
Formal Design of Cloud Computing
Systems in Maude

José Meseguer(B)

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, USA

meseguer@illinois.edu

Abstract. Cloud computing systems are complex distributed systems
whose design is challenging for two main reasons: (1) since they are dis-
tributed systems, a correct design is very hard to achieve by testing
alone; and (2) cloud computing applications have high availability and
performance requirements; but these are hard to measure before imple-
mentation and hard to compare between different implementations. This
paper summarizes our experience in using formal specification in Maude
and model checking analysis to quickly explore the design space of a
cloud computing system to achieve a high quality design that: (1) has
verified correctness guarantees; (2) has better performance properties
than other design alternatives so explored; (3) can be achieved before an
actual implementation; and (4) can be used for both rapid prototyping
and for automatic code generation.

Keywords: Specification and verification of distributed systems
Cloud computing · Rewriting logic · Maude

1 The Challenge of Cloud Computing

Cloud computing systems are used massively and need to meet high perfor-
mance requirements such as high availability and throughput, and low latency,
even with network congestion and faults, and during software and hardware
upgrades. Furthermore, for both high availability and fault tolerance, data has
to be replicated. However, the CAP theorem [12] shows that it is impossible to
simultaneously have high availability and strong consistency in replicated data
stores. This means that, depending on the application, different tradeoffs need
to be found in the design of a cloud computing system between consistency and
performance. For example, for a social network a weak consistency notion such
as “eventual consistency” may be acceptable in exchange for high performance,
whereas a medical information system will clearly require stronger consistency
notions, even at the cost of some losses in performance. Indeed, as explained
in [13], there is a wide spectrum of consistency models to choose from. One of
the most crucial tasks in the design of a cloud computing system is to achieve

c© Springer Nature Switzerland AG 2018
T. Massoni and M. R. Mousavi (Eds.): SBMF 2018, LNCS 11254, pp. 5–19, 2018.
https://doi.org/10.1007/978-3-030-03044-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03044-5_2&domain=pdf


6 Jo. Meseguer

a good balance between good performance and consistency guarantees that are
sufficient for the kinds of applications intended for the given system.

With some notable exceptions (see, e.g., [33]), in practice, cloud computing
systems are often designed and built using only informal designs and only with
the aid of testing techniques. Also, only after a system has been for the most
part built, do experimental evaluations become possible. Since furthermore, these
distributed systems can be quite large (for example, Cassandra has about 345,000
lines of code) and fairly complex, all this means that: (i) subtle bugs can easily
pass undetected; (ii) it may not be entirely clear what consistency and correctness
guarantees can be given for the system; and (iii) it can be very costly to explore
other design alternatives, since the cost of implementing them is too high.

All this also means that there is a good opportunity for formal methods to
provide much needed analytic and predictive power for exploring cloud com-
puting system designs before they are built. However, this is also a challenge
since:

1. The formal methods employed must naturally support distributed system
design and analysis.

2. The formal notations used should be easy to understand by system designers.
Furthermore, they should be simple and concise enough to precisely capture
design ideas at a high level in specifications orders of magnitude shorter than
code. This then makes it easy to express alternative designs and to explore
the practical impact of various design choices.

3. They should be able to analyze correctness properties, if possible automati-
cally, and to provide counterexamples when such properties are violated.

4. Since for these systems high performance is as important as correctness, the
formal specification and analysis methods should also be able to provide not
just “yes” or “no” answers to logical correctness questions, but also quanti-
tative answers to performance questions.

It is worth stressing that point (2) is of great importance: only after hav-
ing arrived at a good design is it meaningful to spend further efforts verifying
in depth its properties. To put it perhaps more sharply, the exploration of a
system’s design and that of its logical and performance properties should hap-
pen simultaneously and, once a good design has thus been identified, its formal
analysis should increase in depth. Also, all this should be done before actually
building the systems, so that: (a) costly design errors are caught as early as
possible; and (b) as much as possible is known about such a design, including its
logical correctness properties and its estimated performance, before it is built.

2 Rewriting Logic and Maude

A rewrite theory R = (Σ, E,R) specifies is a concurrent system, whose states are
the elements of the algebraic data type TΣ/E , and whose concurrent transitions
are specified by the rewrite rules R. We have found rewriting logic particularly



Formal Design of Cloud Computing Systems in Maude 7

well suited for specifying cloud computing systems. Such systems can be natu-
rally specified as configurations of distributed objects, often clients and servers,
which communicate with each other through message passing. The sending and
receiving of messages by such objects has a very natural formalization by means
of simple rewrite rules. In our experience, the rewrite rule formalism is easy to
understand by network engineers and distributed system designers.

Maude [14] is a language implementing rewriting logic. Since a program in
Maude is just a rewrite theory, Maude is a very simple language. However, Maude
is both highly expressive and versatile and very high level, affording a very direct
and concise representation of the concurrent system being modeled.

Maude is also a high-performance language. For example, in a recent detailed
benchmarking of 15 well-known algebraic, functional and object-oriented lan-
guages by Hubert Garabel and his collaborators at INRIA Rhône-Alpes, Haskell
and Maude were the two languages showing the highest overall performance [18].

For the purposes of this paper, the main points to emphasize are that, once
a distributed system designed has been expressed in Maude as a rewrite theory:

– Such a system design can be simulated using Maude’s frewrite command.
– Its reachability properties, including both failures of invariants and moni-

toring of consistency and other properties can be exhaustively analyzed by
breadth first search using Maude’s search command.

– Provided that the set of states reachable from a given initial state is finite,
its LTL temporal logic properties can be analyzed using Maude’s LTL model
checker [14].

– To specify the system’s real-time aspects and model check its real-time tem-
poral logic properties the Real-Time Maude language and system can be
used [34].

– Expressing the system’s probabilistic aspects as a probabilistic rewrite theory
[1], its quantitative performance aspects can be analyzed by statistical model
checking using the PVeStA tool [2].

In all these ways, Maude supports a style of formal specification and anal-
ysis of cloud computing systems that effectively meets the challenge to formal
methods that such systems pose, as explained in Sect. 1. In fact, to the best of
my knowledge it seems fair to say that rewriting logic as supported by Maude
is the first formally based approach in which both correctness and performance
aspects of cloud computing systems have been systematically analyzed.

3 Specifying and Analyzing Cloud Computing Systems

The work on specifying and analyzing cloud computing systems in Maude has
focused on two main areas: (i) formal specification and analysis of cloud storage
systems; and (ii) some security aspects of cloud computing.



8 Jo. Meseguer

3.1 Formal Specification and Analysis of Cloud Storage Systems

Only a short summary of work in this area is possible here. I refer to the survey
[11], from which the summary of the work on systems (1)–(3) is drawn, for a
detailed account. My summary of (4) is based on [35], and that of (5)–(6) on
[29,30]. The cloud storage systems that have been specified and analyzed in
Maude include:

1. Apache Cassandra [22] is an open-source industrial key-value data store
having about 345,000 lines of code that only guarantees eventual consistency.
To the best of our knowledge, before our work no formal specification of Cas-
sandra existed and, although believed to guarantee eventual consistency, no
verification of that property had been carried out. After studying Cassan-
dra’s code, we first developed a 1,000-line Maude specification with just 20
rewrite rules [31], that captured the system’s main components such as data
partitioning strategies, consistency levels, and timestamp policies for order-
ing multiple versions of data. Standard model checking allowed us to con-
firm that Cassandra does support eventual consistency and to analyze under
what conditions Cassandra can guarantee strong consistency. To also analyze
Cassandra’s performance features and those of a design alternative, we then
develop a probabilistic model of Cassandra in [26]. By modifying a single
function in our Maude model we obtained a model of our proposed design
alternative. The statistical model checking analysis of the original Cassandra
model and our alternative Cassandra-like design in PVeStA indicated that
the proposed design alternative did not improve Cassandra’s performance.
But this left open the question of how reliable these analyses were. To answer
this question we modified the Cassandra code to obtain an implementation
of the alternative design, and executed both the original Cassandra code and
the new system on representative workloads. These experiments showed that
PVeStA statistical model checking provides reliable performance estimates.

2. Megastore [10] is a key part of Google’s cloud infrastructure. Megastore’s
trade-off between consistency and efficiency is to guarantee consistency only
for transactions that access a single entity group (e.g., “John’s email” or
“books on formal verification”). Megastore’s code is not publicly available,
and only a short high-level description has been given in [10]. To fully under-
stand the Megastore algorithms Jon Grov and Peter Ölveczky first developed
in [19] a sufficiently detailed executable formal specification of Megastore in
Real-Time Maude based on the description in [10]. This is the first publicly
available formalization and reasonably detailed description of Megastore. It
contains 56 rewrite rules, of which 37 deal with fault tolerance features.

To analyze both the correctness and the performance of Megastore’s Maude
model two additional models were developed: (i) since in the original real-
time model only those behaviors that are possible within the given timing
parameters are analyzed, to exhaustively analyze all possible system behav-
iors irrespective of particular timing parameters, an untimed model was also
developed; and (ii) for performance estimation purposes, a real-time model in



Formal Design of Cloud Computing Systems in Maude 9

which certain parameters, such as the messaging delays between two nodes,
are selected probabilistically according to a given probability distribution was
also developed.
Furthermore, Jon Grov had an idea on how to extend Megastore so that
it would also guarantee strong consistency for certain transactions accessing
multiple entity groups without sacrificing performance. This led to the design
of Megastore-CGC. The key observation is that a Megastore site replicat-
ing a set of entity groups participates in all updates of these entity groups,
and should therefore be able to maintain an ordering on those updates. The
idea behind the Megastore-CGC extension is that, by making this order-
ing explicit, such an “ordering site” can validate transactions [20]. Since
Megastore-CGC exploits the implicit ordering of updates during Megastore
commits, it piggybacks ordering and validation onto Megastore’s commit pro-
tocol and therefore does not require additional messages for validation and
commit. A failover protocol deals with failures of the ordering sites. Both
simulations (to discover performance bottlenecks) and Maude model check-
ing were extensively used during the development of Megastore-CGC, whose
formalization contains 72 rewrite rules. The performance estimated for Mega-
store and Megastore-CGC using randomized simulations in Real-Time Maude
indicated that both system designs had about the same performance. That
is, a design with considerably stronger consistency guarantees was obtained
without sacrificing performance.

3. RAMP. Read-Atomic Multi-Partition (RAMP) transactions were proposed
by Peter Bailis et al. [9] to offer light-weight multi-partition transactions that
guarantee one of the fundamental consistency levels, namely, read atomicity :
either all updates or no updates of a transaction are visible to other transac-
tions. The paper [9] gives hand proofs of correctness properties and proposes
a number of variations of RAMP without giving details. We used Maude to:
(i) check whether RAMP indeed satisfies the guaranteed properties, and (ii)
develop detailed specifications of the different variations of RAMP and check
which properties they satisfy. Specifically, in [25,28] we used reachability anal-
ysis to analyze whether the different variants of RAMP satisfy the following
properties (from [9]):

– Read atomic isolation: either all updates or no updates of a transaction
are visible to other transactions.

– Companions present : if a version is committed, then each of the version’s
sibling versions are present on their respective partitions.

– Synchronization independence: each transaction will eventually commit
or abort.

– Read your writes: a client’s writes are visible to her subsequent reads.
We analyzed these properties for our seven versions of RAMP. Our analysis
results agree with the theorems and conjectures in [9]: all versions satisfy the
above properties, except that: (i) RAMP without 2PC only satisfies synchro-
nization independence; and (ii) RAMP with one-phase writes does not satisfy
read-your-writes.



10 Jo. Meseguer

Furthermore, in [27] we used statistical model checking to analyze whether
the different variants of RAMP offer the expected performance (only two
of the versions were implemented by the RAMP developers for performance
analysis). Our statistical model checking performance results: (a) were con-
sistent with the experimental evaluations of the two implemented designs;
(b) were also consistent with conjectures made by the RAMP developers for
other unimplemented designs; and (c) have uncovered some promising new
designs that seem attractive for some applications.

4. P-Store [38] P-Store is a data store that combines wide-area replication,
data partition, some fault tolerance, serializability, and limited use of atomic
multicast. It has influenced other recent data store designs that can be seen
as extensions of its design. P-Store uses atomic multicast to order concurrent
transactions and group communication for atomic commit. As pointed out
for example in [4], both atomic multicast and group communication com-
mit seem to be key building blocks in cloud storage systems. However such
features were not formalized in previous work. Indeed, Ölveczky’s paper on
P-Store [35] describes the formalization and formal analysis of P-Store in
Maude and, as part of its main contributions, specifies group communication
commitment, and defines an abstract Maude model of atomic multicast that
allows any possible ordering of message reception consistent with atomic mul-
ticast. Besides providing a Maude formal model of two versions of P-Store,
the work in [35] performed model checking analysis. This analysis uncovered
some significant errors in the supposedly-verified P-Store algorithm, like read-
only transactions never getting validated in certain cases. One of the authors
of the original P-Store paper [38] did confirm that a nontrivial mistake had
been found in their algorithm and suggested a way of correcting the mistake.
The Maude analysis of the corrected algorithm did not find any errors. Fur-
thermore, the analysis showed that a crucial assumption was missing from
the original P-Store paper, and that a key definition was very easy to mis-
understand because of how it was phrased in English. All this showed that
there is a clear need for formal specification and analysis beyond the standard
prose-cum-pseudo-code descriptions and informal correctness proofs.

5. Walter [41] is a distributed partially replicated data store providing Paral-
lel Snapshot Isolation (PSI), an important consistency property that offers
attractive performance while ensuring adequate guarantees for certain kinds
of applications. Walter is a very good opportunity for formal methods, because
no formal system specification existed at all before our work in [30], and there
was no formal (or even informal) verification that it guarantees PSI. Further-
more, Walter is also a good stepping stone towards placing the design of
cloud-based transaction systems in a formally-based modular framework. In
this sense, Walter has been a key missing design in the spectrum, so that its
study complements and enriches the general picture that has been obtained in
the formal modeling and analysis studies on Cassandra, Megastore, RAMP,
P-Store, and ROLA discussed above in (1)–(4) and below on (6).



Formal Design of Cloud Computing Systems in Maude 11

In [30] we have:
– Given in Maude the first formal executable specification of Walter.
– Formalized the SI and PSI properties and formally analyzed for the first

time whether the Walter design satisfies either of these properties. This
analysis has been achieved by: (a) providing a parametric method to
generate all initial states for given parameters; and (b) performing model
checking analysis to verify the SI and PSI properties for all initial states
for various parameter choices. Our analysis shows that the Walter design
does indeed satisfy the PSI property for all our initial states but fails to
satisfy the SI property;

– Extended the Maude model of Walter from a rewrite theory to a prob-
abilistic rewrite theory by adding time and probability distributions for
message delays to the original specification. We then carried out a sys-
tematic statistical model checking analysis of the key performance metric,
transaction throughput, under a wide range of workloads. The results of
this analysis confirm that the performance estimates thus obtained are
consistent with those obtained experimentally for the Walter implemen-
tation in [41]; and they furthermore provide new insights about Walter’s
performance beyond the limited ranges for which such information was
available by experimental evaluation in [41].

6. ROLA [29] is a new distributed transaction protocol that has been designed
and analyzed using Maude from the very beginning. Different applications
require negotiating the consistency vs. performance trade-offs in different
ways. The point of ROLA is to explore a specific such tradeoff not stud-
ied before. The key issue is the required degree of consistency for a given
application, and how to meet its consistency requirements with high per-
formance. Cerone et al. [13] survey a hierarchy of consistency models for
distributed transaction protocols including (in increasing order of strength):
(i) read atomicity (RA): either all or none of a distributed transactions
updates are visible to another transaction (that is, there are no fractured
reads); (ii) causal consistency (CC): if transaction T2 is causally dependent
on transaction T1, then if another transaction sees the updates by T2, it
must also see the updates of T1 (e.g., if A posts something on a social media,
and C sees Bs comment on As post, then C must also see As original post);
(iii) parallel snapshot isolation (PSI): like CC but without lost updates; and
so on, all the way up to the well-known serializability guarantees. A key
property of transaction protocols is the prevention of lost updates (PLU).
The weakest consistency model in [13] satisfying both RA and PLU is PSI.
However, PSI, and the already discussed Walter protocol [41] implementing
PSI, also guarantee CC. Cerone et al. conjecture that a system guaranteeing
RA and PLU without guaranteeing CC should be useful, but up to now we
are not aware of any such protocol. The point of ROLA is exactly to fill this
gap: guaranteeing RA and PLU, but not CC. Two key questions are then: (a)
are there applications needing high performance where RA plus PLU provide
a sufficient degree of consistency? and (b) can a new design meeting RA plus
PLU outperform existing designs, like Walter, meeting PSI?



12 Jo. Meseguer

Regarding question (a), an example of a transaction that requires RA and
PLU but not CC is the becoming friends transaction on social media. Bailis
et al. [8] point out that RA is crucial for this operation: If Edinson and
Neymar become friends, then Unai should not see a fractured read where
Edinson is a friend of Neymar, but Neymar is not a friend of Edinson. An
implementation of becoming friends must obviously guarantee PLU: the new
friendship between Edinson and Neymar should not be lost. Finally, CC could
be sacrificed for the sake of performance: Assume that Dani is a friend of
Neymar. When Edinson becomes Neymar’s friend, he sees that Dani is Ney-
mar’s friend, and therefore also becomes a friend of Dani. The second friend-
ship therefore causally depends on the first one. However, it does not seem
crucial that others are aware of this causality: If Unai sees that Edinson and
Dani are friends, then it is not necessary that he knows that (this happened
because) Edinson and Neymar are friends.
Regarding question (b), the work in [29] compared the performance of ROLA
with that of Walter. To model time and performance issues, ROLA has been
specified in Maude as a probabilistic rewrite theory. ROLA’s RA and PLU
requirements were then analyzed by standard model checking disregarding
time issues. To estimate ROLA’s performance, and to compare it with that
of Walter, the specification of Walter in Maude was used, and the Maude
models of both ROLA and Walter were analyzed by statistical model check-
ing analysis using the PVeStA tool. The results of this analysis showed that
ROLA outperforms Walter in all performance requirements for all read/write
transaction rates. To the best of our knowledge this is the first demonstra-
tion that, by a suitable use of formal methods, a completely new distributed
transaction protocol can be designed and thoroughly analyzed, as well as be
compared with other designs, very early on, before its implementation.

3.2 Some Security Aspects of Cloud Computing Systems

The work on using formal specification and analysis in Maude for cloud com-
puting security is less developed than that on storage systems, but it can give
a taste for what is possible. A common theme through both of the studies that
I summarize below is that cloud computing, while giving rise to new security
vulnerabilities, does also offer the possibility of arriving at system designs that
take advantage of cloud computing to increase system security. My summary of
(1) is based on material in [15], and that of (2) on [11,39]

1. Achieving Stable Availability in the Face of DoS Attacks. Availability
is a crucial security property for cloud-based systems. It can be compromised
by distributed Denial of Service (DoS) attacks. In [15] two Maude-based for-
mal patterns (in the sense of [32]), and their combination into the ASV+SR
pattern were presented. Used in their ASV+SR combination, they can effec-
tively defend cloud-based systems against DoS attacks. The key notion pro-
posed is that of stable availability, meaning that, with very high probability,
service quality remains very close to a chosen threshold, regardless of how



Formal Design of Cloud Computing Systems in Maude 13

bad the DoS attack can get. This notion is a good example of how cloud
computing can be used to enhance security, in this case defenses against DoS
attacks. The two most basic formal patterns used as defenses against DoS
attacks were: (i) the Adaptive Selective Verification (ASV) pattern, which
enhances a communication protocol with a defense mechanism, and (ii) the
Server Replicator (SR) pattern, which exploits cloud computing’s flexibility to
provision additional resources based on perceived congestion. However, ASV
achieves availability without stability, and SR cannot achieve stable availabil-
ity at a reasonable cost. As a main result the work in [15] shows, by statistical
model checking with the PVeStA tool, that (iii) the ASV+SR composition of
both patterns yields a new pattern which guarantees stable availability at a
reasonable cost.
The key problem addressed is that DoS defense mechanisms that help main-
taining availability can nevertheless show performance degradation as a DoS
attack worsens. Thus, a key goal in [15] is to design DoS security adaptive
measures that can achieve stable availability, which means that with very high
probability service quality remains very close to a chosen constant quantity,
which does not change over time, regardless of how bad the DoS attack can
get. Cloud Computing, by offering the possibility of dynamic resource allo-
cation, can be used to leverage stable availability when combined with DoS
defense mechanisms.
The ASV protocol [3,24] is a well-known defense against DoS attacks in the
typical situation that clients and attackers use a shared channel where nei-
ther the attacker nor the client have full control over the communication
channel [24]. The ASV protocol adapts to increasingly severe DoS attacks
and provides improved availability. However, it cannot provide stable avail-
ability. By replicating servers one can dynamically provision more resources
to adapt to high demand situations and achieve stable availability; but the
cost of provisioned servers drastically increases in a DoS attack situation.
These two patterns are modeled in Maude and then formally composed to
obtain the new ASV+SR pattern. As a main result the work in [15] shows, by
analyzing the quantitative properties of ASV+SR with the statistical model
checker PVeStA, that ASV+SR guarantees stable availability at a reasonable
cost. The key idea of ASV+SR is relatively easy to explain. As a DoS attack
gets worse, ASV servers randomly drop an increasing number of messages
from clients, and honest clients increase their resending of messages based on
their perceived latency to get a server’s response. ASV ensures that messages
from honest clients will eventually get through, but performance is degraded.
ASV+SR pattern avoids this performance degradation. However, much fewer
additional servers need to be provisioned than if a naive approach based only
on SR were used. Actually, in ASV+SR the threshold for provisioning new
servers is itself a chosen parameter: one can settle for a small, constant fac-
tor in performance degradation at the expense of substantial savings in the
provisioning of new servers.



14 Jo. Meseguer

2. Building a Group Key Management Service on top of ZooKeeper.
Zookeeper [23] is a fault-tolerant distributed key/value data store that pro-
vides reliable distributed coordination. The work in [39] investigated whether
a useful group key management service can be built using ZooKeeper using
Maude and statistical model checking in PVeStA.
Group key management is the management of cryptographic keys for secure
communication between multiple authorized entities. A central group key
controller can fulfill this need by: (a) authenticating/admitting authorized
users into the group, and (b) generating a group key and distributing it to
authorized group members [42]. In settings with a centralized group controller,
its failure can impact both group dynamics and periodic key updates, leaving
the group key vulnerable. This is especially significant when designing a cloud-
based group key management service, since such a service will likely manage
many groups.
The work in [39] investigated whether a fault-tolerant cloud-based group key
management service could be built by leveraging existing coordination ser-
vices commonly available in cloud infrastructures and if so, how to design
such a system. In particular, we: (a) designed a group key management ser-
vice built using Zookeeper [23], a reliable distributed coordination service
supporting Internet-scale distributed applications, (b) developed a rewriting
logic model of our design in Maude [14], based on [21], where key generation
is handled by a centralized key management server and key distribution is
offloaded to a ZooKeeper cluster and where the group controller stores its
state in ZooKeeper to enable quick recovery from failure, and (c) analyzed
our model using the PVeStA [2] statistical model checking tool. The analysis
centered on two key questions: (1) can a ZooKeeper-based group key manage-
ment service handle faults more reliably than a traditional centralized group
key manager, and (2) can it scale to a large number of concurrent clients with
a low enough latency to be useful?
Our analysis consisted of two experiments. Both were run hundreds of times
via PVeStA and average results were collected. The first experiment was
designed to test whether saving snapshots of the group key manager’s state
in the ZooKeeper store could increase the overall reliability of the system.
In the first experiment we compared the average key manager availability
(i.e., the time it is available to distribute keys to clients) between a sin-
gle key manager and two key managers where they share a common state
saved in the ZooKeeper store. We observed an availability improvement from
65% to 85%. Our second experiment was designed to examine whether using
ZooKeeper to distribute shared keys is efficient and scalable enough for real-
world use. The experiment measured the variations in: (a) the percentage of
keys successfully received by group members, and (b) the key distribution
latency, as increasing numbers of clients joined a group per second. We ana-
lyzed our original model and a slightly modified model where we added a
2 s wait time between key updates from the key manager. While our initial
experiments show that naively using ZooKeeper as a key distribution agent
works well, at high client join rates, the key reception rate leveled out around



Formal Design of Cloud Computing Systems in Maude 15

96%. This occurs because ZooKeeper can apply key updates internally more
quickly then clients can download them. By adding extra latency between
key updates, the ZooKeeper servers are forced to wait enough time for the
correct keys to propagate to clients, the slightly modified design achieved a
99% key reception in all cases. On the other hand, key distribution latency
remained relatively constant, at around half a second, regardless of the join
rate because ZooKeeper can distribute keys at a much higher rate than a key
manager can update them [23].
In essence, our analysis confirmed that a scalable and fault-tolerant key-
management service can indeed be built using ZooKeeper, settling various
doubts raised about the effectiveness of ZooKeeper for key management by
an earlier, but considerably less-detailed, model and analysis [16]. This result
is not particularly surprising, especially considering that many man-hours
would be needed to optimize an actual system. More interestingly, the analy-
sis also showed that system designs may suffer from performance bottlenecks
not readily apparent in the original description—highlighting the power of
formal modeling and analysis as a method to explore the design space.

4 Limitations and Some Future Directions

One important limitation of this extended abstract is that there is no room for
a careful comparison with related work. Fortunately, a quite up to date such
comparison has been given in the survey [11], to which I refer for a discussion of
other work in this area. Two other current limitations pointing to future research
directions are: (1) the absence at the moment of full verification by theorem
proving for the systems that I have discussed; and (2) the current status of
Maude executable specifications as prototypes useful for simulation and analysis,
but not used for the moment for distributed implementations.

Regarding limitation (1), the obvious thing to say is that theorem prov-
ing is a natural next step. I have emphasized earlier—and the various systems
I have discussed have further stressed—that perhaps the first and most valu-
able service that Maude executable specifications can render to cloud comput-
ing is not verification per se, but rather fast design exploration. It makes no
sense to model check the wrong design. And, due to the labor intensive nature
of theorem proving, it makes even less sense to perform theorem proving ver-
ification on such a wrong design, particularly since theorem provers are not
that good at finding counterexamples and, furthermore, in this area logical cor-
rectness is only part of the story: performance matters quite as much. Theo-
rem proving is, as I said, a complementary next step: after having arrived at
a good system design and having thoroughly analyzed its logical correctness
properties—resp. its performance—by standard model checking—resp. by sta-
tistical model checking—for representative initial states, the next step is to fully
verify the systems key logical properties for all initial states by theorem proving.
For Maude specifications of distributed systems, three related approaches, one



16 Jo. Meseguer

based on symbolic model checking and two based on theorem proving, seem
particularly well suited:

– The Logical Model Checking approach in [5–7,17] is in some sense halfway
between model checking and theorem proving: it allows full verification of
temporal logic properties for infinite-state systems and for infinite sets of
initial states.

– The deductive verification of invariants and other safety properties by the
unification methods supported by Maude’s Invariant Analyzer tool [36,37] is
also directly relevant and can be a useful tool for verifying invariants.

– The Constructor-Based Reachability Logic for rewrite theories presented in
[40] is a third attractive alternative. Reachability logic generalizes Hoare logic
and can express many Hoare-like partial correctness properties, including
invariants. Although its tool is still under development, it has already been
applied to the deductive verification of some distributed systems.

Regarding limitation (2) there are two main things to say. First, thanks to
Maude’s support for TCP-IP sockets as built-in objects [14], Maude programs
can be easily distributed. The basic idea is that objects in a distributed sys-
tem written in Maude can be executed in different machines, with sockets used
to support message passing communication across machines. What is needed,
however, is to make the passage from a Maude model to its distributed imple-
mentation as simple and as efficient as possible. Current, as yet unpublished,
research is advancing this direction. In particular, distributed storage systems
are among the examples we are experimenting with. Second, this direction is
particularly important to arrive at system implementations that are correct by
construction. In fact, this dovetails very nicely with the effort in overcoming
limitation (1), since all this should make it possible to generate correct by con-
struction distributed implementations from Maude-based formal specifications
of system designs that have already been submitted to both model checking and
theorem proving verification.

Acknowledgements. As the references make clear, most these ideas have been devel-
oped in joint work with a large number of collaborators and former or present stu-
dents, including: Musab AlTurki, Rakesh Bobba, Jonas Eckhardt, Jatin Ganhotra, Jon
Grov, Indranil Gupta, Si Liu, Tobias Mühlbauer, Son Nguyen, Peter Csaba Ölveczky,
Muntasir Raihan Rahman, Stephen Skeirik, and Martin Wirsing. Furthermore, in some
of the work I report on, such as [19,20,35], I have not been involved. These projects
were partially supported by the Air Force Research Laboratory and the Air Force Office
of Scientific Research, under agreement number FA8750-11-2-0084, the National Sci-
ence Foundation under Grant Nos. NSF CNS 1409416 and NSF CNS 1319527, and the
Naval Research Laboratory under contract number NRL N00173-17-1-G002. I thank
the organizers of SBMF 2018 for giving me the opportunity of presenting these ideas
at the meeting in Salvador.



Formal Design of Cloud Computing Systems in Maude 17

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for
probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

2. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

3. AlTurki, M., Meseguer, J., Gunter, C.: Probabilistic modeling and analysis of DoS
protection for the ASV protocol. Electr. Notes Theor. Comput. Sci. 234, 3–18
(2009)

4. Ardekani, M.S., Sutra, P., Shapiro, M.: G-DUR: a middleware for assembling, ana-
lyzing, and improving transactional protocols. In: Proceedings of the 15th Inter-
national Middleware Conference, pp. 13–24. ACM (2014)

5. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: Rewriting Techniques and Applications (RTA
2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2013)

6. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using nar-
rowing. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 113–129. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12904-4 6

7. Bae, K., Meseguer, J.: Predicate abstraction of rewrite theories. In: Dowek, G.
(ed.) RTA 2014. LNCS, vol. 8560, pp. 61–76. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08918-8 5

8. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Trans. Database Syst. 41(3), 15:1–15:45
(2016)

9. Bailis, P., Fekete, A., Hellerstein, J.M., Ghodsi, A., Stoica, I.: Scalable atomic
visibility with RAMP transactions. In: Proceedings of the SIGMOD 2014. ACM
(2014)

10. Baker, J., et al.: Megastore: providing scalable, highly available storage for inter-
active services. In: CIDR 2011 (2011). www.cidrdb.org

11. Bobba, R., et al.: Design, formal modeling, and validation of cloud storage systems
using Maude. Technical report, University of Illinois Computer Science Depart-
ment, June 2017. http://hdl.handle.net/2142/96274. Campbell, R.H., et al. (eds.)
Assured Cloud Computing, J. Wiley (2018, to appear)

12. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
p. 7. ACM (2000)

13. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: Proceedings of the 26th International Confer-
ence on Concurrency Theory, CONCUR 2015. LIPIcs, vol. 42, pp. 58–71. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

14. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

15. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J.,
Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28872-2 6

https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-319-12904-4_6
https://doi.org/10.1007/978-3-319-08918-8_5
https://doi.org/10.1007/978-3-319-08918-8_5
http://www.cidrdb.org
http://hdl.handle.net/2142/96274
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-28872-2_6


18 Jo. Meseguer

16. Eckhart, J.: Security analysis in cloud computing using rewriting logic. Master’s
thesis, Ludwig-Maximilans-Universität München (2012)

17. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 13

18. Garavel, H., Tabikh, M.A., Arrada, I.S.: Benchmarking implementations of term
rewriting and pattern matching in algebraic, functional, and object-oriented lan-
guages: the 4th rewrite engines competition. In: Rusu, V. (ed.) WRLA 2018. LNCS,
vol. 11152, pp. 1–25. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99840-4 1

19. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2 25

20. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 12

21. Gupta, J.: Available group key management for NASPInet. Master’s thesis, Uni-
veristy of Illinois at Champaign-Urbana (2011)

22. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol (2010)
23. Hunt, P., Konar, M., Junqueira, F., Reed, B.: ZooKeeper: wait-free coordination

for internet-scale systems. In: USENIX ATC, vol. 10 (2010)
24. Khanna, S., Venkatesh, S.S., Fatemieh, O., Khan, F., Gunter, C.A.: Adaptive selec-

tive verification. In: INFOCOM, pp. 529–537. IEEE (2008)
25. Liu, S., Ganhotra, J., Rahman, M.R., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-

tative analysis of consistency in NoSQL key-value stores. LITES 4(1), 03:1–03:26
(2017)

26. Liu, S., Nguyen, S., Ganhotra, J., Rahman, M.R., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. In: Campos, J., Haverkort,
B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 228–243. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22264-6 15

27. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design
alternatives for RAMP transactions through statistical model checking. In: Duan,
Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 298–314. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68690-5 18

28. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: Proceedings of
the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April
2016, pp. 1700–1707. ACM (2016)

29. Liu, S., Ölveczky, P.C., Santhanam, K., Wang, Q., Gupta, I., Meseguer, J.: ROLA:
a new distributed transaction protocol and its formal analysis. In: Russo, A.,
Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 77–93. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89363-1 5

30. Liu, S., Ölveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis of
the Walter transactional data store. In: Rusu, V. (ed.) WRLA 2018. LNCS, vol.
11152, pp. 136–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99840-4 8

https://doi.org/10.1007/978-3-540-73449-9_13
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-22264-6_15
https://doi.org/10.1007/978-3-319-68690-5_18
https://doi.org/10.1007/978-3-319-89363-1_5
https://doi.org/10.1007/978-3-319-99840-4_8
https://doi.org/10.1007/978-3-319-99840-4_8


Formal Design of Cloud Computing Systems in Maude 19

31. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 332–347. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11737-9 22

32. Meseguer, J.: Taming distributed system complexity through formal patterns. Sci.
Comput. Program. 83, 3–34 (2014)

33. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

34. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
High.-Order Symb. Comput. 20(1–2), 161–196 (2007)

35. Ölveczky, P.C.: Formalizing and validating the P-Store replicated data store in
Maude. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp.
189–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 13

36. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-
dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2 22

37. Rocha, C., Meseguer, J.: Mechanical analysis of reliable communication in the alter-
nating bit protocol using the Maude invariant analyzer tool. In: Iida, S., Meseguer,
J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp.
603–629. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-
2 30

38. Schiper, N., Sutra, P., Pedone, F.: P-Store: genuine partial replication in wide area
networks. In: Proceedings of the 29th IEEE Symposium on Reliable Distributed
Systems (SRDS 2010), pp. 214–224. IEEE Computer Society (2010)

39. Skeirik, S., Bobba, R.B., Meseguer, J.: Formal analysis of fault-tolerant group key
management using ZooKeeper. In: 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing (CCGrid 2013). IEEE Computer Society
(2013)

40. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS,
vol. 10855, pp. 201–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94460-9 12

41. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, pp. 385–400. ACM (2011)

42. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)

https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/978-3-319-72044-9_13
https://doi.org/10.1007/978-3-642-22944-2_22
https://doi.org/10.1007/978-3-642-54624-2_30
https://doi.org/10.1007/978-3-642-54624-2_30
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/978-3-319-94460-9_12

	Formal Design of Cloud Computing Systems in Maude
	1 The Challenge of Cloud Computing
	2 Rewriting Logic and Maude
	3 Specifying and Analyzing Cloud Computing Systems
	3.1 Formal Specification and Analysis of Cloud Storage Systems
	3.2 Some Security Aspects of Cloud Computing Systems

	4 Limitations and Some Future Directions
	References




