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Preface

Classical operator theory in Banach and Hilbert spaces has been stimulated by
several problems in mathematics and physics. Moreover, the theory of holomorphic
functions plays a crucial role in operator theory and in particular in the defini-
tion of functions of operators. A great impulse was given to the development of
operator theory at the beginning of the last century when quantum mechanics
was formulated; in particular, the spectral theorem for unbounded normal oper-
ators on a Hilbert space was one of the most important achievements. In 1936,
Birkhoff and von Neumann showed that quantum mechanics can be formulated
on real, complex, and quaternionic numbers. So a natural problem was to under-
stand what notion of spectrum one should use in quaternionic operator theory.
This problem was solved only in 2006 with the discovery of the S-spectrum for
quaternionic linear operators, and since then the quaternionic spectral theory has
grown rapidly. The aim of this book is to give a systematic foundation of quater-
nionic spectral theory based on the S-spectrum and to present the theory of slice
hyperholomorphic functions, which will be used in the treatment of quaternionic
operator theory.

This book treats four main topics: the S-functional calculus, the F -functional
calculus, the quaternionic spectral theorem, and the theory of quaternionic spectral
operators. The S-functional calculus is the natural extension to the quaternionic
setting of the Riesz–Dunford functional calculus, and it can be used to define the
quaternionic H∞-functional calculus for quaternionic or vector sectorial operators.
The H∞-functional calculus has important applications in fractional diffusion pro-
cesses because it allows one to define fractional powers of vector operators such
as the gradient or a generalization of the gradient operator with nonconstant co-
efficients. The F -functional calculus is based on an integral transform, called the
Fueter-Sce mapping theorem in integral form, and it defines Fueter-regular func-
tions of quaternionic operators. This calculus is based on slice hyperholomorphic
functions and on the so-called F -resolvent operators that allow us to define, via an
integral formula, functions of a quaternionic operator. We treat the spectral theo-
rem for quaternionic normal operators based on the S-spectrum, which was proved
in 2014 and published in 2016. The quaternionic spectral theorem for unbounded
anti-selfadjoint operators is a very important tool for formulating quaternionic

v 



vi Preface

quantum mechanics. We conclude the book with the theory of spectral operators
in Banach spaces that has been developed in the last two years.

To orient the reader who is not familiar with quaternionic or vectors analysis
we have summarized some of the fundamental concepts of this theory in the first
chapter of this book, with some historical comments on the discovery of the S-
spectrum.

Since the theory of slice hyperholomorphic functions is a crucial tool in
quaternionic operator theory, we dedicate the second chapter to the formulation
of the function theory, and we prove the most important results that are used in
the book.

Chapters 3–6 are devoted to the S-functional calculus, in Chapters 7 and 8
we develop the F -functional calculus, in Chapters 9–13 we treat the quaternionic
spectral theorem, and finally the theory of spectral operators in Banach spaces
is developed in Chapters 14 and 15. At the end of the chapters there are com-
ments and remarks about the extension of the theory of slice hyperholomorphic
functions with values in a Clifford algebra (slice monogenic functions) and its ap-
plications to the S-functional calculus for n-tuples of not necessarily commuting
operators and to the F -functional calculus for n-tuples of commuting operators.
We will also make comments on the links between the theory of slice hyperholo-
morphic functions and the classical theory of Cauchy–Fueter regular functions (or
the Dirac monogenic function theory). The natural continuation of this book is the
monograph [56], in which we further develop theoretical aspects of quaternionic
operator theory and give applications to fractional diffusion processes. At the end
of this book one can find a table of contents of the monograph [56].

Acknowledgments. It is a pleasure for the authors to thank Daniel Alpay, Vladimir
Bolotnikov, Paula Cerejeiras, Oscar González-Cervantes, Roman Lávička, Maria
Elena Luna-Elizarraras, Uwe Kähler, Tao Qian, Irene Sabadini, Michael Shapiro,
Frank Sommen, Vladimir Souček, and Daniele C. Struppa for fruitful and pleas-
ant collaborations. In particular we want to thank Irene Sabadini, who with one
of the authors discovered the S-spectrum and the S-functional calculus, for all
her contributions to the hyperholomorphic function theories in one and in several
variables. The first author warmly thanks Daniele C. Struppa for his long-lasting
scientific collaboration and for his contribution to the theory of slice hyperholo-
morphic functions and to the classical theory of quaternionic functions in several
variables. Warm thanks go to Daniel Alpay for the great efforts in developing
Schur analysis in the slice hyperholomorphic setting and for the spectral theorem
based on the S-spectrum.
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Chapter 1

Introduction

Since the discovery of the S-spectrum in 2006 the theory of slice hyperholomorphic
functions has become the underlining function theory on which new functional cal-
culi for quaternionic operators and for n-tuples of operators have been developed.
These calculi are the S-functional calculus and the F -functional calculus, and both
are based on the notion of S-spectrum. In 2014 it was proved that the quaternionic
spectral theorem is also naturally based on the S-spectrum. These facts restore
the analogy with the classical case in which the holomorphic functional calculus
and the spectral theorem are based on the same notion of spectrum.

So to replace complex spectral theory with quaternionic spectral theory we have
to replace the classical spectrum with the S-spectrum. The quaternionic spectral
theory contains as a particular case the complex spectral theory.

1.1 What is Quaternionic Spectral Theory?

To orient the reader in this new spectral theory we summarize some of the funda-
mental concepts and facts such as the notion of slice hyperholomorphic functions,
the problem of the spectrum of a quaternionic linear operator, the S-functional
calculus, the F -functional calculus, the spectral theorem on the S-spectrum, and
spectral operators.

Slice hyperholomorphicity is the crucial notion of hyperholomorphicity for the
quaternionic spectral theory based on the S-spectrum. We denote by H the algebra
of quaternions; the imaginary units in H are denoted by e1, e2, and e3, respectively;
and an element in H is of the form q = q0 + e1q1 + e2q2 + e3q3, for q` ∈ R,
` = 0, 1, 2, 3. The real part, the imaginary part, and the modulus of a quaternion
are defined as Re(q) = q0, q = Im(q) = e1q1+e2q2+e3q3, |q|2 = q2

0+q2
1+q2

2+q2
3 . The

conjugate of the quaternion q is defined by q̄ = Re(q)− Im(q) = q0− e1q1− e2q2−
e3q3 and it satisfies |q|2 = qq̄ = q̄q. Let us denote by S the unit sphere of purely

imaginary quaternions, i.e., S = {q = e1q1 + e2q2 + e3q3 such that
∑3
`=1 q

2
` = 1}.

© Springer Nature Switzerland AG 2018 1 
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Every quaternion q belongs to a suitable complex plane: if we set

jq :=

{ q

|q| if q 6= 0,

any j ∈ S if q = 0,

then q = u + jqv with u = Re(q) and v = |Im(q)|. For every q = u + jqv ∈ H we
define the set [q] := {u+ jv | j ∈ S}.

Slice continuous functions. Let U ⊆ H be an axially symmetric open set and
let U = {(u, v) ∈ R2 : u + Sv ⊂ U}. A function f : U → H is called a left slice
function if it is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : U → H that satisfy the compatibility condition

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (1.1)

Slice hyperholomorphic function. If in addition the components f0 and f1 of
the slice function f satisfy the Cauchy–Riemann equations

∂

∂u
f0(u, v)− ∂

∂v
f1(u, v) = 0, (1.2)

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0, (1.3)

then f is called left slice hyperholomorphic. An analogous notion is given also for
right slice continuous and right slice hyperholomorphic functions. If f is a left (or
right) slice function such that f0 and f1 are real-valued, then f is called intrinsic.

The problem of the spectrum. Several attempts have been made by several
authors in the past decades to prove the quaternionic spectral theorem: see, e.g.,
[195, 197]. However, the notion of spectrum was unclear. It is easy to explain
the difficulties in giving an appropriate definition of spectrum of a quaternionic
linear operator if one tries to adapt the classical notion of spectrum. Consider, for
example, a right linear bounded quaternionic operator T : X → X acting on a
two-sided quaternionic Banach space X, that is,

T (w1α+ w2β) = T (w1)α+ T (w2)β,

for all α, β ∈ H and w1, w2 ∈ X. The symbol B(X) denotes the Banach space of
all bounded right linear operators endowed with the natural norm.

The left spectrum σL(T ) of T is related to the resolvent operator (sI−T )−1,
that is,

σL(T ) = {s ∈ H : sI − T is not invertible in B(X)},

where the notation sI in B(X) means that (sI)(v) = sv.
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The right spectrum σR(T ) of T is associated with the right eigenvalue prob-
lem, i.e., the search for quaternions s such that there exists a nonzero vector v ∈ X
satisfying

T (v) = vs.

Now observe that the operator Is−T associated with the right eigenvalue problem
is not linear, so it is not clear what resolvent operator is to be considered in this
case. There is just one case in which the quaternionic spectral theorem is proved
by specifying the spectrum, and it is the case of quaternionic normal matrices;
see [108] and [199]. In this case the right spectrum σR(T ) has been used, but this
is the case in which we have just the eigenvalues. The left spectrum σL(T ), which is
associated with a linear resolvent operator, is not useful because it is not clear what
notion of hyperholomorphicity is associated to the map s→ (sI−T )−1. Moreover,
in quaternionic quantum mechanics the right spectrum σR(T ) is the most useful
notion of spectrum for studying the bounded states of a systems (where there are
just the eigenvalues).

The S-functional calculus. The notion of S-spectrum for quaternionic linear
operators turned out to be the correct notion of spectrum, and it was discov-
ered from the Cauchy formulas of slice hyperholomorphic functions with slice
hyperholomorphic kernels. Moreover, the right spectrum σR of a matrix is equal
to the S-spectrum. More generally, the right eigenvalues σR are equal to the S-
eigenvalues. We limit the discussion to the case of quaternionic operators, but
the following definition of S-spectrum can be adapted to the case of n-tuples of
noncommuting operators. If T is a linear bounded quaternionic operator then the
S-spectrum is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},

while the S-resolvent set is ρS(T ) := H \ σS(T ). Due to the noncommutativity of
the quaternions, there are two resolvent operators associated with a quaternionic
linear operator T : the left S-resolvent operator is defined as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ ρS(T ), (1.4)

and the right S-resolvent operator is

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T ). (1.5)

The S-resolvent equation involves both the S-resolvent operators:

S−1
R (s, T )S−1

L (p, T ) = [[S−1
R (s, T )− S−1

L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]](p2 − 2s0p+ |s|2)−1,

for s, p ∈ ρS(T ). The S-functional calculus, or quaternionic functional calculus, is
based on the Cauchy formula for slice hyperholomorphic functions. We denote by
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SHL(σS(T )) the set of left slice hyperholomorphic functions f : U → H, where U
is a suitable open set that contains the S-spectrum of T ; in the case of bounded
operators, the S-spectrum is a bounded and nonempty set in H. Analogously, we
define SHR(σS(T )) for right slice hyperholomorphic functions. The formulations
of the quaternionic functional calculus are defined as

f(T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), f ∈ SHL(σS(T )), (1.6)

and

f(T ) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), f ∈ SHR(σS(T )), (1.7)

where dsj = −dsj, for j ∈ S. The functional calculus is well defined, since the
integrals depend neither on the open set U nor on j ∈ S. It is important to note
that in the definition of the quaternionic functional calculus it is not required that
the linear operator T be written in components T = T0 + e1T1 + e2T2 + e3T3

where T`, for ` = 0, 1, 2, 3, are bounded linear operators on a real Banach space.
Moreover, in the case that T is represented as T = T0 +e1T1 +e2T2 +e3T3, it is not
even required that the operators T`, for ` = 0, 1, 2, 3, commute among themselves.

The commutative version of the S-spectrum. We will denote by BC(X) the
subclass of B(X) that consists of those quaternionic operators T that can be
written as T = T0 + e1T1 + e2T2 + e3T3, where the operators T`, ` = 0, 1, 2, 3,
commute among themselves, and we set T = T0 − e1T1 − e2T2 − e3T3. In this
case, the S-spectrum has an alternative definition that takes into account the
commutativity of T`, for ` = 0, 1, 2, 3. In the literature the commutative definition
of the S-spectrum is often called the F -spectrum because it is used for the F -
functional calculus. Let T ∈ BC(X). We define the commutative version of the
S-spectrum (or F -spectrum σF (T )) of T as

σS(T ) = {s ∈ H : s2I − s(T + T ) + TT is not invertible}.

The S-resolvent set ρS(T ) is defined as ρS(T ) = H \ σS(T ).

The F -functional calculus. A deep result in hypercomplex analysis is the
Fueter-Sce mapping theorem, which in modern language says that if we apply the
Laplace operator to a slice hyperholomorphic function f : U ⊆ H → H, we obtain
a Cauchy–Fueter regular function f̆ : U ⊆ H→ H, that is,

f̆(q) = ∆f(q), q ∈ U.

Applying the Laplace operator to the Cauchy kernels of slice hyperholomorphic
functions, we obtain two new kernels that allow us to write the Fueter–Sce map-
ping theorem in integral form. Using such an integral transform, we define a
functional calculus that starting from slice hyperholomorphic functions, defines
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Cauchy-Fueter regular functions of a linear operator f̆(T ) for T ∈ BC(X). Pre-
cisely, for T ∈ BC(X), we define the left F -resolvent operator as

FL(s, T ) := −4(sI − T )(s2I − s(T + T ) + TT )−2, s ∈ ρS(T ),

and the right F -resolvent operator as

FR(s, T ) := −4(s2I − s(T + T ) + TT )−2(sI − T ), s ∈ ρS(T ).

So the formulations of the quaternionic F -functional calculus for bounded opera-
tors are defined as follows:

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s), f ∈ SHL(σS(T )), (1.8)

and

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj FR(s, T ), f ∈ SHR(σS(T )), (1.9)

where dsj = −dsj, for j ∈ S, and the integrals depends neither on the open set
U nor on j ∈ S. The F -resolvent equation in this case is more complicated, and
it also involves the two S-resolvent operators in their commutative version. We
point out that both the S-functional calculus and the F -functional calculus can be
extended to the case of unbounded operators; moreover, the S-functional calculus
can be used to define the quaternionic H∞-functional calculus.

The spectral theorem based on the S-spectrum. If T ∈ B(H) is a bounded
normal quaternionic linear operator on a quaternionic Hilbert space H, then there
exist three quaternionic linear operators A, J , B such that T = A+ JB, where A
is self-adjoint and B is positive, J is an anti-self-adjoint partial isometry (called
an imaginary operator). Moreover, A, B, and J mutually commute.

There exists a unique spectral measure Ej on Ω+
j := σS(T ) ∩ C+

j such that
for every slice continuous intrinsic function f = f0 + f1j,

〈f(T )x, y〉 =

∫
Ω+
j

f0(q) d〈Ej(q)x, y〉+
∫

Ω+
j

f1(q) d〈JEj(q)x, y〉, x, y ∈ H. (1.10)

In this book we treat also the spectral theorem for unbounded quaternionic
normal operators on a Hilbert space, and we define a functional calculus for a
much larger class of functions with respect to the class of continuous functions.
This functional calculus is deduced by the theory of spectral integrals depending
on an imaginary operator J .

Spectral operators in Banach spaces. We develop furthermore a concise the-
ory of spectral integration in quaternionic Banach spaces based on the notion
of spectral systems and use this tool to study quaternionic spectral operators.
Analogously to the classical theory of Dunford, such operators have a canonical
decomposition into a scalar and a radical part. The first one can be represented as
the spectral integral with respect to the spectral system of the operator, and the
second one is quasi-nilpotent. We also study the transformation of this decompo-
sition under the S-functional calculus.
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1.2 Some Historical Remarks on the SSS-Spectrum

It has been known since the 1930s, with the paper of G. Birkhoff and J. von
Neumann on the logic of quantum mechanics, that quantum mechanics can be
formulated over the real, the complex, and the quaternionic numbers. Since then,
several papers and books have treated this topic. However, it is interesting, and
somewhat surprising, that for a long time, an appropriate notion of quaternionic
spectrum was not present in the literature.

Thus we believe that it is interesting to explain the facts, presented several
times in some talks of the authors, that led to discovery of the S-spectrum for
quaternionic linear operators, of the S-functional calculus, and of some of the
difficulties that, in our opinion, prevented these objects from being found earlier.

The quaternionic spectral theory based on the notion of S-spectrum not only
is relevant for researchers in quaternionic analysis but is applicable, as a particular
case, to vector operators, such as the gradient operator or its variations, and has
applications, for example, to fractional diffusion processes.

1.2.1 The Discovery of the SSS-Spectrum

The S-spectrum was discovered by F. Colombo and I. Sabadini in 2006. They had
been working for several years on the spectral theory for quaternionic linear oper-
ators, starting with the aforementioned paper of G. Birkhoff and J. von Neumann;
see [36]. They soon realized that the notion of spectrum of a quaternionic linear
operator was poorly understood and as a consequence, the quaternionic spectral
theory could not be developed.

The only thing that was clear was that the existing notions of left spectrum
and right spectrum of a quaternionic linear operator were insufficient to construct
the quaternionic spectral theory. The main reason is that left spectrum and right
spectrum mimic the definition of eigenvalues in the complex case, but they do not
shed light on the true nature of the quaternionic spectrum.

Thus they started to investigate what could be the quaternionic version of the
Riesz–Dunford functional calculus, of the evolution operator, and of the spectral
theorem. After more then 10 years of exhausting research and 70 years after [36],
in 2006 they understood that the S-spectrum was the correct notion of spectrum
for quaternionic spectral theory.

A crucial fact in classical operator theory is that the holomorphic functional
calculus (called Riesz–Dunford functional calculus) and the spectral theorem are
based on the same notion of spectrum. In the quaternionic setting things were
different indeed: for right linear operators with commuting components, the func-
tional calculus based on the Cauchy–Fueter formula is based on the left spectrum.
However, in quaternionic quantum mechanics physicists used the notion of right
spectrum, which consists just of eigenvalues.

After several attempts in various directions they started to believe that since
the physicists were unable to deduce from physical arguments the quaternionic
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spectrum, they could use hypercomplex analysis to find it. More precisely, they
thought that from the Cauchy formula of a “suitable new notion of quaternionic
hyperholomorphicity” one could read the precise notion of quaternionic spectrum,
which, in analogy with the complex case, could have worked for both the new
hyperholomorphic functional calculus and the quaternionic spectral theorem.

In 1998 in the paper [82], F. Colombo and I. Sabadini investigated the quater-
nionic functional calculus based on the Cauchy formula for Fueter regular func-
tions, and it was clear that the Fueter spectrum was incompatible with the quater-
nionic spectral theorem. Moreover, it was realized that this calculus was to some
extent the quaternionic version of the monogenic functional calculus already in-
troduced and studied by A. McIntosh and his collaborators; see [160, 161] and
the book [159]. It was then clear that a different notion of hyperholomorphicity
was needed. After so many years of intensive and unfruitful research, in 2006 D.C.
Struppa showed them the new definition of slice regularity, and later they also dis-
cussed with G. Gentili this new notion of regularity introduced in the paper [135]
(which is an announcement of the paper [136]). This notion requires that all the
restrictions of a quaternionic-valued function to every complex plane are holomor-
phic maps. Thus the usual Cauchy formula for holomorphic functions holds on
each complex plane Cj and the Cauchy kernel has the series expansion

∞∑
n=0

qns−1−n =
1

s− q
, for q, s ∈ Cj , j ∈ S, |q| < |s|;

the above expansion obviously holds just for those quaternions q and s that belong
to ∈ Cj and such that |q| < |s|.

At this point, the crucial idea was to replace q in the series
∑∞
n=0 q

ns−1−n

by a quaternionic linear operator T , and to look for a closed formula for this
non-commutative power series. To obtain a closed formula for the formal power
series

∞∑
n=0

Tns−1−n

was not an easy task. F. Colombo and I. Sabadini proceeded as follows: first they
found a closed form for the series expansion

∑∞
n=0 q

ns−1−n, that is,

∞∑
n=0

qns−1−n = −(q2 − 2qRe(s) + |s|2)−1(q − s), for |q| < |s|, (1.11)

where formula (1.11) holds for all quaternions q, s ∈ H such that |q| < |s|, and
then they observed that the right-hand side of (1.11) does not depend on the
commutativity of the components of the quaternion q, because it contains just the
powers of q. This second crucial fact led to the natural definition of the so-called
S-spectrum

σS(T ) = {s ∈ H : T 2 − 2TRe(s) + |s|2I is not invertible},
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where I is the identity operator, and of the S-resolvent operator

S−1
L (s, T ) := −(T 2 − 2TRe(s) + |s|2I)−1(T − sI). (1.12)

It is also interesting to note that in 2006, when (1.12) was introduced, the Cauchy
formula with slice hyperholomorphic kernel was not known, and so the sum of the
series (1.11) was obtained with direct computations, using the Niven algorithm.
This procedure is explained in Note 4.18.3 of the book [89]. The fact that the notion
of slice hyperholomorphicity works very well for quaternionic operator theory was
one of our motivations for its development.

The existence of the S-spectrum, with further considerations, appeared in
2007 in the paper [66] with G. Gentili and D.C. Struppa. This paper is an an-
nouncement of the results of the paper [68] (unfortunately, as may happen, pub-
lished only in 2010), containing a version of the S-functional calculus defined
just for slice hyperholomorphic functions that admit a power series expansion at
the origin. This calculus is the starting point for the general definition of the
S-functional calculus based on the Cauchy formula with slice hyperholomorphic
kernels, which was completely described in [79]. The paper [79] together with the
formulations of the S-functional calculus, see [80], and the S-resolvent equation,
see [10], constitute the heart of the S-functional calculus. Finally, it is worthwhile
to mention that the case of unbounded operators was treated in [97], [67] and
with a direct approach in [124]. The study of the quaternionic evolution operator
is in the paper [76], while the H∞-functional calculus is in [30] and [52]. Finally,
the main results about the spectral theorem based on the S-spectrum are proved
in [13,14].

The authors would like to thank G. Gentili, I. Sabadini, and D.C. Struppa
for their comments on this note about the discovery of the S-spectrum.

1.2.2 Why Did It Take So Long to Understand the SSS-Spectrum?

After over 20 years of research, it is now clear that this new spectral theory
based on the S-spectrum is very natural because it generalizes complex spectral
theory and because the S-functional calculus (which is the slice hyperholomorphic
functional calculus) and the quaternionic spectral theorem are based on the same
notion of spectrum. There are several reasons why it took so long to discover the
S-spectrum. We recall two of them.

Complex analysis and Cauchy–Fueter analysis are based on functions in the
kernel of a constant-coefficient differential operator. This fact was misleading in
the search for a new definition of hyperholomorphicity because one is tempted
to look for a constant-coefficient quaternionic differential operator, not necessar-
ily of first order, in order to find a “new notion of hyperholomorphicity” from
which we could read the quaternionic spectrum. In [60] it was shown that slice hy-
perholomorphic functions are functions in the kernel of a first-order quaternionic
differential operator with nonconstant coefficients. This fact was unexpected.
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Another interesting fact is that in the paper of Fueter [111] there was a
partial solution to the problem. In fact, in [111] Fueter gives a procedure to con-
struct Fueter regular functions starting from holomorphic functions. His procedure
consists of two steps: from holomorphic functions he constructs what he calls hy-
peranalytic functions; then he applies the Laplace operator to such hyperanalytic
functions and thereby obtains Fueter regular functions. Fueter’s hyperanalytic
functions are what nowadays are called intrinsic slice hyperholomorphic functions
but for some reason these functions have never been systematically studied. The
Cauchy formula for hyperanalytic functions, which is the Cauchy formula for the
S-functional calculus and from which one could read the S-spectrum, has never
been investigated to the best of our knowledge.

1.3 The Fueter–Sce–Qian theorem and spectral

theories

In this section we want to put the spectral theory on the S-spectrum into the
perspective of the spectral theories that arise from the Fueter–Sce–Qian mapping
theorem. In classical complex operator theory, the Cauchy formula of holomorphic
functions is a fundamental tool for defining functions of operators. Moreover, the
Cauchy–Riemann operator factorizes the Laplace operator, so holomorphic func-
tions play also a crucial role in harmonic analysis and in boundary value prob-
lems. In higher dimensions, for quaternion-valued functions or, more generally, for
Clifford-valued functions, there appear two different notions of hyperholomorphic-
ity. The first one is called slice hyperholomorphicity and the second one is known
under different names, depending to the dimension of the algebra and the range of
the functions: Cauchy–Fueter regularity for quaternion-valued and monogenicity
for Clifford-algebra-valued functions. The Fueter–Sce–Qian mapping theorem re-
veals a fundamental relation between the different notions of hyperholomorphicity.
It will be explained in detail later on (see, for example, the section on the Fueter
mapping in integral form), but it can be illustrated by the following diagram:

Hol(Ω)
F1−−−−→ N (U)

F2−−−−→ AM(U).

Applying the mapping F1, we can use any function in the set Hol(Ω) of holomor-
phic functions on a suitable open set Ω in C to generate a function in the set N (U)
of all intrinsic slice hyperholomorphic functions on a certain open subset U of H.
Applying a second transformation F2, we can transform any intrinsic slice hyper-
holomorphic function into an axially Fueter-regular resp. an axially monogenic
function.

When considering quaternion-valued functions, the mapping F2 that trans-
forms an intrinsic slice hyperholomorphic function into a Fueter regular one is the
application of the Laplace operator, i.e., F2 = ∆. When we work with Clifford-
algebra-valued functions, then F2 = ∆(n−1)/2, where n is the number of gener-
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ating units of the Clifford algebra. The Fueter–Sce–Qian mapping theorem can
be adapted to the more general case in which N (U) is replaced by slice hyper-
holomorphic functions and the axially regular (or axially monogenic) functions
AM(U) are replaced by monogenic functions. The generalization of holomorphic-
ity to quaternion- or Clifford-algebra-valued functions produces two different no-
tions of hyperholomorphicity that are useful for different purposes. Precisely, we
have that:

• The Cauchy formula for slice hyperholomorphic functions leads to the defini-
tion of the S-spectrum and the S-functional calculus for quaternionic linear
operators. Moreover, the spectral theorem for quaternionic linear operators
is based on the S-spectrum. The aim of this book and of the monograph [56],
is to give a systematic treatment of this theory and of its applications.

• The Cauchy formula associated with Cauchy–Fueter regularity resp. mono-
genicity leads to the notion of monogenic spectrum and produces the Cauchy–
Fueter functional calculus for quaternion-valued functions and the monogenic
functional calculus for Clifford-algebra-valued functions. This theory has ap-
plications in harmonic analysis in higher dimension and in boundary value
problems. For an overview on the monogenic functional calculus and its ap-
plications see [159] and for applications to boundary values problems see [155]
and the references contained in those books.

We want to stress that these two approaches start from two totally different per-
spectives: while the first one develops the spectral theory of a single quaternionic-
resp. Clifford-linear operator, the latter develops a joint spectral theory for n-
tuples of real-linear operators. However, the F -functional calculus provides a re-
lation between these two approaches and shows that they are consistent under
reasonable assumptions. In this book we treat the quaternionic spectral theory on
the S-spectrum, so very often we will refer to it as quaternionic spectral theory
because no confusion arises with respect to the monogenic spectral theory.



Chapter 2

Slice Hyperholomorphic
Functions

We will develop operator theory for quaternionic linear operators using the theory
of slice hyperholomorphic functions. The most important results are the structure
formula (or representation formula) and the Cauchy formulas with slice hyper-
holomorphic integral kernels. We will discuss the two Cauchy formulas and the
associated Cauchy kernels in detail because they are the starting point for defin-
ing the S-functional calculus (in the quaternionic setting the S-functional calculus
is often called the quaternionic functional calculus).

The Fueter mapping theorem is an important tool in hypercomplex anal-
ysis. It shows that the Laplace operator maps slice hyperholomorphic functions
to Fueter regular functions and hence provides a method for generating Fueter
regular functions. This theorem has been extended by Sce for the case of Clifford
algebras with odd dimension and by Qian in the even dimension. In the literature
it is often called the Fueter–Sce or Fueter–Sce–Qian theorem according to the
setting. Starting from the Cauchy formula for slice hyperholomorphic functions,
it is possible to give the Fueter mapping theorem an integral representation. One
obtains then an integral transform that can be used to define the F -functional
calculus.

We denote by H the algebra of quaternions. An element q of H is of the form

q = q0 + q1e1 + q2e2 + q3e3, q` ∈ R, ` = 0, 1, 2, 3,

where e1, e2 and e3 are the generating imaginary units of H. They satisfy the
relations

e2
1 = e2

2 = e2
3 = −1 (2.1)

and

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. (2.2)
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The real part, the imaginary part, and the modulus |q| of a quaternion q = q0 +
q1e1 + q2e2 + q3e3 are defined as Re(q) = q0, Im(q) = q1e1 + q2e2 + q3e3, and
|q|2 = q2

0 + q2
1 + q2

2 + q2
3 , respectively. The conjugate of the quaternion q is

q̄ = Re(q)− Im(q) = q0 − q1e1 − q2e2 − q3e3,

and it satisfies
|q|2 = qq̄ = q̄q.

The inverse of every nonzero element q is hence given by

q−1 =
q̄

|q|2
.

Let us denote by S the unit sphere of purely imaginary quaternions, i.e.,

S = {q = q1e1 + q2e2 + q3e3 : q2
1 + q2

2 + q2
3 = 1}.

Notice that if j ∈ S, then j2 = −1. For this reason the elements of S are also called
imaginary units. The set S is a 2-dimensional sphere in R4 ∼= H. Given a nonreal
quaternion q = q0+Im(q), we have q = u+jv with u = Re(q), j = Im(q)/|Im(q)| ∈
S, and v = |Im(q)|. We can associate to q the 2-dimensional sphere

[q] = {q0 + j|Im(q)| : j ∈ S} = {u+ jv : j ∈ S}.

This sphere is centered at the real point q0 = Re(q) and has radius |Im(q)|. The
next lemma, which can be found in every standard textbook treating quaternions,
shows that two quaternions belong to the same sphere if and only if they can be
transformed into each other by multiplication by a nonzero quaternion.

Lemma 2.0.1. Let q ∈ H. A quaternion p belongs to [q] if and only if there exists
h ∈ H \ {0} such that p = h−1qh.

If j ∈ S, then the set

Cj = {u+ jv : u, v ∈ R}

is an isomorphic copy of the complex numbers. If, moreover, i ∈ S with j ⊥ i,
then j, i, and k := ji form a generating basis of H, i.e., this basis also satisfies the
relations (2.1) and (2.2). Hence, every quaternion q ∈ H can be written as

q = z1 + z2i = z1 + iz̄2

with unique z1, z2 ∈ Cj , and so

H = Cj + iCj and H = Cj + Cji. (2.3)

Moreover, we observe that

H =
⋃
j∈S

Cj .

Finally, we introduce the notation C+
j := {u + jv : u ∈ R, v ≥ 0} for the upper

half-plane in Cj and H := H ∪ {∞}.
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2.1 Slice Hyperholomorphic Functions

The theory of slice hyperholomorphic functions is nowadays well developed. There
are three possible ways to define slice hyperholomorphic functions: using the defi-
nition in [135], using the global operator of slice hyperholomorphic functions intro-
duced in [60], or by the definition that comes from the Fueter–Sce–Qian mapping
theorem. This last definition is the most appropriate for operator theory, and it
is the one that we will use. In this section we therefore develop the part of the
theory that it is relevant for our purposes.

Definition 2.1.1. Let U ⊆ H.

(i) We say that U is axially symmetric if [q] ⊂ U for every q ∈ U .

(ii) We say that U is a slice domain if U ∩ R 6= ∅ and if U ∩ Cj is a domain in
Cj for every j ∈ S.

Definition 2.1.2 (Slice hyperholomorphic functions). Let U ⊆ H be an axially
symmetric open set and let U = {(u, v) ∈ R2 : u+Sv ⊂ U}. A function f : U → H
is called a left slice function if it is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : Ω→ H that satisfy the compatibility condition

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (2.4)

If in addition f0 and f1 satisfy the Cauchy–Riemann equations

∂

∂u
f0(u, v)− ∂

∂v
f1(u, v) = 0, (2.5)

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0, (2.6)

then f is called left slice hyperholomorphic. A function f : U → H is called a right
slice function if it is of the form

f(q) = f0(u, v) + f1(u, v)j for q = u+ jv ∈ U

with two functions f0, f1 : Ω→ H that satisfy (2.4). If in addition f0 and f1 satisfy
the Cauchy–Riemann equations, then f is called right slice hyperholomorphic.

If f is a left (or right) slice function such that f0 and f1 are real-valued, then
f is called intrinsic.

We denote the sets of left and right slice functions on U by SFL(U) and
SFR(U) and the sets of left and right slice hyperholomorphic functions on U by
SHL(U) and SHR(U), respectively. The set of intrinsic slice functions on U will
be denoted by FN (U) and the set of slice hyperholomorphic functions on U will
be denoted by N (U).
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Remark 2.1.3. Every quaternion q can be represented as an element of a complex
plane Cj using at least two different imaginary units j ∈ S. We have q = u+ jv =
u+(−j)(−v) and −j also belongs to S. If q is real, then we can use any imaginary
unit j ∈ S to consider q an element of Cj . The compatibility condition (2.4) ensures
that the choice of this imaginary unit is irrelevant. In particular, it forces f1(u, v)
to equal 0 if v = 0, that is if q ∈ R.

Multiplication and composition with intrinsic functions preserve the slice
structure and slice hyperholomorphicity. This is not true for arbitrary slice func-
tions.

Theorem 2.1.4. Let U ⊆ H be axially symmetric. The following statements hold:

(i) If f ∈ NF(U) and g ∈ SFL(U), then fg ∈ SFL(U). If f ∈ SFR(U) and
g ∈ NF(U), then fg ∈ SFR(U).

(ii) If f ∈ N (U) and g ∈ SHL(U), then fg ∈ SHL(U). If f ∈ SHR(U) and
g ∈ N (U), then fg ∈ SHR(U).

(iii) If g ∈ NF(U) and f ∈ SFL(g(U)), then f ◦ g ∈ SFL(U). If g ∈ NF(U)
and f ∈ SFR(g(U)), then f ◦ g ∈ SFR(U).

(iv) If g ∈ N (U) and f ∈ SHL(g(U)), then f ◦ g ∈ SHL(U). If g ∈ N (U) and
f ∈ SHR(g(U)), then f ◦ g ∈ SHR(U).

Proof. Let f = f0 +jf1 ∈ NF(U) and g = g0 +jg1 ∈ SFL(U). Since f is intrinsic,
the components f0, f1 take real values. Hence, they commute with j ∈ S, and we
find for q = u+ jv ∈ U that

f(q)g(q) = f0(u, v)g0(u, v) + jf1(u, v)g0(u, v)

+ f0(u, v)jg1(u, v) + jf1(u, v)jg1(u, v)

= f0(u, v)g0(u, v)− f1(u, v)g1(u, v)

+ j(f1(u, v)g0(u, v) + f0(u, v)g1(u, v)).

The functions

h0(u, v) := f0(u, v)g0(u, v)− f1(u, v)g1(u, v)

and

h1(u, v) := f1(u, v)g0(u, v) + f0(u, v)g1(u, v)

satisfy the compatibility condition (2.4), as one can check easily, and hence fg
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belongs to SFL(U). If, moreover, f and g are slice hyperholomorphic, then

∂

∂u
h0(u, v) =

(
∂

∂u
f0(u, v)

)
g0(u, v) + f0(u, v)

(
∂

∂u
g0(u, v)

)
−
(
∂

∂u
f1(u, v)

)
g1(u, v)− f1(u, v)

(
∂

∂u
g1(u, v)

)
=

(
∂

∂v
f1(u, v)

)
g0(u, v) + f0(u, v)

(
∂

∂v
g1(u, v)

)
+

(
∂

∂v
f0(u, v)

)
g1(u, v) + f1(u, v)

(
∂

∂v
g0(u, v)

)
=

∂

∂v
h1(u, v),

and similarly one shows that also

∂

∂v
h0(u, v) = − ∂

∂u
h1(u, v)

holds. Hence fg = h0 + jh1 is left slice hyperholomorphic.

Now let g = g0 + jg1 ∈ NF(U) and f = f0 + jf1 ∈ SFL(g(U)). For
q = u + jv ∈ U , we have g(q) = g0(u, v) + jg1(u, v) = ũ + iṽ with ũ = g0(u, v),
i = jsgn(g1(u, v)) ∈ S and ṽ = |g1(u, v)|. Thus

f(g(q)) = f0(ũ, ṽ) + ig1(ũ, ṽ)

= f0(g0(u, v), g1(u, v)) + jf1(g0(u, v), g1(u, v)),

because f1 is odd in the second variable. It is immediate that the functions
h0(u, v) = f0(g0(u, v), g1(u, v)) and h1(u, v) = f1(g0(u, v), g1(u, v)) satisfy the
compatibility condition (2.4), and so f ◦ g ∈ SFL(g(U)). If furthermore f and g
are slice hyperholomorphic, then

∂

∂u
h0(u, v) =

∂

∂g0
f0(g0(u, v), g1(u, v))

∂

∂u
g0(u, v)

+
∂

∂g1
f0(g0(u, v), g1(u, v))

∂

∂u
g1(u, v)

=
∂

∂g1
f1(g0(u, v), g1(u, v))

∂

∂v
g1(u, v)

+
∂

∂g0
f1(g0(u, v), g1(u, v))

∂

∂v
g0(u, v)

=
∂

∂v
h1(u, v)
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and

∂

∂u
h1(u, v) =

∂

∂g0
f1(g0(u, v), g1(u, v))

∂

∂u
g0(u, v)

+
∂

∂g1
f1(g0(u, v), g1(u, v))

∂

∂u
g1(u, v)

= − ∂

∂g1
f0(g0(u, v), g1(u, v))

∂

∂v
g1(u, v)

− ∂

∂g0
f0(g0(u, v), g1(u, v))

∂

∂v
g0(u, v)

= − ∂

∂v
h0(u, v).

Hence f ◦ g = h0 + jh1 is left slice hyperholomorphic.
Similar arguments show that the statements for right slice functions also

hold. �

Lemma 2.1.5. Let U ⊆ H be axially symmetric and let f be a left (or right) slice
function on U . The following statements are equivalent.

(i) The function f is intrinsic.

(ii) We have f(U ∩ Cj) ⊂ Cj for every j ∈ S.

(iii) We have f(q) = f(q) for all q ∈ U .

Proof. Assume that f = f0 + jf1 is a left slice function. (The other case follows
analogously.) The implications (i)⇒(ii) and (i)⇒(ii) are immediate. In order to
show the inverse relations, we first observe that for every q = u+ jv ∈ U ,

f(q) + f(q) = f0(u, v) + jf1(u, v) + f0(u, v)− jf1(u, v) = 2f0(u, v)

and

f(q)− f(q) = f0(u, v) + jf1(u, v)− f0(u, v) + jf0(u, v) = 2jf1(u, v).

If (ii) holds, then f(u + jv) ∈ Cj for every j ∈ S, and hence it commutes with j.
Thus

jf0(u, v) = j(f(u+ jv) + f(u− jv))

= (f(u+ jv) + f(u− jv))j = 2f0(u, v)j.

Since a quaternion commutes with j ∈ S if and only if it belongs to Cj , we have
f0(u, v) ∈

⋂
j∈S Cj = R. For every j ∈ S, we then have that

jf0(u, v)− f1(u, v) = j(f(u+ jv) = f(u+ jv)j

= f0(u, v)j + jf1(u, v)j = jf0(u, v) + jf1(u, v)j,
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and so f1(u, v) = −jf1(u, v)j. Thus f1(u, v) commutes with every j ∈ S and so
also f1(u, v) ∈ R. Hence, f is intrinsic.

If on the other hand, (iii) holds, then for q = u+ jv ∈ U we have

2f0(u, v) = f(q) + f(q) = f(q) + f(q) = 2f0(u, v)

and hence f0(u, v) ∈ R. We therefore also have

f0(u, v) + jf1(u, v) = f(q) = f(q)

= f0(u, v)− jf1(u, v) = f0(u, v) + f1(u, v)j,

and so jf1(u, v) = f1(u, v)j. Since j ∈ S was arbitrary, we find that also f1(u, v) ∈
R and that f is in turn intrinsic. �

If we restrict a slice hyperholomorphic function to one of the complex planes
Cj , then we obtain a function that is holomorphic in the usual sense.

Lemma 2.1.6 (The splitting lemma). Let U ⊆ H be an axially symmetric open
set and let j, i ∈ S with i ⊥ j. If f ∈ SHL(U), then the restriction fj = f |U∩Cj
satisfies

1

2

(
∂

∂u
fj(z) + j

∂

∂v
fj(z)

)
= 0 (2.7)

for all z = u+ jv ∈ U ∩ Cj. Hence

fj(z) = F1(z) + F2(z)i

with holomorphic functions F1, F2 : U ∩ Cj → Cj.
If f ∈ SHR(U), then the restriction fj = f |U∩Cj satisfies

1

2

(
∂

∂u
fj(z) +

∂

∂v
fj(z)j

)
= 0 (2.8)

for all z = u+ jv ∈ U ∩ Cj. Hence

fj(z) = F1(z) + iF2(z)

with holomorphic functions F1, F2 : U ∩ Cj → Cj.
Proof. If f = f0 + jf1 is left slice hyperholomorphic, then

1

2

(
∂

∂u
fj(z) + j

∂

∂v
fj(z)

)
=

1

2

(
∂

∂u
f0(u, v) + j

∂

∂u
f1(u, v) + j

∂

∂v
f0(u, v)− ∂

∂v
f1(u, v)

)
= 0

because f0 and f1 satisfy the Cauchy–Riemann equations (2.5). Due to (2.3), we
can write fj(z) = F1(z) + F2(z)i with Cj-valued component functions F1 and
F2. Since 1 and i are linearly independent over Cj , the above identity applies
componentwise, and hence F1 and F2 are holomorphic.

The right slice hyperholomorphic case can be proved similarly. �
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Remark 2.1.7. The splitting lemma states that the restriction of every left slice
hyperholomorphic function to a complex plane Cj is left holomorphic, i.e., it is
a holomorphic function with values in the left vector space H = Cj + Cji over
Cj . The restriction of a right slice hyperholomorphic function to a complex plane
Cj is right holomorphic, i.e., it is a holomorphic function with values in the right
vector space H = Cj + iCj over Cj .

Theorem 2.1.8 (Identity principle). Let U ⊆ H be an axially symmetric slice
domain, let f, g : U → H be left (or right) slice hyperholomorphic, and set
Z = {q ∈ U : f(q) = g(q)}. If there exists j ∈ S such that Z ∩ Cj has an
accumulation point in U ∩ Cj, then f = g.

Proof. Assume that f and g are left slice hyperholomorphic and that Z∩Cj has an
accumulation point in U ∩Cj . We can furthermore assume that g ≡ 0. (Otherwise,
we can simply replace f by f−g and g by the constant zero function.) Since U∩Cj
is a domain in Cj and fj = f |U∩Cj is an H-valued (left) holomorphic function
on this domain by Lemma 2.1.6, the identity theorem for holomorphic functions
implies fj ≡ 0. In particular, we have f |U∩R = fj |U∩R ≡ 0.

If i ∈ S is now an arbitrary imaginary unit, then fi = f |U∩Ci is again an
H-valued (left) holomorphic function on the domain U ∩Ci in Ci. Since f ≡ 0 on
U ∩ R 6= ∅ by the above arguments, the set of zeros of fi has an accumulation
point in U ∩ Ci. Hence, the identity theorem for holomorphic functions implies
that also fi ≡ 0 and in turn f ≡ 0 on all of U .

The right slice hyperholomorphic case follows with analogous arguments. �

The most important property of slice functions (and in particular for slice
hyperholomorphic functions) is the structure formula, which is often also called
representation formula.

Theorem 2.1.9 (The structure formula (or representation formula)). Let U ⊆ H
be axially symmetric and let i ∈ S. A function f : U → H is a left slice function
on U if and only if for every q = u+ jv ∈ U we have

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2
ji
[
f(z)− f(z)

]
(2.9)

with z = u + iv. A function f : U → H is a right slice function on U if and only
if for every q = u+ jv ∈ U we have

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2

[
f(z)− f(z)

]
ij (2.10)

with z = u+ iv.

Proof. For every left slice function f on U , we have

f(z) = f(u+ iv) = f0(u, v) + if1(u, v),

f(z) = f(u− iv) = f0(u, v)− if1(u, v),
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with functions f0 and f1 that satisfy the compatibility condition (2.4). Adding
and subtracting these two equations, we get

f0(u, v) =
1

2

[
f(z) + f(z)

]
, f1(u, v) =

1

2
i
[
f(z)− f(z)

]
. (2.11)

Since f(q) = f0(u, v) + jf1(u, v), we obtain (2.9). If, on the other hand, f satisfies
(2.9), then f(q) = f0(u, v)+jf1(u, v) with f0 and f1 as in (2.11). Obviously f0 and
f1 satisfy the compatibility condition (2.4), and hence f is a left slice function.

The statement about right slice functions can be shown with similar argu-
ments. �

Remark 2.1.10. It is sometimes useful to rewrite (2.9) as

f(q) =
1

2
(1− ij)f(z) +

1

2
(1 + ij)f(z)

and (2.10) as

f(q) = f(z)(1− ij)1

2
+ f(z)(1 + ij)

1

2
.

As a consequence of the structure formula, every holomorphic function that
is defined on a suitable open set in Cj has a slice hyperholomorphic extension.

Lemma 2.1.11. Let O ⊂ Cj be open and symmetric with respect to the real axis.
We call the set [O] =

⋃
z∈O[z] the axially symmetric hull of O.

(i) Every function f : O → H has a unique extension extL(f) to a left slice
function on [O] and a unique extension extR(f) to a right slice function on
[O].

(ii) If f : O → H is left holomorphic, i.e., it satisfies (2.7), then extL(f) is left
slice hyperholomorphic.

(iii) If f is right holomorphic, i.e., it satisfies (2.8), then extR(f) is right slice
hyperholomorphic.

Proof. The left and right slice extensions extL(f) and extR(f) are obviously given
by (2.9) resp. (2.10). Due to Theorem 2.1.9, they are also unique.

Assume that f is left holomorphic. Then extL(f)(q) = f0(u, v) + if1(u, v) for
q = u+ jv, with

f0(u, v) =
1

2
[f(u− jv) + f(u+ jv)]

and

f1(u, v) =
1

2
j [f(u− jv)− f(u+ jv)] .

It remains to show that this actually defines a left slice hyperholomorphic function,
i.e., that f0 and f1 satisfy the Cauchy–Riemann equations (2.5). Because of (2.7),
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we have

∂

∂u
f0(u, v) =

1

2

[
∂

∂u
f(u− jv) +

∂

∂u
f(u+ jv)

]
=

1

2

[
j
∂

∂v
f(u− jv)− j ∂

∂v
f(u+ jv)

]
=

∂

∂v
f1(u, v).

Similarly, we also have

∂

∂v
f0(u, v) =

1

2

[
∂

∂v
f(u− jv) +

∂

∂v
f(u+ jv)

]
=

1

2

[
−j ∂

∂u
f(u− jv) + j

∂

∂u
f(u+ jv)

]
= − ∂

∂u
f1(u, v).

Thus extL(f) is actually left slice hyperholomorphic. The right slice hyperholo-
morphic case can be shown with analogous arguments. �

Slice hyperholomorphic functions admit a special kind of derivative, which
again yields a slice hyperholomorphic function.

Definition 2.1.12. Let f : U ⊆ H → H and let q = u + jv ∈ U . If q is not real,
then we say that f admits a left slice derivative in q if

∂Sf(q) := lim
p→q, p∈Cj

(p− q)−1(fj(p)− fj(q)) (2.12)

exists and is finite. If q is real, then we say that f admits a left slice derivative in
q if (2.12) exists for every j ∈ S.

Similarly, we say that f admits a right slice derivative at a nonreal point
q = u+ jv ∈ U if

∂Sf(q) := lim
p→q, p∈Cj

(fj(p)− fj(q))(p− q)−1 (2.13)

exists and is finite, and we say that f admits a right slice derivative at a real point
q ∈ U if (2.13) exists and is finite for every j ∈ S.

Remark 2.1.13. Observe that ∂Sf(q) is uniquely defined and independent of the
choice of j ∈ S even if q is real. If f admits a slice derivative, then fj is Cj-complex
left resp. right differentiable, and we obtain

∂Sf(q) = f ′j(q) =
∂

∂u
fj(q) =

∂

∂u
f(q), q = u+ jv. (2.14)

Proposition 2.1.14. Let U ⊆ H be an axially symmetric open set and let f : U → H
be a real differentiable function.

(i) If f(q) = f0(u, v) + jf1(u, v) is left (or right) slice hyperholomorphic, then it
admits a left (resp. right) slice derivative and ∂Sf is again left (resp. right)
slice hyperholomorphic on U .
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(ii) If f is a left (or right) slice function that admits a left (resp. right) slice
derivative, then f is left (resp. right) slice hyperholomorphic.

(iii) If U is a slice domain, then every function that admits a left (resp. right)
slice derivative is left (resp. right) slice hyperholomorphic.

Proof. If f is a left slice hyperholomorphic function on U and q = u+jv ∈ U , then
its restriction to the complex plane Cj can be written as fj(q) = F1(q)+F2(q)i for
i ∈ S with i ⊥ j. By Lemma 2.1.6, the component functions F1, F2 : U ∩Cj → Cj
are holomorphic, and hence

lim
p→q, p∈Cj

(p− q)−1(fj(p)− fj(q))

= lim
p→q, p∈Cj

(p− q)−1(F1(p) + F2(p)i− F1(p)− F2(q)i)

= F ′1(q) + F ′2(q)i

exists. Therefore, f admits a left slice derivative. Moreover, this slice derivative
coincides with the derivative with respect to the real part of the quaternion by
(2.14), and hence

∂Sf(q) =
∂

∂u
f(q) =

∂

∂u
f0(u, v) + j

∂

∂u
f1(u, v), q = u+ jv.

The functions ∂
∂uf0(u, v) and ∂

∂uf1(u, v) obviously satisfy the compatibility con-
dition (2.4). Since f0 and f1 satisfy the Cauchy–Riemann equations, they are
infinitely differentiable. Hence ∂

∂u , and ∂
∂v commute with ∂

∂u and we obtain that

also ∂
∂uf0(u, v) and ∂

∂uf1(u, v) satisfy the Cauchy–Riemann equations (2.5). Thus
∂Sf is left slice hyperholomorphic too.

If, on the other hand, f(q) = f0(u, v) + jf1(u, v) is a left slice function that
admits a left slice derivative, we choose j ∈ S. Then fj is an H-valued left holomor-
phic function on U ∩ Cj . By Lemma 2.1.11, the left slice extension extL(fj) of fj
is therefore a left slice hyperholomorphic extension of fj . Since f is already a left
slice function, we find that f = extL(fj), and so f is left slice hyperholomorphic.

If, finally, U is an axially symmetric slice domain and f is an arbitrary func-
tion on U that admits a left slice derivative, then we can again choose an arbitrary
imaginary unit j ∈ S and find that fj is left holomorphic. We set f̃ = extL(fj) and

g = f − f̃ . Obviously g ≡ 0 on U ∩ Cj . Moreover, g admits a left slice derivative,

since f and f̃ both admit a left slice derivative. For every i ∈ S, the restriction
gi = g|U∩Ci is a (left) holomorphic function on the domain U ∩ Ci in Ci. More-
over, g|U∩R ≡ 0, and so the set of zeros of gi has an accumulation point in U ∩Ci.
By the identity theorem for holomorphic functions, we find that gi ≡ 0, and in
turn g ≡ 0 because i ∈ S was arbitrary. Therefore, f = f̃ = extL(fj) is left slice
hyperholomorphic.

The right slice hyperholomorphic case can be shown by analogous arguments.
�
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Important examples of slice hyperholomorphic functions are power series in
the quaternionic variable: power series of the form

∑+∞
n=0 q

nan with an ∈ H are

left slice hyperholomorphic, and power series of the form
∑+∞
n=0 anq

n are right slice
hyperholomorphic. Such a power series is intrinsic if and only if the coefficients
an are real. Conversely, every slice hyperholomorphic function can be expanded
at any real point into a power series due to the splitting lemma.

Theorem 2.1.15. Let a ∈ R, let r > 0, and let Br(a) = {q ∈ H : |q − a| < r}. If
f ∈ SHL(Br(a)), then

f(q) =
+∞∑
n=0

(q − a)n
1

n!
∂nSf(a) ∀q = u+ jv ∈ Br(a). (2.15)

If, on the other hand, f ∈ SHR(Br(a)), then

f(q) =
+∞∑
n=0

1

n!
(∂nSf(a)) (q − a)n ∀q = u+ jv ∈ Br(a).

Proof. Let f ∈ SHL(Br(a)) and q = u+jv ∈ Br(a). By Lemma 2.1.6, the function
fj = f |Br(a)∩Cj is left holomorphic on Br(a) and can hence be expanded into a
power series. We obtain

f(q) = fj(q) =
+∞∑
n=0

(q − a)n
1

n!
f

(n)
j (a).

But due to (2.14), we have

f
(n)
j (a) =

∂n

∂nu
fj(a) =

∂n

∂un
f(a) = ∂nSf(a).

The coefficients in the power series expansion are hence independent of the complex
plane in which they are computed, and (2.40) holds. The right slice hyperholo-
morphic case follows with similar arguments. �

As pointed out above, the product of two slice hyperholomorphic functions
is not slice hyperholomorphic unless the factor on the appropriate side is intrinsic.
However, there exists a regularized product that preserves slice hyperholomorphic-
ity.

Definition 2.1.16. For f = f0 + jf1, g = g0 + jg1 ∈ SHL(U), we define their left
slice hyperholomorphic product as

f ∗L g = (f0g0 − f1g1) + j(f0g1 + f1g0).

For f = f0 + f1j, g = g0 + g1j ∈ SHR(U), we define their right slice hyperholo-
morphic product as

f ∗R g = (f0g0 − f1g1) + (f0g1 + f1g0)j.
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Remark 2.1.17. The slice hyperholomorphic product is associative and distribu-
tive, but it is in general not commutative. If f is intrinsic, then f ∗L g coincides
with the pointwise product fg and

f ∗L g = fg = g ∗L f. (2.16)

Similarly, if g is intrinsic, then f ∗R g coincides with the pointwise product fg and

f ∗R g = fg = g ∗R f. (2.17)

Example 2.1.18. If f(q) =
∑+∞
n=0 q

nan and g(q) =
∑+∞
n=0 q

nbn are two left slice
hyperholomorphic power series, then their slice hyperholomorphic product equals
the usual product of formal power series with coefficients in a noncommutative
ring: (

+∞∑
n=0

qnan

)
∗L

(
+∞∑
n=0

qnbn

)
= (f ∗L g)(q) =

+∞∑
n=0

qn
n∑
k=0

akbn−k. (2.18)

Similarly, we have for right slice hyperholomorphic power series that(
+∞∑
n=0

anq
n

)
∗R

(
+∞∑
n=0

bnq
n

)
=

+∞∑
n=0

(
n∑
k=0

akbn−k

)
qn. (2.19)

Definition 2.1.19. We define for f = f0 +jf1 ∈ SHL(U) its slice hyperholomorphic
conjugate f c = f0 + jf1 and its symmetrization fs = f ∗L f c = f c ∗L f . Similarly,
we define for f = f0 + f1j ∈ SHR(U) its slice hyperholomorphic conjugate as
f c = f0 + f1j and its symmetrization as fs = f ∗R f c = f c ∗R f .

The symmetrization of a left slice hyperholomorphic function f = f0 + jf1

is explicitly given by

fs = |f0|2 − |f1|2 + j2Re
(
f0f1

)
.

Hence it is an intrinsic function. It is fs(q) = 0 if and only if f(q̃) = 0 for some
q̃ ∈ [q]. Furthermore, one has

f c(q) = f0(q0, q1) + jqf1(q0, q1) = f0(q0, q1) + f1(q0, q1)(−jq) = f(q), (2.20)

and an easy computation shows that

f ∗L g(q) = f(q)g
(
f(q)−1qf(q)

)
if f(q) 6= 0. (2.21)

For f(q) 6= 0, one has

fs(q) = f(q)f c
(
f(q)−1qf(q)

)
= f(q)f

(
f(q)−1qf(q)

)
= f(q)f (f(q)−1qf(q)).

(2.22)
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Similar computations hold in the right slice hyperholomorphic case. Finally, if f
is intrinsic, then f c(q) = f(q) and fs(q) = |f(q)|2.

As an immediate consequence of Definition 2.1.19 and the above discussion
we obtain the following corollary.

Corollary 2.1.20. The following statements are true:

(i) For f ∈ SHL(U) with f 6≡ 0, its slice hyperholomorphic inverse f−∗L , which
satisfies f−∗L ∗L f = f ∗L f−∗L = 1, is given by

f−∗L = (fs)−1 ∗L f c = (fs)−1f c,

and it is defined on U \ [Zf ], where Zf = {s ∈ U : f(s) = 0}.

(ii) For f ∈ SHR(U) with f 6≡ 0, its slice hyperholomorphic inverse f−∗R , which
satisfies f−∗R ∗R f = f ∗R f−∗R = 1, is given by

f−∗R = f c ∗R (fs)−1 = f c(fs)−1,

and it is defined on U \ [Zf ], where Zf = {s ∈ U : f(s) = 0}.

(iii) If f ∈ N (U) with f 6≡ 0, then f−∗L = f−∗R = f−1.

The modulus |f−∗L | is in a certain sense comparable to 1/|f |. Since fs is
intrinsic, we have |fs(q)| = |fs(q̃)| for every q̃ ∈ [q]. Since f(q)qf(q)−1 ∈ [q] by
Lemma 2.0.1, we find for f(q) 6= 0, because of (2.22), that

|fs(q)| =
∣∣fs (f(q)qf(q)−1

)∣∣
=
∣∣∣f (f(q)qf(q)−1

)
f (q)

∣∣∣ =
∣∣f (f(q)qf(q)−1

)∣∣ |f (q)| .

Therefore, we have, because of (2.20), that∣∣f−∗L(q)
∣∣ =

∣∣fs(q)−1
∣∣ |f c(q)|

=
1

|f (f(q)qf(q)−1)| |f (q)|
|f (q)| = 1

|f (f(q)qf(q)−1)|
,

and so ∣∣f−∗L(q)
∣∣ =

1

|f(q̃)|
with q̃ = f(q)qf(q)−1 ∈ [q]. (2.23)

An analogous estimate holds for the slice hyperholomorphic inverse of a right slice
hyperholomorphic function.

Slice hyperholomorphic functions satisfy a version of Cauchy’s integral theo-
rem and a Cauchy formula with a slice hyperholomorphic integral kernel.



2.1. Slice Hyperholomorphic Functions 25

Theorem 2.1.21 (Cauchy’s integral theorem). Let U ⊂ H be open, let j ∈ S, and
let f ∈ SHL(U) and g ∈ SHR(U). Moreover, let Dj ⊂ U ∩ Cj be an open and
bounded subset of the complex plane Cj with Dj ⊂ U ∩Cj such that ∂Dj is a finite
union of piecewise continuously differentiable Jordan curves. Then

∫
∂Dj

g(s) dsj f(s) = 0,

where dsj = ds(−j).

Proof. If we choose i ∈ S with i ⊥ j, then we can write f(z) = F1(z) + F2(z)i
and g(z) = G1(z) + iG2(z) for z ∈ U ∩Cj with holomorphic component functions
F1, F2, G1, G2 : U ∩ Cj → Cj . By the Cauchy integral theorem for holomorphic
functions, we hence obtain

∫
∂Dj

g(s) dsj f(s)

=

∫
∂Dj

G1(s) dsj F1(s) +

(∫
∂Dj

G1(s) dsj F2(s)

)
i

+ i

∫
∂Dj

G2(s) dsj F1(s) + i

(∫
∂Dj

G1(s) dsj F2(s)

)
i = 0. �

In order to determine the left and right slice hyperholomorphic Cauchy ker-
nels, we start from an analogy with the classical complex case. We consider the
series expansion of the complex Cauchy kernel and determine its closed form under
the assumption that s and q are quaternions that do not commute.

Theorem 2.1.22. Let q, s ∈ H with |q| < |s|. Then

+∞∑
n=0

qns−n−1 = −(q2 − 2Re(s)q + |s|2)−1(q − s) (2.24)

and

+∞∑
n=0

s−n−1qn = −(q − s)(q2 − 2Re(s)q + |s|2)−1. (2.25)

Proof. We prove only (2.24), since (2.25) follows by analogous arguments. Due to
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the identities 2Re(s) = s+ s and |s|2 = ss, we have

(q2 − 2Re(s)q + |s|2)
+∞∑
n=0

qns−n−1 =

=
+∞∑
n=0

qn+2s−n−1 −
+∞∑
n=0

qn+1s−n−12Re(s) +
+∞∑
n=0

qns−n−1|s|2

=

+∞∑
n=1

qn+1s−n −
+∞∑
n=0

qn+1s−n

−
+∞∑
n=0

qn+1s−n−1s+

+∞∑
n=0

qns−ns = −q + s.

Multiplication by (q2 − 2Re(s)q − |s|2)−1 from the left yields (2.24). �

Definition 2.1.23. We define the left slice hyperholomorphic Cauchy kernel as

S−1
L (s, q) := −(q2 − 2Re(s)q + |s|2)−1(q − s), q /∈ [s],

and the right slice hyperholomorphic Cauchy kernel as

S−1
R (s, q) := −(q − s)(q2 − 2Re(s)q + |s|2)−1, q /∈ [s].

The slice hyperholomorphic Cauchy kernels S−1
L (s, q) and S−1

R (s, q) can be
written in two different ways, as the next proposition shows.

Proposition 2.1.24. If q, s ∈ H with q 6∈ [s], then

−(q2 − 2qRe(s) + |s|2)−1(q − s) = (s− q̄)(s2 − 2Re(q)s+ |q|2)−1 (2.26)

and

(s2 − 2Re(q)s+ |q|2)−1(s− q̄) = −(q − s̄)(q2 − 2Re(s)q + |s|2)−1. (2.27)

Proof. Due to the identities |q| = qq = qq and 2Re(q) = q + q, we have

− (q − s)(s2 − 2Re(q)s+ |q|2)

= −qs2 + q(q + q)s− q2q + ss2 − ss(q + q) + sqq

= q2(s− q) + |s|2(s− q)− qs2 + qqs− ssq + sqq.

Since

− qs2 + qqs− ssq + sqq = −qs2 + |q|2s− |s|2q + sqq

= −qs2 + s|q|2 − q|s|2 + sqq = −qs2 + sqq − qss+ sqq

= −q(s+ s)s+ (s+ s)qq = −2Re(s)q(s− q),
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we further conclude that

−(q − s)(s2 − 2Re(q)s+ |q|2) = (q2 − 2Re(s)q + |s|2)(s− q).

Multiplying this identity by (s2 − 2Re(q)s + |q|2)−1 on the right and by (q2 −
2Re(s)q + |s|2)−1 on the left, we obtain (2.26). Exchanging the roles of q and s
and multiplying by −1 then yields (2.27). �

Proposition 2.1.24 justifies the following definition.

Definition 2.1.25. Let q, s ∈ H with q 6∈ [s].

• We say that S−1
L (s, q) is written in the form I if

S−1
L (s, q) := −(q2 − 2Re(s)q + |s|2)−1(q − s).

• We say that S−1
L (s, q) is written in the form II if

S−1
L (s, q) := (s− q̄)(s2 − 2Re(q)s+ |q|2)−1.

• We say that S−1
R (s, q) is written in the form I if

S−1
R (s, q) := −(q − s̄)(q2 − 2Re(s)q + |s|2)−1.

• We say that S−1
R (s, q) is written in the form II if

S−1
R (s, q) := (s2 − 2Re(q)s+ |q|2)−1(s− q̄).

Corollary 2.1.26. For q, s ∈ H with s /∈ [q], we have

S−1
L (s, q) = −S−1

R (q, s).

Lemma 2.1.27. Let q, s ∈ H with s /∈ [q].
The left slice hyperholomorphic Cauchy kernel S−1

L (s, q) is left slice hyper-
holomorphic in q and right slice hyperholomorphic in s.

The right slice hyperholomorphic Cauchy kernel S−1
R (s, q) is left slice hyper-

holomorphic in s and right slice hyperholomorphic in q.

Proof. Let q = u+ jv. We write S−1
L (s, q) in the form II, i.e.,

S−1
L (s, q) = (s− q)(s2 − 2Re(q)s+ |q|2)−1.

Then S−1
L (s, q) = f0(u, v) + jf1(u, v) with

f0(u, v) = (s− u)(s2 − 2us+ u2 + v2)−1, (2.28)

f1(u, v) = v(s2 − 2us+ u2 + v2)−1. (2.29)
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Obviously, f0 and f1 satisfy the compatibility condition (2.4). Moreover,

∂

∂u
f0(u, v) = −(s2 − 2us+ u2 + v2)−1

− (s− u)(s2 − 2us+ u2 + v2)−2(−2s+ 2u)

= (s2 − 2us+ u2 + v2)−2
(
(s− u)2 − v2

)
,

∂

∂v
f0(u, v) = −(s− u)(s2 − 2us+ u2 + v2)−22v,

and

∂

∂u
f1(u, v) = −v(s2 − 2us+ u2 + v2)−22(−s+ u),

∂

∂v
f1(u, v) = (s2 − 2us+ u2 + v2)−1

− v(s2 − 2us+ u2 + v2)−22v

= (s2 − 2us+ u2 + v2)−2
(
(s− u)2 − v2

)
.

Hence they also satisfy the Cauchy–Riemann equations (2.5), and so the mapping
q 7→ S−1

L (s, q) is left slice hyperholomorphic.
In order to show that S−1

L (s, q) is right slice hyperholomorphic in s, we write
S−1
L (s, q) in form I, i.e.,

S−1
L (s, q) = −(q2 − 2Re(s)q + |s|2)−1(q − s).

For s = u+ jv, we hence have S−1
L (s, q) = f0(u, v) + f1(u, v)j with

f0(u, v) = (q2 − 2uq + u2 + v2)−1(q − u),

f1(u, v) = (q2 − 2uq + u2 + v2)−1v.

But these are exactly the functions (2.28) and (2.29) in which s is replaced by
q. As we showed above, they satisfy the compatibility condition (2.4) and the
Cauchy–Riemann equations (2.5), and so the mapping s 7→ S−1

L (s, q) is right slice
hyperholomorphic.

The properties of the right slice hyperholomorphic Cauchy kernel follow im-
mediately, since S−1

R (s, q) = −S−1
L (q, s) by Corollary 2.1.26. �

Lemma 2.1.28. If s and q commute, then the left and the right slice hyperholomor-
phic Cauchy kernels reduce to the complex Cauchy kernel, i.e.,

S−1
L (s, q) = (s− q)−1 = S−1

R (s, q) if sq = qs.

Proof. If q and s commute, then

q2 − 2Re(s)q + |s|2 = q2 − (s+ s)q + ss = (q − s)(q − s).
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Hence, we have

S−1
L (s, q) = −(q2 − 2Re(s)q + |s|2)−1(q − s)

= −(q − s)−1(q − s)−1(q − s) = (s− q)−1,

and similarly also

S−1
R (s, q) = −(q − s)(q2 − 2Re(s)q + |s|2)−1

= −(s− q)(q − s)−1(q − s)−1 = (s− q)−1. �

Remark 2.1.29. Observe that left and right slice hyperholomorphic functions sat-
isfy Cauchy formulas with different kernels. This is different from what happens
for Fueter regular functions, where both left and right Fueter regular functions
satisfy a Cauchy formula with the same integral kernel.

Definition 2.1.30 (Slice Cauchy domain). An axially symmetric open set U ⊂ H
is called a slice Cauchy domain if U ∩ Cj is a Cauchy domain in Cj for every
j ∈ S. More precisely, U is a slice Cauchy domain if for every j ∈ S the boundary
∂(U ∩ Cj) of U ∩ Cj is the union a finite number of nonintersecting piecewise
continuously differentiable Jordan curves in Cj .

Remark 2.1.31. Observe that every slice Cauchy domain has only finitely many
components (i.e., maximal connected subsets). Moreover, at most one of them
is unbounded, and if there exists an unbounded component, then it contains a
neighborhood of ∞ in H.

Theorem 2.1.32 (The Cauchy formulas). Let U ⊂ H be a bounded slice Cauchy
domain, let j ∈ S, and set dsj = ds(−j). If f is a (left) slice hyperholomorphic
function on a set that contains U , then

f(q) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s), for every q ∈ U. (2.30)

If f is a right slice hyperholomorphic function on a set that contains U , then

f(q) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, q), for every q ∈ U. (2.31)

These integrals depend neither on U nor on the imaginary unit j ∈ S.

Proof. Assume that f is left slice hyperholomorphic on a set that contains U and
let q = u+ iv ∈ U . Since S−1

L (s, q) is left slice hyperholomorphic in q, we deduce
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from Theorem 2.1.9 that with p = u+ jv,

1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s)

=
1

2
(1− ij)

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, p) dsj f(s)

)

+
1

2
(1 + ij)

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, p)dsjf(s)

)

=
1

2
(1− ij)

(
1

2πj

∫
∂(U∩Cj)

(p− s)−1 ds f(s)

)

+
1

2
(1 + ij)

(
1

2πj

∫
∂(U∩Cj)

(p− s)−1 ds f(s)

)
,

where the last identity follows from Lemma 2.1.28 because p, s, and j all belong
to Cj and hence commute mutually. By Lemma 2.1.6, the restriction of f to Cj
is left holomorphic. Hence it satisfies the classical Cauchy formula. Together with
Theorem 2.1.9, this implies that

1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) =

1

2
(1− ij)f(p) +

1

2
(1 + ij)f(p) = f(q).

Since f(q) is independent of U and j ∈ S, the integral in (4.39) is obviously
independent of U and j.

The right slice hyperholomorphic case is again shown by analogous argu-
ments. �

Theorem 2.1.33 (Cauchy formulas on unbounded slice Cauchy domains). Let U ⊂
H be an unbounded slice Cauchy domain and let j ∈ S. If f ∈ SHL(U) and
f(∞) := lim|q|→∞ f(q) exists, then

f(q) = f(∞) +
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) for every q ∈ U.

If f ∈ SHR(U) and f(∞) := lim|q|→∞ f(q) exists, then

f(q) = f(∞) +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, q) for every q ∈ U.

Proof. Let f ∈ SHL(U) such that f(∞) := lim|q|→∞ f(q) exists and let q ∈ U .
For sufficiently large r > 0, the set Ur := U ∩ Br(0) is a bounded slice Cauchy
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domain with q ∈ Ur and H \ Ur ⊂ U . By

f(q) =
1

2π

∫
∂(Ur∩Cj)

S−1
L (s, q) dsj f(s)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) +

1

2π

∫
∂(Br(0)∩Cj)

S−1
L (s, q) dsj f(s).

Theorem 2.1.21 implies that we can vary r without changing the value of the
second integral. Letting r tend to infinity, we find that it equals f(∞), and we
obtain the statement. �

Finally, just like holomorphic functions, slice hyperholomorphic functions can
be approximated by rational funcitons.

Definition 2.1.34. A function r is called left rational if it is of the form r(q) =
P (q)−1Q(q) with polynomials P ∈ N (H) and Q ∈ SHL(H).

A function r is called right rational if it is of the form r(q) = Q(q)P (q)−1

with polynomials P ∈ N (H) and Q ∈ SHR(H).
Finally, a function r is called intrinsic rational if it is of the form r(q) =

P (q)−1Q(q) with two polynomials P,Q ∈ N (H).

Remark 2.1.35. The requirement that P be intrinsic is necessary because the
function P−1 is otherwise not slice hyperholomorphic; cf. Theorem 2.1.4.

Corollary 2.1.36. Let f ∈ SHL(U), let j, i ∈ S with i ⊥ j, and write fj = F1 +F2i
with holomorphic components F1, F2 : U ∩ Cj → Cj according to Lemma 2.1.6.
Then f is left rational if and only if F1 and F2 are rational functions on Cj.

Similarly, if f ∈ SHR(U) and we write fj = F1 + iF2 with holomorphic
components F1 and F2 according to Lemma 2.1.6, then f is right rational if and
only if F1, F2 are rational functions on Cj.

Proof. Let f ∈ SHL(U) be left rational, i.e., f(q) = P (q)−1Q(q) for some intrinsic

polynomial P (q) =
∑N
n=0 q

nan with an ∈ R and some left slice hyperholomorphic

polynomial Q(q) =
∑M
m=0 q

mbm with bm ∈ H. If we write bm = bm,1 + bm,2i with

bm,1, bm,2 ∈ Cj and set Q1(q) =
∑M
m=0 q

mbm,1 and Q2(q) =
∑M
m=0 q

mbm,2 for
q ∈ U ∩ Cj , we obtain Q = Q1 +Q2i and in turn

fj(q) = P (q)−1Q(q) = P (q)−1Q1(q) + P (q)−1Q2(q)i.

Since P has real coefficients and Q1 and Q2 have coefficients in Cj , they are
polynomials on Cj , and hence P−1Q1 and P−1Q2 are rational functions on Cj .
Since furthermore, 1 and i are linearly independent over Cj , we obtain F1 = P−1Q1

and F2 = P−1Q2.
In order to show the converse implication, let us assume that F1 = P−1

1 Q1

and F2 = P2Q2 are rational functions. If P1(q) =
∑N
n=0 q

nan,1 with an,1 in

Cj , then P1(q) is the polynomial P1(q) =
∑N
n=0 q

nan,1. The product P̃1(q) :=
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P1(q)P1(q) is again a polynomial, and since it satisfies P̃1(q) = P̃1(q), it has real
coefficients. Similarly, the function P̃2(q) := P2(q)P2(q) is also a polynomial with
real coefficients, and we have

F1(q) = P̃1(q)−1P1(q)Q1(q), F2(q) = P̃2(q)−1P2(q)Q2(q),

and in turn

fj(q) = F1(q) + F2(q)i

= P̃1(q)−1P̃2(q)−1
(
P̃2(q)P1(q)Q1(q) + P̃1(q)P2(q)Q2(q)i

)
.

The function P (q) := P̃1(q)P̃2(q) is a polynomial with real coefficients on Cj , the
function

Q(q) := P̃2(q)P1(q)Q1(q) + P̃1(q)P2(q)Q2(q)i

is a polynomial with quaternionic coefficients on Cj , and by construction, fj(q) =
P (q)−1Q(q).

Replacing the complex variable by a quaternionic variable, we can extend P
to an intrinsic polynomial on H and Q to a left slice hyperholomorphic polyno-
mial on H. Due to the uniqueness of the left slice hyperholomorphic extension in
Lemma 2.1.11, we then obtain

f = extL(fj) = extL(P−1Q) = P−1Q,

and so f is actually left rational. The right rational case can be shown similarly. �

Theorem 2.1.37 (Runge’s theorem). Let K ⊂ H be an axially symmetric compact
set and let A be an axially symmetric set such that A∩C 6= ∅ for every connected
component C of (H ∪ {∞}) \K.

If f is left slice hyperholomorphic on an axially symmetric open set U with
K ⊂ U , then for every ε > 0, there exists a left rational function r whose poles lie
in A such that

sup{|f(q)− r(q)| : q ∈ K} < ε. (2.32)

Similarly, if f is right slice hyperholomorphic on an axially symmetric open
set U with K ⊂ U , then for every ε > 0, there exists a right rational function r
whose poles lie in A such that (2.32) holds.

Finally, if f ∈ N (U) for some axially symmetric open set U with K ⊂ U ,
then for every ε > 0, there exists a real rational function r whose poles lie in A
such that (2.32) holds.

Proof. Let f ∈ SHL(U) for some axially symmetric open set U with K ⊂ U , let
j, i ∈ S with j ⊥ i, and let us write fj = F1 + F2i with holomorphic functions
F1, F2 : U ∩ Cj → Cj as in Lemma 2.1.6. The set K ∩ Cj is compact in Cj and
the set A ∩ Cj has, due to its axial symmetry, nonempty intersection with every
connected component of (Cj ∪ {∞}) \ (K ∩ Cj).
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For ε > 0, the classical Runge’s theorem for holomorphic functions implies
the existence of rational functions R1 and R2 with poles in A ∩ Cj such that

sup{|F`(z)−R`(z)| : z ∈ K ∩ Cj} <
ε

4
, ` = 1, 2. (2.33)

The left slice hyperholomorphic extension r(q) = extL(R1 + R2i) is then by
Lemma 3.2.10 a right rational function with poles in A, and

|f(z)− r(z)| ≤ |F1(z)−R1(z)|+ |F2(z)−R2(z)| < ε

2

for all z ∈ K ∩ Cj . From Theorem 2.1.9 we conclude for q = u + kv ∈ K after
setting z = u+ jv ∈ K ∩ Cj that

|f(q)− r(q)| =
∣∣∣∣12(1− kj)(f(z) + r(z)) +

1

2
(1 + kj)(f(z)− r(z))

∣∣∣∣
≤ |f(z) + r(z)|+ |f(z)− r(z)) < ε.

(2.34)

The right slice hyperholomorphic case can be shown by similar arguments.
What remains to show is that R can be chosen rational intrinsic if f is

intrinsic. In order to do that, we first observe that in this case, F2 ≡ 0, so that we
can choose R2 ≡ 0 in (2.33). If we set

R̃(z) =
1

2

(
R1(z) +R(z)

)
,

then R̃ is a rational function on Cj that satisfies R̃(z) = R̃(z). It is hence of the

form R̃(z) = P (z)−1Q(z) with polynomials P and Q with coefficients in R. Its
slice hyperholomorphic extension r(q) = P (q)−1Q(q) for q ∈ H with P (q) 6= 0 is
then an intrinsic rational function.

As an intrinsic function, f satisfies f(q) = f(q). Hence for z ∈ K ∪ Cj , we
have

|f(z)− r(z)| = 1

2

∣∣∣f(z)−R1(z) + f(z)−R1(z)
∣∣∣

≤ 1

2

(∣∣∣f(z)−R1(z)
∣∣∣+
∣∣∣f(z)−R1(z)

∣∣∣) < ε

2
.

As in (2.34), we see then that (2.32) holds with the intrinsic rational function
r. �

2.2 The Fueter Mapping Theorem in Integral Form

In order to define the F -functional calculus in Chapter 7 we recall now the Fueter
mapping theorem and show its integral form. The Fueter mapping theorem in
integral form was introduced in [86]. We start with recalling the definition of
Fueter regularity.
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Definition 2.2.1 (Cauchy–Fueter regular functions). Let U be an open set in H. A
real differentiable function f : U → H is left Fueter regular if

∂

∂q0
f(q) +

3∑
`=1

e`
∂

∂q`
f(q) = 0, for every q ∈ U.

It is right Fueter regular if

∂

∂q0
f(x) +

3∑
`=1

∂

∂q`
f(q)e` = 0, for every q ∈ U.

It was Fueter who introduced in his paper [111] the following method for
generating Fueter regular functions:

(1) We consider a holomorphic function f(z) that depends on a complex variable
z = u + ιv in an open set of the upper complex half-plane. (In order to
distinguish it from quaternionic imaginary units, we denote the imaginary
unit of the usual complex numbers by ι.) We write

f(z) = f0(u, v) + ιf1(u, v),

where f0 and f1 are R-valued functions that satisfy the Cauchy–Riemann
system.

(2) For every quaternion q such that u + ιv belongs to the domain of f , we
replace the complex imaginary unit ι in f(z) = f0(u, v) + ιf1(u, v) by the

quaternionic imaginary unit Im(q)
|Im(q)| , and we set u = Re(q) and v = |Im(q)|.

We then define

f(q) = f0(q0, |Im(q)|) +
Im(q)

|Im(q)|
f1(q0, |Im(q)|).

Observe that the function f(q) is slice hyperholomorphic by construction.

(3) We apply the Laplace operator ∆ =
∑3
`=0

∂2

∂q2
`

to f and define f̆(q) = ∆f(q).

It turns out that the function f̆(q) is then both left and right Fueter regular.
Observe that by construction, f(q) is an intrinsic slice hyperholomorphic

function on the open axially symmetric set of all quaternions q = u+ jv such that
u+ ιv belongs to the domain of f .

In modern language, the Fueter mapping theorem states that applying the
Laplace operator ∆ to a slice hyperholomorphic function f(q) yields the Fueter
regular function

f̆(q) = ∆f(q).

This function is left Fueter regular if f is left slice hyperholomorphic and right
Fueter regular if f is right slice hyperholomorphic.
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If we write f in terms of the slice hyperholomorphic Cauchy formula, we can
apply ∆ and commute it with the integral such that ∆ is actually applied to the
slice hyperholomorphic Cauchy kernel inside this integral. In this way, we obtain
an integral transform with respect to the kernel ∆S−1

L (s, p), resp. ∆S−1
R (s, p), that

maps slice hyperholomorphic functions to Fueter regular functions.

A simple formula for ∆S−1
L (s, p), resp. ∆S−1

R (s, p), is, however, obtained only
if we write the slice hyperholomorphic Cauchy kernels in form II. As a consequence,
the F -functional calculus, which is based on this integral transform, can be de-
fined only for operators with commuting components. Otherwise, the S-resolvents
cannot be written in a form that corresponds to form II of the Cauchy kernels.

Theorem 2.2.2. Let q, s ∈ H with q 6∈ [s] and let ∆ =
∑3
`=0

∂2

∂q2
`

be the Laplace

operator in the variable q.

(a) Consider the left slice hyperholomorphic Cauchy kernel S−1
L (s, q) written in

form II. Then we have

∆S−1
L (s, q) = −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2. (2.35)

(b) Consider the right slice hyperholomorphic Cauchy kernel S−1
R (s, q) written in

form II. Then we have

∆S−1
R (s, q) = −4(s2 − 2Re(q)s+ |q|2)−2(s− q̄). (2.36)

Proof. We show only the identity (2.35), the other one follows with similar argu-
ments. If we write S−1

L (s, q) in form II, then straightforward computations yield

∂2

∂q2
0

S−1
L (s, q) = 2(s2 − 2Re(q)s+ |q|2)−2(−2s+ 2q0)

+ 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(−2s+ 2q0)2

− 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

and

∂2

∂q2
`

S−1
L (s, q) = −4e`q`(s

2 − 2Re(q)s+ |q|2)−2

+ 8q2
` (s− q̄)(s2 − 2Re(q)s+ |q|2)−3

− 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−2
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for ` = 1, 2, 3. Thus, we obtain

∆S−1
L (s, x) = 2(s2 − 2Re(q)s+ |q|2)−2(−2s+ 2q0)

+ 2(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(−2s+ 2q0)2

−
3∑
`=1

4e`q`(s
2 − 2Re(q)s+ |q|2)−2

+

3∑
`=1

8q2
` (s− q)(s2 − 2Re(q)s+ |q|2)−3

− 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2.

Since (s2 − 2Re(q)s+ |q|2)−2 and (−2s+ 2q0) commute, we have

∆S−1
L (s, q)

= −4

(
s− q0 +

3∑
`=1

4e`q`

)
(s2 − 2Re(q)s+ |q|2)−2

+ 2(s− q̄)

[
(−2s+ 2q0)2 +

3∑
`=1

4q2
`

]
(s2 − 2Re(q)s+ |q|2)−3

− 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

= −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

+ 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

− 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

= −4(s− q̄)(s2 − 2Re[x]s+ |x|2)−2. �

Proposition 2.2.3. Let q ∈ H. The function s 7→ ∆S−1
L (s, q) is right slice hyperholo-

morphic on H \ [q] and the function s 7→ ∆S−1
R (s, q) is left slice hyperholomorphic

on H \ [q].

Proof. For s = u+ jv, we have

∂

∂u
∆S−1

L (s, q) = −4(s2 − 2Re(q)s+ |q|2)−2

+ 8(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(2s− 2Re(q))

and

∂

∂v
∆S−1

L (s, q) = −4j(s2 − 2Re(q)s+ |q|2)−2

+ 8(s− q̄)(s− 2Re(q)(u+ jv) + |q|2)−3(2sj − 2Re(q)j).

Since j commutes with (s2 − 2Re(q)s+ |q|2)−2, we conclude that

∂

∂u
∆S−1

L (s, q) +
∂

∂v
∆S−1

L (s, q)j = 0.
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Hence ∆S−1
L (s, q) is right slice hyperholomorphic in s by Proposition 2.1.14, be-

cause H \ [q] is an axially symmetric slice domain. The other case can be shown
with similar arguments. �

Proposition 2.2.4. Let s ∈ H. The function q 7→ ∆S−1
L (s, q) is left Fueter regular

on H \ [s] and the function q 7→ ∆S−1
R (s, q) is right Fueter regular on H \ [s].

Proof. We have

∂

∂q0
∆S−1

L (s, q) = 4(s2 − 2Re(q)s+ |q|2)−2

− 16(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(s− q0)

and

∂

∂q`
∆S−1

L (s, q) = −4e`(s
2 − 2Re(q)s+ |q|2)−2

+ 16q`(s− q̄)(s2 − 2Re(q)s+ |q|2)−3.

Therefore,

∂

∂q0
∆S−1

L (s, q) +
3∑
`=1

e`
∂

∂q`
∆S−1

L (s, q)

= 4(s2 − 2Re(q)s+ |q|2)−2

− 16(s− q̄)(s2 − 2Re(q)s+ |q|2)−3(s− q0)

+

3∑
`=1

4(−e2
`)(s

2 − 2Re(q)s+ |q|2)−2

+

3∑
`=1

16e`q`(s− q̄)(s2 − 2Re(q)s+ |q|2)−3,

and since (s2 − 2Re(q)s+ |q|2)−1 commutes with s− q0, we finally obtain

∂

∂q0
∆S−1

L (s, q) +
3∑
`=1

e`
∂

∂q`
∆S−1

L (s, q)

= 16(s2 − 2Re(q)s+ |q|2)−2

+ 16

((
q0 +

3∑
`=1

q`e`

)
(s− q)− (s− q)s

)
(s2 − 2Re(q)s+ |q|2)−3

= 16(s2 − 2Re(q)s+ |q|2)−2 − 16(s2 − 2Re(q)s+ |q|2)−2 = 0.

Hence q 7→ ∆S−1
L (s, q) is left Fueter regular. The right Fueter regularity of q 7→

∆S−1
R (s, q) can be shown with analogous computations. �
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Definition 2.2.5 (The Fueter kernels). We define for s ∈ H with q /∈ [s] the FL-
kernel as

FL(s, q) := ∆S−1
L (s, q) = −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2,

and the FR-kernel as

FR(s, q) := ∆S−1
R (s, q) = −4(s2 − 2Re(q)s+ |q|2)−2(s− q̄).

Finally, we can now prove the Fueter mapping theorem in integral form.

Theorem 2.2.6 (The Fueter mapping theorem in integral form). Let U ⊂ H be a
slice Cauchy domain and choose j ∈ S.

(a) If f ∈ SHL(O) for some set O with U ⊂ O, then f̆(q) = ∆f(q) is left Fueter
regular on U , and it admits the integral representation

f̆(q) =
1

2π

∫
∂(U∩Cj)

FL(s, q) dsj f(s) ∀q ∈ U. (2.37)

(b) If f ∈ SHR(O) for some set O with U ⊂ O, then f̆(q) = ∆f(q) is right
Fueter regular on U , and it admits the integral representation

f̆(q) =
1

2π

∫
∂(U∩Cj)

f(s) dsj FR(s, q) ∀q ∈ U. (2.38)

The integrals depend neither on U nor on the imaginary unit j ∈ S.

Proof. The function f̆(q) = ∆f(q) is Fueter regular by the Fueter mapping theo-
rem. We can write f(q) for q ∈ U in terms of the corresponding slice hyperholo-
morphic Cauchy formula. If we apply the Laplacian and exchange the order of
integration and differentiation, we end up with (2.37), resp. (2.38). �

2.3 Vector-Valued Slice Hyperholomorphic Functions

In this section, we generalize the notion of slice hyperholomorphicity from scalar-
valued to vector-valued functions. In particular, similar to what happens for holo-
morphic functions, we show that the notions of weak and strong slice hyperholo-
morphicity are equivalent. Via the quaternionic Hahn–Banach theorem, one can
prove properties of vector-valued slice hyperholomorphic functions by reducing the
problems to the scalar case.

Definition 2.3.1. A quaternionic right vector space is an additive group (X,+) that
is endowed with a quaternionic right multiplication (X,H)→ X, (x, q) 7→ xq such
that for all x, y ∈ X and all p, q ∈ H,

x(p+ q), = xp+ xq (x+ y)q = xq + yq, (xp)q = x(pq).
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A quaternionic left vector space is an additive group (X,+) that is endowed with a
quaternionic left multiplication (H, X)→ X, (q, x) 7→ qx such that for all x, y ∈ X
and all p, q ∈ H,

(p+ q)x = px+ qx, q(x+ y) = qx+ qy, q(px) = (qp)x.

A two-sided quaternionic vector space is an additive group (X,+) endowed with
a quaternionic left and a quaternionic right multiplication such that X is both a
left and a right vector space and such that ax = xa for all a ∈ R and all x ∈ X.

Remark 2.3.2. If we start from a real vector space XR, then we can quaternionify
XR to obtain the two-sided quaternionic vector space X = XR ⊗H by setting

X = XR ⊗H =

{
3∑
`=0

x`e` : x` ∈ XR

}

with the scalar multiplications

qx =
3∑
`=0

x`(qe`), xq =
3∑
`=0

x`(e`q),

for x ∈ X and q ∈ H. Conversely, every two-sided quaternionic vector space X
is isomorphic to the quaternionification of a real vector space, namely to XR ⊗H
with the real vector space

XR = {x ∈ X : qx = xq ∀q ∈ H}.

Definition 2.3.3. A function ‖ · ‖ : XR → [0,+∞) on a quaternionic right vector
space XR is called a norm on XR, if it satisfies

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖xq‖ = ‖x‖|q| for all x ∈ X and all q ∈ H,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

If XR is complete with respect to the metric induced by ‖ · ‖, we call XR a
quaternionic right Banach space.

A function ‖ · ‖ : XL → [0,+∞) on a quaternionic left vector space XL is
called a norm on XL, if it satisfies (i), (iii), and

(ii′) ‖qx‖ = |q|‖x‖ for all x ∈ X and all q ∈ H.

If XL is complete with respect to the metric induced by ‖ · ‖, we call XL a quater-
nionic left Banach space.

Finally, a two-sided quaternionic vector space X is called a quaternionic two-
sided quaternionic Banach space if it is endowed with a norm ‖ · ‖ such that it is
both a left and a right Banach space, that is, such that (i), (ii), (ii′) and (iii) are
satisfied and such that X is complete with respect to the metric induced by ‖ · ‖.
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Corollary 2.3.4. A quaternionic left or right Banach space turns into a real Banach
space if we restrict the left, resp. right, scalar multiplication to R, and it turns into
a complex Banach space over Cj with j ∈ S if we restrict the left, resp. right, scalar
multiplication to Cj.

A two-sided quaternionic Banach space turns into a real Banach space if we
restrict the scalar multiplications to R, and it turns into a complex Banach space
over Cj with j ∈ S if we restrict either the left or the right scalar multiplication
to Cj.

Definition 2.3.5. A function ϕ : X1 → X2 between two quaternionic right vector
spaces X1, X2 is called right linear if

ϕ(xq + y) = ϕ(x)q + ϕ(y) ∀x, y ∈ X1, q ∈ H.

Similarly, a function ϕ : X1 → X2 between two quaternionic left vector spaces
X1, X2 is called left linear if

ϕ(qx+ y) = qϕ(x) + ϕ(y) ∀x, y ∈ X1, q ∈ H.

A right or left linear mapping ϕ : X1 → X2 between two quaternionic right, resp.
left, Banach spaces is called bounded if

‖ϕ‖ := sup
‖x‖X1

=1

‖ϕ(x)‖X2 < +∞.

Definition 2.3.6. The dual X ′R of a quaternionic right Banach space XR is the
quaternionic left Banach space of all bounded right linear mappings from XR to
H. The dual X ′L of a quaternionic left Banach space XL is the quaternionic right
Banach space of all bounded left linear mappings from XR to H. Finally, for a
two-sided quaternionic Banach space X, we distinguish two different dual spaces:
the right dual X ′R of X is the dual space of X as a right Banach space, and the
left dual X ′L of X is the dual space of X as a left Banach space.

We finally recall the quaternionic Hahn–Banach theorem, which will be im-
portant in the sequel. It was first proven in [194], but a proof in English can be
found in [89].

Theorem 2.3.7 (Hahn–Banach theorem). Let XR be a quaternionic right vector
space, let X0 be a right linear subspace of XR, and let ρ : XR → [0,+∞) satisfy
ρ(x + y) ≤ ρ(x) + ρ(y) and ρ(xq) = ρ(x)|q| for all x, y ∈ XR and all q ∈ H.
Moreover, let λ : X0 → H be a quaternionic right linear functional on X0 such
that |λ(x)| ≤ ρ(x) for all x ∈ X0. Then there exists a right linear functional
Λ : XR → H such that Λ(x) = λ(x) for all x ∈ X0 and such that

|Λ(x)| ≤ ρ(x) for all x ∈ XR.

An analogous statement holds for left linear vector spaces.
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Corollary 2.3.8. The dual space of a quaternionic left or right Banach space sepa-
rates points. Furthermore, both the left and the right duals of a two-sided quater-
nionic Banach space also separate points.

Let us now turn our attention to slice hyperholomorphic functions with val-
ues in a quaternionic Banach space. As in the complex case, one can distinguish
between strong and weak slice hyperholomorphicity.

Definition 2.3.9 (Slice hyperholomorphic vector-valued functions). Let U ⊆ H be
an axially symmetric open set and let

U = {(u, v) ∈ R2 : u+ Sv ⊂ U}.

A function f : U → XL with values in a quaternionic left Banach space XL is
called a left slice function, if is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : U → XL that satisfy the compatibility condition (2.4).
If in addition f0 and f1 satisfy the Cauchy–Riemann equations (2.5), then f is
called strongly left slice hyperholomorphic.

A function f : U → XR with values in a quaternionic right Banach space is
called a right slice function if it is of the form

f(q) = f0(u, v) + f1(u, v)j for q = u+ jv ∈ U

with two functions f0, f1 : U → XR that satisfy the compatibility condition (2.4).
If in addition f0 and f1 satisfy the Cauchy–Riemann equations (2.5), then f is
called strongly right slice hyperholomorphic.

Definition 2.3.10. Let U ⊂ H be an axially symmetric open set. A function f :
U → XL with values in a quaternionic left Banach space XL is called weakly left
slice hyperholomorphic if Λf is left slice hyperholomorphic for every Λ ∈ X ′L. A
function f : U → XR with values in a quaternionic right Banach space XR is
called weakly right slice hyperholomorphic if Λf is right slice hyperholomorphic
for every Λ ∈ X ′R.

Since the functionals Λ in the dual of XL, resp. XR, are continuous, every
strongly slice hyperholomorphic function is weakly slice hyperholomorphic. As in
the complex case, the converse also is true. In order to show this, we recall the
following lemma. We omit the proof, since it works exactly as in the complex case
(see, e.g., [179], p. 189).

Lemma 2.3.11. Let X be a two-sided quaternionic Banach space. A sequence
(xn)n∈N is Cauchy if and only if (Λ(xn))n∈N is uniformly Cauchy for Λ ∈ X ′,
‖Λ‖ ≤ 1.

Proposition 2.3.12. Let XL be a quaternionic left Banach space, let U be an open
axially symmetric subset of H, and let f : U → XL be a real differentiable left slice
function. Then the following statements are equivalent:
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(i) The function f is strongly left slice hyperholomorphic.

(ii) The function f admits a left slice derivative, that is,

∂Sf(q) := lim
p→q,p∈Cj

(p− q)−1(f(p)− f(q)) (2.39)

exists for all q = u + jv ∈ U in the topology of XL, and it exists for every
j ∈ S if q is real.

(iii) For every j ∈ S, the restriction fj = f |U∩Cj of f to U ∩ Cj satisfies

1

2

(
∂

∂u
f(q) + j

∂

∂v
f(q)

)
= 0, ∀q = u+ jv ∈ U ∩ Cj .

Let XR be a quaternionic right Banach space, let U be an open axially symmetric
subset of H, and let f : U → XR be a real differentiable right slice function. Then
the following statements are equivalent:

(i) The function f is strongly right slice hyperholomorphic.

(ii) The function f admits a right slice derivative, that is,

∂Sf(q) := lim
p→q,p∈Cj

(f(p)− f(q))(p− q)−1

exists for all q = u + jv ∈ U in the topology of XR, and it exists for every
j ∈ S if q is real.

(iii) For every j ∈ S, the restriction fj = f |U∩Cj of f to U ∩ Cj satisfies

1

2

(
∂

∂u
f(q) +

∂

∂v
f(q)j

)
= 0, ∀q = u+ jv ∈ U ∩ Cj .

Proof. Let f : U → XL be a left slice function. The equivalence of (ii) and (iii)
follows immediately from the complex theory and Corollary 2.3.4: the statement
(iii) is equivalent to fj being, for every j ∈ S, a (left) holomorphic function on Cj
with values in the complex Banach space XL over Cj . This is in turn equivalent
to the existence of the limit

f ′j(q) = lim
p→q,p∈Cj

(p− q)−1(f(p)− f(q)) = ∂Sf(q)

for every q = u+ jv ∈ U .
Let us now show the equivalence of (i) and (iii). If (i) holds, then

1

2

(
∂

∂u
fj(z) + j

∂

∂v
fj(z)

)
=

1

2

(
∂

∂u
f0(z) + j

∂

∂u
f1(z) + j

∂

∂v
f0(z)− ∂

∂v
f1(z)

)
= 0,
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because f0 and f1 satisfy the Cauchy–Riemann equations (2.5). If, on the other
hand, (iii) holds, then we have because of

f0(u, v) =
1

2
(f(u+ jv) + f(u− jv))

and

f1(u, v) =
1

2
j (f(u− jv)− f(u+ jv))

that

∂

∂u
f0(u, v) =

1

2

[
∂

∂u
f(u− jv) +

∂

∂u
f(u+ jv)

]
=

1

2

[
j
∂

∂v
f(u− jv)− j ∂

∂v
f(u+ jv)

]
=

∂

∂v
f1(u, v).

and

∂

∂v
f0(u, v) =

1

2

[
∂

∂v
f(u− jv) +

∂

∂v
f(u+ jv)

]
=

1

2

[
−j ∂

∂u
f(u− jv) + j

∂

∂u
f(u+ jv)

]
= − ∂

∂u
f1(u, v).

Hence f is actually left slice hyperholomorphic.
The right slice hyperholomorphic case can be shown with analogous argu-

ments. �

Theorem 2.3.13. Let U ⊂ H be an axially symmetric open set.

(i) Every weakly left slice hyperholomorphic function f : U → XL with values in
a quaternionic left Banach space is strongly left slice hyperholomorphic.

(ii) Every weakly right slice hyperholomorphic function f : U → XR with values
in a quaternionic right Banach space is strongly right slice hyperholomorphic.

Proof. Let f be a weakly left slice hyperholomorphic function on U with values in
a quaternionic left Banach space XL. We first observe that f is a left slice function.
If we choose i ∈ S and set

f0(u, v) =
1

2
(f(u+ iv) + f(u− iv))

and

f1(u, v) =
1

2
i(f(u− iv)− f(u+ iv))

for u, v ∈ R with u + iv ∈ U , then f0 and f1 obviously satisfy the compatibility
condition (2.4). If Λ ∈ X ′L, then (Λ◦f)(q) := Λ(f(q)) is left slice hyperholomorphic
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on U by our assumptions, and hence it satisfies the structure formula (2.9). If
q = u+ jv ∈ U , we can set z = u+ iv for netatness and obtain

Λ(f0(u, v) + jf1(u, v))

= Λ

(
1

2
(f(z) + f(z))) + ji

1

2
(f(z)− f(z))

)
=

1

2
(Λ(f(z)) + λ(f(z))) + ji

1

2
(Λ(f(z))− Λ(f(z)))

=
1

2
((Λ ◦ f)(z) + (Λ ◦ f)(z)) + j

1

2
((Λ ◦ f)(z)− (Λ ◦ f)(z))

= (Λ ◦ f)(q) = Λ(f(q)).

Since Λ ∈ V ′L was arbitrary and V ′L separates points by Corollary 2.3.8, we find
that f(q) = f0(u, v) + jf1(u, v) and hence f is a left slice function.

The rest of the proof follows the lines of the proof in the complex case in [179,
p. 189]. For every Λ ∈ X ′L, the function q 7→ Λ(f(q)) is left slice hyperholomorphic
on U . Its restriction to a plane Cj is hence left holomorphic and therefore admits
a representation in terms of the Cauchy formula. If q = u + jv ∈ U and p tends
to q in Cj , we can therefore choose r > 0 so small that Br(q) ⊂ U and find for
p ∈ Br(q) ∩ Cj that

Λ(f(p))− Λ(f(q))

=
1

2π

∫
Γ

(
(s− p)−1 − (s− q)−1

)
dsj Λ(f(s))

=
1

2π

∫
Γ

(p− q)(s− p)−1(s− q)−1 dsj Λ(f(s))

with Γ := ∂(Br(q) ∩ Cj). Moreover, since (Λ ◦ f)′j(q) = ∂
∂uΛ(f(q)), we also have

∂

∂u
Λ(f(q)) =

1

2π

∫
Γ

(s− q)−2dsjΛ(f(s))

and hence ∣∣∣∣(p− q)−1(Λ(f(p))− Λ(f(q)))− ∂

∂u
Λ(f(q))

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
Γ

(
(s− p)−1(s− q)−1 − (s− q)2

)
dsj Λ(f(s))

∣∣∣∣ .
The mapping s 7→ Λ(f(s)) is continuous on Γ. Since Γ is compact, we obtain

sup
s∈Γ
‖Λ(f(s))| < +∞.

The mappings Λ 7→ Λ(f(s)), s ∈ Γ, hence form a family of pointwise bounded lin-
ear maps from V ′L to H. By the uniform boundedness principle, they are therefore
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uniformly bounded such that

sup
s∈Γ,‖Λ‖VL≤1

|Λ(f(s))| := C < +∞.

Consequently, we have∣∣∣∣(p− q)−1(Λ(f(p))− Λ(f(q)))− ∂

∂u
Λ(f(q))

∣∣∣∣
≤ C

2π

∫
Γ

∣∣(s− p)−1(s− q)−1 − (s− q)2
∣∣ d|s| −→ 0

as p approaches q in Cj . Since the above estimate is independent of Λ, it follows
that

lim
p→q

Λ
(
(p− q)−1(f(p)− f(q))

)
=

∂

∂u
Λ(f(q)) =

∂

∂u
Λ(f(q))

uniformly for Λ ∈ V ′L with ‖Λ‖ ≤ 1. Thus Λ
(
(p− q)−1(f(p)− f(q)

)
is in particular

uniformly Cauchy as p→ q for ‖Λ‖ < 1, and we conclude from Lemma 2.3.11 that
the limit (2.39) exists, i.e., that f admits a left slice derivative at q. Since q ∈ U
was arbitrary and we already know that f is a left slice function, Proposition 2.3.12
implies that f is strongly left slice hyperholomorphic.

The right slice hyperholomorphic case can again be shown with similar ar-
guments. �

Since weak and strong slice hyperholomorphicity are equivalent, we will refer
to such functions simply as slice hyperholomorphic.

Definition 2.3.14. Let U ⊂ H be an axially symmetric open set. We denote the
set of all left slice hyperholomorphic functions on U with values in a quaternionic
left Banach space XL by SHL(U,XL) and the set of all right slice hyperholo-
morphic function on U with values in a quaternionic right Banach space XR by
SHR(U,XR).

Corollary 2.3.15. Let U ⊂ H be an axially symmetric open set. If XL is a quater-
nionic left Banach space, then SHL(U,XL) is a quaternionic right linear space. If
XR is a quaternionic right Banach space, then SHR(U,XR) is a quaternionic left
linear space.

Since weak and strong slice hyperholomorphicity are equivalent, several re-
sults for scalar-valued slice hyperholomorphic functions can be generalized to the
vector-valued case by applying functionals in the dual space in order to reduce the
problems to the scalar case.

Proposition 2.3.16 (Identity principle). Let U be an axially symmetric slice do-
main, let f and g be two left or right slice hyperholomorphic functions on U with
values in a quaternionic left, resp. right, Banach space X, and set Z := {q ∈ U :
f(q) = g(q)}. If there exists j ∈ S such that Z ∩ Cj has an accumulation point in
U ∩ Cj, then f ≡ g on all of U .
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Proof. The hypothesis implies Λf = Λg on Z ∩Cj for every element Λ ∈ X ′. The-
orem 2.1.8 thus implies that the left, resp. right, slice hyperholomorphic function
Λ(f −g) is identically zero on the entire axially symmetric slice domain U . By the
Hahn–Banach theorem, we obtain f − g = 0 on U . �

Computations as in the scalar case show, moreover, that vector-valued slice
hyperholomorphic functions also satisfy the structure formula and that they can
be expanded into a Taylor series at every real point.

Proposition 2.3.17 (Structure formula (or representation formula)). Let U ⊂ H be
an axially symmetric open set, let q = u+ jv ∈ U and z = u+ iv for some i ∈ S.
If f is a left slice function on U with values in a quaternionic left Banach space
XL, then

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2
ji
[
f(z)− f(z)

]
.

If f is a right slice function on U with values in a quaternionic right Banach space
XR, then

f(q) =
1

2

[
f(z) + f(z)

]
+

1

2

[
f(z)− f(z)

]
ij.

Theorem 2.3.18. Let a ∈ R, let r > 0, and let Br(a) = {q ∈ H : |q − a| < r}. If
f ∈ SHL(Br(a), XL) with values in a quaternionic left Banach space XL, then

f(q) =
+∞∑
n=0

(q − a)n
1

n!
∂nSf(a) ∀q = u+ jv ∈ Br(a). (2.40)

If on the other hand f ∈ SHR(Br(a), XR) with values in a quaternionic right
Banach space XR, then

f(q) =
+∞∑
n=0

1

n!
(∂nSf(a)) (q − a)n ∀q = u+ jv ∈ Br(a).

Finally, the slice hyperholomorphic Cauchy formulas hold also in the scalar
case.

Theorem 2.3.19 (Vector-valued Cauchy formula). Let U ⊂ H be a bounded slice
Cauchy domain, let j ∈ S, and set dsj = −dsj. If f is a left slice hyperholomorphic
function with values in a quaternionic left Banach space XL that is defined on an
open axially symmetric set O with U ⊂ O, then

f(q) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s) ∀q ∈ U. (2.41)

If f is a right slice hyperholomorphic function with values in a quaternionic right
Banach space XR that is defined on an open axially symmetric set O with U ⊂ O,
then

f(q) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, q), ∀q ∈ U.

These integrals depend neither on U nor on the imaginary unit j ∈ S.
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Proof. Let f ∈ SHL(U,XL) and let q ∈ U . Since ∂(U ∩ Cj) is compact and
the integrand is continuous, the integral in (2.41) converges. Moreover, for every
Λ ∈ X ′L, we have, due to the left slice hyperholomorphicity of q 7→ ∆(f(q)), that

Λ

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj f(s)

)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, q) dsj Λ(f(s)) = Λ(f(q)).

Since Λ ∈ X ′L was arbitrary and X ′L separates points by the Hahn–Banach theo-
rem, we obtain the statement. �

If one considers slice hyperholomorphic functions with values in a quater-
nionic Banach algebra, then the product of two slice hyperholomorphic functions
is, just as in the scalar case, in general not slice hyperholomorphic. It is, however,
possible to define a generalized product that preserves slice hyperholomorphicity.

Definition 2.3.20. A two-sided quaternionic Banach algebra is a quaternionic Ba-
nach space X that is endowed with a product X ×X → X such that:

(i) The product is associative and distributive over the sum in X.

(ii) One has (qx)y = q(xy) and x(yq) = (xy)q for all x, y ∈ X and all q ∈ H.

(iii) One has ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ X.

If in addition there exists a unit with respect to the product in X, then X is called
a two-sided quaternionic Banach algebra with unit.

Definition 2.3.21. Let U ⊂ H be an axially symmetric open set and let X be a
two-sided quaternionic Banach algebra. For two functions f, g ∈ SHL(U,X) with
f(q) = f0 + jf1 and g = g0 + jg1 for q = u + jv ∈ U , we define their left slice
hyperholomorphic product as

f ∗L g :=f0g0 − f1g1 + j (f0g1 + f1g0) . (2.42)

For two functions f, g ∈ SHR(U,X) with f(q) = f0(u, v) + f1(u, v)j and g(q) =
g0(u, v)+g1(u, v)j for q = u+ jv ∈ U , we define their right slice hyperholomorphic
product as

f ∗R g :=f0g0 − f1g1 + (f0g1 + f1g0) j. (2.43)

Remark 2.3.22. It is immediate that the ∗L-product of two left slice hyperholo-
morphic functions is again left slice hyperholomorphic and that the ∗R-product of
two right slice hyperholomorphic functions is again right slice hyperholomorphic.
If, moreover, U = Br(0), then f , g admit power series expansions. If f and g are
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left slice hyperholomorphic with f(q) =
∑+∞
n=0 q

nan and g(q) =
∑+∞
n=0 q

nbn with
an, bn ∈ X, then

(f ∗L g)(q) :=
+∞∑
n=0

qn

(
n∑
`=0

a`bn−`

)
.

Similarly, if f and g are right slice hyperholomorphic with f(q) =
∑+∞
n=0 anq

n and

g(q) =
∑+∞
n=0 bnq

n with an, bn ∈ X, then

(f ∗R g)(q) :=
+∞∑
n=0

(
n∑
`=0

a`bn−`

)
qn.

Remark 2.3.23. The slice hyperholomorphic product can be defined in even more
general settings than for functions with values in a quaternionic Banach algebra.
If, for instance, f ∈ SHL(U,H) and g ∈ SHL(U,XL) for some quaternionic left
Banach space, then we can define f ∗L g ∈ SHL(U,XL) also as in (2.42). For
another example, we consider f ∈ B(X1, X2) and g ∈ B(X2, X3), where X1, X2,
and X3 are two-sided quaternionic Banach spaces and B(X,Y ) denotes the set
of all bounded right linear operators from X to Y . Then we can again define
f ∗L g ∈ SHL(U,B(X1, X3)) by (2.42). The same can, of course, be done for right
slice hyperholomorphic functions.

2.4 Comments and Remarks

The results of this chapter are spread over several papers which are quoted below.
The treatment is sometimes different according to the definition of slice hyper-
holomorphicity that one takes. The interest in slice hyperholomorphic functions,
defined in [135], arose in 2006 because of their applications to operator theory. Sim-
ilar functions were, however, already used much earlier by Fueter, who considered
in [110] functions of the form

f(q) = f0(u+ iv) + jf1(u+ iv), q = u+ jv,

where f0, f1 are the real-valued components of the analytic function F (z) =
f0(z)+ ιf1(z), in order to define what he called hyperanalytic functions. These hy-
peranalytic functions are nothing but intrinsic slice hyperholomorphic functions.
In [111] the author generates Fueter regular functions by applying the Laplace

operator to such a class of functions. The relation f̆ = ∆f between Fueter regular
functions f̆ and slice hyperholomorphic functions f is nowadays a modern way to
state the Fueter mapping theorem. In [187], Sce extended this theorem to func-
tions with values in a Clifford algebras of odd dimension. The extension to Clifford
algebras of even dimensions needs more sophisticated arguments based on Fourier
multipliers. In [175], Qian introduced the even–odd condition (2.4) in order to
define entire slice hyperholomorphic functions, and he generalized the theorem of
Sce. For biaxial symmetric domains, see [174].
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In [135], slice hyperholomorphic functions were defined as functions that
satisfy the properties shown in Lemma 2.1.6, that is, they are functions whose
restrictions to complex planes Cj are left, resp. right, holomorphic. As we showed in
Proposition 2.1.14, on axially symmetric slice domains, this definition is equivalent
to Definition 2.1.2. Precisely, one can show that such functions satisfy the structure
formula when they are defined on an axially symmetric slice domain. Considering
only functions on axially symmetric slice domains is, however, not sufficient for
developing a rich theory of quaternionic linear operators. For operator theory it is
important to consider functions that are defined on axially symmetric open sets
that are not necessarily slice domains, so for this reason we use Definition 2.1.2
for slice hyperholomorphicity.

There is an other approach to slice hyperholomorphic functions that refers
to a global operator introduced in [60]. The global operator G(q) is defined by

G(q) := |q|2 ∂

∂q0
+ q

3∑
j=1

qj
∂

∂qj
,

and if U ⊆ H is an open set and f : U → H is a slice hyperholomorphic function,
then

G(q)f(q) = 0.

Using as a definition of slice hyperholomorphic those functions that are in the
kernel of the operators G, we have a possible definition of slice hyperholomorphic
functions in several variables. Here the theory is far from being developed, be-
cause we have a system of nonconstant differential operators, and the power series
expansion disappears, as the following example in [60] shows:

Example 2.4.1. Let U be an open set in H × H that does not intersect the real
line. Then the function

f(q1, q2) = −Im(q2)+
q

2

|q
2
|

(1

2
Re(q1)2− 1

2
Im(q1)2+Re(q2)

)
+
q

1

|q
1
|
q

2

|q
2
|
Re(q1)Im(q1)

(2.44)
satisfies the system{

|q
1
|2 ∂
∂q1,0

f(q1, q2) + q
1

∑3
j=1 q1,j

∂
∂q1,j

f(q1, q2) = 0,

|q
2
|2 ∂
∂q2,0

f(q1, q2) + q
2

∑3
j=1 q2,j

∂
∂q2,j

f(q1, q2) = 0.
(2.45)

In the paper [98] there are some results associated with the theory of slice
hyperholomorphic functions in several variables, but the global operator is not
used. The above example can be found also in [98].

References on function theory. The theory of slice hyperholomorphic functions is
nowadays very well developed. The main monographs on this topic or containing
this topic are [18,56,89,96,123,133].
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Slice hyperholomorphic functions can be defined not only over the quater-
nions but also over more general Clifford algebras. In the quaternionic setting,
slice hyperholomorphic functions are also called slice regular, and their theory has
been developed by several authors. Some of the most important contributions were
published in [37–39,58,101,112,113,130–132,134–141,154,180,181,188–190].

Slice hyperholomorphic functions with values in a Clifford algebra are also
called slice monogenic functions. The main results of their theory are contained in
the papers [64, 65,73,90–95,152,198].

Several important approximation theorems for slice hyperholomorphic func-
tions are collected in the papers [114–122] and the monograph on quaternionic
approximation theory [123].

The Fueter mapping theorem provides a relation between slice hyperholomor-
phic functions and the classical theory of monogenic functions. Another relation is
provided by the Radon transform and the dual Radon transform. Intense studies
of these relations that go far beyond the results presented in Section 2.2 can be
found in [61,69,83].

The theory of slice hyperholomorphic functions of several variables is very
far from being developed, but some results can be found in the papers [3,98,145].
See also the paper on the Herglotz functions of several quaternionic variables [2].

Finally, the theory of slice hyperholomorphic functions has been extended to
the setting of functions with values in a real alternative ∗-algebra [34,146–149].

The Cauchy transform in the slice hyperholomorphic setting has been studied
in [71].

Quaternion-valued positive definite functions on locally compact abelian
groups and nuclear spaces have been considered in [17].

Slice hyperholomorphic functions are characterized by the slicewise differen-
tial equation (2.5). We, however, point out that slice hyperholomorphic functions
also lie in the kernel of a global differential operator with nonconstant coeffi-
cients [60,88,100,150].

References on function spaces of slice hyperholomorphic functions. Several func-
tion spaces have been extended to the slice hyperholomorphic setting. The quater-
nionic Hardy space H2(Ω), where Ω is either the quaternionic unit ball B or the
half space H+ of quaternions with positive real part, was introduced and studied
in [12,21,22,35]. We point out that the quaternionic Blaschke products were first
introduced in the seminal paper [22].

The Hardy spaces Hp(B) for arbitrary 0 < p < +∞ were studied in [185].
The slice hyperholomorphic Bergman spaces are studied in [59, 62, 63], the slice
hyperholomorphic Fock space is considered in [31] and weighted Bergman spaces,
Bloch, Besov, and Dirichlet spaces of slice hyperholomorphic functions on the
unit ball B were introduced in [48]. Inner product spaces and Krein spaces in
the quaternionic setting are studied in [26]. Carleson measures for Hardy and
Bergman spaces in the quaternionic unit ball are studied in [184]. The BMO
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and VMO spaces of slice hyperholomorphic functions are considered in [129]. For
slice hyperholomorphic fractional Hardy spaces, see [27]. A class of quaternionic
positive definite functions and their derivatives is studied in [29]. For a quaternionic
analogue of the Segal–Bargmann transform, see [102].

References on slice hyperholomorphic Schur analysis. In recent years, a slice
hyperholomorphic version of Schur analysis has also been developed in [1, 3, 7, 8,
12, 15, 16, 21–25, 32]. An overview of classical theory can, for example, be found
in [6]. In the book [18] there is an extended introduction to the theory of Schur
analysis in the slice hyperholomorphic setting. Recent results on Schur analysis,
related topics and quaternionic polynomials can be found in the papers [40–46].



Chapter 3

The SSS-Spectrum and the
SSS-Functional Calculus

The fundamental difficulty in developing a mathematically rigorous theory of
quaternionic linear operators was the identification of suitable notions of quater-
nionic spectrum and quaternionic resolvent operator. In this chapter we study the
properties of the S-spectrum and the S-resolvent operators, and we introduce the
quaternionic S-functional calculus.

3.1 The SSS-Spectrum and the SSS-Resolvent Operators

We begin with some remarks on the algebraic structure of the space of bounded
linear operators on a quaternionic Banach space.

Definition 3.1.1. We denote the set of all bounded right linear operators on a
quaternionic right Banach space XR endowed with the natural norm by B(XR).

Remark 3.1.2. One can also consider left linear operators instead of right linear
operators. The theory we develop in the following also applies in this case with
obvious modifications.

The set B(XR) is a real Banach space with the operations

(T + U)(x) = T (x) + U(x), (Ta)(x) = T (xa),

for x ∈ X and a ∈ R. However, defining (Tq)(x) = T (xq) does not yield a right
linear operator if q ∈ H \ R, since

(Tq)(xp) = T (xpq) 6= T (xqp) = T (xq)p = ((Tq)x)p

if p and q do not belong to the same complex plane Cj , for j ∈ S. The space
B(XR) of all bounded right linear operators on a quaternionic right Banach space
XR is therefore not a quaternionic linear space.

© Springer Nature Switzerland AG 2018  
 Spectral Theory on the S-Spectrum for Quaternionic Operators,

Operator Theory: Advances and Applications 270, https://doi.org/10.1007/978-3-030-03074-2_   
F. Colombo et al., 
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For this reason, in the following we work in a two-sided quaternionic Banach
space X. In this case, we can define

(Tq)x = T (qx) and (qT )(x) = q(T (x))

for q ∈ H and T ∈ B(X). Then B(X) is a two-sided quaternionic Banach space,
too. Together with the multiplication (TU)(x) = T (U(x)) it is also a two-sided
quaternionic Banach algebra.

Our first goal is to identify an appropriate notion of spectrum for quaternionic
linear operators and then to generalize the Riesz–Dunford functional calculus to
this setting. The spectrum of a complex linear operator A is the complement of
its resolvent set

ρ(A) =
{
z ∈ C : (zI −A)−1 is bounded

}
.

The resolvent operator Rz(A) := (zI −A)−1 of A, which determines the resolvent
set and the spectrum of A, is the inverse of the operator associated with the
eigenvalue equation of A for z ∈ C. However, as pointed out in the introduction,
if T is a quaternionic right linear operator and q is a nonreal quaternion, then the
right eigenvalue equation T (x) − xq = 0 is not right linear. Hence its associated
operator cannot be used to determine a notion of spectrum of T .

In order to determine the correct notion of spectrum for a quaternionic linear
operator, we follow a different path. The complex Cauchy kernel is the function
1/(z−ξ). We observe that formally replacing the scalar variable ξ by the operator
A yields exactly the resolvent Rz(A) of A at z. This analogy is the fundamental
principle on which the Riesz–Dunford functional calculus is built. In order to
determine the proper notion of a quaternionic resolvent and in turn a quaternionic
spectrum that allows us to generalize the Riesz–Dunford functional calculus, we
formally replace the quaternionic variable q in the slice hyperholomorphic Cauchy
kernels by the operator T . So we consider the series expansions (2.24) and (2.25),
that is, from the series

+∞∑
n=0

qns−n−1 and
+∞∑
n=0

s−n−1qn

and we give the following definition.

Definition 3.1.3. Let T ∈ B(X) and s ∈ H. We call the series

+∞∑
n=0

Tns−n−1 and
+∞∑
n=0

s−n−1Tn

the left and right Cauchy kernel operator series, respectively.

Lemma 3.1.4. Let T ∈ B(X). For ‖T‖ < |s|, the left and the right Cauchy kernel
operator series converge in the operator norm.
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Proof. We have
+∞∑
n=0

∥∥Tns−n−1
∥∥ ≤ |s|−1

+∞∑
n=0

(
‖T‖|s|−1

)n
.

Thus, the left Cauchy kernel operator series converges if ‖T‖ < |s|. The same
argument shows the convergence of the right Cauchy kernel operator series. �

Our goal is now to determine the closed form of the Cauchy kernel operator
series. We start by showing the closed form of a second important series.

Theorem 3.1.5. Let T ∈ B(X) and let s ∈ H with ‖T‖ < |s|. Then

(
T 2 − 2Re(s)T + |s|2I

)−1
=

+∞∑
n=0

Tn
n∑
k=0

s−k−1s−n+k−1, (3.1)

where this series converges in the operator norm.

Proof. Let us denote the coefficients in (3.1) for neatness by

an =

n∑
k=0

s−k−1s−n+k−1.

We have

|an| ≤
n∑
k=0

|s|k−1|s|−n+k−1 = (n+ 1)|s|−n−2,

and so
+∞∑
n=0

‖Tnan‖ ≤
+∞∑
n=0

‖T‖n|s|−n−2(n+ 1).

Since ‖T‖ < |s|, the ratio test implies the convergence of this series, since

lim
n→∞

‖T‖n+1|s|−n−3(n+ 2)

‖T‖n|s|−n−2(n+ 1)
= lim
n→∞

(n+ 2)‖T‖
(n+ 1)|s|

=
‖T‖
|s|

< 1,

and hence the series (3.1) converges in the operator norm. Moreover, we have

(T 2 − 2Re(s)T + |s|2I)
+∞∑
n=0

Tnan

=
+∞∑
n=2

Tnan−2 −
+∞∑
n=1

Tnan−12Re(s) +
+∞∑
n=0

Tnan|s|2

=
+∞∑
n=2

Tn(an−2 − an−12Re(s) + an|s|2)

+ T (a02Re(s) + a1|s|2) + Ia0|s|2.
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For n ≥ 2, we have, because of 2Re(s) = s+ s and |s|2 = ss = ss, that

an−2 − an−12Re(s) + an|s|2

=
n−2∑
k=0

s−k−1s−n+1+k −
n−1∑
k=0

s−k−12Re(s)s−n+k +
n∑
k=0

s−k−1|s|2s−n+k−1

=
n−1∑
k=1

s−ks−n+k −
n−1∑
k=0

s−ks−n+k −
n−1∑
k=0

s−k−1s−n+k+1 +
n∑
k=0

s−ks−n+k

= −s−n + s−n = 0.

Similarly, we also have, because of s−1 = |s|−2s and s−1 = |s|−2s, that

a02Re(s)− a1|s|2 = |s|−2(s+ s)−
(
s−1s−2 + s−2s−1

)
|s|2

= s−1 + s−1 − |s|−2
(
s−1 + s−1

)
|s|2 = 0,

and so altogether,

(T 2 − 2Re(s)T + |s|2I)
+∞∑
n=0

Tnan = Ia0|s|2 = I.

Since the coefficients an satisfy an = an, they are real, and hence they commute
with T . Therefore, also

+∞∑
n=0

Tnan(T 2 − 2Re(s)T + |s|2I) = (T 2 − 2Re(s)T + |s|2I)

+∞∑
n=0

Tnan = I,

and hence (3.1) holds. �

Theorem 3.1.6. Let T ∈ B(X) and let s ∈ H with ‖T‖ < |s|.
(i) The left Cauchy kernel series equals

+∞∑
n=0

Tns−n−1 = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI).

(ii) The right Cauchy kernel series equals

+∞∑
n=0

s−n−1Tn = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1.

Proof. We show just (i), since the other case can be shown with similar arguments.
We prove the identity

s I − T = (T 2 − 2Re(s)T + |s|2I)
+∞∑
n=0

Tns−1−n.
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Since T 2 − 2Re(s)T + |s|2I is invertible by Theorem 3.1.5, this is equivalent to
(i). The quaterions 2Re(s) = s + s and |s|2 = s s = s s are real, and hence they
commute with the operator T , so we get

(T 2 − 2Re(s)T + |s|2I)
+∞∑
n=0

Tns−n−1

=
+∞∑
n=0

Tn+2s−n−1 −
+∞∑
n=0

Tn+1s−n−1(s+ s) +
+∞∑
n=0

Tns−n−1ss

=

+∞∑
n=1

Tn+1s−n −
+∞∑
n=0

Tn+1s−n −
+∞∑
n=0

Tn+1s−n−1s+

+∞∑
n=0

Tns−ns

= s I − T. �

The previous result motivates the following definition.

Definition 3.1.7. Let T ∈ B(X). For s ∈ H, we set

Qs(T ) := T 2 − 2Re(s)T + |s|2I.

We define the S-resolvent set ρS(T ) of T as

ρS(T ) := {s ∈ H : Qs(T ) is invertible in B(X)},

and we define the S-spectrum σS(T ) of T as

σS(T ) := H \ ρS(T ).

For s ∈ ρS(T ), the operator Qs(T )−1 ∈ B(X) is called the pseudo-resolvent oper-
ator of T at s.

As the following result shows, the S-spectrum has a structure that is compat-
ible with the structure of slice hyperholomorphic functions and with the symmetry
of the set of right eigenvalues of T . Moreover, it generalizes the set of right eigen-
values just as the classical spectrum generalizes the set of eigenvalues of a complex
linear operator.

Proposition 3.1.8. Let T ∈ B(X). The sets ρS(T ) and σS(T ) are axially symmetric.

Proof. If s = u+ jv ∈ H and s̃ = u+ iv ∈ [s], then

Qs̃(T ) = T 2 − 2uT + (u2 + v2)2I = Qs(T ).

Hence Qs̃(T ) is invertible if and only if Qs(T ) is invertible, and so s ∈ ρS(T ) if
and only if s̃ ∈ ρS(T ). Therefore, ρS(T ) and σS(T ) are axially symmetric. �

Proposition 3.1.9. Let T ∈ B(X). Then kerQs(T ) 6= {0} if and only if s is a right
eigenvalue of T . In particular, every right eigenvalue belongs to σS(T ).
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Proof. If s is a right eigenvalue of T , then there exists x 6= 0 such that Tx = xs.
Since 2Re(s) = s+ s, we have

Qs(T )x = T 2x− Tx2Re(s) + x|s|2 = xs2 − xs(s+ s) + xss = 0,

and so x ∈ kerQs(T ) 6= {0}. In particular, this implies thatQs(T ) is not invertible,
and so s ∈ σS(T ).

Assume on the other hand that x ∈ kerQs(T ) for some x 6= 0. If Tx = xs,
then s is a right eigenvalue. Otherwise, x̃ := Tx− xs 6= 0 and

T x̃− x̃s = T 2x− Txs− Txs+ xss = Qs(T )x = 0.

Hence s is a right eigenvalue of T , and since the set of right eigenvalues is axially
symmetric, we find that also s is a right eigenvalue. More precisely, if s = u+ jv ∈
Cj , then we can choose i ∈ S with i ⊥ j and obtain

T (x̃i) = (T x̃)i = (xs)i = (xi)s. �

On the S-resolvent set we can now define the slice hyperholomorphic resol-
vents. Since we distinguish between left and right slice hyperholomorphicity, two
different resolvent operators are associated with an operator T in the quaternionic
setting.

Definition 3.1.10. Let T ∈ B(X). For s ∈ ρS(T ), we define the left S-resolvent
operator as

S−1
L (s, T ) = −Qs(T )−1(T − s I),

and the right S-resolvent operator as

S−1
R (s, T ) = −(T − sI)Qs(T )−1.

Lemma 3.1.11. Let T ∈ B(X).

(i) The left S-resolvent S−1
L (s, T ) is a B(X)-valued right slice hyperholomorphic

function of the variable s on ρS(T ).

(ii) The right S-resolvent S−1
R (s, T ) is a B(X)-valued left slice hyperholomorphic

function of the variable s on ρS(T ).

Proof. We prove only (i), since (ii) is shown similarly. We have

S−1
L (s, T ) = f0(u, v) + f1(u, v)j

for every s = u+ jv ∈ ρS(T ) with the B(X)-valued functions

f0(u, v) = −(T 2 − 2uT + (u2 + v2)I)−1(T − uI),

f1(u, v) = −(T 2 − 2uT + (u2 + v2)I)−1v.
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Since f0 and f1 obviously satisfy the compatibility condition (2.4), the function
S−1
L (s, T ) is a B(X)-valued right slice function on ρS(T ).

We verify that the restriction of S−1
L (s, T ) to any complex plane belongs to

the kernel of the Cauchy–Riemann operator on this plane if it is applied from the
right. This is, by Proposition 2.3.12, equivalent to the right slice hyperholomor-
phicity of S−1

L (s, T ). For s = u+ jv ∈ ρS(T ), we have

∂

∂u
Qs(T ) = −2T + 2uI, ∂

∂v
Qs(T ) = 2vI.

Hence Qs(T ), ∂
∂uQs(T ) and ∂

∂vQs(T ) commute, and standard computations give

∂

∂η
Qs(T )−1 = −Qs(T )−2 ∂

∂η
Qs(T )

for η = u, v. Therefore,

∂

∂u
S−1
L (s, T ) = Qs(T )−2(−2T + 2uI)(T − sI) +Qs(T )−1

and

∂

∂v
S−1
L (s, T ) = Qs(T )−22v(T − sI)−Qs(T )−1j.

So finally we have

1

2

(
∂

∂u
S−1
L (s, T ) +

∂

∂v
S−1
L (s, T )j

)
=

1

2

(
Qs(T )−2(−2T + 2uI)(T − sI) +Qs(T )−1

+Qs(T )−22v(T − sI)j −Qs(T )−1j2
)

= Qs(T )−2 (−T (T − (u+ vj)I) + (T − (u+ vj)I)s) +Qs(T )−1

= −Qs(T )−1 +Qs(T )−1 = 0. �

The S-spectrum has properties that are analogous to the properties of the
usual spectrum of a complex linear operator. We first need the following result on
invertibility of operators; see, for instance, Theorem 10.12 in [183].

Lemma 3.1.12. The set Inv(B(X)) of invertible elements in B(X) is an open set
in the uniform operator topology on B(X). If Inv(B(X)) contains an element A,
then it contains the ball

U(A) =
{
B ∈ B(X) : ‖A−B‖ <

∥∥A−1
∥∥−1

}
.

If B ∈ U(A), then the inverse is given by the series

B−1 = A−1
+∞∑
m=0

[(A−B)A−1]m. (3.2)



60 Chapter 3. The S-Spectrum and the S-Functional Calculus

Furthermore, the map A 7→ A−1 is a homeomorphism from Inv(B(X)) onto
Inv(B(X)) in the uniform operator topology.

Proof. If ‖A−B‖ <
∥∥A−1

∥∥−1
, then the series (3.2) converges and

BA−1
+∞∑
m=0

[
(A−B)A−1

]m
=
(
−(A−B)A−1 + I

) +∞∑
m=0

[
(A−B)A−1

]
= −

+∞∑
m=0

[
(A−B)A−1

]m+1
+

+∞∑
m=0

[
(A−B)A−1

]m
= I.

Similarly, we also have(
A−1

+∞∑
m=0

[
(A−B)A−1

]m)
B =

(
+∞∑
m=0

[
A−1(A−B)

]m
A−1

)
B

=

(
+∞∑
m=0

[
A−1(A−B)

]m)(−A−1(A−B) + I
]

= I.

Now observe that the series (3.2) converges uniformly on every ball Bε(A)

with 0 < ε <
∥∥A−1

∥∥−1
. Hence if An → A ∈ Inv(B(X)) with respect to ‖ · ‖, then

for sufficiently large n we have

lim
n→+∞

A−1
n = A−1

+∞∑
m=0

lim
n→+∞

[
(A−An)A−1

]m
= A−1.

The mapping A 7→ A−1 is therefore continuous on Inv(B(X)). Since it is self-
inverse, it is even a homeomorphism. �

Theorem 3.1.13 (Compactness of the S-spectrum). Let T ∈ B(X). The S-spectrum
σS(T ) of T is a nonempty compact set contained in the closed ball B‖T‖(0).

Proof. For ‖T‖ < r, the series S−1
L (s, T ) =

∑+∞
n=0 T

ns−n−1 converges uniformly
on ∂Br(0). For j ∈ S, we therefore have∫

∂(Br(0)∩Cj)
S−1
L (s, T ) dsj =

+∞∑
n=0

Tn
∫
∂(Br(0)∩Cj)

s−n−1 dsj = 2π I, (3.3)

because
∫
∂(Br(0)∩Cj) s

−n−1dsj equals 2π if n = 0 and 0 otherwise. If Br(0) were a

subset of ρS(T ), then S−1
L (s, T ) would be right slice hyperholomorphic on Br(0)

by Lemma 3.1.11. Cauchy’s integral theorem would then imply that the integral in
(3.3) vanishes. Since this is obviously not the case, we conclude that Br(0) 6⊂ ρS(T )
and in turn ∅ 6= σS(T ) ∩Br(0). In particular, σS(T ) is not empty.

We can consider B(X) a real Banach algebra if we restrict the scalar multipli-
cation to R. The set Inv(B(X)) of invertible elements of this real Banach algebra
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is open thanks to Lemma 3.1.12. Since τ : s 7→ Qs(T ) is a continuous function
with values in B(X), we find that ρS(T ) = τ−1(Inv(B(X))) is open in H and that
σS(T ) in turn is closed.

Finally, Lemma 3.1.5 implies |s| ≤ ‖T‖ for every s ∈ σS(T ). Thus σS(T ) is a
closed subset of the compact set B‖T‖(0) and therefore compact itself. �

In the quaternionic setting the S-resolvent equation contains both S-resolvent
operators. We need a preliminary result.

Theorem 3.1.14. Let T ∈ B(X) and let s ∈ ρS(T ). The left S-resolvent operator
satisfies the left S-resolvent equation

S−1
L (s, T )s− TS−1

L (s, T ) = I, (3.4)

and the right S-resolvent operator satisfies the right S-resolvent equation

sS−1
R (s, T )− S−1

R (s, T )T = I. (3.5)

Proof. Since 2Re(s) and |s|2 are real, they commute with the operator T . There-
fore,

TQs(T ) = Qs(T )T,

and in turn
Qs(T )−1T = TQs(T )−1.

Thus

S−1
L (s, T )s− TS−1

L (s, T )

= −Qs(T )−1(T − sI)s+ TQs(T )−1(T − sI)

= Qs(T )−1 (−(T − sI)s+ T (T − sI))

= Qs(T )−1Qs(T ) = I.

The right S-resolvent equation follows by similar computations. �

The left and right S-resolvent equations cannot be considered generalizations
of the classical resolvent equation

Rλ(A)−Rµ(A) = (µ− λ)Rλ(A)Rµ(A), for λ, µ ∈ ρ(A), (3.6)

where Rλ(A) = (λI − A)−1 is the resolvent operator of A at λ ∈ ρ(A). This
equation provides the possibility to split the product of two resolvent operators
into a sum of the factors. This is not the case for the left and the right S-resolvent
equations.

The proper generalization of (3.6), which preserves this philosophy, is the
S-resolvent equation that we show in the following theorem. It is remarkable that
this equation involves both the left and right S-resolvent operators and that no
generalization of (3.6) that includes just one of them has ever been found.
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Theorem 3.1.15 (The S-resolvent equation). Let T ∈ B(X) and let s, q ∈ ρS(T )
with q /∈ [s]. Then the equation

S−1
R (s, T )S−1

L (p, T ) =
[(
S−1
R (s, T )− S−1

L (q, T )
)
q

−s
(
S−1
R (s, T )− S−1

L (q, T )
)]

(q2 − 2Re(s)q + |s|2)−1 (3.7)

holds. Equivalently, it can also be written as

S−1
R (s, T )S−1

L (q, T ) = (s2 − 2Re(q)s+ |q|2)−1

·
[(
S−1
L (q, T )− S−1

R (s, T )
)
q − s

(
S−1
L (q, T )− S−1

R (s, T )
)]
. (3.8)

Proof. We show that

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)

= (S−1
R (s, T )− S−1

L (q, T ))q − s(S−1
R (s, T )− S−1

L (q, T )), (3.9)

which is equivalent to (3.7). The left S-resolvent equation (3.4) implies

S−1
L (q, T )q = TS−1

L (q, T ) + I.

Applying this identity twice, we obtain

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)

= S−1
R (s, T )[TS−1

L (q, T ) + I]q − 2s0S
−1
R (s, T )[TS−1

L (q, T ) + I]

+ |s|2S−1
R (s, T )S−1

L (q, T )

= S−1
R (s, T )T [TS−1

L (q, T ) + I] + S−1
R (s, T )q

− 2s0S
−1
R (s, T )[TS−1

L (q, T ) + I] + |s|2S−1
R (s, T )S−1

L (q, T )

= [S−1
R (s, T )T ]TS−1

L (q, T ) + S−1
R (s, T )T + S−1

R (s, T )q

− 2s0[[S−1
R (s, T )T ]S−1

L (q, T ) + S−1
R (s, T )]

+ |s|2S−1
R (s, T )S−1

L (q, T ).

Now the right S-resolvent equation (3.5) implies

S−1
R (s, T )T = sS−1

R (s, T )− I.

Applying this identity twice, we obtain

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)

= [[sS−1
R (s, T )− I]T ]S−1

L (q, T ) + sS−1
R (s, T )− I] + S−1

R (s, T )q

− 2s0[[sS−1
R (s, T )− I]S−1

L (q, T ) + S−1
R (s, T )]

+ |s|2S−1
R (s, T )S−1

L (q, T )

= [s[sS−1
R (s, T )− I]− T ]S−1

L (q, T ) + sS−1
R (s, T )− I] + S−1

R (s, T )q

− 2s0[[sS−1
R (s, T )S−1

L (q, T )− S−1
L (q, T )] + S−1

R (s, T )]

+ |s|2S−1
R (s, T )S−1

L (q, T ).
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Collecting like terms, we end up with

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)

= (s2 − 2s0s+ |s|2)S−1
R (s, T )S−1

L (q, T )

+ [S−1
R (s, T )− S−1

L (q, T )]q − s[S−1
R (s, T )− S−1

L (q, T )],

and since s2− 2s0s+ |s|2 = 0, we obtain (3.9). With similar computations we can
show that also (3.8) holds. �

3.2 Definition of the SSS-Functional Calculus

We can now define the S-functional calculus for a bounded quaternionic linear
operator T on a two-sided quaternionic Banach space X. The S-functional calculus
is the quaternionic version of the Riesz–Dunford functional calculus for complex
linear operators. We consider a function f that is slice hyperholomorphic on σS(T ),
and we use the slice hyperholomorphic Cauchy formula. In order to define f(T )
we formally replace the scalar variable q by the operator T , in Cauchy kernels
S−1
L (s, q) and S−1

R (s, q), and we replace in the Cauchy formulas the S-resolvent
operators S−1

L (s, T ) and S−1
R (s, T ). It is nontrivial to motivate the fact that we

can replace q by T , as we will see. The main references in which the formulations
and the properties of S-functional calculus for quaternionic operators have been
studied are [10,79,80].

Before we define the S-functional calculus, we show that the procedure de-
scribed above is actually meaningful. In particular, it must be consistent with
functions of T that we can define explicitly, that is, with polynomials in T .

Lemma 3.2.1. Let T ∈ B(X), let m ∈ N ∪ {0}, and let U ⊂ H be a bounded slice
Cauchy domain with σS(T ) ⊂ U . For every imaginary unit j ∈ S, we have

Tm =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj s

m

and also

Tm =
1

2π

∫
∂(U∩Cj)

sm dsj S
−1
R (s, T ).

Proof. Let us first consider the case that U is a ball Br(0) with ‖T‖ < r. Then
S−1
L (s, T ) =

∑+∞
n=0 T

ns−n−1 for every s ∈ ∂Br(0) by Theorem 3.1.6, and this
series converges uniformly on ∂Br(0). Thus

1

2π

∫
∂(Br(0)∩Cj)

S−1
L (s, T ) dsj s

m =
1

2π

+∞∑
n=0

Tn
∫
∂(Br(0)∩Cj)

s−1−n+mdsj = Tm,
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because ∫
∂(Br(0)∩Cj)

s−1−n+m dsj =

{
0 if n 6= m,

2π if n = m.

Now let U be an arbitrary bounded slice Cauchy domain that contains σS(T ).
Then there exists a radius r such that U ⊂ Br(0). The left S-resolvent S−1

L (s, T ) is
then right slice hyperholomorphic and the monomial sm is left slice hyperholomor-
phic on the bounded slice Cauchy domain Br(0) \ U . We conclude from Cauchy’s
integral theorem that

1

2π

∫
∂(Br(0)∩Cj)

S−1
L (s, T ) dsj s

m − 1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj s

m

=
1

2π

∫
∂((Br(0)\U)∩Cj)

S−1
L (s, T ) dsj s

m = 0,

and so

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj s

m =
1

2π

∫
∂(Br(0)∩Cj)

S−1
L (s, T ) dsj s

m = Tm.

The second identity, which involves the right S-resolvent S−1
R (s, T ), follows by

similar arguments from the corresponding series expansion of the right S-resolvent
operator. �

Theorem 3.2.2. Let T ∈ B(X), let U be a bounded slice Cauchy domain that
contains σS(T ), and let j ∈ S. For every left slice hyperholomorphic polynomial
P (q) =

∑n
`=0 q

`a` with a` ∈ H, we set P (T ) =
∑n
`=0 T

`a`. Then

P (T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj P (s). (3.10)

Similarly, we set P (T ) =
∑n
`=0 a`T

` for every right slice hyperholomorphic poly-
nomial P (q) =

∑n
`=0 a`q

` with a` ∈ H. Then

P (T ) =
1

2π

∫
∂(U∩Cj)

P (s) dsj S
−1
R (s, T ). (3.11)

In particular, the operators in (3.10) and (3.11) coincide for every intrinsic poly-
nomial P (q) =

∑n
`=0 q

`a` with real coefficients a` ∈ R.

Proof. For P (q) =
∑n
`=0 q

`a`, Lemma 3.2.1 implies

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj P (s) =

n∑
`=0

[
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj s

`

]
a`

=
n∑
`=0

T `a` = P (T ).
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The case of a right slice hyperholomorphic polynomial follows with analogous
computations. Finally, if P (q) =

∑n
`=0 q

`a` is an intrinsic polynomial with real
coefficients, then the coefficients a` commute with the operator T and hence

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj P (s) =

n∑
`=0

T `a`

=
n∑
`=0

a`T
` =

1

2π

∫
∂(U∩Cj)

P (s) dsj S
−1
R (s, T ). �

The S-functional calculus applies to functions that are slice hyperholomor-
phic on the S-spectrum of T . We introduce the following notation for this class of
functions.

Definition 3.2.3. Let T ∈ B(X). We denote by SHL(σS(T )), SHR(σS(T )), and
N (σS(T )) the sets of all left, right, and intrinsic slice hyperholomorphic functions
f with σS(T ) ⊂ D(f), where D(f) is the domain of the function f .

Remark 3.2.4. The set D(f) is an axially symmetric open set that contains the
compact axially symmetric set σS(T ). If we choose j ∈ S, then D(f) ∩ Cj is an
open set in Cj that contains the compact set σS(T )∩Cj and hence there exists a
bounded Cauchy domain Uj in Cj such that σS(T )∩Cj ⊂ Uj and Uj ⊂ D(f)∩Cj .
Since σS(T ) ∩ Cj and D(f) ∩ Cj are symmetric with respect to the real line, we
can also choose Uj symmetric with respect to the real line. Taking the axially
symmetric hull, we obtain a bounded slice Cauchy domain U := [Uj ] with

σS(T ) ⊂ U and U ⊂ D(f).

Definition 3.2.5 (S-functional calculus). Let T ∈ B(X). For every function f ∈
SHL(σS(T )), we define

f(T ) :=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), (3.12)

where j is an arbitrary imaginary unit in S and U is an arbitrary slice Cauchy
domain U as in Remark 3.2.4. For every f ∈ SHR(σS(T )), we define

f(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), (3.13)

where j is again an arbitrary imaginary unit in S and U is an arbitrary slice
Cauchy domain as in Remark 3.2.4.

Theorem 3.2.2 shows that the S-functional calculus is meaningful, because
it is consistent with polynomials in T . As the next crucial result shows, it is,
moreover, well defined.
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Theorem 3.2.6. Let T ∈ B(X). For every f ∈ SHL(σS(T )), the integral in (3.12)
that defines the operator f(T ) is independent of the choice of the slice Cauchy
domain U and the imaginary unit j ∈ S. Similarly, for every f ∈ SHR(σS(T )),
the integral in (3.13) that defines the operator f(T ) is also independent of the
choice of U and j ∈ S.

Proof. Let f ∈ SHL(σS(T )). We first show that the integral (3.12) does not
depend on the slice Cauchy domain U . Let U ′ be another bounded slice Cauchy
domain with σS(T ) ⊂ U ′ and U ′ ⊂ D(f), and let us assume for the moment that
U ′ ⊂ U . Then O = U \ U ′ is again a bounded slice Cauchy domain, and we have
O ⊂ ρS(T ) and O ⊂ D(f). Hence the function f is left slice hyperholomorphic
and the left S-resolvent is right slice hyperholomorphic on O. Cauchy’s integral
theorem therefore implies

0 =
1

2π

∫
∂(O∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)

− 1

2π

∫
∂(U ′∩Cj)

S−1
L (s, T ) dsj f(s).

If U ′ 6⊂ U , then O := U ∩ U ′ is an axially symmetric open set that contains
σS(T ). As in Remark 3.2.4, we can hence find a third slice Cauchy domain U ′′

with σS(T ) ⊂ U ′′ and U ′′ ⊂ O = U ∩ U ′. The above arguments show that the
integrals over the boundaries of all three sets agree.

In order to show the independence of the imaginary unit, we choose two
units i, j ∈ S and two slice Cauchy domains Uq, Us ⊂ D(f) with σS(T ) ⊂ Uq and
Uq ⊂ Us. (The subscripts q and s are chosen in order to indicate the respective
variable of integration in the following computation.) The set U cq := H\Uq is then

an unbounded axially symmetric slice Cauchy domain with U cq ⊂ ρS(T ). The left
S-resolvent is right slice hyperholomorphic on ρS(T ) and also at infinity because

lim
s→∞

S−1
L (s, T ) = lim

s→∞

+∞∑
n=0

Tns−n−1 = 0.

The right slice hyperholomorphic Cauchy formula implies therefore

S−1
L (s, T ) =

1

2π

∫
∂(Ucq∩Ci)

S−1
L (q, T ) dqi S

−1
R (q, s)

for every s ∈ U c. Since ∂(U cq ∩Cj) = −∂(Uq ∩Cj) and S−1
R (q, s) = −S−1

L (s, q) by
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Corollary 2.1.26, we therefore obtain

f(T ) =
1

2π

∫
∂(Us∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

(2π)2

∫
∂(Us∩Cj)

(∫
∂(Ucq∩Ci)

S−1
L (q, T ) dqi S

−1
R (q, s)

)
dsj f(s)

=
1

(2π)2

∫
∂(Uq∩Ci)

S−1
L (q, T ) dqi

(∫
∂(Us∩Cj)

S−1
L (q, s) dsj f(s)

)

=
1

2π

∫
∂(Uq∩Ci)

S−1
L (q, T ) dqif(q),

where the last identity follows again from the slice hyperholomorphic Cauchy
formula because we chose Uq ⊂ Us. �

Theorem 3.2.6 shows that the S-functional calculus is well defined for every
left or right slice hyperholomorphic function, and Theorem 3.2.1 shows that it is
consistent with polynomials. Moreover, if f ∈ N (σS(T )), then (3.12) and (3.13)
give the same operator. We will show this by uniform approximation of f with
intrinsic rational functions. Hence we first need to show that the S-functional
calculus is consistent with the limits of uniformly convergent sequences of slice
hyperholomorphic functions and that both versions of the S-functional calculus
are consistent for intrinsic rational functions.

Theorem 3.2.7. Let T ∈B(X). Let fn, f ∈SHL(σS(T )), or let fn, f ∈SHR(σS(T ))
for n ∈ N. If there exists a bounded slice Cauchy domain U with σS(T ) ⊂ U such
that fn → f uniformly on U , then fn(T ) converges to f(T ) in B(X).

Proof. Since fn → f uniformly on U , we can exchange limit and integration and
obtain

lim
n→∞

fn(T ) = lim
n→∞

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj fn(s)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) = f(T ). �

Lemma 3.2.8 (Product rule). Let T ∈ B(X) and let P be a slice hyperholomorphic
intrinsic polynomial. If g ∈ SHL(σS(T )), then Pg ∈ SHL(σS(T )) and

(Pg)(T ) = P (T )g(T ). (3.14)

Similarly, if f ∈ SHR(σS(T )), then fP ∈ SHR(σS(T )) and

(fP )(T ) = f(T )P (T ). (3.15)
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Proof. We consider only the case g ∈ SHL(σS(T )) because the right slice hyper-
holomorphic case follows as usual by similar arguments. Since P is intrinsic, the
function Pg belongs to SHL(σS(T )) by Theorem 2.1.4. By Theorem 3.2.2, we can
represent the operator P (T ) by the slice hyperholomorphic Cauchy integral (3.11)
that involves right S-resolvent operator. The identity (3.14) follows now the same
computations as in the proof of the general product rule in Theorem 4.1.3. Since
these computations are a quite long, we prefer not to replicate them here and refer
instead to the proof of Theorem 4.1.3. �

Remark 3.2.9. The reader might wonder why we refer to the proof of the general
product rule instead of showing it right away here. The reason is that at this stage,
we are not yet able to do this: since the S-resolvent equations involve both the left
and right S-resolvent operators, it is essential to know that (3.12) and (3.13) are
consistent for every intrinsic function f , i.e., that they give the same operator f(T ).
So far, we know only that this holds for intrinsic polynomials; cf. Theorem 3.2.2.
The special case of the product rule in Lemma 3.2.8 is, however, essential for
the proof of the compatibility of the S-functional calculus with intrinsic rational
functions and in turn for the proof of the compatibility of (3.12) and (3.13) for
arbitrary intrinsic functions. Hence it cannot be postponed. The overall strategy
consists, therefore, in proving the following statements, each of which builds upon
the previous one.

(1) The S-functional calculi for left and right slice hyperholomorphic functions
coincide for intrinsic polynomials; cf. Theorem 3.2.2.

(2) The product rule holds if an intrinsic polynomial is involved; cf. Lemma 3.2.8.

(3) The S-functional calculi for left and right slice hyperholomorphic functions
are consistent for intrinsic rational functions.

(4) The S-functional calculi for left and right slice hyperholomorphic functions
are consistent for arbitrary intrinsic slice hyperholomorphic functions.

Only at this stage can we prove the general product rule. The computations for
the special case in (2) and for the general product rule are, however, identical, so
that we prefer to show them just once.

Lemma 3.2.10. Let T ∈ B(X). If P is an intrinsic polynomial such that P−1 ∈
N (σS(T )), then P−1(T ) = P (T )−1. Moreover, if r(q) = P (q)−1Q(q) is an intrin-
sic rational function and P−1 ∈ N (σS(T )), then (3.12) and (3.13) give the same
operator r(T ) = P (T )−1Q(T ).

Proof. Let 0 6= P ∈ N (H) be a polynomial with real coefficients such that P−1 ∈
N (σS(T )). Then Lemma 3.2.8 implies

I = 1(T ) = (PP−1)(T ) = P (T )P−1(T )

if we consider P and P−1 left slice hyperholomorphic functions and

I = 1(T ) = (P−1P )(T ) = P−1(T )P (T )
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if we consider them right slice hyperholomorphic functions. Hence P (T ) is invert-
ible and

P (T )−1 = P−1(T )

for both versions of the S-functional calculus.
For an intrinsic rational function r(q) = P (q)−1Q(q), we obtain again from

Lemma 3.2.8 that r(T ) = P (T )−1Q(T ) if we consider it a right slice hyperholo-
morphic function and r(T ) = Q(T )P (T )−1 if we consider it a left slice hyperholo-
morphic function. Since P (T ) and Q(T ) are polynomials in T with real coefficients,
they commute, and we find that in both cases, r(T ) = P (T )−1Q(T ). �

Theorem 3.2.11. Let T ∈ B(X). If f ∈ N (σS(T )), then both versions of S-
functional calculus give the same operator f(T ). Precisely, we have

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) =

1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ).

Proof. Let f ∈ N (σS(T )) and let U be a bounded slice Cauchy domain such
that σS(T ) ⊂ U and U ⊂ D(f). Then U is compact and therefore Theorem
2.1.37 implies the existence of a sequence rn of intrinsic rational functions such
that f = limn→∞ rn uniformly on U . From Theorem 3.2.7 and Lemma 3.2.10, we
conclude that

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)

= lim
n→∞

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj rn(s)

= lim
n→∞

1

2π

∫
∂(U∩Cj)

rn(s) dsj S
−1
R (s, T )

=
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ). �

3.3 Comments and Remarks

In the following subsections we want to point out two facts. First we present the
series expansion of the resolvent operator associated with the left spectrum; then
we show how the S-resolvent equation has been obtained.

3.3.1 The Left spectrum σL(T )σL(T )σL(T ) and the Left Resolvent Operator

Definition 3.3.1. Let T be a right linear operator in B(X). We define the left
resolvent set of T as

ρL(T ) :=
{
s ∈ H : (sI − T )−1 ∈ B(X)

}
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and the left spectrum of T as

σL(T ) := H \ ρL(T ).

Moreover, we define
RT (s) := (sI − T )−1

for all s ∈ ρL(T ).

Theorem 3.3.2. Let T ∈ B(V ) and let s ∈ H be such that ‖T‖ < |s|.
(i) Then the operator

∑∞
n=0(s−1T )ns−1I is the right and left algebraic inverse

of sI − T , and the series converges in the operator norm.

(ii) The left spectrum σL(T ) is contained in the ball {s ∈ H : |s| ≤ ‖T‖}.
Proof. We prove point (i). It follows from the computations that

(sI − T )

∞∑
n=0

(s−1T )ns−1I

= sI
∞∑
n=0

(s−1T )ns−1I − T
∑
n≥0

(s−1T )ns−1I

= sIs−1I + Ts−1I + T (s−1T )s−1I + · · ·
− Ts−1I − T (s−1T )s−1I − T (s−1T )2s−1I − · · · = I.

Similarly, we can prove that
∞∑
n=0

(s−1T )ns−1I(sI − T ) = I.

Finally, we observe that for ‖T‖ < |s|, the following series converges:

‖
∞∑
n=0

(s−1T )ns−1I‖ ≤
∞∑
n=0

‖(s−1T )ns−1I‖

≤
∞∑
n=0

‖(s−1T )‖n|s−1|

≤
∞∑
n=0

‖T‖n|s−1|n+1.

We prove point (ii). Since the series
∑∞
n=0(s−1T )ns−1I converges if and only if

|s−1|‖T‖ < 1, we get the statement. �

We observe that since

RT (s) := (sI − T )−1 =

∞∑
n=0

(s−1T )ns−1I, for |s| < ‖T‖,

it is difficult to say whether there exists some notion of hyperholomorphicity as-
sociated with this resolvent operator.
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3.3.2 Power Series Expansions and the SSS-Resolvent Equation

Finding the S-resolvent equation was a quite difficult task. A hint on its struc-
ture came from computations with the power series expansions of the S-resolvent
operators, which we show in the following lemmas.

Lemma 3.3.3. Let B ∈ B(X) and let s, q ∈ H. For |q| < |s|, we have

+∞∑
m=0

qmBs−1−m = −(q2 − 2Re(s)q + |s|2)−1(qB −Bs) (3.16)

and
+∞∑
m=0

s−1−mBqm = −(Bq − sB)(q2 − 2Re(s)q + |s|2)−1. (3.17)

Moreover, (3.16) can be rewritten as

+∞∑
m=0

qmBs−1−m = (qB −Bs)(s2 − 2Re(q)s+ |q|2)−1, (3.18)

and (3.17) can be written as

+∞∑
m=0

s−1−mBqm = (s2 − 2Re(q)s+ |q|2)−1(sB −Bq). (3.19)

Proof. We have

(q2 − 2Re(s)q + |s|2)
+∞∑
m=0

qmBs−1−m

=
+∞∑
m=0

qm+2Bs−1−m −
+∞∑
m=0

qm+1Bs−1−m2Re(s) +
+∞∑
m=0

qmBs−1−m|s|2

=
+∞∑
m=2

qmBs−1−m(s2 − 2Re(s)s+ |s|2)

− qBs−1(s+ s) +Bs−1|s|2 + qBs−2|s|2 = −qB +Bs,

because for every s ∈ H,

s2 − 2Re(s)s+ |s|2 = 0.

Multiplication by (q2 − 2Re(s)q + |s|2)−1 from the left yields (3.16). The identity
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(3.18), on the other hand, follows from

+∞∑
m=0

qmBs−1−m(s2 − 2Re(q)s+ |q|2)

=
+∞∑
m=0

qmBs1−m −
+∞∑
m=0

2Re(q)qmBs−m +
+∞∑
m=0

|q|2qmBs−1−m

=
+∞∑
m=0

(q2 − 2Re(q)q + |q|)2qmBs−1−m +Bs+ qB − (q + q)B = Bs− qB

and multiplication of this equality by (s2− 2Re(q)s+ |q|2)−1 from the right. With
similar computations one can verify (3.17) and (3.19). �

Corollary 3.3.4. Let B ∈ B(X). For s, q ∈ H with |q| < |s|, we have

m∑
j=0

qjBs−1−j =− (q2 − 2Re(s)q + |s|2)−1(qB −Bs)

+ qm+1(q2 − 2Re(s)q + |s|2)−1(qB −Bs)s−1−m

(3.20)

and
m∑
j=0

s−1−jBqj =− (Bq − sB)(q2 − 2Re(s)q + |s|2)−1

+ s−1−m(Bq − sB)(q2 − 2Re(s)q + |s|2)−1qm+1.

(3.21)

Moreover, (3.20) can also be written as

m∑
j=0

qjBs−1−j = (qB −Bs)(s2 − 2Re(q)s+ |q|2)−1

+ qm+1(qB −Bs)(s2 − 2Re(q)s+ |q|2)−1s−1−m,

(3.22)

and (3.21) can also written as

m∑
j=0

s−1−jBqj = (s2 − 2Re(q)s+ |q|2)−1(sB −Bq)

− s−1−m(s2 − 2Re(q)s+ |q|2)−1(sB −Bq)qm+1.

(3.23)

Proof. We have

m∑
j=0

qjAs−1−j =
+∞∑
j=0

qjAs−1−j −
+∞∑

j=m+1

qjAs−1−j

=
+∞∑
j=0

qjAs−1−j − qm+1

+∞∑
j=0

qjAs−1−j

 s−1−m,
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and applying (3.16) for the series yields (3.20). Similarly, the identities (3.21),
(3.22), and (3.23) follow from (3.17), (3.18), and (3.19), respectively. �

We prove now the S-resolvent equation when the S-resolvent operators admit
the power series expansions

S−1
L (q, T ) =

+∞∑
m=0

Tmq−1−m and S−1
R (s, T ) =

+∞∑
m=0

s−1−mTm,

which is in particular the case for ‖T‖ < |q| < |s|. Then we have

S−1
R (s, T )S−1

L (q, T ) =

+∞∑
j=0

s−1−jT j

+∞∑
j=0

T jq−1−j

 , (3.24)

and setting

Λm(s, q;T ) :=
m∑
j=0

s−1−j(Tmq−1−m)qj ,

we can write (3.24) as

S−1
R (s, T )S−1

L (q, T ) =
+∞∑
m=0

Λm(s, q;T ).

Since q and (q2 − 2Re(s)q + |s|2)−1 commute, we deduce from (3.21) with B =
Tmq−1−m that

Λm(s, q;T ) = −((Tmq−1−m)q − s(Tmq−1−m))(q2 − 2Re(s)q + |s|2)−1

+ s−1−m((Tmq−1−m)q − s(Tmq−1−m))(q2 − 2Re(s)q + |s|2)−1qm+1

= −[(Tmq−1−m)q − s(Tmq−1−m)

+ (s−1−mTm)q − s(s−1−mTm)](q2 − 2Re(s)q + |s|2)−1.

Therefore, we obtain

S−1
R (s, T )S−1

L (q, T ) =
+∞∑
m=0

Λm(s, q;T ) =

= −

[(
+∞∑
m=0

Tmq−1−m

)
q − s

+∞∑
m=0

Tmq−1−m

+

(
+∞∑
m=0

s−1−mTm

)
q − s

+∞∑
m=0

s−1−mTm

]
(q2 − 2Re(s)q + |s|2)−1
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and (3.7) follows. To prove that the resolvent equation can be written in the second
form (3.8), we observe that Λm(s, q;T ) can also be written using (3.19) as

Λm(s, q;T ) = (s2 − 2Re(q)s+ |q|2)−1(s(Tmq−1−m)− (Tmq−1−m)q)

− s−1−m(s2 − 2Re(q)s+ |q|2)−1(s(Tmq−1−m)− (Tmq−1−m)q)qm+1.

Substituting this in the sum
∑+∞
m=0 Λm(s, q;T ), we get the second version of the

resolvent equation.



Chapter 4

Properties of the SSS-Functional
Calculus for Bounded Operators

In this chapter we will show that most of the properties that hold for the Riesz-
Dunford functional calculus can be extended to the S-functional calculus. The
proofs of the quaternionic results require several additional efforts with respect to
the classical case.

4.1 Algebraic Properties and Riesz Projectors

An immediate consequence of Definition 3.2.5 is that the S-functional calculus for
left slice hyperholomorphic functions is quaternionic right linear and that the S-
functional calculus for right slice hyperholomorphic functions is quaternionic left
linear.

Lemma 4.1.1. Let T ∈ B(X).

(i) If f, g ∈ SHL(σS(T )) and a ∈ H, then

(f + g)(T ) = f(T ) + g(T ) and (fa)(T ) = f(T )a.

(ii) If f, g ∈ SHR(σS(T )) and a ∈ H, then

(f + g)(T ) = f(T ) + g(T ) and (af)(T ) = af(T ).

© Springer Nature Switzerland AG 2018  
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Operator Theory: Advances and Applications 270, https://doi.org/10.1007/978-3-030-03074-2_4  
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Proof. If f, g ∈ SHL(U) and a ∈ H, then we have

(f + g)(T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj (f(s) + g(s))

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)

+
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj g(s) = f(T ) + g(T )

and

(fa)(T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)a

=

(
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)

)
a = f(T )a.

The right slice hyperholomorphic case follows by similar computations. �

Since the product of two slice hyperholomorphic functions is not necessarily
slice hyperholomorphic, we cannot expect to obtain a product rule for arbitrary
slice hyperholomorphic functions. However, if f ∈ N (σS(T )) and g ∈ SHL(σS(T )),
then fg ∈ SHL(σS(T )), and if f ∈ SHR(σS(T )) and g ∈ N (σS(T ), then fg ∈
SHR(σS(T )). In order to show that the S-functional calculus is at least in these
cases compatible with the multiplication of functions, we need the following lemma.

Lemma 4.1.2. Let B ∈ B(X). For all q, s ∈ H with q /∈ [s], we have

(sB −Bq)(q2 − 2Re(s)q + |s|2)−1 = (s2 − 2Re(q)s+ |q|2)−1(sB −Bq). (4.1)

If, moreover, f is an intrinsic slice hyperholomorphic function and U is a bounded
slice Cauchy domain with U ⊂ D(f), then

1

2π

∫
∂(U∩Cj)

f(s) dsj (sB −Bq)(q2 − 2Re(s)q + |s|2)−1 = Bf(q)

for every q ∈ U and j ∈ S.

Proof. Since ss = |s|2 and s+s = 2Re(s) are real, they commute with the operator
B. Hence, for all q, s ∈ H with q /∈ [s], we have that

(s2 − 2Re(q)s+ |q|2)(sB −Bq)
= s|s|2B − 2Re(q)|s|2B + |q|2sB − s2Bq + 2Re(q)sBq − |q|2Bq
= sB|s|2 −B|s|2(q + q) + sB|q|2 − s2Bq + sB(q + q)q −B|q|2q
= (sB −Bq)|s|2 − s(s+ s)Bq + (s+ s)Bqq + (sB −Bq)q2

= (sB −Bq)|s|2 − (sB −Bq)2Re(s)q + (sB −Bq)q2

= (sB −Bq)(q2 − 2Re(s)q + |s|2).
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Multiplication by (q2 − 2Re(s)q + |s|2)−1 from the right and multiplication by
(s2 − 2Re(q)s+ |q|2)−1 from the left yields (4.1).

Let now f be an intrinsic slice hyperholomorphic function, let U ⊂ D(f) be
a bounded slice Cauchy domain, let q = u+ iv ∈ U , and let j ∈ S. An application
of (4.1) gives

1

2π

∫
∂(U∩Cj)

f(s) dsj (sB −Bq)(q2 − 2Re(s)q + |s|2)−1

=
1

2π

∫
∂(U∩Cj)

dsj f(s)(s2 − 2Re(q)s+ |q|2)−1(sB −Bq),

where dsj and f(s) commute because f(s) ∈ Cj for s ∈ Cj , since f is intrinsic.
Now observe that f(s) is intrinsic slice hyperholomorphic on D(f), that (s2 −
2Re(q)s + |q|2)−1 is intrinsic slice hyperholomorphic in s on H \ [q], and that
sB − Bq is left slice hyperholomorphic in s on all of H. Hence their product
F (s) := f(s)(s2 − 2Re(q)s + |q|2)−1(sB − Bq) is left slice hyperholomorphic on
D(f)\ [q]. By Proposition 2.3.12, the restriction Fj of this function to the complex
plane Cj is therefore a left holomorphic function with values in the complex left
Banach space X over Cj .

Assume now that q /∈ R. Then Fj has two poles in U ∩Cj , namely qj = u+jv
and qj . From the residue theorem we therefore deduce that

1

2π

∫
∂(U∩Cj)

f(s) dsj (sB −Bq)(q2 − 2Re(s)q + |s|2)−1

= Res(Fj , qj) + Res(Fj , qj).

Since s and qj belong to the same complex plane, they commute, so that we have

(s2 − 2Re(q)s+ |q|2)−1 = (s− qj)−1(s− qj)−1,

and in turn

Res(Fj , qj) = lim
s→qj ,s∈Cj

(s− qj)Fj(s)

= f(qj)(qj − qj)−1(qjB −Bq) = f(qj)(2vj)
−1(vjB +Bvi)

and

Res(Fj , qj) = lim
s→qj ,s∈Cj

(s− qj)Fj(s)

= f(qj)(qj − qj)−1(qjB −Bq) = f(qj)(−2jv)−1(−vjB +Bvi).

Thus we have

Res(Fj , qj) + Res(Fj , qj) = f(qj)
1

2
B − f(qj)

1

2
jBi+ f(qj)

1

2
B + f(qj)

1

2
jBi

=
1

2
(f(qj) + f(qj))B +

1

2
(−f(qj) + f(qj))jBi.
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Since f(qj) = f0(u, v) + f1(u, v)j with f0(u, v), f1(u, v) ∈ R, we finally obtain

Res(Fj , qj) + Res(Fj , qj) = f0(u, v)B + (−f1(u, v)j)jBi

= B(f0(u, v) + f1(u, v)i) = Bf(q)

and hence

1

2π

∫
∂(U∩Cj)

f(s) dsj (sB −Bq)(q2 − 2Re(s)q + |s|2)−1 = Bf(q).

If, on the other hand, q ∈ R, then also f(q) ∈ R. Since q = q commutes in this
case with B, we moreover have

F (s) = (s− q)−1f(s)B,

and so

1

2π

∫
∂(U∩Cj)

f(s) dsj (sB −Bq)(q2 − 2Re(s)q + |s|2)−1

= Res(Fj , q) = lim
s→q,s∈Cj

(s− q)F (s)B = f(q)B = Bf(q). �

Theorem 4.1.3 (Product rule). Let T ∈ B(X) and let f ∈ N (σS(T )) and g ∈
SHL(σS(T )) or let f ∈ SHR(σS(T )) and g ∈ N (σS(T )). Then

(fg)(T ) = f(T )g(T ).

Proof. Let f ∈ N (σS(T )), let g ∈ SHL(σS(T )), and let Uq and Us be bounded slice
Cauchy domains that contain σS(T ) such that Uq ⊂ Us and Us ⊂ D(f)∩D(g). The
subscripts q and s refer to the respective variables of integration in the following
computation. We choose j ∈ S and we set Γs := ∂(Us ∩Cj) and Γq := ∂(Uq ∩Cj)
for neatness. By Theorem 3.2.11, we can write f(T ) using both the left and right
S-resolvent operators, and so

f(T )g(T ) =
1

2π

∫
Γs

f(s) dsj S
−1
R (s, T )

1

2π

∫
Γq

S−1
L (q, T ) dqj g(q)

=
1

2π

∫
Γs

f(s) dsj

[
1

2π

∫
Γq

S−1
R (s, T )S−1

L (q, T ) dqj g(q)

]
.

For simplicity we set Qs(q)−1 := (q2 − 2Re(s)q + |s|2)−1. If we apply (3.7) in the
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above integral, we obtain

f(T )g(T ) =
1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

S−1
R (s, T )qQs(q)−1 dqj g(q)

− 1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

S−1
L (q, T )qQs(q)−1 dqj g(q)

− 1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

sS−1
R (s, T )Qs(q)−1 dqj g(q)

+
1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

sS−1
L (q, T )Qs(q)−1 dqj g(q).

We observe that

1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

S−1
R (s, T )qQs(q)−1dqj g(q)

=
1

(2π)2

∫
Γs

f(s) dsj S
−1
R (s, T )

[∫
Γq

qQs(q)−1 dqj g(q)

]
= 0

and

− 1

(2π)2

∫
Γs

f(s) dsj

[∫
Γq

s S−1
R (s, T )Qs(q)−1dqj g(q)

]

= − 1

(2π)2

∫
Γs

f(s) dsj s S
−1
R (s, T )

[∫
Γq

Qs(q)−1 dqj g(q)

]
= 0

by Cauchy’s integral theorem, because the functions Qs(q)−1 and qQs(q)−1 are
for every s ∈ Γs right slice hyperholomorphic on an open set that contains Uq,
since we chose Uq ⊂ Us. Therefore, we have

f(T )g(T ) = − 1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

S−1
L (q, T )qQs(q)−1 dqj g(q)

+
1

(2π)2

∫
Γs

f(s) dsj

∫
Γq

sS−1
L (q, T )Qs(q)−1 dqj g(q)

=
1

(2π)2

∫
Γs

∫
Γq

f(s) dsj
[
sS−1

L (q, T )− S−1
L (q, T )q

]
Qs(q)−1dqj g(q).

The integrand in the last integral is continuous and hence bounded on Γs × Γq.
We can thus apply Fubini’s theorem and change the order of integration, so that

f(T )g(T ) =
1

(2π)2

∫
Γq

[∫
Γs

f(s) dsj [sS−1
L (q, T )− S−1

L (q, T )q]Qs(q)−1

]
dqj g(q).
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Applying Lemma 4.1.2 with B = S−1
L (q, T ), we obtain

f(T )g(T ) =
1

2π

∫
Γq

S−1
L (q, T ) dqj f(q)g(q) = (fg)(T ).

The product rule for the S-functional calculus for right slice hyperholomor-
phic functions can be shown with analogous computations using the second version
(3.8) of the S-resolvent equation. �

Corollary 4.1.4. Let T ∈ B(X) and let f ∈ N (σS(T )). If f−1 ∈ N (σS(T )), then
f(T ) is invertible and f(T )−1 = f−1(T ).

Proof. From Theorem 4.1.3, we deduce that

I = 1(T ) =
(
ff−1

)
(T ) = f(T )f−1(T )

if we consider f and f−1 left slice hyperholomorphic functions and that

I = 1(T ) =
(
f−1f

)
(T ) = f−1(T )f(T )

if we consider them right slice hyperholomorphic functions. Hence f(T ) is invertible
with f(T )−1 = f(T )−1. �

Finally, the S-functional calculus has the capability to define the quaternionic
Riesz projectors and allows one in turn to identify invariant subspaces of T that
are associated with sets of spectral values.

Theorem 4.1.5 (Riesz’s projectors). Let T ∈ B(X) and assume that σS(T ) =
σ1 ∪ σ2 with

dist(σ1, σ2) > 0.

We choose an open axially symmetric set O with σ1 ⊂ O and O ∩ σ2 = ∅ and
define χσ1(s) = 1 for s ∈ O and χσ2(s) = 0 for s /∈ O. Then χσ1 ∈ N (σS(T )),
and

Pσ1 := χσ1(T ) =
1

2π

∫
∂(O∩Cj)

S−1
L (s, T ) dsj

is a continuous projection that commutes with T . Hence Pσ1
X is a right linear

subspace of X that is invariant under T .

Proof. The function χσ1 obviously belongs to N (σS(T )), and by Theorem 4.1.3,
we have

P 2
σ1

= χσ1
(T )χσ1

(T ) = (χσ1
χσ1

)(T ) = χσ1
(T ) = Pσ1

.

Hence Pσ1 is a projection in B(X). Since it is right linear, its range Pσ1X is a
closed right linear subspace of X. Moreover, we have

TPσ1
= s(T )χσ1

(T ) = (sχσ1
)(T ) = (χσ1

s)(T ) = χσ1
(T )s(T ) = Pσ1

T.
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For every x ∈ Pσ1X, we thus obtain

Tx = TPσ1
x = Pσ1

Tx for all x ∈ Pσ1
X,

and hence Pσ1
X is invariant under T .

We can show these properties explicitly, which we shall do now so that the
reader can see the analogy with the Riesz projectors of the F -functional calculus in
Theorem 7.4.2. Let us choose two bounded Cauchy slice domains Uq and Us such
that σ ⊂ Uq and Uq ⊂ Us and Us ⊂ O. We choose j ∈ S and we set Γs := ∂(Us∩Cj)
and Γq := ∂(Uq ∩ Cj) for neatness. By Theorem 3.2.11, we then have

Pσ1
=

1

2π

∫
Γs

dsj S
−1
R (s, T ) =

1

2π

∫
Γq

S−1
L (q, T ) dqj ,

and so

P 2
σ1

=
1

2π

∫
Γs

dsj S
−1
R (s, T )

1

2π

∫
Γq

S−1
L (q, T ) dqj

=
1

(2π)2

∫
Γs

dsj

[∫
Γq

S−1
R (s, T )S−1

L (q, T ) dqj

]
.

For simplicity we set Qs(q)−1 := (q2 − 2Re(s)q + |s|2)−1. If we apply (3.7) in the
above integral, we obtain

f(T )g(T ) =
1

(2π)2

∫
Γs

dsj

∫
Γq

S−1
R (s, T )qQs(q)−1 dqj

− 1

(2π)2

∫
Γs

dsj

∫
Γq

S−1
L (q, T )qQs(q)−1 dqj

− 1

(2π)2

∫
Γs

dsj

∫
Γq

sS−1
R (s, T )Qs(q)−1 dqj

+
1

(2π)2

∫
Γs

dsj

∫
Γq

sS−1
L (q, T )Qs(q)−1 dqj .

We observe that

1

(2π)2

∫
Γs

dsj

∫
Γq

S−1
R (s, T )qQs(q)−1dqj

=
1

(2π)2

∫
Γs

dsj S
−1
R (s, T )

[∫
Γq

qQs(q)−1 dqj

]
= 0

and

− 1

(2π)2

∫
Γs

dsj

[∫
Γq

s S−1
R (s, T )Qs(q)−1dqj

]

= − 1

(2π)2

∫
Γs

dsj s S
−1
R (s, T )

[∫
Γq

Qs(q)−1 dqj

]
= 0
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by Cauchy’s integral theorem, because the functions Qs(q)−1 and qQs(q)−1 are
for every s ∈ Γs right slice hyperholomorphic on an open set that contains Uq;
since we chose Uq ⊂ Us. Therefore, we have

P 2
σ1

= − 1

(2π)2

∫
Γs

dsj

∫
Γq

S−1
L (q, T )qQs(q)−1 dqj

+
1

(2π)2

∫
Γs

dsj

∫
Γq

sS−1
L (q, T )Qs(q)−1 dqj

=
1

(2π)2

∫
Γs

∫
Γq

dsj
[
sS−1

L (q, T )− S−1
L (q, T )q

]
Qs(q)−1dqj .

The integrand in the last integral is continuous and hence bounded on Γs × Γq.
We can thus apply Fubini’s theorem and change the order of integration so that

P 2
σ1

=
1

(2π)2

∫
Γq

[∫
Γs

dsj [sS−1
L (q, T )− S−1

L (q, T )q]Qs(q)−1

]
dqj .

Applying Lemma 4.1.2 with B = S−1
L (q, T ) and f(q) = 1, we obtain

P 2
σ1

=
1

2π

∫
Γq

S−1
L (q, T ) dqj = Pσ1 .

We furthermore have, because of (3.4), that

TPσ1
=

1

2π

∫
Γq

TS−1
L (q, T ) dqj

=
1

2π

∫
Γq

S−1
L (q, T ) dqjq −

1

2π

∫
Γq

I dqj =
1

2π

∫
Γq

S−1
L (q, T ) dqjq

by Cauchy’s integral theorem and similarly

Pσ1
T =

1

2π

∫
Γs

dsj S
−1
R (s, T )T

=
1

2π

∫
Γs

sdsj S
−1
R (s, T )− 1

2π

∫
Γs

dsjI =
1

2π

∫
Γs

sdsj S
−1
R (s, T ).

By Theorem 3.2.11, we thus have

TPσ1
=

1

2π

∫
Γq

S−1
L (q, T ) dqj q =

1

2π

∫
Γs

s dsj S
−1
R (s, T ) = Pσ1

T. �

4.2 The Spectral Mapping Theorem and the

Composition Rule

Similar to the product rule, the spectral mapping theorem does not hold for ar-
bitrary slice hyperholomorphic functions. This is not surprising: it is clear that it
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can hold only for slice hyperholomorphic functions that preserve the fundamen-
tal geometry of the S-spectrum, namely its axial symmetry. Again, the class of
intrinsic slice hyperholomorphic functions stands out here, since it is this class of
functions that maps axially symmetric sets to axially symmetric sets.

Theorem 4.2.1 (The spectral mapping theorem). Let T ∈ B(X) and let f ∈
N (σS(T )). Then

σS(f(T )) = f(σS(T )) = {f(s) : s ∈ σS(T )}.

Proof. Let U be a bounded slice Cauchy domain such that σS(T ) ⊂ U and U ⊂
D(f) and let s = u+ jv ∈ σS(T ). For q ∈ U \ [s], we define

g̃(q) = (q2 − 2Re(s)q + |s|2)−1(f(q)2 − 2Re(f(s))f(q) + |f(s)|2).

Since f is intrinsic slice hyperholomorphic, the function

q 7→ f(q)2 − 2Re(f(s))f(q) + |f(s)|2

is intrinsic slice hyperholomorphic too. If we multiply it by the intrinsic rational
function (q2−2Re(s)q+|s|2)−1, we obtain again an intrinsic slice hyperholomorphic
function, and hence g̃ belongs to N (U) \ [s].

We can extend g̃ to a function g ∈ N (U). Indeed, if s /∈ R and i ∈ S, then
the function g̃i = g̃|Ci has the singularities si = u+ iv and si = u− iv in U ∩ Ci.
However, we have

lim
z→si,z∈Ci

g̃i(z)

= lim
z→si,z∈Ci

(z2 − 2Re(si)z + |si|2)−1(f(z)2 − 2Re(f(si))f(z) + |f(si)|2)

= lim
z→si,z∈Ci

(z − si)−1(f(z)− f(si))(z − si)−1
(
f(z)− f(si)

)
= f ′i(si)(si − si)−1

(
f(si)− f(si)

)
= f ′i(si)

f1(u, v)

v

because si, z, f(si), and f(z) belong to the same complex plane, since f is intrinsic,
and hence they mutually commute. Since f(si) = f(si) because f is intrinsic, we
also have

lim
z→si,z∈Ci

g̃i(z)

= lim
z→si,z∈Ci

(z2 − 2Re(si)z + |si|2)−1(f(z)2 − 2Re(f(si))f(z) + |f(si)|2)

= lim
z→si,z∈Ci

(z − si)−1
(
f(z)− f(si)

)
(z − si)−1(f(z)− f(si))

= f ′i(si)(si − si)−1
(
f(si)− f(si)

)
= f ′i(si)

f1(u, v)

v
.



84 Chapter 4. Properties of the S-Functional Calculus for Bounded Operators

Thus si and si are removable singularities of g̃i, and since si = s−i, the function

g(q) =

{
g̃(q) if q ∈ U \ [s],

∂Sf(q) f1(u,v)
v if q = u+ iv ∈ [s],

is well defined. Obviously, it is an intrinsic slice function, and its restriction gi to
any complex plane Ci is holomorphic. By Lemma 2.1.6, the function g is intrinsic
slice hyperholomorphic.

If, on the other hand, s ∈ R, then the point s is for every i ∈ S the only
singularity of the function g̃i. Since f(s) = f(s) = f(s), we have f(s) ∈ R and
hence Re(s) = s and Re(f(s)) = f(s) such that

lim
z→s,z∈Ci

g̃i(z) = lim
z→s,z∈Ci

(z2 − 2sz + s2)−1(f(z)2 − 2f(s)f(z) + f(s)2)

= lim
z→∞,z∈Ci

(z − s)−2 (f(z)− f(s))
2

= (f ′i(s))
2.

Therefore, the singularity s of g̃i is removable for every i ∈ S, and since (f ′i(s))
2

=

(∂Sf(s))
2

does not depend on the imaginary unit i, the function

g(q) =

{
g̃(q) if q ∈ U \ [s],

(∂Sf(s))
2

if q = s,

is well defined. Obviously, g is an intrinsic slice function and gi = g|U∩Ci is holo-
morphic on U ∩Ci for every i ∈ S. By Lemma 2.1.6, the function g is also in this
case intrinsic slice hyperholomorphic.

The product rule implies

f(T )2 − 2Re(f(s))f(T ) + |f(s)|2I = (T 2 − 2Re(s)T + |s|2I)g(T ).

If the operator f(T )2 − 2Re(f(s))f(T ) + |f(s)|2I were invertible, then

g(T )(f(T )2 − 2Re(f(s))f(T ) + |f(s)|2I)−1

would therefore be the inverse of T 2−2Re(s)T+|s|2I. Since we assumed s ∈ σS(T ),
this is impossible, and hence f(s) ∈ σS(f(T )). Thus

f(σS(T )) ⊂ σS(f(T )).

If, on the other hand, s /∈ f(σS(T )), then we can consider the function

h(q) := (f2(q)− 2Re(s)f(q) + |s|2)−1,

which is an intrinsic slice hyperholomorphic function. Its poles are the spheres
[q] ⊂ U such that f([q]) = [f(q)] = [s]. Since we assumed s /∈ f(σS(T )), it does
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not have any poles on σS(T ). Thus it belongs to N (σS(T )), and Corollary 4.1.4
implies

h(T ) =
(
f(T )2 − 2Re(s)f(T ) + |s|2

)−1 ∈ B(X).

We find that s ∈ ρS(T ) and in turn also

σS(f(T )) ⊂ f(σS(T )). �

The spectral mapping theorem allows us to generalize the Gelfand formula
for the spectral radius to quaternionic linear operators.

Definition 4.2.2. Let T ∈ B(X). Then the S-spectral radius of T is defined to be
the nonnegative real number

rS(T ) := sup{|s| : s ∈ σS(T )}.

Theorem 4.2.3. For T ∈ B(X), we have

rS(T ) = lim
n→+∞

‖Tn‖ 1
n .

Proof. The mapping q 7→ q−1 is intrinsic slice hyperholomorphic, and hence q 7→
S−1
L (q−1, T ) is slice hyperholomorphic on the set

U := {q ∈ H : q−1 ∈ ρS(T )}.

Since H \ BrS(T )(0) ⊂ ρS(T ), the set U contains the ball B1/rS(T )(0). By Theo-

rem 2.1.15, the function S−1
L (q−1, T ) admits a power series expansion at 0 that

converges on B1/rS(T )(0). Because of Theorem 3.1.6, it is given by

S−1
L

(
q−1, T

)
=

+∞∑
n=0

Tnqn+1, |q| < 1

rS(T )
.

For s ∈ H with |s| > rS(T ), we thus have
∥∥Tns−n−1

∥∥ → 0 as n → +∞ because
the above series converges. In particular, we have

C(s) = sup
n∈N
‖Tns−n−1‖ < +∞.

Therefore,

lim sup
n→+∞

‖Tn‖ 1
n

1

|s|
= lim sup

n→+∞
‖Tn‖ 1

n |s|−
n+1
n

= lim sup
n→+∞

‖Tns−n−1‖ 1
n ≤ lim sup

n→+∞
C(s)

1
n = 1,

and hence
lim sup
n→+∞

‖Tn‖ 1
n ≤ |s|.
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Since s was arbitrary with |s| > rS(T ), we obtain

lim sup
n→+∞

‖Tn‖ 1
n ≤ rS(T ).

Moreover, Theorem 4.2.1 implies

σS(Tn) = σS(T )n

and we conclude from Theorem 3.1.13 that

rS(T )n = sup{|s|n : s ∈ σS(T )}
= sup{|s| : s ∈ σS(Tn)} = rS(Tn) ≤ ‖Tn‖

for every n ∈ N. Therefore, we get

rS(T ) ≤ lim inf
n→∞

‖Tn‖ 1
n ≤ lim sup

n→∞
‖Tn‖ 1

n ≤ rS(T ) (4.2)

and in turn rS(T ) = limn→∞ ‖Tn‖
1
n , where (4.2) also implies the existence of the

limit. �

Finally, the spectral mapping theorem also allows us to generalize the com-
position rule.

Theorem 4.2.4 (Composition rule). Let T ∈ B(X) and let f ∈ N (σS(T )). If
g ∈ SHL(σS(f(T )), then g ◦ f ∈ SHL(σS(T )), and if g ∈ SHR(f(σS(T ))), then
g ◦ f ∈ SHR(σS(T )). In both cases,

g(f(T )) = (g ◦ f)(T ).

Proof. If g ∈ SHL(f(σS(T ))), then D(g) is open and axially symmetric. Since f
is continuous and intrinsic, the inverse image of every open axially symmetric set
under f is again open and axially symmetric. The set f−1(D(g)) is therefore an
axially symmetric open set, and it contains σS(T ), since f(σS(T )) = σS(f(T )) ⊂
D(g) because of Theorem 4.2.1. By Theorem 2.1.4, the composition g ◦ f is a
left slice hyperholomorphic function with domain f−1(D(g)), and so it belongs to
SHL(σS(T )).

Let U be a bounded slice Cauchy domain such that σS(T ) ⊂ U and U ⊂ D(f)
and let W be another bounded slice Cauchy domain such that σS(T ) ⊂ f(U) ⊂W
and W ⊂ D(g). (Such slice Cauchy domains exist because of Remark 3.2.4.) The
mapping s 7→ S−1

L (q, f(s)) is left slice hyperholomorphic on

{s ∈ D(f) : f(s) /∈ [q]} = {s ∈ D(f) : q /∈ [f(s)]}

by Theorem 2.1.4. If q /∈ σS(f(T )) = f(σS(T )), then s 7→ S−1
L (q, f(s)) there-

fore belongs to SHL(σS(T )). Since the S-functional calculus is compatible with
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algebraic operations, we have

S−1
L (q, f(T )) = −Qq(f(T ))−1(f(T )− qI)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj

[
−Qq(f(s))−1(f(s)− q)

]
=

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj S

−1
L (q, f(s))

with Qs(f(s))−1 = (f(s)2− 2Re(q)f(s) + |q|2)−1 and an arbitrary imaginary unit
j ∈ S. Therefore,

g(f(T )) =
1

2π

∫
∂(W∩Cj)

S−1
L (q, f(T )) dqj g(q)

=
1

2π

∫
∂(W∩Cj)

[
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj S

−1
L (q, f(s))

]
dqj g(q).

Since the integrand in the last integral is continuous and hence bounded on the
compact set ∂(W ∩Cj)× ∂(U ∩Cj), we can apply Fubini’s theorem to change the
order of integration and obtain

g(f(T )) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj

[
1

2π

∫
∂(W∩Cj)

S−1
L (p, f(s)) dpj g(p)

]

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj g(f(s))

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj (g ◦ f)(s) = (g ◦ f)(T ). �

4.3 Convergence in the SSS-Resolvent Sense

The following definition and the next result show that the notion of convergence
in the resolvent sense is meaningful also in the quaternionic setting. This notion
is important for unbounded operators.

Definition 4.3.1 (Converges in the norm S-resolvent sense). Let Tm, m ∈ N, and
T belong to B(X) and suppose that ρS(T ) = ρS(Tm) for all m ∈ N. We say that
Tm converges to T in the norm left S-resolvent sense if S−1

L (s, Tm) → S−1
L (s, T )

in B(X) as m → +∞ for all s ∈ ρS(T ) and that Tm converges to T in the norm
right S-resolvent sense if S−1

R (s, Tm) → S−1
R (s, T ) in B(X) as m → +∞ for all

s ∈ ρS(T ).

Theorem 4.3.2. Let Tm ∈ B(X), m ∈ N be uniformly bounded, T ∈ B(X), and
suppose that ρS(T ) = ρS(Tm) for all m ∈ N. The following statements are then
equivalent:
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(i) Tm converges to T in B(X).

(ii) Tm converges to T in the norm left S-resolvent sense.

(iii) Tm converges to T in the norm right S-resolvent sense.

In each of these cases, the convergence S−1
L (s, Tm)→ S−1

L (s, T ) or S−1
R (s, Tm)→

S−1
R (s, T ) is uniform for s on compact subsets of ρS(T ).

Proof. Assume first that (i) holds. Then

S−1
L (s, T )− S−1

L (s, Tm) = −Qs(T )−1 (T − sI − Tm + sI)

−
(
Qs(T )−1 −Qs(Tm)−1

)
(Tm − sI)

and hence

‖S−1
L (s, T )− S−1

L (s, Tm)‖
≤
∥∥Qs(T )−1

∥∥ ‖T − Tm‖+
∥∥Qs(T )−1 −Qs(Tm)−1

∥∥ ‖Tm − sI‖. (4.3)

We observe that

Qs(T )−1 −Qs(Tm)−1

=Qs(Tm)−1
(
T 2
m − T 2 − 2s0(T − Tm)

)
Qs(T )−1

=Qs(Tm)−1 (Tm(Tm − T ) + (Tm − T )T + 2s0(T − Tm))Qs(T )−1.

(4.4)

Hence if we can show that there exists a positive constant Cs such that ‖Qs(Tm)‖ ≤
Cs for all m ∈ N, then we will obtain ‖Qs(T )−1 − Qs(Tm)−1‖ → 0 and in turn,
due to (4.3), that S−1

L (s, T )→ S−1
L (s, T ) in B(X). We point out that

Qs(Tm) = Qs(T )
(
Qs(T )−1Qs(Tm)

)
= Qs(T )

(
I − Qs(T )−1(T 2 − T 2

m − 2s0(Tm − T ))
)
.

(4.5)

For A ∈ B(X) with ‖A‖ < 1, the operator (I − A)−1 =
∑+∞
n=0A

n ∈ B(X) exists
and satisfies

∥∥(I −A)−1
∥∥ ≤ (1− ‖A‖)−1. Since Tm → T , we find that

Am := Qs(T )−1(T 2 − T 2
m − 2s0(Tm − T ))→ 0

in B(X) as m→ +∞ and hence ‖Am‖ ≤ 1/2 for sufficiently large m. For such m,
the operator I − Am is invertible with

∥∥(I −Am)−1
∥∥ ≤ 2, and because of (4.5),

we obtain
Qs(Tm)−1 = (I −Am)−1Qs(T )−1 (4.6)

and in turn∥∥Qs(Tm)−1
∥∥ ≤ ∥∥(I −Am)−1

∥∥∥∥Qs(T )−1
∥∥ ≤ 2

∥∥Qs(T )−1
∥∥ . (4.7)

Therefore,
Cs := sup

m∈N

∥∥Qs(Tm)−1
∥∥ < +∞,
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and we conclude that (ii) holds.
The convergence S−1

L (s, Tm)→ S−1
L (s, T ) is even uniform in s on every com-

pact set K, since because of (4.3), we have

sup
s∈K
‖S−1

L (s, T )− S−1
L (s, Tm)‖

≤ sup
s∈K

∥∥Qs(T )−1
∥∥ ‖T − Tm‖+ sup

s∈K

∥∥Qs(T )−1 −Qs(Tm)−1
∥∥ ‖Tm − sI‖.

Since Qs(T )−1 is continuous on ρS(T ), we have sups∈K
∥∥Qs(T )−1

∥∥ < +∞, and
so the first summand converges to 0 uniformly in s as m → +∞. For the second
summand, we have because of (4.4) that

sup
s∈K

∥∥Qs(T )−1 −Qs(Tm)−1
∥∥ ‖Tm − sI‖

≤ sup
s∈K

∥∥Qs(Tm)−1
∥∥ ‖Tm‖‖Tm − T‖∥∥Qs(T )−1

∥∥ ‖Tm − sI‖
+ sup
s∈K

∥∥Qs(Tm)−1
∥∥ ‖Tm − T‖‖T‖∥∥Qs(T )−1

∥∥ ‖Tm − sI‖
+ sup
s∈K
|2s0|

∥∥Qs(Tm)−1
∥∥ ‖T − Tm‖∥∥Qs(T )−1

∥∥ ‖Tm − sI‖.
Because of (4.7), we have

∥∥Qs(Tm)−1
∥∥ ≤ 2

∥∥Qs(T )−1
∥∥ for m sufficiently large,

and so

sup
s∈K

∥∥Qs(T )−1 −Qs(Tm)−1
∥∥ ‖Tm − sI‖

≤ sup
s∈K

2
∥∥Qs(T )−1

∥∥2
(‖T‖+ ‖Tm‖+ 2|s0|‖) (‖Tm‖+ |s|)‖T − Tm‖‖

≤ C‖T − Tm‖

because Qs(T )−1 and s0 and s depend continuously on s and are hence bounded
on the compact set K.

Conversely, we suppose now that (ii) holds and we show that ‖T −Tm‖ → 0.
Since T and Tm are uniformly bounded, there exists α ∈ ρS(T ) ∩

⋃
m∈N ρS(Tm).

We then have S−1
L (α, T ) = (αI − T )−1 and S−1

L (α, Tm) = (αI − Tm)−1, and so

‖T − Tm‖ = ‖α− Tm − (α− T )‖
≤ ‖α− Tm‖

∥∥(αI − T )−1 − (αI − Tm)−1
∥∥ ‖α− T‖

= ‖αI − Tm‖‖αI − T‖
∥∥S−1

L (α, T )− S−1
L (α, Tm)

∥∥→ 0

because ‖Tm‖ is uniformly bounded.
The equivalence of (i) and (iii) is shown with similar arguments. �

Remark 4.3.3. Since by the above theorem convergence in the norm left S-resolvent
sense and convergence in the norm right S-resolvent sense are equivalent, we will
not distinguish between them in the following and just say that Tm converges to
T in the norm S-resolvent sense.
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Theorem 4.3.4. Let Tm, m ∈ N, and T belong to B(X) with ρS(T ) = ρS(Tm) for
all m ∈ N and suppose that Tm converges to T in the norm S-resolvent sense. If
f ∈ SHL(σS(T )) or f ∈ SHR(σS(T )), then

‖f(T )− f(Tm)‖ → 0 as m→ +∞.

Proof. If f ∈ SHL(σS(T )), then

f(Tm)− f(T ) =
1

2π

∫
∂(U∩Cj)

(
S−1
L (s, Tm)− S−1

L (s, T )
)
dsj f(s)

with j ∈ S and a suitable bounded slice Cauchy domain U . Since f(s) is continuous,
it is bounded on the compact set ∂(U ∩ Cj), and hence there exists a positive
constant C > 0 such that

‖f(Tm)− f(T )‖ ≤ C max
s∈∂(U∩Cj)

∥∥S−1
L (s, Tm)− S−1

L (s, T )
∥∥→ 0,

since
∥∥S−1

L (s, Tm)− S−1
L (s, T )

∥∥ → 0 converges uniformly to 0 on the compact
set ∂(U ∩ Cj) by Theorem 4.3.2. Similarly, we prove the statement for f ∈
SHR(σS(T )). �

4.4 The Taylor Formula for the SSS-Functional Calculus

Consider a bounded operator T and let N be a small perturbation operator that
furthermore commutes with T . Then f(T + N) can be represented as a power
series in N that formally corresponds to a Taylor series expansion in the operator.
In this section we show that the Taylor formula can be extended to quaternionic
operators, but before we can state the main theorem, several preliminary results
are needed. This result is the quaternionic analogue of Theorem VII.10 in [104],
and it was proved in [55] in the more general setting of paravector operators on a
two-sided Clifford module.

Before we are able to show the Taylor expansion in the operator, we need
to determine the slice derivatives of the S-resolvents. We start by finding explicit
formulas for the functions

SnL(s, q) := (s− q)∗Ln and SnR(s, q) := (s− q)∗Rn.

Lemma 4.4.1. Let s ∈ H. For n ≥ 0, we have

SnL(s, q) =
n∑
k=0

(
n

k

)
(−q)ksn−k and SnR(s, q) =

n∑
k=0

(
n

k

)
sn−k(−q)k. (4.8)

With Qs(q) = q2 − 2s0q + |s|2, we moreover have

S−nL (s, q) = Qs(q)−n(s− q)∗Ln and S−nR (s, q) = (s− q)∗RnQs(q)−n. (4.9)
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Furthermore, for m,n ≥ 0, we have

S−nL (s, q) ∗L S−mL (s, q) = Qs(q)−(n+m) [(s− q)∗Ln ∗L (s− q)∗Lm]

and

S−nR (s, q) ∗R S−mR (s, q) = [(s− q)∗Rn ∗R (s− q)∗Rm]Qs(q)−(n+m).

Proof. For n = 0, we have (s − q)∗L0 ≡ 1, and hence (4.8) is obviously true.
Assume that it holds for n− 1. Then (2.18) implies

SnL(s, q) = (s− q)∗Ln = (s− q)∗L(n−1) ∗L (s− q)
= (s− q)∗L(n−1) ∗L s+ (s− q)∗L(n−1) ∗L (−q)

=
n−1∑
k=0

(
n− 1

k

)
(−q)ksn−k +

n−1∑
k=0

(
n− 1

k

)
(−q)k+1sn−1−k

=
n−1∑
k=0

(
n− 1

k

)
(−q)ksn−k +

n∑
k=1

(
n− 1

k − 1

)
(−q)ksn−k =

n∑
k=0

(
n

k

)
(−q)ksn−k,

and (4.8) follows by induction.
We also prove the identity (4.9) by induction. It is obviously true for n = 0.

Assume that it holds for n − 1 and observe that Qs(q)−1 ∈ N (H \ [s]). Then by
(2.16) and Corollary 2.1.20 we have S−1

L (s, q) = (s− q)−∗L , so this implies

S−nL (s, q) = (s− q)−∗L(n−1) ∗L (s− q)−∗L

=
[
Qs(q)−(n−1)(s− q)∗L(n−1)

]
∗L
[
Qs(q)−1(s− q)

]
= Qs(q)−(n−1) ∗L (s− q)∗L(n−1) ∗L Qs(q)−1 ∗L (s− q)
= Qs(q)−(n−1) ∗L Qs(q)−1 ∗L (s− q)∗L(n−1) ∗L (s− q)
= Qs(q)−n(s− q)∗Ln.

Finally (2.16) also implies for m,n ≥ 0 that

S−nL (s, q) ∗L S−mL (s, q) =
[
Qs(q)−n(s− q)∗Ln

]
∗L
[
Qs(q)−m(s− q)∗Lm

]
= Qs(q)−n ∗L (s− q)∗Ln ∗L Qs(q)−m ∗L (s− q)∗Lm

= Qs(q)−n ∗L Qs(q)−m ∗L (s− q)∗Ln ∗L (s− q)∗Lm

= Qs(q)−(n+m) [(s− q)∗Ln ∗L (s− q)∗Lm] .

The right slice hyperholomorphic case can be shown by similar computations. �

Corollary 4.4.2. Let s = s0 + jss1 ∈ H and n,m ∈ N0. If q ∈ Cjs , then

(s− q)∗Lm ∗L (s− q)∗Ln = (s− q)m(s− q)n (4.10)
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and
S−mL (s, q) ∗L S−nL (s, q) = (s− q)−m(s− q)−n. (4.11)

Moreover, for every n ∈ N0, the function

P (q) :=
n∑
k=0

(s− q)∗L(k+1) ∗L (s− q)∗L(n−k+1) (4.12)

is a polynomial with real coefficients. Analogous statements hold for right slice
hyperholomorphic powers SmR (s, q) of s− q.

Proof. If q ∈ Cjs , then s, s, and q commute. Hence it follows from (4.8) and the
binomial theorem that (s − q)∗Lm = (s − q)m and (s − q)∗Ln = (s − q)n. From
(2.16), we deduce (4.10). Since q and s commute, we also find that

Qs(q)−1 = (q − s)−1(q − q)−1,

and so (4.9) implies

S−mL (s, q) = (s− q)−m(s− q)−m(s− q)m = (s− q)−m.

An analogous computation shows that S−nL (s, q) = (s− q)−n.
For arbitrary left slice hyperholomorphic functions f and g, it is because of

(2.21) immediate that (f ∗L g)(q) = f(q)g(q) at a point q if f(q) ∈ Cjq . Since
(s− q)−m belongs to Cjq if q ∈ Cjs , we furthermore find that

S−mL (s, q) ∗L S−nL (s, q) = (s− q)−m ∗L (s− q)−n = (s− q)−m(s− q)−n.

Finally, we consider P (q). The restriction Pjs of this function to the plane Cjs is
the complex polynomial Pjs(z) =

∑n
k=0(s− z)k+1(s− z)n−k+1. From the relation

Pjs(q) =
n∑
k=0

(s− q)k+1(s− q)n−k+1 =
n∑
k=0

(s− q)k+1(s− q)n−k+1 = Pjs(q),

we deduce that its coefficients are real. Consequently, P = extL(Pj) is a polynomial
with real coefficients on H, where extL means the extension with the representation
formula. We can show the analogous statement for right slice hyperholomorphic
powers SmR (s, q) of s− q with similar arguments. �

We need now to formally replace the scalar variable q in the functions intro-
duced above by the operator T in a way that is consistent with the S-functional
calculus. Recall, however, that the product rule (fg)(T ) = f(T )g(T ) holds only if
f ∈ N (σS(T )) and g ∈ SHL(σS(T )) or if f ∈ SHR(σS(T )) and g ∈ N (σS(T )).
This is due to the fact that for f, g ∈ SHL(σS(T )) or for f, g ∈ SHR(σS(T )), the
product fg does not in general belong to SHL(σS(T )) resp. SHR(σS(T )).

If, on the other hand, one considers the left slice hyperholomorphic product
f ∗L g of two left slice hyperholomorphic functions (or equivalently, the right
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slice hyperholomorphic product of two right slice hyperholomorphic functions),
then it is not clear to which operation between operators it corresponds. Some
considerations actually suggest that such an operation does not exist.

However, for power series of an operator variable, we can use the formulas
(2.18) and (2.19) to define their ∗L-product resp. ∗R-product.

Definition 4.4.3. Let T ∈ B(X). For F =
∑+∞
n=0 T

nan and G =
∑+∞
n=0 T

nbn with
a`, b` ∈ H for ` ∈ N, we define

F ∗L G :=
+∞∑
n=0

Tn

(
n∑
k=0

akbn−k

)
.

For F̃ =
∑+∞
n=0 anT

n and G̃ =
∑+∞
n=0 bnT

n, we define

F̃ ∗R G̃ :=
+∞∑
n=0

(
n∑
k=0

akbn−k

)
Tn.

Remark 4.4.4. For F =
∑+∞
n=0 T

nan and G =
∑+∞
n=0 T

nbn note that F ∗LG = FG
if an ∈ R for every n ∈ N. In this case, the coefficients an commute with the
operator T , and hence

F ∗L G =
+∞∑
n=0

Tn

(
n∑
k=0

akbn−k

)
=

+∞∑
n=0

n∑
k=0

T kakT
n−kbn−k = FG.

Similarly, F̃ ∗R G̃ = F̃ G̃ if bn ∈ R for every n ∈ N.

Corollary 4.4.5. Let T ∈ B(X) and let f(q) =
∑+∞
n=0 q

nan and g(q) =
∑+∞
n=0 q

nbn
be two left slice hyperholomorphic power series that converge on a ball Br(0) with
σS(T ) ⊂ Br(0). Then

f(T ) ∗L g(T ) = (f ∗L g)(T ).

Similarly, for two right slice hyperholomorphic power series f̃(q) =
∑+∞
n=0 anq

n

and g̃(q) =
∑+∞
n=0 bnq

n that converge on a ball Br(0) with σS(T ) ⊂ Br(0), we have

f̃(T ) ∗R g̃(T ) = (f̃ ∗R g̃)(T ).

Proof. By the properties of the S-functional calculus, we have f(T ) =
∑+∞
n=0 T

nan
and g(T ) =

∑+∞
n=0 T

nbn. Hence

f(T ) ∗L g(T ) =
+∞∑
n=0

Tn

(
n∑
k=0

akbn−k

)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj

+∞∑
n=0

sn

(
n∑
k=0

akbn−k

)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f ∗L g(s) = (f ∗L g)(T ).

An analogous computation shows the right slice hyperholomorphic case. �
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Observe that SnL(s, T ) and SnR(s, T ) and slice hyperholomorphic products
of such expressions are well defined because of Definition 4.4.3. In analogy with
(4.4.1), we furthermore give the following definition.

Definition 4.4.6. Let T ∈ B(X) and let s ∈ ρS(T ). For n,m ≥ 0, we define

S−nL (s, T ) := Qs(T )−n(sI − T )∗Ln

and

S−nL (s, T ) ∗L S−mL (s, T ) := Qs(T )−(n+m) [(sI − T )∗Ln ∗L (sI − T )∗Lm] .

Similarly, we define

S−nR (s, T ) := (sI − T )∗RnQs(T )−n

and

S−nR (s, T ) ∗R S−mR (s, T ) := [(sI − T )∗Rn ∗R (sI − T )∗Rm]Qs(T )−(n+m).

Remark 4.4.7. Since the function Qs(q)
−n is intrinsic, the above definitions, due

to the product rule, are compatible with the S-functional calculus, that is,[
S−nL (s, ·)

]
(T ) = S−nL (s, T ) and

[
S−nR (s, ·)

]
(T ) = S−nR (s, T )

as well as [
S−nL (s, ·) ∗L S−mL (s, ·)

]
(T ) = S−nL (s, T ) ∗L S−mL (s, T )

and [
S−nR (s, ·) ∗L S−mR (s, ·)

]
(T ) = S−nR (s, T ) ∗L S−mR (s, T ).

Proposition 4.4.8. Let T ∈ B(X) and let s ∈ ρS(T ). Then

∂mS S
−1
L (s, T ) = (−1)mm!S

−(m+1)
L (s, T ) (4.13)

and

∂mS S
−1
R (s, T ) = (−1)mm!S

−(m+1)
R (s, T ), (4.14)

for every m ≥ 0.

Proof. Recall that the slice derivative, see Definition 2.1.12, coincides with the
partial derivative with respect to the real part s0 of s. We show only (4.43), since
(4.44) follows by analogous computations.

We prove the statement by induction. For m = 0, the identity (4.43) is
obvious. We assume that ∂m−1

S S−1
L (s, T ) = (−1)m−1(m − 1)!S−mL (s, T ) and we

compute ∂mS S
−1
L (s, T ). We represent S−mL (s, T ) using the S-functional calculus. If
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we choose the path of integration in the complex plane Cjs , then we find because
of (4.11) that

∂SS
−m
L (s, T ) = ∂S

1

2π

∫
∂(U∩Cjs )

S−1
L (p, T ) dpj S

−m
L (s, p)

=
1

2π

∫
∂(U∩Cjs )

S−1
L (p, T ) dpj

∂

∂s0
(s− p)−m

= −m 1

2π

∫
∂(U∩Cjs )

S−1
L (p, T ) dpj (s− p)−(m+1) = −mS

−(m+1)
L (s, T ),

and in turn,

∂mS S
−1
L (s, T ) = ∂S

(
∂m−1
S S−1

L (s, T )
)

= (−1)m−1(m− 1)!∂SS
−m
L (s, T ) = (−1)mm!S

−(m+1)
L (s, T ). �

Remark 4.4.9. We point out that Proposition 4.4.8 also holds for unbounded closed
operators. In this case, we have to modify the definition of S−mL (s, T ) by commut-
ing every occurrence of T with Qs(T )−m just as we did in the definition of the left
S-resolvent operator. Otherwise S−mL (s, T ) is defined only on D(Tm) and not on
the entire space V .

Let us now turn our attention to the Taylor series expansion of f(T +N) in
the operator variable. In order for such an expansion to hold, it is essential that
adding a somewhat small operator N not to perturb the S-spectrum of T a lot.
The following result clarifies how one has to measure the distance between a point
s ∈ ρS(T ) and the S-spectrum of T .

Lemma 4.4.10. Let A ⊂ H be axially symmetric and let s = s0 + js1 ∈ H. Then

dist(s,A) = dist(s,A ∩ Cj) = dist
(
s,A ∩ C≥j

)
,

where dist(s,A) := inf{|s− q| : q ∈ A} and C≥j = {q0 + jq1 : q0 ∈ R, q1 ≥ 0}.
Proof. For q = q0 + jqq1 ∈ A, define qj = q0 + jq1. We choose i ∈ S with j ⊥ i and
set k = ji. Then q = q0 + q̃1j+ q̃2i+ q̃3k with q̃2

1 + q̃2
2 + q̃2

3 = |q|2 = q2
1 , and in turn

|s− qj |2 = (s0 − q0)2 + (s1 − q1)2

= (s0 − q0)2 + s2
1 − 2s1q1 + q2

1

= (s0 − q0)2 + s2
1 − 2s1

√
q̃2
1 + q̃2

2 + q̃2
3 + q̃2

1 + q̃2
2 + q̃3

2

≤ (s0 − q0)2 + s2
1 − 2s1q̃1 + q̃2

1 + q̃2
2 + q̃3

2

= (s0 − q0)2 + (s1 − q̃1)2 + q̃2
2 = |s− q|2.

Since A is axially symmetric, we have {qj : q ∈ A} = A ∩ C≥j . Consequently,

inf
q∈A
|s− q| ≤ inf

q∈A∩C≥j
|s− q| ≤ inf

q∈A
|s− qj | ≤ inf

q∈A
|s− q|,
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and in turn,

dist(s,A) = inf
q∈A
|s− q| = inf

q∈A∩C≥j
|s− q| = dist(s,A ∩ C≥j ). �

Proposition 4.4.11. Let T ∈ B(X) and let C ⊂ H with dist(C, σS(T )) > ε for some
ε > 0. Then there exists a positive constant KT such that

∥∥S−mL (s, T ) ∗L S−nL (s, T )
∥∥ ≤ KT

εm+n
(4.15)

and ∥∥S−mR (s, T ) ∗L S−nR (s, T )
∥∥ ≤ KT

εm+n
, (4.16)

for every s ∈ C and m,n ≥ 0.

Proof. Let U be a bounded slice Cauchy domain with σS(T ) ⊂ U with dist(C,U) >
ε. We choose s = s0 + js1 ∈ C. By Corollary 4.4.2, we have

S−mL (s, q) ∗L S−nL (s, q) = (s− q)−m(s− q)−n

for every x ∈ Cj . Lemma 4.4.10 implies dist(s, U ∩ Cj) = dist(s, U) > ε. Since
U ∩Cj is symmetric with respect to the real axis, we also have dist(s, U ∩Cj) > ε,
and we deduce

∥∥S−mL (s, T ) ∗L S−nL (s, T )
∥∥

=

∥∥∥∥∥ 1

2π

∫
∂(U∩Cj)

S−1
L (p, T ) dpj S

−m
L (s, p) ∗L S−nL (s, p)

∥∥∥∥∥
=

∥∥∥∥∥ 1

2π

∫
∂(U∩Cj)

S−1
L (p, T ) dpj (s− p)−m(s− p)−n

∥∥∥∥∥
≤ 1

2π

∫
∂(U∩Cj)

∥∥S−1
L (p, T )

∥∥ d|p| ∣∣(s− p)−m(s− p)−n
∣∣

≤ 1

2π

∫
∂(U∩Cj)

∥∥S−1
L (p, T )

∥∥ d|p| 1

εm+n
.

Hence if we set

KT := sup
i∈S

1

2π

∫
∂(U∩Ci)

∥∥S−1
L (p, T )

∥∥ d|p|,
which depends neither on the point s ∈ C nor on the numbers n,m ≥ 0, then

∥∥S−mL (s, T ) ∗L S−nL (s, T )
∥∥ ≤ KT

εm+n
. �
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Theorem 4.4.12. Let T ∈ B(X) and let N ∈ B(X) be such that T and N commute
and such that σS(N) is contained in the open ball Bε(0). If dist(s, σS(T )) > ε,
then s ∈ ρS(T +N) and

Qs(T )−1 =
+∞∑
n=0

(
n∑
k=0

S
−(k+1)
L (s, T ) ∗L S−(n−k+1)

L (s, T )

)
Nn,

where the series converges in the operator norm.

Proof. We first show the convergence of the series

Σ(s, T,N) :=
+∞∑
n=0

(
n∑
k=0

S
−(k+1)
L (s, T ) ∗L S−(n−k+1)

L (s, T )

)
Nn.

Since σS(N) is compact, there exists θ ∈ (0, 1) such that σS(N) ⊂ Bθε(0) ⊂ Bε(0).
Applying the S-functional calculus, we obtain

‖Nm‖ =

∥∥∥∥∥ 1

2π

∫
∂(Bθε(0)∩Cj)

S−1
L (s,N) dsj s

m

∥∥∥∥∥
≤ 1

2π

∫
∂(Bθε(0)∩Cj)

∥∥S−1
L (s,N)

∥∥ d|s| |s|m
=

1

2π

∫
∂(Bθε(0)∩Cj)

∥∥S−1
L (s,N)

∥∥ d|s| (θε)m
for every m ≥ 0. Hence

‖Nm‖ ≤ KN (θε)m (4.17)

with

KN :=
1

2π

∫
∂(Bθε(0)∩Cj)

∥∥S−1
L (s,N)

∥∥ d|s|.
From Proposition 4.4.11, we deduce

+∞∑
n=0

∥∥∥∥∥
(

n∑
k=0

S
−(k+1)
L (s, T ) ∗L S−(n−k+1)

L (s, T )

)
Nn

∥∥∥∥∥
≤

+∞∑
n=0

n∑
k=0

∥∥∥S−(k+1)
L (s, T ) ∗L S−(n−k+1)

L (s, T )
∥∥∥ ‖Nn‖

≤
+∞∑
n=0

(n+ 1)
KT

εn+2
KN (θε)n ≤ KTKN

ε2

+∞∑
n=0

(n+ 1)θn.

By the root test, this last series converges because 0 < θ < 1. The comparison
test yields the convergence of the original series Σ(s, T,N) in the operator norm.
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From Definition 4.4.6 and the fact that T and N commute, we deduce

Qs(T +N) = T 2 + 2TN +N2 − 2s0T − 2s0N + |s|2I
= Qs(T ) + (2T − 2s0)N + |s|2I.

If we define

ΛT (k, n, s) := (sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k+1)

for neatness, we therefore have

Σ(s, T,N)Qs(T +N)

=

(
+∞∑
n=0

(
n∑
k=0

S
−(k+1)
L (s, T ) ∗L S−(n−k+1)

L (s, T )

)
Nn

)
Qs(T +N)

=
+∞∑
n=0

Qs(T )−(n+2)

(
n∑
k=0

ΛT (k, n, s)

)
NnQs(T )

+

+∞∑
n=0

Qs(T )−(n+2)

(
n∑
k=0

ΛT (k, n, s)

)
Nn+1(2T − 2s0I)

+

+∞∑
n=0

Qs(T )−(n+2)

(
n∑
k=0

ΛT (k, n, s)

)
Nn+2.

Applying Corollary 4.4.2 and the S-functional calculus, we see that each of the
coefficients

∑n
k=0 ΛT (k, n, s) =

∑n
k=0(sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k+1) is a

polynomial in T with real coefficients and hence commutes with the operator
Qs(T ). Remark 4.4.4 implies

Σ(s, T,N)Qs(T +N)

=
+∞∑
n=0

Qs(T )−(n+1)

(
n∑
k=0

ΛT (k, n, s)

)
Nn

+
+∞∑
n=0

Qs(T )−(n+2)

(
n∑
k=0

ΛT (k, n, s) ∗L (2T − 2s0I)

)
Nn+1

+
+∞∑
n=0

Qs(T )−(n+2)

(
n∑
k=0

ΛT (k, n, s)

)
Nn+2
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=

+∞∑
n=0

Qs(T )−(n+1)

(
n∑
k=0

ΛT (k, n, s)

)
Nn

+

+∞∑
n=1

Qs(T )−(n+1)

(
n−1∑
k=0

ΛT (k, n− 1, s) ∗L (2T − 2s0I)

)
Nn

+

+∞∑
n=2

Qs(T )−n
n−2∑
k=0

ΛT (k, n− 2, s)Nn.

The identity

Qs(T )−n

(
n−2∑
k=0

ΛT (k, n− 2, s)

)

= Qs(T )−n

(
n−2∑
k=0

(sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k−1)

)

= Qs(T )−n

(
n−1∑
k=1

(sI − T )∗Lk ∗L (sI − T )∗L(n−k)

)

= Qs(T )−(n+1)

(
n−1∑
k=1

(sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k+1)

)

= Qs(T )−(n+1)

(
n−1∑
k=1

ΛT (k, n, s)

)
,

finally yields

Σ(s, T,N)Qs(T +N)

= Qs(T )−1ΛT (0, 0, s)N0

+Qs(T )−2

(
1∑
k=0

ΛT (k, 1, s) + Λ(0, 0, s) ∗L (2T − 2s0I)

)
N

+

+∞∑
n=2

Qs(T )−(n+1)

(
n∑
k=0

ΛT (k, n, s)

+
n−1∑
k=0

ΛT (k, n− 1, s) ∗L (2T − 2s0I) +
n−1∑
k=1

ΛT (k, n, s)

)
Nn.

Now observe that

Qs(T )−1ΛT (0, 0, s)N0 = Qs(T )−1 ((sI − T ) ∗L (sI − T ))

= Qs(T )−1Qs(T ) = I.
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Because of 2T − 2s0I = −(sI − T )− (sI − T ), we have

1∑
k=0

ΛT (k, 1, s) + Λ(0, 0, s) ∗L (2T − 2s0I)

= (sI − T ) ∗L (sI − T )∗L2 + (sI − T )∗L2 ∗L (sI − T )

− (sI − T )∗L2 ∗L (sI − T )− (sI − T ) ∗L (sI − T )∗L2 = 0.

Finally, we also find again because of 2T − 2s0I = −(sI − T )− (sI − T ) that

n∑
k=0

ΛT (k, n, s) +
n−1∑
k=0

ΛT (k, n− 1, s) ∗L (2T − 2s0I) +
n−1∑
k=1

ΛT (k, n, s)

=
n∑
k=0

(sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k+1)

−
n−1∑
k=0

(sI − T )∗L(k+2) ∗L (sI − T )∗L(n−k)

−
n−1∑
k=0

(sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k+1)

+
n−1∑
k=1

(sI − T )∗L(k+1) ∗L (sI − T )∗L(n−k+1) = 0,

where the last identity follows after an index shift k to k + 1 in the second sum.
Altogether, we obtain

Σ(s, T,N)Qs(T +N) = I.
From Corollary 4.4.2 and the S-functional calculus, we already concluded that
each of the coefficients

∑n
k=0 ΛT (k, n, s) in Σ(s, T,N) is a polynomial in T with

real coefficients and thus commutes with both T and N . Hence it also commutes
with Qs(T +N), and so also

Qs(T +N)Σ(s, T,N) = Σ(s, T,N)Qs(T +N) = I.

Hence Qs(T +N) is invertible, which implies s ∈ ρS(T +N). �

Theorem 4.4.13. Let T,N ∈ B(X) be such that σS(N) ⊂ Bε(0) and such that T
and N commute. For every s ∈ ρS(T ) with dist(s, σS(T )) > ε, the identities

S−1
L (s, T +N) =

+∞∑
n=0

Nn S
−(n+1)
L (s, T )

and

S−1
R (s, T +N) =

+∞∑
n=0

S
−(n+1)
R (s, T )Nn

hold, where the series converge uniformly on every set C with dist(C, σS(T )) > ε.
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Proof. In (4.17), we showed the existence of two constants KN ≥ 0 and θ ∈ (0, 1)
such that ‖N‖m ≤ KN (θε)m for every m ∈ N0. Moreover, for every C ⊂ H with
dist(C, σS(T )) > ε, Proposition 4.4.11 implies the existence of a constant KT such
that ‖S−mL (s, T )‖ ≤ KT /ε

m for every s ∈ C and m ∈ N0. Therefore, the estimate

∞∑
n=n0

∥∥∥Nn S
−(n+1)
L (s, T )

∥∥∥ ≤ +∞∑
n=n0

‖Nn‖
∥∥∥S−(n+1)

L (s, T )
∥∥∥

≤
+∞∑
n=n0

KN (θε)n
KT

εn+1
=
KTKN

ε

+∞∑
n=n0

θn
n0→∞−→ 0

holds for every s ∈ C and implies the uniform convergence of the series on C.
Let s ∈ ρS(T ) with dist(s, σS(T )) > ε. We have

(
(T +N)2 − 2s0(T +N) + |s|2I

) +∞∑
n=0

Nn S
−(n+1)
L (s, T )

=
(
T 2 − 2s0T + |s|2I

) +∞∑
n=0

Nn(T 2 − 2s0T + |s|2I)−(n+1)(sI − T )∗L(n+1)

+ (2T − 2s0I)N
+∞∑
n=0

Nn(T 2 − 2s0T + |s|2I)−(n+1)(sI − T )∗L(n+1)

+N2
+∞∑
n=0

Nn(T 2 − 2s0T + |s|2I)−(n+1)(sI − T )∗L(n+1)

=
+∞∑
n=0

Nn(T 2 − 2s0T + |s|2I)−n(sI − T )∗L(n+1)

+
+∞∑
n=0

Nn+1 (2T − 2s0I) (T 2 − 2s0T + |s|2I)−(n+1)(sI − T )∗L(n+1)

+
+∞∑
n=0

Nn+2(T 2 − 2s0T + |s|2I)−(n+1)(sI − T )∗L(n+1).
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Shifting the indices yields

(
(T +N)2 − 2s0(T +N) + |s|2I

) +∞∑
n=0

Nn S
−(n+1)
L (s, T )

=
+∞∑
n=0

Nn(T 2 − 2s0T + |s|2I)−n(sI − T )∗L(n+1)

+
+∞∑
n=1

Nn (2T − 2s0I) (T 2 − 2s0T + |s|2I)−n(sI − T )∗Ln

+
+∞∑
n=2

Nn(T 2 − 2s0T + |s|2I)−(n−1)(sI − T )∗L(n−1)

= sI − T +N(T 2 − s0T + |s|2I)−1(sI − T )∗L2

+N(T 2 − 2s0T + |s|2I)−1(2T − 2s0I)(sI − T )+

+
+∞∑
n=2

Nn(T 2 − 2s0T + |s|2I)−n
[
(sI − T )∗L(n+1)

+ (2T − 2s0I) (sI − T )∗Ln

+ (T 2 − 2s0T + |s|2I)(sI − T )∗L(n−1)
]
.

The last series equals 0 because Remark 4.4.4 and the identity

(T 2 − 2s0T + |s|2I) = (sI − T ) ∗L (sI − T )

imply

(sI − T )∗L(n+1) + (2T − 2s0I) (sI − T )∗Ln

+ (T 2 − 2s0T + |s|2I)(sI − T )∗L(n−1)

= (sI − T )∗L(n+1) + (2T − 2s0I) ∗L (sI − T )∗Ln + (sI − T ) ∗L (sI − T )∗Ln

= (sI − T + 2T − 2s0I + sI − T ) ∗L (sI − T )∗L(n−1) = 0.

Hence, we finally obtain

(
(T +N)2 − 2s0(T +N) + |s|2I

) +∞∑
n=0

NnS
−(n+1)
L (s, T )

= sI − T +N(T 2 − 2s0T + |s|2I)−1(s2I − 2Ts+ T 2)

+N(T 2 − 2s0T + |s|2I)−1(2Ts− 2s0sI − 2T 2 + 2s0T )

= sI − T +N(T 2 − 2s0T + |s|2I)−1(−T 2 + 2s0T − |s|2I) = sI − T −N.
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Since Qs(T +N) = (T +N)2−2s0(T +N)+ |s|2I is invertible by Theorem 4.4.12,
this is equivalent to

+∞∑
n=0

Nn S
−(n+1)
L (s, T ) = Qs(T +N)−1(sI − T −N) = S−1

L (s, T +N).

The identity for the right S-resolvent can be shown with analogous compu-
tations. �

Theorem 4.4.14 (The Taylor formulas). Let T,N ∈ B(X) with σS(N) ⊂ Bε(0)
such that T and N commute and set

Cε(σS(T )) := {s ∈ H : dist(s, σS(T )) ≤ ε}.

If f ∈ SHL(Cε(σS(T ))), then f ∈ SHL(σS(T +N)) and

f(T +N) =
+∞∑
n=0

Nn 1

n!
(∂nSf) (T ).

Similarly, if f ∈ SHR(Cε(σS(T ))), then f ∈ SHR(σS(T +N)) and

f(T +N) =
+∞∑
n=0

1

n!
(∂nSf) (T )Nn.

Proof. We prove just the first Taylor formula; the second one is obtained with
similar computations. By Theorem 4.4.12, we have σS(T +N) ⊂ Cε(σS(T )), and
so the function f belongs to SHL(σS(T + N)). If U is a bounded slice Cauchy
domain with Cε(σS(T )) ⊂ U and U ⊂ D(f), then we find due to Theorem 4.4.13
that

f(T +N) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T +N) dsj f(s)

=
1

2π

∫
∂(U∩Cj)

+∞∑
n=0

NnS
−(n+1)
L (s, T ) dsj f(s)

=
+∞∑
n=0

Nn 1

2π

∫
∂(U∩Cj)

S
−(n+1)
L (s, T ) dsj f(s).

By Proposition 4.4.8, we have

S
−(n+1)
L (s, T ) = (−1)n

1

n!
∂nSS

−1
L (s, T ),

and so

f(T +N) =
+∞∑
n=0

Nn (−1)n

n!

1

2π

∫
∂(U∩Cj)

∂nSS
−1
L (s, T ) dsj f(s).
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After integrating the nth term in the sum n times by parts, we finally obtain

f(T +N) =
+∞∑
n=0

Nn 1

n!

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj (∂nSf)(s)

=
+∞∑
n=0

Nn 1

n!
(∂nSf)(T ). �

4.5 Bounded Operators with Commuting Components

If the components of T commute, then the S-spectrum can be characterized by
a different operator, which is often easier to handle in the applications. The S-
resolvent operators can in this case be expressed in a form that corresponds to
replacing the scalar variable q in the slice hyperholomorphic Cauchy kernels by
the operator T when they are written in form II; see Chapter 2.

We saw in Remark 2.3.2 that every two-sided quaternionic vector space X is
essentially of the form X = XR ⊗H, where XR is the real vector space consisting
of the vectors that commute with all quaternions. If x =

∑3
`=0 x`e` with x` ∈ XR,

where we set e0 = 1 for neatness, then we can write any operator T ∈ B(X) as

T =
∑3
`=0 T`e` with components T` ∈ B(XR), where this operator acts as

Tx =

(
3∑
`=0

T`e`

)(
3∑

κ=0

xκeκ

)
=

3∑
`,κ=0

T`(xκ)e`eκ.

We obtain B(X) = B(XR)⊗H, and hence we call any operator in B(XR) a scalar
operator on X.

Definition 4.5.1. We define BC(X) to be the space of all operators T = T0 +∑3
`=1 T`e` ∈ B(X) with components T` ∈ B(XR), ` = 0, . . . , 3, that mutually

commute.

Definition 4.5.2. For T = T0 +
∑3
`=1 T`e` ∈ BC(X), we set

T := T0 −
3∑
`=1

T`e`.

The following statement shows that for an operator T ∈ BC(X) the analogues
of the scalar identities s + s = 2Re(s) and ss = ss = |s|2 hold. This motivates
the idea that we can write the S-resolvent for such operators also by formally
replacing q by T in the slice hyperholomorphic Cauchy kernels when they are
written in form II.

Lemma 4.5.3. Let T = T0 +
∑3
`=1 T`e` ∈ BC(X). Then 2T0 = T + T and TT =

TT =
∑3
`=0 T

2
` .
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Proof. We obviously have

T + T = T0 +
3∑
`=1

T`e` + T0 −
3∑
`=1

T`e` = 2T0.

Since the components T` mutually commute and e`eκ = −eκe` for 1 ≤ `, κ ≤ 3
with ` 6= κ, we also have

TT =

(
T0 +

3∑
`=1

T`e`

)(
T0 −

3∑
`=1

T`e`

)

= T 2
0 −

3∑
`=1

T0T`e` +

3∑
`=1

T`T0e` −
3∑

`,κ=1

T`Te`eκ

= T 2
0 −

3∑
`=1

T 2
` e

2
` +

∑
`=1,2,3
`<κ

(T`Tκ − TκT`)e`eκ =
3∑
`=0

T 2
` . �

Lemma 4.5.4. If T = T0 +
∑3
`=1 T`e` ∈ BC(X), then the following statements are

equivalent:

(i) The operator T is invertible.

(ii) The operator T is invertible.

(iii) The operator TT is invertible.

In this case we have

T
−1

= T−1 and T−1 = (TT )−1T . (4.18)

Proof. If TT is invertible, then (TT )−1 =
(∑3

`=0 T
2
`

)−1
commutes with T and T ,

and hence (
TT
)−1

TT =
(
TT
)−1

TT = I
and

T
(
TT
)−1

T =
(
TT
)−1

TT = I.
Thus (iii) implies (i), and the second identity in (4.18) holds.

If, on the other hand, T is invertible and T−1 = B0 +
∑3
κ=1Bκeκ ∈ B(X),

then

I = T−1T =

(
B0 +

3∑
κ=1

Bκeκ

)(
T0 +

3∑
`=1

T`e`

)

= B0T0 −
3∑
`=1

B`T` + (B2T3 −B3T2)e1

+ (B3T1 −B1T3)e2 + (B1T2 −B2T1)e3.
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We conclude that

I = B0T0 −
3∑
`=1

B`T`

and
B`Tκ −BκT` = 0

for 1 ≤ ` < κ ≤ 3. Therefore,

B T =

(
B0 −

3∑
`=1

B`e`

)(
T0 −

3∑
`=1

T`e`

)

= B0T0 −
3∑
`=1

B`T` + (B2T3 −B3T2)e1

+ (B3T1 −B1T3)e2 + (B1T2 −B2T1)e3 = I,

and similarly we see that also T B = I. Hence (i) implies (ii) and T
−1

= T−1.

Since T = T , we can exchange the roles of T and T and find that (ii) implies (i).

Finally, we see that in this case, (TT )−1 = T
−1
T−1 ∈ B(X), and we find that (i)

and (ii) also imply (iii). �

Definition 4.5.5. Let T = T0 +
∑3
`=1 T`e` ∈ BC(X). For s ∈ H, we define the

operator
Qc,s(T ) := s2I − 2sT0 + TT .

Theorem 4.5.6. Let T = T0 +
∑3
`=1 T`e` ∈ BC(X). Then Qc,s(T ) is invertible if

and only if Qs(T )−1 is invertible, and so

ρS(T ) =
{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
. (4.19)

Moreover, for s ∈ ρS(T ), we have

S−1
L (s, T ) =(sI − T )Qc,s(T )−1 (4.20)

and

S−1
R (s, T ) =Qc,s(T )−1(sI − T ). (4.21)

Proof. We observe that for s ∈ H, we haveQs(T ) = Qs(T ) andQc,s(T ) = Qc,s(T ),
and so

Qc,s(T )Qc,s(T ) = (s2I − 2sT0 + TT )(s2I − 2sT0 + TT )

= |s|4I − 2s|s|2T0 + s2TT − 2|s|2T0s+ 4|s|2T 2
0 − 2sT0TT

+ s2TT − 2sT0TT + (TT )2

= |s|4I − 2s0|s|2T − 2s0|s|2T + 2Re(s2)TT

+ 4|s|2T 2
0 − 2s0T

2T − 2s0TT
2

+ T 2T
2
,
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where we used in the last identity that 2s0 = s + s, that |s|2 = ss, and that
2T0 = T + T . Since, for s = s0 + jss1, we have

2Re(s2)TT = 2s2
0TT − 2s2

1TT

and
4|s|2T 2

0 = |s|2(T + T )2 = |s|2T 2 + 2s2
0TT + s2

1TT + |s|2T 2
,

we further find that

Qc,s(T )Qc,s(T ) = |s|2(|s|2I − 2s0T + T 2)

− 2s0T (|s|2I − 2s0T + T 2)

+ T
2
(|s|2I − 2s0T + T 2) = Qs(T )Qs(T ).

From Lemma 4.5.4, we conclude that the invertibility of Qc,s(T ) is equivalent to

the invertibility of Qc,s(T )Qc,s(T ) = Qs(T )Qs(T ), which is in turn equivalent to
the invertibility of Qs(T ), and hence (4.19) holds.

Because of Lemma 4.5.3, we furthermore have

(sI − T )Qc,s(T ) = (sI − T )
(
s2I − 2sT0 + TT

)
= |s|2sI − Ts2 − 2|s|2T0 + 2TT0s+ sTT − T 2T

= |s|2sI − Ts2 − |s|2T − |s|2T + T 2s+ TTs+ sTT − T 2T

= |s|2
(
sI − T

)
− 2s0T

(
sI − T

)
+ T 2

(
sI − T

)
=
(
T 2 − 2s0T + |s|2I

) (
sI − T

)
= Qs(T )(sI − T ),

(4.22)

and so
S−1
L (s, T ) = Qs(T )−1(sI − T ) = (sI − T )Qc,s(T )−1.

Similar computations show that also the identity (4.21) holds. �

Definition 4.5.7 (SC-resolvent operators). Let T ∈ BC(X). For s ∈ ρS(T ), we
define the left and right SC-resolvent operator of T as

S−1
c,L(s, T ) = (sI − T )Qc,s(T )−1

and

S−1
c,R(s, T ) = Qc,s(T )−1(sI − T ).

Corollary 4.5.8. Let T ∈ BC(X). For f ∈ SHL(σS(T )), we have

f(T ) =
1

2π

∫
∂(U∩Cj)

S−1
c,L(s, T ) dsj f(s),



108 Chapter 4. Properties of the S-Functional Calculus for Bounded Operators

and for f ∈ SHR(σS(T )) we have

f(T ) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
c,R(s, T )

for any imaginary unit j ∈ S and any bounded slice Cauchy domain U with
σS(T ) ⊂ U and U ⊂ D(f).

Remark 4.5.9. The S-functional calculus for operators with commuting compo-
nents defined by the above integrals that involve the SC-resolvents is often also
referred to as the SC-functional calculus. Similarly, the S-spectrum is sometimes
called the F -spectrum when it is characterized by the operator Qc,s(T )−1, in or-
der to stress that one is using the simpler characterization that holds only for
operators with commuting components.

4.6 Perturbations of the SCSCSC-Resolvent Operators

In order to study bounded perturbations of the F -resolvent operators (see Chapter
7), we study in this section a preliminary result about the perturbations of the
S-resolvent operators S−1

c,L(s, T ) and S−1
c,R(s, T ). This will be used in the sequel. We

recall that the left spectrum σL(T ) and the left resolvent sets ρL(T ) were defined
in Definition 3.3.1. The following corollary of Lemma 3.1.12 will be used in the
sequel.

Corollary 4.6.1. Let T ∈ BC(X). If s ∈ ρS(T ) ∩ ρL(T ), then(
S−1
c,L(s, T )

)−1

= sI −
(
sI − T

)
T
(
sI − T

)−1
,(

S−1
c,R(s, T )

)−1

= sI −
(
sI − T

)−1
T
(
sI − T

)
.

Proof. By Theorem 4.5.6, we have

S−1
c,L(s, T ) =

(
sI − T

)
Qc,s(T )−1 =

(
sI − T

) (
s2I − 2sT0 + TT

)−1
.

Since Qc,s(T ) = s
(
sI − T

)
− (sI − T )T , we thus obtain(

S−1
c,L(s, T )

)−1

=
(
s2I − 2sT0 + TT

) (
sI − T

)−1

= sI −
(
sI − T

)
T
(
sI − T

)−1
.

Similar computations show the identity for the right S-resolvent. �

Definition 4.6.2. Let T ∈ BC(X). For s ∈ ρL(T ), we define

Sc,L(s, T ) = sI −
(
sI − T

)
T
(
sI − T

)−1
,

Sc,R(s, T ) = sI −
(
sI − T

)−1
T
(
sI − T

)−1
.
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Lemma 4.6.3. Let T , Z ∈ BC(X). If s 6∈ σL
(
T
)
∪ σL

(
Z
)
, then

‖Sc,L(s, T )− Sc,L(s, Z)‖ ≤ KT,Z(s)‖T − Z‖, (4.23)

‖Sc,R(s, T )− Sc,R(s, Z)‖ ≤ KT,Z(s)‖T − Z‖, (4.24)

with

KT,Z(s) :=
∥∥(sI − Z)−1

∥∥ (‖Z‖+
∥∥sI − T∥∥ [1 + ‖T‖

∥∥(sI − T )−1
∥∥]) . (4.25)

Proof. We consider the chain of equalities

Sc,L(s, T )− Sc,L(s, Z)

= (sI − Z)Z(sI − Z)−1 − (sI − T )T (sI − T )−1

= (sI − Z)Z(sI − Z)−1 − (sI − T )Z(sI − Z)−1

+ (sI − T )Z(sI − Z)−1 − (sI − T )T (sI − T )−1

= (T − Z)Z(sI − Z)−1 + (sI − T )
[
Z(sI − Z)−1 − T (sI − T )−1

]
= (T − Z)Z(sI − Z)−1 + (sI − T )

[
(Z − T )(sI − Z)−1

+ T
(
(sI − Z)−1 − (sI − T )−1

) ]
= (T − Z)Z(sI − Z)−1 + (sI − T )

[
(Z − T )(sI − Z)−1

+ T
(
sI − Z

)−1 (
Z − T

) (
sI − T

)−1
]
.

Taking the norm and observing that ‖T − Z‖ =
∥∥T − Z∥∥, we have

‖Sc,L(s, T )− Sc,L(s, Z)‖ ≤ ‖T − Z‖
(
‖Z‖ ‖(sI − Z)−1‖

+ ‖sI − T‖
[
‖(sI − Z)−1‖+ ‖T‖ ‖(sI − Z)−1‖‖(sI − T )−1‖

])
,

and so (4.23) holds. The second estimate is shown with similar arguments. �

Lemma 4.6.4. Let T , Z ∈ BC(X), let s ∈ ρS(T ) with s 6∈ σL
(
T
)
∪ σL

(
Z
)
, and

suppose that

‖T − Z‖ < 1

KZ,T (s)
‖S−1

c,L(s, T )‖−1,

with KZ,T (s) as in Lemma 4.6.3. Then s ∈ ρS(Z) and

S−1
c,L(s, Z)− S−1

c,L(s, T )

= S−1
c,L(s, T )

+∞∑
m=1

[
(Sc,L(s, T )− SL(s, Z))S−1

c,L(s, T )
]m

.
(4.26)



110 Chapter 4. Properties of the S-Functional Calculus for Bounded Operators

Similarly, if

‖T − Z‖ < 1

KZ,T (s)

∥∥S−1
R (s, T )

∥∥−1
,

then s ∈ ρS(Z) and

S−1
c,R(s, Z)− S−1

c,R(s, T )

= S−1
c,R(s, T )

+∞∑
m=1

[
(Sc,R(s, T )− Sc,R(s, Z))S−1

c,R(s, T )
]m

.
(4.27)

Proof. If we apply Lemma 3.1.12 with A = Sc,L(s, T ) and B = Sc,L(s, Z), then
we obtain

S−1
c,L(s, Z) = S−1

c,L(s, T )
+∞∑
m=0

[
(Sc,L(s, T )− Sc,L(s, Z))S−1

c,L(s, T )
]m

. (4.28)

This series converges, since∥∥∥(Sc,L(s, T )− Sc,L(s, Z))S−1
c,L(s, T )

∥∥∥ ≤ KZ,T (s)
∥∥∥T − Z‖‖S−1

c,L(s, T )
∥∥∥ < 1,

and we obtain s ∈ ρS(Z) as

Qc,s(T )−1 = (sI − T )−1S1
L(s, T ).

We can show the statement for the right S-resolvent with similar arguments.
�

Definition 4.6.5. Let O ⊂ H. We denote by Bε(O) for ε > 0 the ε-neighborhood
of O defined as

Bε(O) := {q ∈ H : inf
s∈O
|s− q| < ε}.

Theorem 4.6.6. Let T,Z ∈ BC(X), let s ∈ ρS(T ), and assume also that s 6∈
σL
(
T
)
∪ σL

(
Z
)
. For every ε > 0, there exists δ > 0 such that if ‖T −Z‖ < δ, we

have

σS(Z) ⊆ Bε (σS(T )) ,

and for s 6∈ Bε
(
σS(T ) ∪ σL

(
T
))

,

‖S−1
c,L(s, Z)− S−1

c,L(s, T )‖ < ε,

‖S−1
c,R(s, Z)− S−1

c,R(s, T )‖ < ε.

Proof. Let T,Z ∈ BC(X) and let ε > 0. Thanks to Lemma 3.1.12 there exists
η > 0 such that if

‖T − Z‖ < η,
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then σL(Z) ⊂ Bε
(
σL
(
T
))

, where Bε
(
σL
(
T
))

is the ε-neighborhood of σL(T ).
We can hence always choose η such that

σL(Z) ⊂ Bε(σS(T ) ∪ σL(T )).

Consider the function KT,Z(s) defined in Lemma 4.6.3 and observe that the con-
stant Kε defined by

Kε = sup
s6∈B(σF (T )∪σL(T ),ε)

KT,Z(s)

is finite, since s 6∈ Bε(σS(T )∪σL(T )), since due to the above observation σL(Z) ⊂
Bε(σS(T ) ∪ σL(T )) and since

lim
s→∞

‖(sI − Z)−1‖ = lim
s→∞

‖(sI − T )−1‖ = 0.

Observe that since s ∈ ρS(T ), the map s 7→ ‖S−1
c,L(s, T )‖ is continuous and that

lim
s→∞

‖S−1
c,L(s, T )‖ = 0.

For s in the complement of Bε(σS(T ) ∪ σL(T )) we have thus that there exists a
positive constant Nε such that

‖S−1
c,L(s, T )‖ ≤ Nε.

If δ1 > 0 is such that ‖Z − T‖ < 1
KεNε

:= δ1, then we can conclude from
Lemma 4.6.4 that s ∈ ρS(Z) and that

‖S−1
c,L(s, Z)− S−1

c,L(s, T )‖

≤
‖S−1

c,L(s, T )‖2 ‖Sc,L(s, T )− Sc,L(s, Z)‖
1− ‖S−1

c,L(s, T )‖ ‖Sc,L(s, T )− Sc,L(s, Z)‖

≤ N2
εKε‖Z − T‖

1−NεKε‖Z − T‖
< ε

if

‖Z − T‖ < δ2 :=
ε

Kε(N2
ε + εNε)

.

To get the statement, it suffices to set δ = min{η, δ1, δ2}.
For the right S-resolvent, we can argue similarly. �

Theorem 4.6.7. Let T,Z ∈ BC(X), let f ∈ SHL(σS(T )), and let ε > 0. Then there
exists δ > 0 such that for ‖Z − T‖ < δ, we have f ∈ SHL(σS(Z)) and

‖f(Z)− f(T )‖ < ε.



112 Chapter 4. Properties of the S-Functional Calculus for Bounded Operators

Proof. We recall that the operator f(T ) is defined by

f(T ) =
1

2π

∫
∂(U∩Cj)

S−1
c,L(s, T ) dsj f(s),

where U ⊂ H is any bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f)
and where j ∈ S. Suppose furthermore that U contains an ε-neighborhood of
σS(T ) ∪ σL(T ).

By Lemma 4.6.6 there exists δ1 > 0 such that σS(Z) ⊂ U if we have ‖Z−T‖ <
δ1. Consequently, f ∈ SHL(σS(Z)) for ‖Z − T‖ < δ1. Due to Lemma 4.6.6,
S−1
c,L(s, T ) is uniformly close to S−1

c,L(s, Z) with respect to s ∈ ∂(U ∩ Cj) for j ∈ S
if ‖Z − T‖ is small enough, so for some positive δ ≤ δ1 we get

‖f(T )− f(Z)‖ =
1

2π
‖
∫
∂(U∩Cj)

[
S−1
c,L(s, T )− S−1

c,L(s, Z)
]
dsj f(s)‖ < ε. �

4.7 Some Examples

We end this chapter with some examples in which we compute the S-spectrum
of different operators. In particular, we illustrate how the characterization of the
S-spectrum of operators with commuting components in Theorem 4.5.6 simplifies
its computation.

Example 4.7.1. Let us consider a, b, α, β ∈ R and the two matrices

T1 =

[
a b
0 a

]
, T2 =

[
α β
0 α

]
.

It is easy to verify that T1T2 = T2T1. We can thus consider the operator

T = T1e1 + T2e2 =

[
ae1 + αe2 be1 + βe2

0 ae1 + αe2

]
,

with commuting components on H2. We have

T = −
[
ae1 + αe2 be1 + βe2

0 ae1 + αe2

]
,

so that T + T = 0 and

TT =

[
a2 + α2 2ab+ 2αβ

0 a2 + α2

]
. (4.29)

The S-spectrum is associated with the equation Qc,s(T )x = 0, that is,(
s2

[
1 0
0 1

]
+

[
a2 + α2 2ab+ 2αβ

0 a2 + α2

])
x = 0 for x 6= 0. (4.30)
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Observe that the matrix TT in (4.29) has only real entries. If s = u+ jv, we can
consider the matrix TT therefore a Cj-complex matrix, and we find that s satisfies
(4.30) if and only if −s2 is an eigenvalue of TT . Standard computations show that
the only eigenvalue of TT is a2 + α2 and we conclude that

σS(T ) =
{
j
√
a2 + α2 : j ∈ S

}
.

Example 4.7.2. We illustrate in this example how the computation of the S-
spectrum of an operator with commuting components is simplified by the charac-
terization given in Theorem 4.5.6. We consider the two commuting matrices

T1 =

[
0 1
0 1

]
, T2 =

[
1 1
0 2

]
,

and the associated quaternionic operator

T = e1T1 + e2T2 =

[
e2 e1 + e2

0 e1 + 2e2

]
.

Since we have

T =

[
−e2 −e1 − e2

0 −e1 − 2e2

]
,

it is immediate that T + T = 0 and that

TT =

[
1 4
0 5

]
.

In order to compute the S-spectrum using Theorem 4.5.6, we have to solve the
equation Qc,s(T )−1x = 0. For x = (y, z)T , this turns into[

s2 + 1 4
0 s2 + 5

] [
y
z

]
= 0, for

[
y
z

]
6= 0.

This gives the two equations

(s2 + 1)y + 4z = 0,

(s2 + 5)z = 0.
(4.31)

If s = u + jv, then we can choose i ∈ S with i ⊥ j and write y = y1 + y2i and
z1 + z2i with y`, z` ∈ Cj . Since 1 and i are linearly independent over Cj and the
system (4.31) contains only coefficients in Cj , it is equivalent to

(s2 + 1)y` + 4z` = 0,
(s2 + 5)z` = 0,

` = 1, 2.

We are hence left with a Cj-complex linear system of equations that can be solved
easily. Its solutions are j and

√
5j, and thus

σS(T ) =
{
j,
√

5j : j ∈ S
}
.
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The same result can be obtained by solving the equation

(T 2 − 2s0T + |s|2I)x = 0,

that is, [
−1− 2s0e2 + |s|2 −4− 2s0(e1 + e2)

0 −5− 2s0(e1 + 2e2) + |s|2
] [

y
z

]
= 0.

This corresponds to the two equations

(−1− 2s0e2 + |s|2)y − (4 + 2s0(e1 + e2))z = 0,

(−5− 2s0(e1 + 2e2) + |s|2)z = 0.

Observe, however, that the coefficients of this system do not belong to one single
complex plane, so that it cannot be reduced to a complex linear system of two
equations. If we suppose that Re(s) = 0, we find that either s = j, or s =

√
5j

with j ∈ S. If s0 6= 0, then very long calculations show that there are no solutions;
thus the S-spectrum coincides in both cases.

Example 4.7.3. We compute the equations for determining the S-spectrum of a
bounded operator T with commuting components on a Banach space X. We use
both the commutative and the noncommutative approaches and we see that the
computations are again simpler in the first case.

Let T = e1T1+e2T2 ∈ B(X), where T1, T2 are commuting bounded operators
on XR. We determine the S-eigenvalue equation. We have

T = −e1T1 − e2T2,

so
T + T = 0,

and since T1T2 = T2T1, we also have

TT = T 2
1 + T 2

2 .

The point S-spectrum σS(T ) consists of quaternions s such that Qc,s(T ) has a
bounded inverse. Hence we need to solve the equation

(s2I − s(T + T ) + TT )x = y

for every y ∈ X, which simplifies in our case to

(s2I + T 2
1 + T 2

2 )x = y. (4.32)

If s = u + jv, the operator TT = T 2
1 + T 2

2 can be considered an operator on the
Cj-complex Banach space XR ⊗ Cj := XR + jXR, and (4.32) is then exactly an
eigenvalue equation of this operator. We can choose i ∈ S with i ⊥ j and write
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x = x1 + x2i and y = y1 + y2i with x`, y` ∈ XR ⊗ Cj . Since 1 and i are linearly
independent over Cj , we find that (4.32) is equivalent to

(s2I + T 2
1 + T 2

2 )x` = y`, ` = 1, 2. (4.33)

Hence s belongs to σS(T ) if and only if −s2 belongs to the classical spectrum
σ(TT ) of TT . Because of the axial symmetry of the S-spectrum, σS(T ) is then
given by

σS(T ) =
{
u+ iv : u+ jv ∈ σ

(
TT
)
, i ∈ S

}
.

In case one considers the noncommutative definition of the S-spectrum, we
have T 2 = −T 2

1 − T 2
2 , so that the equation

(T 2 − 2s0T + |s|2I)x = y

becomes (
−T 2

1 − T 2
2 − 2s0(e1T1 + e2T2) + |s|2I

)
x = y.

Observe that this is again a system that is more complicated than the eigenvalue
equation of a complex linear operator. If we write x = x0 +

∑3
`=1 x`e` and y =

x0 +
∑3
`=1 y`e` and set

A := |s|2I − T 2
1 − T 2

2 ,

we can rewrite the above equation in terms of its real components and obtain

Ax0 + 2Re(s)T1x1 + Re(s)T2x2

+ e1(−2Re(s)T1x0 +Ax1 − 2Re(s)T2x3)

+ e2(−2Re(s)T2x0 +Ax2 + 2Re(s)T1x3)

+ e1e2(Ax3 − 2Re(s)T1x2 + 2Re(s)T2x1) = y0 +
3∑
`=1

y`e`.

Thus the S-spectrum of T is given by the system of equations
(|s|2I − T 2

1 − T 2
2 )x0 + 2Re(s)T1x1 + Re(s)T2x2 = y0,

−2Re(s)T1x0 + (|s|2I − T 2
1 − T 2

2 )x1 − 2Re(s)T2x3 = y1,

−2Re(s)T2x0 + (|s|2I − T 2
1 − T 2

2 )x2 + 2Re(s)T1x3 = y2,

(|s|2I − T 2
1 − T 2

2 )x3 − 2Re(s)T1x2 + 2Re(s)T2x1 = y3.

(4.34)

This system is much more complicated than the eigenvalue equation in (4.32), but
it gives the same solution.

Example 4.7.4 (Fractional powers). The slice hyperholomorphic logarithm on H
is defined as

log s := ln |s|+ j arg(s) for s = u+ jv ∈ H \ (−∞, 0],
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where arg(s) = arccos(Re(s)/|s|) is the unique angle ϕ ∈ [0, π] such that s = |s|ejϕ.
Observe that for s = Re(s) ∈ [0,+∞), we have

arccos(Re(s)/|s|) = arccos(1) = 0,

and so log s = ln s. Therefore, log s is well defined on the positive real axis and
does not depend on the choice of the imaginary unit j. One has

elog s = s for s ∈ H

and

log es = s for s ∈ H with |s| < π.

The quaternionic logarithm is both left and right slice hyperholomorphic (and
actually even intrinsic) on H \ (−∞, 0], and for every j ∈ S, its restriction to the
complex plane Cj coincides with the principal branch of the complex logarithm
on Cj . We define the fractional powers of exponent α ∈ R of a quaternion s as

sα := eα log s = eα(ln |s|+j arccos(u/|s|)), s = u+ jv ∈ H \ (−∞, 0].

This function is obviously also left and right slice hyperholomorphic on the set
H \ (−∞, 0]. So we can define the fractional powers of bounded operators and
in particular of matrices by the S-functional calculus. We can define fractional
powers of a bounded vector operator T = e1T1+e2T2+e3T3 using the S-functional
calculus,

Tα =
1

2π

∫
∂(U∩Cj)

sα dsj S
−1
R (s, T ) (4.35)

if σS(T ) ⊂ U is contained in the domain of sα. Since s 7→ sα is an intrinsic slice
hyperholomorphic function, we also have

Tα =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj s

α.

These formulas were introduced in [50], and the theory of fractional powers of
quaternionic operators was further developed in the papers [51, 52]. These opera-
tors are a natural tool to define fractional Fourier laws, and they have applications
in fractional diffusion and fractional evolution problems.

4.8 Comments and Remarks

Comments on the references. The complete list of the papers in which the S-
functional calculus for bounded operators has been developed is [10, 55, 66, 68,
79, 80, 127]. In the case we consider intrinsic functions, the S-functional calculus
can be defined for a one-sided Banach space, as has been shown in [125]. In the
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paper [125], the author has also developed the theory of spectral operators in
Banach spaces; see also [128].

The S-functional calculus can be defined also for n-tuples of noncommuting
operators using slice hyperholomorphic functions with values in a Clifford algebra
(also called slice monogenic functions); see [75, 97]. The commutative version of
the S-functional calculus, that is, the S-functional calculus for operators with
commuting components, is studied in [77].

The S-functional calculus was the starting point for the development of var-
ious quaternionic functional calculi. We mention the Philips functional calculus
for generators of strongly continuous groups, which is based on the quaternionic
version of the Laplace–Stieltjes transform; see [11]. Groups and semigroups of
quaternionic linear operators have been considered in [19,76,153].

In the paper [30], the authors introduce the H∞-functional calculus based on
the S-spectrum. This is the quaternionic analogue of the calculus introduced by
McIntosh [165]. In [30] is also considered the H∞-functional calculus for n-tuples
of noncommuting operators.

A more general version of the H∞-functional calculus, the study of the frac-
tional powers of quaternionic linear operators, is treated in [51, 52]. Here the au-
thors also show how the fractional powers of quaternionic linear operators define
new fractional diffusion and evolution processes. For a more direct approach to
fractional powers of quaternionic operators that include the Kato formula, see the
paper [50].

4.8.1 The SSS-Functional Calculus for n-Tuples of Operators

The notion of S-spectrum and also the definition of the S-functional calculus can
be extended to n-tuples of not necessarily commuting operators. For this setting
we need slice hyperholomorphic functions with values in a Clifford algebra (slice
monogenic functions). Slice monogenicity is similar to the quaternionic setting;
see the book [89]. We explain here the basic concepts. Let Rn be the real Clifford
algebra over n imaginary units e1, . . . , en satisfying the relations e`em+ eme` = 0,
` 6= m, e2

` = −1. An element in the Clifford algebra will be denoted by
∑
A eAxA,

where A = {`1 · · · `r} ∈ P{1, 2, . . . , n}, `1 < · · · < `r is a multi-index, and eA =
e`1e`2 · · · e`r , e∅ = 1. An element (x0, x1, . . . , xn) ∈ Rn+1 will be identified with the
element x = x0 + x = x0 +

∑n
`=1 x`e` ∈ Rn, called a paravector, and the real part

x0 of x will also be denoted by Re(x). The norm of x ∈ Rn+1 is defined as |x|2 =
x2

0 + x2
1 + · · ·+ x2

n. The conjugate of x is defined by x̄ = x0 − x = x0 −
∑n
`=1 x`e`.

We denote by S the sphere

S = {x = e1x1 + · · ·+ enxn : x2
1 + · · ·+ x2

n = 1};

for j ∈ S we obviously have j2 = −1. Given an element x = x0 + x ∈ Rn+1, let us
set jx = x/|x| if x 6= 0, and given an element x ∈ Rn+1, the set

[x] := {y ∈ Rn+1 : y = x0 + j|x|, j ∈ S}
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is an (n−1)-dimensional sphere in Rn+1. The vector space R+jR passing through
1 and j ∈ S will be denoted by Cj , and an element belonging to Cj will be indicated
by u+ jv, for u, v ∈ R. With an abuse of notation we will write x ∈ Rn+1. Thus,
if U ⊆ Rn+1 is an open set, a function f : U ⊆ Rn+1 → Rn can be interpreted
as a function of the paravector x. With the above notations, the definition of the
slice hyperholomorphic functions f : U ⊆ Rn+1 → Rn is analogous to the notion
of slice hyperholomorphic functions for quaternionic-valued functions. We adapt
the definition of slice hyperholomorphicity to the Clifford-algebra-valued case; in
this case functions are often called slice monogenic. The definition of an axially
symmetric set is as in the quaternionic setting, i.e., we say that U ⊆ Rn+1 is
axially symmetric if [x] ⊂ U for all x ∈ U .

Definition 4.8.1 (Slice hyperholomorphic functions with values in Rn (or slice
monogenic functions)). Let U ⊆ Rn+1 be an axially symmetric open set and
let U = {(u, v) ∈ R2 : u + Sv ⊂ U}. A function f : U → Rn is called a left slice
function if it is of the form

f(q) = f0(u, v) + jf1(u, v) for q = u+ jv ∈ U

with two functions f0, f1 : U → Rn that satisfy the compatibility conditions

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (4.36)

If in addition f0 and f1 satisfy the Cauchy–Riemann equations

∂

∂u
f0(u, v)− ∂

∂v
f1(u, v) = 0, (4.37)

∂

∂v
f0(u, v) +

∂

∂u
f1(u, v) = 0, (4.38)

then f is called left slice hyperholomorphic (or left slice monogenic). A function
f : U → Rn is called a right slice function if it is of the form

f(q) = f0(u, v) + f1(u, v)j for q = u+ jv ∈ U

with two functions f0, f1 : U → Rn that satisfy (4.36). If in addition f0 and f1

satisfy the Cauchy–Riemann equation, then f is called right slice hyperholomorphic
(or right slice monogenic). If f is a left (or right) slice function such that f0 and
f1 are real-valued, then f is called intrinsic. We denote the sets of left and right
slice hyperholomorphic functions on U by SML(U) and SMR(U), respectively.

Also for slice monogenic functions we have a Cauchy formula that is analogous
to the quaternionic case. Let x, s ∈ Rn+1 with x 6∈ [s] be paravectors. The Cauchy
kernels in form I and in form II are the same as in the quaternionic case when the
quaternions are replaced by the paravectors. For example, for the form I we have

S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s)

and
S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1.
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Theorem 4.8.2 (The Cauchy formulas for slice monogenic functions). Let U ⊂
Rn+1 be a bounded slice Cauchy domain, let j ∈ S, and set dsj = ds(−j). If f is
a (left) slice monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, x) dsj f(s), for every x ∈ U. (4.39)

If f is a right slice hyperholomorphic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, x), for every x ∈ U. (4.40)

These integrals depend neither on U nor on the imaginary unit j ∈ S.

To define the S-functional calculus for n-tuples of operators, we consider
a Banach space X over R with norm ‖ · ‖. It is possible to endow X with an
operation of multiplication by elements of Rn that gives a two-sided module over
Rn. A two-sided module V over Rn is called a Banach module over Rn if there
exists a constant C ≥ 1 such that ‖va‖ ≤ C‖v‖|a| and ‖av‖ ≤ C|a|‖v‖ for all
v ∈ V and a ∈ Rn. By Xn we denote X ⊗ Rn over Rn; Xn turns out to be a
two-sided Banach module.

An element inXn is of type
∑
A vA⊗eA (where A = `1 · · · `r, i`∈{1, 2, . . . , n},

`1 < · · · < `r is a multi-index). Multiplication of an element v ∈ Xn by a scalar a ∈
Rn is defined by va =

∑
A vA⊗ (eAa) and av =

∑
A vA⊗ (aeA). For simplicity, we

will write
∑
A vAeA instead of

∑
A vA⊗eA. Finally, we define ‖v‖2Xn =

∑
A ‖vA‖2X .

We denote by B(X) the space of bounded R-homomorphisms of the Banach
space X to itself endowed with the natural norm denoted by ‖ · ‖B(X). Given
TA ∈ B(X), we can introduce the operator T =

∑
A TAeA and its action on

v =
∑
vBeB ∈ Xn as T (v) =

∑
A,B TA(vB)eAeB . The operator T is a right-

module homomorphism that is a bounded linear map on Xn.
In the sequel, we will consider operators of the form (called paravector oper-

ators)

T = T0 +

n∑
`=1

e`T`,

where T` ∈ B(X) for ` = 0, 1, . . . , n. The subset of such operators in B(Xn) will
be denoted by B0,1(Xn). We define ‖T‖B0,1(Xn) =

∑
` ‖T`‖B(X). Note that, in the

sequel, we will omit the subscript B0,1(Xn) in the norm of an operator. Note also
that ‖TS‖ ≤ ‖T‖‖S‖. The Cauchy kernel operator series are the power series
expansions of the S-resolvent operators.

Theorem 4.8.3. Let T ∈ B0,1(Xn) and let s ∈ H. Then for ‖T‖ < |s|, we have∑
m≥0

Tms−1−m = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (4.41)

∑
m≥0

s−1−mTm = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (4.42)
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We observe that the sums of the above series are independent of the fact that
the components of the paravector operator T commute. Moreover, the operators
on the right-hand sides of (4.41) and (4.42) are defined on a subset of Rn+1 that is
larger than {s ∈ Rn+1 : ‖T‖ < |s|}. So we define the S-spectrum, the S-resolvent
set, and the S-resolvent operators for the paravector operator T ∈ B0,1(Vn).

Definition 4.8.4 (The S-spectrum and the S-resolvent set). Let T ∈ B0,1(Xn). We
define the S-spectrum σS(T ) of T as

σS(T ) = {s ∈ Rn+1 : T 2 − 2Re(s)T + |s|2I is not invertible}.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = Rn+1 \ σS(T ).

Definition 4.8.5 (The S-resolvent operators). Let T ∈ B0,1(Xn) and s ∈ ρS(T ).
We define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (4.43)

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (4.44)

Definition 4.8.6 (The S-functional calculus for n-tuples of operators). Let Xn be
a two-sided Banach module and T ∈ B0,1(Xn). Let U ⊂ Rn+1 be a bounded slice
Cauchy domain that contains σS(T ) and set dsj = −dsj. We define

f(T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), for f ∈ SML(σS(T )), (4.45)

and

f(T ) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), for f ∈ SMR(σS(T )), (4.46)

where SML(σS(T )) (resp. SMR(σS(T ))) are left (resp. right) slice hyperholomor-
phic Clifford-algebra-valued functions defined on a suitable open set that contains
the S-spectrum of the paravector operator T .

Most of the results that hold for the quaternionic S-functional calculus extend
to the S-functional calculus for n-tuples of operators.

4.8.2 The WWW -Functional Calculus for Quaternionic Operators

Using the notion of slice hyperholomorphic functions it is possible to define a
transform that maps slice hyperholomorphic functions into Fueter regular func-
tions of plane wave type. This transform is different from the Fueter mapping



4.8. Comments and Remarks 121

theorem in integral form. With such an integral transform we can define the W -
functional calculus. This calculus was introduced in [70] for monogenic functions.
Here we reformulate it for the quaternionic setting. Using the Cauchy formula for
slice hyperholomorphic functions it is possible to define an integral transform that
associates to a slice hyperholomorphic function a Fueter regular function. Inspired
by [192], we introduce an integral transform that associates to a slice hyperholo-
morphic function a Fueter regular function of plane wave type. The following result
is immediate; see [192], Section 1.1.

Proposition 4.8.7. Suppose that the differentiable functions (g1,−g2) satisfy the
Cauchy–Riemann system in an open set of the complex plane identified with the
set D of the pairs (u, p) ∈ R2:

∂ug1(u, p) = −∂pg2(u, p), ∂pg1(u, p) = ∂ug2(u, p). (4.47)

Let
UD = {x ∈ H : x = u+ ωp, (u, p) ∈ D, ω ∈ S}

and define the function G̃ : UD ⊆ H→ H by

G̃(x) := g1(u, p)− ω g2(u, p). (4.48)

Then G̃(x) is slice hyperholomorphic in UD.

When necessary, we will identify H with R2 × S by setting x 7→ (x0, p, ω),
and instead of G̃(x) we will write G̃(x0, p, ω) (keeping the symbol G̃ for the func-
tion). Starting from the slice hyperholomorphic function G̃(u, p, ω) in (4.48) we
can construct a Fueter regular function of plane wave type by the substitution

u = 〈x, ω〉, p = x0.

Suppose that the functions (g1,−g2) satisfy the Cauchy–Riemann system and let
us define the function

G(x0, 〈x, ω〉, ω) := g1(〈x, ω〉, x0) + ω g2(〈x, ω〉, x0), for ω ∈ S. (4.49)

We recall a simple result stated in [192]:

Proposition 4.8.8. The function G defined in (4.49) is left Fueter regular in the
variable x = x0 + x.

Definition 4.8.9. A function of the form (4.49) is called a Fueter plane wave func-
tion.

Definition 4.8.10 (The W -kernels). Let S−1
L (s, x), S−1

R (s, x) be the Cauchy kernels
of left and right slice hyperholomorphic functions, respectively, and let ω ∈ S. For
〈x, ω〉 − x0ω 6∈ [s] we define

WL
ω (s, x) := S−1

L (s, 〈x, ω〉 − x0ω)

= −[(〈x, ω〉 − x0ω)2 − 2s0(〈x, ω〉 − x0ω) + |s|2]−1(〈x, ω〉 − x0ω − s)
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and

WR
ω (s, x) := S−1

R (s, 〈x, ω〉 − x0ω)

= −(〈x, ω〉 − x0ω − s̄)[(〈x, ω〉 − x0ω)2− 2Re(s)(〈x, ω〉 − x0ω)+|s|2]−1,

where ω ∈ S is considered a parameter.

Observe thatWL
ω andWR

ω are obtained by the change of variable x→ 〈x, ω〉−
x0ω in the Cauchy kernels of slice hyperholomorphic functions and 〈x, ω〉−x0ω is
still a paravector.

The following theorem is a direct consequence of the Cauchy formula of slice
hyperholomorphic functions.

Theorem 4.8.11. Let ω ∈ S be a parameter and let U ⊂ H be a bounded slice
Cauchy domain, let j ∈ S and set dsj = ds(−j). We furthermore assume that
〈x, ω〉 − x0ω ∈ U . If f is a left slice hyperholomorphic function on a set that
contains U , the integral

1

2π

∫
∂(U∩Cj)

WL
ω (s, x)dsjf(s), for every q ∈ U, (4.50)

depends neither on U nor on the imaginary unit j ∈ S. If f is a right slice hyper-
holomorphic function on a set that contains U , the integral

1

2π

∫
∂(U∩Cj)

f(s)dsjW
R
ω (s, x), for every q ∈ U, (4.51)

depends neither on U nor on the imaginary unit j ∈ S.

Thanks to Theorem 4.8.11 we can define the W -transform, which maps slice
hyperholomorphic functions into Fueter regular functions.

Definition 4.8.12 (The W -transforms). Let ω ∈ S be a parameter and let U ⊂ H
be a bounded slice Cauchy domain, let j ∈ S and set dsj = ds(−j). Assume that
〈x, ω〉 − x0ω ∈ U . If f is a left slice hyperholomorphic function on a set that
contains U , then we define the left WL-transform as

f̆ω(x) =
1

2π

∫
∂(U∩Cj)

WL
ω (s, x)dsjf(s), for every q ∈ U. (4.52)

If f is a right slice hyperholomorphic function then we define the right WR-
transform as

f̆ω(x) =
1

2π

∫
∂(U∩Cj)

f(s)dsjW
R
ω (s, x), for every q ∈ U. (4.53)

We observe that the W -transform defines a transformation between slice
hyperholomorphic functions and Fueter regular functions that depends on a pa-
rameter on the unit sphere S. This transform can be extended to the more general
case of Clifford-algebra-valued functions.
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• For every ω ∈ S the function WL
ω (s, x) is right slice hyperholomorphic in

s and left Fueter regular in x for every x, s such that (〈x, ω〉 − x0ω) 6∈ [s].
Moreover, the WL-transform maps left slice hyperholomorphic functions f
into left Fueter regular plane wave functions f̆ω.

• For every ω ∈ S the function WR
ω (s, x) is left slice hyperholomorphic in s

and right Fueter regular in x for every x, s such that (〈x, ω〉 − x0ω) 6∈ [s].
Moreover, the WR-transform maps right slice hyperholomorphic functions f
into right Fueter regular plane wave functions f̆ω.

Theorem 4.8.13. Let T = T0 + e1T1 + e2T2 + e3T3 ∈ B(X). Assume that ω ∈ S
and define the operator

Aω :=

3∑
j=1

Tjωj − T0ω.

Then Aω belongs to B(X), and the operator A2
ω − 2Re(s)Aω + |s|2I is invertible

for s ∈ H with ‖T‖ < |s| for all ω ∈ S. Moreover, for s ∈ H with ‖T‖ < |s| and
for all ω ∈ S, we have∑

m≥0

Amω s
−1−m = −(A2

ω − 2Re(s)Aω + |s|2I)−1(Aω − sI), (4.54)

∑
m≥0

s−1−mAmω = −(Aω − sI)(A2
ω − 2Re(s)Aω + |s|2I)−1. (4.55)

The above theorem motivates the notion of W -spectrum.

Definition 4.8.14 (The W -spectrum and the W -resolvent set). Let T ∈ B(X) and
let ω ∈ S. We define the operators

Aω =

3∑
j=1

Tjωj − T0ω and Qω(T, s) := A2
ω − 2s0Aω + |s|2I.

We define the W -spectrum σW (T ) of T as:

σW (T, ω) =
{
s ∈ Rn+1 : Qω(T, s) is not invertible in B(X)

}
.

The W -resolvent set ρW (T ) is defined by

ρW (T, ω) = H \ σW (T, ω).

The theorem on the structure of the W -spectrum holds also in this case.
Let T ∈ B(X), ω ∈ S, and let p = p0 + p1j ∈ [p0 + p1j] ⊂ H \ R, such that
p ∈ σW (T, ω). Then all the elements of the 2-sphere [p0 +p1j] belong to σW (T, ω).
Thus the W -spectrum consists of real points and/or 2-spheres. In the case of
bounded operators, the W -spectrum, for all ω ∈ S, is a compact nonempty set.



124 Chapter 4. Properties of the S-Functional Calculus for Bounded Operators

Definition 4.8.15 (The W -resolvent operators). Let T ∈ B(X), let ω ∈ S, and let

Aω :=
∑3
j=1 Tjωj − T0ω. For s ∈ ρW (T ) we define the left W -resolvent operator

by
WL
ω (s, T ) = −(A2

ω − 2Re(s)Aω + |s|2I)−1(Aω − sI), (4.56)

and the right W -resolvent operator by

WR
ω (s, T ) = −(Aω − sI)(A2

ω − 2Re(s)Aω + |s|2I)−1. (4.57)

Definition 4.8.16 (The W -functional calculus for bounded operators). Let T ∈
B(V ) and let ω ∈ S. Let j be an arbitrary imaginary unit and U an arbitrary slice
Cauchy domain U as in Remark 3.2.4. For every function f ∈ SHL(σW (T, ω)), we
define

f̆ω(T ) =
1

2π

∫
∂(U∩Cj)

WL
ω (s, T ) dsj f(s). (4.58)

For every f ∈ SHR(σW (T, ω)), we define

f̆ω(T ) =
1

2π

∫
∂(U∩Cj)

f(s) dsjW
R
ω (s, T ), (4.59)

with the obvious meaning of the symbols SHL(σW (T, ω)) and SHR(σW (T, ω)).

The definition of the W-functional calculus is well posed, since the integrals
in (4.58) and (4.59) depend neither on the open set U nor on the imaginary unit
j ∈ S.

The W -functional calculus is a functional calculus that is based on slice hy-
perholomorphic functions, but it produces operators f̆ω(T ) for Fueter regular func-

tions f̆ω(s). The W -functional calculus and the F -functional calculus are Fueter
functional calculi. In the case of Clifford-algebra-valued functions these two cal-
culi become monogenic functional calculi in the spirit of the monogenic functional
calculus introduced and studied by A. McIntosh and his collaborators in a series
of papers [160,161,166], and in the book [159].
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The SSS-Functional Calculus for
Unbounded Operators

The S-functional calculus can also be defined for unbounded operators. We con-
sider a two-sided quaternionic Banach space X and we introduce a notation for
the set of unbounded operators that we consider in this chapter. These results
are taken from the papers [67,97], where we reduce the case of unbounded opera-
tors, with suitable transformations, to the case of bounded operators. The direct
approach has been studied in the more recent paper [124], while the S-resolvent
equation is in [50].

Definition 5.0.1. Let X be a two-sided Banach space. A right linear operator
T : D(T ) ⊂ X → X is called closed if its graph is closed in X ⊕X. We denote the
set of closed right linear operators T : D(T ) ⊂ X → X by K(X).

When we deal with operators of this type we have to pay attention to the
domains on which they are defined. We illustrate this with the following example.

Example 5.0.2. We define powers of T ∈ K(X) as usual by T 0 = I with D(T 0) =
X and Tn+1x := T (Tnx) for x ∈ D(Tn+1) = {x ∈ D(Tn) : Tnx ∈ D(T )}.
Moreover, we define for every intrinsic polynomial P (q) =

∑n
`=0 q

`a` with a` ∈ R,
the operator P (T )x :=

∑n
`=0 a`T

`x with D(P (T )) = D(Tn).
The operator P (T ) : D(Tn) ⊂ X → X is then a closed operator. This follows

immediately from the corresponding result for R-linear operators, because every
quaternionic linear operator is also R-linear, and the topology on X does not
depend on whether we consider X a vector space over H or over R. The situation
is, however, fundamentally different if we consider polynomials with quaternionic
coefficients.

The operator T is right linear and hence related to the right multiplication,
but it does not have any relation to the left multiplication on the space X. If
x, y ∈ D(T ) and a ∈ H, then T (xa+ y) = T (x)a+ T (y) due to the right linearity
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of T , so that xa + y ∈ D(T ) and D(T ) is in turn a right linear subspace of X.
However, since in general T (ax) 6= aT (x), it is not clear that ax ∈ D(T ) for any
a ∈ H and any x ∈ D(T ), so that D(T ) is not a left linear and in particular not
a two-sided subspace of X. The same holds obviously also true for the domains
D(Tn) of powers Tn of T , in general, D(Tn) is a right linear, but not a left linear,
subspace of V .

We can now define, for every right slice hyperholomorphic polynomial P (q) =∑n
`=0 a`q

` with a` ∈ H, the operator P (T )x :=
∑n
`=0 a`T

`x, and we find that the
domain of this operator is again D(P (T )) = D(Tn). However, for a left slice
hyperholomorphic polynomial P (q) =

∑n
`=0 q

`a` with a` ∈ H, setting P (T )x :=∑n
`=0 T

`a`x might not be possible in a straightforward manner. Since the domain
D(Tn) is in general not a left linear subspace of X, we do not necessarily have
a`x ∈ D(Tn) for x ∈ D(Tn). In this case, the expression P (T )x =

∑n
`=0 T

`a`x is
meaningless, so that the domain of the operator P (T ) =

∑n
`=0 T

`a` is in general
not the entire subspace D(Tn).

5.1 The SSS-Spectrum and the SSS-Resolvent Operators

As for bounded operators, we define for T ∈ K(X) and s ∈ H the operator

Qs(T ) := T 2 − 2Re(s)T + |s|2I

that maps D(T 2) ⊂ X to X.

Definition 5.1.1. Let T ∈ L(X). We define the S-resolvent set of T as

ρS(T ) =
{
s ∈ H : Qs(T )−1 ∈ B(X)

}
and the S-spectrum σS(T ) of T as

σS(T ) = H \ ρS(T ).

The following result in particular implies thatQs(T ) is closed for every s ∈ H,
whenever ρS(T ) ∩ R 6= ∅.

Theorem 5.1.2. Let T ∈ K(X) with ρS(T )∩R 6= ∅. For every intrinsic polynomial
P ∈ N (H), the operator P (T ) is closed.

Proof. We choose any α ∈ ρS(T ) ∩ R and we consider the homomorphism Φα :
H→ H defined by

µ = Φα(q) = (q − α)−1, Φα(∞) = 0, Φα(α) =∞.

Since P ∈ N (H) and α is a real number, P can be written as

P (q) =

n∑
`=0

b`(q − α)n−` = (q − α)n
n∑
`=0

b`(q − α)−`,
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where the b` are real numbers. The homomorphism Φα maps P to µ−nR(µ), that
is, P (q) = µ−nR(µ) with µ = Φα(q), where R(µ) =

∑n
`=0 b`µ

`.
We define now A := (T − αI)−1, which formally corresponds to Φα(T ). The

operator A is a one-to-one map from X onto D(T ), and hence the operator A`

maps D(Tn) onto D(Tn+`) ⊂ D(Tn) for every ` ∈ N. For x ∈ D(Tn), we thus
have R(A)x ∈ D(Tn). It is, moreover, easy to see that

P (T )x = (T − αI)nR(A)x = R(A)(T − αI)nx, (5.1)

for all x ∈ D(Tn).
Consider now a sequence (xk)k∈N in D(Tn) such that we have xk → x and

P (T )xk → y in X. In order to show that P (T ) is closed, we must show that
x ∈ D(Tn) and that P (T )x = y. If we set zk := R(A)xk, then we have

lim
k→+∞

(T − αI)nzk = lim
k→+∞

(T − αI)nR(A)xk = lim
k→+∞

P (T )xk = y

due to (5.1). Since R(A) is bounded because A is bounded, the limit

lim
k→+∞

zk = lim
k→+∞

R(A)xk = R(A)x := z ∈ X

also exists. The operator (T − αI)n is, however, closed because it has a bounded
inverse, namely An, and so we conclude that z = R(A)x belongs to D((T−αI)n) =
D(Tn) and that

y = (T − αI)nz = (T − αI)nR(A)x. (5.2)

What remains to show is that x ∈ D(P (T )) = D(Tn), because in this case, (5.1)
and (5.2) imply y = P (T )x and so the closedness of P (T ).

If we write R(A) explicitly, we obtain

R(A)x = b0x+
n∑
`=1

b`A
`x (5.3)

with b0 = an 6= 0. We already know that R(A)x belongs to D(T ). Moreover,
also

∑n
`=1 b`A

`x = A
∑n
`=1 b`A

`−1x belongs to D(T ), since A maps X onto D(T ).
We conclude from (5.3) that also x ∈ D(T ) because it is a linear combination of
vectors in D(T ). Even more, if we assume that x ∈ D(T k) with 1 ≤ k < n, then

(T − αI)kR(A)x = b0(T − αI)k +
k∑
`=1

b`(T − αI)k−` +
n∑

`=k+1

b`A
`−kx.

As before, we see that (T − αI)k is a linear combination of vectors in D(T ),
and hence (T − αI)kx ∈ D(T ) and so x ∈ D(T k+1). By induction, we find that
x ∈ D(Tn) = D(P (T )). �
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For closed operators, the definition of the S-resolvent operators needs a little
modification. If we define the left S-resolvent operator as in the case of bounded
operators, we obtain

S−1
L (s, T )x := −Qs(T )−1(T − sI)x, (5.4)

which is defined only for x ∈ D(T ) and not on all of X. However, for x ∈ D(T ),
we have Qs(T )−1Tx = TQs(T )−1x, and so we can commute T and Qs(T )−1 in
order to obtain an operator that is defined on all of X.

Definition 5.1.3 (The S-resolvent operators of a closed operator). Let T ∈ K(X).
For s ∈ ρS(T ), we define the left S-resolvent operator of T at s as

S−1
L (s, T )x := Qs(T )−1sx− TQs(T )−1x, for all x ∈ X, (5.5)

and the right S-resolvent operator of T at s as

S−1
R (s, T )x := −(T − Is)Qs(T )−1x, for all x ∈ X. (5.6)

Remark 5.1.4. For s ∈ ρS(T ), the operator Qs(T )−1 maps X to D(T 2). Hence
TQs(T )−1 is a bounded operator and S−1

L (S, T ), and so S−1
R (s, T ) are bounded,

too.

A second difference between the left and right S-resolvent operators is that
the right S-resolvent equation holds only on D(T ).

Theorem 5.1.5 (The S-resolvent equations). Let T ∈ K(X). For s ∈ ρS(T ), the
left S-resolvent operator satisfies the identity

S−1
L (s, T )sx− TS−1

L (s, T )x = x, for all x ∈ X. (5.7)

Moreover, the right S-resolvent operator satisfies the identity

sS−1
R (s, T )x− S−1

R (s, T )Tx = x, for all x ∈ D(T ). (5.8)

Proof. We have for x ∈ D(T ) that

sS−1
R (s, T )x− S−1

R (s, T )Tx

= −s(T − Is)Qs(T )−1x+ (T − Is)Qs(T )−1Tx

= (−sT + |s|2I)Qs(T )−1x+ (T 2 − sT )Qs(T )−1x

= (T 2 − 2Re(s)T + |s|2I)Qs(T )−1x = x.

Similar computations establish (5.7). �

Remark 5.1.6. We can extend (5.8) to an equation that holds on the entire space
X, similarly to how we could extend (5.4) to a bounded operator on the entire
space X. This equation is

sS−1
R (s, T )x+ (T 2 − sT )Qs(T )−1x = x, for all x ∈ X.
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Theorem 5.1.7 (S-resolvent equation). Let T ∈ K(X). If s, q ∈ ρS(T ) with s /∈ [q],
then

S−1
R (s, T )S−1

L (q, T ) =
[
[S−1
R (s, T )− S−1

L (q, T )]q

− s[S−1
R (s, T )− S−1

L (q, T )]
]
(q2 − 2Re(s)q + |s|2)−1. (5.9)

Proof. As in the case of bounded operators, the S-resolvent equation is deduced
from the left and right S-resolvent equations. However, we have to pay attention
to being consistent with the domains of definition of every operator that appears
in the proof.

We show that for every x ∈ X, one has

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)x

= [S−1
R (s, T )− S−1

L (q, T )]qx− s[S−1
R (s, T )− S−1

L (q, T )]x. (5.10)

We then obtain (5.9) by replacing x by (q2 − 2s0q + |s|2)−1x. For w ∈ X, the left
S-resolvent equation (5.7) implies

S−1
R (s, T )S−1

L (q, T )qw = S−1
R (s, T )TS−1

L (q, T )w + S−1
R (s, T )w.

The pseudo-resolvent Qs(T )−1 maps X onto D(T 2). Therefore, the left S-resolvent
operator S−1

L (s, T ) = Qs(T )−1s−TQs(T )−1 mapsX toD(T ), and so S−1
L (q, T )w ∈

D(T ). The right S-resolvent equation (5.8) yields

S−1
R (s, T )S−1

L (q, T )qw = sS−1
R (s, T )S−1

L (q, T )w − S−1
L (q, T )w + S−1

R (s, T )w.
(5.11)

If we apply this identity with w = qx, we get

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)x

= S−1
R (s, T )S−1

L (q, T )q2x− 2s0S
−1
R (s, T )S−1

L (q, T )qx

+ |s|2S−1
R (s, T )S−1

L (q, T )x

= sS−1
R (s, T )S−1

L (q, T )qx− S−1
L (q, T )qx+ S−1

R (s, T )qx

− 2s0S
−1
R (s, T )S−1

L (q, T )qx+ |s|2S−1
R (s, T )S−1

L (q, T )x.

Applying identity (5.11) again with w = x gives

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)x

= s2S−1
R (s, T )S−1

L (q, T )x− sS−1
L (q, T )x+ sS−1

R (s, T )x

− S−1
L (q, T )qx+ S−1

R (s, T )qx

− 2s0sS
−1
R (s, T )S−1

L (q, T )x+ 2s0S
−1
L (q, T )x− 2s0S

−1
R (s, T )x

+ |s|2S−1
R (s, T )S−1

L (q, T )x

= (s2 − 2s0s+ |s|2)S−1
R (s, T )S−1

L (q, T )x

− (2s0 − s)[S−1
R (s, T )x− S−1

L (q, T )x]

+ [S−1
R (s, T )− S−1

L (q, T )]qx.
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The identity 2s0 = s + s implies s2 − 2s0s + |s|2 = 0 and 2s0 − s = s, and hence
we obtain the desired equation (5.10). �

5.2 Definition of the SSS-Functional Calculus

Before we define the S-functional calculus for closed operators, we have to define
a notion of spectrum that takes the possible unboundedness of T into account.

Definition 5.2.1. Let T ∈ K(X). We define the extended S-spectrum of T as

σS(T ) :=

{
σS(T ) if T is bounded.

σS(T )
⋃
{∞} if T is unbounded.

Remark 5.2.2. We recall that a function is said to be left slice hyperholomorphic
at infinity if H \Br(0) ⊂ D(f) for some r > 0 and the limit f(∞) := limq→∞ f(q)
exists.

Hence if T ∈ K(X) is unbounded, then f ∈ SHL(σS(T )) if and only if f is left
slice hyperholomorphic with σS(T ) ⊂ D(f) and if furthermore, H \Br(0) ⊂ D(f)
for some r > 0 and f(∞) = limq→∞ f(q) exists. The characterization of functions
in SHR(σS(T )) and N (σS(T )) is in this case, of course, similar.

Theorem 5.2.3. Let T ∈ K(X) with ρS(T ) ∩R 6= ∅. For α ∈ ρS(T ) ∩R, we define
the function Φα : H→ H given by

Φα(s) = (s− α)−1, Φα(α) =∞, Φα(∞) = 0, (5.12)

and set A := (T − αI)−1 = −S−1
L (α, T ), which formally corresponds to Φα(T ).

Then
σS(A) = σS(A) = Φα(σS(T )). (5.13)

For s ∈ ρS(T ) and q = Φα(s), we moreover have

S−1
L (s, T ) = qI − S−1

L (q, A)q2 (5.14)

and
S−1
R (s, T ) = qI − q2S−1

R (q, A). (5.15)

Proof. Let s, q ∈ H and α ∈ R be such that q = (s− α)−1. Then the identities

Re(s)|q|2 = α|q|2 + Re(q), (5.16)

|q|2|s|2 = α2|q|2 + 2Re(q)α+ 1, (5.17)

−q−2 = (2 (α− Re(s)) q + 1) |q|−2, (5.18)

−sq−2 =
((
α2 − |s|2

)
q + α

)
|q|−2, (5.19)

can be verified by direct calculations.
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We choose α ∈ ρS(T ) ∩ R and set A := (T − αI)−1. Assume now that
q ∈ ρS(A) \ {0}, that is,

Qq(A)−1 = (A2 − 2Re(q)A+ |q|2I)−1 ∈ B(X).

Then

Qq(A)−1 =
[
(T − αI)−2 − 2Re(q)(T − αI)−1 + |q|2I

]−1

=
[[
I − 2Re(q)(T − αI) + |q|2(T − αI)2

]
(T − αI)−2

]−1
.

For x ∈ D(T 2), we have, because of (5.16) and (5.17), that[
I − 2Re(q)(T − αI) + |q|2(T − αI)2

]
x

= |q|2T 2x− 2(α|q|2 + Re(q))Tx+
(
|q|2α2 + 2Re(q)αI + 1

)
x

= |q|2T 2x− 2|q|2Re(s)Tx+ |q|2|s|2x
= |q|2(T 2 − 2Re(s)T + |s|2I)x = |q|2Qs(T )x.

Since (T − αI)−2 maps V to D(T 2), we obtain

Qq(A)−1 =
[
|q|2Qs(T )(T − αI)−2

]−1
= |q|−2(T − αI)2Qs(T )−1, (5.20)

and applying A = (T − αI)−2 from the right, we conclude that

Qs(T )−1 = |q|2A2Qs(A)−1 ∈ B(X).

Hence s ∈ ρS(T ). If, on the other hand, s ∈ ρS(T ), then we can perform the above
computations in the inverse order to see that also in this case (5.20) holds. Since
Qs(T )−1 maps X to D(T 2) = D

(
(T − αI)2

)
and (T −αI)2 is closed, we find that

Qq(A)−1 is bounded and hence q ∈ ρS(A). We even have q ∈ ρS(A) \ {0}, since
s ∈ H, and so q 6= 0 = Φα(∞).

Altogether, we have Φα(ρS(T )) = ρS(A) \ {0} and in turn

Φα(σS(T ) ∪ {∞}) = σS(A) ∪ {0}.

Finally, 0 ∈ σS(T ) if and only if A−1 = T − αI, and hence also T is unbounded,
which is equivalent to ∞ ∈ σS(T ). Therefore (5.13) holds.

In order to prove (5.14), we recall (5.20) and obtain

S−1
L (q, A) = |q|−2(T − αI)2Qs(T )−1q − |q|−2(T − αI)Qs(T )−1.

Now observe that

(T − αI)2Qs(T )−1 = (T 2 − 2αT + α2I)Qs(T )−1

= (T 2 − 2Re(s)T + |s|2I)Qs(T )−1

+
(
−2(α− Re(s))T + (α2 − |s|2)I

)
Qs(T )−1

= I +
(
−2(α− Re(s))T + (α2 − |s|2)I

)
Qs(T )−1,

(5.21)
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and so

S−1
L (q, A) = |q|−2Iq + |q|−2

(
−2(α− s0)T + (α2 − |s|2)I

)
Qs(T )−1q

− |q|−2(T − α)Qs(T )−1

= Iq−1 − TQs(T )−1(2(α− Re(s))q + 1)|q|−2

+Qs(T )−1((α2 − |s|2)q + α)|q|−2.

From (5.18) and (5.19), we finally conclude that

S−1
L (q, A) = Iq−1 −Qs(T )−1sq−2 + TQs(T )−1q−2

and thus
S−1
L (q, A) = Iq−1 − S−1

L (s, T )q−2. (5.22)

Since s ∈ ρS(T ), we have q = Φ(s) 6= 0, and so (5.22) is equivalent to (5.14).
It remains to prove the relation (5.15). Using (5.20), we have for q = Φα(s)

with s ∈ ρS(T ) that

S−1
R (q, A) = (qI −A)Qq(A)−1

= (qI −A)|q|−2(T − αI)2Qs(T )−1

= q|q|−2(T − αI)2Qs(T )−1 − |q|−2(T − αI)Qs(T )−1.

Applying the identity (5.21), we find, similar to the case of the left S-resolvent,
that

S−1
R (q, A) = q|q|−2I − |q|−2 (2q(α− Re(s)) + 1)TQs(T )−1

+ |q|−2
(
−q(α2 − |s|2) + α

)
Qs(T )−1.

Applying again (5.18) and (5.19), we obtain

S−1
R (q, A) = q−1I + q−2TQs(T )−1 − q−2sQs(T )−1

and in turn
S−1
R (q, A) = q−1I − q−2S−1

R (s, T ),

which is equivalent to (5.15), since q = Φ(s) 6= 0. �

Corollary 5.2.4. Let T ∈ K(X) with ρS(T )∩R 6= ∅. For α ∈ ρS(T )∩R, let Φα and
A be as in Theorem 5.2.3. The mapping f 7→ f ◦ Φ−1

α determines one-to-one cor-
respondences between SHL(σS(T )) and SHL(σS(A)), between SHR(σS(T )) and
SHR(σS(A)), and between N (σS(T )) and N (σS(A)). Precisely, we have

SHL(σS(A)) =
{
f ◦ Φ−1

α : f ∈ SHL(σS(T ))
}
,

SHR(σS(A)) =
{
f ◦ Φ−1

α : f ∈ SHR(σS(T ))
}
,

N (σS(A)) =
{
f ◦ Φ−1

α : f ∈ N (σS(T ))
}
.
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Proof. The above relations are immediate consequences of (5.13) in Theorem 5.2.3.
�

Definition 5.2.5 (The S-functional calculus for closed operators). Let T ∈ K(X)
with ρS(T ) ∩ R 6= ∅. We choose an arbitrary α ∈ ρS(T ) ∩ R and we define, as in
Theorem 5.2.3, the function Φα : H→ H by

Φα(s) = (s− α)−1, Φα(α) =∞, Φα(∞) = 0,

and the operator A := (T − αI)−1 = −S−1
L (α, T ) ∈ B(X), which formally

corresponds to Φα(T ). For every function f ∈ SHL(σS(T )) and every function
f ∈ SHR(σS(T )), we define

f(T ) := f ◦ Φ−1
α (A), (5.23)

where f ◦Φ−1
α (A) is intended in the sense of the S-functional calculus for bounded

quaternionic linear operators in Definition 3.2.5.

Remark 5.2.6. By Theorem 4.2.1 and Theorem 4.2.4, the above approach is con-
sistent with the S-functional calculus for bounded operators.

The S-functional calculus for closed operators admits also for unbounded
operators an integral representation that corresponds to the integrals in (3.12)
and (3.13) for bounded operators.

Theorem 5.2.7. Let T ∈ K(X) be unbounded and let ρS(T ) ∩ R 6= ∅. Assume that
f ∈ SHL(σS(T )) and f(T ) is the operator defined in Definition 5.2.5. Then

f(T ) = f(∞)I +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) (5.24)

for every unbounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f) and
every imaginary unit j ∈ S. Similarly, if f ∈ SHR(σS(T )) and f(T ) is the operator
defined in Definition 5.2.5, then

f(T ) = f(∞)I +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), (5.25)

for every unbounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f) and
every imaginary unit j ∈ S.

Proof. Let f ∈ SHL(σS(T )), let α ∈ ρS(T ) ∩ R, and set A = (T − αI)−1 and
f(T ) := f ◦ Φ−1

α (A) as in Definiton 5.2.5. Furthermore, let j ∈ S and let U be
an unbounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f). We can
assume that α /∈ U . Otherwise, Cauchy’s integral theorem allows us to replace U
by U ′ = U \Bε(α) with sufficiently small ε > 0 without changing the value of the
integral in (5.24).
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The set V := Φα(U) is a bounded slice Cauchy domain that contains σS(A)
by Theorem 5.2.3. Thus, after the change of variables q = Φα(s) in the integral in
(5.24), we find due to the relation (5.14) that

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)

= − 1

2π

∫
∂(V ∩Cj)

(
qI − S−1

L (q, A)q2
)
q−2 dqj

(
f ◦ Φ−1

α

)
(q)

= − 1

2π

∫
∂(V ∩Cj)

q−1 dqj
(
f ◦ Φ−1

α

)
(q)

+
1

2π

∫
∂(V ∩Cj)

S−1
L (q, A) dqj

(
f ◦ Φ−1

α

)
(q)

= −
(
f ◦ Φ−1

α

)
(0)I +

(
f ◦ Φ−1

α

)
(A),

where the last identity follows from Cauchy’s integral formula because

− 1

2π

∫
∂(V ∩Cj)

q−1 dqj
(
f ◦ Φ−1

α

)
(q)

= − 1

2π

∫
∂(V ∩Cj)

S−1
L (q, 0) dqj

(
f ◦ Φ−1

α

)
(q) =

(
f ◦ Φ−1

α

)
(0),

since 0 ∈ σS(A) ⊂ V . Since f ◦Φ−1
α (A) = f(T ) and f ◦Φ−1

α (0) = f(∞), we obtain

1

2π

∫
∂(W∩Cj)

S−1
L (s, T )dsjf(s) = −If(∞) + f(T ),

which is exactly (5.24). The right slice hyperholomorphic case can be shown by
similar computations using the identity (5.15). �

Corollary 5.2.8. Let T ∈ K(X) with ρS(T ) ∩ R 6= ∅. For every function f ∈
SHL(σS(T )) and every function f ∈ SHR(σS(T )), the operator f(T ) defined in
(5.23) does not depend on the choice of α ∈ ρS(T ) ∩ R.

Proof. The fact that the operator f(T ) defined in (5.23) is independent of α ∈
ρS(T ) ∩ R follows from the validity of formulas (5.24) and (5.25), since these
integrals are independent of α. �

We conclude this chapter with the algebraic properties of the S-functional
calculus. These are immediate consequences of the respective properties of the
S-functional calculus for bounded operators.

Theorem 5.2.9. Let T ∈ K(X) with ρS(T ) ∩ R 6= ∅.

(i) If f, g ∈ SHL(σS(T )) and a ∈ H, then

(fa+ g)(T ) = f(T )a+ g(T ).
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Similarly, if f, g ∈ SHR(σS(T )) and a ∈ H, then

(af + g)(T ) = af(T ) + g(T ).

(ii) If f ∈ N (σS(T )) and g ∈ SHL(σS(T )) or f ∈ SHR(σS(T )) and g ∈
N (σS(T )), then

(fg)(T ) = f(T )g(T ).

Proof. Let α ∈ ρS(T ) ∩ R, set A := (T − αI)−1, and define Φα as in (5.12). If
f, g ∈ SHL(σS(T )) and a ∈ H, then we conclude from Lemma 4.1.1 that

(fa+ g)(T ) = (fa+ g) ◦ Φ−1
α (A) =

(
(f ◦ Φ−1

α )a+ g ◦ Φ−1
α

)
(A)

= f ◦ Φ−1
α (A)a+ g ◦ Φ−1

α (A) = f(T )a+ g(T ).

Similarly, if f ∈ N (σS(T )) and g ∈ SHL(σS(T )), then f ◦ Φ−1
α ∈ N (σS(A)) by

Corollary 5.2.4, and we conclude from Theorem 4.1.3 that

(fg)(T ) = (fg) ◦ Φ−1
α (A) =

((
f ◦ Φ−1

α

) (
g ◦ Φ−1

α

))
(A)

=
(
f ◦ Φ−1

α

)
(A)

(
g ◦ Φ−1

α

)
(A) = f(T )g(T ).

The statements for right slice hyperholomorphic functions follow by analo-
gous arguments. �

Theorem 5.2.10 (Spectral mapping and product rule). Let T ∈ K(X) with ρS(T )∩
R 6= ∅. If f ∈ N (σS(T )), then

σS(f(T )) = f(σS(T )),

and for every g ∈ SH(f(σS(T ))) and g ∈ SHR(f(σS(T ))), we have

(g ◦ f)(T ) = g(f(T )).

Proof. Let α ∈ ρS(T )∩R, set A := (T − αI)−1, and define Φα as in (5.12). Since
f ∈ N (σS(T )), Corollary 5.2.4 implies f ◦ Φ−1

α ∈ N (σS(A)). From (5.13) and
Theorem 4.2.1, we thus conclude that

f(σS(T )) = f ◦ Φ−1
α ◦ Φα(σS(T ))

= f ◦ Φ−1
α (σS(A)) = σS(f ◦ Φα(A)) = σS(f(T )).

Since σS(f(T )) = σS(f ◦ Φ−1
α (A)), we moreover have for g ∈ SHL(f(σS(T ))) or

g ∈ SHR(f(σS(T )) by Theorem 4.2.4 that

g ◦ f(T ) = g ◦ f ◦ Φ−1
α (A) = g(f ◦ Φ−1

α (A)) = g(f(T )). �
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5.3 Comments and Remarks

The gradient operator defined on most common function spaces is a closed oper-
ator. The S-spectrum is associated with the spectrum of the operator s2I + ∆.

Example 5.3.1 (The gradient operator). We consider the operator

T = ∂x1e1 + ∂x2e2 + ∂x3e3

on a suitable Banach space X, and we determine the operator associated with the
S-spectrum of T . We have

T = −∂x1
e1 − ∂x2

e2 − ∂x3
e3.

Thus T + T = 0, and since ∂x`∂xκ = ∂xκ∂x` for all κ, ` = 1, 2, 3, we have

TT = ∆,

where ∆ is the Laplace operator. The S-spectrum is associated with the invert-
ibility of the operator

s2I − s(T + T ) + TT = s2I + ∆ (5.26)

in the Banach space X = XR ⊗H. If s = u+ jv, then we can consider the scalar
operator ∆ an operator on XR ⊗ Cj . The operator in (5.26) is then invertible if
and only if s2I + ∆ is invertible on XR ⊗ Cj , that is, if and only if −s2 belongs
to the classical resolvent set ρ(∆) of ∆. Because of the axial symmetry of the
S-spectrum, we obtain

σS(T ) =
{
s = u+ iv : −(u+ jv)2 ∈ σ(∆), i ∈ S

}
.



Chapter 6

The H∞H∞H∞-Functional Calculus

The H∞-functional calculus is an extension of the Riesz–Dunford functional calcu-
lus for bounded operators to unbounded sectorial operators, and it was introduced
by A. McIntosh in [165]; see also [5]. This calculus is connected with pseudo-
differential operators, with Kato’s square root problem, and with the study of
evolution equations and, in particular, the characterization of maximal regularity
and with the fractional powers of differential operators. For an overview and more
problems associated with this functional calculus for the classical case, see the
book [156] and the references therein.

In this chapter we consider the quaternionic version of the H∞-functional
calculus introduced in [30], where with suitable conditions on the operators T
we can study the quaternionic analogue of the results in [165]. A more general
treatment of the H∞-functional calculus for quaternionic operators has been done
in [51, 52], where also the fractional powers of quaternionic linear operators are
considered and new fractional diffusion and evolution processes are defined. We
will mention such applications at the end of this chapter, see also [128].

6.1 The Rational Functional Calculus

The H∞-functional calculus is defined using a version of the S-functional calculus
for sectorial operators and on the rational functional calculus for intrinsic rational
slice hyperholomorphic functions.

Definition 6.1.1 (Intrinsic rational slice hyperholomorphic function). Let P and Q
be intrinsic polynomials. An intrinsic rational slice hyperholomorphic function is
defined as

R(p) := P (p)Q(p)−1.

Observe that since P (p) and Q(p)−1 are intrinsic slice hyperholomorphic
functions, the ?-product of P (p) and Q(p)−1 is equal to P (p)Q(p)−1, and it is an
intrinsic slice hyperholomorphic function.

© Springer Nature Switzerland AG 2018 
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Definition 6.1.2 (Rational functional calculus). Assume that the rational function
R(p) = P (p)Q(p)−1 has no poles on the S-spectrum of T . Let T be a closed densely
defined operator. We define the rational functional calculus as

R(T ) := P (T )Q(T )−1.

The operator R(T ) is closed and densely defined, and its domain is D(Tm),
where

m := max{0,degP − degQ}.

An important example of an intrinsic rational function, useful in the sequel, is

ψ(s) =
( s

1 + s2

)k
, k ∈ N.

We recall that slice hyperholomorphic rational functions have poles that are real
points and/or spheres. This is compatible with the structure of the S-spectrum of
T , which consists of real points and/or spheres. With ψ as above, we have

ψ(T ) =
(
T (I + T 2)−1

)k
, k ∈ N.

We summarize in the following the properties of the rational functional calculus.
The proofs are similar to the classical results, and for this reason we omit them.

Proposition 6.1.3. Let T be a linear quaternionic operator that is single-valued on a
quaternionic Banach space X. Let P and Q be intrinsic quaternionic polynomials
of order n and m, respectively. Then

(i) If P 6≡ 0 then P (T )Q(T ) = (PQ)(T ).

(ii) If P (T ) is injective and Q 6≡ 0, then

D(P (T )−1) ∩ D(Q(T )) ⊂ D(P (T )−1Q(T )) ∩ D(Q(T )P (T )−1)

and

P (T )−1Q(T )v = Q(T )P (T )−1v, ∀v ∈ D(Q(T )) ∩ D(P (T )−1).

(iii) Suppose that T is a closed linear operator with ρS(T ) 6= ∅. Then P (T ) is
closed and P (σS(T )) = σS(P (T )).

For rational functions we have the following result, whose proof is similar to
the classical case.

Proposition 6.1.4. Let T be a linear quaternionic operator that is single-valued
on a quaternionic Banach space X with ρS(T ) 6= ∅. Let 0 6≡ R = PQ−1 and
R1 = P1Q

−1
1 be intrinsic rational functions. Then we have:

(i) R(T ) is a closed operator.
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(ii) R(σS(T )) ⊂ σS(R(T )), where σS(T ) = σS(T ) ∪ {∞} denotes the extended
S-spectrum of T .

(iii) R(T )R1(T ) ⊂ (RR1)(T ) and equality holds if

(deg(P )− deg(Q))(deg(P1)− deg(Q1)) ≥ 0.

(iv) R(T ) +R1(T ) ⊂ (R+R1)(T ) and equality holds if

deg(PQ1 + P1Q) = max{deg(PQ1),deg(P1Q)}.

6.2 The SSS-Functional Calculus for Operators of Type ωωω

We show that at least for a suitable subclass of closed densely defined operators,
we can extend the formulas of the S-functional calculus for bounded operators. In
order to do this, we recall that the definitions the S-resolvent operators are given
in the previous chapter for unbounded operators.

Definition 6.2.1 (Argument function). Let s ∈ H \ {0}. We define arg(s) as the
unique number θ ∈ [0, π] such that s = |s|eθjs .

Observe that θ = arg(s) does not depend on the choice of js if s ∈ R \ {0},
since p = |p|e0j for every j ∈ S if p > 0 and p = |p|eπj for every j ∈ S if p < 0.
Let ϑ ∈ [0, π]. We define the sets

Sϑ = {s ∈ H : | arg(p)| ≤ ϑ or s = 0},
S0
ϑ = {s ∈ H : | arg(p)| < ϑ}. (6.1)

Definition 6.2.2 (Operator of type ω). Let ω ∈ [0, π). We say that the linear
operator T : D(T ) ⊂ X → X is of type ω if

(i) T is closed and densely defined,

(ii) σS(T ) ⊂ Sϑ ∪ {∞},
(iii) for every ϑ ∈ (ω, π] there exists a positive constant Cϑ such that

‖S−1
L (s, T )‖ ≤ Cϑ

|s|
, ‖S−1

R (s, T )‖ ≤ Cϑ
|s|

for all nonzero s ∈ S0
ϑ.

We now introduce the following subsets of the set of slice hyperholomorphic
functions, which consist of bounded slice hyperholomorphic functions.

Definition 6.2.3. Let µ ∈ (0, π]. We set

SH∞L (S0
µ) = {f ∈ SHL(S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞},

SH∞R (S0
µ) = {f ∈ SHR(S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞},

N∞(S0
µ) = {f ∈ N (S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞}.
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In order to define bounded functions of operators of type ω, we need to
introduce suitable subclasses of bounded slice hyperholomorphic functions:

Definition 6.2.4. With the notation introduced in Definition 6.2.3, we define

ΨL(S0
µ) = {f ∈ SH∞L (S0

µ) : ∃α > 0, c > 0 : |f(s)| ≤ c|s|α

1 + |s|2α
for all s ∈ S0

µ},

ΨR(S0
µ) = {f ∈ SH∞R (S0

µ) : ∃α > 0, c > 0 : |f(s)| ≤ c|s|α

1 + |s|2α
for all s ∈ S0

µ},

Ψ(S0
µ) = {f ∈ N∞(S0

µ) : ∃α > 0, c > 0 : |f(s)| ≤ c|s|α

1 + |s|2α
for all s ∈ S0

µ}.

The following theorem is a crucial step for the definition of the S-functional
calculus for operators of type ω, because it shows that the following integrals
depend neither on the path that we choose nor on the complex plane Cj , j ∈ S.

Theorem 6.2.5. Let T be an operator of type ω. Let j ∈ S, and let S0
µ be as in

(6.1). Choose a piecewise smooth path Γ in S0
µ∩Cj that goes from ∞ejθ to ∞e−jθ,

where ω < θ < µ. Then the integrals

1

2π

∫
Γ

S−1
L (s, T ) dsj ψ(s), for all ψ ∈ ΨL(S0

µ), (6.2)

1

2π

∫
Γ

ψ(s) dsj S
−1
R (s, T ), for all ψ ∈ ΨR(S0

µ), (6.3)

depend neither on Γ nor on j ∈ S, and they define bounded operators.

Proof. We reason on the integral (6.2), since (6.3) can be treated in a similar way.

The growth estimates on ψ and on the resolvent operator imply that the
integral (6.2) exists and defines a bounded right-linear operator.

The independence of the choice of θ and of the choice of the path Γ in the
complex plane Cj follows from Cauchy’s integral theorem.

In order to show that the integral (6.2) is independent of the choice of the
imaginary unit j ∈ S, we take an arbitrary i ∈ S with j 6= i.

Let B(0, r) be the ball centered at the origin with radius r; let a0 > 0 and
θ0 ∈ (0, π), n ∈ N. We define the sector Σ(θ0, a0) as

Σ(θ0, a0) := {s ∈ H : arg(s− an) ≥ θn}.

Let θ0 < θs < θp < π and set Us := Σ(θs, 0) ∪ B(0, a0/2) and Up := Σ(θp, 0) ∪
B(0, a0/3), where the indices s and p denote the variables of integration over the
boundary of the respective set. Suppose that Up and Us are Cauchy domains and
∂(Us∩Cj) and ∂(Up∩Ci) are paths that are contained in the sector. Observe that
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ψ(s) is right slice hyperholomorphic on Up, and hence by Theorem 2.1, we have

ψ(T ) =
1

2π

∫
∂(Us∩Cj)

ψ(s) dsj S
−1
R (s, T ) (6.4)

=
1

(2π)2

∫
∂(Us∩Cj)

(∫
∂(Up∩Ci)

ψ(p) dpi S
−1
R (p, s)

)
dsj S

−1
R (s, T ) (6.5)

=
1

2π

∫
∂(Up∩Cj)

ψ(p) dpi

(
1

2π

∫
∂(Us∩Cj)

S−1
R (p, s) dsj S

−1
R (s, T )

)
(6.6)

=
1

2π

∫
∂(Up∩Ci)

ψ(p) dpi S
−1
R (p, T ). (6.7)

To exchange the order of integration we apply Fubini’s theorem. The last equation
follows as an application of the S-functional calculus for unbounded operators,
introduced in the previous chapter, since S−1

R (p,∞) = lims→∞ S−1
R (p, s) = 0. So

we get the statement. �

Thanks to the above theorem the following definitions are well posed.

Definition 6.2.6 (The S-functional calculus for operators of type ω). Let T be an
operator of type ω. Let j ∈ S, and let S0

µ be the sector defined above. Choose a

piecewise smooth path Γ in S0
µ∩Cj that goes from∞ejθ to∞e−jθ, for ω < θ < µ.

Then

ψ(T ) :=
1

2π

∫
Γ

S−1
L (s, T ) dsj ψ(s), for all ψ ∈ ΨL(S0

µ), (6.8)

ψ(T ) :=
1

2π

∫
Γ

ψ(s) dsj S
−1
R (s, T ), for all ψ ∈ ΨR(S0

µ). (6.9)

From the definition of the functional calculus the linearity properties follow
immediately. In fact, if T is an operator of type ω, then ψ(T ), defined in (6.8) and
(6.9), satisfy

(ψa+ ϕb)(T ) = ψ(T )a+ ϕ(T )b, for all ψ,ϕ ∈ ΨL(S0
µ),

(aψ + bϕ)(T ) = aψ(T ) + bϕ(T ), for all ψ,ϕ ∈ ΨR(S0
µ).

For functions ψ that belong to Ψ(S0
µ) both representations can be used. Moreover,

ψ(T ) :=
1

2π

∫
Γ

ψ(s) dsi S
−1
R (s, T )

=
1

2π

∫
Γ

S−1
L (s, T ) dsi ψ(s), for all ψ ∈ Ψ(S0

µ).

Using the S-resolvent equation with similar computations as in the case of bounded
operators, adapted to this case, we can prove the product rule:
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Theorem 6.2.7. Let T be an operator of type ω. Then

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ Ψ(S0
µ), ϕ ∈ ΨL(S0

µ),

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ ΨR(S0
µ), ϕ ∈ Ψ(S0

µ).

6.3 The H∞H∞H∞-Functional Calculus

To define the H∞ functional calculus we suppose that T is an operator of type
ω, and moreover, we assume that it is one-to-one and with dense range. Here we
will consider slice hyperholomorphic functions defined on the open sector S0

µ, for

0 ≤ ω < µ ≤ π, which can grow at infinity as |s|k and at the origin as |s|−k for
k ∈ N. This enlarges the class of functions to which the functional calculus can be
applied. Precisely we make the following definition.

Definition 6.3.1 (Operators of type Ω). Let ω be a real number such that 0 ≤ ω ≤
π. We denote by Ω the set of linear operators T acting on a two-sided quaternionic
Banach space such that:

(i) T is a linear operator of type ω;

(ii) T is one-to-one and with dense range.

Then we define the following function spaces according to the set of operators
defined above:

Definition 6.3.2. Let ω and µ be real numbers such that 0 ≤ ω < µ ≤ π. We set

FL(S0
µ) = {f ∈ SHL(S0

µ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},
FR(S0

µ) = {f ∈ SHR(S0
µ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},

F(S0
µ) = {f ∈ N (S0

µ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0}.

To extend the functional calculus we consider a quaternionic two-sided Ba-
nach space X, the operators in the class Ω, and

• the noncommutative algebra FL(S0
µ) (resp. FR(S0

µ));

• the S-functional calculus Φ for operators of type ω:

Φ : ΨL(S0
µ) (resp. ΨR(S0

µ))→ B(X), Φ : φ→ φ(T );

• the commutative subalgebra of FL(S0
µ) consisting of intrinsic rational func-

tions;

Furthermore, the functions in FL(S0
µ) have at most polynomial growth. So taking

an intrinsic rational functions ψ, the operator ψ(T ) can be defined by the rational
functional calculus.

We assume also that ψ(T ) is injective.
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Definition 6.3.3 (H∞-functional calculus). Let X be a two-sided quaternionic Ba-
nach space and let T ∈ Ω. For k ∈ N consider the function

ψ(s) :=
( s

1 + s2

)k+1

.

For f ∈ FL(S0
µ) and T right linear, we define the extended functional calculus as

f(T ) := (ψ(T ))−1(ψf)(T ). (6.10)

For f ∈ FR(S0
µ) and T left linear, we define the extended functional calculus as

f(T ) := (fψ)(T )(ψ(T ))−1. (6.11)

We say that ψ regularizes f .

In the previous definition the operator (ψf)(T ) (resp. (fψ)(T )) is defined
using the S-functional calculus Φ for operators of type ω, and ψ(T ) is defined by
the rational functional calculus.

Theorem 6.3.4. The definition of the functional calculus in (6.10) and in (6.11)
does not depend on the choice of the intrinsic rational slice hyperholomorphic
function ψ.

Proof. Let us prove (6.10). Suppose that ψ and ψ′ are two different regularizers
and set

A := (ψ(T ))−1(ψf)(T ) and B := (ψ′(T ))−1(ψ′f)(T ).

Observe that since the functions ψ and ψ′ commute, because there are intrinsic
rational functions, one has

ψ(T )ψ′(T ) = (ψψ′)(T ) = (ψ′ψ)(T ) = ψ′(T )ψ(T ),

so we get
(ψ′(T ))−1(ψ(T ))−1 = (ψ(T ))−1(ψ′(T ))−1.

It is now easy to see that

A = (ψ(T ))−1(ψf)(T ) = (ψ(T ))−1(ψ′(T ))−1(ψ′(T ))(ψf)(T ) =

= (ψ′(T ))−1(ψ(T ))−1(ψψ′f)(T )

= (ψ′(T ))−1(ψ(T ))−1ψ(T )(ψ′f)(T )

= (ψ′(T ))−1(ψ′f)(T ) = B,

where we used the fact that from the product rule, see Proposition 6.1.4, we have
that the inverse of ψ(T ) is (1/ψ)(T ). The proof of (6.11) follows in a similar
way. �

We now state an important result for functions in FL(S0
µ) (the same result

with obvious changes holds for functions in FR(S0
µ)).
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Theorem 6.3.5. Let f ∈ F(S0
µ) and g ∈ FL(S0

µ). Then we have

f(T ) + g(T ) ⊂ (f + g)(T ),

f(T )g(T ) ⊂ (fg)(T ),

and D(f(T )g(T )) = D((fg)(T ))
⋂
D(g(T )).

Proof. Let us take ψ1 and ψ2 that regularize f and g, respectively. Observe that
the function ψ := ψ1ψ2 regularizes f , g, f + g, and fg because ψ1, ψ2, and f
commute among themselves. Observe that

f(T ) + g(T ) = (ψ(T ))−1(ψf)(T ) + (ψ(T ))−1(ψg)(T )

⊂ (ψ(T ))−1[(ψf)(T ) + (ψg)(T )]

= (ψ(T ))−1[ψ(f + g)](T ) = (f + g)(T ).

We can consider now the product rule

f(T )g(T ) = (ψ1(T ))−1(ψ1f)(T ) (ψ2(T ))−1(ψ2g)(T )

⊂ (ψ1(T ))−1(ψ2(T ))−1[(ψ1f)(T )(ψ2g)(T )]

= (ψ2(T )ψ1(T ))−1[ψ1(T )ψ2(T )(fg)](T )

= (ψ(T ))−1(ψfg)(T ) = (fg)(T ),

where we have used ψ := ψ1ψ2. Regarding the domains, it is as in the complex
case. �

6.4 Boundedness of the H∞H∞H∞-Functional Calculus

The following convergence theorem is stated for functions in SH∞L (S0
µ), but it holds

also for functions in SH∞R (S0
µ) and is the quaternionic analogue of the theorem

in Section 5 in [165]. The proof follows the proof of the convergence theorem
in [165, p. 216]; we just point out that the convergence theorem is based on the
principle of uniform boundedness that holds also for quaternionic operators.

Theorem 6.4.1 (A Convergence theorem). Suppose that 0 ≤ ω < µ ≤ π and that
T is a linear operator of type ω such that it is one-to-one and with dense range.
Let fα be a net in SH∞L (S0

µ) and let f ∈ SH∞L (S0
µ) and assume that:

(i) there exists a positive constant M such that ‖fα(T )‖ ≤M ;

(ii) for every 0 < δ < λ <∞,

sup{|fα(s)− f(s)| such that s ∈ S0
µ and δ ≤ |s| ≤ λ} → 0.

Then f(T ) ∈ B(V ) and fα(T )u → f(T )u for all u ∈ V , and moreover, ‖f(T )‖ ≤
M .
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In the following we discuss the boundedness of the H∞ functional calculus.
The crucial tool to show the boundedness of the H∞ functional calculus is the
so-called quadratic estimates; see [165].

Definition 6.4.2 (Quadratic estimate). Let T be a right linear operator of type ω
on a quaternionic Hilbert space H and let ψ ∈ Ψ(S0

µ), where 0 ≤ ω < µ ≤ π. We
say that T satisfies a quadratic estimate with respect to ψ if there exists a positive
constant β such that∫ ∞

0

‖ψ(tT )u‖2 dt
t
≤ β2‖u‖2, for all u ∈ H,

where we write ‖u‖ for ‖u‖H.

Let us introduce the notation

Ψ+(S0
µ) = {ψ ∈ Ψ(S0

µ) : ψ(t) > 0 for all t ∈ (0,∞)}

and
ψt(s) = ψ(ts), t ∈ (0,∞).

Theorem 6.4.3. Let 0 ≤ ω < µ ≤ π and assume that T is a right linear operator in
Ω. Suppose that T and its adjoint T ∗ satisfy the quadratic estimates with respect
to the functions ψ and ψ̃ ∈ Ψ+(S0

µ). Suppose that f belongs to SH∞L (S0
µ). Then

the operator f(T ) is bounded, and there exists a positive constant C such that

‖f(T )‖ ≤ C‖f‖∞ for all f ∈ SH∞L (S0
µ).

Proof. We follow the proof of Theorem on p. 221 in [165], and we point out the

differences. We observe that we choose the functions ψ, ψ̃, and η in the space of
intrinsic functions Ψ+(S0

µ) because the pointwise product

ϕ(s) := ψ(s)ψ̃(s)η(s)

has to be slice hyperholomorphic, and moreover, η has to be such that∫ ∞
0

ϕ(t)
dt

t
= 1.

For f ∈ SH∞L (S0
µ) let us define

fε,R(s) =

∫ R

ε

(ϕtf)(s)
dt

t
.

Using the quadratic estimates it follows that there exists a positive constant C
such that

‖fε,R(T )‖ ≤ C‖f‖∞.
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The convergence theorem (Theorem 6.4.1) gives the formula

f(T )u = lim
ε→0

lim
R→∞

fε,R(T )u for all u ∈ H,

where (ηtf)(T ) is defined by the S-functional calculus

(ηtf)(T ) =
1

2π

∫
Γ

S−1
L (s, T ) dsi ηt(s)f(s), for all f ∈ ΨL(S0

µ),

since ηtf ∈ ΨL(S0
µ) because ηt is intrinsic. Precisely, the quadratic estimates and

some computations show that there exists a positive constant Cβ such that

|〈fε,R(T )u, v〉| ≤ Cβ sup
t∈(0,∞)

‖(ηtf)(T )‖‖u‖‖v‖.

Since

‖(ηtf)(T )‖ ≤ 1

2π
‖f‖∞ sup

i∈S

∫
Γ

‖S−1
L (s, T )‖|dsi| |ηt(s)|

≤ 1

2π
sup
i∈S
‖f‖∞

∫
Γ

Cη
|s|
|dsi|

c|s|α

1 + |s|2α

≤ CT (µ, η)‖f‖∞,

from the above estimates we get the statement. �

6.5 Comments and Remarks

To study fractional diffusion and fractional evolution problems we need a more
involved and refined version of the H∞-functional calculus in the quaternionic
setting, which is beyond the aim of this book. For more details see the papers
[50–52], where the fractional powers of quaternionic operators and applications
are treated. In the paper [53], the authors introduced the so-called S-spectrum
approach to fractional diffusion processes, which allows one to study very general
fractional diffusion problems. This strategy is largely explained in the monograph
[56]. The new approach to fractional diffusion problems will be explained without
too many technical details in the following subsection.

6.5.1 Comments on Fractional Diffusion Processes

We denote by u the temperature on and by q the heat flow, and we set the thermal
diffusivity equal to 1. The heat equation is then deduced from the two laws

q = −∇u (Fourier’s law), (6.12)

∂tu+ divq = 0 (conservation of energy), (6.13)
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where u and q are defined on R3, and Fourier’s law is substituted into the equation
for conservation of energy, that is,

∂tu−∆u = 0.

The fractional heat equation is an alternative model that takes into account non-
local interactions, and it is obtained by replacing the negative Laplacian in the
heat equation by its fractional power, so that

∂tu+ (−∆)αu = 0, α ∈ (0, 1), (6.14)

where the fractional Laplacian is given by

(−∆)αu(x) = c(n, α)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy,

and the integral is defined in the sense of the principal value, c(n, α) is a known
constant, and u : Rn → R must belong to a suitable function space.

The approach with the fractional powers of quaternionic operators defined
via the H∞-functional calculus is different, very general, and in the case q = −∇u
it reduces to the fractional Laplace operator.

Precisely, we identify

R3 ∼= {s ∈ H : Re(s) = 0},

and we consider the gradient ∇ the quaternionic Nabla operator

∇ = e1∂x1 + e2∂x2 + e3∂x3 .

Instead of replacing the negative Laplacian in the heat equation by (−∆)α, we
want to replace the gradient in (6.12) by its fractional power ∇α, and then we
replace it in the law of conservation of energy. We proceed as follows:

• Since sα is not defined on (−∞, 0), and on L2(R3,H) it is σS(∇) = R, we
consider the projections of the fractional powers of ∇α, indicated by fα(∇),
to the subspace associated with the subset [0 +∞) of the S-spectrum of ∇,
on which the function sα is well defined.

• Then we take just the vector part Vect(fα(∇)) = e1T1 + e2T2 + e3T3 of the
quaternionic operator fα(∇) = T0 + e1T1 + e2T2 + e3T3 so that we can apply
the divergence operator.

We point out that the above procedure applied to the gradient operator gives the
classical result. Indeed, the definition of ∇α only on the subspace associated to
[0,∞) is given by

fα(∇)v =
1

2π

∫
−jR

S−1
L (s,∇) dsj s

α∇v,
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for v : R3 → H in D(∇). This corresponds to the Balakrishnan formula, which is
a consequence of the quaternionic H∞-functional calculus, in which only positive
spectral values are taken into account. With this definition and the surprising
expression for the left S-resolvent operator

S−1
L (−jt,∇) = (−jt+∇) (−t2 + ∆)−1︸ ︷︷ ︸

=R−t2 (−∆)

,

the operator fα(∇), with some computations, becomes

fα(∇)v =
1

2
(−∆)

α
2−1∇2v︸ ︷︷ ︸

Scalfα(∇)v

+
1

2
(−∆)

α−1
2 ∇v︸ ︷︷ ︸

=Vecfα(∇)v

.

We define the scalar part of the operator fα(∇) applied to v as

Scalfα(∇)v :=
1

2
(−∆)

α
2−1∇2v,

and the vector part as

Vecfα(∇)v :=
1

2
(−∆)

α−1
2 ∇v.

Now we observe hat

divVecfα(∇)v = −1

2
(−∆)

α
2 +1v.

This proves that in the case of the gradient, we get the same result, which is the
fractional Laplacian. The fractional heat equation for α ∈ (1/2, 1),

∂tu(t, x) + (−∆)αu(t, x) = 0,

can hence be written as

∂tu(t, x)− 2div (Vecfβ(∇)u) = 0, β = 2α− 1.

We point out that the operator fα(∇) can be applied to vector-valued functions v.
For an application to the heat equation it is applied to the scalar-valued function
u that represents the temperature. The quaternionic fractional powers approach
is very general, and it is applicable to a large class of operators such as

∇̃ = e1 a(x)∂x1
+ e2 b(x)∂x2

+ e3 c(x)∂x3
,

where a, b, c are suitable real-valued functions that depend on the space variables
x = (x1, x2, x3) and possibly also on time. For every suitable vector operator T ,
we define a new fractional evolution equation as

∂tu(t, x)− 2div (Vecfβ(T )u) = 0.
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For example, a new fractional evolution equation can be deduced when we consider
the following Fourier’s law:

T = e1x1∂x1 + e2x2∂x2 + e3x3∂x3 .

Working in the space L2(R3
+,H, dµ) with

R3
+ = {e1x1 + e2x2 + e3x3 : x` > 0}

and dµ = (x1x2x3)−1dx, we get the operator

Vecfβ(T )v(ξ)

=
1

2(2π)3

∫
R3

∫
R3

−|y|2αee1
∑3
k=1 ξkyke−e1x·y

ex1vξ1(ex1 , ex2 , ex3)
ex2vξ2(ex1 , ex2 , ex3)
ex3vξ3(ex1 , ex2 , ex3)

 dx dy.

We point out that the fractional powers of the operator q(x, ∂x) are very useful for
inhomogeneous materials, and this approach has several advantages: It modifies
the Fourier law but keeps the law of conservation of energy, and it is applicable
to a large class of operators that includes the gradient but also operators with
variable coefficients such as the operator q(x, ∂x). Moreover, q can also depend on
time.

The fact that we keep the evolution equation in divergence form allows an
immediate definition of the weak solution of the fractional evolution problem.

To represent the fractional powers of an operator T we have to write an
explicit expression for the inverse of the operator T 2 − 2s0T + |s|2I, and this can
be done on bounded or unbounded domains.



Chapter 7

The FFF -Functional Calculus for
Bounded Operators

The Fueter mapping theorem in integral form introduced in [86], see Chapter 2.2,
provides an integral transform that turns slice hyperholomorphic functions into
Fueter regular ones. By formally replacing the scalar variable in this integral trans-
form by an operator T , we obtain a functional calculus for Fueter regular functions
that is based on the theory of slice hyperholomorphic functions. The F -functional
calculus was introduced and studied in the following papers [54,78,81,86].

7.1 The FFF -Resolvent Operators and the FFF -Functional

Calculus

We begin our discussion with the feasibility of this functional calculus.

Definition 7.1.1. For m ∈ N and q ∈ H we consider the Fueter regular polynomials

Pm(q) := ∆qm. (7.1)

Lemma 7.1.2. We have P0 ≡ P1 ≡ 0 and P2 ≡ −4. Furthermore, for even m ≥ 2,
we have

Pm(q) = m(m− 1)qm−2 + 2Re

(
3∑
`=1

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ

)
, (7.2)

and for odd m ≥ 2 we have

Pm(q) = m(m− 1)qm−2 + 2Im

(
3∑
`=1

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ

)
. (7.3)
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Proof. The identities P0 ≡ P1 ≡ 0 and P2 = −4 follow by straightforward com-
putations. Thus assume that m ≥ 2.

For q = q0 + q = q0 +
∑3
`=1 q`e` ∈ H, we have

qm =
m∑
k=0

(
m

k

)
qk0q

m−k,

and so

∂2

∂q2
0

qm =
m∑
k=2

(
m

k

)
k(k − 1)qk−2

0 qm−k =
m∑
k=2

m!

(m− k)!(k − 2)!
qk−2
0 qm−k

= m(m− 1)
m−2∑
k=0

(m− 2)!

(m− k)!(k − 2)!
qk0q

m−2−k = m(m− 1)qm−2.

Furthermore, observe that for 1 ≤ ` ≤ 3 we have

∂

∂q`
qr =

r−1∑
κ=0

qκe`q
r−1−κ. (7.4)

For r = 1, we have ∂
∂q`

q = e`, and so (7.4) holds. If, on the other hand, (7.4)
holds for r − 1, then

∂

∂q`
qr =

(
∂

∂q`
q

)
qr−1 + q

(
∂

∂q`
qr−1

)
= e`q

r−1 +
r−2∑
κ=0

qk+1e`q
r−2−κ =

r−1∑
κ=0

qκe`q
r−1−κ.

Applying this identity twice, we obtain

∂

∂q`
qm =

m−1∑
κ=1

(
∂

∂q`
qκ
)
e`q

m−1−κ +
m−2∑
κ=0

qκe`

(
∂

∂q`
qm−1−κ

)

=

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ +

m−2∑
κ=0

m−2−κ∑
s=0

qκe`q
se`q

m−2−κ−s

=
m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ +
m−1∑
κ=1

κ−1∑
s=0

qm−1−κe`q
κ−1−se`q

s

=
m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ + (−1)m
m−1∑
κ=1

κ−1∑
s=0

qse`qκ−1−se`qm−1−κ,

where the last identity follows from

qm−1−κe`qκ−1−se`qs = qs e` qκ−1−s e` qm−1−κ

= (−1)mqse`q
κ−1−se`q

m−1−κ
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because q = −q, since q is purely imaginary. Therefore, we obtain

∆qm =
∂2

∂q2
0

qm +
3∑
`=1

∂

∂q2
`

qm = m(m− 1)qm−2

+
3∑
`=1

m−1∑
κ=1

κ−1∑
s=0

qse`q
κ−1−se`q

m−1−κ

+ (−1)m
m−1∑
κ=1

κ−1∑
s=0

qse`qκ−1−se`qm−1−κ,

which yields (7.2) resp. (7.3). �

Definition 7.1.3 (Fueter kernel series). Let s, q ∈ H. We define the left Fueter
kernel series as ∑

m≥2

Pm(q)s−1−m,

and the right Fueter kernel series as∑
m≥2

s−1−mPm(q).

Proposition 7.1.4. For s, q ∈ H with |q| < |s|, the left and right Fueter kernel
series converge.

Proof. Because of (7.2) and (7.3), we have for m ≥ 2 that

|Pm(q)| ≤ m(m− 1)|q|m−2 + 2
3∑
`=1

m−1∑
k=1

κ−1∑
s=0

|q|m−2

= m(m− 1)|q|m−2 + 3m(m− 1)|q|m−2 = 4m(m− 1)|q|m−2.

If |q| < |s|, we therefore have for the left Fueter kernel series∑
m≥2

|Pm(q)s−1−m| ≤ 4
∑
m≥2

m(m− 1)|q|m−2|s−1−m| < +∞,

and the convergence of the right Fueter kernel series is shown similarly. �

The Fueter kernel series are the Taylor series expansions of the Fueter kernels
FL(s, q) and FR(s, q) introduced in Definition 2.2.5. They are their slice hyper-
holomorphic Taylor expansions in the variable s at infinity and the Fueter regular
Taylor expansions in the variable q at 0; cf. the Comments and Remarks in Sec-
tion 7.6.
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Lemma 7.1.5. For |q| < |s|, we have

FL(s, q) =
+∞∑
n=0

Pm(q)s−1−m and FR(s, q) =
+∞∑
n=0

s−1−mPm(q).

Proof. Due to the Taylor series expansion S−1
L (s, q) =

∑+∞
n=0 q

ns−1−n of the left
Cauchy kernel in Theorem 2.1.22, we have

FL(s, q) = ∆S−1
L (s, q) =

+∞∑
n=0

∆qns−1−n =

+∞∑
n=2

Pn(q)s−1−n,

where we are allowed to exchange the Laplacian with the sum because of the
uniform convergence shown in Proposition 7.1.4.

The series of the right Fueter kernel follows similarly from the Taylor series
expansion of the right Cauchy kernel. �

Because of the above considerations, we can define the Fueter kernel operator
series by formally replacing q in the Fueter kernel series by the operator T with
commuting components.

Definition 7.1.6 (Fueter kernel operator series). Let T = T0 +
∑3
`=1 T`e` ∈ BC(X).

For s ∈ H with ‖T‖ < |s|, we define the left Fueter kernel operator series as∑
m≥2

Pm(T )s−1−m

and the right Fueter kernel operator series as∑
m≥2

s−1−mPm(T ).

Proposition 7.1.7. Let T = T0 +
∑3
`=1 T`e` ∈ BC(X). For s ∈ H with ‖T‖ < |s|,

we have ∑
m≥2

Pm(T )s−1−m = −4(sI − T )Qc,s(T )−2 (7.5)

and ∑
m≥2

s−1−mPm(T ) = −4Qc,s(T )−2(sI − T ) (7.6)

with Qc,s(T ) = s2I − 2sT0 + TT , where T = T0 −
∑3
`=1 T`e`.

Proof. Using Theorem 2.1.22 and Theorem 2.2.2 we get∑
m≥2

Pm(q)s−1−m = ∆

+∞∑
m=0

qms−1−m

= ∆S−1
L (s, q) = −4(s− q)(s2 − 2Re(q)s+ |q|2)−2.

The fact that the components of T commute allows us to substitute T for q; thus
we get the statement. �
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Remark 7.1.8. We point out an important fact related to the Fueter mapping
theorem in integral form. As we could observe in the proof of Theorem 2.2.2, the
computation

−∆(q2 − 2qRe(s) + |s|2)−1(q − s)
= −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2

can be carried out in a natural way only if we write S−1
L (s, q) in form II. The

function S−1
L (s, q) can be written in two different ways because the components

of q commute. Unfortunately, form II involves the term |q|2 = qq = qq, and this
identity requires that the components of x commute. This has implications on the
functional calculus when one tries to replace q by an operator T . In this case we
have to require that the components of T commute. When we write S−1

L (s, q) in
form I, then we can replace q by an operator T whose components do not neces-
sarily commute, because only actual powers q and not powers of its components
appear. But in this case the explicit computation of ∆S−1

L (s, q) does not yield a
simple closed from.

Recall that the S-resolvent set of T ∈ BC(X) can, by Theorem 4.5.6, be
characterized as

ρS(T ) =
{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
,

where
Qc,s(T ) = s2I − 2sT0 + TT .

Definition 7.1.9 (F -resolvent operators). Let T ∈ BC(X). For s ∈ ρS(T ), we define
the left F -resolvent operator as

FL(s, T ) := −4
(
sI − T

)
Qc,s(T )−2, (7.7)

and the right F -resolvent operator as

FR(s, T ) := −4Qc,s(T )−2
(
sI − T

)
. (7.8)

Lemma 7.1.10. Let T ∈ BC(X).

(i) The left F -resolvent operator FL(s, T ) is a B(X)-valued right slice hyperholo-
morphic function of the variable s on ρS(T ).

(ii) The right F -resolvent operator FR(s, T ) is a B(X)-valued left slice hyperholo-
morphic function of the variable s on ρS(T ).

Proof. The statement follows by computations that are similar to those in Lemma
3.1.11. �

If f is a left or right slice hyperholomorphic function, then the function
f̆ = ∆f is a left, resp. right, Fueter regular function by the Fueter mapping
theorem. We showed in Theorem 2.2.6 that f̆ can be represented as the integral
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transform of f involving the left, resp. right, Fueter kernel. If we replace in this
integral representation the Fueter kernel by the F -resolvent operator, we obtain
the F -functional calculus.

Definition 7.1.11 (The F -functional calculus for bounded operators). Let T ∈
BC(X) and set dsj = ds(−j) for j ∈ S. For every function f̆ = ∆f with f ∈
SHL(σS(T )), we set

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s), (7.9)

where U is an arbitrary bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂
D(f) and j ∈ S is an arbitrary imaginary unit.

For every function f̆ = ∆f with f ∈ SHR(σS(T )), we set

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj FR(s, T ) (7.10)

with U and j as above.

Theorem 7.1.12. The F -functional calculus is well defined, that is, the integrals
in (7.9) and (7.10) depend neither on the imaginary unit j ∈ S nor on the slice
Cauchy domain U .

Proof. We discuss only the case f̆ = ∆f with f ∈ SHL(σS(T )), since the other
one follows by analogous arguments.

Since FL(s, T ) is a right slice hyperholomorphic function in s and f is left
slice hyperholomorphic, the independence from U follows from the Cauchy integral
theorem, cf. also the proof of Theorem 3.2.6.

In order to show the independence from the imaginary unit, we choose j, i ∈ S
with j 6= i and two bounded slice Cauchy domains Up, Us with σS(T ) ⊂ Uq,
Uq ⊂ Us, and Us ⊂ D(f). Then every s ∈ ∂(Us ∩ Cj) belongs to the unbounded
slice Cauchy domain H \ Uq. Since we have limq→+∞ FL(q, T ) = 0, the slice hy-
perholomorphic Cauchy formula implies

FL(s, T ) =
1

2π

∫
∂(H\Uq∩Ci)

FL(q, T ) dqi S
−1
R (q, s)

=
1

2π

∫
∂(Uq∩Ci)

FL(q, T ) dqi S
−1
L (s, q),

where the last identity holds because ∂(H\Uq∩Ci) = −∂(Uq∩Ci) and S−1
R (q, s) =

−S−1
L (s, q). Thus

f̆(T ) =
1

2π

∫
∂(Us∩Cj)

FL(s, T ) dsjf(s)

=
1

2π

∫
∂(Us∩Cj)

(
1

2π

∫
∂(Uq∩Ci)

FL(q, T ) dqi S
−1
L (s, q)

)
dsjf(s).
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Since the integrand is continuous and the path of integration is bounded, Fubini’s
theorem allows us to exchange the order of integration, and we obtain

f̆(T ) =
1

2π

∫
∂(Uq∩Ci)

FL(q, T ) dqi

(
1

2π

∫
∂(Us∩Cj)

S−1
L (s, q) dsjf(s)

)

=
1

2π

∫
∂(Us∩Ci)

FL(q, T ) dqi f(q). �

Remark 7.1.13. In the above theorem we have shown that the F -functional cal-
culus is well defined, in the sense that the integrals in (7.9) and (7.10) depend
neither on the imaginary unit j ∈ S nor on the slice Cauchy domain U . However,
if f ∈ SHL(U), it might happen that f̆ = ∆f = ∆g = ğ for some g ∈ SHL(U)

with f 6= g, and we did not show that then f̆(T ) = ğ(T ). The function f − g is
in this case a left slice hyperholomorphic function in ker ∆. If U is connected, we
hence have f(s)− g(s) = sα+ β with α, β ∈ H and so

f̆(T )− ğ(T ) =
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj (f(s)− g(s))

=
1

2π

∫
∂(Br(0)∩Cj)

FL(s, T ) dsj (sα− β),

where we used Cauchy’s integral theorem and the slice hyperholomorphicity of
FL(s, T ) in s in order to change the domain of integration to Br(0) with ‖T‖ < r.
From the power series expansion FL(s, T ) =

∑
m≥2 Pm(T )s−1−m in (7.5), we

conclude now that

f̆(T )− ğ(T ) =
1

2π

∫
∂(Br(0)∩Cj)

∑
m≥2

Pm(T )s−1−mdsj(sα+ β)

=
∑
m≥2

Pm(T )
1

2π

∫
∂(Br(0)∩Cj)

s−1−mdsj(sα+ β) = 0

by Cauchy’s integral theorem since the integrand tends to 0 at infinity. If, however,
U is not connected, then f(s) − g(s) =

∑n
`=1 χU`(s)(sα` − β`), where U`, ` =

1, . . . , n are the connected components of U and χU` denotes the characteristic
function of U`. Hence, we have

f̆(T )− ğ(T ) =
n∑
`=1

1

2π

∫
∂(U`∩Cj)

FL(s, T ) dsj(sα` − β`),

and we cannot use the same arguments as above in order to show that the terms
in the sum vanish, because FL(s, T ) is not slice hyperholomorphic on H \U` since
this set contains part of the S-spectrum of T . In this case, the terms vanish
because of Lemma 7.4.1. The proof of this lemma makes, however, use of the
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monogenic functional calculus by A. McIntosh. This functional calculus makes
the assumptions that T = T1e1 + T2e2 + T3e3, that is, T0 = 0, with commuting
components T` that have real spectrum. Only if this condition is satisfied we have
f̆(T ) = ğ(T ) also if U is not connected. If this condition is not satisfied, it is in
general not true and it is easy to construct counter-examples even using matrices
in H2×2.

We conclude this section with some algebraic properties of the F -functional
calculus.

Proposition 7.1.14. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and
assume that the operators T`, ` = 1, 2, 3, have real spectrum.

(i) If f̆ = ∆f and ğ = ∆g with f, g ∈ SHL(σS(T )) and a ∈ H, then

(f̆a+ ğ)(T ) = f̆(T )a+ ğ(T ).

(ii) If f̆ = ∆f and ğ = ∆g with f, g ∈ SHR(σS(T )) and a ∈ H, then

(af̆ + ğ)(T ) = af̆(T ) + ğ(T ).

Proof. The above identities follow immediately from the linearity of the integrals
in (7.9), resp. (7.10). �

Proposition 7.1.15. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and
assume that the operators T`, ` = 1, 2, 3, have real spectrum.

(i) Let f̆ = ∆f with f ∈ SHL(σS(T )) and assume that f(q) =
∑+∞
`=0 q

`a` with
a` ∈ H, where this series converges on a ball Br(0) with σS(T ) ⊂ Br(0).
Then

f̆(T ) =
+∞∑
`=2

P`(T )a`.

(ii) Let f̆ = ∆f with f ∈ SHR(σS(T )) and assume that f(q) =
∑+∞
`=0 a`q

` with
a` ∈ H, where this series converges on a ball Br(0) with σS(T ) ⊂ Br(0).
Then

f̆(T ) =
+∞∑
`=2

a`P`(T ).

Proof. We prove (i), but (ii) is shown similarly. We choose an imaginary unit j ∈ S
and a radius 0 < R < r such that σS(T ) ⊂ BR(0). Then the series expansion of f
converges uniformly on ∂(BR(0) ∩ Cj), and so

f̆(T ) =
1

2π

∫
∂(BR(0)∩Cj)

FL(s, T ) dsj

+∞∑
`=0

s`a`

=
1

2π

+∞∑
`=0

∫
∂(BR(0)∩Cj)

FL(s, T ) dsj s
`a`.
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Replacing FL(s, T ) by its series expansion, we further obtain

f̆(T ) =
1

2π

+∞∑
`=0

∫
∂(BR(0)∩Cj)

+∞∑
k=2

Pk(T )s−1−k dsj s
`a`

=
1

2π

+∞∑
`=0

+∞∑
k=2

Pk(T )

∫
∂(BR(0)∩Cj)

s−1−k dsj s
`a` =

∑
`≥0

P`(T )a`,

because the integral
∫
∂(BR(0)∩Cj) s

−1−k dsj s
` equals 2π if ` = k, and 0 otherwise.

�

Theorem 7.1.16. Let T ∈ BC(X) be such that T = T1e1 +T2e2 +T3e3, and assume

that the operators T`, ` = 1, 2, 3, have real spectrum. Let f̆ = ∆f and f̆m =
∆fm,m ∈ N, with f, fm ∈ SHL(σS(T )) and assume that fm tends uniformly to f

on an axially symmetric open set O that contains σS(T ). Then f̆m tends uniformly

to f̆ on σS(T ) and f̆m(T )→ f̆(T ) in B(X).

Proof. Let U be a slice Cauchy domain with σS(T ) ⊂ U and U ⊂ O and choose
j ∈ S. Then

f̆m(q)− f̆(q) =
1

2π

∫
∂(U∩Cj)

(fm(s)− f(s)) dsj FL(s, q).

Since dist(σS(T ), ∂(U ∩ Cj)) > 0, we have

C := sup
s∈∂(U∩Cj)
q∈σS(T )

|FL(s, q)| < +∞,

and so ∣∣∣f̆m(q)− f̆(q)
∣∣∣ ≤ C

2π
|∂(U ∩ Cj)| sup

s∈∂(U∩Cj)
|fm(s)− f(s)|,

and hence f̆m → f̆ uniformly on σS(T ). Similarly, we have∥∥∥f̆m(T )− f̆(T )
∥∥∥ =

∥∥∥∥∥ 1

2π

∫
∂(U∩Cj)

(fm(s)− f(s)) dsj FL(s, T )

∥∥∥∥∥
≤ |∂(U ∩ Cj)|

2π
sup

s∈∂(U∩Cj)
‖FL(s, T )‖ sup

s∈∂(U∩Cj)
|fm(s)− f(s)| m→+∞−→ 0. �

7.2 Bounded Perturbations of the FFF -Resolvent

We point out that the inverses of the F -resolvents

FL(s, T )−1 = −1

4
Qc,s(T )SL(s, T ) = −1

4
Qc,s(T )2(sI − T )−1,

FR(s, T )−1 = −1

4
SR(s, T )Qc,s(T ) = −1

4
(sI − T )−1Qc,s(T )2,
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exist for every s /∈ σL(T ).

Lemma 7.2.1. Let T,Z ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, Z =
Z1e1 + Z2e2 + Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real
spectrum. Assume that s 6∈ σL(T ) ∪ σL(Z). Then there exists a positive constant
CZ,T (s) depending on s and also on the operators T and Z such that

‖FL(s, T )−1 − FL(s, Z)−1‖ ≤ CZ,T (s)(|s|+ ϑ)−2‖T − Z‖, (7.11)

‖FR(s, T )−1 − FR(s, Z)−1‖ ≤ CZ,T (s)(|s|+ ϑ)−2‖T − Z‖, (7.12)

where ϑ := max{‖T‖, ‖Z‖}.

Proof. Since we have for s ∈ ρS(T ) that

FL(s, T ) := −4S−1
L (s, T )Qc,s(T )−1, (7.13)

the inverse FL(s, T )−1 exists for s 6∈ σL(T ), and it is given by

FL(s, T )−1 = −1

4
Qc,s(T )SL(s, T ), (7.14)

while the inverse of the operator FL(s, Z) exists for s 6∈ σL(Z), and it is given by

FL(s, Z)−1 = −1

4
Qc,s(Z)SL(s, Z). (7.15)

We have

− 4
(
FL(s, T )−1 − FL(s, Z)−1

)
= Qc,s(T )SL(s, T )−Qc,s(Z)SL(s, Z)

= Qc,s(T )SL(s, T )−Qc,s(T )SL(s, Z)

+Qc,s(T )SL(s, Z)−Qc,s(Z)SL(s, Z)

= Qc,s(T ) [SL(s, T )− SL(s, Z)]

+ [−s(T + T ) + TT + s(Z + Z)− ZZ)] SL(s, Z)

= Qc,s(T ) [SL(s, T )− SL(s, Z)]

+ [s(Z − T + Z − T ) + (T − Z)T + Z(T − Z)] SL(s, Z),

and taking the norm, we get∥∥FL(s, T )−1 − FL(s, Z)−1
∥∥

≤ (|s|2 + 2|s| ‖T‖+ ‖TT‖)‖SL(s, T )− SL(s, Z)‖
+
[
2|s| ‖Z − T‖+ ‖T − Z‖(‖T‖+ ‖Z‖)

]
‖SL(s, Z)‖

≤ (|s|+ ϑ)2‖SL(s, T )− SL(s, Z)‖
+
[
2(|s|+ ϑ)‖Z − T‖)

]
‖SL(s, Z)‖.
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Now observe that

(|s|+ ϑ)−1‖SL(s, Z)‖
≤ (|s|+ ϑ)−1

[
|s|+ ‖(sI − Z)‖ ‖Z‖ ‖(sI − Z)−1‖

]
:= MZ(s),

(7.16)

where MZ(s) is a continuous function, since s 6∈ σL(Z). Using Lemma 4.6.3, we
get ∥∥FL(s, T )−1 − FL(s, Z)−1

∥∥ ≤ 1

4
[KZ(s) + 2M(s)](|s|+ ϑ)2‖Z − T‖, (7.17)

and KT,Z(s) is defined in (4.25). We can argue similarly for FR(s, T )−1. �

Lemma 7.2.2. Let T,Z ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, Z =
Z1e1 + Z2e2 + Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real
spectrum. Assume that s ∈ ρS(T ), let s 6∈ σL

(
T
)
∪ σL

(
Z
)
, and suppose that

‖T − Z‖ < 1

CZ,T (s)
(|s|+ ϑ)−2‖FL(s, T )‖−1,

where CZ,T (s) is defined in Lemma 7.2.1. Then s ∈ ρS(Z) and

FL(s, Z)− FL(s, T ) = FL(s, T )

+∞∑
m=1

[(
FL(s, T )−1 − FL(s, Z)−1

)
F−1
L (s, T )

]m
.

An analogous statement holds for F−1
R (s, T ).

Proof. By Lemma 3.1.12 and formula (3.2) with

A := (FL(s, T ))−1, B := (FL(s, Z))−1, A−1 = FL(s, T ), (7.18)

we have for B−1 = FL(s, Z) that

FL(s, Z) = FL(s, T )

+∞∑
m=0

[
(FL(s, T ))−1 − (FL(s, Z))−1FL(s, T )

]m
. (7.19)

Using the hypothesis, we find that the series converges, since

‖(FL(s, T )− FL(s, Z))F−1
L (s, T )‖

≤ ‖(FL(s, T )− FL(s, Z))‖ ‖F−1
L (s, T )‖

≤ CZ,T (s)(|s|+ ϑ)2‖Z − T‖ ‖F−1
L (s, T )‖ < 1. �

Theorem 7.2.3. Let T,Z ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, Z =
Z1e1 + Z2e2 + Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real
spectrum. Assume that s ∈ ρS(T ) and s 6∈ σL(T ) ∪ σL(Z). Let ε > 0 and let
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us consider the ε-neighborhood Bε(σS(T ) ∪ σL(T )) of σS(T ) ∪ σL(T ). Then there
exists δ > 0 such that, for ‖T − Z‖ < δ, we have

σS(Z) ⊆ Bε(σS(T ) ∪ σL(T ))

and
‖FL(s, Z)− FL(s, T )‖ < ε, for s 6∈ Bε(σS(T ) ∪ σL(T )).

An analogous statement holds for the right F -resolvent.

Proof. Let T,Z ∈ BC(X) and let ε > 0. Thanks to Lemma 3.1.12 there exists
η > 0 such that if

‖T − Z‖ < η,

then σL(Z)⊂Bε(σL(T )). So we can always choose η such that σL(Z) ⊂ Bε(σS(T )∪
σL(T )). Consider the function CZ,T (s) defined in Lemma 7.2.1. The constant

Cε := sup
s6∈Bε(σS(T )∪σL(T ))

CZ,T (s)

is finite because s 6∈ B(σS(T ) ∪ σL(T , ε) and

lim
s→∞

‖(sI − Z)−1‖ = lim
s→∞

‖(sI − T )−1‖ = 0.

Observe that since s ∈ ρS(T ), the map s 7→ ‖FL(s, T )‖ is continuous, and

lim
s→∞

‖FL(s, T )‖ = 0,

and so for s in the complement set of Bε(σS(T )∪ σL(T ) we have that there exists
a positive constant Mε such that

‖FL(s, T )‖ ≤Mε.

From Lemma 7.2.2, we find that if δ1 > 0 is such that

‖Z − T‖ < 1

CεMε
:= δ3,

then s ∈ ρS(Z) and

‖F−1
L (s, Z)− F−1

L (s, T )‖

≤
‖F−1

L (s, T )‖2 ‖FL(s, T )− FL(s, Z)‖
1− ‖F−1

L (s, T )‖ ‖FL(s, T )−F(s, Z)‖

≤ M2
εCn,ε‖Z − T‖

1−MεCn,ε‖Z − T‖
< ε

if we take
‖Z − T‖ < δ4 :=

ε

Cn,ε(M2
ε + εMε)

.

To get the statement it suffices to set δ = min{η, δ3, δ4}. �
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Theorem 7.2.4. Let T,Z ∈ BC(X) be such that T = T1e1+T2e2+T3e3, Z = Z1e1+
Z2e2 +Z3e3, and assume that the operators T`, Z`, ` = 1, 2, 3, have real spectrum.
Let f ∈ SHL(σS(T )) (or f ∈ SHR(σS(T ))) and let ε > 0. Then there exists δ > 0
such that for ‖Z − T‖ < δ, we have f ∈ SHL(σS(Z)) (or f ∈ SHR(σS(Z))) and

‖f̆(Z)− f̆(T )‖ < ε.

Proof. We recall that

f̆(T ) =
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s),

where U ⊂ H is a bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f)
and where j ∈ S. Let furthermore Bε(σS(T )∪σL(T )) be contained in U . By Lemma
7.2.3 there exists δ1 > 0 such that σS(Z) ⊂ U for ‖Z − T‖ < δ1. Consequently
f ∈ SHL(σS(Z)) if ‖Z −T‖ < δ1. By Lemma 7.2.3, FL(s, T ) is uniformly close to
FL(s, Z) with respect to s ∈ ∂(U ∩ Cj) for j ∈ S if ‖Z − T‖ is small enough. So
for some positive δ ≤ δ1, we get

‖f̆(T )− f̆(Z)‖ ≤ 1

2π
‖
∫
∂(U∩Cj)

[FL(s, T )− FL(s, Z)] dsj f(s)‖ < ε.

We can argue similarly if f ∈ SHR(U). �

7.3 The FFF -Resolvent Equations

The F -resolvents satisfy a relation that can be considered a generalized resolvent
equation. In particular, they allow one to show that the F -functional calculus
is capable of generating projections onto subspaces that are invariant under the
operator.

Theorem 7.3.1 (Left and right F -resolvent equations). Let T ∈ BC(X) and let
s ∈ ρS(T ). The F-resolvent operators satisfy the equations

FL(s, T )s− TFL(s, T ) = −4Qc,s(T )−1 (7.20)

and
sFR(s, T )− FR(s, T )T = −4Qc,s(T )−1. (7.21)

Proof. We prove relation (7.20), since (7.21) follows with similar computations.
We have

FL(s, T )s = −4(sI − T )sQc,s(T )−2

and
TFL(s, T ) = −4(Ts− TT )Qc,s(T )−2.

Taking the difference, we obtain

FL(s, T )s− TFL(s, T ) = −4(s2I − s(T + T ) + TT )Qc,s(T )−2

= −4Qc,s(T )−1. �
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Lemma 7.3.2. Let T ∈ BC(X). For q, s ∈ ρS(T ), with s 6∈ [q] and with the position
Qs(q) = q2 − 2Re(s)q + |s|2, the following equation holds:

FR(s, T )S−1
L (q, T ) + S−1

R (s, T )FL(q, T )− 4Qc,s(T )−1Qc,q(T )−1

=
[

(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1. (7.22)

Proof. We consider the S-resolvent equation (3.7) and write the S-resolvent oper-
ators in the form (4.20) and (4.21) for operators with commuting components. If
we multiply it on the left by −4Qc,s(T )−1, we get

FR(s, T )S−1
L (q, T ) =

[ (
FR(s, T ) + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
FR(s, T ) + 4Qc,s(T )−1S−1

L (q, T )
) ]
Qs(q)−1.

If we multiply the S-resolvent equation on the right by −4Qc,q(T )−1, we get

S−1
R (s, T )FL(q, T ) =

[ (
S−1
R (s, T )(−4)Qc,q(T )−1 − FL(q, T )

)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 − FL(q, T )

) ]
Qs(q)−1.

Adding these two equations yields

FR(s, T )S−1
L (q, T ) + S−1

R (s, T )FL(q, T )

= [(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))]Qs(q)−1

+
[ (
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)]
Qs(q)−1.

The proof is concluded if we verify that[ (
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)]
Qs(q)−1

= 4Qc,s(T )−1Qc,q(T )−1.

This follows from(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)
q

− s̄
(
S−1
R (s, T )(−4)Qc,q(T )−1 + 4Qc,s(T )−1S−1

L (q, T )
)

= −4
[(
Qc,s(T )−1(sI − T )Qc,q(T )−1 −Qc,s(T )−1(qI − T )Qc,q(T )−1

)
q

− s̄
(
Qc,s(T )−1(sI − T )Qc,q(T )−1 −Qc,s(T )−1(qI − T )Qc,q(T )−1

)]
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= −4
[
Qc,s(T )−1(s− q)Qc,q(T )−1q − s̄Qc,s(T )−1(s− q)Qc,q(T )−1

]
= −4

[
Qc,s(T )−1(sq − q2)Qc,q(T )−1 −Qc,s(T )−1(s̄s− s̄q)Qc,q(T )−1

]
= −4

[
Qc,s(T )−1(sq − q2 − s̄s+ s̄q)Qc,q(T )−1

]
= 4Qc,s(T )−1(q2 − 2Re(s)q + |s|2)Qc,q(T )−1 = 4Qc,s(T )−1Qc,q(T )−1Qs(q).�

Theorem 7.3.3 (The F -resolvent equation). Let T ∈ BC(X). For all quaternions
q, s ∈ ρS(T ) with s 6∈ [q], the following equation holds:

FR(s, T )S−1
L (q, T ) + S−1

R (s, T )FL(q, T )

− 1

4

(
sFR(s, T )FL(q, T )q − sFR(s, T )TFL(q, T )

− FR(s, T )TFL(q, T )q + FR(s, T )T 2FL(q, T )
)

=
[

(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1.

(7.23)

Proof. The identities (7.20) and (7.21) yield

−42Qs(T )−1Qq(T )−1 = (sFR(s, T )− FR(s, T )T )(FL(q, T )q − TFL(q, T ))

= sFR(s, T )FL(q, T )q − sFR(s, T )TFL(q, T )

− FR(s, T )TFL(q, T )q + FR(s, T )T 2FL(q, T ).

Applying this identity in (7.22), we obtain (7.23). �

7.4 The Riesz Projectors for the FFF -Functional Calculus

In the sequel we will need the following lemma, which is based on the monogenic
functional calculus; see the book [159] for more details (or some of the papers
[160,161,166], where the calculus was introduced).

Lemma 7.4.1. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T`, ` = 1, 2, 3, have real spectrum. Let G be a bounded slice
Cauchy domain such that (∂G) ∩ σS(T ) = ∅. For every j ∈ S, we then have∫

∂(G∩Cj)
s dsj FR(s, T ) = 0 and

∫
∂(G∩Cj)

FL(q, T ) dqj q = 0.

Proof. Since P1(q) = ∆q = 0, we have∫
∂(G∩Cj)

s dsj FR(s, p) = P1(p) = 0

and ∫
∂(G∩Cj)

FL(q, p) dqj q = P1(q) = 0
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for all p /∈ ∂G and j ∈ S. We observe that at this point we need the Cauchy–
Fueter functional calculus, described in the next section, to represent FL(p, T ).
We consider only the case of FL(p, T ); the other case can be shown in a similar
way. We recall that FL(p, q) is left Fueter regular in q on H \ [p] for every p, so we
can use Definition 7.5.6 and write

FL(p, T ) =

∫
∂Ω

G(ω, T )DωFL(p, ω),

where the open set Ω contains the left spectrum of T , G(ω, T ) is the Cauchy–Fueter
resolvent operator. Using Fubini’s theorem, we obtain∫

∂(G∩Cj)
FL(q, T ) dqj q

=

∫
∂(G∩Cj)

∫
∂Ω

(
G(ω, T )DωFL(q, ω)

)
dqj q

=

∫
∂Ω

G(ω, T )Dω
(∫

∂(G∩Cj)
FL(p, ω) dpj q

)
= 0,

which concludes the proof. �

Theorem 7.4.2. Let T ∈ BC(X) be such that T = T1e1 + T2e2 + T3e3, and assume
that the operators T`, ` = 1, 2, 3, have real spectrum. Let σS(T ) = σ1 ∪ σ2 with

dist(σ1, σ2) > 0.

Let G1, G2 ⊂ H be two bounded slice Cauchy domains such that σ1 ⊂ G1 and
G1 ⊂ G2 and such that dist(G2, σ2) > 0. Then the operator

P̆ := − 1

4(2π)

∫
∂(G1∩Cj)

FL(q, T ) dqjq
2

= − 1

4(2π)

∫
∂(G2∩Cj)

s2dsjFR(s, T )

is a projection that commutes with T , i.e., we have

P̆ 2 = P̆ and T P̆ = P̆ T.

Proof. If we multiply the F -resolvent equation (7.23) by s on the left and by q on
the right, we get

sFR(s, T )S−1
L (q, T )q + sS−1

R (s, T )FL(q, T )q

− 1

4

(
s2FR(s, T )FL(q, T )q2 − s2FR(s, T )TFL(q, T )q

− sFR(s, T )TFL(q, T )q2 + sFR(s, T )T 2FL(q, T )q
)

= s [(FR(s, T )− FL(q, T )) q − s̄ (FR(s, T )− FL(q, T ))]Qs(q)−1q.
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If we multiply this equation by dsj on the left, integrate it over ∂(G2 ∩ Cj) with
respect to dsj , and then multiply it by dqj on the right and integrate over ∂(G1 ∩
Cj) with respect to dqj , we obtain∫

∂(G2∩Cj)
s dsj FR(s, T )

∫
∂(G1∩Cj)

S−1
L (q, T ) dqj q

+

∫
∂(G2∩Cj)

s dsj S
−1
R (s, T )

∫
∂(G1∩Cj)

FL(q, T ) dqj q

− 1

4

(∫
∂(G2∩Cj)

s2 dsj FR(s, T )

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2

−
∫
∂(G2∩Cj)

s2 dsj FR(s, T )T

∫
∂(G1∩Cj)

FL(q, T ) dqj q

−
∫
∂(G2∩Cj)

s dsj FR(s, T )T

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2

+

∫
∂(G2∩Cj)

s dsj FR(s, T )T 2

∫
∂(G1∩Cj)

FL(q, T ) dqj q

)
=

∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[

(FR(s, T )− FL(q, T )) q

− s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1 dqj q.

By Lemma 7.4.1, this simplifies to

− 1

4

∫
∂(G2∩Cj)

s2 dsj FR(s, T )

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2

=

∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[

(FR(s, T )− FL(q, T )) q

− s̄ (FR(s, T )− FL(q, T ))
]
Qs(q)−1 dqjq,

which equals

4(2π)2P̆ 2 =

∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[
FR(s, T )q − s̄FR(s, T )

]
Qs(q)−1 dqj q

−
∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[
FL(q, T )q − s̄FL(q, T )

]
Qs(q)−1 dqj q.

Since G1 ⊂ G2, for every s ∈ ∂(G2 ∩ Cj) the functions

q 7→ qQs(q)−1 = q(q2 − 2Re(s)q + |s|2)−1

and
q 7→ Qs(q)−1 = (q2 − 2Re(s)q + |s|2)−1
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are intrinsic slice hyperholomorphic on G1. By the Cauchy integral theorem, we
therefore have∫

∂(G1∩Cj)
qQs(q)−1 dqj q = 0 and

∫
∂(G1∩Cj)

Qs(q)−1 dqj q = 0,

and it follows that∫
∂(G2∩Cj)

dsj

∫
∂(G1∩Cj)

s
[
FR(s, T )q − s̄FR(s, T )

]
Qs(q)−1 dqj q = 0.

Thus, we obtain

P̆ 2 = − 1

4(2π)2

∫
∂(G2∩Cj)

s dsj

×
∫
∂(G1∩Cj)

[
(FL(q, T )q − s̄FL(q, T ))

]
Qs(q)−1 dqjq,

and by exchanging the order of integration and applying Lemma 4.1.2, we finally
obtain

P̆ 2 = − 1

4(2π)

∫
∂(G1∩Cj)

FL(q, T ) dqj q
2 = P̆ .

We furthermore deduce from (7.21) that

P̆ T = − 4

2π

∫
∂(G1∩Cj)

s2 dsj FR(s, T )T

= − 4

2π

∫
∂(G1∩Cj)

s3 dsj FR(s, T )− 16

2π

∫
∂(G1∩Cj)

s2 dsj Qs(T )−2.

Since s3χG1
(s) is intrinsic slice hyperholomorphic, this equals

P̆ = − 4

2π

∫
∂(G1∩Cj)

s2 dsj FR(s, T )T

= − 4

2π

∫
∂(G1∩Cj)

FL(s, T ) dsj s
3 − 16

2π

∫
∂(G1∩Cj)

Qs(T )−2 dsj s
2

= − 4

2π

∫
∂(G1∩Cj)

TFL(s, T ) dsj s
2 = T P̆ ,

where we applied (7.20) in the third identity. �

7.5 The Cauchy–Fueter Functional Calculus

We recall the Cauchy formula for Cauchy–Fueter regular functions (or Fueter
regular functions), and we use it to define the Cauchy–Fueter functional calculus.
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We will not give all the details but just the main definitions. The function G(q)
defined by

G(q) =
q−1

|q|2
=

q̄

|q|4
(7.24)

is called the Cauchy–Fueter kernel , and it is left and right Fueter regular on H\{0}.
Theorem 7.5.1 (Cauchy–Fueter formula). Let f be a left Fueter regular function on
an open set that contains U . If U is a four-dimensional compact, oriented manifold
with smooth boundary ∂U , then

f(q) =
1

2π2

∫
∂U

G(p− q)Dpf(p), q ∈ U, (7.25)

the differential form Dp is given by Dp = η(p)dS(p), where η(p) is the outer unit
normal to ∂U at the point p, and dS(p) is the scalar element of surface area on
∂U . If f is a right Fueter regular function on U , then

f(q) =
1

2π2

∫
∂U

f(p)DpG(p− q), q ∈ U. (7.26)

Fueter regular functions do not admit power series expansions, but there
exist series expansions in terms of suitable homogeneous functions. For every triple
ν = (n1, n2, n3) with |ν| := n1 + n2 + n3 = n, we define

∂ν =
∂n

∂xn1
1 ∂xn2

2 ∂xn3
3

and Gν(q) = ∂νG(q),

where G(q) is the Cauchy–Fueter kernel. Furthermore, we define the set Γ(ν) as
the set of all n-tuples (λ1, . . . , λn) with exactly n1 entries that equal 1, exactly n2

entries that equal 2, and exactly n3 entries that equal 3. In other words, if we set
λ1, . . . , λn1

= 1 and λn1+1, . . . , λn1+n2
= 2 and λn1+n2+1, . . . λn = 3, then

Γ(ν) = {(λσ(1), . . . , λσ(n)) : σ ∈ perm(n)},

where perm(n) denotes the group of permutations of n elements. Furthermore, let
us denote by σn the set of all triples ν = (n1, n2, n3) with |v| = n1 + n2 + n3 = n.

For every n > 0, the set σn contains
1

2
(n+ 1)(n+ 2) triples. If n = 0, we set ν = ∅

and Pν ≡ 1. For every ν ∈ σn and for q = q0 +
∑3
`=1 q`e`, we define

Pν(q) =
1

n!

∑
(λ1,...,λn)∈Γ(n)

(q0eλ1 − qλ1) · · · (q0iλn − qλn).

The polynomials Pν(q) play the role of the powers zn in the Taylor expansion
of a function

∑+∞
n=0 anz

n holomorphic at the origin.
Let Un be the quaternionic right vector space of functions f : H → H that

are left Fueter regular and homogeneous of degree n ≥ 0 over R, i.e., such that
f(αq) = αnf(q) for every α ∈ R. We have the following result.
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Theorem 7.5.2. The polynomials Pν , ν ∈ σn, are left Fueter regular and form a
basis for Un. Moreover, if f ∈ Un, then

f(q) =
∑
ν∈σn

(−1)nPν(q)∂νf(0). (7.27)

If f is right Fueter regular, then the polynomials Pν are right Fueter regular and

f(q) =
∑
ν∈σn

(−1)n∂νf(0)Pν(q).

The introduction of the polynomials Pν and the derivatives Gν allows one to
prove two results that generalize the Taylor and the Laurent expansion series.

Theorem 7.5.3. Let f : U ⊆ H → H be left Fueter regular, p ∈ U . Then there
exists a ball |q− p| < δ with radius δ < dist (p, ∂U) in which f can be represented
by a uniformly convergent series of the form

f(q) =
+∞∑
n=0

∑
ν∈σn

Pν(q − p)aν ,

where

aν = (−1)n∂νf(p) =
1

2π2

∫
|q−p|=δ

Gν(q − p) , Dq f(q).

If f : U → H is right Fueter regular, then

f(q) =
+∞∑
n=0

∑
ν∈σn

aνPν(q − p),

where

aν = (−1)n∂νf(p) =
1

2π2

∫
|q−p|=δ

f(q)Dq Gν(q − p).

Let T be a quaternionic bounded linear operator with commuting compo-
nents on a two-sided quaternionic Banach space X. Recall that such a set is de-
noted by BC(X). In this case, we consider the function G(q, p) := G(p− q) written
in series expansion, and we replace p by T . We get

G(q, T ) =
∑
n≥0

∑
ν∈σn

Pν(T )Gν(q) =
∑
n≥0

∑
ν∈σn

Gν(q)Pν(T ). (7.28)

The expansions hold for ‖T‖ < |q| and define a bounded operator. It is natural to
give the following definition:

Definition 7.5.4. The maximal open set ρ(T ) in H on which the series (7.28)
converges in the operator norm to a bounded operator is called the resolvent set
of T . The spectral set σ(T ) of T is defined as the complement set in H of the
resolvent set.
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Definition 7.5.5. A function f is said to be locally right Cauchy–Fueter regular
on the spectral set σ(T ) of an operator T ∈ BC(X) if there exists an open set
U ⊂ H containing σ(T ) whose boundary ∂U is a rectifiable 3-cell and such that f
is regular in every connected component of U . We denote by CFL(σ(T )) the set
of locally left Cauchy–Fueter regular functions on σ(T ). We denote by CFR(σ(T ))
the set of locally right Cauchy–Fueter regular functions on σ(T ).

Definition 7.5.6 (The Cauchy–Fueter functional calculus). Let f ∈ CFL(σ(T )) and
T ∈ BC(V ) be such that T = T1e1 + T2e2 + T3e3, and assume that the operators
T`, ` = 1, 2, 3, have real spectrum. We define

f(T ) :=
1

2π2

∫
∂U

G(q, T )Dqf(q).

Let f ∈ CFR(σ(T )) and T ∈ BC(V ). We define

f(T ) :=
1

2π2

∫
∂U

f(q)DqG(q, T ),

where U is an open set in H containing σ(T ) as in Definition 7.5.5.

The definition is well posed, since the integrals that define the Cauchy–Fueter
functional calculus do not depend on the open set U . This is a consequence of the
Cauchy–Fueter regularity of the operator-valued function G(q, T ). We point out
that the series expansion of the Cauchy-Fueter resolvent operator in (7.28) has a
closed form if T has commuting components, namely

G(q, T ) = (qI − T )−2(qI − T )−1.

This operator is then associated with the left spectrum of T . A closed form of the
sum G(q, T ) in the general case, without the assumption that the components of T
commute, would naturally lead to a notion of spectrum of the operator T for the
case of Fueter regularity. But if we want to replace operators with noncommuting
components, then it is not clear what is the closed formula for the Cauchy–Fueter
resolvent. Observe that for the slice hyperholomorphic case, a closed form of the
series

∑
n≥0 T

ns−1−n can be found. It is∑
n≥0

Tns−1−n = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI)

for ‖T‖ < |s|, and this identity does not depend on the commutativity of the
components of T . This is one of its great advantages.

7.6 Comments and Remarks

Comments on the references. The F -functional calculus has been developed in
the papers [20, 54, 78, 81, 86]. It is based on the Fueter mapping theorem in inte-
gral form, and it is a monogenic functional calculus in the spirit of McIntosh and
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collaborators, see [159–161,164,166], but it is associated with slice hyperholomor-
phicity. The W -functional calculus is also a monogenic functional calculus, and it
was introduced in the paper [70].

7.6.1 The FFF -Functional Calculus for nnn-Tuples of Operators

The F -functional calculus can be extended to the case of n-tuples of commuting
operators. Because of the structure of the Fueter–Sce mapping theorem in integral
form, the F -functional calculus depends on the dimension of the Clifford algebra.
The Fueter–Sce–Qian mapping theorem, one should say, was proved by Michele
Sce [187] for n odd and by Tao Qian [176] for the case in which n is even. Later on,
Fueter’s theorem was generalized to the case in which a slice hyperholomorphic
function f is multiplied by a monogenic homogeneous polynomial of degree k,
see [162] [172] [173], and to the case in which the function f is defined on an open
set U not necessarily chosen in the upper complex plane; see [175–177]. We need
to recall the definition of monogenic functions.

Definition 7.6.1 (Monogenic functions). Let U be an open set in Rn+1. A real
differentiable function f : U → Rn is left monogenic if

∂

∂x0
f(x) +

n∑
i=1

ei
∂

∂xi
f(x) = 0.

It is right monogenic if

∂

∂x0
f(x) +

n∑
i=1

∂

∂xi
f(x)ei = 0.

We recall the theorem of Sce to produce monogenic functions from complex-
valued functions (the case of odd dimension of Rn):

We consider a holomorphic function f(z) that depends on a complex variable
z = u+ ιv in an open set of the upper complex half-plane. We write

f(z) = f0(u, v) + ιf1(u, v),

where f0 and f1 are R-valued functions that satisfy the Cauchy–Riemann system.
For every paravector x such that u+ ιv belongs to the domain of f , we replace the
complex imaginary unit ι in f(z) = f0(u, v) + ιf1(u, v) by the Clifford imaginary
unit j = x/|x| and we set u = x0 and v = |x|. We then define

f(x) = f0(x0, |x|) + jf1(x0, |x|).

This function in slice hyperholomorphic with values in the Clifford algebra Rn (or
slice monogenic). Then we apply the (n − 1)/2th power of the Laplace operator
∆(n−1)/2 in dimension n+ 1 to f . The function

f̆(x0, |x|) := ∆(n−1)/2(f0(x0, |x|) + jf1(x0, |x|))
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is then left monogenic, i.e., it is in the kernel of the Dirac operator. If we replace
f0(x0, |x|) + jf1(x0, |x|) by f0(x0, |x|) + f1(x0, |x|)j in the above procedure, we
obtain a right monogenic function.

Proposition 7.6.2. Let n be an odd number and let x, s ∈ Rn+1 be such that x 6∈ [s].
Let S−1

L (s, x) and S−1
R (s, x) be the slice hyperholomorphic Cauchy kernels in form

II. Then:

• The function ∆
n−1

2 S−1
L (s, x) is a left monogenic function in the variable x

and right slice hyperholomorphic in s.

• The function ∆
n−1

2 S−1
R (s, x) is a right monogenic function in the variable x

and left slice hyperholomorphic in s.

Based on the explicit computations of functions

(s, x) 7→ ∆
n−1

2 S−1
L (s, x) and (s, x) 7→ ∆

n−1
2 S−1

R (s, x),

for s 6∈ [x], we define the Fn-kernels.

Definition 7.6.3 (The Fn-kernels). Let n be an odd number and let x, s ∈ Rn+1.
We define, for s 6∈ [x], the FLn -kernel as

FLn (s, x) := ∆
n−1

2 S−1
L (s, x) = γn(s− x̄)(s2 − 2Re(x)s+ |x|2)−

n+1
2 ,

and the FRn -kernel as

FRn (s, x) := ∆
n−1

2 S−1
R (s, x) = γn(s2 − 2Re(x)s+ |x|2)−

n+1
2 (s− x̄),

where

γn := (−1)(n−1)/22(n−1)/2
[(n− 1

2

)
!
]2
. (7.29)

Theorem 7.6.4 (The Fueter–Sce mapping theorem in integral form). Let U ⊂ Rn+1

be a slice Cauchy domain and choose j ∈ S. Let n be an odd number.

(a) If f ∈ SML(O) for some set O with U ⊂ O, then the left monogenic function

f̆(x) = ∆
n−1

2 f(x) admits the integral representation

f̆(x) =
1

2π

∫
∂(U∩Cj)

FLn (s, x)dsjf(s). (7.30)

(b) If f ∈ SMR(O) for some set O with U ⊂ O, then the right monogenic

function f̆(x) = ∆
n−1

2 f(x) admits the integral representation

f̆(x) =
1

2π

∫
∂(U∩Cj)

f(s)dsjF
R
n (s, x). (7.31)

The integrals depend neither on U nor on the imaginary unit j ∈ S.
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We refer to the section on comments and remarks at the end of chapter on
the properties of the S-functional calculus for bounded operators for the definition
of the Clifford algebra Rn and for the functional setting on paravector operators
T = T0 + T1e1 + · · · + Tnen. In the sequel, we will consider bounded paravector
operators T , with commuting components T` ∈ B(X) for ` = 0, 1, . . . , n. Such
subsets of B(Xn) will be denoted by BC0,1(Xn). The F -functional calculus is based
on the commutative version of the S-spectrum (often called F -spectrum in the
literature). So we define the F -resolvent operators.

Definition 7.6.5 (F -resolvent operators). Let n be an odd number and let T ∈
BC0,1(Xn). For s ∈ ρS(T ) we define the left F -resolvent operator by

FLn (s, T ) := γn(sI − T )Qc,s(T )−
n+1

2 , (7.32)

and the right F -resolvent operator by

FRn (s, T ) := γnQc,s(T )−
n+1

2 (sI − T ), (7.33)

where the constants γn are given by (7.29).

Let T ∈ BC0,1(Xn). We denote by SML(σS(T )), SMR(σS(T )) the set of all
left (or right) slice hyperholomorphic functions f with σS(T ) ⊂ D(f).

Definition 7.6.6 (The F -functional calculus for bounded operators). Let n be an
odd number, let T ∈ BC0,1(Xn) be such that T = T1e1 +T2e2 +T3e3, and assume
that the operators T`, ` = 1, . . . , n, have real spectrum. Set dsj = ds/j. For every
function f ∈ SML(σS(T )), we define

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

FLn (s, T ) dsj f(s). (7.34)

For every f ∈ SMR(σS(T )), we define

f̆(T ) :=
1

2π

∫
∂(U∩Cj)

f(s) dsj F
R
n (s, T ), (7.35)

where j ∈ S and U is a slice Cauchy domain U .

The definition of the F -functional calculus is well posed, since the integrals
in (7.9) and (7.35) depend neither on U nor on the imaginary unit j ∈ S.

7.6.2 The Inverse Fueter–Sce Mapping Theorem

In recent years, new problems related to the inversion of the Fueter–Sce mapping
theorem have been solved. For the sake of simplicity here we mention the inversion
problem of axially monogenic functions. The results can be found in [83], while
more general cases are treated in the papers [84, 85,87,103].
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Definition 7.6.7 (Axially monogenic function). Let U be an axially symmetric open

set in Rn+1, and let x = x0 +x = x0 +rω ∈ U , for ω ∈ S. Assume that f̆ : U → Rn
is a monogenic function, i.e., it is in the kernel of the Dirac operator. We say that
f̆ is an axially monogenic function if there exist two functions A = A(x0, r) and
B = B(x0, r), independent of ω ∈ Sn−1 and with values in Rn, such that

f̆(x) = A(x0, r) + ωB(x0, r).

We denote by AM(U) the set of left axially monogenic functions on the open set
U .

The problem is as follows: suppose that f̆ is an axially monogenic function

and f is a slice monogenic function such that f̆(x) = ∆
n−1

2 f(x). Determine a slice
monogenic function f in terms of the components A(x0, r) and B(x0, r) of the

axially monogenic function f̆(x) = A(x0, r) + ωB(x0, r). It is important to give
the definition of a Fueter–Sce primitive.

Definition 7.6.8 (Fueter–Sce primitive). Let n be an odd number and let U ⊆ Rn+1

be an axially symmetric domain. Suppose that f : U ⊆ Rn+1 → Rn is a left slice
monogenic function. We say that f is a Fueter–Sce primitive of f̆ ∈ M(U) if

∆
n−1

2 f(x) = f̆(x) on U .

The definition of a Fueter–Sce primitive of f̆ is well posed, since slice mono-
genic functions are infinitely differentiable. The monogenic Cauchy kernel G(x) is
defined for x ∈ Rn+1 \ {0} as

G(x) =
1

An+1

x

|x|n+1
, (7.36)

where An+1 = 2π(n+1)/2

Γ(n+1
2 )

is the area of the unit sphere in Rn+1. As we will see,

G(x) plays a crucial role in the inversion formula of monogenic functions.

Definition 7.6.9 (The kernels N+
n (x) and N−n (x)). Let G(x) be the monogenic

Cauchy kernel defined in (7.36) with x = x0 + x ∈ Rn+1, and for y = rω ∈ Rn we

assume r = 1 and ω ∈ Sn−1. We define the kernels

N+
n (x) =

∫
Sn−1

G(x− ω) dS(ω), N−n (x) =

∫
Sn−1

G(x− ω)ω dS(ω), (7.37)

where dS(ω) is the scalar element of surface area of Sn−1.

Theorem 7.6.10 (The structure of the Fueter–Sce primitives of N+
n and N−n ). Let

n be an odd number and denote by W+
n and W−n the Fueter–Sce primitives of N+

n

and N−n , respectively. Consider the functions

W+
n (x0) :=

Cn
Kn

D−(n−1) x0

(x2
0 + 1)(n+1)/2

,

W−n (x0) := − Cn
Kn

D−(n−1) 1

(x2
0 + 1)(n+1)/2

,
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where CnKn is a given constant and the symbol D−(n−1) stands for (n−1) integrations

with respect to x0. Then, by replacing x0 by x in W+
n (x0) and in W−n (x0), we get

W+
n (x) and W−n (x), respectively. Moreover, the functions W+

n (x) and W−n (x) are
extendable to slice monogenic functions defined for all x ∈ {x0 + rω : (x0, r) 6=
(0, 1)}.

The Fueter–Sce primitives of N+
n and N−n can be explicitly computed. For

example, when n = 3 they are given by

W+
3 (x) =

1

2π
arctanx, W−3 (x) = − 1

2π
x arctanx.

Theorem 7.6.11 (The inverse Fueter–Sce mapping theorem). Let f̆(x) = A(x0, ρ)+
ωB(x0, ρ) be an axially monogenic function defined on an axially symmetric do-
main U ⊆ Rn+1. Let Γ be the boundary of an open bounded subset V of the half-
plane R + ωR+ and let

V = {x = u+ ωv, (u, v) ∈ V, ω ∈ Sn−1} ⊂ U.

Moreover, suppose that Γ is a regular curve whose parametric equations y0 = y0(s),
ρ = ρ(s) are expressed in terms of the arc length s ∈ [0, L], L > 0. Then the
function

f(x) =

∫
Γ

W−n
(1

ρ
(x− y0)

)
ρn−2(dy0A(y0, ρ)− dρB(y0, ρ))

−
∫

Γ

W+
n

(1

ρ
(x− y0)

)
ρn−2(dy0B(y0, ρ)− dρA(y0, ρ)). (7.38)

is a Fueter–Sce primitive of f̆(x) on V , where W+
n and W−n are as in Theorem

7.6.10.

This theorem has several generalizations, and this topic is still under inves-
tigation.



Chapter 8

The FFF -Functional Calculus for
Unbounded Operators

Similar to the S-functional calculus, we can also extend the F -functional calculus
to unbounded operators by suitably transforming the operator and the function
and then applying the theory for bounded operators. Let us first specify the type
of operator for which this is possible.

Let X = XR ⊗ H be a quaternionic two-sided Banach space and let T` :
D(T`) ⊂ XR → XR be linear closed operators for ` = 0, . . . , 3 such that T`Tκ =
TκTκ on D(T`Tκ) ∩ D(TκT`) for `, κ = 0, . . . , 3. Then

D(T ) =

3⋂
`=0

D(T`)

is the domain of the quaternionic right linear operators

T = T0 +
3∑
`=1

e`T` : D(T ) ⊂ X → X

and

T = T0 −
3∑
`=1

e`T` : D(T ) ⊂ X → X.

Definition 8.0.1. We denote the set of closed right linear operators with commuting
components as discussed above by KC(X).

For operators in KC(X), we can characterize their S-resolvent set and S-
spectrum just as in Theorem 4.5.6 as

ρS(T ) =
{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
© Springer Nature Switzerland AG 2018  
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with

Qc,s(T ) = (s2I − 2sT0 + TT )−1.

Definition 8.0.2 (The F -resolvent operators for the unbounded operators). Let
T ∈ KC(X). For s ∈ ρS(T ), we define the (left) F-resolvent operator as

FL(s, T ) := −4(sI − T )Qc,s(T )−2.

8.1 Relations Between FFF -Resolvent Operators

The following results are important since they will lead us to the definition of
F -functional calculus for unbounded operators.

Proposition 8.1.1. Let T ∈ KC(X) and assume that there exists a point α ∈
ρS(T ) ∩ R 6= ∅ and set A := (T − αI)−1 as in Theorem 5.2.3. For p = (s− α)−1,
we have

Qc,p(A)−1 =
(
AA
)−1Qc,s(T )−1p−2 = Qc,α(T )Qc,s(T )−1p−2

and

Qc,p(A)−2 =
(
AA
)−2Qc,s(T )−2p−4 = Qc,α(T )2Qc,s(T )−2p−4.

Proof. Observe that

p2I − p
(
A+A

)
+AA

=
(
p2
(
AA
)−1 − p

(
A+A

) (
AA
)−1

+ I
) (
AA
)

=
(
p2
(
AA
)−1 − p

(
A−1 +A

−1
)

+ I
) (
AA
)
,

where we have used the fact that
(
AA
)−1

= A−1A
−1

= A
−1
A−1. Recalling that

A := (T − αI)
−1

and A :=
(
T − αI

)−1
, we obtain

A
−1
A−1 = α2I − α

(
T + T

)
+ TT = Qc,α(T )

and

A−1 +A
−1

= T + T − 2αI,

so that we obtain

Qc,p(A)−1 =
(
p2I − p

(
A+A

)
+AA

)−1

=
(
AA
)−1

(
p2
(
AA
)−1 − p

(
A−1 +A

−1
)

+ I
)−1

= Qc,α(T )
(
p2 Qc,α(T )− p

(
T + T − 2αI

)
+ I

)−1
.
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Observe now that T + T = 2T0 and TT =
∑3
`=0 T

2
` are scalar operators and

thus commute with p, so we have

Qc,p(A)−1 = Qc,α(T )
(
Qc,α(T )− p−1

(
T + T − 2αI

)
+ p−2I

)−1
p−2.

Finally, we also get

Qc,α(T )− p−1
(
T + T − 2αI

)
+ p−2I

= α2I − α
(
T + T

)
+ TT − p−1

(
T + T

)
+ 2αp−1I + p−2I

= TT −
(
p−1 + α

) (
T + T

)
+
(
p−2 + α2 + 2αp−1

)
I

= TT − s
(
T + T

)
+ s2I = Qc,s(T ),

and so
Qc,p (A)

−1
= Qc,α(T )Qc,s (T )

−1
p−2.

Since α ∈ R, we have
sp = s (s− α)

−1
= ps,

and so Qc,α(T ), Qs (T ), and p−2 commute mutually. Therefore, we also obtain

Qc,p (A)
−2

= Qα(A)2Qs (T )
−2
p−4. �

From Proposition 8.1.1, we deduce now two important relations between the
F -resolvents of T and A.

Theorem 8.1.2. Let T ∈ KC(X), let α ∈ ρS(T )∩R 6= ∅, and define A = (T−αI)−1.
For s ∈ ρS(T ) with s /∈ σL(T ) and p = (s− α)−1, we have

FL(s, T ) = −AA2FL(p,A)p3. (8.1)

Proof. We recall that FL(p,A) = −4
(
pI −A

)
Qc,p(A)−2. Due to Proposition

8.1.1, we have

FL(p,A) = −4
(
pI −A

)
A
−2
A−2Qc,s(T )−2p−4.

Since s = p−1 + α commutes with p, we have

FL(p,A) = −4
(
pI −A

)
A
−2
A−2p−1Qc,s(T )−2p−3,

and so

FL(p,A) = −4
(
pI −A

)
A
−2
A−2p−1

(
sI − T

)−1 (
sI − T

)
Qc,s(T )2p−3.

Observe that A
−2
A−2 = Qα,s(T )2 is a scalar operator since α ∈ R and hence com-

mutes with p and so also with
(
pI −A

)
. Since FL(s, T ) = −4

(
sI − T

)
Qc,s(T )−2,

we obtain

FL(p,A) = A
−2
A−2

(
pI −A

)
p−1

(
sI − T

)−1
FL(s, T )p−3.
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Replacing s = p−1 + α, we get

FL(p,A) = A
−2
A−2

(
pI −A

)
p−1

(
p−1I + αI − T

)−1
FL(s, T )p−3

= A
−2
A−2

(
pI −A

)
p−1

(
p−1I −A−1

)−1

FL(s, T )p−3

and hence

FL(p,A) = −A−2
A−2

(
pI −A

)
p−1

(
p
(
pI −A

)−1
A
)
FL(s, T )p−3.

We thus get the statement because

FL(p,A) = −
(
A
)−2

A−2AFL(s, T )p−3

= −A
(
A
)−2

A−2FL(s, T )p−3 = −
(
A
)−1

A−2FL(s, T )p−3. �

Theorem 8.1.3. Let T ∈ KC(X), let α ∈ ρS(T )∩R 6= ∅, and define A = (T−αI)−1.
For s ∈ ρS(T ) and p = (s− α)−1, we have

(AA)−1FL(p,A)p4 = −4pQc,s(T )−1 − FL(s, T ). (8.2)

Proof. We recall that

AA = (α2I − α(T + T ) + TT )−1 : D(TT )→ V

and that
A+A = (T + T − 2αI)AA : D(TT )→ D(T ).

Using the relation s = p−1 + α, we get

p2I − p(A+A) +AA = p2
(
s2I − s(T + T ) + TT

)
(T − αI)−1(T − αI)−1, (8.3)

where the right-hand side of (8.3) is the composition of the maps

(T − αI)−1(T − αI)−1 : V → D(TT )

and (
s2I − s(T + T ) + TT

)
: D(TT )→ V.

We write FL(p,A) now in terms of the above positions and get

FL(p,A) = −4[(pI − (T − αI)−1)(T − αI)(T − αI)]

× (T − αI)(T − αI)
(
s2I − s(T + T ) + TT

)−2

p−8.

Due to s = p−1 + α, we have

[(pI − (T − αI)−1)(T − αI)(T − αI)]

= [p(α2I − α(T + T ) + TT ) + αI − T ]

= pQc,s(T )− (sI − T ),
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from which we conclude

FL(p,A) = −4(T − αI)(T − αI)[pQc,s(T )− (sI − T )]

×
(
s2I − s(T + T ) + TT

)−2

p−4,

which gives
(AA)−1FL(p,A)p4 = −4pQc,s(T )−1 − FL(s, T ). �

8.2 The FFF -Functional Calculus for Unbounded

Operators

Let T ∈ KC(X) with ρS(T ) ∩ R 6= ∅. For α ∈ ρS ∩ R, we define Φα : H→ H as

Φα(s) = (s− α)−1, Φα(α) =∞, Φα(∞) = 0, (8.4)

and set A := (T − αI)−1. We recall that by Theorem 5.2.3, we have Φ(σS(T )) =
σS(A) and that

SHL(σS(A)) =
{
f ◦ Φ−1

α : f ∈ SHL(σS(T ))
}
.

Definition 8.2.1 (F -functional calculus for unbounded operators). Let T ∈ KC(X)
with ρS(T ) ∩ R 6= ∅, let α ∈ ρS(T ) ∩ R, and define Φα and A as in (8.4). For
f ∈ SHL(σS(T )) with f(α) = 0, we consider the functions

φ(q) := (f ◦ Φ−1
α )(q),

ψ̆(q) := ∆(q2φ(q)),

and define the operator f̆(T ) for f̆ = ∆f as

f̆(T ) := (AA)−1ψ̆(A), (8.5)

where ψ̆(A) is intended in the sense of Definition 7.1.11.

Remark 8.2.2. Observe that the condition f(α) = 0 is not a restriction in the above
definition. Indeed, if f(α) 6= 0, then we can consider the function f̃(q) = f(q)−f(α)

and we find that also f̃ ∈ SHL(σS(T )) with f̆ = ∆f̃ , but now f̃ = 0. We will take
this fact into account in the next result.

Theorem 8.2.3. Let T ∈ KC(X) with ρS(T )∩R 6= ∅, let α ∈ ρS(T )∩R, and define

Φα and A as in (8.4). For f̆ = ∆f with f ∈ SHL(σS(T )) with f(α) = 0, the

operator f̆(T ) defined in (8.5) satisfies

f̆(T ) =

∫
∂(U∩Cj)

FL(s, T ) dsj f(s), (8.6)
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where U is any unbounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ D(f)
and j is any imaginary unit in S.

In particular, f̆(T ) is independent of α. If f∗ = f − c with c ∈ H such that

f∗(β) = 0 with β ∈ ρS(T ) ∩ R, we can define f̆∗(T ) using β instead of α. Then

f̆ = f̆∗ and f̆(T ) = f̆∗(T ).

Proof. Let j ∈ S and let U be a slice Cauchy domain as above. Furthermore,
we assume that α /∈ U . If this is not the case, we can replace U by the axially
symmetric slice Cauchy domain U \ Bε(0) with sufficiently small ε > 0 without
altering the value of the integral in (8.6) by the Cauchy integral theorem.

The set V = Φα(U) is a bounded slice Cauchy domain with σS(T ) ⊂ V and
V ⊂ D(f ◦ Φ−1

α ) = Φ(D(f)).

Using the second relation between FL(p,A) and FL(s, T ), see formula (8.2),
we have ∫

∂(U∩Cj)

(
−4pQc,s(T )−1 − FL(s, T )

)
dsj f(s)

= (AA)−1

∫
∂(V ∩Cj)

FL(p,A) dpj p
2φ(p).

(8.7)

Now we work on the left-hand side:∫
∂(U∩Cj)

(
−4pQc,s(T )−1 − FL(s, T )

)
dsj f(s)

=

∫
∂(U∩Cj)

−4pQc,s(T )−1dsjf(s)−
∫
∂(U∩Cj)

FL(s, T )dsjf(s)

= −4

∫
∂(U∩Cj)

(s− α)−1 dsjQc,s(T )−1f(s)

−
∫
∂(U∩Cj)

FL(s, T )dsjf(s)

= −4(2π)Qα(T )−1f(α)−
∫
∂(U∩Cj)

FL(s, T ) dsj f(s).

The last identity follows because Qc,s(T )−1 dsj = dsj Qc,s(T )−1, since T + T and
TT are scalar operators, so that

− 4

∫
∂(U∩Cj)

(s− α)−1 dsj Qc,s(T )−1f(s)

= −4

∫
∂(U∩Cj)

S−1
L (s, α) dsj Qc,s(T )−1f(s) = −4(2π)Qc,α(T )−1f(α)

by Cauchy’s integral formula because s 7→ Qc,s(T )−1f(s) is left slice hyperholo-
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morphic. Indeed, for s = u+ jv, we have

1

2

(
∂

∂u
+ j

∂

∂v

)
Qc,s(T )−1f(s) =

(
1

2

(
∂

∂u
+ j

∂

∂v

)
Qc,s(T )−1

)
f(s)

+Qc,s(T )−1

(
1

2

(
∂

∂u
+ j

∂

∂v

)
f(s)

)
= 0

because Qs(T )−1 commutes with j, since T + T and TT are scalar operators.
The identity (8.7) therefore turns into

− 4(2π)Qα(T )−1f(α)−
∫
∂(U∩Cj)

FL(s, T ) dsj f(s)

= (AA)−1

∫
∂(V ∩Cj)

FL(p,A) dpj p
2φ(p).

Since by assumption f(α) = 0, we conclude that

1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s) =
1

2π
(AA)−1

∫
∂(V∩Cj)

FL(p,A) dpj p
2φ(p)

= (AA)−1ψ̆(A) = f̆(T ).

Finally, if f∗ = f + c with f∗(β) = 0 for some β ∈ ρS(T ) ∩ R, then we find that

f̆∗(T ) =
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f∗(s)

=
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj f(s)

+
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj c = f̆(T ),

since
1

2π

∫
∂(U∩Cj)

FL(s, T ) dsj c = 0

by Cauchy’s integral theorem. �

8.3 Comments and Remarks

The definition of the F -functional calculus can be extended to the case of n-tuples
of unbounded operators. As is well known in the case of unbounded operators,
the notion of commutativity is more delicate, and one has to pay attention to the
domains of the operators. The situation is simpler when just one of the operators
Tj : D(Tj) ⊂ X → X, j = 0, 1, . . . , n, is unbounded; see [78].
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8.3.1 FFF -Functional Calculus for nnn-Tuples of Unbounded Operators

The definition of the F -functional calculus for unbounded operators is less intu-
itive than the S-functional calculus for unbounded operators. The reason is that
the S-functional calculus is defined by a Cauchy formula, while the F -functional
calculus is defined by an integral transform that maps slice monogenic functions
to monogenic functions.

Definition 8.3.1 (Admissible operators). Let X be a real Banach space and Xn =
X ⊗ Rn. Let Tj : D(Tj) ⊂ X → X be linear closed operators for j = 0, 1, . . . , n,
such that TjTix = TiTjx, for all x ∈ D(TjTi) ∩ D(TiTj) for i, j = 0, 1, . . . , n. Let
D(T ) =

⋂n
j=0D(Tj) be the domain of the operator T = T0 +

∑n
j=1 ejTj : D(T ) ⊂

Xn → Xn. We say that T is an admissible operator if

1)
⋂n
j=0D(Tj) is dense in Xn,

2) sI − T is densely defined in Xn for s ∈ Rn+1,

3) D(TT ) ⊂ D(T ) is dense in Xn.

We need the following definitions:

• Let α ∈ ρS(T ) ∩ R 6= ∅ and let n be an odd number and let p = (s − α)−1.
Set A := (T − αI)−1.

• Let α ∈ R and define the homeomorphism Φ : Rn+1 → Rn+1
,

p = Φ(s) = (s− α)−1, Φ(∞) = 0, Φ(α) =∞. (8.8)

Definition 8.3.2 (The F -functional calculus for n-tuples of unbounded operators).
Let n be an odd number and let T : D(T ) → Xn be an admissible operator with
ρS(T ) ∩ R 6= ∅ and suppose that f ∈ SML(σS(T )). Let us consider the functions

φ(p) := f(Φ−1(p)),

ψ̆(p) := ∆
n−1

2
p (pn−1φ(p)),

where ∆p is the Laplace operator in dimension n+ 1, and recall that

A := (T − αI)−1, for some α ∈ ρS(T ) ∩ R.

With the notation above, we define

f̃(T ) := (AA)−
n−1

2 ψ̆(A) (8.9)

for functions f such that f(α) = 0.

The definition seems unnatural, but it is suggested by the two relations be-
tween the resolvents Fn(p,A) and Fn(s, T ).
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Theorem 8.3.3 (First relation between the F -resolvents). Let T be admissible, let
α ∈ ρS(T ) ∩ R 6= ∅, let n be an odd number, and let p = (s − α)−1. Let us put
A := (T − αI)−1 and suppose that p ∈ ρS(A) and p 6= 0. Then we have

Fn(s, T ) = −(A)
n−1

2 A
n+1

2 Fn(p,A)pn. (8.10)

Theorem 8.3.4 (Second relation between Fn(p,A) and Fn(s, T )). Let α ∈ ρS(T )∩
R 6= ∅ and let n be an odd number and let p = (s−α)−1. Recall that A := (T−αI)−1

for T admissible. Let s ∈ ρS(T ) and p 6= 0. Then we have

(AA)−
n−1

2 Fn(p,A)pn+1 = γnp(s
2I − s(T + T ) + TT )−

n−1
2 − Fn(s, T ), (8.11)

where γn are defined in (7.29), i.e., γn := (−1)(n−1)/22(n−1)/2
[(

n−1
2

)
!
]2
.

Thanks to Theorem 8.3.3 and (8.11), we can prove that for n an odd number,
if k ∈ ρS(T ) ∩ R 6= ∅ and Φ, φ are as above, then Φ(σS(T )) = σS(A), and the
relation φ(p) := f(Φ−1(p)) determines a one-to-one correspondence between f ∈
SML(σS(T )) and φ ∈ SM(σS(A)), and so the integral representation theorem of
the F -functional calculus is what we expect:

Theorem 8.3.5. Let n be an odd number and let T be admissible with ρS(T )∩R 6= ∅
and suppose that f ∈ SML(σS(T )) and set dsj = −dsj for j ∈ S. If f(k) = 0,

then the operator f̃(T ) := (AA)−
n−1

2 ψ̆(A), defined in (8.9), does not depend on
k ∈ ρS(T ) ∩ R. Moreover, we have the integral formula

f̃(T ) =

∫
∂(W∩Cj)

FLn (s, T )dsjf(s), (8.12)

where W is a suitable Cauchy domain.

The reason we have defined the F -functional calculus as in (8.9) is essentially
due to the relation in Theorems 8.3.3 and 8.3.4. Thanks to this relation, we can
prove that f̃(T ) is independent of k and admits the integral representation (8.12).
A similar definition can be found for f ∈ SMR(σS(T )).



Chapter 9

Quaternionic Operators on a
Hilbert Space

9.1 Preliminary Results

In this section we recall some preliminary definitions and results on quaternionic
Hilbert spaces and on quaternionic linear operators. The proofs of the results that
are too similar to the case of complex Hilbert spaces will be omitted. We also
recall some definitions that we have already stated for quaternionic Banach spaces
in the previous chapters for better clarity.

Definition 9.1.1. (i) A right H-module is an abelian group with a right scalar
multiplication that satisfies the distributive properties

(x+ y)q = xq + yq, x(p+ q) = xp+ xq, for all x, y ∈ H, p, q ∈ H,

and the associative property

x(pq) = (xp)q, for all x, y ∈ H, p, q ∈ H.

(ii) A Hermitian quaternionic scalar product is a map 〈·, ·〉 : H×H → H, (x, y)→
〈x, y〉 that satisfies the following properties:

〈xα+ yβ, z〉 = 〈x, z〉α+ 〈y, z〉β,

〈x, y〉 = 〈y, x〉,
〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇐⇒ x = 0,

for every α, β ∈ H, and x, y, z ∈ H,

From the above relations it follows that

〈x, yα+ zβ〉 = ᾱ〈x, y〉+ β̄〈x, z〉, for every α, β ∈ H, and x, y, z ∈ H.
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Definition 9.1.2. A quaternionic pre-Hilbert space H is a right H-module such that
there exists a Hermitian quaternionic scalar product.

The Hermitian scalar product satisfies the Cauchy–Schwarz inequality

|〈x, y〉| ≤ ‖x‖ ‖y‖.

As in the complex case, on H we can define the natural norm

‖x‖ =
√
〈x, x〉, x ∈ H.

Definition 9.1.3. A quaternionic pre-Hilbert space is called quaternionic Hilbert
space if it is complete with respect to the natural distance defined as

dist(x, y) := ‖x− y‖.

When 〈x, y〉 = 0 for x, y ∈ H, we say that x is orthogonal to y and we write
x ⊥ y. When E ⊂ H and F ⊂ H, the notation E ⊥ F means that x ⊥ y for all
x ∈ E and y ∈ F . We denote by E⊥ the points y ∈ H that are orthogonal to every
x ∈ E .

Theorem 9.1.4. If E is a closed subspace of H, then

H = E ⊕ E⊥.

This means that E and E⊥ are closed subspaces of H whose intersection is
{0} and whose sum is H. The subspace E⊥ is called the orthogonal complement
of E . It follows that if E is a closed subspace of H, then

(E⊥)⊥ = E .

Definition 9.1.5. We will call a subset N ⊆ H an orthonormal basis if

〈x, y〉 = 0 for x, y ∈ H such that x 6= y, (9.1)

〈x, x〉 = 1 for x ∈ H, (9.2)

{x ∈ H : 〈x, y〉 for all y ∈ N} = {0}. (9.3)

It can be checked in a similar manner to the classical complex Hilbert space
case that every vector x ∈ H can be written as

x =
∑
y∈N

y〈x, y〉. (9.4)

The proofs of following propositions are analogous to those of the complex case.

Theorem 9.1.6. Let N be an orthonormal basis of a quaternionic Hilbert space H.
Then every x ∈ H can be decomposed uniquely via

x =
∑
z∈N

z〈x, z〉, (9.5)
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where∑
z∈N

z〈x, z〉 := sup{
∑
z∈Nf

z〈x, z〉 : Nf is a nonempty finite subset of N}.

Theorem 9.1.7. Let {xn} be a sequence of pairwise orthogonal vectors in H. Then
each of the following conditions implies the other two:

(i) the series
∑∞
n=1 xn converges in the norm topology of H,

(ii)
∑∞
n=1 ‖xn‖2 <∞,

(iii) the series
∑∞
n=1〈xn, y〉 converges for every y ∈ H.

Let D(T ) denote the domain of a linear operator T . In the following we will
consider right linear operators T : D(T ) ⊆ H → H, that is, those operators such
that

T (xα+ yβ) = (Tx)α+ (Ty)β,

for all x, y ∈ D(T ) and α, β ∈ H. The set of right linear operators on H will be
denoted by L(H). Given T ∈ L(H), the range and kernel of T will be given by

ran(T ) = {y ∈ H : Tx = y for x ∈ D(T )}

and
ker(T ) = {x ∈ D(T ) : Tx = 0},

respectively. We will denote by B(H) the right Banach space of all bounded right
linear operators T : H → H endowed with the natural norm, i.e.,

‖T‖ = sup
‖x‖≤1

‖Tx‖.

Lemma 9.1.8. Fix a right linear quaternionic Hilbert space H. A right linear sub-
space K of H⊕H satisfies

K = {(x, Tx) : x ∈ D(T )} (9.6)

for some T ∈ L(H) if and only if

(0, y) ∈ K =⇒ y = 0. (9.7)

Proof. If K is as in (9.6), then (9.7) follows directly from T0 = 0. Conversely, if
(9.7) holds, then (x, y) and (x, z) belonging to K implies that y = z, i.e., there
exists a function T : D(T ) → H. The fact that T ∈ L(H) follows easily from the
right linearity of K. Thus, (9.6) holds. �

Definition 9.1.9. • An operator T ∈ L(H) is called closed if the set {(x, Tx) :
x ∈ D(T )} is a closed subset of H×H.
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• Let S and T both belong to L(H). We write S = T if D(S) = D(T ) and
Sx = Tx for all x ∈ D(S) = D(T ).

• We write S ⊆ T if D(S) ⊆ D(T ) and Sx = Tx for all x ∈ D(S).

• Clearly, S = T if and only if S ⊆ T and T ⊆ S. An operator T ∈ L(H) is
called closable if there exists a closed operator U ∈ L(H) such that T ⊆ U .

Theorem 9.1.10. Let T ∈ L(H). Then T is closable if and only if

{(x, Tx) : x ∈ D(T )} = {(x, Ux) : for some operator U ∈ L(H)}. (9.8)

Proof. If S ∈ L(H) is any closed operator such that T ⊆ S, then

{(x, Tx) : x ∈ D(T )} ⊆ {(x, Sx) : x ∈ D(S)}.

Hence, since S is closed,

{(x, Tx) : x ∈ D(T )} ⊆ {(x, Sx) : x ∈ D(S)}.

Therefore, in view of Lemma 9.1.8, (9.8) holds. Conversely, if (9.8) holds, then
T ⊆ U , and hence U is closed, since

{(x, Ux) : x ∈ D(U)}

is closed. Thus, T is closable. �

Definition 9.1.11. Let T ∈ L(H) be closable. We let

Tx := lim
n→+∞

T (xn)

denote the operator in L(H) with domain

D(T ) =
{
x ∈ H : x = lim

n→+∞
xn for {xn}+∞n=0 ⊆ D(T ) and

{T (xn)}+∞n=0 converges in H
}
.

Remark 9.1.12. In view of Theorem 9.1.10, the definition of T is independent of
the choice of sequence {xn}+∞n=0. Note that for every closed operator U ∈ L(H)
such that T ⊆ U ,

T ⊆ U.

Definition 9.1.13 (Adjoint operator). Given T ∈ L(H) that is densely defined, we
let T ∗ ∈ L(H) denote the unique operator (called the adjoint) such that

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ D(T ).

The domain of T ∗ is given by

D(T ∗) = {y ∈ H : there exists z ∈ H with 〈Tx, y〉 = 〈x, z〉 for every x ∈ D(T )}.
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Theorem 9.1.14. If T ∈ L(H) is densely defined and W ∈ L(H), then:

(i) T ∗ ∈ L(H) is closed.

(ii) ran(T )⊥ = ker(T ∗).

(iii) If T ⊆W , then W ∗ ⊆ T ∗.

(iv) ker(T ) ⊆ ran(T ∗)⊥.

(v) When T is closed and D(T ∗) is dense in H, then

ker(T ) = ran(T ∗)⊥.

Proof. The proofs can completed in much the same way as in the case in which
H is a complex Hilbert space (see, e.g., Proposition 1.6 in [191]). �

Theorem 9.1.15. If T ∈ L(H) is densely defined, then:

(i) T is closable if and only if D(T ∗) is dense in H.

(ii) If T is closable, then T = T ∗∗.

(iii) T is closed if and only if T = T ∗∗.

(iv) If T is closable and ker(T ) = {0}, then T−1 is closable if and only if ker(T ) =
{0}. Moreover,

(T )−1 = T−1.

Proof. The proofs can completed in much the same way as in the case in which
H is a complex Hilbert space (see, e.g., Theorem 1.8 in [191]). �

Definition 9.1.16. Let T ∈ L(H). We call T normal if T is densely defined, T is
closed, D(T ) = D(T ∗), and TT ∗ = T ∗T .

Lemma 9.1.17. Let T ∈ L(H) be normal. If S ∈ L(H) so that T ⊆ S and D(S) ⊆
D(S∗), then S = T .

Proof. If T ⊆ S, then S∗ ⊆ T ∗ and hence

D(T ) ⊆ D(S) ⊆ D(S∗) ⊆ D(T ∗) = D(T ),

i.e., D(S) = D(T ). Therefore, S = T . �

Definition 9.1.18. Let T ∈ L(H). We call T

• self-adjoint if T = T ∗,

• anti-self-adjoint if T = −T ∗

• unitary if TT ∗ = T ∗T = I.
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9.2 The SSS-Spectrum of Some Classes of Operators

As in the complex case there are different ways of splitting the spectrum of a
closed linear operator. For the spectral theorem, the splitting of the spectrum in
terms of the point spectrum, continuous spectrum, and residual spectrum is very
natural.

Definition 9.2.1. Let T ∈ L(H) be densely defined and let Qs(T ) : D(T 2)→ H be
given by

Qs(T )x = (T 2 − 2Re(s)T + |s|2I)x, x ∈ D(T 2).

The S-resolvent set of T is defined as follows:

ρS(T ) = {s ∈ H : ker(Qs(T )) = {0}, ran(Qs(T )) is dense in H and

Qs(T )−1 ∈ B(H)}.

The S-spectrum is defined as

σS(T ) = H \ ρS(T ).

We recall Theorem 3.1.13 for the particular case of Hilbert spaces:

Theorem 9.2.2. Let T ∈ B(H). Then the S-spectrum is a compact nonempty subset
of H and

σS(T ) ⊆ {p ∈ H : 0 ≤ |p| ≤ ‖T‖}. (9.9)

Moreover, we recall that the axially symmetric structure of the S-spectrum
will be crucial in the followng.

Theorem 9.2.3. Let T ∈ L(H) be densely defined. If p = p0 + ip1 ∈ σS(T ) for i ∈ S
and p0, p1 ∈ R, then p0 + jp1 ∈ σS(T ) for all j ∈ S.

We will use the following splitting of the S-spectrum:

Definition 9.2.4. Let T : D(T ) → H. We split the S-spectrum into the three
disjoint sets:

(P) The point S-spectrum of T :

σPS(T ) = {s ∈ H : ker(Qs(T )) 6= {0}}.

(R) The residual S-spectrum of T :

σRS(T ) =
{
s ∈ H : ker(Qs(T )) = {0}, ran(Qs(T )) 6= H

}
.

(C) The continuous S-spectrum of T :

σCS(T ) =
{
s ∈ H : ker(Qs(T )) = {0}, ran(Qs(T )) = H, Qs(T )−1 6∈ B(H)

}
.



9.2. The S-Spectrum of Some Classes of Operators 193

We observe that from the definitions of S-spectrum and S-resolvent set we
have the following results, which were proved in [142].

Theorem 9.2.5. Let T : D(T ) → H be a right linear quaternionic operator with
dense domain.

(i) If T is self-adjoint, then σS(T ) is real and σRS(T ) is empty.

(ii) If T is anti-self-adjoint, then σS(T ) is purely imaginary and σRS(T ) is empty.

Proof. Let us prove (i). To prove that the S-spectrum is real, we show that the
S-resolvent set consists of quaternions s = s0 + s such that s 6= 0. Observe that

Qs(T ) = T 2 − 2Re(s)T + |s|2I = (T − Is0)2 + I|s|2.

Since T is self-adjoint, by standard arguments it follows that also (T − Is0), its
squared (T −Is0)2, and Qs(T ) are self-adjoint operators. Take x ∈ D(T 2), so that

〈x, (T − Is0)2x〉 = 〈(T − Is0)x, (T − Is0)x〉 ≥ 0.

We observe that

‖Qs(T )x‖2 = 〈((T − Is0)2 + I|s2)x, ((T − Is0)2 + I|s|2)x〉
= ‖(T − Is0)2x‖+ 2|s|2〈x, (T − Is0)2x〉+ |s|4‖x‖2

≥ |s|4‖x‖2.

So from the estimate

‖Qs(T )x‖ ≥ |s|2‖x‖, x ∈ D(T 2),

we have that ker(Qs(T )) = {0} and Qs(T )−1 : ran(Qs(T ))→ D(T 2) is a bounded
operator. Now observe by Theorem 9.1.14 that

ran(Qs(T )) = (ran(Qs(T )))⊥)⊥

= ker(Qs(T )∗))⊥

= ker(Qs(T )))⊥

= {0}⊥ = H.

This proves that s is in the S-resolvent set, and so the S-spectrum is real. Now
suppose that the residual spectrum is nonempty. We get the following contradic-
tion:

{0} = ker(Qs(T )) = ker(Qs(T )∗) = ran(Qs(T )))⊥ 6= {0},

so σRS(T ) is the empty set.
Let us prove (ii). To prove that the S-spectrum is purely imaginary, we show

that the S-resolvent set consists of quaternions s = s0 + s such that s0 6= 0. In
analogy with the previous statement we want to show that ker(Qs(T )) = {0} and
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Qs(T )−1 : ran(Qs(T )) → D(T 2) is a bounded operator. This follows from the
inequality

‖Qs(T )x‖ ≥ s2
0‖x‖, x ∈ D(T 2). (9.10)

Precisely, since T is anti-self-adjoint, the relations

〈T 2x, Tx〉+ 〈Tx, T 2x〉 = 0, 〈Tx, x〉+ 〈x, Tx〉 = 0, 〈T 2x, x〉+ 〈x, T 2x〉 = −2‖x‖2,

imply

‖Qs(T )x‖2 = ‖T 2x‖2 + |s|4‖x‖2 + 2(s2
0 − |s|2)‖Tx‖2.

When s2
0 − |s|2 ≥ 0, the estimate ‖Qs(T )x‖ ≥ s2

0‖x‖ holds. When s2
0 − |s|2 ≤ 0, it

still holds, since from the estimate

2(s2
0 − |s|2)‖Tx‖2 ≥ 2(s2

0 − |s|2)‖x‖‖T 2x‖,

we get

‖Qs(T )x‖2 ≥ ‖T 2x‖2 + |s|4‖x‖2 + 2(s2
0 − |s|2)‖x‖‖T 2x‖

= (‖T 2x‖ − |s|‖x‖)2 + 2s2
0‖x‖‖T 2x‖+ (s4

0 + 2s2
0|s|2)‖x‖2

≥ s4
0‖x‖2.

We now recall that as in the complex case, if T is a closed linear quaternionic
operator, then D(TT ∗) is dense in H and T ∗T is self-adjoint. We will use the
above fact to show that D(TT ∗) is dense in H and that Qs(T )∗ = Q−s0+s(T ).
Indeed, the operator T 2 + s2

0I is self-adjoint. Since for the property of adjoint
operators

T ∗1 + T ∗2 ⊂ (T1 + T2)∗

when D(T1 + T2) is dense in H we get

T 2 + s2
0I = (T − s0I)2 + 2s0T )∗

⊃ ((T − s0I)2)∗ + 2s0T
∗

= ((T − s0I)2)∗ − 2s0T,

it follows that

(T + s0I)2 = (T − s0I)2 + 4s0T ⊃ ((T − s0I)2)∗.

Since T ∗1 T
∗
2 ⊂ (T2T1)∗ if D((T2T1)) is dense in H, we have

((T − s0I)2)∗ ⊃ (T ∗ − s0I)2 = (T + s0I)2,

so we get

((T − s0I)2)∗ = (T + s0I)2,
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and so

Qs(T )∗ = ((T − s0I)2 + |s|2I)∗ = (T + s0I)2 + |s|2I = Q−s0+s(T ).

We now apply (9.10) to get

‖Q−s0+s(T )‖ ≥ s2
0‖x‖, x ∈ D(T 2).

In particular, this implies that

ker(Q−s0+s(T )) = {0},

and moreover, with similar considerations as in point (i), we have

ran(Q−s0+s(T )) = H.

This means that s ∈ ρS(T ), and so the S-spectrum is purely imaginary. The fact
that the residual S-spectrum is empty follows by contradiction as in case (i). �

Theorem 9.2.6. Let T ∈ B(H) be a normal operator. Then we have

σPS(T ) = σPS(T ∗), σRS(T ) = σRS(T ∗) = 0, σCS(T ) = σCS(T ∗).

Proof. Since T is normal and Qs(T )∗ = Qs(T ∗), it is clear that Qs(T )∗ is normal.
For bounded linear operators, the kernel T and the kernel of its adjoint are equal,
so

ker(Qs(T )) = ker(Qs(T ∗)).

So by the definition of point S-spectrum, we have

σPS(T ) = σPS(T ∗).

The fact that σRS(T ) = σRS(T ∗) = 0 follows by contradiction. In fact, if 0 6= s ∈
σRS(T ), we get

{0} = ker(Qs(T )) = ker(Qs(T ∗)) = (ran(Qs(T ))⊥ 6= {0}.

In the same way we can prove that σRS(T ∗) = 0. Since T and T ∗ have the same S-
spectrum and the three components of the S-spectrum, by definition, are pairwise
disjoint, it follows that σCS(T ) = σCS(T ∗). �

Theorem 9.2.7. Let T ∈ B(H). Then we have the following:

(i) If T is unitary, then

σS(T ) ⊂ {s ∈ H : |s| = 1}.

(ii) If T is anti-self-adjoint and unitary, then

σS(T ) = S.
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Proof. We study the invertibility of Qs(T ) for |s| ≥ 0. If s = 0, then Q0(T ) = T 2

has a bounded inverse. Since T is unitary, ‖T‖ = 1, and for |s| > ‖T‖ we know
that Qs(T ) has a bounded inverse. When 0 < |s| < 1, from the identity

Qs(T ) = |s|2Qs−1(T ∗)T 2,

the operator T ∗ is unitary and |s−1| > 1, so Qs−1(T ∗) is bijective and has
a bounded inverse. From the above identity, also Qs(T ) is bijective and has a
bounded inverse, so we conclude that s ∈ ρS(T ) if |s| 6= 1. Finally, the fact that
if T is anti-self-adjoint and unitary, then σS(T ) = S follows for the previous point
and from the fact that the S-spectrum of an anti-self-adjoint operator is purely
imaginary. �

We recall that the splitting of the spectrum is defined according to where an
operator is not invertible. A quaternionic bounded linear operator A that satisfies
the two conditions

(i) there exists K > 0 such that ‖Av‖ ≥ K‖v‖ for v ∈ D(A) (bounded from
below),

(ii) the range of A is dense,

is invertible. In the paper [49], the authors studied the invariant subspaces of
quaternionic normal operators, and the more natural splitting of the spectrum
is based on the previous theorem. So in analogy to the classical case for the S-
spectrum, we have the following definition:

Definition 9.2.8. Let T be a quaternionic bounded linear operator. The approxi-
mate point S-spectrum of T , denoted by ΠS(T ), is defined as

ΠS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not bounded from below}.

The compression S-spectrumof T , denoted by ΓS(T ), is defined as

ΓS(T ) = {s ∈ H : the range of T 2 − 2Re(s)T + |s|2I is not dense}.

The set ΠS(T ) contains the S-eigenvalues.

9.3 The Splitting of a Normal Operator and

Consequences

This section starts with two classical results on the square root of a positive
definite quaternionic linear operator and the polar decomposition of a bounded
quaternionic linear operator. Even though the proofs are the same as in the com-
plex case, they are of crucial importance for the Teichmüller decomposition of a
quaternionic normal operator.
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Let us define an order relation on bounded self-adjoint operators on a quater-
nionic Hilbert space H denoted by

A � B or B � A

whenever
〈Ax, x〉 ≥ 〈Bx, x〉 for all x ∈ H. (9.11)

Clearly, (9.11) forces

‖A‖ ≤ ‖B‖ whenever A � B,

and
A � 0⇐⇒ A is positive semidefinite.

Fix a positive semidefinite operator A ∈ B(H), i.e., A � 0. We will make use of
the so called generalized Cauchy–Schwarz inequality for A, namely,

|〈Ax, y〉|2 ≤ 〈Ax, x〉〈Ay, y〉, for x, y ∈ H. (9.12)

In order to justify (9.12), note that if

zt = x+ y(〈Ax, y〉t), t ∈ R,

then
0 ≤ 〈Azt, zt〉 = 〈Ax, x〉+ 2t|〈Ax, y〉|2 + t2|〈Ax, y〉|2〈Ay, y〉.

Since a nonnegative quadratic polynomial of a real variable with real coefficients
cannot have two distinct zeros, we obtain

4|〈Ax, y〉|4 − 4|〈Ax, y〉|2〈Ax, x〉〈Ay, y〉 ≤ 0,

i.e., (9.12) holds.

Lemma 9.3.1. Every bounded monotonic sequence of self-adjoint operators (An)∞n=1

converges strongly to a bounded self-adjoint operator A ∈ B(H).

Proof. It suffices to consider the case

0 � A1 � · · · � I.

Let Amn := An −Am � 0 for n > m. It follows from (9.12) that

‖Amnx‖4 = 〈Amnx,Amnx〉2 ≤ 〈Amnx, x〉〈A2
mnx,Amnx〉.

Since ‖Amn‖ ≤ 1, we obtain

‖Anx−Amx‖4 ≤ (〈Anx, x〉 − 〈Amx, x〉)‖x‖2.

Finally, since (〈Anx, x〉)∞n=1 is bounded and monotonically increasing, the above
inequality shows that (Amnx)∞n=1 is a Cauchy sequence in H. �
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The following proofs of the existence of a square root of a bounded positive
operator and the polar decomposition of a bounded linear operator are exactly
the same as in the case of complex linear operators [193].

Theorem 9.3.2. Every positive semidefinite operator A ∈ B(H) has a unique
positive square root A1/2 that satisfies (A1/2)2) = A. Moreover, every operator
B ∈ B(H) that commutes with A also commutes with A1/2.

Proof. The goal is to solve the equation A = X2 for X � 0. Without loss of
generality, suppose that

A � I.

If we let C = I −A � 0 and Y = I −X, then

A = X2 ⇐⇒ Y =
1

2
(C + Y 2).

Consider the recurrent sequence of positive semidefinite mutually commuting op-
erators in B(H) given by Y0 = 0 and

Yn+1 =
1

2
(C + Y 2

n ), n = 1, 2, . . . .

Note that YnYm = YmYn for all m,n = 1, 2, . . ., since Yn is a polynomial in C. We
claim that

‖Yn‖ ≤ 1

and Yn+1 − Yn � 0 for n = 1, 2, . . .. Both claims can be established by induction.
Indeed, since ‖Y0‖ = 0 < 1 and

‖Yn+1‖ ≤
1

2
(‖C‖+ ‖Yn‖2) ≤ 1

2
(1 + ‖Yn‖2) ≤ 1

when ‖Yn‖ ≤ 1, we have the first claim. For the second claim, we obviously have
Y1 = 1

2C � Y0, since C � 0 and Y0 = 0. Using YmYn = YnYm and Yn − Yn−1 � 0
as well as Yn + Yn−1 � 0, we have

Yn+1 − Yn =
1

2
(Yn + Yn−1)(Yn − Yn−1) � 0 for n = 1, 2, . . . .

Thus, we may invoke Lemma 9.3.1 to obtain a limit Y � 0 with ‖Y ‖ ≤ 1 for
(Yn)∞n=1, and hence if we put X = I−Y � 0, we have a desired solution A1/2 := X
to A = X2.

If B ∈ B(H) commutes with A, then it also commutes with each of the
operators Yn, since they are real polynomials in A. Consequently, B also commutes
with the limit Y = limn→+∞ Yn and in turn also with A1/2 = X = I −X.

Finally, we will now show that X is unique. Suppose that there are two
operators X � 0 and X̃ � 0 such that

A = X2 and A = X̃2.
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Let y = (X − X̃)x for every x ∈ H. We may use the above construction to obtain

bounded operators Z � 0 and Z̃ � 0 such that

X = Z2 and X̃ = Z̃2,

respectively. But then

‖Zy‖2 + ‖Z̃y‖2 = 〈Z2y, y〉+ 〈Z̃2y, y〉

= 〈Xy, y〉+ 〈X̃y, y〉

= 〈X(X − X̃)x, y〉+ 〈X̃(X − X̃)x, y〉

= 〈(X + X̃)(X − X̃)x, y〉
= 〈(A−A)x, y〉 = 0.

Thus, Zy = Z̃y = 0 and hence also Xy = X̃y = 0. Consequently,

‖(X − X̃)x‖2 = 〈(X − X̃)2x, x〉 = 〈(X − X̃)y, x〉 = 0,

and thus X = X̃. �

The next theorem motivates the following definition.

Definition 9.3.3. For every operator T ∈ B(H), we define |T | := (T ∗T )1/2.

Theorem 9.3.4 (Polar decomposition in B(H)). Every operator T ∈ B(H) admits
a unique factorization

T = UP (9.13)

into the product of a positive operator P and a partial isometry U on ranP (that
is, ‖Ux‖ = ‖x‖ for every x ∈ ranP and Ux = 0 for every x ∈ (ranP )⊥). The
operator P is furthermore given by P := (T ∗T )1/2, and ran(U) = ran(T ).

If T is normal, then P and U commute mutually and with every operator in
B(H) that commutes with both T and T ∗ and U is (anti)-self-adjoint if and only
if T is. Furthermore, ran(U) = ran(P ) = ran(T ), and so U defines in this case a
unitary operator on ran(T ).

Proof. We will first prove the existence of (9.13). In view of Theorem 9.3.2, the
positive operator T ∗T ∈ B(H) has a unique positive square root P := (T ∗T )1/2

in B(H). Consequently,

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 〈P 2x, x〉 = 〈Px, Px〉 = ‖Px‖2 (9.14)

for all x ∈ H and hence

P (x− y) = 0⇐⇒ T (x− y) = 0,
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so that P (x) = P (y) if and only if T (x) = T (y) for all x, y ∈ H. Thus, we may
define

U :

{
ranP → ranT,

Px 7→ Tx.
(9.15)

Because of (9.14) this operator is isometric and hence extends to an isometry
defined on ranP . We can extend U to all of H by setting

Ux =

{
Ux for x ∈ ranP ,

0 for x ∈ (ranP )⊥.
(9.16)

If x, y ∈ ran P , then
〈y, x〉 = 〈Uy,Ux〉 = 〈y, U∗Ux〉

and hence
U∗Ux− x ∈ (ranP )⊥.

Since, on the other hand, U∗ : H → ranP , we obtain U∗Ux−x ∈ (ranP )⊥∩ranP ,
and so

U∗Ux− x = 0, x ∈ ranP .

Thus U∗Ux = x for every x ∈ ranP , and so U is actually a partial isometry on
ranP .

Let now T = UP be an arbitrary decomposition of the form (9.14). Since U
is a partial isometry on ranP , the operator U∗U is the orthogonal projection of H
onto ranP and so T ∗T = P ∗U∗UP = P ∗P = P 2. Since the positive square root
of a positive operator is unique, we find that P = (T ∗T )1/2 and in turn that U
must be the operator defined in (9.15) and (9.16).

Suppose now T is normal and consider the factorization T = UP with P 2 =
|T |2 = T ∗T in (9.13). Since T ∗T = TT ∗, we then have

T ∗T = TT ∗ = UPPU∗ = UP 2U∗ = UT ∗TU∗.

Since U∗U is the orthogonal projection of H onto ranT ⊃ ran(TT ∗) = ran(T ∗T ),
applying U∗ to the above equation yields U∗(T ∗T ) = (TT ∗)U∗, and taking the
adjoint, we finally obtain U(T ∗T ) = (T ∗T )U . Since P = |T | = (T ∗T )1/2 com-
mutes with every operator that commutes with T ∗T , the operator U therefore
also commutes with P .

Since U is a partial isometry on ranP , its restriction U : ranP → ranU
is a unitary operator. Due to (9.14), we however have kerT = kerP , and since
(kerT )⊥ = ranT because T is normal, this implies

ranP = (kerP )⊥ = (kerT )⊥ = ranT = ranU,

so that U defines a unitary operator on this space.
Finally, an arbitrary operator A ∈ B(H) that commutes with T and T ∗ also

commutes with T ∗T and hence also with P = (T ∗T )1/2. Furthermore, it is easy to
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show that each component of the orthogonal decompositionH = ker(T )⊕ran(T ) is
left invariant by A. Hence, we find for x ∈ ker(T ) = ker(U) that AUx = 0 = UAx.
On the other hand, by the previous arguments, we have

UAP = UPA = TA = AT = AUP,

and so UAx = AUx also for every x ∈ ranP = ranT . Altogether, we obtain
UA = AU .

Finally, for self-adjoint T , we have 0 = T − T ∗ = UP − PU∗ = (U − U∗)P
and hence U = U∗ on ran(P ). Since U vanishes on U∗, we conclude that also
U∗ vanishes on kerP , and hence U = U∗ on H = ker(T )⊕ ran(T ). The anti-self-
adjointness of U for anti-self-adjoint T follows by similar arguments. �

The following result is due to Teichmüller [195].

Theorem 9.3.5. Let T ∈ B(H) be normal. Then there exists a triple (A, J,B) of
mutually commuting operators in B(H) all of which commute with T such that

T = A+ JB, (9.17)

where A = A∗, B � 0, and J is anti-self-adjoint and a partial isometry on ker(T −
T ∗)⊥. The operators A and B are given by

A =
1

2
(T + T ∗), B =

1

2
|T − T ∗|,

and J is the partial symmetry that appears in the polar decomposition of the oper-
ator 1

2 |T − T
∗|. Finally, the adjoint of T equals T ∗ = A− JB, and every operator

in B(H) commutes with T and T ∗ if and only if it commutes with A, B, and J .

Proof. We obviously have

T =
1

2
(T + T ∗) +

1

2
(T − T ∗).

If A = 1
2 (T + T ∗), then A = A∗. If we apply Theorem 9.3.4 to

C :=
1

2
(T − T ∗) ∈ B(H),

we obtain a positive operator B := 1
2 |T − T

∗| and a partial symmetry J ∈ B(H)
on ran(T − T ∗) such that C = JB. Since C is anti-self-adjoint, the operators B
and J commute, and the operator J is anti-self-adjoint too.

Obviously T and A commute. Moreover, since these operators both commute
with C and C is normal, they also commute with the factors B and J in the polar
decomposition of C.

Finally, we have

T ∗ = (A+ JB)∗ = A∗ +B∗J∗ = A−BJ = A− JB.
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Every operator that commutes with A, B, and J therefore obviously also commutes
with T and T ∗. If, on the other hand, N ∈ B(H) commutes with T and T ∗, then
it also commutes with A = 1

2 (T + T ∗) and C = 1
2 (T − T ∗). Since J and B are the

factors of the polar decomposition of C, they commute with N . �

The operator J in the above decomposition is of fundamental importance for
developing the spectral theory of the normal operator T = A+JB. As we will see
later, it determines how to multiply the sphere S of imaginary units onto vectors
in H in order to be in accordance with the operator T when one performs spectral
integration. We therefore call operators of this type imaginary operators.

Definition 9.3.6. An anti-self-adjoint operator J ∈ B(H) is called imaginary if the
restriction of J to ranJ = (ker J)⊥ is a unitary operator on ranJ . An imaginary
operator is called fully imaginary if kerJ = {0}, that is, if J is a unitary anti-self-
adjoint operator on H.

Remark 9.3.7. The operator J in the decomposition T = A+JB can be extended
to a fully imaginary operator that commutes with T and T ∗. Since H0 := ker J =
ker(T − T ∗), we find that T |H0

= T ∗|H0
= T |∗H0

, and so

A0 := A|H0
=

1

2
(T + T ∗)|H0

= T |H0
.

The operator A0 is bounded and self-adjoint, and hence the spectral theorem for
bounded self-adjoint operators on a quaternionic Hilbert space based on the S-
spectrum (which can be proven in much the same way the complex Hilbert space
case, see, e.g., Section 31.3 in [163], with the aid of the spectral mapping theorem
given in Theorem 4.2.1) implies the existence of

(i) a measure space (Ω,A, µ) with µ ≥ 0,

(ii) a unitary operator U : H0 → L2(Ω,H, µ) from H0 to the space of quaternion-
valued functions on Ω that are square-integrable with respect to µ, and

(iii) an essentially bounded measurable function ϕ : Ω→ R
such that

A0 = U∗MϕU,

whereMϕ denotes the multiplication operator (Mϕf)(ξ)=ϕ(ξ)f(ξ) on L2(Ω,H, µ).
We can choose then an arbitrary imaginary unit j ∈ S and set J0 = U∗MjU , where
Mj is the multiplication operator (Mjf)(ξ) = jf(ξ) on L2(Ω,H, µ). The operator
Mj is unitary and anti-self-adjoint on L2(Ω,H, µ), since

(Mj)
∗ = Mj = M−j = −Mj = (Mj)

−1.

Since U is unitary, also J0 = U∗MjU is unitary and anti-self-adjoint. Since the
function ϕ is real-valued, it commutes with j, and hence

A0J0 = U∗MϕUU
∗MjU = U∗MϕMjU

= U∗MjMϕU = U∗MjU
∗UMϕU = J0A0.
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If E0 is the orthogonal projection of H0 and E1 is the projection of H onto H⊥0 =
ran J , then we find due to the above arguments that J̃ = J0E0 + JE1 is a fully
imaginary operator that, by construction, commutes with T and T ∗. The details
of this construction were explained in [142]. The unitary operator U and the
imaginary unit j ∈ S are, however, not determined by T and in particular are not
unique. Also the operator J0 on H0 and the extension of J to J̃ are in turn not
determined by T and in particular are not unique unless kerJ = {0}.

Corollary 9.3.8. If J is an imaginary operator, then −J2 is the orthogonal projec-
tion onto ran J .

Proof. Since J0 = J |ran J is a unitary operator on ran J and (J0)∗ = J∗|ran J =
−J0, we obtain J−1

0 = J∗0 = −J0, and so −J2x = −J2
0x = x for every x ∈ ran J .

Since obviously −J2x ∈ ran J for every x ∈ H, we conclude that (−J2)2x = −J2x
for every x ∈ H, and hence −J2

0 is a projection. Since J is anti-self-adjoint, the
projection −J2 is self-adjoint, since (−J2)∗ = −(J∗)2 = −J2, and hence it is the
orthogonal projection on ran(−J2) = ranJ . �

Every imaginary operator allows one to split the space H into three complex
linear subspaces, on which the J is the multiplication with only one quaternion.

Lemma 9.3.9. If J is an imaginary operator and j ∈ S, then

H = H0 ⊕Hj+ ⊕H
j
− (9.18)

with

H0 := {x ∈ H : Jx = 0} and Hj± := {x ∈ H : Jx = x(±j)}.

The spaces Hj± are nontrivial if J 6= 0, they are complex Hilbert spaces over Cj
with the structure they inherit from H, and the orthogonality in (9.18) is intended
in the sense of the Cj-Hilbert space structure on H.

Proof. We obviously have H = ker J⊕ ran J = H0⊕ ran J . We hence have to show
that ran J = Hj+ ⊕H

j
− for j ∈ S. Let therefore x ∈ ran J . Then

x =
1

2
(x− Jxj) +

1

2
(x+ Jxj).

Setting x+ := 1
2 (x− Jxj) and x− := 1

2 (x+ Jxj), we obtain x = x+ + x− with

Jx+ =
1

2
(Jx− J2xj) =

1

2
(−Jxj + x)j = x+j

and

Jx− =
1

2
(Jx+ J2xj) =

1

2
(−Jxj − x)j = x+(−j)

due to Corollary 9.3.8. Hence, (9.18) holds.
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Obviously Hj+ and Hj− are Cj-linear vector spaces that are closed in the

topology of H. Moreover, if x, y ∈ Hj+, then

j〈x, y〉 = 〈x(−j), y〉 = 〈−Jx, y〉 = 〈x, Jy〉 = 〈x, y〉j.

Hence, 〈x, y〉 belongs to Cj , and so Hj+ is actually a Hilbert space over Cj . Simi-
larly, we can also show that H−j is a Hilbert space over Cj .

Finally, the spaces H0, Hj+, and Hj− are orthogonal if we consider H a Hilbert
space over Cj with the scalar product

〈x, y〉j := ξ0 + ξ1j if 〈x, y〉 = ξ0 + ξ1j + ξ2i+ ξ3ji

with i ∈ S so that i ⊥ j. Since H0 ⊥ ran J , we obviously have H0 ⊥ Hj±. For

x ∈ Hj+ and y ∈ Hj−, on the other hand, we have

j〈x, y〉 = 〈x(−j), y〉 = 〈−Jx, y〉 = 〈x, Jy〉 = 〈x, y〉(−j).

Since 〈x, y〉 anti-commutes with j, it is of the form 〈x, y〉 = ξ2i+ ξ3ji, and hence
〈x, y〉j = 0. �

Definition 9.3.10. Let J be an imaginary operator. We define, according to the
direct sum decomposition in (9.18), the Cj-linear projections

Π0 : H → H0, Πj
+ : H → Hj+, Πj

− : H → Hj−.

These projections are orthogonal in the Cj-Hilbert space structure of H.

9.4 The Continuous Functional Calculus

In this section we introduce the continuous functional calculus of a normal opera-
tor on a quaternionic Hilbert space. This functional calculus applies to continuous
intrinsic slice function, and therefore we start by investigating this class of func-
tions in more detail.

Definition 9.4.1. Let Ω ⊂ H be an axially symmetric open set. We denote the sets
of left, right, and intrinsic slice functions on Ω that are continuous respectively by
SCL(Ω), SCR(Ω), and SC(Ω).

Remark 9.4.2. The set C(Ω,H) of all continuous quaternion-valued functions on
a compact axially symmetric set Ω ⊂ H is a two-sided quaternionic Banach space
with the pointwise multiplications (af)(q) = af(q) and (fa)(q) = f(q)a and with
the supremum norm ‖f‖∞ := supq∈Ω |f(q)|. If follows from the structure formula
in Theorem 2.1.9 that the uniform limit of a sequence of continuous left, right, or
intrinsic slice functions is again a continuous left, right, or intrinsic slice function
on Ω. Hence, the set SCL(Ω) is a closed quaternionic right linear subspace ofH and
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so a quaternionic right Banach space, and the set SCR(Ω) is a closed quaternionic
left linear subspace of H and so a quaternionic left Banach space.

The set of intrinsic slice functions is, however, not invariant under multi-
plication by quaternionic scalars, neither from the left nor from the right, but
only under multiplication by real scalars. Hence SC(Ω) is only a closed R-linear
subspace of C(Ω,H), and so it is only a real Banach space. Since the pointwise
product of two intrinsic slice functions is again an intrinsic slice function and since
the pointwise product of two intrinsic slice functions is commutative, as one can
verify easily, SC(Ω) is even a commutative real Banach algebra. The sets SCL(Ω)
and SCR(Ω), on the other hand, are by Theorem 2.1.4 invariant only under multi-
plication by intrinsic slice functions, and hence they do not form an algebra with
the pointwise product.

Lemma 9.4.3. Let Ω ⊂ H be axially symmetric and let

Ω+ := {(u, v) ∈ R× [0,+∞) : u+ Sv ⊂ Ω}.

A function f : Ω → H is a left slice function if and only if there exist functions
F0, F1 : Ω+ → H, where F1(u, v) = 0 if v = 0, such that

f(q) = F0(u, v) + jF1(u, v)

for all q = u + jv ∈ Ω with v ≥ 0, and it is a right slice function if and only if
there exist functions F0, F1 : Ω+ → H, where F1(u, v) = 0 if v = 0, such that

f(q) = F0(u, v) + F1(u, v)j

for all q = u + jv ∈ Ω with v ≥ 0. In this case, the function f is intrinsic if and
only if F0 and F1 take values in R, and it is continuous if and only if F0 and F1

are continuous.

Proof. If f is a left slice function, then f(q) = f0(u, v) + jf1(u, v) for every q =
u + jv ∈ Ω with arbitrary j ∈ S, with functions f` : Ω → H that satisfy the
compatibility condition

f0(u, v) = f0(u,−v) and f1(u,−v) = −f1(u, v)

in (2.4), where
Ω̃ := {(u, v) ∈ R× R : u+ Sv ⊂ Ω}.

We can obviously set F`(u, v) = f`(u, v) for (u, v) ∈ Ω+ and ` = 1, 2, and we find
that f(q) = F0(u, v) + jF1(u, v) if q = u + jv with v ≥ 0 belongs to Ω. Since
f1(u,−v) = −f1(u, v), we moreover obtain

F1(u, 0) = f1(u, 0) = −f1(u, 0) = −F1(u, 0),

and hence F1(u, 0) = 0 for every u+ j0 ∈ Ω.
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Conversely, if f(q) = F0(u, v)+jF1(u, v) for every q = u+jv ∈ Ω with v ≥ 0,
then we can simply define, for (u, v) ∈ Ω̃,

f0(u, v) :=

{
F0(u, v), v ≥ 0,

F0(u,−v), v < 0,
f1(u, v) :=

{
F1(u, v), v ≥ 0,

−F1(u,−v), v < 0.

Then f(q) = f0(u, v) + jf1(u, v) for all q = u+ jv ∈ Ω, and f0 and f1 satisfy the
compatibility condition (2.4) because F1(u, 0) = 0 for all (u, 0) ∈ Ω+. Hence f is
a left slice function.

Obviously f is intrinsic if and only if F0 and F1 are real-valued. Moreover,
we have

F0(u, v) =
1

2
(f(u+ jv) + f(u− jv))

and

F1(u, v) =
1

2
j(f(u− jv)− f(u+ jv))

for every (u, v) ∈ Ω+ and any j ∈ S. Hence F0 and F1 are continuous if f is
continuous. Conversely, assume that F0 and F1 are continuous. Then f(q) =
F0(u, v) + jF1(u, v) is continuous on Ω \ R because u, v, and j depend contin-
uously on q on this set. On the real line, the terms F0(u, v) and F1(u, v) depend
continuously on q = u + jv, but the imaginary unit j does not. However, since
q 7→ F1(u, v) tends to zero as q approaches the real line, the function f is also con-
tinuous at points in R and hence continuous on all of Ω. For right slice functions,
we can argue similarly. �

Remark 9.4.4. From the above result it is clear that the functions f0 and f1 are
simply straightforward extensions of F0 and F1 to all of Ω̃ that we obtain by
imposing the compatibility condition (2.4). In Remark 2.1.3, we argued that the
compatibility condition is necessary in order to ensure that f(q) is well defined
and independent of the choice of the imaginary unit j that we use to represent
q = u + jv. Indeed, if v < 0, then we can write q = u + (−j)v with −j ∈ S and
find that

f(q) = f0(u, v) + jf1(u, v) = f0(u,−v) + (−j)f1(u,−v)

due to (2.4). If we always choose the imaginary unit jq := q/|q| in the represen-
tation of q, then always v ≥ 0, and hence F0 and F1 are sufficient to describe f .
However, in order to define slice hyperholomorphicity, the extended functions f0

and f1 are necessary. The set Ω+ does not contain neighborhoods of real points.
In order to consider the partial derivatives of the component functions, which for
slice hyperholomorphic functions must satisfy the Cauchy–Riemann equations, one
hence needs to work with the extended component functions f0 and f1 in order to
avoid technical problems when differentiating on the real line.

The following theorem is a classical readaptation of the classical Stone–
Weierstrass theorem; cf. also [142].
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Theorem 9.4.5. Every polynomial P in q of the form

P (q) =
∑

0≤|`|≤n

a`q
`1q`2 (9.19)

with coefficients a` ∈ R for every multi-index ` = (`1, `2) is a continuous intrinsic
slice function on H. For every compact axially symmetric set Ω ⊂ H the set of
polynomials of the form (9.19) is furthermore dense in SC(Ω).

Proof. The functions q 7→ q and q 7→ q are obviously continuous intrinsic slice func-
tions. Since the set of continuous intrinsic slice functions is closed under pointwise
multiplication and pointwise multiplication by a real number, we conclude that
every polynomial of the form (9.19) is also a continuous intrinsic slice function.

Let now Ω ⊂ H be axially symmetric and compact and let us consider a
function f ∈ SC(Ω). The function fj = f |Ω+

j
with Ω+

j := Ω ∩ C+
j is then a

continuous Cj-valued function on the compact set Ω∩C+
j . The Stone–Weierstrass

approximation theorem implies the existence of a sequence of polynomials Qn(z) =∑
0≤|`|≤n bn,`z

`1z`2 with bn,` ∈ Cj that converges uniformly to fj on Ωj . We set

Pn(z) := 1
2

(
Qn(z) +Qn(z)

)
and we denote the coefficients of Pn by an,`, so

that Pn(z) =
∑

0≤|`|≤n an,`z
`1z`2 . Obviously, Pn(z) = Pn(z), and so we find for

arbitrary t ∈ R that∑
0≤|`|≤n

a`t
`1+`2 = Pn(t) = Pn(t) =

∑
0≤|`|≤n

a`t
`1+`2 .

Hence Pn has real coefficients. Its natural extension Pn(q) =
∑

0≤|`|≤n a`qt
`1q`2

to H is therefore of the form (9.19). Furthermore, it tends uniformly to f on Ω,
since for every s = u + iv ∈ U , we can set z = u + jv ∈ Ω+

j and find due to the
structure formula (2.9) that

|f(s)−Pn(s)| ≤ |f(z)−Pn(z)|+ |f(z)− Pn(z)|

= |f(z)−Pn(z)|+
∣∣∣f(z)− Pn(z)

∣∣∣ ≤ 2 sup
z∈Ωj

|f(z)−Pn(z)| n→+∞−→ 0.�

Theorem 9.4.5 allows us now to define the continuous functional calculus.
This functional calculus relies on the T = A + JB decomposition introduced by
Teichmüller, cf. Theorem 9.3.5. Following the usual strategy, we can first define
P (T ) for a normal operator T and any polynomial of the form (9.19) in the natural
way. Due to the density of these polynomials, we can then extend this functional
calculus to arbitrary continuous intrinsic slice functions.

Definition 9.4.6. Let T ∈ B(H) be a normal operator. For every polynomial

P (q) =
∑

0≤|`|≤n

a`q
`1q`2 (9.20)
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with real coefficients as in (9.19), we define the operator

P (T ) :=
∑

0≤|`|≤n

a`T
`1(T ∗)`2 . (9.21)

Theorem 9.4.7. Let T ∈ B(H) be a normal operator. For every polynomial P (q) =∑
0≤|`|≤n a`q

`1q`2 with real coefficients, the operator P (T ) is a normal operator
that commutes with T and T ∗, and

σS(P (T )) = P (σS(T )).

In particular, this implies ‖P (T )‖ = maxs∈σS(T ) |P (s)|.

Proof. The adjoint of P (T ) is P (T )∗ =
∑

0≤|`|≤n a`(T
∗)`1T `2 . Since T and T ∗

commute, since T is normal and the coefficients a` are real, this operator obviously
commutes with T and T ∗ and in turn also with P (T ). Hence P (T ) is normal.

Let T = A+JB be the decomposition (9.17) of T and recall that the operators
A = 1

2 (T + T ∗), B = 1
2 |T − T

∗| and the imaginary operator J commute mutually.
The Hilbert space H can then decomposed into the orthogonal sum

H = H0 ⊕H1

with H0 := ker J = kerB and H1 := ranJ = ranB. Since T and T ∗ leave H0 and
H1 invariant, also the operator P (T ) leaves H0 and H1 invariant.

If A is an arbitrary bounded operator on H that leaves H0 and H1 invariant,
then A` := A|H` belongs to B(H`) for ` = 0, 1 and we obtain

σS(A) = σS(A0) ∪ σS(A1). (9.22)

Indeed, if s ∈ ρS(A), then Qs(A`)−1 = Qs(A)−1|H` ∈ B(H`) for ` = 0, 1, and
hence s ∈ ρS(A0) ∩ ρS(A1). Conversely, if s ∈ ρS(A0) ∩ ρS(A1), then the inverse
of Qs(A) is the operator Qs(A)−1 = Qs(A0)−1E0 + Qs(A1)−1E1, where E` is
the orthogonal projection of H onto H`. This operator is obviously bounded, and
so s ∈ ρS(T ). We conclude that ρS(A) = ρS(A0) ∩ ρS(A1), and by taking the
complement, we arrive at (9.22).

If we set T` = T |H` , then (T`)
∗ = T ∗|H` , and so P (T`) = P (T )|H` . Since

H0 = ker |T − T ∗| = ker(T − T ∗), we find that T ∗ = T on H0, and so T ∗0 = T0.
Hence P (T0) =

∑
0≤|`|≤n a`T

`1+`2
0 , and we conclude from Theorem 4.2.1 that

σS(P (T0)) = P (σS(T0)).
Before we consider the operator T1, let us recall that for j ∈ S we can split

H1 into the direct sum
H1 = ranJ = Hj+ ⊕H

j
−,

where Hj± = {x ∈ H : Jx = x(±j)} are complex Hilbert spaces over Cj by
Lemma 9.3.9. If C is a bounded quaternionic right linear operator on H1 that
commutes with J , then J(Tx) = T (Jx) = T (xj) = (Tx)j, and so Tx ∈ H1. Hence
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Cj := C|H+
j

defines a bounded Cj-linear operator on H+
j . Conversely, if Cj is a

bounded Cj-linear operator on Hj+, then it extends naturally to a quaternionic
linear operator on H1. Indeed, if i ∈ S, with i ⊥ j, then J(xi) = (Jx)i = xji =
(xi)(−j) because i and j anti-commute. Hence x 7→ xi maps Hj+ to Hj−. Since its
inverse is given by x 7→ x(−i), this function is even a bijection. We can therefore
write every vector x = x+ + x− ∈ H1 = Hj+ ⊕ H

j
− as x = x1 + x2i with two

components x1 = x+ and x2 = x−(−i) in H+
j . We moreover obtain

‖x‖2 = 〈x, x〉H = 〈x1, x1〉+ 〈x2, x1〉i− i〈x1, x2〉 − i〈x2, x2〉i
= 〈x1, x1〉+ 〈x2, x2〉 = ‖x1‖2 + ‖x2‖2.

(9.23)

The natural quaternionic linear extension of Cj is then simply

Cx := Cjx1 + (Cjx2)i.

This operator is Cj-linear because Cj is Cj-linear, and it satisfies

C(xi) = C(x1i− x2) = Cj(x1)i− Cj(x2)

= (Cj(x1) + (Cjx2)i)i = (Cx)i.

If we write a ∈ H as a = a1 + a2i with a1, a2 ∈ Cj , we therefore obtain

C(xa) = C(xa1) + C(xa2i) = C(xa1) + C(xa2)i

= C(x)a1 + C(x)a2i = C(x)a,

and hence C is actually H-linear. Moreover, we have on the one hand

‖Cj‖ = sup{‖Cjx‖ : x ∈ Hj+, ‖x‖ = 1}
= sup{‖Cx‖ : x ∈ Hj+, ‖x‖ = 1}
≤ sup{‖Cx‖ : x ∈ H1, ‖x‖ = 1} = ‖C‖,

and due to (9.23), on the other hand

‖Cx‖2 = ‖Cjx1 + (Cjx2)i‖2 = ‖Cjx1‖2 + ‖Cjx2‖2

≤ ‖Cj‖2
(
‖x1‖2 + ‖x2‖2

)
= ‖Cj‖2‖x‖2,

which implies ‖C‖ ≤ ‖Cj‖. Altogether, ‖C‖ = ‖Cj‖.
The S-spectrum of C and the spectrum of Cj satisfy the relation

σS(C) ∩ Cj = σ(Cj) ∪ σ(Cj), (9.24)

which will be essential for us. For every x ∈ Hj+ and z = z0 + z1j ∈ Cj , we namely
have (

zIHj+
)
x = xz = xz0 + xz1j = (z0IjH+

+ z1J)x,
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where we recall that the multiplication of vectors in Hj+ by scalars in Cj is simply
the multiplication of vectors by quaternionic scalars from the right in H that is
restricted to Cj . For every x ∈ Hj+, we have −J2x = −xj2 = x, and so

Qz(C)x = Qz(Cj)x = (C2
j − 2z0Cj + |z|2I)x

= (z0I − z1J − Cj)(z0I + z1J − Cj)x = (zIHj+ − Cj)(zIHj+ − Cj)x.
(9.25)

Hence if z ∈ ρS(C) ∩ Cj , then the resolvent Rz(Cj) = (zIHj+ − Cj)
−1 of Cj

at z is Rz(Cj) = (zIHj+ − Cj)Qz(C)−1, and so z ∈ ρ(Cj). We conclude that

ρS(C)∩Cj ⊂ ρ(Cj). Due to the axial symmetry of ρS(C), we also have ρS(C)∩Cj =

ρS(C) ∩ Cj ⊂ ρ(Cj), and so

ρS(C) ∩ Cj ⊂ ρ(Cj) ∩ ρ(Cj).

Conversely, if z ∈ ρ(Cj) ∩ ρ(Cj), then z and z both belong to ρ(Cj), and we con-
clude from (9.25) that the pseudo-resolvent Qz(C)−1 of C at z is the quaternionic
linear extension of the operator Rz(C)Rz(C). Hence z ∈ ρS(C), and we conclude
that

ρS(C) ∩ Cj ⊃ ρ(Cj) ∩ ρ(Cj)

and in turn
ρS(C) ∩ Cj = ρ(Cj) ∩ ρ(Cj).

Taking the complement of this set in Cj , we arrive at (9.24).
Let us now return to the operator T1 = T |H1

. Since this operator commutes
with J1 = J |H1

, it is by the above arguments the quaternionic linear extension of
the complex linear operator Tj = T1|Hj+ = T |Hj+ ∈ B(Hj+), and we have σS(T1) ∩
Cj = σ(Tj) ∪ σ(Tj). Moreover, T ∗j = T ∗|Hj+ , as one can check easily. Hence Tj

is normal and Pj(Tj) =
∑

0≤|`|≤n a`T
`1
j (T ∗j )`2 = P (T1)|Hj+ , where Pj = P |Cj .

The spectral mapping property of the continuous functional calculus for normal
operators on a complex Hilbert space (cf. for instance [105,183]) implies

σ(Pj(Tj)) = Pj(σ(Tj)).

Since P is an intrinsic function, we have Pj

(
σ(Tj)

)
= Pj(σ(Tj)), and so

σS(P (T1)) ∩ Cj = σ(Pj(Tj)) ∪ σ(Pj(Tj))

= Pj(σ(Tj)) ∪ Pj(σ(Tj)) = Pj

(
σ(Tj) ∪ σ(Tj)

)
.

As an intrinsic slice function, P is compatible with the axially symmetric hull,
that is, [P (∆)] = P ([∆]) for every ∆ ⊂ Cj . Hence, we finally obtain

σS(P (T1)) = [σS(P (T1)) ∩ Cj ] =
[
Pj

(
σ(Tj) ∪ σ(Tj)

)]
=
[
P
(
σ(Tj) ∪ σ(Tj)

)]
= P

([
σ(Tj) ∪ σ(Tj)

])
= P (σS(T1)).
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If we turn our attention back to the operator T that is defined on the entire
space H, we find due to (9.22) and the identities P (T0) = P (T )|H0

and P (T1) =
P (T )|H1

that

σS(P (T )) = σS(P (T0)) ∪ σ(P (T1))

= P (σS(T0)) ∪ P (σS(T1)) = P (σS(T0) ∪ σS(T1)) = P (σS(T )).

Finally, since the norm of a normal operator coincides with its S-spectral radius,
which is as in the complex case an easy consequence of Gelfand’s formula for the
S-spectral radius in Theorem 4.2.3, we obtain

‖P (T )‖ = max
s∈σS(P (T ))

|s| = max
s∈P (σS(T ))

|s| = max
s∈σS(T )

|P (s)|. �

Remark 9.4.8. For the operator Tj = THj+
, the identity σS(T1)∩Cj = σ(Tj)∪σ(Tj)

in (9.24) can be further specified. Since T = A + JB, we have with Aj := A|Hj+
and Bj := B|Hj+ that Tj = Aj + jBj because T = A+ JB and J |Hj+ = jIHj+ . For

every z = z0 + jz1 ∈ σS(T ), we have z1 = j
2 (−z + z). By the spectral mapping

theorem of the continuous functional calculus for operators on complex Hilbert
spaces (cf. [105,183]), we therefore have

{z1 : z0 + jz1 ∈ σ(Tj)} = σ

(
j

2
(−Tj + T ∗j )

)
= σ

(
j

2
(−Aj − jBj +Aj − jBj)

)
= σ(Bj) ⊂ [0,+∞)

because B, and hence also Bj , is positive. Therefore, every z ∈ σ(Tj) belongs to
the upper half-plane C+

j := {z0 + z1j ∈ Cj : z1 ≥ 0}, and we conclude from (9.24)
that

σ(Tj) = σS(T ) ∩ C+
j .

Theorem 9.4.9 (Continuous functional calculus of a normal quaternionic operator).
Let T ∈ B(H). There exists a unique continuous homomorphism of real unital ∗-
algebras

ΨT :

{
SC(σS(T )) → B(H),

f 7→ ΨT (T ) := f(T ),

such that s(T ) = T , where s denotes the identity function s 7→ s. The homomor-
phism has furthermore the following properties:

(i) The homomorphism ΨT is isometric, since ‖f(T )‖ = maxs∈σS(T ) |f(s)|.

(ii) Every operator f(T ) is normal, and it commutes with T and T ∗ (or equiv-
alently with A, B, and J where T = A + JB is the decomposition (9.17) of
T ).
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(iii) The spectral mapping property σS(f(T )) = f(σS(T )) holds, and for every
function g ∈ SC(σS(f(T ))), we have g(f(T )) = (g ◦ f)(T ).

Proof. Let us first show the existence of the homomorphism ΨT . For every func-
tion f ∈ SC(σS(T )), there exists due to Theorem 9.4.5 a sequence Pn(q) =∑

0≤|`≤n an,`q
`1q`2 of polynomials of the form (9.19) that converges uniformly

to f on σS(T ). In particular, Pn is a Cauchy sequence in SC(σS(T )), and hence
the sequence Pn(T ) :=

∑
0≤|`≤n an,`T

`1(T ∗)`2 is a Cauchy sequence in B(H), since

‖Pn(T )− Pm(T )‖ = ‖(Pn − Pm)(T )‖ = max
s∈σS(T )

|Pn(s)− Pm(T )| (9.26)

by Theorem 9.4.7. Hence Pn(T ) converges in B(H), and we can define

f(T ) := lim
n→+∞

Pn(T ).

The operator f(T ) does not depend on the choice of the polynomials Pn and is
hence well defined. If P̃n is a different sequence of polynomials that tends uniformly
to f on σS(T ), then Pn − P̃n tends uniformly to zero on σS(T ), and we conclude
from ∥∥∥Pn(T )− P̃n(T )

∥∥∥ = max
s∈σS(T )

∣∣∣Pn(s)− P̃n(s)
∣∣∣ n→+∞−→ 0

that limn→+∞ Pn(T ) = limn→+∞ P̃n(T ). The mapping P 7→ P (T ) defined for
polynomials of the form (9.19) is obviously a homomorphism of real unital ∗-
algebras, and hence also the above defined continuous extension f 7→ f(T ) is a
homomorphism of real unital ∗-algebras.

The homomorphism ΨT is obviously uniquely determined by the property
s(T ) = T . Due to the homomorphism property, this determines P (T ) for every
polynomial of the form (9.19), and polynomials of this type are dense in SC(σS(T ))
by Theorem 9.4.5. Hence by continuity, the requirement s(T ) = T determines the
entire homomorphism ΨT .

Since each of the approximating operators Pn(T ) is normal by Theorem 9.4.7,
also the limit f(T ) is normal and commutes with T and T ∗. By Theorem 9.3.5
these operators also commute with the operators A, B, and J in the decomposition
(9.17) of the form T = A + JB. Since ΦT is isometric on the set of polynomials
of the form (9.19) and since this set is dense in SC(σS(T )), we obtain ‖f(T )‖ =
maxs∈σS(T ) |f(s)| for every f ∈ SC(σS(T )).

Let us finally prove the spectral mapping property and the composition rule.
Since f is continuous and σS(T ) is compact, we first of all observe that f(σS(T ))
is a compact subset of H, too. Let now ε > 0 and let P be a polynomial of the
form (9.19) such that

‖P (T )− f(T )‖ = max
s∈σS(T )

|P (s)− f(s)| < ε. (9.27)

We then have

f(σS(T )) ⊂ Bε(P (σS(T ))) := {s ∈ H : dist(s, P (σS(T ))} < ε.
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Since P and f commute, also P (T ) and f(T ) commute. Hence f(T ) = P (T ) + Θ
with Θ = f(T ) − P (T ). The operator Θ commutes with P (T ), and it satisfies
‖Θ‖ ≤ ε, so that Theorem 4.4.12 implies

σS(f(T )) ⊂ Bε(σS(P (T ))) = Bε(P (σS(T ))) ⊂ B2ε(f(σS(T ))).

Since ε > 0 was arbitrary, we obtain

σS(f(T )) ⊂ f(σS(T )) = f(σS(T )).

On the other hand, (9.27) also implies P (σS(T )) ⊂ Bε(f(σS(T )). Writing P (T ) =
f(T ) + (−Θ) and applying again Theorem 4.4.12, we obtain

f(σS(T )) ⊂ Bε(P (σS(T ))) = Bε(σS(P (T ))) = B2ε(σS(f(T ))).

Since ε > 0 was arbitrary, we conclude that also

f(σS(T )) ⊂ σS(f(T )).

Altogether, f(σS(T )) = σS(f(T )).
Finally, due to the homomorphism property, the composition rule holds if g

is a polynomial of the form (9.19). If g is an arbitrary function in SC(f(σS(T ))),
then we can choose a sequence of polynomials Pn of the form (9.19) that converges
uniformly to g on f(σS(f(T )). Then Pn ◦f converges uniformly to g ◦f on σS(T ),
and due to the continuity of ΨT , we obtain

g(f(T )) = lim
n→+∞

Pn(f(T )) = lim
n→+∞

(Pn ◦ f)(T ) = (g ◦ f)(T ). �

Let f ∈ SC(σS(T )) and let F0 and F1 be the component functions determined
in Lemma 9.4.3, so that f(q) = F0(u, v) + jF1(u, v) if q = u+ jv with v ≥ 0. Since
u = 1

2 (q+ q) and v = 1
2 |q− q|, we can consider F0 and F1 functions of q and q and

then apply the functional calculus defined above. As the next theorem shows, the
functional calculus is compatible with these component functions too.

Before we discuss this, let us, however, first show how the approximation in
terms of polynomials translates into an approximation of the component functions.

Lemma 9.4.10. Let K ⊂ H be a compact axially symmetric set, let f = F0 + jF1

in SC(K), and let Pn(q) =
∑

0≤|`|≤n an,`q
`1q`2 be a sequence of polynomials of the

form (9.19) that converges uniformly to f on K. Then Pn is of the form

Pn(q) = Qn(u, v) + jvRn(u, v) for q = u+ jv,

where Qn and Rn are real polynomials such that Qn(u, v)→ F0(u, v) and such that
vRn(u, v)→ F1 uniformly on K as n tends to infinity. Furthermore, Qn(u, v) and
Rn(u, v) contain only even powers of v, so that after the identification u = 1

2 (q+q)
and v = (−j) 1

2 (q − q) they are polynomials with real coefficients in q and q and
hence of the form (9.19).
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Proof. For q = u+ jv, we have

Pn(q) =
∑

0≤|`|≤n

an,`q
`1q`2 =

∑
0≤|`|≤n

an,`(u+ jv)`1(u− jv)`2 . (9.28)

The terms (u+ jv)`1 and (u− jv)`2 are polynomials in u and jv, namely

(u+ jv)`1 =

`1∑
κ=0

(
`1
κ

)
uκ(jv)`1−κ,

(u− jv)`2 =

`2∑
κ=0

(−1)`2−κ
(
`2
κ

)
uκ(jv)`2−κ.

(9.29)

If we apply the identities (9.29) in (9.28) and rearrange the terms, then due to
j2 = −1, we are left with an expression of the form

Pn(q) =
∑

0≤|`|≤n
`2 even

bn,`u
`1v`2 + j

∑
0≤|`|≤n
`2 odd

cn,`u
`1v`2

=
∑

0≤|`|≤n
`2 even

bn,`u
`1v`2 + jv

∑
0≤|`|≤n
`2 odd

cn,`u
`1v`2−1,

with real coefficients bn,` and cn,`. If we set

Qn(u, v) =
∑

0≤|`|≤n
`2 even

bn,`u
`1v`2 , Rn(u, v) :=

∑
0≤|`|≤n
`2 odd

cn,`u
`1v`2−1,

then we find that Pn is of the desired form Pn(q) = Qn(u, v) + jvRn(u, v). Fi-
nally, since Pn → f uniformly on K, we find that Re(Pn(u, v)) = Qn(u, v) tends
uniformly on K to Re(f(u, v)) = F0(u, v) and that Im(Pn(u, v)) = jvRn(u, v)
tends uniformly to Im(f(u, v)) = jF1(u, v), which implies that (−j)Im(Pn(u, v)) =
vRn(u, v) tends uniformly to (−j)Im(f(u, v)) = F1(u, v). (Note that again, we do
not have any problems on the real line, where q = u+ jv 7→ j is not well defined,
because vRn(u, v) and F1(u, v) equal 0 if v = 0.) �

Theorem 9.4.11. Let T = A + JB ∈ B(H) be a normal operator and let f =
F0 + jF1 ∈ SC(σS(T )). Then

f(T ) = F0(T ) + JF1(T ).

Moreover, the operators F0(T ) and F1(T ) can be expressed as functions of the
operators A and B in terms of the continuous functional calculus for n-tuples of
commuting self-adjoint operators as

F0(T ) = F0(A,B) and F1(T ) = F0(A,B).

In particular, they hence do not depend on the imaginary operator J .
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Proof. Let Pn(q) be a sequence of polynomials of the form (9.19) that converges
uniformly to F0(T ) on σS(T ). By Lemma 9.4.10, we have Pn(q) = Qn(u, v) +
jvPn(u, v) with real polynomials Qn and Pn such that Qn(u, v) → F0(u, v) and
vRn(u, v)→ F1(u, v) uniformly for q = u+ jv ∈ σS(T ). Since Qn and Rn are real
polynomials in q and q after the identification u = 1

2 (q + q) and v = 1
2 (q − q), the

functions Pn(T ) and Qn(T ) can be explicitly computed by (9.21).
We obviously have

f(T ) =
1

2
(f(T ) + f(T )∗) +

1

2
(f(T )− f(T )∗).

Since f 7→ f(T ) is a ∗-homeomorphism and F0(q) = 1
2

(
f(q) + f(q)

)
, we conclude

that
1

2
(f(T ) + f(T )∗) =

1

2

(
f + f

)
(T ) = F0(T ),

and since (jF1((q) = 1
2

(
F (q)− F (q)

)
, we have

1

2
(f(T )− f(T )∗) =

1

2

(
f − f

)
(T ) = (jF1)(T ).

We can, however, not apply the ∗-homeomorphism property in order to show
that (jF1)(T ) = j(T )F1(T ) = JF1(T ). The mapping j : q = u + jv 7→ j is not
continuous on the real line, and hence it does not in general belong to SC(σS(T )).
The function jv = 1

2 (q−q), on the other hand, belongs to SC(σS(T )) and (jv)(T ) =
1
2 (T−T ∗) = JB. Hence we can use the approximating sequence jvRn(u, v) in order
to see that

(jF1)(T ) = lim
n→+∞

(jvRn)(T ) = lim
n→+∞

(jv)(T )Rn(T )

= lim
n→+∞

JBRn(T ) = J lim
n→+∞

(vRn)(T ) = JF1(T ),

where we used that v(q) = |q − q∗|, and so v(T ) = |T − T ∗| = B.
Finally, we observe that u(T ) = A and v(T ) = B for the functions u(q) = u

and v(q) = v for q = u+ jv, and so

F0(T ) = lim
n→+∞

Qn(T ) =
∑

n→+∞
Qn(A,B) = F0(A,B)

and
F1(T ) = lim

n→+∞
(vRn)(T ) = BRn(A,B) = F1(A,B),

where F0(A,B) and F1(A,B) are intended in the sense of the continuous func-
tional calculus for n-tuples of commuting self-adjoint operators. (One constructs
functions of an n-tuple (T1, . . . , Tn) of commuting self-adjoint operators similar to
the above procedure by approximating a function f(x1, . . . , xn) in n real variables
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uniformly by a sequence Pn(x1, . . . , xn) of polynomials in n real variables. One
formally replaces the real variables (x1, . . . , xn) by the operators T1, . . . , Tn and
defines f(T1, . . . , Tn) := limn→+∞ Pn(T1, . . . , Tn). See, for instance, Theorem 5.6.5
in the book [193].) �

Remark 9.4.12. The continuous functional calculus for normal operators on a
quaternionic Hilbert space was first introduced in [142]. In that paper, the authors
extend the operator J in the decomposition T = A + JB to a fully imaginary
operator JE on H that commutes with T . Recall that according to Lemma 9.3.9,
the imaginary operator J allows one to decompose the Hilbert space H into the
subspaces

H = H0 ⊕Hj+ ⊕H
j
−,

where

H0 = {x ∈ H : Jx = x0} and Hj± = {x ∈ H : Jx = x(±j)}.

The extension of J to a fully imaginary operator JE artificially introduces a split-
ting of the space H0 of the form

H0 = H0,+ ⊕H0,−

into two Cj-linear subspaces. We then have

H = Ej+ ⊕ E
j
−

with
Ej± := {x ∈ H : JEx = x(±j)} = H0,± ⊕Hj±.

The operator T is then simply the quaternionic linear extension of the Cj-
linear normal operator Tj := T |E+

j
on E+

j with σ(Tj) = σS(T ) ∩ C+
j . In princi-

ple, even though this is not done explicitly in the paper mentioned above, the
continuous functional calculus can then be constructed by defining f(T ) as the
quaternionic linear extension of fj(Tj), where fj(Tj) is the operator obtained by
applying the continuous functional calculus for complex linear normal operators to
fj = f |C+

j
. This approach seems quite straightforward, but several technical steps

have to be added in this case in order to show that f(T ) is independent of the
choice of both the imaginary unit j and the extension JE of J to a fully imaginary
operator.

In our approach, we consider only the operator T1 := T |H1
with H1 = ran J

as the quaternionic linear extension of a complex linear operator; cf. the proof of
Theorem 9.4.7. This is the subspace on which the operator T naturally induces a
complex structure. We then have to treat T0 = T |H0 separately. The advantage,
however, is that we do not have to introduce any undetermined structure, namely
an extension JE of J , in order to split the space H0 into two complex linear sub-
spaces. Since this needs to be done in accordance with T in order to guarantee that
JE and T commute, it requires a lot of avoidable technical work; cf. Remark 9.3.7.
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9.5 Comments and Remarks

As we will see in the next chapters, the main ingredients to proving the spectral
theorem for bounded normal operators are:

• The Riesz representation theorem for the dual of C(X,R), where X is a
compact Hausdorff space.

• The Riesz representation theorem for quaternionic Hilbert spaces.

• The Teichmüller decomposition of a normal bounded operator T = A+ JB.

• The continuous functional calculus based on the S-spectrum.

To prove the spectral theorem for unbounded normal operators, we have to intro-
duce the notion of spectral integrals that depend on the imaginary operator J .
Precisely, the main ingredients can be summarized in the following points:

• The spectral theorem for bounded normal operators.

• The spectral integrals in the quaternionic setting depending on the imaginary
operator J .

• Suitable transformations (in the spirit of von Neumann) that reduce the case
of unbounded operators to the case of bounded operators.

Finally, using the spectral integrals, we define a functional calculus for unbounded
normal operators.
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Spectral Integrals

In this chapter, we define spectral integrals in the quaternionic setting. The aim
is to define them for a suitably large class of functions that allows us to prove the
spectral theorem for unbounded operators in Section 12. To this end, we adapt
part of Chapter 4 of the book [191] to the quaternionic setting. Most of the proofs
of the properties of spectral integrals are easily adapted from the classical case
presented in [191], i.e., when H is a complex Hilbert space. However, some facts
require additional arguments, which we will highlight.

Definition 10.0.1. Let Ω ⊂ H be axially symmetric. We denote the σ-algebra of
axially symmetric Borel sets in Ω by BS(Ω), and for each j ∈ S, the σ-algebra of
Borel sets of Ω+

j := Ω ∩ C+
j with C+

j := {u+ jv : u ∈ R, v ≥ 0} by B(Ω+
j ).

Remark 10.0.2. Every point q ∈ C+
j corresponds to a sphere in [q] ⊂ H. Similarly,

every set ∆j ∈ B(C+
j ) corresponds to an axially symmetric set ∆ ⊂ H, and the

two sets are related via

∆j = ∆ ∩ C+
j and ∆ = [∆j ].

Spectral integrals in the quaternionic setting can be defined with respect to spec-
tral measures that are defined either on BS(H) or on B(C+

j ) for some j ∈ S. Both
approaches are equivalent for intrinsic slice functions, but they follow different
intuitions. We work in this chapter with spectral measures defined on B(C+

j ) and
present the second approach in Chapter 14, where we also discuss the equivalence
of the two methods.

Definition 10.0.3. Let H be a quaternionic Hilbert space and let j ∈ S. A spectral
measure over C+

j is a map E : B(H) → B(H), whose values are orthogonal
projections, such that

(a) E(C+
j ) = I,
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(b) E is countably additive:

E

( ∞⋃
n=1

σn

)
=
∞∑
n=1

E(σn)

for every sequence (σn)n∈N of pairwise disjoint sets in B(C+
j ).

If OE denotes the set of open sets in C+
j with E(O) = 0, then the support of E is

the set

Ω+
j := C+

j \
⋃

O∈OE

O.

As in the complex setting, the spectral measure E has the following additional
properties; cf. Section 4.2 in [191].

Lemma 10.0.4. Let E be a spectral measure on C+
j . For all Borel sets σ and τ in

B(C+
j ), we have

(i) E(σ) = E(σ)∗.

(ii) ‖E(σ)‖ ≤ 1.

(iii) E(∅) = 0.

(iv) E(σ ∩ τ) = E(σ)E(τ).

(v) E(σ)2 = E(σ).

(vi) E(σ) and E(τ) commute.

10.1 Spectral Integrals for Bounded Measurable

Functions

Throughout this chapter, we fix an imaginary unit j ∈ S, a spectral measure E
over Cj , and an imaginary operator J ∈ B(H) that commutes with E such that
ker J = E(R) and ran J = ranE(C+

j \R). This is by Corollary 9.3.8 equivalent to

E(C+
j \ R) = −J2. (10.1)

Before we continue, let us first discuss the intuition of the above definition. Spectral
integrals are defined via approximation of a bounded measureable function f by
a sequence of simple functions

fn(q) =
n∑
`=1

a`,nχ∆n,`
(q),
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where χ∆n denotes the characteristic function of the set ∆n ∈ C+
j . One then sets∫

C+
j

fn(s) dE(s) :=
n∑
`=1

an,`E(∆n,`) (10.2)

and defines ∫
C+
j

f(s) dE(s) := lim
n→+∞

∫
C+
j

fn(s) dE(s).

A quaternionic Hilbert space is a priori, however, only a right vector space,
and so B(H) is not a quaternionic Banach space, but only a real Banach space. In-
deed, a quaternionic scalar multiplication on B(H) is supposed to act as (Ta)(x) =
T (ax) and (aT )(x) = a(Tx) for T ∈ B(H), a ∈ H, and x ∈ H, which is mean-
ingful only if a left multiplication is defined on H. Using the right multiplication
on H to define a multiplication of operators with scalars as (Ta) = T (xa) yields
(Ta)(xb) = T (xba) = T (x)ba, but ((Ta)x) = T (xa)b = T (x)ab, and these two ex-
pressions are equal for every b ∈ H if and only if a ∈ R. Hence, (Ta) is quaternionic
linear only if a belongs to R and B(H) is in turn only a real Banach space.

As a consequence, the expression (10.2) is meaningful only if the coefficients
an are real. This is sufficient for self-adjoint operators, but in order to develop the
spectral theory of normal operators that are not self-adjoint, one has to be able
to define spectral values for functions that are not real-valued.

Since the continuous functional calculus is based on the class of intrinsic slice
functions, one has at least to be able to define spectral integrals of intrinsic slice
functions, which are of the form f(q) = f0(u, v) + jf1(u, v) for q = u + jv. The
imaginary operator J tells us how to multiply the imaginary unit j. Since intrinsic
slice functions take real values on the real line, this multiplication does, however,
not need to be defined on the subspace that is associated with the real line. This
is expressed in the condition (10.1)

One might wonder why one works with this minimal structure and does not
simply define a complete left multiplication on the space H. This would even
allow the integration of more general functions than only intrinsic slice functions.
However, it turns out that spectral integration of functions other than intrinsic
slice functions is not meaningful, since such techniques cannot follow the usual
intuition of spectral integration. Moreover, as we will see in the next chapter, a
normal operator T defines only a spectral measure E and an imaginary operator
J satisfying (10.1), but it does not define a left multiplication on the entire space
H that could be used for studying this operator; cf. also Remark 9.4.12. For more
details, we refer to the discussion in Chapter 14.

Definition 10.1.1. Let Ω ⊂ H be axially symmetric. We denote the set of all
bounded BS(Ω)-B(H)-measurable intrinsic slice functions by SM∞(Ω), and with
the notation Ω+

j := Ω ∩ C+
j , we define

SM∞j (Ω+
j ) := {f |Ω+

j
: f ∈ SM∞(Ω)}.
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Remark 10.1.2. The spaces SM∞(Ω) and SM∞j (Ω+
j ) are real Banach spaces with

the supremum norm

‖f‖∞ = sup
q∈Ω
|f(q)|, resp. ‖f |Ωj‖∞ = sup

q∈Ω+
j

|f(q)|.

Furthermore, if f = f0 + jf1 ∈ SM∞(Ω), then we have for every q = u+ iv ∈ Ω
that

|f(q)|2 = |f0(u, v) + jf1(u, v)|2 = |f0(u, v)|2 + |f1(u, v)|2.
The modulus |f(q)| therefore does not depend on the imaginary unit i ∈ S and
therefore it is constant on each sphere [q]. We conclude that ‖f‖∞ = ‖f |Ω+

j
‖∞

and that the restriction f 7→ f |Ωj is an isometric bijection between SM∞(Ω) and
SM∞j (Ωj).

As an immediate consequence of Lemma 9.4.3, we obtain also the following
lemma.

Lemma 10.1.3. Let Ω ⊂ H be axially symmetric and set Ω+
j := Ω∩C+

j . A function

fj belongs to SM∞j (Ω+
j ) if and only if it is of the form

fj(q) = f0(u, v) + jf1(u, v), q = u+ jv ∈ Ω+
j , (10.3)

where the component functions f` : Ω+
j → R for ` = 0, 1 are measurable real-valued

functions and f1(u, v) = 0 for every q = u+ jv ∈ Ω+
j ∩ R whenever v = 0.

The above discussion shows that we do not have to distinguish between glob-
ally defined intrinsic slice functions and functions of the form (10.3) that are
defined only on one slice C+

j . We can jump back and forth by extending, resp.
restricting, the respective functions.

Definition 10.1.4. Let Ω+
j ∈ B(Cj). We denote by EF(Ω+

j ) the subset of simple

functions in SM∞j (Ω+
j ), all Cj-valued functions of the form

f(q) =

n∑
m=1

cmχσm(q),

where σ1, . . . σn are pairwise disjoint sets in B(Ω+
j ), where c1, . . . , cn ∈ Cj and

cm ∈ R if σm ∩ R 6= ∅ and where

χσ(q) =

{
1 if q ∈ σ,
0 if q /∈ σ.

For f ∈ EF(Ω+
j ), we define

I(f) =

∫
Ω+
j

f(p) dE(p) :=
n∑

m=1

(Re(cm)I + Im(cm)J}E(σm). (10.4)
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Remark 10.1.5. If f(q) =
∑n
m=1 cmχσm(q) belongs to SM∞j (Ω+

j ), then the prop-
erty that cm ∈ R whenever σm∩R 6= ∅ follows from the fact that f is the restriction
of an intrinsic slice function. Such functions map the real line into itself, and hence
every coefficient that determines the value of f at a real point must be real.

Lemma 10.1.6. If f ∈ EF(Ω+
j ), then

‖I(f)‖ ≤ ‖f‖∞. (10.5)

Proof. If f =
∑n
m=1 cmχσm in EF(Ω+

j ), then, using properties (ii), (iii), (iv), and
(a) in Lemma 10.0.4 and the fact that ‖J‖ = 1, we have

‖I(f)x‖2 =

∥∥∥∥∥
n∑

m=1

(Re(cm) + Im(cm)J)E(σm)x

∥∥∥∥∥
2

=

n∑
m=1

‖(Re(cm) + Im(cm)J)E(σm)x‖2

≤
n∑

m=1

|cm|2‖E(σm)x‖2 ≤ ‖f‖2∞‖x‖2.

Thus (10.5) holds. �

Fix f ∈ SM∞(Ω+
j ). Since EF(Ωj) is a dense subset of SM∞j (Ω+

j ), there

exists a sequence of functions (fn)n∈N belonging to EF(Ω+
j ) such that

lim
n→+∞

‖fn − f‖∞ = 0.

In view of (10.5), (I(fn)x)n∈N is a Cauchy sequence in H. Let I(f) be given by

I(f)x = lim
n→+∞

I(fn)x, x ∈ H.

Note that f does not depend on the choice of the sequence (fn)n∈N, and conse-
quently, neither does I(f).

Lemma 10.1.7. If f = f0 + f1j and g = g0 + g1j belong to SM∞j (Ω+
j ), where f0,

f1, g0, and g1 are real-valued, α, β ∈ Cj, and x, y ∈ H, then:

(i) I (f)
∗

= I
(
f̄
)
, I(αf + βg) = α I(f) + β I(g).

(ii) 〈I(f)x, y〉 =
∫

Ω
f0(p)d〈E(p)x, y〉+

∫
Ω
f1(p)d〈JE(p)x, y〉.

(iii) I(fg) = I(f)I(g).

(iv) ‖I(f)x‖2 =
∫

Ω
|f(p)|2d〈E(p)x, x〉.

(v) ‖I(f)‖ ≤ ‖f‖∞.
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Proof. In view of the density of EF(Ω+
j ) in SM∞(Ω+

j ) and (10.5), it suffices to

check (i)–(v) when f, g ∈ EF(Ω+
j ). The assumption that E(σ) and J commute for

all σ ∈ B(Ω+
j ) will be a useful tool for checking (i)–(v) and will be used without

further mention. If f =
∑n
m=1 cmχσm and g =

∑n
m=1 dmχτm belong to EF(Ω+

j ),
then

〈I(f)∗y, x〉 =
n∑

m=1

〈y, {Re(cm)I + Im(cm)J}E(σm)x〉

=
n∑

m=1

〈{Re(cm)I − Im(cm)J}E(σm)y, x〉

= 〈 I(f̄)y, x〉, x, y ∈ H.

Thus, the first assertion in (i) holds. The second assertion in (i) is easily checked.
We will now check that (ii) holds. Since

〈I(f)x, y〉 =
n∑

m=1

{Re(cm)〈E(σm)x, y〉+ Im(cm)〈JE(σm)x, y〉}

=

∫
Ω

f0(p)d〈E(p)x, y〉+

∫
Ω

f1(p)d〈JE(p)x, y〉,

where f0 and f1 are real-valued functions that satisfy f = f0 + f1j, (ii) holds.
We will now check that (iii) holds. Since

I(fg) =
n∑

`,m=1

{Re(c`)Re(dm)− Im(c`)Im(dm)}E(σ` ∩ τm)

+
n∑

`,m=1

{Re(c`)Im(dm) + Im(c`)Re(dm)}JE(σ` ∩ τm)

=
n∑

`,m=1

{Re(c`)I + Im(c`)J}{Re(dm)I + Im(dm)J}E(σm)E(τn)

=

{
n∑
`=1

{Re(c`)I + Im(c`)J}E(σ`)

}{
n∑

m=1

{Re(dm)I + Im(dm)J}E(τm)

}
= I(f)I(g),

(iii) holds.
Assertion (iv) is a direct consequence of (i), (ii) and (iii). Indeed,

‖I(f)x‖2 = 〈I(f)x, I(f)x〉
= 〈I(|f |2)x, x〉

=

∫
Ω+
j

|f(p)|2d〈E(p)x, x〉, x ∈ H.
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Finally, assertion (v) is a direct consequence of assertion (iv). �

Remark 10.1.8. If T ∈ B(H) is normal and Ej is the spectral measure with support
σS(T )∩C+

j for j ∈ S appearing in Theorem 11.2.1 in the next chapter, then item
(ii) of Lemma 10.1.7 ensures that

f(T ) = I(f), f ∈ C(σS(T ) ∩ C+
j ,Cj). (10.6)

Finally, let us show that the choice of the imaginary unit j ∈ S is irrelevant.

Lemma 10.1.9. Let E be the spectral measure over C+
j and let i ∈ S. If we define

for ∆ ∈ B(C+
i ) the set

∆j := {u+ jv : u+ iv ∈ ∆}

and set

Ẽ(∆) = E(∆j),

then Ẽ is a spectral measure over C+
i , and for every f ∈ SM∞(Ω), we have after

setting fj := f |Ω+
j

and fi := f |Ω+
i

that

∫
Ω+
j

fj(p) dE(p) =

∫
Ω+
i

fi(p) dẼ(p).

Proof. It is immediate that Ẽ is a spectral measure over C+
i . If furthermore f ∈

SM∞(Ω+
j ) is such that fi =

∑m
m=0 cmχσm ∈ EF(Ω+

i ) with cm = Re(cm) +

jIm(cm), then fj =
∑n
m=0{Re(cm) + jIm(cm)}χσm,j and we obtain

∫
Ω+
j

fj(p) dE(p) =

n∑
m=0

{Re(cm)I + Im(cm)J}E(σm,j)

=
n∑

m=0

{Re(cm)I + Im(cm)J}Ẽ(σm) =

∫
Ω+
j

fi(p) dẼ(p). �

10.2 Spectral Integrals for Unbounded Measurable

Functions

We will now define spectral integrals for a more general class of functions than
SM∞(Ω+

j ). This will be useful in proving the spectral theorem for unbounded
normal operators. Again we fix an imaginary unit j ∈ S, a spectral measure E
over Cj , and an imaginary operator J ∈ B(H) that commutes with E such that
E(C+

j \ R) = −J2.
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Definition 10.2.1. Let SM#
E (Ω+

j ) denote the space of all B(Ω+
j )-measurable func-

tions f : Ω+
j → Cj ∪{∞} that are the restriction of an intrinsic slice function and

E-a.e. finite, i.e., such that

E({p ∈ Ω : f(p) =∞}) = 0.

Furthermore, we let SM∞E (Ω+
j ) denote the set of all B(Ω+

j )-measurable func-

tions f : Ω+
j → Cj ∪{∞} that are the restriction of an intrinsic slice function and

essentially bounded, i.e., such that

‖f‖E,∞ := inf{a ∈ R : E(∆a(f)) = 0},

where ∆a(f) = {q ∈ Ω+
j : |f(q)| ≥ a}.

Definition 10.2.2. A sequence of sets (σn)n∈N, where σn ∈ B(Ω+
j ) for n ∈ N, is

called a bounding sequence for a subset of functions F ⊆ SM#
E (Ω+

j ) if

(i) f ∈ F is bounded on σn for n = 0, 1, . . .,

(ii) σn ⊆ σn+1 for n = 0, 1, . . .,

(iii) E(
⋃+∞
n=0 σn) = IH,

where E is a spectral measure.

Remark 10.2.3. If (σn)n∈N is a bounding sequence, then the following assertions
follow from the definition of a spectral measure:

(i) E(σn) � E(σn+1).

(ii) E(σn)x→ x as n→ +∞ for any x ∈ H.

(iii) The set
⋃+∞
n=0E(σn)H is dense in H.

We will now give meaning to I(f) for f ∈ SM#
E (Ωj).

Definition 10.2.4. Let f ∈ SM#
E (Ω+

j ) and let (σn)n∈N be a bounding sequence
for f . We define the operator

I(f)x = lim
n→+∞

I(χσnf)x (10.7)

with domain

D(I(f)) =

{
x ∈ H :

∫
Ω+
j

|f(q)|2d〈E(q)x, x〉 < +∞

}
. (10.8)

Given a quaternionic measure µ on Ω+
j ⊆ Cj , we will let L2(Ω+

j , µ) consist
of all measurable functions such that

‖f‖L2(Ω+
j ,µ) :=

(∫
Ω+
j

|f(q)|2d|µ|(q)

)1/2

< +∞,
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where |µ| denotes the total variation of µ defined by

|µ|(σ) := sup

{∑
m∈N
|µ(σm)| : σ =

+∞⊔
m=1

σm

}
∀σ ∈ B(Ω+

j ).

Here
⊔

denotes a disjoint union of sets in B(Ω+
j ).

Lemma 10.2.5. For x, y ∈ H, the quaternionic measure µx,y(σ) = 〈E(σ)x, y〉 and

f, g ∈ SM#
E (Ω+

j ), we have:

(i) |µx,y(σ)| ≤ µx(σ)1/2µy(σ)1/2 for σ ∈ B(Ω+
j ).

(ii) If f ∈ L2(Ω+
j , µx) and g ∈ L2(Ω+

j , µy), then∣∣∣∣∣
∫

Ω+
j

Re{(fg)(p)}dµx,y(p) +

∫
Ω

Im{(fg)(p)}dµx,−Jy(p)

∣∣∣∣∣
≤ 2‖f‖L2(Ω+

j ,µx)‖g‖L2(Ω+
j ,µJy)

(10.9)

Proof. The proof of Lemma 4.8 (i) in [191] can easily be adapted to obtain item
(i) in our present setting. Since∣∣∣∣∣

∫
Ω+
j

Re{(fḡ)(p)}dµx,y(p)

∣∣∣∣∣ ≤
∫

Ω+
j

|Re{(fḡ)(p)}| d|µx,y|(p)

≤
∫

Ω+
j

|(fḡ)(p)| d|µx,y|(p),

one may proceed as in the proof of Lemma 4.8(ii) in [191] to obtain∫
Ω+
j

|(fḡ)(p)| d|µx,y|(p) ≤ ‖f‖L2(Ω+
j ,µx,x)‖g‖L2(Ω+

j ,µy,y)

and hence ∣∣∣∣∣
∫

Ω+
j

Re{(fḡ)(p)}dµx,y(p)

∣∣∣∣∣ ≤ ‖f‖L2(Ω+
j ,µx,x)‖g‖L2(Ω+

j ,µy,y).

Similarly, one can show that∣∣∣∣∣
∫

Ω+
j

Im{(fḡ)(p)}dµx,y(p)

∣∣∣∣∣ ≤ ‖f‖L2(Ω+
j ,µx,x)‖g‖L2(Ω+

j ,µ−Jy,−Jy).

But since

µ−Jy,−Jy(σ) = 〈E(σ)(−Jy),−Jy〉 = 〈E(σ)y, y〉 = µy,y(σ),

we have the advertised upper bound. �
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Lemma 10.2.6. If f ∈ SM#
E (Ω+

j ) and (σn)n∈N is a bounding sequence for f , then

(i) A vector x ∈ H belongs to D(I(f)) if and only if the sequence (I(χσnf)x)n∈N
converges in H, or equivalently,

sup
n∈N
‖I(fχσn)x‖ < +∞.

(ii) I(f) does not depend on the choice of the bounding sequence for f .

(iii) The set
⋃+∞
n=0E(σn)H is a dense subset of D(I(f)) with respect to the norm

‖x‖I(f) = ‖x‖+ ‖I(f)x‖, x ∈ D(I(f)).

Moreover,

E(σn)I(f) ⊆ I(f)E(σn) = I(fχσn), n = 0, 1, . . . . (10.10)

Proof. Since E(σ)2 = E(σ) and E(σ)∗ = E(σ), the operator E(σ) is a positive
operator for every σ ∈ B(Ω+

j ). Thus, µx is a positive measure on Ω+
j , where

µx(σ) = 〈E(σ)x, x〉. Consequently, the proof of items (i)–(iii) can be completed in
much the same way as items (i)–(iii) of Theorem 4.13 in [191]. �

In the following theorem, W denotes the closure of an operator W ∈ L(H),
while f̄ denotes the usual complex conjugation of the function f .

Theorem 10.2.7. If f, g ∈ SM#
E (Ω+

j ) and α, β ∈ R, then:

(i) I(f̄) = I(f)∗.

(ii) I(αf + βg) = αI(f) + βI(g).

(iii) I(fg) = I(f)I(g).

(iv) I(f) is a closed normal operator on H and

I(f)∗I(f) = I(ff̄) = I(f̄f).

(v) D(I(f)I(g)) = D(I(g)) ∩ D(I(fg)).

(vi) If x ∈ D(I(f)) and y ∈ D(I(g)), then

〈I(f)x, I(g)y〉 =

∫
Ω+
j

Re(f(p)g(p)) d〈E(p)x, y〉

+

∫
Ω+
j

Im(f(p)g(p)) d〈JE(p)x, y〉.

(vii) If x ∈ D(I(f)), then

‖I(f)x‖2 =

∫
Ω+
j

|f(p)|2d〈E(p)x, x〉.
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Proof. The proof of items (i)–(iv) when H is a complex Hilbert space (see items
(i)–(v) of Theorem 4.16 in [191]) can easily be adapted to the case in which H is a
quaternionic Hilbert space. Item (vii) follows directly from item (vi) when g = f
and x = y. What remains is to show (vi). To this end, we will adapt the argument
for the proof of Proposition 4.15 in [191].

In view of items (i) and (ii) of Lemma 10.2.6,∫
Ω+
j

Re{(fḡχm)(p)}d〈E(p)x, y〉+

∫
Ω+
j

Im{(fḡχm)(p)}d〈JE(p)x, y〉

= 〈I(fḡχσm)x, y〉 = 〈I(fχσm)x, I(gχσm)y〉.
(10.11)

Since x ∈ D(I(f)) and y ∈ D(I(g)), we have f ∈ L2(Ω, µx,x) and g ∈ L2(Ω, µy,y),
where µx,y(σ) = 〈E(σ)x, y〉, σ ∈ B(Ω). Therefore, we may use Lemma 10.2.5 to
get that the integrals given in

κm :=

∫
Ω+
j

Re{(fḡχm)(p)}d〈E(p)x, y〉+

∫
Ω+
j

Im{(fḡχm)(p)}d〈JE(p)x, y〉

exist and hence ∣∣∣∣∣
∫

Ω+
j

Re{(fḡχσm)(p)}d〈E(p)x, y〉

+

∫
Ω+
j

Im{(fḡχσm)(p)}d〈JE(p)x, y〉 − κm

∣∣∣∣∣→ 0

as m→ +∞. But then the formula advertised in (vi) follows from letting m tend
to +∞ in (10.11). �

Lemma 10.2.8. The operator I(f) is bounded if and only if f ∈ SM∞E (Ω+
j ). In this

case ‖I(f)‖ = ‖f‖E,∞.

Proof. The proof whenH is a complex Hilbert space (see Proposition 4.18 in [191])
can easily be adapted to the case in which H is a quaternionic Hilbert space. �

Theorem 10.2.9. If f ∈ SM#
E (Ω+

j ), then I(f) is invertible if and only if f does

not vanish E-a.e. on Ω+
j . In this case,

I(f)−1 = I(1/f), (10.12)

where we use the convention that 1/0 =∞ and 1/∞ = 0.

Proof. Also here, the proof when H is a complex Hilbert space (see Proposition
4.19 in [191]) can easily be adapted to the case in whichH is a quaternionic Hilbert
space. �
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Lemma 10.2.10. If f ∈ SM#
E (Ω+

j ), then

σS(I(f)) ∩ C+
j =

{
λ ∈ C+

j : E(σε(λ))) 6= 0 ∀ε > 0
}
, (10.13)

where
σε(λ) := {z ∈ Ω+

j : |f(z)2 − 2Re(λ)f(z) + |λ|2| < ε}.

Proof. We have q ∈ ρS(I(f)) ∩ C+
j if and only if

I(f)2 − 2Re(q)I(f) + |q|2I

has a bounded inverse. This is the case if and only if

gq(t) = f(t)2 − 2Re(q)f(t) + |q|2 6= 0 E-a.e. on Ω+
j

and the function g−1
q (t) is essentially bounded and hence belongs to SM∞E (Ω+

j ).
In other words, there exists a constant c > 0 such that

E({z ∈ Ω+
j : |gq(z)| ≥ c}) = 0.

Thus, λ ∈ σS(I(f)) ∩ C+
j if and only if

E({z ∈ Ω+
j : |gλ(z)| < ε}) 6= 0 ∀ε > 0,

and we have (10.13). �

As a direct consequence of Lemma 10.1.9, we also find that spectral integrals
of functions in SM#

E (Ωj) are also not dependent on the imaginary unit j ∈ S.

Lemma 10.2.11. Let E be the spectral measure over C+
j and let i ∈ S. If we define

for ∆ ∈ B(C+
i ) the set

∆j := {u+ jv : u+ iv ∈ ∆}

and set
Ẽ(∆) = E(∆j),

then Ẽ is a spectral measure over C+
i , and for every f ∈ SM#

E (Ω), we have after
setting fj := f |Ω+

j
and fi := f |Ω+

i
that∫

Ω+
j

fj(q) dE(q) = IE(fj) = IẼ(fi) =

∫
Ω+
i

fi(q) dẼ(q).

Furthermore, we have ∫
Ω+
j

fj(p) dE(p) =

∫
Ω+
i

fi(p) dẼ(p).

Proof. Since I(f) is defined as the limit I(f)x := limn→+∞ I(χσnf)x of spectral
integrals of functions in SM∞(Ω+

j ) and the statement holds for such functions by

Lemma 10.1.9, it also holds for f ∈ SM#
E (Ω+

j ). �
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10.3 Comments and remarks

The reader is encouraged to see the book of Schmüdgen for a very good and de-
tailed write-up of spectral integrals in the complex Hilbert space case. The main
difference with respect to the complex case is that the quaternionic spectral inte-
grals depend on the imaginary operator J , which is considered to be multiplication
by the imaginary unit j from the left.



Chapter 11

The Spectral Theorem for
Bounded Normal Operators

In this chapter we prove the spectral theorem for bounded normal operators T
in B(H). Our approach has analogies with the well-known approach for complex
bounded normal operators on a complex Hilbert space, see for example [163], but
it has to take into account the axially symmetric structure of the S-spectrum
of T and the (A, J,B)-decomposition T = A + JB of the quaternionic bounded
normal operators. As we will see, the spectral measures E are constructed using
just the two self-adjoint operators A and B, and only later, we take into account
the imaginary operator J for the spectral representation of T . We present the
original proof from [13] using the Teichmüller decomposition T = A + JB. The
following representation theorems will be used in the sequel.

Theorem 11.0.1 (Riesz representation theorem for real-valued functions). Let X be
a compact Hausdorff space and let C(X,R) denote the normed space of real-valued
continuous functions on X together with the supremum norm ‖·‖∞. Corresponding
to every bounded linear functional ψ : C(X,R) → R there exists a signed Borel
measure µ on X such that

ψ(f) =

∫
X

f(t)dµ(t) for all f ∈ C(X,R). (11.1)

If, in addition, ψ is a positive linear functional, then µ is a positive Borel measure
on X. In both cases µ is unique.

For a proof of Theorem 11.0.1 we refer to Theorem D in Section 56 of [157]
for the case in which ψ is a positive bounded linear functional on X and, e.g.,
Chapter 21 in [182] for the more general case.

Theorem 11.0.2 (Riesz representation theorem for quaternionic Hilbert spaces).
Let H be a quaternionic right Hilbert space with quaternionic inner product 〈·, ·〉,
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and let ϕ be a continuous right linear functional on H. Then there exists a unique
yϕ ∈ H such that

ϕ(x) = 〈x, yϕ〉, for all x ∈ H.

Theorem 11.0.2 can be found in [33]. We also want to mention Proposition
1.10 in [167] for a statement and proof in a more general Clifford algebra setting.

11.1 Construction of the Spectral Measure

We can now construct the spectral measures. We will use the Riesz representation
theorem for continuous real-valued functions and the Riesz representation theorem
for quaternionic Hilbert spaces.

In this chapter we consider a normal operator T ∈ B(H) and fixed imaginary
unit j ∈ S and define Ω = σS(T ) and

Ω+
j := Ω ∩ C+

j = σS(T ) ∩ C+
j .

We recall that C(Ω+
j ,R) denotes the space of continuous real-valued functions on

Ω+
j . By Lemma 9.4.3, every function fj ∈ C(Ω+

j ,R) is the restriction fj = f |Ω+
j

of a real-valued continuous slice function f on Ω = σS(T ). We denote the set of
continuous real-valued slice functions on Ω by SC(Ω,R), and in the following, we
do not distinguish between the function fj and the function f unless that could
cause confusion.

We consider for x ∈ H the mapping

`x(g) = 〈g(T )x, x〉, g ∈ C(Ω+
j ,R) ∼= SC(Ω,R),

where g(T ) is the operator obtained by the continuous function calculus intro-
duced in Theorem 9.4.11, where g(T ) stands for F0(T ) and F1(T ). Since T is a
bounded operator, its S-spectrum σS(T ) is a compact and nonempty set. It is
readily checked that `x is a real-valued bounded linear functional on C(Ω+

j ,R).
Moreover, `x is a positive functional. Indeed, if h is a continuous nonnegative
function on Ω+

j , then we can consider the function g(u, v) =
√
h(u, v) and find

g ∈ C(Ω+
j ,R) with g(T ) = g(T )∗. Thus

`x(h) = 〈h(T )x, x〉 = 〈g(T )x, g(T )x〉 = ‖g(T )x‖2 ≥ 0.

Theorem 11.0.1 yields the existence of a uniquely determined positive-valued mea-
sure µx on the Borel sets B(Ω+

j ), so that

`x(g) =

∫
Ω+
j

g(p) dµx(p), g ∈ C(Ω+
j ,R). (11.2)
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In view of (11.2), we may use the formula

4〈g(T )x, y〉 = 〈g(T )(x+ y), x+ y〉 − 〈g(T )(x− y), x− y〉
+ e1〈g(T )(x+ ye1), x+ ye1〉 − e1〈g(T )(x− ye1), x− ye1〉
+ e1〈g(T )(x− ye2), x− ye2〉e3 − e1〈g(T )(x+ ye2), x+ ye2〉e3

+ 〈g(T )(x+ ye3), x+ ye3〉e3 − 〈g(T )(x− ye3), x− ye3〉e3, (11.3)

where {1, e1, e2, e3} denotes the standard basis of H, to obtain for every x, y ∈ H
a uniquely determined H-valued measure µx,y such that

〈g(T )x, y〉 =

∫
Ω+
j

g(p)dµx,y(p), g ∈ C(Ω+
j ,R), (11.4)

where

4µx,y = µx+y − µx−y + e1µx+ye1 − e1µx−ye1 (11.5)

+ e1µx−ye2e3 − e1µx+ye2e3 + µx+ye3e3 − µx−ye3e3.

Lemma 11.1.1. Let x, y, z ∈ H and α, β ∈ H. The H-valued measures µx,y given
in (11.5) enjoy the following properties

(i) µxα+yβ,z = µx,zα+ µy,zβ,

(ii) µx,yα+zβ = ᾱµx,y + β̄µx,z,

(iii) |µx,y(Ω+
j )| ≤ ‖x‖‖y‖,

(iv) µ̄x,y = µy,x.

Proof. Properties (i)–(iii) are easily obtained from (11.4) using the uniqueness
of µx,y and the properties of 〈·, ·〉. Property (iv) follows from properties (i) and
(ii). �

It follows from properties (i) and (iii) in Lemma 11.1.1 that for every fixed
y ∈ H and every fixed σ ∈ B(Ω+

j ), the mapping

Φy(x) = µx,y(σ)

is a continuous right linear functional on H. Moreover, it follows from property
(ii) in Lemma 11.1.1 that

Φyα(x) = αΦy(x), α ∈ H.

It follows from the Riesz representation theorem for quaternionic Hilbert spaces,
see Theorem 11.0.2, that corresponding to every x ∈ H, there exists a unique
vector w ∈ H such that

Φy(x) = 〈x,w〉, (11.6)
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i.e., µx,y(σ) = 〈x,w〉. Since the left-hand side of (11.6) depends linearly on x and
anti-linearly on y and the right-hand side depends linearly on x, it follows that
Φy(x) depends linearly on x and anti-linearly on y, so

E(σ)y = w,

for some operator
E(σ) ∈ B(H).

Thus,
µx,y(σ) = 〈x,E(σ)y〉, σ ∈ B(Ω+

j ),

and in view of property (iv) in Lemma 11.1.1,

E(σ) = E(σ)∗, σ ∈ B(Ω+
j ), (11.7)

and hence
µx,y(σ) = 〈E(σ)x, y〉, σ ∈ B(Ω+

j ). (11.8)

Since µx is countably additive, µx,y is also countably additive. Consequently,
the B(H)-valued measure E is also countably additive, i.e.,

E

(
+∞⋃
n=0

σn

)
=

+∞∑
n=0

E(σn) (11.9)

for every sequence of pairwise disjoint sets (σn)n∈N in B(Ω+
j ). The limit in (11.9)

is intended with respect to the strong operator topology.
We recall that SC(Ω) denotes the space of all continuous intrinsic slice func-

tions on Ω, and we denote by

SCj(Ω+
j ) := {fj := f |Ω+

j
: f ∈ SC(Ω)}

the set of all restrictions of functions in SC(Ω). Again we do not distinguish be-
tween a function f and its restriction fj unless this could cause confusion.

Lemma 11.1.2. Let J be the imaginary component in the T = A+JB decomposition
(9.17) of the normal operator T ∈ B(H) and let E be the spectral measure on
B(Ω+

j ) with Ω+
j = σS(T ) ∩ C+

j defined above. The following statements hold:

(i) If g ∈ C(Ω+
j ,R) ∼= SC(Ω,R), then for all x, y ∈ H

〈g(T )x, y〉 =

∫
Ω+
j

g(p) d〈E(p)x, y〉. (11.10)

(ii) If f = f0 + jf1 ∈ SCj(Ω+
j ) ∼= SC(Ω), then we have for all x, y ∈ H,

〈f(T )x, y〉 =

∫
Ω+
j

f0(p) d〈E(p)x, y〉+

∫
Ω+
j

f1(p) d〈JE(p)x, y〉. (11.11)
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(iii) E(σ) and J commute for all σ ∈ B(Ω+
j ) and −J2 = E(Ω+

j \ R).

Proof. Assertion (i) follows directly from (11.4) and (11.8). We will now prove
assertion (11.11). In view of (11.10) and Theorems 9.4.9 and 9.4.11, we have

〈f(T )x, y〉 = 〈{f0(T ) + f1(T )J}x, y〉
= 〈f0(T )x, y〉+ 〈f1(T )Jx, y〉

=

∫
Ω+
j

f0(p)d〈E(p)x, y〉+

∫
Ω+
j

f1(p)d〈E(p)Jx, y〉, x, y ∈ H.

Thus, the proof of (11.11) will be complete on showing that

d〈E(p)Jx, y〉 = d〈JE(p)x, y〉, x, y ∈ H.

To see this, let g ∈ C(Ω+
j ,R) and use (11.10) and the fact that g(T ) and J commute

to obtain∫
Ω+
j

g(p)d〈E(p)Jx, y〉 = 〈g(T )Jx, y〉 = 〈Jg(T )x, y〉 =

∫
Ω+
j

g(p)d〈JE(p)x, y〉.

If we write ν = 〈E(p)Jx, y〉 and ν̃ = 〈JE(p)x, y〉 and then

ν = ν0e0 + ν1e1 + ν2e2 + ν3e3

and
ν̃ = ν̃0e0 + ν̃1e1 + ν̃2e2 + ν̃3e3,

where ν` and ν̃`, ` = 0, . . . , 3, are real signed measures and e`,= 0, . . . , 3 is the
standard basis for H, then it follows from Theorem 11.0.1 that ν` = ν̃` for ` =
0, . . . , 3. Therefore, items (iii) and (ii) hold.

Finally, we have due to (i) and due to Lemma 10.1.7(iii) that

BE(R) =

∫
Ω+
j

|Im(q)| dE(q)E(R) =

∫
Ω+
j

|Im(q)|χR dE(q) = 0,

so that
ranE(R) ⊂ kerB = ker J,

where B is the positive operator in the decomposition T = A + JB. If, on the
other hand, x ∈ ker J = kerB, then

0 = 〈Bx, x〉 =

∫
Ω+
j

|Imq|2dµx,x(q).

Since the measure µx,x(σ) = 〈E(σ)x, x〉 and the function ϕ(q) := |Im(q)|2 are
nonnegative, this implies

0 = µx,x(ϕ−1(R \ {0}) = µx,x(Ω+
j \ R) = 〈x,E(Ω+

j \ R)x〉 = ‖E(Ω+
j \ R)‖2.
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Hence E(Ω+
j \ R)x = 0, and in turn, x ∈ ranE(R). Therefore,

ranE(R) ⊃ kerB = ker J,

and in turn,
ranE(R) = kerJ.

Since −J2 is the orthogonal projection onto (kerJ)⊥ = ran J by Corollary 9.3.8
and E(Ω+

j \ R) is the orthogonal projection onto (ranE(R))⊥, we conclude that

−J2 = E(Ω+
j \ R). �

The properties of the spectral measure can be checked directly as in the
following result.

Theorem 11.1.3. The B(H)-valued countably additive measure E, given by (11.8),
for all σ, τ ∈ B(Ω+

j ), enjoys the following properties:

(i) E(σ) = E(σ)∗.

(ii) ‖E(σ)‖ ≤ 1.

(iii) E(∅) = 0 and E(σS(T ) ∩ C+
j ) = I.

(iv) E(σ ∩ τ) = E(σ)E(τ).

(v) E(σ)2 = E(σ).

(vi) E(σ) commutes with f(T ) for all f ∈ SCj(Ω+
j ) ∼= SC(Ω).

(vii) E(σ) and E(τ) commute.

Proof. The proof is broken into steps.

Step 1: Show (i) and (ii).

Property (i) has already been noted in (11.7). Property (ii) follows directly from
property (iii) in Lemma 11.1.1. Indeed, if x = y in property (iii) in Lemma 11.1.1,
then

µx,x(σ) ≤ µx,x(Ω+
j ) ≤ ‖x‖2

and hence
〈E(σ)x, x〉 ≤ ‖x‖2 for x ∈ H,

i.e., I − E(σ) is a positive operator for all σ ∈ B(Ω+
j ). Therefore, property (ii)

holds.

Step 2: Show (iii).

Since µx,y(∅) = 0, we may use (11.4) to deduce E(∅) = 0. Similarly, putting
g(p) = 1 in (11.4) yields g(T ) = I for all x, y ∈ H and thus

〈x, y〉 =

∫
Ω+
j

dµx,y = 〈E(Ω+
j )x, y〉,
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i.e., E(Ω+
j ) = I.

Step 3: Show (iv).

Recall that for all real-valued polynomials φ and ψ on Ω+
j , we have set φ(T ) :=

φ(A,B) and ψ(T ) := ψ(A,B). Clearly we have (φψ)(T ) = φ(T )ψ(T ), φ(T ) =
φ(T )∗, and ψ(T ) = ψ(T )∗. Thus,∫

σS(T )∩C+
j

φ(p) dµψ(T )x,x(p) = 〈φ(T )ψ(T )x, x〉

= 〈(φψ)(T )x, x〉 =

∫
σS(T )∩C+

j

φ(p)ψ(p)dµx,x(p).

(11.12)

Since E(σ) = E(σ)∗, (11.8) implies that

µx,x(σ) ∈ R for all σ ∈ B(Ω+
j ).

Similarly, since 〈ψ(T )x, x〉 is real, (11.8) implies that

µψ(T )x,x(σ) ∈ R for all σ ∈ B(σS(T ) ∩ C+
j ).

In view of the density of real-valued polynomials in the space C(Ω+
j ,R) and the

Riesz representation theorem given in Theorem 11.0.1, (11.12) implies that

dµψ(T )x,x(p) = ψ(p)dµx,x(p).

But then we may use the identity (11.5) and the fact that ψ(p) is real-valued to
obtain

dµψ(T )x,y(p) = ψ(p)dµx,y(p).

Thus, in view of (11.8),

〈E(σ)ψ(T )x, y〉 =

∫
σ

ψ(p) dµx,y(p) for σ ∈ B(Ω+
j ).

Since E(σ) = E(σ)∗ for σ ∈ B(Ω+
j ),∫

σS(T )∩C+
j

ψ dµx,E(σ)y = 〈ψ(T )x,E(σ)y〉

= 〈E(σ)ψ(T )x, y〉 =

∫
σS(T )∩C+

j

ψ χσ dµx,y,

where

χσ(p) =

{
1 if p ∈ σ,
0 if p /∈ σ.
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Since ψ is real-valued, we also have∫
σS(T )∩C+

j

ψ dµ
(m)
x,E(σ)y =

∫
σS(T )∩C+

j

ψ χσ dµ
(m)
x,y for m = 0, . . . , 3, (11.13)

where µ
(m)
x,y and µ

(m)
x,E(σ)y are real-valued signed measures given by

µx,y =
3∑

m=0

µ(m)
x,y em

and

µ
(m)
x,E(σ)y =

3∑
m=0

µ
(m)
x,E(σ)yem.

Recall that (em)`=0,...,3 is the standard basis for H.
In view of the density of real-valued polynomials in the space C(Ω+

j ,R) and
the Riesz representation theorem given in Theorem 11.0.1, the identity (11.13)
implies that

dµ
(m)
x,E(σ)y = χσ dµ

(m)
x,y for m = 0, . . . , 3,

and hence

dµx,E(σ)y = χσ dµx,y.

Therefore,

µx,E(σ)y(τ) =

∫
Ω+
j ∩ τ

χσdµx,y = µx,y(σ ∩ τ)

for σ, τ ∈ B(Ω+
j ). Since

µ(σ) = 〈E(σ)x, y〉 for σ ∈ B(Ω+
j ),

we obtain E(σ)E(τ) = E(σ ∩ τ) for σ, τ ∈ B(Ω+
j ).

Step 4: Show (v).

Property (v) can be obtained from Property (iv) when σ = τ .

Step 5: Show (vi).

Let A, B, and J be as in Theorem 9.3.5. We have already observed in item (iii) of
Lemma 11.1.2 that E(σ) and J commute. One can show in a similar fashion that
A and E(σ) commute and B and E(σ) commute. Thus, in view of the construction
of f(T ), we have that f(T ) and E(σ) commute.

Step 6: Show (vii).

Property (vii) follows from Property (iv) on interchanging τ and σ. �
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Remark 11.1.4. The spectral measure E was constructed using only operators
g(T ) that were generated by functions g ∈ C(Ω+

j ,R), that is, by real-valued func-
tions. By Theorem 9.4.11, for such functions, the operator g(T ), however, does not
depend on all the information we have about T , but only on the factors A and B in
the T = A+JB decomposition of T . Hence E is actually a joint spectral measure
of the self-adjoint operators A and B. This in particular implies that T = A+JB
and T ∗ = A− JB have the same spectral measure E.

In the quaternionic setting, invariant subspaces are not associated with in-
dividual eigenvalues, but with spheres [s] of equivalent eigenvalues, because the
eigenvalue equation T (x)− xs = 0 associated with a single (nonreal) eigenvalue is
not linear. The correct interpretation of the above observation is therefore that the
spectral measure E associates invariant subspaces of T to sets of spectral spheres,
while the imaginary operator J orients the spheres. It determines how the differ-
ent spectral values in these spheres need to be multiplied onto the vectors in the
associated subspaces in order to fit the operator T . A more detailed discussion of
this idea will be given in Chapter 14.

11.2 The Spectral Theorem and Some Consequences

We conclude this chapter with the main result, the spectral theorem for bounded
operators.

Theorem 11.2.1 (The spectral theorem for bounded normal operators). Let T ∈
B(H) be normal, let J ∈ B(H) be the imaginary operator in the Teichmüller de-
composition T = A+ JB of Theorem 9.3.5, and fix j ∈ S. Let Ω+

j = σS(T ) ∩ C+
j

and let Π0 and Πj
± denote the orthogonal Cj-linear projections defined in Defi-

nition 9.3.10 corresponding to the decomposition H = H0 ⊕ Hj+ ⊕ H
j
− given in

Lemma 9.3.9.

Then there exists a unique spectral measure Ej on Ω+
j such that for all x, y ∈

H,

〈Tx, y〉 =

∫
Ω+
j

Re(q) d〈E(q)x, y〉+

∫
Ω+
j

Im(q) d〈E(q)Jx, y〉. (11.14)

For every function f = f0 + jf1 ∈ SCj(Ω+
j ) and x, y ∈ H, we moreover have

〈f(T )x, y〉 =

∫
Ω+
j

f0(p) d〈Ej(p)x, y〉+

∫
Ω+
j

f1(p) d〈JEj(p)x, y〉, (11.15)
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or, equivalently,

〈f(T )x, y〉 =

∫
Ω+
j

d〈Π0Ej(p)x, y〉 f0(p)

+

∫
Ω+
j

d〈Πj
+Ej(p)x, y〉 f(p)

+

∫
Ω+
j

d〈Πj
−Ej(p)x, y〉f(p).

(11.16)

Moreover, on identifying the complex plane Ck with Cj in the natural way by
the mapping ϕkj : u+kv 7→ u+jv, we have Ej(ϕkj(σ)) = Ek(σ) for all σ ∈ B(Ω+

k )
for all j, k ∈ S.

Proof. Formula (11.15) was established in item (ii) of Lemma 11.1.2. Formula
(11.16) follows from (11.15). Indeed, if we write y = y0 + y+ + y− ∈ H with
respect to the decomposition H = H0 ⊕Hj+ ⊕H

j
− as in Lemma 9.3.9, then

〈f(T )x, y〉 =

∫
Ω+
j

f0(p)d〈Ej(p)x, y〉+

∫
Ω+
j

f1(p)d〈JEj(p)x, y)〉

=

∫
Ω+
j

f0(p)d〈Ej(p)x, y〉+

∫
Ω+
j

f1(p)d〈Ej(p)x+j, y〉

+

∫
Ω+
j

f1(p)d〈Ej(p)x−(−j), y〉

=

∫
Ω+
j

f0(p)d〈Ej(p)x0, y〉+

∫
Ω+
j

d〈Ej(p)x+, y〉(f0(q) + jf1(q))

+

∫
Ω+
j

d〈Ej(p)x−, y〉(f0(q)− jf1(q))

=

∫
Ω+
j

f0(p)d〈Ej(p)Π0x, y〉+

∫
Ω+
j

d〈Ej(p)Πj
+x, y〉f(q)

+

∫
Ω+
j

d〈Ej(p)Πj
−x, y〉f(q).

The fact that there is only one spectral measure Ej on σS(T ) ∩ C+
j such

that (11.15) holds follows directly from the uniqueness of the measure µx,y(σ) =
〈E(σ)x, y〉 on Ω+

j (see (11.5)). The claimed invariance Ej(ϕjk(σ)) = Ek(σ) relative
to j, k ∈ S drops out easily from the aforementioned uniqueness of Ej and Theorem
9.2.3. �

Corollary 11.2.2. In the setting of Theorem 11.2.1, the following statements hold:

(i) If T ∈ B(H) is a positive operator, then there exists a unique positive operator
T 1/2 := W ∈ B(H) such that W 2 = T .
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(ii) T ∈ B(H) is self-adjoint if and only if

〈Tx, y〉 =

∫
[−‖T‖,‖T‖]

t d〈Ej(t)x, y〉, x, y ∈ H. (11.17)

(iii) T ∈ B(H) is anti-self-adjoint if and only if

〈Tx, y〉 =

∫
[0,‖T‖]

t d〈JEj(t)x, y〉, x, y ∈ H. (11.18)

(iv) T ∈ B(H) is unitary if and only if

〈Tx, y〉 =

∫
[0,π]

cos(t)d〈Ej(t)x, y〉+

∫
[0,π]

sin(t)d〈JEj(t)x, y〉. (11.19)

Proof. If T ∈ B(H) is a positive operator, then σS(T ) ⊆ [0, ‖T‖]. Thus, using
Theorem 11.2.1, we have the existence of a uniquely determined spectral measure
Ej such that

〈Tx, y〉 =

∫
[0,‖T‖]

t d〈Ej(t)x, y〉. (11.20)

Let g(t) = t1/2 for t ∈ R. Since g ∈ C(σS(T ),R), it follows from Theorem 11.2.1
that

〈Wx, y〉 := 〈g(T )x, y〉 =

∫
[0,‖T‖]

t1/2 d〈Ej(t)x, y〉

satisfies W 2 = T . Thus, we have established the existence of a positive operator
W ∈ B(H) such that W 2 = T . The proof that W is unique follows from the
uniqueness of the spectral measure Ej , just as in the case that H is a complex
Hilbert space.

The proofs of (ii)–(iv) follow readily from Theorem 11.2.1 and (9.9). �

11.3 Comments and Remarks

The spectral theorem based on the S-spectrum was proved in the following papers:
the general case for bounded and unbounded normal operators was shown in [13].
A different proof for unitary operators was given in [14], and the simple case of
compact normal operators was shown in [143].

Results related to the quaternionic spectral theorem can furthermore be
found in [57, 74]. For quaternionic matrices, the spectral theorem based on the
right spectrum was proved in [108]. The right spectrum is in the finite-dimensional
case, however, equal to the S-spectrum.

The main application of the quaternionic spectral theorem is in quaternionic
quantum mechanics. In the list of references there are also papers related to quater-
nionic quantum mechanics [107], [109], [158] in which the notion of right spectrum
was used.



Chapter 12

The Spectral Theorem for
Unbounded Normal Operators

In this section we will consider normal operators T that are unbounded. The strat-
egy will be to transform T into a normal operator ZT ∈ B(H) and use Theorem
11.2.1 and a change of variable argument to obtain a spectral theorem for T based
on the S-spectrum. Obtaining a spectral theorem for unbounded operators in the
aforementioned way has been done in the classical case, i.e., when H is a complex
Hilbert space; see, e.g., the book of Schmüdgen [191].

12.1 Some Transformations of Operators

Given T ∈ L(H), we let

ZT = TC
1/2
T , (12.1)

where CT = (I +T ∗T )−1 ∈ B(H) (the proof that CT is bounded and positive can
be carried out in a similar manner to the classical complex Hilbert case; see, e.g.,
Proposition 3.18(i) in [191]).

Theorem 12.1.1. Let T ∈ L(H) be a densely defined closed operator on H. The
operator ZT has the following properties:

(i) ZT ∈ B(H), ‖ZT ‖ ≤ 1, and

CT = (I + T ∗T )−1 = I − Z∗TZT . (12.2)

(ii) (ZT )∗ = ZT∗ .

(iii) If T is normal, then ZT is normal.
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Proof. The proof is based on the proof of Lemma 5.8 in [191] and is broken into
three steps.

Step 1: Prove (i).

First note that

{CTx : x ∈ H} = D(I + T ∗T ) = D(T ∗T ). (12.3)

Consequently, if x ∈ H, then

‖TC1/2
T C

1/2
T x‖2 = 〈T ∗TCTx,CTx〉

≤ 〈(I + T ∗T )CTx,CTx〉
= 〈C−1

T CTx,CTx〉
= 〈x,CTx〉

= ‖C1/2
T x‖2.

Thus if y ∈ {C1/2
T x: x ∈ H}, then

‖ZT y‖ = ‖TC1/2
T y‖ ≤ ‖y‖. (12.4)

Since ker(CT ) = {0}, we have that ker(C
1/2
T ) = {0}, and thus {C1/2

T x: x ∈ H} is a

dense subset ofH. Since T is a closed operator by assumption and C
1/2
T ∈ B(H), we

get that ZT is closed as well. Thus, we have {C1/2
T x: x ∈ H} ⊆ D(T ), D(ZT ) = H,

and in view of (12.4), ‖ZT ‖ ≤ 1.
Next, it follows from (12.4) and C1/2T ∗ ⊆ Z∗T that

(I − CT )C
1/2
T = C

1/2
T (I + T ∗T )CT − C1/2

T CT

= C
1/2
T T ∗TC

1/2
T C

1/2
T

⊆ Z∗TZTC
1/2
T .

Thus, Z∗TZTC
1/2
T = (I − CT )C

1/2
T , and since {C1/2

T x: x ∈ H} is a dense subset of
H, we get (12.2).

Step 2: Prove (ii).

Using (12.2) we get that CT∗ = (I + TT ∗)−1. If x ∈ D(T ∗), then let y = CT∗x.
Therefore,

x = (I + TT ∗)y

and
T ∗x = T ∗(I + TT ∗)y = (I + T ∗T )T ∗y.

Thus, CT∗x ∈ D(T ∗) and hence

CTT
∗x = T ∗y = T ∗CT∗x. (12.5)
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It follows easily from (12.5) and (12.2) that p(CT∗)x ∈ D(T ∗) and

p(CT )T ∗x = T ∗p(CT∗)x

for every real polynomial p of a real variable. By the Weierstrass approximation
theorem, there exists a sequence of real polynomials {φn}+∞n=0 that converges uni-
formly to the function t 7→ t1/2 on [0, 1]. Since the continuous functional calculus
is norm-preserving, we find that

lim
n→+∞

‖φn(CT )− C1/2
T ‖ = lim

n→+∞
‖φn(CT∗)− C1/2

T∗ ‖ = 0.

Since T is a closed operator, T ∗ is also a closed operator. Thus, we have

C
1/2
T T ∗x = lim

n→+∞
φn(CT )T ∗x = lim

n→+∞
T ∗φn(CT∗)x

= T ∗(CT∗)
1/2x for x ∈ D(T ∗).

Since C
1/2
T T ∗ ⊆ (TC

1/2
T )∗ = ZT∗ , we get that

ZT∗x = C
1/2
T T ∗x = T ∗(CT∗)

1/2x = (ZT )∗x

for x ∈ D(T ∗). Finally, since D(T ∗) is dense in H, we have that ZT∗x = (ZT )∗x
for all x ∈ H, i.e., ZT∗ = (ZT )∗.

Step 3: Prove (iii).

Using (12.2) on T and T ∗ and the fact that TT ∗ = T ∗T , we have

I − Z∗TZT = (I + T ∗T )−1 = (I + TT ∗)−1 = I − Z∗T∗ZT∗ .

Making use of Property (ii), we have that

I − Z∗TZT = I − ZTZ∗T ,

i.e., ZT is normal. �

12.2 The Spectral Theorem for Unbounded Normal

Operators

We are now ready to state and prove a spectral theorem for unbounded normal
operators on a quaternionic Hilbert space.

Theorem 12.2.1. Let T be an unbounded right linear normal operator on H and
j ∈ S. There exists a uniquely determined spectral measure Ej on Ω+

j = σS(T )∩C+
j

such that for x ∈ D(T ) and y ∈ H,

〈Tx, y〉 =

∫
Ω+
j

Re(p)d〈Ej(p)x, y〉+

∫
Ω+
j

Im(p)d〈JEj(p)x, y〉, (12.6)
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or equivalently,

〈Tx, y〉 =

∫
Ω+
j

Re(p) d〈Π0Ej(p)x, y〉

+

∫
Ω+
j

d〈Πj
+Ej(p)x, y〉p

+

∫
Ω+
j

d〈Πj
−Ej(p)x, y〉p.

(12.7)

The operator J in the above equation is the imaginary operator appearing in the
Teichmüller decomposition ZT = A+ JB of ZT defined in Theorem 9.3.5 and Π0

and Πj
± are the associated projections defined in Definition 9.3.10. The operator

J commutes with E and satisfies −J2 = E(H \ R).
Moreover, on identifying the complex plane Ck with Cj in the natural way by

the mapping ϕkj, we have Ej(ϕkj(σ)) = Ek(σ), σ ∈ B(Ω+
k ), for all j, k ∈ S.

Proof. The proof is broken into two steps.

Step 1: Show that a spectral measure Ej exists such that (12.6) holds.

Let B = {p ∈ H : |p| < 1}, ∂B = {p ∈ H : |p| = 1}, and B = B∪∂B. If T is normal,
then using Properties (i) and (iii) in Theorem 12.1.1, we get that ‖ZT ‖ ≤ 1 and
ZT is normal, respectively. Thus, we may use Theorem 11.2.1 to obtain a uniquely
determined spectral measure F on σS(ZT ) ∩ C+

j such that

f(ZT ) = I(f) =

∫
σS(ZT )∩C+

j

f(p) dF (p) (12.8)

for f ∈ SCj(σS(ZT ) ∩ C+
j ). In addition, it follows from Theorem 3.1.13 that

σS(ZT ) ⊆ {p ∈ H : |p| ≤ ‖ZT ‖}

and hence
σS(ZT ) ∩ C+

j ⊆ B ∩ C+
j .

If x ∈ H and σ ∈ B(σS(ZT )∩C+
j ), then in view of item (v) in Lemma 10.1.7

and (12.8), we have

〈(I − Z∗TZT )F (σ)x, F (σ)x〉 =

∫
σ

(1− |p|2)d〈F (p)x, x〉. (12.9)

Recall that I − Z∗TZT = (I + T ∗T )−1, and so ker(I − Z∗TZT ) = {0}. Thus, using
(12.9) with

σ = B ∩ C+
j ,

we get that supp F ⊆ B ∩ C+
j and F (∂B ∩ C+

j ) = 0. Therefore,

F (B ∩ C+
j ) = F [(B ∩ C+

j ) \ ∂(B ∩ C+
j )] = I.
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If ϕ(p) = p(1− |p|2)−1/2, then ϕ ∈ SM#
F (σS(ZT )∩C+

j ). In view of item (iii)
and (v) of Theorem 10.2.7, we have

I(ϕ) = I(f)I(g),

where

f(p) = p and g(p) =
1√

1− |p|2
,

and D(I(ϕ)) = D(I(g)). Using Theorem 10.2.9, we have

I(g) = I(1/g)−1.

Consequently, we may use item (i) in Corollary 11.2.2 to obtain

I(g) = {(I(h))1/2}−1,

where
h(p) = 1− |p|2 ∈ SM∞j (σS(ZT ) ∩ C+

j ).

Putting these observations together, we obtain

I(ϕ) = ZT (C
1/2
T )−1. (12.10)

Since ZT = TC
1/2
T , we obtain ϕ(ZT ) ⊆ T . Using CT = (I − Z∗TZT )1/2, we

get that I(ϕ) ⊆ T . Thus, using Lemma 9.1.17, we get that

I(ϕ) = T.

Let Ej(σ) = F (ϕ−1(σ)), where

ϕ−1(σ) = {p ∈ H : ϕ(p) ∈ σ} for σ ∈ B(σS(T ) ∩ C+
j ).

It is readily checked that Ej = F (ϕ−1) defines a spectral measure on C+
j , and thus

using Lemma 10.2.11, we get (12.6). The equivalent assertion (12.7) is established
in much the same way as the analogous assertion in Theorem 11.2.1.

Since the imaginary operator J in the Teichmüller decomposition of ZT com-
mutes with the spectral measure F , it also commutes with Ej = F (ϕ−1). Further-
more, since ϕ maps R into itself and C+

j \ R into itself, we obtain

Ej(C+
j \ R) = F (ϕ−1(C+

j \ R)) = F (C+
j \ R) = −J2.

Step 2: Show that Ej from Step 1 is unique.

If Ej and Ẽj are spectral measures on σS(T ) ∩ C+
j that satisfy (12.6), then F =

Ej(ϕ) and F̃ = Ẽj(ϕ) are both spectral measures such that for x, y ∈ H,

〈ZT x, y〉 =

∫
B∩C+

j

Re(p) d〈F (p)x, y〉+

∫
B∩C+

j

Im(p) d〈JF (p)x, y〉

=

∫
B∩C+

j

Re(p) d〈F̃ (p)x, y〉+

∫
B∩C+

j

Im(p) d〈JF̃ (p)x, y〉. (12.11)
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Consider now a polynomial Φ(p) =
∑

0≤|`|≤n a`p
`1p`2 with real coefficients as in

(9.19). In view of Lemma 10.1.7 and Remark 10.1.8, the identity (12.11) implies

〈ψ(ZT )x, y〉 =

∫
σS(ZT )∩C+

j

ψ(p)d〈F (p)x, y〉

=

∫
σS(ZT )∩C+

j

ψ(p)d〈F̃ (p)x, y〉.

Since the set of polynomials of this type is by Theorem 9.4.5 dense in SCj(σS(ZT )∩
C+
j ), we have that∫

σS(ZT )∩C+
j

φ(p)d〈F (p)x, x〉 =

∫
σS(ZT )∩C+

j

φ(p)d〈F̃ (p)x, x〉

for all φ ∈ SCj(σS(ZT )∩C+
j ). Hence in view of construction of the spectral measure

given in Section 11, F = F̃ . Therefore, Ej = Ẽj . The final assertion concerning
Ej and Ek is proved in a similar manner to an analogous assertion in Theorem
11.2.1. �

12.3 Some Consequences of the Spectral Theorem

We conclude this chapter with some consequences of the spectral theorem for
unbounded normal operators, Moreover, in the last corollary we state the func-
tional calculus for unbounded normal operators, which is a direct consequence of
the definition and the properties of the spectral integrals, which depend of the
operator J .

Corollary 12.3.1. In the setting of Theorem 12.2.1, the following statements hold:

(i) If T ∈ L(H) is a positive operator, then there exists a unique positive operator
W ∈ L(H) such that W 2 = T .

(ii) T ∈ L(H) is self-adjoint if and only if

〈Tx, y〉 =

∫
R
t d〈E(t)x, y〉, x ∈ D(T ), y ∈ H. (12.12)

(iii) T ∈ L(H) is anti-self-adjoint if and only if

〈Tx, y〉 =

∫
[0,∞)

t d〈JE(t)x, y〉, x ∈ D(T ), y ∈ H. (12.13)

Proof. Using Theorem 12.2.1, the proof is completed as in Corollary 11.2.2. �
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Remark 12.3.2. We remind the reader that the functional calculus mentioned in
Section 10 is applicable to unbounded normal operators T ∈ L(H). We conclude
this section by stating, in the following corollary, such a functional calculus.

Corollary 12.3.3. Let T , Ej, and J be as in Theorem 12.2.1. If f, g ∈ SM#
E (Ω+

j )

with Ω+
j = σS(T ) ∩ C+

j and α, β ∈ R, then:

(i) I(f̄) = I(f)∗.

(ii) I(αf + βg) = αI(f) + βI(g).

(iii) I(fg) = I(f)I(g).

(iv) I(f) is a closed normal operator on H and

I(f)∗I(f) = I(ff̄) = I(f̄f).

(v) D(I(f)I(g)) = D(I(g)) ∩ D(I(fg)).

(vi) If x ∈ D(I(f)) and y ∈ D(I(g)), then

〈I(f)x, I(g)y〉 =

∫
Ω+
j

Re(f(p)g(p))d〈E(p)x, y〉+
∫

Ω+
j

Im(f(p)g(p))d〈JE(p)x, y〉.

(vii) If x ∈ D(I(f)), then

‖I(f)x‖2 =

∫
Ω+
j

|f(p)|2d〈E(p)x, x〉.

Theorem 12.3.4. Let T be as in Theorem 12.2.1 and let J be the imaginary opera-
tor in the Teichmüller decomposition of ZT . Then there exist strongly commuting
operators A and B that commute with J , where A ∈ L(H) is self-adjoint and
B ∈ L(H) is positive with kerB = ker J such that

T = A+ JB. (12.14)

Proof. To verify assertion (iv), let E be the spectral measure of T and define

Ax =

∫
σS(T )∩C+

j

Re(p) dE(p)x, x ∈ D(T ),

B x =

∫
σS(T )∩C+

j

Im(p) dE(p)x, x ∈ D(T ).

If we set E0(σ) =: E({z ∈ C+
j : Re(p) ∈ σ}) and E1(σ) := E({z ∈ C+

j : Im(p) ∈
σ}) for σ ∈ B(R), then the change of measure principle implies

Ax =

∫
R
t dE0(t)x, x ∈ D(T ),

B x =

∫ +∞

0

t dE1(t)x, x ∈ D(T ).
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Hence A and B are self-adjoint, and their spectral measures are E0 and E1. Since
all projections E(σ) with σ ∈ B(C+

j ) commute mutually and with J , we find that
also E0 and E1 commute mutually and with J . Hence, A and B commute strongly,
and they commute with J . Finally, we have

kerB = ranE1({0}) = ranE({z ∈ C+
j : Im(z) = 0}) = ranE(R) = kerJ. �

Theorem 12.3.5 (Spectral mapping theorem). Let T be as in Theorem 12.2.1 and
let f ∈ SC(σS(T )). Then

σS(f(T )) = f(σS(T )). (12.15)

Proof. First of all, observe that f(σS(T )) is an axially symmetric set because
σS(T ) is axially symmetric and f maps axially symmetric sets to axially symmetric

sets since it is intrinsic. Let λ ∈ f(σS(T )) ∩ C+
j , let ε > 0, and choose ε̃ > 0 such

that
ε̃(ε̃+ 2|Im(λ)|) < ε

2
.

We can then find zε ∈ σS(T ) such that

|λ− f(zε)| < ε̃,

and since λ ∈ C+
j and f maps each complex plane Ci into itself, we even find

that zε ∈ σS(T ) ∩ Cj . (The function f , however, does not necessarily map each
half-plane C+

i into itself, and hence zε might belong to C−j . In this case, zε ∈ C+
j .)

Then ∣∣f(zε)
2 − 2Re(λ)f(zε) + |λ|2

∣∣ = |f(zε)− λ|
∣∣f(zε)− λ

∣∣
≤ |f(zε)− λ| |f(zε)− λ|

∣∣λ− λ∣∣ < ε̃(ε̃+ 2|Im(λ)|) < ε

2
.

The map z 7→ Qλ(f(z)) := f(z)2 − 2Re(λ)f(z) + |λ|2 is continuous, and hence
there exists δ > 0 such that for z ∈ Cj with |z − zε| < δ, we have

|Qλ(f(z))−Qλ(f(zε))| <
ε

2

and in turn

|Qλ(f(z))| ≤ |Qλ(f(z))−Qλ(f(zε))|+ |Qλ(f(zε))| < ε.

Moreover,

|Qλ (f (z))| =
∣∣∣Qλ (f (z)

)∣∣∣ =
∣∣∣Qλ (f (z))

∣∣∣ = |Qλ (f (z))| < ε.

If zε,+ := [z]∩C+
j , that is, zε,+ = zε if zε ∈ C+

j and zε,+ = zε if zε ∈ C−j , it follows
that

Uδ := {z ∈ σS(T ) ∩ C+
j : |z − zε,+| < δ}

⊂ σε(λ) := {z ∈ σS(T ) ∩ C+
j : |Qz(f(z))| < ε}.
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Since Uδ is an open set in σS(T )∩C+
j , which is exactly the support of E, we find

that E(Uδ) 6= 0 and hence also E(σε) 6= 0. We conclude from Lemma 10.2.10 that
λ ∈ σS(f(T )), and so

f(σS(T )) ∩ C+
j ⊂ σS(f(T )) ∩ C+

j .

On the other hand, if λ /∈ f(σS(T )) ∩ C+
j , then

σε(λ) =
{
z ∈ σS(T ) ∩ C+

j : |Qλ(f(z))| < ε
}

⊂ {z ∈ σS(T ) ∩ Cj : |Qλ(f(z))| < ε}

is empty for ε > 0 sufficiently small. Thus, Lemma 10.2.10 yields that λ0 /∈
σS(f(T )) ∩ C+

j . We conclude that

f(σS(T )) ∩ C+
j ⊃ σS(f(T )) ∩ C+

j ,

and in turn,
f(σS(T )) ∩ C+

j = σS(f(T )) ∩ C+
j .

Taking the axially symmetric hull, we arrive at (12.15). �

12.4 Comments and Remarks

Several papers have appeared in the literature that claimed to introduce a spectral
theorem for normal operators on a quaternionic Hilbert space (see [107, 109, 195,
197]). However, in all of the aforementioned papers, a precise notion of spectrum
is not made clear. We will now enter into a discussion concerning the papers of
Teichmüller [195] and Viswanath [197].

Teichmüller’s paper [195] was the first to claim a spectral theorem for normal
operators; it appeared in 1936. Despite not making the notion of spectrum clear,
[195] does have a number of valid and important observations (even though some
details for the precise proofs may be missing) such as the decomposition T =
A + JB (see Theorem 9.3.5) and also the fact that H = H0 ⊕ Hj+ ⊕ H

j
− (see

(9.18)). Finally, the spectral resolution in [195] takes the form

N =

∫ ∞
−∞

∫ ∞
0

(λ′ + T0λ
′′)dQλ′′dPλ′ , (12.16)

where N is a normal operator, T0 is an “Imaginäroperator” on ranB, i.e., T0T
∗
0 =

IranB and T ∗0 = −T0 (thus T0 is playing the role of the operator J in Theorem
12.2.1), and Q and P are projection-valued measures. This bears some resemblance
to (11.15).

In 1971 the paper [197] of Viswanath also claimed to have a spectral theorem
for normal operators on a quaternionic Hilbert space. It is worth noting that [195]
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is not cited in Viswanath’s paper [197]. The approach of [197] is very different
from [195] in so far as the symplectic image of a normal operator is used and
the spectral theorem is allegedly deduced from the classical spectral theorem and
some kind of lifting argument. Viswanath’s spectral resolution takes the form

T =

∫
C+

λdE, (12.17)

where T is a normal operator, E is a projection-valued measure E. Viswanath
claims to deduce an antecedent to the decomposition in Theorem 9.3.5 from
(12.17). However, the details are not given.

Beyond the spectral theorem there is the theory of the characteristic operator
function, which was initiated in [28].

On the equivalent formulations of complex and quaternionic quantum me-
chanics see [126]. For recent applications of the spectral theory on the S-spectrum
to quantum mechanics see [170,171] and also [168,196]. For coherent state trans-
forms and the Weyl equation in Clifford analysis, see [169].



Chapter 13

Spectral Theorem for Unitary
Operators

The spectral theorem for unitary operators is a particular case of the spectral
theorem for bounded normal operators proved in Chapter 11. However, as in the
complex case, the spectral theorem for unitary operators can be deduced from the
quaternionic version of Herglotz’s theorem proved in [16]. The spectral theorem
for unitary operators based on Herglotz’s theorem was proved in [14].

13.1 Herglotz’s Theorem in the Quaternionic Setting

We recall some classical results and also their quaternionic analogues, which will
be useful in proving a spectral theorem for quaternionic unitary operators. We
need to recall some classical results in order to prove the quaternionic version of
Herglotz’s theorem.

Theorem 13.1.1 (Herglotz’s theorem). The function n 7→ r(n) from Z into Cs×s
is positive definite if and only if there exists a unique Cs×s-valued measure µ on
[0, 2π] such that

r(n) =

∫ 2π

0

eintdµ(t), n ∈ Z. (13.1)

Theorem 13.1.2. Let µ and ν be Cs×s-valued measures on [0, 2π]. If∫ 2π

0

eintdµ(t) =

∫ 2π

0

eintdν(t), n ∈ Z,

then µ = ν.

In the above theorems we used the imaginary unit i for the complex plane.
Given P ∈ Hs×s, there exist unique P1, P2 ∈ Cs×s such that P = P1 +P2j. Recall

© Springer Nature Switzerland AG 2018  
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the bijective homomorphism χ : Hs×s → C2s×2s given by

χP =

(
P1 P2

−P 2 P 1

)
, where P = P1 + P2j. (13.2)

Definition 13.1.3. Given an H-valued measure ν, we may always write ν = ν1+ν2j,
where ν1 and ν2 are uniquely determined C-valued measures. We call a measure
dν on [0, 2π] q-positive if the C2×2-valued measure

µ =

(
ν1 ν2

ν∗2 ν3

)
, where ν3(t) = ν1(2π − t), t ∈ [0, 2π], (13.3)

is positive and in addition,

ν2(t) = −ν2(2π − t), t ∈ [0, 2π].

Remark 13.1.4. If ν is q-positive, then ν = ν1 + ν2j, where ν1 is a uniquely
determined positive measure and ν2 is a uniquely determined C-valued measure.

Remark 13.1.5. If r = (r(n))n∈Z is an H-valued sequence on Z such that

r(n) =

∫ 2π

0

eintdν(t),

where dν is a q-positive measure, then r is Hermitian, i.e., r(−n) = r(n).

The following result is a particular case of [16, Theorem 5.5] (Hs×s-valued
positive sequences for s > 1 were also considered in [16]).

Theorem 13.1.6 (Herglotz’s theorem for the quaternions). The function n 7→ r(n)
from Z into H is positive definite if and only if there exists a unique q-positive
measure ν on [0, 2π] such that

r(n) =

∫ 2π

0

eintdν(t), n ∈ Z. (13.4)

Proof. We give the proof for the general case. Let (r(n))n∈Z be a positive definite
sequence and write r(n) = r1(n) + r2(n)j, where r1(n), r2(n) ∈ Cs×s, n ∈ Z.
Put R(n) = χr(n), n ∈ Z. It is easily seen that (R(n))n∈Z is a positive definite
C2s×2s-valued sequence if and only if (r(n))n∈Z is a positive definite Hs×s-valued
sequence. Thus by Theorem 13.1.1, there exists a unique positive C2s×2s-valued
measure µ on [0, 2π] such that

R(n) =

∫ 2π

0

eintdµ(t), n ∈ Z. (13.5)

Write

µ =

(
µ11 µ12

µ∗12 µ22

)
:

Cs Cs
⊕ → ⊕
Cs Cs

.



13.1. Herglotz’s Theorem in the Quaternionic Setting 257

It follows from

R(n) =

(
r1(n) r2(n)

−r2(n) r1(n)

)
, n ∈ Z,

and (13.5) that

r1(n) =

∫ 2π

0

eintdµ11(t) =

∫ 2π

0

e−intdµ̄22(t), n ∈ Z,

and hence ∫ 2π

0

eintdµ11(t) =

∫ 2π

0

eintdµ̄22(2π − t), n ∈ Z.

Thus, Theorem 13.1.2 yields that dµ11(t) = dµ̄22(2π− t) for t ∈ [0, 2π). Similarly,

r2(n) =

∫ 2π

0

eintdµ12(t) = −
∫ 2π

0

e−intdµ12(t)T , n ∈ Z,

and hence ∫ 2π

0

eintdµ12(t) =

∫ 2π

0

eint(−dµ12(2π − t)T ), n ∈ Z.

Thus, Theorem 13.1.2 yields that dµ12(t) = −dµ12(2π − t)T for t ∈ [0, 2π).
It is easy to show that(

Is −jIs
)
R(n)

(
Is
jIs

)
= 2r(n),

and hence (13.5) yields

2r(n) =

∫ 2π

0

(
eint −jeint

)( dµ11(t) + dµ12(t)j
dµ12(t)∗ + dµ22(t)j

)
=

∫ 2π

0

eintdµ11(t) +

∫ 2π

0

eintdµ12(t)j −
∫ 2π

0

e−intdµ12(t)T j

+

∫ 2π

0

e−intdµ̄22(t)

=

∫ 2π

0

eintdµ11(t) +

∫ 2π

0

eintdµ12(t)j −
∫ 2π

0

eintdµ12(2π − t)T j

+

∫ 2π

0

eintdµ̄22(2π − t)

= 2

∫ 2π

0

eintdµ11(t) + 2

∫ 2π

0

eintdµ12(t)j, n ∈ Z,

where the last line follows from dµ11(t) = dµ̄22(2π− t) and dµ12(t) = −dµ12(2π−
t)T . If we put ν = µ11 + µ12j, then ν is a q-positive measure that satisfies (13.4).
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Conversely, suppose ν = ν1 + ν2j is a q-positive measure on [0, 2π] and put

r(n) =

∫ 2π

0

eintdν(t), n ∈ Z.

Since ν is q-positive,

µ =

(
ν1 ν2

ν∗2 ν3

)
, where dν3(t) = dν̄1(2π − t), t ∈ [0, 2π),

is a positive C2s×2s-valued measure on [0, 2π] and

dν2(t) = −dν2(2π − t)T , t ∈ [0, 2π).

Since µ is a positive C2s×2s-valued measure, (R(n))n∈Z is a positive definite
C2s×2s-valued sequence, where

R(n) :=

∫ 2π

0

eintdµ(t), n ∈ Z.

Moreover, R(n) can be written in the form

R(n) =

(
r1(n) r2(n)

−r2(n) r1(n)

)
, n ∈ Z,

where

r1(n) =

∫ 2π

0

eintdν1(t), n ∈ Z;

r2(n) =

∫ 2π

0

eintdν2(t), n ∈ Z.

Thus, R(n) = χr(n), where

r(n) = r1(n) + r2(n)j =

∫ 2π

0

eintdν(t).

Since (R(n))n∈Z is a positive definite C2s×2s-valued sequence, we get that
(r(n))n∈Z is a positive definite Hs×s-valued sequence.

Finally, suppose that the q-positive measure ν were not unique, i.e., that
there existed ν̃ such that ν̃ 6= ν and

r(n) =

∫ 2π

0

eintdν(t) =

∫ 2π

0

eintdν̃(t), n ∈ Z.

Write ν = ν1 + ν2j and ν̃ = ν̃1 + ν̃2j as in Remark 13.1.4. If we consider R(n) =
χr(n), n ∈ Z, then it follows from Theorem 13.1.1 that ν1 = ν̃1 and ν2 = ν̃2 and
hence that ν = ν̃, a contradiction. �
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Remark 13.1.7. For every i ∈ S, there exists j ∈ S such that ij = −ji. Thus,
H = Ci ⊕ Cij, and we may rewrite (13.4) as

r(n) =

∫ 2π

0

eintdν(t), n ∈ Z, (13.6)

where ν = ν1 + ν2j is a q-positive measure (in the sense that

µ =

(
ν1 ν2

ν∗2 ν3

)
is positive). Here ν3(t) = ν1(2π − t).

For our purpose the scalar case will be important.

13.2 Preliminaries for the Spectral Resolution

We start with a preliminary result.

Lemma 13.2.1. Let U be a unitary operator on H and let rx(n) = 〈Unx, x〉 for
x ∈ H. Then rx = (rx(n))n∈Z is an H-valued positive definite sequence.

Proof. If {p0, . . . , pN} ⊂ H, then

N∑
m,n=0

p̄mrx(n−m)pn =
N∑

m,n=0

p̄m〈Un−mx, x〉pn

=
N∑

m,n=0

〈Un−mxpn, xpm〉

=

N∑
m,n=0

〈Unxpn, Umxpm〉

= 〈
N∑
n=0

Unxpn,
N∑
m=0

Umxpm〉

=

∥∥∥∥∥
N∑
n=0

Unxpn

∥∥∥∥∥
2

≥ 0.

Thus, rx is a positive definite H-valued sequence. �

Let rx be as in Lemma 13.2.1. It follows from Theorem 13.1.6 that there
exists a unique q-positive measure dνx such that

rx(n) = 〈Unx, x〉 =

∫ 2π

0

eintdνx(t), n ∈ Z. (13.7)
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One can check that

4〈Unx, y〉 = 〈Un(x+ y), x+ y〉 − 〈Un(x− y), x− y〉 (13.8)

+ i〈Un(x+ yi), x+ yi〉
− i〈Un(x− yi), x− yi〉+ i〈Un(x− yj), x− yj〉k (13.9)

− i〈Un(x+ yj), x+ yj〉k
+ 〈Un(x+ yk), x+ yk〉k − 〈Un(x− yk), x− yk〉k, (13.10)

and hence letting

4νx,y := νx+y − νx−y + iνx+yi − iνx−yi + iνx−yjk − iνx+yjk

+ νx+ykk − νx−ykk, (13.11)

then

〈Unx, y〉 =

∫ 2π

0

eintdνx,y(t), x, y ∈ H and n ∈ Z. (13.12)

Theorem 13.2.2. The H-valued measures νx,y defined on B([0, 2π]) enjoy the fol-
lowing properties:

(i) νxα+yβ,z = νx,zα+ νy,zβ, α, β ∈ H;

(ii) νx,yα+zβ = ᾱνx,y + β̄νx,z, α, β ∈ Ci;
(iii) νx,y([0, 2π]) ≤ ‖x‖‖y‖;
where x, y, z ∈ H and α, β ∈ H.

Proof. Formula (13.12) yields∫ 2π

0

eintdνxα+yβ,z(t) = 〈Unx, z〉α+ 〈Uny, z〉β

=

∫ 2π

0

eint(dνx,z(t)α+ dνy,z(t)β), n ∈ Z.

The uniqueness of the q-positive measure proved in Theorem 13.1.6 allows us to
conclude that

νxα+yβ,z(t) = νx,z(t)α+ νy,z(t)β,

and hence we have proved (i). Property (ii) is proved in a similar fashion, observing
that ᾱ, β̄ commute with eint.

If n = 0 in (13.12), then

〈x, y〉 =

∫ 2π

0

dνx,y(t) = νx,y([0, 2π]),

and thus we can use an analogue of the Cauchy–Schwarz inequality (see Lemma
5.6 in [33]) to obtain

νx,y([0, 2π]) ≤ ‖x‖‖y‖,
and hence we have proved (iii). �
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Remark 13.2.3. In contrast to the classical complex Hilbert space setting, νx,y
need not equal ν̄y,x.

It follows from statements (i), (ii), and (iii) in Theorem 13.2.2 that φ(x) =
νx,y(σ), where y ∈ H and σ ∈ B([0, 2π]) are fixed, is a continuous right linear
functional. Moreover, an analogue of the Riesz representation theorem (see Theo-
rem 6.1 in [33] or Theorem 7.6 in [47]) gives that corresponding to every x ∈ H,
there exists a uniquely determined vector w ∈ H such that

φ(x) = 〈x,w〉,

i.e., νx,y(σ) = 〈x,w〉. Use (i) and (ii) in Theorem 13.2.2 to deduce that w =
E(σ)∗y. The uniqueness of E follows readily from the construction. Thus, we have

νx,y(σ) = 〈E(σ)x, y〉, x, y ∈ H and σ ∈ B([0, 2π]), (13.13)

whence

〈Unx, y〉 =

∫ 2π

0

eint〈dE(t)x, y〉. (13.14)

To prove the main properties of the operator E we need a uniqueness result
on quaternionic measures that is a corollary of the following:

Theorem 13.2.4. Let µ and ν be C-valued measures on [0, 2π]. If

r(n) =

∫ 2π

0

eintdµ(t) =

∫ 2π

0

eintdν(t), n ∈ Z, (13.15)

then µ = ν.

Proof. See, e.g., Theorem 1.9.5 in [186]. �

Theorem 13.2.5. Let µ and ν be H-valued measures on [0, 2π]. If

r(n) =

∫ 2π

0

eintdµ(t) =

∫ 2π

0

eintdν(t), n ∈ Z, (13.16)

then µ = ν.

Proof. Write r(n) = r1(n) + r2(n)j, µ = µ1 + µ2j, and ν = ν1 + ν2j, where
r1(n), r2(n) ∈ C and µ1, µ2, ν1, ν2 are C-valued measures on [0, 2π]. It follows from
(13.16) that

r1(n) =

∫ 2π

0

eintdµ1(t) =

∫ 2π

0

eintdν1(t), n ∈ Z,

and

r2(n) =

∫ 2π

0

eintdµ2(t) =

∫ 2π

0

eintdν2(t), n ∈ Z.

Use Theorem 13.2.4 to conclude that µ1 = ν1, µ2 = ν2 and hence that µ = ν. �
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Theorem 13.2.6. The operator E given in (13.13) enjoys the following properties:

(i) ‖E(σ)‖ ≤ 1;

(ii) E(∅) = 0 and E([0, 2π]) = I;

(iii) If σ ∩ τ = ∅, then E(σ ∪ τ) = E(σ) + E(τ);

(iv) E(σ ∩ τ) = E(σ)E(τ);

(v) E(σ)2 = E(σ);

(vi) E(σ) commutes with U for all σ ∈ B([0, 2π]).

Proof. Use (13.13) with y = E(σ)x and (iii) in Theorem (13.2.2) to obtain

‖E(σ)x‖2 ≤ ‖x‖‖E(σ)x‖,

whence we have shown (i). The first part of property (ii) follows directly from the
fact that νx,y(∅) = 0. The last part follows from (13.14) when n = 0. Statement
(iii) follows easily from the additivity of the measure νx,y.

We will now prove property (iv). It follows from (13.14) that

〈Un+mx, y〉 =

∫ 2π

0

einteimt〈dE(t)x, y〉

= 〈Un(Umx), y〉

=

∫ 2π

0

eintd〈E(t)Umx, y〉.

Using the uniqueness in Theorem 13.2.5 we obtain

eimtd〈E(t)x, y〉 = 〈dE(t)Umx, y〉,

and hence denoting by 1σ the characteristic function of the set σ, we have∫ 2π

0

1σ(t)eimt〈dE(t)x, y〉 = 〈E(σ)Umx, y〉.

But ∫ 2π

0

1σ(t)eimt〈dE(t)x, y〉 = 〈Ukx,E(σ)∗y〉 =

∫ 2π

0

eimtd〈E(t)x,E(σ)∗y〉.

Using the uniqueness in Theorem 13.2.5 once more, we get

1σ(t)d〈E(t)x, y〉 = 〈dE(t)x,E(σ)∗y〉

and hence ∫ 2π

0

1τ (t)1σ(t)〈dE(t)x, y〉 = 〈E(t)x,E(σ)∗y〉
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and thus
〈E(σ ∩ τ)x, y〉 = 〈E(σ)E(τ)x, y〉.

Property (v) is obtained from (iv) by letting σ = τ .
Finally, since U is unitary, one can check that

〈U(x± U∗y), x± U∗y〉 = 〈U(Ux± y), Ux± y〉,

and hence from (13.12) and the uniqueness in Theorem 13.2.5 we obtain νx±U∗y =
νUx±y. Similarly,

νx±U∗yi = νUx±yi,

νx±U∗yj = νUx±yj ,

and
νx±U∗yk = νUx±yk.

It follows from (13.11) that
νx,U∗y = νUx,y.

Now use (13.13) to obtain

〈E(σ)x, U∗y〉 = 〈E(σ)Ux, y〉,

i.e.,
〈UE(σ)x, y〉 = 〈E(σ)Ux, y〉, x, y ∈ H. �

Given any quaternionic Hilbert space H, there exists a subspace M⊂ H on
C such that for every x ∈ H we have

x = x1 + x2j, x1, x2 ∈M.

Theorem 13.2.7. Let U be a unitary operator on a quaternionic Hilbert space H
and let E be the corresponding operator given by (13.13). E is self-adjoint if and
only if U :M→M, where M is as above.

Proof. If E = E∗, then it follows from (13.13) that νx,y = ν̄y,x for all x, y ∈ H. In
particular, we get νx,x = ν̄x,x, i.e.,

νx = ν̄x, x ∈ H. (13.17)

Since νx is a q-positive measure, we may write νx = αx + βxj, where αx is a
positive Borel measure on [0, 2π] and βx is a complex Borel measure on [0, 2π]. It
follows from (13.17) that

βx = −βx,

i.e., βx = 0. Thus, we may make use of the spectral theorem for unitary operators
on a complex Hilbert space (see, e.g., Section 31.7 in [163]) to deduce that U :
M → M. Conversely, if U : M → M, then the spectral theorem for unitary
operators on a complex Hilbert space yields that E = E∗. �
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If U : Hn → Hn is unitary, then (13.14) and Theorem 13.2.6 assert that

U =

n∑
a=1

eiθaPa, (13.18)

where θ1, . . . , θn ∈ [0, 2π] and P1, . . . , Pn are oblique projections (i.e., (Pa)2 = Pa
but (Pa)∗ need not equal Pa). Corollary 6.2 in Zhang [199] asserts, in particular,
the existence of V : Hn → Hn that is unitary and θ1, . . . , θn ∈ [0, 2π] such that

U = V ∗diag(eiθ1 , . . . , eiθn)V. (13.19)

In the following remark we will explain how (13.18) and (13.19) are consistent.

Remark 13.2.8. Let U : Hn → Hn be unitary. Let V and θ1, . . . , θn be as above. If
we let ea = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Hn, where the 1 is the ath position, then we
can rewrite (13.19) as

U =
n∑
a=1

V ∗eiθaeae
∗
aV.

Note that V ∗eiθaeae
∗
aV = eiθaV ∗eae

∗
aV if and only if V : Cn → Cn. In this case

U : Cn → Cn and

U =
n∑
a=1

eiθaPa,

where Pa denotes the orthogonal projection given by V ∗eiθaeae
∗
aV .

Remark 13.2.9. Observe that in the proof of the spectral theorem for Un we have
taken the imaginary units i, j, k for the quaternions and we have determined
spectral measures 〈dE(t)x, y〉 that are supported on the unit circle in Ci. If one
uses other orthogonal units i′, j′, and k′ ∈ S to represent quaternions, then the
spectral measures are supported on the unit circle in Ci′ .

Observe that (13.14) provides a vehicle to define a functional calculus for
unitary operators on a quaternionic Hilbert space. For a continuous H-valued
function f on the unit circle, which will be approximated by the polynomials∑
k e

iktak. We will consider a subclass of continuous quaternionic-valued functions
defined as follows, see [142]: It is important to note that every polynomial of the
form P (u+ jv) =

∑n
k=0(u+ jv)nan, an ∈ H is a slice continuous function in the

whole of H. A trigonometric polynomial of the form P (ejt) =
∑n
m=−n e

jmtam is
a slice continuous function on ∂B, where B denotes the unit ball of quaternions.

Let us now denote by PS(σS(T )) the set of slice continuous functions f(u+
iv) = α(u, v) + iβ(u, v), where α, β are polynomials in the variables u, v.

In the sequel we will work in the complex plane Ci and we denote by Ti the
boundary of B ∩ Ci. Any other choice of an imaginary unit in the unit sphere S
will provide an analogous result.
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Remark 13.2.10. For every i ∈ S, there exists j ∈ S such that ij = −ji. Bearing in

mind Remark 13.1.7, we can construct ν
(j)
x,y such that (13.12) can also be written

as

〈Unx, y〉 =

∫ 2π

0

eintdν(j)
x,y(t), x, y ∈ H and n ∈ Z. (13.20)

Consequently, (13.14) can be written as

〈Unx, y〉 =

∫ 2π

0

eint〈Ej(t)x, y〉, (13.21)

where Ej is given by

ν(j)
x,y(σ) = 〈Ej(σ)x, y〉, x, y ∈ H and σ ∈ B(Ti).

Moreover, the Ej satisfy properties (i)–(v) listed in Theorem 13.2.6.

13.3 Further Properties of Quaternionic Riesz
Projectors

An axially symmetric set σ ⊆ σS(T ) that is both open and closed in σS(T ) in its
relative topology, is called an S-spectral set. Denote by Ωσ an axially symmetric
domain that contains the spectral set σ but not any other points of the S-spectrum.
We recall the Riesz projectors

P(σ) =
1

2π

∫
∂(Ωσ∩Cj)

S−1
L (s, T )dsj

and the fact that P(σ) can be given using the right S-resolvent operator S−1
R (s, T ),

that is,

P(σ) =
1

2π

∫
∂(Ωσ∩Cj)

dsjS
−1
R (s, T ).

We have the following properties.

Theorem 13.3.1. Let T be a quaternionic linear operator. Then the family of op-
erators P(σ) has the following properties:

(i) (P(σ))2 = P(σ);

(ii) TP(σ) = P(σ)T ;

(iii) P(σS(T )) = I;

(iv) P(∅) = 0;

(v) P(σ ∪ δ) = P(σ) + P(δ); σ ∩ δ = ∅;

(vi) P(σ ∩ δ) = P(σ)P(δ).
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Proof. Properties (i) and (ii) are proved in Theorem 4.1.5. Property (iii) follows
from the quaternionic functional calculus, since

Tm =
1

2π

∫
∂(Ω∩Cj)

S−1
L (s, T )dsj s

m, m ∈ N0,

for σS(T ) ⊂ Ω, which for m = 0 gives

I =
1

2π

∫
∂(Ω∩Cj)

S−1
L (s, T )dsj .

Property (iv) is a consequence of the functional calculus as well.

Property (v) follows from

P(σ ∪ δ) =
1

2π

∫
∂(Ωσ∪δ∩Cj)

S−1
L (s, T )dsj

=
1

2π

∫
∂(Ωσ∩Cj)

S−1
L (s, T )dsj +

1

2π

∫
∂(Ωδ∩Cj)

S−1
L (s, T )dsj

= P(σ) + P(δ).

To prove (vi), assume that σ ∩ δ 6= ∅, and for simplicity set

Qs(p)−1 := (p2 − 2Re(s)p+ |s|2)−1, p 6∈ [s],

and consider

P(σ)P(δ) =
1

(2π)2

∫
∂(Ωσ∩Cj)

dsjS
−1
R (s, T )

∫
∂(Ωδ∩Cj)

S−1
L (p, T )dpj

=
1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[S−1
R (s, T )− S−1

L (p, T )]pQs(p)−1dpj

− 1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

s[S−1
R (s, T )− S−1

L (p, T )]Qs(p)−1dpj ,

where we have used the S-resolvent equation (see Theorem 3.1.15). We rewrite
the above relation as

P(σ)P(δ) = − 1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[sS−1
R (s, T )− S−1

R (s, T )p]Qs(p)−1dpj

+
1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[sS−1
L (p, T )− S−1

L (p, T )p]Qs(p)−1dpj

:= J1 + J2.
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Moreover, we have

J1 = − 1

(2π)2

∫
∂(Ωσ∩Cj)

dsj

∫
∂(Ωδ∩Cj)

[sS−1
R (s, T )− S−1

R (s, T )p]Qs(p)−1dpj

=
1

2π

∫
∂(Ωσ∩Cj)

dsjS
−1
R (s, T ), for s ∈ Ωδ ∩ Cj

=
1

2π

∫
∂(Ωσ∩Cj)

S−1
L (s, T )dsj , for s ∈ Ωδ ∩ Cj ,

while J1 = 0 when s 6∈ Ωδ ∩ Cj , since∫
∂(Ωδ∩Cj)

[sS−1
R (s, T )− S−1

R (s, T )p]Qs(p)−1dpj = 0.

Similarly, one can show that

J2 =
1

2π

∫
∂(Ωδ∩Cj)

S−1
L (p, T )dpj , for p ∈ Ωσ ∩ Cj ,

while J2 = 0 when p 6∈ Ωσ ∩Cj . The integrals J1, J2 are either both zero or both
nonzero, so with a change of variable we get

J1 + J2 =
1

2π

∫
∂(Ωσ∩δ∩Cj)

S−1
L (r, T )drj = P(σ ∩ δ). �

We recall that if U is a unitary operator on H, then the S-spectrum of U
belongs to the unit sphere of the quaternions; see Theorem 9.2.7. We denote the
Borel sets in [0, 2π] by B([0, 2π]).

Lemma 13.3.2. Let x, y ∈ H and let P(σ) be the projector associated with the
unitary operator U . We define

mx,y(σ) := 〈P(σ)x, y〉, x, y ∈ H, σ ∈ B([0, 2π]).

Then the H-valued measures mx,y defined on B([0, 2π]) enjoy the following prop-
erties:

(i) mxα+yβ,z = mx,zα+my,zβ;

(ii) mx,yα+zβ = αmx,y + βmx,z;

(iii) mx,y([0, 2π]) ≤ ‖x‖‖y‖;

where x, y, z ∈ H and α, β ∈ H.

Proof. Properties (i) and (ii) follow from the properties of the quaternionic scalar
product, while (iii) follows from Property (iii) in Theorem 13.3.1 and the Cauchy–
Schwarz inequality. �
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13.4 The Spectral Resolution

We are now in a position to prove the spectral theorem for quaternionic unitary
operators.

Theorem 13.4.1 (The spectral theorem for quaternionic unitary operators). Let U
be a unitary operator on a right linear quaternionic Hilbert space H. Let i, j ∈ S,
i orthogonal to j. Then there exists a unique spectral measure Ej defined on the
Borel sets of Ti such that for every slice continuous function f ∈ S(σS(U)), we
have

f(U) =

∫ 2π

0

f(eit)dEj(t).

Proof. Let us consider a polynomial P (t) =
∑n
m=−n e

imtam defined on Ti. Then
using (13.21), we have

〈Umx, y〉 =

∫ 2π

0

eimt〈dEj(t)x, y〉, x, y,∈ H.

By linearity, we can define

〈P (U)x, y〉 =

∫ 2π

0

P (eit)〈dEj(t)x, y〉, x, y,∈ H.

The map Ψ : PS(σS(U)) → H defined by ψU (P ) = P (U) is R-linear. By
fixing a basis for H, e.g., the basis 1, i′, j′, k′, each slice continuous function f can
be decomposed using intrinsic functions, i.e., f = f0 + f1i

′ + f2j
′ + f3k

′ with
f` ∈ SR(σS(U)), ` = 0, . . . , 3. For these functions the spectral mapping theorem
holds; thus f`(σS(U)) = σS(f`(U)), and so ‖f`(U)‖ = ‖f`‖∞. The map ψ is
continuous, and so there exists C > 0, which does not depend on `, such that

‖P (U)‖H ≤ C max
t∈σS(U)

|P (t)|.

A slice continuous function f ∈ S(σS(U)) is defined on an axially symmetric
subset K ⊆ T, and thus it can be written as a function f(ejt) = α(cos t, sin t) +
jβ(cos t, sin t). By fixing a basis of H, e.g., 1, i′, j′, k′, f can be decomposed into four
slice continuous intrinsic functions f`(cos t, sin t) = α`(cos t, sin t)+jβ`(cos t, sin t),
` = 0, . . . , 3, such that f = f0 + f1i

′ + f2j
′ + f3k

′.
By the Weierstrass approximation theorem for trigonometric polynomials,

see, e.g., Theorem 8.15 in [183], each function f` can be approximated by a se-
quence of polynomials

R̃`n = ã`n(cos t, sin t) + jb̃`n(cos t, sin t),

` = 0, . . . , 3, which tend uniformly to f`. These polynomials do not necessarily
belong to the class of the continuous slice functions, since ã`n, b̃`n do not satisfy,
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in general, the even and odd conditions of slice continuous functions. However, by
setting

a`n(u, v) =
1

2
(ã`n(u, v) + ã`n(u,−v)),

b`n(u, v) =
1

2
(b̃`n(u,−v)− b̃`n(u, v)),

we obtain that the sequence of polynomials a`n + j′b`n still converges to f`, ` =
0, . . . , 3. By putting R`n = a`n(cos t, sin t)+jb`n(cos t, sin t), ` = 0, . . . , 3, and Rn =
R0n + R1ni

′ + R2nj
′ + R3nk

′ we have a sequence of slice continuous polynomials
Rn(ejt) converging to f(ejt) uniformly on R.

By the previous discussion, {Rn(U)} is a Cauchy sequence in the space of
bounded linear operators, since

‖Rn(U)−Rm(U)‖ ≤ C max
t∈σS(U)

|Rn(t)−Rm(t)|;

so Rn(U) has a limit, which we denote by f(U). �

Remark 13.4.2. Fix j ∈ S. It is worth pointing out that f(u+ jv) = (u+ jv)−1 is
an intrinsic function on Cj ∩ ∂B, where ∂B = {q ∈ H : |q| = 1}, since

f(u+ jv) =
u

u2 + v2
+

(
−v

u2 + v2

)
j.

Thus, using Theorem 13.4.1, we may write

U−1 =

∫ 2π

0

e−itdEj(t) (13.1)

and

U =

∫ 2π

0

eitdEj(t). (13.2)

We are now ready to prove the following fundamental result, which shows
the relation between the spectral measures and the S-spectrum.

Theorem 13.4.3. Fix i, j ∈ S, with i orthogonal to j. Let U be a unitary operator
on a right linear quaternionic Hilbert space H and let E(t) = Ej(t) be its spectral
measure. Assume that σ0

S(U) ∩ Ci is contained in the arc of the unit circle in Ci
with endpoints t0 and t1. Then

P(σ0
S(U)) = E(t1)− E(t0).

Proof. The spectral theorem implies that the operator S−1
R (s, U) can be written

as

S−1
R (s, U) =

∫ 2π

0

S−1
R (eit, s)dE(t).
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The Riesz projector is given by

P(σ0
S(U)) =

1

2π

∫
∂(Ω0∩Ci)

dsiS
−1
R (s, U),

where Ω0 is an open set containing σ0
S(U) such that ∂(Ω0 ∩Ci) is a smooth closed

curve in Ci. Write

P(σ0
S(U)) =

1

2π

∫
∂(Ω0∩Ci)

dsi

(∫ 2π

0

S−1
R (eit, s)dE(t)

)
and use Fubini’s theorem to obtain

P(σ0
S(U)) =

∫ 2π

0

( 1

2π

∫
∂(Ω0∩Ci)

dsiS
−1
R (eit, s)

)
dE(t).

It follows from the Cauchy formula that

1

2π

∫
∂(Ω0∩Ci)

dsiS
−1
R (eit, s) = 1[t0,t1],

where 1[t0,t1] is the characteristic function of the set [t0, t1], and thus the statement
follows, since

P(σ0
S(U)) =

∫ 2π

0

1[t0,t1]dE(t) = E(t1)− E(t2). �

We will close by establishing a connection between the spectral resolutions for
a unitary operator presented in Theorem 11.2.1 and Theorem 13.4.1. Let U ∈ B(H)
be unitary. Since U ∈ B(H) is normal, we may write

U = A+ JB,

where A, J , and B are as in Theorem 9.3.5. Thus, Theorem 11.2.1 asserts the
existence of a spectral measure E (in the usual sense) on Ω := [0, π]∩ σS(U) such
that if n ∈ Z, then

〈Unx, y〉 =

∫
Ω

cos(nθ)d〈E(θ)x, y〉+

∫
Ω

sin(nθ)d〈JE(θ)x, y〉, x, y ∈ H. (13.3)

On the other hand, Theorem 13.4.1 asserts the existence of a B(H)-valued measure
F that satisfies most of the properties of a spectral measure (see Theorem 13.2.6)
such that if n ∈ Z, then

〈Unx, y〉 =

∫ 2π

0

einθd〈F (θ)x, y〉, x, y ∈ H. (13.4)
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Consequently, if we let dνx(θ) := d〈E(θ)x, x〉 and dµx(θ) := d〈F (θ)x, x〉,
then dνx is a positive measure and dµx := dµ

(0)
x + dµ

(1)
x j is a q-positive measure

(and hence dµ
(0)
x is a positive measure). Now (13.3) implies that

1

2
〈(Un + U∗n)x, x〉 =

∫ π

0

cos(nθ)dνx(θ),

while (13.4) implies that

1

2
〈(Un + U∗n)x, x〉 =

∫ 2π

0

cos(nθ)dµ(0)
x (θ).

Since dµ
(0)
x and dνx are positive measures, the uniqueness assertion in Theorem

13.1.1 forces dµ
(0)
x = dνx and hence d〈E(θ)x, x〉 = Re〈F (θ)x, x〉.

13.5 Comments and Remarks

Theorem 13.1.6 is taken from [16], and it helped give rise to a spectral theorem for
unitary operators based on the S-spectrum in [14]. In addition, Theorem 13.1.6
can be used to generate a quaternionic analogue of the Herglotz representation on
a slice (see Theorem 8.1 in [16]). More precisely, if f : B → H is slice hyperholo-
morphic with Re(f(p)) ≥ 0 for all p ∈ B := {p ∈ H : |p| < 1} and i, j ∈ S with i
and j orthogonal, then there exists a Cj-valued measure dµj(t) = dµ1(t)+dµ2(t)j
of finite total variation with µ1 positive and µ2 signed such that the restriction
fj(z) = f |Cj = F (z) +G(z)j admits the representation

fj(z) = i[ImF (0) + ImG(0)j] +

∫ 2π

0

eit + z

eit − z
dµj(t). (13.5)

A half-space analogue of (13.5) was treated in [9] (albeit with stronger conditions
on f and the corresponding measure).



Chapter 14

Spectral Integration in the
Quaternionic Setting

Before we begin the study of quaternionic spectral operators, we discuss in this
chapter spectral integration in the quaternionic setting. There have existed several
different approaches to this topic in the literature, but these approaches required
the introduction of a left multiplication on the Hilbert space (even though this
multiplication was sometimes assumed to be defined only for quaternions in one
complex plane and not for all q ∈ H). This left multiplication was in general
only partially determined by the a priori given mathematical structures; cf. also
Remarks 9.3.7 and 9.4.12. It had to be extended randomly, and the necessary
procedure does not generalize to the Banach space setting, in which we want to
develop the theory of quaternionic spectral operators.

In this chapter we therefore develop an approach to spectral integration of
intrinsic slice functions on a quaternionic right Banach space. This integration is
done with respect to a spectral system instead of a spectral measure, a concept that
makes specific ideas of [197]. It has a clear and intuitive interpretation in terms
of the right linear structure of the space, and it is compatible with the complex
theory. The prototype of a spectral system is a pair (E, J) on a Hilbert space that
consists of a spectral measure E and an imaginary operator J with E(H \ R) =
−J2. This is exactly the structure that we used to define spectral integration
on Hilbert spaces in Chapter 10. In this chapter we consider, however, spectral
measures that are defined on axially symmetric subsets of H instead of subsets
of a complex half-plane C+

j . Both approaches are equivalent: we can identify any

axially symmetric set with its intersection with one complex half-plane C+
j in order

to obtain a bijective relation between these two types of sets. The two notations
stress, however, two different philosophies. While the imaginary operator J was in
Chapter 10 considered a multiplication by the imaginary unit j from the left, we
stress in this chapter that J can also be considered a right linear multiplication
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by the entire set of imaginary units S form the right. This allows us to give a clear
interpretation of spectral integration in terms of the right linear structure on the
space.

The results in this chapter are taken from [125] and [128]. We want to point
out that in this chapter and in the next one it is very important to distinguish
between left and right Banach spaces. So to avoid confusion with the previous
chapters we will denote the left Banach spaces by VL, right Banach spaces by VR
and the two-sided ones by V .

14.1 Spectral Integrals of Real-Valued Slice Functions

The basic idea of spectral integration is well known: it generates a multiplication
operator in a way that generalizes the multiplication by eigenvalues in the discrete
case. If, for instance, λ ∈ σ(A) of some normal operator A : Cn → Cn, then we can
define E({λ}) to be the orthogonal projection of Cn onto the eigenspace associated
with λ and we obtain A =

∑
λ∈σ(A) λE({λ}). Setting E(∆) =

∑
λ∈∆E({λ}), one

obtains a discrete measure on C, the values of which are orthogonal projections
on Cn, and A is the integral of the identity function with respect to this measure.
Changing the notation accordingly, we have

A =
∑

λ∈σ(A)

λE({λ}) =⇒ A =

∫
σ(A)

λ dE(λ). (14.1)

Via functional calculus it is possible to define functions of an operator. The fun-
damental intuition of a functional calculus is that f(A) should be defined by the
action of f on the spectral values (resp. the eigenvalues) of A. For our normal
operator A on Cn the operator f(A) is the operator with the following property:
if y ∈ Cn is an eigenvector of A with respect to λ, then y is an eigenvector of
f(A) with respect to f(λ), just as happens, for instance, naturally for powers and
polynomials of A. Using the above notation, we thus have

f(A) =
∑

λ∈σ(A)

f(λ)E({λ}) =⇒ f(A) =

∫
σ(A)

f(λ) dE(λ). (14.2)

In infinite-dimensional Hilbert spaces, the spectrum of a normal operator
might be not discrete, so that the expressions on the left-hand side of (14.1) and
(14.2) do not make sense. If E, however, is a suitable projection-valued measure,
then it is possible to give the expression (14.2) a meaning by following the usual
way of defining integrals via the approximation of f by simple functions. The spec-
tral theorem then shows that for every normal operator T there exists a spectral
measure such that (14.1) holds.

If we want to introduce similar concepts in the quaternionic setting, we are—
even in the discrete case—faced with several unexpected phenomena.
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(P1) The space of bounded linear operators on a quaternionic Banach space VR is
only a real Banach space and not a quaternionic one. Hence the expressions
in (14.1) and (14.2) are defined a priori only if λ and f(λ), respectively,
are real. Otherwise, one needs to give meaning to the multiplication of the
operator E({λ}) by nonreal scalars.

(P2) The multiplication by a (nonreal) scalar on the right is not linear, so that
aE({λ}) for a ∈ H cannot be defined as (aE({λ}))(ya) = (E({λ})y)a. More-
over, the set of eigenvectors associated with a specific eigenvalue does not
constitute a linear subspace of VR: if, for instance, Ty = ys with s = s0 +jss1

and i ∈ S with js ⊥ i, then T (yi) = (Ty)i = (ys)i = (yi)s 6= (yi)s.

(P3) Finally, the set of eigenvalues is in general not discrete: if s ∈ H is an eigen-
value of T with Ty = ys for some y 6= 0 and sj = s0 + js1 ∈ [s], then there
exists h ∈ H \ {0} such that sj = h−1sh, and so

T (yh) = T (y)h = ysh = (yh)h−1sh = (yh)sj . (14.3)

Thus, every sj ∈ [s] is also an eigenvalue of T .

As a first consequence of items (P2) and (P3), the notions of eigenvalue and
eigenspace have to be adapted: linear subspaces are in the quaternionic setting
not associated with individual eigenvalues s but with spheres [s] of equivalent
eigenvalues.

Definition 14.1.1. Let T ∈ L(VR) and let s ∈ H\R. We say that [s] is an eigensphere
of T if there exists a vector y ∈ VR \ {0} such that

(T 2 − 2s0T + |s|2I)y = Qs(T )y = 0. (14.4)

The eigenspace of T associated with [s] consists of all those vectors that satisfy
(14.4).

Remark 14.1.2. For real values, things remain as we know them from the classical
case: a quaternion s ∈ R is an eigenvalue of T if Ty − ys = 0 for some y 6= 0. The
quaternionic right linear subspace ker(T − sI) is then called the eigenspace of T
associated with s.

Every eigenvector y that satisfies T (y) = ysj with sj = s0 + js1 for some
j ∈ S belongs to the eigenspace associated with the eigensphere [s]. Note, however,
that the eigenspace associated with an eigensphere [s] does not consist only of
eigenvectors. It contains also linear combinations of eigenvectors associated with
different eigenvalues in [s], as the next lemma shows.

Lemma 14.1.3. Let T ∈ L(VR), let [s] be an eigensphere of T , and let j ∈ S. A
vector y belongs to the eigenspace associated with [s] if and only if y = y1 + y2

such that Ty1 = y1sj and Ty2 = y2sj, where sj = s0 + js1.



276 Chapter 14. Spectral Integration in the Quaternionic Setting

Proof. Observe that

Qs(T )y = T 2y − Ty2s0 + y|s|2 = T (Ty − ysj)− (Ty − ysj)sj (14.5)

and

Qs(T )y = T 2y − Ty2s0 + y|s|2 = T (Ty − ysj)− (Ty − ysj)sj . (14.6)

Hence Qs(T )y = 0 for every eigenvector associated with sj or sj and in turn also
for every y that is the sum of two such vectors.

If, conversely, y satisfies (14.4), then we deduce from (14.5) that Ty − ysj is
a right eigenvector associated with sj and that Ty− ysj is a right eigenvalue of T
associated with sj . Since sj and j commute, the vectors y1 = (Ty − ysj) −j2s1

and

y2 = (Ty − ysj) j
2s1

are right eigenvectors associated with s resp. sj , too. Hence
we have obtained the desired decomposition as

y1 + y2 = (Ty − ysj)
−j
2s1

+ (Ty − ysj)
j

2s1
= y(sj − sj)

j

2s1
= y. �

Remark 14.1.4. If i ∈ S with i ⊥ j, then ỹ2 := y2(−i) is an eigenvector of T
associated with s. Hence we can write y also as y = y1 + ỹ2i, where y1, ỹ2 are both
eigenvectors associated with sj .

Since the eigenspaces of quaternionic linear operators are not associated with
individual eigenvalues but instead with eigenspheres, quaternionic spectral mea-
sures must not be defined on arbitrary subsets of the quaternions. Instead, their
natural domains of definition consist of axially symmetric subsets of H, so that
they associate subspaces of VR not to sets of spectral values but to sets of spectral
spheres. This is also consistent with the fact that the S-spectrum of an operator
is axially symmetric.

Definition 14.1.5. We denote the σ-algebra of axially symmetric Borel sets on
H by BS(H). Furthermore, we denote the set of all real-valued BS(H)-B(R)-
measurable functions defined on H byMS(H,R) and the set of all such functions
that are bounded by M∞S (H,R).

Remark 14.1.6. The restrictions of functions inM∞S (H,R) to a complex half-plane
C+
j are exactly the functions that were used to construct the spectral measure of

a quaternionic normal operator in the previous chapters.

Definition 14.1.7. A quaternionic spectral measure on a quaternionic right Banach
space VR is a function E : BS(H)→ B(VR) that satisfies

(i) E(∆) is a continuous projection and ‖E(∆)‖ ≤ K for every ∆ ∈ BS(H) with
a constant K > 0 independent of ∆,

(ii) E(∅) = 0 and E(H) = I,

(iii) E(∆1 ∩∆2) = E(∆1)E(∆2) for every ∆1,∆2 ∈ BS(H), and
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(iv) for every sequence (∆n)n∈N of pairwise disjoint sets in BS(H) we have

E

(⋃
n∈N

∆n

)
y =

+∞∑
n=1

E(∆n)y for all y ∈ VR.

Corollary 14.1.8. Let E be a spectral measure on VR and let V ∗R be its dual space,
the left Banach space consisting of all continuous right linear mappings from VR to
H. For every y ∈ VR and y∗ ∈ V ∗R, the mapping ∆ 7→ 〈y∗, E(∆)y〉 is a quaternion-
valued measure on BS(H).

Remark 14.1.9. In the literature, authors have considered quaternionic spectral
measures defined on the Borel sets B

(
C+
j

)
of one of the closed complex half-planes

C+
j = {s0 + js1 : s0 ∈ R, s1 ≥ 0}, and we also did this in Chapter 10. This is

equivalent to E being defined on BS(H). Indeed, if Ẽ is defined on B
(
C+
j

)
, then

setting
E(∆) := Ẽ

(
∆ ∩ C+

j

)
∀∆ ∈ BS(H)

yields a spectral measure in the sense of Definition 14.1.7 that is defined on BS(H).
If, on the other hand, we start with a spectral measure E defined on BS(H), then
setting

Ẽ(∆) := E([∆]) ∀∆ ∈ B
(
C+
j

)
yields the respective measure on B

(
C+
j

)
. Although both definitions are equivalent,

in this chapter we prefer BS(H) as the domain of E because it does not suggest
a dependence on the imaginary unit j.

For a function f ∈ M∞S (H,R), we can now define the spectral integral with
respect to a spectral measure E as in the classical case. If f is a simple function,
i.e., f(s) =

∑n
k=1 αkχ∆k

(s) with pairwise disjoint sets ∆k ∈ BS(H), where χ∆k

denotes the characteristic function of ∆k, then we set∫
H
f(s) dE(s) :=

n∑
k=1

αkE(∆k). (14.7)

There exists a constant CE > 0 that depends only on E such that∥∥∥∥∫
H
f(s) dE(s)

∥∥∥∥ ≤ CE‖f‖∞, (14.8)

where ‖.‖∞ denotes the supremum norm. If f ∈ M∞S (H,R) is arbitrary, then we
can find a sequence of simple functions (fn)n∈N such that ‖f − fn‖∞ → 0 as
n→ +∞. In this case we can set∫

H
f(s) dE(s) := lim

n→+∞

∫
H
fn(s) dE(s), (14.9)

where this sequence converges in the operator norm because of (14.8).
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Lemma 14.1.10. Let E be a quaternionic spectral measure on VR. The mapping
f 7→

∫
H f(s) dE(s) is a continuous homomorphism from M∞S (H,R) to B(VR).

Moreover, if T commutes with E, i.e., it satisfies TE(∆) = E(∆)T for all sets
∆ ∈ BS(H), then T commutes with

∫
H f(s) dE(s) for every f ∈M∞S (H,R).

Corollary 14.1.11. Let E be a quaternionic spectral measure on VR and let f ∈
M∞S (H,R). For every y ∈ VR and y∗ ∈ V ∗R, we have〈

y∗,

[∫
H
f dE

]
y

〉
=

∫
H
f(s) d〈y∗, E(s)y〉.

Proof. Let fn =
∑Nn
k=1 αn,kχ∆n,k

∈ M∞S (H,R) be such that ‖f − fn‖ → 0 as
n→ +∞. Since all coefficients αn,k are real, we have

〈
y∗,

[∫
H
f dE

]
y

〉
= lim
n→∞

〈
y∗,

[
Nn∑
k=1

αn,kE(∆n,k)

]
y

〉

= lim
n→∞

Nn∑
k=1

αn,k 〈y∗, E(∆n,k)y〉 =

∫
H
f(s) d〈y∗, E(s)y〉. �

Remark 14.1.12. The above definitions are well posed and the properties given in
Lemma 14.1.10 can be shown as in the classical case, so we omit their proofs. One
can also deduce them directly from the classical theory: if we consider VR a real Ba-
nach space and E a spectral measure with values in the space BR(VR) of bounded
R-linear operators on VR, which obviously contains B(VR), then

∫
H f(s) dE(s)

defined in (14.7), resp. (14.9), is nothing but the spectral integral of f with re-
spect to E in the classical sense. Since every αk in (14.7) is real and since each
E(∆) is a quaternionic right linear projection, the integral of every simple func-
tion f with respect to E is a quaternionic right linear operator and hence belongs
to B(VR). The space B(VR) is closed in BR(VR), and hence the property of be-
ing quaternionic linear survives the approximation by simple functions such that∫
H f(s) dE(s) ∈ B(VR) for every f ∈M∞S (H,R) even if we consider it the integral

with respect to a (real) spectral measure on the real Banach space VR.

14.2 Imaginary Operators

The techniques introduced so far allow us to integrate real-valued functions with
respect to a spectral measure. This is obviously insufficient, even for formulating
the statement corresponding to (14.1) in the quaternionic setting unless σS(T ) is
real. In order to define spectral integrals for functions that are not real-valued, we
need additional information.

This fits another observation: in contrast to the complex case, even for the
simple case of a normal operator on a finite-dimensional quaternionic Hilbert
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space, a decomposition of the space VR into the eigenspaces of T is not suffi-
cient to recover the entire operator T . Let j, i ∈ S with j 6= i and consider, for
instance, the operators T1, T2, and T3 on H2, which are given by their matrix
representations

T1 =

(
j 0
0 j

)
, T2 =

(
j 0
0 i

)
, T3 =

(
i 0
0 i

)
. (14.10)

For each ` = 1, 2, 3, we have σS(T`) = S and that the only eigenspace of T` is the
entire space H2. The spectral measure E that is associated with T` is hence given
by E(∆) = 0 if S 6⊂ ∆ and E(∆) = I if S ⊂ ∆. Obviously, the spectral measures
associated with these operators agree, although these operators do not coincide.

Since the eigenspace of an operator T that is associated with some eigen-
sphere [s] contains eigenvectors associated with different eigenvalues, we need some
additional information to understand how to multiply the eigensphere onto the
associated eigenspace, i.e., to understand which vector in the eigenspace must be
multiplied by which eigenvalue in the corresponding eigensphere [s]. This infor-
mation will be provided by a suitable imaginary operator. Such operators gen-
eralize the properties of the anti-self-adjoint partially unitary operator J in the
Teichmüller decomposition

T = A+ JB =
1

2
(T + T ∗) +

1

2
J |T − T ∗| (14.11)

(where J is an anti-self-adjoint partial isometry with kerJ = ker(T − T ∗) that is
determined by the polar decomposition of !

2 (T − T ∗)) of a normal operator on a
Hilbert space to the Banach space setting.

Definition 14.2.1. An operator J ∈ B(VR) is called imaginary if −J2 is the pro-
jection of VR onto ranJ along kerJ . We call J fully imaginary if −J2 = I, i.e., if
in addition, kerJ = {0}.
Corollary 14.2.2. An operator J ∈ B(VR) is an imaginary operator if and only if

(i) −J2 is a projection and

(ii) ker J = ker J2.

Proof. If J is an imaginary operator, then obviously item (i) and item (ii) hold.
Assume, on the other hand, that item (i) and item (ii) hold. Obviously ran(−J2) ⊂
ran J . For every x ∈ VR, we have (−J2)x− x ∈ ker(−J2) = kerJ because

(−J2)
(
(−J2)x− x

)
= (−J2)2x− (−J)2x = (−J2)x− (−J)2x = 0,

since (−J2) is a projection. Therefore

0 = J(−J2x− x) = (−J2)Jx− Jx,

and hence y = (−J2)y for every y = Jx ∈ ran J . Consequently, ran(−J2) ⊃ ran J ,
and in turn ran J = ran(−J2). Since ker J = ker(−J2), we find that −J2 is the
projection of VR onto ran J along kerJ , i.e., that J is an imaginary operator. �
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Remark 14.2.3. The above implies that every anti-self-adjoint partially unitary
operator J on a quaternionic Hilbert space H is an imaginary operator. Indeed,
for every y ∈ ker J , we obviously have −J2y = 0. Since the restriction of J to
H0 := ran J = ker J⊥ is unitary and J is anti-self-adjoint, we furthermore have
for y ∈ H0 that −J2y = J∗Jy = (J |H0

)
∗

(J |H0
) y = (J |H0

)
−1

(J |H0
) y = y. Hence

−J2 is the orthogonal projection onto H0 = ran J , and so J is an imaginary
operator. In particular, every unitary anti-self-adjoint operator is fully imaginary.
Cf. also Corollary 9.3.8.

Lemma 14.2.4. If J ∈ B(VR) is an imaginary operator, then σS(T ) ⊂ {0} ∪ {S}.

Proof. Since the operator −J2 is a projection, its S-spectrum σS(−J2) is a subset
of {0, 1}. Indeed, for every projection P ∈ B(V ), a simple calculation shows that
the pseudo-resolvent of P at every s ∈ H \ {0, 1} is given by

Qs(P )−1 = − 1

|s|2

(
1− 2Re(s)

1− 2Re(s) + |s|2
P − I

)
such that s ∈ ρS(P ). As a consequence of the spectral mapping theorem, we find
that

−σS(J)2 = {−s2 : s ∈ σS(J)} = σS(−J2) ⊂ {0, 1}.
But if −s2 ∈ {0, 1}, then s ∈ {0} ∪ S and hence σS(J) ⊂ {0} ∪ S. �

Remark 14.2.5. If J = 0, then J is an imaginary operator with σS(T ) = {0}. If,
on the other hand, kerJ = {0} (i.e., if J is fully imaginary), then σS(T ) = S. In
every other case we obviously have σS(T ) = {0} ∪ S.

Our next goal is to arrive at Theorem 14.2.10, which gives a complete charac-
terization of imaginary operators on VR. It is the analogue of Lemma 9.3.9. Before
we prove this result, however, we prove a crucial relation between the concepts of
quaternionic spectral theory and the concepts of classical complex operator theory.

Every quaternionic right Banach space VR can in a natural way be considered
a complex Banach space over any of the complex planes Cj by restricting the
multiplication by quaternionic scalars from the right to Cj . In order to deal with
the different structures on VR, we introduce the following notation.

Definition 14.2.6. Let VR be a quaternionic right Banach space. For j ∈ S, we
denote the space VR considered as a complex Banach space over the complex field
Cj by VR,j . If T is a quaternionic right linear operator on VR, then ρCj (T ) and
σCj (T ) shall denote its resolvent set and spectrum as a Cj-complex linear operator
on VR,j . If A is a Cj-complex linear, but not quaternionic linear, operator on VR,j ,
then we denote its spectrum as usual by σ(A).

If we want to distinguish between the identity operator on VR and the identity
operator on VR,j , we denote them by IVR and IVR,j . We point out that the operator
λIVR,j for λ ∈ Cj acts as λIVR,jy = yλ because the multiplication by scalars on
VR,j is defined as the quaternionic right scalar multiplication on VR restricted
to Cj .
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Theorem 14.2.7. Let T ∈ L(VR) and choose j ∈ S. The spectrum σCj (T ) of T
considered as a closed complex linear operator on VR,j equals σS(T ) ∩ Cj, i.e.,

σC
j
(T ) = σS(T ) ∩ Cj . (14.12)

For every λ in the resolvent set ρCj (T ) of T as a complex linear operator on VR,j,

the Cj-linear resolvent of T is given by Rλ(T ) =
(
λIVR,j − T

)
Qλ(T )−1, i.e.,

Rλ(T )y := Qλ(T )−1yλ− TQλ(T )−1y. (14.13)

For every i ∈ S with j ⊥ i, we moreover have

Rλ(T )y = −[Rλ(T )(yi)]i. (14.14)

Proof. Let λ ∈ ρS(T ) ∩ Cj . The resolvent (λIVR,j − T )−1 of T as a Cj-linear
operator on VR,j is then given by (14.13). Indeed, since T and Qλ(T )−1 commute,
we have for y ∈ D(T ) that

(λIVR,j − T )Qλ(T )−1(yλ− Ty)

= (λIVR,j − T )
(
Qλ(T )−1yλ− TQλ(T )−1y

)
= Qλ(T )−1yλλ− TQλ(T )−1yλ− TQλ(T )−1yλ+ T 2Qλ(T )−1y

= (|λ|2IVR,j − 2λ0T + T 2)Qλ(T )−1y = y.

Similarly, for y ∈ VR,j = VR, we have

(λIVR,j − T )Rλ(T )y

= (λIVR,j − T )
(
Qλ(T )−1yλ− TQλ(T )−1y

)
= Qλ(T )−1yλλ− TQλ(T )−1yλ− TQλ(T )−1yλ+ T 2Qλ(T )−1y

= (|λ|2IVR,j − 2λ0T + T 2)Qλ(T )−1y = y.

Since Qλ(T )−1 maps VR,j to D(T 2) ⊂ D(T ), we find that the operator Rλ(T ) =
(λIVR,j − T )Qλ(T )−1 is bounded, and so λ belongs to the resolvent setρCj (T ) of
T considered as a Cj-linear operator on VR,j . Hence, ρS(T )∩Cj ⊂ ρCj (T ), and in
turn σCj (T ) ⊂ σS(T ) ∩Cj . Together with the axial symmetry of the S-spectrum,
this further implies

σCj (T ) ∪ σCj (T ) ⊂ (σS(T ) ∩ Cj) ∪ (σS(T ) ∩ Cj) = σS(T ) ∩ Cj , (14.15)

where A = {z : z ∈ A}.
If λ and λ both belong to ρCj (T ), then [λ] ⊂ ρS(T ) because

(λIVR,j − T )(λIVR,j − T )y

= (yλ)λ− (Ty)λ− T (yλ) + T 2y

= (T 2 − 2λ0T + |λ|2)y
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and hence Qλ(T )−1 = Rλ(T )Rλ(T ) ∈ B(VR). Thus ρS(T )∩Cj ⊃ ρCj (T )∩ρCj (T ),
and in turn

σS(T ) ∩ Cj ⊂ σCj (T ) ∪ σCj (T ). (14.16)

The two relations (14.15) and (14.16) together yield

σS(T ) ∩ Cj = σCj (T ) ∪ σCj (T ). (14.17)

What remains to show is that ρCj (T ) and σCj (T ) are symmetric with respect to
the real axis, which then implies

σS(T ) ∩ Cj = σCj (T ) ∪ σCj (T ) = σCj (T ). (14.18)

Let λ ∈ ρCj (T ) and choose i ∈ S with j ⊥ i. We show that Rλ(T ) equals the

mapping Ay := − [Rλ(T )(yi)] i. Since λi = iλ and iλ = λi, we have for y ∈ D(T )
that

A
(
λIVR,j − T

)
y = A

(
yλ− Ty

)
= −

[
Rλ(T )

(
(yλ)i− (Ty)i

)]
i

= − [Rλ(T )((yi)λ− T (yi))] i

= −
[
Rλ(T )(λIVR,j − T )(yi)

]
i = −yii = y.

Similarly, for arbitrary y ∈ VR,j = VR, we have(
λIVR,j − T

)
Ay = (Ay)λ− T (Ay)

= − [Rλ(T )(yi)] iλ+ T ([Rλ(T )(yi)] i)

= − [Rλ(T )(yi)λ− T (Rλ(T )(yi))] i

= −
[
(λIVR,j − T )Rλ(T )(yi)

]
i = −yii = y.

Hence if λ ∈ ρCj (T ), then Rλ(T ) = − [Rλ(T )(yi)] i so that in particular, λ ∈
ρCj (T ). Consequently, ρCj (T ) and in turn also σCj (T ), are symmetric with respect
to the real axis, so that (14.18) holds. �

Definition 14.2.8. Let T ∈ L(VR). We define the VR-valued function

Rs(T ; y) = Qs(T )−1ys− TQs(T )−1y ∀y ∈ VR, s ∈ ρS(T ).

Remark 14.2.9. By Theorem 14.2.7, the mapping y 7→ Rs(T ; y) coincides with the
resolvent of T at s applied to y if T is considered a Cjs-linear operator on VR,js .

Let us now turn back to characterizing imaginary operators on Banach spaces.
Just as with imaginary operators on a Hilbert space, we can find three subspaces
of VR on which such an operator is simply multiplication by 0, j, or −j.
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Theorem 14.2.10. Let J ∈ B(VR) be an imaginary operator. For every j ∈ S, the
Banach space VR admits a direct sum decomposition as

VR = VJ,0 ⊕ V +
J,j ⊕ V

−
J,j (14.19)

with

VJ,0 = ker(J),

V +
J,j = {y ∈ V : Jy = yj},
V −J,j = {y ∈ V : Jy = y(−j)}.

(14.20)

The spaces V +
J,j and V −J,j are complex Banach spaces over Cj with the natural

structure inherited from VR, and for each i ∈ S with j ⊥ i, the map y 7→ yi is a
Cj-antilinear and isometric bijection between V +

J,j and V −J,j.
Conversely, let j, i ∈ S with j ⊥ i and assume that VR is the direct sum

VR = V0 ⊕ V+ ⊕ V− of a closed (H-linear) subspace V0 and two closed Cj-linear
subspaces V+ and V− of VR such that Ψ : y 7→ yi is a bijection between V+ and
V−. Let E+ and E− be the Cj-linear projections onto V+ and V− along V0 ⊕ V−,
resp. V0 ⊕ V+. The operator Jy := E+yj + E−y(−j) for y ∈ VR is an imaginary
operator on VR.

Proof. We first assume that J is an imaginary operator and show the existence of
the corresponding decomposition of VR. Let j ∈ S and let VR,j denote the space VR
considered as a complex Banach over Cj . Furthermore, let us assume that J 6= 0,
since the statement is obviously true in this case. Then J is a bounded Cj-linear
operator on VR,j , and by Theorem 14.2.7 and Lemma 14.2.4, the spectrum of J
as an element of B(VR,j) is σCj (J) = σS(J) ∩ Cj ⊂ {0, j,−j}. We define now for
τ ∈ {0, j,−j} the projection Eτ as the spectral projection associated with {τ}
obtained from the Riesz–Dunford functional calculus. If we choose 0 < ε < 1

2 ,
then the relation Rz(J) = (zIVR,j − J)Qz(J)−1 in Theorem 14.2.7 implies

Eτy =

∫
∂Uε(τ ;Cj)

Rz(J)y dz
1

2πi
=

∫
∂Uε(τ ;Cj)

Qz(J)−1(yz − Jy) dz
1

2πi
,

where Uε(τ ;Cj) denotes the ball of radius ε in Cj that is centered at τ . (Since we
assumed ker J 6= V , the projections Ej and E−j are not trivial. It might, however,
happen that E0 = 0, but this is not a problem in the following argumentation.)

We set

VJ,0 = E0VR,j , V +
J,j = EjVR,j , and V −J,j = E−jVR,j .

Obviously these are closed Cj-linear subspaces of VR,j , resp. VR, and (14.19) holds.
Let us now show that the relation (14.20) holds. We first consider the sub-

space V +
J,j . Since it is the range of the Riesz projector Ej associated with the

spectral set {j}, this is a Cj-linear subspace of VR,j that is invariant under J ,
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and the restriction J+ := J |V +
J,j

has spectrum σ(J+) = {j}. Now observe that

−J2
+ = −J2|V +

J,j
is the restriction of a projection onto an invariant subspace and

hence a projection itself. Since 0 /∈ σ(−J2
+) = −σ(J+)2 = {1}, we find that

ker−J2
+ = {0} and in turn I+ := IV +

J,j
= −J2

+. For y ∈ V +
J,j we therefore have

−y = J2
+y = (J+ − jI+ + jI+)2y = (J+ − jI+ + jI+)((J+ − jI+)y + yj)

= (J+ − jI+)2y + (J+ − jI+)yj + (J+ − jI+)yj + yj2.

Since j2 = −1, this is equivalent to

(J+ − jI+)2y = (J+ − jI+)y(−2j).

Hence (J+ − jI+)y is either 0 or an eigenvector of J+ − jI+ associated with the
eigenvalue −2j. By the spectral mapping theorem, σ(J+−jI+) = σ(J+)−j = {0}.
Hence J+ − jI+ cannot have an eigenvector with respect to the eigenvalue −2j,
and so (J+− jI+)y = 0. Therefore, J+ = I+i and Jy = J+y = yj for all y ∈ V +

J,j .

With similar arguments, one shows that Jy = y(−j) for every y ∈ V −J,j .

Finally, σ(−J2
0 ) = −σ(J0)2 = {0} for J0 := J |VJ,0 . Since −J2

0 = −J2|VJ,0 is the
restriction of a projection to an invariant subspace and thus a projection itself, we
find that −J2

0 is the zero operator, and hence VJ,0 = ker(−J0)2 ⊂ ker(J2) = kerJ .
On the other hand, ker J ⊂ VJ,0, since VJ,0 is the invariant subspace associated
with the spectral value 0 of J . Thus VJ,0 = ker J , and so (14.20) is true.

Finally, if i ∈ S with j ⊥ i and y ∈ V+ then (Jyi) = J(y)i = yji = (yi)(−j).
Hence Ψ : y → yi maps V +

J,j to V −J,j . It is obviously Cj-antilinear, isometric, and a
bijection, since y = −(yi)i, so that the proof of the first statement is finished.

Now let j, i ∈ S with j ⊥ i and assume that VR = V0 ⊕ V+ ⊕ V− with
subspaces V0, V+, and V− as in the assumptions. We define Jy := E+yj+E−y(−j).
Obviously, J is a continuous Cj-linear operator on VR,j . The mapping Ψ : y 7→ yi
maps V+ bijectively to V−, but since Ψ−1 = −Ψ, it also maps V− bijectively to V+.
Moreover, as an H-linear subspace, V0 is invariant under Ψ. For y = y0 +y+ +y− ∈
V0 ⊕ V+ ⊕ V− = VR, we therefore obtain

J(yi) = E+(yi)j + E−(yi)(−j) = y−ij + y+i(−j)
= y−(−j)i+ y+ji = (E−y(−j)) i+ (E+yj) i = (Jy)i.

If now a ∈ H, then we can write a = a1 + a2i with a1, a2 ∈ Cj and find due to the
Cj-linearity of J that

J(ya) = J(ya1) + J(ya2i) = J(y)a1 + J(y)a2i = J(y)(a1 + a2i) = J(y)a.

Hence J is quaternionic linear and therefore belongs to B(VR).
Since E+E− = E−E+ = 0, we furthermore observe that

−J2y = −J(E+yj + E−y(−j))
= −

(
E2

+yj
2 + E+E−y(−j2) + E−E+y(−j2) + E2

−y(−j)2
)

= (E+ + E−)y.
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Hence −J2 is the projection onto V+ ⊕ V− = ran(J) along kerJ = V0, so that J
is actually an imaginary operator. �

14.3 Spectral Systems and Spectral Integrals of

Intrinsic Slice Functions

As pointed out above, invariant subspaces of an operator are in the quaternionic
setting not associated with spectral values but with entire spectral spheres. Hence
quaternionic spectral measures associate subspaces of VR with sets of entire spec-
tral spheres and not with arbitrary sets of spectral values. If we want to integrate
a function f that takes nonreal values with respect to a spectral measure E, then
we need some additional information. We need to know how to multiply the dif-
ferent values that f takes on a spectral sphere onto the vectors associated with
the different spectral values in this sphere. This information is given by a suit-
able imaginary operator. Similar to [197], we hence introduce now the notion of a
spectral system.

Definition 14.3.1. A spectral system on VR is a pair (E, J) consisting of a spectral
measure and an imaginary operator J such that

(i) E and J commute, i.e., E(∆)J = JE(∆) for all ∆ ∈ BS(H) and

(ii) E(H \R) = −J2, that is, E(R) is the projection onto kerJ along ranJ , and
E(H \ R) is the projection onto ran J along ker J .

Definition 14.3.2. We denote by SM∞(H) the set of all bounded intrinsic slice
functions on H that are measurable with respect to the usual Borel sets B(H) on
H.

Lemma 14.3.3. A function f : H → H belongs to SM∞(H) if and only if it is of
the form f(s) = f0(s) + jsf1(s) with f0, f1 ∈M∞S (H,R) and f1(s) = 0 for s ∈ R.

Proof. If f(s) = f0(s) + jsf1(s) with f0, f1 ∈ M∞S (H,R) and f1(s) = 0 for s ∈
R, then we can set f0(s0, s1) := f0(s0 + js1) and f1(s0, s1) = f1(s + js1) and
f1(s0,−s1) := −f1(s0 + js1) with j ∈ S arbitrary. Since f0(s) and f1(s) are
BS(H)-measurable, they are constant on each sphere [s], and so this definition is
independent of the chosen imaginary unit j. Since f1(s) = 0 for real s, f1(s0, s1) is
moreover well defined for s1 = 0. We find that f(s) = f0(s)+jsf1(s) = f0(s0, s1)+
jsf1(s0, s1) with f0(s0, s1) and f1(s0, s1) taking real values and satisfying (2.4),
so that f is actually an intrinsic slice function. Moreover, the functions f0(s) and
f1(s) and the function ϕ(s) := js if s /∈ R and ϕ(s) := 0 if s ∈ R are B(H)-
B(H)-measurable. Since f1(s) = 0 if s ∈ R, we have f(s) = f0(s) + jsf1(s) =
f0(s) + ϕ(s)f1(s), and hence the function f is B(H)-B(H)-measurable too.

If, on the other hand, f ∈ SM∞(H) with f(s) = f0(s0, s1) + jsf1(s0, s1),
then also f0(s) := 1

2 (f(s) + f (s)) = f0(s0, s1) and f1(s) := 1
2ϕ(s) (f (s)− f(s)) =

f1(s0, s1) with ϕ(s) as above are B(H)-B(H)-measurable. Moreover f1(s) = 0 if
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s1 = 0. Since f is intrinsic, these functions take values in R, and hence they are
B(H)-B(R)-measurable. They are, moreover, constant on each sphere [s], so that
the preimages f−1

0 (A) and f−1
1 (A) of each set A ∈ B(R) are axially symmetric

Borel sets in H. Consequently, f0 and f1 are BS(H)-B(R)-measurable. Finally,
|f |2 = |f0|2 + |f1|2, so that f is bounded if and only if f0 and f1 are bounded. �

Corollary 14.3.4. Every function f ∈ SM∞(H) is BS(H)-BS(H)-measurable.

Proof. Let ∆ ∈ BS(H). Its inverse image f−1(∆) is a Borel set in H because f is
B(H)-B(H)-measurable. If s ∈ f−1(∆), then f(s) = f0(s0, s1) + jsf1(s0, s1) ∈ ∆.
The axial symmetry of ∆ implies then that for every sj = s0 + js1 ∈ [s] with
j ∈ S also f(sj) = f0(s0, s1) + jsf1(s0, s1) ∈ ∆ and hence sj ∈ f−1(∆). Thus
s ∈ f−1(∆) implies [s] ⊂ f−1(∆) and so f−1(∆) ∈ BS(H). �

We observe that Lemma 14.3.3 implies that the spectral integrals of the
component functions f0 and f1 of every f = f0 + jsf1 ∈ SM∞(H) are defined by
Definition 14.1.7.

Definition 14.3.5. Let (E, J) be a spectral system on VR. For f ∈ SM∞(H) with
f(s) = f0(s) + jsf1(s) we define the spectral integral of f with respect to (E, J) as∫

H
f(s) dEJ(s) :=

∫
H
f0(s) dE(s) + J

∫
H
f1(s) dE(s). (14.21)

The estimate (14.8) generalizes to∥∥∥∥∫
H
f(s) dE(s)

∥∥∥∥ ≤ CE‖f0‖∞ + CE‖J‖‖f1‖∞ ≤ CE,J‖f‖∞ (14.22)

with

CE,J := CE(1 + ‖J‖).

As a consequence of Lemma 14.1.10 and the fact that J and E commute, we
immediately obtain the following result.

Lemma 14.3.6. Let (E, J) be a spectral system on VR. The mapping

f 7→
∫
H
f(s) dEJ(s)

is a continuous homomorphism from (SM∞(H), ‖.‖∞) to B(VR). Moreover, if
T ∈ B(VR) commutes with E and J , then it commutes with

∫
H f(s) dEJ(s) for

every f ∈ SM∞(H).

From Corollary 14.1.11 we furthermore immediately obtain the following
lemma, which is an analogue of Lemma 5.3 in [13]. See also the chapter on spectral
integrals.
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Corollary 14.3.7. Let (E, J) be a spectral system on VR and let f = f0 + jf1 ∈
SM∞(H). For every y ∈ VR and y∗ ∈ V ∗R, we have〈

y∗,

[∫
H
f(s) dEJ(s)

]
y

〉
=

∫
H
f0(s) d 〈y∗, E(s)y〉+

∫
H
f1(s) d 〈y∗, E(s)Jy〉 .

Similar to the what happens for the S-functional calculus, there exists a deep
relation between quaternionic and complex spectral integrals on VR.

Lemma 14.3.8. Let (E, J) be a spectral system on VR, let j ∈ S, let E+ be the
projection of VR onto V +

J,j along VJ,0 ⊕ V −J,j, and let E− be the projection of VR
onto V −J,j along VJ,0 ⊕ V +

J,j; cf. Theorem 14.2.10. For ∆ ∈ B(Cj), we set

Ej(∆) :=


E+E([∆]) if ∆ ⊂ C+

j ,

E(∆) if ∆ ⊂ R,
E−E(∆) if ∆ ⊂ C−j ,
Ej(∆ ∩ C+

j ) + Ej(∆ ∩ R) + Ej(∆ ∩ C−j ) otherwise,

(14.23)

where C+
j and C−j are the open upper and lower half-plane in Cj. Then Ej is a

spectral measure on VR,j. For every f ∈ SM∞(H), we have with fj := f |Cj that∫
H
f(s) dEJ(s) =

∫
Cj
fj(z) dEj(s). (14.24)

Proof. Recall that E and J commute. For y+ ∈ V +
J,j , we thus have JE(∆)y+ =

E(∆)Jy+ = E(∆)y+j, so that E(∆)y+ ∈ V +
J,j and in turn E+E(∆)y+ = E(∆)y+.

Similarly, we see that E(∆)y∼∈VJ,0⊕V −J,ı for y∼∈VJ,0⊕V −J,j , so that E+E(∆)y∼ =

0. Hence if we decompose y ∈ VR as y = y++y∼ with y+ ∈ V +
J,j and y∼ ∈ VJ,0⊕V −J,j

according to Theorem 14.2.10, then E+E(∆)y = E+E(∆)y+ + E+E(∆)y∼ =
E(∆)y+ and E(∆)E+y = E(∆)y+, so that altogether, E(∆)E+y = E+E(∆)y.
Analogous arguments show that E−E(∆) = E(∆)E− and hence E+, E−, and
E(∆), ∆ ∈ BS(H), commute mutually.

Let us now show that Ej is actually a Cj-complex linear spectral measure on
VR,j . For each ∆ ∈ B(Cj) set ∆+ := ∆∩C+

j , ∆− := ∆∩C−j , and ∆R := ∆∩R for
neatness and recall that [ · ] denotes the axially symmetric hull of a set. For every
∆, σ ∈ BS(H), we have then

E([∆+])E(σR) = E(∆R)E([σ+]) = 0,

E([∆−])E(σR) = E(∆R)E([σ−]) = 0,
(14.25)

because of item (iii) in Definition 14.1.7. Moreover, E+ and E− as well as E([∆+]),
E([∆−]), and E(∆R) are projections that commute mutually, as we just showed.
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Since in addition, E+E− = E−E+ = 0, we have

Ej(∆)2 = (E+E([∆+]) + E(∆R) + E−E([∆−]))
2

= E2
+E([∆+])2 + E+E([∆+])E(∆R) + E+E−E([∆+])E([∆−])

+ E+E(∆R)E([∆+]) + E(∆R)2 + E−E(∆R)E([∆−])

+ E−E+E([∆−])E([∆+]) + E−E([∆−])E(∆R) + E2
−E([∆−])2

= E+E([∆+]) + E(∆R) + E−E([∆−]) = Ej(∆).

(14.26)

Hence Ej(∆) is a projection that is moreover continuous, since ‖Ej(∆)‖ ≤ K(1 +
‖E+‖ + ‖E−‖), where K > 0 is the constant in Definition 14.1.7. Altogether, we
find that E takes values that are uniformly bounded projections in B(VR,j).

We obviously have Ej(∅) = 0. Since E+ +E− = E(H\R) because of item (ii)
in Definition 14.3.1, also

Ej(Cj) = E+E([C+
j ]) + E(R) + E−E([C−j ])

= (E+ + E−)E(H \ R) + E(R) = E(H) = I.

Using the same properties of E+, E−, and E(∆) as in (14.26), we find that for
∆, σ ∈ B(Cj),

Ej(∆)E(σ)

=
(
E+E([∆+]) + E(∆R) + E−E([∆−])

)(
E+E([σ+]) + E(σR) + E−E([σ−])

)
= E2

+E([∆+])E([σ+]) + E+E([∆+])E(σR) + E+E−E([∆+])E([σ−])

+ E+E(∆R)E([σ+]) + E(∆R)E(σR) + E−E(∆R)E([σ−])

+ E−E+E([∆−])E([σ+]) + E−E([∆−])E(σR) + E2
−E([∆−])E([σ−])

= E+E([∆+] ∩ [σ+]) + E(∆R ∩ σR) + E−E([∆−] ∩ [σ−]).

In general it not true that [A] ∩ [B] = [A ∩ B] for A,B ⊂ Cj . (Just think, for
instance, about A = {j} and B = {−j} with [A] ∩ [B] = S ∩ S = S and [A ∩B] =
[∅] = ∅.) For every axially symmetric set C we have, however,

C =
[
C ∩ C+

i

]
∀i ∈ S.

If A and B belong to the same complex half-plane C+
i , then

[A] ∩ [B] =
[
([A] ∩ [B]) ∩ C+

i

]
=
[(

[A] ∩ C+
i

)
∩
(
[B] ∩ C+

i

)]
= [A ∩B].

(14.27)

Hence [∆+] ∩ [σ+] = [(∆ ∩ σ)+] and [∆−] ∩ [σ−] = [(∆ ∩ σ)−], so that altogether

Ej(∆)Ej(σ) = E+E([(∆ ∩ σ)+]) + E(∆R ∩ σR) + E−E([(∆ ∩ σ)−])

= Ej(∆ ∩ σ).



14.3. Spectral Systems and Spectral Integrals of Intrinsic Slice Functions 289

Finally, we find for y ∈ VR,j = VR and every countable family (∆n)n∈N of pairwise
disjoint sets that

Ej

(⋃
n∈N

∆n

)
y

= E+E

([⋃
n∈N

∆n,+

])
y + E

(⋃
n∈N

∆n,R

)
y + E−E

([⋃
n∈N

∆n,−

])
y

= E+E

(⋃
n∈N

[∆n,+]

)
y + E

(⋃
n∈N

∆n,R

)
y + E−E

(⋃
n∈N

[∆n,−]

)
y.

Since the sets ∆n,+, n ∈ N, are pairwise disjoint sets in the upper half-plane C+
j ,

their axially symmetric hulls also are disjoint because of (14.27). Similarly, the
axially symmetric hulls of the sets ∆n,−, n ∈ N are also pairwise disjoint, so that

Ej

(⋃
n∈N

∆n

)
y

=
∑
n∈N

E+Ej ([∆n,+]) y +
∑
n∈N

E (∆n,R) y +
∑
n∈N

E−E ([∆n,−]) y

=
∑
n∈N

Ej(∆n)y.

Altogether, we see that Ej is actually a Cj-linear spectral measure on VR,j .
Now let us consider spectral integrals. We start with the simplest real-valued

function possible: f = αχ∆ with α ∈ R and ∆ ∈ BS(H). Since fj = αχ∆∩Cj and
E(∆) = Ej(∆j ∩ Cj), we have for such a function∫

H
f(s) dE(s) = αE(∆) = αEj(∆ ∩ Cj) =

∫
Cj
fj(z) dE(z).

By linearity we find that (14.24) holds for every simple function

f(s) =
n∑
`=1

αkχ∆(s)

in M∞S (H,R). Since these functions are dense in M∞S (H,R), it even holds for
every function in M∞S (H,R). Now consider the function ϕ(s) = js if s ∈ H \ R
and ϕ(s) = 0 if s ∈ R. Since ϕj(z) = jχC+

j
+ (−j)χC−j

and Ej(C+
j ) = E+ and

E−j = E−, the integral of ϕj with respect to Ej is∫
Cj
ϕ(z) dEj(z)y =

(
jEj(Cj)

)
y +

(
(−j)Ej(C−j )

)
y

= E+yj + E−y(−j) = Jy
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for all y ∈ VR,j = VR. If f is now an arbitrary function in SM∞(H), then
f(s) = f0(s) + ϕ(s)f1(s) with f0, f1 ∈ M∞S (H,R) and f1(s) = 0 if s ∈ R by
Lemma 14.3.3. By what we have shown so far and the homomorphism properties
of both quaternionic and the complex spectral integrals, we thus obtain∫

H
f(s) dEJ(s)

=

∫
H
f0(s) dE(s) + J

∫
H
f1(s) dE(s)

=

∫
Cj
f0,j(z) dEj(z) +

(∫
Cj
ϕj(z) dEj(z)

)(∫
Cj
f1,j(z) dEj(z)

)

=

∫
Cj
f0,j(z) + ϕj(z)f1,j(z) dEj(z) =

∫
Cj
fj(z) dEj(z). �

Working on a quaternionic Hilbert space, one might consider only spectral
measures whose values are orthogonal projections. If J is an anti-self-adjoint par-
tially unitary operator, as happens, for instance, in the spectral theorem for normal
operators in [13], then Ej has values that are orthogonal projections.

Corollary 14.3.9. Let H be a quaternionic Hilbert space, let (E, J) be a spectral
system on H, let j ∈ S, and let Ej be the spectral measure defined in (14.23). If
E(∆) is for every ∆ ∈ BS(H) an orthogonal projection on H and J is an anti-
self-adjoint partially unitary operator, then Ej(∆j) is for every ∆j ∈ B(Cj) an
orthogonal projection on (H, 〈·, ·, 〉j), where 〈x, y〉j := {〈x, y〉}j is the Cj-part of
〈x, y〉 defined as {a}j = a1 if a = a1 + a2i with a1, a2 ∈ Cj and i ∈ S with j ⊥ i.

Proof. If x, y ∈ H+
J,j , then

〈x, y〉 = 〈x,−J2y〉 = 〈Jx, Jy〉 = 〈xj, yj〉 = (−j)〈x, y〉j,

so that j〈x, y〉 = 〈x, y〉j. Since a quaternion commutes with j ∈ S if and only if
it belongs to Cj , we have 〈x, y〉 ∈ Cj . Hence if we choose i ∈ S with j ⊥ i, then
〈x, yi〉 = 〈x, y〉i ∈ Cji, so that in turn, 〈x, yi〉j = {〈x, y〉}j = 0 for x, y ∈ H+

J,j .

Since H−J,j = {yi : y ∈ H+
J,j} by Theorem 14.2.10, we obtain H−J,j ⊥j H

+
J,j , where

⊥j denotes orthogonality in Hj . Furthermore, we have for x ∈ H0 = ker J and
y ∈ H+

J,j that
〈x, y〉 = 〈x, Jy〉(−j) = 〈Jx, y〉j = 〈0, y〉j = 0,

and so 〈x, y〉j = {〈x, y〉}j = 0 and in turn H+
J,j ⊥ H0. Similarly, we see that also

H−J,j ⊥j H0. Hence the direct sum decomposition Hj = HJ,0 ⊕ H+
J,j ⊕ H

−
J,j in

(14.19) is actually a decomposition into orthogonal subspaces of Hj . The projec-
tion E+ of H onto H+

J,j along HJ,0 ⊕H−J,j and the projection E− of H onto H−J,j
along HJ,0 ⊕H+

J,j are hence orthogonal projections on Hj .
Since the operator E(∆) is for ∆ ∈ BS(H) an orthogonal projection on H,

it is an orthogonal projection on Hj . A projection is orthogonal if and only if it is
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self-adjoint. Since E+, E−, and E commute mutually, we find for every ∆ ∈ B(Cj)
and x, y ∈ Hj = H that

〈x,Ej(∆)y〉j
= 〈x,E+E([∆ ∩ C+

j ])y〉j + 〈x,E(∆ ∩ R)y〉j + 〈x,E−E([∆ ∩ C−j ])y〉j
= 〈E+E([∆ ∩ C+

j ])x, y〉j + 〈E(∆ ∩ R)x, y〉j + 〈E−E([∆ ∩ C−j ])x, y〉j
= 〈Ej(∆)x, y〉j .

Hence Ej(∆) is an orthogonal projection on Hj . �

We present two easy examples of spectral systems that illustrate the intuition
behind the concept of a spectral system.

Example 14.3.10. We consider a compact normal operator T on a quaternionic
Hilbert space H. The spectral theorem for compact normal operators in [143]
implies that the S-spectrum consists of a (possibly finite) sequence [sn] = sn,0 +
Ssn,1, n ∈ Υ ⊂ N, of spectral spheres that are (apart from possibly the sphere
[0]) isolated in H. Moreover, it implies the existence of an orthonormal basis of
eigenvectors (b`)`∈Λ associated with eigenvalues s` = s`,0 + js`s`,1 with js` = 0 if
s` ∈ R such that

Ty =
∑
`∈Λ

b`s`〈b`, y〉. (14.28)

Each eigenvalue s` obviously belongs to one spectral sphere, namely to [sn(`)] with
sn(`),0 = s`,0 and sn(`),1 = s`,1, and for [sn] 6= {0} only finitely many eigenvalues
belong to the spectral sphere [sn]. We can hence rewrite (14.28) as

Ty =
∑

[sn]∈σS(T )

∑
s`∈[sn]

b`s`〈b`, y〉 =
∑
n∈Υ

∑
n(`)=n

b`s`〈b`, y〉.

The spectral measure E of T is then given by

E(∆)y =
∑
n∈Υ

[sn]⊂∆

∑
n(`)=n

b`〈b`, y〉 ∀∆ ∈ BS(H).

If f ∈M∞S (H,R), then obviously∫
H
f(s) dE(s)y =

∑
n∈Υ

E([sn])yf(sn) =
∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉f(sn). (14.29)

In particular, ∫
H
s0 dE(s)y =

∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉s`,0
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and ∫
H
s1 dE(s)y =

∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉s`,1.

If we define
Jy :=

∑
n∈Υ

∑
n(`)=n

b`js`〈b`, y〉,

then J is an anti-self-adjoint partially unitary operator and (E, J) is a spectral
system. One can check easily that E and J commute, and since js` = 0 for s` ∈ R
and js` ∈ S with j2

s`
= −1 otherwise, one has

−J2y = −
∑
n∈Υ

∑
n(`)=n

b`j
2
s`
〈b`, y〉 =

∑
n∈Υ:[sn]⊂H\R

∑
n(`)=n

b`〈b`, y〉 = E(H \ R)y.

In particular, ker J = spanH{b` : s` ∈ R} = E(R). Note, moreover, that J is com-
pletely determined by T .

For every function f = f0 + jf1 ∈ SM∞(H), we have because of (14.29) and
〈b`, bκ〉 = δ`,κ that∫

H
f(s) dEJ(s)y =

∫
H
f0(s) dE(s)y + J

∫
H
f(s) dE(s)y

=
∑
n∈Υ

∑
n(`)=n

b`〈b`, y〉f0(sn,0, sn,1)

+
∑

m,n∈Υ

∑
n(`)=n
n(κ)=m

b`js`〈b`, bκ〉〈bκ, y〉f1(sm,0, sm,1)

=
∑
n∈Υ

∑
n(`)=n

b`f0(s`,0, s`,1)〈b`, y〉

+
∑
n∈Υ

∑
n(`)=n

b`js`f1(s`,0, s`,1)〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

b`(f0(s`,0, s`,1) + js`f1(s`,0, s`,1))〈b`, y〉,

and so ∫
H
f(s) dEJ(s)y =

∑
n∈Υ

∑
n(`)=n

b`f(s`)〈b`, y〉. (14.30)

In particular, ∫
H
s dEJ(s) =

∑
n∈Υ

∑
n(`)=n

b`s`〈b`, y〉 = Ty.
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We have in particular T = A + JB with A =
∫
H s0 dE(s) self-adjoint, B =∫

H s1 dE(s) positive and J anti-self-adjoint and partially unitary as in (14.11).
Moreover, E corresponds via Remark 14.1.9 to the spectral measure obtained
from the spectral theorem for bounded normal operators.

We choose now j, i ∈ S with j ⊥ i, and for each ` ∈ Λ with s` /∈ R we choose
h` ∈ H with |h`| = 1 such that h−1

` js`h` = j and in turn

h−1
` s`h` = s`,0 + h−1

` js`h`s1 = s`,0 + js`,1 =: s`,j .

In order to simplify the notation we also set h` = 1 and js` = 0 if s` ∈ R. Then
b̃` := b`h`, ` ∈ Λ is another orthonormal basis consisting of eigenvectors of T , and
since h−1

` = h`/|h`|2 = h`, we have

Ty =
∑
n∈Υ

∑
n(`)=n

b`(h`h
−1
` )s`(h`h

−1
` )〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

(b`h`)(h
−1
` s`h`)〈b`h`, y〉 =

∑
n∈Υ

∑
n(`)=n

b̃`s`,j〈b̃`, y〉
(14.31)

and similarly

Jy =
∑
n∈Υ

∑
n(`)=n

b`(h`h
−1
` )j`(h`h

−1
` )〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

(b`h`)(h
−1
` j`h`)〈b`h`, y〉 =

∑
n∈Υ

∑
n(`)=n

b̃`j〈b̃`, y〉.

Recall that jλ = λj for every λ ∈ Cj and ji = −ij. The splitting of H obtained
from Theorem 14.2.10 is therefore given by

HJ,0 = ker J = spanH{b̃` : s` ∈ R}, H+
J,j := spanCj{b̃` : s` /∈ R},

and

H−J,j = spanCj{b̃`i : s` /∈ R} = H+
J,ji.

If 〈b`, y〉 = a` = a`,1 + a`,2i with a`,1, a`,2 ∈ Cj , then (14.31) implies

Ty =
∑
n∈Υ

∑
n(`)=n

b̃`s`,ja`

=
∑
n∈Υ

[sn]⊂R

∑
n(`)=n

b̃`a`s` +
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,1s`,j +
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,2is`,j .

(14.32)

If f ∈ SM∞(H), then the representation (14.30) of
∫
H f(s) dEJ(s) in the basis
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b̃`, ` ∈ Λ implies∫
f(s) dEJ(s)y =

∑
n∈Υ

∑
n(`)=n

b̃`f(s`,j)a`

=
∑
n∈Υ

[sn]⊂R

∑
n(`)=n

b̃`a`f(s`)

+
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,1f(s`,j) +
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,2if(s`,j)

=
∑
n∈Υ

[sn]⊂R

∑
n(`)=n

b̃`a`f(s`)

+
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,1f(s`,j) +
∑
n∈Υ

[sn]⊂H\R

∑
n(`)=n

b̃`a`,2if(s`,j), (14.33)

since f(s`) ∈ R for s` ∈ R and f(s`,j) = f(s`,j) because f is intrinsic. Note that
the representations (14.32) and (14.33) show clearly that f(T ) is defined by letting
f act on the right eigenvalues of T .

Example 14.3.11. Let us consider the space L2(R,H) of all quaternion-valued func-
tions on R that are square-integrable with respect to the Lebesgue measure λ.
Endowed with the pointwise multiplication (fa)(t) = f(t)a for f ∈ L2(R,H) and
a ∈ H and with the scalar product

〈g, f〉 =

∫
R
g(t)f(t) dλ(t) ∀f, g ∈ L2(R,H), (14.34)

this space is a quaternionic Hilbert space. Let us now consider a bounded measur-
able function ϕ : R → H and the multiplication operator (Mϕf)(s) := ϕ(s)f(s).

This operator is normal with (Mϕ)∗ = Mϕ, and its S-spectrum is the set ϕ(R).
Indeed, writing ϕ(t) = ϕ0(t) + jϕ(t)ϕ1(t) with ϕ0(t) ∈ R, ϕ1(t) > 0, and jϕ(t) ∈ S
for ϕ(t) ∈ H \ R and jϕ(t) = 0 for ϕ(t) ∈ R, we find that

Qs(Mϕ)f(t) = M2
ϕf(t)− 2s0Mϕf(t) + |s|2f(t)

= (ϕ2(t)− 2s0ϕ(t) + |s|2)f(t)

= (ϕ(t)− sjϕ(t)
)(ϕ(t)− sjϕ(t)

)f(t)

with sjϕ(t)
= s0 + jϕ(t)s1, and hence

Qs(Mϕ)−1f(t) = (ϕ(t)− sjϕ(t)
)−1(ϕ(t)− sjϕ(t)

)−1f(t)

is a bounded operator if s /∈ ϕ(R). If we define E(∆) = Mχϕ−1(∆)
for all ∆ ∈

BS(H), then we obtain a spectral measure on BS(H), namely

E(∆)f(t) = χϕ−1(∆)(t)f(t).
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If we set
J := Mjϕ i.e., (Jf)(t) = jϕ(t)f(t),

then we find that (E, J) is a spectral system. Obviously J is anti-self-adjoint and
partially unitary and hence an imaginary operator that commutes with E. Since
jϕ(t) = 0 if ϕ(t) ∈ R and jϕ(t) ∈ S otherwise, we have, moreover,

(−J2f)(t) = −j2
ϕ(t)f(t) = χϕ−1(H\R)f(t) = (E(H \ R)f)(t).

If g ∈ M∞S (H,R), then let gn(s) =
∑Nn
`=1 an,`χ∆n,`

(s) ∈ M∞S (H,R) be a
sequence of simple functions that converges uniformly to g. Then∫

H
g(s) dE(s)f(t) = lim

n→∞

Nn∑
`=1

an,`E(∆n,`)f(t) = lim
n→∞

Nn∑
`=1

an,`χϕ−1(∆)(t)f(t)

= lim
n→∞

Nn∑
`=1

an,`χ∆(ϕ(t))f(t) = lim
n→∞

(gn ◦ ϕ)(t)f(t) = (g ◦ ϕ)(t)f(t).

Hence if g(s) =0 (s) + jsf1(s) ∈ SM∞(H), then∫
H
g(s) dEJ(s)f(t) =

∫
H
g(s) dE(s)f(t)

=

∫
H
g0(s) dE(s)f(t) + J

∫
H
f1(s) dE(s)f(t)

= g0(ϕ(t))f(t) + jϕ(t)f1(ϕ(t))f(t)

= (g0(ϕ(t)) + jϕ(t)f1(ϕ(t))f(t) = (g ◦ ϕ)(t)f(t),

and so ∫
H
g(s) dEJ(s) = Mg◦ϕ.

Choosing g(s) = s, we find in particular that T = A + JB with A =
∫
H s0 dE(s)

self-adjoint, B =
∫
H s1 dE(s) positive, and J anti-self-adjoint and partially unitary

as in the Teichmüller decomposition. The spectral measure E corresponds via
Remark 14.1.9 to the spectral measure obtained in Theorem 11.2.1.

14.4 On the Different Approaches to Spectral

Integration

The approach to spectral integration presented in this chapter specifies some ideas
in [197]. We now compare this approach with the approaches in [13] and [144].
In [13], the authors consider a spectral measure E over C+

j and a unitary and
anti-self-adjoint operator J (i.e., a fully imaginary operator J in the terminology
of this book) that commutes with E. They define a left multiplication on H by
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the imaginary unit J as jy := Jy for y ∈ H. (If one tries to develop the spectral
theory of a normal operator T , then J is simply the extension of the imaginary
operator in the Teichmüller decomposition of T to a fully imaginary operator; cf.
Remark 9.3.7.) One can then define the multiplication of an operator A in B(H)
by the imaginary unit j as jA = JA and Aj := AJ , and this makes the integration
of Cj-valued functions on f : C+

j → Cj possible. The procedure

∫
C+
j

f(s) dE(s) := lim
n→+∞

∫
C+
j

fn(s) dE(s) := lim
n→+∞

Nn∑
k=1

αn,kE(∆n,k), (14.35)

where fn :=
∑Nn
k=1 αn,kχ∆n,k

with ∆n,k ∈ B(C+
j ) is a sequence of simple functions

that uniformly converges to f , is in this case also well defined if the coefficients
αn,k belong to Cj , and not only if they belong to R.

The authors of [144] go one step further: they define a second unitary and
anti-self-adjoint operator K that commutes with E and anti-commutes with J ,
and they define a full left multiplication on H. They choose i ∈ S with j ⊥ i and
define Lj := J and Li := K and the left multiplication

L :

{
H → B(H),

a = a0 + a1j + a2i+ a3ji 7→ La := a0I + a1j + a2i+ a3ji,

so that

ay := Lay = ya0 +  Ljya1 + Liya2 + LjLiya3 ∀y ∈ H.

They call a pair E := (E,L) consisting of a spectral measure over C+
j and a

left multiplication that commutes with E an intertwining quaternionic projection-
valued measure (iqPVM for short). Such iqPVMs allow one to define spectral
integrals for functions f : C+

j → H with arbitrary values in H, since the coeffi-
cients an,k in (14.35) are in this case meaningful for arbitrary values an,k ∈ H. The
authors arrive then at the following version of the spectral theorem [144, Theo-
rem 4.1].

Theorem 14.4.1. Let T ∈ B(H) be normal and let j ∈ S. There exists an iqPVM
E = (E,L) over C+

j on H such that

T =

∫
C+
j

z dE(z). (14.36)

The spectral measure E is uniquely determined by T , and the left multiplication
is uniquely determined for a ∈ Cj on ker(T − T ∗)⊥. Precisely, we have for every
other left multiplication L′ such that E ′ = (E,L′) is an iqPVM satisfying (14.36)
that Lay = L′ay for every a ∈ Cj and y ∈ ker(T − T ∗)⊥. (Even more specifically,
we have jy = Jy for every y ∈ ker(T − T ∗)⊥ = ran J , where J is the imaginary
operator in the Teichmüller decomposition of T .)
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All three approaches are consistent if things are interpreted correctly. Let us
first consider a spectral measure E over C+

j for some j ∈ S, the values of which
are orthogonal projections on a quaternionic Hilbert space H. Furthermore, let
J be a unitary anti-self-adjoint operator on H that commutes with E and let us
interpret the application of J as multiplication by j from the left as in [13]. By
Remark 14.1.9, we obtain a quaternionic spectral measure on BS(H) if we set
Ẽ(∆) := E

(
∆ ∩ C+

j

)
for ∆ ∈ BS(H), and obviously we have∫

H
f(s) dẼ(s) =

∫
C+
j

fj(z) dE(z) ∀f ∈M∞S (H,R),

where fj = f |C+
j

. If we set J := JẼ(H \R) = JE(C+
j \R), then J is an imaginary

operator and we find that (Ẽ, J) is a spectral system on H. Now let f(s) =
f0(s) + jf1(s) ∈ SM∞(H) and let again fj = f |C+

j
, f0,j = α|C+

j
and f1,j = f1|C+

j
.

Since f1(s) = 0 if s ∈ R, we have f1(s) = χH\R(s)f1(s) and in turn∫
C+
j

fj(z) dE(z) =

∫
C+
j

f0,j(z) dE(z) + J

∫
C+
j

f1,j(z) dE(z)

=

∫
H
f0(s) dẼ(s) + J

∫
H
χH\R(s)f1(s) dẼ(s)

=

∫
H
f0(s) dẼ(s) + JE(H \ R)

∫
H
f1(s) dẼ(s)

=

∫
H
f0(s) dẼ(s) + J

∫
H
f1(s) dẼ(s) =

∫
H
f(s) dẼJ(s).

(14.37)

Hence for every measurable intrinsic slice function f , the spectral integral of f
with respect to the spectral system (Ẽ, J) coincides with the spectral integral of
f |C+

j
with respect to E, where we interpret the application of J as multiplication

by j from the left. Since the mapping f 7→ f |C+
j

is a bijection between the set

of all measurable intrinsic slice functions on H and the set of all measurable Cj-
valued functions on C+

j that map the real line into itself, both approaches are

equivalent for real slice functions if we identify Ẽ with E and f with fj . The same
identifications show that the approach in [144] is equivalent to our approach, as
long as we consider only intrinsic slice functions. Indeed, if E = (E,L) is an iqPVM
over C+

j on H, then Jy := Ljy = jy is a unitary and anti-self-adjoint operator on

H. As before, we can set Ẽ(∆) = E(∆∩C+
j ) and J := JẼ(H \R) = LjE(C+

j \R).
We then find as in (14.37) that∫

C+
j

fj(z) dE(z) =

∫
H
f(s) dẼJ(s) ∀f ∈ SM∞(H). (14.38)

For intrinsic slice functions, all three approaches are hence consistent.
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Let us continue our discussion of how our approach to spectral integration
fits into the existing theory. We recall that every normal operator T on H can be
decomposed as

T = A+ JB,

with the self-adjoint operator A = 1
2 (T+T ∗), the positive operator B = 1

2 |T−T
∗|,

and the imaginary operator J with kerJ = ker(T −T ∗) and ranJ = ker(T −T ∗)⊥.
Let E = (E,L) be an iqPVM of T obtained from Theorem 14.4.1. From [144, Theo-

rem 3.13], we know that
(∫

C+
j
ϕ(z) dE(z)

)∗
=
∫
C+
j
ϕ(z) dE(z) and ker

∫
C+
j
ϕ(z) dE(z)

= ranE(ϕ−1(0)). Hence

T − T ∗ =

∫
C+
j

z dE(z)−
∫
C+
j

z dE(z) =

∫
C+
j

2jz1 dE(z).

Since z1 = 0 if and only if z ∈ R, we find that kerJ = ker(T − T ∗) = ranE(R)
and in turn ranJ = ker(T − T ∗)⊥ = ranE

(
C+
j \ R

)
.

If we identify E with the spectral measure Ẽ on BS(H) that is given by
Ẽ(∆) = E

(
∆ ∩ C+

j

)
, then J = LjE(C+

j \ R) is an imaginary operator such that

(Ẽ,J) is a spectral system, as we showed above. The spectral integral of every
measurable intrinsic slice function f with respect to (Ẽ,J) coincides with the
spectral integral of f |C+

j
with respect to E . Since ranE(C+

j \R) = ker(T −T ∗)⊥ =

ran J and Ljy = Jy for all y ∈ ker(T − T ∗)⊥ (this follows from the construction

of L and in particular Lj in [144]), we moreover find that J = J. Therefore (Ẽ, J)
is the spectral system that for integration of intrinsic slice functions is equivalent
to E . We can hence rewrite the spectral theorem in the terminology of spectral
systems as follows.

Theorem 14.4.2. Let T = A + JB ∈ B(H) be a normal operator. There exists a
unique quaternionic spectral measure E on BS(H) with E(H \ σS(T )) = 0, the
values of which are orthogonal projections on H, such that (E, J) is a spectral
system and such that

T =

∫
H
s dEJ(s).

We want to point out that the spectral system (E, J) is completely deter-
mined by T—unlike the unitary anti-self-adjoint operator J that extends J used
in [13] and unlike the iqPVM used in [144]. We also want to stress that the proof
of the spectral theorem presented in Chapter 11 translates directly into the lan-
guage of spectral systems: one can pass to the language of spectral systems by the
identification described above without any problems.

Example 14.4.3. In order to discuss the relations described above, let us return to
Example 14.3.10, in which we considered normal compact operators on a quater-
nionic Hilbert space given by

Ty =
∑
n∈Υ

∑
n(`)=n

b`s`〈b`, y〉,
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whose spectral system (E, J) was

E(∆)y =
∑
n∈Υ

[sn]⊂∆

∑
n(`)=n

b`〈b`, y〉 and Jy =
∑
n∈Υ

∑
n(`)=n

b`js`〈b`, y〉.

The integral of a function f ∈ SM∞(H) with respect to (E, J) is then given by
(14.30) as ∫

H
f(s) dEJ(s)y =

∑
n∈Υ

∑
n(`)=n

b`f(s`)〈b`, y〉. (14.39)

Let j ∈ S. If we set Ẽ(∆) = E([∆]) for all ∆ ∈ B
(
C+
j

)
, then Ẽ is a quater-

nionic spectral measure over C+
j . In [13] the authors extend J to an anti-self-adjoint

and unitary operator J that commutes with T and interpret applying this opera-
tor as multiplication by j from the left in order to define spectral integrals. One
possibility to do this is to define ι(`) = js` if s` 6∈ R and ι(`) ∈ S arbitrary if
s` ∈ R and to set

Jy =
∑
n∈Υ

∑
n(`)=n

b`ι(`)〈b`, y〉

and iy = Jy.

In [144] the authors go even one step further and extend this multiplication
by scalars from the left to a full left multiplication L = (La)a∈H that commutes
with E in order obtain an iqPVM E = (E,L). We can do this by choosing for each
` ∈ Λ an imaginary unit (`) ∈ S with (`) ⊥ ι(`) and by defining

Ky =
∑
n∈Υ

∑
n(`)=n

b`(`)〈b`, y〉.

If we choose i ∈ S and define for a = a0 + a1j + a2i+ a3ji ∈ H,

ay = Lay := ya0 + iya1 + Kya2 + JKya3

=
∑
n∈Υ

∑
n(`)=n

b`(a0 + a1ι(`) + a2(`) + a3ι(`)(`)〈b`, y〉,

then L = (La)a∈H is obviously a left multiplication that commutes with E, and
hence E = (Ẽ,L) is an iqPVM over C+

j .



300 Chapter 14. Spectral Integration in the Quaternionic Setting

Set sn,j = [sn]∩C+
j . For fj : C+

j → H, the integral of fj with respect to E is

∫
C+
j

fj(z) dE(z)

=
∑
n∈Υ

fj(sn,j)Ẽ({sn,j})y =
∑
n∈Υ

fj(sn,j)E([sn])y

=
∑
n∈Υ

(
F0(sn,j) + F1(sn,j)J + F2(sn,j)K + F3(sn,j)JK

) ∑
n(`)=n

b`〈b`, y〉

=
∑
n∈Υ

∑
n(`)=n

b`
(
F0(sn,j) + F1(sn,j)ι(`) + F2(sn,j)(`) + F3(sn,j)ι(`)(`)

)
〈b`, y〉,

(14.40)

where F0, . . . , F3 are the real-valued component functions such that

fj(z) = F0(z) + F1(z)j + F2(z)i+ F3(z)ji.

If now fj is the restriction of an intrinsic slice function f(s) = f0(s)+jsf1(s), then
F0(sn(`),j) = f0(s`,j) = f0(s`) and F1(sn(`),j) = f1(s`,j) = f1(s`) and F2(z) =
F3(z) = 0. Since moreover F1(sn(`),j) = f1(s`) = 0 if s` ∈ R and ι(`) = js` if
s` /∈ R, we find that (14.40) actually equals (14.39) in this case. Note, however,
that for every other function fj , the integral (14.40) depends on the random choice
of the functions ι(`) and (`), which are not fully determined by T .

Let us now investigate the relation between (14.40) and the right linear struc-
ture of T . Let us therefore change to the eigenbasis b̃`, ` ∈ Λ, with T b̃` = b̃`s`,j
defined in Example 14.3.10. For convenience let us furthermore choose ι(`) and
(`) such that

Jy =
∑
n∈Υ

∑
n(`)=n

b̃`j〈b̃`, y〉 and Ky =
∑
n∈Υ

∑
n(`)=n

b̃`i〈b̃`, y〉.

The left multiplication L is hence exactly the left multiplication induced by the
basis b̃`, ` ∈ Λ, and multiplication of y by a ∈ H from the left exactly cor-
responds to multiplying the coordinates 〈b̃`, y〉 by a from the left, i.e., ay =∑
n∈Υ

∑
n(`)=n b̃`a〈b̃`, y〉. (Note, however, that unlike multiplication by scalars

from the right, multiplication by scalars from the left corresponds to multipli-
cation of the coordinates only in this basis. This relation is lost if we change the
basis.)

Let us define 〈b̃`, y〉 = a` with a` = a`,1 + a`,2i with a`,1, a`,2 ∈ Cj and
let fj : C+

j → H. If we write fj(z) = f1(z) + f2(z)i, this time with Cj-valued



14.4. On the Different Approaches to Spectral Integration 301

components f1, f2 : C+
j → Cj , then (14.40) yields∫

C+
j

fj(z) dE(z) =
∑
n∈Υ

∑
n(`)=n

b̃`
(
f1(sn,j) + f2(sn,j)i

)
(a1 + a2i)

=
∑
n∈Υ

∑
n(`)=n

b̃`
(
a1f1(sn,j) + a1f2(sn,j)i

)
+
∑
n∈Υ

∑
n(`)=n

b̃`
(
a2if2(sn,j)− a2f2(sn,j)

)
.

(14.41)

If we compare this with (14.32), then we find that
∫
C+
j
fj(z) dE(z) corresponds to

an application of fj to the right eigenvalues of T only if f2 ≡ 0 and f1 can be

extended to a function on all of Cj such that f1(s`,j) = f1(s`,j). This is, however,
the case if and only if fj = f1 is the restriction of an intrinsic slice function to C+

j .

As pointed out above, spectral integrals of intrinsic slice functions defined
in the sense of [13] or [144] can be considered spectral integrals with respect to
a suitably chosen spectral system. The other two approaches—in particular the
approach using iqPVMs in [144]—allow, however, the integration of a larger class
of functions.

The authors of [144] argue in the introduction that the approach of spectral
integration in [13] is complex in nature, since it allows one to integrate only Cj-
valued functions defined on C+

j for some j ∈ S. They argue that their approach
using iqPVMs, on the other hand, is quaternionic in nature, since it allows one
to integrate functions that are defined on a complex half-plane and take arbitrary
values in the quaternions. It is rather the other way around. It is the approach to
spectral integration using spectral systems that is quaternionic in nature, although
they allow one to integrate only intrinsic slice functions, and we have three main
arguments in favor of this point of view:

(i) Spectral integration with respect to a spectral system does not require the
random introduction of any undetermined structure.

If we consider a normal operator T = A + JB on a quaternionic Hilbert
space, then only its spectral system J is uniquely defined. The extension
of J to a unitary anti-self-adjoint operator J that can be interpreted as
multiplication Lj = J by some j ∈ S from the left is not determined by T .
Also, multiplication Li by some i ∈ S with i ⊥ j that extends Lj to the left
multiplication L in an iqPVM E = (E,L) associated with T is not determined
by T . The construction in [142] and [144] is based on the spectral theorems for
quaternionic self-adjoint operators and for complex linear normal operators.

As we shall see in Chapter 15, the spectral orientation J of a spectral
operator T—that is, the imaginary operator in the spectral system (E, J)
associated with T—on a right Banach space can be constructed once the
spectral measure E associated with T is known. Since the spectral theorems
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for self-adjoint operators and for complex linear operators are not available on
Banach spaces, it is not clear how to extend J to a fully imaginary operator
or even further to something that generalizes an iqPVM and whether this is
possible at all.

(ii) Spectral integration with respect to a spectral system has a clear interpre-
tation in terms of the right linear structure on the space.

The natural domain of a right linear operator is a right Banach space. If a left
multiplication is defined on the Banach space, then the operator’s spectral
properties should be independent of this left multiplication. Integration with
respect to a spectral system (E, J) has a clear and intuitive interpretation
with respect to the right linear structure of the space: the spectral measure
E associates (right) linear subspaces to spectral spheres, and the spectral ori-
entation determines how to multiply the spectral values in the corresponding
spectral spheres (from the right) onto the vectors in these subspaces.

The role of the left multiplication in an iqPVM in terms of the right
linear structure is less clear. Indeed, we doubt that there exists a similarly
clear and intuitive interpretation in view of the fact that no relation between
left and right eigenvalues has been discovered up to now.

(iii) Extending the class of integrable functions toward non-intrinsic slice func-
tions does not seem to bring any benefit and might not even be meaningful.

Extending the class of admissible functions for spectral integration beyond
the class of measurable intrinsic slice functions seems to add little value to
the theory. As pointed out above, the proof of the spectral theorem in [13]
translates directly into the language of spectral systems, and hence spectral
systems offer a framework that is sufficient to prove the most powerful result
of spectral theory.

Even more, spectral integrals of functions that are not intrinsic slice
functions cannot follow the basic intuition of spectral integration. In partic-
ular, if we define a measurable functional calculus via spectral integration,
then this functional calculus only follows the fundamental intuition of a func-
tional calculus, namely that f(T ) should be defined by the action of f on the
spectral values of T if the underlying class of functions consists of intrinsic
slice functions.



Chapter 15

Bounded Quaternionic Spectral
Operators

We turn our attention now to the study of quaternionic linear spectral operators,
in which we generalize the complex linear theory in [106]. The results presented
in this chapter can be found in [125] and in [128].

15.1 The Spectral Decomposition of a Spectral

Operator

A complex spectral operator is a bounded operatorA that has a spectral resolution,
i.e., there exists a spectral measure E defined on the Borel sets B(C) on C such
that σS(A|∆) ⊂ ∆ with A∆ = A|ranE(∆) for all ∆ ∈ B(C). Chapter 14 showed
that spectral systems take over the role of spectral measures in the quaternionic
setting. If E is a spectral measure that reduces an operator T ∈ B(VR), then there
will in general exist infinitely many imaginary operators J such that (E, J) is a
spectral system. We thus have to find a criterion for identifying the one among
them that fits the operator T and that can hence serve as its spectral orientation.
A first and quite obvious requirement is that T and J commute. This is, however,
not sufficient. Indeed, if J and T commute, then also −J and T commute. More
generally, every operator that is of the form J̃ := −E(∆)J + E(H \ ∆)J with
∆ ∈ BS(H) is an imaginary operator such that (E, J̃) is a spectral system that
commutes with T .

We develop a second criterion by analogy with the finite-dimensional case.
Let T ∈ B(Hn) be the operator on Hn that is given by the diagonal matrix
T= diag(λ1, . . . , λn) and let us assume λ` /∈ R for ` = 1, . . . , n. We intuitively
identify the operator J = diag(jλ1

, . . . , jλn) as the spectral orientation for T , cf.
also Example 14.3.10. Obviously J commutes with T . Moreover, if s0 ∈ R and
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s1 > 0 are arbitrary, then the operator (s0I − s1J)− T is invertible. Indeed, one
has

(s0I − s1J)− T = diag(sjλ1
− λ1, . . . , sjλn − λn),

where sjλ` = s0 + jλ`s1. Since sjλ` − λ` = (s0 − λ`,0) + jλ`(−s1 − λ`,1) and both
s1 > 0 and λ`,1 > 0 for all ` = 1, . . . , n, each of the diagonal elements has an
inverse, and so

((s0I − s1J)− T )−1 = diag
(
(sjλ1

− λ1)−1, . . . , (sjλn − λn)−1
)
.

This invertibility is the criterion that uniquely identifies J .

Definition 15.1.1. An operator T ∈ B(VR) is called a spectral operator if there
exists a spectral decomposition for T , i.e., a spectral system (E, J) on VR such
that the following three conditions hold:

(i) The spectral system (E, J) commutes with T , i.e., E(∆)T = TE(∆) for all
∆ ∈ BS(H) and TJ = JT .

(ii) If we set T∆ := T |V∆
with V∆ = E(∆)VR for ∆ ∈ BS(H), then

σS(T∆) ⊂ ∆ for all ∆ ∈ BS(H).

(iii) For all s0, s1 ∈ R with s1 > 0, the operator ((s0I − s1J) − T )|V1
has a

bounded inverse on V1 := E(H \ R)VR = ran J .

The spectral measure E is called a spectral resolution for T , and the imaginary
operator J is called a spectral orientation of T .

A first easy result, which we shall use frequently, is that the restriction of a
spectral operator to an invariant subspace E(∆)VR is again a spectral operator.

Lemma 15.1.2. Let T ∈ B(VR) be a spectral operator on VR and let (E, J) be a
spectral decomposition for T . For every ∆ ∈ BS(H), the operator T∆ = T |V∆

with
V∆ = ranE(∆) is a spectral operator on V∆. A spectral decomposition for T∆ is
(E∆, J∆) with E∆(σ) = E(σ)|V∆ and J∆ = J |V∆ .

Proof. Since E(∆) commutes with E(σ) for σ ∈ BS(H) and J , the restrictions
E∆(σ) = E(σ)|V∆

and J∆ = J |V∆
are right linear operators on V∆. It is immediate

that E∆ is a spectral measure on V∆. Moreover,

ker J∆ = ker J ∩ V∆ = ranE(R) ∩ V∆ = ranE∆(R)

and

ran J∆ = ran J ∩ V∆ = ranE(H \ R) ∩ V∆ = ranE∆(H \ R).

Since

−J2
∆ = −J2|V∆

= E(H \ R)|V∆
= E∆(H \ R),
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the operator −J2
∆ is the projection of V∆ onto ran J∆ along ker J∆. Hence J∆ is

an imaginary operator on V∆. Moreover, (E∆, J∆) is a spectral system. Since

E∆(σ)T∆E(∆) = E(σ)TE(∆) = TE(σ)E(∆) = T∆E∆(σ)E(∆),

and similarly

J∆T∆E(∆) = JTE(∆) = TJE(∆) = T∆J∆E(∆),

this spectral system commutes with T∆.
If σ ∈ BS(H) and we set V∆,σ = ranE∆(σ), then

V∆,σ = ranE(σ)|V∆ = ranE(σ)E(∆) = ranE(σ ∩∆) = V∆∩σ.

Thus T∆|V∆,σ
= T |Vσ∩∆

and so σS(T∆,σ) = σS(T∆∩σ) ⊂ ∆ ∪ σ ⊂ σ. Hence E∆

is a spectral resolution for T∆. Finally, for s0, s1 ∈ R with s1 > 0, the operator
s0I − s1J − T leaves the subspace V∆,1 := ranE∆(H \ R) = ranE(∆ ∩ (H \ R))
invariant because it commutes with E. Hence the restriction of (s0I −s1J−T )|−1

V1

to V∆,1 ⊂ V1 = ranE(H \ R) is a bounded linear operator on V∆,1. It obviously
is the inverse of (s0I − s1J∆− T∆)|V∆,1

. Therefore (E∆, J∆) is actually a spectral
decomposition for T∆, which hence is in turn a spectral operator. �

The remainder of this section considers the questions of uniqueness and ex-
istence of the spectral decomposition (E, J) of T . We recall the VR-valued right
slice hyperholomorphic function Rs(T ; y) := Qs(T )−1ys − TQs(T )−1y on ρS(T )
for T ∈ L(VR) and y ∈ VR, which was defined in Definition 14.2.8. If T is bounded,
then Qs(T )−1 and T commute, and we have

Rs(T ; y) := Qs(T )−1(ys− Ty).

Definition 15.1.3. Let T ∈ B(VR) and let y ∈ VR. A VR-valued right slice hyper-
holomorphic function f defined on an axially symmetric open set D(f) ⊂ H with
ρS(T ) ⊂ D(f) is called a slice hyperholomorphic extension of Rs(T ; y) if

(T 2 − 2s0T + |s|2I)f(s) = ys− Ty ∀s ∈ D(f). (15.1)

Obviously such an extension satisfies

f(s) = Rs(T ; y) for s ∈ ρS(T ).

Definition 15.1.4. Let T ∈ B(VR) and let y ∈ VR. The function Rs(T ; y) is said
to have the single-valued extension property if every two slice hyperholomorphic
extensions f and g of Rs(T ; y) satisfy f(s) = g(s) for s ∈ D(f) ∩ D(g). In this
case,

ρS(y) :=
⋃
{D(f) : f is a slice hyperholomorphic extension of Rs(T ; y)}

is called the S-resolvent set of y, and σS(y) = H \ ρS(y) is called the S-spectrum
of y.
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Since it is the union of axially symmetric sets, ρS(y) is axially symmetric.
Moreover, there exists a unique maximal extension of Rs(T ; y) to ρS(y). We shall
denote this extension by y(s).

We shall see soon that the single-valued extension property holds forRs(T ; y)
for every y ∈ VR if T is a spectral operator. This is, however, not true for an
arbitrary operator T ∈ B(VR). A counterexample can be constructed analogously
to [106, p. 1932].

Lemma 15.1.5. Let T ∈ B(VR) be a spectral operator and let E be a spectral
resolution for T . Let s ∈ H and let ∆ ⊂ H be a closed axially symmetric set such
that s /∈ ∆. If y ∈ VR satisfies (T 2 − 2s0T + |s|2I)y = 0, then

E(∆)y = 0 and E([s])y = y.

Proof. Assume that y ∈ VR satisfies (T 2 − 2s0T + |s|2I)y = 0 and let T∆ be the
restriction of T to the subspace V∆ = E(∆)V . Since s /∈ ∆, we have s ∈ ρS(T∆),
and so Qs(T∆) is invertible. Since Qs(T∆)−1 = Qs(T )−1|V∆ , we have

Qs(T∆)−1(T 2 − 2s0T + |s|2I)E(∆) = E(∆),

from which we deduce

E(∆)y = Qs(T∆)−1(T 2 − 2s0T + |s|2I)E(∆)y

= Qs(T∆)−1E(∆)(T 2 − 2s0T + |s|2I)y = 0.

Now define for n ∈ N the closed axially symmetric set

∆n =

{
p ∈ H : dist(p, [s]) ≥ 1

n

}
.

By the above, we have E(∆n)y = 0 and in turn

(I − E([s]))y = lim
n→∞

E(∆n)y = 0,

so that y = E([s])y. �

Lemma 15.1.6. If T ∈ B(VR) is a spectral operator, then for every y ∈ VR, the
function Rs(T ; y) has the single-valued extension property.

Proof. Let y ∈ VR and let f and g be two slice hyperholomorphic extensions of
Rs(T ; y). We set h(s) = f(s)− g(s) for s ∈ D(h) = D(f) ∩ D(g).

If s ∈ D(h), then there exists an axially symmetric neighborhood U ⊂ D(h)
of s, and for every p ∈ U we have

(T 2 − 2p0T + |p|2I)h(p) = (T 2 − 2p0T + |p|2I)f(p)− (T 2 − 2p0T + |p|2)g(p)

= (yp− Ty)− (yp− Ty) = 0.
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If E is a spectral resolution of T , then we can conclude from the above and
Lemma 15.1.5 that E([p])h(p) = h(p) for p ∈ U . We consider now a sequence
sn ∈ U with sn 6= s for n ∈ U such that sn → s as n→∞ and obtain

0 = E([s])E([sn])h(sn) = E([s])h(sn)→ E([s])h(s) = h(s).

Hence f(s) = g(s), and Rs(T, y) has the single-valued extension property. �

Corollary 15.1.7. If T ∈ B(VR) is a spectral operator, then for every y ∈ VR,
the function Rs(T ; y) has a unique maximal slice hyperholomorphic extension to
ρS(y). We denote this maximal slice hyperholomorphic extension of Rs(T ; y) by
y(·).

Corollary 15.1.8. Let T ∈ B(VR) be a spectral operator and let y ∈ VR. Then
σS(y) = ∅ if and only if y = 0.

Proof. If y = 0, then y(s) = 0 is the maximal slice hyperholomorphic extension of
Rs(T ; y). It is defined on all of H, and hence σS(y) = ∅.

Now assume that σS(y) = ∅ for some y ∈ VR such that the maximal slice
hyperholomorphic extension y(·) of Rs(T ; y) is defined on all of H. For every
w∗ ∈ V ∗R, the function s → 〈w∗, y(s)〉 is an entire right slice hyperholomorphic
function. From the fact that Rs(T ; y) equals the resolvent of T as a bounded
operator on VR,js , we deduce lims→∞Rs(T ; y) = 0 and then

lim
s→∞
〈w∗, y(s)〉 = lim

s→∞
〈w∗,Rs(T ; y)〉 = 0.

Liouville’s theorem for slice hyperholomorphic functions therefore implies that
〈w∗, y(s)〉 = 0 for all s ∈ H. Since w∗ was arbitrary, we obtain y(s) = 0 for all
s ∈ H.

Finally, we can choose s ∈ ρS(T ) such that the operator Qs(T ) = T 2−2s0T+
|s|2I is invertible, and we find because of (15.1) that

0 = y(s)s− Ty(s) = Qs(T )−1Qs(T )y(s)s− TQs(T )−1Qs(T )y(s)

= Qs(T )−1 (Qs(T )y(s)s− TQs(T )y(s))

= Qs(T )−1((ys− Ty)s− T (ys− Ty))

= Qs(T )−1
(
T 2y − Ty2s0 + y|s|2

)
= Qs(T )−1Qs(T )y = y. �

Theorem 15.1.9. Let T ∈ B(VR) be a spectral operator and let E be a spectral
resolution for T . If ∆ ∈ BS(H) is closed, then

E(∆)VR = {y ∈ VR : σS(y) ⊂ ∆}.

Proof. Let V∆ = E(∆)VR and let T∆ be the restriction of T to V∆. Since ∆ is
closed, Definition 15.1.1 implies σS(T∆) ⊂ ∆. Moreover Qs(T∆) = Qs(T )|V∆ for
s ∈ H. If y ∈ V∆, then

Qs(T )Rs(T ; y) = Qs(T∆)Qs(T∆)−1(ys− T∆y) = ys− Ty
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for s ∈ ρS(T∆), and hence Rs(T∆; y) is a slice hyperholomorphic extension of
Rs(T ; y) to ρS(T∆) ⊃ H \ ∆. Thus σS(y) ⊂ ∆. Since y ∈ VR was arbitrary, we
obtain E(∆)VR ⊂ {y ∈ VR : σS(y) ⊂ ∆}.

In order to show the converse relation, we assume that σS(y) ⊂ ∆. We
consider a closed subset σ ∈ BS(H) of the complement of ∆ and set Tσ = T |Vσ
with Vσ = E(σ)VR. As above, Rs(Tσ;E(σ)y) is then a slice hyperholomorphic
extension of Rs(T ;E(σ)y) to H \ σ. If, on the other hand, y(s) is the unique
maximal slice hyperholomorphic extension of Rs(T ; y), then

Qs(T )E(σ)y(s) = E(σ)Qs(T )y(s)

= E(σ)(ys− Ty) = (E(σ)y)s− T (E(σ)y)

for s∈H\∆, and so E(σ)y(s) is a slice hyperholomorphic extension ofRs(T ;E(σ)y)
to H \∆. Combining these two extensions, we find that Rs(T ;E(σ)y) has a slice
hyperholomorphic extension to all of H. Hence σS(E(σ)y) = ∅, so that E(∆)y = 0
by Corollary 15.1.8.

Let us now choose an increasing sequence of closed subsets σn ∈ BS(H) of
H \∆ such that

⋃
n∈N σn = H \∆. By the above arguments, E(σn)y = 0 for every

n ∈ N. Hence

E(H \∆)y = lim
n→∞

E(∆n)y = 0,

so that in turn E(∆)y = y. We thus obtain E(∆)VR ⊃ {y ∈ VR : σS(y) ⊂ ∆}. �

The following corollaries are immediate consequences of Theorem 15.1.9.

Corollary 15.1.10. Let T ∈ B(VR) be a spectral operator and let E be a spectral
resolution of T . Then E(σS(T )) = I.

Corollary 15.1.11. Let T ∈ B(VR) be a spectral operator and let ∆ ∈ BS(H) be
closed. The set of all y ∈ VR with σS(y) ⊂ ∆ is a closed right subspace of VR.

Lemma 15.1.12. Let T ∈ B(VR) be a spectral operator. If A ∈ B(VR) commutes with
T , then A commutes with every spectral resolution E for T . Moreover, σS(Ay) ⊂
σS(y) for all y ∈ VR.

Proof. For y ∈ VR we have

(T 2 − 2s0T + |s|2I)Ay(s) = A(T 2 − 2s0T + |s|2I)y(s)

= A(ys− Ty) = (Ay)s− T (Ay).

The function Ay(s) is therefore a slice hyperholomorphic extension of Rs(T ;Ay)
to ρS(y), and so σS(Ay) ⊂ σS(y). From Theorem 15.1.9 we deduce that

AE(∆)V ⊂ E(∆)V

for every closed axially symmetric subset ∆ of H.
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If σ and ∆ are two disjoint closed axially symmetric sets, we therefore have

E(∆)AE(∆) = AE(∆) and E(∆)AE(σ) = E(∆)E(σ)AE(σ) = 0.

If we choose again an increasing sequence of closed sets ∆n ∈ BS(H) with H\∆ =⋃
n∈N ∆n, we therefore have

E(∆)AE(H \∆)y = lim
n→∞

E(∆)AE(∆n)y = 0 ∀y ∈ VR

and hence

E(∆)A = E(∆)A[E(∆) + E(H \∆)] = E(∆)AE(∆) = AE(∆). (15.2)

Since ∆ was an arbitrary closed set in BS(H) and since the sigma-algebra BS(H)
is generated by sets of this type, we finally conclude that (15.2) holds for every
set σ ∈ BS(H). �

Lemma 15.1.13. The spectral resolution E of a spectral operator T ∈ B(VR) is
uniquely determined.

Proof. Let E and Ẽ be two spectral resolutions of T . For every closed set ∆ ∈
BS(H), Theorem 15.1.9 implies

Ẽ(∆)E(∆) = E(∆) and E(∆)Ẽ(∆) = Ẽ(∆),

and we deduce from Lemma 15.1.12 that E(∆) = Ẽ(∆). Since the sigma algebra
BS(H) is generated by the closed sets in BS(H), we obtain E = Ẽ, and hence the
spectral resolution of T is uniquely determined. �

Before we consider the uniqueness of the spectral orientation, we observe
that for certain operators, the existence of a spectral resolution already implies
the existence of a spectral orientation and is hence sufficient for them to be a
spectral operator.

Proposition 15.1.14. Let T ∈ B(VR) and assume that there exists a spectral resolu-
tion E for T . If σS(T )∩R = ∅, then there exists an imaginary operator J ∈ B(VR)
that is a spectral orientation for T such that T is a spectral operator with spectral
resolution (E, J). Moreover, this spectral orientation is unique.

Proof. Since σS(T ) is closed with σS(T ) ∩ R = ∅, we have dist(σS(T ),R) > 0.
We choose j ∈ S and consider T a complex linear operator on VR,j . Because of
Theorem 14.2.7, the spectrum of T as a Cj-linear operator on VR,j is σCj (T ) =
σS(T ) ∩ Cj . Since dist(σS(T ),R) > 0, the sets

σ+ = σCj (T ) ∩ C+
j and σ− = σCj (T ) ∩ C−j

are open and closed subsets of σCj (T ) such that σ+∪σ− = σCj (T ). Via the Riesz–
Dunford functional calculus we can hence associate spectral projections E+ and
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E− onto closed invariant Cj-linear subspaces of VR,j to σ+ and σ−. The resolvent
of T as a Cj-linear operator on VR,j at z ∈ ρCj (T ) is Rz(T )y := Qz(T )−1(yz−Ty),
and hence these projections are given by

E+y :=

∫
Γ+

Qz(T )−1(yz − Ty) dz
1

2πj
,

E−y :=

∫
Γ−

Qz(T )−1(yz − Ty) dz
1

2πj
,

(15.3)

where Γ+ is a positively oriented Jordan curve that surrounds σ+ in C+
j and Γ−

is a positively oriented Jordan curve that surrounds σ− in C−j . We set

Jy := E−y(−j) + E+yj.

From Theorem 14.2.10 we deduce that J is an imaginary operator on VR if Ψ :
y 7→ yi is a bijection between V+ := E+VR and V− := E−VR for i ∈ S with i ⊥ j.
This is indeed the case: due to the symmetry of σCj (T ) = σS(T )∩Cj with respect

to the real axis, we obtain σ+ = σ−, so that we can choose Γ−(t) = Γ+(1− t) for
t ∈ [0, 1] in (15.3). Because of the relation (14.14) established in Theorem 14.2.7,
the resolvent Rz(T ) of T as an operator on VR,j satisfies Rz(T )y = − [Rz(T )(yi)] i,
and so

E−y =

∫
Γ−

Rz(T )y dz
1

2πj
= −

∫
Γ+

Rz(T )y dz
1

2πj

=

∫
Γ+

[Rz(T )(yi)] i dz
1

2πj
=

∫
Γ+

[Rz(T )(yi)] dz
1

2πj
(−i) = [E+(yi)] (−i).

Hence we have
(E−y) i = E+(yi) ∀y ∈ VR. (15.4)

If y ∈ V−, then yi = (E−y)i = E+(yi), and so yi ∈ V+. Replacing y by yi in
(15.4), we find that also (E−yi) i = −E+(y) and in turn E−(yi) = E+(y)i. For
y ∈ V+ we thus find that yi = E+(y)i = E−(yi), and so yi ∈ V−. Hence Ψ maps
V+ to V− and V− to V+, and since Ψ−1 = −Ψ, it is even bijective. We conclude
that J is actually an imaginary operator.

Let us now show that (i) in Definition 15.1.1 holds. For every ∆ ∈ BS(H),
the operator Qz(T )−1 commutes with E(∆). Hence

E(∆)E+y =

∫
Γ+

E(∆)Qz(T )−1(yz − Ty) dz
1

2πj

=

∫
Γ+

Qz(T )−1(E(∆)yz − TE(∆)y) dz
1

2πj
= E+E(∆)y

(15.5)

for every y ∈ VR,j = VR, and so E+E(∆) = E(∆)E+. Similarly, one can show
that also E(∆)E− = E−E(∆). By construction, the operator J hence commutes
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with T and with E(∆) for every ∆ ∈ BS(H), since

TJy = TE−y(−j) + TE+yj = E−Ty(−j) + E+Tyj = JTy

and

E(∆)Jy = E(∆)E−y(−j) + E(∆)E+yj

= E−E(∆)y(−j) + E+E(∆)yj = JE(∆)y.

Moreover, since σS(T ) ∩ R = ∅, Corollary 15.1.10 implies ranE(R) = {0} = ker J
and ranE(H \ R) = VR = ran J . Hence (E, J) is actually a spectral system that
moreover commutes with T .

Let us now show condition (iii) of Definition 15.1.1. If s0, s1 ∈ R with s1 > 0,
then set sj := s0 + js1. Since E+ + E− = I, we then have

((s0I − s1J)− T )y

= (E+ + E−)ys0 − (E+y)js1 − (E−y)(−j)s1 − T (E+ + E−)y

= (E+y)(s0 − s1j)− T (E+y) + (E−y))(s0 + s1j)− T (E−y)

= (E+y)sj − T (E+y) + (E−y)sj − T (E−y)

= (sjIVR,j − T )E+y + (sjIVR,j − T )E−y.

Since E+ and E− are the Riesz projectors associated to σ+ and σ−, the spectrum
σ(T+) of T+ := T |V+

is σ+ ⊂ C+
j and the spectrum σ(T−) of T− := T |V− is

σ− ⊂ C−j . Since sj has positive imaginary part, we find that sj ∈ C−j ⊂ ρ(T+) and

sj ∈ C+
j ⊂ ρ(T−), so that Rsj (T+) :=

(
sjIV+ − T+

)−1 ∈ B(V+) and Rsj (T )−1 :=(
sjIV− − T−

)−1 ∈ B(V−) exist. Since E+|V+
= IV+

and E−|V+
= 0, they satisfy

the relations

E+Rsj (T+)E+ = Rsj (T+)E+ and E−Rsj (T+)E+ = 0 (15.6)

and similarly also

E−Rsj (T−)E− = Rsj (T−)E− and E+Rsj (T−)E− = 0. (15.7)

Setting R(s0, s1) := Rsj (T+)E+ + Rsj (T−)E−, we obtain a bounded Cj-linear
operator that is defined on the entire space VR,j = VR. Because E+ and E−
commute with T and satisfy E+E− = E−E+ = 0 and because (15.6) and (15.7)
hold, we obtain for every y ∈ VR,

R(s0, s1)((s0I − s1J)− T )y

=
[
Rsj (T+)E+ +Rsj (T−)E−

] [
(sjIVR,j − T )E+y + (sjIVR,j − T )E−y

]
= Rsj (T+)(sjIVR,j − T+)E+y +Rsj (T−)E−(sjIVR,j − T−)E−y

= E+y + E−y = y
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and

((s0I − s1J)− T )R(s0, s1)y

=
[
(sjIVR,j − T )E+ + (sjIVR,j − T )E−

] [
Rsj (T+)E+ +Rsj (T−)E−

]
y

= (sjIV+
− T+)Rsj (T+)E+y + (sjIV− − T−)Rsj (T−)E−y

= E+y + E−y = y.

Hence R(s0, s1) ∈ B(VR,j) is the Cj-linear bounded inverse of (s0I − s1J) − T .
Since (s0I − s1J)− T is quaternionic right linear, its inverse is quaternionic right
linear too, so that even ((s0I − s1J) − T )−1 ∈ B(VR). Therefore, J is actually
a spectral orientation for T , and T is in turn a spectral operator with spectral
decomposition (E, J).

Finally, we show the uniqueness of the spectral orientation J . Assume that
J̃ is an arbitrary spectral orientation for T . We show that Ṽ+ := V +

J̃,j
equals V+ =

V +
J,j . Theorem 14.2.10 implies then J = J̃ because kerJ = ker J̃ = ranE(R) = {0}

and V −J,j = V+i = Ṽ+i = V −
J̃,j

.

Since J̃ commutes with T , we have J̃E+ = E+J̃ , since

J̃E+y =

∫
Γ+

J̃Qz(T )−1(yz − Ty) dz
1

2πj

=

∫
Γ+

Qz(T )−1(J̃yz − T J̃y) dz
1

2πj
= E+J̃y.

(15.8)

The projection E+ therefore leaves Ṽ+ invariant because

J̃(E+y) = E+

(
J̃y
)

= (E+y)j ∈ Ṽ+

for every y ∈ Ṽ+. Hence E+|Ṽ+
is a projection on Ṽ+.

We show now that kerE+|Ṽ+
= {0}, so that E+|Ṽ+

= IV+ and hence Ṽ+ ⊂
ranE+ = V+. We do this by constructing a slice hyperholomorphic extension
of Rs(T ; y) that is defined on all of H and applying Corollary 15.1.8 tor any
y ∈ kerE+|Ṽ+

.

Let y ∈ kerE+|Ṽ+
. Since kerE+|Ṽ+

⊂ kerE+ = ranE− = V−, we obtain

y ∈ V−. For z = z0 + z1j ∈ Cj , we define the function

fj(z; y) :=

Rz(T−)y, z1 ≥ 0,(
z0I + z1J̃ − T )

)−1

y, z1 < 0.

This function is (right) holomorphic on Cj . On C+
j this is obvious because the
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resolvent of T− is a holomorphic function. For z1 < 0, we have

1

2

(
∂

∂z0
fj(z; y) +

∂

∂z1
fj(z; y)j

)
=

1

2

(
−
(
z0I + z1J̃ − T )

)−2

y −
(
z0I + z1J̃ − T )

)−2

J̃yj

)
=

1

2

(
−
(
z0I + z1J̃ − T )

)−2

y −
(
z0I + z1J̃ − T )

)−2

yj2

)
= 0,

since J̃y = yj because y ∈ Ṽ+ = V +

J̃,j
. The slice extension f(s; y) of fj(s; y)

obtained from Lemma 2.1.11 is a slice hyperholomorphic extension of Rs(T ; y) to
all of H in the sense of Definition 15.1.3. Indeed, since

Qz(T )|V− = Qz(T−) = (IV−z − T−)(IV−z − T−),

we find for s ∈ C+
j that

Qs(T )f(s; y) = Qs(T−)fj(s; y)

= (sIV− − T−)(sIV− − T−)Rs(T−)y

= (sIV− − T−)y = ys− T−y = ys− Ty.

On the other hand, the facts that T and J̃ commute and that −J̃2 = I because
J̃ is an imaginary operator with ran J̃ = VR imply(

s0I + s1J̃ − T
)(

s0I − s1J̃ − T
)

= s2
0I − s0s1J̃ − s0T + s0s1J̃ − s2

1J̃
2 − s1J̃T − s0T + s1T J̃ + T 2

= |s|2I − 2s0T + T 2 = Qs(T ).

For s = s1 + (−j)s1 ∈ C−j , we find thus because of y ∈ Ṽ+ = V +

J̃,j
that

Qs(T )f(s; y) =
(
s0I + s1J̃ − T

)(
s0I − s1J̃ − T

)
fj(s; y)

=
(
s0I + s1J̃ − T

)(
s0I − s1J̃ − T

)(
s0I − s1J̃ − T

)−1

y

=
(
s0I + s1J̃ − T

)
y = ys0 + yjs1 − T = ys− Ty.

Finally, for s /∈ Cj , the representation formula yields

Qs(T )f(s; y) = Qs(T )fj(sj ; y)(1− jjs)
1

2
+Qs(T )fj (sj ; y) (1 + jjs)

1

2

= (ysj − Ty) (1− jjs)
1

2
+ (ysj − Ty)(1 + jjs)

1

2

= y (sj(1− jjs) + s(1 + jjs))
1

2
− Ty ((1− jjs) + (1 + jjs))

1

2

= y(sj + sj + (sj − sj)jjs)
1

2
− Ty = y(s0 − s1js)− Ty = ys− Ty.
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From Corollary 15.1.8, we hence deduce that y = 0, and so kerE+|Ṽ+
= {0}.

Since E+|Ṽ+
is a projection on Ṽ+, we have Ṽ+ = kerE+|Ṽ+

⊕ ranE+|Ṽ+
= {0} ⊕

ranE+|Ṽ+
. We conclude that Ṽ+ = ranE+|Ṽ+

⊂ ranE+ = V+. We therefore have

VR = Ṽ+ ⊕ Ṽ+i ⊂ V+ ⊕ V+i = VR.

This implies V+ = Ṽ+ and in turn J = J̃ . �

Corollary 15.1.15. Let T ∈ B(VR) and assume that there exists a spectral resolution
for T as in Proposition 15.1.14. If σS(T ) = ∆1 ∪ ∆2 with closed sets ∆1,∆2 ∈
BS(H) such that ∆1 ⊂ R and ∆2 ∩ R = ∅, then there exists a unique imaginary
operator J ∈ B(VR) that is a spectral orientation for T such that T is a spectral
operator with spectral decomposition (E, J).

Proof. Let T2 = T2|V2 , where V2 = ranE(H \ R) = ranE(∆2). Then the spectral
measure E2(∆) := E(∆)|V2 for ∆ ∈ BS(H) is by Lemma 15.1.2 a spectral resolu-
tion for T2. Since σS(T2) ⊂ ∆2 and ∆2 ∩ R = ∅, Proposition 15.1.14 implies the
existence of a unique spectral orientation J2 for T2.

The fact that (E2, J2) is a spectral system implies ranJ2 = ranE2(H\R)V2 =
V2 because E2(H \ R) = E(H \ R)|V2 = IV2 . If we set J = J2E(H \ R), we find
that kerJ = ranE(R) and ranJ = V2 = ranE(H \ R). We also have

E(∆)J = E(∆ ∩ R)J2E(H \ R) + E(∆ \ R)J2E(H \ R)

= E2(∆ \ R)J2E(H \ R) = J2E2(∆ \ R)E(H \ R)

= J2E(∆ \ R)E(H \ R) = J2E(H \ R)E(∆ \ R) = JE(∆),

where the last identity used that E(H \ R)E(∆ ∩ R) = 0. Moreover, we have

−J2 = −J2E(H \ R)J2E(H \ R) = −J2
2E(H \ R) = E(H \ R),

so that −J2 is a projection onto ran J = ranE(H \ R) along ker J = ranE(R).
Hence, J is an imaginary operator and (E, J) is a spectral system on VR. Finally,
for every s0, s1 ∈ R with s1 > 0, we have

((s0I − s1J − T )|V2
)
−1

= (s0IV2
− s1J2 − T2)−1 ∈ B(V2),

and hence (E, J) is actually a spectral decomposition for T .
In order to show the uniqueness of J we consider an arbitrary spectral ori-

entation J̃ for T . Then

ker J̃ = E(R)VR = ker J and ran J̃ = E(H \ R)VR = ranJ. (15.9)

By Lemma 15.1.2, the operator J̃ |V2
is a spectral orientation for T2. The spectral

orientation of T2 is, however, unique by Proposition 15.1.14, and hence J̃ |V2 =

J2 = J |V2
. We conclude that J̃ = J . �
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Finally, we can now show the uniqueness of the spectral orientation of an
arbitrary spectral operator.

Theorem 15.1.16. The spectral decomposition (E, J) of a spectral operator T ∈
B(VR) is uniquely determined.

Proof. The uniqueness of the spectral resolution E has already been shown in
Lemma 15.1.13. Let J and J̃ be two spectral orientations for T . Since (15.9) holds

also in this case, we can reduce the problem to showing that J |V1
= J̃ |V1

with
V1 := ranE(H \ R). The operator T1 := T |V1

is a spectral operator on V1. By

Lemma 15.1.2, (E1, J1) and (E1, J̃1) with E1(∆) = E(∆)|V1 and J1 = J |V1 and

J̃1 := J̃ |V1
are spectral decompositions of T1. Since E0(R) = 0, it is hence sufficient

to show the uniqueness of the spectral orientation of a spectral operator under the
assumption E(R) = 0.

Therefore, let T be a spectral operator with spectral decomposition (E, J)
such that E(R) = 0. If dist(σS(T ),R) > 0, then we already know that the state-
ment holds. We have shown this in Proposition 15.1.14. Otherwise, we choose a
sequence of pairwise disjoint sets ∆n ∈ BS(H) with dist(∆n,R) > 0 that cover
σS(T ) \ R. We can choose, for instance,

∆n :=

{
s ∈ H : −‖T‖ ≤ s0 ≤ ‖T‖,

‖T‖
n+ 1

< s1 ≤
‖T‖
n

}
.

By Corollary 15.1.10 and since E(R) = 0, we have

E(σS(T ) \ R) = E(σS(T ) \ R) + E(σS(T ) ∩ R) = E(σS(T )) = I.

We therefore obtain
∑+∞
n=0E(∆n)y = E

(⋃
n∈N ∆n

)
y = y for every y ∈ VR because

we have σS(T ) \ R ⊂
⋃
n∈N ∆n.

Since E(∆n) and J commute, the operator J leaves V∆n := ranE(∆n) in-
variant. Hence J∆n = J |V∆n

is a bounded operator on V∆n , and we have

Jy = J
+∞∑
n=0

E(∆n)y =
+∞∑
n=1

JE(∆n)y =
+∞∑
n=1

J∆n
E(∆n)y.

Similarly, we see that also J̃∆n
:= J̃ |V∆n

is a bounded operator on V∆n
and that

J̃y =
∑+∞
n=1 J̃∆n

E(∆n)y.
Now observe that T∆n

is a spectral operator. Its spectral resolution is given
by En(∆) := E(∆)|V∆n

for ∆ ∈ BS(H), as one can check easily. Its spectral
orientation is given by J∆n : for every ∆ ∈ BS(H), we have

En(∆)J∆n
E(∆n) = E(∆)JE(∆n) = JE(∆)E(∆n) = J∆n

En(∆)E(∆n)

and hence En(∆)J∆n
= J∆n

E(∆n) on V∆n
. Since ker J∆n

= {0} = En(R) and
ran J∆n = V∆n = En(H \ R), the pair (E, J∆n) is actually a spectral system.
Furthermore, the operators T∆n and J∆n commute, since

T∆n
J∆n

E(∆n) = TJE(∆n) = JTE(∆n) = J∆n
T∆n

E(∆n).
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Finally, for all s0, s1 ∈ R with s1 > 0, we obtain

(s0IV∆n
− s1J∆n

− T∆n
)−1 = (s0I − s1J − T )−1|V∆n

,

so that (En, J∆n
) is actually a spectral decomposition for T∆n

. However, the same

arguments show that also
(
En, J̃∆n

)
is a spectral decomposition for T∆n

. Since,

however, σS (T∆n
) ⊂ ∆n and dist(∆n,R) > 0, Proposition 15.1.14 implies that

the spectral orientation of T∆n is unique such that J∆n = J̃∆n
. We thus obtain

Jy =

+∞∑
n=1

J∆nE(∆n)y =

+∞∑
n=1

J̃∆nE(∆n)y = J̃y. �

Remark 15.1.17. In Proposition 15.1.14 and Corollary 15.1.15 we showed that
under certain assumptions the existence of a spectral resolution E for T already
implies the existence of a spectral orientation and is hence a sufficient condition for
T to be a spectral operator. One may wonder whether this is true in general. An
intuitive approach for showing this follows the idea of the proof of Theorem 15.1.16.
We can cover σS(T )\R by pairwise disjoint sets ∆n ∈ BS(H) with dist(∆n,R) > 0
for each n ∈ N. On each of the subspaces Vn := ranE(∆n), the operator T induces
the operator Tn := T |Vn with σS(Tn) ⊂ ∆n. Since dist(∆n,R) > 0, we can then
define ∆n,+ := ∆n ∩ C+

j and ∆n,− := ∆n ∩ C−j for an arbitrary imaginary unit
j ∈ S and consider the Riesz projectors En,+ := χ∆n,+

(Tn) and En,− := χ∆n,−(Tn)
of Tn on Vn,j associated with ∆n,+ and ∆n,−. Just as we did in the proof of
Proposition 15.1.14, we can then construct a spectral orientation for Tn by setting
Jny = En,+yj + En,−y(−j) for y ∈ Vn. The spectral orientation of J must then
be

Jy =
+∞∑
n=1

JnE(∆n)y =
+∞∑
n=1

En,+E(∆n)yj + En,−E(∆n)y(−j). (15.10)

If T is a spectral operator, then En,+ = E+|Vn and En,− = E−|Vn , where E+

and E− are as usual the projections of VR onto V +
J,j and V −J,j along V0⊕V −J,j resp.

V0 ⊕ V +
J,j . Hence the Riesz projectors En,+ and En,− are uniformly bounded in

n ∈ N, and the above series converges. The spectral orientation of T can therefore
be constructed as described above if T is a spectral operator.

This procedure, however, fails if the Riesz projectors En,+ and En,− are not
uniformly bounded, because the convergence of the above series is in this case
not guaranteed. The next example presents an operator for which the above series
does actually not converge for this reason although the operator has a quaternionic
spectral resolution. Hence the existence of a spectral resolution does not in general
imply the existence of a spectral orientation.

Example 15.1.18. Let `2(H) be the space of all square-summable sequences with
quaternionic entries and choose j, i ∈ S with j ⊥ i. We define an operator T on
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`2(H) by the following rule: if (bn)n∈N = T (an)n∈N, then(
b2m−1

b2m

)
=

1

m2

(
j 2mj
0 −j

)(
a2m−1

a2m

)
. (15.11)

For neatness, let us denote the matrix in the above equation by Jm and let us set
Tm := 1

m2 Jm, that is,

Jm :=

(
j 2mj
0 −j

)
and Tm :=

1

m2

(
j 2mj
0 −j

)
.

Since all matrix norms are equivalent, there exists a constant C > 0 such that

‖M‖ ≤ C max
`,κ∈{1,2}

|m`,κ| ∀M =

(
m1,1 m1,2

m2,1 m2,2

)
∈ H2×2, (15.12)

such that ‖Jm‖ ≤ 2Cm. We thus find for (15.11) that

‖(b2m−1, b2m)T ‖2 ≤
2C

m
‖(a2m−1, a2m)T ‖2 ≤ 2C‖(a2m−1, a2m)T ‖2,

and in turn

‖T (an)n∈N‖2`2(H) =

+∞∑
m=1

|b2m−1|2 + |b2m|2

≤
+∞∑
m=1

4C2
(
|a2m−1|2 + |a2m|2

)
= 4C2 ‖(an)n∈N‖2`2(H) .

(15.13)

Hence T is a bounded right-linear operator on `2(H).
We show now that the S-spectrum of T is the set Λ = {0} ∪ ∪n∈N 1

n2 S. For
s ∈ H, the operator Qs(T ) = T 2 − 2s0T + |s|2 is given by the following relation:
if (cn)n∈N = Qs(T )(an)n∈N, then(

c2m−1

c2m

)
=

(
− 1
m2 − 2j s0m2 + |s|2 −4j s0m

0 − 1
m2 − 2j s0m2 + |s|2

)(
a2m−1

a2m

)
. (15.14)

The inverse of the above matrix is

Qs(Tm)−1 =

 m4

|s|2m4−2is0m2−1
4im7s0

|s|4m8+2(s20−s21)m4+1

0 m4

|s|2m4+2is0m2−1


=

 1

(sj− j

m2 )(sj− j

m2 )
4is0

m(sj+ j

m2 )(sj− j

m2 )(sj+ j

m2 )(sj− j

m2 )
0 1

(sj+ j

m2 )(sj+ j

m2 )


with sj = s0 + js1. Hence Qs(Tm)−1 exists for sj 6= 1

m2 j. We have∣∣∣∣sj − j

m2

∣∣∣∣ ∣∣∣∣sj − j

m2

∣∣∣∣ =

∣∣∣∣sj +
j

m2

∣∣∣∣ ∣∣∣∣sj +
j

m2

∣∣∣∣ ≥ 2

∣∣∣∣sj − j

m2

∣∣∣∣ = 2dist

(
s,

[
j

m

])
,
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and so

∥∥Qs(Tm)−1
∥∥ ≤ C max

{
1

2dist
(
s,
[
j
m2

]) , |s0|
m
(
dist

(
s,
[
j
m2

]))2
}
, (15.15)

where C is the constant in (15.12). If s /∈ Λ, then 0 < dist(s, Λ) ≤ dist
(
s,
[
j
m2

])
and hence the matrices Qs(Tm)−1 are for m ∈ N uniformly bounded by

∥∥Qs(Tm)−1
∥∥ ≤ C max

{
1

2dist (s,Λ)
,

|s0|
dist (s,Λ)

2

}
.

The operator Qs(T )−1 is then given by the relation(
a2m−1

a2m

)
= Qs(Tm)−1

(
c2m−1

c2m

)
, (15.16)

for (an)n∈N = Qs(T )−1(cn)n∈N. A computation similar to the one in (15.13) shows
that this operator is bounded on `2(H). Thus s ∈ ρS(T ) if s /∈ Λ and in turn
σS(T ) ⊂ Λ.

For every m ∈ N, we set sm = 1
m2 j. The sphere [sm] = 1

m2 S is an eigen-
sphere of T and the associated eigenspace Vm is the right-linear span of e2m−1

and e2m, where en = (δn,`)`∈N, as one can see easily from (15.14). A straightfor-
ward computation, moreover, shows that the vectors y2m−1 := e2m−1 and y2m :=
−e2m−1i+ 1

me2mi are eigenvectors of T with respect to the eigenvalue sm. Hence

[sm] ⊂ σS(T ). Since σS(T ) is closed, we finally obtain Λ =
⋃
m∈N[sm] ⊂ σS(T )

and in turn σS(T ) = Λ.
Let Em for m ∈ N be the orthogonal projection of `2(H) onto the subspace

Vm := spanH{e2m−1, e2m}, that is, Em(an)n∈N = e2m−1a2m−1 + e2ma2m. We
define for every set ∆ ∈ BS(H) the operator

E(∆) =
∑
m∈I∆

Em with I∆ :=

{
m ∈ N :

1

m2
S ⊂ ∆

}
.

It is immediate that E is a spectral measure on `2(H), that ‖E(∆)‖ ≤ 1 for every
∆ ∈ BS(H) and that E(∆) commutes with T for every ∆ ∈ BS(H). Moreover, if
s /∈ ∆, then the pseudo-resolvent Qs(T∆)−1 of T∆ = T |V∆

with V∆ = ranE(∆) is
given by

Qs(T∆)−1 =

( ∑
m∈I∆

Qs(Tm)−1Em

)∣∣∣∣∣
ranE(∆)

.

Since 0 < dist
(
s,
⋃
m∈I∆

[
j
m2

])
= infm∈I∆ dist

(
s,
[
j
m2

])
, the operators Qs(Tm)−1

are uniformly bounded for m ∈ I∆. Computations similar to (15.13) show that
Qs(T∆)−1 is a bounded operator on V∆. Hence s ∈ ρS(T∆) and in turn σS(T∆) ⊂
∆. Altogether we obtain that E is a spectral resolution for T .
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In order to construct a spectral orientation for T , we first observe that Jm is
a spectral orientation for Tm. For s0, s1 ∈ R with s1 > 0, we have

s0IH2 − s1Jm − Tm =

(
s0 −

(
s1 + 1

m2

)
j −

(
s1 + 1

m2

)
2mj

0 s0 +
(
s1 + 1

m2

)
j

)
,

the inverse of which is given by the matrix

(s0IH2 − s1Jm − Tm)
−1

=

 1

s0−(s1+ 1
m2 )j

2jm( 1
m2 +s1)

s20+( 1
m2 +s1)

2

0 1

s0+( 1
m2 +s1)j

 .

Since s1 > 0, each entry has nonzero denominator, and hence we have that the
operator (s0IH2 − s1Jm − Tm)

−1
belongs to B(H2).

If J ∈ B(`2(H)) is a spectral orientation for T , then the restriction J |Vm of J
to Vm = spanH{e2m−1, e2m} is also a spectral orientation for Tm. The uniqueness
of the spectral orientation implies J |Vm = Jm and hence

J =

+∞∑
m=1

J |VmE
(

1

m2
S
)

=

+∞∑
m=1

JmEm.

This series does not, however, converge, because the operators JVm are not uni-
formly bounded. Hence, it does not define a bounded operator on `2(H). Indeed,

the sequence a2m−1 = 0, a2m = m−
3
2 , for instance, belongs to `2(H), but∥∥∥∥∥

+∞∑
m=1

JmEm(an)n∈N

∥∥∥∥∥
2

`2(H)

=

+∞∑
m=1

∥∥∥∥(j 2mj
0 −j

)(
0

m−
3
2

)∥∥∥∥2

2

= 2

+∞∑
m=1

4
1

m
+

1

m3
= +∞.

Hence there cannot exist a spectral orientation for T , and in turn T is not a
spectral operator on `2(H).

We conclude this example with a remark on its geometric intuition. Let us
identify H2 ∼= C4

j , which is for every i ∈ S with i ⊥ j spanned by the basis vectors

b1 =

(
1
0

)
, b2 =

(
i
0

)
, b3 =

(
0
1

)
, and b4 =

(
0
i

)
.

The vectors ym,1 = b1 and ym,2 = −b2 + 1
mb4 are eigenvectors of Jm with respect

to j, and the vectors y1i = b2 and ym,2 = b1 − 1
mb3 are eigenvectors of Jm with

respect to −j. We thus obtain V +
Jm,j

= spanCj{b1,−b2 + 1
mb4} and V −Jm,j = V +

Jm,j
i.

However, as m tends to infinity, the vector y2 tends to y1i and y2i tends to y1.
Hence intuitively, in the limit V −Jm,j = V +

Jm,j
i = V +

Jm,j
, and consequently the

projections of H2 = C4
j onto V +

Jm,j
along V −Jm,j become unbounded.
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Finally, the notion of quaternionic spectral operator is backward compatible
with the complex theory on VR,j .

Theorem 15.1.19. An operator T ∈ B(VR) is a quaternionic spectral operator if
and only if it is a spectral operator on VR,j for some (and hence every) j ∈ S. (See
[106] for the complex theory.) If furthermore (E, J) is the quaternionic spectral
decomposition of T and Ej is the spectral resolution of T as a complex Cj-linear
operator on VR,j, then

E(∆) = Ej(∆ ∩ Cj) ∀∆ ∈ BS(H),

Jy = Ej(C+,◦
j \)yj + Ej(C−,◦j )y(−j) ∀y ∈ VR

(15.17)

with

C±,◦j := C±j \ R = {z0 + jz1 : z0 ∈ R, z1 > 0}.

Conversely, Ej is the spectral measure on VR determined by (E, J) that was con-
structed in Lemma 14.3.8.

Proof. Let us first assume that T ∈ B(VR) is a quaternionic spectral operator with
spectral decomposition (E, J) in the sense of Definition 15.1.1 and let j ∈ S. Let
E+ be the projection of ran J = V +

J,j ⊕V
−
J,j onto V +

J,j along V −J,j and let E− be the

projection of ran J onto V −J,j along V +
J,j ; cf. Theorem 14.2.10. Since T and E(∆)

for ∆ ∈ BS(H) commute with J , they leave the spaces V +
J,j and V −J,j invariant,

and hence they commute with E+ and E−. By Lemma 14.3.8, the set function Ej
on Cj defined in (14.23), which is given by

Ej(∆) = E+E
([

∆ ∩ C+,◦
j

])
+ E(∆ ∩ R) + E−E

([
∆ ∩ C−,◦j

])
, (15.18)

for ∆ ∈ B(Cj), is a spectral measure on VR,j . Since the spectral measure E and
the projections E+ and E− commute with T , the spectral measure Ej commutes
with T too.

If ∆ ∈ B(Cj) is a subset of C+,◦
j , then Jy = yj for y ∈ Vj,∆ := ranEj(∆),

since ranEj(∆) = ran(E+E([∆])) ⊂ V +
J,j . For z = z0 + jz1 ∈ Cj and y ∈ Vj,∆, we

thus have

(zIVj,∆ − T )y = yz0 + yjz1 − Ty
= yz0 + Jyz1 − Ty = (z0IVj,∆ + z1J − T )y.

If z ∈ C−,◦j , then the inverse of (z0IVR,j + z1J − T )|ran J exists because J is the

spectral orientation of T . We thus have Rz(T∆) = (z0IVR,j + z1J −T )−1|Vj,∆ , and

so C−,◦j ⊂ ρ(T∆). If, on the other hand, z ∈ C+
j \ ∆, then z ∈ ρS(T[∆]), where

T[∆] = T |V[∆]
with V[∆] = ranE([∆]). Hence Qz(T[∆]) has a bounded inverse

on V[∆]. By the construction of Ej we have Vj,∆ = E+V[∆], and since T[∆] and

E+ commute, Qz(T[∆])
−1 leaves Vj,∆ invariant, so that Qz(T[∆])

−1
∣∣
Vj,∆

defines a
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bounded Cj-linear operator on Vj,∆. Because of Theorem 14.2.7, the resolvent of
T∆ at z is therefore given by

Rz(T )y = Qs(T[∆])
−1(yz − T∆y) ∀y ∈ Vj,∆.

Altogether, we conclude that ρ(T∆) ⊃ C−,◦j ∪
(
C+
j \∆

)
= Cj \ ∆ and in

turn σ(T∆) ⊂ ∆. Similarly, we see that σ(T∆) ⊂ ∆ if ∆ ⊂ C−,◦j . If, on the other
hand, ∆ ⊂ R, then Ej(∆) = E(∆), so that T∆ is a quaternionic linear operator
with σS(T∆) ⊂ ∆. By Theorem 14.2.7, we have σ(T∆) = σCj (T∆) = σS(T ) ⊂ ∆.

Finally, if ∆ ∈ B(Cj) is arbitrary and z /∈ ∆, we can set ∆+ := ∆ ∩ C+,◦
j ,

∆− := ∆ ∩ C−,◦j , and ∆R := ∆ ∩ R. Then z belongs to the resolvent sets of each
of the operators T∆+

, T∆− , and T∆R , and we obtain

Rz(T ) = Rz(T∆+
)Ej(∆+) +Rz(T∆R)E(∆R) +Rz(T∆−)Ej(∆−).

We thus have σ(T∆) ⊂ ∆. Hence T is a spectral operator on VR,j , and Ej is its
(Cj-complex) spectral resolution on VR,j .

Now assume that T is a bounded quaternionic linear operator on VR and
that for some j ∈ S there exists a Cj-linear spectral resolution Ej for T as a Cj-
linear operator on VR,j . Following Definition 6 of [104, Chapter XV.2], an analytic
extension of Rz(T )y with y ∈ VR,j = VR is a holomorphic function f defined on a
set D(f) such that (zIVR,j − T )f(z) = y for z ∈ D(f). The resolvent ρ(y) is the
domain of the unique maximal analytic extension of Rz(T )y, and the spectrum
σ(y) is the complement of ρ(y) in Cj . (We defined the quaternionic counterparts
of these concepts in Definition 15.1.3 and Definition 15.1.4.) Analogously to The-
orem 15.1.9, we have

Ej(∆)VR,j = {y ∈ VR,j = VR : σ(y) ⊂ ∆}, ∀∆ ∈ B(Cj). (15.19)

Let y ∈ VR,j , let i ∈ S with j ⊥ i, and let f be the unique maximal analytic
extension of Rz(T )y defined on ρ(y). The mapping z 7→ f (z) i is then holomorphic
on ρ(y): for every z ∈ ρ(y), we have z ∈ ρ(y) and in turn

lim
h→0

(
f
(
z + h

)
i− f (z) i

)
h−1 = lim

h→0

(
f(z + h)− f(z)

)
h
−1
i = f ′ (z) i.

Since T is quaternionic linear, we moreover have for z ∈ ρ(y) that(
zIVR,j − T

)
(f (z) i) = f (z) iz − T (f (z) i) =

(
f (z) z − T (f (z))

)
i = yi.

Hence z 7→ f (z) i is an analytic extension of Rz(T )(yi) that is defined on ρ(y).
Consequently ρ(yi) ⊃ ρ(y), and in turn σ(yi) ⊂ σ(y). If f̃ is the maximal analytic
extension of Rz(T )(yi), then similar arguments show that z 7→ f̃ (z) (−i) is an
analytic extension of Rz(T )y. Since this function is defined on ρ(yi), we obtain
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ρ(y) ⊃ ρ(yi) and in turn σ(y) ⊂ σ(yi). Altogether, we obtain σ(y) = σ(yi) and
f̃(z) = f (z) i. From (15.19) we deduce

ranEj
(
∆
)

=
{
y ∈ VR,j = VR : σ(y) ⊂ ∆

}
= {yi ∈ VR,j = VR : σ(y) ⊂ ∆} = (ranEj(∆)) i.

(15.20)

In order to construct the quaternionic spectral resolution of T , we define now

E(∆) := Ej(∆ ∩ Cj), ∀∆ ∈ BS(H).

Obviously this operator is a bounded Cj-linear projection on VR = VR,j . We show
now that it is also quaternionic linear. Due to the axial symmetry of ∆, the identity
(15.20) implies

(ranE(∆))i = (ranEj(∆ ∩ Cj)) i = ranEj
(
∆ ∩ Cj

)
= ranEj (∆ ∩ Cj) = ranE(∆).

Similarly, we obtain

(kerE(∆))i = (kerEj(∆ ∩ Cj))i = (ranEj(Cj \∆))i

= ranEj

(
Cj \∆

)
= ranEj (Cj \∆)

= kerEj(∆ ∩ Cj) = kerE(∆).

If we write y ∈ VR as y = y0 + y1 with y0 ∈ kerE(∆) and y1 ∈ ranE(∆), we thus
have

E(∆)(yi) = E(∆)(y0i) + E(∆)(y1i) = y1i = (E(∆)y)i.

Writing a ∈ H as a = a1 + ia2 with a1, a2 ∈ Cj , we find due to the Cj-linearity of
E(∆) that even

E(∆)(ya) = (E(∆)y)a1 + (E(∆)yi)a2 = (E(∆)y)a1 + (E(∆)y)ia2 = (E(∆)y)a.

Hence the set function ∆ 7→ E(∆) defined in (15.18) takes values that are bounded
quaternionic linear projections on VR. It is immediate that it moreover satisfies
items (i) to (iv) in Definition 14.1.7 because Ej is a spectral measure on VR,j
and hence has the respective properties. Consequently, E is a quaternionic spec-
tral measure. Since Ej commutes with T , also E commutes with T . From Theo-
rem 14.2.7 and the fact that σ(T |ranEj(∆j)) ⊂ ∆j for ∆j ∈ B(Cj), we deduce for
T∆ = T |ranE(∆) = T |ranEj(∆∩Cj) that

σS(T∆) =
[
σCj (T∆)

]
⊂
[
∆ ∩ Cj

]
= [∆ ∩ Cj ] = ∆.

Therefore E is a spectral resolution for T .
Let us now set V0 = ranEj(R) as well as V+ := ranEj

(
C+,◦
j

)
and V− :=

ranEj
(
C−,◦j

)
. Then VR,j = V0 ⊕ V+ ⊕ V− is a decomposition of VR into closed
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Cj-linear subspaces. The space V0 = ranEj(R) = ranE(R) is even a quaternionic
right linear subspace of VR because E(R) is a quaternionic right linear operator.
Moreover, (15.20) shows that y 7→ yi is a bijection from V+ to V−. By Theo-
rem 14.2.10, the operator

Jy = Ej
(
C+,◦
j

)
yj + Ej

(
C−,◦j

)
y(−j)

is an imaginary operator on VR. Since Ej commutes with T and E(∆) for ∆ ∈
BS(H), also J commutes with T and E(∆). Moreover, kerJ = V0 = ranE(R)
and ran J = ranEj(C+,◦

j ) ⊕ ranEj(C−,◦j ) = ranE(H \ R), and hence (E, J) is a

spectral system that commutes with T . Finally, we have σ (T+) ⊂ C+
j for T+ =

T |V+ = T |ranEj(C+,◦
j ), and hence the resolvent of Rz(T+) exists for every z ∈ C−,◦j .

Similarly, the resolvent Rz(T−) with T− = T |V− = T |ranEj(C−,◦j ) exists for every

z ∈ C+,◦
j . For s0, s1 ∈ R with s1 > 0 we can hence set sj = s0 + js1 and define by

R(s0, s1) :=
(
Rsj (T+)E+ +Rsj (T−)E−

)∣∣
V+⊕V−

with E+ = Ej(C+,◦
j ) and E− = Ej(C−,◦j ) a bounded operator on V+ ⊕ V− =

ranE(H\R). Since T leaves V+ and V− invariant, we then have for y = y+ +y− ∈
V+ ⊕ V− that

R(s0, s1)(s0I − s1J − T )y

= R(s0, s1) (y+s0 − Jy+s1 − Ty+ + y−s0 − Jy−s1 − Ty−)

= R(s0, s1) (y+sj − Ty+) +R(s0, s1) (y−sj − Ty−)

= Rsj (T+) (y+sj − T+y+) +Rsj (T−) (y−sj − T−y−) = y+ + y− = y.

Similarly we find that

(s0I − s1J − T )R(s0, s1)y

= (s0I − s1J − T )Rsj (T+)y+ + (s0I − s1J − T )Rsj (T−)y−

= Rsj (T+)y+s0 − J(Rsj (T+)y+)s1 − TRsj (T+)y+

+Rsj (T−)y−s0 − J(Rsj (T−)y−)s1 − TRsj (T−)y−

= Rsj (T+)y+(s0 − js1)−Rsj (T+)T+y+

+Rsj (T−)y−(s0 + js1)−Rsj (T−)T−y−

= Rsj (T+) (y+s− T+y+) +Rsj (T−) (y−s− T−y−) = y+ + y− = y.

Hence R(s0, s1) is the bounded inverse of (s0I − s1J − T )|ranE(H\R), and so J is
actually a spectral orientation for T . Consequently, T is a quaternionic spectral
operator, and the relation (15.17) holds.

�

Remark 15.1.20. We want to stress that Theorem 15.1.19 showed a one-to-one
relation between quaternionic spectral operators on VR and Cj-complex spectral



324 Chapter 15. Bounded Quaternionic Spectral Operators

operators on VR,j that are furthermore compatible with the quaternionic scalar
multiplication. It did not show a one-to-one relation between quaternionic spec-
tral operators on VR and Cj-complex spectral operators on VR,j . There exist Cj-
complex spectral operators on VR,j that are not quaternionic linear and hence
cannot be quaternionic spectral operators.

15.2 Canonical Reduction and Intrinsic SSS-Functional

Calculus for Quaternionic Spectral Operators

As in the complex case, every bounded quaternionic spectral operator T can be
decomposed into the sum T = S +N of a scalar operator S and a quasi-nilpotent
operator N . The intrinsic S-functional calculus for a spectral operator can then
be expressed as a Taylor series similar to the one that involves functions of S
obtained via spectral integration and powers of N . Analogously to the complex
case in [106], the operator f(T ) is therefore already determined by the values of
f on σS(T ) and not only by its values on a neighborhood of σS(T ).

Definition 15.2.1. An operator S ∈ B(VR) is said to be of scalar type if it is a
spectral operator and satisfies the identity

S =

∫
s dEJ(s), (15.21)

where (E, J) is the spectral decomposition of S.

Remark 15.2.2. If we start from a spectral system (E, J) and S is the operator
defined by (15.21), then S is an operator of scalar type and (E, J) is its spectral
decomposition. This can easily be checked by direct calculations or indirectly via
the following argument: by Lemma 14.3.8, we can choose j ∈ S and obtain

S =

∫
H
s dEJ(s) =

∫
Cj
z dEj(z),

where Ej is the spectral measure constructed in (14.23). From the complex theory
in [106], we deduce that S is a spectral operator on VR,j with spectral decom-
position Ej that is furthermore quaternionic linear. By Theorem 15.1.19, this is
equivalent to S being a quaternionic spectral operator on VR with spectral decom-
position (E, J).

Lemma 15.2.3. Let S be an operator of scalar type with spectral decomposition
(E, J). An operator A ∈ B(VR) commutes with S if and only if it commutes with
the spectral system (E, J).

Proof. If A ∈ B(VR) commutes with (E, J), then it commutes with S=
∫
H s dEJ(s)

because of Lemma 14.3.6. If, on the other hand, A commutes with S, then it also
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commutes with E by Lemma 15.1.12. By Lemma 14.1.10, it commutes in turn
with the operator f(T ) =

∫
H f(s) dE(s) for every f ∈M∞S (H,R). If we define

S0 :=

∫
H

Re(s) dE(s) and S1 :=

∫
H
s dEJ(S) = J

∫
H
|s| dE(s),

where s = jss1 denotes the imaginary part of a quaternion s, then AS = SA and
AS0 = S0A and in turn

AS1 = A(S − S0) = AS −AS0 = SA− S0A = (S − S0)A = S1A.

We can now choose pairwise disjoint sets ∆n ∈ BS(H), n ∈ N, such that σS(T ) \
R =

⋃
n∈N ∆n and such that dist(∆n,R) > 0 for every n ∈ N. Then s 7→

|s|−1χ∆n(s) belongs to M∞S (H,R) for every n ∈ N, and in turn

AJE(∆n) = AJ

(∫
H
|s||s|−1χ∆n

(s) dE(s)

)
E(∆n)

= AJ

(∫
H
|s| dE(s)

)(∫
H
|s|−1χ∆n

(s) dE(s)

)
E(∆n)

= AS1

(∫
H
|s|−1χ∆n(s) dE(s)

)
E(∆n)

= S1

(∫
H
|s|−1χ∆n

(s) dE(s)

)
E(∆n)A

= J

(∫
H
|s| dE(s)

)(∫
H
|s|−1χ∆n

(s) dE(s)

)
E(∆n)A

= J

(∫
H
|s||s|−1χ∆n

(s) dE(s)

)
E(∆n)A = JE(∆n)A.

Since σS(S)\R ⊂
⋃
n∈N ∆n, we have

∑+∞
n=0E(∆n)y = E(σS(T )\R)y = E(H \ R)y

for all y ∈ VR by Corollary 15.1.10. Since J = JE(H \ R), we hence obtain

AJy = AJE(H \ R)y =
+∞∑
n=1

AJE(∆n)y

=

+∞∑
n=1

JE(∆n)Ay = JE(H \ R)Ay = JAy,

which finishes the proof. �

Definition 15.2.4. An operator N ∈ B(VR) is called quasi-nilpotent if

lim
n→∞

‖Nn‖ 1
n = 0. (15.22)
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The following corollaries are immediate consequences of Gelfand’s formula

r(T ) = lim
n→+∞

‖Tn‖
1
n ,

for the spectral radius r(T ) = maxs∈σS(T ) |s| of T .

Corollary 15.2.5. An operator N ∈ B(VR) is quasi-nilpotent if and only if σS(T ) =
{0}.

Corollary 15.2.6. Let S,N ∈ B(VR) be commuting operators and let N be quasi-
nilpotent. Then σS(S +N) = σS(S).

We are now ready to show the main result of this section: the canonical
reduction of a spectral operator, the quaternionic analogue of Theorem 5 in [106,
Chapter XV.4.3].

Theorem 15.2.7. An operator T ∈ B(VR) is a spectral operator if and only if it is
the sum T = S + N of a bounded operator S of scalar type and a quasi-nilpotent
operator N that commutes with S. Furthermore, this decomposition is unique, and
T and S have the same S-spectrum and the same spectral decomposition (E, J).

Proof. Let us first show that every operator T ∈ B(VR) that is the sum T = S+N
of an operator S of scalar type and a quasi-nilpotent operator N commuting
with S is a spectral operator. If (E, J) is the spectral decomposition of S, then
Lemma 15.2.3 implies E(∆)N = NE(∆) for all ∆ ∈ BS(H) and JN = NJ . Since
T = S +N , we find that also T commutes with (E, J).

Let now ∆ ∈ BS(H). Then T∆ = S∆ + N∆, where as usual the subscript
∆ denotes the restriction of an operator to V∆ = E(∆)VR. Since N∆ inherits the
property of being quasi-nilpotent from N and commutes with S∆, we deduce from
Corollary 15.2.6,that

σS(T∆) = σS(S∆ +N∆) = σS(S∆) ⊂ ∆.

Thus (E, J) satisfies items (i) and (ii) of Definition 15.1.1. It remains to show that
also item (iii) holds true. Therefore, let V0 = ranE(H \ R) and set T0 = T |V0

,
S0 = S|V0

, N0 = N |V0
, and J0 = J |V0

and choose s0, s1 ∈ R with s1 > 0.
Since (E, J) is the spectral resolution of S, the operator s0IV0 − s1J0 − S0 has
a bounded inverse R(s0, s1) = (s0IV0 − s1J0 − S0)−1 ∈ B(V0). The operator N0

is quasi-nilpotent because N is quasi-nilpotent, and hence it satisfies (15.22). The
root test thus shows the convergence of the series

∑+∞
n=0N

n
0 R(s0, s1)n+1 in B(V0).
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Since T0, N0, S0, and J0 commute mutually, we have

(s0IV0
− s1J0 − T0)

+∞∑
n=0

Nn
0 R(s0, s1)n+1

=
+∞∑
n=0

Nn
0 R(s0, s1)n+1(s0IV0 − s1J0 − S0 −N0)

=
+∞∑
n=0

Nn
0 R(s0, s1)n+1(s0IV0

− s1J0 − S0)−
+∞∑
n=0

Nn
0 R(s0, s1)n+1N0

=
+∞∑
n=0

Nn
0 R(s0, s1)n −

+∞∑
n=0

Nn+1
0 R(s0, s1)n+1 = IV0

.

We find that s0I0− s1J0−T0 has a bounded inverse for s0, s1 ∈ R with s1 > 0, so
that J is a spectral orientation for T . Hence, T is a spectral operator and T and
S have the same spectral decomposition (E, J).

Since the spectral decomposition of T is uniquely determined, S=
∫
H s dEJ(s)

and in turn also N = T − S are uniquely determined. Moreover, Corollary 15.2.6
implies that σS(T ) = σS(S).

Now assume that T is a spectral operator and let (E, J) be its spectral
decomposition. We set

S :=

∫
H
s dEJ(s) and N := T − S.

By Remark 15.2.2, the operator S is of scalar type, and its spectral decomposition
is (E, J). Since T commutes with (E, J), it commutes with S by Lemma 15.2.3.
Consequently, N = T − S also commutes with S and with T . What remains to
show is that N is quasi-nilpotent. In view of Corollary 15.2.5, it is sufficient to
show that σS(N) is for every ε > 0 contained in the open ball Bε(0) of radius ε
centered at 0 .

For arbitrary ε > 0, we choose α > 0 such that 0 < (1 + CE,J)α < ε,
where CE,J > 0 is the constant in (14.22). We decompose σS(T ) into the union
of disjoint axially symmetric Borel sets ∆1, . . . ,∆n ∈ BS(H) such that for each
` ∈ {1, . . . , n}, the set ∆` is contained in a closed axially symmetric set whose inter-
section with every complex half-plane is a half-disk of diameter α. More precisely,
we assume that there exist points s1, . . . , sn ∈ H such that for all ` = 1, . . . , n,

∆` ⊂ B+
α ([s`]) = {p ∈ H : dist(p, [s`]) ≤ α and p1 ≥ s`,1}.

Observe that we have either s` ∈ R or B+
α ([s`]) ∩ R = ∅.

We set V∆`
= E(∆`)VR. Since T and S commute with E(∆`), also N = T−S

does, and so NV∆`
⊂ V∆`

. Hence N∆`
= N |V∆`

∈ B(V∆`
). If s belongs to ρS(N∆`

)
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for all ` ∈ {1, . . . , n}, we can set

Q(s)−1 :=

n∑
`=1

Qs(N∆`
)−1E(∆`),

where
Qs(N∆`

)−1 =
(
N2

∆`
− 2s0N∆`

+ |s|2IV∆`

)−1 ∈ B(V∆`
)

is the pseudo-resolvent of N∆`
as s. The operator Q(s)−1 commutes with E(∆`)

for every ` ∈ {1, . . . , n}, so that

(N2 − 2s0N + |s|2IVR)Q(s)−1

=

n∑
`=1

(N2
∆`
− 2s0N∆`

+ |s|2IV∆`
)Qs(N∆`

)−1E(∆`) =

n∑
`=1

E(∆`) = IVR

and

Q(s)−1(N2 − 2s0N + |s|2IVR)

=

n∑
`=1

Qs(N∆`
)−1E(∆`)(N

2 − 2s0N + |s|2IVR)

=

n∑
`=1

Qs(N∆`
)−1(N2

∆`
− 2s0N∆`

+ |s|2IV∆`
)E(∆`)

=

n∑
`=1

E(∆`) = IVR .

Therefore, we find s ∈ ρS(N) such that
⋂n
`=1 ρS(N∆`

) ⊂ ρS(N) and in turn
σS(N) ⊂

⋃n
`=1 σS(N∆`

). It is hence sufficient to show that σS(N∆`
) ⊂ Bε(0) for

all ` = 1, . . . , n.
We distinguish two cases: if s` ∈ R, then we write

N∆`
= (T∆`

− s`IV∆`
) + (s`IV∆`

− S∆`
).

Since s` ∈ R, we have for p ∈ H that

Qp(T∆`
− s`IV∆`

)

= (T 2
∆`
− 2s`T∆`

+ s2
`IV∆`

− 2p0(T∆`
− s`IV∆`

) + (p2
0 + p2

1)IV∆`

= T 2
∆`
− 2(p0 − s`)T∆`

+
(
(p0 − s`)2 + p2

1

)
IV∆`

= Qp−s`(T∆`
)

and thus

σS(T∆`
− s`IV`) = {p− s` ∈ H : p ∈ σS(T∆`

)}
⊂ {p− s` ∈ H : p ∈ B+

α (s`)} = Bα(0).
(15.23)
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Moreover, the function f(s) = (s`− s)χ∆`
(s) is an intrinsic slice function because

s` ∈ R. Since it is bounded, its integral with respect to (E, J) is defined and

s`IV∆`
− S∆`

=

(∫
H

(s` − s)χ∆`
(s) dEJ(s)

)∣∣∣∣
V∆`

.

We thus have

‖s`IV∆`
− S∆`

‖ ≤ CE,J‖(s` − s)χ∆`
(s)‖∞ ≤ CE,Jα (15.24)

because ∆` ⊂ Bα([s`])
+ = Bα(s`). Since the operator T∆`

− s`IV∆`
and the

operator s`IV∆`
− S∆`

commute, we conclude from Theorem 4.4.12 together with
(15.23) and (15.24) that

σS(T∆`) = σS

(
(T∆`

− s`IV∆`
) + (s`IV∆`

− S∆`
)
)

⊂
{
s ∈ H : dist

(
s, σS

(
T∆`
− s`IV∆`

))
≤ CE,Jα

}
⊂ Bα(1+CE,J )(0) ⊂ Bε(0).

If s` /∈ R, then let us write

N∆`
= (T∆`

− s`IV∆`
− s`,1J∆`

) + (s`IV∆`
+ s`,1J∆`

− S∆`
) (15.25)

with J∆`
= J |V∆`

. Since E(∆`) and J commute, J∆`
is an imaginary operator on

V∆`
and it moreover commutes with T∆`

. Since −J2
∆`

= −J2|V∆
= E(H\R)|V∆`

=
IV∆`

because ∆` ⊂ H \ R, we find for s = s0 + jss1 ∈ H with s1 ≥ 0 that(
s0IV∆`

+ s1J∆`
− T∆`

)(
s0IV∆`

− s1J∆`
− T∆`

)
= s2

0 − s2
1J

2
∆`
− 2s0T∆`

+ T 2
∆`

= Qs(T∆`
).

(15.26)

Because of condition (iii) in Definition 15.1.1, the operator (s0I−s1J−T )|ranE(H\R)

is invertible if s1 > 0. Since this operator commutes with E(∆`), the restriction
of its inverse to V∆`

is the inverse of (s0IV∆`
− s1J∆`

− T∆`
) in B(V∆`

). Hence if

s1 > 0, then (s0IV∆`
− s1J∆`

− T∆`
)−1 ∈ B(V∆`

), and we conclude from (15.26)
that(

s0IV∆`
+ s1J∆`

− T∆`

)−1 ∈ B(V∆`
) ⇐⇒ Qs(T∆`

)−1 ∈ B(V∆`
). (15.27)

If, on the other hand, s1 = 0, then both factors on the left-hand side of (15.26)
agree, and so (15.27) holds also in this case. Hence s ∈ ρS(T∆`

) if and only if the
operator (s0IV∆`

+ s1J∆`
− T ) has an inverse in B(V∆`

). Since

σS(T∆`
) ⊂ ∆` ⊂ B+

α ([s`]) ⊂ {s = s0 + jss1 ∈ H : s1 ≥ s`,1},

the operator s0IV∆`
+ s1J∆`

− T∆`
is in particular invertible for every quaternion

s ∈ H with 0 ≤ s1 < s`,1. Since J∆`
is a spectral orientation for T∆`

, this operator
is also invertible if s1 < 0, and hence we even obtain

(s0IV∆`
+ s1J∆`

− T∆`
)−1 ∈ B(V∆`

) ∀s0, s1 ∈ R : s1 < s`,1. (15.28)
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We can use these observations to deduce a spectral mapping property: a
straightforward computation using the facts that T∆`

and J∆`
commute and that

J2
∆`

= −IV∆`
shows that

Qs(T∆`
− s`,0IV∆`

− s`,1J∆`
)

=
(

(s0 + s`,0)IV∆`
+ (s1 + s`,1)J∆`

− T∆`

)
·
(

(s0 + s`,0)IV∆`
+ (s`,1 − s1)J∆`

− T∆`

)
.

(15.29)

If s1 > 0, then the second factor is invertible because of (15.28). Hence we have
s ∈ ρS(T∆`

− s`,0IV∆`
− s`,1J∆`

) if and only if the first factor in (15.29) is also
invertible, i.e., if and only if(

(s0 + s`,0)IV∆`
+ (s1 + s`,1)J∆`

− T∆`

)−1 ∈ B(V∆`
) (15.30)

exists. If, on the other hand, s1 = 0, then both factors in (15.29) agree. Hence also
in this case, s belongs to ρS(T∆`

− s`,0IV∆`
− s`,1J∆`

) if and only if the operator
in (15.30) exists. By (15.27), the existence of (15.30) is, however, equivalent to

s0 + s`,0 + (s1 + s`,1)S ⊂ ρS(T∆),

so that

ρS(T∆`
− s`,0IV∆`

− s`,1J∆`
) = {s ∈ H : s0 + s`,0 + (s1 + s`,1)js ∈ ρS(T∆`

)}

and in turn

σS(T∆`
− s`,0IV∆`

− s`,1J∆`
)

= {s ∈ H : s0 + s`,1 + (s1 + s`,1)js ∈ σS(T∆`
)}

⊂ {s ∈ H : s0 + s`,0 + (s1 + s`,1)js ∈ B+
α (s`)} = Bα(0).

For the second operator in (15.25), we have again

s`IV∆`
+ s`,1J∆`

− S∆`
=

(∫
H

(s`,0 + iss`,1 − s)χ∆`
(s) dEJ(s)

)∣∣∣∣
V∆`

,

and so

‖s`IV∆`
+ s`,1J∆`

− S∆`
‖ ≤ CE,J‖(s`,0 + iss`,1 − s)χ∆`

(s)‖∞ ≤ CE,Jα.

Since the operators T∆`
−s`IV∆`

−s`,1J∆`
and s`IV∆`

+s`,1J∆`
−S∆`

commute, we
conclude as before from Theorem 4.4.12 that σS(T∆`

) ⊂ Bα(1+CE,J )(0) = Bε(0).
Altogether, we obtain that N is quasi-nilpotent, which concludes the proof.

�
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Remark 15.2.8. Twice we applied Theorem 4.4.12 in the above proof, even though
we are working on a right Banach space and the theory in Chapter 4 was developed
on a two-sided Banach space. Using Theorem 14.2.7, one can, however, define
the S-functional calculus also on right-sided Banach spaces, so that this result is
actually applicable. For details, we refer to [125].

Definition 15.2.9. Let T ∈ B(VR) be a spectral operator and decompose T = S+N
as in Theorem 15.2.7. The scalar operator S is called the scalar part of T , and
the quasi-nilpotent operator N is called the radical part of T .

Remark 15.2.10. Let T ∈ B(VR) be a spectral operator. The canonical decompo-
sition of T into its scalar part and its radical part obviously coincides for every
j ∈ S with the canonical decomposition of T as a Cj-linear spectral operator on
Vj .

The remainder of this section discusses the S-functional calculus for spectral
operators. Similar to the complex case, one can express f(T ) for every intrinsic
function f as a formal Taylor series in the radical part N of T . The Taylor coef-
ficients are spectral integrals of f with respect to the spectral decomposition of
T . Hence these coefficients, and in turn also f(T ), depend only on the values of f
on the S-spectrum σS(T ) of T and not on the values of f on an entire neighbor-
hood of σS(T ). The operator f(T ) is again a spectral operator, and its spectral
decomposition can easily be constructed from the spectral decomposition of T .

In the following we consider an operator that is again defined on a two-sided
Banach space V .

Proposition 15.2.11. Let S ∈ B(V ) be an operator of scalar type on a two-sided
quaternionic Banach space V . If f ∈ N (σS(S)), then

f(S) =

∫
H
f(s) dEJ(s), (15.31)

where f(S) is intended in the sense of the S-functional calculus.

Proof. Since 1(T ) = I =
∫
H 1 dEJ(s) and s(S) = S =

∫
H s dEJ(s), the product

rule and the R-linearity of both the S-functional calculus and the spectral integra-
tion imply that (15.31) holds for every intrinsic polynomial. It in turn also holds
for every intrinsic rational function in N (σS(S)), i.e., for every function r of the
form r(s) = p(s)q(s)−1 with intrinsic polynomials p and q such that q(s) 6= 0 for
every s ∈ σS(S).

Let now f ∈ N (σS(S)) be arbitrary and let U be a bounded axially sym-
metric open set such that σS(T ) ⊂ U and U ⊂ D(f). Runge’s theorem for slice
hyperholomorphic functions implies the existence of a sequence of intrinsic rational
functions rn ∈ N

(
U
)

such that rn → f uniformly on U . Because of Lemma 14.3.6,
we thus have∫

H
f(s) dEJ(s) = lim

n→+∞

∫
H
rn(s) dEJ(s) = lim

n→+∞
rn(S) = f(S). �
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Theorem 15.2.12. Let T ∈ B(V ) be a spectral operator on a two-sided quaternionic
Banach space V with spectral decomposition (E, J) and let T = S + N be the
decomposition of T into scalar and radical parts. If f ∈ N (σS(T )), then

f(T ) =
+∞∑
n=0

Nn 1

n!

∫
H

(∂nSf)(s) dEJ(s), (15.32)

where f(T ) is intended in the sense of the S-functional calculus and the series
converges in the operator norm.

Proof. Since T = S + N with SN = NS and σS(N) = {0}, it follows from
Theorem 4.4.14 that

f(T ) =
+∞∑
n=0

Nn 1

n!
(∂nSf) (S).

What remains to show is that

(∂nSf)(S) =

∫
H

(∂nSf)(s) dEJ(s), (15.33)

but this follows immediately from Proposition 15.2.11. �

The operator f(T ) is again a spectral operator, and its radical part can be
easily obtained from the above series expansion.

Definition 15.2.13. A spectral operator T ∈ B(V ) on a two-sided quaternionic
Banach space V is said to be of type m ∈ N if its radical part satisfies Nm+1 = 0.

Lemma 15.2.14. A spectral operator T ∈ B(V ) on a two-sided quaternionic Banach
space V with spectral resolution (E, J) and radical part N is of type m if and only
if

f(T ) =

m∑
n=0

Nn 1

n!

∫
H

(∂nSf)(s) dEJ(s) ∀f ∈ N (σS(T )). (15.34)

In particular, T is a scalar operator if and only if it is of type 0.

Proof. If T is of type m, then the above formula follows immediately from Theo-
rem 15.2.12 and Nm+1 = 0. If, on the other hand, (15.34) holds, then we choose
f(s) = 1

m!s
m in (15.32) and (15.34) and subtract these two expressions. We obtain

0 = Nm+1

∫
H
dEJ(s) = Nm+1. �

Theorem 15.2.15. Let T ∈ B(VR) be a spectral operator with spectral decomposi-
tion (E, J). If f ∈ N (σS(T )), then f(T ) is a spectral operator, and the spectral
decomposition (Ẽ, J̃) of f(T ) is given by

Ẽ(∆) = E
(
f−1(∆)

)
∀∆ ∈ BS(H) and J̃ =

∫
H
jf(s) dEJ(s),
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where jf(s) = 0 if f(s) ∈ R and jf(s) = f(s)/|f(s)| if f(s) ∈ H \ R. For every
g ∈ SM∞(H) we have∫

H
g(s) dẼJ̃(s) =

∫
H

(g ◦ f)(s) dEJ(s), (15.35)

and if S is the scalar part of T , then f(S) is the scalar part of f(T ).

Proof. We first show that f(S) is a scalar operator with spectral decomposition
(Ẽ, J̃). By Corollary 14.3.4, the function f is BS(H)-BS(H)-measurable, so that
Ẽ is a well-defined spectral measure on BS(H).

The operator J̃ obviously commutes with E. Moreover, writing f(s) = f0(s)+
jsf1(s) as in Lemma 14.3.3, we have jf(s) = jssgn(f1(s)). If we set ∆+ = {s ∈ H :
f1(s) > 0}, ∆− = {s ∈ H : f1(s) < 0}, and ∆0 = {s ∈ H : f1(s) = 0}, we therefore
have

J̃ = JE(∆+)− JE(∆−).

Since f1(s) = 0 for every s ∈ R, we have R ⊂ ∆0 and hence V+ = ranE(∆+) ⊂
ranE(H \ R) = ran J and similarly also V− = ranE(∆−) ⊂ ran J . Since J and E
commute, V+ and V− are invariant subspaces of J contained in ranJ , so that J+

and J− define bounded surjective operators on V+, resp. V−. Moreover, kerJ =
ranE(R), and hence kerJ |V+

= V+∩ker J = {0} and ker J |V− = V−∩ker J = {0},
so that ker J̃ = ranE(∆0) and ran J̃ = ranE(∆+)⊕ranE(∆−) = ranE(∆+∪∆−).

Now observe that f(s) ∈ R if and only if f1(s) = 0. Hence f−1(R) = ∆0 and
f−1(H \ R) = ∆+ ∪∆−, and we obtain

ran J̃ = ranE(∆+ ∪∆−) = ranE
(
f−1(H \ R)

)
= ran Ẽ(H \ R)

and
ker J̃ = ranE(∆0) = ranE

(
f−1(R)

)
= ran Ẽ(R).

Moreover, since E(∆+)E(∆−) = E(∆−)E(∆+) = 0 and −J2 = E(H\R), we have

−J̃2 = −J2E(∆+)2 − (−J2)E(∆−)2

= E(H \ R)E(∆+) + E(H \ R)E(∆−)

= E(∆+ ∪∆−) = Ẽ(H \ R),

where we used that ∆+ ⊂ H \ R and ∆− ⊂ H \ R as R ⊂ ∆0. Hence −J̃2 is the
projection onto ran J̃ along ker J̃ , and so J̃ is actually an imaginary operator, and
(Ẽ, J̃) in turn is a spectral system.

Let g =
∑n
`=0 a`χ∆`

∈ M∞S (H,R) be a simple function. Then (g ◦ f)(s) =∑n
`=0 a`χf−1(∆`)(s) is also a simple function in M∞S (H,R) and∫

H
g(s) dẼ(s) =

n∑
`=0

a`Ẽ(∆`) =
n∑
`=0

a`E
(
f−1(∆`)

)
=

∫
H

(g ◦ f)(s) dE(s).
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Due to the density of simple functions in (M∞S (H,R), ‖.‖∞), we hence obtain∫
H
g(s) dẼ(s) =

∫
H

(g ◦ f)(s) dE(s), ∀g ∈M∞S (H,R).

If g ∈ SM∞(H), then we deduce from Lemma 14.3.3 that g(s) = γ(s) + jsδ(s)
with γ, δ ∈M∞S (H,R) and js = s/|s| if s /∈ R and js = δ(s) = 0 if s ∈ R. We then
have (g ◦ f)(s) = γ(f(s)) + jf(s)δ(f(s)), and we obtain∫

H
g(s) dẼJ̃(s) =

∫
H
γ(s) dẼ(s) + J̃

∫
H
δ(s) dẼ(s)

=

∫
H

(γ ◦ f)(s) dE(s) + J̃

∫
H

(δ ◦ f)(s) dE(s)

=

∫
H

(γ ◦ f)(s) dEJ(s) +

∫
H
jf(s) dEJ(s)

∫
H

(δ ◦ f)(s) dE(s)

=

∫
H

(γ ◦ f)(s) + jf(s)(δ ◦ f)(s) dEJ(s) =

∫
H

(g ◦ f)(s) dEJ(s),

and hence (15.35) holds. Choosing in particular g(s) = s, we deduce from Propo-
sition 15.2.11 that

f(S) =

∫
H
f(s) dEJ(s) =

∫
H
s dẼJ̃(s).

By Remark 15.2.2, f(S) is a scalar operator with spectral decomposition (Ẽ, J̃).
Theorem 15.2.12 implies f(T ) = f(S) + Θ with

Θ :=

+∞∑
n=1

Nn 1

n!
(∂nSf)(S).

If we can show that Θ is a quasi-nilpotent operator, then the statement of the
theorem follows from Theorem 15.2.7. We first observe that each term in the
sum is a quasi-nilpotent operator because Nn and (∂nSf)(S) commute due to
Lemmas 14.3.6 and 15.2.3, so that

0 ≤ lim
k→∞

∥∥∥∥∥
(
Nn 1

n!
(∂nSf)(S)

)k∥∥∥∥∥
1
k

≤
∥∥∥∥ 1

n!
(∂nSf)(S)

∥∥∥∥( lim
k→∞

∥∥Nnk
∥∥ 1
nk

)n
= 0.

Corollary 15.2.5 thus implies σS
(
Nn 1

n! (∂
n
Sf(S))

)
= {0}.

By induction we conclude from Taylor’s formula and Corollary 15.2.5 that
for each m ∈ Nm, the finite sum Θ1(m) :=

∑m
n=1N

n 1
n! (∂

n
Sf)(S) is quasi-nilpotent

and satisfies σS(Θ(m)) = {0}.
Since the series Θ converges in the operator norm, for every ε > 0 there exists

mε ∈ N such that Θ2(mε) :=
∑+∞
n=mε+1N

n 1
n! (∂

n
Sf)(S) satisfies ‖Θ2(mε)‖ < ε.
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Hence σS(Θ2(mε)) ⊂ Bε(0), and since Θ = Θ1(mε) + Θ2(mε) and Θ1(mε) and
Θ2(mε) commute, we conclude from Theorem 4.4.12 that σS(Θ) ⊂ Bε(0). Since
ε > 0 was arbitrary, we obtain σS(Θ) = {0}. By Corollary 15.2.5, Θ is quasi-
nilpotent.

We have shown that f(T ) = f(S) + Θ, that f(S) is a scalar operator with
spectral decomposition (Ẽ, J̃), and that Θ is quasi-nilpotent. From Theorem 15.2.7
we therefore deduce that f(T ) is a spectral operator with spectral decomposition
(Ẽ, J̃), that f(S) is its scalar part, and that Θ is its radical part. This concludes
the proof. �

Corollary 15.2.16. Let T ∈ B(H) be a spectral operator and let f ∈ N (σS(T )). If
T is of type m ∈ N, then f(T ) is of type m too.

Proof. If T = S + N is the decomposition of T into its scalar and radical parts
and T is of type m such that Nm+1 = 0, then the radical part Θ of f(T ) is given,
due to Lemma 15.2.14 and Theorem 15.2.15, by

Θ = f(T )− f(S) =
+∞∑
n=1

Nn 1

n!
(∂nSf)(S) =

m∑
n=1

Nn 1

n!
(∂nSf)(S).

Obviously also Θm+1 = 0. �



Contents of the Monograph: Quaternionic Closed
Operators, Fractional Powers and Fractional Diffusion

Processes

The natural continuation of this book is the monograph [56]: Quaternionic closed
operators, fractional powers and fractional diffusion processes. In [56] the study of
quaternionic operator theory has been continued and it has been considered a new
class of fractional diffusion problems that are naturally defined using this theory.
The book has 12 chapters whose contents are as follows.

Chapter 1. Introduction
Theoretical aspects and applications to fractional diffusion processes.

Chapter 2. Preliminary results
2.1 Slice hyperholomorphic functions
2.2 The S-functional calculus for bounded operators
2.3 Bounded operators with commuting components

Chapter 3. The direct approach to the S-functional calculus
3.1 The S-spectrum of a closed operator and properties
3.2 The S-resolvent of a closed operator
3.3 Closed operators with commuting components
3.4 The S-functional calculus and its properties
3.5 The product rule and polynomials in T
3.6 The spectral mapping theorem
3.7 Spectral sets and projections onto invariant subspaces
3.8 The special roles of intrinsic functions and the left multiplication

Chapter 4. The quaternionic evolution operator
4.1 Uniformly continuous quaternionic semigroups
4.2 Strongly continuous quaternionic semigroups
4.3 Strongly continuous groups

Chapter 5. Perturbations of the generator of a group
5.1 A series expansion of the S-resolvent operator
5.2 The class of operators A(T ) and some properties
5.3 Perturbation of the generator
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5.4 Comparison with the complex setting
5.5 An application

Chapter 6. The Phillips functional calculus
6.1 Preliminaries on quaternionic measure theory
6.2 Functions of the generator of a strongly continuous group
6.3 Comparison with the S-functional calculus
6.4 The inversion of the operator f(T )

Chapter 7. The H∞-functional calculus
7.1 The S-functional calculus for sectorial operators
7.2 The H∞-functional calculus
7.3 The composition rule
7.4 Extensions according to spectral conditions
7.5 The spectral mapping theorem

Chapter 8. Fractional powers of quaternionic linear operators
8.1 A direct approach to fractional powers of negative exponent
8.2 Fractional powers via the H∞-functional calculus
8.2.1 Fractional powers with negative real part
8.3 Kato’s formula for the S-resolvents

Chapter 9. The fractional heat equation using quaternionic techniques
9.1 Spectral properties of the nabla operator
9.2 A relation with the fractional heat equation
9.3 An example with non-constant coefficients

Chapter 10. Applications to fractional diffusion
10.1 New fractional diffusion problems
10.2 The S-spectrum approach to fractional diffusion processes
10.3 Fractional Fourier’s law in a Hilbert space

Chapter 11. Historical notes and References
11.1 Theory of slice hyperholomorphic functions
11.2 Spectral theory on the S-spectrum
11.3 The monographs on operators and functions

Chapter 12. Appendix: Principles of functional analysis
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γn, 172
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KC(X), 177
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N∞(S0
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SHL(U,XL), 45
SHL(σS(T )), 65
SH∞L (S0

µ), 139
SHR(U), 13
SHR(U,XR), 45
SHR(σS(T )), 65
SH∞R (S0

µ), 139
SML(U), 118
SML(σS(T )) , 120
SMR(U), 118
SMR(σS(T )), 120
B(Xn), 119

a convergence theorem, 144
adjoint operator, 190
approximate point S-spectrum, 196
argument function, 139
axially monogenic function, 174
axially symmetric, 13

Cauchy formula, vector-valued, 46
Cauchy formulas, 29

for slice monogenic functions, 119
on unbounded slice Cauchy do-

mains, 30
Cauchy kernel operator series, 54
Cauchy’s integral theorem, 25
Cauchy–Fueter

functional calculus, 170
kernel, 168
regular functions, 34
theorem, 168

Cauchy–Riemann equations, 13
Cauchy–Schwarz inequality, 188
compactness of the S-spectrum, 60
composition rule, 86
compression S-spectrum , 196
continuous S-spectrum, 192
converges in the norm S-resolvent sense,

87

definition of S−nL (s, T ), 94

extended S-spectrum, 130

F-resolvent operators, 155
fractional Laplacian, 147
fractional power of

T = e1x1∂x1
+e2x2∂x2

+e3x3∂x3
,

149
fractional powers, 115
Fueter kernel operator series, 154
Fueter kernel series, 153
Fueter kernels, 38
Fueter plane wave, 121
Fueter’s mapping theorem, 34

in integral form, 38
Fueter–Sce mapping theorem in inte-

gral form, 172
Fueter–Sce primitive, 174

Hahn–Banach theorem, 40
Herglotz’s theorem for the

quaternions, 256
Hermitian quaternionic scalar prod-

uct, 187

identity principle, 18
intrinsic rational slice hyperholomor-

phic function, 137
intrinsic slice hyperholomorphic

functions, 13
inverse Fueter–Sce mapping theorem,

175

kernel, 189

left S-resolvent equation, 61
left S-resolvent operator, 58
left and right F -resolvent equations,

162
left Cauchy kernel series, 56
left resolvent operator, 69
left resolvent set, 69

monogenic Cauchy kernel, 174
monogenic functions, 171

operator
imaginary, 202
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of type Ω, 142
of type ω, 139

orthogonal complement, 188
orthonormal basis, 188

paravector operator, 119
point S-spectrum, 192
polar decomposition, 199
Product rule, 78
product rule, 67
pseudo-resolvent operatorQs(T )−1 ∈

B(X), 57

quadratic estimate, 145
quaternionic

Hilbert space, 188
pre-Hilbert space, 188
right vector space, 38

range, 189
rational functional calculus, 138
residual S-spectrum, 192
Riesz projectors, 80, 265

for the F -functional calculus, 165
Riesz representation theorem for real-

valued functions, 233
right H-module, 187
right S-resolvent equation, 61
right S-resolvent operator, 58
right Cauchy kernel series, 56
right linear operators, 189
right spectrum σR(T ), 3
Runge’s theorem, 32

Sce’s theorem, 171
slice Cauchy domain, 29
slice derivative, 20
slice domain, 13
slice function, 2, 13
slice hyperholomorphic functions, 13

vector-valued, 41
with values in Rn, 118

slice hyperholomorphic logarithm, 115
slice hyperholomorphic product, 47

slice monogenic functions, 118
spectral integrals, 220, 225
spectral mapping theorem, 83
spectral theorem

for bounded normal operators,
241

for unbounded normal operators,
247

splitting lemma, 17
structure formula (or representation

formula), 18, 46
structure of the Fueter–Sce

primitives, 174

Taylor formulas, 103
two-sided quaternionic vector space,

39

Vector-valued Cauchy formula, 46

weakly left slice hyperholomorphic,
41

weakly right slice hyperholomorphic,
41
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Bloch, Besov and Dirichlet Spaces of Slice Hyperholomorphic Functions,
Complex Anal. Oper. theory, 9 (2015), 479–517.

[49] P. Cerejeiras, F. Colombo, U. Kähler, I. Sabadini, Perturbation of normal
quaternionic operators, Preprint 2017, arXiv:1710.10730.

[50] F. Colombo, J. Gantner, Fractional powers of quaternionic operators and
Kato’s formula using slice hyperholomorphicity, Trans. Amer. Math. Soc.,
370 (2018), 1045–1100.

[51] F. Colombo, J. Gantner, An introduction to fractional powers of quater-
nionic operators and new fractional diffusion processes, in: Advances in
Complex Analysis and Operator Theory, 101–134, Trends in Mathematics,
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[154] J.O. González-Cervantes, I. Sabadini, On some splitting properties of slice
regular functions, Complex Var. Elliptic Equ., 62 (2017), 1393–1409.
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