
Architecting Self-adaptive Software
Systems

Anni Huuhtanen, Niko Mäkitalo(B), and Tommi Mikkonen

Department of Computer Science, University of Helsinki, Helsinki, Finland
{anni.huuhtanen,niko.makitalo,tommi.mikkonen}@helsinki.fi

Abstract. A growing number of software systems operate in uncer-
tain environments. They benefit from an ability to autonomously adapt
to changes during runtime without suffering from a lowered quality of
service. Several different architectural approaches to self-adaptive soft-
ware exist with their sources of inspiration varying from psychology
to mathematics. In this literature survey, we study and evaluate four
types of approaches: architecture-based, control-based, learning-based
and awareness-based approaches. Our aim is to clarify whether a unified,
general approach to computational self-adaptivity is possible and what
it could look like. We conclude that a general solution should combine
aspects of all of the studied approaches.

Keywords: Self-adaptivity · Software architectures
Autonomous systems · Internet of Things · IoT · Web of Things · WoT

1 Introduction

Software systems are becoming increasingly complex as the trend for distributed,
heterogeneous and large-scale architectures grows. This is especially visible in
the Internet of Things (IoT), and the Web of Things (WoT) systems, which may
consist of thousands of parts or subsystems, each processing information locally
and exchanging it without any centralized controller. Each subsystem can even
be owned by a different agent or organization. Despite possibly having diverse
properties and behaviors, they must be able to interact with each other.

In addition, requirements of various stakeholders such as cost, performance
and safety can be at odds, meaning that a system must make certain trade-offs.
Traditionally, these trade-offs have been analyzed during the design period of
software and addressed as various requirements. However, in more and more
cases, the runtime operation of the system results from complex interactions
between several moving parts and therefore tends to be uncertain at any given
time. This uncertainty means that the same behavior does not always lead to
the same outcome or that, for example, sometimes a particular subsystem may
be accessible to others and sometimes not. The operation of such an uncertain
system after deployment is difficult to predict and infeasible to manually control,
leading to a need for self-adaptivity.
c© Springer Nature Switzerland AG 2018
C. Pautasso et al. (Eds.): ICWE 2018, LNCS 11153, pp. 59–70, 2018.
https://doi.org/10.1007/978-3-030-03056-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03056-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-03056-8_6


60 A. Huuhtanen et al.

Self-adaptivity in software systems means the ability of a system to adapt to
changes in its environment during runtime in an independent manner without
downtime or penalties [1]. A self-adaptive system is equipped with capabilities to
observe itself and its environment in order to make autonomous decisions on how
to behave. It can configure, optimize, repair, and protect itself based on what
it observes. An observation could be, for example, input from a user or another
system, or an anomaly in its own internal state. Self-adaptive mechanisms range
from simple conditional expressions where the outcome changes program behav-
ior to more complicated machine learning techniques where behavioral change
occurs as a result of learning new knowledge.

A need for computational self-adaptivity arose in the early 2000s when the
maintenance and operation of computing systems was still done manually by
human administrators [2]. Typical maintenance tasks included installing, config-
uring and optimizing software and hardware. As the amount of computers and
interconnections in computing systems started to grow, manual management
proved to be cumbersome and methods to deal with this increasing complexity
were needed. The trend for distributed, diverse and large computing systems has
continued to this day. Many modern software systems, for example the areas of
IoT and WoT, benefit from or even require self-adaptivity in many ways. An
example is a cloud-based software service that dynamically allocates resources
to a number of applications. In the case of a single application, the service must
optimize both quality of service (QoS) and a cost objective [3]. Since the same
infrastructure is shared by several applications, it must additionally offer good
QoS to all applications. Uncertainty of the runtime environment and possibly
conflicting objectives require the service to have self-adaptive properties.

Different architectural approaches to computational self-adaptivity have been
developed over time. It can be seen that the approaches build on each other in
a wave-like manner [2]. At the moment, the focus has started to move from
traditional architecture-based approaches to more mathematical, control-based
approaches. Recent attempts to incorporate self-adaptivity into software have
also utilized machine learning techniques as well as taken inspiration from psy-
chological theories and concepts such as self-awareness.

Since multiple approaches to computational self-adaptivity exist, it can be
difficult to get a holistic understanding of the field. There has also been little
comparison between the approaches. A comprehensive theoretical foundation of
computational self-adaptivity is still missing and the path to achieve it seems
unclear.

In this paper, we examine and evaluate different architectural approaches to
developing self-adaptive software based on existing literature. The main purpose
of the study is to clarify what is required for a more unified approach to compu-
tational self-adaptivity. Using the Goal-Question-Metric approach [4], our goal
is formulated as follows:

– Purpose: Characterize and evaluate ...
– Issue: ... different architectural approaches to self-adaptive software ...
– Objective: ... in order to move towards a unified theory ...
– Viewpoint: ... from the standpoint of a researcher.



Architecting Self-adaptive Software Systems 61

The precise research questions are the following:

– RQ1: What kind of architectural approaches to self-adaptive software exist?
– RQ2: What are the benefits and problems of different approaches?

The rest of this paper is structured as follows. In Sect. 2, we explain how we
searched for articles for our survey and justify their selection. In Sect. 3, we exam-
ine different self-adaptive approaches and provide answers to our research ques-
tions. In Sect. 4, we discuss another recent literature survey. Finally, in Sect. 5
we draw some final conclusions.

2 Methods

First, we defined the search string to be used for automatic search. While doing
initial research on the problem and formulating the research questions, we made
a few searches using the single keywords self-adaptive and software. However, it
became evident that multiple synonyms for these words existed in literature. For
example, self-adaptivity and autonomy were often used interchangeably. There-
fore, we defined the final search string as follows.

(self-adaptive OR self-adaptivity OR self-managing OR autonomic OR
autonomous OR autonomy) AND (software OR framework OR architecture)

Then, we performed searches using the search string on IEEE Xplore Digi-
tal Library (https://ieeexplore.ieee.org/), ACM Digital Library (https://dl.acm.
org/), and Google Scholar (https://scholar.google.fi/). We applied all keywords
to the title field only, and searched only for articles that were published between
2016 and 2018. The searches resulted in 184 articles on IEEE Xplore, 277 articles
on ACM Digital Library, and 653 articles on Google Scholar.

From the results, we chose the most recent literature survey on computational
self-adaptivity as a starting point for snowballing. Using the snowballing method,
we checked sources used by the survey and then looked at other articles where
those sources had been cited. From these, we decided to select articles that
present not only general theoretical approaches but also specific models so that
we could better evaluate them. Finally, this lead to 10 articles for our survey,
from which five articles present a distinct architectural model for computational
self-adaptivity, and the rest are about general categories or approaches which
these models can be classified into.

3 Results

The approaches we studied can roughly be classified into architecture-based,
control-based, awareness-based and learning-based approaches, some having
aspects of more than one class. Table 1 summarizes the findings.

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://dl.acm.org/
https://scholar.google.fi/


62 A. Huuhtanen et al.

Table 1. Identified self-adaptive approaches.

Approach Examples Inspiration Emphasis Idea

Architecture-

based

MAPE-K,

3LA

Software

engineering

Basic building

blocks of

self-adaptive

systems

The system is equipped with a

self-adaptive architecture following

known principles of software

engineering

Control-based SimCA* Mathematics Formal guarantees

for self-adaptivity

The self-adaptive process is guaranteed

to adhere to the requirements of the

system with the use of control theory

Learning-

based

FUSION Machine

learning,

software

engineering

Learning

self-adaptive logic

through

experience

The system learns the optimal

self-adaptive behavior at runtime

using incremental learning algorithms

Awareness-

based

SAA Psychology,

machine

learning,

software

engineering

Enhanced building

blocks of

self-adaptivity,

enhanced learning

The system is equipped with an

architecture that allows self-awareness,

learning occurs on multiple levels,

predicting future possible

3.1 Architecture-Based Approaches

Architecture-based approaches emphasize the role of architecture in designing
self-adaptive software systems [1]. Instead of focusing on how to encode self-
adaptivity into source code, the emphasis is on the structure and interaction of
higher level software components and how they could implement self-adaptive
behavior. Basic principles of software architecture design such as separation of
concern and abstraction are applied. For example, components implementing
self-adaptivity are separated from components implementing normal functional-
ity, and each self-adaptive component has its own responsibility. In addition, the
details of each component are hidden behind an interface. Components and their
connectors can be modified, added and removed at runtime as well as organized
in different ways.

MAPE-K is one of the first self-adaptive models that have been developed
[5]. In the model, a software system is coupled with a separate managing com-
ponent that implements four functions: Monitor, Analyze, Plan, and Execute.
All functions have access to a shared Knowledge base that includes high-level
goals given by the system administrator as well as knowledge gathered during
runtime. The Monitor component gathers information about the system and
its environment, updating the Knowledge component accordingly. The Analyze
component determines whether adaptation actions are required based on the
knowledge. If they are, the Plan component creates a plan of action and gives it
to the Execution component that implements it. The MAPE-K model is shown
in Fig. 1.

The problem with the MAPE-K model is that it specifies the different func-
tions of a self-adaptive system on a very high level [5]. It is also quite simple and
unprincipled as a software architecture. However, it gives a general overview of
the basic functions needed in almost every self-adaptive system and works as an
inspiration for more low-level architectures.



Architecting Self-adaptive Software Systems 63

Fig. 1. The MAPE-K model [5].

3LA (Three-Layer Architecture) consists of three layers: Component Con-
trol, Change Management and Goal Management [6]. The bottom layer, Compo-
nent Control, represents the software system itself and is monitored and reacted
to by the middle layer, Change Management. The middle layer implements pre-
defined self-adaptation models or plans and can, for example, remove and add
components as well as modify their parameters. If no suitable plan exist, the
middle layer triggers the top layer, Goal Management. This layer handles the
high-level goals of the system and generates new plans for the middle layer. The
3LA model is shown in Fig. 2.

3LA is slightly more precisely defined than MAPE-K because of its layered
structure, but it has the same problem of being simple and high-level [6]. It is
unclear what the different layers exactly contain, for example.

3.2 Control-Based Approaches

In some software systems, self-adaptivity must occur according to precise require-
ments and despite restrictions such as time or memory. However, it can be
difficult to guarantee these self-adaptation goals are met in architecture-based
approaches where traditional verification techniques, for example tests and model
checking, are used [7]. The idea with control-theoretical approaches is that for-
mal guarantees for self-adaptation can be provided. Whereas architecture-based
approaches are inspired by principles of software engineering, the foundation of
control-based approaches is control theory from mathematics. Control theory
has traditionally been used to implement self-adaptivity at the level of hard-
ware, for example CPU and memory. Lately, it has also been applied to software
adaptation.



64 A. Huuhtanen et al.

Fig. 2. The 3LA model [6].

Control theory focuses on modeling software behavior instead of compo-
nents [7]. This behavior involves two schemes, feedback control and feedforward
control. In feedback control, when the system goes from functioning normally
(a steady state) to experiencing internal or external changes or disturbances (a
transient state), the output of the system is measured and compared to the self-
adaptation goal (setpoint) such as response time. The error between the output
and the setpoint determines a control signal that adapts the software system
in a way that decreases the error. The system then enters back to a steady
state. Feedforward control on the other hand calculates a different control signal
based on the setpoint and the values of disturbances instead. It can be said that
feedback control selects the initial adaptation strategy, and feedforward control
refines it and ensures it is followed. Both schemes can implement different con-
trol strategies: in optimal control, the control signal that minimizes a certain
cost function is selected while in state feedback, the signal is computed based on
state information. Feedback and feedforward controllers may also be composed
of multiple hierarchically organized sub-controllers.

SimCA* (Simplex Control Adaptation) is a control-theoretical model that
supports three types of goals or requirements [8]. Setpoints (S-reqs) are simple
values the system should achieve. Optimizable values (O-reqs) are functions the
system should optimize. Threshold values (T-reqs) have to stay below or above a
threshold. SimCA* works in four phases: Identification, Control Synthesis, Goal
Transformation and Operation. In Identification, SimCA* builds a linear model
of each goal by measuring the dependency between different goal values (control
signals) and the system output in the form of a coefficient value. In Control
Synthesis, a controller function is built for each of these models. The function
calculates the control signal based on several values such as the previous con-
trol signal, coefficient, and error between the previous control signal and system
output. The controller also includes mechanisms for adjusting the linear model



Architecting Self-adaptive Software Systems 65

and re-triggering Identification during sudden runtime changes. In Goal Trans-
formation, all threshold goals are adjusted in a way that allows other goals to be
satisfied as well. In Operation, the controllers output control signals and the final
combined control signal is calculated based on them and possible optimization
goals. The SimCA* model is shown in Fig. 3.

Although SimCA* is a more formal and mathematical model than MAPE-
K, for example, its use in practice does not require a mathematical background
which might still make it attractive to a regular software engineer [8]. The prob-
lem with SimCA* is that several drastic changes during runtime result in frequent
re-identification which is costly and may hinder performance. In addition, the
model cannot produce a satisfiable outcome in case of conflicting requirements.
Unlike previous control-theoretical approaches, SimCA* is argued to be better
suitable for multiple domains and problems. However, the framework has only
been tested to work in a couple of scenarios and it is not certain if it gener-
alizes well to different types of problems. Another problem with SimCA* and
control-theoretical approaches in general is that not all requirements can easily
be transformed into numerical form.

Fig. 3. The SimCA* model [8].

3.3 Learning-Based Approaches

Learning-based approaches utilize statistical and machine learning techniques.
They often use a MAPE-K-like architecture, but instead of equipping the soft-
ware system with an analytical, static model that controls self-adaptation during
runtime, learning-based approaches allow the system to learn the optimal adap-
tation logic through experience.

FUSION (FeatUre-oriented Self-adaptatION) is a learning-based adaptive
framework that is based on features [9]. They are abstractions of the system’s
abilities and the subjects or units of adaptation. Depending on the application,
they may correspond to, for example, a set of services, rules or properties. At
any given time, the software system has certain features activated and others
deactivated. This state is captured in a feature selection string where activated
features are set to 1 and deactivated features to 0. The adaptation of the system
is modeled as transitions between these feature selection strings.

FUSION involves both an adaptation cycle and a learning cycle as well as an
internal model [9]. The adaptation cycle consists of three components, Detect,



66 A. Huuhtanen et al.

Plan and Effect, that are similar to the components in MAPE-K. Detect ana-
lyzes metrics gathered from the system and detects if an adaptation goal has
been violated. If it has, Plan uses the model to determine which system features
should be activated or deactivated, i.e. creates the next feature selection string.
Finally, Effect implements the transition from the current feature selection string
to the next in a way that ensures system stability. Meanwhile, the learning cycle
observes relationships between the system metrics and implemented transitions
and looks for unexpected patterns, in which case the model (used by Plan)
adjusts to the new pattern, improving future adaptation. The FUSION frame-
work is shown in Fig. 4.

FUSION is argued to be efficient, easy to use and accurate [9]. The abstrac-
tion achieved with features improves the generality of the framework. The prob-
lem with FUSION is that the incremental learning brings some overhead to the
system. In addition, the learning cycle cannot predict abnormal patterns in an
opportunistic manner. There has also been little testing of FUSION in real-world
scenarios.

Fig. 4. The FUSION model [9].

3.4 Awareness-Based Approaches

Awareness-based approaches utilize aspects of both architecture- and learning-
based approaches. Self-adaptivity is related to the concepts of self-awareness
and self-expression that originate from psychology [10]. Lewis et al. have devel-
oped five-level model of consciousness (stimulus-awareness, interaction-aware-
ness, time-awareness, goal-awareness, meta-awareness) [10,11] which originate
from Neisser’s levels of human self-awareness [12].



Architecting Self-adaptive Software Systems 67

Computational self-awareness means the ability of a system to know about
its own internal state as well as how it is perceived by other systems in its
environment. A stimulus-aware system can respond to internal and external
stimuli but does not know the difference between different types of stimuli. An
interaction-aware system knows that its actions cause effects in the environment
because of feedback loops. A time-aware system has knowledge about the past
and can predict the future. A goal-aware system is aware of runtime constraints
and objectives that are not implicitly present in its design. A meta-self-aware
system is aware of being aware and is able to modify all lower layers if neces-
sary. Computational self-expression on the other hand is the behavior resulting
from knowledge gained through self-awareness. In the context of self-adaptivity,
we can say that self-awareness concerns information processing and that self-
expression consists of the resulting adaptive actions. Therefore, an advanced
self-adaptive system is both self-aware and self-expressive.

In many modern software systems, the behavior of individual system compo-
nents is not as important or interesting as the collective behavior emerging from
the interaction of multiple components [11]. One observation from biological sys-
tems is that self-awareness seems to be an emergent property of distributed infor-
mation processing, meaning that all components of a system only have access to
local knowledge instead of a global, centralized knowledge base. This indicates
that a software system could perhaps be more self-adaptive and less fragile with
a similar decentralized architecture.

Fig. 5. The SAA model [11].

SAA, an adaptive architecture based on self-awareness, has been intro-
duced [11]. In this architecture, an individual software application includes sepa-
rate self-awareness and self-expression processes. The self-awareness process has



68 A. Huuhtanen et al.

access to internal models and is further divided into sub processes correspond-
ing to the different levels (goal-awareness, stimulus-awareness and so on). Each
process analyzes information gathered with internal and external sensors and
possibly updates the internal models using its own incremental learning algo-
rithm. The goal-aware sub process also has access to design-time goals, and the
meta-self-aware sub process can change the goals as well as the learning algo-
rithms of other sub processes. The models are exposed to the self-expression
process that chooses actions based on them. The self-awareness process is also
able to monitor what actions are taken. SAA is illustrated in Fig. 5.

As in FUSION, the knowledge in SAA is modified during runtime, mean-
ing the adaptation logic itself can change, and benefits of architecture-based
approaches are achieved [11]. Unlike FUSION, the self-aware architecture spec-
ifies different types of knowledge representing different levels of self-awareness
instead of only one type of knowledge that is used as the basis for adaptation.
In addition, the time-aware component allows prediction of future events. The
overhead brought by incremental learning and the lack of practical evaluation
are problems in SAA as well.

4 Related Work

The work by Weyns et al. provides a perspective on how different self-adaptive
approaches have developed over time [2]. The history of research on self-
adaptivity is structured into six waves that reflect different research trends in
the field. Each wave has usually attempted to solve a particular problem that
has emerged during the previous waves.

The first wave defined the basic aspects of computational self-adaptivity
and focused on the automation of typical system administration tasks such as
installing and configuring software systems [2]. The simple self-adaptive model,
MAPE-K, was the main contribution of the first wave.

The second wave attempted to specify in more detail how to actually engineer
self-adaptive systems [2]. The principles of software architecture design such as
abstraction and separation of concern were applied. At this time, the concept of
architecture-based self-adaptivity was born and MAPE-K evolved into 3LA.

While the first two waves defined the fundamental principles of self-adaptivity
and offered a few imprecise but general architectures, the third wave focused on
concrete self-adaptation mechanisms [2]. Techniques of model-driven engineering
that traditionally were applied at design time were now extended to runtime
environments. Runtime models of a software system represent the system at an
abstract level, and the idea is to implement self-adaptation at this level instead
of in the software system itself. Therefore, models work both as information
sources that guide adaptation decisions as well as the subjects of adaptation.

The previous waves clarified the requirements of the adaptation manager
but the fourth wave stressed the requirements of the software system itself [2].
Examples of these kinds of requirements would be, for example, to keep response
time under a specific value or never failing a certain action. The contributions



Architecting Self-adaptive Software Systems 69

of the fourth wave included different languages for specifying these requirements
and communicating them to the adaptation manager.

In the fifth wave, the question was how to guarantee requirements are met in
unpredictable runtime environments [2], which is essential in critical self-adaptive
systems, with strict requirements. Techniques based on mathematics and statis-
tics such as RQV (Runtime Quantitative Verification) were developed to tackle
this problem. Another solution is ActivFORMS (Active FORmal Models for
Self-adaptation) that is based on formally guaranteeable models.

The sixth wave also focuses on handling uncertainty but sees control theory
as the solution [2]. SimCA* and PBM (Push-Button Methodology) were some of
the main contributions of this wave. The study does not discuss learning-based
and awareness-based approaches but predicts artificial intelligence, including
machine learning, may play a big part in future self-adaptive research for its
fundamental ability to handle uncertainty.

5 Conclusion

We studied four general classes of self-adaptive approaches and one specific
example from each class. In architecture-based approaches, the focus is on the
architectural components of self-adaptive systems and the principles of software
engineering that help build them. The more formal control-based approaches
apply control theory to software systems in order to formally guarantee self-
adaptivity occurs as it should in systems with strict requirements. In learning-
based approaches, the traditional MAPE-K architecture is often present but
self-adaptivity is improved by allowing the self-adaptive logic itself to change at
runtime with incremental learning algorithms. Awareness-based approaches mix
aspects of both architecture-based and learning-based approaches while offering
improvements such as different types of knowledge and the ability to predict
future events.

In the future, it would be important to evaluate and compare self-adaptive
approaches more thoroughly, especially in real-world situations. We also left out
some approaches, for example those that are architecture-based but still provide
formal guarantees for adaptivity. However, based on our results on the benefits
and problems of each approach, it seems that an optimal, general self-adaptive
solution would combine aspects of all of the studied approaches. In particular,
it could be fruitful to base the self-adaptive architecture on the psychological
structure of self-awareness and -expression and implement both learning and
control processes at the lower levels of this architecture.

References

1. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. IEEE
Intell. Syst. 14(3), 54–62 (1999)

2. Lewis, P.R., et al.: A survey of self-awareness and its application in computing
systems. In: 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshops, pp. 102–107, October 2011



70 A. Huuhtanen et al.

3. Chen, T., Bahsoon, R.: Self-adaptive and online qos modeling for cloud-based
software services. IEEE Trans. Softw. Eng. 43(5), 453–475 (2017)

4. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric
(gqm) approach. Encyclopedia of Software Engineering (2002)

5. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

6. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering, pp. 259–268. IEEE Computer Society (2007)

7. Shevtsov, S., Berekmeri, M., Weyns, D., Maggio, M.: Control-theoretical software
adaptation: a systematic literature review. IEEE Trans. Soft. Eng.PP(99), 1 (2017)

8. Shevtsov, S., Weyns, D., Maggio, M.: Handling new and changing requirements
with guarantees in self-adaptive systems using simca. In: 2017 IEEE/ACM 12th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 12–23, May 2017

9. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
7–16. ACM (2010)

10. Lewis, P.R.: Self-aware computing systems: from psychology to engineering. In:
Design, Automation and Test in Europe Conference and Exhibition, pp. 1044–
1049, March 2017

11. Faniyi, F., Lewis, P.R., Bahsoon, R., Yao, X.: Architecting self-aware software
systems. In: 2014 IEEE/IFIP Conference on Software Architecture, pp. 91–94,
April 2014

12. Neisser, U.: The roots of self-knowledge: perceiving self, it, and thou. Ann. N. Y.
Acad. Sci. 818(1), 19–33 (1997)


	Architecting Self-adaptive Software Systems
	1 Introduction
	2 Methods
	3 Results
	3.1 Architecture-Based Approaches
	3.2 Control-Based Approaches
	3.3 Learning-Based Approaches
	3.4 Awareness-Based Approaches

	4 Related Work
	5 Conclusion
	References




