) — 5. (¢, 7)),

and since s? — 2595 + |s|? = 0, we obtain (3.9). With similar computations we can
show that also (3.8) holds. O

3.2 Definition of the S-Functional Calculus

We can now define the S-functional calculus for a bounded quaternionic linear
operator T" on a two-sided quaternionic Banach space X. The S-functional calculus
is the quaternionic version of the Riesz—Dunford functional calculus for complex
linear operators. We consider a function f that is slice hyperholomorphic on og(T),
and we use the slice hyperholomorphic Cauchy formula. In order to define f(7T')
we formally replace the scalar variable g by the operator T, in Cauchy kernels
S;t(s,q) and Szt (s, q), and we replace in the Cauchy formulas the S-resolvent
operators Sy '(s,T) and Syz'(s,T). It is nontrivial to motivate the fact that we
can replace ¢ by T, as we Wlll see. The main references in which the formulations
and the properties of S-functional calculus for quaternionic operators have been
studied are [10,79,80].

Before we define the S-functional calculus, we show that the procedure de-
scribed above is actually meaningful. In particular, it must be consistent with
functions of T' that we can define explicitly, that is, with polynomials in T

Lemma 3.2.1. Let T € B(X), let m € NU{0}, and let U C H be a bounded slice
Cauchy domain with og(T) C U. For every imaginary unit j € S, we have

1
T =— S (s, T)ds; s™
2 Jowne,) - !
and also
™ 1 s™ds; Syt (s, T)
2 Jawncy) g .

Proof. Let us first consider the case that U is a ball B,.(0) with ||T'|] < . Then
S;t(s,T) = 525 Tms™ 1 for every s € 9B,(0) by Theorem 3.1.6, and this
series converges uniformly on dB;.(0). Thus

1
— S (s, T)ds; s™ = — / sTimnt s, =™,
27 Joes0)ncy) ’ Z (B, (0)NCy) !
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because

/ 8717n+m de — 0 if n # m,
8(B,(0)NC;) 27 ifn=m.

Now let U be an arbitrary bounded slice Cauchy domain that contains og(T).
Then there exists a radius 7 such that U C B,.(0). The left S-resolvent S;*(s,T) is
then right slice hyperholomorphic and the monomial s™ is left slice hyperholomor-
phic on the bounded slice Cauchy domain B,-(0) \ U. We conclude from Cauchy’s
integral theorem that

1

21 Ja(B,(0)nc;)
1

27 Jo(, 0o0v)ney)

1
S; (s, T)ds; s™ —

— S (s, T)ds; s™
21 Jowne,) - ’

S;l(s7 T)ds; s™ =0,

and so
1

— S (s, T)dsjs™
2 Jowney) ¢ !

= — / Sy (s, T)ds; s™ =T™.
21 Ja(s,0)nc))

The second identity, which involves the right S-resolvent Sgl (s,T), follows by
similar arguments from the corresponding series expansion of the right S-resolvent
operator. O

Theorem 3.2.2. Let T € B(X), let U be a bounded slice Cauchy domain that
contains og(T), and let j € S. For every left slice hyperholomorphic polynomial
P(q) = >, ¢°ar with a, € H, we set P(T) =>",_, T*a;. Then

1

P(T) = —
2 Jawnce,)

S; (s, T)ds; P(s). (3.10)

Similarly, we set P(T) = >, a,T¢ for every right slice hyperholomorphic poly-
nomial P(q) = Y_;_o arq" with a; € H. Then
1

P(T) = —
2 Jawnc;)

P(s)ds; Si'(s,T). (3.11)

In particular, the operators in (3.10) and (3.11) coincide for every intrinsic poly-
nomial P(q) = Y_,_, ¢°ae with real coefficients a; € R.

Proof. For P(q) =>",_,q‘as, Lemma 3.2.1 implies

n

1 1
— S (s, T)ds; P(s) = —/ S (s, T)ds;j s*| ar
2 Jowne,) - ’ ;:% 2w Jowne,) - !

n
=> T'ay = P(T).
=0
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The case of a right slice hyperholomorphic polynomial follows with analogous
computations. Finally, if P(q) = Y_;_,q¢as is an intrinsic polynomial with real
coefficients, then the coefficients a, commute with the operator T" and hence

1
S;1(s,T)ds; P T ay
21 Jowne,) © 7 Z
- 1
:ZQZTE:— P(s)ds; Sg'(s,T). O
e 27 Jawnc,)

The S-functional calculus applies to functions that are slice hyperholomor-
phic on the S-spectrum of 7. We introduce the following notation for this class of
functions.

Definition 3.2.3. Let T € B(X). We denote by SHy(0s(T)), SHr(cs(T)), and
N (os(T)) the sets of all left, right, and intrinsic slice hyperholomorphic functions
f with o5(T") C D(f), where D(f) is the domain of the function f.

Remark 3.2.4. The set D(f) is an axially symmetric open set that contains the
compact axially symmetric set og(T'). If we choose j € S, then D(f) N C; is an
open set in C; that contains the compact set o5(7T) NC; and hence there exists a
bounded Cauchy domain U; in C; such that o5(T)NC; C U; and U; C D(f)NC;.
Since og(T) N C; and D(f) N C; are symmetric with respect to the real line, we
can also choose U; symmetric with respect to the real line. Taking the axially
symmetric hull, we obtain a bounded slice Cauchy domain U := [U;] with

os(T) cU and U C D(f).

Definition 3.2.5 (S-functional calculus). Let T € B(X). For every function f €
SH(os(T)), we define

1

by SL_I(S,T) dsj f(s), (3.12)
T Jawncy)

(1) =

where j is an arbitrary imaginary unit in S and U is an arbitrary slice Cauchy
domain U as in Remark 3.2.4. For every f € SHr(os(T)), we define

1

2 Jawnce;)

(T) = f(s)ds; Sg'(s,T), (3.13)

where j is again an arbitrary imaginary unit in S and U is an arbitrary slice
Cauchy domain as in Remark 3.2.4.

Theorem 3.2.2 shows that the S-functional calculus is meaningful, because
it is consistent with polynomials in 7. As the next crucial result shows, it is,
moreover, well defined.
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Theorem 3.2.6. Let T € B(X). For every f € SH1(os(T)), the integral in (3.12)
that defines the operator f(T) is independent of the choice of the slice Cauchy
domain U and the imaginary unit j € S. Similarly, for every f € SHr(os(T)),
the integral in (3.13) that defines the operator f(T) is also independent of the
choice of U and j € S.

Proof. Let f € SHp(os(T)). We first show that the integral (3.12) does not
depend on the slice Cauchy domain U. Let U’ be another bounded slice Cauchy
domain with og(T) C U’ and U’ C D(f), and let us assume for the moment that
U’ CU. Then O = U\ U’ is again a bounded slice Cauchy domain, and we have
O C ps(T) and O C D(f). Hence the function f is left slice hyperholomorphic
and the left S-resolvent is right slice hyperholomorphic on O. Cauchy’s integral
theorem therefore implies

1

27 Jaonc)
1

27 Jowne,)
1

2 Jowinc,)

S;l(s,T) dsj f(s)
Sgl(s, T)ds; f(s)

S7' (s, T) ds; f(s).

If U ¢ U, then O := UNU’ is an axially symmetric open set that contains
os(T). As in Remark 3.2.4, we can hence find a third slice Cauchy domain U”
with og(T) € U” and U” C O = UNU’. The above arguments show that the
integrals over the boundaries of all three sets agree.

In order to show the independence of the imaginary unit, we choose two
units 4, j € S and two slice Cauchy domains Uy, Us C D(f) with og(T") C Uy and
U, C Us. (The subscripts ¢ and s are chosen in order to indicate the respective
variable of integration in the following computation.) The set Ug := H\ U, is then
an unbounded axially symmetric slice Cauchy domain with 75 C ps(T). The left
S-resolvent is right slice hyperholomorphic on pg(T") and also at infinity because

+o0
. -1 s n._ —n—1 __
SIEEQSL (S,T)—Sli}IgoZ%T s =0.

The right slice hyperholomorphic Cauchy formula implies therefore

1

S (s, T) :*/ S;' (g, T)dg; Sg' (g, )
2m A(UNC;)

for every s € U°. Since 0(Ug N C;) = —9(U, N C;) and Sp'(q,s) = —S;'(s,q) by
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Corollary 2.1.26, we therefore obtain

1
2m Jaw.ncy)
1 - —
~ @ /a(U nc;) </6(Ucm(c.) 816, T) dai S (4. 8)> ds; f(s)

1 / 1 —1
= St (q,T)dg; / ST (q,8)ds; f(s
(2m)? A(U,NC;) o (@T) < a(U.NC;) b (@5 ds; f{ )>

1 _
- 57 Mg, T) dg; f(q),
21 Jaw,ncy)

F(T) Sp' (s, T)ds; f(s)

where the last identity follows again from the slice hyperholomorphic Cauchy
formula because we chose U, C Us. O

Theorem 3.2.6 shows that the S-functional calculus is well defined for every
left or right slice hyperholomorphic function, and Theorem 3.2.1 shows that it is
consistent with polynomials. Moreover, if f € NM(og(T)), then (3.12) and (3.13)
give the same operator. We will show this by uniform approximation of f with
intrinsic rational functions. Hence we first need to show that the S-functional
calculus is consistent with the limits of uniformly convergent sequences of slice
hyperholomorphic functions and that both versions of the S-functional calculus
are consistent for intrinsic rational functions.

Theorem 3.2.7. Let T€B(X). Let f,,, f€eSHL(os(T)), orlet frn, fESHR(0s(T))
for n € N. If there exists a bounded slice Cauchy domain U with o5(T) C U such
that fr, — f uniformly on U, then f,(T) converges to f(T) in B(X).

Proof. Since f,, — f uniformly on U, we can exchange limit and integration and
obtain

_ 1 S; (s, T)ds; f(s) = f(T). =

Lemma 3.2.8 (Product rule). Let T € B(X) and let P be a slice hyperholomorphic
intrinsic polynomial. If g € SHi(0s(T)), then Pg € SHi(os(T)) and

(Pg)(T) = P(T)g(T). (3.14)
Similarly, if f € SHr(os(T)), then fP € SHRr(os(T)) and

(fP)(T) = f(T)P(T). (3.15)
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Proof. We consider only the case g € SH(cs(T)) because the right slice hyper-
holomorphic case follows as usual by similar arguments. Since P is intrinsic, the
function Pg belongs to SH(0s(T)) by Theorem 2.1.4. By Theorem 3.2.2, we can
represent the operator P(T') by the slice hyperholomorphic Cauchy integral (3.11)
that involves right S-resolvent operator. The identity (3.14) follows now the same
computations as in the proof of the general product rule in Theorem 4.1.3. Since
these computations are a quite long, we prefer not to replicate them here and refer
instead to the proof of Theorem 4.1.3. O

Remark 3.2.9. The reader might wonder why we refer to the proof of the general
product rule instead of showing it right away here. The reason is that at this stage,
we are not yet able to do this: since the S-resolvent equations involve both the left
and right S-resolvent operators, it is essential to know that (3.12) and (3.13) are
consistent for every intrinsic function f, i.e., that they give the same operator f (7).
So far, we know only that this holds for intrinsic polynomials; cf. Theorem 3.2.2.
The special case of the product rule in Lemma 3.2.8 is, however, essential for
the proof of the compatibility of the S-functional calculus with intrinsic rational
functions and in turn for the proof of the compatibility of (3.12) and (3.13) for
arbitrary intrinsic functions. Hence it cannot be postponed. The overall strategy
consists, therefore, in proving the following statements, each of which builds upon
the previous one.

(1) The S-functional calculi for left and right slice hyperholomorphic functions
coincide for intrinsic polynomials; cf. Theorem 3.2.2.

(2) The product rule holds if an intrinsic polynomial is involved; cf. Lemma 3.2.8.

(3) The S-functional calculi for left and right slice hyperholomorphic functions
are consistent for intrinsic rational functions.

(4) The S-functional calculi for left and right slice hyperholomorphic functions
are consistent for arbitrary intrinsic slice hyperholomorphic functions.

Only at this stage can we prove the general product rule. The computations for
the special case in (2) and for the general product rule are, however, identical, so
that we prefer to show them just once.

Lemma 3.2.10. Let T € B(X). If P is an intrinsic polynomial such that P~! €
N(os(T)), then P~1(T) = P(T)~1. Moreover, if r(q) = P(q)~'Q(q) is an intrin-
sic rational function and P~ € N(og(T)), then (3.12) and (3.13) give the same
operator r(T) = P(T)~*Q(T).

Proof. Let 0 # P € N'(H) be a polynomial with real coefficients such that P~ €
N(os(T)). Then Lemma 3.2.8 implies

I=1(T) = (PP™))(T) = P(T)P~X(T)
if we consider P and P~! left slice hyperholomorphic functions and

I—1(T) = (P~'P)(T) = P~/ (T)P(T)
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if we consider them right slice hyperholomorphic functions. Hence P(T) is invert-
ible and
P(T)™' =P (T
for both versions of the S-functional calculus.
For an intrinsic rational function r(q) = P(q)~'Q(q), we obtain again from
Lemma 3.2.8 that r(T') = P(T)~'Q(T) if we consider it a right slice hyperholo-
morphic function and r(T') = Q(T)P(T)~! if we consider it a left slice hyperholo-

morphic function. Since P(T") and Q(T') are polynomials in 7" with real coefficients,
they commute, and we find that in both cases, r(T') = P(T)~1Q(T). O

Theorem 3.2.11. Let T € B(X). If f € N(os(T)), then both versions of S-
functional calculus give the same operator f(T). Precisely, we have

1

271 Jownce;)

1
SL_l(SaT) ds; f(s) = 7 /G(UQC) f(s) ds; S}gl(s?T).

Proof. Let f € N(os(T)) and let U be a bounded slice Cauchy domain such
that o5(T) € U and U C D(f). Then U is compact and therefore Theorem
2.1.37 implies the existence of a sequence r,, of intrinsic rational functions such
that f = lim,_ 0 7 uniformly on U. From Theorem 3.2.7 and Lemma 3.2.10, we
conclude that

1
— S (s, T)ds; f(s)
21 Jowney) - !
1
= lim—/ ST s, T)ds; ro(s
g [ STy s
1
= lim —/ n(s) ds; Sp* (s, T)
n= 27 Jownc,) TR
1
= — f(s)ds; Sg'(s,T). O
21 Jownc;)

3.3 Comments and Remarks

In the following subsections we want to point out two facts. First we present the
series expansion of the resolvent operator associated with the left spectrum; then
we show how the S-resolvent equation has been obtained.

3.3.1 The Left spectrum o1(T) and the Left Resolvent Operator

Definition 3.3.1. Let T be a right linear operator in B(X). We define the left
resolvent set of T' as

pr(T)={seH: (sT-T)""'eB(X)}
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and the left spectrum of T as
or(T) :=H\ pr(T).

Moreover, we define
Rr(s):=(sZ—-T)7"

for all s € pr(T).
Theorem 3.3.2. Let T € B(V) and let s € H be such that |T|| < |s.

(i) Then the operator Y >~ (s 'T)"s'T is the right and left algebraic inverse
of sT — T, and the series converges in the operator norm.

(ii) The left spectrum or(T) is contained in the ball {s € H : |s| < ||T||}.
Proof. We prove point (i). It follows from the computations that

(sT-T)) (s7'T)"s™'T
n=0
=sIY (s7'T)"sT'T-TY (s'T)"s™'T
n=0 n>0
=sIs "I+ Ts 'T+T(s'T)s "I+
—Ts\T—T(s')s 'L —T(s'T)2s ' T —-- - =T.
Similarly, we can prove that
S (') s I(sT - T) = 1.
n=0

Finally, we observe that for ||| < |s|, the following series converges:

1D (s s <Y (57 T)"s ™ T
n=0 n=0
< s
n=0

o
<Y AT s
n=0

We prove point (ii). Since the series Y (s~'T)"s~'Z converges if and only if
|s~Y||T|| < 1, we get the statement. O

‘We observe that since
oo

Ry(s) = (sIT-T)' = Z(s‘lT)"s_lI, for |s| < ||T|l,
n=0
it is difficult to say whether there exists some notion of hyperholomorphicity as-
sociated with this resolvent operator.
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3.3.2 Power Series Expansions and the S-Resolvent Equation

Finding the S-resolvent equation was a quite difficult task. A hint on its struc-
ture came from computations with the power series expansions of the S-resolvent
operators, which we show in the following lemmas.

Lemma 3.3.3. Let B € B(X) and let s,q € H. For |q| < |s|, we have

“+oo
> qmBsTI T = —(¢* — 2Re(s)g + s) (B - Bs)  (3.16)
m=0

and
+o00
Z s B¢™ = —(Bq —3B)(¢* — 2Re(s)q + |s|*) 7t (3.17)
m=0

Moreover, (3.16) can be rewritten as
—+oo
> ¢"Bs™'™ = (@B — Bs)(s” — 2Re(g)s + |¢*) !, (3.18)
m=0

and (3.17) can be written as

—+00
> s B = (57— 2Re(q)s + [q*) 7 (sB — By). (3.19)

m=0

Proof. We have

+oo
(¢ — 2Re(s)g + |s/?) 3 ¢ Bs~1—
m=0
—+o0 +o0 —+o0
= Z ¢"tiBsTiTm — Z ¢" M Bs 17 m2Re(s) + Z ¢"Bs~17™|s|?
m=0 m=0 m=0

+oo
= Z q"Bs™'7™(s? — 2Re(s)s + |s]?)
m=2
—qBs (s +3) 4+ Bs !|s|? + ¢Bs?|s|* = —¢B + B5,
because for every s € H,
5% — 2Re(s)s + |s|* = 0.

Multiplication by (g% — 2Re(s)q + |s|?) ™! from the left yields (3.16). The identity
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(3.18), on the other hand, follows from

“+o0
> q"Bs ™ (s* — 2Re(q)s + |q|?)
m=0

—+oo —+oo —+oo
= Z q"Bs'™™ — Z 2Re(q)¢™Bs™™ + Z lg|>¢"Bs™t™™
m=0 m=0 m=0

+oo

= (¢* = 2Re(q)q + |q|)*¢"Bs ' "™ + Bs + qB — (¢+q)B = Bs — B

m=0

and multiplication of this equality by (s?> —2Re(q)s + |¢|?)~! from the right. With

similar computations one can verify (3.17) and (3.19).

Corollary 3.3.4. Let B € B(X). For s,q € H with |q| < |s|, we have
S @ Bs T = — (¢ — 2Re(s)g + |s|*) (4B — B3)
=0

+¢™ Y (¢® — 2Re(s)q + |s|*) Y (gB — Bs)s 1™
and
> IBg’ =~ (Bg—3B)(¢" ~ 2Re(s)q + [s[*)

7=0
+ 5 1"™(Bqg —3B)(¢° — 2Re(s)q + |s|*) " Tq™ T

Moreover, (3.20) can also be written as

Z ¢’Bs™'77 = (gB — Bs)(s*> — 2Re(q)s + |¢|*) "
=0
+ ¢™ (@B — Bs)(s®> — 2Re(q)s + |q|*) "tsT ™,

and (3.21) can also written as

s ' B¢’ = (s* — 2Re(q)s + |q|*) " (sB — BYq)

I

<
I
o

— s 7™ (s® = 2Re(q)s + |q|*) " (sB — Bg)g" .
Proof. We have

m +o00o 400
S At S pai- 3 gact
=0 j=0 Jj=m+1

—+o0 —+o0
_ quAsflfj - qm+1 quAsflfj S*lfm’
Jj=0 J=0

O

(3.20)

(3.21)

(3.22)

(3.23)
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and applying (3.16) for the series yields (3.20). Similarly, the identities (3.21),
(3.22), and (3.23) follow from (3.17), (3.18), and (3.19), respectively. O

We prove now the S-resolvent equation when the S-resolvent operators admit
the power series expansions

+00 too
SL_l(q,T) = Z T™g ™™ and S}gl(s,T) = Z s—i=mpm,
m=0 m=0

which is in particular the case for |T| < |¢| < |s|. Then we have

—+oo
Sp(s,T)S; Zs_l AR DIV B (3.24)
j=0
and setting
(s, q;T) = s ' (T7g ™),
7=0

we can write (3.24) as

Si'(s,T)S ZA 5,¢;T

Since q and (¢? — 2Re(s)q + |s|?>)~! commute, we deduce from (3.21) with B =
T™g=1=™ that
Am(s,:T) = =((T™q ™™g = 5(T™ ¢~ 7™))(¢* — 2Re(s)g + [s|*)
+sT (T = ST ™)) (@ — 2Re(s)g + [s?) g™
=—[(T"q " "™)q—5(T™"qg ™)
+(sTITT™)g = 5(sT T (¢ — 2Re(s)g + |s) 7

Therefore, we obtain

S (s, T)S; g, T) =Y A(s,q;T) =

o m=0 o
— [( Z qu—l—m> q-— 35 Z qu—l—m
m=0 m=0
+ < +§ S—l—me>q -3 f S—l—me

m=0 m=0

(¢* — 2Re(s)g + [s[*) ™"
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and (3.7) follows. To prove that the resolvent equation can be written in the second
form (3.8), we observe that A,,(s,q;T) can also be written using (3.19) as

Am(s, ¢ T) = (s* = 2Re(q)s + [q|*) T (s(T™q~'™™) = (T™¢™ ™))
_ S_l_m(82 _ 2Re(q)s + |q‘2)—1(8(qu—1—m) _ (qu—l—m)a)qm—i-l.

Substituting this in the sum Z;Ojo A (s,q;T), we get the second version of the
resolvent equation.
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Check for
updates

Properties of the S-Functional
Calculus for Bounded Operators

In this chapter we will show that most of the properties that hold for the Riesz-
Dunford functional calculus can be extended to the S-functional calculus. The
proofs of the quaternionic results require several additional efforts with respect to
the classical case.

4.1 Algebraic Properties and Riesz Projectors

An immediate consequence of Definition 3.2.5 is that the S-functional calculus for
left slice hyperholomorphic functions is quaternionic right linear and that the S-
functional calculus for right slice hyperholomorphic functions is quaternionic left
linear.

Lemma 4.1.1. Let T € B(X).

(i) If f,g € SHL(os(T)) and a € H, then

(f+9)(T) = f(T)+9(T) and (fa)(T) = f(T)a.

(ii) If f,g € SHR(os(T)) and a € H, then

(f+9)(T) = f(T)+9(T) and (af)(T) = af(T).
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Proof. If f,g € SHL(U) and a € H, then we have

1 _
(F+a@ =5 [ ST T)ds; (F(5) + 9(6)
™ Jo(unc;)
1
= S (s, T)ds; f(s)
27 Jowne,) - i I
1 _
5 Sp'(s,T)ds;g(s) = f(T) +g(T)
T Jo(uncy)
and
1 _
(fa)(T) = 5 Sz (5, ) ds; f(s)a
T Jo(uncy)
1 _
= (2/ S;1(s,T)ds; f(s)) a= f(T)a.
T Joa(uncy)
The right slice hyperholomorphic case follows by similar computations. O

Since the product of two slice hyperholomorphic functions is not necessarily
slice hyperholomorphic, we cannot expect to obtain a product rule for arbitrary
slice hyperholomorphic functions. However, if f € N (os(T)) and g € SH(0s(T)),
then fg € SHr(os(T)), and if f € SHr(os(T)) and g € N(og(T), then fg €
SHr(os(T)). In order to show that the S-functional calculus is at least in these
cases compatible with the multiplication of functions, we need the following lemma.

Lemma 4.1.2. Let B € B(X). For all q,s € H with q ¢ [s], we have

(B — Bq)(¢* — 2Re(s)q +[s[*) 7! = (s* — 2Re(q)s + |¢|*) " (sB — Bg). (4.1)
If, moreover, f is an intrinsic slice hyperholomorphic function and U is a bounded
slice Cauchy domain with U C D(f), then

1 _
o f(s)ds; (5B — Bq)(q” — 2Re(s)q + |s|*) ™" = Bf(q)

™ Ja(uncy)
for every q € U and j € S.

Proof. Since s3 = |s|? and s+5 = 2Re(s) are real, they commute with the operator
B. Hence, for all ¢, s € H with ¢ ¢ [s], we have that

(s* — 2Re(q)s + |¢|*) (3B — Bq)

= s|s|°B — 2Re(q)|s|° B + |¢|*5B — 5° Bq + 2Re(q)sBq — |q|* Bq
= 5B|s |2 Bls|*(¢+7) +3Blq|* — s°Bq + sB(q +7)q — Blg|*q
= (sB — Bg)|s|* — s(s + 5)Bq + (s + 5)Bqq + (sB — Bg)¢®
= (sB — Bg)|s|* — (sB — Bg)2Re(s)q + (sB — Bg)q*
= (sB — Bq)(¢° — 2Re(s)q + |s|*).
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Multiplication by (¢> — 2Re(s)g + |s|?>)~! from the right and multiplication by
(s — 2Re(q)s + |g|?) ™! from the left yields (4.1).

Let now f be an intrinsic slice hyperholomorphic function, let U C D(f) be
a bounded slice Cauchy domain, let ¢ = u+iv € U, and let j € S. An application
of (4.1) gives

1 _
Py f(s)ds; (3B — Bq)(q° — 2Re(s)q + [s*) "
T Ja(uncy)
1 _ _
=5 ds; f(s)(s* — 2Re(q)s + |¢*) (s B — BY),
™ Jawuncy)

where ds; and f(s) commute because f(s) € C; for s € C;, since f is intrinsic.
Now observe that f(s) is intrinsic slice hyperholomorphic on D(f), that (s? —
2Re(q)s + |q|*)~! is intrinsic slice hyperholomorphic in s on H \ [g], and that
sB — Bq is left slice hyperholomorphic in s on all of H. Hence their product
F(s) := f(s)(s®> — 2Re(q)s + |q|*) "1 (sB — Bqg) is left slice hyperholomorphic on
D(f)\[g]. By Proposition 2.3.12, the restriction F}; of this function to the complex
plane C; is therefore a left holomorphic function with values in the complex left
Banach space X over C;.

Assume now that g ¢ R. Then F}; has two poles in UNC;, namely ¢; = u+jv
and g;. From the residue theorem we therefore deduce that

1
21 Jawnc;)
= Res(F}, q;) + Res(F}, ;).

f(s)ds; (5B — Ba)(q* — 2Re(s)q + |s|*) ™

Since s and ¢; belong to the same complex plane, they commute, so that we have

(s —2Re(q)s +¢*) ' = (s —q;)) (s —q) ",
and in turn

Res(Fj,q;) = lim (s —q;)Fj(s)

s—q;,5€C;
= f(4;)(¢; — @) (¢;B — BY) = f(g;)(2vj) " (vjB + Bui)
and

Res(Fj, ;) = lim__ (s —q;)F;(s)

5s—q;,5€C;
= (@)@ — ¢;))"" (@B — Bg) = f(q;)(—2jv)~ " (—vjB + Bui).
Thus we have
1 1 1 1
Res(F}, q;) + Res(F}, q5) = f(qj)§B - f(Qj)ijBi + f(‘TjBB + f(@)ijBi

= S0 @) + @B+ 5 (~ (@) + F(@)iBi
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Since f(q;) = fo(u,v) + fi(u,v)j with fo(u,v), fi(u,v) € R, we finally obtain

Res(Fj, ¢5) + Res(Fj, qj) = fo(u, v) B+ (= f1(u,v)j)jBi

:B(fO(uav)+f1(uav)i> Bf(q>
and hence
= 7(s)ds; (5B = Ba)(a® — 2Re(s)q +|s1%) " = Bf (a).
aUNC;)

If, on the other hand, ¢ € R, then also f(gq) € R. Since ¢ = § commutes in this
case with B, we moreover have

F(s)=(s—q)" f(5)B,

and so

1
21 Jawnce;)
=Res(Fj,q) = lim (s—q)F(s)B= f(q)B = Bf(q). O

s—q,s€C;

f(s)ds; (3B — Bq)(q® — 2Re(s)q + [s|*) ™

Theorem 4.1.3 (Product rule). Let T' € B(X) and let f € N(os(T)) and g €
SHi(os(T)) orlet f € SHr(os(T)) and g € N(os(T)). Then

(f9)(T) = F(T)g(T).

Proof. Let f € N(os(T)),let g € SHL(0s(T)), and let U, and U, be bounded slice
Cauchy domains that contain og(7') such that U, C Us and Us; C D(f)ND(g). The
subscripts ¢ and s refer to the respective variables of integration in the following
computation. We choose j € S and we set I's := 9(U; N C;) and T'y := 0(U, N C;)
for neatness. By Theorem 3.2.11, we can write f(7) using both the left and right
S-resolvent operators, and so

FT) = 5= [ 1)y S5, [ 0. T) oy 000
= ;ﬂ/r f(s)ds; [;ﬂ /Fq Sr'(s,T)S7 " (¢, T) dg; g(q)

For simplicity we set Qs(q) ™! := (¢% — 2Re(s)q + |s]?) 1. If we apply (3.7) in the
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above integral, we obtain

FT)(T) = oz [ sy [ 551 T)a0u(@) " day 9o
1

e S [ S0 T2 day g0

1 B B
T / s, [ 357 (20 day 900

3

ds]/F 5571 (¢, T)Qs(q) " dg; 9(q).

We observe that

s) de/F Sp'(s,T7)qQs(q) *dg; g(q)

s)ds; Sp*(s,T)

/F qQs(q) " dg; g(Q)] =0

and

- ﬁ/r.f(s) 43 [/F SSRI(S*T)Qs(q)‘ldqjg(q)]

- ‘@/Fﬂs) ds; 5 S5 (s.T)

Q.(q)~" dgj 9(‘1)] =0

F‘I
by Cauchy’s integral theorem, because the functions Q,(q)~! and ¢Q(q)~* are

for every s € I's right slice hyperholomorphic on an open set that contains U,,
since we chose U; C Us. Therefore, we have

f(T)g(T)z—% / £(s) ds; / 7 (4. T)gQu(a)" da; 9(q)

e SO [ 555 @ 1) day o)
o / | 7625y 55 (0.1 = 554 (0. 7)) Qula) ™y gt

The integrand in the last integral is continuous and hence bounded on I'y x T',.
We can thus apply Fubini’s theorem and change the order of integration, so that

FOT) = s | [ / F(s) sy 557 (0.T) = S50 Tl Q)™ | dy o).
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Applying Lemma 4.1.2 with B = S;'(¢,T), we obtain

1

T or

F(T)g(T) / ;M (0, T) day £(@)9(a) = (F9)(T).

The product rule for the S-functional calculus for right slice hyperholomor-
phic functions can be shown with analogous computations using the second version
(3.8) of the S-resolvent equation. O

Corollary 4.1.4. Let T € B(X) and let f € N(os(T)). If f~! € N(os(T)), then
f(T) is invertible and f(T)~' = f~1(T).
Proof. From Theorem 4.1.3, we deduce that

T=1T) = (ff)(T) = F(D)f~\(T)

if we consider f and f~! left slice hyperholomorphic functions and that

I=1UT)= (f1)(T)= Y T)f(T)

if we consider them right slice hyperholomorphic functions. Hence f(T') is invertible
with f(T)~ = f(T)~ . d

Finally, the S-functional calculus has the capability to define the quaternionic
Riesz projectors and allows one in turn to identify invariant subspaces of 1" that
are associated with sets of spectral values.

Theorem 4.1.5 (Riesz’s projectors). Let T € B(X) and assume that og(T) =
o1 Uos with
dist(o1,02) > 0.

We choose an open azially symmetric set O with 01 C O and ONoy = O and
define X5,(s) =1 for s € O and Xxs,(s) =0 for s ¢ O. Then x,, € N(os(T)),

and )
Poim @ =5 [ s 1)as,
27 Jaonc;)

15 a continuous projection that commutes with T'. Hence Py X 1is a right linear
subspace of X that is invariant under T .

Proof. The function y,, obviously belongs to N (og(T)), and by Theorem 4.1.3,
we have

Pgl = Xo1 (T)Xo: (T) = (Xo1 Xo: (T) = X0, (T) = Py, -

Hence P,, is a projection in B(X). Since it is right linear, its range P, X is a
closed right linear subspace of X. Moreover, we have

TPy, = s(T)Xo, (T) = (X0, (T) = (X1 )(T) = X0, (T)s(T) = Py, T.
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For every x € P,, X, we thus obtain
Tx =TP, =P, Tr forallze P, X,
and hence P,, X is invariant under 7'
We can show these properties explicitly, which we shall do now so that the
reader can see the analogy with the Riesz projectors of the F-functional calculus in
Theorem 7.4.2. Let us choose two bounded Cauchy slice domains U, and U, such

that o C U, and @ C U, and U, C O. We choose j € S and we set 'y := o(UsNC;y)
and I'y := 0(U, N C;) for neatness. By Theorem 3.2.11, we then have

. 1 o-1 _i —1 .
Po =g [ S oD = 5 [ Sita ),

s

:—/ dsj Sp (5, T)— / S; g, T)dg;
1 —1 —1
= (27_(_)2/F ds; [/F Sr (s,T)S; (q,T) dg;

For simplicity we set Qs(q) ™! := (¢% — 2Re(s)q + |s]?) 1. If we apply (3.7) in the
above integral, we obtain

and so

F(T)g( | ds; | Sp'5T)aQu(a) ™" dgy
- o7 /d/s ¢, 1)9Qu(0) " day
_ (2;)2 /F ds /Fqssﬁ,l(s 7)Q.(g)" dg

‘We observe that

1 _ _
(277)2/1“5 ds; /Fq SRI(S,T)(]QS(‘I) lde

1 -1 -1
_W/I‘sdstR (s,7) /quQs(Q) dqj] =0

- (271T)2/r " [/r Ssgl(s’T)Qs(Q)ld%]

1 -1 —1
:_W/FS ds;j 585 (s,T) /F Qs(q) dqy'] =0

and
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by Cauchy’s integral theorem, because the functions Q,(q)~! and ¢Q(q)~* are
for every s € I'y right slice hyperholomorphic on an open set that contains Uy;
since we chose U; C Us. Therefore, we have

P2 =— @2 /dsj/S (¢, T)qQs(q)~" dg;

+W/F dsa’/r 55, 1(¢,T)Qs(q) " dg;
_ ﬁ/r /F de [gS[_,l(QaT) — S[—/l(q)T)q] Qs(Q)_ldqu.

The integrand in the last integral is continuous and hence bounded on I'y x T',.
We can thus apply Fubini’s theorem and change the order of integration so that

P [ ][ s - s e a0 do

q s

Applying Lemma 4.1.2 with B = SL_l(q,T) and f(q) = 1, we obtain
1
2 -1
P; = 27T/Fq S;(q,T)dg; = Py,.

We furthermore have, because of (3.4), that

TPCH:L/ TS;'(q,T) dg;

1 _
:f/ Yq. T dq]qff/ Tdg; = 5- S; (g, T)dg;q
Fq

by Cauchy’s integral theorem and similarly

1 _
P, T = o dsj Spl(s,T)T

1 _ 1 1 -
% sdsstl(s,T)%T/Fs deIQW/FS sds; Sp'(s,T).
By Theorem 3.2.11, we thus have

1 _ 1 _
—%/FqsLl(q,T)dqjq:%/Fssdsstl(s,T)zme. O

4.2 The Spectral Mapping Theorem and the
Composition Rule

Similar to the product rule, the spectral mapping theorem does not hold for ar-
bitrary slice hyperholomorphic functions. This is not surprising: it is clear that it
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can hold only for slice hyperholomorphic functions that preserve the fundamen-
tal geometry of the S-spectrum, namely its axial symmetry. Again, the class of
intrinsic slice hyperholomorphic functions stands out here, since it is this class of
functions that maps axially symmetric sets to axially symmetric sets.

Theorem 4.2.1 (The spectral mapping theorem). Let T € B(X) and let f €
N(os(T)). Then

os(f(T)) = flos(T)) = {f(s): s€os(T)}.
Proof. Let U be a bounded slice Cauchy domain such that og(T) C U and U C
D(f) and let s = u+ jv € og(T). For ¢ € U\ [s], we define

9(q) = (¢ = 2Re(s)q + [s]*) 7' (f()* — 2Re(f(s)).f (@) + | (s)*)-

Since f is intrinsic slice hyperholomorphic, the function

g f()* = 2Re(f(s))f (@) + |£(s)I*

is intrinsic slice hyperholomorphic too. If we multiply it by the intrinsic rational
function (¢2—2Re(s)q+|s|?) !, we obtain again an intrinsic slice hyperholomorphic
function, and hence g belongs to N'(U) \ [s].

We can extend g to a function g € N (U). Indeed, if s ¢ R and i € S, then
the function g; = g|c, has the singularities s; = v+ v and 5 = u —iv in U N C;.
However, we have

lim gi (Z)

z—5;,2€C;

= lim (#* = 2Re(si)z + |si[*) 7' (f(2)* — 2Re(f(s:))f (2) + [ £ (50))

z—8;,2€C;
= lim (=) 7 () = fs) (=57 () - Fs0)

z—s;,2€C;
fl (ua ”U)
v

= Fi(s) (s =50) 7 (F(s0) = T(s)) = fils2)

because s;, z, f(s;), and f(z) belong to the same complex plane, since f is intrinsic,
and hence they mutually commute. Since f(5;) = f(s;) because f is intrinsic, we
also have

lim  g;(2)

z—35;,2€C;

= lim (#* = 2Re(si)z + |si*) 7' (f(2)” — 2Re(f () f (2) + [ £(50))

z—5;,2€C;

= dim (=507 (f2) = FG0)) (= = s0) " (F(2) = fls0)

2—755,2€C;

= fE) =) (160 - T6)) = f(s2)
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Thus s; and §; are removable singularities of g;, and since §; = s_;, the function

) if ge U\ [s],

is well defined. Obviously, it is an intrinsic slice function, and its restriction g; to
any complex plane C; is holomorphic. By Lemma 2.1.6, the function g is intrinsic
slice hyperholomorphic.

If, on the other hand, s € R, then the point s is for every i € S the only

singularity of the function g;. Since f(s) = f(5) = f(s), we have f(s) € R and
hence Re(s) = s and Re(f(s)) = f(s) such that

lim  gi(z) = lim (2 =252+ 5%) 7 (f(2)* = 2f(s)f(2) + f(5)?)

z—s,2€C; z—s,2€C;

= lim(z—s)72(f(2) — f(5))* = (fl(s))*

z—00,2€C;

Therefore, the singularity s of g; is removable for every ¢ € S, and since (f! (5))2 =
(Osf (s))2 does not depend on the imaginary unit ¢, the function

~Jale) ifge U\ [s],
o= {(8sf(8))2 itg=s.

is well defined. Obviously, g is an intrinsic slice function and ¢g; = g|unc, is holo-
morphic on U NC; for every ¢+ € S. By Lemma 2.1.6, the function g is also in this
case intrinsic slice hyperholomorphic.

The product rule implies

F(T)? = 2Re(f(s)£(T) + | ()T = (T* — 2Re(s)T + [s]*Z)g(T).
If the operator f(T)? — 2Re(f(s))f(T) + |f(s)|*Z were invertible, then
g(T)(F(T)? = 2Re(f())F(T) + | £(s)PZ) 7"

would therefore be the inverse of T2 —2Re(s)T+|s|?Z. Since we assumed s € o5(T),
this is impossible, and hence f(s) € og(f(T)). Thus

flos(T)) C os(f(T)).
If, on the other hand, s ¢ f(os(T)), then we can consider the function
h(q) = (f*(q) — 2Re(s) f(q) +|s*) 7",

which is an intrinsic slice hyperholomorphic function. Its poles are the spheres
[q] C U such that f([¢q]) = [f(q)] = [s]. Since we assumed s ¢ f(og(T)), it does
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not have any poles on og(T'). Thus it belongs to N (os(T)), and Corollary 4.1.4
implies
-1
h(T) = (f(T)* = 2Re(s) f(T) + |s|*) " € B(X).
We find that s € pg(T') and in turn also

os(f(T)) C f(os(T)). O
The spectral mapping theorem allows us to generalize the Gelfand formula
for the spectral radius to quaternionic linear operators.
Definition 4.2.2. Let T € B(X). Then the S-spectral radius of T is defined to be
the nonnegative real number
rs(T) :=sup{|s|: s € os(T)}.
Theorem 4.2.3. For T € B(X), we have

rg(T) = lim ||T"|".

n—-+o00

Proof. The mapping q — ¢~ ' is intrinsic slice hyperholomorphic, and hence g

Sgl(q_l7 T) is slice hyperholomorphic on the set
U:={geH: ¢ 'eps(T)}.

Since H \ By, (1y(0) C ps(T'), the set U contains the ball By /.. (1)(0). By Theo-
rem 2.1.15, the function Sgl(q_l,T) admits a power series expansion at 0 that
converges on By /(1) (0). Because of Theorem 3.1.6, it is given by

+oo
— - n, n 1
St (et T) :ZT "t gl <m~
n=0

For s € H with [s| > rs(T), we thus have ||T"s™""*|| — 0 as n — 400 because
the above series converges. In particular, we have

C(s) =sup||[T"s™ " 71| < 4o0.
neN

Therefore,

1
limsup ||T7"||* — = limsup ||T"|* |s -
n—-+oo

n—4o00 S|

= limsup [|[T"s " ||* < limsup C(s)* =1,
n—+00 n—+o00

and hence )
limsup |77 < |s].

n——+4oo
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Since s was arbitrary with |s| > rg(T'), we obtain

lim sup ||T"||% <rg(T).
n—-+oo

Moreover, Theorem 4.2.1 implies
os(T") = os(T)"
and we conclude from Theorem 3.1.13 that

rs(T)" = sup{lsl" : s € o5(T))
=sup{|s|: s€os(T™)} =rs(T") < ||T"

for every n € N. Therefore, we get

rg(T) < liminf |T7||% < limsup | 77" < rg(T) (4.2)
n—0o0 n—o00

and in turn rg(T) = lim,_,0 |77, where (4.2) also implies the existence of the
limit. g

Finally, the spectral mapping theorem also allows us to generalize the com-
position rule.

Theorem 4.2.4 (Composition rule). Let T € B(X) and let f € N(os(T)). If
g € SHi(os(f(T)), then go f € SHL(os(T)), and if g € SHr(f(os(T))), then
go f e SHr(os(T)). In both cases,

g(f(T)) = (g o /)(T).

Proof. It g € SHL(f(0s(T))), then D(g) is open and axially symmetric. Since f
is continuous and intrinsic, the inverse image of every open axially symmetric set
under f is again open and axially symmetric. The set f~1(D(g)) is therefore an
axially symmetric open set, and it contains og(T), since f(os(T)) = os(f(T)) C
D(g) because of Theorem 4.2.1. By Theorem 2.1.4, the composition g o f is a
left slice hyperholomorphic function with domain f~1(D(g)), and so it belongs to
SHi(os(T)). B

Let U be a bounded slice Cauchy domain such that og(7) C U and U C D(f)
and let W be another bounded slice Cauchy domain such that og(T) C f(U) C W
and W C D(g). (Such slice Cauchy domains exist because of Remark 3.2.4.) The
mapping s SL_l(q, f(s)) is left slice hyperholomorphic on

{seD(f): fls)¢ldy ={se€D(f): a¢[f()]}

by Theorem 2.1.4. If ¢ ¢ og(f(T)) = f(os(T)), then s + S;'(g, f(s)) there-
fore belongs to SHy(0s(T)). Since the S-functional calculus is compatible with
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algebraic operations, we have
Sp Mg, F(T)) = =Qqu(f(1) ™ (f(T) —aT)
: S7 (5, T ds; [~Qu(£() ™ (F(s) ~ )]

27 Jawney)
1

= Sy M(s,T)ds; Sy (g, f(s))
™ Jauncy)

with Qs(f(s))™! = (f(s)? — 2Re(q) f(s) + |¢|?)~! and an arbitrary imaginary unit
j € S. Therefore,

s =g [P ST dasola)
1 1

L 2 Si (s, T)ds; Si ' (a, ()| daj 9(a)-
2 Jawncy) 27T/8(Um<cj) 1 (8,T)ds; S;7 (g, f(5)) | dg;9(a)

Since the integrand in the last integral is continuous and hence bounded on the
compact set (W NC;) x 9(UNC;), we can apply Fubini’s theorem to change the
order of integration and obtain

1/ -1 1/ .
S Spl(s.T)ds; | = S (p. 1()) dp; 9(p
27 Jowney > T alzﬂ P A OLEEE

== Sp(s.T) ds; g((s))

T Jauncy)
== S7M(s,T) ds; (g0 f)(s) = (g F)(T). O
T Joa(uncy)

9(f(T))

4.3 Convergence in the S-Resolvent Sense

The following definition and the next result show that the notion of convergence
in the resolvent sense is meaningful also in the quaternionic setting. This notion
is important for unbounded operators.

Definition 4.3.1 (Converges in the norm S-resolvent sense). Let T},, m € N, and
T belong to B(X) and suppose that ps(T) = ps(Ty,) for all m € N. We say that
T, converges to T in the norm left S-resolvent sense if S;'(s,T,,) — S;*(s,T)
in B(X) as m — 400 for all s € ps(T) and that T, converges to T in the norm
right S-resolvent sense if Sg'(s,Tm) — Sg'(s,T) in B(X) as m — +oo for all
s € ps(T).

Theorem 4.3.2. Let T,,, € B(X), m € N be uniformly bounded, T € B(X), and

suppose that ps(T) = ps(Tm) for all m € N. The following statements are then
equivalent:
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(i) To converges to T in B(X).
(ii) Ty, converges to T in the norm left S-resolvent sense.
(i) T, converges to T in the norm right S-resolvent sense.

In each of these cases, the convergence Sy ' (s, Tp) — S (s, T) or Si'(s,Tn) —
Sgl(s,T) is uniform for s on compact subsets of ps(T).

Proof. Assume first that (i) holds. Then
Sp(s,T) = S; (s, Tn) = —Qs(T) ' (T — 3 — T}, + 3I)
~(Qu(1) ™" = Qu(Tin) ™) (Tin — 31)
and hence
ISg " (5,T) = Sp ' (5, T
< || Qs(D) T = Tl + | Qu(T) ™ = Qu(Tra) Y| I Tone — 3T
We observe that
Qu(T)™" = Qu(Tin) ™"
=Qu(T) " (T2 — T2 = 250(T — T;n) Qu(T) ™ (4.4)
=Q,(Tn) N (T (T = T) + (Tyy — T)T + 250(T — T},)) Qs (T) 1.

Hence if we can show that there exists a positive conbtant C such that [|Qs(Thn)|| <

C; for all m € N, then we will obtain ||Qs(T)~! — Q4(T,,) || — 0 and in turn,

due to (4.3), that S;'(s,T) — S;'(s,T) in B(X). We point out that
Qs(Tm) = Qs(T) (Qu(T)~ Q‘;(Tm))

= Qu(T) (T = Q(T) " H(T? = Ty, = 250(Tn = T))) -

(4.3)

vv

(4.5)

For A € B(X) with ||A|| < 1, the operator (Z — A)~! = 3°7°0 A" € B(X) exists
and satisfies [|(Z — A)7|| < (1 — ||A]|)~". Since T}, — T, we find that

Ay = Qu(T) N (T? = T2, — 250(Trn, — T)) — 0

in B(X) as m — 400 and hence ||A,,|| < 1/2 for sufficiently large m. For such m,
the operator Z — A, is invertible with ||(Z — A,,)~!|| < 2, and because of (4.5),
we obtain

Qu(Ty) ' = (T - An) 10, () (4.6)

and in turn
|Qs(Tn) M| < [T = Am) M| [|Qs(T) 7| < 2]]Qs(T) ] (4.7)

Therefore,
Cs := sup ||Q5(Tm)_1H < 400,
meN
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and we conclude that (ii) holds.
The convergence Sy ' (s, T,,) — Sy (s, T) is even uniform in s on every com-
pact set K, since because of (4.3), we have

sup [|S7 " (s,T) = Sp* (s, T |
seEK

< sup HQS(T)_1|| 7" = Tyl + sup HQS(T)_l - QS(Tm)_lu [T — 5]
seK s€EK

Since Q,(T)~! is continuous on pg(T"), we have sup,cj || Qs(T)~|| < 400, and
so the first summand converges to 0 uniformly in s as m — +o0o. For the second
summand, we have because of (4.4) that

30 [|Qu(T) ™ = Qu(Ton) ™! I — 57|
< Sup 195 (Ton) M T | T = TN || Qs (T) || || T — ST
+ 50 | Qu(T) ™| T = TITY [ Qa() |15 52

=+ Sg}g 1250 ||QS(Tm)71H T — Tl HQS(T)71|| | T — 3Z].

Because of (4.7), we have ||Qs(Tm) ™| < 2{|Qs(T) 7| for m sufficiently large,
and so

sup HQS(T)_I - QS(Tm)_ln ||Tm - §I||
seK
—_1112 _
< S:EQ Qs (T)H|” UIT | + Tl + 2ls0/11) (1Tl + [SDIT — Ton 1
S C”T - Tm”

because Q(T)~! and sy and 5 depend continuously on s and are hence bounded
on the compact set K.

Conversely, we suppose now that (ii) holds and we show that ||T'— T},,|| — 0.
Since T' and T, are uniformly bounded, there exists o € ps(T) N U, ,cn £s(Tin)-
We then have S; (o, T) = (oZ — T)~! and S; ' (a, T,) = (aZ — Tp,) ™!, and so

1T =Tl = lla = Ton = (= T))|
<lla =Tl || (eZ = T)™" = (aZ = ) 7| lla = T
= |aZ = TullllaZ — T|| ||S; " (o, T) = S; (o, Tn)|| = O
because || Ty, is uniformly bounded.
The equivalence of (i) and (iii) is shown with similar arguments. O

Remark 4.3.3. Since by the above theorem convergence in the norm left S-resolvent
sense and convergence in the norm right S-resolvent sense are equivalent, we will
not distinguish between them in the following and just say that T,, converges to
T in the norm S-resolvent sense.
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Theorem 4.3.4. Let T,,, m € N, and T belong to B(X) with ps(T) = ps(T) for
all m € N and suppose that T,, converges to T in the norm S-resolvent sense. If
feSHL(os(T)) or f € SHRr(os(T)), then

If(T) — f(T)|l = 0 as m — +oo.
Proof. If f € SH(0s(T)), then

1
o

$O0) = 10 = 50 [ (576 ) = SET)) s 19

with j € S and a suitable bounded slice Cauchy domain U. Since f(s) is continuous,
it is bounded on the compact set (U N C;), and hence there exists a positive
constant C' > 0 such that

T..) — f(T)|| < C ST (s, Th) — ST (s, T 0
Hf( ) f( )”— sear?l?‘%(cj)H L (57 ) L (87 )H_) ’

since ||Sgl(s,Tm) - Sgl(s,T)H — 0 converges uniformly to 0 on the compact
set O(U N C;) by Theorem 4.3.2. Similarly, we prove the statement for f €
SHR(Us(T)). O

4.4 The Taylor Formula for the S-Functional Calculus

Consider a bounded operator T and let N be a small perturbation operator that
furthermore commutes with 7. Then f(T 4+ N) can be represented as a power
series in N that formally corresponds to a Taylor series expansion in the operator.
In this section we show that the Taylor formula can be extended to quaternionic
operators, but before we can state the main theorem, several preliminary results
are needed. This result is the quaternionic analogue of Theorem VII.10 in [104],
and it was proved in [55] in the more general setting of paravector operators on a
two-sided Clifford module.

Before we are able to show the Taylor expansion in the operator, we need
to determine the slice derivatives of the S-resolvents. We start by finding explicit
formulas for the functions

S7(s,q):==(s—¢q)"*" and SE(s,q) = (s—q)*F".
Lemma 4.4.1. Let s € H. For n > 0, we have
n n - . n n .
sisa =3 (7)ot ad sy =3 (7)ot )
k=0 k=0
With Qs(q) = ¢* — 2s0q + |s|?, we moreover have

Sp"(s,9) = Qs(@) "5 —q@)"*" and Sg"(s,q) = (3 —-q)"""Qs(q)™".  (4.9)
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Furthermore, for m,n > 0, we have

Sp"(s:0) %1 S (5.0) = Q@) (5 — @) " wp (s — @)
and

Sp"(5:0) ¥r SE™(3,4) = [(5 — @)™ *R (s — 0)"™] Qu(q) ="+

Proof. For n = 0, we have (s — ¢)*2° = 1, and hence (4.8) is obviously true.
Assume that it holds for n — 1. Then (2.18) implies

St(s,q) = (s = Q)*”‘ = (s — @)V sy (8 —4q)
q

R -

1

and (4.8) follows by induction.

We also prove the identity (4.9) by induction. It is obviously true for n = 0.
Assume that it holds for n — 1 and observe that Q,(q)~' € N(H\ [s]). Then by
(2.16) and Corollary 2.1.20 we have SZl(s, q) = (s — ¢)~*%, so this implies

Sp(sq) =(s—a)" L (s —q) ™"
=@ " E- g I (@ G- o)
Qu(g)™ "V (5 =)V xp Qulg) T 1 (5 —0)
= Qu(q) "V x Qu@) L (5 — )tV k(5 g)
= Q@) "G-g™"

Finally (2.16) also implies for m,n > 0 that

Sp"(s,a) *+L S (5,0) = [Qs(@) " (E — @)™ %L [Qs(@) ™ (5 — @)™
Qs(q) ™" L (5= @)™ " *p Qu(q) ™™ L (s —q)™™
= Q)" *L Qs(g)™ " *1 (g —q)" " (s —g)" ™
Qu(q)" "™ (5 — @)™ #r (5 — @)™ ™).
The right slice hyperholomorphic case can be shown by similar computations. [

Corollary 4.4.2. Let s = 59 + jo51 € H and n,m € Ng. If ¢ € C;_, then

(s=@)""*L E—q)"" =(s—q)" G- q" (4.10)
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and
Sp™(s,@) xS g) = (s—q) (5 —q) " (4.11)

Moreover, for every n € Ny, the function
P(q) — Z(g_ q)*L(k"rl) . (S _ q)*L(n—k-l-l) (4-12>
k=0

is a polynomial with real coefficients. Analogous statements hold for right slice
hyperholomorphic powers S (s,q) of s —q.

Proof. If ¢ € C;,, then s, 5, and ¢ commute. Hence it follows from (4.8) and the
binomial theorem that (s — ¢)*2™ = (s — ¢)™ and (5 — ¢)**"™ = (5 — ¢)". From
(2.16), we deduce (4.10). Since ¢ and s commute, we also find that

Q) =(qg—s)"qg—a)",

and so (4.9) implies
S5 =(6-¢ "GE-q "GE-q" =(—-q "

An analogous computation shows that S;"(5,q) = (5 —q)™™.

For arbitrary left slice hyperholomorphic functions f and g, it is because of
(2.21) immediate that (f L g)(q) = f(q)9(q) at a point ¢ if f(q) € C;,. Since
(s —q)~™ belongs to C;_ if ¢ € C;,, we furthermore find that

S50 S =(5—a) " x G- "=(-9 "G-9 "

Finally, we consider P(g). The restriction P;, of this function to the plane C;, is
the complex polynomial P;, (z) = > ;_,(5 — 2)**1(s — 2)"7**1. From the relation

n n

P@=) -9 (s—q)" " =) (s - 1E - g)n = Py (a),

k=0 k=0

we deduce that its coefficients are real. Consequently, P = ext (P;) is a polynomial
with real coefficients on H, where ext; means the extension with the representation
formula. We can show the analogous statement for right slice hyperholomorphic
powers SF (s, q) of s — ¢ with similar arguments. O

We need now to formally replace the scalar variable ¢ in the functions intro-
duced above by the operator T in a way that is consistent with the S-functional
calculus. Recall, however, that the product rule (fg¢)(T) = f(T)g(T) holds only if
f e N(os(T)) and g € SH1(0s5(T)) or if f € SHRr(os(T)) and g € N(os5(T)).
This is due to the fact that for f,g € SHi(os(T)) or for f,g € SHr(os(T)), the
product fg does not in general belong to SH(0g(T')) resp. SHr(os(T)).

If, on the other hand, one considers the left slice hyperholomorphic product
f *1 g of two left slice hyperholomorphic functions (or equivalently, the right
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slice hyperholomorphic product of two right slice hyperholomorphic functions),
then it is not clear to which operation between operators it corresponds. Some
considerations actually suggest that such an operation does not exist.

However, for power series of an operator variable, we can use the formulas
(2.18) and (2.19) to define their *-product resp. *p-product.

Definition 4.4.3. Let T € B(X). For F = /% T"a,, and G = Y% T"b,, with
ag,bp € H for ¢ € N, we define

+oo n
FxpGi=>» T" (Z akbnk> )
n=0 k=0

For F = Z::a a,T" and G = Z::) b, T™, we define

—+o0 n
FxpG:= Z‘; <kzoakbn_k> T".

Remark 4.4.4. For F =% T"q, and G = 3./°% T"b, note that F *, G = FG

n=0
if a, € R for every n € N. In this case, the coefficients a, commute with the

operator 7', and hence

“+o0 n 400 n
F *L G= Z A (Z akbnk> B Z ZTkaan_kbn,k = FQ@G.
n=0 k=0 n=0 k=0

Similarly, F xz G = FG if b, € R for every n € N.

Corollary 4.4.5. Let T € B(X) and let f(q) = 320 ¢"a, and g(q) = 3,70 ¢"by,
be two left slice hyperholomorphic power series that converge on a ball B,.(0) with
os(T) C Br(0). Then

() #L 9(T) = (f L 9)(T).
Similarly, for two right slice hyperholomorphic power series f (q) = Zi% anq™
and §(q) = :,r:a bnq™ that converge on a ball B-(0) with os(T) C B,(0), we have

F(T) % §(T) = (f *r §)(T).
Proof. By the properties of the S-functional calculus, we have f(T) = ::6 T"ay,
and g(T) = 320 T"b,,. Hence

—+o00 n
F(T) %L g(T) =Y T" <Z akbn—k>
n=0 k=0
1 +oo n
Sgl(s,T) ds; Z s" (Z akbnk>
k=0

S o aUunc,) —
1 _
=5 Sp (s, T)dsy f*r g(s) = (f #L 9)(T).
271 Jownce;)

An analogous computation shows the right slice hyperholomorphic case. O
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Observe that S7(s,T) and S%(s,T) and slice hyperholomorphic products
of such expressions are well defined because of Definition 4.4.3. In analogy with
(4.4.1), we furthermore give the following definition.

Definition 4.4.6. Let T € B(X) and let s € pg(T'). For n,m > 0, we define
S8, T) = Qs(T) ™" (5Z —T)*t"
and
Sp™M(s,T) xr Sp™(3,T) i= Qu(T)~ "™ (3T — T)**" xp, (sT — T)*™].
Similarly, we define
Si"(s,T) = (5 = T)"""Q,(T) ™"
and
Sp™(s,T) %r Sg™ (3, T) := [(FT — T)**" xp (sT — T)*2™] Q,(T)~("+m).

Remark 4.4.7. Since the function Qs(q)~™ is intrinsic, the above definitions, due
to the product rule, are compatible with the S-functional calculus, that is,

[SZ"(S, )] (T)=5."(s,T) and [Slg”(s, )] (T) = Sz"(s,T)
as well as
[SL"(s,) %L S (5, )] (T) = S."(s,T) %1 S (5, T)

and
[S};”(s, ) xp SR (5, )] (T)=85"(s,T)* S™ (5, 7).

Proposition 4.4.8. Let T' € B(X) and let s € ps(T). Then

o ST (s, T) = (—=1)™m! S, "V (s, T) (4.13)
and
oS (s, T) = (—=1)™m! S5 (s, T), (4.14)

for every m > 0.

Proof. Recall that the slice derivative, see Definition 2.1.12, coincides with the
partial derivative with respect to the real part sg of s. We show only (4.43), since
(4.44) follows by analogous computations.

We prove the statement by induction. For m = 0, the identity (4.43) is
obvious. We assume that dg' 'S;'(s,T) = (—1)™ ' (m — 1)!.S;™(s,T) and we
compute 9% S; (s, T). We represent S; " (s,T) using the S-functional calculus. If
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we choose the path of integration in the complex plane C;_, then we find because
of (4.11) that

058" (5 ) =05y [ SN p. D)y S )
aunc;,)

- S7 (0. ) dpy (s —p) "

= . b, Dj 950 §—pP

2 Sz p.T)dps (s = p)” ) = —ms " (6,1,
T Jauncy,)

and in turn,
oS, (s, T) = 0s (8;“*1521(5,T))
= (1) Y(m = 1)195S;™(s, T) = (=1)™m! S, ™ V(s, 7). O
Remark 4.4.9. We point out that Proposition 4.4.8 also holds for unbounded closed
operators. In this case, we have to modify the definition of S; " (s, T') by commut-
ing every occurrence of T' with Q4(7T)~™ just as we did in the definition of the left

S-resolvent operator. Otherwise S, ™(s,T) is defined only on D(T") and not on
the entire space V.

Let us now turn our attention to the Taylor series expansion of f(7 + N) in
the operator variable. In order for such an expansion to hold, it is essential that
adding a somewhat small operator N not to perturb the S-spectrum of T a lot.
The following result clarifies how one has to measure the distance between a point
s € ps(T') and the S-spectrum of T'.

Lemma 4.4.10. Let A C H be axially symmetric and let s = sq + js1 € H. Then
dist(s, A) = dist(s, AN C;) = dist (s, AN (CJZ) ,

where dist(s, A) := inf{|s — q| : ¢ € A} and Cjz ={q+Jjq1 : @ € R,q1 > 0}.
Proof. For q = qo+j,q1 € A, define ¢; = qo +th1 We choose i € S withj 1 dand
set k = ji. Then q = qo + §1j + Goi + g3k with ¢ + G5 + 43 = |q|2 = ¢?, and in turn

\S—Qj|2 = (50— qo (31 —(11)2
52

)?

= (50 = q0)* + 57 — 25101 + ¢

= (s0=q0)* + 5t =251\ /@F + B+ B+ +3+ 3

< (50— q0)* + 51 — 28141 + G; + G + G5

=(s0—q0)° + (51— @)+ = s —q*.

Since A is axially symmetric, we have {¢; : ¢ € A} = AN (Cjz. Consequently,

inf [s —q| < inf |s—gq| < inf|s—¢;| < inf |s —
;gA\s QI_qu;C?\S ql_qlgAls qy\_;gAls al,
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and in turn,

dist(s, A) = inlf4 |s —q| = inf N |s —q| = dist(s,Aﬁ(CjZ). O
q€

qEAﬁC;

Proposition 4.4.11. Let T € B(X) and let C C H with dist(C,05(T')) > € for some
€ > 0. Then there exists a positive constant K such that

—m e K
1S™ (5, T) %1, S (3, T)|| < Sn%fn (4.15)

and .
1557 (5. ) %1 S5" (5. 1) < S (4.16)

for every s € C' and m,n > 0.
Proof. Let U be a bounded slice Cauchy domain with o5(7) C U with dist(C,U) >
€. We choose s = sy + js1 € C. By Corollary 4.4.2, we have

St ) *L SLE ) =(s—q) " (5 —q)"

for every x € C;. Lemma 4.4.10 implies dist(s,U N C;) = dist(s,
UNC; is symmetric with respect to the real axis, we also have dist(
and we deduce

. Since

U)>e
5,UNC;) > ¢,

|S™ (s, T) # Sg (5.7

1 — -m —n (=
o | STy S (s 5 S
T Ja(unc,)

1 _ —m (= —n
= [ S emd -p -
™ Jo(uncy)
1

<5 ISz (2, T)|| dlp| |(8—p)”"(§—p)*"!
a(UNC;)
1
< — S t(p d
- 271— a(Uij) H L H |p‘ m+n
Hence if we set
1
Kp :=sup — HS;l(p, T)H d|p|,

ies 2T Jowncy)

which depends neither on the point s € C nor on the numbers n,m > 0, then

K
Sz™(s,T) %, S;(3,T)|| < T

— €m+n :
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Theorem 4.4.12. Let T € B(X) and let N € B(X) be such that T and N commute
and such that os(N) is contained in the open ball B:(0). If dist(s,05(T)) > e,
then s € ps(T' + N) and

—+oo n
QS(T)71 _ Z (Z SL_(k+1)(8,T) . Sz(n—k—&-l)<§7 T)) N™,

n=0 \k=0
where the series converges in the operator norm.

Proof. We first show the convergence of the series

+oo n
Y(s,T,N) := Z (Z S;(]H_l)(s,T) . SL_(n_k+1)(§’ T)) N™.

n=0 \k=0

Since og(N) is compact, there exists 6 € (0,1) such that og(N) C By.(0) C B.(0).
Applying the S-functional calculus, we obtain

m 1 _ .
INm= |5 [ S (5. ) ds 5
T J8(Bo.(0)NC;)
1
< — SH(s,N)| dls||s|™
27 Jo(By.(0)NC;) 5 H
1

2 S_l 7N d O™
21 Ja(Bo. (0)nc;) 182" (s, V)| dls| (6e)

for every m > 0. Hence
IN™|| < Kn(0e)™ (4.17)

with
1

Ky = —
27 Jo(By. (0)nC;)

HS;l(s,N)H d|s|.

From Proposition 4.4.11, we deduce

+oo n
> (Z §; (5, 1) 2 5T, T>) v
n=0 k=0
g k+1 k+1
S ID B AN SR A CA T T
n=0 k=0
+oo KT KTKN +oo
<> (n+ D) s K (0e)" < =5~ > (n+1)0m
n=0 n=0

By the root test, this last series converges because 0 < 6 < 1. The comparison
test yields the convergence of the original series (s, 7, N) in the operator norm.
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From Definition 4.4.6 and the fact that T and N commute, we deduce

Qy(T + N)=T?+2TN + N? — 25T — 259N + |s|°T
= Q,(T) + (2T — 2s9)N + |s|*Z.

If we define
AT(]C, n, S) = (EI — T)*L(k+1) *J, (SI _ T)*L(n*k?Jrl)
for neatness, we therefore have

(s, T,N)Qs(T + N)

= (+ZOO (2”: S;(k:+1)<s7T) . S;(’ﬂ*kﬁ’l)(g, T)) Nn) QS(T—i-N)
k=0

400 n
= Z Q. (T)~("*+2) (Z AT(k,n,s)> N"Q,(T)

k=0
+ Z Qy(T)~("+2) (Z Ar(k,n, s)) N (2T — 2507)
n=0 k=0
+oo n
+3 Q) (Z Ar(k,n, s>> N,
n=0 k=0

Applying Corollary 4.4.2 and the S-functional calculus, we see that each of the
coefficients > _, Ar(k,n,s) = S p_o(GZ — T)*+k+D sy (sT — T)*c(n=k+l) jg g
polynomial in 7" with real coefficients and hence commutes with the operator
Q,(T). Remark 4.4.4 implies

(s, T,N)Q:(T + N)

“+o00 n
= Z Q,(T)~ "+ <Z AT(k,n,s)> N"

k=0

“+o0

+ Z Qs —(n+2) (Z AT(ka n, S) *L (2T - 2501)) Nn+1

Ar(k,n s)) N2
n=0
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= Jrzoo QS(T)i(nJrl) <i AT(kvnv S)) N™
n=0

—+00 n—1
+> Q. (1)~ <Z Ap(k,n—1,8) %, (2T — ZSOI)> N
n=1

k=0

400 n—2
+) 0.1 Ap(k,n
k=0

n=2

n—2
™" (Z Ap(k,n —2, s))
k=0

= QS(T)in <

The identity

n

(5T —T)* 2"+ 5 p (s — T)*L(”k1)>

3?r
Il

0
-1

= QS(T)_n ( SI T) *L (SZ T)*L(n k))

(n+1 (2_: SI T *L(kJrl) *y (SI T)*L(’n k+1)>

k=1

n—1
(n+1)< an),

Y(s, T, N)Q4(T + N)
= Q,(T)"*A7(0,0,s)N°

finally yields

1
+ Q4 <Z Ar(k,1,8) 4+ A(0,0, ) *1, (2T — 2soz)> N
k=0
+oo
+Z —(nt+1) <ZATkns
n=2

n—1 n—1
+ 3 Ap(k,n —1,8) xp (2T = 250) + »_ Ar(k,n, s)) N™.

k=0 k=1
Now observe that

Qy(T)* A7(0,0,8)N° = Qy(T) " (BT — T) #1, (sZ - T))
= Q.(T)1Qu(T) =
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Because of 2T — 250 = —(sZ —T) — (SZ — T'), we have
1
> Ar(k,1,5) + A(0,0, ) xL, (2T — 250T)
k=0
=B —T)*g (ST —-T)*"*+ (BL —T)* 2 x1 (sT—T)
— (B —T)* %% (ST —T)— (53T —T) #1, (s — T)*** = 0.

Finally, we also find again because of 2T — 2s¢Z = —(sZ — T) — (5Z — T) that

n—1 n—1
ZATan +Z/1Tk‘n—1s)*L(2T 2507) +Z/1Tk:ns)
k=0 k=0 k=1
_ Z(gz _ T)*L(k+1) . (SI— T)*L(n—k—i-l)
k=0

1
(5T — T)* =2 4 (sT — T) (=R

3
|

Sﬁ
= O

(§I _ T)*L(k-i-l) . (SI _ T)*L(n—k-l—l)

(]

1T
= O

+ 3 (5T — T) D s (T — T) (kD — 0,

(]

k=1
where the last identity follows after an index shift k£ to £ 4+ 1 in the second sum.
Altogether, we obtain
¥(s,T,N)Qs(T + N) =1.

From Corollary 4.4.2 and the S-functional calculus, we already concluded that
each of the coefficients Y ;_, Ar(k,n,s) in X(s, T, N) is a polynomial in T’ with
real coefficients and thus commutes with both 7" and N. Hence it also commutes
with Q4(T + N), and so also

Qs(T+ N)X(s,T,N) =X(s,T,N)Q,(T + N) =T.
Hence Q4 (T + N) is invertible, which implies s € pgs(T + N). O
Theorem 4.4.13. Let T, N € B(X) be such that os(N) C B ( ) and such that T
and N commute. For every s € ps(T') with dist(s,os(T)) > ¢, the identities

+oo
SpM(s, T+ N)=> " N" 8, "(s,1)
n=0

and

Sg'(s, T+ N) = ZS D (s

hold, where the series converge umformly on every set C' with dist(C,o5(T)) > €.
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Proof. In (4.17), we showed the existence of two constants Ky > 0 and 0 € (0,1)
such that | N||™ < Kn(0e)™ for every m € Ny. Moreover, for every C' C H with
dist(C,05(T)) > €, Proposition 4.4.11 implies the existence of a constant Kp such
that ||S.™ (s, T)|| < Krp/e™ for every s € C and m € Ny. Therefore, the estimate

> s e < ZHN"HHS e

n=ng n=no
—+oo
_ KrKn no—
n 1Mo —0
< E KN 96 n+1 = B E 0 — 0
n=ngo n=mno

holds for every s € C' and implies the uniform convergence of the series on C.
Let s € pg(T') with dist(s,os(T")) > €. We have

“+oo
(T +N)? = 250(T + N) + |s[?2) Y N" 57"V (s,T)
n=0
“+o0
= (T% = 2507 + [s|*Z) Y | N"(T* = 20T + |s|*Z) """V (5T — )72 (")
n=0
+o0
+ (2T = 250T) N > N™(T? = 25T + |s[>)~ "+ (52 — T)*+ (D)
n=0
+oo
+ N2 ON™(T? = 25T + |s|*Z)~ ") (5T — 1)+ (D)
n=0

= > N™T? - 25T + |s|°T) " (5T — T)*+ ("1
+oo
+ ) ONTT(RT - 250T) (T2 — 25T + |s]2Z) =" (5T — 1)+ (D)
n=0

—+oo
+ 3 NTFHT? = 20T + |s[22) " ("5 — 1) (D,
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Shifting the indices yields

+oo
((T+N)? = 2s50(T + N) + [s[22) Y N" 57 "V (s,7)

n=0
+oo
=Y N™(T? = 25T + |s|*T)"(5Z — T)*+ "V
n=0

+oo
+ ) N (2T - 280T) (T% — 25T + |s[*Z) (5T — T)"*"

n=1
—+oo

+ ) N(T? = 25T + |s*T) """V (52 — 1)
n=2

=5 — T+ N(T? — 50T + |s|*T) "' (3T — T)*~-?
+ N(T? — 250T + |s|*7) "1 (2T — 250T) (5L — T)+

+oo
+ 3 NY(T? — 25T + [sPT) " [(gz _T)re(ntD)
n=2

4 (2T — 259T) (5T — T)*="
+ (T2 = 25T + |5*T)(5T — T)*L("‘l)] :

The last series equals 0 because Remark 4.4.4 and the identity
(T? — 250T + |s|*T) = (sT —T) *, (3T —T)

imply

(5 — T)** "+ 4 (2T — 2507) (S — T)**"

+ (T2 = 25T + |8|*T) (5T — T)*+(»= D)
= (57 — T)*= (") 1 (2T — 250T) %1, (5T — T)**™ + (s — T) %1, (ST — T)*t"
= (3L — T+ 2T — 250L + s —T) x1, (5 — T)*=("~Y =,

Hence, we finally obtain

+oo
((T+ N)? = 2s50(T + N) + [s[22) S NS, "V (s, 1)

n=0
=37 — T+ N(T? — 25T + |s|*T) "1 (3°T — 2T5 + T?)
+ N(T? — 25oT + |s|*T) "1 (2T5 — 2505 — 2T + 250T)
=3 — T+ N(T? — 2s¢T + |s|*T) " (=T* + 25T — |s|*Z) =5 — T — N.
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Since Q4(T+ N) = (T + N)?—2s0(T + N) + |s|?T is invertible by Theorem 4.4.12,
this is equivalent to

+oo

STNmS U (5, T) = Qu(T + N) M52 — T — N) = S; (s, T + N).

n=0

The identity for the right S-resolvent can be shown with analogous compu-

tations. O

Theorem 4.4.14 (The Taylor formulas). Let T,N € B(X) with os(N) C B.(0)
such that T and N commute and set

C.(os(T)) :={seH: dist(s,o5(T)) < e}.
If f € SH(C:(05(T))), then f € SHL(os(T + N)) and

f(T+N)= ZN" (82 f) (T).

Similarly, if f € SHr(C:(0s(T))), then f € SHr(os(T' + N)) and

+oo

AT+ N) =3 (056 (T)N™

n=0

Proof. We prove just the first Taylor formula; the second one is obtained with
similar computations. By Theorem 4.4.12, we have og(T + N) C C.(0s(T)), and
so the function f belongs to SHy(os(T + N)). If U is a bounded slice Cauchy
domain with C.(0g(T)) C U and U C D(f), then we find due to Theorem 4.4.13
that

1
F(T+N)= o S (s, T+ N)ds; f(s)
T Joa(uncy)
1 / (n+1)
- § NS, 5,T)ds; f
T Jo(UNC; )n =0 ( ) ’ ( )

+oo
1 —(n
St [ s s, 1)
n=0 4 a(UmCJ)
By Proposition 4.4.8, we have
(n 1o
Sp " (5. 1) = (-1)" 9587 (s, 1),

and so

n n 1 ng—1
f(T+N)= ZN n! /3(Un<c )3SSL (s,T)dsj f(s).
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After integrating the nth term in the sum n times by parts, we finally obtain

+o0o 1 1

FT+N)y=) N'— — S (s,T) ds; (95f)(s)

0 n! 27 a(UNC;)

—ZN" (5D O

4.5 Bounded Operators with Commuting Components

If the components of T' commute, then the S-spectrum can be characterized by
a different operator, which is often easier to handle in the applications. The S-
resolvent operators can in this case be expressed in a form that corresponds to
replacing the scalar variable ¢ in the slice hyperholomorphic Cauchy kernels by
the operator T" when they are written in form II; see Chapter 2.

We saw in Remark 2.3.2 that every two-sided quaternionic vector space X is
essentially of the form X = Xy ® H, where X is the real vector space consisting
of the vectors that commute with all quaternions. If z = Z?:o xpey with xp € Xg,
where we set g = 1 for neatness, then we can write any operator 7' € B(X) as
T = Z?:o Tyep with components Ty € B(Xg), where this operator acts as

3 3 3
Tr = <Z Teez) (Z a:,ie,i> = Z Ty(xy)epes.
£=0 k=0

£,k=0

We obtain B(X) = B(Xgr) ® H, and hence we call any operator in B(Xg) a scalar
operator on X.

Definition 4.5.1. We define BC(X) to be the space of all operators T = Ty +
Z?Zl Tyep € B(X) with components Ty € B(Xg),¢ = 0,...,3, that mutually
commute.

Definition 4.5.2. For T' =T, + 23:1 Tyer € BC(X), we set

3

T = TQ - ZT@@g.
{=1

The following statement shows that for an operator T' € BC(X) the analogues
of the scalar identities s + 5 = 2Re(s) and s5 = §s = |s|? hold. This motivates
the idea that we can write the S-resolvent for such operators also by formally
replacing ¢ by T in the slice hyperholomorphic Cauchy kernels when they are
written in form II.

Lemma 4.5.3. Let T =Ty + > ?:1 Tre, € BC(X). Then 2Ty = T+ T and TT =
7 3
T =2 T2,
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Proof. We obviously have

3 3
T+T=Ty+ ZTeez—f—To —ZTzez =2Ty.
=1 =1
Since the components T, mutually commute and eje, = —eep for 1 < £,k < 3

with ¢ # k, we also have

3 3
T = (TO + ZTgQ) <T0 — ZTgeg>
(=1

=1

3 3 3
=15 - Z ToTeer + Z TyToer — Z TyTegey
=1 =1

k=1

3
= /I’O2 - ZT;@% + Z (TETN - TNTZ)eéem = ZTEQ‘ |:|
(=1 é:el,2,3 =0
<K

Lemma 4.5.4. If T =Ty + Z?Zl Tyep € BC(X), then the following statements are
equivalent:

(i) The operator T is invertible.
(ii) The operator T is invertible.
(iii) The operator TT is invertible.

In this case we have
T =T-1 and T7'=(TT)'T. (4.18)

Proof. Tf TT is invertible, then (TT)~! = (325_, Tf)_1 commutes with 7" and T,
and hence L L
(1T) "' TT = (TT) ' TT =1
and o o
T(IT) ' T = (IT) ' 1T = 1.
Thus (iii) implies (i), and the second identity in (4.18) holds.
If, on the other hand, T is invertible and 7! = By + Zi:1 Bge, € B(X),
then

3 3
I=T"'T= <Bo + Z Bnen> (TO + Z Tm>

k=1 =1

3
= BTy — Z BTy + (B2T3 — BsTh)eq
=
+ (BsTy — B1Ts)es + (B1T> — BoTh)es.
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We conclude that s

T = ByTy — Z BT,
=1
and
BT, — BT, =0

for 1 < ¢ < k < 3. Therefore,
3 3
ET = <BO — Z Bzez) (TO — Z Te@z)
=1 =1

3
= BoTO — Z BgT[ + (B2T3 — B3T2)€1
(=1
+ (Bng — Bng)eg + (B1T2 — B2T1)63 =17,

and similarly we see that also T B = Z. Hence (i) implies (ii) and T ' =71
Since T = T', we can exchange the roles of T and T and find that (ii) implies (i).
Finally, we see that in this case, (IT)"! = T 'r1e B(X), and we find that (i)
and (ii) also imply (iii). O

Definition 4.5.5. Let T = Ty + Y.5_, Tre, € BC(X). For s € H, we define the
operator B
Q. s(T) := 8T — 25Ty + TT.

Theorem 4.5.6. Let T = Ty + S o_, Toey € BC(X). Then Q.o(T) is invertible if
and only if Q4(T)~! is invertible, and so

ps(T)={seH: Q. (T) "' eB(X)}. (4.19)
Moreover, for s € ps(T), we have
S8, T) =(sT —T)Q.s(T)™* (4.20)
and
St (s, T) =Qes(T) H(sZ —T). (4.21)

Proof. We observe that for s € H, we have Q4(T) = Q4(T) and Q. +(T) = Q.5(T),
and so

Q. s(T)Q.s(T) = (s*T — 25Ty + TT)(3°T — 25T, + TT)
= |s|*T — 2s|s|*Ty + s*TT — 2|5|*To5 + 4|s|* T — 2sToTT
+3*TT — 25T, TT + (TT)?
= || — 2s0|s|?T — 2s0|s|*T + 2Re(s*)TT
+ 4|s|2T2 — 250T°T — 259TT" + T°T",
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where we used in the last identity that 259 = s + 5, that |s|*> = s5, and that
2Ty =T + T. Since, for s = sg + jss1, we have

2Re(s)TT = 2s3TT — 2s3TT
and )
4s1°T¢ = |s2(T +T)* = |s|*T?* + 2s3TT + s3TT + |s|*T,
we further find that
Qe,s(T)Qe,s(T) = [s](|s|T — 20T + T?)
—250T(|s|*T — 250T + T?)
FT2(|s|%T — 250T + T2) = Q.(T)Q4(T).
From Lemma 4.5.4, we conclude that the invertibility of Q. s(7T") is equivalent to
the invertibility of Q. +(T)Q..s(T) = Qs(T)Qs(T), which is in turn equivalent to

the invertibility of Q4(T), and hence (4.19) holds.
Because of Lemma 4.5.3, we furthermore have

(3T —T)Q.s(T) = (3T —T) (s’ — 2sTp + TT)
= |s|?sT — T's? — 2|s|*Ty + 2T Tps + 3TT — T*T
= |s|?sT — T's* — |s|*°T — |s|*T + T?s + TTs +3TT — T*T
=|s]*(sT —T) —2soT (sT —T)+T*(sZ—-T)
= (1% = 250T + |s]°Z) (sT —T) = Q,(T)(sT — T),
(4.22)
and so -
S8, T) = Qu(T) "SI —T) = (T —T)Qe,s(T) "
Similar computations show that also the identity (4.21) holds. O
Definition 4.5.7 (SC-resolvent operators). Let T € BC(X). For s € ps(T), we
define the left and right SC-resolvent operator of T as

S;l(s,T) = (s — T)QC,S(T)*1
and

Sor(s,T) = Qe o(T) M (sT —T).

Corollary 4.5.8. Let T € BC(X). For f € SHi(0s(T)), we have

f(T) == S 1(s,T)ds; f(s),
2 Jowne,) ©
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and for f € SHR(os(T)) we have

1 _
f(r) = p /8(Umcj) f(s)ds; Scjz(s,T)

for any imaginary unit j € S and any bounded slice Cauchy domain U with
os(T) C U and U C D(f).

Remark 4.5.9. The S-functional calculus for operators with commuting compo-
nents defined by the above integrals that involve the SC-resolvents is often also
referred to as the SC-functional calculus. Similarly, the S-spectrum is sometimes
called the F-spectrum when it is characterized by the operator Q. (7)1, in or-
der to stress that one is using the simpler characterization that holds only for
operators with commuting components.

4.6 Perturbations of the SC-Resolvent Operators

In order to study bounded perturbations of the F-resolvent operators (see Chapter
7), we study in this section a preliminary result about the perturbations of the
S-resolvent operators S;i(s, T) and S;Il,-i(s7 T)). This will be used in the sequel. We
recall that the left spectrum o, (T') and the left resolvent sets pr,(T') were defined
in Definition 3.3.1. The following corollary of Lemma 3.1.12 will be used in the
sequel.

Corollary 4.6.1. Let T € BC(X). If s € ps(T) N pr(T), then
(S506.1) =T (T-T)T(s-T) ",
(Sg}a(svT))_l =sT—(sT-T) T(sT-T).
Proof. By Theorem 4.5.6, we have
Soh(s,T) = (ST —T) Quu(T) ' = (sT —T) (s°T — 25Ty + TT) .
Since Q. s(T) = s (sZ —T) — (s — T)T, we thus obtain
(S;i(s, T)) . (52T — 25Ty + TT) (sT —T) "
=T~ (sT-T)T (sT—-T) .

Similar computations show the identity for the right S-resolvent. (]

Definition 4.6.2. Let T' € BC(X). For s € pr(T'), we define

Sen(s,T) =T — (ST—T)T (sT-T) ',
Ser(s,T)=sT— (sT—T) 'T(sT-T) .
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Lemma 4.6.3. Let T, Z € BC(X). If s € o1, (T) Uay (Z), then

[Se,.(s,T) = Se..(s, 2)|| < Kr.2(s)|T - Z|, (4.23)
[1Sc,r(s,T) = Se,r(s, Z)|| < K. 2(s)||T — Z|, (4.24)

with
Krz(s)=|(Z-=2)7" (12| + ||sZ=T|| 1+ IT| ||(sZ—T)7"||]). (4.25)

Proof. We consider the chain of equalities

Se.r(8,T)— Se.r(s,Z)

=(sZ—2)Z(sT —Z)' = (sT —T)T(sT — )
=(sZ—-2)Z(sT—Z) ' — (sT —T)Z(sT —

+ (sT —T)Z(sT — Z) — (s —T)T(sT — T)
=(T-2)Z(sT—Z) '+ (sI-T)[Z(sT—-Z) "' —T(sT -T)""]
—(T-2)Z(sT—Z) +(sT-T [ )(sT — Z)~}

T)

T)

+T((sT—Z)" = (sT—T) 1)}
= (T - 2)Z(sT — 7))~ + (sT — T)[( —T)(sT —Z)"!

+T(T-2) (Z-T)(T-T) " |.

Taking the norm and observing that | T — Z|| = ||T , we have

1Se,2.(8,T) = Se..(s, Z)| < T = Z|| (IIZII IsZ = 2)~1|

+ ST = T[T = Z)7 |+ IT (T = Z) T = D)7 ),

and so (4.23) holds. The second estimate is shown with similar arguments. O

Lemma 4.6.4. Let T, Z € BC(X), let s € ps(T) with s € or, (T) Uoy, (Z), and

suppose that
1

szT(S)
with Kz 1(s) as in Lemma 4.6.3. Then s € pg(Z) and

IT - 2| < IScL(s, DI,

S;i(s, Z)— Sc_i(s, T)

™= m 4.26
= S;i(&T) Z {(SC,L(S,T) - SL(S, Z))S;}J(S,T) . ( )

m=1
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Similarly, if

1 1 1
1T - 2| < Kor(s) ISz (D)

then s € ps(Z) and

Sf}{(s, Z) — S;}%(S,T)

= m 4.27
=S h(s,T) Y [(SC,R(S,T) — Ser(s, 2))S, j(s,T) (427

m=1
Proof. If we apply Lemma 3.1.12 with A = S 1(s,T) and B = S¢ (s, Z), then
we obtain

too m
Sib(5,2) = SEsT) Y [(Sens.T) = Sen(s, 2)SE(,T)] . (4.28)

m=0

This series converges, since
(S (s.7) = Sen(s, 2081, T)|| < Kzaas) |7 = 20 E s, 1) | < 1,
and we obtain s € pg(Z) as
Q.o(T) ™t =(sZ~T)'S}(s,T).

We can show the statement for the right S-resolvent with similar arguments.
O

Definition 4.6.5. Let O C H. We denote by B.(O) for ¢ > 0 the e-neighborhood
of O defined as

B.(O):={qeH: Sllelg |s —q| < e}

Theorem 4.6.6. Let T,Z € BC(X), let s € ps(T), and assume also that s &
or (T)Uoyr (Z). For every € > 0, there exists 6 > 0 such that if |T — Z|| < 4, we
have

0s(Z) € B: (0s(T)),

and for s & B. (US(T) Uor (T))’

1S, 1(s,2) = S 1 (s, T)| <&,
IS, k(5. 2) = 5, (s, T)|| <.

Proof. Let T,Z € BC(X) and let ¢ > 0. Thanks to Lemma 3.1.12 there exists
n > 0 such that if
1T = Z| <,
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then o7,(Z) C B- (O'L (T)), where B, (UL (T)) is the e-neighborhood of o (T).
We can hence always choose 7 such that

01(Z) C B-(os(T)Uor(T)).

Consider the function Kt z(s) defined in Lemma 4.6.3 and observe that the con-
stant K. defined by

K. = sup Kt z(s)
s¢B(ocr(T)UoL (T),a)

is finite, since s & B.(05(T)Uo(T)), since due to the above observation o (Z) C
B.(os(T)Uor(T)) and since

. i S AT -1y
Tim [[(Z —Z)"| = lim (T ~T)""] = 0.
Observe that since s € ps(T'), the map s +— ||Sc_,£(s, T)|| is continuous and that

. -1 o
Tim (873 (s, T)]| = 0.

For s in the complement of B.(0s(T) U o (7)) we have thus that there exists a
positive constant N. such that

157 (s, Tl < Ne.

If 5 > 0 is such that |Z — T|| < . := 61, then we can conclude from
Lemma 4.6.4 that s € pg(Z) and that

1S 1(s,2) = S (s, 1)l
1552 (s, DI [1Se,L(5,T) = Se,(s, Z)]|
T 1= S2L (D Se.n(s,T) = Ser(s, 2)]|

N2K.|Z - T|
—1- NEKEHZ - T”

if
€

Z-T| <= —o .
I <o K.(N2+¢eN,)

To get the statement, it suffices to set 6 = min{n, d1,da}.
For the right S-resolvent, we can argue similarly. O

Theorem 4.6.7. Let T, Z € BC(X), let f € SHL(0s(T)), and let € > 0. Then there
exists § > 0 such that for ||Z —T| < &, we have f € SH(0s(Z)) and

1£(2) = F(D)I <e.
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Proof. We recall that the operator f(T') is defined by

fT) =5

S;1(s,T) ds; f(s),
2 Jowne,) “F ’

where U C H is any bounded slice Cauchy domain with o5(T) C U and U C D(f)
and where j € S. Suppose furthermore that U contains an e-neighborhood of
Us(T) U O'L(T).

By Lemma 4.6.6 there exists d; > 0 such that o5(Z) C U if we have | Z—T <
01. Consequently, f € SHp(os(Z )) for |Z — T| < 6é1. Due to Lemma 4.6.6,
Se. 1(s,T) is uniformly close to S. 1 (s, Z) with respect to s € J(UNC;) for j €S
if |Z — T)| is small enough, so for some positive § < d; we get

IO 1D = 5ol | ik ) = Sche )] dsy fl <o O

4.7 Some Examples

We end this chapter with some examples in which we compute the S-spectrum
of different operators. In particular, we illustrate how the characterization of the
S-spectrum of operators with commuting components in Theorem 4.5.6 simplifies
its computation.

Example 4.7.1. Let us consider a, b, a, 8 € R and the two matrices

a b a [
n=lg o] =[5 2]
It is easy to verify that 17175 = T5T7. We can thus consider the operator

e Sl

0 aep + aes
with commuting components on H?. We have

T__| e + aes  bey + Pes
o 0 ae; + aey |’

so that T4+ T = 0 and

2 2
TT = [ @”+o° 2ab+20f ] (4.29)

0 a? +a?

The S-spectrum is associated with the equation Q. ((T")x = 0, that is,

2| 1 0 a?+a? 2ab+2ap _
(s [O 1}—#{ 0 @+ a2 x=0 forax#0. (4.30)
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Observe that the matrix TT in (4.29) has only real entries. If s = u + jv, we can
consider the matrix T'T therefore a Cj-complex matrix, and we find that s satisfies
(4.30) if and only if —s? is an eigenvalue of TT. Standard computations show that
the only eigenvalue of TT is a? + o and we conclude that

US(T):{j a?+a?: jGS}.

Example 4.7.2. We illustrate in this example how the computation of the S-
spectrum of an operator with commuting components is simplified by the charac-
terization given in Theorem 4.5.6. We consider the two commuting matrices

0 1 1 1
Tl - |: 0 1 :| bl T2 - |: O 2 :| ’
and the associated quaternionic operator

T = /Ty + esTy = { ey €1+ ez ]

0 e+ 2es

Since we have

F_ | €2 —€1— €2
T_|: 0 —61—262:|7

it is immediate that T + T = 0 and that

— 1 4
- [1 4],

In order to compute the S-spectrum using Theorem 4.5.6, we have to solve the
equation Q. +(T) "tz = 0. For z = (y,2)7, this turns into

s2+1 4 v | Y
0 52—|—5}[z =0, for i # 0.

This gives the two equations

(s + 1)y + 4z =0,

(s +5)2=0. (4.31)

If s = u + jv, then we can choose i € S with ¢ L j and write y = y; + y2¢ and
21 + 29t with yp, 2z, € C;. Since 1 and i are linearly independent over C; and the
system (4.31) contains only coefficients in C;, it is equivalent to

(s + 1)yp + 42, = 0,

(s> +5)z =0, (L2

We are hence left with a C;-complex linear system of equations that can be solved
easily. Its solutions are j and v/57, and thus

aS(T):{j, V55 jes}.
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The same result can be obtained by solving the equation
(T? — 250T + |s]*T)x = 0,
that is,

—1 — 2sgeq + |s]? —4 — 250(e1 + e2) Yil_p
0 —5 — 2sg(e1 + 2e3) + |s|? z |

This corresponds to the two equations

(—1 —2spea + |s|*)y — (4 + 2s0(e1 + €2))z = 0,
(=5 — 2s0(e1 + 2e2) + |s/*)z = 0.

Observe, however, that the coefficients of this system do not belong to one single
complex plane, so that it cannot be reduced to a complex linear system of two
equations. If we suppose that Re(s) = 0, we find that either s = j, or s = /55
with j € S. If sg # 0, then very long calculations show that there are no solutions;
thus the S-spectrum coincides in both cases.

Example 4.7.3. We compute the equations for determining the S-spectrum of a
bounded operator T" with commuting components on a Banach space X. We use
both the commutative and the noncommutative approaches and we see that the
computations are again simpler in the first case.

Let T = ey Ty +exTs € B(X), where Ty, Ty are commuting bounded operators
on Xg. We determine the S-eigenvalue equation. We have

T =—e1Ty — exT,

SO .
T+T =0,

and since 11T, = T5TY, we also have
TT =T} + T%.

The point S-spectrum og(7T') consists of quaternions s such that Q. (7)) has a
bounded inverse. Hence we need to solve the equation

(T —s(T+T)+TT)z =y
for every y € X, which simplifies in our case to
(S*T+ T2+ THz =y. (4.32)

If s = u + jv, the operator TT = T? + T% can be considered an operator on the
Cj-complex Banach space Xgr ® C; := Xg + jXg, and (4.32) is then exactly an
eigenvalue equation of this operator. We can choose i € S with ¢ 1 j and write
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T =z + 220 and y = y1 + y21 with x4, 9, € Xr ® C;. Since 1 and ¢ are linearly
independent over C;, we find that (4.32) is equivalent to

(S*T+TE+THze =ye, £=1,2. (4.33)

Hence s belongs to og(T) if and only if —s? belongs to the classical spectrum
o(TT) of TT. Because of the axial symmetry of the S-spectrum, o5(7T) is then
given by
os(T)={u+iv: u+jveoc(ITT), i €S}.
In case one considers the noncommutative definition of the S-spectrum, we
have T2 = —T? — T3, so that the equation

(T? — 2507 + |s]* )z =y

becomes
(=17 — T3 — 2so(e1Th + exT) + [s|*T) z = y.
Observe that this is again a system that is more complicated than the eigenvalue
equation of a complex linear operator. If we write x = zg + 22:1 xeey and y =
3
xo+ >, Yeee and set
A= [s|’T - T? - T3,

we can rewrite the above equation in terms of its real components and obtain

Azg + 2Re(s)Ti21 + Re(s)Texo
+ e1(—2Re(s)Tizo + Az1 — 2Re(s)Tox3)
+ 62(72R6(5)T21170 + AI’Q + 2RG(S)T1£C3)
3

+ erea(Axs — 2Re(s)Tix2 + 2Re(s)Tary) = yo + Z Yeey.
=1

Thus the S-spectrum of T is given by the system of equations

(s>’ — T — T%)xo + 2Re(s)T1z1 + Re(s)Taza = yo,
—2Re(s)Tixo + (|8|?°Z — T? — TF)x1 — 2Re(s)Toxs = y1, (4.34)
—2Re(s)Toxo + (|s|*°Z — T? — T2)xo + 2Re(s)Ti3 = ¥2, '
(s)

(|s|*’Z — T? — T2)x3 — 2Re(s) T2 + 2Re(s)Toz1 = y3.

This system is much more complicated than the eigenvalue equation in (4.32), but
it gives the same solution.

Example 4.7.4 (Fractional powers). The slice hyperholomorphic logarithm on H
is defined as

logs:=In|s| + jarg(s) fors=u+jveH\ (—o0,0],
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where arg(s) = arccos(Re(s)/|s|) is the unique angle ¢ € [0, 7] such that s = |s|e/*®.
Observe that for s = Re(s) € [0, 4+00), we have

arccos(Re(s)/|s|) = arccos(1) =0,

and so logs = Ins. Therefore, log s is well defined on the positive real axis and
does not depend on the choice of the imaginary unit j. One has

e85 =5 forseH

and
loge® =s for s € H with |s| < 7.

The quaternionic logarithm is both left and right slice hyperholomorphic (and
actually even intrinsic) on H \ (—o0,0], and for every j € S, its restriction to the
complex plane C; coincides with the principal branch of the complex logarithm
on C;. We define the fractional powers of exponent o € R of a quaternion s as

% = ¥ logs _ 6oz(ln|s\+j arccos(u/\s|))’ s=u+juve H \ (70070].

This function is obviously also left and right slice hyperholomorphic on the set
H \ (—00,0]. So we can define the fractional powers of bounded operators and
in particular of matrices by the S-functional calculus. We can define fractional
powers of a bounded vector operator T' = e, T +e2T5 +e3T3 using the S-functional

calculus,
1
T = — s* ds; Sp'(s,T) (4.35)
2 Jawnc;)
if o5(T") C U is contained in the domain of s®. Since s — s® is an intrinsic slice
hyperholomorphic function, we also have

1

R
27 Jawncy)

Sy (s, T) dsjs™.

These formulas were introduced in [50], and the theory of fractional powers of
quaternionic operators was further developed in the papers [51,52]. These opera-
tors are a natural tool to define fractional Fourier laws, and they have applications
in fractional diffusion and fractional evolution problems.

4.8 Comments and Remarks

Comments on the references. The complete list of the papers in which the S-
functional calculus for bounded operators has been developed is [10, 55, 66, 68,
79,80, 127]. In the case we consider intrinsic functions, the S-functional calculus
can be defined for a one-sided Banach space, as has been shown in [125]. In the



4.8. Comments and Remarks 117

paper [125], the author has also developed the theory of spectral operators in
Banach spaces; see also [128].

The S-functional calculus can be defined also for n-tuples of noncommuting
operators using slice hyperholomorphic functions with values in a Clifford algebra
(also called slice monogenic functions); see [75,97]. The commutative version of
the S-functional calculus, that is, the S-functional calculus for operators with
commuting components, is studied in [77].

The S-functional calculus was the starting point for the development of var-
ious quaternionic functional calculi. We mention the Philips functional calculus
for generators of strongly continuous groups, which is based on the quaternionic
version of the Laplace—Stieltjes transform; see [11]. Groups and semigroups of
quaternionic linear operators have been considered in [19,76,153].

In the paper [30], the authors introduce the H*-functional calculus based on
the S-spectrum. This is the quaternionic analogue of the calculus introduced by
MclIntosh [165]. In [30] is also considered the H°-functional calculus for n-tuples
of noncommuting operators.

A more general version of the H*°-functional calculus, the study of the frac-
tional powers of quaternionic linear operators, is treated in [51,52]. Here the au-
thors also show how the fractional powers of quaternionic linear operators define
new fractional diffusion and evolution processes. For a more direct approach to
fractional powers of quaternionic operators that include the Kato formula, see the
paper [50].

4.8.1 The S-Functional Calculus for n-Tuples of Operators

The notion of S-spectrum and also the definition of the S-functional calculus can
be extended to n-tuples of not necessarily commuting operators. For this setting
we need slice hyperholomorphic functions with values in a Clifford algebra (slice
monogenic functions). Slice monogenicity is similar to the quaternionic setting;
see the book [89]. We explain here the basic concepts. Let R,, be the real Clifford
algebra over n imaginary units e, ..., e, satisfying the relations ese,, + e,ep = 0,
¢ #m, e = —1. An element in the Clifford algebra will be denoted by Y , eaz 4,
where A = {¢1---¢.} € P{1,2,...,n}, {1 < --- < £, is a multi-index, and e4 =
eo, €0, -+ €0, g = 1. An element (z¢, 1, ...,z,) € R""! will be identified with the
element x = xg+ 2z = 20 + Z?Zl xeey € R, called a paravector, and the real part
xo of x will also be denoted by Re(x). The norm of x € R"*! is defined as |z|? =
z3+ a3+ -+ 2. The conjugate of z is defined by T = zg —z = w9 — Y_,_; Te€s.
We denote by S the sphere

S={z=ex1+ - Fepxn: 254+ - +22 =1}

for j € S we obviously have j2 = —1. Given an element x = 2 +z € R*"!, let us
set j, = x/|z| if  # 0, and given an element x € R"*1, the set

[2] == {y e R"™': y =+ jlz|, j €S}
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is an (n — 1)-dimensional sphere in R"1. The vector space R+ jR passing through
1and j € S will be denoted by C;, and an element belonging to C; will be indicated
by u 4+ jv, for u, v € R. With an abuse of notation we will write z € R™+!. Thus,
if U € R™*! is an open set, a function f : U C R**! — R, can be interpreted
as a function of the paravector . With the above notations, the definition of the
slice hyperholomorphic functions f: U C R**! — R,, is analogous to the notion
of slice hyperholomorphic functions for quaternionic-valued functions. We adapt
the definition of slice hyperholomorphicity to the Clifford-algebra-valued case; in
this case functions are often called slice monogenic. The definition of an axially
symmetric set is as in the quaternionic setting, i.e., we say that U C R"*! is
axially symmetric if [z] C U for all z € U.

Definition 4.8.1 (Slice hyperholomorphic functions with values in R,, (or slice
monogenic functions)). Let U C R™*! be an axially symmetric open set and
let U = {(u,v) € R? : u+ Sv C U}. A function f : U — R, is called a left slice
function if it is of the form

f(@) = fo(u,v) +jfi(u,v) forg=u+jvel
with two functions fy, f1 : U — R,, that satisfy the compatibility conditions
fO(ua 7”) = fO(uv U)v J1 (uv *'U) =-f1 (uv U)' (436)

If in addition fp and f; satisfy the Cauchy—Riemann equations

%fo(u, v) — %fl (u,v) =0, (4.37)
%fo(u, v) + %fl (u,v) =0, (4.38)

then f is called left slice hyperholomorphic (or left slice monogenic). A function
f:U — R, is called a right slice function if it is of the form

f(q) = fo(u,v) + fi(u,v)j forg=u+jveU

with two functions fo, f1 : U — R, that satisfy (4.36). If in addition fy and f;
satisfy the Cauchy-Riemann equation, then f is called right slice hyperholomorphic
(or right slice monogenic). If f is a left (or right) slice function such that fy and
f1 are real-valued, then f is called intrinsic. We denote the sets of left and right
slice hyperholomorphic functions on U by SMp(U) and SMpr(U), respectively.

Also for slice monogenic functions we have a Cauchy formula that is analogous
to the quaternionic case. Let z,s € R""! with x ¢ [s] be paravectors. The Cauchy
kernels in form I and in form II are the same as in the quaternionic case when the
quaternions are replaced by the paravectors. For example, for the form I we have

S (s, x) i== —(2® — 2Re(s)x + |s[*) "}z — 3)

and
Spl(s,z) := —(z — 5)(z% — 2Re(s)x + |s|*) "
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Theorem 4.8.2 (The Cauchy formulas for slice monogenic functions). Let U C
R™! be a bounded slice Cauchy domain, let j € S, and set ds; = ds(—j). If f is
a (left) slice monogenic function on a set that contains U, then

1

= — S (s,x)ds;j f(s), for every x € U. (4.39)
21 Jownce;)

f(z)
If f is a right slice hyperholomorphic function on a set that contains U, then

f(z) =

= —/ f(s)ds; Sg'(s,2), for every x € U. (4.40)
21 Jownce;)

These integrals depend neither on U nor on the imaginary unit j € S.

To define the S-functional calculus for n-tuples of operators, we consider
a Banach space X over R with norm || - ||. It is possible to endow X with an
operation of multiplication by elements of R,, that gives a two-sided module over
R,. A two-sided module V over R,, is called a Banach module over R,, if there
exists a constant C' > 1 such that ||va|| < C|v|||a| and |jav| < C|a|||v|| for all
v € Vand a € R,,. By X,, we denote X ® R,, over R,;; X,, turns out to be a
two-sided Banach module.

An element in X, is of type > , va®e4 (where A =0y --- 4, i0€{1,2,...,n},
01 < -+ < £, is a multi-index). Multiplication of an element v € X, by a scalar a €
R,, is defined by va =) , va® (eaa) and av = > , va ® (aea). For simplicity, we
will write 3 , vaea instead of Y- , va®e4. Finally, we define [[o]|%, =", [lvallk-

We denote by B(X) the space of bounded R-homomorphisms of the Banach
space X to itself endowed with the natural norm denoted by | - [|z(x). Given
T4 € B(X), we can introduce the operator T' = ), Taea and its action on
v=> vgep € X, as T'(v) = >, gTa(vp)esep. The operator T is a right-
module homomorphism that is a bounded linear map on X,,.

In the sequel, we will consider operators of the form (called paravector oper-
ators)

T=To+) e,
=1
where Ty € B(X) for £ = 0,1,...,n. The subset of such operators in B(X,,) will
be denoted by B%!(X,,). We define ||T|go.1(x,) = >, | T¢||5(x)- Note that, in the
sequel, we will omit the subscript B%!(X,,) in the norm of an operator. Note also
that ||T°S|| < ||T||||S||. The Cauchy kernel operator series are the power series
expansions of the S-resolvent operators.

Theorem 4.8.3. Let T € B%Y(X,,) and let s € H. Then for | T|| < |s|, we have

> TmsTITM = —(T% = 2Re(s)T + |s|*Z) (T — 51), (4.41)
m>0
D s = (T = 5I)(T% - 2Re(s)T + |s|*Z) 1, (4.42)

m>0
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We observe that the sums of the above series are independent of the fact that
the components of the paravector operator 7" commute. Moreover, the operators
on the right-hand sides of (4.41) and (4.42) are defined on a subset of R™*! that is
larger than {s € R"*! : ||T| < |s|}. So we define the S-spectrum, the S-resolvent
set, and the S-resolvent operators for the paravector operator 7' € B%1(V;,).

Definition 4.8.4 (The S-spectrum and the S-resolvent set). Let T € B%!(X,,). We
define the S-spectrum og(T) of T as

os(T) = {s e R"" . T? — 2 Re(s)T + |s|*Z is not invertible}.
The S-resolvent set ps(T) is defined by
ps(T) =R\ og(T).

Definition 4.8.5 (The S-resolvent operators). Let T € B%(X,,) and s € ps(T).
We define the left S-resolvent operator as

S (s, T) := —(T?% — 2Re(s)T + |s|*T) (T — 3I), (4.43)
and the right S-resolvent operator as
Spt(s,T) :== —(T —3I)(T? — 2Re(s)T + |s]*T) . (4.44)

Definition 4.8.6 (The S-functional calculus for n-tuples of operators). Let X,, be
a two-sided Banach module and T € B%!(X,,). Let U C R"*! be a bounded slice
Cauchy domain that contains og(T") and set ds; = —dsj. We define

(1) = = S7Y(s,T) ds; f(s), for f € SMy(os(T),  (4.45)
2 Jawnc;)
and
f(r = i f(s) ds; Sgl(s,T), for f € SMg(os(T)), (4.46)
27 Jawnc;)

where SMy (os(T)) (resp. SMp(os(T))) are left (resp. right) slice hyperholomor-
phic Clifford-algebra-valued functions defined on a suitable open set that contains
the S-spectrum of the paravector operator T

Most of the results that hold for the quaternionic S-functional calculus extend
to the S-functional calculus for n-tuples of operators.

4.8.2 The W-Functional Calculus for Quaternionic Operators

Using the notion of slice hyperholomorphic functions it is possible to define a
transform that maps slice hyperholomorphic functions into Fueter regular func-
tions of plane wave type. This transform is different from the Fueter mapping
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theorem in integral form. With such an integral transform we can define the W-
functional calculus. This calculus was introduced in [70] for monogenic functions.
Here we reformulate it for the quaternionic setting. Using the Cauchy formula for
slice hyperholomorphic functions it is possible to define an integral transform that
associates to a slice hyperholomorphic function a Fueter regular function. Inspired
by [192], we introduce an integral transform that associates to a slice hyperholo-
morphic function a Fueter regular function of plane wave type. The following result
is immediate; see [192], Section 1.1.

Proposition 4.8.7. Suppose that the differentiable functions (g1,—g2) satisfy the
Cauchy—Riemann system in an open set of the complex plane identified with the
set D of the pairs (u,p) € R?:

ug1(u,p) = —0pg2(u,p),  Ipg1(u,p) = Ouga(u,p). (4.47)

Let
Up={reH: z=u+wp, (u,p)€ D, weS}

and define the function G : Up C H — H by
G(x) = g1(u,p) — wga(u, ). (4.48)
Then G(z) is slice hyperholomorphic in Up.

When necessary, we will identify H with R? x S by setting = +— (20, p,w),
and instead of G(z) we will write Gz, p,w) (keeping the symbol G for the func-
tion). Starting from the slice hyperholomorphic function G(u,p,w) in (4.48) we
can construct a Fueter regular function of plane wave type by the substitution

u=(z,w), p=o.

Suppose that the functions (g1, —gs) satisfy the Cauchy—Riemann system and let
us define the function

G(zg, (z,w),w) := g1 ((z,w), x0) + w g2 ({z, w), zp), forw €S. (4.49)

We recall a simple result stated in [192]:

Proposition 4.8.8. The function G defined in (4.49) is left Fueter regular in the
variable x = xg + x.

Definition 4.8.9. A function of the form (4.49) is called a Fueter plane wave func-
tion.

Definition 4.8.10 (The W-kernels). Let S;'(s,z), Sg' (s, ) be the Cauchy kernels
of left and right slice hyperholomorphic functions, respectively, and let w € S. For
(z,w) — zow & [s] we define

Wi(s,x) =871 (s, (z,w) — Tow)

= —[((z,w) — xow)? — 2s0((z,w) — Tow) + |s*] ' ((z,w) — Tow — 5)
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and
Wil (s,x) = Sg' (s, (2 w) — zow)

= —((z,w) — zow — 5)[({z,w) — zow)® — 2Re(s) ({z, w) — wow)+|s[*] ",
where w € S is considered a parameter.

Observe that W and W £ are obtained by the change of variable z — (x, w)—
row in the Cauchy kernels of slice hyperholomorphic functions and (z,w) — zow is
still a paravector.

The following theorem is a direct consequence of the Cauchy formula of slice
hyperholomorphic functions.

Theorem 4.8.11. Let w € S be a parameter and let U C H be a bounded slice
Cauchy domain, let j € S and set ds; = ds(—j). We furthermore assume that
(x,w) —xow € U. If f is a left slice hyperholomorphic function on a set that
contains U, the integral

1

— Wh(s,z)ds;f(s), for everyqeU, (4.50)
271 Jownce;)

depends neither on U nor on the imaginary unit j € S. If f is a right slice hyper-
holomorphic function on a set that contains U, the integral

1

— f(s)ds;Wh(s,z), for every q € U, (4.51)
21 Jownce;) =

depends neither on U nor on the imaginary unit j € S.

Thanks to Theorem 4.8.11 we can define the W-transform, which maps slice
hyperholomorphic functions into Fueter regular functions.

Definition 4.8.12 (The W-transforms). Let w € S be a parameter and let U C H
be a bounded slice Cauchy domain, let j € S and set ds; = ds(—j). Assume that
(z,w) —xow € U. If f is a left slice hyperholomorphic function on a set that
contains U, then we define the left WE-transform as

fulw) = —

Wk(s,z)ds;f(s), for every q € U. (4.52)

27 Jawney)

If f is a right slice hyperholomorphic function then we define the right WF-
transform as

ful) = =

f(s)ds;WE(s,z), for every q € U. (4.53)

B % B(Um(c]‘ )

We observe that the W-transform defines a transformation between slice
hyperholomorphic functions and Fueter regular functions that depends on a pa-
rameter on the unit sphere S. This transform can be extended to the more general
case of Clifford-algebra-valued functions.
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e For every w € S the function WX (s, z) is right slice hyperholomorphic in
s and left Fueter regular in z for every z,s such that ((z,w) — wow) & [s].
Moreover, the WE-transform maps left slice hyperholomorphic functions f
into left Fueter regular plane wave functions fi.

e For every w € S the function W (s, z) is left slice hyperholomorphic in s
and right Fueter regular in z for every z,s such that ((z,w) — zow) & [s].
Moreover, the W -transform maps right slice hyperholomorphic functions f
into right Fueter regular plane wave functions j;.

Theorem 4.8.13. Let T = T + e1Th + exTs + esTs5 € B(X). Assume that w € S

and define the operator

3
Aﬂ = ZTjw] - Tog.
j=1

Then A, belongs to B(X), and the operator A2, — 2Re(s)A, + |s|*Z is invertible
for s € H with |T|| < |s| for all w € S. Moreover, for s € H with |T| < |s| and
for allw € S, we have

> AT = —(A2 — 2Re(s) Ay + |5|°T) 1 (A, — 3T), (4.54)
m>0 B

> sTITMAD = — (A, — 5T)(A2 — 2Re(s) Ay, + [s*T) . (4.55)
m>0

The above theorem motivates the notion of W-spectrum.

Definition 4.8.14 (The W-spectrum and the W-resolvent set). Let T' € B(X) and
let w € S. We define the operators

3
A, = ZTjwj —Tow and Qu(T,s):= Ai — 2504, + |s|*T.
j=1
We define the W-spectrum ow (T') of T as:
ow(T,w) = {s € R"": Qu(T, s) is not invertible in B(X)} .
The W-resolvent set pw (T) is defined by
pw (T,w) = H\ ow (T, w).

The theorem on the structure of the W-spectrum holds also in this case.
Let T € B(X), w € S, and let p = pg + p1j € [po + p1j] € H\ R, such that
p € ow (T, w). Then all the elements of the 2-sphere [po + p17] belong to ow (T,w).
Thus the W-spectrum consists of real points and/or 2-spheres. In the case of
bounded operators, the W-spectrum, for all w € S, is a compact nonempty set.



124 Chapter 4. Properties of the S-Functional Calculus for Bounded Operators

Definition 4.8.15 (The W-resolvent operators). Let T € B(X), let w € S, and let
A, = Z?Zl Tjw; — Tow. For s € pw (T) we define the left W-resolvent operator
by

Whi(s,T) = —(A2 — 2Re(s) Ay + |s°T) " (A, — 5I), (4.56)

and the right W -resolvent operator by

Wh(s,T) = —(Ay, — 5T)(A2 — 2Re(s) A, + |s]?T) . (4.57)
Definition 4.8.16 (The W-functional calculus for bounded operators). Let T' €
B(V) and let w € S. Let j be an arbitrary imaginary unit and U an arbitrary slice
Cauchy domain U as in Remark 3.2.4. For every function f € SHy(ow (T,w)), we
define

JulT) = - WE(s, T) ds; f(s). (4.58)
- 2w Jowne,)
For every f € SHr(ow (T,w)), we define
FL(T) = = F(s)ds; WE(s,T), (4.59)
- 2 Jownc;) =

with the obvious meaning of the symbols SH (ow (T,w)) and SHr(ow (T,w)).

The definition of the W-functional calculus is well posed, since the integrals
in (4.58) and (4.59) depend neither on the open set U nor on the imaginary unit
jEeSs.

The W-functional calculus is a functional calculus that is based on slice hy-
perholomorphic functions, but it produces operators f,,(T') for Fueter regular func-
tions j;(s) The W-functional calculus and the F-functional calculus are Fueter
functional calculi. In the case of Clifford-algebra-valued functions these two cal-
culi become monogenic functional calculi in the spirit of the monogenic functional
calculus introduced and studied by A. McIntosh and his collaborators in a series
of papers [160,161,166], and in the book [159].
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Check for
updates

The S-Functional Calculus for
Unbounded Operators

The S-functional calculus can also be defined for unbounded operators. We con-
sider a two-sided quaternionic Banach space X and we introduce a notation for
the set of unbounded operators that we consider in this chapter. These results
are taken from the papers [67,97], where we reduce the case of unbounded opera-
tors, with suitable transformations, to the case of bounded operators. The direct
approach has been studied in the more recent paper [124], while the S-resolvent
equation is in [50].

Definition 5.0.1. Let X be a two-sided Banach space. A right linear operator
T:D(T) C X — X is called closed if its graph is closed in X & X. We denote the
set of closed right linear operators T': D(T) C X — X by K(X).

When we deal with operators of this type we have to pay attention to the
domains on which they are defined. We illustrate this with the following example.

Example 5.0.2. We define powers of T' € K(X) as usual by T° = T with D(T°) =
X and Ttz = T(T"z) for x € D(T") = {z € D(T™) : T"z € D(T)}.
Moreover, we define for every intrinsic polynomial P(q) = >",_, ¢‘ap with a; € R,
the operator P(T)z :=Y",_, a/T*z with D(P(T)) = D(T™).

The operator P(T') : D(T™) C X — X is then a closed operator. This follows
immediately from the corresponding result for R-linear operators, because every
quaternionic linear operator is also R-linear, and the topology on X does not
depend on whether we consider X a vector space over H or over R. The situation
is, however, fundamentally different if we consider polynomials with quaternionic
coefficients.

The operator T' is right linear and hence related to the right multiplication,
but it does not have any relation to the left multiplication on the space X. If
x,y € D(T) and a € H, then T(za +y) = T(x)a + T(y) due to the right linearity
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of T, so that za +y € D(T) and D(T) is in turn a right linear subspace of X.
However, since in general T'(ax) # aT'(x), it is not clear that ax € D(T) for any
a € H and any x € D(T), so that D(T) is not a left linear and in particular not
a two-sided subspace of X. The same holds obviously also true for the domains
D(T™) of powers T™ of T, in general, D(T™) is a right linear, but not a left linear,
subspace of V.

We can now define, for every right slice hyperholomorphic polynomial P(q) =
> i—o aeq” with a, € H, the operator P(T)z :=Y",_, a,T*x, and we find that the
domain of this operator is again D(P(T)) = D(T™). However, for a left slice
hyperholomorphic polynomial P(q) = Y ,_, q‘ay with a, € H, setting P(T)z :=
ZLO T'as2 might not be possible in a straightforward manner. Since the domain
D(T™) is in general not a left linear subspace of X, we do not necessarily have
arx € D(T™) for x € D(T™). In this case, the expression P(T)z = > ,_, T apx is
meaningless, so that the domain of the operator P(T') = >,_, T a, is in general
not the entire subspace D(T™).

5.1 The S-Spectrum and the S-Resolvent Operators

As for bounded operators, we define for T' € K(X) and s € H the operator
Q,(T) :=T? — 2Re(s)T + |s|*T
that maps D(T?) C X to X.
Definition 5.1.1. Let T' € L(X). We define the S-resolvent set of T' as
ps(T)={s € H: Qu(T)"" € B(X)}
and the S-spectrum og(T) of T as
os(T) =H\ ps(T).

The following result in particular implies that Q4(T") is closed for every s € H,
whenever pg(T) NR # 0.

Theorem 5.1.2. Let T € K(X) with pg(T)NR # (. For every intrinsic polynomial
P e N(H), the operator P(T) is closed.

Proof. We choose any a € ps(T) N R and we consider the homomorphism ®,, :
H — H defined by

p==2u(q) = (g— )™, ®a(00) =0, ®Po(a)=oc.

Since P € N(H) and « is a real number, P can be written as

n n

P(g) =) bila—a)" " =(a—a)" Y bilg—a)™",

£=0 =0



5.1. The S-Spectrum and the S-Resolvent Operators 127

where the by are real numbers. The homomorphism ®,, maps P to =" R(u), that
is, P(q) = p~"R(u) with it = ®4(q), where R(u) = > bept’.

We define now A := (T — oZ)~!, which formally corresponds to ®,(T). The
operator A is a one-to-one map from X onto D(T'), and hence the operator A*
maps D(T™) onto D(T"+) C D(T™) for every £ € N. For z € D(T"), we thus
have R(A)x € D(T™). It is, moreover, easy to see that

PT)x = (T —aI)"R(A)x = R(A)(T — aZ)"x, (5.1)

for all x € D(T™).

Consider now a sequence (2)ren in D(T™) such that we have xp — x and
P(T)z — vy in X. In order to show that P(T) is closed, we must show that
x € D(T™) and that P(T)x = y. If we set z := R(A)xy, then we have

lim (T —aZ)"z, = lim (T —aZ)"R(A)zr, = lim P(T)xp =y

k— 400 k— 400 k— 400
due to (5.1). Since R(A) is bounded because A is bounded, the limit

lim 2z = lim R(A)zy =R(A)x:=z¢€ X
k—+oco k—+oo
also exists. The operator (T' — aZ)™ is, however, closed because it has a bounded
inverse, namely A™, and so we conclude that z = R(A)x belongs to D((T'—aZ)") =
D(T™) and that
y=(T—-aI)"z2=(T—aZ)"R(A)zx. (5.2)

What remains to show is that © € D(P(T)) = D(T™), because in this case, (5.1)
and (5.2) imply y = P(T)z and so the closedness of P(T).
If we write R(A) explicitly, we obtain

R(A)x = box + Z beAlx (5.3)
=1

with by = a, # 0. We already know that R(A)z belongs to D(T'). Moreover,
also Yy, beAfz = A, byA* 1z belongs to D(T), since A maps X onto D(T).
We conclude from (5.3) that also 2 € D(T) because it is a linear combination of
vectors in D(T). Even more, if we assume that = € D(T*) with 1 < k < n, then

k n
(T = aD)*R(A)w = bo(T — aD)* + 3 bo(T = aZ)* " + 3 | beA" "z,
{=1 l=k+1

As before, we see that (T — aZ)* is a linear combination of vectors in D(T),
and hence (T — aZ)¥z € D(T) and so x € D(T**1). By induction, we find that
x € D(T™) = D(P(T)). O
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For closed operators, the definition of the S-resolvent operators needs a little
modification. If we define the left S-resolvent operator as in the case of bounded
operators, we obtain

S (s, T)w := —Qy(T) (T — 5T)z, (5.4)

which is defined only for z € D(T') and not on all of X. However, for x € D(T),
we have Q,(T) Tz = TQ,(T) 'z, and so we can commute T and Q,(7T)~! in
order to obtain an operator that is defined on all of X.

Definition 5.1.3 (The S-resolvent operators of a closed operator). Let T € K(X).
For s € ps(T), we define the left S-resolvent operator of T at s as

Sy s, T = Qy(T) ‘82 — TQs(T) 'z, forallz € X, (5.5)
and the right S-resolvent operator of T at s as
Spl(s,T)x :== —(T — I5)Q4(T) 'z, forallz € X. (5.6)

Remark 5.1.4. For s € pg(T), the operator Qs(7T)~! maps X to D(T?). Hence
TQ,(T)~! is a bounded operator and S;l(S, T), and so SEI(S,T) are bounded,
too.

A second difference between the left and right S-resolvent operators is that
the right S-resolvent equation holds only on D(T).

Theorem 5.1.5 (The S-resolvent equations). Let T € K(X). For s € ps(T), the
left S-resolvent operator satisfies the identity

S; (s, T)sx — TSy (s, T)x =, forallxeX. (5.7)

Moreover, the right S-resolvent operator satisfies the identity
sSR! (s, Tz — Sy (s, T)Tx =z, for all z € D(T). (5.8)

Proof. We have for x € D(T) that

sSp'(s, ) — Sp' (s, T)Tx

= —s(T —TI3)Q,(T) ‘o + (T — I3)Qs(T) 'Tx

= (=sT + [s]*T)Qs(T) ' + (T? —3T)Qs(T) =

= (T? — 2Re(s)T + |s|*Z7)Qs(T) 'z = .
Similar computations establish (5.7). O

Remark 5.1.6. We can extend (5.8) to an equation that holds on the entire space
X, similarly to how we could extend (5.4) to a bounded operator on the entire
space X . This equation is

sSR! (s, T + (T? —3T)Q(T) 'z ==, forallz € X.
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Theorem 5.1.7 (S-resolvent equation). Let T € K(X). If s,q € ps(T) with s ¢ [q],
then
SIEI(S’T)Sil(Q7T) = USEI(S,T) - S;(%ﬂh
=3[z (s,7) = Sp (@, T)]] (¢* — 2Re(s)g + |s|*) ™", (5.9)

Proof. As in the case of bounded operators, the S-resolvent equation is deduced
from the left and right S-resolvent equations. However, we have to pay attention
to being consistent with the domains of definition of every operator that appears
in the proof.

We show that for every z € X, one has

Sg'(s.T)S7 (4, T)(¢* — 2509 + |s|*)z
— [S7'(,T) — 57 (¢, T)aw — 515715, T) — S7 (@, Dl (5.10)
We then obtain (5.9) by replacing x by (¢? — 2s0q + |s|?)"'z. For w € X, the left
S-resolvent equation (5.7) implies
Spl(s,T)S; (¢, T)qw = Sx' (s, T)T'S; ' (¢, T)w + Si' (s, T)w.

The pseudo-resolvent Q4 (7)™ maps X onto D(T?). Therefore, the left S-resolvent
operator Sy '(s,T) = Q(T)~'5-TQ4(T)~* maps X to D(T), and so S} (¢, T)w €
D(T). The right S-resolvent equation (5.8) yields

Sgl(s,T)Sgl(%T)qw = SSE{I(S,T)SZl( Tyw — S; (¢, T)w + Sg Y(s, T)w.
(5.11)
If we apply this identity with w = gz, we get

Sr'(s,T)S; (g, T)(¢* — 2s0q + |s|*)z
= Sp'(s,7)S; (¢, T)¢*x — 2505z (5, T)S; (¢, T)qx
+s2Sz" (s, T)S; (g, T)a
= sSz"(s,T)S7 (¢, gz — S; (0, T)gz + Sg* (s, T)gz
— 2505 (s, T)ST (0. T)ga + |s[*Sg (5, T) ST (q, T)a-
Applying identity (5.11) again with w = = gives
Spt(s,T)S; g, T) (¢ — 2s0q + |s*)x
=sSp! (s, T)S; (¢, T)x — sS; (g, T)x + sSg' (s, T
— S (g, T)gw + Sz' (s, T)g
— 250585 (5, T7)S; (g, T)x + 2505, (¢, T)x — 25055 (5, T)
15287 (5, T)ST 4, T
= (s* — 2505+ |s[%) Sz (5, 7)S; (¢, Tz
— (250 — 8)[Sg' (s, T)z — S; ' (¢, T)a]
+185(T) — 8740, Dlga.
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The identity 2s9 = s + 5 implies s2 — 2595 + |s|2 = 0 and 2s¢9 — s = 5, and hence
we obtain the desired equation (5.10). O

5.2 Definition of the S-Functional Calculus

Before we define the S-functional calculus for closed operators, we have to define
a notion of spectrum that takes the possible unboundedness of T' into account.

Definition 5.2.1. Let T € K(X). We define the extended S-spectrum of T as

4(T) os(T) if T is bounded.
o =
5 os(T)J{oo} if T is unbounded.

Remark 5.2.2. We recall that a function is said to be left slice hyperholomorphic
at infinity if H\ B,(0) C D(f) for some r > 0 and the limit f(c0) := limg—, f(q)
exists.

Hence if T' € K(X) is unbounded, then f € SH1(cs(T)) if and only if f is left
slice hyperholomorphic with og(T") C D(f) and if furthermore, H\ B,.(0) C D(f)
for some r > 0 and f(o00) = lim, .o f(g) exists. The characterization of functions
in SHRr(cs(T)) and N (gs(T)) is in this case, of course, similar.

Theorem 5.2.3. Let T € K(X) with ps(T) R # (). For a € ps(T) NR, we define
the function ®, : H — H given by

D,(s)=(s—a)™ ', ®,(a) =00, @,(c0)=0, (5.12)

and set A = (T —aZ)~!' = —=S; (o, T), which formally corresponds to ®,(T).
Then

o5(A) =75(A) = D,(T5(T)). (5.13)
For s € ps(T) and g = ®,(s), we moreover have

S;'(s,T) = qT - S; ' (4, A)g? (5.14)
and

S (s, T) = qZ — ¢*Si' (g, A). (5.15)

Proof. Let s, ¢ € H and a € R be such that ¢ = (s — a)~!. Then the identities

Re(s)|ql” = alq|* + Re(q), (5.16)
lq1?[s]* = a?|q* + 2Re(g)a + 1, (5.17)
—¢ 2= (2(—Re(s)) 7+ 1) [q] 2, (5.18)
—5¢72 = ((o® = [s]”) T+ a) || 72, (5.19)

can be verified by direct calculations.
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We choose a € ps(T) NR and set A := (T — aZ)~!. Assume now that
q € ps(A)\ {0}, that is,

Q,(A)™! = (A% — 2Re(q)A + |¢[*T) 7! € B(X).

Then

Q,(A)~" = [(T — aZ)% — 2Re(q)(T — aZ) " + |¢[*T]

= [[Z — 2Re(q)(T — aZ) + |q*(T — aZ)*] (T — aZ) %] ",
For z € D(T?), we have, because of (5.16) and (5.17), that
[Z — 2Re(q)(T — o) + |q|*(T — aZ)*] =
= |q|*T?z — 2(cq|> + Re(q))Tz + (|g]*a® + 2Re(q)aZ + 1) z
= |qI* Tz — 2|q]Re(s) Tz + |qf*|s|*x
= |q]*(T* = 2Re(s)T + |s]*T)z = |¢* Qu(T)z.
Since (T — aZ)~2 maps V to D(T?), we obtain

Qu(A)™" = [|qPQu(T)(T — aT) 2] " = |¢| (T — aT)2Qu(T) 7", (5.20)
and applying A = (T — aZ)~? from the right, we conclude that
Qs(T) ™! = [g]?A%Q,4(A) ! € B(X).

Hence s € pg(T). If, on the other hand, s € ps(T), then we can perform the above
computations in the inverse order to see that also in this case (5.20) holds. Since
Q(T)~! maps X to D(T?) =D (T — aZ)?) and (T —aZ)? is closed, we find that
9,(A)~! is bounded and hence g € pgs(A). We even have q € ps(A) \ {0}, since
s € H, and so ¢ # 0 = @, (0c0).

Altogether, we have @, (ps(T)) = ps(A4) \ {0} and in turn

Do (05(T) U {oc}) = a5(A) U{0}.

Finally, 0 € og(T) if and only if A=! = T'— aZ, and hence also T is unbounded,
which is equivalent to co € g(T"). Therefore (5.13) holds.
In order to prove (5.14), we recall (5.20) and obtain

SpH(a, A) = |a| (T = a2)*Qu(T) g — |q| (T — aZ) Qu(T) .
Now observe that
(T — aT)?Qy(T) ™ = (T? — 2aT + o*T)Q4(T)*
= (T? — 2Re(s)T + |s|*°Z)Q«(T)~*
+ (—2(a — Re(s))T + (o — [s|*)T) Qs(T) "
=T+ (—2(a — Re(s))T + (® — [s]*)T) Qs(T) ",

(5.21)
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and so

Sp' (@, A) = a7 Zq + gl 7> (=2(a — s0)T + (” — [s]*)Z) Qs(T) "7
—lal™ 2( —a)Qs(T )
=Zq" = TQu(T)™" (2(r — Re(s))7 + 1)[q|
+Qu(T) M ((? — |s]*)a + a)la| 2.
From (5.18) and (5.19), we finally conclude that
SpH(e,A) =Tq™ " = Qu(T) '5q 2+ TQu(T) g2
and thus
S; Mg, A)=Zqt —S; (s, T)g 2. (5.22)
Since s € pg(T), we have ¢ = ®(s) #£ 0, and so (5.22) is equivalent to (5.14).
It remains to prove the relation (5.15). Using (5.20), we have for ¢ = ®,(s)
with s € pg(T) that
S (0, 4) = (@ - 4)0,(4)""
= (@Z — Dg| (T — aZ)*Q(T) ™!
= qlg| (T = oZ)*Qu(T) ™" — |q| (T — aZ)Qu(T) .

Applying the identity (5.21), we find, similar to the case of the left S-resolvent,
that

Sz'(¢,A) = lal T — |a|7? (2q(a — Re(s)) + 1) TQ,(T) "
+ a7 (—a(e® = |s]*) +a) Qu(T) ™
Applying again (5.18) and (5.19), we obtain
Spl(q,A) = q ' T+q°TQT) ™" — ¢ *5Q.(T) ™"
and in turn
Sp'(a,A) =q7'T —q S (5,7),
which is equivalent to (5.15), since ¢ = ®(s) # 0. O

Corollary 5.2.4. Let T € K(X) with ps(T)NR # (. For a € ps(T)NR, let @, and
A be as in Theorem 5.2.3. The mapping f — f o ®_1 determines one-to-one cor-
respondences between SHy(Ts(T)) and SHi(os(A)), between SHr(Ts(T)) and
SHr(os(A)), and between N (G5(T)) and N (o5(A)). Precisely, we have
SHL(UsA) {fo(I) 1 fESHL(Us(T))},
SHpr(os(A) = {fod,': f € SHr(Gs(T))},
N(os(A) ={fod ' : feN(@s(T))}.
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Proof. The above relations are immediate consequences of (5.13) in Theorem 5.2.3.
O

Definition 5.2.5 (The S-functional calculus for closed operators). Let T € K(X)
with ps(T) NR # (). We choose an arbitrary o € ps(T) NR and we define, as in
Theorem 5.2.3, the function @, : H — H by

Dy(s) =(s— a)*l, D, (a) =00, P,(c0) =0,

and the operator A := (T — aZ)"! = —S;'(a,T) € B(X), which formally
corresponds to @, (7). For every function f € SH(5(T)) and every function
fe€SHR([@s(T)), we define

f(T) := fod 1 (A), (5.23)

where fo®_1(A) is intended in the sense of the S-functional calculus for bounded
quaternionic linear operators in Definition 3.2.5.

Remark 5.2.6. By Theorem 4.2.1 and Theorem 4.2.4, the above approach is con-
sistent with the S-functional calculus for bounded operators.

The S-functional calculus for closed operators admits also for unbounded
operators an integral representation that corresponds to the integrals in (3.12)
and (3.13) for bounded operators.

Theorem 5.2.7. Let T € K(X) be unbounded and let ps(T) NR # 0. Assume that
fe€SHL(Ts(T)) and f(T) is the operator defined in Definition 5.2.5. Then

1

SO =gz g [ s ds 1) (524

for every unbounded slice Cauchy domain with os5(T) C U and U C D(f) and
every imaginary unit j € S. Similarly, if f € SHr(Gs(T)) and f(T) is the operator
defined in Definition 5.2.5, then

@) = 5T+ 5o [ () dsy S5, (5.29

for every unbounded slice Cauchy domain with og(T) C U and U C D(f) and
every imaginary unit j € S.

Proof. Let f € SHL(Gs(T)), let a € ps(T)NR, and set A = (T — aZ)~! and
f(T) := fo®_1(A) as in Definiton 5.2.5. Furthermore, let j € S and let U be
an unbounded slice Cauchy domain with o5(7) C U and U C D(f). We can
assume that « ¢ U. Otherwise, Cauchy’s integral theorem allows us to replace U
by U’ = U \ B.(a) with sufficiently small e > 0 without changing the value of the
integral in (5.24).
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The set V := ®,(U) is a bounded slice Cauchy domain that contains og(A)
by Theorem 5.2.3. Thus, after the change of variables ¢ = ®,/(s) in the integral in
(5.24), we find due to the relation (5.14) that

1
— SN, T)ds; f(s
7 Jyne,, 55 (5T s 100
1 _ _ _
=5 (4T — S; (g, A)g®) a2 dg; (fo®.") (9)
T Ja(vncy)
1 —1 —1
=—— q dg; (fo®,)(q
21 Javc,) i ( ) (@
1 _ _
> Sp'(q,A)dg; (fo®3") (q)
T Jo(vnc;)

== (fo2") (I + (fo7") (A),
where the last identity follows from Cauchy’s integral formula because

1

C2r o(VNC;)

_ —Qi S (g.0)dg; (fo@3") (q) = (fo@5") (0),
T Jo(vncy)

q dg; (fo®,") (q)

since 0 € og(A) C V. Since fo® 1 (A) = f(T) and fo®_1(0) = f(c0), we obtain
1

o0 Sp (s, T)ds;f(s) = =Zf(00) + f(T),
T Jo(wnc;,)

which is exactly (5.24). The right slice hyperholomorphic case can be shown by
similar computations using the identity (5.15). O

Corollary 5.2.8. Let T € K(X) with ps(T) N R # (. For every function f €
SHi(G5(T)) and every function f € SHr(Gs(T)), the operator f(T') defined in
(5.23) does not depend on the choice of o € ps(T) NR.

Proof. The fact that the operator f(T') defined in (5.23) is independent of o €
ps(T) NR follows from the validity of formulas (5.24) and (5.25), since these
integrals are independent of a. O

We conclude this chapter with the algebraic properties of the S-functional
calculus. These are immediate consequences of the respective properties of the
S-functional calculus for bounded operators.

Theorem 5.2.9. Let T € K(X) with ps(T) NR # 0.
(i) If f,g e SHL(Gs(T)) and a € H, then

(fa+9)(T) = f(T)a+g(T).
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Similarly, if f,g € SHR(Gs(T)) and a € H, then

(af +9)(T) = af(T)+ g(T).

Gi) If f € N@s(T)) and g € SHL(Gs(T)) or f € SHgr(es(T)) and g €
N(a5(T)), then

(fo)(T) = f(T)g(T).

Proof. Let a € ps(T) NR, set A := (T —aZ)™!, and define @, as in (5.12). If
frg € SHL(Ts(T)) and a € H, then we conclude from Lemma 4.1.1 that

(fa+g)(T) = (fa+g)o® ' (A) = ((fo @, Na+go®, ") (A)
— fo(bgl(A)a—Fgo‘I);l(A) = f(T)a+ g(T).

Similarly, if f € N(cs(T)) and g € SHL(G5(T)), then fo @1 € N(os(A)) by
Corollary 5.2.4, and we conclude from Theorem 4.1.3 that

(fIT) = (fg) o @' (A) = ((fo ") (go®.")) (A
= (fo®.")(4) (g0 @.") (4) = fF(T)y(T).

The statements for right slice hyperholomorphic functions follow by analo-
gous arguments. [l

Theorem 5.2.10 (Spectral mapping and product rule). Let T € K(X) with ps(T)N
R#£0D. If f e N(Gs(T)), then

os(f(T)) = f(@s(T)),
and for every g € SH(f(os(T))) and g € SHr(f(cs(T))), we have
(9o /)(T) =g(f(T)).
Proof. Let o € ps(T)NR, set A := (T —aZ)~", and define @, as in (5.12). Since

f € N(as(T)), Corollary 5.2.4 implies f o &1 € N (Gs(A)). From (5.13) and
Theorem 4.2.1, we thus conclude that

f@s(T)) = fo®." o ®a(as(T))
= fo @ ' (05(A)) = as(f 0 2a(4)) = as(f(1)).

Since o5(f(T)) = os(f o ®,1(A)), we moreover have for g € SH(f(cs(T))) or
g € SHRr(f(os(T)) by Theorem 4.2.4 that

go f(T)=go fod® ' (A)=g(fo @7 (A)) = g(f(T)). O



136 Chapter 5. The S-Functional Calculus for Unbounded Operators

5.3 Comments and Remarks

The gradient operator defined on most common function spaces is a closed oper-
ator. The S-spectrum is associated with the spectrum of the operator sZ + A.

Example 5.3.1 (The gradient operator). We consider the operator
T = 8x1€1 + 8;5262 + 895363

on a suitable Banach space X, and we determine the operator associated with the
S-spectrum of T'. We have

T = —0y,e1 — Op,e0 — Op,e3.
Thus T+ T = 0, and since 0,,0,, = 0,,0,, for all k,£ =1,2,3, we have
TT = A,

where A is the Laplace operator. The S-spectrum is associated with the invert-
ibility of the operator

ST —s(T+T)+TT =s*T+ A (5.26)

in the Banach space X = Xg ® H. If s = u + jv, then we can consider the scalar
operator A an operator on Xg ® C;. The operator in (5.26) is then invertible if
and only if s2°Z + A is invertible on X ® C;, that is, if and only if —s® belongs
to the classical resolvent set p(A) of A. Because of the axial symmetry of the
S-spectrum, we obtain

os(T)={s=u+iv: —(u+jv)®€a(A), ieS}.
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Check for
updates

The H*°-Functional Calculus

The H°-functional calculus is an extension of the Riesz—Dunford functional calcu-
lus for bounded operators to unbounded sectorial operators, and it was introduced
by A. Mclntosh in [165]; see also [5]. This calculus is connected with pseudo-
differential operators, with Kato’s square root problem, and with the study of
evolution equations and, in particular, the characterization of maximal regularity
and with the fractional powers of differential operators. For an overview and more
problems associated with this functional calculus for the classical case, see the
book [156] and the references therein.

In this chapter we consider the quaternionic version of the H°°-functional
calculus introduced in [30], where with suitable conditions on the operators T
we can study the quaternionic analogue of the results in [165]. A more general
treatment of the H°-functional calculus for quaternionic operators has been done
n [51,52], where also the fractional powers of quaternionic linear operators are
considered and new fractional diffusion and evolution processes are defined. We
will mention such applications at the end of this chapter, see also [128].

6.1 The Rational Functional Calculus

The H°-functional calculus is defined using a version of the S-functional calculus
for sectorial operators and on the rational functional calculus for intrinsic rational
slice hyperholomorphic functions.

Definition 6.1.1 (Intrinsic rational slice hyperholomorphic function). Let P and Q
be intrinsic polynomials. An intrinsic rational slice hyperholomorphic function is
defined as
R(p) := P(p)Q(p)
Observe that since P(p) and Q(p)~! are intrinsic slice hyperholomorphlc
functions, the x-product of P(p) and Q(p)~*! is equal to P(p)Q(p)~!, and it is an
intrinsic slice hyperholomorphic function.
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Definition 6.1.2 (Rational functional calculus). Assume that the rational function
R(p) = P(p)Q(p)~* has no poles on the S-spectrum of T'. Let T be a closed densely
defined operator. We define the rational functional calculus as

R(T) := P(T)Q(T)™".

The operator R(T') is closed and densely defined, and its domain is D(T™),
where
m := max{0,deg P — deg Q}.

An important example of an intrinsic rational function, useful in the sequel, is

S

k
1782), kel

v(s) = (

We recall that slice hyperholomorphic rational functions have poles that are real
points and/or spheres. This is compatible with the structure of the S-spectrum of
T, which consists of real points and/or spheres. With ¢ as above, we have

k

W(T) = (T(z+ T2)-1) , keN.
We summarize in the following the properties of the rational functional calculus.
The proofs are similar to the classical results, and for this reason we omit them.

Proposition 6.1.3. Let T be a linear quaternionic operator that is single-valued on a
quaternionic Banach space X. Let P and @) be intrinsic quaternionic polynomials
of order n and m, respectively. Then

(i) If P £ 0 then P(T)Q(T) = (PQ)(T).
(ii) If P(T) is injective and @ #£ 0, then
D(P(T)~") ND(Q(T)) € D(P(T)~'Q(T)) N D(Q(T)P(T) ™)
and
P(T)7'Q(Tyv = Q(T)P(T) v, Vv e D(Q(T) ND(P(T)™).
(i) Suppose that T is a closed linear operator with ps(T) # 0. Then P(T) is
closed and P(og(T)) = o5(P(T)).

For rational functions we have the following result, whose proof is similar to
the classical case.

Proposition 6.1.4. Let T be a linear quaternionic operator that is single-valued
on a quaternionic Banach space X with ps(T) # 0. Let 0 # R = PQ~! and
R, = Plel be intrinsic rational functions. Then we have:

(i) R(T) is a closed operator.
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(ii) R(as(T)) C a5(R(T)), where o5(T) = 05(T) U {co} denotes the extended
S-spectrum of T.

(iii) R(T)Ry(T) C (RR1)(T) and equality holds if
(deg(P) — deg(Q))(deg(P1) — deg(Q1)) > 0.
(iv) R(T) + Ry(T) C (R+ R,)(T) and equality holds if
deg(PQ1 + P1Q) = max{deg(PQ1),deg(P1Q)}.

6.2 The S-Functional Calculus for Operators of Type w

We show that at least for a suitable subclass of closed densely defined operators,
we can extend the formulas of the S-functional calculus for bounded operators. In
order to do this, we recall that the definitions the S-resolvent operators are given
in the previous chapter for unbounded operators.

Definition 6.2.1 (Argument function). Let s € H \ {0}. We define arg(s) as the
unique number 6 € [0, 7] such that s = |s|e%s.

Observe that § = arg(s) does not depend on the choice of js if s € R\ {0},
since p = |p|e% for every j € S if p > 0 and p = |p|e™ for every j € S if p < 0.
Let ¥ € [0, 7]. We define the sets

Sy ={seH: |arg(p)| <V ors=0},
SYy={scH: |arg(p)| <V} (6.1)
Definition 6.2.2 (Operator of type w). Let w € [0,7). We say that the linear
operator T : D(T) C X — X is of type w if
(i) T is closed and densely defined,
(il) os(T) C Sy U {0},
(iii) for every ¥ € (w,n] there exists a positive constant Cy such that

C C
1S. (s, )| < ﬁ, 1S (s, )| < ﬁ for all nonzero s € SY.
S 5
We now introduce the following subsets of the set of slice hyperholomorphic
functions, which consist of bounded slice hyperholomorphic functions.

Definition 6.2.3. Let p € (0, 7]. We set
SHZO(SS) ={fe S'HL(SE) such that ||f|leo := sup |f(s)| < oo},

SES)

SH%O(SS) ={fe S’HR(Sg) such that ||f||eo := sug) |f(s)] < oo},
se 2

N>®(S)) = {f e N(S)) such that || f|le = sup |f(s)| < oo}

s€S)
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In order to define bounded functions of operators of type w, we need to
introduce suitable subclasses of bounded slice hyperholomorphic functions:

Definition 6.2.4. With the notation introduced in Definition 6.2.3, we define

0y _ 00 ( GOy . cls| 0
\DL(SM)_{fESHL (S:U') Ela>07 c>0: ‘ ()‘_Wfor aHSESM},
0y _ 0o 0y . . cls| 0
Ur(S,) ={f €SHE(S,): FJa>0,c>0:[f(s) < T3P for all s € S},
\I/(SS):{fGNOO(Sg): Ja>0,c>0:|f ()|_1j_||||fora115682}.

The following theorem is a crucial step for the definition of the S-functional
calculus for operators of type w, because it shows that the following integrals
depend neither on the path that we choose nor on the complex plane C;, j € S.

Theorem 6.2.5. Let T' be an operator of type w. Let j € S, and let 82 be as in

(6.1). Choose a piecewise smooth path T in Sg NC; that goes from o0e?? to coe 7Y,
where w < 6 < p. Then the integrals

i S Y(s,T)ds;j(s), for ally € Up(SY), (6.2)

/¢ s)ds; Sp'(s,T), for all ¢ € Ug(S)), (6.3)

depend neither on I' nor on j € S, and they define bounded operators.

Proof. We reason on the integral (6.2), since (6.3) can be treated in a similar way.

The growth estimates on 1 and on the resolvent operator imply that the
integral (6.2) exists and defines a bounded right-linear operator.

The independence of the choice of 6 and of the choice of the path I' in the
complex plane C; follows from Cauchy’s integral theorem.

In order to show that the integral (6.2) is independent of the choice of the
imaginary unit j € S, we take an arbitrary ¢ € S with j # 1.

Let B(0,7) be the ball centered at the origin with radius 7; let ag > 0 and
0 € (0,7), n € N. We define the sector X(6p, ag) as

Y(6p,a0) :={s € H: arg(s—ay) > 0,}.

Let 6y < 05 < 6, < m and set U, := £(6,,0) U B(0,a0/2) and U, := X£(6,,0) U
B(0,a0/3), where the indices s and p denote the variables of integration over the
boundary of the respective set. Suppose that U, and U are Cauchy domains and
0(UsNC;) and 9(U,NC;) are paths that are contained in the sector. Observe that
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1(s) is right slice hyperholomorphic on U,, and hence by Theorem 2.1, we have

Y(T) = ;r/B(UﬂC)w( yds; Sp*(s,T) (6.4)
1 —

JNCOR /é)(Usmc]-) </8(Upmci) V(o) dpi S )> ds; Sy'(s,T)  (6.5)
1 1 B

EL a(Umej)qp(p) i (27T /a(Usrucj) Sg' (p.5) ds; Sy’ (s, T)> (6.6)

: ¥(p)dp; Si* (p,T). (6.7)

- 21 Jow,ncs)

To exchange the order of integration we apply Fubini’s theorem. The last equation
follows as an application of the S-functional calculus for unbounded operators,
introduced in the previous chapter, since Sgl(p, 00) = limg_, 00 Sgl(p, s) = 0. So
we get the statement. O

Thanks to the above theorem the following definitions are well posed.

Definition 6.2.6 (The S-functional calculus for operators of type w). Let T" be an
operator of type w. Let j € S, and let 82 be the sector defined above. Choose a

piecewise smooth path I' in S)NC; that goes from coe’? to coe™?, for w < 6 < p.
Then

W(T) = %/Sil(s,T) ds; (s), for all ¢ € Wy(S9), (6.8)
=5 / P(s)ds; Sg'(s,T), for all i € Ug(S)). (6.9)

From the definition of the functional calculus the linearity properties follow
immediately. In fact, if T' is an operator of type w, then ¢ (7T'), defined in (6.8) and
(6.9), satisfy

(Ya + @b)(T) = (T)a+ p(T)b, for all 1, € VL(S),
(ah) + bp)(T) = a(T) + bp(T), for all P, € \I/R(SS).

For functions v that belong to \I/(SS) both representations can be used. Moreover,

27r/¢ Jdsi S (s,T)

=5 Fs Y(s,T)ds;(s), forall ¢ € U(S)).

Using the S-resolvent equation with similar computations as in the case of bounded
operators, adapted to this case, we can prove the product rule:
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Theorem 6.2.7. Let T' be an operator of type w. Then

(W)(T) = (T)(T), for all ) € U(SY), ¢ € UL(S)),
(W)(T) = Y(T)(T), for ally € UR(S)), ¢ € U(S)).

6.3 The H*-Functional Calculus

To define the H*° functional calculus we suppose that T is an operator of type
w, and moreover, we assume that it is one-to-one and with dense range. Here we
will consider slice hyperholomorphic functions defined on the open sector 82, for
0 < w < p < 7, which can grow at infinity as |s|* and at the origin as |s|~* for
k € N. This enlarges the class of functions to which the functional calculus can be
applied. Precisely we make the following definition.

Definition 6.3.1 (Operators of type ). Let w be a real number such that 0 < w <
7. We denote by €2 the set of linear operators T" acting on a two-sided quaternionic
Banach space such that:

(i) T is a linear operator of type w;
(ii) T is one-to-one and with dense range.

Then we define the following function spaces according to the set of operators
defined above:

Definition 6.3.2. Let w and p be real numbers such that 0 < w < p < 7. We set

FL(S)) ={f € SHL(S)) : |f(s)] < C(|s* +|s|7*) for some k > 0 and C > 0},
Fr(S)) ={f € SHr(S)): |f(s)| < C(|s|® + |s|7%) for some k > 0 and C' > 0},
]-"(82) ={f 6/\/(82) ©|f(s)] < C(ls]F + |s]7%) for some k > 0 and C > 0}.

To extend the functional calculus we consider a quaternionic two-sided Ba-
nach space X, the operators in the class €2, and
e the noncommutative algebra F1,(S)) (resp. Fr(S)));

e the S-functional calculus ® for operators of type w:

P UL(S)) (resp. Ur(S))) = B(X), @:¢— ¢(T);

e the commutative subalgebra of Fr, (83) consisting of intrinsic rational func-
tions;

Furthermore, the functions in Fp, (Sg) have at most polynomial growth. So taking
an intrinsic rational functions v, the operator 1(T") can be defined by the rational
functional calculus.

We assume also that ¢(T) is injective.
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Definition 6.3.3 (H°-functional calculus). Let X be a two-sided quaternionic Ba-
nach space and let T' € Q). For k € N consider the function

(s) = (HLSQ)W-

For f € Fr, (82) and T right linear, we define the extended functional calculus as

F(T) = (1)~ @ f)(T). (6.10)
For f € Fr (82) and T left linear, we define the extended functional calculus as
F(T) = (f)T)((T) (6.11)

We say that i regularizes f.

In the previous definition the operator (¢ f)(T) (resp. (f¢)(T)) is defined
using the S-functional calculus ® for operators of type w, and (T is defined by
the rational functional calculus.

Theorem 6.3.4. The definition of the functional calculus in (6.10) and in (6.11)
does not depend on the choice of the intrinsic rational slice hyperholomorphic
function 1.

Proof. Let us prove (6.10). Suppose that ¢ and 1)’ are two different regularizers
and set

A= @D) @) and Bi= (¢ (1)~ (' F)(T).
Observe that since the functions 1 and 1)/ commute, because there are intrinsic
rational functions, one has

H(TW(T) = ¢')(T) = (Y'P)(T) = ' (T)¢(T),

so we get

It is now easy to see that

A= @(T) W) =

where we used the fact that from the product rule, see Proposition 6.1.4, we have
that the inverse of ¢(T) is (1/¢)(T). The proof of (6.11) follows in a similar
way. O

We now state an important result for functions in Fp, (So) (the same result
with obvious changes holds for functions in Fr(S)).
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Theorem 6.3.5. Let f € F(S)) and g € FL(S))). Then we have

F(T) +9(T) < (f +9)(T),
F(M)g(T) < (f9)(T),

and D(f(T)g(T)) = D((f9)(T)) ND(¢(T))-

Proof. Let us take 17 and 1, that regularize f and g, respectively. Observe that
the function ¢ := 119 regularizes f, g, f + g, and fg because ¥, ¥, and f
commute among themselves. Observe that

F(T) +g(T) = (0(T)) " @ f)(T) + (1))~ (vg)(T)

where we have used ¥ := ¥11¢5. Regarding the domains, it is as in the complex
case. (|

6.4 Boundedness of the H*®-Functional Calculus

The following convergence theorem is stated for functions in SH3°(S)), but it holds
also for functions in SHE (82) and is the quaternionic analogue of the theorem
in Section 5 in [165]. The proof follows the proof of the convergence theorem
in [165, p. 216]; we just point out that the convergence theorem is based on the
principle of uniform boundedness that holds also for quaternionic operators.

Theorem 6.4.1 (A Convergence theorem). Suppose that 0 < w < u < 7 and that
T is a linear operator of type w such that it is one-to-one and with dense range.
Let fo be a net in SHT(SY) and let f € SHT(S)) and assume that:

(i) there exists a positive constant M such that || fo(T)|| < M;
(ii) for every 0 < § < X < o0,

sup{|fa(s) — f(s)| such that s € 82 and 6 < |s] < A} — 0.

Then f(T) € B(V) and fo(T)u — f(T)u for all w € V, and moreover, || f(T)| <
M.
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In the following we discuss the boundedness of the H*® functional calculus.
The crucial tool to show the boundedness of the H* functional calculus is the
so-called quadratic estimates; see [165].

Definition 6.4.2 (Quadratic estimate). Let T be a right linear operator of type w
on a quaternionic Hilbert space H and let ¢ € \11(82), where 0 < w < p < 7. We
say that T satisfies a quadratic estimate with respect to i if there exists a positive
constant 8 such that

/ sz(tT)uHQ% < B|ul?, for all u € H,
0

where we write ||ul|| for ||ul/%.

Let us introduce the notation
UHS) ={v e U(S)) : (t) >0 forallt € (0,00)}

and
¢t(s) = 1/)(258), te (Oa OO)

Theorem 6.4.3. Let 0 < w < u < 7 and assume that T is a right linear operator in
Q. Suppose that T' and its adjoint T™ satisfy the quadratic estimates with respect
to the functions ¢ and ¢ € U (S)). Suppose that f belongs to SHT'(Sy). Then
the operator f(T) is bounded, and there exists a positive constant C' such that

IF (D) < Clifllsc for all f € SHT(Sp).

Proof. We follow the proof of Theorem on p. 221 in [165], and we point out the

differences. We observe that we choose the functions v, 1, and 7 in the space of
intrinsic functions U+ (S)) because the pointwise product

has to be slice hyperholomorphic, and moreover, n has to be such that

JACCE S

For f € SHT'(S)) let us define

R
For(s) = / () (s L.

t
Using the quadratic estimates it follows that there exists a positive constant C
such that

Ife.r(D) < Cll flloe-
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The convergence theorem (Theorem 6.4.1) gives the formula

f(M)u=1lim lim f. g(T)u forall ueH,

e—=0 R—o0
where (n;f)(T) is defined by the S-functional calculus

1

D) = 5= [ ST D) dson(s) (), for all £ € Bi(SD).

since n, f € U L(Sg) because 7 is intrinsic. Precisely, the quadratic estimates and
some computations show that there exists a positive constant Cg such that

[(fe.r(T)u,v)| < Cp sup |[(nef)(T)|[[[ull[|v]]-
t€(0,00)

Since
1 _
(e )TN < *Hflloosup/ 12 (5, T)l|dsil e ()]
_csl*

< su 50 ;

< grswn ke [ sl T

< CT(M,n)Ilflloo,
from the above estimates we get the statement. O

6.5 Comments and Remarks

To study fractional diffusion and fractional evolution problems we need a more
involved and refined version of the H°°-functional calculus in the quaternionic
setting, which is beyond the aim of this book. For more details see the papers
[50-52], where the fractional powers of quaternionic operators and applications
are treated. In the paper [53], the authors introduced the so-called S-spectrum
approach to fractional diffusion processes, which allows one to study very general
fractional diffusion problems. This strategy is largely explained in the monograph
[56]. The new approach to fractional diffusion problems will be explained without
too many technical details in the following subsection.

6.5.1 Comments on Fractional Diffusion Processes

We denote by u the temperature on and by q the heat flow, and we set the thermal
diffusivity equal to 1. The heat equation is then deduced from the two laws

q = —Vu (Fourier’s law), (6.12)
Ou+divg =0 (conservation of energy), (6.13)
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where u and q are defined on R3, and Fourier’s law is substituted into the equation
for conservation of energy, that is,

O — Au=0.

The fractional heat equation is an alternative model that takes into account non-
local interactions, and it is obtained by replacing the negative Laplacian in the
heat equation by its fractional power, so that

Ou+ (—A)*u =0, «ae€(0,1), (6.14)

where the fractional Laplacian is given by

(=A)*u(z) = ¢(n,a) P.V. /Rn Wdy,

and the integral is defined in the sense of the principal value, ¢(n, @) is a known
constant, and v : R™ — R must belong to a suitable function space.

The approach with the fractional powers of quaternionic operators defined
via the H*°-functional calculus is different, very general, and in the case q = —Vu
it reduces to the fractional Laplace operator.

Precisely, we identify

R3>~{sc H: Re(s) =0},
and we consider the gradient V the quaternionic Nabla operator

V= elaxl + 628932 + 638333.

Instead of replacing the negative Laplacian in the heat equation by (—A)%, we

want to replace the gradient in (6.12) by its fractional power V¥, and then we
replace it in the law of conservation of energy. We proceed as follows:

e Since s is not defined on (—o0,0), and on L?(R3,H) it is 05(V) = R, we
consider the projections of the fractional powers of V¢, indicated by f,(V),
to the subspace associated with the subset [0+ oo) of the S-spectrum of V,
on which the function s® is well defined.

e Then we take just the vector part Vect(fo(V)) = e1T1 + eaTs + esT3 of the
quaternionic operator f, (V) = Ty + e111 + exTs + esT3 so that we can apply
the divergence operator.

We point out that the above procedure applied to the gradient operator gives the
classical result. Indeed, the definition of V* only on the subspace associated to
[0,00) is given by

fa(V)v = i/ S; (s, V) ds; s*Vv,
27T —jR
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for v: R® — H in D(V). This corresponds to the Balakrishnan formula, which is
a consequence of the quaternionic H*°-functional calculus, in which only positive
spectral values are taken into account. With this definition and the surprising
expression for the left S-resolvent operator

Sgl<_jt7 v) = (_jt + v) (_t2 + A)_17
—_———
:R—t2(_A)
the operator f,(V), with some computations, becomes

Fu(V)o = %(—A)%*IV% + %(—A)%Vv .

Scalfo (V)v =Vecfq(V)v

We define the scalar part of the operator f,(V) applied to v as
1 o
Scalfo(V)v := 5(7A)57lv21)7

and the vector part as

1 a—
Vecfo(V)v i= 5(—A)Tlvv.
Now we observe hat 1
divVecfo(V)v = —5(—A)%+1v.

This proves that in the case of the gradient, we get the same result, which is the
fractional Laplacian. The fractional heat equation for a € (1/2,1),

Opu(t, x) + (—A)Yu(t,z) =0,
can hence be written as
Owu(t, ) — 2div (Vecfg(V)u) =0, B =2a-1.

We point out that the operator f,(V) can be applied to vector-valued functions v.
For an application to the heat equation it is applied to the scalar-valued function
u that represents the temperature. The quaternionic fractional powers approach
is very general, and it is applicable to a large class of operators such as

V = e a(x)0y, + €2 b()Dy, + €3 ¢(2)d,,,

where a, b, ¢ are suitable real-valued functions that depend on the space variables
x = (x1, 2, x3) and possibly also on time. For every suitable vector operator T,
we define a new fractional evolution equation as

Oyu(t, ) — 2div (Vecfz(T)u) = 0.
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For example, a new fractional evolution equation can be deduced when we consider
the following Fourier’s law:

T = e1210z, + €22204, + €32304,.
Working in the space L?(R3, H, du) with
Ri = {e1x1 + ea2xa + e3x3: x>0}
and du = (v12273) " 'dz, we get the operator

Vecfs(T)v(§)
eTlug, (e™1,e"2,e™3)

1 .
= m [RS /]RS _|y‘2a661 i Sl p—C1TY g, (e¥1,e™2,e%2) | da dy.

e"3ve, (€™, e"?, e"3)

We point out that the fractional powers of the operator q(x, d,) are very useful for
inhomogeneous materials, and this approach has several advantages: It modifies
the Fourier law but keeps the law of conservation of energy, and it is applicable
to a large class of operators that includes the gradient but also operators with
variable coefficients such as the operator q(x, 9, ). Moreover, q can also depend on
time.

The fact that we keep the evolution equation in divergence form allows an
immediate definition of the weak solution of the fractional evolution problem.

To represent the fractional powers of an operator T" we have to write an
explicit expression for the inverse of the operator T2 — 2s¢T + |s|?Z, and this can
be done on bounded or unbounded domains.
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Check for
updates

The F-Functional Calculus for
Bounded Operators

The Fueter mapping theorem in integral form introduced in [86], see Chapter 2.2,
provides an integral transform that turns slice hyperholomorphic functions into
Fueter regular ones. By formally replacing the scalar variable in this integral trans-
form by an operator T', we obtain a functional calculus for Fueter regular functions
that is based on the theory of slice hyperholomorphic functions. The F-functional
calculus was introduced and studied in the following papers [54, 78,81, 86].

7.1 The F-Resolvent Operators and the F-Functional
Calculus

We begin our discussion with the feasibility of this functional calculus.
Definition 7.1.1. For m € N and ¢ € H we consider the Fueter regular polynomials
Pm(q) = Aq™. (7.1)

Lemma 7.1.2. We have Py = P1 =0 and Py = —4. Furthermore, for even m > 2,
we have

3 m—1k—1
Pon(g) = m(m — 1)g™2 + 2Re (Z cfeeq“”ezqm“> L (2)

(=1 k=1 s=0

and for odd m > 2 we have

3 m—1k—1
P (q) = m(m — l)qm*2 + 2Im (Z Z Z q'{lgegqm1”> . (7.3)
(=1 r=1 s=0
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Proof. The identities Py = P; = 0 and Py = —4 follow by straightforward com-
putations. Thus assume that m > 2.
Forq=qo+q=qo+ 23:1 qeer € H, we have

i m
qm — (k)ngmkv
0

k=
and so
0 ¢ = Zm m ke(k — 1)qk—2quk _ Zm m! g2gmk
g} k 0 = (m—Kk)!(k—2)!" =
k=2 k=2
m—2
(m —2)! k m—9—k 2
m(m —1) kE:O (= k)0 = 2)!q0g m(m — 1)q

Furthermore, observe that for 1 < ¢ < 3 we have
8 r—1
r K r—1—k
—q" = q"enq . 7.4
gy - S e o

For r =1, we have a%zg = ey, and so (7.4) holds. If, on the other hand, (7.4)
holds for » — 1, then

2 (L) o(e)
dqe 1 Oqe 1)1 1 0qq 1

r—2 r—1
_ 6[(]T71 + ng+leegr7275 _ Zgneegrflfn.
k=0

k=0

Applying this identity twice, we obtain

o m—1 ) m—2
mo_ <qn) ezgm717n+ nge

o, (L)
g~ = \Oq = dqe=
m—1krk—1 m—2m—2—k
_ gsefgmflfse/gmflfm + q equeeqm 2—Kk—s
k=1 s=0 k=0 s=0
m—1krk—1 m—1rk—1
_ Z ngeegmflfse/gmflfm + gmflfne[gnflfsepgs
k=1 s=0 k=1 5=0
m—1k—1 m—1k—1
— gseegﬁ—l—s(%gm—l—ﬁ _|_ (_1)m gse[gm—l—seégm—l—n’
k=1 s=0 k=1 5=0
where the last identity follows from
—1—-K

gm—l—neggn—l—sezgs =q 7Qn—1—s 7gm
m 1
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because § = —g, since g is purely imaginary. Therefore, we obtain
0° N
Ag" = 254"+ Y 2mq™ =m(m —1)g"?
0q3 ;;: dq;
3 m—1k—1
+ Z s giﬁflfseegmflfn
(=1 k=1 s:O
m—1k—1
+ (71)771 gSelgH 1 sezqm 1-k
k=1 s=0
which yields (7.2) resp. (7.3). O

Definition 7.1.3 (Fueter kernel series). Let s,q € H. We define the left Fueter
kernel series as

5 P,

m>2
and the right Fueter kernel series as

Z Silimpm(Q)

m>2

Proposition 7.1.4. For s,q € H with |q| < |s|, the left and right Fueter kernel
series converge.

Proof. Because of (7.2) and (7.3), we have for m > 2 that

|
-

m—1k

3
Pon(g)] <m(m—1)[g" > +2) g™
=1 k=1 s=

=m(m —1)|q|" " + 3m(m — 1)|q|" 2 = 4m(m — 1)|¢|">.

(=)

If |q| < |s|, we therefore have for the left Fueter kernel series

> Pmlg)s™H M < 4> m(m = 1| |s T < o,
m>2 m>2
and the convergence of the right Fueter kernel series is shown similarly. O

The Fueter kernel series are the Taylor series expansions of the Fueter kernels
Fr(s,q) and Fg(s,q) introduced in Definition 2.2.5. They are their slice hyper-
holomorphic Taylor expansions in the variable s at infinity and the Fueter regular
Taylor expansions in the variable ¢ at 0; cf. the Comments and Remarks in Sec-
tion 7.6.
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Lemma 7.1.5. For |q| < |s|, we have

+oo
= ZPm(q)s_l_m and Fr(s,q) Zs_l P

Proof. Due to the Taylor series expansion SZ (s,q) = Zn 04 ns~1=" of the left
Cauchy kernel in Theorem 2.1.22, we have

FL(S,Q)— ZAqn —1-n ZP —1 n

where we are allowed to exchange the Laplacian with the sum because of the
uniform convergence shown in Proposition 7.1.4.

The series of the right Fueter kernel follows similarly from the Taylor series
expansion of the right Cauchy kernel. (|

Because of the above considerations, we can define the Fueter kernel operator
series by formally replacing ¢ in the Fueter kernel series by the operator T with
commuting components.

Definition 7.1.6 (Fueter kernel operator series). Let T' = Ty +Z?:1 Tyey € BC(X).
For s € H with ||T]| < |s|, we define the left Fueter kernel operator series as

> PlT)s™H
m>2

and the right Fueter kernel operator series as
Z s (T).
m>2

Proposition 7.1.7. Let T = Ty + 23:1 Trep € BC(X). For s € H with ||T| < |s],
we have

> Pu(T)s ™™ = —A(sT — T) Qe o(T) 2 (7.5)
and "
D> 5T PL(T) = —4Q, (T)(sT — T) (7.6)

with Qe s(T) = $*T — 25Ty + TT, where T =Ty — Y5, Trey.
Proof. Using Theorem 2.1.22 and Theorem 2.2.2 we get

> Pulg)s T =A Z gmsTITm

m>2 m=0
= AS;'(s,q) = —4(s — 9)(s* — 2Re(q)s + [q]*) >

The fact that the components of T' commute allows us to substitute 7" for ¢; thus
we get the statement. O



7.1. The F-Resolvent Operators and the F-Functional Calculus 155

Remark 7.1.8. We point out an important fact related to the Fueter mapping
theorem in integral form. As we could observe in the proof of Theorem 2.2.2, the
computation

— A(g® - 2qRe(s) + |s|?) (g — 3)
= —4(s — )(s* — 2Re(q)s + |g[?) 2

can be carried out in a natural way only if we write SL_l(s,q) in form II. The
function Sgl(s, q) can be written in two different ways because the components
of ¢ commute. Unfortunately, form II involves the term |¢|> = ggq = ¢g, and this
identity requires that the components of  commute. This has implications on the
functional calculus when one tries to replace g by an operator 7. In this case we
have to require that the components of T' commute. When we write Sil(s, q) in
form I, then we can replace g by an operator T" whose components do not neces-
sarily commute, because only actual powers ¢ and not powers of its components
appear. But in this case the explicit computation of ASIjl(s, q) does not yield a
simple closed from.

Recall that the S-resolvent set of T € BC(X) can, by Theorem 4.5.6, be
characterized as

ps(T) = {S cH: QC,S(T)il € B(X)} )

where -
Q.s(T) = 8*T — 25Ty + TT.

Definition 7.1.9 (F-resolvent operators). Let T € BC(X). For s € pg(T), we define
the left F-resolvent operator as

Fr(s,T) = =4 (s —T) Qc,s(T) 2, (7.7)
and the right F-resolvent operator as
Fr(s,T) = —4Q. () (s -T). (7.8)

Lemma 7.1.10. Let T € BC(X).

(i) The left F-resolvent operator Fr(s,T') is a B(X)-valued right slice hyperholo-
morphic function of the variable s on ps(T).

(ii) The right F-resolvent operator Fr(s,T) is a B(X)-valued left slice hyperholo-
morphic function of the variable s on ps(T).

Proof. The statement follows by computations that are similar to those in Lemma
3.1.11. O

. If fis a left or right slice hyperholomorphic function, then the function
f = Af is a left, resp. right, Fueter regular function by the Fueter mapping
theorem. We showed in Theorem 2.2.6 that f can be represented as the integral
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transform of f involving the left, resp. right, Fueter kernel. If we replace in this
integral representation the Fueter kernel by the F-resolvent operator, we obtain
the F-functional calculus.

Definition 7.1.11 (The F-functional calculus for bounded operators). Let T €
BC(X) and set ds; = ds(—j) for j € S. For every function f = Af with f €
SHi(os(T)), we set
Y 1
HT):

~=:Qm_]gawm%)ﬁi(SJT)def(S% (7.9)

where U is an arbitrary bounded slice Cauchy domain with og(T) C U and U C
D(f) and j € S is an arbitrary imaginary unit.
For every function f = Af with f € SHr(os(T)), we set

1

271 Jawney)

F(T) : f(s)ds; Fr(s,T) (7.10)

with U and j as above.

Theorem 7.1.12. The F-functional calculus is well defined, that is, the integrals
in (7.9) and (7.10) depend neither on the imaginary unit j € S nor on the slice
Cauchy domain U.

Proof. We discuss only the case f = Af with f € SHp(0g(T)), since the other
one follows by analogous arguments.

Since F(s,T) is a right slice hyperholomorphic function in s and f is left
slice hyperholomorphic, the independence from U follows from the Cauchy integral
theorem, cf. also the proof of Theorem 3.2.6.

In order to show the independence from the imaginary unit, we choose j,7 € S
with j # i and two bounded slice Cauchy domains Uy, Us with o5(T) C U,
Uy C Us, and Ugs C D(f). Then every s € 9(Us N C;) belongs to the unbounded
slice Cauchy domain H \ U,. Since we have lim,_,;~ Fr.(q,T) = 0, the slice hy-
perholomorphic Cauchy formula implies

1 _
FusT) =5 [ Fu(a.T) dg S5 (0. 5)
21 Jom\v,nc)
_t
21 Jow,nc:)
where the last identity holds because (H\U,NC;) = —9(U,NC;) and Sz'(g,s) =
—S;'(s,q). Thus
1

f(r) == Fy(s,T)ds; f(s)
21 Jow,nc;)

1 1 / 1
= — — FL(QaT) dg; S (S’q) dsf(s)
27 Jow.nc;) (27T B(U,NC;) t !

FL(an) dql SL_l(Sa q)a
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Since the integrand is continuous and the path of integration is bounded, Fubini’s
theorem allows us to exchange the order of integration, and we obtain

o 1 1
1) =5 Fr(¢q,T)dg; —/ ST (s, q)ds;f(s
2m Jow,ncy) Lo T) 2 Jow,ney) ¢ ) ds; (5)
1
= o Fr(q,T)dg; f(q). O
T Jo(U.NC;)

Remark 7.1.13. In the above theorem we have shown that the F-functional cal-
culus is well defined, in the sense that the integrals in (7.9) and (7.10) depend
neither on the imaginary unit j € S nor on the slice Cauchy domain U. However,
if f € SHy(U), it might happen that f = Af = Ag = § for some g € SH(U)
with f # ¢, and we did not show that then f(T) = §(T). The function f — g is
in this case a left slice hyperholomorphic function in ker A. If U is connected, we
hence have f(s) — g(s) = s+ 8 with a, 8 € H and so

foy o =g [ Fu T s (76 )
1

= — Fr(s,T)ds; (sa — f),
21 Ja(B,.(0)nc;)

where we used Cauchy’s integral theorem and the slice hyperholomorphicity of
Fr(s,T) in s in order to change the domain of integration to B, (0) with ||T|| < r.
From the power series expansion Fp(s,T) = > o, Pm(T)s™ ™ in (7.5), we
conclude now that -
F(T) = g(T) = 2i P (T)s™ '~ ™ds;(sa + )
T Jo(B-(0)NC;) y>o

1
> PulT) 5= / 5T mds(sa+ ) = 0
27 Jo(B,.(0)nc;)

m>2

by Cauchy’s integral theorem since the integrand tends to 0 at infinity. If, however,
U is not connected, then f(s) — g(s) = >, xv,(s)(sae — B¢), where U, 0 =
1,...,n are the connected components of U and xy, denotes the characteristic
function of Uy. Hence, we have

n

fr)-am =3 5 / Fi(s,T) ds; (s = fe),

= a(UeNC;)

and we cannot use the same arguments as above in order to show that the terms
in the sum vanish, because Fp,(s,T) is not slice hyperholomorphic on H \ U, since
this set contains part of the S-spectrum of 7. In this case, the terms vanish
because of Lemma 7.4.1. The proof of this lemma makes, however, use of the
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monogenic functional calculus by A. McIntosh. This functional calculus makes
the assumptions that T = Tye; + Thes + T3es, that is, Ty = 0, with commuting
components Ty that have real spectrum. Only if this condition is satisfied we have
F(T) = §(T) also if U is not connected. If this condition is not satisfied, it is in
general not true and it is easy to construct counter-examples even using matrices
in H2*2,

We conclude this section with some algebraic properties of the F-functional

calculus.

Proposition 7.1.14. Let T € BC(X) be such that T = Tie; + Toes + Tzes, and
assume that the operators Ty, £ = 1,2, 3, have real spectrum.

(i) If f = Af and § = Ag with f,g € SHL(0s(T)) and a € H, then
(fa+3)(T) = f(T)a+§(T).
(i) If f = Af and §j = Ag with f,g € SHr(0s(T)) and a € H, then
(af +9)(T) = af(T) + §(T).
Proof. The above identities follow immediately from the linearity of the integrals
in (7.9), resp. (7.10). O
Proposition 7.1.15. Let T € BC(X) be such that T = Tie; + Taea + Tse3, and

assume that the operators Ty, £ = 1,2,3, have real spectrum.

(i) Let f = Af with f € SHy(os(T)) and assume that f(q) = 0SS qlag with
ag € H, where this series converges on a ball B, (0) with og(T) C B,(0).
Then

+oo
FAT) =" Pu(T)ar.
=2

(ii) Let f = Af with f € SHr(os(T)) and assume that f(q) = ZLOS aeq’ with
a¢ € H, where this series converges on a ball B,(0) with os(T) C B,(0).
Then

“+o0
F(T) =" aPu(T).
(=2

Proof. We prove (i), but (ii) is shown similarly. We choose an imaginary unit j € S
and a radius 0 < R < r such that 0g(T") C Bg(0). Then the series expansion of f
converges uniformly on 9(Bg(0) N C;), and so

+oo

o 1

f(T)=— Fr(s,T) ds; stay
21 Ja(r(o)nc,) ’ ;

1 +oo
= — / Fr(s,T) ds; stay.
21 7= Jo(Br(0)nC,)
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Replacing Fp,(s,T) by its series expansion, we further obtain

. 1 “+o0 “+o0
f(T) = o Z/a ZPk(T)sflfk ds; s'ay
=0

(Br(0)NC;) p—o
+oo 400

= % Zzpk(T)/ S_l_k dS]‘ Seag = ZPK(T)GE7

0=0 k=2 9(Br(0)NC;y) >0

because the integral fa(BR(o)mC») sT1-k ds; st equals 27 if £ = k, and 0 otherwise.
J
O

Theorem 7.1.16. Let T € BC(X) be such that T = Tiey + Taes +Tses, and assume
that the operators Ty, ¢ = 1,2,3, have real spectrum. Let f = Af and fm =
Afm,m € N, with f, fr, € SHL(0s(T)) and assume that f,, tends uniformly to f
on an azially symmetric open set O that contains og(T). Then fm tends uniformly
to f on og(T) and fo(T) — f(T) in B(X).

Proof. Let U be a slice Cauchy domain with o5(T) C U and U C O and choose
j €S. Then

- . 1

fm(a) = (@) = o (fm(s) = f(s)) ds; FL(s,q).

21 Jowncy)
Since dist(os(T),0(U N C;)) > 0, we have

C:= sup |FL(‘9’ Q)| < +o0,
s€d(UNCy)
q€os(T)

and so

v

Fla) = F(@)] < 50 NCH] 5w Lfns) ~ )]
sed(UNCy)

and hence f,, — f uniformly on og (7). Similarly, we have

o o 1

i = FD| =gz [ ) S sy FufeD

<PUNGT Gy B D) sup  [fmls) = Fs)] ™50, O
2T s€d(UNC;) s€8(UNC;)

7.2 Bounded Perturbations of the I'-Resolvent

We point out that the inverses of the F-resolvents

1 1 _
Fp(s,T)"! = fZQQS(T)SL(s,T) = fEQC,S(T)Q(sIf 7)1,

1 1 _
FR(SaT)71 = *ZSR(SaT)QC,S(T) = *Z(SI* T)71QC,S(T)2,
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exist for every s ¢ o (T).

Lemma 7.2.1. Let T, Z € BC(X) be such that T = Tie; + Taeg + Tses, Z =
Zve1 + Zses + Zses, and assume that the operators Ty, Zy, £ = 1,2,3, have real

spectrum. Assume that s & or,(T) Uor(Z). Then there exists a positive constant
Czr(s) depending on s and also on the operators T and Z such that

1FL(s,T) ™" = Fi(s, 2) 71| < Czr(s)(|s| +9) 2T — 2], (7.11)
1FR(s, T) ™" = Fr(s, 2) 7| < Cz(s)(Is| +9)*||IT = Z||, (7.12)
where 9 = max{|[T], | Z|}}
Proof. Since we have for s € pg(T') that

Fr(s,T) := —4S; (5,T)Q..«(T) 7", (7.13)

the inverse Fr(s,T)~ ! exists for s € o (T), and it is given by
Fu(s, 7)™ = 1 Qea(T)S1(5,7), (7.14)
while the inverse of the operator Fy (s, Z) exists for s € o7 (Z), and it is given by
Fr(s,2)" = fiQC,S(Z)SL(s, Z). (7.15)

‘We have

— 4 (Fp(s,T)"" = Fr(s, 2)7)
= Qe s(T)SL(5,T) — Qc.s(Z)SL(s,2)
= Qcs(T)SL(s,T) = Qes(T)S1L(s, Z)
+ Qes(T)SL(s,Z2) — Qe,s(2)SL(s, Z)
= Qc,s(T) [SL(s,T) — Si(s, Z)]
+[~s(T+T)+TT +s(Z+Z)— ZZ)| Si.(s,2)
= Qc,s(T) [SL(s,T) — Si(s,Z)]
+[8(Z-T+Z-T)+ (T -2Z)T+Z(T - Z)] S.(s,2),

and taking the norm, we get

|Fr(s, 7)™t = Fr(s, 2)7!|
< (s +2[s| |T]| + I TT|D IS (s, T) = Si(s, 2)||

+ 28| 1Z =T +IT = Z|[(IT|| + 1 Z1D] ISL(s, 2)
< (sl +9)?[ISc(s,T) = Si.(s, Z)

+[2(Isl + D) Z = T)] [Sc(s, 2)].-
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Now observe that

(Isl +9) 7 1Se(s, 2)]| (7.16)
< (sl +9) 7 [Isl + 1(sZ = D) NI ZI1I(sZ = 2)7]|] == Mz(s), '

where Mz(s) is a continuous function, since s ¢ o1 (Z). Using Lemma 4.6.3, we
get

|F(s, T = Fils, 2)7| < {1Ka(s) + 2M ()]sl +0)°12 = T, (7.17)

and K7 z(s) is defined in (4.25). We can argue similarly for Fr(s,T)~!. O

Lemma 7.2.2. Let T, Z € BC(X) be such that T = Tie; + Taes + Tses, Z =
Zye1 + Zses + Zszes, and assume that the operators Ty, Z;, £ = 1,2,3, have real
spectrum. Assume that s € pg(T), let s € oy, (T) Uor, (Z), and suppose that

1
T-Z| < 55—
| | Crr(®)

where Cz 1 (s) is defined in Lemma 7.2.1. Then s € ps(Z) and

(Isl +9) I F(s, T)[I 7,

“+oo
FL(Sa Z) - FL(SvT) = FL(SvT) Z [(FL(S7T)71 - FL(S7 Z)il) FL_1(57T)]m
m=1
An analogous statement holds for F'(s,T).
Proof. By Lemma 3.1.12 and formula (3.2) with
A= (FL(S7T))717 B:= (FL(57Z))71a Ail :FL(SaT)v (718)
we have for B~! = Fy (s, Z) that
—+oo
Fi(s,2) =Fi(s,T) > [(Fu(s,T))™" = (Fi(s,2)) "' Fi(s,T)]" . (7.19)
m=0
Using the hypothesis, we find that the series converges, since
H(FL(Sﬂ T) - FL(S7 Z))FEI(S7T)||
< (Fi(s,T) = Fr(s, )1 F (5,7
< Czr(s)(|sl + )12 = T|| | Fy (s, DI < 1. O

Theorem 7.2.3. Let T, Z € BC(X) be such that T = Tiey + Toes + Tses, Z =
Z1e1 + Zses + Zses, and assume that the operators Ty, Zy, £ = 1,2,3, have real

spectrum. Assume that s € ps(T) and s & or,(T) Uorn(Z). Let € > 0 and let
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us consider the e-neighborhood Be(os(T) U or(T)) of os(T)Uor(T). Then there
exists 6 > 0 such that, for |T — Z|| < §, we have

05(Z) € Be(0s(T)Uor(T))

and

IFL(s, Z) = Fi(s,T)| <&, fors & Be(os(T) Uor(T)).
An analogous statement holds for the right F-resolvent.

Proof. Let T,Z € BC(X) and let € > 0. Thanks to Lemma 3.1.12 there exists
1 > 0 such that if

1T = 2| <,
then o1,(Z) C B-(o(T)). So we can always choose 1 such that o, (Z) C B.(05(T)U
or(T)). Consider the function Cz r(s) defined in Lemma 7.2.1. The constant

C. = sup Czr(s)
s¢€Be(0s(T)Uor, (T))

is finite because s € B(os(T) U oy (T,¢e) and
. AL — 1 -l —
Tim (s - Z)7" = lim [[(sZ ~ )~ =0.
Observe that since s € pg(T), the map s+ ||Fp(s,T)]| is continuous, and

Tim [|Fy (s, 7)]| = 0,

and so for s in the complement set of B.(0s(T)Uo(T) we have that there exists
a positive constant M, such that

1FL(s, T)]| < M-

From Lemma 7.2.2, we find that if 6; > 0 is such that

1

7 =Tl < =
12 -7l < o7

53)

then s € pg(Z) and
1FL (s, 2) = Fp ' (s,T)]|
IFL (s DI I1Fe(s,T) = Fi(s, Z)|
1 1FL (s D) | FL(s T) = F(s, 2))|
MEQCn,s”Z_T”
—1- Mscn,EHZ - T”

<e€

if we take
€

Che(M2+eM.)
To get the statement it suffices to set 6 = min{n, d3,d4}. O

1Z =T < 64 :=
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Theorem 7.2.4. Let T, Z € BC(X) be such that T = Tye1+Taea+T3e3, Z = Zie1+
Zyeq + Zses, and assume that the operators Ty, Zy, £ = 1,2, 3, have real spectrum.
Let f € SHL(os(T)) (or f € SHRr(0s(T))) and let € > 0. Then there exists 6 > 0
such that for ||Z —T|| < d, we have f € SHL(0s(Z)) (or f € SHRr(0s(Z))) and

1£(Z) = F(D)I| <e.
Proof. We recall that

o 1
FO) =50 [ Bl dsy S6),

where U C H is a bounded slice Cauchy domain with og(7) C U and U C D(f)
and where j € S. Let furthermore B.(os(T)Uo(T)) be contained in U. By Lemma
7.2.3 there exists 61 > 0 such that og(Z) C U for ||Z — T|| < 6;. Consequently
feSHL(os(2))if ||Z—-T| < é1. By Lemma 7.2.3, Fy,(s,T) is uniformly close to
Fr(s, Z) with respect to s € 9(U NC;) for j € Sif ||Z — T|| is small enough. So
for some positive § < §1, we get

I£(T) - f(2)] < %II [Fr(s,T) = Fr(s, Z)] ds; f(s)|| <e.
T Jawncy)

We can argue similarly if f € SHz(U). O

7.3 The F-Resolvent Equations

The F-resolvents satisfy a relation that can be considered a generalized resolvent
equation. In particular, they allow one to show that the F-functional calculus
is capable of generating projections onto subspaces that are invariant under the
operator.

Theorem 7.3.1 (Left and right F-resolvent equations). Let T' € BC(X) and let
s € ps(T). The F-resolvent operators satisfy the equations

Fr(s,T)s — TF(s,T) = —4Q. (T)! (7.20)
and
sFr(s,T) — Fr(s,T)T = —4Q. (T)™*. (7.21)

Proof. We prove relation (7.20), since (7.21) follows with similar computations.
We have -
Fr(s,T)s = —4(sT — T)sQc,s(T)~*

and
TFL(5,T) = —4(Ts — TT)Q.(T) 2.

Taking the difference, we obtain
Fr(s,T)s —TFL(s,T) = —4(s*Z — s(T +T) + TT) Q.. +(T) >
= —40Q,.4(T)". O
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Lemma 7.3.2. Let T € BC(X). Forq,s € ps(T), with s & [q] and with the position
Qs(q) = ¢* — 2Re(s)q + |s|?, the following equation holds:

Fr(s,T)S;'(a,T) + Sg' (s, T)Fr (0, T) = 4Qc,s(T) ™! Qe,g(T) ™
= [(Fr(s,T) — Fr(¢, 7)) g — 5 (Fr(s,T) = F1(¢,T)) | Qs(q) ™" (7:22)

Proof. We consider the S-resolvent equation (3.7) and write the S-resolvent oper-

ators in the form (4.20) and (4.21) for operators with commuting components. If

we multiply it on the left by —4Q,. ((T)~!, we get

Fi(s,T)S; (0, T) = | (Fi(s,T) +4Qc.o(T) 7S (0. 7)) q

— 5 (Fr(s,T) +4Q.+(T)~'5; (¢, T)) ] Q,(q) L.

If we multiply the S-resolvent equation on the right by —4Q. ,(7)~!, we get

Sp! (5. TIFL(0, T) = | (Sg* (5. T)(~4) Qe (1) = Fi(,T)) ¢
=5 (S (5, T)(=4) Qe (1) = Fu(a. 7)) | Qsla) ™"
Adding these two equations yields
Fr(s,T)S; " (q,T) + Si' (s, T)Fr(q,T)
= [(Fr(s,T) = Fr(¢,T)) g = 5(Fr(s,T) = F(¢,T))] Qs(q) ™"
+ [(S7M 5, TY4)Qeg(T) " +4Q0o(T) 18716, T))
= 571 (5, T4 Qe (1) +4Qus(T) 7157 0, T) )| Qula)
The proof is concluded if we verify that
(8715, T) (=) (7)™ + 420, (T) 157 (0, T)) g
=587 (5 T () Qeg(T) ! +4Qus(T) 187 (0.7) ) | Qula)
=4Q. (1)1 Qe o(T) 1.
This follows from
(Sp" (5, T)(=4) Qe g(T) ™! +4Q. o(T) 'S, (4, 7)) q
= 5(S7 (5. T (4) Qe (T) 7! +4Q0,o(T) 787 (4, T))
= —4[(QC,S(T)*1(SI —T)Qeq(T)™' = Qe o(T)H(¢Z — T)Qc,q(T)’l)q
= 5(Qus 1) (T = T)Qeg(T) ™ = Qs (1) M (aT = T) Qe (1))
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I

|
S
©

o(T)7H(5 = 0) Qg (1) 710 = 50, o(T) 7 (5 = 4) Qg (1) ']
= 4] Qus(1) 150 = 43) Qg (T) ™" = Qo) (55 = 50) Qe (T) |
(1) (sq — ¢ — 55+ 5q) Qe (T)

= 400 (T) 7 (¢* = 2Re(5)q + |5/) Qe (T) ™" = 40 (T) 7 Qo (1)1 Q4 (9). T

Theorem 7.3.3 (The F-resolvent equation). Let T' € BC(X). For all quaternions
q,s € ps(T) with s & [q], the following equation holds:

Fr(s,T)S;* (¢, T) + Sg' (s, ) F(¢, T)

- i(sFR(s, T)F1.(q,T)q — sFr(s, T)TF.(q,T)
(7.23)
— Fr(s, T)TFy1(q,T)q + Fr(s, T)T*F1(q, T))

= [(Fr(s,T) = F(¢,T)) ¢ — 5 (Fr(s, T) — Fr(q,T)) ] Qs(q) "
Proof. The identities (7.20) and (7.21) yield

—42Q(T) ' Qy(T) ™" = (sFgr(s,T) — Fr(s, T)T)(Fr(q, T)q — TFL(q,T))
= sFr(s,T)FL(q,T)q — sFr(s, T)TF(q,T)
— Fr(s,T)TF(q,T)q + Fr(s, T)T*Fy(q,T).

Applying this identity in (7.22), we obtain (7.23). O

7.4 The Riesz Projectors for the F'-Functional Calculus

In the sequel we will need the following lemma, which is based on the monogenic
functional calculus; see the book [159] for more details (or some of the papers
[160, 161, 166], where the calculus was introduced).

Lemma 7.4.1. Let T € BC(X) be such that T = Tyey + Tees + Tses, and assume
that the operators Ty, ¢ = 1,2,3, have real spectrum. Let G be a bounded slice
Cauchy domain such that (0G) Nos(T) = 0. For every j € S, we then have

/ sds; Fr(s,T)=0 and / Fr(¢,T)dg;q = 0.
a(GNC;) a(GNC;)
Proof. Since P1(q) = Aq = 0, we have
/ sdsj Fr(s,p) =Pi(p) =0
a(GNC;)

and

/ Fr(q,p)dg; q=Pi(q) =0
a(GﬂCj)
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for all p ¢ OG and j € S. We observe that at this point we need the Cauchy—
Fueter functional calculus, described in the next section, to represent Fr(p,T).
We consider only the case of Fp,(p,T); the other case can be shown in a similar
way. We recall that F7,(p, q) is left Fueter regular in ¢ on H\ [p] for every p, so we
can use Definition 7.5.6 and write

FL(pv T) = 00 g(waT)DWFL(p7 W)a

where the open set () contains the left spectrum of T', G(w, T') is the Cauchy—Fueter
resolvent operator. Using Fubini’s theorem, we obtain

/ Fr(q,T)dg;q

a(GNC;)

z/ / (Q(w,T)DwFL(qw))qu‘q
aGnc;) Joa

= g(mT)Dw(/ Fr(p,w) dp; q) =0,
Ble) a(GNC;)

which concludes the proof. (|

Theorem 7.4.2. Let T € BC(X) be such that T = Tyey + Thes + Tzes, and assume
that the operators Ty, £ = 1,2,3, have real spectrum. Let og(T) = o1 U oy with

diSt((fl,O'Q) > 0.

Lfet G1,G2 C H be two bounded slice Cauchy domains such that o1 C G1 and
G1 C Go and such that dist(Ga,02) > 0. Then the operator

o 1
Pi=- / Fr(q,T)dg;q°
4(2m) Joaine,) !
1 / 9
=—— s°ds;Fr(s,T)
427) Joeane,)

is a projection that commutes with T', i.e., we have

P2=P and TP = PT.

Proof. If we multiply the F-resolvent equation (7.23) by s on the left and by ¢ on
the right, we get

sFr(s,T)S; (¢, T)q + sSg' (s, T)Fr(g,T)q
— 1+ (?Fals. T)FL(q. T)g? — 5 Fals, TYTFo (g, T)g
— sFp(s, T)TFL(q, T)q* + sFr(s, T)T*Fy(q, T)q)
= s[(Fr(s.T) ~ FL(q. 7)) q — 5 (Fr(s.T) — Fr(q.T))] Qu(q) 'a.
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If we multiply this equation by ds; on the left, integrate it over 9(G2 N C;) with
respect to ds;, and then multiply it by dg; on the right and integrate over 9(G1 N
C,) with respect to dg;, we obtain

/ sds; FR(S,T)/ S;'(q,T)dg; g
9(G2NC;) 9(G1NCy)

+/ sds; S§1(57T)/ Fr(q,T)dgjq
A(G2NC;y) 8(G1NCy)

1
— 4(/ s ds; FR(S,T)/ Fr(q,T)dg; ¢*
A(G2NCy) 9(G1NCy)

—/ 52 ds; FR(S,T)T/ Fr(q,T)dq;q
A(G2NCy) 9(G1NC;y)

—/ sds; FR(S,T)T/ Fr(q,T)dg; ¢
(G2NCy) 2(G1NCy)

—|—/ sds; FR(S,T)TQ/ Fr(q,T)dg; Q)
9(G2NC;y) 9(G1NCy)

B /3(6‘20@;) 4o /8(Gm<cj) S[(FR(S’T) —Fr(¢:T)q
—5(Fr(s,T) — Fr(q,T)) } Q.(q) "' dg; q.

By Lemma 7.4.1, this simplifies to

4 9(G1NC;y)

:/ de/ S[(FR<S7T) —Fr(q,1))q
8(G2NC;) B(G1NC;)

—§(Fgr(s,T) — Fr(q,T)) } Q.(q) ™" dag g,

1
——/ s ds; FR(S,T)/ Fr(q,T)dg; ¢*
B(GzﬁCj)

which equals

4(2m)2P? = /

dsj/ S[FR(S,T)q—EFR(s,T)] Q.(q)"tdg;q
8(G2|’7Cj) 8(G10C_j)

- / ds, / s[Fr(q:T)q — 5Fr(g,T)] Qs(q) ™" daj g.
9(G2NCy) 9(G1NCy)

Since G C Ga, for every s € 9(G2 N C;) the functions
g+ qs(q) " = q(¢* — 2Re(s)q + [s|*) "

and
g+ Qs(q)™" = (¢* — 2Re(s)q + |s|*)~*
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are intrinsic slice hyperholomorphic on G;. By the Cauchy integral theorem, we
therefore have

/ qQs(¢) ' dgjg=0 and / Q.(q) " dgjq =0,
d(G1NC;) 9(G1NCy)
and it follows that

/ ds; / s[FR(s, T)q — 5FR(s, T)] Qs(q)_1 dgjq=0.
A(G2NCy) A(G1NCy)

Thus, we obtain

o 1 /
2
= sds;
4(271—)2 A(G2NC;y) !

X / [(Fp(q,T)q — 5FL(q,T)) ] Qs(q) " dajq,
8(G1NC;)

and by exchanging the order of integration and applying Lemma 4.1.2; we finally

obtain
o 1

p?=— / Fi(q,T)dg; ¢* = P.
4(27) Joeinc,) !

We furthermore deduce from (7.21) that

o 4
PT = —— s*ds; Fr(s,T)T
21 Jo(Gincy)
4 16
=_—— 5% ds; FR(S,T)——/ s*ds; Qs(T) 2.
2m Jo(cincy) 21 Joine;)

Since 53y, (s) is intrinsic slice hyperholomorphic, this equals

4

P=—— s*dsj Fr(s,T)T
27 JaGine;)
4 1
=—— Fr(s,T)ds;s® — 16 Q,(T) % ds; s*
21 Jaeinc;) 27 Ja(cinc;)
4

=—— TFy(s,T)ds; s> = TP,
271 Ja(ainc;)

where we applied (7.20) in the third identity. O

7.5 The Cauchy—Fueter Functional Calculus

We recall the Cauchy formula for Cauchy—Fueter regular functions (or Fueter
regular functions), and we use it to define the Cauchy—Fueter functional calculus.
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We will not give all the details but just the main definitions. The function G(q)
defined by

—1

_7 _ 14
G(q) = PERTE (7.24)

is called the Cauchy—Fueter kernel, and it is left and right Fueter regular on H\{0}.

Theorem 7.5.1 (Cauchy-Fueter formula). Let f be a left Fueter regular function on
an open set that contains U. If U is a four-dimensional compact, oriented manifold
with smooth boundary OU, then

fla

= o2

/Qp q)Dp f(p), qe€U, (7.25)

the differential form Dp is given by Dp = n(p)dS(p), where n(p) is the outer unit
normal to OU at the point p, and dS(p) is the scalar element of surface area on
oU. If f is a right Fueter reqular function on U, then

flg) = #/@U f(p)DpG(p—q), qeU. (7.26)

Fueter regular functions do not admit power series expansions, but there
exist series expansions in terms of suitable homogeneous functions. For every triple
v = (n1,n9,ng) with |v| :=ny + na + ng = n, we define

an

L —
ni no ns
O0x' 0x5> Oy

and G, (q) = 9,G(q),

where G(q) is the Cauchy-Fueter kernel. Furthermore, we define the set I'(v) as
the set of all n-tuples (A1, ..., ;) with exactly n; entries that equal 1, exactly ns
entries that equal 2, and exactly ng entries that equal 3. In other words, if we set
)\1, ceey >\n1 =1 and AYL1+17 ceey >\n1+n2 =2 and Anl+n2+1, . ATL = 3, then

L) ={(As)s--->Aem)) : 0 € perm(n)},

where perm(n) denotes the group of permutations of n elements. Furthermore, let
us denote by o, the set of all triples v = (n1,n2,n3) with |v] =ny + na +n3 = n.

1
For every n > 0, the set o, contains §(n+ 1)(n+2) triples. If n = 0, we set v = ()
and P, = 1. For every v € o,, and for ¢ = qg + Z?Zl qee, we define

P,(q) = ] Z (qoex, — qx,) - (qoixn, — an,)-
" A1y An)€ED(R)

The polynomlals ,(q) play the role of the powers 2" in the Taylor expansion
of a function Zn _o @n2" holomorphic at the origin.

Let U,, be the quaternionic right vector space of functions f : H — H that
are left Fueter regular and homogeneous of degree n > 0 over R, i.e., such that
flaq) = a™f(q) for every o € R. We have the following result.
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Theorem 7.5.2. The polynomials P,, v € o,, are left Fueter reqular and form a
basis for U,,. Moreover, if f € U,, then

fl@) =Y (=1)"P,(9)d, (0). (7.27)

vEoy

If f is right Fueter regular, then the polynomials P, are right Fueter regular and

fl@)= > (=1)"0,f(0)P.(q).

vEoy

The introduction of the polynomials P, and the derivatives G, allows one to
prove two results that generalize the Taylor and the Laurent expansion series.

Theorem 7.5.3. Let f : U C H — H be left Fueter regular, p € U. Then there
exists a ball |q — p| < & with radius 6 < dist (p,OU) in which f can be represented
by a uniformly convergent series of the form

+oo
f(Q) = Z Z Py(q_p)am

n=0ve€o,

where
1

a, = (71)”81,.}0(]7) = /l =5 gy(q - p) ’ Dq f(q)

T 22

If f : U — H is right Fueter regular, then

+oo
f@)=>>" aP(a—p),

n=0veEo,

where )
a=(10f0) =55 [ f@)DaGla-p)
™ —p|=
lg—p|=4
Let T be a quaternionic bounded linear operator with commuting compo-
nents on a two-sided quaternionic Banach space X. Recall that such a set is de-
noted by BC(X). In this case, we consider the function G(q,p) := G(p — q) written
in series expansion, and we replace p by T. We get

601 =Y PG =3 3 G)PT). (7.28)

n>0veoy, n>0veEoy,

The expansions hold for ||T|| < |¢| and define a bounded operator. It is natural to
give the following definition:

Definition 7.5.4. The maximal open set p(7') in H on which the series (7.28)
converges in the operator norm to a bounded operator is called the resolvent set
of T. The spectral set o(T) of T is defined as the complement set in H of the
resolvent set.
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Definition 7.5.5. A function f is said to be locally right Cauchy—Fueter reqular
on the spectral set o(7T) of an operator T' € BC(X) if there exists an open set
U C H containing ¢(T") whose boundary 90U is a rectifiable 3-cell and such that f
is regular in every connected component of U. We denote by CFr(o(T')) the set
of locally left Cauchy-Fueter regular functions on o(T"). We denote by CFr(o(T))
the set of locally right Cauchy—Fueter regular functions on o (7).

Definition 7.5.6 (The Cauchy—Fueter functional calculus). Let f € CF1(o(T)) and
T € BC(V) be such that T = Tye; + Toea + Tses, and assume that the operators
Ty, £ = 1,2, 3, have real spectrum. We define

f1) = 5 [ 6@ T)Dasa)

Let f € CFRr(o(T)) and T € BC(V'). We define

f(T) = ﬁ/{w f(9)DqG(q,T),

where U is an open set in H containing o(7") as in Definition 7.5.5.

The definition is well posed, since the integrals that define the Cauchy—Fueter
functional calculus do not depend on the open set U. This is a consequence of the
Cauchy—Fueter regularity of the operator-valued function G(g,T). We point out
that the series expansion of the Cauchy-Fueter resolvent operator in (7.28) has a
closed form if 7" has commuting components, namely

G(g;T)=(gZ-T) (T -T)"".

This operator is then associated with the left spectrum of T'. A closed form of the
sum G(q, T) in the general case, without the assumption that the components of T
commute, would naturally lead to a notion of spectrum of the operator T for the
case of Fueter regularity. But if we want to replace operators with noncommuting
components, then it is not clear what is the closed formula for the Cauchy—Fueter
resolvent. Observe that for the slice hyperholomorphic case, a closed form of the
series > -, T"s~ =" can be found. It is

> T T = —(T% = 2Re(s)T + |s|*Z) (T — 57)

n>0

for ||T]| < |s|, and this identity does not depend on the commutativity of the
components of T'. This is one of its great advantages.

7.6 Comments and Remarks

Comments on the references. The F-functional calculus has been developed in
the papers [20,54,78,81,86]. It is based on the Fueter mapping theorem in inte-
gral form, and it is a monogenic functional calculus in the spirit of McIntosh and
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collaborators, see [159-161,164,166], but it is associated with slice hyperholomor-
phicity. The W-functional calculus is also a monogenic functional calculus, and it
was introduced in the paper [70].

7.6.1 The F-Functional Calculus for n-Tuples of Operators

The F-functional calculus can be extended to the case of n-tuples of commuting
operators. Because of the structure of the Fueter—Sce mapping theorem in integral
form, the F-functional calculus depends on the dimension of the Clifford algebra.
The Fueter—Sce—Qian mapping theorem, one should say, was proved by Michele
Sce [187] for n odd and by Tao Qian [176] for the case in which n is even. Later on,
Fueter’s theorem was generalized to the case in which a slice hyperholomorphic
function f is multiplied by a monogenic homogeneous polynomial of degree k,
see [162] [172] [173], and to the case in which the function f is defined on an open
set U not necessarily chosen in the upper complex plane; see [175-177]. We need
to recall the definition of monogenic functions.

Definition 7.6.1 (Monogenic functions). Let U be an open set in R"*1. A real
differentiable function f : U — R, is left monogenic if

0 " 0
520 (z) —|—;eia—xif(x) =0.

It is right monogenic if
0 "0
oS @+ ; g @ei = 0.

We recall the theorem of Sce to produce monogenic functions from complex-
valued functions (the case of odd dimension of R,,):

We consider a holomorphic function f(z) that depends on a complex variable
z =wu+ ww in an open set of the upper complex half-plane. We write

f(z) = f(](uvv) + Lfl(u»v)v

where fg and f; are R-valued functions that satisfy the Cauchy—Riemann system.
For every paravector x such that u+ (v belongs to the domain of f, we replace the
complex imaginary unit ¢ in f(2) = fo(u,v) 4+ ¢f1(u,v) by the Clifford imaginary
unit j = x/|z| and we set u = xy and v = |z|. We then define

f(@) = folwo, |z]) + 7 fr(xo, |2])-

This function in slice hyperholomorphic with values in the Clifford algebra R,, (or
slice monogenic). Then we apply the (n — 1)/2th power of the Laplace operator
A(=1/2 in dimension n + 1 to f. The function

Flao.|z]) = APV (fo(wo, a]) + j f1(wo, 2])
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is then left monogenic, i.e., it is in the kernel of the Dirac operator. If we replace
Jo(zo, |z]) + jf1(zo, |z]) by fo(zo,|z]) + fi(xo,[z[)j in the above procedure, we
obtain a right monogenic function.

Proposition 7.6.2. Let n be an odd number and let z, s € R" ! be such that x ¢ [s].
Let S;l(s7 x) and Slgl(& x) be the slice hyperholomorphic Cauchy kernels in form
1I. Then:

o The function Aﬂé;lSZl(s,a:) is a left monogenic function in the variable x
and right slice hyperholomorphic in s.

o The function A%Sgl(s, x) is a right monogenic function in the variable x
and left slice hyperholomorphic in s.

Based on the explicit computations of functions
(s,x) — ATLTASL_l(S,x) and (s,z) — A%Sgl(s,x),

for s & [x], we define the F),-kernels.

Definition 7.6.3 (The F),-kernels). Let n be an odd number and let z,s € R
We define, for s ¢ [z], the FL-kernel as

n—1 n+1

Fl(s,2) = AT S7 M (s,2) = (s — 2)(s* — 2Re(a)s + o) "5,

and the FE-kernel as

n—1 +1

Fl(s,x) == AT S5l (s,2) = yu(s® — 2Re(x)s + o) 772 (s — 2),

where )
o 1= (1) (=D 29(n=1)/2 [("T_l)'] . (7.29)

Theorem 7.6.4 (The Fueter-Sce mapping theorem in integral form). Let U C R™*!
be a slice Cauchy domain and choose j € S. Let n be an odd number.

(a) If f € SML(O) for some set O with U C O, then the left monogenic function
f(z) = AT f(x) admits the integral representation
1

fla)=— Fy (s,x)ds; f(s). (7.30)
27 Jawnc;)

(b) If f € SMRgr(O) for some set O with U C O, then the right monogenic
function f(z) = A"T_lf(x) admits the integral representation

o 1
fa) =5 [ e, T 2) (7.31)

The integrals depend neither on U nor on the imaginary unit j € S.
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We refer to the section on comments and remarks at the end of chapter on
the properties of the S-functional calculus for bounded operators for the definition
of the Clifford algebra R,, and for the functional setting on paravector operators
T =Ty + Tiey + -+ + Then. In the sequel, we will consider bounded paravector
operators T, with commuting components T, € B(X) for £ = 0,1,...,n. Such
subsets of B(X,,) will be denoted by BC"*(X,,). The F-functional calculus is based
on the commutative version of the S-spectrum (often called F-spectrum in the
literature). So we define the F-resolvent operators.

Definition 7.6.5 (F-resolvent operators). Let n be an odd number and let T' €
BC*(X,). For s € ps(T) we define the left F-resolvent operator by

n41

FL(s,T) =7 (sT —T)Q.s(T)" 2, (7.32)
and the right F'-resolvent operator by
FE(8,T) := 7, Qos(T)~ "% (sT —T), (7.33)

where the constants +,, are given by (7.29).

Let T € BC"*(X,,). We denote by SMp(o5(T)), SMr(os(T)) the set of all
left (or right) slice hyperholomorphic functions f with og(T") C D(f).

Definition 7.6.6 (The F-functional calculus for bounded operators). Let n be an
odd number, let T € BCO’l(Xn) be such that T' = Tie; + Toes + T3e3, and assume
that the operators Ty, £ = 1,...,n, have real spectrum. Set ds; = ds/j. For every
function f € SMp(os(T)), we define

v 1

Fr) = o FE(s,T)ds; f(s). (7.34)
T Joa(uncy)
For every f € SMg(os(T)), we define
F(T) = ;/ f(s)ds; FE(s,T), (7.35)
T Jo(uncy)

where j € S and U is a slice Cauchy domain U.

The definition of the F-functional calculus is well posed, since the integrals
in (7.9) and (7.35) depend neither on U nor on the imaginary unit j € S.

7.6.2 The Inverse Fueter—Sce Mapping Theorem

In recent years, new problems related to the inversion of the Fueter-Sce mapping
theorem have been solved. For the sake of simplicity here we mention the inversion
problem of axially monogenic functions. The results can be found in [83], while
more general cases are treated in the papers [84,85,87,103].
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Definition 7.6.7 (Axially monogenic function). Let U be an axially symmetric open
set in R™*! and let x = zo+2 = 29 +7w € U, for w € S. Assume that f : U = R,
is a monogenic function, i.e., it is in the kernel of the Dirac operator. We say that

f is an axially monogenic function if there exist two functions A = A(z,r) and
B = B(xg,), independent of w € S®~! and with values in R,,, such that

f(x) = A(wo,7) + wB(x0,7).

We denote by AM(U) the set of left axially monogenic functions on the open set
U.

The problem is as follows: suppose that f is an axially monogenic function
and f is a slice monogenic function such that f(z) = AT f (z). Determine a slice
monogenic function f in terms of the components A(xg,r) and B(zg,r) of the
axially monogenic function f(z) = A(zo,7) + wB(zo,r). It is important to give
the definition of a Fueter—Sce primitive.

Definition 7.6.8 (Fueter-Sce primitive). Let n be an odd number and let U C R?*!
be an axially symmetric domain. Suppose that f : U C R*"t! — R,, is a left slice
monogenic function. We say that f is a Fueter—Sce primitive of f e M(U) if
A"z f(z) = f(z) on U.

The definition of a Fueter—Sce primitive of f is well posed, since slice mono-
genic functions are infinitely differentiable. The monogenic Cauchy kernel G(x) is
defined for z € R"*1\ {0} as

1 T
r)=—— —— 7.36
g( ) An+1 |x|”+17 ( )
where A,11 = % is the area of the unit sphere in R"*1. As we will see,
2

G(x) plays a crucial role in the inversion formula of monogenic functions.
Definition 7.6.9 (The kernels N, (z) and N, (z)). Let G(x) be the monogenic
Cauchy kernel defined in (7.36) with 2 = 29 +2 € R"™!, and for y = rw € R™ we
assume r = 1 and w € S*~!. We define the kernels

N () = (z —w)dS(w), Ny (z)= (z - w)wdS(w), (7.37)

Sn—1 §n—1

where dS(w) is the scalar element of surface area of S"~1.
Theorem 7.6.10 (The structure of the Fueter—Sce primitives of A and N,;). Let

n be an odd number and denote by W;F and W,, the Fueter-Sce primitives of N}
and N, respectively. Consider the functions

Cn (0 Zo
Wi(zo) =2 D (") 2 ____
’CTL (1’8 + 1)(n+1)/2
_ Con o fne 1
Wi (x0) == ——= D~(»=1)

K, (22 + 1)(nt1)/27
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where ,%—” is a given constant and the symbol D~("=1) stands for (n—1) integrations
with respect to xo. Then, by replacing o by x in W, (zo) and in W, (z0), we get
W, (x) and W, (z), respectively. Moreover, the functions W, (x) and W,, (z) are
extendable to slice monogenic functions defined for all x € {xg + rw : (xo,7) #

(0,1)}.

The Fueter—Sce primitives of A and N, can be explicitly computed. For
example, when n = 3 they are given by

1 1
Wy (x) = o arctanz, Ws (z) = 5 x arctan .

Theorem 7.6.11 (The inverse Fueter—Sce mapping theorem). Let f(x) = A(xo, p)+
wB(x0,p) be an azially monogenic function defined on an axially symmetric do-
main U C R"L. Let T' be the boundary of an open bounded subset V' of the half-
plane R + wR* and let

V={r=u+twy, (u,v) €V, weS" 1} CU.

Moreover, suppose that T is a reqular curve whose parametric equations yo = yo(s),
p = p(s) are expressed in terms of the arc length s € [0,L], L > 0. Then the
function

f(z) = /FW; (%(fc - yo))p"‘Q(dyo A(yo, p) — dp B(yo, p))

= [t (G la = w0)) " 2 dnBln.p) ~ dpAln,p). (739
r p

is a Fueter—Sce primitive of f(x) on V, where Wi and W, are as in Theorem
7.6.10.

This theorem has several generalizations, and this topic is still under inves-
tigation.



Chapter 8 ®

Check for
updates

The F-Functional Calculus for
Unbounded Operators

Similar to the S-functional calculus, we can also extend the F-functional calculus
to unbounded operators by suitably transforming the operator and the function
and then applying the theory for bounded operators. Let us first specify the type
of operator for which this is possible.

Let X = Xg ® H be a quaternionic two-sided Banach space and let T} :
D(T;) € Xgr — Xg be linear closed operators for £ = 0,...,3 such that 7,7, =
T..T,. on D(T,T,,) " D(T,Ty) for £,k =0,...,3. Then

3

D(T) = [ D(T)

=0

is the domain of the quaternionic right linear operators

3
T=Ty+Y eTr: DIT)CX—X
=1
and
3
T=Ty-> eTy: DT)cCX—X.
=1
Definition 8.0.1. We denote the set of closed right linear operators with commuting
components as discussed above by KC(X).

For operators in KC(X), we can characterize their S-resolvent set and S-
spectrum just as in Theorem 4.5.6 as

ps(T)={seH: Q..(T)' €B(X)}
© Springer Nature Switzerland AG 2018 177
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with
Q.s(T) = (s*°T — 25Ty + TT) .

Definition 8.0.2 (The F-resolvent operators for the unbounded operators). Let
T € KC(X). For s € pg(T), we define the (left) F-resolvent operator as

Fr(s,T) = —4(sT — T)Q.+(T) .

8.1 Relations Between F'-Resolvent Operators

The following results are important since they will lead us to the definition of
F-functional calculus for unbounded operators.

Proposition 8.1.1. Let T € KC(X) and assume that there exists a point o €
ps(T)NR # 0 and set A := (T — aZ)~! as in Theorem 5.2.3. For p = (s —a)~?,
we have

Qup(A) = (AA) ™ Qua(T) % = Qun(T) Qs (T) " 'p2

and

Qe p(A)72 = (AA) 7 Qo (1) ™2™ = Qua(1)2Qe (1) 2p™.
Proof. Observe that
p’I—p(A+A)+AA
= (»? (42) " = p (A+A) (44) " +7) (44)
= (p? (AA) " —p (A4 AT) 4 1) (A7),

1

where we have used the fact that (AZ)_l —AA T =A A Recalling that

A:=(T- aI)fl and A := (T — aI)_l, we obtain
A4 =T —a(T+T)+TT = Quu(T)

and )
AV A =T+ T — 2071,

so that we obtain

Qup(A) ' = (pPT — p (A+A) + AA) "
= (4A) 7 (p? (aA) " —p (a4 AT ) 4 T)

= Quo(T) (p* Qea(T) —p (T +T —20T) + 1) .

1
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Observe now that T+ T = 2Ty and TT = Z?:o T? are scalar operators and
thus commute with p, so we have

Qe p(A) ™ = Qu(T) (Qea(T) —p (T +T — 20T) +p21)  p~2.
Finally, we also get
Quo(T)—p ' (T+T —20Z) +p*L
=’ -« (T —|—T) +TT — p_1 (T + T) + 2ap_1I—|—p_QI
=TT — (p_l + a) (T —|—T) + (p_2 +ao®+ 204p_1) T
=TT —s(T+T)+s*T = Q..(T),

and so
Qcyp (A)_l = QC,a(T) QC,S (T)_l p72-
Since a € R, we have
sp=s(s—a) " =ps,
and so Q. o(T), Qs (T), and p~2 commute mutually. Therefore, we also obtain

Qup (A)2 = Qu(A)?Q, (1) ?p ™. O

From Proposition 8.1.1, we deduce now two important relations between the
F-resolvents of T and A.

Theorem 8.1.2. Let T € KC(X), let a € ps(T)NR # (0, and define A = (T—aZ)~!
For s € pg(T) with s ¢ o(T) and p = (s — a)~t, we have

Fp(s,T) = —AA%Fr(p, A)p. (8.1)

Proof. We recall that F(p,A) = —4 (pI—Z) Q.,(A)72. Due to Proposition
8.1.1, we have

FL(p7 A) =—4 (pI - Z) Z_QA_QQC,S(T)_QP_4'
Since s = p~! 4+ o commutes with p, we have
FL(p7 A) =—4 (pI - Z) Z_21472}771Qc,s(Tv)izpisa
and so

Fr(p,A) = -4 (pT — A) A A~ 2p ' (ST —T) "' (ST —T) Qua(T)*p>.

Observe that 4 A2 = Q,s(T)%is a scalar operator since o € R and hence com-
mutes with p and so also with (pZ — A4). Since Fr(s,T) = —4 (sZ —T) Q. +(T) 2,
we obtain

Fr(p,A) = A 2A2 (pI — Z) pt (SI — T)il Fr(s,T)p~3
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Replacing s = p~! + a, we get
Fr(p,A) = A A2 (pZ—-A)p ' (p'IT+aZ-T) (s, T)p—3

o _ N1
—A A2 (pI - A) p ! (pill —A 1) Fr(s,T)p~3
and hence

Fr(p,A) = —A "A7% (pT — A) p! (p (T —A)~" Z) Fr(s, T)p~>.

We thus get the statement because

Fi(p, A) = — (A) > A~AF,(s, T)p™*

=-4(4) PA2F (s, T)p % = — (Z)_l ATPFL(s,T)p°. O

Theorem 8.1.3. Let T € KC(X), leta € ps(T)NR # 0, and define A = (T—aZ) .

For s € ps(T) and p = (s — a)~t, we have

(AA) L Fp(p, A)p* = —4pQ. o(T) ™' — Fir(s,T). (8.2)
Proof. We recall that
AA = (*T —o(T+T)+TT) ' : DIT) =V

and that - B - B
A+ A=(T+T-2aZ)AA : D(TT)— D(T).

Using the relation s = p~—! 4 a, we get
P*T — p(A+ A) + A4 = p? (3217 s(T+T)+ TT) (T — aZ)"Y(T - oZ)~", (8.3)
where the right-hand side of (8.3) is the composition of the maps
(T — o) (T —aI)™t: V= DTT)

and - - -
(321 —s(T+T)+ TT) . D(IT) - V.

We write Fr,(p, A) now in terms of the above positions and get
Fr(p, A) = —A[(pZ — (T — oZ) " )(T — oZ)(T — oZ)]
x (T — aZ)(T — oT) (S2I - s(T+T)+ TT) 72p*8.
Due to s = p~' + o, we have
(T — (T = oZ)"')(T — aZ)(T — oI)]
=[p(a*’T —a(T+T)+TT)+aZ —T]
=pQ.s(T) — (sT-T),
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from which we conclude
Fr(p,A) = —4(T — aZ)(T = oZ)[pQ.,s(T) — (sT — T)]
_ N2
x (SQI —S(T+T)+ TT) L

which gives B
(AA) ' Fr(p, A)p* = —4pQe o(T) " = Fir(s, T). 0

8.2 The F-Functional Calculus for Unbounded
Operators

Let T € KC(X) with ps(T) N R # ). For a € ps N R, we define @, : H — H as
B,(s)=(s—a)™!, Pyla) =00, P,(c0)=0, (8.4)

and set A := (T — aZ)~!. We recall that by Theorem 5.2.3, we have ®(75(T)) =
o5(A) and that

SHi(os(A) = {fods': feSHLGEs(T))}.

Definition 8.2.1 (F-functional calculus for unbounded operators). Let T € KC(X)
with ps(T) NR # (), let a € ps(T) NR, and define ¢, and A as in (8.4). For
feSHL(@s(T)) with f(«) = 0, we consider the functions

d(q) == (fo®,")(q),

v

¥(q) = A(g*¢(q)),

and define the operator f(T') for f = Af as

v v

H(T) = (AA) " (A), (8.5)

where 1(A) is intended in the sense of Definition 7.1.11.

Remark 8.2.2. Observe that the condition f(a) = 0 is not a restriction in the above
definition. Indeed, if f(a) # 0, then we can consider the function f(q) = f(q)—f(«@)
and we find that also f € SHy(75(T)) with f = Af, but now f = 0. We will take
this fact into account in the next result.

Theorem 8.2.3. Let T € KC(X) with ps(T)NR # 0, let a € ps(T)NR, and define
@, and A as in (8.4). For f = Af with f € SH(Ts(T)) with f(a) = 0, the
operator f(T') defined in (8.5) satisfies

f(T) = / Fi (s, T) ds; £(s), (8.6)
a(UNC;)
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where U is any unbounded slice Cauchy domain with og(T) C U and U C D(f)
and j is any imaginary unit in S.

In particular, f(T) is independent of . If f. = f — ¢ with ¢ € H such that
f+(8) = 0 with 8 € ps(T) NR, we can define f.(T) using B instead of o. Then

f: JF* and f(T) = f*(T)

Proof. Let j € S and let U be a slice Cauchy domain as above. Furthermore,
we assume that « ¢ U. If this is not the case, we can replace U by the axially
symmetric slice Cauchy domain U \ B.(0) with sufficiently small ¢ > 0 without
altering the value of the integral in (8.6) by the Cauchy integral theorem.

The set V = ®,(U) is a bounded slice Cauchy domain with og(T) C V and
VCD(fod, ') =(D(f))

Using the second relation between Fp,(p, A) and Fp(s,T), see formula (8.2),
we have

/ (—4pQe.s(T) ™! — Fr(s,T)) ds; f(s)
a(UNC;)

= (AA)~! Fi(p, A) dp; p*é(p)-
a(vVNCy)

Now we work on the left-hand side:
/ (—4pQ.o(T)~ ' — Fr(s,T)) ds; f(s)
a(UNC,)
[ w0 Msifs) - [ Fuls s ()
a(UNC,) a(UNC,)
——t [ (s a) s 0 (D))
a(UNC;)
_ / Fu (s, T)ds; f(s)
a(UNC;)
— 1M QuT) @)~ [ FulsT)ds; £(5),
8(Uﬁ(c]')

The last identity follows because Q. (1) ds; = ds; Qc,«(T) ", since T+ T and
TT are scalar operators, so that

= e (70 QD19
— / S71(s,0) ds; Qs (T) " f(5) = —4(27) Qura(T) " (@)
a(UNCy)

by Cauchy’s integral formula because s — Q. s(T) "' f(s) is left slice hyperholo-



8.3. Comments and Remarks 183

morphic. Indeed, for s = u + jv, we have

5 (5 i3 ) Qa0 = (5 (2 + 52 ) Qa1 ) 10
+ Q. (T) ! (; (;L +jaav> f(s)) =0

because Q,(T)~! commutes with j, since T+ T and TT are scalar operators.
The identity (8.7) therefore turns into

42m)Qu(T) f(a) - / Fy(s,T) ds; f(s)

a(UNCy)

— (47A)! / Fi(p. A) dp; p*6(p).
a(vNe;)

Since by assumption f(«) = 0, we conclude that

1

o Fi(s,T)ds; f(s) = 5 (AA)‘l/ Fr(p, A)dp; p°¢(p)
aUuNCc;) u a(vnc;)

= (AA)1(A) = f(T).

Finally, if f. = f + ¢ with f.(8) = 0 for some 5 € ps(T) N R, then we find that

v 1
f*(T):T Fr(s,T)dsj fi(s)
™ Joa(uncy)
1
= — FL(S,T) de f(S)
21 Jownc;)
1 o
o FL(87T)deCZf(T)7
21 Jownc;)
since )
- FL(S,T)deC:O
21 Jownc;)
by Cauchy’s integral theorem. O

8.3 Comments and Remarks

The definition of the F-functional calculus can be extended to the case of n-tuples
of unbounded operators. As is well known in the case of unbounded operators,
the notion of commutativity is more delicate, and one has to pay attention to the
domains of the operators. The situation is simpler when just one of the operators
T;:D(T;) Cc X —- X,j=0,1,...,n, is unbounded; see [78].
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8.3.1 F-Functional Calculus for n-Tuples of Unbounded Operators

The definition of the F-functional calculus for unbounded operators is less intu-
itive than the S-functional calculus for unbounded operators. The reason is that
the S-functional calculus is defined by a Cauchy formula, while the F-functional
calculus is defined by an integral transform that maps slice monogenic functions
to monogenic functions.

Definition 8.3.1 (Admissible operators). Let X be a real Banach space and X,, =
X ®R,,. Let Tj : D(T;) C X — X be linear closed operators for j = 0,1,...,n,
such that T;T;x = T;Tjz, for all x € D(T;T;) N D(T;T;) for i,j = 0,1,...,n. Let
D(T) = Nj—o D(T}) be the domain of the operator T = To +>_7_, e;T; : D(T) C
X, — X,,. We say that T is an admissible operator if

1) Nj—o D(Ty) is dense in X,,,
2) sZ —T is densely defined in X, for s € R"*1,
3) D(TT) C D(T) is dense in X,,.

We need the following definitions:

e Let a € ps(T)NR # () and let n be an odd number and let p = (s — o)~
Set A:= (T —aZ) L

e Let a € R and define the homeomorphism @ : R S @nﬂ,
p=>0(s)=(s—a)"!, ®(0)=0, @(a)=oc0. (8.8)
Definition 8.3.2 (The F-functional calculus for n-tuples of unbounded operators).

Let n be an odd number and let T : D(T) — X,, be an admissible operator with
ps(T)NR # O and suppose that f € SMr(Gs(T)). Let us consider the functions

¢(p) = (@7 (p)),
D) = AT (0" ()),
where A, is the Laplace operator in dimension n 4 1, and recall that
A:=(T—aZI) !, forsomeac ps(T)NR.
With the notation above, we define
F(T) = (AZ) 7 (A) (8.9)

for functions f such that f(a) = 0.

The definition seems unnatural, but it is suggested by the two relations be-
tween the resolvents F),(p, A) and F, (s, T).
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Theorem 8.3.3 (First relation between the F-resolvents). Let T' be admissible, let
a € ps(T)NR # 0, let n be an odd number, and let p = (s — a)~ L. Let us put
A= (T —aZ)~ ! and suppose that p € ps(A) and p # 0. Then we have

n—1 n+1

Fu(s, T) = —(A) = A7 F,(p, A)p". (8.10)

Theorem 8.3.4 (Second relation between F,,(p, A) and F,,(s,T)). Let o« € ps(T) N
R # 0 and let n be an odd number and let p = (s—a) 1. Recall that A :== (T—aZ)~!
for T' admissible. Let s € ps(T) and p # 0. Then we have

_n—-1
2

(AA)"7 F,(p, A)p™*" = yup(s*T — (T + T) + TT)" "7 — Fo(s,T), (8.11)

2
where v, are defined in (7.29), i.e., 7, := (—1)(n=1)/29(n=1)/2 [(%)'] .

Thanks to Theorem 8.3.3 and (8.11), we can prove that for n an odd number,
if k€ ps(T)NR # @ and @, ¢ are as above, then ®(cg(T)) = o5(A), and the
relation ¢(p) := f(®~1(p)) determines a one-to-one correspondence between f €
SME(Fs(T)) and ¢ € SM(7s(A)), and so the integral representation theorem of
the F-functional calculus is what we expect:

Theorem 8.3.5. Let n be an odd number and let T' be admissible with ps(T)NR # ()
and suppose that f € SMr(cs(T)) and set ds; = —dsj for j € S. If f(k) =0,

then the operator f(T) := (AA) Y(A), defined in (8.9), does not depend on
k € ps(T)NR. Moreover, we have the integral formula

) = / FE(s, T)ds; f(s), (8.12)
a(WnC;)

where W is a suitable Cauchy domain.

The reason we have defined the F-functional calculus as in (8.9) is essentially
due to the relation in Theorems 8.3.3 and 8.3.4. Thanks to this relation, we can
prove that f(7T) is independent of k& and admits the integral representation (8.12).
A similar definition can be found for f € SMg(Ts(T)).
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Check for
updates

Quaternionic Operators on a
Hilbert Space

9.1 Preliminary Results

In this section we recall some preliminary definitions and results on quaternionic
Hilbert spaces and on quaternionic linear operators. The proofs of the results that
are too similar to the case of complex Hilbert spaces will be omitted. We also
recall some definitions that we have already stated for quaternionic Banach spaces
in the previous chapters for better clarity.

Definition 9.1.1. (i) A right H-module is an abelian group with a right scalar
multiplication that satisfies the distributive properties

(z+ylg=2q+yq, z(p+q) =zptaq forallz,yeH, pgel,
and the associative property
z(pq) = (zp)q, forallz,y € H, p,q€H.

(ii) A Hermitian quaternionic scalar product is a map {(-,-) : H x H — H, (z,y) —
(z,y) that satisfies the following properties:

(ra+yp, z) = @a + (y,2)p,

{z,y) = (y, z),
(z,z) >0 and (z,x2)=0<= =0,

for every o, 8 € H, and z,y, 2z € H,
From the above relations it follows that
(r,ya + 2B) = alz,y) + Bz, z), forevery o, € H, and z,y, 2 € H.
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Definition 9.1.2. A quaternionic pre-Hilbert space H is a right H-module such that
there exists a Hermitian quaternionic scalar product.

The Hermitian scalar product satisfies the Cauchy—Schwarz inequality

(@ 9)| < [l Nly]l-

As in the complex case, on ‘H we can define the natural norm

el = vz, z), veH.

Definition 9.1.3. A quaternionic pre-Hilbert space is called quaternionic Hilbert
space if it is complete with respect to the natural distance defined as

dist(z,y) := [lz — yl|.

When (x,y) = 0 for 2,y € H, we say that x is orthogonal to y and we write
x L y. When & C H and F C H, the notation £ L F means that x L y for all
x € & and y € F. We denote by £ the points y € H that are orthogonal to every
x €.

Theorem 9.1.4. If £ is a closed subspace of H, then
H=EdEL

This means that £ and £ are closed subspaces of H whose intersection is
{0} and whose sum is H. The subspace £ is called the orthogonal complement
of £. Tt follows that if £ is a closed subspace of H, then

(EHt=¢.
Definition 9.1.5. We will call a subset N' C H an orthonormal basis if

(x,yy =0 for z,y € H such that z #y,  (9.1)
(x,x)y =1 forzeH,
{reH: {(z,y) for all y € N} = {0}. (9.3)

It can be checked in a similar manner to the classical complex Hilbert space
case that every vector x € H can be written as

= ylz,y). (9.4)
yeN
The proofs of following propositions are analogous to those of the complex case.

Theorem 9.1.6. Let N be an orthonormal basis of a quaternionic Hilbert space H.
Then every x € H can be decomposed uniquely via

T = Z 2{x, z), (9.5)

zEN
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where
Z 2(z, z) = sup{ Z z(x,z) : Ny is a nonempty finite subset of N'}.
zeN zEN}

Theorem 9.1.7. Let {x,,} be a sequence of pairwise orthogonal vectors in H. Then
each of the following conditions implies the other two:

(i) the series > .- |, converges in the norm topology of H,
(i) 22021 llwnl® < oo,
(iii) the series > oo {(xy,y) converges for every y € H.

Let D(T') denote the domain of a linear operator 7'. In the following we will
consider right linear operators 7' : D(T') C ‘H — H, that is, those operators such
that

T(xa+yp) = (Tz)a+ (Ty)p,

for all z,y € D(T) and «, 8 € H. The set of right linear operators on H will be
denoted by L(H). Given T € L(H), the range and kernel of T' will be given by

ran(T)={yeH: Tx=yforx e D)}

and
ker(T) ={x € D(T): Tz =0},

respectively. We will denote by B(#) the right Banach space of all bounded right
linear operators T : H — H endowed with the natural norm, i.e.,

IT]| = sup ||T]].
lzf|<1

Lemma 9.1.8. Fix a right linear quaternionic Hilbert space H. A right linear sub-
space K of H & H satisfies

K={(z,Tz): =€ D)} (9.6)
for some T € L(H) if and only if
0,y) e K=y =0. (9.7)

Proof. If K is as in (9.6), then (9.7) follows directly from 70 = 0. Conversely, if
(9.7) holds, then (z,y) and (z,2) belonging to K implies that y = z, i.e., there
exists a function T : D(T) — H. The fact that T € L(H) follows easily from the
right linearity of IC. Thus, (9.6) holds. O

Definition 9.1.9. e An operator 7' € L(H) is called closed if the set {(z,Tz) :
x € D(T)} is a closed subset of H x H.
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e Let S and T both belong to L(H). We write S = T if D(S) = D(T) and
Sz =Tz for all x € D(S) = D(T).

o We write S C T if D(S) C D(T') and Sz = Tx for all x € D(9).

e Clearly, S = T if and only if S C T and T' C S. An operator T' € L(H) is
called closable if there exists a closed operator U € L(H) such that T C U.

Theorem 9.1.10. Let T € L(H). Then T is closable if and only if

{(,Tz): z€DT)} ={(z,Uz): for some operator U € L(H)}. (9.8)
Proof. If S € L(H) is any closed operator such that 7' C S, then
{(,Tz): 2e€D(T)} C{(z,Sz): x€D(5)}.

Hence, since S is closed,

{(z,Tx): 2e€D(T)} C{(x,Sz): =€ D)}

Therefore, in view of Lemma 9.1.8, (9.8) holds. Conversely, if (9.8) holds, then
T C U, and hence U is closed, since

{(z,Uz): 2€DU)}
is closed. Thus, T is closable. O
Definition 9.1.11. Let T € L(H) be closable. We let

Tx:= lim T(x,)

n—-+4oo

denote the operator in £(H) with domain
D(T) = {J: EH: z= ngr—lr-loc x,, for {2,}7°% C D(T) and

{T(z,)},25 converges in ’H}.

n=0

Remark 9.1.12. In view of Theorem 9.1.10, the definition of T is independent of
the choice of sequence {z,};>7. Note that for every closed operator U € L(H)
such that T C U,

TCU.

Definition 9.1.13 (Adjoint operator). Given T € L£L(H) that is densely defined, we
let T* € L(H) denote the unique operator (called the adjoint) such that

(Tz,y) = (z,T"y), =€ D(T).
The domain of T™* is given by

D(T*) = {y € H : there exists z € H with (Tx,y) = (z, z) for every x € D(T)}.
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Theorem 9.1.14. If T € L(H) is densely defined and W € L(H), then:
(i) T* € L(H) is closed.

(ii) ran(T)* = ker(T*).

(iii) If T C W, then W* C T*.

ker(T) C ran(7T*)*
When T is closed and D(T*) is dense in H, then

)
)
(iv)
(v)

ker(T) = ran(T*)*

Proof. The proofs can completed in much the same way as in the case in which
H is a complex Hilbert space (see, e.g., Proposition 1.6 in [191]). O

Theorem 9.1.15. If T € L(H) is densely defined, then:
(i) T is closable if and only if D(T*) is dense in H.
(ii) If T is closable, then T = T**.

(iii) T is closed if and only if T = T**.

)

(iv) IfT is closable and ker(T) = {0}, then T~! is closable if and only if ker(T) =
{0}. Moreover,

Proof. The proofs can completed in much the same way as in the case in which
H is a complex Hilbert space (see, e.g., Theorem 1.8 in [191]). O

Definition 9.1.16. Let T € L(H). We call T normal if T is densely defined, T is
closed, D(T) = D(T*), and TT* = T*T.

Lemma 9.1.17. Let T € L(H) be normal. If S € L(H) so that T C S and D(S) C
D(S*), then S=T.

Proof. It T'C S, then S* C T™* and hence
D(T) CD(S) CD(S*) CD(T*) =D(T),
i.e.,, D(S) = D(T). Therefore, S =T. O
Definition 9.1.18. Let T' € L(H). We call T
o self-adjoint it T =T,
o anti-self-adjoint if T = —T*
o unitary if TT* =T*T =T.
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9.2 The S-Spectrum of Some Classes of Operators

As in the complex case there are different ways of splitting the spectrum of a
closed linear operator. For the spectral theorem, the splitting of the spectrum in
terms of the point spectrum, continuous spectrum, and residual spectrum is very
natural.

Definition 9.2.1. Let T € £(H) be densely defined and let Q,(T) : D(T?) — H be
given by
Q. (T)x = (T? — 2Re(s)T + |s|*T)z, =z € D(T?).

The S-resolvent set of T is defined as follows:
ps(T)={s€eH: ker(Qs(T)) = {0}, ran(Q4(T")) is dense in H and
Q.(T)~" € B(H)}-

The S-spectrum is defined as
os(T) =H\ ps(T).
We recall Theorem 3.1.13 for the particular case of Hilbert spaces:

Theorem 9.2.2. Let T € B(H). Then the S-spectrum is a compact nonempty subset
of H and
os(T) C {p e H: 0< |p| < T} (9.9)

Moreover, we recall that the axially symmetric structure of the S-spectrum
will be crucial in the followng.

Theorem 9.2.3. Let T € L(H) be densely defined. If p = po+ip1 € os(T) fori €S
and po,p1 € R, then po + jp1 € os(T') for all j €S.

We will use the following splitting of the S-spectrum:

Definition 9.2.4. Let T : D(T) — H. We split the S-spectrum into the three
disjoint sets:

(P) The point S-spectrum of T
ops(T) = {s € H: ker(Qu(T)) # {0}}.
(R) The residual S-spectrum of T*
ons(T) = {s € H: ker(Qu(T)) = {0}, ran(Q,(T)) # H}.

(C) The continuous S-spectrum of T
oes(T) = {s € H: ker(Qu(T)) = {0}, ran(Q.(T)) = K, Qu(1)™" ¢ B(H) }.
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We observe that from the definitions of S-spectrum and S-resolvent set we
have the following results, which were proved in [142].

Theorem 9.2.5. Let T : D(T) — H be a right linear quaternionic operator with
dense domain.

(i) If T is self-adjoint, then og(T) is real and ors(T) is empty.
(ii) IfT is anti-self-adjoint, then os(T') is purely imaginary and ors(T) is empty.

Proof. Let us prove (i). To prove that the S-spectrum is real, we show that the
S-resolvent set consists of quaternions s = sg + s such that s # 0. Observe that

Q.(T) =T? — 2Re(s)T + |s|*°T = (T — Tso)® + Z|s|°.

Since T is self-adjoint, by standard arguments it follows that also (T — Zsq), its
squared (T —Zso)?, and Q,(T) are self-adjoint operators. Take x € D(T?), so that

(x,(T — Iso)?z) = (T — Iso)x, (T — Isp)x) > 0.
‘We observe that
1Q4(T)|?

(T = Zs0)* +Z|s")x, (T — Is0)* + Z|s|*)x)
(T = Zso)*all + 2|z, (T — Iso)*x) + |s|*||=||?
|

sl
So from the estimate
1Qs(T)z|| > [s)*||zll, =€ D(T?),

we have that ker(Q(T)) = {0} and Q4(T)~ ! : ran(Q4(T)) — D(T?) is a bounded
operator. Now observe by Theorem 9.1.14 that

ran(Qs (7)) = (ran(Q s(T»)L)
= ker(Q;

This proves that s is in the S-resolvent set, and so the S-spectrum is real. Now
suppose that the residual spectrum is nonempty. We get the following contradic-
tion:

{0} = ker(Qu(T)) = ker(Qs(T)*) = ran(Qs (1))~ # {0},

so ops(T) is the empty set.

Let us prove (ii). To prove that the S-spectrum is purely imaginary, we show
that the S-resolvent set consists of quaternions s = sy + s such that sg # 0. In
analogy with the previous statement we want to show that ker(Qs(7)) = {0} and
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Q4(T)~t : ran(Q4(T)) — D(T?) is a bounded operator. This follows from the
inequality
1Qs(T)zll = sgllzll, € D(T?). (9.10)

Precisely, since T is anti-self-adjoint, the relations
(T?x,Tx) + (Tx, T?z) =0, (Tz,z)+ (x,Tzx) =0, (T%x,z)+ (x,T%z) = —2|z|?,
imply

1Qs(T)all* = I T22|” + [s|*||z|* +2(s5 — Is|*) I Tz

When s3 — |s|? > 0, the estimate ||Q(T)z|| > s3|z| holds. When s3 — |s|? < 0, it
still holds, since from the estimate

2(s5 — s T > 2(s3 — |sI*) Il T2,
we get

1Qs(T)a|? > | T2||* + [s[*]|[|* + 2(s3 — |s*) ||| T*]|
= (I72%] — |slll2l)? + 253l || 7% + (4 + 283/l
> sl
We now recall that as in the complex case, if T is a closed linear quaternionic
operator, then D(TT*) is dense in H and T*T is self-adjoint. We will use the
above fact to show that D(TT*) is dense in H and that Qs(T)* = Q_,++(T).
Indeed, the operator T? + s2Z is self-adjoint. Since for the property of adjoint

operators
T+ Ty C (Ty + T»)*

when D(T; + T5) is dense in H we get

+ SOI ( — SoI)2 + QSoT)*
O ((T = s0Z)*)* + 28T
= ((T = 50Z)?)* — 25T,

it follows that
(T + 50Z)* = (T — 50Z)* + 45T D ((T — s0Z)?)*.
Since T7Ty C (ToT1)* if D((T2T1)) is dense in H, we have
(T — s0Z)*)* D (T* — 50Z)* = (T + s0T)?,

so we get
(T — s0Z)*)* = (T + s0Z)?,
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and so
Q,(T)* = ((T = s0T)? +[s"T)" = (T + 50T)% + |5°T = Qs (T).
We now apply (9.10) to get
1Q-so+s (DIl = spllzll, = € D(T?).
In particular, this implies that
ker(Q—s,+5(T)) = {0},
and moreover, with similar considerations as in point (i), we have
ran(Q_,15(T)) = H.

This means that s € pg(T'), and so the S-spectrum is purely imaginary. The fact
that the residual S-spectrum is empty follows by contradiction as in case (i). O

Theorem 9.2.6. Let T € B(H) be a normal operator. Then we have
O’ps(T) ZOPS(T*), O'Rs(T) ZURS(T*) 20, O'CS(T) ZO'CS(T*).

Proof. Since T is normal and Q4(T)* = Q(T™), it is clear that Q4(T)* is normal.
For bounded linear operators, the kernel T" and the kernel of its adjoint are equal,
SO

ker(Qs(T)) = ker(Q4(T™)).
So by the definition of point S-spectrum, we have
Ups(T) = O’pS(T*).

The fact that crs(T) = ocrs(T*) = 0 follows by contradiction. In fact, if 0 #£ s €
ors(T), we get

{0} = ker(Qu(T)) = ker(Qu(T")) = (ran(Q.(T))* # {0}.

In the same way we can prove that ors(T™*) = 0. Since T and T™* have the same S-
spectrum and the three components of the S-spectrum, by definition, are pairwise
disjoint, it follows that ocg(T) = ocs(T™). O

Theorem 9.2.7. Let T € B(H). Then we have the following:
(i) If T is unitary, then

os(T)Cc{seH: |s|=1}.

(ii) If T is anti-self-adjoint and unitary, then

Us(T) =S.
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Proof. We study the invertibility of Q4(T) for |s| > 0. If s = 0, then Qu(T") = T">
has a bounded inverse. Since T is unitary, |T'|| = 1, and for |s| > ||T|| we know
that Q4(T) has a bounded inverse. When 0 < |s| < 1, from the identity

Qu(T) = [s*Qu-1(T7)T?,

the operator T* is unitary and [s™!| > 1, so Q.1 (T*) is bijective and has
a bounded inverse. From the above identity, also Q4(T") is bijective and has a
bounded inverse, so we conclude that s € pg(T) if |s| # 1. Finally, the fact that
if T is anti-self-adjoint and unitary, then og(T") = S follows for the previous point
and from the fact that the S-spectrum of an anti-self-adjoint operator is purely
imaginary. O

We recall that the splitting of the spectrum is defined according to where an
operator is not invertible. A quaternionic bounded linear operator A that satisfies
the two conditions

(i) there exists K > 0 such that |Av| > K|v|| for v € D(A) (bounded from
below),

(ii) the range of A is dense,

is invertible. In the paper [49], the authors studied the invariant subspaces of
quaternionic normal operators, and the more natural splitting of the spectrum
is based on the previous theorem. So in analogy to the classical case for the S-
spectrum, we have the following definition:

Definition 9.2.8. Let T be a quaternionic bounded linear operator. The approxi-
mate point S-spectrum of T, denoted by IIg(T), is defined as

Os(T) = {s € H: T?—2Re(s)T + |s|*Z is not bounded from below}.
The compression S-spectrumof T, denoted by I'g(T'), is defined as
I's(T)={s € H: the range of T? — 2Re(s)T + |s|*Z is not dense}.

The set IIg(T) contains the S-eigenvalues.

9.3 The Splitting of a Normal Operator and
Consequences

This section starts with two classical results on the square root of a positive
definite quaternionic linear operator and the polar decomposition of a bounded
quaternionic linear operator. Even though the proofs are the same as in the com-
plex case, they are of crucial importance for the Teichmiiller decomposition of a
quaternionic normal operator.
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Let us define an order relation on bounded self-adjoint operators on a quater-
nionic Hilbert space H denoted by

A>B o B=<XA

whenever

(Az,z) > (Bzx,x) for all z € H. (9.11)
Clearly, (9.11) forces

Al <||B]| whenever A <X B,

and
A > 0 <= A is positive semidefinite.

Fix a positive semidefinite operator A € B(H), i.e., A = 0. We will make use of
the so called generalized Cauchy—Schwarz inequality for A, namely,

[(Az,y)|* < (Az,2)(Ay,y), forz,yeH. (9.12)
In order to justify (9.12), note that if
Zt:x+y(<A$7y>t)7 teRa

then
0 < (Azy, z) = (Aw, ) + 2t|(Az, y)|* + *|(Az, y)|* (Ay, y).

Since a nonnegative quadratic polynomial of a real variable with real coefficients
cannot have two distinct zeros, we obtain

A(Az, y)[* — 4[{Az, y)|* (Az, 2)(Ay, y) <0,

ie., (9.12) holds.

oo

Lemma 9.3.1. Every bounded monotonic sequence of self-adjoint operators (A,)22 4

converges strongly to a bounded self-adjoint operator A € B(H).

Proof. 1t suffices to consider the case
04 =<---=21I
Let Ay := Ay — Ay = 0 for n > m. It follows from (9.12) that
| Amnz]|* = (Amn®, Apnz)? < (Apne, ) (A2, 2, Apn ).
Since ||Amn| < 1, we obtain
[Anz — Amz||* < ({(Anz, 2) — (A, 2))|l2].

Finally, since ((A,x,x))32; is bounded and monotonically increasing, the above
inequality shows that (A,,,2)52, is a Cauchy sequence in H. d
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The following proofs of the existence of a square root of a bounded positive
operator and the polar decomposition of a bounded linear operator are exactly
the same as in the case of complex linear operators [193].

Theorem 9.3.2. FEvery positive semidefinite operator A € B(H) has a unique
positive square root AY? that satisfies (A'/?)?) = A. Moreover, every operator
B € B(H) that commutes with A also commutes with A'/?.

Proof. The goal is to solve the equation A = X2 for X = 0. Without loss of
generality, suppose that
A=XT.

Ifwelet C=1I—A>0andY =1 — X, then
A:X2<:)Y:%(C+Y2).

Consider the recurrent sequence of positive semidefinite mutually commuting op-
erators in B(H) given by Yy = 0 and

1
Yn+1:§(C+Yn2), n=12....

Note that Y,,Y,, = Y,,Y,, forall m,n =1,2, ..., since Y}, is a polynomial in C. We
claim that
1Yol <1

and Y, 41 — Y, = 0 forn=1,2,.... Both claims can be established by induction.
Indeed, since ||Yp]| =0 < 1 and

1
Yol < SUCH+ 1Yal*) < S+ [Va]?) <1

N

when ||Y,,|| < 1, we have the first claim. For the second claim, we obviously have
Y = 3C = Yy, since C = 0 and Yy = 0. Using ¥,,,Y,, = Y, V,, and ¥, = Y, = 0
as well as Y, +Y,,_1 = 0, we have

1

Yn+1 Yn - 2(
Thus, we may invoke Lemma 9.3.1 to obtain a limit ¥ > 0 with ||Y] < 1 for
(V)52 ,, and hence if we put X = I —Y = 0, we have a desired solution A'/2 := X
to A= X2

If B € B(H) commutes with A, then it also commutes with each of the
operators Y,,, since they are real polynomials in A. Consequently, B also commutes
with the limit Y = lim,,_, y o0 Y5, and in turn also with AY/? = X =T — X.

Finally, we will now show that X is unique. Suppose that there are two
operators X = 0 and X > 0 such that

Y,+Y, 1) Y, —Yn-1) =0 forn=1,2,....

A=X?2 and A= X2
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Let y = (X — )?)x for every x € H. We may use the above construction to obtain
bounded operators Z > 0 and Z > 0 such that

X=2% and X =22

respectively. But then

Thus, Zy = Zy = 0 and hence also Xy = )?y = (. Consequently,
I(X = X)a|* = (X = X)*z,2) = (X = X)y,z) =0,
and thus X = X. (|

The next theorem motivates the following definition.
Definition 9.3.3. For every operator T € B(H), we define |T| := (T*T)/2.

Theorem 9.3.4 (Polar decomposition in B(#H)). Every operator T € B(H) admits
a unique factorization

T=UP (9.13)

into the product of a positive operator P and a partial isometry U on ran P (that
is, ||[Ux|| = ||z|| for every & € ran P and Uz = 0 for every x € (ran P)*). The
operator P is furthermore given by P := (T*T)'/?, and ran(U) = ran(T).

If T is normal, then P and U commute mutually and with every operator in
B(H) that commutes with both T and T* and U is (anti)-self-adjoint if and only
if T is. Furthermore, ran(U) = ran(P) = ran(T), and so U defines in this case a
unitary operator on ran(T).

Proof. We will first prove the existence of (9.13). In view of Theorem 9.3.2, the
positive operator T*T € B(H) has a unique positive square root P := (T"‘T)l/2
in B(H). Consequently,

|Tz|? = (Tx, Tz) = (T*Tx,z) = (P?x,x) = (Px, Px) = ||Pz|? (9.14)

for all z € H and hence

Pz —y) =0 T(x —y) =0,
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so that P(z) = P(y) if and only if T'(x) = T(y) for all z,y € H. Thus, we may
define

(9.15)

U ranP —ranT),
" Pz — Tx.

Because of (9.14) this operator is isometric and hence extends to an isometry
defined on ran P. We can extend U to all of ‘H by setting

U — {Um for z € ran P, (9.16)

0  for x € (ran P)*.

If x,y € ran P, then
(y,2) = (Uy,Uz) = (y,U"Ux)

and hence
U*Uz — x € (ran P)*.

Since, on the other hand, U* : H — ran P, we obtain U*Uxz—x € (ran P)*Nran P,
and so
U'Ux—x=0, xz€ranP.

Thus U*Ux = x for every x € ran P, and so U is actually a partial isometry on
ran P.

Let now T = UP be an arbitrary decomposition of the form (9.14). Since U
is a partial isometry on ran P, the operator U*U is the orthogonal projection of H
onto ran P and so T*T = P*U*UP = P*P = P2. Since the positive square root
of a positive operator is unique, we find that P = (T*T)l/2 and in turn that U
must be the operator defined in (9.15) and (9.16).

Suppose now T is normal and consider the factorization T = UP with P? =
|T|? =T*T in (9.13). Since T*T = TT*, we then have

T*T =TT* =UPPU* =UP*U* =UT*TU".

Since U*U is the orthogonal projection of H onto ranT D ran(TT*) = ran(T*T),
applying U* to the above equation yields U*(T*T) = (TT*)U*, and taking the
adjoint, we finally obtain U(T*T) = (T*T)U. Since P = |T| = (T*T)"/? com-
mutes with every operator that commutes with T*T, the operator U therefore
also commutes with P.

Since U is a partial isometry on ran P, its restriction U : ran P — ranU
is a unitary operator. Due to (9.14), we however have ker T' = ker P, and since
(ker T)* = ranT because T is normal, this implies

ran P = (ker P)l = (kerT)l =ranT =ranU,

so that U defines a unitary operator on this space.
Finally, an arbitrary operator A € B(#) that commutes with 7" and T™* also
commutes with 7*T and hence also with P = (T*T)'/2. Furthermore, it is easy to
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show that each component of the orthogonal decomposition H = ker(T)®ran(T) is
left invariant by A. Hence, we find for « € ker(T') = ker(U) that AUz = 0 = U Ax.
On the other hand, by the previous arguments, we have

UAP = UPA=TA= AT = AUP,

and so UAz = AUz also for every x € ran P = ranT. Altogether, we obtain
UA=AU.

Finally, for self-adjoint T, we have 0 =T —T* = UP — PU* = (U — Ux)P
and hence U = U™ on ran(P). Since U vanishes on U*, we conclude that also
U* vanishes on ker P, and hence U = U* on H = ker(T') @ ran(T"). The anti-self-
adjointness of U for anti-self-adjoint T follows by similar arguments. O

The following result is due to Teichmiiller [195].

Theorem 9.3.5. Let T' € B(H) be normal. Then there exists a triple (A, J, B) of
mutually commuting operators in B(H) all of which commute with T such that

T=A+JB, (9.17)

where A = A*, B = 0, and J is anti-self-adjoint and a partial isometry on ker(T —
T*)*. The operators A and B are given by

1 1

A=—-(T+T*), B=-|T-T7,
2 2

and J is the partial symmetry that appears in the polar decomposition of the oper-

ator %|T —T*|. Finally, the adjoint of T equals T* = A — JB, and every operator

in B(H) commutes with T and T* if and only if it commutes with A, B, and J.

Proof. We obviously have

1

T=-
2

1
T+T1T7)+ 5(T—T*).
If A= 1(T +T*), then A= A*. If we apply Theorem 9.3.4 to
1
C:= i(TfT*) € B(H),

we obtain a positive operator B := 1|T — T*| and a partial symmetry J € B(H)
on ran(T — T*) such that C' = JB. Since C' is anti-self-adjoint, the operators B
and J commute, and the operator J is anti-self-adjoint too.

Obviously T and A commute. Moreover, since these operators both commute
with C' and C' is normal, they also commute with the factors B and J in the polar
decomposition of C.

Finally, we have

T*=(A+JB)"=A"+B*J*=A-BJ=A-JB.
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Every operator that commutes with A, B, and J therefore obviously also commutes
with 7" and T™*. If, on the other hand, N € B(H) commutes with 7" and T, then
it also commutes with A = (T +7T*) and C = (T — T*). Since J and B are the
factors of the polar decomposition of C, they commute with N. (|

The operator J in the above decomposition is of fundamental importance for
developing the spectral theory of the normal operator T'= A+ JB. As we will see
later, it determines how to multiply the sphere S of imaginary units onto vectors
in H in order to be in accordance with the operator 7" when one performs spectral
integration. We therefore call operators of this type imaginary operators.

Definition 9.3.6. An anti-self-adjoint operator J € B(H) is called imaginary if the
restriction of J to ran.J = (ker J)* is a unitary operator on ran.J. An imaginary
operator is called fully imaginary if ker J = {0}, that is, if J is a unitary anti-self-
adjoint operator on H.

Remark 9.3.7. The operator J in the decomposition T' = A+ JB can be extended
to a fully imaginary operator that commutes with 7" and T™. Since Hg := ker J =
ker(T'— T), we find that T'|3, = T" |y, = T'|3,,, and so

1
2
The operator Ag is bounded and self-adjoint, and hence the spectral theorem for
bounded self-adjoint operators on a quaternionic Hilbert space based on the S-
spectrum (which can be proven in much the same way the complex Hilbert space
case, see, e.g., Section 31.3 in [163], with the aid of the spectral mapping theorem
given in Theorem 4.2.1) implies the existence of

Ag = Alyy = (T +T7) |1y = Tlao-

(i) a measure space (2,4, u) with p >0,

(i) a unitary operator U : Ho — L2(92,H, i) from Hq to the space of quaternion-
valued functions on ) that are square-integrable with respect to u, and

(iii) an essentially bounded measurable function ¢ : Q@ — R
such that
Ay =U"M,U,

where M, denotes the multiplication operator (M, f)(&) =p(&) f(§) on L2 (L, H, ).
We can choose then an arbitrary imaginary unit j € S and set Jo = U*M;U, where
M; is the multiplication operator (M; f)(€) = jf(£) on L*(Q, H, ). The operator
M; is unitary and anti-self-adjoint on L?(§, H, p), since

(Mj)" =My =M_; =—M; = (M;)~".
Since U is unitary, also Jy = U*M;U is unitary and anti-self-adjoint. Since the
function ¢ is real-valued, it commutes with j, and hence

AgJy =U"M,UU*M;U = U*M,M;U
=U"M;M,U =U"M;U"UM,U = JyA,.
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If Fy is the orthogonal projection of Ho and F; is the projection of H onto Hg =
ran J, then we find due to the above arguments that J = JyEy+ JE; is a fully
imaginary operator that, by construction, commutes with 7" and 7. The details
of this construction were explained in [142]. The unitary operator U and the
imaginary unit j € S are, however, not determined by 7" and in particular are not
unique. Also the operator Jy on Ho and the extension of J to J are in turn not
determined by T and in particular are not unique unless ker J = {0}.

Corollary 9.3.8. If .J is an imaginary operator, then —.J? is the orthogonal projec-
tion onto ran J.

Proof. Since Jy = J|an s is a unitary operator on ranJ and (Jp)* = J*|rans =
—Jo, we obtain J; ' = J§ = —Jo, and so —J%z = —JZx = x for every x € ran J.
Since obviously —J%z € ran J for every z € H, we conclude that (—.J?)%z = —J%z
for every x € H, and hence —JZ is a projection. Since J is anti-self-adjoint, the
projection —.J? is self-adjoint, since (—J?)* = —(J*)2 = —J2, and hence it is the
orthogonal projection on ran(—J?) = ran J. O
Every imaginary operator allows one to split the space H into three complex
linear subspaces, on which the J is the multiplication with only one quaternion.

Lemma 9.3.9. If J is an imaginary operator and j € S, then
H="Ho®H, ®H. (9.18)
with
Ho={zeH: Jr=0} and H, :={zxeH: Jr=uz(+j)}

The spaces Hi are nontrivial if J # 0, they are complex Hilbert spaces over C;
with the structure they inherit from H, and the orthogonality in (9.18) is intended
in the sense of the C;-Hilbert space structure on H.

Proof. We obviously have H = ker J ®ran J = Ho®ran.J. We hence have to show
that ran J = #/, @ H’ for j € S. Let therefore 2 € ran J. Then

1 1
T = i(x — Jxj) + 5(:5 + Jzxj).

Setting 1 := 3(z — Jxj) and x_ := J(z + Jxj), we obtain = x4 + z_ with
1 , 1 L .
Jry = i(Jx —Jzj) = 5(—;]90] +x)j =24

and

1 1
Joo = o (Jut JPj) = 5(=Jxj = 2)j = 24 (=)

due to Corollary 9.3.8. Hence, (9.18) holds.
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Obviously Hi and H’ are Cj-linear vector spaces that are closed in the
topology of H. Moreover, if 2,y € H?_, then

]<$,y> = <x(—j),y> = <—J.13,y> = <$7 Jy> = <$,y>j

Hence, (z,y) belongs to C;, and so ’Hi_ is actually a Hilbert space over C;. Simi-
larly, we can also show that H is a Hilbert space over C;.

Finally, the spaces H, "Hi_, and H’_ are orthogonal if we consider ‘H a Hilbert
space over C; with the scalar product

(z,y)j =8 +&j if (z,y) =& +&Jj+ &i+ i

with ¢ € S so that ¢ L j. Since Hg L ranJ, we obviously have Hy L ’Hi For
x € H) and y € H’, on the other hand, we have

j<$,y> = <!L‘(—j)7y> = <—J{L‘7y> = <$,Jy> = <1’,y>(—])

Since (z,y) anti-commutes with j, it is of the form (z,y) = & + £3ji, and hence
(z,y); = 0. .

Definition 9.3.10. Let J be an imaginary operator. We define, according to the
direct sum decomposition in (9.18), the C;-linear projections

Mo:H—Ho, I :H—H, T :H—H.

These projections are orthogonal in the C;-Hilbert space structure of H.

9.4 The Continuous Functional Calculus

In this section we introduce the continuous functional calculus of a normal opera-
tor on a quaternionic Hilbert space. This functional calculus applies to continuous
intrinsic slice function, and therefore we start by investigating this class of func-
tions in more detail.

Definition 9.4.1. Let Q) C H be an axially symmetric open set. We denote the sets
of left, right, and intrinsic slice functions on 2 that are continuous respectively by

SCL(Q), SCR(R), and SC(Q).

Remark 9.4.2. The set C(2,H) of all continuous quaternion-valued functions on
a compact axially symmetric set 2 C H is a two-sided quaternionic Banach space
with the pointwise multiplications (af)(q) = af(q) and (fa)(q) = f(q)a and with
the supremum norm || f||« = sup,eq |f(q)]. If follows from the structure formula
in Theorem 2.1.9 that the uniform limit of a sequence of continuous left, right, or
intrinsic slice functions is again a continuous left, right, or intrinsic slice function
on . Hence, the set SC1, () is a closed quaternionic right linear subspace of H and
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so a quaternionic right Banach space, and the set SCr(f2) is a closed quaternionic
left linear subspace of H and so a quaternionic left Banach space.

The set of intrinsic slice functions is, however, not invariant under multi-
plication by quaternionic scalars, neither from the left nor from the right, but
only under multiplication by real scalars. Hence SC(2) is only a closed R-linear
subspace of C(2,H), and so it is only a real Banach space. Since the pointwise
product of two intrinsic slice functions is again an intrinsic slice function and since
the pointwise product of two intrinsic slice functions is commutative, as one can
verify easily, SC(Q2) is even a commutative real Banach algebra. The sets SCr, ()
and SCr(Q2), on the other hand, are by Theorem 2.1.4 invariant only under multi-
plication by intrinsic slice functions, and hence they do not form an algebra with
the pointwise product.

Lemma 9.4.3. Let Q C H be azially symmetric and let
Ot = {(u,v) € R x [0,+00) : u+Sv C Q}.

A function f : Q — H is a left slice function if and only if there exist functions
Fo, Fy : QT — H, where Fy(u,v) =0 if v =0, such that

fq) = Fo(u,v) + jFi(u,v)

for all g = u+ jv € Q with v > 0, and it is a right slice function if and only if
there exist functions Fo, Fy : QT — H, where Fy(u,v) = 0 if v = 0, such that

f(q) = Fo(u,v) + Fi(u, v)j

for all ¢ = u + jv € Q with v > 0. In this case, the function f is intrinsic if and
only if Fy and Fy take values in R, and it is continuous if and only if Fy and Fy
are continuous.

Proof. If f is a left slice function, then f(q) = fo(u,v) + jf1(u,v) for every ¢ =
u + jv € Q with arbitrary j € S, with functions f, : @ — H that satisfy the
compatibility condition

Jo (u’ U) = fO(U; _U) and  f (ua _U) =-fi (ua U)

in (2.4), where .
Q:={(u,v) eERxR: u+SvcCQ}

We can obviously set Fy(u,v) = fe(u,v) for (u,v) € QT and £ = 1,2, and we find
that f(q) = Fo(u,v) + jFi(u,v) if ¢ = u + jv with v > 0 belongs to Q. Since
fi1(u, —v) = — f1(u,v), we moreover obtain

Fi(u,0) = f1(u,0) = = f1(u,0) = —F(u, 0),

and hence F(u,0) = 0 for every u + j0 € Q.
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Conversely, if f(q) = Fy(u,v)+jFi(u,v) for every ¢ = u+jv € Q with v > 0,

then we can simply define, for (u,v) € Q,
Foy(u,v), v >0, Fi(u,v), v >0,

folu,v) i= 4 00V Fuluy) = { 1)
Fo(u,—v), v<0, —Fi(u,—v), v<D0.

Then f(q) = fo(u,v) + jfi(u,v) for all g = u+ jv € Q, and fy and f; satisfy the
compatibility condition (2.4) because Fi(u,0) = 0 for all (u,0) € Q. Hence f is
a left slice function.

Obviously f is intrinsic if and only if Fy and F} are real-valued. Moreover,
we have

Fo(u,0) = 3 (f(u+jv) + fu = jv))

| =

and
Fiw,0) = 53(f(u— o) — f(u+ o))

for every (u,v) € QT and any j € S. Hence Fy and Fj are continuous if f is
continuous. Conversely, assume that Fy and Fj are continuous. Then f(q) =
Fo(u,v) + jFi(u,v) is continuous on © \ R because u, v, and j depend contin-
uously on ¢ on this set. On the real line, the terms Fy(u,v) and Fj(u,v) depend
continuously on ¢ = u + jv, but the imaginary unit j does not. However, since
q +— Fi(u,v) tends to zero as g approaches the real line, the function f is also con-
tinuous at points in R and hence continuous on all of 2. For right slice functions,
we can argue similarly. O

Remark 9.4.4. From the above result it is clear that the functions fy and f; are
simply straightforward extensions of Fy and Fy to all of  that we obtain by
imposing the compatibility condition (2.4). In Remark 2.1.3, we argued that the
compatibility condition is necessary in order to ensure that f(q) is well defined
and independent of the choice of the imaginary unit j that we use to represent
q = u + jvu. Indeed, if v < 0, then we can write ¢ = u + (—j)v with —j € S and
find that

f(Q) = fO(u7U) +jf1(U,’U) = fO(u’ _U) + (_j)fl(u’ _U)

due to (2.4). If we always choose the imaginary unit j, := ¢/|g| in the represen-
tation of ¢, then always v > 0, and hence F, and F} are sufficient to describe f.
However, in order to define slice hyperholomorphicity, the extended functions fy
and f; are necessary. The set QT does not contain neighborhoods of real points.
In order to consider the partial derivatives of the component functions, which for
slice hyperholomorphic functions must satisfy the Cauchy—Riemann equations, one
hence needs to work with the extended component functions fy and f in order to
avoid technical problems when differentiating on the real line.

The following theorem is a classical readaptation of the classical Stone—
Weierstrass theorem; cf. also [142].
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Theorem 9.4.5. Fvery polynomial P in q of the form

Z arq"q" (9.19)

0<|e[<n

with coefficients ag € R for every multi-index £ = ({1,43) is a continuous intrinsic
slice function on H. For every compact azially symmetric set 0 C H the set of
polynomials of the form (9.19) is furthermore dense in SC(2).

Proof. The functions g — g and ¢ — g are obviously continuous intrinsic slice func-
tions. Since the set of continuous intrinsic slice functions is closed under pointwise
multiplication and pointwise multiplication by a real number, we conclude that
every polynomial of the form (9.19) is also a continuous intrinsic slice function.
Let now € C H be axially symmetric and compact and let us consider a
function f € SC(f2). The function f; = f‘Qf with Qj =Qn (C;' is then a

continuous C;-valued function on the compact set €2 ﬂ(Cj. The Stone—Weierstrass
approximation theorem implies the existence of a sequence of polynomials Q,,(z) =

20<|e|<n bnez"17% with b, , € C; that converges uniformly to f; on Q;. We set
P,(z) == L (Qn(z) + Qn(7)> and we denote the coefficients of P, by an¢, so

that P, (2) = > 0<<n @n, 02117%. Obviously, P,(z) = P,(Z), and so we find for
arbitrary ¢t € R that

o @t T =P () =Pu(t) = Y agte

0<|¢[<n 0<|e|<n

Hence P, has real coefficients. Its natural extension P,(q) = ZOSIZ\Sn apqt’ g’
to H is therefore of the form (9.19). Furthermore, it tends uniformly to f on ,
since for every s = u +4iv € U, we can set z = u + jv € Q;' and find due to the
structure formula (2.9) that

[£(s) = Pu(s)] < [£(2) = Pu(2)| +f(Z) — Pu(Z)]

= 1f(2) = Pu(2)| +]7(2) = Pul2)| < 2 sup |f(2) — Pu @) "2 0.0

Theorem 9.4.5 allows us now to define the continuous functional calculus.
This functional calculus relies on the T'= A 4+ JB decomposition introduced by
Teichmiiller, cf. Theorem 9.3.5. Following the usual strategy, we can first define
P(T') for a normal operator 7" and any polynomial of the form (9.19) in the natural
way. Due to the density of these polynomials, we can then extend this functional
calculus to arbitrary continuous intrinsic slice functions.

Definition 9.4.6. Let T € B(H) be a normal operator. For every polynomial

Z arq" g’ (9.20)

06 <n
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with real coefficients as in (9.19), we define the operator

P(T):= Y aT"(T%)". (9.21)
0<|¢|<n

Theorem 9.4.7. Let T € B(H) be a normal operator. For every polynomial P(q) =
ZO<W<” arq" q% with real coefficients, the operator P(T) is a normal operator
that commutes with T and T*, and

os(P(T)) = P(os(T))-

In particular, this implies || P(T)|| = max,c,q () [P(5)].

Proof. The adjoint of P(T) is P(T)* = X o<jg<n ag(T*)2T*. Since T and T*
commute, since T  is normal and the coefficients a, are real, this operator obviously
commutes with 7" and 7% and in turn also with P(T"). Hence P(T) is normal.

Let T'= A+J B be the decomposition (9.17) of T' and recall that the operators
A= %(T +T*), B= %\T — T*| and the imaginary operator J commute mutually.
The Hilbert space H can then decomposed into the orthogonal sum

H="HoDH:

with Ho := ker J = ker B and H; :=ranJ = ran B. Since T and T* leave Hq and
H1 invariant, also the operator P(T) leaves H and H; invariant.

If A is an arbitrary bounded operator on H that leaves Hy and H; invariant,
then A, := Aly, belongs to B(H,) for £ = 0,1 and we obtain

os(A) = o5(Ag) Uos(Ar). (9.22)

Indeed, if s € ps(A), then Q. (A, ! = Q4 (A) 7 |y, € B(H() for £ = 0,1, and
hence s € ps(Ap) N ps(A1). Conversely, if s € ps(Ao) N ps(A1), then the inverse
of Q4(A) is the operator Q4(A)™! = Q. (A4g) 'Ey + Qs(A1) ' Ey, where E, is
the orthogonal projection of H onto H,. This operator is obviously bounded, and
so s € ps(T). We conclude that ps(A) = ps(Ag) N ps(A1), and by taking the
complement, we arrive at (9.22).

If we set Ty = T|y,, then (Ty)* = T*|y,, and so P(T;) = P(T)|y,. Since
Ho = ker |T' — T*| = ker(T — T*), we find that T* = T on Hg, and so T = Tp.
Hence P(To) = > <js<n a¢Ty ™2, and we conclude from Theorem 4.2.1 that
o5(P(Ty)) = P(os(Ty)).

Before we consider the operator 17, let us recall that for j € S we can split
H1 into the direct sum

Hq :rang’Hi_ @Hj_,

where H). = {z € H : Jr = x(+j)} are complex Hilbert spaces over C; by
Lemma 9.3.9. If C is a bounded quaternionic right linear operator on H; that
commutes with J, then J(Tz) = T'(Jz) = T(zj) = (Tz)j, and so Tx € H;. Hence
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C¢; =0C |er defines a bounded Cj-linear operator on ’H;r Conversely, if C; is a

bounded Cj-linear operator on ’Hi, then it extends naturally to a quaternionic
linear operator on #H;. Indeed, if @ € S, with ¢ L j, then J(zi) = (Jx)i = xji =
(zi)(—j) because i and j anti-commute. Hence x +— xi maps H’, to H’ . Since its
inverse is given by x +— x(—1), this function is even a bijection. We can therefore
write every vector x = x4 +x_ € Hy = H), @ H as x = x1 + w20 with two
components x; = ¢4 and 3 = x_(—i) in 7—[;‘. We moreover obtain

||gc||2 = (x,2)y = (x1,21) + (@2, 21)i — i{x1,22) — i{T2,2)i

(9.23)
= (z1,21) + (22, 22) = [|lz1]* + [J2]|*.
The natural quaternionic linear extension of C; is then simply
Cx:= ijEl + (O]:EQ)Z
This operator is C;-linear because C; is C;-linear, and it satisfies
C(il) = C(xlz - 5172) = C](xl)z - Cj(xg)
= (OJ(Il) + (CJIQ)Z)Z = (CI’)Z
If we write a € H as a = a1 + a2t with a1, a2 € C;, we therefore obtain
C(za) = C(za1) + C(zagi) = C(zar) + C(zag)i
= C(z)a1 + C(z)agzi = C(z)a,
and hence C' is actually H-linear. Moreover, we have on the one hand
IG5l = sup{||Cjz| : & € Hi,, [|=]| = 1}
= sup{||C|| : x € HY, ||=]| = 1}
<sup{||Cul| : 2 € Hy, [lz] = 1} = [|C]|,
and due to (9.23), on the other hand
IC2[* = [|Cja1 + (Cja2)il|* = ||Cja1||* + [|Cja2|?
< NG 112 ()l + Nz2l?) = 1G5 11211,
which implies ||C|| < ||C}]|. Altogether, ||C|| = ||C;]].
The S-spectrum of C and the spectrum of C; satisfy the relation
Us(C)ﬂCjZU(Cj)UO'(Cj), (924)

which will be essential for us. For every x € Hi and z = 29+ 217 € C;, we namely
have ,
(zIHi) r =2z =120 + 321 = (20L%, +21J)z,
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where we recall that the multiplication of vectors in Hﬂr by scalars in C; is simply
the multiplication of vectors by quaternionic scalars from the right in # that is
restricted to C;. For every z € H’,, we have —J%z = —2j% = z, and so

Q.(C)x = Q.(Cj)x = (CJ2 —220C; + |2|>T)x

9.25
= (ZOI -2 — C])(Z()Iﬁ’ 21 — CJ)IL' = (ZIHZr — Cj)(zl.?{i - CJ)Z ( )

Hence if z € pg(C) N C;j, then the resolvent R,(C;) = (ZIH]-+ — C;)7! of Cy
at z is R.(Cj) = (EIH]'+ — (C})Q.(C)71, and so z € p(Cj). We conclude that
ps(C)NC; C p(C;). Due to the axial symmetry of ps(C'), we also have ps(C)NC,; =
ps(C)NC; C p(Cy), and so

ps(C)NC; C p(C5) N p(C5).

Conversely, if z € p(C;) N p(C}), then z and Z both belong to p(C;), and we con-
clude from (9.25) that the pseudo-resolvent Q,(C)~! of C at z is the quaternionic
linear extension of the operator Rz(C)R,(C). Hence z € pg(C), and we conclude
that

ps(C)NC; 2 p(C;) N p(Cy)

and in turn

ps(C)NC; = p(Cj) N p(Cj).
Taking the complement of this set in C;, we arrive at (9.24).

Let us now return to the operator Ty = T'|3,. Since this operator commutes
with J; = J|y,, it is by the above arguments the quaternionic linear extension of
the complex linear operator Tj = Ti|,,; = T|,,; € B(H,.), and we have o5(T1) N

+ +
C; = o(Ty) U o(Ty). Moreover, T; = T*[,; , as one can check easily. Hence T}
+
. L *
is normal and Pj(T) = 3 <)<, acL; (1] )2 = P(T1)|’Hﬂr’ where P; = P|c;.
The spectral mapping property of the continuous functional calculus for normal
operators on a complex Hilbert space (cf. for instance [105,183]) implies

a(Pi(Ty)) = Pi(a(T})).

Since P is an intrinsic function, we have P; (O’(Tj)) = P;j(0(Tj)), and so
os(P(Th)) NC;j = a(P;(T3)) Vo (P;(T}))
= Pi(o(13) U P (o(Ty) = P; (o(T) Ua(Ty) .

As an intrinsic slice function, P is compatible with the axially symmetric hull,
that is, [P(A)] = P([A]) for every A C C,. Hence, we finally obtain

os(P(Th)) = [os(P(T) NC,) = [P, (o(T) Ua(T))
= |P (o1 Ua(@))| = P (|o(m) uaTy)]) = Plos(Ty).
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If we turn our attention back to the operator T that is defined on the entire
space H, we find due to (9.22) and the identities P(Tp) = P(T)|y, and P(T}) =
P(T)|y, that

os(P(T)) = os(P(Tp)) Uo(P(T1))
= P(os(Ty)) U P(0s(T1)) = P(os(To) Uos(T1)) = P(os(T)).

Finally, since the norm of a normal operator coincides with its S-spectral radius,
which is as in the complex case an easy consequence of Gelfand’s formula for the
S-spectral radius in Theorem 4.2.3, we obtain

IP(T)|= max |s]= max [s|]= max |P(s)|. O
s€og(P(T)) s€P(os(T)) se€os(T)

Remark 9.4.8. For the operator T; = T,,; , the identity o5(T1)NC; = o(T;)Uo(T})
+

in (9.24) can be further specified. Since T'= A + JB, we have with A, := Al?-li

and B; := B|Hi that T; = A; + jB; because T' = A+ JB and J|7'”J} = jIHi' For

every z = zo + jz1 € og(T), we have z; = %(—z + Z). By the spectral mapping
theorem of the continuous functional calculus for operators on complex Hilbert
spaces (cf. [105,183]), we therefore have

{z1:20+jmn€c(dj)} =0 (‘g(—Tj + T;‘))

— o (§-4y -85+ 45~ iBy) ) =o(5) € D.+x)

because B, and hence also Bj, is positive. Therefore, every z € o(T}) belongs to
the upper half-plane (C;r = {20+ 21j € Cj : 21 > 0}, and we conclude from (9.24)

that
o(T;) =05(T)N (C;r.

Theorem 9.4.9 (Continuous functional calculus of a normal quaternionic operator).
Let T € B(H). There exists a unique continuous homomorphism of real unital -
algebras
vy { ST =BG
' f = (1) = £(T),

such that s(T) = T, where s denotes the identity function s — s. The homomor-
phism has furthermore the following properties:

(i) The homomorphism Wt is isometric, since || f(T)|| = maxXseqoq(r) |F(5)]-

(ii) Ewvery operator f(T') is normal, and it commutes with T and T* (or equiv-
alently with A, B, and J where T = A+ JB is the decomposition (9.17) of
T).
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(iii) The spectral mapping property os(f(T)) = f(os(T)) holds, and for every
function g € SC(os(f(T))), we have g(f(T)) = (g0 f)(T).

Proof. Let us first show the existence of the homomorphism Y. For every func-
tion f € SC(og(T)), there exists due to Theorem 9.4.5 a sequence P,(q) =
2 0<|e<n an0q" @ of polynomials of the form (9.19) that converges uniformly
to f on og(T). In particular, P, is a Cauchy sequence in SC(og(T)), and hence
the sequence Py (T) := 3 <4<, an T4 (T*)" is a Cauchy sequence in B(H), since

[1Pn(T) = Pon(T)[| = |(Pn = P )(T)| = Jduax |[Pu(s) = P (T)] (9.26)

by Theorem 9.4.7. Hence P, (T) converges in B(H), and we can define
f(T) = lim P,(T).

n—-+o0o
The operator f(T) does not depend on the choice of the polynomials P, and is
hence well defined. If P, is a different sequence of polynomials that tends uniformly

to f on og(T), then P, — P, tends uniformly to zero on og(T'), and we conclude
from

that lim, 400 Pr(T) = limy, 400 Pr(T). The mapping P +— P(T) defined for
polynomials of the form (9.19) is obviously a homomorphism of real unital -
algebras, and hence also the above defined continuous extension f — f(T) is a
homomorphism of real unital x-algebras.

The homomorphism ¥p is obviously uniquely determined by the property
s(T) = T. Due to the homomorphism property, this determines P(T) for every
polynomial of the form (9.19), and polynomials of this type are dense in SC(os(T))
by Theorem 9.4.5. Hence by continuity, the requirement s(T') = T determines the
entire homomorphism Wyp.

Since each of the approximating operators P, (T) is normal by Theorem 9.4.7,
also the limit f(7") is normal and commutes with 7' and 7%. By Theorem 9.3.5
these operators also commute with the operators A, B, and J in the decomposition
(9.17) of the form T = A+ JB. Since ®r is isometric on the set of polynomials
of the form (9.19) and since this set is dense in SC(os(T)), we obtain ||f(T)| =
maXgeq (1) | f(5)] for every f € SC(os(T)).

Let us finally prove the spectral mapping property and the composition rule.
Since f is continuous and og(T') is compact, we first of all observe that f(og(T))
is a compact subset of H, too. Let now € > 0 and let P be a polynomial of the
form (9.19) such that

I1P(T) = f(T) = Jduax |P(s) = f(s)] <e. (9.27)

P,(s) — P(s)| "25*0

Po(T) - Pn(T)H — max

s€os(T)

We then have
flos(T)) C Be(P(os(T))) :={s € H: dist(s, P(cs(T))} <e.
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Since P and f commute, also P(T) and f(T) commute. Hence f(T) = P(T)+ ©
with © = f(T) — P(T). The operator © commutes with P(T), and it satisfies
O] < e, so that Theorem 4.4.12 implies

os(f(T)) C Be(os(P(T))) = B:(P(05(T))) C Bae(f(05(T)))-

Since € > 0 was arbitrary, we obtain

os(f(T)) C flos(T)) = f(os(T)).

On the other hand, (9.27) also implies P(os(T")) C B:(f(os(T")). Writing P(T) =
f(T) + (—©) and applying again Theorem 4.4.12, we obtain

f(os(T)) C Be(P(0s(T))) = Be(os(P(T))) = Bae(os(f(T)))-

Since € > 0 was arbitrary, we conclude that also
flos(T)) C os(f(T)).

Altogether, f(os(T)) = os(f(T)).

Finally, due to the homomorphism property, the composition rule holds if g
is a polynomial of the form (9.19). If ¢ is an arbitrary function in SC(f(os(T))),
then we can choose a sequence of polynomials P, of the form (9.19) that converges
uniformly to g on f(os(f(T)). Then P, o f converges uniformly to go f on og(7T),
and due to the continuity of W7, we obtain

o) = lim P(f(T) = lm (Pof)T)=(gof)T). O

Let f € SC(os(T)) and let Fy and F} be the component functions determined
in Lemma 9.4.3, so that f(q) = Fo(u,v)+ jFi(u,v) if ¢ = u+ jv with v > 0. Since
u= %(q +q) and v = %\q —q|, we can consider Fy and F; functions of ¢ and g and
then apply the functional calculus defined above. As the next theorem shows, the
functional calculus is compatible with these component functions too.

Before we discuss this, let us, however, first show how the approximation in
terms of polynomials translates into an approximation of the component functions.

Lemma 9.4.10. Let K C H be a compact azially symmetric set, let f = Fy + jFy
in SC(K), and let P,(q) = ZOSIZISn an0q" " be a sequence of polynomials of the
form (9.19) that converges uniformly to f on K. Then P, is of the form

Po(q) = Qu(u,v) + juR,(u,v) for ¢ =u+ jv,

where @, and R, are real polynomials such that Q(u,v) — Fo(u,v) and such that
vR,(u,v) = Fy uniformly on K as n tends to infinity. Furthermore, Q. (u,v) and
R, (u,v) contain only even powers of v, so that after the identification u = %(q—i—q)
and v = (—j)3(q — ) they are polynomials with real coefficients in q and § and
hence of the form (9.19).
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Proof. For ¢ = u + jv, we have

P,(q) = Z an0q"'q? = Z an.o(u+ jo) (u — jv)2. (9.28)

0<[el<n 0<[e|<n

The terms (u 4 jv)* and (u — jv)*2 are polynomials in u and jv, namely

(u+jv)" = fj (fj)u"”(jv)‘l”,

=0 (9.29)
t ’,
A €2 — _ Zz—fi K[ éz—li
(w0’ = o (2 oy,
k=0
f we apply the identities (9.29) in (9.28) and rearrange the terms, then due to
j? = —1, we are left with an expression of the form
P.(q) = Z by ul 10’ + j Z Cn ol 10"
0< ¢ <n 0<|fl<n
{5 even > odd
= Z b et 02 + ju Z Cneuttvf2h
0<|2|<n 0<|£|<n
{5 even £ odd

with real coefficients b, , and ¢, ¢. If we set

Qn(u,v) = Z boeu' 02 R, (u,v) = Z Cnouttof2 1

0<[4|<n 0<|¢|<n

{5 even £ odd
then we find that P, is of the desired form P,(q) = Qn(u,v) + joR,(u,v). Fi-
nally, since P, — f uniformly on K, we find that Re(P,(u,v)) = Q,(u,v) tends
uniformly on K to Re(f(u,v)) = Fo(u,v) and that Im(P,(u,v)) = joR,(u,v)
tends uniformly to Im(f(u,v)) = jF1(u,v), which implies that (—j)Im(P, (u,v)) =
v Ry, (u,v) tends uniformly to (—j)Im(f(u,v)) = Fi(u,v). (Note that again, we do
not have any problems on the real line, where ¢ = u + jv — j is not well defined,
because vR, (u,v) and F;(u,v) equal 0 if v = 0.) O

Theorem 9.4.11. Let T = A+ JB € B(H) be a normal operator and let f =
Fo+jFy € SC(os(T)). Then

F(T) = Fo(T) + JFA(T).

Moreover, the operators Fo(T) and F1(T) can be expressed as functions of the
operators A and B in terms of the continuous functional calculus for n-tuples of
commuting self-adjoint operators as

Fo(T) = Fo(A,B) and Fl(T) = Fo(A,B)

In particular, they hence do not depend on the imaginary operator J.
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Proof. Let P,(q) be a sequence of polynomials of the form (9.19) that converges
uniformly to Fo(T') on og(T). By Lemma 9.4.10, we have P,(¢) = Qn(u,v) +
juP,(u,v) with real polynomials @,, and P, such that Q,(u,v) — Fy(u,v) and
vRy (u,v) = Fi(u,v) uniformly for ¢ = u+ jv € o0g(T). Since @, and R,, are real
polynomials in ¢ and § after the identification u = %(q +9) and v = %(q —q), the
functions P, (T) and @, (T) can be explicitly computed by (9.21).

We obviously have

F(T) = S(F(T) + FT)) + S () = FT)°)

Since f +— f(T) is a *-homeomorphism and Fy(q) = (f( )+ f(q )) we conclude
that

SUD)+ T)) = 5 (1 +7) (T) = Fy(T),

and since (jF1((q) = 3 (F(q) - W), we have

(f = 1) (1) = (GF)(T).

[\3\'—‘

SU(D) — (1)) =
We can, however, not apply the #-homeomorphism property in order to show
that (jF1)(T) = j(T)F1(T) = JF1(T). The mapping j : ¢ = u + jv — j is not
continuous on the real line, and hence it does not in general belong to SC(os(T")).
The function jv = §(g—¢), on the other hand, belongs to SC(cs(T)) and (jv)(T) =
3(T'—T*) = JB. Hence we can use the approximating sequence jv Ry, (u,v) in order
to see that

GF)(T) = lim (joR,)(T) = Tlim (jo)(T)Ra(T)
= lim JBR,(T)=J lim (uR.)(T)=JF\(T),

where we used that v(q) = |¢ — ¢*|, and so v(T) = |T —T*| = B
Finally, we observe that u(T) = A and v(T) = B for the functions u(q) = u
and v(q) = v for ¢ = u + jv, and so

Fo(T) = lim Qu(T Z Qn(A,B) = Fy(A, B)

n—-+oo
n——+4oo

and
F(T) = liIJrrl (vR,)(T) = BR,(A, B) = F1(A, B),
n—-+0oo
where Fy(A, B) and Fj(A, B) are intended in the sense of the continuous func-
tional calculus for n-tuples of commuting self-adjoint operators. (One constructs
functions of an n-tuple (71, ...,T,) of commuting self-adjoint operators similar to
the above procedure by approximating a function f(x1,...,z,) in n real variables
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uniformly by a sequence P, (x1,...,2,) of polynomials in n real variables. One
formally replaces the real variables (x1,...,2,) by the operators Ti,...,T, and
defines f(T1,...,Ty) = lim,— 1 o0 Po(T1,...,Ty). See, for instance, Theorem 5.6.5
in the book [193].) O

Remark 9.4.12. The continuous functional calculus for normal operators on a
quaternionic Hilbert space was first introduced in [142]. In that paper, the authors
extend the operator J in the decomposition 7' = A + JB to a fully imaginary
operator Jg on H that commutes with 7. Recall that according to Lemma 9.3.9,
the imaginary operator J allows one to decompose the Hilbert space H into the
subspaces 4 '
H="HoDH, @H,
where
Ho={oxeH: Jr=20} and H,={zecH: Jr=uz(+j)}

The extension of J to a fully imaginary operator Jg artificially introduces a split-
ting of the space Hy of the form

Ho = ,Ho,.g. S5 ’H07_
into two C;-linear subspaces. We then have
H=E @&

with ‘ '
El={reH: Jpx=a(t))} =Ho+r ®H,.

The operator T is then simply the quaternionic linear extension of the C;-
linear normal operator T} := T|5j+ on €J-+ with ¢(T3) = og(T) N (C;r. In princi-
ple, even though this is not done explicitly in the paper mentioned above, the
continuous functional calculus can then be constructed by defining f(T") as the
quaternionic linear extension of f;(T}), where f;(T}) is the operator obtained by
applying the continuous functional calculus for complex linear normal operators to
i =1l ct This approach seems quite straightforward, but several technical steps

have to be added in this case in order to show that f(7) is independent of the
choice of both the imaginary unit j and the extension Jg of J to a fully imaginary
operator.

In our approach, we consider only the operator Ty := T'|y, with H; =ranJ
as the quaternionic linear extension of a complex linear operator; cf. the proof of
Theorem 9.4.7. This is the subspace on which the operator T naturally induces a
complex structure. We then have to treat Ty = T'|y, separately. The advantage,
however, is that we do not have to introduce any undetermined structure, namely
an extension Jg of J, in order to split the space Hg into two complex linear sub-
spaces. Since this needs to be done in accordance with 7" in order to guarantee that
Jg and T commute, it requires a lot of avoidable technical work; cf. Remark 9.3.7.
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9.5 Comments and Remarks

As we will see in the next chapters, the main ingredients to proving the spectral
theorem for bounded normal operators are:

e The Riesz representation theorem for the dual of C(X,R), where X is a
compact Hausdorff space.

e The Riesz representation theorem for quaternionic Hilbert spaces.
e The Teichmiiller decomposition of a normal bounded operator T'= A + JB.
e The continuous functional calculus based on the S-spectrum.

To prove the spectral theorem for unbounded normal operators, we have to intro-
duce the notion of spectral integrals that depend on the imaginary operator .J.
Precisely, the main ingredients can be summarized in the following points:

e The spectral theorem for bounded normal operators.

e The spectral integrals in the quaternionic setting depending on the imaginary
operator J.

e Suitable transformations (in the spirit of von Neumann) that reduce the case
of unbounded operators to the case of bounded operators.

Finally, using the spectral integrals, we define a functional calculus for unbounded
normal operators.
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Check for
updates

Spectral Integrals

In this chapter, we define spectral integrals in the quaternionic setting. The aim
is to define them for a suitably large class of functions that allows us to prove the
spectral theorem for unbounded operators in Section 12. To this end, we adapt
part of Chapter 4 of the book [191] to the quaternionic setting. Most of the proofs
of the properties of spectral integrals are easily adapted from the classical case
presented in [191], i.e., when H is a complex Hilbert space. However, some facts
require additional arguments, which we will highlight.

Definition 10.0.1. Let €2 C H be axially symmetric. We denote the o-algebra of
azially symmetric Borel sets in Q by Bg(Q2), and for each j € S, the o-algebra of
Borel sets of Q;r =0 (Cj with (Cj+ ={u+jv:ueRv>0} by %(Qj)

Remark 10.0.2. Every point q € (Cj+ corresponds to a sphere in [g] C H. Similarly,
every set A; € %((Cj‘) corresponds to an axially symmetric set A C H, and the
two sets are related via

Aj :AQC;'_ and A= [AJ]

Spectral integrals in the quaternionic setting can be defined with respect to spec-
tral measures that are defined either on Bg(H) or on ‘B((Cj) for some j € S. Both
approaches are equivalent for intrinsic slice functions, but they follow different
intuitions. We work in this chapter with spectral measures defined on %((C;') and
present the second approach in Chapter 14, where we also discuss the equivalence
of the two methods.

Definition 10.0.3. Let H be a quaternionic Hilbert space and let j € S. A spectral
measure over (Cj+ is a map E : B(H) — B(H), whose values are orthogonal
projections, such that

(a) B(C)) =1,
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(b) E is countably additive:

E (U O’n> = E(oy)

n=1 n=1
for every sequence (o, )nen of pairwise disjoint sets in ‘B((C;r).

If Og denotes the set of open sets in (C;r with E(O) = 0, then the support of E is
the set
+ .t
or=cf\ |J o

0e€O0Eg

As in the complex setting, the spectral measure F has the following additional
properties; cf. Section 4.2 in [191].

Lemma 10.0.4. Let E be a spectral measure on (Cj'. For all Borel sets o and T in
%((C;.'), we have

10.1 Spectral Integrals for Bounded Measurable
Functions
Throughout this chapter, we fix an imaginary unit j € S, a spectral measure E

over C;, and an imaginary operator J € B(#) that commutes with E such that
ker J = E(R) and ran J = ran E((CJ+ \ R). This is by Corollary 9.3.8 equivalent to

+ _ g2
E(C]\R)=—J~ (10.1)
Before we continue, let us first discuss the intuition of the above definition. Spectral

integrals are defined via approximation of a bounded measureable function f by
a sequence of simple functions

fn(Q> = Z g n XA, (Q)a
=1
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where xa, denotes the characteristic function of the set A, € (C;r. One then sets

fn Z neE(Dn ) (10.2)

and defines

- f(s)dE(s) := ngr-ir-loo - fn(s)dE(s).

A quaternionic Hilbert space is a priori, however, only a right vector space,
and so B(H) is not a quaternionic Banach space, but only a real Banach space. In-
deed, a quaternionic scalar multiplication on B(#) is supposed to act as (T'a)(x) =
T(az) and (aT)(z) = a(Tz) for T € B(H), a € H, and x € H, which is mean-
ingful only if a left multiplication is defined on H. Using the right multiplication
on H to define a multiplication of operators with scalars as (Ta) = T'(za) yields
(Ta)(xb) = T(xba) = T'(x)ba, but ((T'a)x) = T'(za)b = T(x)ab, and these two ex-
pressions are equal for every b € H if and only if a € R. Hence, (T'a) is quaternionic
linear only if a belongs to R and B(H) is in turn only a real Banach space.

As a consequence, the expression (10.2) is meaningful only if the coefficients
an are real. This is sufficient for self-adjoint operators, but in order to develop the
spectral theory of normal operators that are not self-adjoint, one has to be able
to define spectral values for functions that are not real-valued.

Since the continuous functional calculus is based on the class of intrinsic slice
functions, one has at least to be able to define spectral integrals of intrinsic slice
functions, which are of the form f(q) = fo(u,v) + jfi(u,v) for ¢ = u + jv. The
imaginary operator J tells us how to multiply the imaginary unit j. Since intrinsic
slice functions take real values on the real line, this multiplication does, however,
not need to be defined on the subspace that is associated with the real line. This
is expressed in the condition (10.1)

One might wonder why one works with this minimal structure and does not
simply define a complete left multiplication on the space H. This would even
allow the integration of more general functions than only intrinsic slice functions.
However, it turns out that spectral integration of functions other than intrinsic
slice functions is not meaningful, since such techniques cannot follow the usual
intuition of spectral integration. Moreover, as we will see in the next chapter, a
normal operator T defines only a spectral measure E and an imaginary operator
J satisfying (10.1), but it does not define a left multiplication on the entire space
‘H that could be used for studying this operator; cf. also Remark 9.4.12. For more
details, we refer to the discussion in Chapter 14.

Definition 10.1.1. Let Q@ C H be axially symmetric. We denote the set of all
bounded B 5(2)-B(H)-measurable intrinsic slice functions by SM> (), and with
the notation Q;r =QnN (Cj+, we define

SME(QF) = {flo: : f € SM™(Q)}.
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Remark 10.1.2. The spaces SM> () and SM;°(Q]) are real Banach spaces with
the supremum norm

[ flloo =sup|f(q)], resp. | flo,llec = sup [f(q)]-
qeQ qGQ;r

Furthermore, if f = fy 4+ jf1 € SM™(Q), then we have for every ¢ = u + iv € Q
that

[F(@F = |folu,v) + 3 fi(u,0)|* = [ folu, v)|* + [ f1(u, v)]*.

The modulus |f(q)| therefore does not depend on the imaginary unit ¢ € S and
therefore it is constant on each sphere [¢]. We conclude that || f|lec = | f|o+ [l
and that the restriction f — f|q, is an isometric bijection between SMOO(Q)]and
SMG°(Q;).

As an immediate consequence of Lemma 9.4.3, we obtain also the following
lemma.
Lemma 10.1.3. Let Q) C H be axially symmetric and set Qj‘ = Qﬂ@;‘. A function
f; belongs to SM;”(Q;') if and only if it is of the form

fj(q):fO(uav)+jfl(uav)a q:u+jU€Q;_a (103)

where the component functions fy : Q;r — R for £ = 0,1 are measurable real-valued
functions and f1(u,v) =0 for every ¢ =u+ jv € Q;r NR whenever v = 0.

The above discussion shows that we do not have to distinguish between glob-
ally defined intrinsic slice functions and functions of the form (10.3) that are
defined only on one slice (C;r. We can jump back and forth by extending, resp.
restricting, the respective functions.

Definition 10.1.4. Let Qj‘ € B(C,). We denote by 5.7-"((2;') the subset of simple
functions in SMS° (Q;'), all C;-valued functions of the form

@)= emXo (9),

m=1

where o1, ...0, are pairwise disjoint sets in %(Qj), where ci,...,¢, € C; and
¢m € Rif 0, "R # () and where

(q) = 1 if geo,
XAU=%0 it ¢¢o

For f € 5.7:(9;'), we define

I(f) = f(p)dE(p) := Y (Re(em)T + Im(cp)J}E(om). (10.4)

+
Qj m=1
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Remark 10.1.5. If f(q) = > _| ¢mXo,, (¢) belongs to SM‘;O(Qj), then the prop-
erty that ¢,, € R whenever o, R # @ follows from the fact that f is the restriction
of an intrinsic slice function. Such functions map the real line into itself, and hence
every coefficient that determines the value of f at a real point must be real.

Lemma 10.1.6. If f € Ef(Q;'), then

IO < 11 flloe- (10.5)

Proof. If f =3 _| ¢mXo,, I EF(Q;'), then, using properties (ii), (iii), (iv), and
(a) in Lemma 10.0.4 and the fact that ||.J|| = 1, we have

n 2

Z (Re(em) + Im(epm) ) E(om)x

m=1

= " I(Re(em) + Im(en) ) E(0, )]

()] =

3
)l

< D lemlPIE(om)2l® < 11221

NE

3
£

Thus (10.5) holds. U
Fix f € SMOO(Q;F). Since £F(12;) is a dense subset of SM;’O(QjL there

exists a sequence of functions (f,),en belonging to EF (Qj) such that

lim | fn = fllc =0.

n—-+oo

In view of (10.5), (I(f»)x)nen is a Cauchy sequence in H. Let I(f) be given by

I(f)z= lim I(f,)xz, z€H.

n—-+oo

Note that f does not depend on the choice of the sequence (f,)nen, and conse-
quently, neither does I(f).

Lemma 10.1.7. If f = fo+ f1j and g = go + g1 belong to SMio(Qj), where fo,
fi, go, and g1 are real-valued, o, B € C;, and x,y € H, then:

)" =1(f), af+ﬁg)—aﬂ(f)+ﬁﬂ(g)-

i) 1
(i) < )fmy Jo fo@)(EP)z,y) + Jo [1(p)d(JE(p)x,y).
(iif) I(fg) = I(f)(g)-
(tv) [IC)z]* = Jo f (P)Pd(E(p)z, z).
(V) A< M flloo-
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Proof. In view of the density of S.F(Q;r) in SMOC(Qj) and (10.5), it suffices to
check (i)—(v) when f, g € S.F(Qj). The assumption that F (o) and J commute for
all o € %(Qj) will be a useful tool for checking (i)—(v) and will be used without

further mention. If f = 3" _ ¢mXo,, and g = >0 _; dmXr,, belong to EF(QF),
then

n

(A y,2) = Y (. ARe(en)T + Im(cp) T} E (o))

m=1

= >~ ({Re(en)T — Im(en) T} E(on)y, o)

m=1
=(I(f)y,x), = y€e€H.
Thus, the first assertion in (i) holds. The second assertion in (i) is easily checked.
We will now check that (ii) holds. Since

= > {Re(cn)(B(om )z, y) +Im(cn)(JE(om )z, y)}

- / fo()A(E@)z,y) + / A )AIEP),5),

where fy and f; are real-valued functions that satisfy f = fo 4+ f17, (i) holds.
We will now check that (iii) holds. Since

= Z {Re(co)Re(dy) — Im(ce)Im(dp) Y E(or N 7o)

{m=1

+ Y {Re(co)Im(dy,) + Im(ce)Re(dm) } T E(o0 N 7y)
Lm=1

= Y {Re(ee)Z + Im(ce) T} {Re(dy)T + Im(dy) T} E (o) ()

Lm=1
{Z{Re co)Z +Tm(c) J}E(oy } {Z{Re )T + Im( m)J}E(Tm)}
/=1 m=1
=1(/)I(g),

(iii) holds.
Assertion (iv) is a direct consequence of (i), (ii) and (iii). Indeed,

IL(f)al* = (T(f)z, T(f)x)
= ({I(If[*)z, )

- [ VwPaE@)., e



10.2. Spectral Integrals for Unbounded Measurable Functions 225

Finally, assertion (v) is a direct consequence of assertion (iv). O

Remark 10.1.8. If 7' € B(#) is normal and E} is the spectral measure with support
os(T)N (C;-' for j € S appearing in Theorem 11.2.1 in the next chapter, then item
(ii) of Lemma 10.1.7 ensures that

(1) =1(f), feClos(T)NC],Cy). (10.6)

Finally, let us show that the choice of the imaginary unit j € S is irrelevant.

Lemma 10.1.9. Let E be the spectral measure over (C;-|r and let i € S. If we define
for A € B(C]) the set

Aji={u+jv: utive A}
and set
E(A) = E(A;),

then E is a spectral measure over C;, and for every f € SM™(Q), we have after
setting f; == flo+ and f; := f|o+ that
J i

/jj(p) dE(p) = /+ fi(p) dE(p).
o o

Proof. Tt is immediate that F is a spectral measure over (CZ'-". If furthermore f €
SM>=(Qf) is such that f; = Y0 cmXo, € EF(Q) with ¢, = Re(cm) +
jIm(cp), then f; =370 _ {Re(cm) + jIm(c¢m)}Xo,, , and we obtain

m=0

|0V dEp) = > {Re(en)T + Im(cm) T} E(0m ;)

= > (Re(en) + ()T} Elon) = [ Fip)dEG). O
m=0 Qj

10.2 Spectral Integrals for Unbounded Measurable
Functions

We will now define spectral integrals for a more general class of functions than
S/\/loo(Qj). This will be useful in proving the spectral theorem for unbounded
normal operators. Again we fix an imaginary unit j € S, a spectral measure E
over C;, and an imaginary operator J € B(#) that commutes with E such that
E((Cj \R) = —J%
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Definition 10.2.1. Let SM%(Q;F) denote the space of all %(Qj)—measurable func-

tions f : Qj — C; U{oo} that are the restriction of an intrinsic slice function and
F-a.e. finite, i.e., such that

E({peQ: f(p)=o0})=0.

Furthermore, we let SMOEO(Qj) denote the set of all SB(Q;L)—meausumble func-

tions f : Qj‘ — C; U{oo} that are the restriction of an intrinsic slice function and
essentially bounded, i.e., such that

1fllg,0o :=inf{a e R: E(A,(f)) =0},
where A, (f) ={q € Q;L S|f(Q)] > al.

Definition 10.2.2. A sequence of sets (o, )nen, Where o, € %(Qj) for n € N, is
called a bounding sequence for a subset of functions § C SM%(Q;) if

(i) f € F is bounded on o, for n =0,1,...,
(ii)) oy C opgq for n =0,1,...,

(i) E(U; S5 0n) = In,

where F is a spectral measure.

Remark 10.2.3. If (0, )nen is a bounding sequence, then the following assertions
follow from the definition of a spectral measure:

(i) E(on) 2 E(ont1).
(ii) E(op)xr — x as n — +oo for any x € H.
(it) The set |25 E(o,)H is dense in H.
We will now give meaning to I(f) for f € SME(Qj).

Definition 10.2.4. Let f € SM?(Q;) and let (0,,)neny be a bounding sequence
for f. We define the operator

I(f)z= lim I(x,, f)x (10.7)

n——+0oo

with domain
D(I(f)) = {x cH: /Q+ |f(q)2d(E(q)x, x) < +oo} ) (10.8)

Given a quaternionic measure p on Q;’ C C;, we will let Lg(Qj, 1) consist
of all measurable functions such that

1/2
1Al gy = ( . |f<q>|2d|u|<q>> < +oo,

J
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where || denotes the total variation of p defined by

+oo
lul(o) := sup { S Julow)l: o= am} Vo € BQY).
meN m=1

Here | | denotes a disjoint union of sets in %(Qj‘)

Lemma 10.2.5. For x,y € H, the quaternionic measure i, ,(0) = (E(0)z,y) and
f.g€ SM%(Q;F), we have:

(i) |y (0)] < p1a(0) 21y (0) 12 for o € B(X).
(i) If f € LQ(Q;F,,uI) and g € LQ(Qj7ﬂy), then

|/ij+ Re{(f9)(p)}dpiz,y(p) +/QIH1{(fg)(p)}duz,_Jy(p) 109)

< 2Hf||L2(Q;',p,w)HgHL2(Q;."7MJy)

Proof. The proof of Lemma 4.8 (i) in [191] can easily be adapted to obtain item
(i) in our present setting. Since

| [ ReAGD @i 0

< [, Re{(f) )} e )
Qj

< [ 9@ diusy )

J

one may proceed as in the proof of Lemma 4.8(ii) in [191] to obtain

/Q DG it |0) < 1 gy 190 a6 )

J

and hence

/Q Re{(£9) ()} )

J

< ||fHL2(Q;r,M,w)||9||L2(Qj+,uy,y)~

Similarly, one can show that

[ {90 0

J

S st e i 190 La@t sy

But since

P gy,—ay(0) = (E(0)(=Jy), =Jy) = (E(0)y,y) = tyy(0),

we have the advertised upper bound. O
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Lemma 10.2.6. If f € SME(Q;F) and (0n)nen 18 a bounding sequence for f, then

(i) A vector x € H belongs to D(I(f)) if and only if the sequence (I(Xo,, f)T)nen
converges in H, or equivalently,

sup [[I(f xo,, )| < +o0.
neN

(ii) I(f) does not depend on the choice of the bounding sequence for f.
(iti) The set U 25 E(on)H is a dense subset of D(I(f)) with respect to the norm

[zllcpy = llzll + [LCH)=ll, 2 € DAAS)).

Moreover,
E(0)I(f) CI(f)E(on) = (fxs,), n=0,1,.... (10.10)

Proof. Since E(0)? = E(o) and E(0)* = E(0), the operator E(c) is a positive
operator for every o € %(Qj) Thus, p, is a positive measure on Q;r, where
tz(0) = (E(0)zx, x). Consequently, the proof of items (i)—(iii) can be completed in
much the same way as items (i)—(iii) of Theorem 4.13 in [191]. O

In the following theorem, W denotes the closure of an operator W € L(H),
while f denotes the usual complex conjugation of the function f.

Theorem 10.2.7. If f,g € SM%(Q;) and o, 8 € R, then:
(i) I(f) = 1(f)*.

(i) I(af + Bg) = o(f) + BL(g)-

(iii) 1(fg) = L(f)L(g)-

(iv) I(f) is a closed normal operator on H and

1) I(f) = 1(f F) = I(F )

(v) DI(H)(g)) = D(I(9)) N D(I(fg))-
(vi) If 2 € D(I(f)) and y € D(I(g)), then

(I(f)z,U(g)y) = [ Re(f(p)g(p)) d(E(p)z,y)

o
(vii) If x € D(I(f)), then

Wal? = [ wPdEe.o).

J
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Proof. The proof of items (i)—(iv) when H is a complex Hilbert space (see items
(i)—(v) of Theorem 4.16 in [191]) can easily be adapted to the case in which H is a
quaternionic Hilbert space. Item (vii) follows directly from item (vi) when g = f
and = y. What remains is to show (vi). To this end, we will adapt the argument
for the proof of Proposition 4.15 in [191].

In view of items (i) and (ii) of Lemma 10.2.6,

| Reliaxn) @M E@) + [ (a0,

J J

= (]I(fgxgm)x,y) = <H(fxgm)x,]1(gxgm)y>.

Since z € D(I(f)) and y € D(I(g)), we have f € La(Q, tiy,») and g € La(2, fiy.y),
where py (o) = (E(0)z,y), 0 € B(Q). Therefore, we may use Lemma 10.2.5 to
get that the integrals given in

(10.11)

o= [ Re{(fxn) OIAE@)0) + [ In{(foxn) 0)}AIEE)s.)
QJ QF

J

exist and hence
/Q .\ Re{(f9Xo,,)(p) }d(E(p)z,y)

[ (o ONITEG) —
Q7

J

— 0

as m — +o00. But then the formula advertised in (vi) follows from letting m tend
to +o00 in (10.11). O

Lemma 10.2.8. The operator I(f) is bounded if and only if f € SMOEO(Q;") In this
case [L(F)] = 1/1l 5,00

Proof. The proof when H is a complex Hilbert space (see Proposition 4.18 in [191])
can easily be adapted to the case in which # is a quaternionic Hilbert space. O

Theorem 10.2.9. If f € SM?(Q;'), then 1(f) is invertible if and only if [ does
not vanish E-a.e. on Qj‘ In this case,

I(f)~ =1(1/f), (10.12)
where we use the convention that 1/0 = oo and 1/00 = 0.

Proof. Also here, the proof when # is a complex Hilbert space (see Proposition
4.19 in [191]) can easily be adapted to the case in which H is a quaternionic Hilbert
space. U
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Lemma 10.2.10. If f € SM¥E(Q)), then
os(I(f)NCH ={AeCl: E(o.())) #0 Ve >0}, (10.13)

where
oc(N) :={z€Qf : |f(2)® —2Re(N)f(z) + [\*| <e}.

Proof. We have q € ps(I(f)) N (Cj if and only if
I(f)* — 2Re(q)I(f) + |q|*T
has a bounded inverse. This is the case if and only if
94(t) = f(t)* = 2Re(q) f(t) + |gI* #0 E-a.e. on QFf

and the function g;'(t) is essentially bounded and hence belongs to SM ().
In other words, there exists a constant ¢ > 0 such that

E({z€ Q] : lgq(2)] = c}) =0.
Thus, A € a5(I(f)) N (Cv+ if and only if

E({z€Qf : |ga(2)l <e}) #0 Ve>0,
and we have (10.13). O

As a direct consequence of Lemma 10.1.9, we also find that spectral integrals
of functions in SM%(QJ-) are also not dependent on the imaginary unit j € S.

Lemma 10.2.11. Let E be the spectral measure over C;r and let i € S. If we define
for A € B(C]) the set
Aj={u+jv: u+iveA}
and set 3
E(A) = E(4;),

then E is a spectral measure over C;, and for every f € SM%(Q), we have after

setting f; == flo+ and f; == flg+ that
J k2

fi(@dE(q) =1p(f;) =15(fi) = [ fi(q) dE(q).

+ +
Q] Q;

/fj )dE(p /fz )dE(p

Proof. Since I(f) is defined as the limit I(f)x := lim,— 100 I(Xo, f)z of spectral
integrals of functions in S MOO(QT) and the statement holds for such functions by

Lemma 10.1.9, it also holds for f € SME(Q). O

Furthermore, we have
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10.3 Comments and remarks

The reader is encouraged to see the book of Schmiidgen for a very good and de-
tailed write-up of spectral integrals in the complex Hilbert space case. The main
difference with respect to the complex case is that the quaternionic spectral inte-
grals depend on the imaginary operator J, which is considered to be multiplication
by the imaginary unit j from the left.
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Check for
updates

The Spectral Theorem for
Bounded Normal Operators

In this chapter we prove the spectral theorem for bounded normal operators T'
in B(H). Our approach has analogies with the well-known approach for complex
bounded normal operators on a complex Hilbert space, see for example [163], but
it has to take into account the axially symmetric structure of the S-spectrum
of T and the (A, J, B)-decomposition T = A 4+ JB of the quaternionic bounded
normal operators. As we will see, the spectral measures E are constructed using
just the two self-adjoint operators A and B, and only later, we take into account
the imaginary operator J for the spectral representation of T. We present the
original proof from [13] using the Teichmiiller decomposition T'= A + JB. The
following representation theorems will be used in the sequel.

Theorem 11.0.1 (Riesz representation theorem for real-valued functions). Let X be
a compact Hausdorff space and let C(X,R) denote the normed space of real-valued
continuous functions on X together with the supremum norm ||-||oo. Corresponding
to every bounded linear functional ¥ : C(X,R) — R there exists a signed Borel
measure pu on X such that

P(f) = /Xf(t)du(t) for all f € C(X,R). (11.1)

If, in addition, v is a positive linear functional, then p is a positive Borel measure
on X. In both cases p is unique.

For a proof of Theorem 11.0.1 we refer to Theorem D in Section 56 of [157]
for the case in which v is a positive bounded linear functional on X and, e.g.,
Chapter 21 in [182] for the more general case.

Theorem 11.0.2 (Riesz representation theorem for quaternionic Hilbert spaces).
Let H be a quaternionic right Hilbert space with quaternionic inner product (-,-),
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and let ¢ be a continuous right linear functional on H. Then there exists a unique
Yo € H such that

o(x) = (x,yy,), forallzeH.

Theorem 11.0.2 can be found in [33]. We also want to mention Proposition
1.10 in [167] for a statement and proof in a more general Clifford algebra setting.

11.1 Construction of the Spectral Measure

We can now construct the spectral measures. We will use the Riesz representation
theorem for continuous real-valued functions and the Riesz representation theorem
for quaternionic Hilbert spaces.
In this chapter we consider a normal operator T' € B(H) and fixed imaginary
unit j € S and define Q = 05(T) and
+ . + _ +
Qf =QnCj =o05(T)NCT.
We recall that C (Qj, R) denotes the space of continuous real-valued functions on
Qj’ By Lemma 9.4.3, every function f; € C(Qj’,R) is the restriction f; = f|Q]+
of a real-valued continuous slice function f on Q = og(T). We denote the set of
continuous real-valued slice functions on Q by SC(Q,R), and in the following, we
do not distinguish between the function f; and the function f unless that could
cause confusion.
We consider for x € ‘H the mapping

l:(9) = (9(T)x,x), g€C(Qf,R)=S8C(Q,R),

where ¢(T') is the operator obtained by the continuous function calculus intro-
duced in Theorem 9.4.11, where g(T') stands for Fy(T) and F;(T). Since T is a
bounded operator, its S-spectrum og(7T') is a compact and nonempty set. It is
readily checked that ¢, is a real-valued bounded linear functional on C (Q;“,R).
Moreover, ¢, is a positive functional. Indeed, if h is a continuous nonnegative

function on Q;r, then we can consider the function g(u,v) = y/h(u,v) and find
g€ C(Qj,R) with g(T') = ¢g(T)*. Thus

lo(h) = (W(T)w, x) = (9(T)a,g(T)z) = ||g(T)z|* = 0.

Theorem 11.0.1 yields the existence of a uniquely determined positive-valued mea-
sure pg on the Borel sets %(Qj), so that

l(g) = /Q o) dualr), g€ C(@) R, (112)
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In view of (11.2), we may use the formula

Hg(TM)z,y) = (g(T)(z+y),z+y) — (g(T)(z—y)z—y)
+e1{g(T)(x + ye1), + yer) — e1(g(T)(z — ye1), T — yeq)
+e1{g(T)(z — ye2),z — yea)es — e1(g(T)(x + ye2), x + yez)es
+ (9(T)(x + ye3), x + yes)es — (9(T)(z — yes), x — yes)es, (11.3)

where {1,e1, e, e3} denotes the standard basis of H, to obtain for every z,y € H
a uniquely determined H-valued measure p, , such that

@) = [ o, ). o€ 0@ R). (114

j
where

Ay y = Moty — Ho—y + €1Hatye; — €1flz—ye, (115)

+ e1lz—ye,€3 — €1latyes€3 + Hatyes€3 — Hao—yes€3-

Lemma 11.1.1. Let z,y,2 € H and o, B € H. The H-valued measures jiy, given
in (11.5) enjoy the following properties

(i) BratyB,z = Mo,z + My,zﬁ7

(ii) Hz yatz8 = @/Jz,y + B/Jz,m

(i) |0y (U] < [l2llllyll,

(iv) ey = Hy,a-
Proof. Properties (i)—(iii) are easily obtained from (11.4) using the uniqueness
of pz, and the properties of (-,-). Property (iv) follows from properties (i) and
(ii). O

It follows from properties (i) and (iii) in Lemma 11.1.1 that for every fixed

y € H and every fixed o € B(€2]), the mapping

Py(z) = pay(o)

is a continuous right linear functional on H. Moreover, it follows from property
(ii) in Lemma 11.1.1 that

Dy (z) =aPy(z), acH.

It follows from the Riesz representation theorem for quaternionic Hilbert spaces,
see Theorem 11.0.2, that corresponding to every x € H, there exists a unique
vector w € ‘H such that

D, (x) = (z,w), (11.6)
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ie., pgy(0) = (x,w). Since the left-hand side of (11.6) depends linearly on x and
anti-linearly on y and the right-hand side depends linearly on z, it follows that
@, (x) depends linearly on x and anti-linearly on y, so

E(o)y = w,
for some operator
E(o) € B(H).

Thus,
fay(0) = (2, E(0)y), o€ BQ),

and in view of property (iv) in Lemma 11.1.1,
E(c)=E(0)", o€ ‘B(Q}L), (11.7)
and hence
fay(0) = (E(0)z,y), o€ BQ). (11.8)

Since p, is countably additive, y, , is also countably additive. Consequently,
the B(H)-valued measure E is also countably additive, i.e.,

(DO ) ZEan (11.9)

n=0

for every sequence of pairwise disjoint sets (o, )nen in EB(Q:) The limit in (11.9)
is intended with respect to the strong operator topology.

We recall that SC(€2) denotes the space of all continuous intrinsic slice func-
tions on 2, and we denote by

SC;(Q7) = {f; = floy = feSC(}

the set of all restrictions of functions in SC(€2). Again we do not distinguish be-
tween a function f and its restriction f; unless this could cause confusion.

Lemma 11.1.2. Let J be the imaginary component in the T = A+JB decomposition
(9.17) of the normal operator T € B(H) and let E be the spectral measure on
%(Q;‘) with Qj =og5(T)N (C;' defined above. The following statements hold:

(i) Ifg € C(Qj,R) = SC(SL,R), then for all x,y € H
(D) = [ o) dEC).y). (11.10)
o
(i) If f=fo+jfi € SCj(Qj) >~ SC(Q), then we have for all x,y € H,

U@z = [ S dEG /f1 E(p)r.y).  (1L11)
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(iil) E(o) and J commute for all o € %(Qj) and —J% = E(Q;r \R).

Proof. Assertion (i) follows directly from (11.4) and (11.8). We will now prove
assertion (11.11). In view of (11.10) and Theorems 9.4.9 and 9.4.11, we have

(f(T)z, >:<{f0( )+ f1(T) T}, y)
(Mz,y) + (f1(T) Tz, y)

/fo P)T,Y) /f1 p)Jx,y), z,y € H.

Thus, the proof of (11.11) will be complete on showing that
d(E(p)Jz,y) = d(JE(p)z,y), =y€H.

To see this, let g € C(Qj‘, R) and use (11.10) and the fact that g(7') and J commute
to obtain

/Q‘+ g(p)d(E(p)Jz,y) = (9(T)Jz,y) = (Jg(T)z,y) = /Q_+ g(p)d(JE(p)z,y).

If we write v = (E(p)Jx,y) and v = (JE(p)z,y) and then
V = g€ + V1€1 + Ve + V3e3
and
V= Vpeg + V1€l + Vaeg + Uses,

where vy and vy, £ = 0,...,3, are real signed measures and e;,= 0,...,3 is the
standard basis for H, then it follows from Theorem 11.0.1 that v, = v, for ¢ =
0,...,3. Therefore, items (iii) and (ii) hold.

Finally, we have due to (i) and due to Lemma 10.1.7(iii) that

BER) = [ n@)] dB@E®) = [ [lm(o)lxe dB@) =0,

J J
so that
ran E(R) C ker B = ker J,

where B is the positive operator in the decomposition T' = A 4+ JB. If, on the
other hand, = € ker J = ker B, then

0= (Br,z) = / [Tmgl?dyts o (q).
o

Since the measure pi, .(0) = (E(0)z,z) and the function ¢(q) := |[Im(q)|? are
nonnegative, this implies

0= fipo(¢™ (R\{0}) = o o (2 \R) = (2, B \R)z) = | E(Q] \R)||*.



238 Chapter 11. The Spectral Theorem for Bounded Normal Operators

Hence E(Q;r \R)z =0, and in turn, x € ran E(R). Therefore,
ran E(R) D ker B = ker J,

and in turn,

ran E(R) = ker J.

Since —J? is the orthogonal projection onto (ker.J)* = ran.J by Corollary 9.3.8
and E(Qj \ R) is the orthogonal projection onto (ran F(R))*, we conclude that

—-J? = E(Q] \R). O

The properties of the spectral measure can be checked directly as in the
following result.

Theorem 11.1.3. The B(H)-valued countably additive measure E, given by (11.8),
forall o, € ‘B(Qj), enjoys the following properties:

(i) E(o) = E(0)*.

(i) [[E()l < 1.

(i) E(®) =0 and E(cs(T)NC}) =1

(iv) E(cNT)=E(0)E(T).

(v) E(0)? = E(0).

(vi) E(o) commutes with f(T) for all f € SCJ-(QJ"-") = SC().
(vil) E(o) and E(T) commute.

&

)
)
)
)
)
)

Proof. The proof is broken into steps.
Step 1: Show (i) and (ii).

Property (i) has already been noted in (11.7). Property (ii) follows directly from
property (iii) in Lemma 11.1.1. Indeed, if = y in property (iii) in Lemma 11.1.1,
then

pow(0) < Haa(QF) < 2

and hence
(B(o)z,z) < ||z||* for = € H,

i.e., T — E(o) is a positive operator for all o € ‘B(Qj’) Therefore, property (ii)
holds.

Step 2: Show (iii).

Since piz4(0) = 0, we may use (11.4) to deduce F() = 0. Similarly, putting
g(p) = 11in (11.4) yields g(T) = Z for all x,y € H and thus

@ = [ diy = (B )o.0),

J
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ie., E(Q;r) =7
Step 3: Show (iv).

Recall that for all real-valued polynomials ¢ and 1 on Qj‘, we have set ¢(T) :=

6(A, B) and &(T) = ¥(A, B). Clearly we have (64)(T) = ¢(T)%(T), &(T) =
&(T)*, and (T) = ¢(T)*. Thus,

[ o) dturrans) = OT)0(T)2.)
os(T)NCj

—(eu)@ral= [ ..
os(T)NCS
(11.12)
Since E(o) = E(0)*, (11.8) implies that
paz(0) ER for all o € %(Qj)
Similarly, since (¢(T")x,z) is real, (11.8) implies that
Pap(T)z,e(0) € R for all o € B(os(T) N (Cj')

In view of the density of real-valued polynomials in the space C(Qj,R) and the
Riesz representation theorem given in Theorem 11.0.1, (11.12) implies that

dity(1ya,e (P) = V(D) dpta 2 (D)

But then we may use the identity (11.5) and the fact that ¢(p) is real-valued to
obtain

dpiy (e y (P) = (P)dpt,y ().
Thus, in view of (11.8),

(B(o)i(T)z, y) = / $(p) diiay(p) for o € BEL).

Since E(o) = E(0)* for o € ‘B(Qj‘),
/ i pioyy = (V(T)z, E(0)y)
os(T) ﬂ(C;r

— (B(o)(T)z,y) = / ¥ Xo ditn g,

os(T)N C;r

where

(p) = 1 if peo,
X =N0 it pé¢o.
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Since 9 is real-valued, we also have

/ ¢du§:g(o)y z/ Y Xo dug’;j) for m=0,...,3, (11.13)
(:l‘s(T)I'W(Cj+ o's(T)ﬂ(ij

where ug; v and u( ™) E(o)y € real-valued signed measures given by

3
P,y = Z ﬂggn;)em
and
My E(o)y Z '“af E(U)@Je”‘

Recall that (e, )¢=0,....3 is the standard basis for H.

In view of the density of real-valued polynomials in the space C (Qj, R) and
the Riesz representation theorem given in Theorem 11.0.1, the identity (11.13)
implies that

dpS,ﬂE)(o)y = Xo du;f';) for m=0,...,3,
and hence
dﬂm,E(o)y = Xo dﬂw,y-

Therefore,

Hha,B(o)y (T) = / XoQfizy = fz,y(0 NT)
Qfnr
for 0,7 € V(). Since
(o) = (E(o)z,y) for o € B(Q),

we obtain E(0)E(T) = E(c NT) for o,7 € %(Qj)

Step 4: Show (v).

Property (v) can be obtained from Property (iv) when o = 7.
Step 5: Show (vi).

Let A, B, and J be as in Theorem 9.3.5. We have already observed in item (iii) of
Lemma 11.1.2 that F(c) and J commute. One can show in a similar fashion that
A and E(o) commute and B and E(c) commute. Thus, in view of the construction
of f(T), we have that f(T) and E(c) commute.

Step 6: Show (vii).

Property (vii) follows from Property (iv) on interchanging 7 and o. d
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Remark 11.1.4. The spectral measure E was constructed using only operators
g(T) that were generated by functions g € C (Qj, R), that is, by real-valued func-
tions. By Theorem 9.4.11, for such functions, the operator g(T"), however, does not
depend on all the information we have about T, but only on the factors A and B in
the T'= A+ JB decomposition of T'. Hence F is actually a joint spectral measure
of the self-adjoint operators A and B. This in particular implies that T = A+ JB
and T* = A — JB have the same spectral measure E.

In the quaternionic setting, invariant subspaces are not associated with in-
dividual eigenvalues, but with spheres [s] of equivalent eigenvalues, because the
eigenvalue equation T'(x) — zs = 0 associated with a single (nonreal) eigenvalue is
not linear. The correct interpretation of the above observation is therefore that the
spectral measure E associates invariant subspaces of T to sets of spectral spheres,
while the imaginary operator J orients the spheres. It determines how the differ-
ent spectral values in these spheres need to be multiplied onto the vectors in the
associated subspaces in order to fit the operator 7. A more detailed discussion of
this idea will be given in Chapter 14.

11.2 The Spectral Theorem and Some Consequences

We conclude this chapter with the main result, the spectral theorem for bounded
operators.

Theorem 11.2.1 (The spectral theorem for bounded normal operators). Let T €
B(H) be normal, let J € B(H) be the imaginary operator in the Teichmiller de-
composition T = A+ JB of Theorem 9.3.5, and fiz j € S. Let Q;r =og(T)N (Cj+
and let Iy and Hi denote the orthogonal C;-linear projections defined in Defi-
nition 9.3.10 corresponding to the decomposition H = Ho & H’, & H? given in
Lemma 9.3.9.

Then there exists a unique spectral measure E; on Qj such that for all z,y €
H,

M) = [ Rel@)dB@)) + [ Wm@dE@Iey).  (11)

J

For every function f = fo+jf1 € SC']-(Q;F) and x,y € H, we moreover have

U@z = | S0)AE G /fl Ei(p)z,y),  (1115)
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or, equivalently,
(F(T)r.y) = / A (p)2,3) fo(v)

+/Qj (T, E;(p)x, y) f(p) (11.16)

+ [ A Ej(p)z,y) f(p).

+
Q;

Moreover, on identifying the complex plane Cy, with C; in the natural way by
the mapping @i, : u+kv — u+jv, we have E;(prj(0)) = Ex(o) for allo € B(Q})
forall j,k €S.

Proof. Formula (11.15) was established in item (ii) of Lemma 11.1.2. Formula
(11.16) follows from (11.15). Indeed, if we write y = yo + y+ + y— € H with
respect to the decomposition H = Ho & H’. & 1’ as in Lemma 9.3.9, then

(D) = || SOIE G / AOATE (p)z.y)
= fo( )d(E;(p)x,y) / filp (P)+4,y)
+ f1( )JA(Ej(p)z—(—7),y)
= [ foo)aEy o) + | B @) le) +(0)

+ /m d(Ej(p)r—,y)(fola) — ifi(q))

= [, Aot o) + /Q B ()T ) ()

. d(E;(p)Tz,) f(q)-

The fact that there is only one spectral measure E; on og(T) N C;r such
that (11.15) holds follows directly from the uniqueness of the measure i, (o) =
(E(0)x,y) on Qj (see (11.5)). The claimed invariance E;(¢;,(0)) = Ex(0) relative
to j,k € S drops out easily from the aforementioned uniqueness of £; and Theorem
9.2.3. O

Corollary 11.2.2. In the setting of Theorem 11.2.1, the following statements hold:

(i) If T € B(H) is a positive operator, then there exists a unique positive operator
TY? .= W € B(H) such that W? =T
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(ii) T € B(H) is self-adjoint if and only if

Ty~ | t(E;(ry), wyeH.  (1L17)
(=TT

(iil) T € B(H) is anti-self-adjoint if and only if

(Tx,y):/ LAUJE; ()2, y), 2,y € H. (11.18)
[o,11T|]

(iv) T € B(H) is unitary if and only if

(T, y) = / cos(t)d(E; (t)z, y) + / sin()d(JE;(Hr,y).  (11.19)
[0,7] [0,7]

Proof. It T € B(H) is a positive operator, then og(T) C [0, ||T]|]. Thus, using
Theorem 11.2.1, we have the existence of a uniquely determined spectral measure
E; such that

(Tz,y) = / td(E;(t)x,y). (11.20)
(0,[17"11]

Let g(t) = t'/2 for t € R. Since g € C(o5(T),R), it follows from Theorem 11.2.1
that
Weog)i= (o(Da) = [ 02 aE;0)
(0,171

satisfies W2 = T. Thus, we have established the existence of a positive operator
W € B(H) such that W2 = T. The proof that W is unique follows from the
uniqueness of the spectral measure I, just as in the case that H is a complex
Hilbert space.

The proofs of (ii)—(iv) follow readily from Theorem 11.2.1 and (9.9). d

11.3 Comments and Remarks

The spectral theorem based on the S-spectrum was proved in the following papers:
the general case for bounded and unbounded normal operators was shown in [13].
A different proof for unitary operators was given in [14], and the simple case of
compact normal operators was shown in [143].

Results related to the quaternionic spectral theorem can furthermore be
found in [57,74]. For quaternionic matrices, the spectral theorem based on the
right spectrum was proved in [108]. The right spectrum is in the finite-dimensional
case, however, equal to the S-spectrum.

The main application of the quaternionic spectral theorem is in quaternionic
quantum mechanics. In the list of references there are also papers related to quater-
nionic quantum mechanics [107], [109], [158] in which the notion of right spectrum
was used.
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Check for
updates

The Spectral Theorem for
Unbounded Normal Operators

In this section we will consider normal operators T' that are unbounded. The strat-
egy will be to transform 7" into a normal operator Zp € B(H) and use Theorem
11.2.1 and a change of variable argument to obtain a spectral theorem for T" based
on the S-spectrum. Obtaining a spectral theorem for unbounded operators in the
aforementioned way has been done in the classical case, i.e., when H is a complex
Hilbert space; see, e.g., the book of Schmiidgen [191].

12.1 Some Transformations of Operators
Given T € L(H), we let
Zp =TC?, (12.1)

where Cr = (Z+T*T)~! € B(H) (the proof that Cr is bounded and positive can
be carried out in a similar manner to the classical complex Hilbert case; see, e.g.,
Proposition 3.18(i) in [191]).

Theorem 12.1.1. Let T € L(H) be a densely defined closed operator on H. The
operator Zr has the following properties:

(i) Zr € B(H), [|Zr[| <1, and

Cr=Z+TT) ' =T~ Z;Zr. (12.2)

(i) (Z7)* = Zp-.
(i) If T is normal, then Zr is normal.
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Proof. The proof is based on the proof of Lemma 5.8 in [191] and is broken into
three steps.

Step 1: Prove (i).
First note that
{Crz: zeH}=DIT+TT)=D(T*T). (12.3)

Consequently, if x € H, then

ITC*Ch?2||? = (T*TCra, Cr)
<(I+ T )CT:I} CT:I}>
<C CTIE CT:E>
= (z,Crz)
= [lo7 ).
Thus if y € {C%/Qx: x € H}, then
1 Zzyll = | TC Y]l < Ilyl. (12.4)

Since ker(Cr) = {0}, we have that ker(C;/Q) = {0}, and thus {C’}/Qz: r€H}isa
dense subset of H. Since T is a closed operator by assumption and C’%/ ‘eB (H), we
get that Zr is closed as well. Thus, we have {C’;mx: x€H} D), D(Zr) =H,
and in view of (12.4), || Zr| < 1.
Next, it follows from (12.4) and C*/2T* C ZZ that
(Z - Cr)Cy* = C* (T + T*T)Cr — C*Cr

= o TP el?

C 75 ZrCyl%.
Thus, Z;ZTC;/2 (Z-Cr )CT , and since {C’T/ x: & € H} is a dense subset of
H, we get (12.2).
Step 2: Prove (ii).

Using (12.2) we get that Cp« = (Z + TT*)~ 1. If 2 € D(T*), then let y = Cr-x.
Therefore,
o= (IT+TT")y

and
Te=T"ZT+TT)y=(ZT+TT)T"y

Thus, Cr«x € D(T*) and hence

CrT 'z =Ty =T"Cr+x. (12.5)
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It follows easily from (12.5) and (12.2) that p(Cr«)x € D(T*) and
p(Cp)T*x = T*p(Cp+ )z

for every real polynomial p of a real variable. By the Weierstrass approximation
theorem, there exists a sequence of real polynomials {qﬁn}zi% that converges uni-
formly to the function ¢ — t*/2 on [0, 1]. Since the continuous functional calculus
is norm-preserving, we find that

. 1/2 . 1/2
Jim[loa(Cr) = €%l = tim_|6a(Cr-) = C72%) = 0.

Since T is a closed operator, T™* is also a closed operator. Thus, we have
1/2 . . . X
C’T/ Tz = nBToo P (Cr)T 2 = nBTooT O (Cre )z
= T*(Cp)Y%x for x e D(T*).
Since C;«/ZT* C (TC%N)* = Zr«, we get that
Zpsx = C%/QT*JJ =T*(Cp-)Y?2 = (Zr)*x

for € D(T*). Finally, since D(T*) is dense in H, we have that Zp-z = (Zr)*x
for all x € H, i.e., Zp« = (Z1)*.

Step 3: Prove (iii).
Using (12.2) on T and T™* and the fact that TT* = T*T, we have
I-Z3Zp=Z+TT) ' =Z+TT*) ' =1~ Z5. Zp-.
Making use of Property (ii), we have that
I-ZpZr=1I-2ZrZ7,

i.e., Zp is normal. U

12.2 The Spectral Theorem for Unbounded Normal
Operators

We are now ready to state and prove a spectral theorem for unbounded normal

operators on a quaternionic Hilbert space.

Theorem 12.2.1. Let T be an unbounded right linear normal operator on H and
j €S. There exists a uniquely determined spectral measure E; on Q;‘ = US(T)ﬁ(Cj'
such that for x € D(T) and y € H,

Ty = [ BB + [ WmEUUE @), (20)
Q] Qr
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or equivalently,

(To.y) = [ Relp) diToEs ()
+/Q+ (I, E;(p)x, y)p (12.7)

+ [ A E;(p)z, y)p.

+
Q

The operator J in the above equation is the imaginary operator appearing in the
Teichmiiller decomposition Zr = A+ JB of Zr defined in Theorem 9.3.5 and Ily
and 11, are the associated projections defined in Definition 9.3.10. The operator
J commutes with E and satisfies —J? = E(H \ R).

Moreover, on identifying the complex plane Cy, with C; in the natural way by
the mapping ¢r;, we have E;(pr;i(0)) = Ex(o),0 € %(Qz), forall j,k €S.

Proof. The proof is broken into two steps.
Step 1: Show that a spectral measure E; exists such that (12.6) holds.

LetB={peH:|p<1},0B={pecH:|p| =1}, and B=BUIB. If T is normal,
then using Properties (i) and (iii) in Theorem 12.1.1, we get that ||Z7| < 1 and
Z7 is normal, respectively. Thus, we may use Theorem 11.2.1 to obtain a uniquely
determined spectral measure F on og(Z7) N (C;r such that

f(zr) =1n = | £(p) dF(p) (128)
os(Zr)nC;
for f € SC;(os(Zr) N (Cj') In addition, it follows from Theorem 3.1.13 that
os(Zr) C{peH: |p| <|Zrl}

and hence o
Us(ZT) n (Cj_ CBN (Cj—

Ifx € Hand o € B(os(Zr) ﬂ(Cj), then in view of item (v) in Lemma 10.1.7
and (12.8), we have

(Z—=272r)F(0)z, F(o)z) = /(1 — [p*)d(F (p)z, z). (12.9)

o

Recall that Z — Z%Z7 = (Z + T*T)~!, and so ker(Z — Z45Z7) = {0}. Thus, using
(12.9) with
c=BnN C;r,

we get that supp F C BN C;’ and F(0BN C;r) = 0. Therefore,

FBNCH) =F(BNCH\ABNC]) =1
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If o(p) = p(1 —|p|?>)~ /2, then ¢ € SM?(US(ZT) ﬁ(C;r). In view of item (iii)
and (v) of Theorem 10.2.7, we have
I(p) = 1()L(g),

where

1
flp)=p and g(p) = ——=,
V1=1pl
and D(I(y)) = D(I(g)). Using Theorem 10.2.9, we have
I(g) =1(1/g)~".
Consequently, we may use item (i) in Corollary 11.2.2 to obtain
I(g) = {(M(A)' 2},

where
h(p) =1~ |p|* € SMF(05(Zr) N C]).

Putting these observations together, we obtain
I(p) = Zr(C*) ™. (12.10)

Since Zr = TC’%/Q, we obtain ¢(Zr) C T. Using Cr = (T — Z427)'/?, we

get that I(p) C T. Thus, using Lemma 9.1.17, we get that
I(p) =T.
Let E;(0) = F(¢~ (o)), where
o to)={peH: ¢(p)€o} for o0 €B(os(T)N (Cj)

It is readily checked that E; = F(p~!) defines a spectral measure on (C;r, and thus
using Lemma 10.2.11, we get (12.6). The equivalent assertion (12.7) is established
in much the same way as the analogous assertion in Theorem 11.2.1.

Since the imaginary operator J in the Teichmiiller decomposition of Zp com-

mutes with the spectral measure F), it also commutes with E; = F(p~!). Further-
more, since ¢ maps R into itself and (Cj' \ R into itself, we obtain

E;(C \R) = F(¢"'(C] \R)) = F(C] \R) = —J*.
Step 2: Show that E; from Step 1 is unique.

If E; and Ej are spectral measures on og(7T) N (Cj that satisfy (12.6), then F =
E;(p) and F= Ej(go) are both spectral measures such that for z,y € H,

Zraw) = [ RedF@ay+ [ n@)aIFem.)

+
BNC;

- /, Re(p) d(F(p)z, y) + / Im(p) d(JE(p)z, ). (1211)
nct Bmcj
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Consider now a polynomial ®(p) = ZOS\ZISn agp®' P’ with real coefficients as in
(9.19). In view of Lemma 10.1.7 and Remark 10.1.8, the identity (12.11) implies

wwﬂaw:/ b(p)d(F(p)z, y)

os(Zr)N (C;r

:/ Y(p)d(F(p)z,y).
os(Zr)nCy

Since the set of polynomials of this type is by Theorem 9.4.5 dense in SC,;(o5(Z7)N
(Cj+)7 we have that

[ e = [ pdFEea)
os(Zr)NC] os(Zr)NCj

for all ¢ € SC; (Us(ZT)ﬂ(C;_). Hence in view of construction of the spectral measure

given in Section 11, F' = F'. Therefore, I/; = E;. The final assertion concerning
FE; and E}, is proved in a similar manner to an analogous assertion in Theorem
g b

11.2.1. (]

12.3 Some Consequences of the Spectral Theorem

We conclude this chapter with some consequences of the spectral theorem for
unbounded normal operators, Moreover, in the last corollary we state the func-
tional calculus for unbounded normal operators, which is a direct consequence of
the definition and the properties of the spectral integrals, which depend of the
operator J.

Corollary 12.3.1. In the setting of Theorem 12.2.1, the following statements hold:

(i) IfT € L(H) is a positive operator, then there exists a unique positive operator
W € L(H) such that W? =T.

(ii) T € L(H) is self-adjoint if and only if

(Tz,y) = /th<E(t)x,y>, xeD), yeH. (12.12)

(iil) T € L(H) is anti-self-adjoint if and only if

(Tx,y) = /[0 )td(JE(t)ac,y>, xe€D(T), yeH. (12.13)

Proof. Using Theorem 12.2.1, the proof is completed as in Corollary 11.2.2. O
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Remark 12.3.2. We remind the reader that the functional calculus mentioned in
Section 10 is applicable to unbounded normal operators T' € L(H). We conclude
this section by stating, in the following corollary, such a functional calculus.

Corollary 12.3.3. Let T, E;, and J be as in Theorem 12.2.1. If f,g € SM}%(Q;)
with Qj =o0g(T)N (Cj and o, B € R, then:

(i) 1) = 1(/)".

1)) = 1(f ) = I(F 1)
(v) DI(H)(g)) = D(I(g)) N D(I(fg))-
(vi) If z € D(I(f)) and y € D(I(g)), then

(I(f)z,I(g)y) = Rdﬂ@ﬁ@ﬂE@%w+/ Im(f(p)g(p))d(JE(p)z,y).

(vil) If x € DA(S)), then

J

Theorem 12.3.4. Let T be as in Theorem 12.2.1 and let J be the imaginary opera-
tor in the Teichmiiller decomposition of Zr. Then there exist strongly commuting
operators A and B that commute with J, where A € L(H) is self-adjoint and
B € L(H) is positive with ker B = ker J such that

T=A+JB. (12.14)

Proof. To verify assertion (iv), let E be the spectral measure of T and define
Az = / Re(p) dE(p)x, x € D(T),
Us(T)ﬁCj
Bz = / Im(p) dE(p)x, =z € D(T).
os(T)NCTH

If we set Eg(o) =: E({z € C;' :Re(p) € 0}) and E1(0) := E({z € (Cj' :Im(p) €
o}) for 0 € B(R), then the change of measure principle implies

Ax :/tdEo(t)x, x € D(T),
R

+o00
Bz = / tdEi(t)x, =€ D(T).
0
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Hence A and B are self-adjoint, and their spectral measures are Fy and E7. Since
all projections E(c) with o € %((Cj') commute mutually and with J, we find that
also Ey and E; commute mutually and with J. Hence, A and B commute strongly,
and they commute with J. Finally, we have

ker B=ran F;({0}) =ran E({z € (Cj+ : Im(z) =0}) =ran B(R) = ker J. O

Theorem 12.3.5 (Spectral mapping theorem). Let T' be as in Theorem 12.2.1 and
let f € SC(os(T)). Then

os(f(T)) = f(os(T)). (12.15)
Proof. First of all, observe that f(og(7T)) is an axially symmetric set because
0s(T) is axially symmetric and f maps axially symmetric sets to axially symmetric
sets since it is intrinsic. Let A € f(os(T)) N (C;', let e > 0, and choose &€ > 0 such
that

E(€+2IIm(N)]) <

N ™

We can then find z. € o0g(T) such that
A= f(z)l <&,

and since \ € (C;r and f maps each complex plane C; into itself, we even find
that z. € 0g(T") N C;. (The function f, however, does not necessarily map each
half-plane (Cj' into itself, and hence z. might belong to (Cj_. In this case, z; € Cj)
Then

|f(26)2 - QRG()\)f(ZE) + |>‘|2| = |f<Zs) - >‘| |f(zs) - X}

< 1f(z) = A 1£(22) = A A = K] < & +2)m(V)) < 5.

The map z — O\(f(2)) = f(2)? — 2Re(N\) f(2) + |A|? is continuous, and hence
there exists 6 > 0 such that for z € C; with |z — 2| < 0, we have

QA(F(2) = QulF ()] < 5
and in turn

[QA(F < [RA(F(2)) — Qa(f(ze)) + 1@ (f(z))] < e

Moreover,

2@ =|a (FO)| = [ TE)| =12 (f () <=

If z. 1 = [7] rT(C;7 that is, ze 4 = z¢ if 2. € (C;r and z 1 = Z if 2. € C, it follows
that

Us :={z€05(T) ﬂ(C;r Hz = ze 4] < 0}
Co-(\):={z€05(T) ﬂ(C;r Q. (f(2)]| < e}
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Since Uy is an open set in og(T) N (C;r, which is exactly the support of E, we find
that E(Us) # 0 and hence also E(o¢) # 0. We conclude from Lemma 10.2.10 that
A € os(f(T)), and so

flos(T))NC} Cos(f(T)NC].
On the other hand, if A ¢ f(os(T)) N (Cj', then

0:(\) = {2z €0s(T)NCT : |QA(f(2)| <&}
Clzeos(T)NGC;: [QN(f(2))] <e}

is empty for € > 0 sufficiently small. Thus, Lemma 10.2.10 yields that Ao ¢
os(f(T))N (Cj. We conclude that

flos(T) NC} D os(f(T))NCY,

and in turn,

flos(T))NC = os(f(T))NC].
Taking the axially symmetric hull, we arrive at (12.15). O

12.4 Comments and Remarks

Several papers have appeared in the literature that claimed to introduce a spectral
theorem for normal operators on a quaternionic Hilbert space (see [107,109,195,
197]). However, in all of the aforementioned papers, a precise notion of spectrum
is not made clear. We will now enter into a discussion concerning the papers of
Teichmiiller [195] and Viswanath [197].

Teichmiiller’s paper [195] was the first to claim a spectral theorem for normal
operators; it appeared in 1936. Despite not making the notion of spectrum clear,
[195] does have a number of valid and important observations (even though some
details for the precise proofs may be missing) such as the decomposition T" =
A+ JB (see Theorem 9.3.5) and also the fact that H = Ho & H) & HL (see
(9.18)). Finally, the spectral resolution in [195] takes the form

N:/ / (N + ToN')dQx»d Py, (12.16)
—oo0 J0

where N is a normal operator, Tp is an “Imaginiroperator” on ran B, i.e., To1§ =
Zran g and Ty = =T (thus Ty is playing the role of the operator J in Theorem
12.2.1), and @ and P are projection-valued measures. This bears some resemblance
to (11.15).

In 1971 the paper [197] of Viswanath also claimed to have a spectral theorem
for normal operators on a quaternionic Hilbert space. It is worth noting that [195]
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is not cited in Viswanath’s paper [197]. The approach of [197] is very different
from [195] in so far as the symplectic image of a normal operator is used and
the spectral theorem is allegedly deduced from the classical spectral theorem and
some kind of lifting argument. Viswanath’s spectral resolution takes the form

T:/ ME, (12.17)
Cy

where T is a normal operator, F is a projection-valued measure E. Viswanath
claims to deduce an antecedent to the decomposition in Theorem 9.3.5 from
(12.17). However, the details are not given.

Beyond the spectral theorem there is the theory of the characteristic operator
function, which was initiated in [28].

On the equivalent formulations of complex and quaternionic quantum me-
chanics see [126]. For recent applications of the spectral theory on the S-spectrum
to quantum mechanics see [170,171] and also [168,196]. For coherent state trans-
forms and the Weyl equation in Clifford analysis, see [169].



Chapter 13 ®

Check for
updates

Spectral Theorem for Unitary
Operators

The spectral theorem for unitary operators is a particular case of the spectral
theorem for bounded normal operators proved in Chapter 11. However, as in the
complex case, the spectral theorem for unitary operators can be deduced from the
quaternionic version of Herglotz’s theorem proved in [16]. The spectral theorem
for unitary operators based on Herglotz’s theorem was proved in [14].

13.1 Herglotz’s Theorem in the Quaternionic Setting

We recall some classical results and also their quaternionic analogues, which will
be useful in proving a spectral theorem for quaternionic unitary operators. We
need to recall some classical results in order to prove the quaternionic version of
Herglotz’s theorem.

Theorem 13.1.1 (Herglotz’s theorem). The function n — r(n) from Z into C***
is positive definite if and only if there exists a unique C**®-valued measure | on
[0, 27] such that

r(n) :/0 Tremtd,u(t), n € 7Z. (13.1)

Theorem 13.1.2. Let p and v be C***-valued measures on [0, 2x]. If

2m 2m
/ emdu(t) = / e™du(t), ne€z,
0 0

then = v.

In the above theorems we used the imaginary unit i for the complex plane.
Given P € H*** there exist unique Py, P € C%*® such that P = P; + P»j. Recall
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the bijective homomorphism y : H*** — C2%2% given by

xP = ho Dy ,  where P = P; + P3j. (13.2)
—-Py Py

Definition 13.1.3. Given an H-valued measure v, we may always write v = 11 +v97,

where 11 and v, are uniquely determined C-valued measures. We call a measure
dv on [0,27] g-positive if the C**2-valued measure

= (”1 ”2) . where v3(t) = 1, (2r — ), t € [0,27], (13.3)
Vy V3
is positive and in addition,
vo(t) = —1a(2r —t), ¢ €[0,2n].
Remark 13.1.4. If v is g-positive, then v = vy + 57, where v; is a uniquely
determined positive measure and v is a uniquely determined C-valued measure.

Remark 13.1.5. If » = (r(n))nez is an H-valued sequence on Z such that

r(n) = /027r e™du(t),

where dv is a g-positive measure, then r is Hermitian, i.e., r(—n) = r(n).

The following result is a particular case of [16, Theorem 5.5] (H***-valued
positive sequences for s > 1 were also considered in [16]).

Theorem 13.1.6 (Herglotz’s theorem for the quaternions). The function n — r(n)
from Z into H is positive definite if and only if there exists a unique g-positive
measure v on [0, 2w] such that

2
r(n) :/0 emtdu(t), n€Z. (13.4)

Proof. We give the proof for the general case. Let (r(n)),ecz be a positive definite
sequence and write 7(n) = r1(n) + r2(n)j, where r1(n),ra(n) € C** n € Z.
Put R(n) = xr(n), n € Z. It is easily seen that (R(n)),cz is a positive definite
C25*25_valued sequence if and only if (r(n)),ez is a positive definite H***-valued
sequence. Thus by Theorem 13.1.1, there exists a unique positive C2**2*-valued
measure g on [0, 27] such that

2m
R(n) :/ e™du(t), n€Z. (13.5)
0
Write

Cs Cs
= (Mil M12> e - @ .
M1z H22 Cs Cs
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It follows from

and (13.5) that

2 27
ri(n) = / e duyy (t) = / e gy (t), n €7,
0 0

and hence ) )

/ eintdull(t) = / eintd,[_tgg (27T - t), n e 7.

0 0
Thus, Theorem 13.1.2 yields that duq1(t) = dfiga(2m —t) for ¢ € [0, 27). Similarly,
27 ) 2m )
ro(n) = / e duqa(t) = —/ e~ du (), nei,
0 0

and hence

2r 2m

/ e dua(t) = / e (—dua(2r —t)7), nez.
0 0

Thus, Theorem 13.1.2 yields that duja(t) = —duia(2m — )T for t € [0, 27).
It is easy to show that

1. =it R (7 ) =20

and hence (13.5) yields

27 .
; i dpay () + dpaa(t)j >
2 — wnt _ aptnt )
r(n) /0 (e ge) (duu(t)* + dpzz(t)]
2r 2 2 ]
= / emtdﬂn(t)+/ €mdﬂlz(t)j—/ e~ M dpa(t)"
0 0 0
2m )
+ / e dfiga(t)
0
2T 2r 2r
= / emtd,ull(t) +/ 6’"tdu12(t)j 7/ 6’”tdu12(27r - t)Tj
0 0 0

2m
—|—/ eintdﬂgg(Qﬂ' - t)
0

2 27
= 2/ eintdﬂ,ll(t) + 2/ eintdﬂlz (t)j, n € Z,
0 0

where the last line follows from du;1(t) = dfioa (27 —t) and du12(t) = —dur2(27 —
)T If we put v = p11 + pi12j, then v is a g-positive measure that satisfies (13.4).
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Conversely, suppose v = 11 + /5] i a g-positive measure on [0, 27] and put
2w )
r(n) :/ etdy(t), neZ.
0
Since v is g-positive,

W= (Vi VQ) ,  where dvs(t) = din (2r — t), t € [0, 2m),
Vo Vs

is a positive C%**?_valued measure on [0, 27] and
dy(t) = —dn(2r — )T, t € [0,2m).

Since p is a positive C2**25-valued measure, (R(n)),cz is a positive definite

C?$*25_yalued sequence, where

2
Rwi= [ edu(t), ez,
0

Moreover, R(n) can be written in the form

where

Thus, R(n) = xr(n), where

27
rln) = i) +ra()j = [ e™au(e),
0
Since (R(n))nez is a positive definite C2*2$-valued sequence, we get that
(r(n))nez is a positive definite H***-valued sequence.
Finally, suppose that the g¢-positive measure v were not unique, i.e., that
there existed © such that 7 # v and

2 2
r(n) = / e™du(t) = / e™di(t), n €.
0 0

Write v = 11 + 1) and U = D7 + o) as in Remark 13.1.4. If we consider R(n) =
x7(n),n € Z, then it follows from Theorem 13.1.1 that vy = 7; and vy = 5 and
hence that v = I, a contradiction. O
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Remark 13.1.7. For every i € S, there exists j € S such that ij = —ji. Thus,
H = C; & C;j, and we may rewrite (13.4) as

2m
r(n) :/0 e™du(t), ne€z, (13.6)

where v = vy + 1] is a ¢g-positive measure (in the sense that

vy 2
=1
Vo Vs

is positive). Here v3(t) = v1 (2w — t).

For our purpose the scalar case will be important.

13.2 Preliminaries for the Spectral Resolution

We start with a preliminary result.

Lemma 13.2.1. Let U be a unitary operator on H and let ry(n) = (UMz,z) for
x € H. Then ry = (r5(n))nez s an H-valued positive definite sequence.

Proof. If {pog,...,pn} C H, then

] =

N
> Pmre(n—m)p, =

P (U™ "2, 2)pp

m,n=0 m,n=0
N
= Z (U™ 2D, TDm)
m,n=0
N
= Y (U apn,U"apm)
m,n=0
N N
= <Z Uxpp, Z U™ xpm)
n=0 m=0
N 2
= Z Ulzp,| >0.
n=0
Thus, r, is a positive definite H-valued sequence. O

Let r, be as in Lemma 13.2.1. It follows from Theorem 13.1.6 that there
exists a unique g-positive measure dv, such that

rz(n) = (Utz,x) = /0 ! e"dv,(t), neZ. (13.7)
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One can check that

AUz, y) = U"(z+y)z+y) —U"(x—y),z—y) (13.8)
+ (U™ (x + yi),x + yi)
— (U@ — yi), x — yi) + (U™ (@ — yj), x — yj)k (13.9)
—(U™(x +yj), z +yj)k
+ (U™(x + yk),z + yk)k — (U™ (x — yk), z — yk)k, (13.10)

and hence letting
Qg 1= Vpgy — Vp—y F Waiyi — Wa—yi + We_yik — Vg yyk
+ Vx+ykk — Vm—ykk, (13.11)
then )
Uz, y) = / e™dv, ,(t), x,y€Handn€Z. (13.12)
0
Theorem 13.2.2. The H-valued measures v, ,, defined on B([0,2n]) enjoy the fol-
lowing properties:
(1) VzatyB,z = Vo2 + Vy,z/Ba a, B € H;
(11) Ve yatzB = dl/a:,y + Byw,za CY,,B € (Ci;
(iil) vy ([0,27]) < llz||ly;
where x,y,z € H and o, 8 € H.
Proof. Formula (13.12) yields

27
/ ei"tduwa+y@7z(t) = {U"z,z)a+ (Uy, 2)8
0

2m
= / e (dv, . (H)a+dv, . (t)B), n€Z.
0

The uniqueness of the g-positive measure proved in Theorem 13.1.6 allows us to
conclude that
VoatyB,z(t) = Vo2 () + 1y, (8) 8,
and hence we have proved (i). Property (ii) is proved in a similar fashion, observing
that @&, B commute with e*™.
If n=01in (13.12), then

2m

(woy) = | dvey(t) = vay ((0,27]),

and thus we can use an analogue of the Cauchy—Schwarz inequality (see Lemma
5.6 in [33]) to obtain
Vay([0,27]) < [|z[|[y]l,

and hence we have proved (iii). O
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Remark 13.2.3. In contrast to the classical complex Hilbert space setting, v, ,
need not equal 7 ;.

It follows from statements (i), (ii), and (iii) in Theorem 13.2.2 that ¢(z) =
Vzy(0), where y € H and o € B([0,27]) are fixed, is a continuous right linear
functional. Moreover, an analogue of the Riesz representation theorem (see Theo-
rem 6.1 in [33] or Theorem 7.6 in [47]) gives that corresponding to every z € H,
there exists a uniquely determined vector w € H such that

¢(x) = (z, w),

ie., vy y(o) = (x,w). Use (i) and (ii) in Theorem 13.2.2 to deduce that w =
E(0)*y. The uniqueness of E follows readily from the construction. Thus, we have

Vg (o) = (E(o)z,y), =,y € H and o € B([0,27]), (13.13)
whence

<U"m7y>:/0 Trei"t(dE(t)x,y>. (13.14)

To prove the main properties of the operator F we need a uniqueness result
on quaternionic measures that is a corollary of the following:

Theorem 13.2.4. Let i and v be C-valued measures on [0, 2x]. If

2m 2
r(n) = / edu(t) = / e™du(t), neZ, (13.15)
0 0

then p = v.
Proof. See, e.g., Theorem 1.9.5 in [186]. O
Theorem 13.2.5. Let i and v be H-valued measures on [0, 2x]. If

27 27
r(n) = / emdu(t) = / e™dv(t), nez, (13.16)
0 0

then u =v.

Proof. Write r(n) = ri(n) + re(n)j, p = p1 + p2j, and v = vy + voj, where
r1(n),r2(n) € C and 1, po, v1, 2 are C-valued measures on [0, 2. It follows from
(13.16) that

2m 2
ri(n) = / e™duy (t) = / e™tdui(t), n€Z,
0 0

and ) )
ro(n) = / e duy(t) = / e™duy(t), n€Z.
0 0

Use Theorem 13.2.4 to conclude that u; = vq, us = vo and hence that y =v. O
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Theorem 13.2.6. The operator E given in (13.13) enjoys the following properties:
() [[E(@)] < 1;

(ii) E(@) =0 and E(]0,27]) =T,

(iii) Ifon7T =0, then E(c UT) = E(0) + E(7);
() B(on7)=E(0)E(r);

(v) E(0)* = E(0);

(vi) E(o) commutes with U for all o € B([0, 27]).

Proof. Use (13.13) with y = E(o)z and (iii) in Theorem (13.2.2) to obtain
1E(o)z]* < 2]l E(o)zll,

whence we have shown (i). The first part of property (ii) follows directly from the

fact that v, ,(0) = 0. The last part follows from (13.14) when n = 0. Statement

(iii) follows easily from the additivity of the measure v, ,.
We will now prove property (iv). It follows from (13.14) that

2
W) = [ entemt B,y
0
= (U"(U™z),y)
2
= / e A(Bt) U™z, y).
0
Using the uniqueness in Theorem 13.2.5 we obtain
™ d(B(t)r,y) = (dE()U™z,y),
and hence denoting by 1, the characteristic function of the set o, we have
2T )
| 10 @B ©m ) = (BT ).
0
But
2w ) 2r
/ L, (t)e" (dE(t)z,y) = (Urz, B(0)"y) = / ™ d(E(t)z, E(0)"y).
0 0
Using the uniqueness in Theorem 13.2.5 once more, we get
Lo (t)d{E(t)x, y) = (dE(t)z, E(0)"y)

and hence

/0 "L ()L () (W)e,y) = (B, E(0)*y)
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and thus
(E(cNT)z,y) = (E(0)E(T)z,y).

Property (v) is obtained from (iv) by letting o = 7.
Finally, since U is unitary, one can check that

{UxxU"y),z 2+ U"y) = (UUx +y), Uz +y),

and hence from (13.12) and the uniqueness in Theorem 13.2.5 we obtain vy 4y, =
VUz+y- Similarly,

VetU*yi = VUz+tyis

VetU+ryj = VUz4yj»

and
Vep4tU*yk = VUz4yk-
It follows from (13.11) that
Vy Uxy = VUz,y-
Now use (13.13) to obtain

(E(0)z,U%y) = (E(0)Ux,y),

ie.,

(UE(o)z,y) = (E(o)Uz,y), =,y €H. O

Given any quaternionic Hilbert space H, there exists a subspace M C H on
C such that for every x € H we have

T =x1+ x2j, T1,T2 € M.

Theorem 13.2.7. Let U be a unitary operator on a quaternionic Hilbert space H
and let E be the corresponding operator given by (13.13). E is self-adjoint if and
only if U : M — M, where M is as above.

Proof. If E = E*, then it follows from (13.13) that v, , = 7 , for all z,y € . In
particular, we get v, , = Uy 4, i.€.,

Uy = Uy, «€H. (13.17)

Since v, is a g-positive measure, we may write v, = a, + B.j, where «a; is a
positive Borel measure on [0, 27] and 8, is a complex Borel measure on [0, 27]. It
follows from (13.17) that

ﬁm:_ T

i.e., Bz = 0. Thus, we may make use of the spectral theorem for unitary operators
on a complex Hilbert space (see, e.g., Section 31.7 in [163]) to deduce that U :
M — M. Conversely, if U : M — M, then the spectral theorem for unitary
operators on a complex Hilbert space yields that £ = E*. O
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If U : H* — H" is unitary, then (13.14) and Theorem 13.2.6 assert that
U= e'p, (13.18)
a=1

where 01,...,0, € [0,27] and P, ..., P, are oblique projections (i.e., (P,)? = P,
but (P,)* need not equal P,). Corollary 6.2 in Zhang [199] asserts, in particular,
the existence of V' : H" — H" that is unitary and 64, ...,0, € [0,2x] such that

U = V*diag(e, ... e")V. (13.19)

In the following remark we will explain how (13.18) and (13.19) are consistent.

Remark 13.2.8. Let U : H® — H"” be unitary. Let V and 64, ...,6, be as above. If
we let e, = (0,...,0,1,0,...,0)7 € H", where the 1 is the ath position, then we
can rewrite (13.19) as

U= z": V*ellee etV

a=1

Note that V*eae,efV = e¥aV*e eV if and only if V : C* — C™. In this case
U:C"—C" and .
U= Z e p,,
a=1

where P, denotes the orthogonal projection given by V*e®ae eV .

Remark 13.2.9. Observe that in the proof of the spectral theorem for U™ we have
taken the imaginary units ¢, j, k for the quaternions and we have determined
spectral measures (dE(t)x,y) that are supported on the unit circle in C;. If one
uses other orthogonal units i/, 5/, and ¥’ € S to represent quaternions, then the
spectral measures are supported on the unit circle in C;.

Observe that (13.14) provides a vehicle to define a functional calculus for
unitary operators on a quaternionic Hilbert space. For a continuous H-valued
function f on the unit circle, which will be approximated by the polynomials
>k € ay,. We will consider a subclass of continuous quaternionic-valued functions
defined as follows, see [142]: It is important to note that every polynomial of the
form P(u+ jv) = >} _o(u+ jv)"an, a, € H is a slice continuous function in the
whole of H. A trigonometric polynomial of the form P(eft) = 7" edma,, is

m=—n

a slice continuous function on dB, where B denotes the unit ball of quaternions.

Let us now denote by PS(os(T')) the set of slice continuous functions f(u +
iv) = au,v) +if(u,v), where a, 8 are polynomials in the variables u, v.

In the sequel we will work in the complex plane C; and we denote by T; the
boundary of B N C;. Any other choice of an imaginary unit in the unit sphere S
will provide an analogous result.
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Remark 13.2.10. For every i € S, there exists j € S such that ij = —ji. Bearing in
mind Remark 13.1.7, we can construct VJ(CJ; such that (13.12) can also be written

as

2m
(U'z,y) = /0 e™dv{)(t), w,y€Handn e Z (13.20)

Consequently, (13.14) can be written as

2m
W)= [ e 000 (13.21)
0
where F; is given by
Vgﬂ)/(o-) = <Ej(0')l‘,y>, x,Yy S H and NS B(Tz)

Moreover, the E; satisfy properties (i)—(v) listed in Theorem 13.2.6.

13.3 Further Properties of Quaternionic Riesz
Projectors

An axially symmetric set ¢ C og(7T) that is both open and closed in og(T) in its
relative topology, is called an S-spectral set. Denote by 2, an axially symmetric
domain that contains the spectral set o but not any other points of the S-spectrum.
We recall the Riesz projectors

1

Plo) = —
21 Jaa,nc;)

S (s, T)ds;

and the fact that P(o) can be given using the right S-resolvent operator Sgl (s, 1),
that is,
1

Plo) = —
21 Ja,ncy)

ds; Syt (s, T).

We have the following properties.

Theorem 13.3.1. Let T be a quaternionic linear operator. Then the family of op-
erators P(o) has the following properties:

(ii) TP(o) = P(o)T;

(iii) P(os(T)) =T;

(iv) P(0) =0;

(v) P(oud) =P(o)+P(d); ond=>0;
(vi) P(ond) =P(o)P(9).
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Proof. Properties (i) and (ii) are proved in Theorem 4.1.5. Property (iii) follows
from the quaternionic functional calculus, since

1
T = — Sgl(s,T)dsj s™,  m € Ny,
21 Jaanc;)

for og(T) C Q, which for m = 0 gives

1
I=_— S (s, T)ds;.
21 Joane,) - ’

Property (iv) is a consequence of the functional calculus as well.
Property (v) follows from

1
PloUs) = — / S71 (s, T)ds;
21 Ja(@,usnc;)

_1
21 Ja,nc;)
=P(o) +P(9).

1
S (s, T)ds; + / S; (s, T)ds;
27 8(Q51C;)

To prove (vi), assume that o N # @, and for simplicity set

Qu(p)™" = (p* — 2Re(s)p +[s[*) ", p ¢ Is],

and consider

P(a)P( ds;Si'(s.7) [ ] Ty,
(QsNC;)

3(Q2,NC;)

/ [Sz'(s,T) = S (0, T)]pQs(p) ™ dp;
9(Q2sNCy) 8(QsNC;)

/ dsy [ SIS T) — S T 0)
(277) a(2,NC;) 8(QsNC;)

where we have used the S-resolvent equation (see Theorem 3.1.15). We rewrite
the above relation as

—_L S 3 -1 s _ q—1 s -1 )
POPO) =~z [ s [ SR )~ S5 Tl

1 _ _ _

bl / ds,; / 557 (. T) — 57" (0. T)p) Qu(p)~dp;
(2m)? Jaa,nc,) a(2sNC;)

=0+ Js.
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Moreover, we have

1 _ _ _
Ti=rs [ s [ ST - SR (s D)
(2m) a(Q,NCy) 3(QsNCy)
1
=— ds;Sp'(s,T), fors€ QsNC,
21 Jaa,nc;)
1

= — 521(57T)alsj7 for s € Qs N C;,
21 Jaa,nc;)

while J1 = 0 when s ¢ Q25 N C;, since
[ SR~ S s Tl Qu) s =0
(Q2sNC;5)

Similarly, one can show that

1

T o

ML / SL_l(p7 T)dp;, forpe Q,NC,,
(QsNC;)

while J> = 0 when p € Q, NC;. The integrals [J;, J> are either both zero or both
nonzero, so with a change of variable we get

1
T+ Jo= */ S (r, T)dr; = P(o N ). O
21 Jo(,050C5)

We recall that if U is a unitary operator on H, then the S-spectrum of U
belongs to the unit sphere of the quaternions; see Theorem 9.2.7. We denote the
Borel sets in [0, 271] by B([0, 27]).

Lemma 13.3.2. Let x,y € H and let P(o) be the projector associated with the
unitary operator U. We define

My y(0) = (Plo)z,y), =x,yeH, occB([0,2n]).

Then the H-valued measures my ,, defined on B([0,27]) enjoy the following prop-
erties:

(1) Maatys,z = Me 0 +my .0
(i) Mayatep = OMay + Big.2;
(iif) 1124, ([0, 27]) < [|[|yl;

where x,y,z € H and o, € H.

Proof. Properties (i) and (ii) follow from the properties of the quaternionic scalar
product, while (iii) follows from Property (iii) in Theorem 13.3.1 and the Cauchy—
Schwarz inequality. O
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13.4 The Spectral Resolution

We are now in a position to prove the spectral theorem for quaternionic unitary
operators.

Theorem 13.4.1 (The spectral theorem for quaternionic unitary operators). Let U
be a unitary operator on a right linear quaternionic Hilbert space H. Let i,j € S,
i orthogonal to j. Then there exists a unique spectral measure E; defined on the
Borel sets of T; such that for every slice continuous function f € S(og(U)), we
have
27 )
fU) = ; FleM)dE;(t).

Proof. Let us consider a polynomial P(t) = Y." _ e qa,, defined on T;. Then
using (13.21), we have

21T
(U™, y) = / UAE, (), y), @y, € He
0

By linearity, we can define

2m
(P(U)z,y) = |  P(")(dE;(t)z,y), x,y.€H.
0
The map ¥ : PS(os(U)) — H defined by ¢y (P) = P(U) is R-linear. By

fixing a basis for H, e.g., the basis 1,7, j/, k', each slice continuous function f can
be decomposed using intrinsic functions, i.e., f = fo + fii’ + foj’ + f3k' with
fe € Sr(os(U)), £ =0,...,3. For these functions the spectral mapping theorem
holds; thus fi(os(U)) = os(fe(U)), and so ||fe(U)]] = | fellco. The map 9 is
continuous, and so there exists C' > 0, which does not depend on ¢, such that

P < P(t)].
[P < C max |P(2)

A slice continuous function f € S(og(U)) is defined on an axially symmetric
subset K C T, and thus it can be written as a function f(e’*) = a(cost,sint) +
jB(cost,sint). By fixing a basis of H, e.g., 1,4, j', k¥, f can be decomposed into four
slice continuous intrinsic functions fy(cost,sint) = ay(cost,sint)+jSe(cost,sint),
£=0,...,3,such that f = fo + fii’ + foj’ + f3k'.

By the Weierstrass approximation theorem for trigonometric polynomials,
see, e.g., Theorem 8.15 in [183], each function f; can be approximated by a se-
quence of polynomials

Rep = Gon(cost,sint) + jggn (cost,sint),

¢ =0,...,3, which tend uniformly to f;. These polynomials do not necessarily
belong to the class of the continuous slice functions, since ayy,, bg, do not satisty,
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in general, the even and odd conditions of slice continuous functions. However, by
setting

aen (u, U) = %(dén(% v) + e (u, —v)),
ben (u,v) = %(Egn(u, —v) — Ben(uw))a

we obtain that the sequence of polynomials ay,, + j'be, still converges to f;, £ =
0,...,3. By putting Ry, = ag,(cost,sint)+jbe,(cost,sint), £ =0,...,3,and R,, =
Ry + Ri,1' + Ra,j’ + R3nk’ we have a sequence of slice continuous polynomials
R, (e7%) converging to f(e’!) uniformly on R.

By the previous discussion, {R,(U)} is a Cauchy sequence in the space of
bounded linear operators, since

[Rn(U) = R (U)|| £ € max [Ry(t) — Ru(t)];
teos(U)

so R, (U) has a limit, which we denote by f(U). O

Remark 13.4.2. Fix j € S. It is worth pointing out that f(u + jv) = (u+ jv)~!is
an intrinsic function on C; N B, where 0B = {¢q € H : |¢| = 1}, since

£ ) m —v ,
u+ jv) = + )
J u? + v? u? + v? J

Thus, using Theorem 13.4.1, we may write

2m
U*lz/0 e "dE;(t) (13.1)

and )
U= / e"dE;(t). (13.2)
0

We are now ready to prove the following fundamental result, which shows
the relation between the spectral measures and the S-spectrum.

Theorem 13.4.3. Fiz i,j € S, with ¢ orthogonal to j. Let U be a unitary operator
on a right linear quaternionic Hilbert space H and let E(t) = E;(t) be its spectral
measure. Assume that o%(U) N C; is contained in the arc of the unit circle in C;
with endpoints tg and t1. Then

P(a%(U)) = E(t1) — E(to).

Proof. The spectral theorem implies that the operator Sgl(s, U) can be written

as
2m

Spl(s,U) = ; Spt(e™, s)dE(t).
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The Riesz projector is given by

1

PO =5 [ anSi D),

where () is an open set containing 02 (U) such that (29 NC;) is a smooth closed
curve in C;. Write

2w

POSO) = 55 | e 2] S 9am)

and use Fubini’s theorem to obtain

MﬁQM:ZT(Ql%meﬁ;@ﬂﬁﬁﬂw

It follows from the Cauchy formula that
1

— dsiSp (e, 8) = 1111,
1t B(Q0NCs) R [to,t1]

where 1y, ¢,] is the characteristic function of the set [to,¢1], and thus the statement
follows, since

271
P(od(U)) = / 1 ) dE(t) = E(ty) — E(t2). O

We will close by establishing a connection between the spectral resolutions for
a unitary operator presented in Theorem 11.2.1 and Theorem 13.4.1. Let U € B(H)
be unitary. Since U € B(#) is normal, we may write

U=A+JB,

where A, J, and B are as in Theorem 9.3.5. Thus, Theorem 11.2.1 asserts the
existence of a spectral measure F (in the usual sense) on  := [0, 7] Nog(U) such
that if n € Z, then

(U"x,y):/Qcos(nG)d<E(9)x,y>+/ﬂsin(n9)d<JE(9)x7y>, x,y € H. (13.3)

On the other hand, Theorem 13.4.1 asserts the existence of a B(#)-valued measure
F that satisfies most of the properties of a spectral measure (see Theorem 13.2.6)
such that if n € Z, then

2m
(Uhz,y) = / e A(F(O)x,y), x,y€H. (13.4)
0
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Consequently, if we let dv,(0) := d(E(0)z,z) and du,(0) := d{F(0)z,z),
then dv, is a positive measure and du, := dug)) + duzl j is a g-positive measure
(and hence du&o) is a positive measure). Now (13.3) implies that

1 T
§<(U" + UMz, x) = / cos(nf)dv,(6),
0
while (13.4) implies that

%((U” Uz, 7) = /0 " cosn®)dpl® (6).

Since d,uggo) and dv, are positive measures, the uniqueness assertion in Theorem
13.1.1 forces duc(po) = dv, and hence d(E(0)z,z) = Re(F(0)x,x).

13.5 Comments and Remarks

Theorem 13.1.6 is taken from [16], and it helped give rise to a spectral theorem for
unitary operators based on the S-spectrum in [14]. In addition, Theorem 13.1.6
can be used to generate a quaternionic analogue of the Herglotz representation on
a slice (see Theorem 8.1 in [16]). More precisely, if f : B — H is slice hyperholo-
morphic with Re(f(p)) >0 forallpeB:={p e H: |p| < 1} and 4,5 € S with ¢
and j orthogonal, then there exists a C;-valued measure dpu;(t) = du (t) +dps(t))
of finite total variation with p; positive and ps signed such that the restriction
[i(2) = flc, = F(2) + G(2)j admits the representation

[i(z) =i[ImF(0) + ImG(0);] + /0 ! eitj dp;(t). (13.5)

et — z

A half-space analogue of (13.5) was treated in [9] (albeit with stronger conditions
on f and the corresponding measure).



Chapter 14 ®

Check for
updates

Spectral Integration in the
Quaternionic Setting

Before we begin the study of quaternionic spectral operators, we discuss in this
chapter spectral integration in the quaternionic setting. There have existed several
different approaches to this topic in the literature, but these approaches required
the introduction of a left multiplication on the Hilbert space (even though this
multiplication was sometimes assumed to be defined only for quaternions in one
complex plane and not for all ¢ € H). This left multiplication was in general
only partially determined by the a priori given mathematical structures; cf. also
Remarks 9.3.7 and 9.4.12. It had to be extended randomly, and the necessary
procedure does not generalize to the Banach space setting, in which we want to
develop the theory of quaternionic spectral operators.

In this chapter we therefore develop an approach to spectral integration of
intrinsic slice functions on a quaternionic right Banach space. This integration is
done with respect to a spectral system instead of a spectral measure, a concept that
makes specific ideas of [197]. It has a clear and intuitive interpretation in terms
of the right linear structure of the space, and it is compatible with the complex
theory. The prototype of a spectral system is a pair (E, J) on a Hilbert space that
consists of a spectral measure F and an imaginary operator J with E(H \ R) =
—J2. This is exactly the structure that we used to define spectral integration
on Hilbert spaces in Chapter 10. In this chapter we consider, however, spectral
measures that are defined on axially symmetric subsets of H instead of subsets
of a complex half-plane Cj'. Both approaches are equivalent: we can identify any
axially symmetric set with its intersection with one complex half-plane (Cj' in order
to obtain a bijective relation between these two types of sets. The two notations
stress, however, two different philosophies. While the imaginary operator J was in
Chapter 10 considered a multiplication by the imaginary unit j from the left, we
stress in this chapter that J can also be considered a right linear multiplication
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by the entire set of imaginary units S form the right. This allows us to give a clear
interpretation of spectral integration in terms of the right linear structure on the
space.

The results in this chapter are taken from [125] and [128]. We want to point
out that in this chapter and in the next one it is very important to distinguish
between left and right Banach spaces. So to avoid confusion with the previous
chapters we will denote the left Banach spaces by V7, right Banach spaces by Vg
and the two-sided ones by V.

14.1 Spectral Integrals of Real-Valued Slice Functions

The basic idea of spectral integration is well known: it generates a multiplication
operator in a way that generalizes the multiplication by eigenvalues in the discrete
case. If, for instance, A € o(A) of some normal operator A : C* — C", then we can
define E({A}) to be the orthogonal projection of C™ onto the eigenspace associated
with A and we obtain A =", 4) AE({A}). Setting E(A) =3, E({A}), one
obtains a discrete measure on C, the values of which are orthogonal projections
on C", and A is the integral of the identity function with respect to this measure.
Changing the notation accordingly, we have

Z AE({\}) = A:/ AAE(N). (14.1)
o(A)

A€o (A

Via functional calculus it is possible to define functions of an operator. The fun-
damental intuition of a functional calculus is that f(A) should be defined by the
action of f on the spectral values (resp. the eigenvalues) of A. For our normal
operator A on C™ the operator f(A) is the operator with the following property:
if y € C™ is an eigenvector of A with respect to A, then y is an eigenvector of
f(A) with respect to f()), just as happens, for instance, naturally for powers and
polynomials of A. Using the above notation, we thus have

Z VBN = fA / fOVAE(R).  (142)

A€o (A

In infinite-dimensional Hilbert spaces, the spectrum of a normal operator
might be not discrete, so that the expressions on the left-hand side of (14.1) and
(14.2) do not make sense. If E, however, is a suitable projection-valued measure,
then it is possible to give the expression (14.2) a meaning by following the usual
way of defining integrals via the approximation of f by simple functions. The spec-
tral theorem then shows that for every normal operator T there exists a spectral
measure such that (14.1) holds.

If we want to introduce similar concepts in the quaternionic setting, we are—
even in the discrete case—faced with several unexpected phenomena.
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(P1) The space of bounded linear operators on a quaternionic Banach space Vg is
only a real Banach space and not a quaternionic one. Hence the expressions
in (14.1) and (14.2) are defined a priori only if A and f(\), respectively,
are real. Otherwise, one needs to give meaning to the multiplication of the
operator E({\}) by nonreal scalars.

(P2) The multiplication by a (nonreal) scalar on the right is not linear, so that
aE({\}) for a € H cannot be defined as (aE({A}))(ya) = (E({\})y)a. More-
over, the set of eigenvectors associated with a specific eigenvalue does not
constitute a linear subspace of Vj: if, for instance, Ty = ys with s = sg+js51
and ¢ € S with js L ¢, then T'(yi) = (Ty)i = (ys)i = (yi)s # (yi)s.

(P3) Finally, the set of eigenvalues is in general not discrete: if s € H is an eigen-
value of T' with T'y = ys for some y # 0 and s; = so + js1 € [s], then there
exists h € H \ {0} such that s; = h~'sh, and so

T(yh) = T(y)h = ysh = (yh)h " *sh = (yh)s;. (14.3)

Thus, every s; € [s] is also an eigenvalue of T'.

As a first consequence of items (P2) and (P3), the notions of eigenvalue and
eigenspace have to be adapted: linear subspaces are in the quaternionic setting
not associated with individual eigenvalues s but with spheres [s] of equivalent
eigenvalues.

Definition 14.1.1. Let T € £(VR) and let s € H\R. We say that [s] is an eigensphere
of T if there exists a vector y € Vg \ {0} such that

(T? — 250T + |s|*T)y = Qs(T)y = 0. (14.4)

The eigenspace of T associated with [s] consists of all those vectors that satisfy
(14.4).

Remark 14.1.2. For real values, things remain as we know them from the classical
case: a quaternion s € R is an eigenvalue of T if Ty — ys = 0 for some y # 0. The
quaternionic right linear subspace ker(T — sZ) is then called the eigenspace of T
associated with s.

Every eigenvector y that satisfies T'(y) = ys; with s; = so + js1 for some
j € S belongs to the eigenspace associated with the eigensphere [s]. Note, however,
that the eigenspace associated with an eigensphere [s] does not consist only of
eigenvectors. It contains also linear combinations of eigenvectors associated with
different eigenvalues in [s], as the next lemma shows.

Lemma 14.1.3. Let T € L(VR), let [s] be an eigensphere of T, and let j € S. A
vector y belongs to the eigenspace associated with [s] if and only if y = y1 + yo
such that Ty1 = y15; and Tys = y25;, where s; = 50+ jsi1.
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Proof. Observe that

Qu(T)y = Ty — Ty2s0 + yls|* = T(Ty — y55) — (Ty — y55)s; (14.5)
and

Qu(T)y =Ty — Ty2so +yls|* = T(Ty — ys;) — (Ty — ys;)5;. (14.6)

Hence Q,(T")y = 0 for every eigenvector associated with s; or 5; and in turn also
for every y that is the sum of two such vectors.

If, conversely, y satisfies (14.4), then we deduce from (14.5) that Ty — y5; is
a right eigenvector associated with s; and that T'y — ys; is a right eigenvalue of T
associated with 5j. Since s; and j commute, the vectors y1 = (T'y — y5;) 35> and
yo = (Ty — ysj)ﬁ are right eigenvectors associated with s resp. s, too. Hence
we have obtained the desired decomposition as

] J — J
=Ty —ys;))— + Ty —ys;) =— = F—Si)=— =y. O
ity = (Ty —ysj) 5+ (Ty —ysj) - =y(55 = )5 ==y
Remark 14.1.4. If ¢ € S with ¢ L j, then gy := y2(—1) is an eigenvector of T
associated with s. Hence we can write y also as y = y1 + 92¢, where y;, g2 are both
eigenvectors associated with s;.

Since the eigenspaces of quaternionic linear operators are not associated with
individual eigenvalues but instead with eigenspheres, quaternionic spectral mea-
sures must not be defined on arbitrary subsets of the quaternions. Instead, their
natural domains of definition consist of axially symmetric subsets of H, so that
they associate subspaces of Vi not to sets of spectral values but to sets of spectral
spheres. This is also consistent with the fact that the S-spectrum of an operator
is axially symmetric.

Definition 14.1.5. We denote the o-algebra of axially symmetric Borel sets on
H by Bs(H). Furthermore, we denote the set of all real-valued Bg(H)-B(R)-
measurable functions defined on H by Mg (H, R) and the set of all such functions
that are bounded by M (H, R).

Remark 14.1.6. The restrictions of functions in M (H, R) to a complex half-plane
(C;' are exactly the functions that were used to construct the spectral measure of
a quaternionic normal operator in the previous chapters.

Definition 14.1.7. A quaternionic spectral measure on a quaternionic right Banach
space Vg is a function F : Bg(H) — B(Vg) that satisfies

(i) E(A) is a continuous projection and | E(A)|| < K for every A € Bg(H) with
a constant K > 0 independent of A,

(i) E(0) =0 and E(H) =Z,
(iil) E(A1NAg) = E(A1)E(As) for every Ay, Ay € Bg(H), and
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(iv) for every sequence (A, )nen of pairwise disjoint sets in Bg(H) we have

+o00o
E (U An> Yy = Z E(A,)y for all y € Vg.
n=1

neN

Corollary 14.1.8. Let E be a spectral measure on Vg and let Vi be its dual space,
the left Banach space consisting of all continuous right linear mappings from Vg to
H. For every y € Vg and y* € V5, the mapping A — (y*, E(A)y) is a quaternion-
valued measure on Bg(H).

Remark 14.1.9. In the literature, authors have considered quaternionic spectral
measures defined on the Borel sets ‘B ((C;r) of one of the closed complex half-planes
(Cj+ = {sp+js1 : S0 € R,s7 > 0}, and we also did this in Chapter 10. This is
equivalent to E being defined on Bg(H). Indeed, if E is defined on %((C;-'), then
setting

E(A):=E(ANC]) VA€ Bs(H)

yields a spectral measure in the sense of Definition 14.1.7 that is defined on B ¢ (H).
If, on the other hand, we start with a spectral measure E defined on Bg(H), then

setting
E(A) = E([A]) VA€ B(C))

yields the respective measure on B ((Cj) Although both definitions are equivalent,
in this chapter we prefer B¢(H) as the domain of E because it does not suggest
a dependence on the imaginary unit j.

For a function f € M (H,R), we can now define the spectral integral with
respect to a spectral measure E as in the classical case. If f is a simple function,
Le., f(s) = Yr_; arxa,(s) with pairwise disjoint sets Ay, € Bg(H), where xa,
denotes the characteristic function of Ay, then we set

/ f(s)dE(s) = > axE(Ay). (14.7)
H k=1
There exists a constant Cr > 0 that depends only on E such that

< Ol flloo; (14.8)

/H f(s) dE(s)

where ||.||oc denotes the supremum norm. If f € MZP(H,R) is arbitrary, then we
can find a sequence of simple functions (f,)nen such that ||f — fulleo — 0 as
n — +oo. In this case we can set

/f(s)dE(s) = lim /fn(s)dE(s), (14.9)
H H

n—-+oo

where this sequence converges in the operator norm because of (14.8).
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Lemma 14.1.10. Let E be a quaternionic spectral measure on Vr. The mapping
f = [y f(s)dE(s) is a continuous homomorphism from M (H,R) to B(Vg).
Moreover, if T commutes with E, i.e., it satisfies TE(A) = E(A)T for all sets
A € Bs(H), then T commutes with [ f(s)dE(s) for every f € M (H,R).

Corollary 14.1.11. Let E be a quaternionic spectral measure on Vi and let f €
MP(H,R). For every y € Vg and y* € Vj;, we have

<y*, [ / de} y> - [ 1t B

Proof. Let f, = Zi\’;l Qn kXA, , € MZT(H,R) be such that |[f — fu|| — 0 as
n — +00. Since all coefficients «,, , are real, we have

<y*, UHde} y> = lim <y Li::l O‘n,kE(An,k)‘| y>
=n1Ln;oI§an,k (v E(Ank)y) =/Hf(8)d<y*7E(8)y>- O

Remark 14.1.12. The above definitions are well posed and the properties given in
Lemma 14.1.10 can be shown as in the classical case, so we omit their proofs. One
can also deduce them directly from the classical theory: if we consider Vy a real Ba-
nach space and E a spectral measure with values in the space Bgr(Vg) of bounded
R-linear operators on Vg, which obviously contains B(Vg), then [, f(s)dE(s)
defined in (14.7), resp. (14.9), is nothing but the spectral integral of f with re-
spect to E in the classical sense. Since every «y in (14.7) is real and since each
E(A) is a quaternionic right linear projection, the integral of every simple func-
tion f with respect to F is a quaternionic right linear operator and hence belongs
to B(VR). The space B(Vg) is closed in Br(Vg), and hence the property of be-
ing quaternionic linear survives the approximation by simple functions such that
Jy f(s)dE(s) € B(Vg) for every f € M (H,R) even if we consider it the integral
with respect to a (real) spectral measure on the real Banach space V.

14.2 Imaginary Operators

The techniques introduced so far allow us to integrate real-valued functions with
respect to a spectral measure. This is obviously insufficient, even for formulating
the statement corresponding to (14.1) in the quaternionic setting unless og(T) is
real. In order to define spectral integrals for functions that are not real-valued, we
need additional information.

This fits another observation: in contrast to the complex case, even for the
simple case of a normal operator on a finite-dimensional quaternionic Hilbert
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space, a decomposition of the space Vi into the eigenspaces of T is not suffi-
cient to recover the entire operator 7. Let j,¢ € S with j # ¢ and consider, for
instance, the operators Ty, T, and T3 on H?, which are given by their matrix

representations
(3 O (3 O (i 0
T = (O j) , Ty = <O z> , T3= <0 z> . (14.10)

For each £ = 1,2,3, we have o5(Ty) =S and that the only eigenspace of Ty is the
entire space H?. The spectral measure E that is associated with T} is hence given
by E(A) =0if S ¢ A and E(A) =7 if S C A. Obviously, the spectral measures
associated with these operators agree, although these operators do not coincide.

Since the eigenspace of an operator T' that is associated with some eigen-
sphere [s] contains eigenvectors associated with different eigenvalues, we need some
additional information to understand how to multiply the eigensphere onto the
associated eigenspace, i.e., to understand which vector in the eigenspace must be
multiplied by which eigenvalue in the corresponding eigensphere [s]. This infor-
mation will be provided by a suitable imaginary operator. Such operators gen-
eralize the properties of the anti-self-adjoint partially unitary operator J in the
Teichmiiller decomposition

1 1
T:A+JB:§(T+T*)+§J|T—T*\ (14.11)

(where J is an anti-self-adjoint partial isometry with ker J = ker(T' — T™) that is
determined by the polar decomposition of %(T — T*)) of a normal operator on a
Hilbert space to the Banach space setting.

Definition 14.2.1. An operator J € B(Vg) is called imaginary if —J? is the pro-
jection of V onto ranJ along ker J. We call J fully imaginary if —J? =T, i.e., if
in addition, ker J = {0}.

Corollary 14.2.2. An operator J € B(VRg) is an imaginary operator if and only if
(i) —J? is a projection and
(i) ker J = ker J2.

Proof. If J is an imaginary operator, then obviously item (i) and item (ii) hold.
Assume, on the other hand, that item (i) and item (ii) hold. Obviously ran(—J?) C
ran J. For every x € Vg, we have (—J?)z — x € ker(—.J?) = ker J because

(%) ((=T%)z — 2) = (=J*)%z — (=J)%z = (= T}z — (—=J)%z =0,
since (—J?) is a projection. Therefore
0=J(—J?z—2)=(=J*Jzx — Jz,

and hence y = (—J?)y for every y = Jz € ran J. Consequently, ran(—.J?) D ran J,
and in turn ranJ = ran(—J?). Since ker J = ker(—J?), we find that —J? is the
projection of Vi onto ran J along ker J, i.e., that J is an imaginary operator. [J
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Remark 14.2.3. The above implies that every anti-self-adjoint partially unitary
operator J on a quaternionic Hilbert space H is an imaginary operator. Indeed,
for every y € ker.J, we obviously have —J2y = 0. Since the restriction of J to
Ho := ran.J = ker J* is unitary and J is anti-self-adjoint, we furthermore have
for y € Ho that —J2y = J*Jy = (Jle)” (J3)y = (JIss) " (J1ss) y = y. Hence
—J? is the orthogonal projection onto Hy = ranJ, and so J is an imaginary
operator. In particular, every unitary anti-self-adjoint operator is fully imaginary.
Cf. also Corollary 9.3.8.

Lemma 14.2.4. If J € B(VR) is an imaginary operator, then os(T) C {0} U {S}.

Proof. Since the operator —.J? is a projection, its S-spectrum og(—.J?) is a subset
of {0,1}. Indeed, for every projection P € B(V'), a simple calculation shows that
the pseudo-resolvent of P at every s € H\ {0, 1} is given by

L1 1 — 2Re(s)
%(P)" = —1r (1 ~Re(s) £ 5P _I)

such that s € pg(P). As a consequence of the spectral mapping theorem, we find
that
—o5(J)? ={-5*: scog(J)}=05(—J*) C{0,1}.

But if —s? € {0,1}, then s € {0} US and hence og(J) C {0} US. O

Remark 14.2.5. If J = 0, then J is an imaginary operator with og(T") = {0}. If,
on the other hand, ker J = {0} (i.e., if J is fully imaginary), then og(7T) = S. In
every other case we obviously have og(T) = {0} US.

Our next goal is to arrive at Theorem 14.2.10, which gives a complete charac-
terization of imaginary operators on Vg. It is the analogue of Lemma 9.3.9. Before
we prove this result, however, we prove a crucial relation between the concepts of
quaternionic spectral theory and the concepts of classical complex operator theory.

Every quaternionic right Banach space Vi can in a natural way be considered
a complex Banach space over any of the complex planes C; by restricting the
multiplication by quaternionic scalars from the right to C;. In order to deal with
the different structures on Vg, we introduce the following notation.

Definition 14.2.6. Let Vi be a quaternionic right Banach space. For j € S, we
denote the space Vi considered as a complex Banach space over the complex field
Cj by Vg,;. If T'is a quaternionic right linear operator on Vg, then pc,(7T") and
oc,; (T') shall denote its resolvent set and spectrum as a C;-complex linear operator
on Vg ;. If Ais a Cj-complex linear, but not quaternionic linear, operator on Vg j,
then we denote its spectrum as usual by o(A).

If we want to distinguish between the identity operator on Vi and the identity
operator on Vg j, we denote them by Zy;, and Zy,, ;. We point out that the operator
ATy, ; for A € C; acts as ALy, ;y = yA because the multiplication by scalars on
Vr,; is defined as the quaternionic right scalar multiplication on Vg restricted
to (Cj.
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Theorem 14.2.7. Let T' € L(VR) and choose j € S. The spectrum oc,(T) of T
considered as a closed complex linear operator on Vg ; equals os(T) NC;, i.e.,

oc (T) = os(T)NC;. (14.12)

For every X in the resolvent set pc,(T) of T' as a complex linear operator on Vg j,
the C;-linear resolvent of T is given by R\(T) = (ALv,, —T) Qx(T)7', i.e.,
RA(T)y = Q\(T) " 'yX — TQA(T) . (14.13)
For every v € S with j L i, we moreover have
Rx(T)y = —[RA(T)(yi)}i- (14.14)

Proof. Let A € pg(T) N C;. The resolvent (AZy, , —T)~" of T as a Cj-linear
operator on Vg ; is then given by (14.13). Indeed, since T and Q(7") ™! commute,
we have for y € D(T) that

(AZvi, = T)QAT) " (yA = Ty)

= (\Zvi, = T) (Qa(T)"'yA = TAAT) ™ 'y)

= Qu(T) YA = TQA(T) " 'yA = TOA(T) " 'yA + T?Qu(T) "y

= (I\*Zvy, — 20T + T*)QN(T) 'y = v.

Similarly, for y € Vg ; = Vg, we have

()\IVR,]‘ - T)R)\(T)y

= (\Ivg, = T) (A1) yA = TAAT)"'y)

= QA (T) "' yAN = TQA(T) ™ 'yA = TAT) yA + T2 (T) 'y

= (APZvi, — 20T + T*)(T) 'y = u.
Since Q,(T)~! maps Vg ; to D(T?) C D(T), we find that the operator Ry(T) =
(AZy,, —T)QA(T)~" is bounded, and so A belongs to the resolvent setpc, (T') of
T considered as a Cj-linear operator on Vg ;. Hence, ps(T) NC; C pc,;(T), and in

turn oc, (T') C 05(T') N C;. Together with the axial symmetry of the S-spectrum,
this further implies

oc; (T) U oc; (T) C (Us(T> n (Cj) U (Us(T) n (Cj) = Us(T) n (Cj, (14.15)

where A = {z:z € A}.
If A and A both belong to pc, (T), then [A] C ps(T') because
()LZVR,J' - T)(XZVR,;' - T)y
= (YA = (Ty)A = T(yA) + Ty
= (T? = 2XoT + [AP)y
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and hence Q\(T)~! = Rx(T)Ry(T) € B(Vg). Thus ps(T)NC; D pc, (T)Npc, (T),
and in turn

os(T)NC; C oc,(T) Uoc,(T). (14.16)
The two relations (14.15) and (14.16) together yield

o5(T) N C; = oc,(T) Uog, (T). (14.17)

What remains to show is that pc,(T") and oc,(T) are symmetric with respect to
the real axis, which then implies

Us(T) n (Cj =og; (T) @] oc; (T) =og; (T) (14.18)

Let A € pc, (T') and choose i € S with j L i. We show that Rx(T) equals the

mapping Ay := — [R\(T)(yi)]i. Since \i = i\ and i\ = \i, we have for y € D(T)
that

A (XIVR)]. — T) y=A (yx — Ty)
— [RA(T) ((yN)i — (Ty)i) ] i
— [RA(T)((yi)A — T(yi))] d
= — [RA(T)(MZv,, — T)(yi)] i = —yii = y.

Similarly, for arbitrary y € Vg ; = Vg, we have
(XIVR = T) Ay = (Ay) A = T'(Ay)

= [BA(T)(yi)]ix + T ([RA(T) (yi)] )
—[RA(T )(yl)A T( AT (i)l

—[(AZv,, — (T)(yi)] i = —yii = y.
Hence if A € pg,(T), then Ry(T) = — [R\(T)(yi)]i so that in particular, X €
pc, (T'). Consequently, pc; (T') and in turn also oc, (T'), are symmetric with respect
to the real axis, so that (14.18) holds. O

Definition 14.2.8. Let T' € L(Vg). We define the Vg-valued function
Rs(Tiy) = Qu(T)"'ys —TQu(T) "'y Yy € Vg, s € ps(T).

Remark 14.2.9. By Theorem 14.2.7, the mapping y — R(T;y) coincides with the
resolvent of 1" at s applied to y if 1" is considered a C; -linear operator on Vg ;..

Let us now turn back to characterizing imaginary operators on Banach spaces.
Just as with imaginary operators on a Hilbert space, we can find three subspaces
of Vr on which such an operator is simply multiplication by 0, j, or —j.
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Theorem 14.2.10. Let J € B(Vg) be an imaginary operator. For every j € S, the
Banach space Vg admits a direct sum decomposition as

Ve=Vioa VoV (14.19)
with
Vo = ker(J),
Vii={yeV:Jy=uyj}, (14.20)

Vii={yeV:Jy=y(-j}

The spaces V and V are complex Banach spaces over C; with the natural
structure mhemted fmm VR, and for each i € S with j L 1, the map y — yi 1S a
C;-antilinear and isometric bijection between V 7 and V

Conversely, let j,i € S with j L i and assume that Vg is the direct sum
Ve =Vo@ Vi @ V_ of a closed (H-linear) subspace Vy and two closed C;-linear
subspaces Vi and V_ of Vr such that ¥ : y — yi is a bijection between V+ and
V_. Let EL and E_ be the C;-linear projections onto Vi and V_ along Vo @ V_,
resp. Vo & Vi. The operator Jy := E yj + E_y(—j) for y € Vg is an imaginary
operator on Vg.

Proof. We first assume that J is an imaginary operator and show the existence of
the corresponding decomposition of V. Let j € S and let Vi ; denote the space Vg
considered as a complex Banach over C;. Furthermore, let us assume that J # 0,
since the statement is obviously true in this case. Then J is a bounded Cj-linear
operator on Vg ;, and by Theorem 14.2.7 and Lemma 14.2.4, the spectrum of J
as an element of B(Vg ;) is oc,(J) = o05(J) N C; C {0,7,—j}. We define now for
7 € {0,7,—j} the projection FE. as the spectral projection associated with {7}
obtained from the Riesz—Dunford functional calculus. If we choose 0 < ¢ < %,
then the relation R.(J) = (zZv,, — J)Q.(J)~! in Theorem 14.2.7 implies

1 1
By=[ Rl =[ Q) E- dig
AU, (7;C5) 2mi AU (7;C;5) 2mi’

where U (7;C;) denotes the ball of radius € in C; that is centered at 7. (Since we

assumed ker J # V/, the projections F; and E_; are not trivial. It might, however,

happen that Fy = 0, but this is not a problem in the following argumentation.)
We set

VJ,O == E()VRJ‘, ‘/:;’rj = EjVR,jv and VJTJ = E,jVRJ.

Obviously these are closed C;-linear subspaces of Vg ;, resp. Vg, and (14.19) holds.

Let us now show that the relation (14.20) holds. We first consider the sub-
space V+j Since it is the range of the Riesz projector E; associated with the
spectral set {j}, this is a C;-linear subspace of Vg ; that is invariant under J,
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and the restriction J; := J|VJ+A has spectrum o(J;) = {j}. Now observe that
2J
—Ji=-J 2|V]+‘ is the restriction of a projection onto an invariant subspace and
<457

hence a projection itself. Since 0 ¢ o(—J3) = —o(J4)* = {1}, we find that
ker —J2 = {0} and in turn Z, := IV; =—J2. Forye ij we therefore have
¥ >

—y=Jiy=(Jy =Ty +52:)%y = (J4 — T4 + JZ0)((J+ = §T+)y + i)
= (Jy = I’y + (J+ — §Z1)yj + (J+ — 5Z4)yi + yi*.

Since j2 = —1, this is equivalent to
(J+ = 3T4)%y = (J4 = 5Z1)y(=2j).

Hence (J; — jZ4)y is either 0 or an eigenvector of Jy — jZ, associated with the
eigenvalue —2j. By the spectral mapping theorem, o(J —3jZ) = o(Jy)—j = {0}.
Hence J; — jZ. cannot have an eigenvector with respect to the eigenvalue —2j,
and so (Jy — jZ1)y = 0. Therefore, J; =T iand Jy = Jyy = yj forally € V,©..

With similar arguments, one shows that Jy = y(—j) for every y € Vi
Finally, o(—J3) = —o(Jo)? = {0} for Jy := J|v,,. Since —J§ = —J?|y,, is the
restriction of a projection to an invariant subspace and thus a projection itself, we
find that —J2 is the zero operator, and hence Vo = ker(—Jo)? C ker(.J?) = ker J.
On the other hand, ker J C V¢, since V; is the invariant subspace associated
with the spectral value 0 of J. Thus Vo = ker J, and so (14.20) is true.

Finally, if ¢ € S with 7 L ¢ and y € V4 then (Jyi) = J(y)i = yji = (yi)(—7).
Hence ¥ : y — yi maps ij to V. 7 It is obviously C;-antilinear, isometric, and a
bijection, since y = —(yi)i, so that the proof of the ﬁrst statement is finished.

Now let j,7 € S with 7 L ¢ and assume that Vg = Vo & Vi & V_ with
subspaces Vp, V., and V_ as in the assumptions. We define Jy := E yj+E_y(—j).
Obviously, J is a continuous C;-linear operator on Vi ;. The mapping ¥ : y — yi
maps V. bijectively to V_, but since ¥~! = —W, it also maps V_ bijectively to V.
Moreover, as an H-linear subspace, V} is invariant under ¥. For y = yo+y++y— €
Vo ® V4 @ V_ = Vg, we therefore obtain

J(yi) = B4 (yi)j + E_(yi)(—j) = y—ij + y+i(—j)
=y ()i +ysji = (E_y(=j4))i+ (Eryj)i = (Jy)i.

If now a € H, then we can write a = a1 + ast with a1, a2 € C; and find due to the
Cj-linearity of J that

J(ya) = J(ya1) + J(yazi) = J(y)ay + J(y)azi = J(y)(a1 + azi) = J(y)a.

Hence J is quaternionic linear and therefore belongs to B(Vg).
Since ELE_ = E_E, =0, we furthermore observe that

szy = *J(E+yj + E_y(—j))
— (E3yj® + By E_y(—j%) + E_E y(—j5°) + E2y(—j)?) = (B4 + E_)y.
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Hence —.J? is the projection onto V. @ V_ = ran(J) along ker J = V{, so that .J
is actually an imaginary operator. O

14.3 Spectral Systems and Spectral Integrals of
Intrinsic Slice Functions

As pointed out above, invariant subspaces of an operator are in the quaternionic
setting not associated with spectral values but with entire spectral spheres. Hence
quaternionic spectral measures associate subspaces of Vi with sets of entire spec-
tral spheres and not with arbitrary sets of spectral values. If we want to integrate
a function f that takes nonreal values with respect to a spectral measure F, then
we need some additional information. We need to know how to multiply the dif-
ferent values that f takes on a spectral sphere onto the vectors associated with
the different spectral values in this sphere. This information is given by a suit-
able imaginary operator. Similar to [197], we hence introduce now the notion of a
spectral system.

Definition 14.3.1. A spectral system on Vi is a pair (E, J) consisting of a spectral
measure and an imaginary operator J such that

(i) F and J commute, i.e., E(A)J = JE(A) for all A € Bg(H) and

(i) E(H\R) = —J2, that is, E(R) is the projection onto ker J along ran J, and
E(H\ R) is the projection onto ran J along ker J.

Definition 14.3.2. We denote by SM*(H) the set of all bounded intrinsic slice
functions on H that are measurable with respect to the usual Borel sets B(H) on
HL.

Lemma 14.3.3. A function f: H — H belongs to SM™(H) if and only if it is of
the form f(s) = fo(s) + jsfi(s) with fo, fi € MFP(H,R) and fi(s) =0 for s € R.

Proof. If f(s) = fo(s) + jsfi(s) with fo, fi € MP(H,R) and fi(s) =0 for s €
R, then we can set fo(so,s1) := fo(so + js1) and fi(so,s1) = fi(s + js1) and
fi(so,—s1) = —fi(so + js1) with j € S arbitrary. Since fo(s) and fi(s) are
B s (H)-measurable, they are constant on each sphere [s], and so this definition is
independent of the chosen imaginary unit j. Since f;(s) = 0 for real s, f1(so, s1) is
moreover well defined for s; = 0. We find that f(s) = fo(s)+7sf1(s) = fo(so,s1)+
Jsfi1(so,s1) with fo(so,s1) and f1(so, s1) taking real values and satisfying (2.4),
so that f is actually an intrinsic slice function. Moreover, the functions fy(s) and
fi(s) and the function ¢(s) := js if s ¢ R and ¢(s) := 0 if s € R are B(H)-
B (H)-measurable. Since fi(s) = 0 if s € R, we have f(s) = fo(s) + jsf1(s) =
fo(s) + @(s) fi(s), and hence the function f is B(H)-B(H)-measurable too.

If, on the other hand, f € SM™(H) with f(s) = fo(so,s1) + 7sf1(s0, 51),
then also fo(s) == 1 (£(s) + 1 (3)) = fo(so, 1) and fo(s) = bl(s) (F (3) — F(s)) =
f1(s0,81) with ¢(s) as above are B(H)-9B (H)-measurable. Moreover f1(s) = 0 if
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s1 = 0. Since f is intrinsic, these functions take values in R, and hence they are
B(H)-B(R)-measurable. They are, moreover, constant on each sphere [s], so that
the preimages f; '(A) and f; '(A) of each set A € B(R) are axially symmetric
Borel sets in H. Consequently, fo and f; are Bg(H)-B(R)-measurable. Finally,
|f1? = | fo|> + | f1]?, so that f is bounded if and only if fo and f; are bounded. [

Corollary 14.3.4. Every function f € SM™(H) is Bs(H)-Bg(H)-measurable.

Proof. Let A € Bg(H). Its inverse image f~!(A) is a Borel set in H because f is
B (H)-B (H)-measurable. If s € f~1(A), then f(s) = fo(s0, 1) + jsf1(s0,51) € A.
The axial symmetry of A implies then that for every s; = so + js1 € [s] with
j € S also f(sj) = fo(so,s1) + jsfi(so,s1) € A and hence s; € f~*(A). Thus
s € f~Y(A) implies [s] C f~1(A) and so f~1(A) € Bg(H). O

We observe that Lemma 14.3.3 implies that the spectral integrals of the
component functions fy and f; of every f = fo + jsf1 € SM(H) are defined by
Definition 14.1.7.

Definition 14.3.5. Let (F,J) be a spectral system on V. For f € SM™(H) with
f(s) = fo(s) + jsfi(s) we define the spectral integral of f with respect to (E,J) as

/f )dE,(s /fo )dE(s +J/f1 dE(s (14.21)

The estimate (14.8) generalizes to

< Cgllfollso + Call I f1lle < (14.22)

s)dE(s)

with
Cg,yg=Ceg(+|J]).

As a consequence of Lemma 14.1.10 and the fact that J and E commute, we
immediately obtain the following result.

Lemma 14.3.6. Let (E,J) be a spectral system on Vi. The mapping

fes /H F(s)dEy(s)

is a continuous homomorphism from (SM™(H),||.||le) to B(Vr). Moreover, if
T € B(Vg) commutes with E and J, then it commutes with [, f(s)dE;(s) for
every f € SM(H).

From Corollary 14.1.11 we furthermore immediately obtain the following
lemma, which is an analogue of Lemma 5.3 in [13]. See also the chapter on spectral
integrals.
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Corollary 14.3.7. Let (E,J) be a spectral system on Vg and let f = fo+jf1 €
SM>(H). For every y € Vg and y* € V3, we have

< {/f JdE (s } > /fo E(S)y>+/Hf1(8)d<y*7E(8)Jy>.

Similar to the what happens for the S-functional calculus, there exists a deep
relation between quaternionic and complex spectral integrals on Vg.

Lemma 14.3.8. Let (E,J) be a spectral system on Vg, let j € S, let E4 be the
projection of Vi onto Vj’rj along Vjo @ VJTj’ and let E_ be the projection of Vg
onto V. along Vo @ VIj; cf. Theorem 14.2.10. For A € B(C;), we set

ELE([A]) if AcCy,
B,(A) E(A) if ACR, (14.23
T ) E_E(A) if ACCy, '

E;(AnN (Cj) +Ej(ANR) + E;(ANC;)  otherwise,

where (C;L and C; are the open upper and lower half-plane in C;. Then Ej is a
spectral measure on Vg j. For every f € SM™(H), we have with f; := f|c, that

/f )dE;(s /f] dE;( (14.24)

Proof. Recall that E and J commute. For y, € Vj’rj, we thus have JE(A)yy =
E(A)Jyy = E(A)y4j, so that E(A)y, € ijj and in turn FL E(A)yy = E(A)y,
Similarly, we see that E(A)y~ € V0@V, for y~ €V, 0@V, so that B4 E(A)y. =
0. Hence if we decompose y € Vi as y = y4++y~ withy; € VJ and y. € VoV,
according to Theorem 14.2.10, then E4 E(A)y = E+E(A)y+ + ELE(A)y. =
E(A)ys and E(A)E,y = E(A)y,, so that altogether, E(A)E,y = ELE(A)y.
Analogous arguments show that E_E(A) = E(A)E_ and hence Ey, E_, and
E(A), A € Bg(H), commute mutually.

Let us now show that Ej is actually a C;-complex linear spectral measure on
Vg,j. For each A € B(C;) set A, := AH(C+ A, = ANC;, and Ag := ANR for
neatness and recall that [-] denotes the ax1ally symmetric hull of a set. For every
A o € Bg(H), we have then

=0,
14.25
N (1425

because of item (iii) in Definition 14.1.7. Moreover, F, and E_ as well as F([A+]),
E([A_]), and E(Ag) are projections that commute mutually, as we just showed.
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Since in addition, Ey E_ = E_E, =0, we have

Ej(A) = (B+E([A4]) + E(Az) + E_E([A_]))*
= ELE([A4])? + BLE([AL])BE(Ar) + B+ E_E([A]) E([A-])
B, B(A)B(A4]) + B(As)? + B_E(Ax)E(A_])
BB (A DE(AL]) + E-E(A)E(Ar) + E2E(A_))?
= ELE([Ay]) + E(Ar) + E-E([A-]) = E;(A).
(14.26)
Hence E;(A) is a projection that is moreover continuous, since || E;(A)| < K(1+
|E+| + || E=]]), where K > 0 is the constant in Definition 14.1.7. Altogether, we
find that E takes values that are uniformly bounded projections in B(Vg ;).
We obviously have E;(0)) = 0. Since E, +E_ = E(H\R) because of item (ii)
in Definition 14.3.1, also
E;(C)) = E+E([C]]) + E(R) + E_E([C7])
=(E++E_)EH\R)+ E[R)=EMH)=1.
Using the same properties of F,, E_, and F(A) as in (14.26), we find that for
A, o0 € B(Cy),
Ej(A)E(o)
— (ELE(AL]) + B(Ax) + B_E(A_) (B} E(o+)) + E(ox) + E_E((o_)))
= E2B(A ) E(lo]) + By E(A ) E(or) + By E- E(A)E(o_)
+ ELE(Ar)E([04]) + E(Ar)E(or) + E_E(Ar)E([0-])
BB E(A D E(lo:]) + B~ E(A_DE(w) + B2 E(A_DE(o_)
— B (A4 0 [04]) + E(Ax Now) + E-E(A_] N [o-]).
In general it not true that [A] N [B] = [AN B] for A,B C C;. (Just think, for

instance, about A = {j} and B = {—j} with [A]Nn[B]=SNS=S and [ANB] =
[0] = 0.) For every axially symmetric set C we have, however,

C=[CNnCf] Vies.

If A and B belong to the same complex half-plane C;", then

[4]n [B] = [([4]n[B)) nC]
= [([ANC) N (BInCH)] =[An Bl. (14.27)
Hence [A{]N[oy] =[(ANo)i] and [A_]N[o-] =[(ANa)_], so that altogether

E;(A)E;(0) = B+ E((AN0)4]) + E(Ag Nox) + E_E((ANo)_])



14.3. Spectral Systems and Spectral Integrals of Intrinsic Slice Functions 289

Finally, we find for y € Vg ; = Vg and every countable family (A,),en of pairwise
disjoint sets that

5 (U2)r
:E+E< %AM >y+E<nLEJNAn7R>y+E_E< >y
=E.E (U [An,+]> y+E (U AH,R> y+FE_E (U [An,]> y.

neN neN neN

U A,

neN

Since the sets A, 1, n € N, are pairwise disjoint sets in the upper half-plane (C;r,
their axially symmetric hulls also are disjoint because of (14.27). Similarly, the
axially symmetric hulls of the sets A,, _, n € N are also pairwise disjoint, so that

5 (U2)-

=Y EiEi ([ y+ D E(Aur)y+ Y E-E(An-)y

neN neN neN
= EiA
neN

Altogether, we see that F; is actually a C;-linear spectral measure on Vg ;.

Now let us consider spectral integrals. We start with the simplest real-valued
function possible: f = axa with a € R and A € Bg(H). Since f; = axanc, and
E(A) = E;(A; NC;), we have for such a function

/f(s)dE(s):aE(A):aE ANGC)) / fi(2)dE(z
H

By linearity we find that (14.24) holds for every simple function

= Z CEXA(s)
{=1

in M%(H,R). Since these functions are dense in M (H,R), it even holds for
every function in M (H,R). Now consider the function ¢(s) = jS ifse H\R
and ¢(s) = 0if s € R. Since ¢;(z) = JX(C+ + (= )X(C_ and E; ((C ) = E4 and

E; = E_, the integral of ¢; with respect to Ej is

/ () dE;(=)y = GE5(C)) y + (—)E;(C)) y

J

=Eiyj+E_y(—j)=Jy
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for all y € Vg; = Vg. If f is now an arbitrary function in SM>(H), then
f(s) = fo(s) + @(s) fi(s) with fo, fr € MF(H,R) and fi(s) = 0if s € R by
Lemma 14.3.3. By what we have shown so far and the homomorphism properties
of both quaternionic and the complex spectral integrals, we thus obtain

jgf@)dEJ@)
:/Hfo(s) dE(s)+J/Hf1(s)dE(8)

= [ B + ( [ &) d&-(z)) ( [, 5156 d&-(z))
/fO,] )+ @i (2) f15(2) dE;( /fJ ) dE;( O

Working on a quaternionic Hilbert space, one might consider only spectral
measures whose values are orthogonal projections. If J is an anti-self-adjoint par-
tially unitary operator, as happens, for instance, in the spectral theorem for normal
operators in [13], then E; has values that are orthogonal projections.

Corollary 14.3.9. Let H be a quaternionic Hilbert space, let (E,J) be a spectral
system on H, let j € S, and let E; be the spectral measure defined in (14.23). If
E(A) is for every A € Bg(H) an orthogonal projection on H and J is an anti-
self-adjoint partially unitary operator, then E;(A;) is for every A; € B(C;) an
orthogonal projection on (M, (-,-,);), where (x y>J = {(z,y)}; is the C;-part of
(x,y) defined as {a}; = a1 if a = a1 + ast with a1,a2 € Cj andi € S withj 1 4.

Proof. If z,y € 'HJ]7 then

(z,y) = (x,—J%y) = (Jz, Jy) = (xj,yj) = (—5){z,y)],

so that j(x,y) = (x,y)j. Since a quaternion commutes with j € S if and only if
it belongs to C;, we have (z,y) € C;. Hence if we choose ¢ € S with j L ¢, then
(x,yi) = (z,y)i € Cji, so that in turn, (z,yi); = {(z,y)}; = 0 for z,y € ’HL
Since H;, ={yi:y € Hj]} by Theorem 14.2.10, we obtain H; ; 1; ’H;j, where
1 ; denotes orthogonality in #;. Furthermore, we have for x € Hy = kerJ and
y € M7, that
and so (z,y); = {(z,y)}, = 0 and in turn 7—[+ 1 Hp. Similarly, we see that also
’H_] 1; Ho. Hence the direct sum decomposmon H;j = Hjo @ ’HJ] @ HJJ in
(14.19) is actually a decomposltlon into orthogonal subbpaces of H;. The projec-
tion E; of H onto 7—[ Jj along H o © Hy; and the projection F_ of H onto M ;
along Hjo ® ’HL are hence orthogonal projections on H;.

Since the operator E(A) is for A € Bg(H) an orthogonal projection on H,
it is an orthogonal projection on H;. A projection is orthogonal if and only if it is
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self-adjoint. Since Ey, E_, and E commute mutually, we find for every A € B(C;)
and z,y € H; = H that

(z, Ej(A)y);

= (2, EyE([ANCT)y); + (z, E(QANR)y); + (z, E_E([ANC;))y);
= (E+E([ANC]])z,y); + (BE(ANR)z,y); + (E-E(ANC;])z,y);
= (Ej(A)z,y);-

Hence E;(A) is an orthogonal projection on #;. O

We present two easy examples of spectral systems that illustrate the intuition
behind the concept of a spectral system.

Example 14.3.10. We consider a compact normal operator 7' on a quaternionic
Hilbert space H. The spectral theorem for compact normal operators in [143]
implies that the S-spectrum consists of a (possibly finite) sequence [s,] = sp.0 +
Ssp1,m € T C N, of spectral spheres that are (apart from possibly the sphere
[0]) isolated in H. Moreover, it implies the existence of an orthonormal basis of
eigenvectors (be)rca associated with eigenvalues s, = sg0 + js,8¢,1 with js, = 0 if
sy € R such that

Ty = bese(be,y)- (14.28)

leA

Each eigenvalue s, obviously belongs to one spectral sphere, namely to [s,,(s)] with
Sp(e),0 = Se,0 and sp,(0)1 = s¢,1, and for [s,] # {0} only finitely many eigenvalues
belong to the spectral sphere [s,]. We can hence rewrite (14.28) as

Ty= > > beselbe,y) = Z bese(be, y)

[sn]€0s(T) se€[sn] neY n(l)=

The spectral measure E of T is then given by

EAy= Y Y blbey) VA e Bg(H).
neY n(l)=n
[sn]CA
If f e MP(H,R), then obviously

/f )dE(s y—ZE sn))yf(sn —Z Z be(be, y) f(Sn)- (14.29)

neY neY n(l)=n

In particular,

/HS()dE Z Z b[ b(, 50,0

neY n(
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and
/sldE s)y = Z Z be(be,y)se,1-
n€Y n(f)=n
If we define
Jy=>_" > bejs,(be,y)
neY n(l)=n

then J is an anti-self-adjoint partially unitary operator and (FE,.J) is a spectral
system. One can check easily that E and J commute, and since js;, = 0 for s, € R

and j,, € S with j2, = —1 otherwise, one has
- =3 by = >, > bufbe,y) = E(H\R)y.
n€Y n(l)=n neY:[s, | CH\R n(f)=n

In particular, ker J = spany{b; : s € R} = E(R). Note, moreover, that J is com-
pletely determined by T'.

For every function f = fy+jf1 € SM(H), we have because of (14.29) and
<bg, b = 5@ . that

/f )dE,(s y_/fo )dE(s y+J/f )dE(s

_Z Z be(be, y) fo(Sn0s Sn1)

n€Y n(f)=n

+ Z Z bljsg bb H fﬁay>f1(3’rn,0a3m,l)

m,n€Y n(f)=n

n(k)=m
=3 > befo(seosse1)(bey)
neY n(f)=n
+ 30 beje fir(se0:501) (besy)
neY n(f)=n
=" be(fols00,501) + dsp 1(500, 50.2)) (bes ),
n€Y n(f)=n

and so

/f( VAEs(s)y =Y > bef(se)(be,y) (14.30)

neY n(¢)=n

In particular,

/SdEJ Z Z bese(be,y)
H

neY n(f)=n
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We have in particular T = A+ JB with A = [; sodE(s) self-adjoint, B =
Jy 51dE(s) positive and J anti-self-adjoint and partially unitary as in (14.11).
Moreover, E corresponds via Remark 14.1.9 to the spectral measure obtained
from the spectral theorem for bounded normal operators.

We choose now j,i € S with j L 4, and for each £ € A with sy ¢ R we choose
he € H with || = 1 such that h;'js,hy = j and in turn

1 1. . .
hy “sehy = s¢0+ hy  Js,hust = s + jse1 = 50,5

In order to simplify the notation we also set hy = 1 and js, = 0 if s, € R. Then
be == behe, L € . Ais another orthonormal basis consisting of eigenvectors of 7', and
since h; ' = hy/|he|? = hy, we have

Ty=> "> belhehy " )se(hehy ") (be,y)

neY n(f)=n

= Z Z (bgh[) E Seh[)(bgh[, Z Z béslj bb

n€Y n(f)=n ne€Y n(l)=n

(14.31)

and similarly

Jyfz Z be(hehy ') je(hehy ') (be,y)

n€Y n(f)=n
=Y Y (beho)(hy Vdehe)beheyy) = D > bejlbe,y)
n€Y n(¢)=n neY n(l)=n

Recall that jA = Aj for every A € C; and ji = —ij. The splitting of H obtained
from Theorem 14.2.10 is therefore given by

Hyo=kerJ = spanH{l;g . s € R}, Hij := spang, {l;g : sp ¢ R},

and

M, = spanc {byi: s ¢ R} = H] .

If (be,y) = ag = ag1 + agot with ag 1, ar2 € C;, then (14.31) implies

Tyz Z Z BgSgyjag

n€Y n(¢)=n

=2, D haset ) ) bawwswt ) ) baais;
neYl n(lf)= ne€Y nl)=n n€Y n(l)=n

[sn]CR [sn]CH\R [sn]CH\R

(14.32)

If f € SM™(H), then the representation (14.30) of [;; f(s)dE;(s) in the basis
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be, ¢ € A implies

/f dE;(s)y=>_ > bef(sej)a

neY n(l)=n
> D beaf(s)
neY n(l)=n
[sn]CR
2 D baflse)+ Y Z beas,2if(sc.5)
neY n(f)=n neY n(
[sn]CH\R [sn]CH\R

S>> beacf(se)

neY n(f)=n

[sn]CR
+ Z Z bgag 1f Sy ]) Z Z Egagvgif(%), (1433)
n€Y n(l)=n n€Yl n(l)=n
[sn]CH\]R [sn]CH\R

since f(s;) € R for s, € R and f(sg;) = f(5z;) because f is intrinsic. Note that
the representations (14.32) and (14.33) show clearly that f(7T') is defined by letting
f act on the right eigenvalues of T.

Example 14.3.11. Let us consider the space L?(R, H) of all quaternion-valued func-
tions on R that are square-integrable with respect to the Lebesgue measure A.
Endowed with the pointwise multiplication (fa)(t) = f(t)a for f € L*(R,H) and
a € H and with the scalar product

(0. 1) = / gD dN(E) Vg € L (R H), (14.34)

this space is a quaternionic Hilbert space. Let us now consider a bounded measur-
able function ¢ : R — H and the multiplication operator (M, f)(s) := ¢(s)f(s).
This operator is normal with (M,)* = Mg, and its S-spectrum is the set p(R).
Indeed, writing o(t) = o(t) + jou)@1(t) with @o(t) € R, 01(t) > 0, and j,) €S
for p(t) € H\ R and j,) = 0 for ¢(t) € R, we find that
Qu(My) f(t) = MG f(t) — 2s0M, f(t) + | f ()
= (¢*(t) = 2s0p(t) + |s[*) £ (1)
= (p(t) = 5300 (() = 51 ) £ (D

with s;_, = S0 + Ju(t)s1, and hence

Qu(My) 1 f(t) = (9(t) = ) () = 55.0,) T f(8)

is a bounded operator if s ¢ @(R). If we define E(A) = My _,,, forall A €

Bs(H), then we obtain a spectral measure on B¢ (H), namely

E(A)f(t) = xp-10a) () f(1).
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If we set
Ji=M;, ie,  (J)(E)=dewf(),

then we find that (E,J) is a spectral system. Obviously J is anti-self-adjoint and
partially unitary and hence an imaginary operator that commutes with E. Since
Joy = 01if ¢(t) € R and j,«) € S otherwise, we have, moreover,

(=20 ®) = =dgu () = X1 F(t) = (EE\R)f)(1).

If g € MP(H,R), then let g,(s) = Zévz"l AneXA, () € MP(H,R) be a
sequence of simple functions that converges uniformly to g. Then

[ o AEE6) = lim S e B @07 (0) = lim 3 oo )OS0
=1 =1
Ny,
= tim Y evale(®) (1) = lim (g, 0 @)(OF(0) = (90 ) D (0).
/=1

Hence if g(s) =o (s) + jsfi(s) € SM*(H), then

/ o(s) dE; ()£ (1) = / o(s) dE(s) £ (1)
H H

/H (s)dE(s)F(t) + 7 [ fu(s) dB(s)F ()
0
(g

go
() f() + Jp [r(e() f(2)
(@(t) + Jo) [r(e@)) f(t) = (g0 @) () f(1),

==t

= go(
= 0

and so

/ 9(s)dEj(s) = Myoy.
H

Choosing g(s) = s, we find in particular that T = A + JB with A = [}, so dE(s)
self-adjoint, B = fH s1 dE(s) positive, and J anti-self-adjoint and partially unitary
as in the Teichmiiller decomposition. The spectral measure E corresponds via
Remark 14.1.9 to the spectral measure obtained in Theorem 11.2.1.

14.4 On the Different Approaches to Spectral
Integration

The approach to spectral integration presented in this chapter specifies some ideas
in [197]. We now compare this approach with the approaches in [13] and [144].
In [13], the authors consider a spectral measure E over (C;L and a unitary and
anti-self-adjoint operator J (i.e., a fully imaginary operator J in the terminology
of this book) that commutes with E. They define a left multiplication on H by
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the imaginary unit J as jy := Jy for y € H. (If one tries to develop the spectral
theory of a normal operator 7', then J is simply the extension of the imaginary
operator in the Teichmiiller decomposition of T" to a fully imaginary operator; cf.
Remark 9.3.7.) One can then define the multiplication of an operator A in B(H)
by the imaginary unit j as jA = JA and Aj := AJ, and this makes the integration
of Cj-valued functions on f : (Cj+ — C; possible. The procedure

f(s)dE(s) := lim fn() ;= lim ZankE nk), (14.35)

ct n—-+oo n——+00
J

where f,, := Zg;l Qn kXA, With Ay g € %((C;r) is a sequence of simple functions
that uniformly converges to f, is in this case also well defined if the coefficients
o, 1, belong to C;, and not only if they belong to R.

The authors of [144] go one step further: they define a second unitary and
anti-self-adjoint operator K that commutes with E and anti-commutes with J,
and they define a full left multiplication on H. They choose i € S with j L ¢ and
define L; := J and L; := K and the left multiplication

.. H > B(H).
| a=ag+a1j+asi+asji — Ly :=aeZ + a1j + asi + azji,
so that
ay = Loy = yao + Ljya1 + Lyyas + L;Lyyas Vy € H.
They call a pair £ := (E,L) consisting of a spectral measure over C;r and a

left multiplication that commutes with E an intertwining quaternionic projection-
valued measure (igPVM for short). Such iqgPVMs allow one to define spectral
integrals for functions f : (Cj' — H with arbitrary values in H, since the coeffi-
cients a, i in (14.35) are in this case meaningful for arbitrary values a,, ; € H. The
authors arrive then at the following version of the spectral theorem [144, Theo-
rem 4.1].

Theorem 14.4.1. Let T € B(H) be normal and let j € S. There exists an igPVM
E=(E,L) over (Cj+ on H such that

T= /cj zdE(z). (14.36)

The spectral measure E is uniquely determined by T, and the left multiplication
is uniquely determined for a € C; on ker(T — T*)*. Precisely, we have for every
other left multiplication L' such that £ = (E, L") is an igPVM satisfying (14.36)
that Lyy = Ly for every a € C; and y € ker(T — T*)*. (Even more specifically,
we have jy = Jy for every y € ker(T — T*)* = ranJ, where J is the imaginary
operator in the Teichmiller decomposition of T'.)
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All three approaches are consistent if things are interpreted correctly. Let us
first consider a spectral measure E over (Cj for some j € S, the values of which
are orthogonal projections on a quaternionic Hilbert space H. Furthermore, let
J be a unitary anti-self-adjoint operator on H that commutes with E and let us
interpret the application of J as multiplication by j from the left as in [13]. By
Remark 14.1.9, we obtain a quaternionic spectral measure on Bg(H) if we set
E(A) = E(AN (C;') for A € Bg(H), and obviously we have

/f )dE(s /fJ VdE(z) Vf e MZ(H,R),

where f; = f|q+. If we set J := JE(H \R) = JE((C;r \ R), then J is an imaginary
operator and we find that (E,.J) is a spectral system on H. Now let f(s) =
fo(s) +7f1(s) € SM*(H) and let again f; = flc+, foj = alc+ and fi; = files-
Since f1(s) = 0if s € R, we have fi(s) = xmr(s)f1(s) and in turn

/fj dE(z /foj dE(z +J/ fr.(2) dE(2)

:/fo(s) dE(s)+J/XH\R(S)fl(S)dE(S)
H H (14.37)

- / fo(s)dE(s) + JE(H \ R) / fi(s) dE(s)

/fo )dE(s +J/f1 YdE(s /f YdE;(s

Hence for every measurable intrinsic slice function f, the spectral integral of f

with respect to the spectral system (E,J) coincides with the spectral integral of

flec+ with respect to E, where we interpret the application of J as multiplication
J

by j from the left. Since the mapping f + f|-+ is a bijection between the set
J

of all measurable intrinsic slice functions on H and the set of all measurable C;-
valued functions on (C;Ir that map the real line into itself, both approaches are
equivalent for real slice functions if we identify E with F and f with fj. The same
identifications show that the approach in [144] is equivalent to our approach, as
long as we consider only intrinsic slice functions. Indeed, if £ = (E, £) is an igPVM
over (Cj' on H, then Jy ::~Ljy = jy is a unitary and anti;self—adjoint operator on
H. As before, we can set E(A) = E(A ﬂ(Cj) and J:= JE(H\R) = LjE((Cj+ \R).
We then find as in (14.37) that

/fj d€(z /f YdE;(s) Vf e SM™(H). (14.38)

For intrinsic slice functions, all three approaches are hence consistent.
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Let us continue our discussion of how our approach to spectral integration
fits into the existing theory. We recall that every normal operator T on H can be
decomposed as

T=A+JB,
with the self-adjoint operator A = %(TJrT*), the positive operator B = %|T7T*|,
and the imaginary operator .J with ker J = ker(T —T*) and ran J = ker(T —T*)*.
Let £ = (E, L) be an igPVM of T obtained from Theorem 14.4.1. From [144, Theo-

rem 3.13], we know that (fq v(2) dS(z)) ’ :fc;r ©(2) d€(z) and ker fq o(2) dE(2)
=ran E(¢~1(0)). Hence

T-T :/c?ng(@_/(c;ng(z):/cj 2jz1 dE(2).

Since z; = 0 if and only if z € R, we find that ker J = ker(T — T*) = ran E(R)
and in turn ranJ = ker(T — T*)* = I"amE((Cj+ \R).

_ If we identify E with the spectral measure £ on Bg(H) that is given by
E(A)=E(AN (Cj), then J = LJ-E((C;L \ R) is an imaginary operator such that
(E,J) is a spectral system, as we showed above. The spectral integral of every

measurable intrinsic slice function f with respect to (E,J ) coincides with the
spectral integral of f|Cj+ with respect to £. Since ran E((Cj' \R) = ker(T —T*)*+ =
ran.J and Ljy = Jy for all y € ker(T — T*)L (this follows from the construction
of £ and in particular L; in [144]), we moreover find that J = J. Therefore (E, J)
is the spectral system that for integration of intrinsic slice functions is equivalent
to £. We can hence rewrite the spectral theorem in the terminology of spectral
systems as follows.

Theorem 14.4.2. Let T = A+ JB € B(H) be a normal operator. There exists a
unique quaternionic spectral measure E on Bg(H) with E(H \ og(T)) = 0, the
values of which are orthogonal projections on H, such that (E,J) is a spectral

system and such that
T= / sdEj(s).
H

We want to point out that the spectral system (FE,.J) is completely deter-
mined by T—unlike the unitary anti-self-adjoint operator J that extends J used
in [13] and unlike the igPVM used in [144]. We also want to stress that the proof
of the spectral theorem presented in Chapter 11 translates directly into the lan-
guage of spectral systems: one can pass to the language of spectral systems by the
identification described above without any problems.

Example 14.4.3. In order to discuss the relations described above, let us return to
Example 14.3.10, in which we considered normal compact operators on a quater-
nionic Hilbert space given by

Ty=>Y_ > bese(be,y),

n€Y n(¢)=n
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whose spectral system (E,.J) was

Z Z be(be,y) and Jy:Z Z bejs,(be,y)

[n]ETA n(l)=n n€Y n(f)=n
sn]C

The integral of a function f € SM®(H) with respect to (E,J) is then given by
(14.30) as

/f YAE (s)y =Y > bef(se)(be,y) (14.39)

ne€Y n(f)=n

Let j € S. If we set E(A) = E([A]) for all A € ‘B(Cj), then E is a quater-

nionic spectral measure over (C;’. In [13] the authors extend J to an anti-self-adjoint
and unitary operator J that commutes with 1" and interpret applying this opera-
tor as multiplication by j from the left in order to define spectral integrals. One
possibility to do this is to define ¢(¢) = js, if s¢ ¢ R and «(¢) € S arbitrary if
sy € R and to set

Jy—z Z bgb bg,

n€Y n(f)=n

and iy = Jy.

In [144] the authors go even one step further and extend this multiplication
by scalars from the left to a full left multiplication £ = (Lg)qen that commutes
with E in order obtain an igPVM & = (E, £). We can do this by choosing for each
¢ € A an imaginary unit j(¢) € S with j(¢) L ¢(¢) and by defining

Ky=>Y_ Y ba(){be,y)

n€Y n(¢)=n
If we choose i € S and define for a = ag + a1j + asi + azji € H,
ay = Lay = yao + iyar + Kyas + JKyas
= Z Z be(ao + a1e(£) + az)(€) + aze(0))(£){be, y),

neY n(l)=

then £ = (L~a)aeH is obviously a left multiplication that commutes with F, and
hence £ = (E, L) is an igPVM over (C;'.
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Set sp.; = [sn] N (Cj+. For f;: (C;r — H, the integral of f; with respect to £ is

h()de)
(Cj

= Fisn ) EQsng Dy =D fi(sn i) E([sn])y

neY neY
= Z (Fo(Sn,j) + F1(Sn,5)d + Fa(sn j ) K+ Fg(Snvj)JK) Z be(be, y)
neY n(f)=n
=3 > be(Folsng) + Filsng)u(0) + Fa(sa)1(0) + Fa(sn)u03(0)) (be, ),
ne€Y n(¢)=n
(14.40)
where Fy,..., F3 are the real-valued component functions such that

fi(2) = Fo(2) + Fi(2)j + Fa(2)i + F3(2)ji

If now f; is the restriction of an intrinsic slice function f(s) = fo(s)+jsf1(s), then
Fo(sn(e),j) = fo(se;) = fo(se) and Fi(sp(e),;) = fi(se;) = fi(se) and Fy(z) =
F3(z) = 0. Since moreover Fi(sp(p),;) = fi(s¢) = 0if s, € R and «(f) = js, if
s¢ ¢ R, we find that (14.40) actually equals (14.39) in this case. Note, however,
that for every other function f;, the integral (14.40) depends on the random choice
of the functions ¢(¢) and j(¢), which are not fully determined by T

Let us now investigate the relation between (14.40) and the right linear struc-
ture of T'. Let us therefore change to the eigenbasis by, £ € A, with Tby = ngg]
defined in Example 14.3.10. For convenience let us furthermore choose ¢(¢) and
3(¢) such that

Jy=>Y" > bujlbe,y) and Ky= " > beilbe,y)

neY n(l)=n neY n(l)=n

The left multiplication £ is hence exactly the left multiplication induced by the
basis by,¢ € A, and multiplication of y by a € H from the left exactly cor-
responds to multiplying the coordinates (bs,y) by a from the left, ie., ay =
D omer Zn(l):n Bg@(@g,g}. (Note, however, that unlike multiplication by scalars
from the right, multiplication by scalars from the left corresponds to multipli-
cation of the coordinates only in this basis. This relation is lost if we change the
basis.)

Let us define <Bg,y> = ap with a; = ag1 + ag2? with ag1,a02 € C; and
let f; : (C;' — H. If we write f;(2) = fi1(2) + f2(2)i, this time with C;-valued
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components f1, fo : (C;r — C;, then (14.40) yields

/ fi(z) dE(= Z Z bf (f1(sn3) + fa(sn,5)i) (a1 + azi)

neY n(

= Z be(ar fi(sn) + @1 falsn)i) (14.41)

neY n(f)=n

+ Z Z be(azifa(sn,;) — G2 fa(sn;))-
neY n(l)=n
If we compare this with (14.32), then we find that [+ f;(z) d€(z) corresponds to
J
an application of f; to the right eigenvalues of 1" only if fo = 0 and f; can be

extended to a function on all of C; such that f1(3z;) = fi(se,;). This is, however,
the case if and only if f; = fi is the restriction of an intrinsic slice function to (C;r.

As pointed out above, spectral integrals of intrinsic slice functions defined
in the sense of [13] or [144] can be considered spectral integrals with respect to
a suitably chosen spectral system. The other two approaches—in particular the
approach using igPVMs in [144]—allow, however, the integration of a larger class
of functions.

The authors of [144] argue in the introduction that the approach of spectral
integration in [13] is complex in nature, since it allows one to integrate only Cj;-
valued functions defined on (C;' for some j € S. They argue that their approach
using iqgPVMs, on the other hand, is quaternionic in nature, since it allows one
to integrate functions that are defined on a complex half-plane and take arbitrary
values in the quaternions. It is rather the other way around. It is the approach to
spectral integration using spectral systems that is quaternionic in nature, although
they allow one to integrate only intrinsic slice functions, and we have three main
arguments in favor of this point of view:

(i) Spectral integration with respect to a spectral system does not require the
random introduction of any undetermined structure.

If we consider a normal operator T = A 4+ JB on a quaternionic Hilbert
space, then only its spectral system J is uniquely defined. The extension
of J to a unitary anti-self-adjoint operator J that can be interpreted as
multiplication L; = J by some j € S from the left is not determined by T
Also, multiplication L; by some ¢ € S with ¢ L j that extends L; to the left
multiplication £ in an iqgPVM & = (E, £) associated with T is not determined
by T'. The construction in [142] and [144] is based on the spectral theorems for
quaternionic self-adjoint operators and for complex linear normal operators.

As we shall see in Chapter 15, the spectral orientation J of a spectral
operator T—that is, the imaginary operator in the spectral system (E,J)
associated with T—on a right Banach space can be constructed once the
spectral measure E associated with T is known. Since the spectral theorems
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for self-adjoint operators and for complex linear operators are not available on
Banach spaces, it is not clear how to extend J to a fully imaginary operator
or even further to something that generalizes an igPVM and whether this is
possible at all.

Spectral integration with respect to a spectral system has a clear interpre-
tation in terms of the right linear structure on the space.

The natural domain of a right linear operator is a right Banach space. If a left
multiplication is defined on the Banach space, then the operator’s spectral
properties should be independent of this left multiplication. Integration with
respect to a spectral system (F,J) has a clear and intuitive interpretation
with respect to the right linear structure of the space: the spectral measure
E associates (right) linear subspaces to spectral spheres, and the spectral ori-
entation determines how to multiply the spectral values in the corresponding
spectral spheres (from the right) onto the vectors in these subspaces.

The role of the left multiplication in an igPVM in terms of the right
linear structure is less clear. Indeed, we doubt that there exists a similarly
clear and intuitive interpretation in view of the fact that no relation between
left and right eigenvalues has been discovered up to now.

Extending the class of integrable functions toward non-intrinsic slice func-
tions does not seem to bring any benefit and might not even be meaningful.

Extending the class of admissible functions for spectral integration beyond
the class of measurable intrinsic slice functions seems to add little value to
the theory. As pointed out above, the proof of the spectral theorem in [13]
translates directly into the language of spectral systems, and hence spectral
systems offer a framework that is sufficient to prove the most powerful result
of spectral theory.

Even more, spectral integrals of functions that are not intrinsic slice
functions cannot follow the basic intuition of spectral integration. In partic-
ular, if we define a measurable functional calculus via spectral integration,
then this functional calculus only follows the fundamental intuition of a func-
tional calculus, namely that f(7') should be defined by the action of f on the
spectral values of T if the underlying class of functions consists of intrinsic
slice functions.



Chapter 15 ®

Check for
updates

Bounded Quaternionic Spectral
Operators

We turn our attention now to the study of quaternionic linear spectral operators,
in which we generalize the complex linear theory in [106]. The results presented
in this chapter can be found in [125] and in [128].

15.1 The Spectral Decomposition of a Spectral
Operator

A complex spectral operator is a bounded operator A that has a spectral resolution,
i.e., there exists a spectral measure E defined on the Borel sets B(C) on C such
that og(Ala) C A with Ay = Alyan p(a) for all A € B(C). Chapter 14 showed
that spectral systems take over the role of spectral measures in the quaternionic
setting. If F is a spectral measure that reduces an operator T' € B(Vg), then there
will in general exist infinitely many imaginary operators J such that (E,J) is a
spectral system. We thus have to find a criterion for identifying the one among
them that fits the operator 7' and that can hence serve as its spectral orientation.
A first and quite obvious requirement is that 7" and J commute. This is, however,
not sufficient. Indeed, if J and T" commute, then also —J and 7" commute. More
generally, every operator that is of the form J := —FE(A)J 4+ E(H \ A)J with
A € Bg(H) is an imaginary operator such that (FE, J ) is a spectral system that
commutes with 7.

We develop a second criterion by analogy with the finite-dimensional case.
Let T € B(H™) be the operator on H" that is given by the diagonal matrix
T= diag(A1,...,A,) and let us assume Ay ¢ R for ¢ = 1,...,n. We intuitively
identify the operator J = diag(jx,,.-.,jx,) as the spectral orientation for 7', cf.
also Example 14.3.10. Obviously J commutes with 7. Moreover, if so € R and
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s1 > 0 are arbitrary, then the operator (soZ — s1J) — T is invertible. Indeed, one
has
(s0Z — s1J) = T = diag(5j,, — A1,.--, 555, — An),

where Sjx, = S0 T Jx,S1. Since iy — Ao = (S0 — Ae,o) + Ja,(—s1 — A1) and both
s1 > 0 and Ap; > 0 for all £ = 1,...,n, each of the diagonal elements has an
inverse, and so

((soT —s1J) = T)" " =diag ((57,, = M), (S, — M) 7).

This invertibility is the criterion that uniquely identifies J.

Definition 15.1.1. An operator T € B(Vg) is called a spectral operator if there
exists a spectral decomposition for T, i.e., a spectral system (F,J) on Vi such
that the following three conditions hold:

(i) The spectral system (F,J) commutes with T, i.e., E(A)T = TE(A) for all
A € Bg(H) and TJ = JT.

(i) If we set Ta := Ty, with Va = E(A)Vg for A € Bg(H), then

Us(TA) CA forall Ae %s(H)

(iii) For all sp,s1 € R with s; > 0, the operator ((soZ — s1J) — T)|v, has a
bounded inverse on V; := E(H\ R)Vg =ran J.

The spectral measure E is called a spectral resolution for T, and the imaginary
operator J is called a spectral orientation of T'.

A first easy result, which we shall use frequently, is that the restriction of a
spectral operator to an invariant subspace E(A)Vy is again a spectral operator.

Lemma 15.1.2. Let T € B(Vg) be a spectral operator on Vi and let (E,J) be a
spectral decomposition for T. For every A € Bg(H), the operator Ta = Ty, with
Va =ran E(A) is a spectral operator on Va. A spectral decomposition for Ta is
(EA, JA) with EA(J) = E((T)|VA and Ja = J|VA,

Proof. Since E(A) commutes with E(o) for o € Bg(H) and J, the restrictions
Ex(o) = E(0)|v, and Ja = J|y, are right linear operators on Va. It is immediate
that Ea is a spectral measure on Va. Moreover,

ker Ja = ker J N Va =ran E(R) N Va = ran EA(R)

and
ranJa =ranJ NVa =ran E(H\ R) N VA =ran Ea(H \ R).

Since

—J3 = =T|vs = EM\R)|v, = Ea(H\R),
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the operator —JZ is the projection of Va onto ran Ja along ker Ja. Hence Ja is
an imaginary operator on Va. Moreover, (Ea, Ja) is a spectral system. Since

En(0)TAE(A) = E(0)TE(A) =TE(0)E(A) =TAEA(0)E(A),
and similarly
JATAE(A) = JTE(A) =TJE(A) = TaJAE(A),

this spectral system commutes with Ta.
If o € Bs(H) and we set Va , = ran Ea(o), then

Vao =ran E(o)|y, =ran E(0)E(A) =ran E(c N A) = Van,.

Thus Talv,, = T|v, s and 5o 05(Ta,s) = 05(Tans) C AUo C 0. Hence Ea
is a spectral resolution for Ta. Finally, for sg,s1 € R with s; > 0, the operator
soZ — s1J — T leaves the subspace Va1 := ran Eao(H\ R) = ran E(A N (H\ R))
invariant because it commutes with E. Hence the restriction of (s¢Z —s1J — T)|‘_,11
to Vaq € Vi =ran E(H \ R) is a bounded linear operator on Va ;. It obviously
is the inverse of (soZ — s1JA — Ta)|v, ,- Therefore (Ea,.Ja) is actually a spectral
decomposition for Ta, which hence is in turn a spectral operator. O

The remainder of this section considers the questions of uniqueness and ex-
istence of the spectral decomposition (E,J) of T. We recall the Vi-valued right
slice hyperholomorphic function R(T;y) := Qs(T)"tys — TQ4(T) ty on pg(T)
for T € L(Vg) and y € Vg, which was defined in Definition 14.2.8. If T" is bounded,
then Q,(7T)~! and T' commute, and we have

Rs (T; y) =0, (T)il(yg - Ty)'

Definition 15.1.3. Let 7" € B(Vg) and let y € Vg. A Vg-valued right slice hyper-
holomorphic function f defined on an axially symmetric open set D(f) C H with
ps(T) C D(f) is called a slice hyperholomorphic extension of Ry4(T;y) if

(T? — 25T + |s|*T) f(s) = y5— Ty Vs € D(f). (15.1)
Obviously such an extension satisfies
f(s) =Rs(Tyy) for s € ps(T).

Definition 15.1.4. Let T' € B(Vg) and let y € Vg. The function R, (T;y) is said
to have the single-valued extension property if every two slice hyperholomorphic
extensions f and g of Rs(T;y) satisfy f(s) = g(s) for s € D(f) N D(g). In this
case,

ps(y) == U{D(f) . f is a slice hyperholomorphic extension of Rs(T;y)}

is called the S-resolvent set of y, and og(y) = H \ ps(y) is called the S-spectrum
of y.
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Since it is the union of axially symmetric sets, pg(y) is axially symmetric.
Moreover, there exists a unique maximal extension of R4(T’;y) to ps(y). We shall
denote this extension by y(s).

We shall see soon that the single-valued extension property holds for R (T; y)
for every y € Vi if T is a spectral operator. This is, however, not true for an
arbitrary operator T' € B(Vg). A counterexample can be constructed analogously
to [106, p. 1932].

Lemma 15.1.5. Let T € B(Vg) be a spectral operator and let E be a spectral
resolution for T. Let s € H and let A C H be a closed axially symmetric set such
that s ¢ A. If y € Vg satisfies (T? — 2soT + |s|*Z)y = 0, then

E(A)y=0 and E([s]))y=y.

Proof. Assume that y € Vg satisfies (7% — 2597 + |s|>Z)y = 0 and let Ta be the
restriction of T to the subspace Va = E(A)V. Since s ¢ A, we have s € pg(Ta),
and so Q,(Ta) is invertible. Since Q4(Ta)™ = Q4(T) v, , we have

Qu(Ta) H(T? = 250T + [s|*T) E(A) = E(A),
from which we deduce

E(A)y = Qu(Ta) N(T? — 250T + |s]*T)E(A)y
= Q.(Ta) *E(A)(T? — 25T + |s|?T)y = 0.

b

(Z—-E([s]))y = lim E(Ay)y =0,

n—oo

Now define for n € N the closed axially symmetric set

S|

A, = {p e H: dist(p,[s]) >

By the above, we have E(A,)y = 0 and in turn

so that y = E([s])y. O

Lemma 15.1.6. If T € B(Vg) is a spectral operator, then for every y € Vg, the
function Rs(T;y) has the single-valued extension property.

Proof. Let y € Vi and let f and g be two slice hyperholomorphic extensions of
Rs(T;y). We set h(s) = f(s) — g(s) for s € D(h) =D(f) N D(g).

If s € D(h), then there exists an axially symmetric neighborhood U C D(h)
of s, and for every p € U we have

(T2 — 2poT + [p|*T)h(p) = (T* — 2poT + [p|*T) f(p) — (T* — 2poT + |p|*)g(p)
=(yp—Ty)— (yp—Ty) = 0.
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If E is a spectral resolution of T, then we can conclude from the above and
Lemma 15.1.5 that E([p])h(p) = h(p) for p € U. We consider now a sequence
sp € U with s, # s for n € U such that s, — s as n — 0o and obtain

0= E([s])E([sn])h(sn) = E([s])h(sn) = E([s])h(s) = h(s).
Hence f(s) = g(s), and Rs(T,y) has the single-valued extension property. O

Corollary 15.1.7. If T € B(Vg) is a spectral operator, then for every y € Vg,
the function Rs(T;y) has a unique mazimal slice hyperholomorphic extension to
ps(y). We denote this mazimal slice hyperholomorphic extension of Rs(T;y) by
y().

Corollary 15.1.8. Let T € B(Vg) be a spectral operator and let y € V. Then
os(y) =0 if and only if y = 0.

Proof. If y = 0, then y(s) = 0 is the maximal slice hyperholomorphic extension of
Rs(T;y). It is defined on all of H, and hence og(y) = 0.

Now assume that o5(y) = 0 for some y € Vg such that the maximal slice
hyperholomorphic extension y(-) of Rs(T;y) is defined on all of H. For every
w* € V5, the function s — (w*,y(s)) is an entire right slice hyperholomorphic
function. From the fact that Rs(T;y) equals the resolvent of T as a bounded
operator on Vg ;., we deduce lim,_,o Rs(T;y) = 0 and then

Jim (W, y(s)) = lim (w*, Ry(T;y)) = 0.
Liouville’s theorem for slice hyperholomorphic functions therefore implies that
(w*,y(s)) = 0 for all s € H. Since w* was arbitrary, we obtain y(s) = 0 for all
s € H.

Finally, we can choose s € pg(T) such that the operator Q(T) = T?—2s¢T +
|s|Z is invertible, and we find because of (15.1) that

0=1y(s)s — Ty(s) = Qs(T) ' Qu(T)y(s)s — TQs(T) " Qu(T)y(s)
= Q,(T) 1 (Qs(T)y(s)s — TQ(T)y(s))
= Q. (T) " ((ys — Ty)s — T(ys — Ty))
= Qu(T) 1 (T?y — Ty2s0 + yls|*) = Qu(T) ' Qu(T)y = y. O

Theorem 15.1.9. Let T € B(Vg) be a spectral operator and let E be a spectral
resolution for T. If A € Bg(H) is closed, then

EA)Vr={yeVr: os(y) C A}.

Proof. Let VAo = E(A)Vg and let Ta be the restriction of T to Va. Since A is
closed, Definition 15.1.1 implies o5(Ta) C A. Moreover Q4(Ta) = Qs(T)|v, for
s € H. If y € Va, then

Q(T)R(T;y) = Qs(Ta)Qs(Ta) ' (y5 — Tay) = ys — Ty
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for s € pg(Ta), and hence Rs(Ta;y) is a slice hyperholomorphic extension of
Rs(T;y) to ps(Ta) D H\ A. Thus og(y) C A. Since y € Vi was arbitrary, we
obtain E(A)Vg C {y € Vg : 05(y) C A}

In order to show the converse relation, we assume that og(y) C A. We
consider a closed subset o € Bg(H) of the complement of A and set T, = Ty,
with V, = E(0)Vg. As above, Rs(Ty; E(0)y) is then a slice hyperholomorphic
extension of Rs(T; E(o)y) to H\ o. If, on the other hand, y(s) is the unique
maximal slice hyperholomorphic extension of R, (7T';y), then

Qs(TE(0)y(s) = E(0)Qs(T)y(s)
= E(0)(ys —Ty) = (E(0)y)s — T(E(o)y)

for se H\A, and so E(0)y(s) is a slice hyperholomorphic extension of Rs(T'; E(0)y)
to H\ A. Combining these two extensions, we find that Rs(T; E(c)y) has a slice
hyperholomorphic extension to all of H. Hence og(E(0)y) = 0, so that E(A)y =0
by Corollary 15.1.8.

Let us now choose an increasing sequence of closed subsets o,, € Bg(H) of
H\ A such that |, .y 0n = H\ A. By the above arguments, FE(o,)y = 0 for every
n € N. Hence

neN

E(H\A)y = lim E(A,)y =0,

n—00
so that in turn E(A)y = y. We thus obtain EF(A)Vg D {y € Vg :05(y) C A}. O
The following corollaries are immediate consequences of Theorem 15.1.9.

Corollary 15.1.10. Let T € B(VRg) be a spectral operator and let E be a spectral
resolution of T. Then E(og(T)) =T.

Corollary 15.1.11. Let T € B(VRg) be a spectral operator and let A € Bg(H) be
closed. The set of all y € Vg with os(y) C A is a closed right subspace of Vg.

Lemma 15.1.12. LetT € B(VR) be a spectral operator. If A € B(VRr) commutes with
T, then A commutes with every spectral resolution E for T. Moreover, og(Ay) C

os(y) for ally € Vig.
Proof. For y € Vi we have

(T? — 250T + |s|*°T) Ay(s) = A(T? — 2s0T + |s|*T)y(s)
= A(ys — Ty) = (Ay)s — T(Ay).

The function Ay(s) is therefore a slice hyperholomorphic extension of R4(T'; Ay)
to ps(y), and so o5(Ay) C os(y). From Theorem 15.1.9 we deduce that

AE(A)V € E(A)V

for every closed axially symmetric subset A of H.
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If 0 and A are two disjoint closed axially symmetric sets, we therefore have
E(A)AE(A) = AE(A) and E(A)AE(c) = E(A)E(0)AE(0) =0.

If we choose again an increasing sequence of closed sets A,, € Bg(H) with H\ A =
Unen An, we therefore have

E(A)AEH\ A)y = nl;ngo E(AAE(A))y=0 VYyeVgr
and hence
E(A)A = E(A)A[E(A)+ E(H\ A)] = E(A)AE(A) = AE(A). (15.2)

Since A was an arbitrary closed set in B¢ (H) and since the sigma-algebra 9B g (H)
is generated by sets of this type, we finally conclude that (15.2) holds for every
set o € Bg(H). O

Lemma 15.1.13. The spectral resolution E of a spectral operator T € B(Vg) is
uniquely determined.

Proof. Let E and E be two spectral resolutions of T'. For every closed set A €
B¢ (H), Theorem 15.1.9 implies

E(A)E(A) = E(A) and E(A)E(A) = E(A),

and we deduce from Lemma 15.1.12 that F(A) = E(A). Since the sigma algebra
Bs(H) is generated by the closed sets in Bg(H), we obtain £ = E, and hence the
spectral resolution of T is uniquely determined. (I

Before we consider the uniqueness of the spectral orientation, we observe
that for certain operators, the existence of a spectral resolution already implies
the existence of a spectral orientation and is hence sufficient for them to be a
spectral operator.

Proposition 15.1.14. Let T € B(Vg) and assume that there exists a spectral resolu-
tion E for T. If o5(T)NR = 0, then there exists an imaginary operator J € B(VR)
that is a spectral orientation for T such that T is a spectral operator with spectral
resolution (E,J). Moreover, this spectral orientation is unique.

Proof. Since o5(T) is closed with o5(T) NR = (), we have dist(os(T),R) > 0.
We choose j € S and consider T' a complex linear operator on Vg ;. Because of
Theorem 14.2.7, the spectrum of T" as a Cj-linear operator on Vg ; is oc,(T) =
os(T) N C;. Since dist(og(T),R) > 0, the sets

or =oc,(T)N (Cj+ and o_ =oc,(T)NC;

are open and closed subsets of oc, (T') such that o, Uo_ = oc,(T'). Via the Riesz—
Dunford functional calculus we can hence associate spectral projections E and
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E_ onto closed invariant C;-linear subspaces of Vg ; to o1 and o_. The resolvent
of T as a Cj;-linear operator on Vg j at z € pc,(T) is R.(T)y := Q.(T) *(yz—Ty),
and hence these projections are given by

1
Eyy:i= [ Q.(T)'(yz —Ty)dz5—,
T, 2my
. (15.3)
Pp— _1 7_ —
E_y:= . Q.(T) (yz Ty)dzZﬂ_j7

where I'} is a positively oriented Jordan curve that surrounds o4 in (Cj' and I'_
is a positively oriented Jordan curve that surrounds o in C;. We set

Jy = E_y(—j) + E+yj.

From Theorem 14.2.10 we deduce that J is an imaginary operator on Vg if ¥ :
y — yi is a bijection between V, := F, Vi and V_ := E_Vpg for i € S with ¢ L j.
This is indeed the case: due to the symmetry of oc,(T') = o5(T") NC; with respect
to the real axis, we obtain o, = &_, so that we can choose I'_(¢) = T'; (1 —t) for
t € [0,1] in (15.3). Because of the relation (14.14) established in Theorem 14.2.7,

the resolvent R, (T') of T as an operator on Vg ; satisfies Rz(T)y = — [R.(T')(y1)] 4,
and so
E_y= R.(T)y dzi =— Rz(T)y d?i
- r 27 r, 21§
1 1
= R.(T szffz/ R,(T)(yi)] dz—(—1) = [E4(yi)] (—7).
L g = [ R0 e ) = () ()

Hence we have
(E_y)i=E,(yi) Vy¢€ V. (15.4)

If y € V_, then yi = (E_y)i = E(yi), and so yi € V. Replacing y by yi in
(15.4), we find that also (E_yi)i = —E(y) and in turn E_(yi) = E(y)i. For
y € V4 we thus find that yi = E,(y)i = E_(yi), and so yi € V_. Hence ¥ maps
V4 to V_ and V_ to V,, and since ¥=1 = —W, it is even bijective. We conclude
that J is actually an imaginary operator.

Let us now show that (i) in Definition 15.1.1 holds. For every A € Bg(H),
the operator Q. (T)~! commutes with E(A). Hence

BBy = | BA)QD) " (7 - Ty sy

= [ e.m Bz - T dz% — B, E(A)y

for every y € Vg = Vg, and so ELE(A) = E(A)E,. Similarly, one can show
that also E(A)E_ = E_E(A). By construction, the operator J hence commutes
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with T and with E(A) for every A € Bg(H), since
TJy=TE y(—j)+TEryj = E_Ty(—j)+ E+Tyj = JTy
and

E(A)Jy = E(A)E_y(—j) + E(A)ELyj
=E_E(A)y(=j) + E+E(A)yj = JE(A)y.
Moreover, since og(T) NR = @), Corollary 15.1.10 implies ran F(R) = {0} = ker J
and ran E(H \ R) = Vg = ranJ. Hence (E, J) is actually a spectral system that
moreover commutes with 7.

Let us now show condition (iii) of Definition 15.1.1. If sg, s1 € R with s; > 0,
then set s; := sg + jsi. Since B + E_ =1, we then have

((s0Z —s1J) = T)y

= (E+ + E-)yso — (E4y)js1 — (E-y)(=j)s1 = T(Ey+ + E_)y

= (E4y)(so — 51J) — T(Eqy) + (E-y))(so + su) T(E_y)

= (Byy)sj — T(Ery) + (E_y)s; — T(E_y)

= (5jZvy,;, — T)Eyy + (5;Zv,, — T)E_y.
Since F; and E_ are the Riesz projectors associated to ot and o_, the spectrum
o(Ty) of Ty := Ty, is 04 C Cj and the spectrum o(7_) of T_ := T|y_ is
o_ C C; . Since s; has positive imaginary part, we find that s € C;” C p(T4) and
55 € (C;' C p(T-), so that Rs,(Ty) := (5;Zv, — T+)_1 € B(V4) and R, (T)~ " :=
(stvf — T,)_1 € B(V_) exist. Since E|y, = Iy, and E_|y, = 0, they satisfy
the relations

EyRs:(Ty)Ey = Re:(Ty)E; and E_Rs(T{)Ey =0 (15.6)

and similarly also

E_R,,(T_)E_ =R, (T_)E_ and E,R, (T_)E_ =0. (15.7)

Setting R(so,s1) = Rs; (T} )E; + R, (T_)E_, we obtain a bounded C;-linear
operator that is defined on the entire space Vg ; = Vgr. Because E, and E_
commute with T and satisfy E; E_ = E_E; = 0 and because (15.6) and (15.7)
hold, we obtain for every y € Vg,

R(s0,51)((s0Z —s1J) = T)y

= [Rs5(T1)Ey + Ry (T-)E_] [(5iZvn,; — T)E+y + (siZvn, — T)E-y]
= Re;(14)(55Zvy,; — T4 )Eyy + Ry, (T-)E_(s;Zvy, , —T-)E_y
=Eyy+E y=y
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and

((s0Z — s1J) — T)R(s0, 1)y

= [5jZvi; = T)E+ + (8jZvn, — T)E-] [Re;(TH) By + Ry (T-)E_] y
= (57T, — To)Res (T3 ) Bsy + (sTv. — )Ry (T_)B_y

=Eiy+E y=y.

Hence R(sg,s1) € B(Vg,;) is the Cj-linear bounded inverse of (soZ — s1J) —
Since (s9Z — s1J) — T is quaternionic right linear, its inverse is quaternionic right
linear too, so that even ((soZ — s1J) — T)~! € B(Vg). Therefore, J is actually
a spectral orientation for 7', and T is in turn a spectral operator with spectral
decomposition (E, J).

Finally, we show the uniqueness of the spectral orientation .J. Assume that
J is an arbitrary spectral orientation for T. We show that V+ = V+ equals V; =

VJJ.. Theorem 14.2.10 implies then J = .J because ker J = ker J = ran E(R) = {0}
and VJjj = V+Z = V+’L = VL{]
Since J commutes with 7', we have JE, = EJ, since

1

JE :/ JO(T) Y (yz — Ty)dz—
+Y . (1) (y ) o]

(15.8)

~ ~ 1 ~
= AT Y (Jyz — TJy)dz— = E_ Jy.
F+Q( ) (Jyz = T Jy) 5 +Jy

The projection F; therefore leaves ‘,/: invariant because
J(Ery) = By (Jy) = (Eqy)j € Vs

for every y € XZ Hence E+|V~+ is a projection on ‘,/\':r

We show now that ker E+|V~+ = {0}, so that EJr|‘7+ = Ty, and hence Vi C
ran £, = V,. We do this by constructing a slice hyperholomorphic extension
of Rs(T;y) that is defined on all of H and applying Corollary 15.1.8 tor any
y € ker E+|\Z'

Let y € kerE+|‘7:. Since ker E+|V~+ C ker By = ranE_ = V_, we obtain
y € V_.For z = 2 + z1j € C;, we define the function

RZ(T—)ya 21 Z Oa

i(2; = ~ -1
JiGz:y) (ZOI+ z1d — T)) y, 21 <O0.

This function is (right) holomorphic on C;. On (C;-|r this is obvious because the
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resolvent of T_ is a holomorphic function. For z; < 0, we have
1/ 0 0 .
5 <820fj(zay) + aﬁfj(%?/)])
1 ~ —2 - -2 _
= < (ZOIJrzlJfT)) y— (ZOIJFZlJfT)) Jyj)

= % (— (ZoI—Fle—T))iQy_ <Z01+Z1J—T)) Z/j2> =0,

since jy = yj because y € V+ Vi The slice extension f(s;y) of f;(s;y)

obtained from Lemma 2.1.11 is a slice hyperholomorphlc extension of R4(T;y) to
all of H in the sense of Definition 15.1.3. Indeed, since

QMMv. =Q.(T-)=(Zv.z2-T)(Zv.z—-T-),
we find for s € (Cj+ that

Qs(T)f(s3y) = Qs(T-) f(s39)
=(8Zv. —T-)(sTv. —T-)Rs(T-)y
=Ly, —T)y=ys—T_y=ys—Ty.

On the other hand, the facts that T and J commute and that —J2 = T because
J is an imaginary operator with ran J= Vi imply

(soz+ s1J — T) <soz s — T)

= sgI — soslj— sol + 5051(77 s%jQ — sle — sol" + 51Tj+ T2
= |s]*Z — 2507 + T?% = Q4(T).

For s = s1 + (—j)s1 € C;, we find thus because of y € f/jr = V}fj that
Qs(T)f(s;y) = (SOI+ s1.J — T) (SOI —s51J — T) fi(s;y)
= (SOIJr sljf T) (8017 sljf T) (solf sljf T)_1 Y
= (soI+81j—T>y:yso+yj31 —T=ys—Ty.
Finally, for s ¢ C;, the representation formula yields

Q.(T)f(s5:9) = Qu(T) (s 9)(1 = 345 + QT (55:0) (1 + )y

_ 1 1
= (y5; — Ty) (1 *st)g + (ys; — Ty)(1 +st>§

NN

=y (8501 — 34 + (1 +35) 5 — Ty (1= go) + (1 +5.))

_ NN . _
=y(s; +355+ (55 — 5j)]]s)§ —Ty=vy(so—s1js) — Ty =ys —Ty.
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From Corollary 15.1.8, we hence deduce that y = 0, and so ker E“"‘Z = {0}.
Since EJF|V~+ is a projection on Vi, we have V. = ker E’Jr|v~+ @ ran E+|V~+ ={0}®

ran E+|‘Z. We conclude that V:r =ran E+|‘7:r C ran B, = V. We therefore have

Ve=V,&V,iCV,®Vyi="Vg

This implies V. = ‘7; and in turn J = .J. g

Corollary 15.1.15. Let T' € B(Vg) and assume that there exists a spectral resolution
for T as in Proposition 15.1.14. If o5(T) = A1 U Ag with closed sets A1,Ay €
Bg(H) such that Ay C R and Ay NR = 0, then there exists a unique imaginary
operator J € B(VR) that is a spectral orientation for T such that T is a spectral
operator with spectral decomposition (E,J).

Proof. Let Ty = Ts|y,, where Vo = ran E(H \ R) = ran E(Az). Then the spectral
measure Ey(A) := E(A)]y, for A € Bg(H) is by Lemma 15.1.2 a spectral resolu-
tion for Ty. Since gg(Ts) C Ay and As NR = ), Proposition 15.1.14 implies the
existence of a unique spectral orientation J, for T5.

The fact that (Es, J2) is a spectral system implies ran Jo = ran Eo(H\R)V; =
V2 because E2(H\ R) = E(H\ R)|y, = Zy,. If we set J = JoE(H \ R), we find
that ker J = ran F(R) and ran J = V2 = ran E(H \ R). We also have

E(A)J = E(ANR)LEH\R) + E(A\ R)LE(H \ R)
— B(A\R)LE(H\R) = JoF>(A \ R)E(H \ R)
= LEA\R)E(H\R) = JLEMH\R)E(A\R) =JE(A),
where the last identity used that E(H \ R)E(A NR) = 0. Moreover, we have
—J? = —J,E(H\R)LEH\R) = —J2E(H\R) = E(H\R),

so that —J? is a projection onto ran.J = ran E(H \ R) along ker J = ran E(R).
Hence, J is an imaginary operator and (E, J) is a spectral system on Vg. Finally,
for every sg,s1 € R with s; > 0, we have

((s0Z — 51 — T)|vy) " = (s0Tv, — s1J2 — To) "' € B(Va),

and hence (E, J) is actually a spectral decomposition for 7.
In order to show the uniqueness of J we consider an arbitrary spectral ori-
entation J for 7. Then

kerJ = E(R)Vg =kerJ and ranJ = E(H\R)Vg = ran J. (15.9)

By Lemma 15.1.2, the operator j|V2 is a spectral orientation for T5. The spectral
orientation of Ty is, however, unique by Proposition 15.1.14, and hence J|y, =
Jy = J|v,. We conclude that J = J. O
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Finally, we can now show the uniqueness of the spectral orientation of an
arbitrary spectral operator.

Theorem 15.1.16. The spectral decomposition (E,J) of a spectral operator T €
B(VR) is uniquely determined.

Proof. The uniqueness of the spectral resolution E has already been shown in
Lemma 15.1.13. Let J and J be two spectral orientations for T'. Since (15.9) holds
also in this case, we can reduce the problem to showing that J|y, = J| lv, with
Vi := ran E(H \ R). The operator T} := Ty, is a spectral operator on V;. By
Lemma 15.1.2, (Ey,J;) and (Ey, J;) with Ey(A) = E(A)|y, and J; = J|y, and
Jy := J|v, are spectral decompositions of T}. Since Eo(R) = 0, it is hence sufficient
to show the uniqueness of the spectral orientation of a spectral operator under the
assumption F(R) = 0.

Therefore, let T be a spectral operator with spectral decomposition (E,J)
such that E(R) = 0. If dist(cg(7T"),R) > 0, then we already know that the state-
ment holds. We have shown this in Proposition 15.1.14. Otherwise, we choose a
sequence of pairwise disjoint sets A,, € Bg(H) with dist(A,,R) > 0 that cover
os(T) \ R. We can choose, for instance,

1T

T
A, = {SGH: =T < s0 < ||T|l, 1 <5 < |n|}

By Corollary 15.1.10 and since E(R) = 0, we have
E(0s(T)\R) = E(05(T) \R) + E(os(T) NR) = E(0s(T)) = I.

We therefore obtain 3,2 E(A,)y = E (U
we have o5(T) \ R C U, ey An-

Since E(A,) and J commute, the operator J leaves Va, := ran E(4A,,) in-
variant. Hence Ja, = J|v,  is a bounded operator on Va,, and we have

neN An) y = y for every y € Vi because

n?

+o00 +o00 +o0
n=0 n=1

n=1

Similarly, we see that also JfZ = J| lva, is a bounded operator on Va, and that
Ty = 3020 Ja, B(An)y.

Now observe that Ta, is a spectral operator. Its spectral resolution is given
by E,.(A) := E(A)|y,, for A € Bg(H), as one can check easily. Its spectral
orientation is given by Ja,, : for every A € Bg(H), we have

and hence E,(A)Ja, = Ja,E(A,) on Va, . Since ker Ja, = {0} = E,(R) and
ranJa, = Va, = E,(H\ R), the pair (E,Ja,) is actually a spectral system.
Furthermore, the operators Th, and Ja, commute, since

Ta,Ja,E(A,) = TJE(A,) = JTE(A,) = Ja, Ta, E(A,).



316 Chapter 15. Bounded Quaternionic Spectral Operators

Finally, for all sg,s; € R with s; > 0, we obtain
(SOIVAn — Slen — TAW)il = (SOI —s1J — T)il‘VAn,

so that (E,, Ja, ) is actually a spectral decomposition for T, . However, the same
arguments show that also (En, jAn) is a spectral decomposition for Ta . Since,

however, os (Ta,) C A, and dist(A,,R) > 0, Proposition 15.1.14 implies that
the spectral orientation of Ta, is unique such that Ja, = Ja, . We thus obtain

Jy=>Ja,B(A y—ZJA,L )y = Jy. O

Remark 15.1.17. In Proposition 15.1.14 and Corollary 15.1.15 we showed that
under certain assumptions the existence of a spectral resolution E for T already
implies the existence of a spectral orientation and is hence a sufficient condition for
T to be a spectral operator. One may wonder whether this is true in general. An
intuitive approach for showing this follows the idea of the proof of Theorem 15.1.16.
We can cover og(T)\R by pairwise disjoint sets A,, € Bg(H) with dist(A,,R) >0
for each n € N. On each of the subspaces V,, := ran E(A,,), the operator T induces
the operator Tj, := Ty, with o5(T,,) C A,,. Since dist(A,,R) > 0, we can then
define A, == A, N (C;' and A, _ = A, N (Cj_ for an arbitrary imaginary unit
J € S and consider the Riesz projectors £, | := xa, , (Tn) and E, _ := xa, _(Ty)
of T, on V, ; associated with A, ; and A, _. Just as we did in the proof of
Proposition 15.1.14, we can then construct a spectral orientation for 7, by setting
Iny = En 4+yj + En, _y(—j) for y € V,,. The spectral orientation of J must then
be

Jy=>_ JnE(An)y = Z En 1 E(A)y) + En_E(An)y(—j). (15.10)

If T is a spectral operator, then E,, = E.|y, and E,, _ = E_|y,, where E
and FE_ are as usual the projections of Vi onto VJ+ and VJ_ along Vo @ VJ_ resp.
Vo & V FiT Hence the Riesz projectors E, ; and E, _ are uniformly bounded in
n € N, and the above series converges. The spectral orientation of T' can therefore
be constructed as described above if T is a spectral operator.

This procedure, however, fails if the Riesz projectors F,  and E, _ are not
uniformly bounded, because the convergence of the above series is in this case
not guaranteed. The next example presents an operator for which the above series
does actually not converge for this reason although the operator has a quaternionic
spectral resolution. Hence the existence of a spectral resolution does not in general
imply the existence of a spectral orientation.

Example 15.1.18. Let ¢?(H) be the space of all square-summable sequences with
quaternionic entries and choose j,i € S with j 1 i. We define an operator T on
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(2(H) by the following rule: if (b,)nen = T'(an)nen, then

bom—1\ _ L (7 2myj a2m—1

For neatness, let us denote the matrix in the above equation by J,, and let us set
T = 723 Jm, that is,

_ (7 2my _ L (7 2mj
I = (0 _j ) and T, = 2 <0 i)
Since all matrix norms are equivalent, there exists a constant C' > 0 such that

|IM|| < C max |mg,.| VYM=("01 T2 cpp2x2 (15.12)
£,ke{1,2} ’ ma1 M22

such that ||.J,,|| < 2Cm. We thus find for (15.11) that

20
| (bam—1,b2m) T ||2 < E||(a2m717a2m)TH2 < 2C|(azm—1,az2m)” |2,

and in turn

“+o0
T (an)nenlZay = > [bam—1]* + [boml
m=1

o (15.13)

2
< Z ac® (‘a2m—1‘2 + ‘a2m|2) =4C? ||(an)neNH£2(H) :

m=1

Hence T is a bounded right-linear operator on ¢2(H).

We show now that the S-spectrum of T is the set A = {0} U U,en-5S. For
s € H, the operator Q4(T) = T? — 2s¢T + |s|? is given by the following relation:
if (Cn)neN = Q (T)(an)neNa then

1 .S 2 - S
Cam—1 —mz 2] 02 + ‘S‘ _4.7 m a2m—1
= m m S . 15.14
( Com > ( 0 _77:::2 - 2,7 ;102 |3|2 a2m ( )

The inverse of the above matrix is

m? 4im7so
0 (T )_1 _ |s]2m*—2isom2—1 |5\4m8+2(sg—s%)m4+1
s\dm 0 4

SEm2isgm?—1
_1 : : disq : :
_(GR T ) ) () )

(s+52)(5+52)

with s; = so + js1. Hence Q4(T;,) ™" exists for s; # -13j. We have

s (- [2])

J
m2

o _J
J mg

Sj—

J
2 =g + L S —
m?2 7 m2 J
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and so

1 1 ‘80|
Qs(T,, < Cmax — - 5 (> 15.15
o < o s o (@i (5, []) fown

where C' is the constant in (15.12). If s ¢ A, then 0 < dist(s, 4) < dist (s, [-5])
and hence the matrices Q4(7T},)~! are for m € N uniformly bounded by

» 1 [0l
Qs (T) | ScmaX{Qdist (s,A)” dist (s,A)Q}'

The operator Q4(T) ™! is then given by the relation

agm-1Y\ -1 [ C2m—-1
(1) = o (227), 1519

for (an)nen = Qs(T) 71 (¢n)nen- A computation similar to the one in (15.13) shows
that this operator is bounded on ¢*(H). Thus s € ps(T) if s ¢ A and in turn
g (T) C A

For every m € N, we set s,, = -13j. The sphere [s,,] = -13S is an eigen-
sphere of T and the associated eigenspace V,,, is the right-linear span of es,,_1
and ez, where €, = (0,,¢)ren, as one can see easily from (15.14). A straightfor-
ward computation, moreover, shows that the vectors yo,,—1 := €2;,—1 and yo,, =
—e9m—11 + %egmi are eigenvectors of T' with respect to the eigenvalue s,,. Hence
[sm] C o5(T). Since o5(T) is closed, we finally obtain A = |J,,cy[5m] C os(T)
and in turn og(7T) = A.

Let E,, for m € N be the orthogonal projection of £?(H) onto the subspace
Vm = SpanH{emelveZm}a that i57 Em(an)nGN = €2m—-102m—1 T €2ma2m. We
define for every set A € Bg(H) the operator

1
E(A) = Z E,, with IA::{mEN:WSCA}.

mela

It is immediate that E is a spectral measure on ¢?(H), that [|[E(A)| < 1 for every
A € B5(H) and that E(A) commutes with T for every A € Bg(H). Moreover, if
s ¢ A, then the pseudo-resolvent Q(Ta)~! of Ta = Ty, with VA =ran E(A) is

given by
QS(TA)_I = (Z Qs(Tm)_lEm>

mela

ran E(A)

Since 0 < dist (s, Unern [#]) = inf,, ez, dist (s, [#]), the operators Qg (T},) ™!
are uniformly bounded for m € Ia. Computations similar to (15.13) show that

Q4(Ta)! is a bounded operator on Va. Hence s € pgs(Ta) and in turn og(Ta) C

A. Altogether we obtain that F is a spectral resolution for T
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In order to construct a spectral orientation for T, we first observe that .J,, is
a spectral orientation for T;,. For sg,s1 € R with s; > 0, we have

1 .
o = s hn = = (SO . (510+ m) So(—i1<l_1 + )1277%7) )

the inverse of which is given by the matrix

1 2jm( Ly +s1)
(s0Tp2 — 51w — Ti) L= [ 0= (s2452)d so+(ﬁ+s ?
0 So+( +81)

Since s; > 0, each entry has nonzero denominator, and hence we have that the
operator (soZg> — 51y — Tn) " belongs to B(H?2).

If J € B(¢%(H)) is a spectral orientation for T, then the restriction J|y,, of J
to Vi, = spang{eam—1,€am} is also a spectral orientation for T,. The uniqueness
of the spectral orientation implies J|y,, = J,, and hence

J= ZJ|Vm< ) ZJE

This series does not, however, converge, because the operators Jy, are not uni-

m

formly bounded. Hence, it does not define a bounded operator on ¢2(H). Indeed,
the sequence asy, 1 =0, asy, = m_%, for instance, belongs to EQ(H), but

6 ) ()

“+00 2

m(an)neN

02 (H) m=1 2

B +oo41 1 B
—22 %4‘@—4‘00
m=1

Hence there cannot exist a spectral orientation for 7', and in turn 7T is not a
spectral operator on ¢2(IH).

We conclude this example with a remark on its geometric intuition. Let us
identify H? 2 C}, which is for every i € S with ¢ L j spanned by the basis vectors

e S )

The vectors y,,1 = by and Y2 = —ba + L b4 are eigenvectors of J,, with respect
to j, and the vectors yi1% = by and yp,2 = b1 — —bg are elgenvectors of J,,, with
respect to —j. We thus obtain VJm, = spang, {by,—ba+— b4} and V; .= VJm J

However, as m tends to infinity, the vector y, tends to y1i and yo7 tends to yi.
Hence intuitively, in the limit V; J = Vj;’ji = me’j, and consequently the

projections of H? = (C;l- onto Vj‘m ; along V. become unbounded.
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Finally, the notion of quaternionic spectral operator is backward compatible
with the complex theory on Vg ;.

Theorem 15.1.19. An operator T € B(Vg) is a quaternionic spectral operator if
and only if it is a spectral operator on Vg j for some (and hence every) j € S. (See
[106] for the complex theory.) If furthermore (E,J) is the quaternionic spectral
decomposition of T' and Ej; is the spectral resolution of T as a complex C;-linear
operator on Vg j, then

E(A) = EJ(A ﬂ(Cj) VA € %S(H),

o T (15.17)
Jy = E;(C"\)yj+ E;(C;")y(—j) Yy e Vr

with
(Cji’o = CT\R: {Zo+j21 D 20 €R 2 > O}

Conversely, E; is the spectral measure on Vi determined by (E,J) that was con-
structed in Lemma 14.3.8.

Proof. Let us first assume that T' € B(VR) is a quaternionic spectral operator with
spectral decomposition (F,J) in the sense of Definition 15.1.1 and let j € S. Let
FE, be the projection of ran J = VJJ ®V;; onto ij along V. and let E_ be the
projection of ran J onto V,; along V, 5 cf. Theorem 14.2.10. Since T' and E(A)
for A € Bg(H) commute Wlth J, they leave the spaces er and V. invariant,
and hence they commute with £ and E_. By Lemma 14.3. 8 the set function F;
on C; defined in (14.23), which is given by

E;j(A)=EyE([ANC]°])+ E(ANR)+ E_E ([ANC;*°]), (15.18)

for A € B(C;), is a spectral measure on Vg ;. Since the spectral measure E and
the projections £y and F_ commute with 7', the spectral measure F; commutes
with T too.

If A € B(C;) is a subset of (C?’O, then Jy = yj for y € Vj A :=ran E;(A),
since ran E;(A) = ran(EL E([A])) C Vjt'j. For z = zy+ jz1 € C; and y € Vj A, we
thus have

(2Zv, o = T)y = yzo +yjz1 — Ty
=yzo + Jyz1 — Ty = (20Zv, , +21J = T)y.

If z € (C;’O, then the inverse of (20Zvy, ; + 21J — T')|ran s exists because J is the
spectral orientation of T. We thus have R.(Ta) = (20Zv,,, +21J —T) |y, 5, and
o) (Cj_’o C p(Ta). If, on the other hand, z € (Cj' \ A, then z € pg(Ta)), where
Tia) = Tlvi,, with Via) = ran E([A]). Hence Q. (7)) has a bounded inverse
on Viaj. By the construction of E; we have Vj A = E+V[A], and since T} and

E, commute, Q,(Tja)) ! leaves Vj A invariant, so that QZ(T[A])’1|V_ . defines a
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bounded Cj-linear operator on V; A. Because of Theorem 14.2.7, the resolvent of
T at z is therefore given by

R.(T)y = Qs(Tia) ' (¥Z — Tay) Vy € Vja.

Altogether, we conclude that p(Ta) D C;° U (CJ \A) = C; \ A and in
turn o(Ta) C A. Similarly, we see that o(Ta) C A if A C C;°. If, on the other
hand, A C R, then E;(A) = E(A), so that Ta is a quaternionic linear operator
with 05(Ta) C A. By Theorem 14.2.7, we have 0(Ta) = oc,;(Ta) = 05(T) C A.
Finally, if A € B(C;) is arbitrary and z ¢ A, we can set Ay = AN (C;“O,
A_:=AnN (C;’o, and Ag := ANR. Then z belongs to the resolvent sets of each
of the operators Ta_, Tao_, and Ta,, and we obtain

R.(T) = R.(Ta, )Ej(Ay) + R(Ta ) E(Ag) + Ro(Ta_)E;(AL).

We thus have o(Ta) C A. Hence T is a spectral operator on Vg ;, and E; is its
(Cj-complex) spectral resolution on Vg ;.

Now assume that T is a bounded quaternionic linear operator on Vi and
that for some j € S there exists a Cj-linear spectral resolution E; for T" as a C;-
linear operator on Vg ;. Following Definition 6 of [104, Chapter XV.2], an analytic
extension of R.(T")y with y € Vg ; = Vg is a holomorphic function f defined on a
set D(f) such that (2Zv, , — T)f(z) = y for z € D(f). The resolvent p(y) is the
domain of the unique maximal analytic extension of R.(7T)y, and the spectrum
o(y) is the complement of p(y) in C;. (We defined the quaternionic counterparts
of these concepts in Definition 15.1.3 and Definition 15.1.4.) Analogously to The-
orem 15.1.9, we have

Ej(A)VR,j = {y S VRJ =Vgr: O'(y) C A}, VA € %((CJ) (15.19)

Let y € Vg j, let i € S with j L ¢, and let f be the unique maximal analytic
extension of R, (T)y defined on p(y). The mapping z — f (Z) i is then holomorphic
on p(y): for every z € p(y), we have Z € p(y) and in turn

lim (f (z+h)i—f(Z)i)h~" =lim (fE+h) - f2) T i=f (3)i.

h—0 h—0

Since T is quaternionic linear, we moreover have for z € p(y) that

(Tvn, —T) (f(2)1) = F (2)iz—T(f (2)0) = (f (2) 2= T} (2)) )i = yi.
Hence z +— f(Z)i is an analytic extension of R.(7)(yi) that is defined on p(y).
Consequently p(yi) D p(y), and in turn o(yi) C o(y). If f is the maximal analytic
extension of R,(T')(yi), then similar arguments show that z — f(Z)(—%) is an
analytic extension of R,(T)y. Since this function is defined on p(yi), we obtain
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p(y) D p(yi) and in turn o(y) C o(yi). Altogether, we obtain o(y) = o(yi) and
f(z) = f(Z)i. From (15.19) we deduce

ran E; (A) = {y € Vg; =Vr: o(y) C A}

={yi€Vr,; =Vr: o(y) C A} = (ran E;(A))i. (15.20)

In order to construct the quaternionic spectral resolution of T', we define now
E(A) = Ej(Aﬂ(Cj), VA € %S(H)

Obviously this operator is a bounded C;-linear projection on Vg = Vz ;. We show
now that it is also quaternionic linear. Due to the axial symmetry of A, the identity
(15.20) implies

(ran E(A))i = (ran E;(ANC;))i =ran E; (ANC;)
=ranF; (ANC;) =ran E(A).
Similarly, we obtain
(ker E(A))i = (ker E;(ANC,))i = (ran E;(C; \ A))i
=ranE; (C;\ A) = ran E; (C; \ A)
=ker E;(ANC;) =ker E(A).
If we write y € Vg as y = yo + y1 with yo € ker E(A) and y; € ran E(A), we thus
have
E(A)(yi) = E(A)(yoi) + E(A)(y11) = yri = (E(A)y)i.

Writing a € H as a = a; + ia2 with a1, a2 € C;, we find due to the Cj-linearity of
E(A) that even

E(A)(ya) = (E(A)y)ar + (E(A)yi)az = (E(A)y)ar + (E(A)y)iaz = (E(A)y)a.

Hence the set function A — E(A) defined in (15.18) takes values that are bounded
quaternionic linear projections on Vg. It is immediate that it moreover satisfies
items (i) to (iv) in Definition 14.1.7 because E; is a spectral measure on Vg ;
and hence has the respective properties. Consequently, F is a quaternionic spec-
tral measure. Since E; commutes with 7', also £ commutes with 7. From Theo-
rem 14.2.7 and the fact that o(T|;an £,(a,)) C A; for Aj € B(C;), we deduce for

Th = T‘ranE(A) = T|ran E;(ANC;) that

Gs(TA) = [O'(cj (TA)] C [A ﬂ(CjJ = [AO(CJ] =A.

Therefore F is a spectral resolution for 7.
Let us now set Vy = ran E;(R) as well as V} := ran E; ((C;"O) and V_ :=

ran F; ((Cj_o) Then Vg ; = Vo @ VL @ V_ is a decomposition of Vx into closed
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Cj-linear subspaces. The space V = ran E;(R) = ran E(R) is even a quaternionic
right linear subspace of Vi because E(R) is a quaternionic right linear operator.
Moreover, (15.20) shows that y +— yi is a bijection from Vi to V_. By Theo-
rem 14.2.10, the operator

Ty = E; (C]°) yj + E; (C;°) y(—j)

is an imaginary operator on Vg. Since E; commutes with T" and E(A) for A €
Bs(H), also J commutes with T and FE(A). Moreover, ker J = V = ran E(R)
and ranJ = ranEj(C;"o) @ ran E;(C;°) = ran E(H \ R), and hence (E, J) is a
spectral system that commutes with 7. Finally, we have o (T}) C C for T =
Ty, =T, By (C0) and hence the resolvent of R, (T ) exists for every z € C;°.
Similarly, the resolvent R.(T-) with T_ = T'|y_ =T, B (C°) exists for every

z € (C;"O. For sg,s1 € R with s; > 0 we can hence set s; = 5o + js1 and define by

R(So,Sl) = (RsT-(TJr)EJr + st (T—)E—)|v+@v,

with B, = E;(C;*°) and E_ = E;(C;*°) a bounded operator on V} & V_ =

ran E(H\ R). Since T leaves V. and V_ invariant, we then have for y =y, +y_ €
V+ (&) V_ that

R(s0,51)(80Z —s1J — T)y

= R(s0,51) (Y450 — Jy+s1 — Tyy +y—so — Jy_s1 — Ty_)

= R(s0,51) (y+5; — Ty+) + R(s0,51) (y—s; — Ty-)

= Rs;(T4) (y+55 — Thyy) + R, (T-) (y—s; = T-y-) = y+ +y- = v.

Similarly we find that

(s0Z — s1J —T)R(s0,51)y
= (80T — s1J — T)Rs; (T )y+ + (50T — s1J — T) R, (T-)y—
= Rs; (T4 )y+s0 — J(Rs; (T4 )y+)s1 — TRy (T4 )y+
+ R, (T-)y_so — J(Rs,;(T-)y—)s1 — TR, (T )y—
= Ry (T4 )y+(s0 — js1) — Rs; (T4 ) Thy+
Ry (T )y (s0 4+ js1) = Ry (T)T-y.
= Rs5(T4) (y+5 — Thyq) + Rs, (T-) (y-s = T_y-) =y +y- = y.
Hence R(so,51) is the bounded inverse of (s0Z — s1J — T')|van p\r), and so J is
actually a spectral orientation for 7. Consequently, T" is a quaternionic spectral

operator, and the relation (15.17) holds.
O

Remark 15.1.20. We want to stress that Theorem 15.1.19 showed a one-to-one
relation between quaternionic spectral operators on Vi and Cj-complex spectral



324 Chapter 15. Bounded Quaternionic Spectral Operators

operators on Vg ; that are furthermore compatible with the quaternionic scalar
multiplication. It did not show a one-to-one relation between quaternionic spec-
tral operators on Vg and C;-complex spectral operators on Vg ;. There exist C;-
complex spectral operators on Vg ; that are not quaternionic linear and hence
cannot be quaternionic spectral operators.

15.2 Canonical Reduction and Intrinsic S-Functional
Calculus for Quaternionic Spectral Operators

As in the complex case, every bounded quaternionic spectral operator T' can be
decomposed into the sum 7' = S 4+ N of a scalar operator S and a quasi-nilpotent
operator N. The intrinsic S-functional calculus for a spectral operator can then
be expressed as a Taylor series similar to the one that involves functions of S
obtained via spectral integration and powers of N. Analogously to the complex
case in [106], the operator f(T') is therefore already determined by the values of
f on 0g(T) and not only by its values on a neighborhood of og(T).

Definition 15.2.1. An operator S € B(Vg) is said to be of scalar type if it is a
spectral operator and satisfies the identity

S = /sdEJ(s)7 (15.21)

where (E, J) is the spectral decomposition of S.

Remark 15.2.2. If we start from a spectral system (E,J) and S is the operator
defined by (15.21), then S is an operator of scalar type and (E, J) is its spectral
decomposition. This can easily be checked by direct calculations or indirectly via
the following argument: by Lemma 14.3.8, we can choose j € S and obtain

sz/}HSdEJ(s):/Cjszj(z),

where E; is the spectral measure constructed in (14.23). From the complex theory
in [106], we deduce that S is a spectral operator on Vg ; with spectral decom-
position E; that is furthermore quaternionic linear. By Theorem 15.1.19, this is
equivalent to .S being a quaternionic spectral operator on Vi with spectral decom-
position (E,.J).

Lemma 15.2.3. Let S be an operator of scalar type with spectral decomposition
(E,J). An operator A € B(Vg) commutes with S if and only if it commutes with
the spectral system (E,J).

Proof. If A € B(Vg) commutes with (£, .J), then it commutes with S= [;; s dE;(s)
because of Lemma 14.3.6. If, on the other hand, A commutes with S, then it also
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commutes with F by Lemma 15 1 12 By Lemma 14.1.10, it commutes in turn
with the operator f(T) = [;; f( ) for every f € MOO(H R). If we define

So ::/HRe(s)dE(s) and S :z/H§dEJ(S)=J/H|§|dE(S)

where s = jss1 denotes the imaginary part of a quaternion s, then AS = SA and
ASy = SpA and in turn

AS; = A(S — Sg) = AS — ASy = SA — SpA = (S — Sp)A = S, A.
We can now choose pairwise disjoint sets A, € Bg(H), n € N, such that og(T') \

R = U,enAn and such that dist(A,,R) > 0 for every n € N. Then s
|s| 7' xa, () belongs to M (H,R) for every n € N, and in turn

Arm@) = 47 ([ sl xa, (00486 ) B )

a7 ([ 1145} ([ 15 v, ) 2 ) Ba)

— 48, ( 138, dE<s>) B(A)
=51 ([ 18 va.(08) ) (A4

7 ([11am@) ) ([ 197 e ()8 ) B4

= ([ Il s 6) 4B ) B4 = TE(A)A

Since 05(S)\R C U, ey An, we have 3720 E(A,)y = E(os(T)\R)y = E(H \ R)y
for all y € Vi by Corollary 15.1.10. Since J = JE(H \ R), we hence obtain

+oo
AJy=AJEMH\R)y =Y AJE(A,)y

n=1

= Z JE(A,)Ay = JE(H \ R)Ay = J Ay,

which finishes the proof. O
Definition 15.2.4. An operator N € B(Vg) is called quasi-nilpotent if

lim [N v =0. (15.22)




326 Chapter 15. Bounded Quaternionic Spectral Operators

The following corollaries are immediate consequences of Gelfand’s formula

r(T)= lim |T"|",

n—-+o0o
for the spectral radius r(7T") = max,ec,4(7) || of 7.

Corollary 15.2.5. An operator N € B(VRg) is quasi-nilpotent if and only if o5(T) =

{0}

Corollary 15.2.6. Let S,N € B(Vg) be commuting operators and let N be quasi-
nilpotent. Then o5(S + N) = 0g(S5).

We are now ready to show the main result of this section: the canonical
reduction of a spectral operator, the quaternionic analogue of Theorem 5 in [106,
Chapter XV.4.3].

Theorem 15.2.7. An operator T' € B(VR) is a spectral operator if and only if it is
the sum T = S + N of a bounded operator S of scalar type and a quasi-nilpotent
operator N that commutes with S. Furthermore, this decomposition is unique, and
T and S have the same S-spectrum and the same spectral decomposition (E,J).

Proof. Let us first show that every operator T' € B(Vg) that is the sum 7' = S+ N
of an operator S of scalar type and a quasi-nilpotent operator N commuting
with S is a spectral operator. If (E,J) is the spectral decomposition of S, then
Lemma 15.2.3 implies E(A)N = NE(A) for all A € Bg(H) and JN = NJ. Since
T =S5+ N, we find that also T commutes with (F,J).

Let now A € Bg(H). Then To = Sa + Na, where as usual the subscript
A denotes the restriction of an operator to Va = E(A)Vg. Since Na inherits the
property of being quasi-nilpotent from N and commutes with Sa, we deduce from
Corollary 15.2.6,that

Us(TA) = Us(SA +NA) = Us(SA) Cc A.

Thus (E, J) satisfies items (i) and (ii) of Definition 15.1.1. It remains to show that
also item (iii) holds true. Therefore, let Vj = ran E(H \ R) and set Ty = Ty,
So = Slvys No = Nly,, and Jo = J|y, and choose sg,s1 € R with s; > 0.
Since (F,J) is the spectral resolution of S, the operator soZy, — s1Jo — Sy has
a bounded inverse R(sg,s1) = (s0Zv, — s1Jo — So)~* € B(Vp). The operator Ny
is quasi-nilpotent because N is quasi-nilpotent, and hence it satisfies (15.22). The
root test thus shows the convergence of the series :ioo NZ'R(s0,81)" " in B(Vp).
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Since Ty, Ny, Sy, and Jy commute mutually, we have

+oo

(s0Zve — s1Jo — To) > N§'R(so,51)"
n=0

= ZNO (s0,51)" " (s0Zv, — s1Jo — So — No)

= Z NO So, 81 (SOIVO — 81J0 — S() Z NO 80, 81 +1N0

—+oo

= ZNO 80,81 — ZN€+1R(80,51)H+1 :IV0~
n=0

We find that sgZo — s1Jg — Tp has a bounded inverse for sg, s; € R with s1 > 0, so
that J is a spectral orientation for T'. Hence, T' is a spectral operator and 7" and
S have the same spectral decomposition (E,.J).

Since the spectral decomposition of T is uniquely determined, S = fH sdEj(s)
and in turn also N = T — S are uniquely determined. Moreover, Corollary 15.2.6
implies that og(T) = 05(9).

Now assume that T is a spectral operator and let (F,J) be its spectral
decomposition. We set

S::/sdEJ(s) and N:=T-5.
H

By Remark 15.2.2, the operator S is of scalar type, and its spectral decomposition
s (E,J). Since T commutes with (E, .J), it commutes with S by Lemma 15.2.3.
Consequently, N = T — S also commutes with S and with 7. What remains to
show is that N is quasi-nilpotent. In view of Corollary 15.2.5, it is sufficient to
show that og(N) is for every ¢ > 0 contained in the open ball B.(0) of radius ¢
centered at 0 .

For arbitrary ¢ > 0, we choose o > 0 such that 0 < (1 + Cg j)a < ¢,
where Cg,; > 0 is the constant in (14.22). We decompose og(T) into the union
of disjoint axially symmetric Borel sets Aq,..., A, € Bg(H) such that for each
Le{l,...,n}, theset Ay is contained in a closed axially symmetric set whose inter-
section with every complex half-plane is a half-disk of diameter .. More precisely,
we assume that there exist points s1,...,s, € H such that forall / =1,...,n

Ay C Bl ([s)) ={peH: dist(p,[s¢]) < aand p; > sp1}.

Observe that we have either s, € R or BJ ([s¢]) "R = 0.
We set Va, = E(Ay)Vg. Since T and S commute with F(Ay), also N =T-S
does, and so NVa, C Va,. Hence No, = N|y,, € B(Va,). If s belongs to ps(Na,)
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for all £ € {1,...,n}, we can set

Z Qs(Na,) " E(Ay),
=1
where
-1 2 2 -1
QS(NAz) = (NAE - 2SONAZ + |S| IVA£> € B(VAK)

is the pseudo-resolvent of Na, as s. The operator Q(s)~! commutes with E(A,)
for every £ € {1,...,n}, so that

(N2 — 2soN + |s|QIVR)Q(s)_1
= (NZ, = 250Na, + |sI°Tvs,)Qs(Na,) 'E(Ar) =Y E(Ag) = Ty,
/=1 =1
and
Q(s)*l(N2 — 259N + |s|QIVR)

= Z Qs(Na,) " E(A)(N? = 250N + [s[*Tvs,)
_ZQS NAZ NAZ_250NA2+| | IVA ) (Af)
= ZE(AZ) =Ty,.

Therefore, we find s € pg(N) such that (,_; ps(Na,) C ps(N) and in turn

os(N) € Uy, os(Na,). It is hence sufficient to show that og(Na,) C B.(0) for
all{=1,...,n

We distinguish two cases: if s, € R, then we write
Na, = (Ta, — SZIVAZ) + (SZIVAZ —Sa,)-
Since sy € R, we have for p € H that
QP(TAe - SZIVA,Z)
= (Tie —28¢Tn, + S%IVAK - ZPO(TAZ - SZIVAE) + (p% + p%)IVAZ
= ng - 2<p0 - SZ)TAZ + ((po - 55>2 +p%> IVAZ = QP*SZ(TAK)
and thus
05(Ta, —s¢Zv,) ={p—sc €H:p € os(Ta,)}

C{p—si€H:pe B}l (s))} = Ba(0). (15.23)
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Moreover, the function f(s) = (s, — $)xa,(s) is an intrinsic slice function because
s¢ € R. Since it is bounded, its integral with respect to (E, J) is defined and

seTvs, =S5, = ([ (50— 9na,(s) a5

VA@
We thus have
IsiZva, = Sa,l < Coall(se = )xar($llow < Coga (15.24)

because Ay C Ba([s¢])T = Bal(se). Since the operator Ta, — s¢Zv,, and the
operator SgIVAz — Sa, commute, we conclude from Theorem 4.4.12 together with
(15.23) and (15.24) that

os(Tar) = o5 ((Ta, = sTva,) + (seTva, = Sa,))
C {s € H: dist (s,os (Ta, — SZIVAE)) < CE,Ja} C Bagiscy ) (0) C B-(0).
If sy ¢ R, then let us write
Na, = (Ta, = seZva, — s01Ja,) + (sZva, + se1Jda, — Sa,) (15.25)

with Ja, = J|v,,. Since E(A;) and J commute, Ja, is an imaginary operator on
VA, and it moreover commutes with Ta,. Since —J3, = —J?|v, = E(H\R)|y,, =
Zv,, because Ay, CH\ R, we find for s = sg + js1 € H with s; > 0 that

(SOIVAZ + leAe — TA[) (SOIVA[ — 51JAZ — TA@)

(15.26)
= sg — s%Jil — 2507, + Tia = Qs(Tha,)-

Because of condition (iii) in Definition 15.1.1, the operator (s0Z—s1J—T)|;an p(E\R)
is invertible if s; > 0. Since this operator commutes with E(A,), the restriction
of its inverse to Va, is the inverse of (soZv,, — s1Ja, — Ta,) in B(Va,). Hence if
s1 > 0, then (soZv,, — s1Ja, — Ta,)”" € B(Va,), and we conclude from (15.26)
that

(s0Tva, +51Ja, —Ta,)  €B(Va,) <= Qu(Ta,) ' €B(Va,). (15.27)

If, on the other hand, s; = 0, then both factors on the left-hand side of (15.26)
agree, and so (15.27) holds also in this case. Hence s € pg(Ta,) if and only if the
operator (soZv,, + s1Ja, —T') has an inverse in B(Va,). Since

Us(TA[') C E C B;'_([Sg]) C {S =59+ jss1 €EH: 51> 85’1},

the operator SOIVAZ + s1Ja, — Ta, is in particular invertible for every quaternion
s € H with 0 < s1 < s¢,1. Since Ja, is a spectral orientation for Ta,, this operator
is also invertible if s; < 0, and hence we even obtain

(SoszE +s1Ja, — TAZ)_l S B(‘/Ag) Vsp,s1 €ER: 51 < s41. (15.28)
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We can use these observations to deduce a spectral mapping property: a
straightforward computation using the facts that Th, and Ja, commute and that
JX, = —Zvy,, shows that

Qs(Ta, — 800Zvy, — s01Ja,)
= ((So +800)Zva, + (51 +80,1)Ja, — TAZ) (15.29)

. ((50 + SE,O)IVA[ + (84’1 - Sl)JAg — TA[) .

If 51 > 0, then the second factor is invertible because of (15.28). Hence we have
s € ps(Ta, — SeonVAé — s¢1Ja,) if and only if the first factor in (15.29) is also
invertible, i.e., if and only if

((s0 + 500)Tva, + (51 +561)Ja, = Ta,) " € B(Va,) (15.30)
exists. If, on the other hand, s; = 0, then both factors in (15.29) agree. Hence also
in this case, s belongs to pg(Ta, — Se,OIVA[ — $¢,1Ja,) if and only if the operator
in (15.30) exists. By (15.27), the existence of (15.30) is, however, equivalent to

S0+ 80,0+ (81 +501)S C ps(Ta),
so that
ps(Ta, = s00Lva, — se1Jda,) = {s €H: s+ 500+ (51 +501)Js € ps(Ta,)}
and in turn
0s(Ta, = se0Zva, — senJa,)

={seH: so+se1+(s1+501)js €0s(Ta,)}
C{s€MH: so+s00+(51+501)js € BI(s0)} = Ba(0).

For the second operator in (15.25), we have again

)

SZIVAZ +5se1da, — A, = (/H(S&O +isS01 — 8)Xa,(S) dEJ(S))
Va,

and so

[seZva, + se1da, — Sa,ll < Cr,all(se0 +isse1 — $)Xa, ()| < Cpyon

Since the operators T, —SgIVAZ —50,1Ja, and SKIVAZ +5¢1Ja, —SA, commute, we
conclude as before from Theorem 4.4.12 that 05(Ta,) C Ba(1+¢4.,)(0) = B(0).

Altogether, we obtain that N is quasi-nilpotent, which concludes the proof.

O
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Remark 15.2.8. Twice we applied Theorem 4.4.12 in the above proof, even though
we are working on a right Banach space and the theory in Chapter 4 was developed
on a two-sided Banach space. Using Theorem 14.2.7, one can, however, define
the S-functional calculus also on right-sided Banach spaces, so that this result is
actually applicable. For details, we refer to [125].

Definition 15.2.9. Let T' € B(VR) be a spectral operator and decompose T' = S+ N
as in Theorem 15.2.7. The scalar operator S is called the scalar part of T, and
the quasi-nilpotent operator N is called the radical part of T.

Remark 15.2.10. Let T € B(Vg) be a spectral operator. The canonical decompo-
sition of T into its scalar part and its radical part obviously coincides for every
j € S with the canonical decomposition of 1" as a C;-linear spectral operator on
V.

The remainder of this section discusses the S-functional calculus for spectral
operators. Similar to the complex case, one can express f(T) for every intrinsic
function f as a formal Taylor series in the radical part N of T. The Taylor coef-
ficients are spectral integrals of f with respect to the spectral decomposition of
T. Hence these coeflicients, and in turn also f(7'), depend only on the values of f
on the S-spectrum og(T") of T and not on the values of f on an entire neighbor-
hood of og(T). The operator f(T) is again a spectral operator, and its spectral
decomposition can easily be constructed from the spectral decomposition of 7'

In the following we consider an operator that is again defined on a two-sided
Banach space V.

Proposition 15.2.11. Let S € B(V) be an operator of scalar type on a two-sided
quaternionic Banach space V. If f € N'(c5(S)), then

£(8) = /H F(s) dE;(s). (15.31)

where f(S) is intended in the sense of the S-functional calculus.

Proof. Since 1(T) =1 = [;1dE;(s) and s(S) = S = [;sdE;(s), the product
rule and the R-linearity of both the S-functional calculus and the spectral integra-
tion imply that (15.31) holds for every intrinsic polynomial. It in turn also holds
for every intrinsic rational function in M (og(S)), i.e., for every function r of the
form 7(s) = p(s)q(s)~! with intrinsic polynomials p and ¢ such that g(s) # 0 for
every s € og(S).

Let now f € N(os(S)) be arbitrary and let U be a bounded axially sym-
metric open set such that o5(T) C U and U C D(f). Runge’s theorem for slice
hyperholomorphic functions implies the existence of a sequence of intrinsic rational
functions r,, € N (U) such that r,, — f uniformly on U. Because of Lemma 14.3.6,
we thus have

/H F(8)dEs(s) = Tim [ r(s)dEs(s) = Tim ra(S)=f(S). O

n—-+oo H n——+oo
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Theorem 15.2.12. Let T € B(V) be a spectral operator on a two-sided quaternionic
Banach space V' with spectral decomposition (E,J) and let T = S + N be the
decomposition of T into scalar and radical parts. If f € N(os(T)), then

+oo 1
=Ny [ 806 ams) (1.

where f(T) is intended in the sense of the S-functional calculus and the series
converges in the operator norm.

Proof. Since T = S + N with SN = NS and og(N) = {0}, it follows from
Theorem 4.4.14 that

Z N"  (951)(8)-
What remains to show is that

(@21)(S) = /H (O21)(s) dE(s), (15.33)

but this follows immediately from Proposition 15.2.11. O

The operator f(T) is again a spectral operator, and its radical part can be
easily obtained from the above series expansion.

Definition 15.2.13. A spectral operator T € B(V) on a two-sided quaternionic
Banach space V is said to be of type m € N if its radical part satisfies N™*! = 0.

Lemma 15.2.14. A spectral operator T € B(V') on a two-sided quaternionic Banach
space V' with spectral resolution (E,J) and radical part N is of type m if and only

if
1) =Y N [ 0N aBss) VS € Nos(T). (15.34)
n=0 !

In particular, T is a scalar operator if and only if it is of type 0.

Proof. If T is of type m, then the above formula follows immediately from Theo-
rem 15.2.12 and N™*! = 0. If, on the other hand, (15.34) holds, then we choose
f(s) = 5™ in (15.32) and (15.34) and subtract these two expressions. We obtain

0=Nm™H / dE;(s) = N™tL, O
H

Theorem 15.2.15. Let T' € B(Vg) be a spectral operator with spectral decomposi-
tion (E,J). If f € N(os(T)), then f(T) is a spectral operator, and the spectral
decomposition (E,J) of f(T) is given by

E(A)=E(f~'(A)) VA€ Bg(H) and J:/ij(s)dEJ(s),
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where jyy = 0 if f(s) € R and jp) = f(s)/|f(s)] if f(s) € H\R. For every
g € SM™(H) we have -

/ o(s) dB5(s) = / (g0 £)(s) dEy(s), (15.35)
H H

and if S is the scalar part of T, then f(S) is the scalar part of f(T).

Proof. We first show that f(S) is a scalar operator with spectral decomposition
(E,.J). By Corollary 14.3.4, the function f is B¢ (H)-%B g (H)-measurable, so that
E is a well-defined spectral measure on Bg(H).

The operator .J obviously commutes with E. Moreover, writing f(s) = fo(s)+
Jsf1(s) as in Lemma 14.3.3, we have j;(s) = jssgn(fi(s)). If weset Ay = {s € H:
fi(s) >0}, A_={seH: fi(s) <0}, and Ag = {s € H: f1(s) = 0}, we therefore
have ~

J=JE(A})—JE(AL).

Since f1(s) = 0 for every s € R, we have R C Ag and hence V. =ran E(A;) C
ran E(H \ R) = ran J and similarly also V_ = ran E(A_) C ran J. Since J and E
commute, V; and V_ are invariant subspaces of J contained in ran.J, so that J
and J_ define bounded surjective operators on V,, resp. V_. Moreover, ker J =
ran E(R), and hence ker J|y, = Vi Nker J = {0} and ker J|y. = V_nNker J = {0},
so that ker J = ran E(Ag) and ran .J = ran E(A )®ran E(A_) = ran E(ALUA_).

Now observe that f(s) € R if and only if f1(s) = 0. Hence f~!(R) = Aj and
FTHH\R) = Ay UA_, and we obtain

ranJ =ran E(A; UA_) =ran E (fTHH\R)) = ran E(H \ R)
and _ .
ker J = ran E(Ag) = ran E (f~'(R)) = ran E(R).
Moreover, since E(A)E(A_) = E(A_)E(A;) = 0and —J? = E(H\R), we have
—J2=—J?B(AL)? - (-J?)E(A)?

=EH\R)E(AL)+ EH\R)E(AL)

=E(Ay UA_) = E(H\R),
where we used that A, CH\Rand A_ C H\R as R C Ag. Hence —J? is the
projection onto ran J along ker J, and so J is actually an imaginary operator, and
(E,J) in turn is a spectral system.

Let g = Y, garxa, € MP(H,R) be a simple function. Then (g o f)(s) =
> i—o @eX f-1(a,)(8) is also a simple function in M (H, R) and

/ 9()dB(s) =S aB(A) = 3 acB (71 (A) = / (g0 £)(s) dE(s).
H =0 =0 =
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Due to the density of simple functions in (M (H, R), ||.||oc), we hence obtain

/ o(s) dB(s) = / (g0 f)(s)dE(s), Vg MZ(HR).
H H

If g € SM®(H), then we deduce from Lemma 14.3.3 that g(s) = v(s) + jsd(s)
with v,0 € MP(H,R) and j, = s/|s| if s ¢ R and js = §(s) = 0 if s € R. We then
have (90 £)(s) = 7((5)) + 4 3(f(s)), and we obtain

/H o(s)dE ;(s) = /H ~(s)dE(s) + J /H 5(s) dE(s)
- / (vo £)(s)dE(s) +J / (60 f)(s) dE(s)
H H

- /H (7o £)(s) dEs(s) + /H Jre dEs(s) /H (60 f)(s) dE(s)
- / (0 £)(3) + (80 £)(s) dEs (s) = / (g0 F)(s) dE(5),
H H

and hence (15.35) holds. Choosing in particular g(s) = s, we deduce from Propo-

sition 15.2.11 that
:/f(s)dEJ(s):/sdEj(s).
H H

By Remark 15.2.2, f(S) is a scalar operator with spectral decomposition (E,J).
Theorem 15.2.12 implies f(T') = f(S) + © with

S —ZN” [ (95)(S).

If we can show that © is a quasi-nilpotent operator, then the statement of the
theorem follows from Theorem 15.2.7. We first observe that each term in the
sum is a quasi-nilpotent operator because N" and (9¢f)(S) commute due to
Lemmas 14.3.6 and 15.2.3, so that

(v Lenns)

Corollary 15.2.5 thus implies o (N" 5 (9% f(S))) = {0}.

By induction we conclude from Taylor’s formula and Corollary 15.2.5 that
for each m € Nm, the finite sum ©1(m) := >, N"1(8% £)(S) is quasi-nilpotent
and satisfies og(0(m)) = {0}.

Since the series © converges in the operator norm, for every € > 0 there exists
me € N such that Oy(m.) := S+ N™L (9% f)(9) satisfies [|©2(m.)|| < e.

n=mc+1

1
E

0 < lim

k—oco

1 . k)
<Hm(3§f)(S)H (klggoHN’“H ) —o.
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Hence 0g(©2(m.)) C B:(0), and since ©® = ©1(m.) + O2(m.) and ©1(m.) and
©2(m.) commute, we conclude from Theorem 4.4.12 that o05(©) C B.(0). Since
¢ > 0 was arbitrary, we obtain og5(0) = {0}. By Corollary 15.2.5, © is quasi-
nilpotent.

We have shown that f(T') = f(S) + ©, that f(S) is a scalar operator with
spectral decomposition (E J ), and that © is quasi-nilpotent. From Theorem 15.2.7
we therefore deduce that f(7T') is a spectral operator with spectral decomposition
(E,.J), that f(S) is its scalar part, and that © is its radical part. This concludes
the proof. O

Corollary 15.2.16. Let T' € B(H) be a spectral operator and let f € N(os(T)). If
T is of type m € N, then f(T) is of type m too.

Proof. If T = S + N is the decomposition of T into its scalar and radical parts
and T is of type m such that N™*! = 0, then the radical part © of f(T) is given,
due to Lemma 15.2.14 and Theorem 15.2.15, by

—+oo m
O = J(T) ~ f(S) = 3 N~ (OL1)(8) = D N" - (9L)(S).

Obviously also @™*1 = 0. O



Contents of the Monograph: Quaternionic Closed
Operators, Fractional Powers and Fractional Diffusion
Processes

The natural continuation of this book is the monograph [56]: Quaternionic closed
operators, fractional powers and fractional diffusion processes. In [56] the study of
quaternionic operator theory has been continued and it has been considered a new
class of fractional diffusion problems that are naturally defined using this theory.
The book has 12 chapters whose contents are as follows.

Chapter 1. Introduction
Theoretical aspects and applications to fractional diffusion processes.

Chapter 2. Preliminary results

2.1 Slice hyperholomorphic functions

2.2 The S-functional calculus for bounded operators
2.3 Bounded operators with commuting components

Chapter 3. The direct approach to the S-functional calculus

3.1 The S-spectrum of a closed operator and properties

3.2 The S-resolvent of a closed operator

3.3 Closed operators with commuting components

3.4 The S-functional calculus and its properties

3.5 The product rule and polynomials in T’

3.6 The spectral mapping theorem

3.7 Spectral sets and projections onto invariant subspaces

3.8 The special roles of intrinsic functions and the left multiplication

Chapter 4. The quaternionic evolution operator
4.1 Uniformly continuous quaternionic semigroups
4.2 Strongly continuous quaternionic semigroups
4.3 Strongly continuous groups

Chapter 5. Perturbations of the generator of a group
5.1 A series expansion of the S-resolvent operator
5.2 The class of operators A(T') and some properties
5.3 Perturbation of the generator
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Contents of [50]

5.4 Comparison with the complex setting
5.5 An application

Chapter 6. The Phillips functional calculus

6.1 Preliminaries on quaternionic measure theory

6.2 Functions of the generator of a strongly continuous group
6.3 Comparison with the S-functional calculus

6.4 The inversion of the operator f(7T)

Chapter 7. The H*-functional calculus

7.1 The S-functional calculus for sectorial operators
7.2 The H*°-functional calculus

7.3 The composition rule

7.4 Extensions according to spectral conditions

7.5 The spectral mapping theorem

Chapter 8. Fractional powers of quaternionic linear operators
8.1 A direct approach to fractional powers of negative exponent
8.2 Fractional powers via the H°°-functional calculus

8.2.1 Fractional powers with negative real part

8.3 Kato’s formula for the S-resolvents

Chapter 9. The fractional heat equation using quaternionic techniques
9.1 Spectral properties of the nabla operator

9.2 A relation with the fractional heat equation

9.3 An example with non-constant coefficients

Chapter 10. Applications to fractional diffusion

10.1 New fractional diffusion problems

10.2 The S-spectrum approach to fractional diffusion processes
10.3 Fractional Fourier’s law in a Hilbert space

Chapter 11. Historical notes and References

11.1 Theory of slice hyperholomorphic functions
11.2 Spectral theory on the S-spectrum

11.3 The monographs on operators and functions

Chapter 12. Appendix: Principles of functional analysis
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converges in the norm S-resolvent sense,

87
definition of S "(s,T'), 94

extended S-spectrum, 130

Index
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Fueter plane wave, 121
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Fueter—Sce mapping theorem in inte-
gral form, 172
Fueter—Sce primitive, 174

Hahn-Banach theorem, 40

Herglotz’s theorem for the
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uct, 187

identity principle, 18
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phic function, 137

intrinsic slice hyperholomorphic
functions, 13

inverse Fueter—Sce mapping theorem,
175

kernel, 189

left S-resolvent equation, 61

left S-resolvent operator, 58

left and right F-resolvent equations,
162

left Cauchy kernel series, 56

left resolvent operator, 69

left resolvent set, 69

monogenic Cauchy kernel, 174
monogenic functions, 171

operator
imaginary, 202
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paravector operator, 119

point S-spectrum, 192

polar decomposition, 199
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quadratic estimate, 145
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Hilbert space, 188
pre-Hilbert space, 188
right vector space, 38

range, 189
rational functional calculus, 138
residual S-spectrum, 192
Riesz projectors, 80, 265
for the F-functional calculus, 165
Riesz representation theorem for real-
valued functions, 233
right H-module, 187
right S-resolvent equation, 61
right S-resolvent operator, 58
right Cauchy kernel series, 56
right linear operators, 189
right spectrum or(T), 3
Runge’s theorem, 32

Sce’s theorem, 171

slice Cauchy domain, 29

slice derivative, 20

slice domain, 13

slice function, 2, 13

slice hyperholomorphic functions, 13
vector-valued, 41
with values in R,,, 118

slice hyperholomorphic logarithm, 115

slice hyperholomorphic product, 47
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slice monogenic functions, 118
spectral integrals, 220, 225
spectral mapping theorem, 83
spectral theorem
for bounded normal operators,
241
for unbounded normal operators,
247
splitting lemma, 17
structure formula (or representation
formula), 18, 46
structure of the Fueter—Sce
primitives, 174

Taylor formulas, 103
two-sided quaternionic vector space,
39

Vector-valued Cauchy formula, 46

weakly left slice hyperholomorphic,
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weakly right slice hyperholomorphic,
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