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Abstract. Refinement-based model checking is an approach to software
verification: Starting with an abstract software model, the model is iter-
atively refined until it is precise enough to prove or refute the prop-
erty of interest. A downside is that it typically takes several iterations
until the necessary precision is reached, and thus, resources are spent on
repeating work that has already been performed in previous iterations.
We tackle this by introducing a concept for reusing information between
refinement iterations in order to reduce the computational overhead. Our
approach extends our previous work on three-valued abstraction (3VA)
and bounded model checking (BMC). 3VA allows to translate a verifica-
tion problem into a SAT-encoded three-valued BMC problem that can be
checked via a SAT solver. While there was formerly no information shar-
ing between refinement iterations, we now show that logic constraints
learned by the solver in the current iteration are also valid in future
iterations. Reusing such constraints enables to prune the search space
of SAT which leads to a speed-up of the iterative approach. Since we
previously used standard BMC, the technique was incomplete and could
be only used for detecting property violations but not for proving their
absence. Here we combine three-valued BMC with k-induction, which
makes the approach complete for model checking safety properties.

1 Introduction

Three-valued abstraction refinement (3VA) [15] is a technique for reducing
the complexity of software verification. It proceeds by generating an abstract
software model over predicates with the possible truth values true, false and
unknown, where the latter is used to represent the loss of information due to
abstraction. The model is iteratively refined by adding predicates until it is pre-
cise enough to prove or refute some temporal logic property. The evaluation
of properties on such models is known as three-valued model checking (3MC)
[3]. In 3VA both true and false results can be immediately transferred to the
modelled system, whereas unknown indicates that the current abstract model
is too coarse for a definite outcome. The advantage of 3VA is that it allows to
gradually adjust the level of abstraction until the right balance between sim-
plicity and precision is reached in order to verify the property. The downside is
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that it typically takes several iterations until this happens, and thus, computa-
tional resources are spent on repeating work that has already been performed
in earlier iterations. Here, we tackle this drawback by introducing a concept for
sharing gathered information between refinement iterations in order to reduce
the computational overhead.

Our approach extends previous work where we presented a verification tech-
nique for concurrent systems based on 3VA and three-valued bounded model
checking (3BMC) [17,18]. Three-valued abstraction allows to translate ver-
ification problems into SAT-encoded 3BMC problems. Thus, verification is
reduced to SAT solving. In each refinement iteration, a propositional formula
that encodes the 3BMC problem for the current level of abstraction is gener-
ated and processed via a SAT solver. While there was formerly no information
sharing between iterations, we now show that logic constraints learned by the
solver in the current iteration are also valid in future iterations. SAT solvers
employ conflict-driven clause learning [2] while processing a propositional for-
mula, which generates constraint clauses that are used to prune the search space
of the current SAT check. We prove that certain constraints that have been
learned for our model checking encodings correspond to definite temporal logic
properties of the encoded system. Since definite properties are preserved under
three-valued abstraction refinement, it is permissible to reuse the associated
constraints among iterations. Our inter-refinement iteration constraint reusing
concept enables to considerably reduce the computational effort of 3VA-based
verification.

In standard bounded model checking the bound k ∈ N restricts the length
of execution paths of the modelled system, which makes the technique incom-
plete and only usable for detecting property violations but not for proving their
absence. While our previous approach [17,18] has this limitation, we now estab-
lish completeness by integrating k-induction [16] into our approach. k-induction
was originally introduced for verifying safety of hardware systems. It proceeds
as follows: Given a state transition model of the system to be analysed and
a state predicate Safe, it is checked whether all paths of length k that start
in an initial state of the model are safe, i.e. whether Safe holds in each state
along the paths. This is the base case of k-induction, which is equivalent to stan-
dard bounded model checking. If the base case holds, then the inductive step is
checked: Assuming k consecutive states where Safe holds in each state, then
Safe also has to hold in every (k+1)-st successor state. The inductive step does
not restrict the k consecutive states to start in an initial state. If the inductive
step holds as well, then it can be concluded that all possible execution paths
of the system are safe. Otherwise the procedure needs to be repeated with an
incremented k.

Since hardware systems naturally correspond to state transition models, the
application of k-induction is straightforward. In our software verification app-
roach, we generate an implicit state transition model by applying abstraction
and by encoding the state space of the abstract system in propositional logic. For
the integration of k-induction, we define the base case and the inductive step of
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our verification tasks as 3BMC problems. Moreover, we combine our refinement
procedure with a bound incrementation procedure. We use a top-level bound
incrementation loop and therein two refinement loops, one for the base case and
one for the step, that we independently abstract and refine. Each iteration is
now characterised by a bound and a level of abstraction of the base case and the
inductive step. Depending on the SAT-based verification outcome in an iteration,
either the bound is incremented, refinement is applied, or the procedure termi-
nates with a definite result that can be transferred to the input system. Learned
constraints are reused between refinement iterations based on our novel clause
reusing concept. Furthermore, we reuse constraints between bound iterations,
which is permissible due to the incremental bounded model checking principle
[11]. In experiments, we demonstrate that our approach enables the complete
verification of concurrent systems within linear integer arithmetic and we show
that our constraint reusing leads to significant performance improvements.

2 Concurrent Software Systems

Our approach focusses on linear integer concurrent systems. Almost all control
structures of the C language, concurrency and the variable types bool and int are
supported. There is currently no support for arrays and pointers. A system Sys
consists of processes P1 to Pn composed in parallel: Sys = ‖n

j=1 Pj . It is defined
over a set of variables V ar = V arSys ∪ V arPC . V arSys is a set of arbitrary
system variables and V arPC is a special set that holds for each Pj a program
counter pcj ranging over the binary control locations Locj = {00, 01, ...} of Pj .
Locations of a process are labelled with guarded commands over system variables
and with a reference to the next location. The form of a guarded command is
assume(e) : v1 :=e1, ..., vm :=em where v1, ..., vm ∈ V arSys and e, e1, ... em are
expressions over V arSys. The state space over V ar corresponds to the set SV ar

of all variable valuations. Given a s ∈ SV ar and an expression e over V ar, s(e)
denotes the valuation of e in s. An example system for mutual exclusion is:

y : semaphore where y = 1;

P1 ::

⎡
⎢⎢⎣

loop forever do⎡
⎣
0: acquire (y, 1);
1: CRITICAL

release (y, 1);

⎤
⎦

⎤
⎥⎥⎦ ‖ P2 ::

⎡
⎢⎢⎣

loop forever do⎡
⎣
0: acquire (y, 1);
1: CRITICAL

release (y, 1);

⎤
⎦

⎤
⎥⎥⎦

We have two processes operating on a counting semaphore y. The seman-
tics of the operations are: acquire(y, 1) = assume(y > 0) : y := y − 1
and release(y, 1) = assume(true) : y := y + 1. We assume that for any
Sys a deterministic initialisation of V ar is given by a predicate Init, e.g.
Init = (y = 1) ∧ (pc1 = 0) ∧ (pc2 = 0). A computation of Sys corre-
sponds to a sequence of commands where in each step one process is non-
deterministically selected and the command at its current location is attempted
to be executed. If the execution is not blocked by a guard, the variables are
updated according to the assignment part and the process advances to the
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next location. A computation can be likewise considered as a state sequence
π = s0s1s2 . . . where the transition from si to si+1 correctly characterises the
execution of the associated command. A computation of our example system
is: π = 〈y = 1, pc1 = 0, pc2 = 0〉〈y = 0, pc1 = 1, pc2 = 0〉〈y = 1, pc1 = 0, pc2 = 0〉 . . .
Explicit-state verification constructs transition models that represent all possible
computations of the analysed system. In our approach, we construct a proposi-
tional encoding that represents the computations implicitly. Before we introduce
our encoding, we look at the temporal properties that we want to verify.

3 Checking Safety via k-Induction

Verification involves checking all possible computations of a system with regard
to correctness requirements. Of particular interest are safety properties, which
require that all states reached in a computation satisfy some predicate Safe. For
our example system mutual exclusion is a safety property that corresponds to
Safe = ¬(pc1 =1) ∨ ¬(pc2 =1). It requires that not both processes are at their
critical location 1 at the same time. Verification means to prove or refute that
for all computations starting in an initial state Safe always holds, or formally:

[Sys, Init |=∀ always Safe] := ∀π = (s0s1s2 . . .) : s0(Init) → ∧∞
i=0si(Safe)

A method to address such verification problems is k-induction [16]: Let Sys be
a system with computations in terms of state sequences and let k ∈ N. In the
base case it is checked if for all computations starting in an initial state the first
k states are Safe. In the induction step it is checked if, assuming a computation
consisting of a sequence of k Safe states, also any successor state is Safe. In con-
trast to the base case, the step does not contain a constraint on the initial state.
This is necessary for the soundness of k-induction. These universal problems,
referring to the safety of all computations, can be transformed into complemen-
tary existential problems referring to the existence of unsafe computations; as
we can see, only the base case contains the initial state constraint s0(Init):

[Sys, Init |=∃ Base]k := ∃π = (s0 . . . sk) : s0(Init) ∧ ∨k
i=0si(¬Safe)

[Sys, true |=∃ Step]k+1 := ∃π = (s0 . . . sk+1) :
∧k

i=0si(Safe) ∧ sk+1(¬Safe)

Hence, proving the universal problems is equivalent to disproving the existential
ones. The latter can be efficiently done via SAT or SMT solving. k-induction
is typically performed incrementally with regard to k. Thus, when checking the
base case for some k we can assume that all shorter base cases have already been
proven to be safe, and we can add these facts as constraints to the problem to
be solved. Furthermore, in order to make k-induction complete, i.e. terminating
for finite-state systems, it is necessary to restrict the inductive step to loop-
free computations [16]. This gives us a slightly revised base case and step, for
simplicity we abbreviate the verification problems by just [Base]k and [Step]k+1:

[Base]k := ∃π = (s0 . . . sk) : s0(Init) ∧ ∧k−1
i=0 si(Safe) ∧ sk(¬Safe)

[Step]k+1 := ∃π = (s0 . . . sk+1) : π(LoopFree) ∧ ∧k
i=0si(Safe) ∧ sk+1(¬Safe)
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where π(LoopFree) =
∧

0≤i<j≤k+1(si �= sj) assuming that π = (s0, . . . , sk+1).
k-induction is still applicable to systems with loop computations in terms of
recurring states, but for checking safety it is sufficient to only consider loop-free
ones. The procedure below illustrates the principle of incremental k-induction:

1 for k = 0 to ∞ do
2 if ([Base]k holds) then
3 return ”safety property fails”
4 if ([Step]k+1 does not hold) then
5 return ”safety property holds”

k-induction allows to reduce an unbounded verification problem to two bounded
ones: the base case and the inductive step. Base case and step can be formulated
as bounded model checking problems. Bounded model checking requires a state
transition model of the system to be analysed. For hardware, such models can be
straightly encoded in propositional logic and verification can be done via SAT
solving. k-induction-based hardware verification has been applied in [7,16]. For
software it is significantly harder to capture its complex features in propositional
logic. Therefore, most k-induction approaches to software verification use an
SMT solver [6,10]: The input system is transformed into a k-bounded one, where
k typically refers to the number of unrollings of loops. The bounded system is
then fed into an SMT solver to check the base case and the step of the verification
problem. In our new approach, we use a combination of SMT and SAT: Via
SMT solving we generate a three-valued abstraction of the system. Due to the
reduced complexity the abstract system can be straightforwardly encoded in
propositional logic and verification can be efficiently done via SAT solving. Next,
we give a brief introduction to three-valued abstraction.

4 Three-Valued Predicate Abstraction and Refinement

To make SAT-based k-induction applicable to software verification, we follow
the abstraction refinement paradigm: We employ SMT-based three-valued predi-
cate abstraction [15] to our concrete systems, which yields abstract systems over
predicates that can take the values true, false and unknown. Unknown represents
loss of details due to abstraction. Three-valued abstraction generates an approx-
imation in the sense that all definite verification results (true, false) obtained
for an abstract system can be transferred to the concrete system. Only unknown
results necessitate refinement for which we developed an automatic procedure
[17]. Later we show that for an abstract system and a safety property any base
case or step of k-induction can be reduced to two Boolean SAT problems. We
now briefly outline three-valued abstraction. Details can be found in [15]. Our
approach is based on the Kleene logic K3 [8] where unknown, abbreviated by u, is
a used as a third truth value. In abstract systems guarded commands do not refer
to concrete variables but to abstract predicates ASys over V arSys. Predicates in
ASys may be set to u due to the execution of an abstract command. While our
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three-valued abstraction reduces the complexity induced by system variables, it
preserves the original control flow. For this, we use the set of two-valued pred-
icates APC = {(pcj = bm ... b0) | pcj ∈ V arPC , bm ... b0 ∈ Locj} that covers all
possible locations of the system. The overall predicate set is A = ASys ∪ APC .
Given a concrete system Sys over V ar, an initialisation Init and a property ψ,
we refer to the corresponding concrete verification task by V ar[Sys, Init |=Q ψ]
with Q ∈ {∀,∃}. Additionally given a predicate set A over V ar we refer to the
abstract verification task by A[Sys, Init |=Q ψ]. From [15] we get the theorem:

Theorem 1 (Property Preservation under Three-Valued Abstraction).
Let Sys, V ar, Init, A and Q as above. Moreover, let ψ be a property that is
expressible in linear temporal logic (LTL) and let z ∈ {true, false}. Then:

A[Sys, Init |=Q ψ] = z ⇒ V ar[Sys, Init |=Q ψ] = z

Since the properties in our k-induction approach are expressible in LTL, we can
make use of Theorem 1. Definite results under abstraction can be transferred to
the concrete system. For unknown results we have our refinement technique [17]
that yields an extended predicate set Ar+1 = Ar ∪ {p|p predicate over V ar, p /∈
Ar} where r = 0, 1, . . . denotes the current refinement iteration. We get:

Corollary 1. Let Sys, Init, ψ, Ar, Ar+1, Q and z as above. Then:

Ar [Sys, Init |=Q ψ] = z ⇒ Ar+1 [Sys, Init |=Q ψ] = z

Thus, definite properties are also preserved under abstraction refinement.

5 Three-Valued Bounded Model Checking

So far, we have defined verification tasks and corresponding abstractions. To
practically perform verification, we need a computational model. Abstract state
spaces can be defined as three-valued Kripke structures and safety properties can
be formalised in temporal logic. On this basis, verification tasks can be expressed
as three-valued bounded model checking (3BMC) problems.

Definition 1 (Three-Valued Kripke Structure). A three-valued Kripke
structure over a set of atomic predicates A is a tuple M = (S, S0, R, L) where S
is a set of states, S0 ⊆ S is a set of initial states, R : S × S → {true, u, false}
is a transition function, and L : S ×A → {true, u, false} is a labelling function.

We assume that Kripke structures are complementary-closed, i.e. for each p ∈ A
there is a complementary p ∈ A such that ∀s ∈ S : L(s, p) = ¬L(s, p). A path π
is a sequence of states s0s1s2 . . . with ∀i : R(si, si+1) ∈ {true, u}. π(i) denotes
the i-th state of π. By ΠM we denote the set of all paths of M starting in an
initial state. Paths are considered for the evaluation of temporal properties. Here
we use the bounded temporal logic (BTL) which is a fragment of LTL.
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Definition 2 (Syntax of Bounded Temporal Logic (BTL)). Let A be a
predicate set and k ∈ N a bound. The set of BTL formulas BTL over A and
k is

– if p ∈ A and i ∈ [0, k] then pi ∈ BTL and ¬pi ∈ BTL,
– if ψ ∈ BTL then ¬ψ ∈ BTL,
– if ψ ∈ BTL and ψ′ ∈ BTL then ψ ∨ ψ′ ∈ BTL and ψ ∧ ψ′ ∈ BTL.

Definition 3 (Three-Valued Evaluation of BTL). Let M = (S, S0, R, L)
be over A and let π be a path of M . Let k ∈ N and i ∈ [0, k]. Then the evaluation
of a k-bounded BTL formula ψ on π, written [π |= ψ]k, is inductively defined as:

[π |= pi]k = L(π(i), p) ∧ ∧i−1
j=0R(π(j), π(j + 1))

[π |= ¬pi]k = L(π(i), p) ∧ ∧i−1
j=0R(π(j), π(j + 1))

[π |= ψ ◦ ψ′]k = [π |= ψ]k ◦ [π |= ψ′]k with ◦ ∈ {∧,∨}
[π |= ¬(ψ ◦ ψ′)]k = [π |= ¬ψ]k ◦ [π |= ¬ψ′]k with ∧ = ∨ and ∨ = ∧

The universal evaluation of a BTL formula ψ on M over A is A[M,S0 |=∀ ψ]k =∧
π∈ΠM

[π |= ψ]k. The existential one is A[M,S0 |=∃ ψ]k =
∨

π∈ΠM
[π |= ψ]k.

Checking BTL properties of three-valued Kripke structures is three-valued
bounded model checking [18] with the possible outcomes true, false, u. The state
space of an abstracted system Sys can be modelled as a Kripke structure M
such that there is a one-to-one correspondence between the states of Sys and
M , and the transitions of M correspond to the execution of guarded commands
of Sys. Hence, paths of M represent computations of Sys. From [15] we get the
theorem:

Theorem 2. Let Sys be abstracted over A and let M be the three-valued Kripke
structure representing the abstract state space of Sys. Moreover, let Q ∈ {∀,∃}.
Then for all linear temporal logic properties ψ the following holds:

A[Sys, Init |=Q ψ]k ≡ A[M,S0 |=Q ψ]k

Thus, verification is equivalent to solving the corresponding 3BMC problem. This
is an important fact since 3BMC can be reduced to propositional satisfiability
and thus effectively performed via SAT solving. We now define the base case and
the step of k-induction-based verification as 3BMC problems. For our example
with Safei = ¬(pc1 = 1)i ∨ ¬(pc2 = 1)i and (pc1 = 1), (pc2 = 1) ∈ A we get

A[Base]k ≡ A[M,S0 |=∃
∧k−1

i=0 Safei ∧ ¬Safek]k
A[Step]k+1 ≡ A[M,S |=∃

∧k
i=0Safei ∧ ¬Safek+1 ∧ LoopFree(0..k + 1)]k+1

with LoopFree(0..k +1) =
∧

0≤i<j≤k+1

(
∨

p∈A

(
(pi ∧¬pj)∨ (¬pi ∧ pj)

)
)

. The

loop-free property expresses that all states along a prefix are pairwise different.
Note that in the 3BMC problem representing the inductive step the set of initial
states is simply S, i.e. an arbitrary state can be the initial state. Next, we take
a look on how these 3BMC problems can be encoded in propositional logic.



Constraint Reusing and k-Induction 133

6 Propositional Logic Encoding

In [18] we showed how a 3BMC problem A[M,S0 |=∃ ψ]k corresponding to a
system Sys abstracted over A and a property ψ can be encoded as a propo-
sitional formula A[[M,ψ]]k. The encoding can be directly constructed based on
the abstract system. It corresponds to an implicit representation of the model
checking problem such that the construction and exploration of an explicit state
transition model is avoided. A[[M,ψ]]k is defined over a set of Boolean atoms
Atoms, the constants true, false, and a special atom ⊥ that we use to repre-
sent the unknowns due to abstraction. ⊥ occurs solely non-negated in A[[M,ψ]]k.
3BMC can now be performed via two SAT checks. One check considers an over-
approximating completion, marked with ‘+’, where all ⊥’s are assumed to be
true:

A[[M,ψ]]+k := A[[M,ψ]]k[⊥ �→ true]

and the second check considers an under-approximating completion, marked with
a ‘−’, where all ⊥’s are assumed to be false:

A[[M,ψ]]−k := A[[M,ψ]]k[⊥ �→ false].

Here [⊥ �→ z], z ∈ {true, false} denotes the assumption that the special atom
⊥ is assigned to z. This gives us the notion of three-valued satisfiability sat3:

Definition 4 (sat3). Let A[[M,ψ]]k over Atoms be the propositional encoding of
A[M,S0 |=∃ ψ]k, let {A|A : Atoms → {true, false}} be the set of all possible
truth assignments to the atoms in Atoms. Then sat3 is defined as:

sat3(A[[M,ψ]]k) =

⎧
⎨

⎩

false if ∀A : A(A[[M,ψ]]+k ) = false
true if ∃A : A(A[[M,ψ]]−k ) = true
unknown else

In [18] the following theorem has been proven:

Theorem 3. Let A[[M,ψ]]k and A[M,S0 |=∃ ψ]k be as above. Then:

sat3(A[[M,ψ]]k) = A[M,S0 |=∃ ψ]k

Hence, the sat3 result obtained for the encoding corresponds to the model check-
ing result. We now briefly explain how the translation into Boolean satisfiability
works. The details can be found in [18]. Remember that paths of Kripke struc-
tures as well as BTL properties correspond to expressions over A = ASys ∪APC

indexed with i ∈ [0, k] where i denotes a position along a k-prefix. Thus, our
encoding is inductively defined over indexed expressions. Predicates in ASys have
a three-valued domain, whereas the encoding is two-valued and we use the special
atom ⊥ to represent the ‘unknown’. In order to reduce a three-valued problem
to a two-valued one, we use two Boolean atoms for each p ∈ ASys and i ∈ [0, k]:

AtomsSys := {p[u]i, p[b]i | p ∈ ASys, i ∈ [0, k]}
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Atom p[u]i will let us indicate whether p evaluates to unknown or to a definite
value at position i, and p[b]i will let us indicate whether p evaluates to true or
false. For encoding counter predicates (pcj = lm . . . l0) ∈ APC we use the set

AtomsPC := {lj [m]i, . . . , lj [0]i | (pcj = lm . . . l0) ∈ APC , i ∈ [0, k]}
Since a program counter location lm . . . l0 is a binary number, it can be straight-
forwardly encoded as a conjunction of literals over lj [m]i, . . . , lj [0]i. The overall
set of atoms of our encoding is Atoms = AtomsSys ∪ AtomsPC . Now we can
define the Boolean encoding of arbitrary indexed expressions over A and [0, k]:

Definition 5 (Encoding of Logical Expressions). Let A = ASys ∪ APC

be a predicate set with p ∈ ASys and (pcj = lm . . . l0) ∈ APC . Let k ∈ N. The
encoding of expressions e over A indexed over [0, k], written [[e]]k, is defined as:

[[pi = unknown]]k := p[u]i
[[pi = true]]k := ¬p[u]i ∧ p[b]i
[[pi = false]]k := ¬p[u]i ∧ ¬p[b]i
[[pi]]k := [[pi = true]]k ∨ ([[pi = unknown]]k ∧ ⊥)
[[¬pi]]k := [[pi = false]]k ∨ ([[pi = unknown]]k ∧ ⊥)
[[(pcj = lm . . . l0)i]]k :=

∧m
d=0(if ld = 1 then lj [d]i else ¬lj [d]i)

[[¬(pcj = lm . . . l0)i]]k := ¬[[(pcj = lm . . . l0)i]]k

The encoding of e ∨ e′, e ∧ e′, ¬(e ∨ e′) and ¬(e ∧ e′) is trivial and thus omitted.

We can build the formula A[[M,ψ]]k = A[[M ]]k ∧A[[ψ]]k over Atoms where A[[M ]]k
encodes all k-bounded paths of M and A[[ψ]]k constrains paths to those satisfying
ψ. E.g., the property

∧k
i=0 Safei with Safei = ¬(pc1 = 1)i ∨ ¬(pc2 = 1)i gets

encoded to
∧k

i=0(¬l1[0]i ∨ ¬l2[0]i). Each assignment A that satisfies A[[M,ψ]]−k
characterises a path π in M with [π |= ψ] = true. If there is no such assignment
for A[[M,ψ]]+k then ∀π we have [π |= ψ] = false. This reduces 3BMC to SAT.

7 Iterative Refinement with Constraint Reusing

Our SAT-based verification technique combines three-valued abstraction with
iterative refinement. Given a system Sys over V ar, a k-bounded property ψ and
a predicate set Ar, we construct the encoding Ar [[M,ψ]]k of the corresponding
three-valued bounded model checking problem Ar [M |=E ψ]k, where r = 0, 1, . . .
denotes the current refinement iteration. In this section, we introduce the con-
cept of constraint reusing between refinement iterations. Algorithm SATBMC
illustrates our refinement approach and gives a first idea of constraint reusing:
SATBMC gets a model checking problem and a predicate set Ah as an input,
where h ∈ N denotes the refinement level to start with. h is typically 0 but may
be also greater when we combine iterative refinement with bound incrementation
(Sect. 8). Unsatisfiability of the over-approximating completion and satisfiabil-
ity of the under-approximating one let us immediately derive a corresponding
definite model checking result. If this is not possible in iteration r, we apply
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Algorithm 1. SATBMC([M,S0 |=E ψ]k, Ah)
1 definite constraint set C := ∅

2 for r = h to ∞ do
3 if Ar [[M, ψ]]+k ∧ C unsatisfiable then
4 return Ar [M, S0 |=E ψ]k = false

5 if Ar [[M, ψ]]−k ∧ C satisfiable then
6 return Ar [M, S0 |=E ψ]k = true
7 else
8 Ar+1 := Ar ∪ {p | p /∈ Ar}
9 add definite constraints learned in current iteration to C

our counterexample-guided refinement [17] which yields an extended predicate
set Ar+1 := Ar ∪ {p|p predicate over V ar, p /∈ Ar} and a corresponding refined
encoding Ar+1 [[M,ψ]]k. We then run the necessary SAT tests and repeat these
steps until a definite result is obtained. As we can see, the encodings in our algo-
rithm are conjuncted with a constraint set C. A constraint is a clause over the
atoms of the encoding that has been inferred by the solver via clause learning [2].
C is extended with newly learned constraints in each iteration. Thus, constraints
learned in the past are reused in future iterations. The motivation for constraint
reusing is that adding (valid) constraints to a formula reduces the search space
of the corresponding SAT problem, which can improve the solving time.

However, reusing constraints between refinement iterations is not straight-
forward. A clause learned in iteration r is not necessarily a valid constraint in
r + 1. The formulas Ar [[M,ψ]]k and Ar+1 [[M,ψ]]k evidently share a common set
of atoms over which they are defined, but their structure is typically completely
different: The addition of new predicates by refinement can involve extensive
changes of the abstract state space and its encoding. Thus, Ar+1 [[M,ψ]]k can-
not be obtained from Ar [[M,ψ]]k by simply adding more clauses. This makes
our refinement generally incompatible with standard incremental SAT solving
[13] where learned constraints can be reused between consecutive SAT instances
without any restriction. Our novel constraint reusing concept for iterative refine-
ment is based on a check of whether a learned constraint is definite in terms of
the encoded three-valued model checking problem. A definite constraint charac-
terises a temporal property that definitely holds at the current refinement level.
Since definite properties are preserved under refinement (Corollary 1), we can
prove that definite constraints are also valid at any higher refinement level.

We start with a few basics. A learned constraint is a clause C that is syn-
tactically inferred from a formula F by the solver: F � C. The following holds:
(F � C) ⇒ (F |= C), i.e. a syntactic consequence is also a semantic one. If
F |= C holds, we say C is a valid constraint of F . We implemented over- and
under-approximating completions of F = Ar [[M,ψ]]k as assumptions over ⊥.
This has the effect that all learned constraints are assumption-independent [7],
i.e. they are logical consequences irrespective of the value assigned to ⊥. Hence,
we say C has been learned for F if it has been learned for F+ or for F−. Since
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F+ and F− only differ in the assumption over ⊥, we get (F+ � C) ⇒ (F− |= C).
Thus, all C learned for F+ can be reused when solving F− in the same iteration.

We now describe how constraints can be reused between refinement iterations
r < r′. This is feasible for constraints that characterise temporal properties that
definitely hold in iteration r. In order to identify such definite constraints we use
an enhancement of the encoding Ar [[M,ψ]]k based on the Tseytin transformation
(TT) [19] where sub-formulas are represented by auxiliary atoms:

AtomsAux = {p[t]i, p[f ]i | p ∈ Ar
Sys, i ∈ [0, k]}

The enhanced encoding revises Definition 5 in two cases only:

Definition 6 (Enhanced Encoding). Let p ∈ Ar
Sys and i ∈ [0, k]. Then:

[[pi = true]]k := p[t]i [[pi = false]]k := p[f ]i

Hence, definite information with regard to a predicate p at position i can now be
derived from a single literal (e.g. p[t]i), rather than from a conjunction of literals
(e.g. ¬p[u]i ∧ p[b]i) as in the original encoding. Note that a constraint is always
a disjunction of single literals. Thus, only with our enhanced encoding a learned
constraint may tell us something definite about a predicate p. We still need to
put p[t]i, p[f ]i and p[u]i into a relation to correctly encode that a three-valued
predicate can only hold one truth value at a time. According to TT, we conjunct
the overall encoding with the following equivalences:

∧

p∈Ar
Sys

∧k

i=0

(
(p[t]i ↔ ¬p[u]i ∧ p[b]i) ∧ (p[f ]i ↔ ¬p[u]i ∧ ¬p[b]i)

)

Thus, the single auxiliary atoms represent sub-formulas that indicate defi-
nite information with regard to predicates. Let Ar [[M,ψ]]k over Atoms be the
resulting enhanced encoding. We now define the set of definite literals DL over
Atoms as:

DL = {p[t]i, p[f ]i | p ∈ Ar
Sys, i ∈ [0, k]}

∪ {lj [d]i,¬lj [d]i | (pcj = lm . . . l0) ∈ Ar
PC , i ∈ [0, k], d ∈ [0,m]}

DL contains all auxiliary atoms, and all program counter atoms and their
negations. We denote constraints that are purely composed of literals from DL
as definite constraints. BTL formulas corresponding to definite constraints are:

Definition 7 (BTL Formulas Corresponding to Definite Constraints).
Let Ar [[M,ψ]]k be the enhanced encoding of Ar [M,S0 |=∃ ψ]k. Moreover, let C =
c1 ∨ . . . ∨ cn over DL be a definite constraint learned for Ar [[M,ψ]]k. Then the
BTL formula corresponding to C, written btl(C), is inductively defined as:

btl(p[t]i) := pi

btl(p[f ]i) := ¬pi

btl(lj [d]i) :=
∨

(lm...l0)∈Locj ,ld=1(pcj = lm . . . l0)i

btl(¬lj [d]i) :=
∨

(lm...l0)∈Locj ,ld=0(pcj = lm . . . l0)i

btl(c1 ∨ . . . ∨ cn) := btl(c1) ∨ . . . ∨ btl(cn)



Constraint Reusing and k-Induction 137

We get the following lemma wrt. constraints and corresponding BTL formulas:

Lemma 1. Let Ar [[M,ψ]]k be the enhanced encoding of Ar [M,S0 |=∃ ψ]k. More-
over, let C over DL be a definite constraint. Then

Ar [[M,ψ]]k � C ⇒ Ar [M,S0 |=∀ (ψ → btl(C))]k = true

Proof. See http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf.

Hence, even if the current refinement level is too coarse to prove the actual
property of interest ψ, a learned definite constraint C tells us that all paths
satisfying ψ must also satisfy btl(C). This is a definite result of a three-valued
model checking problem with refinement level r. Corollary 1 allows us to trans-
fer this result to all refinement levels r′ > r: Ar [M,S0 |=∀ (ψ → btl(C))]k =
true ⇒ Ar′ [M,S0 |=∀ (ψ → btl(C))]k = true. Next, we show that a constraint
C associated with a definite property ψ → btl(C) is also valid at higher levels.

Lemma 2. Let Ar [[M,ψ]]k be the encoding of Ar [M,S0 |=∃ ψ]k and let C be a
definite constraint. Then

Ar [M,S0 |=∀ (ψ → btl(C))]k = true ⇒ Ar [[M,ψ]]k |= C

Proof. See http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf.

We get the following Corollary that establishes the reusability of definite con-
straints between refinement iterations.

Corollary 2 (Reusability of Definite Constraints). Let Ar [[M,ψ]]k be the
encoding of Ar [M,S0 |=∃ ψ]k. Let C be a definite constraint and r′ > r. Then

Ar [[M,ψ]]k � C Ar′ [[M,ψ]]k |= C

⇐= Lemma 1

=
⇒ Lemma 2

Ar [M,S0 |=∀ (ψ→ btl(C))]k = true
Cor. 1=⇒
Thm. 2 Ar′ [M,S0 |=∀ (ψ→ btl(C))]k = true

Hence, a definite constraint C learned in iteration r implies that ψ → btl(C)
universally holds at r and any higher refinement level r′ as well. Consequently,
C must be also a valid constraint of the encoding in all iterations r′ > r. We
utilise this by determining definite constraints in each iteration and adding them
to the set C that we use as a constraint set of the SAT problems to be solved in
SATBMC. Our concept is based on TT. Thus, it does not lead to an increased
complexity of the SAT problem. In fact, we also use TT to transform the overall
encoding into conjunctive normal form, which introduces further auxiliary atoms.
This does not affect our constraint reusing since we use the same auxiliary atoms
for representing sub-formulas recurring in multiple refinement iterations. After
TT, all clauses purely containing definite literals and auxiliary atoms referring
to definite constraints can be reused between refinement iterations.

http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf
http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf
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We illustrate our constraint reusing concept based on our running exam-
ple. Let A0 [[M,Safe0 ∧ Safe1]]1 with A0 =

{
(pc1 = 0), (pc1 = 1), (pc2 = 0),

(pc2 = 1)
}

and Safei = ¬(pc1 = 1)i ∨ (pc2 = 1)i be the encoding of the base
case of checking safety of the mutual exclusion system. The atom set used
for the encoding is Atoms = {l1[0]0, l2[0]0, l1[0]1, l2[0]1, }. SAT solving yields
unknown, since no information about the semaphore is considered at the cur-
rent abstraction level. However, the solver infers the following constraint clauses(¬l1[0]1 ∨ ¬l2[0]1

)
and

(
l1[0]1 ∨ l2[0]1

)
with the corresponding temporal logic

formulas:
(
(pc1 =0)1 ∨ (pc2 =0)1

)
and

(
(pc1 =1)1 ∨ (pc2 =1)1

)

Hence, at position 1 of any execution path either only process 1 or only process
2 is at its critical location. According to our corollary, the constraint clauses
that characterise this property can be reused in all future refinement iterations
for pruning the search space of SAT. In the next iteration, we add the predicate
p := (y=1) and SAT solving infers another reusable constraint clause (p[f ]1). It
tells us that at position 1 of any path the semaphore will be occupied. Next, we
show how we integrated SATBMC into an incremental k-induction procedure.

8 Implementation

We implemented an automatic verification tool for concurrent software systems1.
Our tool extends our existing SAT-based bounded model checking framework
[17] by integrating the k-induction principle with base case and inductive step,
which makes our formerly incomplete approach complete. It employs three-
valued abstraction in order to reduce the complexity of the state space encod-
ings. Abstraction is combined with iterative refinement. As an input we take
a system Sys in a C-like syntax with int, bool and semaphore as data types,
an initial state predicate Init and a safety predicate Safe. To verify whether
[Sys, Init |=∀ always Safe] holds, we determine the abstract model checking
problems corresponding to the base case and step of k-induction

[Base]k = [M,S0 |=∃
∧k−1

i=0 Safei ∧ ¬Safek]k over ArB

[Step]k+1 = [M,S |=∃
∧k

i=0Safei∧ ¬Safek+1∧ LoopFree(0..k+1)]k+1 over ArS

where ArB denotes the predicate set used for the three-valued abstraction of the
base case and ArS the set used for the inductive step. The bound k and the
predicate sets are so far only uninitialised parameters and instead of explicitly
constructing the Kripke structure M and exploring its state space, we take the
bounded model checking problems as the input of our k-induction algorithm:

The variables rB and rS indicate the current refinement iteration of the base
case and of the inductive step. Both are initialised with 0. The corresponding
sets of abstraction predicates ArB and ArS are also initialised by the k-induction

1 Available at www.github.com/ssfm-up/TVMC/tree/unbounded.

www.github.com/ssfm-up/TVMC/tree/unbounded
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Algorithm 2. k-induction([Base]k, [Step]k+1)

1 rB := 0, ArB := initialiseArB ()
2 rS := 0, ArS := initialiseArS ()
3 for k = 0 to ∞ do
4 if (SATBMC([Base]k, ArB ) = true) then
5 return ”safety property fails”
6 if (SATBMC([Step]k+1 , ArS ) = false) then

7 return ”safety property holds”

algorithm. Initially, they contain all control flow predicates and potentially fur-
ther predicates over system variables that are referenced in the property to be
checked. After the initialisation, k-induction iterates over the bound. In each
k-iteration SATBMC is called for the bounded model checking problems asso-
ciated with the base case and with the step. Within SATBMC we have a further
iteration: The set of abstraction predicates is iteratively extended via refinement.
Each refinement iteration consists of the propositional encoding of the three-
valued model checking problem for the current predicate set and the execution
of the corresponding SAT checks. SATBMC terminates once a refinement level
is reached where a definite model checking result can be obtained. k-induction
terminates when it can be either proven or refuted that safety holds for the
system. Termination is guaranteed for finite-state systems.

As another new feature, our tool supports constraint reusing on three levels.
(I): Constraints are reused between bound iterations k < k′ based on incre-
mental SAT with assumption literals [13]. (II): Similarly, we reuse assumption-
independent constraints between the over- and the under-approximating com-
pletion in each refinement iteration r. (III): Finally, we reuse definite constraints
between refinement iterations r <r′ based on the results from Sect. 7. The dia-
gram below illustrates the directions of constraint reusing for the base case:

Ar [Base]+k
(II)

−−−−→ Ar [Base]−k Ar′ [Base]+k
(II)

−−−−→ Ar′ [Base]−k

Ar [Base]+k ′
(II)

−−−−→ Ar [Base]−k ′ Ar′ [Base]+k ′
(II)

−−−−→ Ar′ [Base]−k ′

(I) increment bound

(III)

refinement

(III)

refinement

(I) increment bound

9 Experimental Results

We experimentally investigated the impact of our novel clause reusing con-
cepts (II) and (III) on the verification time. While detecting safety violations in
faulty systems was generally very fast, we focused in our case study on proving
safety of correct systems: We verified deadlock-freedom of a semaphore-based
dining philosophers algorithm and we proved mutual exclusion of Dijkstra’s
mutex algorithm [5]. In each benchmark we considered systems with increasing
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numbers of processes. A general optimisation that we used was checking the
over-approximation of the base case always first and in case of a false result
skipping the then redundant under-approximation check (see Definition 4 and
Theorem 3). Analogously, we always checked the under-approximation of the
step first and in case of a true result skipped the over-approximation check. The
intuition behind this is that for safe systems we can always expect a sequence
of iterations where the base case fails and the step holds until in the final itera-
tion the step fails, which corresponds to a correctness result. The experimental
results are depicted below.

Benchmark Processes Final bound Refinements
(base/step)

Time with
(I) only

Time with
(I), (II) and
(III)

Philosophers 2 3 1/2 0.45 s 0.44 s

3 6 2/3 0.75 s 0.66 s

4 12 3/4 4.67 s 3.85 s

5 24 4/5 91.1 s 68.5 s

Dijkstra 2 12 1/6 4.80 s 3.32 s

3 16 1/9 31.87 s 22.21 s

4 21 2/12 73min 52min

5 25 2/15 244min 158min

The experiments were conducted on a 3.4 GHz Core i7 with 8 GB memory. As
we can see, our two novel constraint reusing concepts (II) and (III) together
could lead to noticeable performance improvements in comparison to only using
the established inter-bound constraint reusing (I). The computational savings
were more evident for Dijkstra’s algorithm where the number of refinement iter-
ations was generally higher, i.e. where there were more capabilities for inter-
refinement clause reusing. When we investigated the individual speed-up effect
of (II) and of (III), we observed that (II) had a stronger impact when the number
of refinements was small, whereas for cases with many refinements the perfor-
mance impact of the two concepts was nearly equally strong, e.g. for Dijkstra
4: savings of 12 min with (II) only, savings of 14 min with (III) only, and of
21 min both together. This also shows that there is an overlap of savings due
to (II) and due to (III). The experiments also revealed that it is beneficial to
abstract and refine the base case and the step individually. The base case could
be always accomplished based on fewer refinements, i.e. a less complex encoding.
This advantage would not come into effect with a joint abstraction refinement
of base case and step.

10 Related Work

k-induction was first introduced in [16] as a technique for verifying hardware
systems that correspond to finite-state transition models. It extends classical
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bounded model checking from falsification to verification. It has been combined
with incremental SAT, which allows to reuse learned constraints between bound
iterations [7]. In comparison to our approach, the bound is the only dimension
of incrementation. Since hardware is generally simpler than software, there is no
concept for abstraction refinement used in the above-mentioned papers. Our soft-
ware verification technique adds the level of abstraction as a second dimension
of incrementation and we show that constraint reusing is also feasible between
refinement iterations. Our major focus is the verification of safety properties of
concurrent systems, e.g. mutual exclusion and deadlock-freedom. In the context
of software verification, k-induction has been used for checking safety of loop
programs [1,6,9,10,14]. In these papers, the bound k determines the number of
loop unwindings. The unwound program is encoded into a formula that can be
processed by an SMT solver. SMT generally allows for more compact encod-
ings than SAT. While [1,6,9,10,14] directly operate on the concrete program, we
follow the abstraction refinement paradigm [4]. SMT-based predicate abstrac-
tion [12] allows us to generate a propositional state transition encoding that is
compact enough to be efficiently processed by a SAT solver. In particular, our
abstraction approach enables to omit details along the explored paths that are
not relevant for solving the verification problem. Missing but necessary details
are iteratively added by refinement, where our constraint reusing concept alle-
viates the computational overhead of the iterative approach. In [1,6,9,10,14]
the performance of verification is improved by inferring loop invariants that are
added as assumptions to the program, which is a particular form of constraint
using in the context of loop programs. While earlier works are based on manually
specified invariants [6], recent approaches use automatic invariant generation [14]
or refine invariants in each bound iteration [1]. Regarding background theories,
k-induction approaches to the verification of loop programs range from integer
arithmetic [9], real arithmetic and uninterpreted functions [1] to pointers [10].

11 Conclusion

We introduced a safety verification technique for concurrent software systems
based on a combination of three-valued abstraction refinement and SAT-based
k-induction. The approach extends our prior work on (incomplete) three-valued
bounded model checking [17,18]. The main contributions of this paper are as
follows: We showed that, after the application of abstraction, base case and
inductive step of the k-induction technique can be formulated as bounded model
checking problems and encoded in propositional logic, which facilitates complete
verification. We integrated the k-induction approach into a twofold-iterative ver-
ification procedure that enables to reach the necessary bound and the right level
of abstraction in order to prove or refute safety properties. We enhanced this
iterative approach by adopting k-incremental SAT solving and by extending the
idea of reusing logical constraints to two new levels: In our three-valued set-
ting, constraints can be reused between over- and under-approximations and
also between refinement iterations. The latter is a non-straightforward concept
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that we proved to be sound. In experiments we demonstrated the effectiveness
of our approach as formal method for software model checking and we showed
that our novel constraint reusing concepts can lead to significant computational
savings.
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invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 42

2. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Conflict-driven clause learning
sat solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability, pp. 131–153. IOS Press, Amsterdam (2009)

3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

5. Dijkstra, E.W.: Solution of a problem in concurrent programming control. In: Broy,
M., Denert, E. (eds.) Software Pioneers, pp. 347–350. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-642-59412-0 20

6. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
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