
Formal Modelling of Environment
Restrictions from Natural-Language

Requirements

Tainã Santos1, Gustavo Carvalho2(B), and Augusto Sampaio2

1 Universidade de Pernambuco - Escola Politécnica de Pernambuco,
Recife 50720-001, Brazil
tms@ecomp.poli.br

2 Universidade Federal de Pernambuco - Centro de Informática,
Recife 50740-560, Brazil

{ghpc,acas}@cin.ufpe.br

Abstract. When creating system models, further to system behaviour
one should take into account properties of the environment in order to
achieve more meaningful models. Here, we extend a strategy that for-
malises data-flow reactive systems as CSP processes to take into account
environment restrictions. Initially, these restrictions are written in natu-
ral language. Afterwards, with the aid of case-grammar theory, they are
formalised by deriving LTL formulae automatically. Finally, these for-
mulae are used to prune infeasible scenarios from the CSP-based system
specification, in the light of the environment restrictions. Considering
examples from the literature, and from the aerospace (Embraer) and the
automotive (Mercedes) industry, we show the efficacy of our proposal in
terms of state space reduction, up to 61% in some cases.

Keywords: Natural language · Environment restrictions
Case grammar · Linear temporal logic
Communicating Sequential Processes

1 Introduction

A central element when applying formal methods is capturing the system
behaviour precisely, which is typically modelled using some formal notation.
Besides modelling the system behaviour, it is also relevant to consider its envi-
ronment. Although some interactions are possible when only considering the
system model, they might not be feasible in practice due to characteristics of
the environment. For example, considering a control system operating the car
turn lights, in the presence of a turn indicator lever, the control system might
not capture a direct change from left flashing to right flashing, since the lever
cannot change directly between its extreme positions; it must reside for some
moment in the neutral position.

c© Springer Nature Switzerland AG 2018
T. Massoni and M. R. Mousavi (Eds.): SBMF 2018, LNCS 11254, pp. 252–270, 2018.
https://doi.org/10.1007/978-3-030-03044-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03044-5_16&domain=pdf

Formal Modelling of Environment Restrictions 253

Here, we consider as environment the collection of entities that interact with
the system being modelled. In the aforementioned example, the turn indicator
lever would be part of the environment that interacts with the control system
operating the car turn lights. Therefore, in order to develop more meaning-
ful models, it is also recommended to take into consideration properties of the
environment that, for instance, restrict how the user interacts with the system.
In this way, unrealistic interactions are not considered by the models, which
tends to reduce the overall system state space. This is more widely beneficial
for model checking, simulation, testing and the final system implementation and
deployment. For example, when applying model-based testing strategies, infea-
sible test cases, which cannot be performed due to environment restrictions, are
not derived from models.

In this work, we define a controlled natural language (CNL) for specifying
restrictions on how a system interacts with its environment. There is a trade-off
concerning the adoption of a CNL for requirements specification: one can use
a low-constrained CNL to enforce general writing styles, but, typically, formal
analysis is not possible by automatic means; on the other extreme, one can adopt
a highly-constrained CNL that enables automatic reasoning at the expense of
writing naturalness. We seek a compromise between these two extremes: our
CNL enforces enough structure to allow for automatic processing of environment
restrictions, but aiming at not losing naturalness.

After specifying the restrictions adhering to our CNL, we derive LTL formulae
to formalise these restrictions. These formulae are then used to prune, from
the specification model, defined using the process algebra CSP (Communicating
Sequential Processes) [16], infeasible scenarios in the light of the restrictions.
We propose two approaches for restricting CSP models: the first one is based
on filtering the inputs, by checking, via a monitor process, which ones satisfy
the environment restrictions; the second one involves syntactically modifying
the specification so that only valid inputs are selected, but this is done by the
process itself, rather than by another process like in the first approach.

Formal modelling of environments is addressed, for instance, in [9,14], where
a model is created to capture how the test environment interacts with the sys-
tem. In our work, the model of the environment restrictions is automatically
derived from natural-language descriptions, which are formalised by LTL formu-
lae. Previous works, such as [12], also define ways of generating LTL formulae
from natural language, but we differ from them since our formulae are defined
over variables and values (not event-based), which enables an easier and more
natural way of writing expressions (e.g., one can write x > 10, instead of writing
x11 ∨ x12 ∨ x13 to denote the events representing all values x can have that are
greater than 10; here, assuming that the greatest possible value of x is 13).

The strategy for modelling environment restrictions presented here is part of
a broader research effort for generating test cases from natural-language require-
ments: the NAT2TEST strategy. In [4], we describe how models of data-flow
reactive systems (DFRSs) are automatically derived from controlled natural-
language specifications of system requirements. Afterwards, different formal

254 T. Santos et al.

notations can be used to represent models of DFRSs, such as the process
algebra CSP, allowing the exploitation of different techniques and tools. In [3] we
describe tool support for this strategy: the NAT2TEST tool. A comprehensive
explanation of this strategy is presented in [2].

Our strategy for modelling environment restrictions was integrated into the
NAT2TESTCSP, a version of the NAT2TEST strategy that uses CSP, and, con-
sidering examples from the literature, and from the aerospace (Embraer) and
the automotive (Mercedes) industry, we show the efficacy of our proposal in
terms of state space reduction (up to 61% in some cases). Therefore, the main
contributions of this work are the following:

– A CNL for describing environment restrictions;
– A strategy for formalising environment restrictions as LTL formulae;
– Two approaches for imposing environment restrictions on CSP models;
– Integration of this work into the NAT2TESTCSP strategy;
– Empirical analyses concerning examples from the literature and the industry.

This paper is organised as follows. Section 2 briefly introduces background
material: linear temporal logic, the process algebra CSP, and modelling data-
flow reactive systems as CSP processes. Section 3 presents our CNL for speci-
fying environment restrictions, and explains how LTL formulae are automati-
cally derived from specifications in CNL. Section 4 details the two approaches
for imposing environment restrictions on CSP models of the system behaviour.
Section 5 gives empirical evidence on the efficacy of our proposal. Finally, Sect. 6
presents our conclusions, and addresses related and future work.

2 Preliminaries

In this section we present an overview of the related background: linear temporal
logic (Sect. 2.1), besides the process algebra CSP (Sect. 2.2), which is used to
represent the behaviour of data-flow reactive systems (Sect. 2.3).

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [15] is a logic for reasoning about linear-time
temporal propositions. Given an alphabet Σ of elementary propositions (denoted
by lower-case letters), the syntax of LTL is given by the following grammar:

φ ::= false | true | a | ¬ φ | φ ∧ φ | φ ∨ φ | © φ | φ U φ | φ R φ

Classically, © is the next operator (φ holds in the next state), U is the until
operator (φ U ψ means that for every execution of the system the formula ψ must
eventually become true and the formula φ must be true until, not necessarily
including, the first point at which ψ becomes true), and R is the release operator
(the dual of U). Two other derived operators are the eventually and the always
operators: �φ ≡ true U φ and �φ ≡ ¬ �¬ φ, respectively. The formula �φ

Formal Modelling of Environment Restrictions 255

means that, for every execution of the system, φ must hold for some state in
the future, whereas �φ means that, for every execution, φ holds for all states.
In this work, we also consider the weak-until operator: φ W ψ ≡ (φ U ψ) ∨ �φ,
where ψ is not required to occur.

A practical application of LTL is to formalise properties of systems. However,
as discussed in [5], it is not always straightforward to define a formula that
correctly captures the intended behaviour. In order to make this task easier,
a repository1 was developed to collect patterns that commonly occur in the
specification of concurrent and reactive systems. These patterns also have an
application scope. Here, our restrictions fit the absence and the universality
patterns, considering the global, the after and the after-until application scopes.

As noted in [11], when considering LTL formulae in the context of CSP speci-
fications, we need to assume an adapted interpretation of the classical LTL oper-
ators, since LTL is usually defined for state-based models while the operational
semantics of CSP is defined in terms of labelled transition systems (labels are
associated to transitions and not states; moreover, some transitions are labelled
by the invisible action τ). We follow [11] in this respect.

2.2 Communicating Sequential Processes

CSP is a formal language designed to describe behavioural aspects of systems.
The fundamental element of a CSP specification is a process. CSP has two prim-
itive processes: one that represents successful termination (SKIP) and another
that stands for an abnormal termination (STOP), also interpreted as a dead-
lock. In the simplest semantic model (traces semantics), a process behaviour is
described by the set of sequences of events it can perform. To define a process
as a sequence of events, we use the prefix operator (P = ev → Q), where ev is
an event, and P and Q are processes.

The sequential composition P = P1 ; P2 states that the behaviour of P
is equivalent to the behaviour of P1, followed by the behaviour of P2, if and
when P1 terminates successfully. Concerning parallel composition, CSP allows
a composition with (‖) or without (|||) synchronisation between the composed
processes. CSP processes synchronise between themselves by means of events.
For instance, P ‖

X

Q requires synchronisation on the events in X .

A channel can be declared to denote a particular set of events. The term
c!e, where c is a channel, denotes the event c.e resulting from the evaluation of
e, which is any CSP valid expression, whereas the term c?v denotes any event
c.v where v is a value of the declared type of c. It is also possible to interpret
these symbols (! and ?) as a process sending or receiving a value through a
channel, respectively. Another CSP operator used in this work is hiding (\): it
encapsulates events within a process and, thus, makes them internal (represented
as τ). CSP also has a functional language for manipulating local data.

1 http://patterns.projects.cs.ksu.edu/.

http://patterns.projects.cs.ksu.edu/

256 T. Santos et al.

From a CSP specification written in its machine-readable version called
CSPM, the FDR tool2 [8] can check desirable properties, such as: (1) deadlock-
freedom, (2) divergence-freedom, (3) deterministic behaviour, and (4) refinement
according to different semantic models (traces, failures, and failures-divergences).

2.3 DFRSs as CSP Processes

The NAT2TEST strategy generates test cases fully automatically from natural-
language requirements [3]. The data-flow reactive system (DFRS) model serves
as an intermediate formal notation from which it is possible to generate models
in several formal target notations, such as CSP. As detailed in [4], any DFRS
can be encoded as a Timed Input-Output Transition System (TIOTS), a labelled
transition system extended with time, which is widely used to characterise con-
formance relations for timed reactive systems. However, being more abstract, a
DFRS comprises a more concise representation of timed requirements.

Here, we are interested on the CSP-based specialisation of the NAT2TEST
strategy (NAT2TESTCSP), since it provides us with a sound testing theory. Test
generation is mechanised in terms of a high-level strategy by reusing successful
techniques and tools: refinement checking (FDR) and SMT solving (Z33). More
information is available in [2]. Nevertheless, our results on formal modelling of
environment restrictions can also be applied to other strategies, taking as starting
point the LTL formulae automatically derived from the textual descriptions.

In what follows, we present a concise explanation of DFRS models, and how
they are encoded as CSP processes. A DFRS model represents an embedded
system whose inputs and outputs are always available as signals. The input
signals can be seen as data provided by sensors, whereas the outputs as data
provided to actuators. A DFRS can also have internal timers, which can be used
to trigger time-based behaviour.

In the CSP notation, the system behaviour is denoted by the process S , which
is defined as SYSTEM , hiding all of its internal events (only events related to
input, output and time behaviour are visible).

S = SYSTEM \ {...}
SYSTEM = SPECIFICATION ‖

{|get,set|}
SYSTEM MEMORY

The process SYSTEM MEMORY is defined to allow the parallel compo-
nents of the system to communicate via shared memory (i.e., global variables,
which are not directly supported by CSP). The process SPECIFICATION inter-
acts with the memory reading and writing values via the channels get and set ,
respectively; {| c |} represents all values that can be communicated over the
channel c (e.g., {| get , set |} denotes all events communicated over the channels
get and set).

2 https://www.cs.ox.ac.uk/projects/fdr/.
3 https://github.com/Z3Prover/z3.

https://www.cs.ox.ac.uk/projects/fdr/
https://github.com/Z3Prover/z3

Formal Modelling of Environment Restrictions 257

A DFRS model has delay and function transitions. The former occur when
the system is in a stable state (no system reaction is enabled, and time might
evolve), whereas the latter occur when the state is not stable (system reacts to
input stimuli). The process SPECIFICATION captures this behaviour.

SPECIFICATION =
... → FUN ; ... → INPUTS ; DELAY ; SPECIFICATION

The first events (not shown) are related to a symbolic encoding of time in
CSP, which enables the representation of discrete and continuous time using the
standard CSP notation. Since explaining the details of this codification is outside
the scope of this paper, we refer to [2] for further details.

After performing these first events, this process behaves as FUN , which per-
forms function transitions until the system reaches a stable state, when an output
event is performed over the channel output. Afterwards, the system performs a
delay transition. Basically, time evolves (represented by the DELAY process)
and new inputs are received (process INPUTS) over the channel input. In the
CSP definition, INPUTS takes place before DELAY as a consequence of our
symbolic time representation – see [2] for more details. Then the process recurses.
Therefore, when we analyse a trace of S we observe an alternating sequence of
time, input, and output-related events; representing time elapsing, system stim-
uli and system reaction, respectively.

3 Environment Restrictions

In this section we define a CNL that is convenient to capture restrictions on
the environment (Sect. 3.1) and, with the support of case-grammar theory [7]
(Sect. 3.2), we devise an automatic translation into LTL formulae (Sect. 3.3). To
illustrate our ideas, we consider an adaptation of the vending machine (VM)
presented in [9]. We also refer to a Mercedes’ turn indicator system (TIS) to
illustrate some specific features (explained on demand).

Initially, the VM is in the idle state. When it receives a coin, it goes to the
choice state. When the coffee option is selected, the system goes to the weak or
strong coffee state depending on the time elapsed since the coin insertion. After
producing coffee, the system goes back to the idle state.

3.1 A CNL for Environment Restrictions

An environment restriction can be seen as the description of an interaction
between the environment and the system that is not allowed to happen. It
describes input scenarios that are not feasible in practice. The grammar of our
CNL for specifying environment restrictions (EnvReq-CNL) is given in Table 1.

The EnvReq-CNL allows for the specification of restrictions that fit the
absence and universality property patterns, considering global, after and after-
until application scopes (see [5] for more details on LTL property patterns). The

258 T. Santos et al.

Table 1. The EnvReq-CNL grammar

TestEnvRestriction ::= (NEVER | ALWAYS) Scope?

(StatementClause | ImplicationClause)

Scope ::= AFTER AndCondition, (AND UNTIL AndCondition,)?

AndCondition ::= ...

StatementClause ::= AndCondition

ImplicationClause ::= ConditionalClause COMMA THEN ConsequenceClause

ConditionalClause ::= CONJ AndCondition

ConsequenceClause ::= RestrictionOrClause

| COLON RestrictionOrClause

(COMMA AND RestrictionAndClause)+

RestrictionAndClause ::= RestrictionOrClause

| RestrictionAndClause

COMMA AND RestrictionOrClause

RestrictionOrClause ::= RestrictionClause

| RestrictionOrClause OR RestrictionClause

RestrictionClause ::= NounPhrase VerbPhraseRestriction

NounPhrase ::= ...

VerbPhraseRestriction ::= VerbRestriction VerbComplement

VerbRestriction ::= (CNOT | CONLY) VBASE

VerbComplement ::= ...

terminal symbols NEVER and ALWAYS are mapped to the words “It is never
the case that” (absence pattern) and “It is always the case that” (universality
pattern). After these words, one can specify the application scope (global is the
default one), followed by the restriction as a statement (StatementClause) or as
an implication (ImplicationClause) clause.

A statement comprises clauses according to a conjunctive normal form
(CNF): this structure is ensured by the symbol AndCondition. An implica-
tion clause is composed by a conditional clause, whose structure is also a CNF
preceded by a conjunction, followed by a consequence clause. The consequence
clause (also a CNF) describes something that shall be performed (CONLY) or
cannot be performed (CNOT) by the environment. Therefore, this grammar
allows for the specification of restrictions in one of the following four templates.

T1 — It is always the case that S , C .
T2 — It is never the case that S , C .
T3 — It is always the case that S , when C1 then C2.
T4 — It is never the case that S , when C1 then C2.

The symbol S denotes a scope, and if absent it means the global one. The
symbol C denotes conditions describing restrictions on the environment. As it
can be seen, T2 is the dual of T1; and T3/T4 can be rewritten as T1/T2, respec-
tively, using classical transformations (C1 ⇒ C2 ≡ ¬ C1 ∨ C2). Nevertheless,
we permit different writing styles aiming at flexibility.

To illustrate our CNL for environment restrictions, consider the VM exam-
ple. Suppose that a coin can only be inserted when the system is in the idle

Formal Modelling of Environment Restrictions 259

state: when it is waiting for a coffee request or it is producing a weak (strong)
coffee, some mechanical device blocks the hole where the coin should be inserted.
The following sentence describes this restriction in accordance to the grammar
previously presented. This sentence adheres to T3, considering a global scope.

– VM-RST001: It is always the case that when the system mode is not idle,
then the coin sensor cannot be true.

Similarly, suppose that the coffee request button can only be pressed when
the system is expecting such an input from the user (the system mode is choice).
This restriction can be described as follows (template T2 and global scope).

– VM-RST002: It is never the case that the coffee request button is pressed,
and the system mode is not choice.

The restrictions can also refer to the previous value of input and output
variables. To give a concrete example, consider the following restriction related to
the turn indicator system (TIS) of Mercedes vehicles (made available by Daimler;
more information in Sect. 5). It is not possible to move the turn indicator lever
from the left position directly to the right position. It is necessary to move the
lever to the neutral position first. The following sentence (TIS-RST001) specifies
this restriction according to the grammar of EnvReq-CNL.

– It is always the case that when the turn indicator lever was in the left position,
then the turn indicator lever cannot change to the right position.

The analysis whether the sentences adhere to the EnvReq-CNL is performed
by the CNL-Parser, which is part of the NAT2TEST tool [3]. To integrate
our work to the NAT2TEST strategy, we modify its CNL (i.e., SysReq-CNL)
in order to allow for the specification of both system requirements and envi-
ronment restrictions. This is achieved by updating the rewriting rule of the
start symbol (Sentence) as follows. Here, Sentence is the start symbol of the
NAT2TEST context-free grammar (SysReq-CNL) for specifying system require-
ments, which can now be rewritten as a system requirement (the non-terminal
symbol SysRequirement), but also as a restriction on the test environment (the
non-terminal symbol TestEnvRestriction – see Table 1). More details about the
SysReq-CNL are available in [2].

Sentence ::= SysRequirement | TestEnvRestriction

Before generating the corresponding LTL formulae, we automatically extract
requirement frames from the syntax trees of the restrictions. This additional step
is performed to decouple the generation of LTL formulae from the structure of
the CNL, besides making easier the LTL generation step.

3.2 From Syntax Trees to Requirement Frames

The case-grammar theory [7] is a linguistic theory that can be used to provide
semantics to natural-language requirements. In this theory, a sentence is analysed

260 T. Santos et al.

in terms of the thematic roles (TR) played by each word, or group of words in
the sentence. The verb is the main element of the sentence, and it determines
its possible semantic relations with the other words, that is, the role that each
word plays with respect to the action or state described by the verb.

The verb’s associated TRs are aggregated into a structure named as case
frame (CF). Each verb in a requirement (describing an environment restriction)
gives rise to a different CF. All derived CFs are joined afterwards to compose
a Requirement Frame (RF). Additionally, a RF also has information about the
application scope of the restriction. In this work, we consider five thematic roles:
the condition action (CAC – the verb related to the condition), the condition
patient (CPT – entity who is referred by the condition verb), the condition
modifier (CMD – a modification applied to the condition verb), and the condition
from/to value (CFV, CTV – values associated to the condition patient). For
instance, Table 2 shows the RF obtained from VM-RST001.

Table 2. Requirement frame of VM-RST001

Scope: global

Condition 1: main verb (CAC): is

CPT: the system mode CFV: –

CMD: not CTV: idle

Restriction 1: main verb (CAC): be

CPT: the coin sensor CFV: –

CMD: cannot CTV: true

In order to infer the requirement frame of a given restriction we apply infer-
ence rules, which map parts of the CNL structure to thematic roles. The descrip-
tion of these inference rules is outside the scope of this paper.

3.3 From Requirement Frames to LTL

After identifying the requirement frames, we formalise the environment restric-
tions by generating LTL formulae. First, we identify the core formula (π), which
is derived from conditions C or C1 and C2 (see Table 3). The symbols φ and ψ
refer to conditions described by C (or C1) and C2, respectively.

Afterwards, we conclude the generation of the LTL formula by considering
the application scope (see the correspondence in what follows). The symbol γ
refers to the conditions associated to the after application scope, and ω to the
conditions of the until clause (if present). The symbol π denotes the core formula,
previously identified.

– Global scope: �(π)
– After scope: �(γ ⇒ �(π))
– After-until scope: �(γ ∧ ¬ ω ⇒ �(π W ω))

Formal Modelling of Environment Restrictions 261

Table 3. Mapping writing templates to LTL: core formula

Template Text Core formula (π)

T1 It is always the case that S , C φ

T2 It is never the case that S , C ¬ φ

T3 It is always the case that S , when C1 then C2 φ ⇒ ψ

T4 It is never the case that S , when C1 then C2 ¬ (φ ⇒ ψ)

If the application scope is global, the formula is preceded by a single � oper-
ator. When considering an after scope, the restriction applies globally only after
γ holds. Similarly, regarding the after-until scope, the restriction applies globally
after γ holds, but until ω holds, which might never occur.

After identifying the general outline of our formulae, we use the thematic roles
to generate γ and ω from S , and φ and ψ from C (or C1) and C2, respectively.
The generation of boolean expressions from thematic roles is similar to the one
described in [4]. The condition patients (CPT) turn into variables, while their
values are extracted from the roles condition from/to value (CFV and CTV). The
verbs (CAC) and modifiers (CMD) are used to determine the associated boolean
operators. Algorithm 1 summarises the process for generating LTL formulae from
requirement frames.

Algorithm 1. generateLTLFormulae
input : reqFrames
output : ltlFormulae

1 for reqFrame ∈ reqFrames do
2 γ, ω, φ, ψ ← generateBooleanExpressions(reqFrame);
3 π ← mapWritingTemplateToLTL(φ, ψ, reqFrame);
4 if identifyScope(reqFrame) = global then
5 lflFormulae.add(�(π));

6 else if identifyScope(reqFrame) = after then
7 lflFormulae.add(�(γ ⇒ �(π)));

8 else
9 lflFormulae.add(�(γ ∧ ¬ ω ⇒ �(π W ω)));

For instance, considering the roles presented in Table 2 for Condition 1, we
have that the system mode (CPT) turns out to be a variable whose value is
(CAC) not (CMD) equal to idle (CTV) (i.e., the system mode 	= 1). We note
that the value 1 is used to represent the value idle. When performing these
translations, our tool automatically represents string values as enumeration val-
ues. Concerning Restriction 1, the coin sensor is another variable (CPT) whose
value cannot (CMD) be (CAC) true (CTV), i.e., the coin sensor 	= true. Fill-
ing these expressions into the LTL formula associated to T3 (the template used

262 T. Santos et al.

in VM-RST001), and considering its global scope, we have the following LTL
formula: �(the system mode 	= 1 ⇒ the coin sensor 	= true).

The LTL formulae derived for the other environment restrictions previously
presented (VM-RST002 and TIS-RST001) are the following, respectively.

�(¬ (the coffee request button = true ∧ the system mode 	= 0))
�(old the turn indicator lever = 1 ⇒ the turn indicator lever 	= 2)

In the first formula, being pressed is represented as true (an optimisation
automatically performed when the possible string values are s and ¬ s – the
former is treated as true, and the latter as false). Concerning the system mode,
the value 0 represents the choice state.

Regarding the turn indicator system, the positions of the turn indicator lever
(the neutral position, the left position, and the right position) are represented by
the values 0, 1, and 2, respectively. It is also important to note that the old
prefix is used to refer to the previous value of a variable.

The next step of our strategy is to impose the environment restrictions (rep-
resented as LTL formulae) to the CSP specification of the system. We do not
translate from the environment restrictions (in natural language) directly to CSP
to make our strategy extensible to other situations when the system behaviour
is not being modelled as CSP processes. In such situations, the effort to apply
our strategy would be to define a translation between LTL formulae and the
adopted formalism to represent the system behaviour.

4 Imposing Restrictions

After obtaining the LTL formulae from the natural-language descriptions of the
environment restrictions, the next step is to consider them to constrain the CSP
model of the system, which is automatically derived from the system require-
ments by the NAT2TESTCSP strategy; therefore, we emphasise that the CSP
model of the system is also generated from a controlled natural-language specifi-
cation of the system behaviour (more details in [2]). In the following sections we
propose two different approaches for enforcing the test environment restrictions.

As already mentioned, the first one (Sect. 4.1) imposes the restrictions by
filtering the inputs that obey the environment restrictions; this is captured by
a monitor process. The effect of pruning is achieved by composing the original
system model in CSP in parallel with this monitor. In this way, the original
CSP system specification is totally preserved. Differently, the second approach
(Sect. 4.2) modifies the original CSP model so that only valid inputs are selected.
In addition to reducing the system state space, this approach has the additional
advantage of producing a simpler CSP model that requires less time to compile.
On the other hand, it is not compositional.

4.1 Approach 1: Monitoring Input Generation

In this approach, a monitor process deadlocks (prohibits the system process to
advance) under undesired scenarios. Considering the VM example, part of this

Formal Modelling of Environment Restrictions 263

monitoring is performed by the CHECK RST process (shown below); it dead-
locks (STOP) when at least one of the restrictions is violated. The expressions in
the if-clause are derived from the corresponding LTL formulae (see requirements
VM-RST001 and VM-RST002 in Sect. 3.

CHECK RST (the coffee request button,
the coin sensor , the system mode) =

if (not(the system mode != 1) or the coin sensor != true) and
not(the coffee request button == true and the system mode != 0)

then ... else STOP

Now, we present a detailed explanation of how this monitor process is created
for any system. The monitor process (MONITOR) interacts synchronously with
the system (S – see Sect. 2.3) over the channels input and output.

S ′ = S ‖
{|input,output|}

((MONITOR(...) ‖
{|get,set|}

MONITOR MEMORY) \ {...})

The process MONITOR receives as parameters the initial value (init in vali
and init out valk) of the system variables (inputs — in vari , and outputs —
out vark). Then, it synchronises on the output event to record the first output
values (out valk). It is necessary to keep track of the current and the previous
value of variables since the restrictions might refer to the old value (see Sect. 3.3).
Afterwards, MONITOR behaves as MONITOR LOOP .

MONITOR(init in val1, ..., init in valn ,
init out val1, ..., init out valm) =

output .out var1?out val1...out varm?out valm →
MONITOR LOOP(init in val1, ..., init in valn ,

init in val1, ..., init in valn , init out val1, ...,
init out valm , out val1, ..., out valm)

The process MONITOR LOOP has the following cyclic behaviour. First, it
reads the input values that can be generated (synchronising over input). Then,
it checks the conditions related to application scopes.

The auxiliary variables gammai and omegai are used to keep track of whether
γi and ωi (for a given i -th restriction) hold in the current state. It is necessary
to perform basic syntactic translations to adhere to the CSPM syntax (e.g., ¬
becomes not(...)). Therefore, Γi denotes γi in CSPM (similarly to Ωi). We note
that gammai is only reset to false if the corresponding until condition is satisfied.

MONITOR LOOP(old in val1, ..., old in valn , in val1, ..., in valn ,
old out val1, ..., out out valm , out val1, ..., out valm) =

input .in var1?in val ′1...in varn?in val ′n →
(if Γ1 then set !gamma1!true → SKIP else SKIP) ; ...

264 T. Santos et al.

(if Ω1 then set !omega1!true → set !gamma1!false → SKIP
else set !omega1!false → SKIP) ; ...

CHECK RST (in val1, ..., in valn , in val ′1, ..., in val ′n ,
old out val1, ..., old out valm , out val1, ..., out valm)

After setting the value of these auxiliary variables, it checks whether each
scenario is valid according to the restrictions (auxiliary process CHECK RST).
Being valid means that all environment restrictions (Πi as the CSPM version
of πi) are satisfied, if within their application scopes. Since the CSPM syntax
does not support a ⇒ b, the implications are represented as “not(a) or b”. If
the application scope is global, the values (v) of gammai and omegai are not
considered. If the application scope is after, the value of omegai is not considered.

CHECK RST (old in val1, ..., old in valn , in val1, ..., in valn ,
old out val1, ..., out out valm , out val1, ..., out valm) =

get !gamma1?v gamma1 → ... → get !gammal?v gammal → ...
get !omega1?v omega1 → ... → get !omegal?v omegal → ...
if (not(v gamma1 and not(v omega1)) or Π1) and ... and

(not(v gammal and not(v omegal)) or Πl) then
output .out var1?out val ′1...out varm?out val ′m →
MONITOR LOOP(old in val1, ..., old in valn ,

in val1, ..., in valn , out val1, ..., out valm ,
out val ′1, ..., out val ′m)

else STOP

If all restrictions are satisfied, the if-condition evaluates to true, and the
monitor process allows for system responses (synchronisation over output) before
behaving as MONITOR LOOP again (passing as argument the updated value
of variables). However, if this condition is not true, then the monitor process
deadlocks. As a consequence, it makes the system process (S) to deadlock as
well, since it can only perform input/output events if the monitor process agrees
(synchronises) on them.

Deadlock is a desired effect here, since it prohibits the system to advance
under undesired scenarios; some traces will not have an output after the inputs
that violate the environment restrictions. These traces will not be considered
when generating test cases, since we only take into account traces where for
each input one can observe the expected system reaction (output).

Although this approach is compositional (it does not require modifications
on S) and reduces the final model (S || MONITOR) state space, it does not
simplify the original model of the system (S) to consider only valid inputs; conse-
quently, it does not reduce the final model compilation time, which is a relevant
aspect when using FDR. The underlying reason is the way FDR deals with the
parallel composition. In Sect. 4.3 we discuss in more detail the importance of
optimising the compilation of CSP models when using FDR. Nevertheless, this
approach might be useful if compositionality is mandatory, when modifying the
system model is not possible; for instance, when performing black-box model-
based testing.

Formal Modelling of Environment Restrictions 265

4.2 Approach 2: Changing Input Generation

Our second approach also imposes the environment restrictions, and the result-
ing labelled-transition system (LTS) is created in less time. This approach is
even simpler to encode than the previous one, but it requires the modifica-
tion of the CSP process originally created for the system behaviour (S). The
idea here is to modify the process INPUTS (see Sect. 2.3) to block (dead-
lock on) the undesired scenarios. Considering the VM example, it suffices to
define a process CHECK RST ′ (similar to the one defined in Sect. 4.1), and
to compose it sequentially with INPUTS : defining a new process INPUTS ′ =
INPUTS ; CHECK RST ′.

In details, let CHECK RST ′ be the following CSP process. After reading
the current and previous values of the system variables, along with the values of
the auxiliary variables gammai and omegai , it checks whether the environment
restrictions hold. If so, the process finishes successfully (SKIP). Otherwise, it
deadlocks (STOP).

CHECK RST ′ =
get !old in var1?old in val1 → ...

→ get !old in varn?old in valn →
get !in var1?in val1 → ... → get !in varn?in valn →
get !old out var1?old out val1 → ...

→ get !old out varm?old out valm →
get !out var1?out val1 → ... → get !out varm?out valm →
get !gamma1?v gamma1 → ... → get !gammal?v gammal → ...
get !omega1?v omega1 → ... → get !omegal?v omegal → ...
if (not(v gamma1 and not(v omega1)) or Π1) and ... and

(not(v gammal and not(v omegal)) or Πl) then SKIP else STOP

Now, we update the original SPECIFICATION process considering a new
process for generating inputs (INPUTS ′). After generating inputs, the scenar-
ios that are not feasible in practice are pruned from the resulting LTS, since
CHECK RST ′ deadlocks. S ′′ denotes the process created using this second
approach. This approach yields a faster compilation time, since the environment
restrictions are imposed during the creation of the LTS of S ′′.

INPUTS ′ = INPUTS ; CHECK RST ′

SPECIFICATION ′ =
... → FUN ; ... → INPUTS ′ ; DELAY ; SPECIFICATION ′

SYSTEM ′ = SPECIFICATION ′ ‖
{|get,set|}

SYSTEM MEMORY

S ′′ = SYSTEM ′ \ {...}

It is important to note that our second approach is semantically equivalent
to the first one in the CSP trace semantics (Theorem 1). Let S be the set of all
CSP specifications of data-flow reactive systems, S be a given CSP specification,
and appr1 and appr2 functions that yield a CSP specification considering the

266 T. Santos et al.

environment restrictions of S (RS) according to the first (Sect. 4.1) and the
second (Sect. 4.2) approaches, previously described.

Theorem 1. ∀S : S • appr1(S ,RS) �T appr2(S ,RS) ∧ appr2(S ,RS) �T

appr1(S ,RS)

In CSP, the traces refinement relation means trace inclusion. Therefore, if
P �T Q ∧ Q �T P holds, it means that both processes have the same set of
traces (i.e., they are equivalent in this semantic model). The proof of Theorem1
relies on the fact that both approaches create a deadlock on situations where the
restrictions are not satisfied. The difference between them is that the first one
creates the deadlock via parallel synchronisation, whereas the second one uses
the primitive process STOP . �

Another important theoretical result of our work is described by Theorem2.

Theorem 2. ∀S : S • S �T appr1(S ,RS)

The CSP specification yielded by appr1 (or appr2 — see Theorem 1) might
deadlock on some (or none) of the traces of S , where undesired input scenar-
ios occur, but it does not produce new traces (new events are not performed).
Therefore, the traces of appr1(S ,RS) are a subset of the traces of S . �

Differently, appr1(S ,RS) �T S does not hold in general, since we expect the
left-hand side process to have less traces than S due to the imposed restrictions.

4.3 Relevance of Compilation Optimisation

Consider the following CSP specification.

channel input , output : {0..20000}
A(v) = if v >= 0 then output .v → A(v − 1) else STOP
P = input?v → A(v)
Q = input?v → if v == 2 then A(v) else STOP
R = P ‖

{|input,output|}
Q

P ′ = input?v → if v == 2 then A(v) else STOP
R′ = P ′

A is an auxiliary process that performs the event output .i , with i varying
from v to 0. P receives an input value v and then behaves as A(v). Q behaves
similarly to the process MONITOR: it synchronises on all communications over
the input and the output channels, and restricts P to behave as A(2) (suppose
that 2 is the only feasible input).

The process R′ is equivalent to R (both processes have the same set of traces),
but it is defined differently. It follows our second approach (detailed in Sect. 4.2)
to restrict the behaviour of P , which involves modifying the definition of P (i.e.,
defining a new process P ′). Considering the channels input and output ranging

Formal Modelling of Environment Restrictions 267

from 0 to 20,000, more than 60s is necessary to create the LTS of R, whereas
the LTS of R′ is created within 20s4.

When constructing (compilation phase) the LTS of R, FDR first expands
the LTS of P and Q , and then constructs the resulting LTS via bisimulation.
Therefore, although the resulting LTS has less states (reduction of the state
space), the time required to construct this LTS tends to be the same or even
greater. In other words, in general, the approach described in Sect. 4.1 does not
represent performance gains with respect to compilation time, but only regarding
analysis time (when the resulting LTS model has already been created).

5 Empirical Analyses

Our evaluation considers examples from four different domains: (i) the vending
machine (VM) discussed in Sect. 3; (ii) the control system for safety injection in
a nuclear power plant (NPP) presented in [10]; (iii) a priority command function
(PC) provided by Embraer5; and (iv) part of the turn indicator system (TIS) of
Mercedes vehicles6.

In order to provide an argument to the efficacy of our proposal, we measured
the achieved reduction in terms of number of states and transitions. We only
consider the approach described in Sect. 4.2, since the other one (Sect. 4.1) does
not improve the model compilation time, and, thus, it is does not scale for
complex examples such as the TIS (exceeds available RAM memory).

Threats to external validity (the ability to generalise our conclusions) apply
to our analyses, since we do not consider a large set of examples. Despite that, the
results give some evidence about the efficacy of our proposal. Table 4 summarises
our findings; S is the original system model, whereas S ′′ is the system model
constrained by the test environment restrictions (as described in Sect. 4.2).

Table 4. Metrics of the empirical analyses

VM NPP PC TIS

#restrictions of S ′′ 2 3 1 2

#states of S 4,652 14,681 5,592 215,470

#states of S ′′ 1,814 12,261 2,728 189,644

Reduction (states) 61.01% 16.48% 51.22% 11.99%

#transitions of S 4,761 15,617 6,137 228,141

#transitions of S ′′ 1,841 12,975 2,949 200,339

Reduction (trans.) 61.33% 16.92% 51.95% 12.19%

A significant reduction in the number of states/transitions was achieved for
the VM (61.01%/61.33%) and for the PC (51.22%/51.95%) examples, whereas
4 Considering an i7-5500U @ 2.40 GHz × 4, 8 GB of RAM, with Ubuntu 16.04 LTS.
5 http://www.embraer.com/en-us/pages/home.aspx.
6 http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/index e.html.

http://www.embraer.com/en-us/pages/home.aspx
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/index_e.html

268 T. Santos et al.

it was smaller for the NPP (16.48%/16.92%) and the TIS (11.99%/12.19%).
The reduction was smaller for the NPP and TIS examples, since the infeasible
scenarios specified by the environment restrictions are less common than the
ones considered in the other two examples (VM and PC). Nevertheless, as said
before, besides the benefit of reducing the state space, there is a more general
benefit of developing more meaningful models, since infeasible scenarios can be
ignored by analysis via model checking, simulation and the final implementation.

6 Conclusion

This paper presents a strategy for modelling environment restrictions formally in
order to develop more meaningful models of the system behaviour, besides taking
advantage of them to reduce the input space of models. The proposed approach
integrates different techniques and notations (natural-language processing, linear
temporal logic, CSP, and model checking). The restrictions are formalised as LTL
formulae, which are automatically generated with the aid of a controlled natural
language. Then, these formulae are used to impose the restrictions to a CSP
model of the system.

The contribution of this work integrates with the NAT2TEST strategy, which
provides means for generating test cases from natural-language requirements,
ruling out infeasible test scenarios. The efficacy of our proposal is illustrated
considering examples from the literature, and from the aerospace (Embraer) and
the automotive (Mercedes) industry. Despite the integration with NAT2TEST,
our results can also be applied to other contexts, taking as starting point the
LTL formulae automatically derived. For instance, it is possible to take into
account these LTL formulae to perform classical model checking [11].

Generating temporal logic formulae from natural-language specifications is
not a new research topic. In [6] an action-based branching temporal logic (ACTL)
is used to formalise requirements in order to support verification of specification
properties. More recently, reference [17] presents another strategy for formal
consistency checking of natural-language requirements via the generation of LTL
formulae. In [12], similarly to our work, the authors use case-grammar theory to
support the generation of LTL formulae. A common aspect between these works
and ours is the definition of an underlying structure (via templates or CNL)
for writing requirements. However, differently from them, our LTL formulae are
defined over variables and values, and not over events.

Formal modelling of the environment has already been addressed too. For
instance, in [9] a conformance relation (i rtiocoe s) is proposed to relate imple-
mentation (i) and specification (s) models in the light of an environment model
(e); all models are defined as timed input-output transition systems. In the
RT-Tester tool [14], the system behaviour and the test environment are both
modelled as state machines. In [13], considering programmable controllers, the
authors propose a strategy for reducing the set of test cases by modelling the
plant behaviour, additionally to the system behaviour, as finite state machines.
Differently from our work, the user needs to manually and formally model the

Formal Modelling of Environment Restrictions 269

environment. Here, the formal model of the environment restrictions is automat-
ically generated from high-level descriptions in natural language. However, these
other works can model arbitrary properties, which is not our case.

As future work, we intend to: (1) extend our CNL to allow the specification
of other types of restrictions, (2) investigate the use of valency grammar [1] in
contrast to the case-grammar theory, and (3) conduct further empirical analyses.

Acknowledgements. This work is partially supported by INES (www.ines.org.br),
CNPq grant 465614 /2014-0 and FACEPE grants APQ-0399-1.03/17 and PRONEX
APQ/0388-1.03 /14. It is also partially supported by the CIn-UFPE and Motorola
cooperation project, as well as by the CNPq grants 303022/2012-4 and 132332/2015-9.

References

1. Allerton, D.J.: Valency grammar. In: Brown, K. (ed.) The Encyclopedia of Lan-
guage and Linguistics, pp. 301–314. Elsevier Science Ltd. (2006)

2. Carvalho, G.: NAT2TEST: generating test cases from natural language require-
ments based on CSP. Ph.D. thesis, Centro de Informática, UFPE, Brazil (2016)

3. Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., Sampaio, A.:
NAT2TEST tool: from natural language requirements to test cases based on CSP.
In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 283–290.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0 20

4. Carvalho, G., Cavalcanti, A., Sampaio, A.: Modelling timed reactive systems from
natural-language requirements. Form. Asp. Comput. 28(5), 725–765 (2016)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM, New York (1999)

6. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.:
Assisting requirement formalization by means of natural language translation.
Form. Methods Syst. Des. 4(3), 243–263 (1994)

7. Fillmore, C.J.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in
Linguistic Theory, pp. 1–88. Holt, Rinehart, and Winston, New York (1968)

8. Gibson-Robinson, T., et al.: FDR: from theory to industrial application. In: Gibson-
Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles.
LNCS, vol. 10160, pp. 65–87. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-51046-0 4

9. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 6

10. Leonard, E., Heitmeyer, C.: Program synthesis from formal requirements specifi-
cations using APTS. High. Order Symbol. Comput. 16, 63–92 (2003)

11. Leuschel, M., Currie, A., Massart, T.: How to make FDR spin LTL model check-
ing of CSP by refinement. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS,
vol. 2021, pp. 99–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45251-6 6

12. Lignos, C., Raman, V., Finucane, C., Marcus, M., Kress-Gazit, H.: Provably correct
reactive control from natural language. Auton. Robot. 38(1), 89–105 (2015)

www.ines.org.br
https://doi.org/10.1007/978-3-319-22969-0_20
https://doi.org/10.1007/978-3-319-51046-0_4
https://doi.org/10.1007/978-3-319-51046-0_4
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/3-540-45251-6_6
https://doi.org/10.1007/3-540-45251-6_6

270 T. Santos et al.

13. Ma, C., Provost, J.: A model-based testing framework with reduced set of test
cases for programmable controllers. In: Proceedings of the IEEE Conference on
Automation Science and Engineering, pp. 944–949. IEEE (2017)

14. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated model-based test-
ing with RT-tester. Universität Bremen, Technical report (2011)

15. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13(1), 45–60 (1981)

16. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010).
https://doi.org/10.1007/978-1-84882-258-0

17. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition, pp. 1677–1682. EDA Consortium (2015)

https://doi.org/10.1007/978-1-84882-258-0

	Formal Modelling of Environment Restrictions from Natural-Language Requirements
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Communicating Sequential Processes
	2.3 DFRSs as CSP Processes

	3 Environment Restrictions
	3.1 A CNL for Environment Restrictions
	3.2 From Syntax Trees to Requirement Frames
	3.3 From Requirement Frames to LTL

	4 Imposing Restrictions
	4.1 Approach 1: Monitoring Input Generation
	4.2 Approach 2: Changing Input Generation
	4.3 Relevance of Compilation Optimisation

	5 Empirical Analyses
	6 Conclusion
	References

