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Preface

Welcome to the proceedings of the 21st Brazilian Symposium on Formal Methods
(SBMF 2018), held during November 26–30, 2018, in Salvador, Brazil. This volume
contains the papers accepted for presentation at SBMF 2018. For this edition of SBMF,
we received 30 full submissions from 15 different countries. An international Program
Committee comprising 56 leading scientists from 13 countries reviewed the papers
thoroughly, providing a minimum of three and a maximum of five review reports for
each paper. We ended up accepting 14 submissions, which translates into 47% of all
submissions. The program included three invited talks by the following
world-renowned computer scientists:

– Prof. José Meseguer, University of Illinois at Urbana-Champaign, USA
– Prof. Alexandre Mota, Federal University of Pernambuco, Brazil
– Prof. Jim Davies, University of Oxford, UK

We thank the Brazilian Computer Society (SBC), the Federal University of Bahia,
and the Organizing Committee, for having provided various facilities and for their
generous support. We are also grateful to our Program Committee (and additional
reviewers) for their professional and hard work in providing expert review reports and
thorough discussions leading to a very interesting and strong program. Many thanks for
the sponsorship of the Federal University of Bahia (UFBA) and CAPES, and Springer
for agreeing to publish the proceedings as a volume of Lecture Notes of Computer
Science. We also acknowledge the facilities provided by the EasyChair system, which
were crucial in managing the process of submission, selection, revision, and publica-
tion of the manuscripts included in this volume.

September 2018 Tiago Massoni
Mohammad Reza Mousavi
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The Pragmatic Dimension of Formal
Methods: Towards Building a Sound

Synthesiser

Alexandre Mota(B)

Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
acm@cin.ufpe.br

Formal methods are mathematically based languages, tools and techniques
for the specification, development and verification of systems [12]. Although
most effort is being spent on specifying systems and verifying their properties,
a final goal of most formal methods is achieving correct code from formal speci-
fications. In this direction we find two representative strategies: (i) one is based
on proposing refinements until a certain concrete design is achieved and then
an almost direct mapping from mathematical elements to the source code of
some programming language is made [17]; and (ii) another is using some refine-
ment calculus in which specification and programming constructs are available
in a single language and code is achieved by removing the specification elements
by applying specific refinement rules [9]. Both strategies depend on developers
experience.

In a complementary direction to the previous strategies, we can find auto-
matic program synthesis. Program synthesis typically perform some form of
search over the space of programs to generate a program that is consistent
with a variety of constraints (for instance, input-output examples, specifica-
tions, and partial programs-or sketches). Program synthesis is considered the
holy grail of Computer Science since the beginning of Artificial Intelligence in
the 1950s. Automatic program synthesis is gaining attention nowadays thanks
to the advances in SAT/SMT theories and efficient solvers. With such tools,
it is now possible to solve very complex logical expressions in reasonable time.
Thus the goal of automatic program synthesis is to automatically find a pro-
gram in some programming language that satisfies a (formal) specification [3];
this is known as deductive synthesis. In the last decade, several applications of
synthesis in the field of programming by examples have been deployed in mass-
market industrial products (this is known as inductive synthesis), where the
formal specification is replaced by a set of test cases. Using examples instead of
specifications is an inherited Artificial Intelligence culture.

In this paper we present a clear and elegant formulation of program syn-
thesis as an Alloy*1 specification by applying its model finder (the Alloy* Ana-
lyzer) to search for a program that satisfies a contract in terms of pre and
post-conditions [10]. Alloy* is a variant of the original Alloy tailored for synthe-
sis, where a counterexample-guided inductive synthesis (CEGIS [14]) algorithm

1 https://aleksandarmilicevic.github.io/hola/.

c© Springer Nature Switzerland AG 2018
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2 A. Mota

is implemented in the Alloy* Analyzer. Our proposal embeds in Alloy* both the
syntax and the denotational semantics of Winskel’s IMP(erative) language. This
encoding makes this synthesiser more abstract than others found in literature
and thus easily adaptable to handle different scenarios. Another significant dif-
ference is that this synthesiser can find programs, similar to the ones found in
the work reported in [15], instead of just expressions. We illustrate our approach
by synthesising Euclid’s greatest common divisor algorithm. In addition, Alloy*
provides us a great platform for the rapid development of a synthesiser. We
show that this synthesiser can be easily adapted to deal with examples instead
of specifications, and thus obtaining a programming by example synthesiser, to
consider template of the final programs, named sketches, as well as to reuse
previous synthesised code to improve its search process in a single solution. We
briefly discuss the advantages and disadvantages of using all these facilities.

A difficulty all synthesisers have is in the amount of input the user has to pro-
vide. To become even more productive, we propose a system that envelops this
synthesiser around the concepts of genetic algorithms to minimise the amount
of user input. The proposed system has helped to synthesize seven programs
(IntSQRT, Maj5, Maj8, Max4, Modu, Fact, and Fib) found in the SyGuS com-
petition, iJava and IntroClass, and Genetic programming communities.

This work on program synthesis follows a trend since the early days I and
my colleagues contribute to formal methods. We have created several solu-
tions this way that were applied from INPE2 (the Brazilian Institute for Space
Research) [11] to Embraer3 [2]. In general several of our contributions use a
transformational approach where we propose a language LP whose semantics is
given in terms of a mature formal language LB , which has available tool sup-
port. Thus we define a mapping from LP to LB in a algebraic style and prove its
soundness and completeness. This is indeed a similar approach used by the Alloy
Analyzer [6] and many other formal tools, except that no mapping is formally
defined as no soundness and correctness theorems are presented.

As the formal methods tools, which we have based our own work, were devel-
oped as any software system, that is, in an ad hoc (and sometimes, semi-formally)
way, we intend to recreate the foundation of our program synthesiser using a for-
mal approach. Here we do not pretend to follow the full path as reported in [7]
because in this direction we have to prove that the hardware circuits are correct
and so on. To propose a feasible scope, in this work we assume that a few tools
are trustworthy enough and close to code so that we can use them to create a
solution we can convince others and ourselves it is worthy using Formal Meth-
ods. Similar to the LTL model checker reported in the work [1], we intend to
create a relational model finder [16] with the capabilities of Alloy* [5,8] using
a theorem prover, where the code is correct with respect to the specification
as reported in the work [4]. Indeed such a kind of tool development can even
be applied to a theorem prover itself, which instead of just coding directly in
a programming language as reported in the work [13], one can formally specify

2 http://www.inpe.br/.
3 https://embraer.com/.

http://www.inpe.br/
https://embraer.com/


The Pragmatic Dimension of Formal Methods 3

what is a theorem prover and generate code automatically. Moreover, as this
code generation is directly related to the functions bodies stated in the theo-
rem prover itself, a program synthesiser can be used to alleviate the burden of
creating these functions bodies directly.

Acknowledgements. I would like to thank my colleagues Augusto Sampaio, Juliano
Iyoda, Márcio Cornélio, Ana Cavalcanti, and Jim Woodcock for our collaborations.
And to CNPq, grant 302170/2016-2, for supporting my research.
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Formal Design of Cloud Computing
Systems in Maude

José Meseguer(B)

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, USA

meseguer@illinois.edu

Abstract. Cloud computing systems are complex distributed systems
whose design is challenging for two main reasons: (1) since they are dis-
tributed systems, a correct design is very hard to achieve by testing
alone; and (2) cloud computing applications have high availability and
performance requirements; but these are hard to measure before imple-
mentation and hard to compare between different implementations. This
paper summarizes our experience in using formal specification in Maude
and model checking analysis to quickly explore the design space of a
cloud computing system to achieve a high quality design that: (1) has
verified correctness guarantees; (2) has better performance properties
than other design alternatives so explored; (3) can be achieved before an
actual implementation; and (4) can be used for both rapid prototyping
and for automatic code generation.

Keywords: Specification and verification of distributed systems
Cloud computing · Rewriting logic · Maude

1 The Challenge of Cloud Computing

Cloud computing systems are used massively and need to meet high perfor-
mance requirements such as high availability and throughput, and low latency,
even with network congestion and faults, and during software and hardware
upgrades. Furthermore, for both high availability and fault tolerance, data has
to be replicated. However, the CAP theorem [12] shows that it is impossible to
simultaneously have high availability and strong consistency in replicated data
stores. This means that, depending on the application, different tradeoffs need
to be found in the design of a cloud computing system between consistency and
performance. For example, for a social network a weak consistency notion such
as “eventual consistency” may be acceptable in exchange for high performance,
whereas a medical information system will clearly require stronger consistency
notions, even at the cost of some losses in performance. Indeed, as explained
in [13], there is a wide spectrum of consistency models to choose from. One of
the most crucial tasks in the design of a cloud computing system is to achieve

c© Springer Nature Switzerland AG 2018
T. Massoni and M. R. Mousavi (Eds.): SBMF 2018, LNCS 11254, pp. 5–19, 2018.
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6 Jo. Meseguer

a good balance between good performance and consistency guarantees that are
sufficient for the kinds of applications intended for the given system.

With some notable exceptions (see, e.g., [33]), in practice, cloud computing
systems are often designed and built using only informal designs and only with
the aid of testing techniques. Also, only after a system has been for the most
part built, do experimental evaluations become possible. Since furthermore, these
distributed systems can be quite large (for example, Cassandra has about 345,000
lines of code) and fairly complex, all this means that: (i) subtle bugs can easily
pass undetected; (ii) it may not be entirely clear what consistency and correctness
guarantees can be given for the system; and (iii) it can be very costly to explore
other design alternatives, since the cost of implementing them is too high.

All this also means that there is a good opportunity for formal methods to
provide much needed analytic and predictive power for exploring cloud com-
puting system designs before they are built. However, this is also a challenge
since:

1. The formal methods employed must naturally support distributed system
design and analysis.

2. The formal notations used should be easy to understand by system designers.
Furthermore, they should be simple and concise enough to precisely capture
design ideas at a high level in specifications orders of magnitude shorter than
code. This then makes it easy to express alternative designs and to explore
the practical impact of various design choices.

3. They should be able to analyze correctness properties, if possible automati-
cally, and to provide counterexamples when such properties are violated.

4. Since for these systems high performance is as important as correctness, the
formal specification and analysis methods should also be able to provide not
just “yes” or “no” answers to logical correctness questions, but also quanti-
tative answers to performance questions.

It is worth stressing that point (2) is of great importance: only after hav-
ing arrived at a good design is it meaningful to spend further efforts verifying
in depth its properties. To put it perhaps more sharply, the exploration of a
system’s design and that of its logical and performance properties should hap-
pen simultaneously and, once a good design has thus been identified, its formal
analysis should increase in depth. Also, all this should be done before actually
building the systems, so that: (a) costly design errors are caught as early as
possible; and (b) as much as possible is known about such a design, including its
logical correctness properties and its estimated performance, before it is built.

2 Rewriting Logic and Maude

A rewrite theory R = (Σ, E,R) specifies is a concurrent system, whose states are
the elements of the algebraic data type TΣ/E , and whose concurrent transitions
are specified by the rewrite rules R. We have found rewriting logic particularly
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well suited for specifying cloud computing systems. Such systems can be natu-
rally specified as configurations of distributed objects, often clients and servers,
which communicate with each other through message passing. The sending and
receiving of messages by such objects has a very natural formalization by means
of simple rewrite rules. In our experience, the rewrite rule formalism is easy to
understand by network engineers and distributed system designers.

Maude [14] is a language implementing rewriting logic. Since a program in
Maude is just a rewrite theory, Maude is a very simple language. However, Maude
is both highly expressive and versatile and very high level, affording a very direct
and concise representation of the concurrent system being modeled.

Maude is also a high-performance language. For example, in a recent detailed
benchmarking of 15 well-known algebraic, functional and object-oriented lan-
guages by Hubert Garabel and his collaborators at INRIA Rhône-Alpes, Haskell
and Maude were the two languages showing the highest overall performance [18].

For the purposes of this paper, the main points to emphasize are that, once
a distributed system designed has been expressed in Maude as a rewrite theory:

– Such a system design can be simulated using Maude’s frewrite command.
– Its reachability properties, including both failures of invariants and moni-

toring of consistency and other properties can be exhaustively analyzed by
breadth first search using Maude’s search command.

– Provided that the set of states reachable from a given initial state is finite,
its LTL temporal logic properties can be analyzed using Maude’s LTL model
checker [14].

– To specify the system’s real-time aspects and model check its real-time tem-
poral logic properties the Real-Time Maude language and system can be
used [34].

– Expressing the system’s probabilistic aspects as a probabilistic rewrite theory
[1], its quantitative performance aspects can be analyzed by statistical model
checking using the PVeStA tool [2].

In all these ways, Maude supports a style of formal specification and anal-
ysis of cloud computing systems that effectively meets the challenge to formal
methods that such systems pose, as explained in Sect. 1. In fact, to the best of
my knowledge it seems fair to say that rewriting logic as supported by Maude
is the first formally based approach in which both correctness and performance
aspects of cloud computing systems have been systematically analyzed.

3 Specifying and Analyzing Cloud Computing Systems

The work on specifying and analyzing cloud computing systems in Maude has
focused on two main areas: (i) formal specification and analysis of cloud storage
systems; and (ii) some security aspects of cloud computing.
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3.1 Formal Specification and Analysis of Cloud Storage Systems

Only a short summary of work in this area is possible here. I refer to the survey
[11], from which the summary of the work on systems (1)–(3) is drawn, for a
detailed account. My summary of (4) is based on [35], and that of (5)–(6) on
[29,30]. The cloud storage systems that have been specified and analyzed in
Maude include:

1. Apache Cassandra [22] is an open-source industrial key-value data store
having about 345,000 lines of code that only guarantees eventual consistency.
To the best of our knowledge, before our work no formal specification of Cas-
sandra existed and, although believed to guarantee eventual consistency, no
verification of that property had been carried out. After studying Cassan-
dra’s code, we first developed a 1,000-line Maude specification with just 20
rewrite rules [31], that captured the system’s main components such as data
partitioning strategies, consistency levels, and timestamp policies for order-
ing multiple versions of data. Standard model checking allowed us to con-
firm that Cassandra does support eventual consistency and to analyze under
what conditions Cassandra can guarantee strong consistency. To also analyze
Cassandra’s performance features and those of a design alternative, we then
develop a probabilistic model of Cassandra in [26]. By modifying a single
function in our Maude model we obtained a model of our proposed design
alternative. The statistical model checking analysis of the original Cassandra
model and our alternative Cassandra-like design in PVeStA indicated that
the proposed design alternative did not improve Cassandra’s performance.
But this left open the question of how reliable these analyses were. To answer
this question we modified the Cassandra code to obtain an implementation
of the alternative design, and executed both the original Cassandra code and
the new system on representative workloads. These experiments showed that
PVeStA statistical model checking provides reliable performance estimates.

2. Megastore [10] is a key part of Google’s cloud infrastructure. Megastore’s
trade-off between consistency and efficiency is to guarantee consistency only
for transactions that access a single entity group (e.g., “John’s email” or
“books on formal verification”). Megastore’s code is not publicly available,
and only a short high-level description has been given in [10]. To fully under-
stand the Megastore algorithms Jon Grov and Peter Ölveczky first developed
in [19] a sufficiently detailed executable formal specification of Megastore in
Real-Time Maude based on the description in [10]. This is the first publicly
available formalization and reasonably detailed description of Megastore. It
contains 56 rewrite rules, of which 37 deal with fault tolerance features.

To analyze both the correctness and the performance of Megastore’s Maude
model two additional models were developed: (i) since in the original real-
time model only those behaviors that are possible within the given timing
parameters are analyzed, to exhaustively analyze all possible system behav-
iors irrespective of particular timing parameters, an untimed model was also
developed; and (ii) for performance estimation purposes, a real-time model in
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which certain parameters, such as the messaging delays between two nodes,
are selected probabilistically according to a given probability distribution was
also developed.
Furthermore, Jon Grov had an idea on how to extend Megastore so that
it would also guarantee strong consistency for certain transactions accessing
multiple entity groups without sacrificing performance. This led to the design
of Megastore-CGC. The key observation is that a Megastore site replicat-
ing a set of entity groups participates in all updates of these entity groups,
and should therefore be able to maintain an ordering on those updates. The
idea behind the Megastore-CGC extension is that, by making this order-
ing explicit, such an “ordering site” can validate transactions [20]. Since
Megastore-CGC exploits the implicit ordering of updates during Megastore
commits, it piggybacks ordering and validation onto Megastore’s commit pro-
tocol and therefore does not require additional messages for validation and
commit. A failover protocol deals with failures of the ordering sites. Both
simulations (to discover performance bottlenecks) and Maude model check-
ing were extensively used during the development of Megastore-CGC, whose
formalization contains 72 rewrite rules. The performance estimated for Mega-
store and Megastore-CGC using randomized simulations in Real-Time Maude
indicated that both system designs had about the same performance. That
is, a design with considerably stronger consistency guarantees was obtained
without sacrificing performance.

3. RAMP. Read-Atomic Multi-Partition (RAMP) transactions were proposed
by Peter Bailis et al. [9] to offer light-weight multi-partition transactions that
guarantee one of the fundamental consistency levels, namely, read atomicity :
either all updates or no updates of a transaction are visible to other transac-
tions. The paper [9] gives hand proofs of correctness properties and proposes
a number of variations of RAMP without giving details. We used Maude to:
(i) check whether RAMP indeed satisfies the guaranteed properties, and (ii)
develop detailed specifications of the different variations of RAMP and check
which properties they satisfy. Specifically, in [25,28] we used reachability anal-
ysis to analyze whether the different variants of RAMP satisfy the following
properties (from [9]):

– Read atomic isolation: either all updates or no updates of a transaction
are visible to other transactions.

– Companions present : if a version is committed, then each of the version’s
sibling versions are present on their respective partitions.

– Synchronization independence: each transaction will eventually commit
or abort.

– Read your writes: a client’s writes are visible to her subsequent reads.
We analyzed these properties for our seven versions of RAMP. Our analysis
results agree with the theorems and conjectures in [9]: all versions satisfy the
above properties, except that: (i) RAMP without 2PC only satisfies synchro-
nization independence; and (ii) RAMP with one-phase writes does not satisfy
read-your-writes.
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Furthermore, in [27] we used statistical model checking to analyze whether
the different variants of RAMP offer the expected performance (only two
of the versions were implemented by the RAMP developers for performance
analysis). Our statistical model checking performance results: (a) were con-
sistent with the experimental evaluations of the two implemented designs;
(b) were also consistent with conjectures made by the RAMP developers for
other unimplemented designs; and (c) have uncovered some promising new
designs that seem attractive for some applications.

4. P-Store [38] P-Store is a data store that combines wide-area replication,
data partition, some fault tolerance, serializability, and limited use of atomic
multicast. It has influenced other recent data store designs that can be seen
as extensions of its design. P-Store uses atomic multicast to order concurrent
transactions and group communication for atomic commit. As pointed out
for example in [4], both atomic multicast and group communication com-
mit seem to be key building blocks in cloud storage systems. However such
features were not formalized in previous work. Indeed, Ölveczky’s paper on
P-Store [35] describes the formalization and formal analysis of P-Store in
Maude and, as part of its main contributions, specifies group communication
commitment, and defines an abstract Maude model of atomic multicast that
allows any possible ordering of message reception consistent with atomic mul-
ticast. Besides providing a Maude formal model of two versions of P-Store,
the work in [35] performed model checking analysis. This analysis uncovered
some significant errors in the supposedly-verified P-Store algorithm, like read-
only transactions never getting validated in certain cases. One of the authors
of the original P-Store paper [38] did confirm that a nontrivial mistake had
been found in their algorithm and suggested a way of correcting the mistake.
The Maude analysis of the corrected algorithm did not find any errors. Fur-
thermore, the analysis showed that a crucial assumption was missing from
the original P-Store paper, and that a key definition was very easy to mis-
understand because of how it was phrased in English. All this showed that
there is a clear need for formal specification and analysis beyond the standard
prose-cum-pseudo-code descriptions and informal correctness proofs.

5. Walter [41] is a distributed partially replicated data store providing Paral-
lel Snapshot Isolation (PSI), an important consistency property that offers
attractive performance while ensuring adequate guarantees for certain kinds
of applications. Walter is a very good opportunity for formal methods, because
no formal system specification existed at all before our work in [30], and there
was no formal (or even informal) verification that it guarantees PSI. Further-
more, Walter is also a good stepping stone towards placing the design of
cloud-based transaction systems in a formally-based modular framework. In
this sense, Walter has been a key missing design in the spectrum, so that its
study complements and enriches the general picture that has been obtained in
the formal modeling and analysis studies on Cassandra, Megastore, RAMP,
P-Store, and ROLA discussed above in (1)–(4) and below on (6).
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In [30] we have:
– Given in Maude the first formal executable specification of Walter.
– Formalized the SI and PSI properties and formally analyzed for the first

time whether the Walter design satisfies either of these properties. This
analysis has been achieved by: (a) providing a parametric method to
generate all initial states for given parameters; and (b) performing model
checking analysis to verify the SI and PSI properties for all initial states
for various parameter choices. Our analysis shows that the Walter design
does indeed satisfy the PSI property for all our initial states but fails to
satisfy the SI property;

– Extended the Maude model of Walter from a rewrite theory to a prob-
abilistic rewrite theory by adding time and probability distributions for
message delays to the original specification. We then carried out a sys-
tematic statistical model checking analysis of the key performance metric,
transaction throughput, under a wide range of workloads. The results of
this analysis confirm that the performance estimates thus obtained are
consistent with those obtained experimentally for the Walter implemen-
tation in [41]; and they furthermore provide new insights about Walter’s
performance beyond the limited ranges for which such information was
available by experimental evaluation in [41].

6. ROLA [29] is a new distributed transaction protocol that has been designed
and analyzed using Maude from the very beginning. Different applications
require negotiating the consistency vs. performance trade-offs in different
ways. The point of ROLA is to explore a specific such tradeoff not stud-
ied before. The key issue is the required degree of consistency for a given
application, and how to meet its consistency requirements with high per-
formance. Cerone et al. [13] survey a hierarchy of consistency models for
distributed transaction protocols including (in increasing order of strength):
(i) read atomicity (RA): either all or none of a distributed transactions
updates are visible to another transaction (that is, there are no fractured
reads); (ii) causal consistency (CC): if transaction T2 is causally dependent
on transaction T1, then if another transaction sees the updates by T2, it
must also see the updates of T1 (e.g., if A posts something on a social media,
and C sees Bs comment on As post, then C must also see As original post);
(iii) parallel snapshot isolation (PSI): like CC but without lost updates; and
so on, all the way up to the well-known serializability guarantees. A key
property of transaction protocols is the prevention of lost updates (PLU).
The weakest consistency model in [13] satisfying both RA and PLU is PSI.
However, PSI, and the already discussed Walter protocol [41] implementing
PSI, also guarantee CC. Cerone et al. conjecture that a system guaranteeing
RA and PLU without guaranteeing CC should be useful, but up to now we
are not aware of any such protocol. The point of ROLA is exactly to fill this
gap: guaranteeing RA and PLU, but not CC. Two key questions are then: (a)
are there applications needing high performance where RA plus PLU provide
a sufficient degree of consistency? and (b) can a new design meeting RA plus
PLU outperform existing designs, like Walter, meeting PSI?
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Regarding question (a), an example of a transaction that requires RA and
PLU but not CC is the becoming friends transaction on social media. Bailis
et al. [8] point out that RA is crucial for this operation: If Edinson and
Neymar become friends, then Unai should not see a fractured read where
Edinson is a friend of Neymar, but Neymar is not a friend of Edinson. An
implementation of becoming friends must obviously guarantee PLU: the new
friendship between Edinson and Neymar should not be lost. Finally, CC could
be sacrificed for the sake of performance: Assume that Dani is a friend of
Neymar. When Edinson becomes Neymar’s friend, he sees that Dani is Ney-
mar’s friend, and therefore also becomes a friend of Dani. The second friend-
ship therefore causally depends on the first one. However, it does not seem
crucial that others are aware of this causality: If Unai sees that Edinson and
Dani are friends, then it is not necessary that he knows that (this happened
because) Edinson and Neymar are friends.
Regarding question (b), the work in [29] compared the performance of ROLA
with that of Walter. To model time and performance issues, ROLA has been
specified in Maude as a probabilistic rewrite theory. ROLA’s RA and PLU
requirements were then analyzed by standard model checking disregarding
time issues. To estimate ROLA’s performance, and to compare it with that
of Walter, the specification of Walter in Maude was used, and the Maude
models of both ROLA and Walter were analyzed by statistical model check-
ing analysis using the PVeStA tool. The results of this analysis showed that
ROLA outperforms Walter in all performance requirements for all read/write
transaction rates. To the best of our knowledge this is the first demonstra-
tion that, by a suitable use of formal methods, a completely new distributed
transaction protocol can be designed and thoroughly analyzed, as well as be
compared with other designs, very early on, before its implementation.

3.2 Some Security Aspects of Cloud Computing Systems

The work on using formal specification and analysis in Maude for cloud com-
puting security is less developed than that on storage systems, but it can give
a taste for what is possible. A common theme through both of the studies that
I summarize below is that cloud computing, while giving rise to new security
vulnerabilities, does also offer the possibility of arriving at system designs that
take advantage of cloud computing to increase system security. My summary of
(1) is based on material in [15], and that of (2) on [11,39]

1. Achieving Stable Availability in the Face of DoS Attacks. Availability
is a crucial security property for cloud-based systems. It can be compromised
by distributed Denial of Service (DoS) attacks. In [15] two Maude-based for-
mal patterns (in the sense of [32]), and their combination into the ASV+SR
pattern were presented. Used in their ASV+SR combination, they can effec-
tively defend cloud-based systems against DoS attacks. The key notion pro-
posed is that of stable availability, meaning that, with very high probability,
service quality remains very close to a chosen threshold, regardless of how
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bad the DoS attack can get. This notion is a good example of how cloud
computing can be used to enhance security, in this case defenses against DoS
attacks. The two most basic formal patterns used as defenses against DoS
attacks were: (i) the Adaptive Selective Verification (ASV) pattern, which
enhances a communication protocol with a defense mechanism, and (ii) the
Server Replicator (SR) pattern, which exploits cloud computing’s flexibility to
provision additional resources based on perceived congestion. However, ASV
achieves availability without stability, and SR cannot achieve stable availabil-
ity at a reasonable cost. As a main result the work in [15] shows, by statistical
model checking with the PVeStA tool, that (iii) the ASV+SR composition of
both patterns yields a new pattern which guarantees stable availability at a
reasonable cost.
The key problem addressed is that DoS defense mechanisms that help main-
taining availability can nevertheless show performance degradation as a DoS
attack worsens. Thus, a key goal in [15] is to design DoS security adaptive
measures that can achieve stable availability, which means that with very high
probability service quality remains very close to a chosen constant quantity,
which does not change over time, regardless of how bad the DoS attack can
get. Cloud Computing, by offering the possibility of dynamic resource allo-
cation, can be used to leverage stable availability when combined with DoS
defense mechanisms.
The ASV protocol [3,24] is a well-known defense against DoS attacks in the
typical situation that clients and attackers use a shared channel where nei-
ther the attacker nor the client have full control over the communication
channel [24]. The ASV protocol adapts to increasingly severe DoS attacks
and provides improved availability. However, it cannot provide stable avail-
ability. By replicating servers one can dynamically provision more resources
to adapt to high demand situations and achieve stable availability; but the
cost of provisioned servers drastically increases in a DoS attack situation.
These two patterns are modeled in Maude and then formally composed to
obtain the new ASV+SR pattern. As a main result the work in [15] shows, by
analyzing the quantitative properties of ASV+SR with the statistical model
checker PVeStA, that ASV+SR guarantees stable availability at a reasonable
cost. The key idea of ASV+SR is relatively easy to explain. As a DoS attack
gets worse, ASV servers randomly drop an increasing number of messages
from clients, and honest clients increase their resending of messages based on
their perceived latency to get a server’s response. ASV ensures that messages
from honest clients will eventually get through, but performance is degraded.
ASV+SR pattern avoids this performance degradation. However, much fewer
additional servers need to be provisioned than if a naive approach based only
on SR were used. Actually, in ASV+SR the threshold for provisioning new
servers is itself a chosen parameter: one can settle for a small, constant fac-
tor in performance degradation at the expense of substantial savings in the
provisioning of new servers.
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2. Building a Group Key Management Service on top of ZooKeeper.
Zookeeper [23] is a fault-tolerant distributed key/value data store that pro-
vides reliable distributed coordination. The work in [39] investigated whether
a useful group key management service can be built using ZooKeeper using
Maude and statistical model checking in PVeStA.
Group key management is the management of cryptographic keys for secure
communication between multiple authorized entities. A central group key
controller can fulfill this need by: (a) authenticating/admitting authorized
users into the group, and (b) generating a group key and distributing it to
authorized group members [42]. In settings with a centralized group controller,
its failure can impact both group dynamics and periodic key updates, leaving
the group key vulnerable. This is especially significant when designing a cloud-
based group key management service, since such a service will likely manage
many groups.
The work in [39] investigated whether a fault-tolerant cloud-based group key
management service could be built by leveraging existing coordination ser-
vices commonly available in cloud infrastructures and if so, how to design
such a system. In particular, we: (a) designed a group key management ser-
vice built using Zookeeper [23], a reliable distributed coordination service
supporting Internet-scale distributed applications, (b) developed a rewriting
logic model of our design in Maude [14], based on [21], where key generation
is handled by a centralized key management server and key distribution is
offloaded to a ZooKeeper cluster and where the group controller stores its
state in ZooKeeper to enable quick recovery from failure, and (c) analyzed
our model using the PVeStA [2] statistical model checking tool. The analysis
centered on two key questions: (1) can a ZooKeeper-based group key manage-
ment service handle faults more reliably than a traditional centralized group
key manager, and (2) can it scale to a large number of concurrent clients with
a low enough latency to be useful?
Our analysis consisted of two experiments. Both were run hundreds of times
via PVeStA and average results were collected. The first experiment was
designed to test whether saving snapshots of the group key manager’s state
in the ZooKeeper store could increase the overall reliability of the system.
In the first experiment we compared the average key manager availability
(i.e., the time it is available to distribute keys to clients) between a sin-
gle key manager and two key managers where they share a common state
saved in the ZooKeeper store. We observed an availability improvement from
65% to 85%. Our second experiment was designed to examine whether using
ZooKeeper to distribute shared keys is efficient and scalable enough for real-
world use. The experiment measured the variations in: (a) the percentage of
keys successfully received by group members, and (b) the key distribution
latency, as increasing numbers of clients joined a group per second. We ana-
lyzed our original model and a slightly modified model where we added a
2 s wait time between key updates from the key manager. While our initial
experiments show that naively using ZooKeeper as a key distribution agent
works well, at high client join rates, the key reception rate leveled out around
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96%. This occurs because ZooKeeper can apply key updates internally more
quickly then clients can download them. By adding extra latency between
key updates, the ZooKeeper servers are forced to wait enough time for the
correct keys to propagate to clients, the slightly modified design achieved a
99% key reception in all cases. On the other hand, key distribution latency
remained relatively constant, at around half a second, regardless of the join
rate because ZooKeeper can distribute keys at a much higher rate than a key
manager can update them [23].
In essence, our analysis confirmed that a scalable and fault-tolerant key-
management service can indeed be built using ZooKeeper, settling various
doubts raised about the effectiveness of ZooKeeper for key management by
an earlier, but considerably less-detailed, model and analysis [16]. This result
is not particularly surprising, especially considering that many man-hours
would be needed to optimize an actual system. More interestingly, the analy-
sis also showed that system designs may suffer from performance bottlenecks
not readily apparent in the original description—highlighting the power of
formal modeling and analysis as a method to explore the design space.

4 Limitations and Some Future Directions

One important limitation of this extended abstract is that there is no room for
a careful comparison with related work. Fortunately, a quite up to date such
comparison has been given in the survey [11], to which I refer for a discussion of
other work in this area. Two other current limitations pointing to future research
directions are: (1) the absence at the moment of full verification by theorem
proving for the systems that I have discussed; and (2) the current status of
Maude executable specifications as prototypes useful for simulation and analysis,
but not used for the moment for distributed implementations.

Regarding limitation (1), the obvious thing to say is that theorem prov-
ing is a natural next step. I have emphasized earlier—and the various systems
I have discussed have further stressed—that perhaps the first and most valu-
able service that Maude executable specifications can render to cloud comput-
ing is not verification per se, but rather fast design exploration. It makes no
sense to model check the wrong design. And, due to the labor intensive nature
of theorem proving, it makes even less sense to perform theorem proving ver-
ification on such a wrong design, particularly since theorem provers are not
that good at finding counterexamples and, furthermore, in this area logical cor-
rectness is only part of the story: performance matters quite as much. Theo-
rem proving is, as I said, a complementary next step: after having arrived at
a good system design and having thoroughly analyzed its logical correctness
properties—resp. its performance—by standard model checking—resp. by sta-
tistical model checking—for representative initial states, the next step is to fully
verify the systems key logical properties for all initial states by theorem proving.
For Maude specifications of distributed systems, three related approaches, one
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based on symbolic model checking and two based on theorem proving, seem
particularly well suited:

– The Logical Model Checking approach in [5–7,17] is in some sense halfway
between model checking and theorem proving: it allows full verification of
temporal logic properties for infinite-state systems and for infinite sets of
initial states.

– The deductive verification of invariants and other safety properties by the
unification methods supported by Maude’s Invariant Analyzer tool [36,37] is
also directly relevant and can be a useful tool for verifying invariants.

– The Constructor-Based Reachability Logic for rewrite theories presented in
[40] is a third attractive alternative. Reachability logic generalizes Hoare logic
and can express many Hoare-like partial correctness properties, including
invariants. Although its tool is still under development, it has already been
applied to the deductive verification of some distributed systems.

Regarding limitation (2) there are two main things to say. First, thanks to
Maude’s support for TCP-IP sockets as built-in objects [14], Maude programs
can be easily distributed. The basic idea is that objects in a distributed sys-
tem written in Maude can be executed in different machines, with sockets used
to support message passing communication across machines. What is needed,
however, is to make the passage from a Maude model to its distributed imple-
mentation as simple and as efficient as possible. Current, as yet unpublished,
research is advancing this direction. In particular, distributed storage systems
are among the examples we are experimenting with. Second, this direction is
particularly important to arrive at system implementations that are correct by
construction. In fact, this dovetails very nicely with the effort in overcoming
limitation (1), since all this should make it possible to generate correct by con-
struction distributed implementations from Maude-based formal specifications
of system designs that have already been submitted to both model checking and
theorem proving verification.
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Abstract. Formal methods and static analysis are widely used in soft-
ware development, in particular in the context of safety-critical systems.
They can be used to prove that the software behavior complies with its
specification: the software correctness. In this article, we address another
usage of these methods: the verification of the quality of the source code,
i.e., the compliance with guidelines, coding rules, design patterns.

Such rules can refer to the structure of the source code through its
Abstract Syntax Tree (AST) or to execution paths in the Control Flow
Graph (CFG) of functions. AST and CFGs offer complementary infor-
mation and current methods are not able to exploit both of them simul-
taneously. In this article, we propose an approach to automatically veri-
fying the compliance of an application with specifications (coding rules)
that reason about both the AST of the source code and the CFG of its
functions. To formally express the specification, we introduce FO++, a
logic defined as a temporal extension of many-sorted first-order logic. In
our framework, verifying the compliance of the source code comes down
to the model-checking problem for FO++. We present a correct and
complete model checking algorithm for FO++ and establish that the
model checking problem of FO++ is PSPACE-complete. This approach
is implemented into Pangolin, a tool for analyzing C++ programs. We
use Pangolin to analyze two middle-sized open-source projects, looking
for violations of six coding rules and report on several detected violations.

1 Introduction

In today’s complex systems, software is often a central element. It must be
correct (because any miscalculation can have severe consequences in human or
financial terms) but also meet other criteria in term of quality such as read-
ability, complexity, understandability, uniformity . . . . Whereas formal methods
and static analysis (such as abstract interpretation, (software) model checking
or deductive methods) are effective means to ensure software correctness, code
quality is often dealt with by manual peer-review, which is a slow and costly pro-
cess as it requires to divert one or several programmers to perform the review.
However, formal methods and static analysis can also be used to improve code
quality. They can perform automatic and exhaustive code queries, looking for
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bug-prone situations that hinder quality [4], enforcing the use of API functions
in Linux code [16] or statically estimating test coverage [3].

It is essential that end-users can specify what they are looking for since each
project has conventions, norms, and specificity that must be taken into account.
There are many existing formalisms to specify queries, and they either use the
Abstract Syntax Tree (AST) as their source of information [4,10,12,14,20] or the
Control Flow Graph (CFG) of functions [6]. However, each one provides addi-
tional and complementary information. CFGs provide an over-approximation of
the possible executions of a function as some paths may never be taken. Con-
versely, the AST allows finding additional structural properties that are not
present in the CFG. These structural properties can be about a function (its
name, its declared return type, possible class membership, . . . ) but they can
also be related to classes and objects of the software (inheritance relationship,
class attributes, global variables, . . . ). However, there is currently no frame-
work for reasoning simultaneously and adequately over these two sources of
information.

This is why we propose an approach to verifying the compliance of source
code with user properties that refer both to the CFG of functions and to struc-
tural information, which is related to the AST. To formally express the user
properties, we introduce in Sect. 2 the logic FO++. It is a temporal extension
of many-sorted first-order logic. On the one hand, many-sorted first-order logic
is used to handle structural information. The use of a sorted logic makes it eas-
ier to manipulate the variety of possible structural elements that may be found
(classes, attributes, types, ...). On the other hand, temporal logics are used to
specify properties on the ordering of statements in the different paths within the
CFGs of functions. Each statement description within a temporal formula, i.e.,
each atom of a temporal formula, is a syntactic pattern of a statement (no value
analysis is addressed).

The source code verification procedure is then reduced to the FO++ model-
checking problem on an FO++ interpretation structure extracted from the source
code to analyze.

Illustrating Example. To illustrate our approach, we consider the C++ source
code shown in Listing 1.1 which represents a monitoring system (Fig. 1).

In this source code, the values of the attributes are recorded and formatted
through objects of type Log, which have a log function. We want to make sure
that for each class that has an attribute of type Log, each private attribute is
logged in each public function, and not modified after being logged. Property 1
expresses this requirement more precisely, in natural language.

Property 1 (Correct usage of logger). For each class C that has an attribute
of type Log, there is a single function that logs all private attributes.
That function must always be called in each public function, and the attributes
must not be modified later on.

In Property 1, the text in italics refers to aspects of the property that are
related to the AST whereas aspects related to paths within the CFG of functions
are underlined.
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1 c l a s s A{} ;
2 c l a s s B{
3 pub l i c :
4 void serA ( i n t n)

{
5 a += n ;
6 s t o r e ( ) ;
7 }
8 void serB (
9 s t r i n g s )

{
10 s t o r e ( ) ;
11 i f ( s == ” r e s e t

” ){
12 b = ”” ;
13 }
14 }
15 pr i va t e :
16 void s t o r e ( ) {
17 l o gg e r . l og ( a ) ;
18 l o gg e r . l og (b) ;
19 }
20 i n t a ; s t r i n g b ;
21 Log l ogge r ;
22 }

Listing 1.1. snippet
for monitoring

Fig. 1. Extract of the AST of B Fig. 2. CFG of serB

Notice that in Listing 1.1, class A does not have a Log attribute and thus is not
concerned by the property, whereas B does. In B, store fulfills the requirements
of logging all privates attributes (namely a and b), and serA is compliant with
the property. However, serB is not because b can be reset after the call to
store. This is clearly visible on Fig. 2, which illustrates serB’s CFG. Indeed,
on the control flow path s1-s2-s3, b is assigned in s3 whereas store was called
in s1. We show in this article that FO++ allows the user to express formally
Property 1 in a natural way, and Pangolin is then able to detect automatically
that Listing 1.1 is not compliant.

Article Layout. The rest of the article is organized as follows: Sect. 2 defines the
syntax and semantics of FO++. Section 3 presents a model checking algorithm
for FO++ and establishes its correctness and termination. The model check-
ing problem for FO++ is also proved to be PSPACE-complete. Section 4 details
FO++ specialization for C++ and Sect. 5 presents the architecture of our proto-
type Pangolin. Then Sect. 6 details the result of some experiments we conducted
with Pangolin and Sect. 7 details the related work.

2 FO++ Definition

FO++ is defined as a temporal extension of many-sorted first-order logic. Two
temporal logics are available within FO++: Linear Temporal Logic (LTL) and
Computation-Tree Logic (CTL). LTL considers discrete linear time whereas CTL
is a discrete branching time logic (at each instant, it is possible to quantify over
the paths that leave the current state). Both are well-established logics and
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tackle different issues. CTL is natural over graph-like structure as it offers path
quantification, whereas LTL offers a path-sensitive analysis, and its ability to
refer to the past of an event is convenient.

The extension is done through a process close to parametrization [8]. Intu-
itively, the parametrization of a formal logic L1 by a formal logic L2 consists of
using complete L2 formulas as atoms for L1. When evaluating L1 formulas, L2

atoms are evaluated according to L2 rules. Here, the process is more complicated
since some of the elements in the first-order domain (intuitively, the functions
in the source code) are associated with interpretation structures for temporal
formulas (intuitively, the CFGs of functions). Syntactically, the temporal exten-
sion is done by adding two specific binary predicates modelsLTLand modelsCTL.
If f is a first-order variable and ϕ is an LTL formula (resp. a CTL formula)
then modelsLTL(f, ϕ) (resp. modelsCTL(f, ϕ)) is true if f denotes a function in
the source code and if the CFG of f satisfies the formula ϕ according to LTL
(resp. CTL) semantic rules. This yields a very modular formalism as it is easy
to incorporate new logics for specifying properties over CFGs.

2.1 Syntax

Terms. Let Si be a collection of sorts, V a finite set of variables, and F a set
of function1 symbols. Each variable and constant belongs to a unique sort and
each function symbol f has a profile S1,× . . . × Sn → Sn+1, where n is the arity
of f (a 0-arity function is a constant) and each Si is a sort.

The set TS of FO++ terms of sort S is defined inductively as follows: if x is
a variable of sort S then x ∈ TS ; if f ∈ F has the profile S1,× . . .×Sn → S, and
for each i ∈ 1..n, ti ∈ TSi

then f(t1, . . . , tn) ∈ TS . The set T =
⋃

TSi
denotes

all FO++ terms.

Atoms. The set P of predicate symbols consists of (1) classical predicate symbols,
each of which is associated with a profile S1,× . . .×Sn, where n is the arity of the
predicate and each Si is a sort, and (2) two special 2-arity predicates symbols:
modelsLTL and modelsCTL. An atom in FO++ consists of either a usual predicate
applied to FO++ terms, or the special predicate modelsLTL (resp. modelsCTL)
applied to an FO++ term and an LTL (resp. CTL) formula. Considering the
latter case, i.e., modelsLTL and modelsCTL, the first argument of both predicates
is a term (in practice: a variable representing a function in the source code under
analysis). The second argument of modelsLTL (resp. modelsCTL) is an LTL (resp.
CTL) formula as defined in Sect. 2.2.

Formulas. FO++ formulas are defined as follows: �,⊥ are formulas, if a is an
atom then a is also a formula; if S is a sort and Q is a formula, then ¬Q,Q ∨
Q,Q ∧ Q,Q ⇐⇒ Q,Q =⇒ Q,∀x : S Q,∃x : S Q are also formulas.

A sentence is an FO++ formula without free-variable. In the rest of the
paper, all formulas are sentences.

1 Not to be confused with functions in the software under study.
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Semantics

Interpretation Structure. An FO++ formula is interpreted over a structure
M = (D, EKS, eks,has eks, IF , IP ). The domain D is a set in which terms are
interpreted. It is partitioned into disjoint sub-domains DS , one for each sort
S; EKS is a set of Enhanced Kripke Structures (EKS) as defined in Sect. 2.2,
which are used to interpret temporal formulas. has eks(x) : D → {true, false}
is a function, which indicates whether a value in the domain has an associated
EKS. eks : D → EKS is a partial function, which maps some elements of D to an
EKS2. IF defines an interpretation for functions in F such that if f ∈ F has a
profile S1,× . . .×Sn → Sn+1 then IF (f) : DS1 ,× . . .×DSn

→ DSn+1 . IP defines
an interpretation for predicates in P such that if p ∈ P has a profile S1× . . .×Sn

then Ip(p) ⊆ DS1 × . . . × DSn
is the set of all tuples of domain values for which

p is true.
IF and IP are specific to the programming language used for the project

under analysis, whereas D and EKS are even specific to the program itself.

Environment. An environment is a partial function from the set V of variables
to the domain D. If σ is an environment, x a variable in V and d a value in
D, then σ[x ← d] denotes the environment σ1 where σ1(x) = d and for every
x �= y, σ1(y) = σ(y).

From an environment σ and an interpretation IF for functions, we
define an interpretation Kσ : T → D for terms in the following way:
for each variable x in V,Kσ(x) = σ(x) and for an arbitrary term f(t1, . . . , tn),
Kσ(f(t1, . . . , tn)) = IF (f)(Kσ(t1), . . . ,Kσ(tn))

Satisfaction Rules. Let M be an interpretation structure, σ an environment and
Kσ an interpretation for terms according to this environment. We define the
satisfaction relation of FO++ as follows3:

M,Kσ |= ¬Q iff M,Kσ �|= Q

M,Kσ |= Q1 ∧ Q2 iff M,Kσ |= Q1 and M,Kσ |= Q2

M,Kσ |= ∃x : S Q iff there is an a ∈ DS such that M,Kσ[x←a] |= Q

M,Kσ |= p(t1, . . . , t1) iff (Kσ(t1), . . . ,Kσ(tn)) ∈ IP (p)
M,Kσ |= modelsCTL(x, ψ) iff has eks(x) and eks(x),Kσ |=CTL ψ

M,Kσ |= modelsLTL(x, ψ) iff has eks(x) and eks(x),Kσ |=LTL ψ

If Q is a formula without any free variable, we write M |= Q for M,K∅ |= Q
where ∅ denotes an empty environment.

2.2 Temporal Formulas

Syntax. The syntax of LTL and CTL slightly differs from their standard defini-
tion, in which atoms are atomic propositions (see, e.g., [19]). Here, since we are
2 For any x ∈ D if has eks(x) if and only if eks(x) is defined.
3 For conciseness, we only provide the semantics of a minimal set of Boolean connec-

tives.
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in a first-order context, an atom is a predicate in a set PredEKS (disjoint from
P) applied to terms. We call TAtoms the set of atoms of temporal formulas. The
predicates in PredEKS describe syntactic properties of the statements within
a CFG (whereas predicates in P denotes (static) structural properties about the
source code under study). For instance, in order to reason about the fact the
current statement of a CFG contains a call to a certain function, we can define
a predicate call(·) in PredEKS, such that call(x) is true if there is a call
to the function denoted by the first-order variable x in the current statement of
the CFG.

The syntax of LTL is inductively defined as follows: TAtoms are valid LTL
formula. If ψ1, ψ2 are valid LTL formulas, so are ψ1 ◦ψ2, ¬ψ1, Xψ1, Gψ1, Fψ1,
ψ1 Uψ2, Yψ1, Oψ1, Hψ1 and ψ1 S ψ2 where ◦ is a binary Boolean connective.

CTL syntax is similar to LTL syntax, except that the temporal operators are
A ◦ −, E ◦ −, A[− U −], E[− U −] with ◦ ∈ {X,F ,G }.

Semantics. The slight change of formalism is reflected into the interpreta-
tion structures used. Instead of using traditional Kripke structures, FO++ uses
Enhanced Kripke structures. An Enhanced Kripke structure is simply a Kripke
structure where the valuation function associates each state with the interpre-
tation of predicates in PredEKS, instead of a set of atomic propositions.

EKSFormal Definition. Let B = (S,→, I
EKS

, � �) be an EKS. S is a set of states,
→⊆ S × S is the transition relation between states (written ◦ → ◦), I

EKS
⊆ S is

the set of initial states and �� : PredEKS × S → P (Dn) associates a predicate
p of arity n with its interpretation in a state s, denoted �p�s (i.e., the set of all
tuples of concrete values for which the predicate is true).

Interpretation Rules for Temporal Formulas. The satisfaction of LTL and CTL
formulas is defined in the standard way (see, e.g., [19]), except for atoms, which
are built from predicates instead of atomic propositions, as explained above.
Given an environment σ, an interpretation Kσ, a predicate p ∈ PredEKS, a
state s and some terms v1, . . . , vn, the satisfaction relation for temporal atoms
is defined as follows4:

s,Kσ |= p(v1, . . . , vn) iff (Kσ(v1), . . . , Kσ(vn)) ∈ �p�s (1)

An example of FO++ formula is given in Sect. 4.3.

Remark 1 (Difference with FO-CTL and FO-LTL). Notice that a more classical
way of combining first-order and temporal logics results in FO-LTL [15] and
FO-CTL [5]. Intuitively, FO-LTL allows a free combination of LTL and first-
order symbols and is evaluated on a succession of states on which the value
of some variables depends. FO-LTL adds to LTL the possibility to quantify on
the values that variables in a given state. FO-CTL is used to specify property
on a single first-order Kripke structures. These structures have transitions with

4 It applies to both |=LTL and |=CTL and is thus simply denoted with |=.



26 D. Come et al.

conditional assignments and FO-CTL offers to quantify over the variable used
in those conditional assignments.

Strictly speaking, we cannot compare their expressive power with respect to
FO++ because the interpretation structures are different. The main difference is
due to the mapping of some domain elements to temporal interpretation struc-
tures, which is called eks in FO++ semantics. In FO++, a quantification over
the elements that are mapped to temporal interpretation structures comes to
an indirect quantification over these temporal interpretation structures, which is
not possible in the case of FO-LTL and FO-CTL. On the other hand, for prag-
matic reasons, we restrict FO++ syntax not to allow quantifiers in the scope of
temporal operators, whereas they are allowed in FO-CTL and FO-LTL.

3 FO++ Model Checking

In this section, we investigate the model checking problem for FO++.

3.1 Model Checking Algorithm

Given an FO++ formula φ and an interpretation structure M , the model check-
ing algorithm MC++(M,φ) returns true if M satisfies φ, and false otherwise.
To do so, we chose to rely on an approach that is similar to rewriting systems.
This way, we can decouple the basic steps of the algorithm (rewriting rules) from
the way these steps are ordered (the strategy). This offers a flexible and modular
presentation of the algorithm. In our implementation, we also took advantage
of this structure to log the different steps of the algorithm for a potential offline
review. Notice, however, that we are not strictly in the scope of higher-order
rewriting systems such as defined in [18] because some of our rules include con-
ditions that refer to the interpretation structure.

MC++ Terms. The terms that are handled by the algorithm MC++, called
MC++ terms, are similar to FO++ formulas but include elements of the semantic
domain, which are useful for quantifier unfolding. The FO++ formula φ is first
translated into an FO++ term, which is then successively rewritten until reaching
true or false.

For each sort S, any element d ∈ DS is considered as a constant of sort
S. Then, if p is a predicate symbol of profile S and d ∈ DS is an element of
the semantic domain associated with S in M , then p(d) is a valid MC++ term.
Besides, a quantified formula is represented by a term in which all values that
are necessary for the quantifier unfolding are listed. For example, considering
a sort S with an associated semantic domain DS = {d1, . . . , dn}, the formula
∀x : s Q is represented by the term allD(x.Q,< d1, . . . , dn >), and the formula
∃x : s Q is represented by the term someD(x.Q,< d1, . . . , dn >).

Rewriting First-Order Terms. The rewriting rules for the first-order part
of the logic are split into three categories: the rules related to the evaluation of
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FO++ functions and non temporal predicates, the rules that perform unfolding
of quantifiers and the rules that evaluate Boolean connectives.

Functions and Predicates. Functions and predicates are evaluated once all
their arguments are domain constants. The values are determined by their
respective interpretation functions. The rewriting rules are p(t1, . . . tn) �
true if (t1, . . . , tn) ∈ P (p), p(t1, . . . tn) � false if (t1, . . . , tn) /∈ P (p) and
f(t1, . . . tn) � I(f)(t1, . . . , tn), where each ti denotes a value in the domain
DSi

.

Unfolding Quantifiers. Unfolding a universal quantifier (respectively an existen-
tial one) transforms the quantified expression x.Q into a conjunction (respec-
tively disjunction) of an expression where the bounded variable x is replaced by
a constant d of the domain which has not been considered yet (denoted Q[x/d]),
and the original quantified expression without d1 in the list of values to consider.
Quantifiers with an empty list of values are treated in a classical way. Formally,
the following four rules are defined:
allS(x.Q,< d, Y >) � Q[x/d] ∧ allS(x.Q,< Y >) allS(x.Q,< >) � true

someS(x.Q,< d, Y >) � Q[x/d] ∨ someS(x.Q,< Y >) someS(x.Q,< >) � false

Constant Propagation. Boolean constants true and false are propagated
upward also in classical manner. And, Or and Imply connectives are evaluated
in short-circuit manner from left to right and if short-circuit evaluation is not
conclusive, then the term is rewritten into its right subterm. Rules for equiva-
lence connective only applies if both subterms are boolean constants and so do
rules for negations.

Rewriting Temporal Predicates. Rewriting a temporal predicate
modelsLTL(f, ψ) or modelsCTL(f, ψ) into a Boolean value is done in two steps:

1. a reduction algorithm generates a classical temporal model checking problem
out of f and ψ;

2. the application of a model checking algorithm to this new problem.

Reduction Algorithm. For generating an equivalent model checking problem from
modelsLTL(f, ψ) or modelsCTL(f, ψ) (when f has an EKS), the reduction algo-
rithm operates in three steps:

1. for each call to a predicate in PredEKS with a unique set of parame-
ters, it generates an atomic proposition. For instance, for p ∈ PredEKS,
t1 : D, . . . , tn : D, a call to p(t1, . . . , tn) gives an atomic proposition
id(p, t1, . . . , tn). Notice that at this step, because of previous rewriting rules,
the parameters of these predicates are necessarily constants (corresponding
to values in the domain) and not first-order variables;

2. a classical interpretation structure for temporal logic formulas Mf (a transi-
tion system, the states of which are labeled with atomic propositions) is built
out of eks (f), the CFG associated with f . The structure of Mf copies the
graph from eks (f), with an extra final state that loops back to itself. For a
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state s in eks (f), if (t1, . . . , tn) ∈ �p�s, its dual in Mf is labeled with the
atomic proposition id(p, t1, . . . , tn);

3. the new formula φ′ to analyze over Mf is φ where each call p(t1, . . . , tn) is
substituted by id(p, t1, . . . , tn).

Strategy Used. The algorithm MC++ uses a leftmost-outermost strategy to
rewrite the formula, which can be described as follows. (1) Try to apply some rule
to the toplevel term. (2) If it is not possible then recursively apply the strategy
to the leftmost subterm (considered as the new toplevel term), and then (3) try
again to apply a rule to the toplevel term. If it is still not possible then apply a
rule to the right-hand side subterm.

3.2 Correctness and Termination

In this section, we establish that the algorithm MC++ is correct and terminates.

Proposition 1 (Correctness). Let M be an interpretation structure and φ an
FO++ formula. If MC++(M,φ) returns true then M |= φ, and if MC++(M,φ)
returns false then M � φ.

Proof (sketch). It is straightforward to define a semantics for MC++ terms sim-
ilarly to FO++ formulas. Then, we can easily prove that each rewriting rule
preserves the semantics of MC++ terms. ��
Proposition 2 (Termination). Let M be an interpretation structure and φ
an FO++ formula. MC++(M,φ) terminates and returns either true or false.

Proof. We show that any application of the first-order logic evaluation rules
ends (which therefore stands for the chosen strategy). To do so, we consider the
following function s as defined in Eq. (2), the value of which decreases with each
application of the rules.

s(φ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(s(ψ) + 1)n+1 if φ = ◦(x.ψ, [d1, . . . , dn]) for ◦ ∈ {allS, someS}
s(ψ1) + s(ψ2) if φ = ψ1 ◦ ψ2, for any binary ◦ operator
s(ψ) + 1 if φ = ¬ψ

1 +
∑n

i=1 s(di) if φ = f(d1, . . . , dn), f either a function or predicate
1 otherwise

(2)
Proof (sketch). For conciseness, we only show the demonstration for the evalu-
ation of functions and predicates (Eq. (3)), as well as for quantifiers unfolding
(Eqs. (4) and (5)). Other cases are similar and straightforward. First of all,
notices that s is minored by 1.

s(p(d1, . . . , dn)) = 1 +
n∑

i=1

s(di) > 1 = s(false) = s(true)

s(f(d1, . . . , dn)) = 1 +
n∑

i=1

s(di) > 1 = s(I(f)(d1, . . . , d1))

(3)
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The second inequality holds because I(f)(d1, . . . , d1) is a constant for the domain
and its value by s is 1. By similarity between allS and someS for unfolding the
quantifiers, we only consider the case of allS.

s(allS(x.P,< d1, d2, . . . , dn >)) = (s(P ) + 1)n+1

= s(P )(s(P ) + 1) + (s(P ) + 1)n

> s(P [x/d1]) + (s(P ) + 1)n

= s(P [x/d1] ∧ allS(x.P,< d2, . . . , dn >))

(4)

s(allS(x.P,< >)) = (s(P ) + 1)1 > 1 = s(true) (5)

Moreover, generating the equivalent classical temporal model checking problem
ends, just as its evaluation with a classical temporal model checking algorithm.
This proves that the algorithm ends. Besides, since for every MC++ term differ-
ent from true and false, some rewriting rule is applicable (this can be proved
by induction on MC++ terms) then MC++ terminates either with true or with
false. ��

The completeness directly follows from Proposition 1 and Proposition 2.

Corollary 1 (Completeness). Let M be an interpretation structure and φ
an FO++ formula. If M |= φ then MC++(M,φ) = true and if M � φ then
MC++(M,φ) = false.

3.3 Complexity

Proposition 3. The model checking problem of FO++ is PSPACE-complete.

Proof. Hardness: FO++ subsumes first-order logic, whose model-checking prob-
lem (also called query evaluation) is PSPACE-complete [22]. Hence FO++

model-checking is at least as hard as FO model-checking FO++ model (i.e.
FO++ model-checking is PSPACE-hard).

Membership: Let us consider the algorithm MC++ presented above with inputs
M (an interpretation structure) and φ (an FO++ formula). We consider n as the
size of the problem input, i.e., the size of φ (number of connectives, FO++ terms
and atoms) plus the size of M (size of the domain, of predicate and function
interpretation, plus the number of nodes of the different EKS).

The size of the initial MC++ term is in O(n). An application of an unfold-
ing rule to an MC++ term introduces a larger MC++ term and increases the
memory space by at most n. Indeed, at most n new memory is required for
the new expression (Q[x/d] in the unfolding rules). All other rules decrease the
memory consumption as they reduce the number of MC++ terms. By using the
leftmost-outermost strategy and our two unfolding rules the algorithm unfolds
the quantifiers in depth-first manner. Let k be the maximum number of nested
quantifiers. The algorithm uses at most (k +1)∗n space to represent “unfolded”
terms before reaching a term where all the first-order variables are substituted by
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a domain constant. For such a term, the only possible applicable rewriting rules
are either the rules for Boolean connectives (which decrease the space needed to
represent the term) or the rule for functions and predicates. Functions and non
temporal predicates required a constant space to be evaluated. Evaluating tem-
poral predicates is a two steps process. The first step is the reduction algorithm
that produces a classical temporal model-checking problem. Its overall size m is
smaller than n as both the Kripke structure and the temporal formula mimics
the inputs of reduction algorithm and as their respective sizes are components of
n. Evaluating this problem is done with a polynomial amount of memory with
respect to m (and therefore with respect to n) since model checking for CTL
(resp. LTL) is PTIME-complete (resp. PSPACE-complete). Therefore, the space
needed for the whole algorithm is polynomial in n, hence the result. ��

4 Application to C++ Source Code Analysis

FO++ construction remains generic as it does not mention any particular pro-
gramming language. To be used as a specification language, it must be instanti-
ated for a specific programming language. This means defining appropriate sets
for sorts, functions and predicate symbols, as well as a method for extracting an
interpretation structure (including interpretation for functions and predicates)
from the source code. In this section, we detail the instantiation of FO++ for
C++.

4.1 FO++ for C++

Sort. The sorts indicate the nature of the different structural elements we can
reason about. In a C++ program, the different structural elements are decla-
rations such as functions, classes, variables or types. Both classes and types
have their own sort. Within functions, we distinguish between free functions
and member functions, and operate a further distinction for constructors and
destructors. We also operate a distinction on variables between attributes, local
variables, and global variables. Hence, FO++ for C++ has a total of 9 sorts.

Functions and Non Temporal Predicates. FO++ functions are used to designate
an element in the code from another related element, such as the unqualified
version of a const-qualified type or the class in which an attribute was defined.
Non-temporal predicates are used to query information about the structural
elements. This includes for instance parenthood relationship between elements
(i.e. an attribute a belongs to class c), visibility, inheritance relationship between
classes, types and their qualification (const or volatile for instance). The seman-
tics of functions and non-temporal predicates complies with the C++ standard
[1]. Table 1 lists some functions and predicates with their informal semantics.
The full list of functions and predicates is available on the Pangolin repository5.

5 https://gitlab.com/Davidbrcz/Pangolin.

https://gitlab.com/Davidbrcz/Pangolin
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Table 1. Small subset of structural predicates in the FO++ instantiation for C++

Predicate Informal semantics

isAttributeOf (a, c) true iff a refers to a field of c

isMemFctOf (f, c) true iff f is a member function within c

isPrivate(f), isPublic(f) true iff f is private (resp. public) within its class

type(a, T ) true iff the type of a is T

4.2 Extracting an Interpretation Structure

Domain. Extracting the domain D from an AST consists of traversing the
AST and collecting the various declarations in order to know the sort of each
domain element. Figure 3a shows domain D obtained from the source code shown
in Listing 1.1, partitioned into four sub-domains (one for each relevant sort).

Generating EKS. If the full definition of a C++ function f is present in the
AST of the C++ source code, then has eks(f) is true and eks(f) is defined in
the following manner. We consider the CFG of f, where each node only contain
a single statement (a basic block is not included into a node, but is split into
a succession of nodes instead). The EKS states and transitions of eks(f) are
then directly taken from the nodes and edges of the CFG of f, except that the
state corresponding to the exit node of the CFG has an infinite loop on itself to
ensure infinite traces and comply with LTL and CTL semantics. Function calls
are considered like any other statement, hence there is neither interprocedural
analysis nor specific recursive calls handling. In each state of the EKS, the
valuation of the predicates in PredEKS directly follows from the syntax of the
statement that is in this state. Notice that some paths of the EKS may never
be taken by the program execution, because, e.g., a condition of a while loop
is always evaluated to false during execution. Since we do not perform value
analysis, our method still considers such paths. This is in accordance with our

Fig. 3. Semantic domain partially illustrated
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objective to analyze the quality of the code, instead of checking its semantic
correctness.

Figure 3b shows the EKS for serB with two elements from PredEKS: call ,
and assign. The predicate call(x ) is true on states such that there is a call to
function x (the arguments do not matter) and assign(x) is true on states such
that there is an assignment to x (i.e. x = . . . ).

4.3 Example: Formalizing Log Correct Usage

To illustrate concretely FO++ for C++, we formalize Property 1 in Eq. (6). The
universal quantification on c indicates that the property applies to all classes.
We then look for a private attribute l whose type is Log. (The symbol Log is
here an FO++ constant.) We then look at all attributes of class c, and if there
is one whose type is Log, then we look for a function s such that

– Each private attribute a from class c (whose type is not Log) is logged in s
(i.e. there is a call to log on l with a as argument in s). The formalization
of this relies on the predicate call log of PredEKS such that call log(x, y) is
true on a CFG state if there is call of the shape x.log(y) in this state. The
CTL formula AFcall log(l , a) states that in all paths within the CFG of s,
there is finally a state in which call log(l, a) is true.

– For all public functions f , in all paths in the CFG of f , there is at some point
a call to s, and the attribute a is no longer assigned after this call.

∀c : class ∀l : attr
(
isAttributeOf (l, c) ∧ type(l, Log) =⇒

∃s : memfct (isMemFctOf (s, c) ∧ name(s, store)∧
∀a : attr (isAttributeOf (a, c) ∧ isPrivate(a) ∧ ¬type(a, Log) =⇒

modelsCTL(s,AFcall log(l , a))∧
∀f : memfct (isMemFctOf (f, c) ∧ isPublic(f) =⇒

modelsCTL(f,AFcall(s) ∧ AG(call(s) =⇒ AXAG¬assign(a))))))
)

(6)

5 Pangolin

Pangolin6 is a verification engine for C++ programs based on the ideas developed
in Sects. 2 to 4. Given a rule as a formula in FO++ for C++, Pangolin checks
whether the specification holds on the program. Figure 4 illustrates this process
as well as some of the internal aspects of Pangolin.

From the user point of view, the specification is written in a concrete syntax of
FO++ for C++ as it is presented in Sect. 4.1. The code to analyze must compile
in order to be examined as Pangolin needs to traverse the code AST to extract an
FO++ interpretation structure. This implies that a simple extract of code taken

6 Pangolin is available at https://gitlab.com/Davidbrcz/Pangolin.

https://gitlab.com/Davidbrcz/Pangolin
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Fig. 4. Pangolin overview

out of its context cannot be analyzed. For each formula and each file, Pangolin
returns true if the formula holds on the file and false otherwise. It also prints
a complete trace of the evaluation process that can be reviewed. If the formula
does not hold, it is possible to find with this trace the values of the quantified
variables that explain algorithm output, hence providing a counter-example. It
also increases the user’s confidence in the correctness of the implementation.

From an internal point of view, Pangolin consists of two parts: an interpreta-
tion structure extractor and a model checking engine. The extractor follows the
specification given Sect. 4.2, and is based on Clang and its API libtooling [17].
Clang provides an up-to-date and complete support for C++, direct access to
the code AST and facilitates the computation of the CFG of a function. Pangolin
implements the model checking algorithm presented in Sect. 3, and it relies on
nuXmv [9] for evaluating model checking problems resulting from the reduction
algorithm. However, because of short-circuit evaluation of logical connectives,
the model-checking algorithm stops at the first counter-example found. With
this algorithm, to find the next counter-example, it is necessary either to change
the formula to exclude the counter-example that was found, or to correct the
code and then start over the analysis. To find all the possible counter-examples,
Pangolin also implements an alternative algorithm where quantifiers are unfolded
less efficiently, so that all the values for the different quantifiers are explored,
which makes it possible to find all the counter-examples at once.

6 Experiments

We study the conformity of two open-source projects with respect to six generic
properties that address good programming practices accepted for C++. The first
project is ZeroMQ, a high-performance asynchronous messaging framework. The
second is MiniZinc [21], a solver agnostic modeling language for combinatorial
satisfaction and optimization problems. We picked these two projects because
they are active popular C++ projects with a middle size code base (around 50k
SLOC each).
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6.1 Properties to Test

Table 2 lists the six properties we want to verify on ZeroMQ and Minizinc. P1
mainly ensures that the version of a function that can be executed from any-
where in a class hierarchy is unambiguous, hence bringing clarity for maintainers
and reviewers. Rule P2 forbids to mix into a single class virtual functions and
overloaded arithmetic operators. Indeed, a class with virtual functions is meant
to be used in polymorphic context. But it is difficult to write foolproof and useful
arithmetic operators that behave coherently in a polymorphic context.

P3 ensures that there no unused private elements (function and attributes)
within a class. Indeed, they are only accessible from within the class, and unused
private elements are either superfluous (and hindering code quality) or symp-
tom of a bug. P4 must be enforced because the C++ programming language
specifies that virtual function resolution is not performed within constructors
and destructors. Hence, when there is a call to a virtual function in either the
constructors or destructors, the callee is likely not to be the intended function.

The last two rules are to enforce const-correctness. The driving idea behind
the const correctness is to prevent the developer from modifying by accident a
variable or an object because it would result in a compilation error. Variables
marked as const are immutable whereas const member functions cannot alter
the internal state of an object. Thus, any non-constant element must be justified:
a variable assigned at most once must be constant (P5), and objects with only
calls to constant member functions must also be constant as well (P6).

For the sake of conciseness, we only show (in Eq. (7)) the formal translation of
property P57. The rule uses the word modified, whose meaning must be specified
by the formalization. Here, we say that a variable x is modified when it is to
the left of a binary operator (i.e. x $= where $ is (eventually) one operator
among ^, +, -, \, *, &, |, <<, >>) or is the argument of an unary operator among
increment, decrement or addressof (i.e. x++, ++x, x--, --x, &x). For clarity, in
Eq. (7), modified(x) is an abbreviation for a disjunction of 15 predicates (one
for each operator). Also, the formalization is done in a “negative” way: we look
for a function f in which a not constant variable v is modified at least once (the
first AF . . . part) and never again afterwards AG . . . =⇒ AXAG¬. . ..

∃f : FreeFct
(
∃v : LocalVar

(
locallyDeclared(v, f) ∧ ¬isConst(v)∧

modelsCTL(f,AFmodified(v) ∧ AG(modified(v) =⇒ AXAG¬modified(v)))
))

(7)

6.2 Results and Analysis

Table 3 summarizes the experiments on ZeroMQ and MiniZinc. For each rule and
each project, columns CE shows the total number of counter-examples found and
column Timing the average time over 10 runs with its standard deviation, both
in seconds.
7 But all rules are available in Pangolin repository.
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Table 2. Properties to verify

Name Definition

P1 A virtual function shall not be defined more than once in an
inheritance hierarchy

P2 A class should not have virtual functions and overloaded
arithmetic operators

P3 In all classes, there are neither unused private attributes nor
private functions

P4 In all classes, no virtual functions shall be invoked from any
destructor or constructors

P5 In all functions, all local variables modified at most once must be
marked as constant

P6 In all functions, any locally declared object on which only const
member functions are called must also be marked as constant

Defects Found. For property P1, all counter-examples found are real violations
of the rule. Pangolin found no counter-example for property P2. Regarding P3,
Pangolin found for ZeroMQ 3 unused attributes and 1 for MiniZinc. Many of
the functions that Pangolin found, many were, in fact, called. Two were virtual
and inherited from a parent class but with reduced visibility as it is allowed by
C++. They were therefore called from a function of the parent class. The rest
of the functions were used but not as specified. For instance, they were used as
callbacks or called on an object of the same type as the class (this is allowed in
C++ because between 2 objects of the same type, there is no encapsulation).
Concerning P4, Pangolin found one counter-example on MiniZinc, which was a
true violation. Many of the results for rules P5 and P6 are real counter-examples
for the specification but are legitimate code. Indeed, for P5 does not take into
account that a variable may change through a pointer or a reference, while rule
P6 does not take into account public attributes of a class that may change.

Table 3. Summary of the defects found in ZeroMQ and MiniZinc with the average
required time to perform the analysis

Property Project CE Timing Property Project CE Timing (s)

P1 ZeroMQ 7 36 (2.30) P4 ZeroMQ 0 821 (210.2)

MiniZinc 8 44 (1.31) MiniZinc 1 104 (12.39)

P2 ZeroMQ 0 90 (6.4) P5 ZeroMQ 59 225 (2.9)

MiniZinc 0 64 (1.5) MiniZinc 170 13136 (321.4)

P3 (attributes) ZeroMQ 3 2015 (110.2) P6 ZeroMQ 2 176 (5.9)

MiniZinc 1 910 (10.2) MiniZinc 12 942 (16.31)

P3 (functions) ZeroMQ 105 2778 (138)

MiniZinc 2 780 (19.2)



36 D. Come et al.

With hindsight, these false alarms could have been removed with a more
precise rule. For instance, for property P6, there two approaches to design a more
precise rule. On the one hand, one could exclude classes with public attributes
from the property (i.e. in all functions, any locally declared object whose class
does not have public attributes and on which only const member functions are
called must also be marked as constant). On the other hand, one could into
account the public attributes for determining if an object should be constant (In
all functions, any locally declared object on which only const member functions
are called and no public attributes are changed must also be marked as constant).

Performance. The tests were performed on Intel(R) Xeon(R) CPU E5-1607 v3
@ 3.10 GHz with 32 GB of memory. Properties involving temporal properties are
slower than sheer structural properties. Indeed, there is an overhead to evaluate
temporal predicates. This overhead is the sum of the time spent to evaluate of the
classical model-checking problem on the one hand and of communication time on
the other hand. The former varies with the complexity of the formula and of the
EKS, whereas the latter is constant. The execution time of P5 and P6 is radically
different between the 2 projects (despite a comparable size) because a particular
Minizinc function contains more than 3000 lines and temporal predicates are
long to evaluate over it. This shows that Pangolin can scale and find defects in
real code bases.

7 Related Work

There are many existing code representations and associated formalisms to spec-
ify queries. A more detailed comparison of existing code query technologies can
be found in [2] or in [11]. ASTLOG [10] is a project for examining directly a
program AST with a Prolog-based language. Thus, it allows to directly examine
the very structure of the AST, whereas our approach exploits the AST to gain
information and does not directly analyze it. In [20], the authors generate UML
models from the AST of the code and use Object Constraint Language [7] to
perform queries. HERCULES/PL [14] is a pattern specification language for C
and Fortran programs on top of the HERCULES framework. It uses the tar-
get language and HERCULES specific compiler annotations (such as pragma
in C) for specifying the code to match. In [12], the authors define TGraphs, a
graph representation of the whole AST of the program, and they define GReQL,
a graph querying language for performing queries. QL [4] uses a special rela-
tional database that contains a representation of the program extracted from
its AST. Queries are expressed in a programming language similar to SQL, and
are compiled to Datalog. Like all these methods (expect ASTLOG), our method
works with a code representation that is built from the AST outside the func-
tions. However, unlike all the above-mentioned methods, in addition to the AST,
our approach also examines the body of functions through paths within their
CFG, and allows for sophisticated reasoning about these paths through temporal
logics.
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On the other hand, Coccinelle [6] focuses on the CFG of a C function instead
of its AST. It uses CTL-VW (a variant of FO-CTL) to describe and retrieve
a sequence of statements within a CFG. This reasoning about execution paths
within a CFG was an inspiration for the temporal aspect of FO++. But, unlike
Coccinelle, FO++ can specify a property about several functions through the
first-order reasoning over the code AST. However, Coccinelle has a code trans-
formation feature, which FO++ does not offer.

In [13], the authors detect design patterns described in formalism based on
a combination of predicate logic and Allen’s interval-based temporal logic. The
complete formalism is latter translated into Prolog to effectively search the design
pattern. However, its semantic model is not provided (especially how functions
are handled). FO++ offers a more modular combination mechanism for logics
and integrates two discrete temporal logics (CTL and LTL), which we think are
more natural to use than the Allen’s temporal logic, given that the statements
are discrete events.

8 Conclusion

This paper presents a formal approach to source code verification in which the
requirements can simultaneously refer to execution paths in the CFG of functions
and to structural information that comes from the source code AST. To formalize
the requirements, we introduce the logic FO++, which is a temporal extension
of many-sorted first-order logic. We propose a model checking algorithm for
FO++ and prove its correctness, termination and that FO++ model checking
problem is PSPACE complete. This approach has been implemented in Pangolin,
a tool for analyzing C++ programs. With it, we analyzed two middle-sized open-
source projects (ZeroMQ and MiniZinc), looking for violations of 6 good-practice
coding-rules and found several occurrences of them.

As future works, there are two directions: user interaction, and expressive
power. An input language closer to real code and better user feedback would
improve user interaction. The expressive power of the method would be increased
with interprocedural and multi-file analysis and the adequate specification for-
malism to handle it.
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Abstract. Property-based testing of compilers or programming lan-
guages semantics is difficult to accomplish because it is hard to design
a random generator for valid programs. Most compiler test tools do not
have a well-specified way of generating type-correct programs, which is
a requirement for such testing activities. In this work, we formalize a
type-directed procedure to generate random well-typed programs in the
context of Featherweight Java, a well-known object-oriented calculus for
the Java programming language. We implement the approach using the
Haskell programming language and verify it against relevant properties
using QuickCheck, a library for property-based testing.

Keywords: Featherweight Java · QuickCheck · Property-based testing

1 Introduction

Currently, Java is one of the most popular programming languages [22]. It is
a general-purpose, concurrent, strongly typed, class-based object-oriented lan-
guage. Since its release in 1995 by Sun Microsystems, and acquired by Oracle
Corporation, Java has been evolving over time, adding features and programming
facilities in its new versions. For example, in a recent major release of Java, new
features such as lambda expressions, method references, and functional inter-
faces, were added to the core language, offering a programming model that fuses
the object-oriented and functional styles [11].

The adoption of the Java language is growing for large projects, where many
applications have reached a level of complexity for which testing, code reviews,
and human inspection are no longer sufficient quality-assurance guarantees. This
problem increases the need for tools that employ analysis techniques, aiming to
explore all possibilities in an application to guarantee the absence of unexpected
behaviors [7]. The use of formal subsets of languages helps in the understanding
of the problem, and allows the use of automatic tools, since a certain degree
of abstraction is applied, and only properties of interest are used, providing a
degree of confidence that cannot be reached using informal approaches.
c© Springer Nature Switzerland AG 2018
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Creating tests for programming languages or compilers is difficult since
several requirements should be respected to produce a valid and useful test
case [2,4]. When a person is responsible for this task, tests could be limited by
human imagination, the creator can make assumptions about the implementa-
tion, impacting in the quality of the test cases, and the maintenance of such tests
is also an issue when the language evolves. Because of this, there is a growing
research community studying random test generation, which is not an easy task,
since the generated programs should respect the constraints of the programming
language compiler, such as the correct syntax, or the type-system requirements
in a statically-typed language.

In this context, this work provides the formal specification of a type-directed
procedure for generating Java programs, using the typing rules of Featherweight
Java (FJ) [12] to generate only well-typed programs. FJ is a small core calcu-
lus with a rigorous semantic definition of the main core aspects of Java. The
motivations for using the specification of FJ are that it is very compact, so we
can specify our generation algorithm in a way that it can be extended with new
features, and its minimal syntax, typing rules, and operational semantics fit well
for modeling and proving properties for the compiler and programs. As far as
we know, there is no formal specification of well-typed test generators for an
object-oriented calculus like FJ. This work aims to fill this gap, providing the
description of a generation procedure for FJ programs by using a syntax directed
judgment for generating random type-correct FJ programs, adapting the app-
roach of Palka et al. [18] in terms of QuickCheck [5]. We are aware that using
only automated testing is not sufficient to ensure safety or correctness, but it
can expose bugs before using more formal approaches, like formalization in a
proof assistant.

Specifically, we made the following contributions:

– We provided a type-directed [16] formal specification for constructing random
programs. We proved that our specification is sound with respect to FJ type
system, i.e. it generates only well-typed programs.

– We implemented an interpreter1 for FJ and the type-directed algorithm to
generate random FJ programs following our formal specification using the
Haskell programming language.

– We used ‘javac’ as an oracle to compile the random programs constructed
through our type-directed procedure. We also used QuickCheck as a proof of
concept to check type-soundness proofs using the interpreter and the gener-
ated programs2.

The remainder of this text is organized as follows: Sect. 2 summarizes the
FJ proposal. Section 3 presents the process of generating well-typed random
programs in the context of FJ. Section 4 proves that our generation procedure is

1 The source-code for our Haskell interpreter and the complete test suite is available
at: https://github.com/fjpub/fj-qc/.

2 Details of implementation and experiments are presented in our technical report,
which can be found at: https://github.com/fjpub/fj-qc/raw/master/tr.pdf.

https://github.com/fjpub/fj-qc/
https://github.com/fjpub/fj-qc/raw/master/tr.pdf
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sound with respect to FJ typing rules. Section 5 shows how the results of testing
type-safety properties of FJ with QuickCheck. Section 6 discusses some related
works. Finally, we present the final remarks in Sect. 7.

2 Featherweight Java

Featherweight Java [12] is a minimal core calculus for Java, in the sense that as
many features of Java as possible are omitted, while maintaining the essential
flavor of the language and its type system. Nevertheless, this fragment is large
enough to include many useful programs. A program in FJ consists of the dec-
laration of a set of classes and an expression to be evaluated, that corresponds
to the Java’s main method.

FJ is to Java what λ-calculus is to Haskell. It offers similar operations, provid-
ing classes, methods, attributes, inheritance and dynamic casts with semantics
close to Java’s. The Featherweight Java project favors simplicity over expressiv-
ity and offers only five ways to create terms: object creation, method invocation,
attribute access, casting and variables [12].

FJ semantics provides a purely functional view without side effects. In other
words, attributes in memory are not affected by object operations [19]. Fur-
thermore, interfaces, overloading, call to base class methods, null pointers, base
types, abstract methods, statements, access control, and exceptions are not
present in the language. As the language does not allow side effects, it is pos-
sible to formalize the evaluation just using the FJ syntax, without the need for
auxiliary mechanisms to model the heap [19].

The abstract syntax of FJ is given in Fig. 1.
In the syntactic definitions L represents classes, K defines constructors, M

stands for methods, and e refers to the possible expressions. The metavariables
A, B, C, D, E, and F can be used to represent class names, f and g range over field
names, m ranges over method names, x and y range over variables, d and e range

Fig. 1. Syntactic definitions for FJ.
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over expressions. We let ϕ : L → C denote a function that returns a class name
(C) from a given class declaration (L). Throughout this paper, we write C as
shorthand for a possibly empty sequence C1, ..., Cn (similarly for f , x, etc.). An
empty sequence is denoted by •, and the length of a sequence x̄ is written #x̄. The
inclusion of an item x in a sequence X is denoted by x : X, following Haskell’s
notation for lists. We consider that a finite mapping M is just a sequence of
key-value pairs. Notation M(K) = V if K V ∈ M . Following common practice,
we let the metavariable Γ denote an arbitrary typing environment which consists
of a finite mapping between variables and types.

A class table CT is a mapping from class names, to class declarations L, and
it should satisfy some conditions, such as each class C should be in CT, except
Object, which is a special class; and there are no cycles in the subtyping relation.
Thereby, a program is a pair (CT, e) of a class table and an expression. The FJ
authors presented rules for subtyping and auxiliary definitions (functions fields,
mtype, and mbody), which are omitted from this text for space reasons.

Figure 2 shows the typing rules for FJ expressions.

Fig. 2. Expression typing.

The typing judgment for expressions has the form Γ � e: C, meaning that in
the environment Γ , expression e has type C. The typing rules are syntax directed,
with one rule for each form of expression, save that there are three rules for casts.
The rule T-Var results in the type of a variable x according to the context Γ . If
the variable x is not contained in Γ , the result is undefined. Similarly, the result
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is undefined when calling the functions fields, mtype, and mbody in cases when
the target class or the methods do not exist in the given class. The rule T-Field
applies the typing judgment on the subexpression e0, which results in the type
C0. Then it obtains the fields of class C0, matching the position of fi in the
resultant list, to return the respective type Ci. The rule T-Invk also applies the
typing judgment on the subexpression e0, which results in the type C0, then
it uses mtype to get the formal parameter types D̄ and the return type C. The
formal parameter types are used to check if the actual parameters ē are subtypes
of them, and in this case, resulting in the return type C. The rule T-New checks if
the actual parameters are a subtype of the constructor formal parameters, which
are obtained by using the function fields. There are three rules for casts: one for
upcasts, where the subject is a subclass of the target; one for downcasts, where
the target is a subclass of the subject; and another for stupid casts, where the
target is unrelated to the subject. Even considering that Java’s compiler rejects
as ill-typed an expression containing a stupid cast, the authors found that a rule
of this kind is necessary to formulate type soundness proofs3.

Figure 3 shows the rules to check if methods and classes are well-formed.

Fig. 3. Method and class typing.

The rule for method typing checks if a method declaration M is well-formed
when it occurs in a class C. It uses the expression typing judgment on the body of
the method, with the context Γ containing the special variable this with type C,
and the variables from the formal parameters with their declared types. The rule
for class typing checks if a class is well-formed, by checking if the constructor
applies super to the fields of the superclass and initializes the fields declared in
this class, and that each method declaration in the class is well-formed.

The authors also presented the semantic rules for FJ, which are omitted
here, but can be found in the original paper [12]. FJ calculus is intended to be a
starting point for the study of various operational features of object-oriented pro-
gramming in Java-like languages, being compact enough to make rigorous proof

3 A detailed explanation about stupid casts can be found in p. 260 of [19].
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feasible. Besides the rules for evaluation and type-checking rules, the authors
presented proofs of type soundness for FJ as another important contribution,
which will be explored by our test suite in the next sections.

3 Program Generation

The creation of tests for a programming language semantics or compiler is time-
consuming. First, because it should respect the programming language require-
ments, in order to produce a valid test case. Second, if the test cases are created
by a person, it stays limited by human imagination, where obscure corner cases
could be overlooked. If the compiler writers are producing the test cases, they
can be biased, since they can make assumptions about their implementation or
about what the language should do. Furthermore, when the language evolves,
previous test cases could be an issue, considering the validity of some old tests
may change if the language semantics is altered [1].

Considering the presented problem, there is a growing research field explor-
ing random test generation. However, generating good test programs is not an
easy task, since these programs should have a structure that is accepted by the
compiler, respecting some constraints, which can be as simple as a program hav-
ing the correct syntax, or more complex such as a program being type-correct
in a statically-typed programming language [18].

For generating random programs in the context of FJ, we follow two distinct
phases, expression and class generation, generalizing the approach of [18] con-
sidering that FJ has a nominal type system instead of a structural one. In this
way, we have specified a generation rule inspired by each typing rule, both for
expression generation and class table generation.

3.1 Expression Generation

We assume that a class table CT is a finite mapping between names and its
corresponding classes. We let dom(CT) denote the set of names in the domain
of the finite mapping CT. The generation algorithm uses a function ξ : [a] → a,
which returns a random element from an input list. We slightly abuse notation
by using set operations on lists (sequences) and its meaning is as usual.

The expression generation is represented by the following judgment:

CT ; Γ ; C → e (1)

There CT is a class table, Γ is a typing environment, C is a type name and
e is the produced expression.

For generating variables, we just need to select a name from the typing envi-
ronment, which has a type C.

CT ; Γ ; C → ξ ({ x | Γ (x) = C })
[G-Var]
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For fields access, we first need to generate a list of candidate type names for
generating an expression with type C′ which has at least one field whose type is
C. We name such list Cc:

Cc = {C1|C1 ∈ dom(CT) ∧ ∃x.Cx ∈ fields(C1)}

Now, we can build a random expression by using a type randomly chosen
from it.

C′ = ξ(Cc)
CT ; Γ ; C′ → e

Since type C′ can have more than one field with type C, we need to choose
one of them (note that, by construction, such set is not empty).

C f = ξ({Cx|Cx ∈ fields(C′)}

The rule G-Field combines these previous steps to generate a field access
expression:

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ x. C x ∈ fields(C1)}
C′ = ξ(Cc)

CT ; Γ ; C′ → e
C f = ξ({C x | C x ∈ fields(C′)}

CT ; Γ ; C → e.f
[G-Field]

For method invocations, we first need to find all classes which have method
signatures with return type C. As before, we name such candidate class list as Cc.

Cc = {C1|C1 ∈ dom(CT) ∧ ∃mD̄.mtype(m,C1) = D̄ → C}

Next, we need to generate an expression e0 from a type chosen from Cc, we
name such type as C′.

C′ = ξ(Cc)
CT ; Γ ; C′ → e0

From such type C′, we need to chose which method with return type C will be
called. For this, we select a random signature from its list of candidate methods.

Mc = {(m, D̄ → C) | ∃ m. mtype(m, C′) = D̄ → C}
(m′, D̄′ → C) = ξ(Mc)

Next, we need to generate arguments for all formal parameters of method
m′. For this, since arguments could be of any subtype of the formal parameter
type, we need to choose it from the set of all candidate subtypes.

First, we define a function called subtypes, which return a list of all subtypes
of some type.

subtypes(CT, Object) = {Object}
subtypes(CT, C) = {C} ∪ subtypes(CT, D), if class C extends D ∈ CT
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Using this function, we can build the list of arguments for a method call.

ā = {e|D ∈ D̄′ ∧ CT;Γ ; ξ(subtypes(CT,D)) → e}
The rule G-Invk combines all these previous steps to produce a method call.

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ m D̄. mtype(m, C1) = D̄ → C}
C′ = ξ(Cc)

CT ; Γ ; C′ → e0
Mc = {(m, D̄ → C) | ∃ m. mtype(m, C′) = D̄ → C}

(m′, D̄′ → C) = ξ(Mc)
ā = {e | D ∈ D̄′ ∧ CT ; Γ ; ξ(subtypes(CT, D)) → e}

CT ; Γ ; C → e0.m′(ā)
[G-Invk]

The generation of a random object creation expression is straightforward:
First, we need to get all field types of the class C and produce arguments for C’s
constructor parameters, as demonstrated by rule G-New.

F̄ = {C′ | C′ f ∈ fields(C)}
ā = {e | F ∈ F̄ ∧ CT ; Γ ; ξ(subtypes(CT, F)) → e}

CT ; Γ ; C → new C(ā)
[G-New]

We construct upper casts expressions for a type C using the G-UCast rule.

D̄ = subtypes(CT, C)
CT ; Γ ; ξ(D̄) → e
CT ; Γ ; C → (C) e

[G-UCast]

Although we do not start a program with downcasts or stupid casts, because
expressions generated by these typing rules can reduce to cast unsafe terms [12],
we defined the generation process in the rules G-DCast and G-SCast, since they
can be used to build inner subexpressions.

For generating downcasts, first we need the following function, which returns
the set of super types of a given class name C.

supertypes(CT, Object) = •
supertypes(CT, C) = {D} ∪ supertypes(CT, D), if class C extends D ∈ CT

Then, we can produce the rule G-DCast to generate a downcast expression.

D̄ = supertypes(CT,C)
CT ; Γ ; ξ(D̄) → e
CT ; Γ ; C → (C) e

[G-DCast]

The generation of stupid casts has a similar process, except that it generates
a list of unrelated classes, as we can see in the first line of the rule G-SCast.

C̄ = dom(CT) - (subtypes(CT,C) ∪ supertypes(CT,C))
CT ; Γ ; ξ(C̄) → e
CT ; Γ ; C → (C) e

[G-SCast]

Considering the presented generation rules, we are able to produce well-typed
expressions for each FJ’s definitions.



A Type-Directed Algorithm to Generate Well-Typed Java Programs 47

3.2 Class Table Generation

To generate a class table, we assume the existence of an enumerable set Cn of
class names and Vn of variable names. The generation rules are parameterized
by an integer n which determines the number of classes that will populate the
resulting table, a limit m for the number of members in each class and a limit p
for the number of formal parameters in the generated methods. This procedure
is expressed by the following judgment:

CT ; n ; m ; p → CT′

It is responsible to generate n classes using as input the information in class
table CT (which can be empty), each class will have up to m members. As
a result, the judgment will produce a new class table CT ′. As expected, this
judgment is defined by recursion on n:

CT ; 0 ; m ; p → CT
[CT-Base]

CT ; m ; p → L
ϕ(L) L : CT ; n ; m ; p → CT′

CT ; n + 1 ; m ; p → CT′ [CT-Step]

Rule CT-Base specifies when the class table generation procedure stops. Rule
CT-Step uses a specific judgment to generate a new class, inserts it in the class
table CT, and generate the next n classes using the recursive call ϕ(L) L : CT;
n ; m ; p → CT ′. The following judgment presents how classes are generated:

CT ; m ; p → C

It generates a new class, with at most m members, with at most p formal
parameters in each method, using as a starting point a given class table. First,
we create a new name which is not in the domain of the input class table, using:

C = ξ(Cn − (dom(CT) ∪ {Object}))

This rule selects a random class name from the set Cn excluding the names
in the domain of CT and Object. Next, we need to generate a valid super class
name, which can be anyone of the set formed by the domain of current class
table CT and Object:

D = ξ(dom(CT) ∪ {Object})

After generating a class name and its super class, we need to generate its
members. For this, we generate random values for the number of fields and
methods, named fn and mn, respectively. Using such parameters we build the
fields and methods for a given class.

Field generation is straightforward. It proceeds by recursion on n, as shown
below. Note that we maintain a set of already used attribute names Un to avoid
duplicates.

CT ; 0 ; Un → • [G-Fields-Base]
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C = ξ(dom(CT) ∪ {Object})
f = ξ(Vn - Un)

CT ; n ; f : Un → C̄ f̄
CT ; n + 1 ; Un → C f : C̄ f̄

[G-Fields-Step]

Generation of the method list proceeds by recursion on m, as shown below.
We also maintain a set of already used method names Un to avoid method
overload, which is not supported by FJ. The rule G-Method-Step uses a specific
judgment to generate each method, which is described by rule G-Method.

CT ; C ; 0 ; p ; Un → • [G-Methods-Base]

x = ξ(Vn - Un)
CT ; C ; p ; x → M

CT ; C ; m ; p ; x : Un → M̄
CT ; C ; m + 1 ; p ; Un → M : M̄

[G-Methods-Step]

The rule G-Method uses an auxiliary judgment for generating formal parame-
ters (note that we can generate an empty parameter list). To produce the expres-
sion, which defines the method body, we build a typing environment using the
formal parameters and a variable this to denote this special object. Also, such
expression is generated using a type that can be any of the possible subtypes of
the method return type C0.

n = ξ([0..(p - 1)])
CT ; n ; • → C̄ x̄

C0 = ξ(dom(CT) ∪ {Object})
Γ = C̄ x̄, this : C

D̄ = subtypes(CT,C0)
E0 = ξ(D̄)

CT ; Γ ; E0 → e
CT ; C ; p ; m → (C0 m (C̄ x̄) {return e;})

[G-Method]

We create the formal parameters for methods using a simple recursive judg-
ment that keeps a set of already used variable names Un to ensure that all
variables produced are distinct.

CT ; 0 ; Un → • [G-Param-Base]

C = ξ(dom(CT) ∪ {Object})
x = ξ(Vn - Un)

CT ; n ; x : Un → C̄ x̄
CT ; n + 1 ; Un → (C x : C̄ x̄)

[G-Param-Step]

Finally, using the generated class name and its super class, we build its
constructor definition using the judgment:

CT ; C ;D → K
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Rule G-Constr represents the process to generate the constructor.

D̄ ḡ = fields(D)
C̄ f̄ = fields(C) - D̄ ḡ

CT ; C ; D → ( C (D̄ ḡ, C̄ f̄) { super(ḡ) ; this.̄f = f̄ } )
[G-Constr]

The process for generating a complete class is summarized by rule G-Class,
which is composed by all previously presented rules.

C = ξ(Cn - (dom(CT) ∪ {Object}))
D = ξ(dom(CT) ∪ {Object})

fn = ξ([1..m])
mn = ξ([1..(m - fn)])

CT′ = C (class C extends D {}) : CT
CT′ ; fn ; • → C̄ f̄

CT′′ = C (class C extends D {C̄ f̄}) : CT
CT′′ ; C ; mn ; p ; • → M̄

CT′ ; C ; D → K
CT ; m ; p → (class C extends D { C̄ f̄; K M̄ })

[G-Class]

Considering the presented generation rules, we are able to fill a class table
with well-formed classes in respect to FJ typing rules.

4 Soundness of Program Generation

The generation algorithm described in the previous section produces only well-
typed FJ programs.

Lemma 1 (Soundness of expression generation). Let CT be a well-formed
class table. For all Γ and C ∈ dom (CT), if CT ; Γ ; C → e then exists D,
such that Γ � e : D and D <: C.

Proof. The proof proceeds by induction on the derivation of CT ; Γ ; C → e
doing a case analysis on the last rule used to deduce CT ; Γ ; C → e. We show
some cases of the proof.

Case (G-Var): Then, e = x, for some variable x. By rule G-Var, x = ξ({y
| Γ (y) = C}) and from this we can deduce that Γ (x) = C and the conclusion
follows by rule T-Var.

Case (G-Invk): Then, e = e0.m(ē) for some e0 and ē; CT ; Γ ; C′ → e0, for
some C′; there exists (m, D̄′ → C), such that mtype(m, C′) = D̄ → C and for all
e′ ∈ ē, D ∈ D̄′, CT ; Γ ; ξ(subtypes(CT,D)) → e′. By the induction hypothesis,
we have that: Γ � e0 : D′, D′ <: C′, for all e′ ∈ ē, D ∈ D̄′. Γ � e′ : B, B <: D
and the conclusion follows by the rule T-Invk and the definition of subtyping
relation.

Lemma 2 (Soundness of subtypes). Let CT be a well-formed class table and
C ∈ dom(CT). For all D. if D ∈ subtypes(CT,C ) then C <: D.
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Proof. Straightforward induction on the structure of the result of subtypes
(CT, C).

Lemma 3 (Soundness of method generation). Let CT be a well-formed
class table and C ∈ dom(CT) ∪ {Object}. For all p and m, if CT ; C ; p ; m
→ C0 m (C̄x̄) { return e; } then C0 m (C̄x̄) { return e; } OK in C.

Proof. By rule G-Method, we have that:

– C̄ ⊆ dom(CT)
– Γ = {C̄ x̄, this : C}
– C0 = ξ(dom(CT) ∪ {Object})
– D̄ = subtypes(CT,C0)
– CT ; Γ ; E0 → e
– E0 = ξ(D̄)

By Lemma 2, we have that for all D ∈ D̄, C0 <: D.
By Lemma 1, we have that Γ � e : E′ and E′ <: E0.
Since CT is well-formed, then mtype(m, C) = C̄ → C0 and the conclusion

follows by rule method typing and the definition of the subtyping relation.

Lemma 4 (Soundness of class generation). Let CT be a well-formed class
table. For all m, p, if CT ; m ; p → CD then CD OK.

Proof. By rule G-Class, we have that:

– CD = class C extends D { C̄ f̄ ; K M̄ }
– C = ξ(Cn - (dom(CT) ∪ Object))
– D = ξ(dom(CT) ∪ Object)
– fn = ξ([1..m])
– mn = ξ([1..(m - fn)])
– CT ′ = C (class C extends D {}) : CT
– CT ′ ; fn → C̄ f̄
– CT ′′ = C (class C extends D { C̄ f̄; }) : CT
– CT ′′ ; C ; mn ; p ; • → M̄
– CT ′ ; C ; D → K

By Lemma 3, we have that for all m. m ∈ M̄, m OK.
By rule (G-Constr) we have that K = C (D̄ ḡ, C̄ f̄) {super(ḡ); this.̄f = f̄;},

where D̄ ḡ = fields(D).
The conclusion follows by rule class typing.

Lemma 5. Let CT be a well-formed class table. For all n, m and p, if CT ; n ;
m ; p → CT′ then for all C, D ∈ dom(CT’), if C <: D and D <: C then CT(C)
= CT(D).
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Proof. By induction on n.
Case n = 0: We have that CT ′ = CT. Conclusion follows by the fact that

CT is a well-formed class table.
Case n = n′ + 1: Suppose C, D ∈ dom(CT′), C <: D and D <: C.By the

induction hypothesis we have that for all CT1, C′, D′ ∈ CT1, if C′ <: D′ and D′

<: C′ then C′ = D′, whereCT ; n ; m ; p → CT1. Let L be a class such CT ;
m ; p → L. By Lemma 4, we have L OK in CT. By the induction hypothesis on
ϕ(L) L: CT ; n; p → CT′ and rule CT-Step we have the desired conclusion.

Lemma 6 (Soundness of class table generation). Let CT be a well-formed
class table. For all n, m and p, if CT ; n ; m ; p → CT′ then CT′ is a well-formed
class table.

Proof. By induction on n.
Case n = 0: We have that CT ′ = CT and the conclusion follows.
Case n = n′ + 1: By rule CT-Step we have that:

– CT ; m ; p → L
– ϕ(L) L : CT ; n ; m ; p → CT ′

By Lemma 4, we have that L OK. By the induction hypothesis we have that
CT ′ is a well-formed class table. By Lemma 5, we have that subtyping in CT ′ is
antisymmetric. Conclusion follows by the definition of a well-formed class table.

Theorem 1 (Soundness of program generation). For all n, m and p, if •
; n ; m ; p → CT then:

(1) CT is a well-formed class table.
(2) For all C ∈ CT, we have C OK.

Proof. Corollary of Lemmas 4, 5 and 6.

5 Quick-Checking Semantic Properties

As a proof of concept we have implemented an interpreter following the seman-
tics of FJ and used random generated programs to test this interpreter against
some properties4, including those for type-soundness presented in the FJ original
paper. The properties were specified and tested using QuickCheck [3]. Besides
progress and preservation of the interpreter, we also used QuickCheck to verify
if all generated class tables are well-formed, and also if all generated expressions
are well-typed and cast-safe. Furthermore, our tests cases were generated into
Java files, and compiled using the Oracle’s standard ‘javac’ compiler (the closest
implementation of Java Language Specification) to validate our generator algo-
rithm. After compiling and running many thousands of well-succeeded tests, we

4 More details about using QuickCheck for testing the semantic properties of FJ are
in our technical report at: https://github.com/fjpub/fj-qc/raw/master/tr.pdf.

https://github.com/fjpub/fj-qc/raw/master/tr.pdf
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gain a high-degree of confidence in our type-directed procedure for generating
programs.

As a way to measure the quality of the generated test cases, we used the
Haskell Program Coverage tool [9] to check how much of the interpreter code
base was covered by our test suite. Results of code coverage for each module
(evaluator, type-checker, auxiliary functions, and total, respectively) are pre-
sented in Fig. 4.

Fig. 4. Test coverage results.

Although not having 100% of code coverage, the proposed generation algo-
rithm was capable to verify the main safety properties present in FJ paper. After
analyzing test coverage results, we could observe that code not reached by test
cases consisted of error control when evaluating the semantics or when dealing
with expressions that are not well-typed.

6 Related Work

Property-based testing is a technique for validating code against an executable
specification by automatically generating test-data, typically in a random and/or
exhaustive fashion [3]. However, the generation of random test-data for testing
compilers represents a challenge by itself, since it is hard to come up with a gen-
erator of valid test data for compilers, and it is difficult to provide a specification
that decides what should be the correct behavior of a compiler [18]. As a conse-
quence of this, random testing for finding bugs in compilers and programming
language tools received some attention in recent years.

The testing tool Csmith [23] is a generator of programs for language C, sup-
porting a large number of language features, which was used to find a number of
bugs in compilers such as GCC, LLVM, etc. Le et al. [14] developed a method-
ology that uses differential testing for C compilers. Lindig [15] created a tool for
testing the C function calling convention of the GCC compiler, which randomly
generates types of functions. There are also efforts to generate test cases for
other languages [8]. All of these projects rely on informal approaches, while ours
is described formally and applied to property-based testing.

More specifically, Daniel et al. [6], Soares et al. [21] and Mongiovi et al. [17]
generate Java programs to test refactoring engines, some of them applied in
Eclipse and NetBeans IDEs. Gligoric et al. [10] presented an approach for describ-
ing tests using non-deterministic test generation programs applying in the Java
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context. Klein et al. [13] generated random programs to test an object-oriented
library. Silva, Sampaio and Mota [20] used program generation to verify transfor-
mations in Java programs. Allwood and Eisenbach [1] also used FJ as a basis to
define a test suite for the mainstream programming language in question, test-
ing how much of coverage their approach was capable to obtain. These projects
are closely related to ours since they are generating code in the object-oriented
context. The difference of our approach is that we generated randomly complete
classes and expressions, and proved that both are well-formed and well-typed.
Another difference is that we also used property-based testing to check that the
properties of the FJ semantics hold by using the generated programs.

The work of Palka, Claessen and Hughes [18] also used the QuickCheck
library in their work aiming to generate λ-terms to test the GHC compiler. Our
approach was somewhat inspired by theirs, in the sense we also used QuickCheck
and the typing rules for generating well-typed terms. Unlike their approach, we
provided a standard small-step operational semantics to describe our generation
algorithm.

7 Conclusion

In this work, we presented a syntax directed judgment for generating random
type correct FJ programs, proving soundness with respect to FJ typing rules,
and using property-based testing to verify it. The lightweight approach provided
by QuickCheck allows to experiment with different semantic designs and imple-
mentations and to quickly check any changes. During the development of this
work, we have changed our definitions many times, both as a result of correct-
ing errors and streamlining the presentation. Ensuring that our changes were
consistent was simply a matter of re-running the test suite. Encoding the type
soundness properties as Haskell functions provides a clean and concise imple-
mentation that helps not only to fix bugs but also to improve understanding the
meaning of the presented semantic properties.

As future work, we intend to use Coq to provide formally certified proofs for
our generation procedure, as well as for the FJ semantics, showing that they
do enjoy safety properties. We can also to explore the approach used in our
test suite for other FJ extensions, besides using other tools like QuickChick (a
random testing plug-in for Coq) with the same purpose.
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Abstract. One of the leading textbooks for formal methods is Software
Foundations (SF), written by Benjamin Pierce in collaboration with oth-
ers, and based on Coq. After five years using SF in the classroom, I have
come to the conclusion that Coq is not the best vehicle for this purpose,
as too much of the course needs to focus on learning tactics for proof
derivation, to the cost of learning programming language theory. Accord-
ingly, I have written a new textbook, Programming Language Founda-
tions in Agda (PLFA). PLFA covers much of the same ground as SF,
although it is not a slavish imitation.

What did I learn from writing PLFA? First, that it is possible. One
might expect that without proof tactics that the proofs become too long,
but in fact proofs in PLFA are about the same length as those in SF.
Proofs in Coq require an interactive environment to be understood, while
proofs in Agda can be read on the page. Second, that constructive proofs
of preservation and progress give immediate rise to a prototype evalua-
tor. This fact is obvious in retrospect but it is not exploited in SF (which
instead provides a separate normalise tactic) nor can I find it in the liter-
ature. Third, that using raw terms with a separate typing relation is far
less perspicuous than using inherently-typed terms. SF uses the former
presentation, while PLFA presents both; the former uses about 1.6 as
many lines of Agda code as the latter, roughly the golden ratio.

The textbook is written as a literate Agda script, and can be found
here: http://plfa.inf.ed.ac.uk.

Keywords: Agda · Coq · Lambda calculus · Dependent types

1 Introduction

The most profound connection between logic and computation is a pun. The doc-
trine of Propositions as Types asserts that a certain kind of formal structure may
be read in two ways: either as a proposition in logic or as a type in computing.
Further, a related structure may be read as either the proof of the proposition or
as a programme of the corresponding type. Further still, simplification of proofs
corresponds to evaluation of programs.

Accordingly, the title of this paper, and the corresponding textbook, Pro-
gramming Language Foundations in Agda (hence, PLFA) also has two read-
ings. It may be parsed as “(Programming Language) Foundations in Agda” or
c© Springer Nature Switzerland AG 2018
T. Massoni and M. R. Mousavi (Eds.): SBMF 2018, LNCS 11254, pp. 56–73, 2018.
https://doi.org/10.1007/978-3-030-03044-5_5
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“Programming (Language Foundations) in Agda”—specifications in the proof
assistant Agda both describe programming languages and are themselves pro-
grammes.

Since 2013, I have taught a course on Types and Semantics for Programming
Languages to fourth-year undergraduates and masters students at the Univer-
sity of Edinburgh. An earlier version of that course was based on Types and
Programming Languages by Pierce [2002], but my version was taught from its
successor, Software Foundations (hence, SF) by Pierce et al. [2010], which is
based on the proof assistance Coq (Huet et al. 1997). I am convinced by the
claim of Pierce [2009], made in his ICFP Keynote Lambda, The Ultimate TA,
that basing a course around a proof assistant aids learning.

However, after five years of experience, I have come to the conclusion that
Coq is not the best vehicle. Too much of the course needs to focus on learning
tactics for proof derivation, to the cost of learning the fundamentals of program-
ming language theory. Every concept has to be learned twice: e.g., both the
product data type, and the corresponding tactics for introduction and elimina-
tion of conjunctions. The rules Coq applies to generate induction hypotheses can
sometimes seem mysterious. While the notation construct permits pleasingly
flexible syntax, it can be confusing that the same concept must always be given
two names, e.g., both subst N x M and N [x := M]. Names of tactics are some-
times short and sometimes long; naming conventions in the standard library can
be wildly inconsistent. Propositions as types as a foundation of proof is present
but hidden.

I found myself keen to recast the course in Agda (Bove et al. 2009). In Agda,
there is no longer any need to learn about tactics: there is just dependently-
typed programming, plain and simple. Introduction is always by a constructor,
elimination is always by pattern matching. Induction is no longer a mysterious
separate concept, but corresponds to the familiar notion of recursion. Mixfix
syntax is flexible while using just one name for each concept, e.g., substitution
is [ := ]. The standard library is not perfect, but there is a fair attempt at
consistency. Propositions as types as a foundation of proof is on proud display.

Alas, there is no textbook for programming language theory in Agda. Ver-
ified Functional Programming in Agda by (Stump 2016) covers related ground,
but focuses more on programming with dependent types than on the theory of
programming languages.

The original goal was to simply adapt Software Foundations, maintaining the
same text but transposing the code from Coq to Agda. But it quickly became
clear to me that after five years in the classroom I had my own ideas about
how to present the material. They say you should never write a book unless you
cannot not write the book, and I soon found that this was a book I could not
not write.

I am fortunate that my student, Wen Kokke, was keen to help. She guided
me as a newbie to Agda and provided an infrastructure that is easy to use and
produces pages that are a pleasure to view. The bulk of the book was written
January–June 2018, while on sabbatical in Rio de Janeiro.
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This paper is a personal reflection, summarising what I learned in the course
of writing the textbook. Some of it reiterates advice that is well-known to some
members of the dependently-typed programming community, but which deserves
to be better known. The paper is organised as follows.

Section 2 outlines the topics covered in PLFA, and notes what is omitted.
Section 3 compares Agda and Coq as vehicles for pedagogy. Before writing

the book, it was not obvious that it was even possible; conceivably, without
tactics some of the proofs might balloon in size. In fact, it turns out that for
the results in PLFA and SF, the proofs are of roughly comparable size, and (in
my opinion) the proofs in PLFA are more readable and have a pleasing visual
structure.

Section 4 observes that constructive proofs of progress and preservation com-
bine trivially to produce a constructive evaluator for terms. This idea is obvi-
ous once you have seen it, yet I cannot find it described in the literature. For
instance, SF separately implements a normalise tactic that has nothing to do
with progress and preservation.

Section 5 claims that raw terms should be avoided in favour of inherently-
typed terms. PLFA develops lambda calculus with both raw and inherently-
typed terms, permitting a comparison. It turns out the former is less powerful—
it supports substitution only for closed terms—but significantly longer—about
1.6 times as many lines of code, roughly the golden ratio.

I will argue that Agda has advantages over Coq for pedagogic purposes. My
focus is purely on the case of a proof assistant as an aid to learning formal seman-
tics using examples of modest size. I admit up front that there are many tasks for
which Coq is better suited than Agda. A proof assistant that supports tactics,
such as Coq or Isabelle, is essential for formalising serious mathematics, such as
the Four-Colour Theorem (Gonthier 2008), the Odd-Order Theorem (Gonthier
et al. 2013), or Kepler’s Conjecture (Hales et al. 2017), or for establishing cor-
rectness of software at scale, as with the CompCert compiler (Kästner et al.
2017; Leroy 2009) or the SEL4 operating system (Klein et al. 2009; O’Connor
et al. 2016).

2 Scope

PLFA is aimed at students in the last year of an undergraduate honours pro-
gramme or the first year of a master or doctorate degree. It aims to teach the
fundamentals of operational semantics of programming languages, with simply-
typed lambda calculus as the central example. The textbook is written as a
literate script in Agda. As with SF, the hope is that using a proof assistant will
make the development more concrete and accessible to students, and give them
rapid feedback to find and correct misaprehensions.

The book is broken into two parts. The first part, Logical Foundations, devel-
ops the needed formalisms. The second part, Programming Language Founda-
tions, introduces basic methods of operational semantics. (SF is divided into
books, the first two of which have the same names as the two parts of PLFA,
and cover similar material.)
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Each chapter has both a one-word name and a title, the one-word name being
both its module name and its file name.

Part I, Logical Foundations

Naturals: Natural Numbers. Introduces the inductive definition of natural num-
bers in terms of zero and successor, and recursive definitions of addition, multi-
plication, and monus. Emphasis is put on how a tiny description can specify an
infinite domain.

Induction: Proof by Induction. Introduces induction to prove properties such as
associativity and commutativity of addition. Also introduces dependent func-
tions to express universal quantification. Emphasis is put on the correspondence
between induction and recursion.

Relations: Inductive Definitions of Relations. Introduces inductive definitions
of less than or equal on natural numbers, and odd and even natural numbers.
Proves properties such as reflexivity, transitivity, and anti-symmetry, and that
the sum of two odd numbers is even. Emphasis is put on proof by induction over
evidence that a relation holds.

Equality: Equality and Equational Reasoning. Gives Martin Löf’s and Leibniz’s
definitions of equality, and proves them equivalent, and defines the notation for
equational reasoning used throughout the book.

Isomorphism: Isomorphism and Embedding. Introduces isomorphism, which
plays an important role in the subsequent development. Also introduces depen-
dent records, lambda terms, and extensionality.

Connectives: Conjunction, Disjunction, and Implication. Introduces product,
sum, unit, empty, and function types, and their interpretations as connectives
of logic under Propositions as Types. Emphasis is put on the analogy between
these types and product, sum, unit, zero, and exponential on naturals; e.g.,
product of numbers is commutative and product of types is commutative up to
isomorphism.

Negation: Negation, with Intuitionistic and Classical Logic. Introduces logical
negation as a function into the empty type, and explains the difference between
classical and intuitionistic logic.

Quantifiers: Universals and Existentials. Recaps universal quantifiers and their
correspondence to dependent functions, and introduces existential quantifiers
and their correspondence to dependent products.

Decidable: Booleans and Decision Procedures. Introduces booleans and decidable
types, and why the latter is to be preferred to the former.

Lists: Lists and Higher-order Functions. Gives two different definitions of reverse
and proves them equivalent. Introduces map and fold and their properties,
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including that fold left and right are equivalent in a monoid. Introduces predi-
cates that hold for all or any member of a list, with membership as a specialisa-
tion of the latter.

Part II, Programming Language Foundations

Lambda: Introduction to Lambda Calculus. Introduces lambda calculus, using a
representation with named variables and a separate typing relation. The lan-
guage used is PCF (Plotkin 1977), with variables, lambda abstraction, applica-
tion, zero, successor, case over naturals, and fixpoint. Reduction is call-by-value
and restricted to closed terms.

Properties: Progress and Preservation. Proves key properties of simply-typed
lambda calculus, including progress and preservation. Progress and preservation
are combined to yield an evaluator.

DeBruijn: Inherently Typed de Bruijn Representation. Introduces de Bruijn
indices and the inherently-typed representation. Emphasis is put on the struc-
tural similarity between a term and its corresponding type derivation; in partic-
ular, de Bruijn indices correspond to the judgment that a variable is well-typed
under a given environment.

More: More Constructs of Simply-Typed Lambda Calculus. Introduces product,
sum, unit, and empty types as well as lists and let bindings are explained. Typing
and reduction rules are given informally; a few are then give formally, and the
rest are left as exercises for the reader. The inherently typed representation
is used.

Bisimulation: Relating Reduction Systems. Shows how to translate the language
with “let” terms to the language without, representing a let as an application of
an abstraction, and shows how to relate the source and target languages with a
bisimulation.

Inference: Bidirectional Type Inference. Introduces bidirectional type inference,
and applies it to convert from a representation with named variables and a
separate typing relation to a representation de Bruijn indices with inherent types.
Bidirectional type inference is shown to be both sound and complete.

Untyped: Untyped Calculus with Full Normalisation. As a variation on earlier
themes, discusses an untyped (but inherently scoped) lambda calculus. Reduc-
tion is call-by-name over open terms, with full normalisation (including reduc-
tion under lambda terms). Emphasis is put on the correspondence between the
structure of a term and evidence that it is in normal form.

Discussion

PLFA and SF differ in several particulars. PLFA begins with a computationally
complete language, PCF, while SF begins with a minimal language, simply-
typed lambda calculus with booleans. PLFA does not include type annotations
in terms, and uses bidirectional type inference, while SF has terms with unique
types and uses type checking. SF also covers a simple imperative language with
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Hoare logic, and for lambda calculus covers subtyping, record types, mutable ref-
erences, and normalisation—none of which are treated by PLFA. PLFA covers
an inherently-typed de Bruijn representation, bidirectional type inference, bisim-
ulation, and an untyped call-by-name language with full normalisation—none of
which are treated by SF.

SF has a third volume, written by Andrew Appel, on Verified Functional
Algorithms. I’m not sufficiently familiar with that volume to have a view on
whether it would be easy or hard to cover that material in Agda. And SF recently
added a fourth volume on random testing of Coq specifications using QuickChick.
There is currently no tool equivalent to QuickChick available for Agda.

There is more material that would be desirable to include in PLFA which
was not due to limits of time. In future years, PLFA may be extended to cover
additional material, including mutable references, normalisation, System F, pure
type systems, and denotational semantics. I’d especially like to include pure type
systems as they provide the readers with a formal model close to the dependent
types used in the book. My attempts so far to formalise pure type systems have
proved challenging, to say the least.

3 Proofs in Agda and Coq

The introduction listed several reasons for preferring Agda over Coq. But Coq
tactics enable more compact proofs. Would it be possible for PLFA to cover the
same material as SF, or would the proofs balloon to unmanageable size?

As an experiment, I first rewrote SF’s development of simply-typed lambda
calculus (SF, Chapters Stlc and StlcProp) in Agda. I was a newbie to Agda,
and translating the entire development, sticking as closely as possible to the
development in SF, took me about two days. I was pleased to discover that the
proofs remained about the same size.

There was also a pleasing surprise regarding the structure of the proofs.
While most proofs in both SF and PLFA are carried out by induction over the
evidence that a term is well typed, in SF the central proof, that substitution
preserves types, is carried out by induction on terms for a technical reason (the
context is extended by a variable binding, and hence not sufficiently “generic”
to work well with Coq’s induction tactic). In Agda, I had no trouble formulating
the same proof over evidence that the term is well typed, and didn’t even notice
SF’s description of the issue until I was done.

The rest of the book was relatively easy to complete. The closest to an issue
with proof size arose when proving that reduction is deterministic. There are 18
cases, one case per line. Ten of the cases deal with the situation where there are
potentially two different reductions; each case is trivially shown to be impossible.
Five of the ten cases are redundant, as they just involve switching the order of
the arguments. I had to copy the cases suitably permuted. It would be preferable
to reinvoke the proof on switched arguments, but this would not pass Agda’s
termination checker since swapping the arguments doesn’t yield a recursive call
on structurally smaller arguments. I suspect tactics could cut down the proof
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Fig. 1. PLFA, Progress (1/2)

significantly. I tried to compare with SF’s proof that reduction is deterministic,
but failed to find that proof.

SF covers an imperative language with Hoare logic, culminating in code that
takes an imperative programme suitably decorated with preconditions and post-
conditions and generates the necessary verification conditions. The conditions are
then verified by a custom tactic, where any questions of arithmetic are resolved
by the “omega” tactic invoking a decision procedure. The entire exercise would
be easy to repeat in Agda, save for the last step: I suspect Agda’s automation
would not be up to verifying the generated conditions, requiring tedious proofs
by hand. However, I had already decided to omit Hoare logic in order to focus
on lambda calculus.

To give a flavour of how the texts compare, I show the proof of progress
for simply-typed lambda calculus from both texts. Figures 1 and 2 are taken
from PLFA, Chapter Properties, while Figs. 3 and 4 are taken from SF, Chapter
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Fig. 2. PLFA, Progress (2/2)
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Fig. 3. SF, Progress (1/2)

StlcProp. Both texts are intended to be read online, and the figures were taken
by grabbing bitmaps of the text as displayed in a browser.

PLFA puts the formal statements first, followed by informal explanation.
PLFA introduces an auxiliary relation Progress to capture progress; an exercise
(not shown) asks the reader to show it isomorphic to the usual formulation with
a disjunction and an existential. Layout is used to present the auxiliary relation
in inference rule form. In Agda, any line beginning with two dashes is treated as
a comment, making it easy to use a line of dashes to separate hypotheses from
conclusion in inference rules. The proof of proposition progress (the different
case making it a distinct name) is layed out carefully. The neat indented structure
emphasises the case analysis, and all right-hand sides line-up in the same column.
My hope as an author is that students will read the formal proof first, and use
it as a tabular guide to the informal explanation that follows.

SF puts the informal explanation first, followed by the formal proof. The text
hides the formal proof script under an icon; the figure shows what appears when
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Fig. 4. SF, Progress (2/2)

the icon is expanded. As a teacher I was aware that students might skip it on a
first reading, and I would have to hope the students would return to it and step
through it with an interactive tool in order to make it intelligible. I expect the
students skipped over many such proofs. This particular proof forms the basis
for a question of the mock exam and the past exams, so I expect most students
will actually look at this one if not all the others.

(For those wanting more detail: In PLFA, variables and abstractions and
applications in the object language are written ‘ x and λ x ⇒ N and L · M.
The corresponding typing rules are referred to by �‘ () and �λ �N and �L · �M,
where �L, �M, �N are the proofs that terms L, M, N are well typed, and ‘()’
denotes that there cannot be evidence that a free variable is well typed in the
empty context. It was decided to overload infix dot for readability, but not other
symbols. In Agda, as in Lisp, almost any sequence of characters is a name, with
spaces essential for separation.)
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(In SF, variables and abstractions and applications in the object language
are written tvar x and tabs x t and tapp t1 t2. The corresponding typing rules
are referred to as T Var and T Abs and T App.)

Both Coq and Agda support interactive proof. Interaction in Coq is sup-
ported by Proof General, based on Emacs, or by CoqIDE, which provides an
interactive development environment of a sort familiar to most students. Inter-
action in Agda is supported by an Emacs mode.

In Coq, interaction consists of stepping through a proof script, at each point
examining the current goal and the variables currently in scope, and executing
a new command in the script. Tactics are a whole sublanguage, which must
be learned in addition to the language for expressing specifications. There are
many tactics one can invoke in the script at each point; one menu in CoqIDE lists
about one hundred tactics one might invoke, some in alphabetic submenus. A
Coq script presents the specification proved and the tactics executed. Interaction
is recorded in a script, which the students may step through at their leisure. SF
contains some prose descriptions of stepping through scripts, but mainly contains
scripts that students are encouraged to step through on their own.

In Agda, interaction consists of writing code with holes, at each point exam-
ining the current goal and the variables in scope, and typing code or executing
an Emacs command. The number of commands available is much smaller than
with Coq, the most important ones being to show the type of the hole and the
types of the variables in scope; to check the code; to do a case analysis on a
given variable; or to guess how to fill in the hole with constructors or variables
in scope. An Agda proof consists of typed code. The interaction is not recorded.
Students may recreate it by commenting out bits of code and introducing a hole
in their place. PLFA contains some prose descriptions of interactively building
code, but mainly contains code that students can read. They may also introduce
holes to interact with the code, but I expect this will be rarer than with SF.

SF encourages students to interact with all the scripts in the text. Trying
to understand a Coq proof script without running it interactively is a bit like
understanding a chess game by reading through the moves without benefit of a
board, keeping it all in your head. In contrast, PLFA provides code that students
can read. Understanding the code often requires working out the types, but
(unlike executing a Coq proof script) this is often easy to do in your head; when
it is not easy, students still have the option of interaction.

While students are keen to interact to create code, I have found they are
reluctant to interact to understand code created by others. For this reason, I
suspect this may make Agda a more suitable vehicle for teaching. Nate Foster
suggests this hypothesis is ripe to be tested empirically, perhaps using techniques
similar to those of Danas et al. [2017].

Neat layout of definitions such as that in Fig. 2 in Emacs requires a
monospaced font supporting all the necessary characters. Securing one has
proved tricky. As of this writing, we use FreeMono, but it lacks a few characters
(⦂ and ��) which are loaded from fonts with a different width. Long arrows are
necessarily more than a single character wide. Instead, we compose reduction
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—→ from an em dash — and an arrow →. Similarly for reflexive and transitive
closure —�.

4 Progress + Preservation = Evaluation

A standard approach to type soundness used by many texts, including SF and
PLFA, is to prove progress and preservation, as first suggested by Wright and
Felleisen [1994].

Theorem 1 (Progress). Given term M and type A such that ∅ � M : A then
either M is a value or M −→ N for some term N .

Theorem 2 (Preservation). Given terms M and N and type A such that
∅ � M : A and M −→ N , then ∅ � N : A.

A consequence is that when a term reduces to a value it retains the same
type. Further, well-typed terms don’t get stuck: that is, unable to reduce further
but not yet reduced to a value. The formulation neatly accommodates the case
of non-terminating reductions that never reach a value.

One useful by-product of the formal specification of a programming language
may be a prototype implementation of that language. For instance, given a lan-
guage specified by a reduction relation, such as lambda calculus, the prototype
might accept a term and apply reductions to reduce it to a value. Typically, one
might go to some extra work to create such a prototype. For instance, SF intro-
duces a normalize tactic for this purpose. Some formal methods frameworks,
such as Redex (Felleisen et al. 2009) and K (Roşu and Şerbănuţă 2010), advertise
as one of their advantages that they can generate a prototype from descriptions
of the reduction rules.

I was therefore surprised to realise that any constructive proof of progress and
preservation automatically gives rise to such a prototype. The input is a term
together with evidence the term is well-typed. (In the inherently-typed case,
these are the same thing.) Progress determines whether we are done, or should
take another step; preservation provides evidence that the new term is well-
typed, so we may iterate. In a language with guaranteed termination, we cannot
iterate forever, but there are a number of well-known techniques to address that
issue; see, e.g., Bove and Capretta [2001], Capretta [2005], or McBride [2015]. We
use the simplest, similar to McBride’s petrol-driven (or step-indexed) semantics:
provide a maximum number of steps to execute; if that number proves insuffi-
cient, the evaluator returns the term it reached, and one can resume execution
by providing a new number.

Such an evaluator from PLFA is shown in Fig. 5, where (inspired by cryp-
tocurrencies) the number of steps to execute is referred to as gas. All of the
example reduction sequences in PLFA were computed by the evaluator and then
edited to improve readability; in addition, the text includes examples of running
the evaluator with its unedited output.
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Fig. 5. PLFA, Evaluation

It is immediately obvious that progress and preservation make it trivial to
construct a prototype evaluator, and yet I cannot find such an observation in
the literature nor mentioned in an introductory text. It does not appear in SF,
nor in Harper [2016]. A plea to the Agda mailing list failed to turn up any prior
mentions. The closest related observation I have seen in the published literature
is that evaluators can be extracted from proofs of normalisation (Berger 1993;
Dagand and Scherer 2015).
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(Late addition: My plea to the Agda list eventually bore fruit. Oleg Kiselyov
directed me to unpublished remarks on his web page where he uses the name
eval for a proof of progress and notes “the very proof of type soundness can be
used to evaluate sample expressions” (Kiselyov 2009).)

5 Inherent Typing Is Golden

The second part of PLFA first discusses two different approaches to modelling
simply-typed lambda calculus. It first presents raw terms with named variables
and a separate typing relation and then shifts to inherently-typed terms with
de Bruijn indices. Before writing the text, I had thought the two approaches
complementary, with no clear winner. Now I am convinced that the inherently-
typed approach is superior.

Figure 6 presents the raw approach. It first defines Id, Term, Type, and
Context, the abstract syntax of identifiers, raw terms, types, and contexts. It
then defines two judgements, Γ � x ⦂ A and Γ � M ⦂ A, which hold when under
context Γ the variable x and the term M have type A, respectively.

Figure 7 presents the inherent approach. It first defines Type and Context,
the abstract syntax of types and contexts, of which the first is as before and
the second is as before with identifiers dropped. In place of the two judgements,
the types of variables and terms are indexed by a context and a type, so that
Γ � A and Γ � A denote variables and terms, respectively, that under context Γ
hae type A. The indexed types closely resemble the previous judgements: we now
represent a variable or a term by the proof that it is well-typed. In particular,
the proof that a variable is well-typed in the raw approach corresponds to a de
Bruijn index in the inherent approach.

The raw approach requires more lines of code than the inherent approach.
The separate definition of raw terms is not needed in the inherent approach;
and one judgement in the raw approach needs to check that x 	≡ y, while
the corresponding judgement in the inherent approach does not. The difference
becomes more pronounced when including the code for substitution, reductions,
and proofs of progress and preservation. In particular, where the raw approach
requires one first define substitution and reduction and then prove they preserve
types, the inherent approach establishes substitution at the same time it defines
substitution and reduction.

Stripping out examples and any proofs that appear in one but not the other
(but could have appeared in both), the full development in PLFA for the raw
approach takes 451 lines (216 lines of definitions and 235 lines for the proofs)
and the development for the inherent approach takes 275 lines (with definitions
and proofs interleaved). We have 451/235 = 1.64, close to the golden ratio.

The inherent approach also has more expressive power. The raw approach
is restricted to substitution of one variable by a closed term, while the inherent
approach supports simultaneous substitution of all variables by open terms, using
a pleasing formulation due to McBride [2005], inspired by Goguen and McKinna
[1997], Altenkirch and Reus [1999] and described in Allais et al. [2017]. In fact,
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Fig. 6. Raw approach in PLFA

I did manage to write a variant of the raw approach with simultaneous open
substitution along the lines of McBride, but the result was too complex for use
in an introductory text, requiring 695 lines of code—more than the total for the
other two approaches combined.

The text develops both approaches because the raw approach is more famil-
iar, and because placing the inherent approach first would lead to a steep
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Fig. 7. Inherent approach in PLFA

learning curve. By presenting the more long-winded but less powerful approach
first, students can see for themselves the advantages of de Bruijn indices and
inherent types.

There are actually four possible designs, as the choice of named variables
vs de Bruijn indices, and the choice of raw vs inherently-typed terms may be
made independently. There are synergies between the two. Manipulation of de
Bruijn indices can be notoriously error-prone without inherent-typing to give
assurance of correctness. In inherent typing with named variables, simultaneous
substitution by open terms remains difficult.

The benefits of the inherent approach are well known to some. The tech-
nique was introduced by Altenkirch and Reus [1999], and widely used elsewhere,
notably by Chapman [2009] and Allais et al. [2017]. I’m grateful to David Darais
for bringing it to my attention.
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6 Conclusion

I look forward to experience teaching from the new text, and encourage others
to use it too. Please comment!
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sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015) (2015)

Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User studies
of principled model finder output. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 168–184. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1 11

Felleisen, M., Findler, R.B., Flatt, M.: Semantics engineering with PLT Redex. By
Press (2009)

Goguen, H., McKinna, J.: Candidates for substitution. Technical report, Laboratory
for Foundations of Computer Science, University of Edinburgh (1997)

Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87827-8 28

https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/BFb0037100
https://doi.org/10.1007/BFb0037100
https://doi.org/10.1007/3-540-44755-5_10
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-540-87827-8_28


Programming Language Foundations in Agda 73

Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 14

Hales, T., et al.: A formal proof of the Kepler conjecture. In: Forum of Mathematics,
Pi, vol. 5. Cambridge University Press (2017)

Harper, R.: Practical Foundations for Programming Languages. Cambridge University
Press (2016)

Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant a tutorial. Rapport
Technique, 178 (1997)
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Abstract. Automatic verification techniques, like automated theorem
proving and model checking, cannot analyze large circuits due to the
heavy requirements of memory and computational power. On the other
hand, we can verify generic circuits, with universally quantified vari-
ables, using interactive theorem provers and thus overcome the above-
mentioned limitations but at the cost of significant user guidance in the
proof process. To facilitate this process and thus reduce the user involve-
ment in the proofs, we recently proposed a higher-order-logic formaliza-
tion of all the commonly used combinational circuits, like basic gates,
adders, multiplier, multiplexers, demultiplexers, decoders and encoders,
using the HOL4 theorem prover. In this project’s paper, we describe this
formally verified library and illustrate its utilization by verifying an n-bit
arithmetic logic unit (ALU).

1 Introduction

Verification of digital designs is of utmost importance due to their extensive
usage in safety-critical domains, such as health and transportation, where the
cost of an undetected system bug is quite high. Traditionally, digital designs
are verified using simulation, which ascertains the correctness of the design by
observing the behavior of the circuit under a subset of all possible inputs only.
Formal verification [15] is an accurate alternative to simulation that overcomes
its limitations by proving or disproving the correctness of the given design against
its desired properties mathematically. The main principle behind formal analysis
of a digital circuit is to construct a computer-based mathematical model of
the given circuit and formally verify, within a computer, that this model meets
rigorous specifications of intended behavior. Thus, the engineer working with
a formal methods-based verification tool has to develop a formal model of the
given circuit and the formal specification of the desired properties. Moreover,
she may be involved in the verification task as well.

There are some formal verification tools, mainly based on model checking [10]
and automated theorem proving techniques [14], that accept Verilog models [2]
and automatically translate them to the corresponding formal models and also
automatically verify the relationship between the formal model and its corre-
sponding specification. Thus, the verification engineer has to be involved in the
c© Springer Nature Switzerland AG 2018
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formal specification of the properties only. These kind of tools, such as FormalPro
by Mentor Graphics, Conformal by Cadence, Synopsys Hector, Calypto’s SLEC
and Formality by Synopsys, are quite well-suited for the industrial setting and
are thus widely accepted by the industry as well. However, model checking is
generally limited to sequential circuits and also suffers from the well-known state-
space explosion problem. Similarly, automated theorem provers cannot cope with
the verification problems of large designs as well, due to an exponential increase
in computations with an increase in the number of variables and intermediate
nodes. Interactive theorem provers [14], using the expressive higher-order logic,
can overcome these shortcomings but at the cost of explicit user involvement.
The verification engineer needs to manually construct a logical model of the sys-
tem and then verify the desired properties while guiding the theorem proving
tool. This could be a very rigorous process and the user needs to be an expert in
both system design and theorem proving skills. This drawback limits the usage of
higher-order-logic theorem proving in the mainstream hardware industry where
the engineers prefer to have push-button type tools.

To minimize the user involvement in using an interactive theorem prover
for the verification of combinational circuits, we recently proposed a library of
combinational circuits [27], consisting of formally verified generic circuits of com-
monly used components, such as various implementations of n-bit Adders, n-bit
multiplier, n:1 Multiplexers, 1:n Demultiplexers, n:2n Decoders, 2n:n Encoders
and n-bit logic gates. The verification of these generic components was done
interactively but the availability of this library greatly facilitates the verifica-
tion of more complex designs. The user of the proposed approach has to just
provide the structure of the combinational circuit to be verified in terms of its
sub-components, based on the existing components in the proposed library, and
its desired behavior in the language supported by the HOL4 theorem prover. The
relationship between the structural view and the behavior of the given circuit
can then be verified using the library of formally verified generic circuits in a
very straightforward manner.

In this project’s paper, we describe all the main components of this library
[27] and illustrate its effectiveness in formally verifying generic circuits by for-
mally verifying an n-bit arithmetic logic unit (ALU) with very minimal user
interaction. The main motivation of this paper is to illustrate the utilization
of our formally verified library [27] in verifying more complex combination cir-
cuits. We have used the HOL4 theorem prover for this work, mainly because the
existing library of formal combinational components [27] has been developed in
HOL4.

2 Related Work

The first-order-logic theorem prover ACL2 has been used to verify different hard-
ware designs, including register-transfer level (RTL) models of floating-point
hardware [8] and pipeline machines using first-order quantification [24]. Simi-
larly, a framework is proposed for the mechanized certification of secure hard-
ware systems using ACL2 [23]. However, these verifications are done for specific



76 S. Shiraz and O. Hasan

operand widths of the components. In order to alleviate this problem, ACL2 has
been used in conjunction with symbolic simulation for verifying hardware [11]
and VIA nano microprocessor components [32]. However, using symbolic simula-
tion compromises the completeness of the analysis and thus accuracy. Similarly,
ACL2 has also been used with IBM’s SixthSense model checker [16,17] to develop
a hybrid verification framework for digital hardware. But the scalability of this
technique is a major concern since the state transition checks grow exponentially
for large circuits and thus the automatic verification capability is compromised.

Interactive theorem provers, using higher-order logic, can overcome the lim-
ited expressiveness problem of ACL2. Thus, PVS has been used for the verifi-
cation of some large designs, including some FPGA designs [9] and the floating
point unit used in the VAMP processor [3], which supports addition, subtraction,
multiplication, division, comparison, and conversions. Similarly, a hardware ver-
ification tool, called PROVERIFIC [28], allows Property Specification Language
(PSL) assertions to be used with PVS. All the above-mentioned works require
detailed user guidance in the proof process. Moreover, these formalizations are
dedicated towards a particular circuit and are thus not generic.

The PVS theorem prover has been used along with decision procedures and
BDD-based propositional simplification to automatically verify combinational
circuits [7]. However, this proof strategy tackles each circuit verification from
scratch whereas our approach is modular as we utilize the formally verified mod-
els of commonly used combinational circuits to verify more complex circuits. This
kind of modularity makes the verification approach more scalable. A library of
basic circuits is also implemented and verified in PVS [4] that is quite similar to
the one presented in this paper. However, this work is just focused towards the
verification of microprocessor designs. Secondly, the formalization and verifica-
tion details of the components, reported in this work, are not openly available.
Thus, our idea is mainly inspired from this work but we have developed recursive
definitions for all the commonly used combinational circuits and have formally
verified them using the HOL4 theorem prover [27]. To the best of our knowledge,
these kinds of generic recursive definitions of combinational circuits have never
been presented and used to verify more complex combinational circuits in the
literature before.

The Coq theorem prover is based on the Calculus of (Co)Inductive Con-
structions (CiC) and features dependent types, which are quite helpful in cre-
ating reliable circuit models as errors can be caught earlier by type checking
[5]. Braibant [5] created a library in Coq to facilitate modeling and verifying
hardware circuits. Although dependent types, available in this library, are help-
ful in creating reliable definitions, the library still requires the user to guide the
proof tools, which somewhat limits the scope of this work for industrial usage. A
step-by-step procedure for the formal verification of a multiplier in CiC is given
in [22]. But this work also requires extensive user interaction for verifying new
designs and is specific for one example only.

The HOL theorem prover has been used for the verification of the SPW Data-
strobe (DS) encoding [21] and multiway decision graphs (MDG) components
library [6]. Both of these works are application specific. A hardware platform
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for a gate level electronic control unit has been implemented and interactively
verified in HOL [31]. Similarly, the HOL Light theorem prover has been used
for the verification of floating-point algorithms for division, square root and
transcendental functions [13]. However, the verification does not involve the gate
level implementations and requires significant user interaction.

Many hybrid techniques, based on the idea of exploiting the strengths of inter-
active theorem proving and automatic verification tools, have been developed as
well. The HOL theorem prover has been integrated with MDG for hardware
verification [19]. Similarly, the Pipelined Double-Precision IEEE Floating-Point
Multiplier is verified by the Voss hardware verification system using a combi-
nation of theorem proving and model checking [1]. The Floating point divider
unit of an Intel IA-32 microprocessor [18] and large-scale industrial trials on
data-path-dominated hardware [25] are formally verified using the Forte frame-
work, which uses the ThmTac theorem-prover and the symbolic trajectory model
checker. However, the verification in the Forte framework requires significant user
interaction and thus is not very easy to work with. The Isabelle/HOL theorem
prover has been used along with the nuSMV model checker and SAT solvers
for verifying some basic combinational circuits and the simple sequential DLX
processor at the gate level [30]. However, all these works are focused on one or a
subset of combinational circuits. Similarly, due to their hybrid nature, they also
suffer from the state-space explosion problem.

Based on the above-mentioned review, it is observed that all of the interac-
tive theorem proving-based verification approaches for combinational logic cir-
cuits require the formalization of the circuit to be verified from scratch and
require considerable user guidance during the proof process. In order to alleviate
these issues, a library of formally verified commonly used combinational circuits
is created [27]. The definitions of these formally verified combinational circuits
can be readily built upon to formalize almost any other combinational circuit.
Moreover, the formally verified expressions of the combinational circuits in this
library allow us to verify proof goals of any other combinational circuit in a very
straightforward manner involving simple rewriting steps. It is important to note
that the development of the library involved human guidance and interactive
reasoning but, once developed, this library greatly facilitates the formalization
and verification process for more complex combinational circuits. The effective-
ness of the library can be estimated with the help of formal verification of generic
n-bit ALU, verified in this paper, which is done with minimal user involvement.

3 Formal Verification of Generic Combinational Circuits

This section gives a brief introduction to the formally verified generic library [27]
of the commonly used combinational components. This formalization, mainly
inspired by the seminal work on digital circuit verification done at the Univer-
sity of Cambridge, UK [12], is the core component for verifying generic com-
binational circuits. The main idea is to model generic (arbitrary-input) circuit
diagrams (implementations) of combinational circuits in a recursive manner, as
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shown in Fig. 1, by using the logical sub-components of the given circuit and
their interconnections. The inputs and outputs of these circuits are modelled as
lists of booleans to allow generic definitions. We have used the big endian format
for representing these lists of booleans, i.e., 4 bit input data list a is represented
as [a4;a3;a2;a1], with a4 being the most-significant bit. The primary inputs and
outputs of these definitions are universally quantified while the internal con-
nection points, hidden from the external world, are introduced using existential
quantifiers. The behavior, or specifications, of these combinational circuits is
represented in terms of their desired input-output relationships. The relation-
ships between the implementations and their corresponding specifications are
then verified using induction on the input variables within the sound core of a
theorem prover. Any combinational circuit using the formally verified compo-
nents of this library can then be verified by simply using the above-mentioned
formally verified relationships with a very minimal user interaction.

Now, we explain the formally verified components of our library one by one.

3.1 Logic Gates

All of the primitive logic gates i.e., NOT, AND, NAND, OR, XOR, NOR and
XNOR, are formally defined in the library [27]. All of these definitions, except
the inverter, are generic and thus can be used to model the respective gate with
any number of inputs.

3.2 Multiplexer

The n:1 Multiplexer (Mux) [20] passes the signal of any one of the n input data
lines to the one bit output line depending upon the log2 n input select lines.
Figure 1(a) provides the recursive implementation of a generic n:1 Mux, where
n is the width of data input lines a, k is the width of select input lines s and
b is a boolean output signal. The relation between the width of select and data
input lines can be specified by the equation k = log2n, or in other words n = 2k.
The primitive 2:1 Mux can be implemented using basic logic gates [26]. The n:1
mux is formally verified in Theorem 1, where implementation and specification
for n:1 mux is formally defined [27] as mux imp n a s b and mux spec n a s b
respectively.

Theorem 1. � ∀a s b.(¬(s = []) ∧ (LENGTH a = 2 EXP LENGTH s))

⇒ (mux imp n a s b = mux spec n a s b)

where assumptions ensure that at least one select line is required to ensure a
valid MUX, and define the relationship between the input data and select lines.
Verification of Theorem 1 is primarily based on induction on variable s. The
proof script for the formal reasoning about Theorem 1 consists of about 400
lines of HOL code [26].



Formal Verification of n-bit ALU Using Theorem Proving 79

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 1. Recursive Implementations (a) n:1 Mux (b) n:2n Decoder (c) 1:n Demultiplexer
(d) 2n:n Encoder (e) n-bit Adder (f) 1-bit Carry Select Adder (g) n-bit Multiplier

3.3 Decoder

The recursive implementation of a n : 2n Decoder [20], shown in Fig. 1(b), is
implemented using using two (n − 1) : 2(n−1) Decoders having input of tail of
the data input line, i.e., a[n − 2 : 0]. Head of the data input line, i.e., a[n − 1],
in conjunction with a global enable input e enables either of the two Decoders,
which then sets the bits of the output signal depending upon the binary number
represented by the input data vector. Here n is the width of the output data
line and is used for the recursive implementation of the circuit. The relationship
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between the specification and implementation of the Decoder defined formally
as decod imp n n e a b and decod spec n n e a b [27] is verified as:

Theorem 2. � ∀ n e a b. ((LENGTH b = n) ∧ (LENGTH b = 2 EXP LENGTH a))

⇒ (decod imp n n e a b = decod spec n n e a b)

where the assumptions ensure that the length of output data signal is equal to
width of the Decoder and the relationship between the data input and the data
output vectors. The proof script for Theorem 2 consists of about 1000 lines [26].

3.4 Demultiplexer

The functionality of Demultiplexer [20] is quite similar to that of the Decoder
with the difference that Decoder sets one of the output lines depending upon
the input signal while the Demultiplexer transmits the input data to one of
the output lines depending upon the input select lines. Figure 1(c) shows an
implementation of the Demultiplexer using a Decoder, where the data input
signal of the Demultiplexer, a, is connected to the enable signal of the Decoder,
the select input signal of the Demultiplexer, s, is connected to the data input
signal of Decoder and the data output signal of the Demultiplexer, b, is connected
to the data output signal of Decoder. The relation between the width of select
line k, and the width of the data output lines n is k = log2 n, or n = 2k.

Theorem 3. � ∀ n a s b. ((LENGTH b = n) ∧ (LENGTH b = 2 EXP LENGTH s))

⇒ (dmux imp n n a s b = dmux spec n n a s b)

where the assumptions ensure that the length of output data vector is equal to
the width of the Demultiplexer and relationship between the output data and the
input select vectors. The proof of Theorem 3 is based on Theorem 2 and consists
of only 20 lines of HOL code [26]. The less number of lines clearly show that
existing formal components of the library greatly facilitate the formalization of
new components.

3.5 Encoder

The Encoder [20] generates a binary output code for one bit of input True at a
time. There are two discrepancies that may happen with the Encoders, i.e., the
output behavior is non-deterministic in the case when more than one input bits
are True at a time or all input bits are zero. Priority Encoder [20] resolves these
issues, by encoding output on the basis of priority and by using a valid output bit,
respectively. Figure 1(d) presents a recursive implementation of a 2n : n Priority
Encoder, using two 2n−1 : (n − 1) Encoders, which encodes on the basis of the
highest priority of the input signal, i.e., all other bits of the input data signal
are ignored if the most significant bit of the data input signal is True. Where
n specifies the width of the output data signal b, e is the enable input signal
of the Encoder, p is connected with the valid output signal of the first Encoder
and is used to enable the second Encoder, when the top half of the input data
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vector contains all False elements, v is the valid output signal, which indicates
the validity of the encoded output data signal, and the function encod 2to1 imp
computes the head of the output data signal using NOT, AND gates and a 2:1
Mux [26]. The relationship between the specification and implementation of the
Encoder formally defined as encod spec n n e a b v and encod imp n n e
a b v [27], is formally verified in HOL as following theorem.

Theorem 4. � ∀ n e a b v.(LENGTH a = 2 EXP LENGTH b) ∧ (LENGTH b = n)

⇒ (encod imp n n e a b v = encod spec n n e a b v)

where the assumptions ensure that the length of output data vector is equal
to the width of the Encoder and relationship between the input data and the
output data vectors. The proof script of Theorem 4 consists of about 900 lines
of HOL code [26].

3.6 Ripple Carry Adder

A recursive implementation of n-bit Ripple Carry Adder [20] is shown in Fig. 1(e),
where d1 and d2 are the two data input vectors which are required to be added,
cin is the boolean carry input, cout is the boolean carry output and s is the sum
output vector of the adder. One bit adder is implemented using the basic logic
gates, i.e., XOR, AND and OR gates [26]. Using 1-bit adder, the structure of
the n-bit adder can be formalized as adder imp n n d1 d2 [27]. The variable of
recursion n specifies the width of the adder. The behavior can be formalized as
adder spec n n d1 d2 cin [27]. The relationship between the implementation
and specification is proved as a theorem, where the assumptions ensure that the
lengths of both input vectors is equal to width of the adder. The proof script
consists of about 2000 lines [26].

Theorem 5. � ∀ n d1 d2 cin. (LENGTH d1 = n) ∧ (LENGTH d2 = n) ⇒
(xadder imp n d1 d2 cin = adder spec n n d1 d2 cin)

3.7 Carry Select Adder

The formalization of the Carry Select Adder [20] is quite similar to that of the
Ripple Carry Adder since both share the same recursive implementation, shown
in Fig. 1(e). The main difference is the implementation of the 1-bit adder, which
is implemented using a Mux and full adder as shown in Fig. 1(f). The idea is
to obtain the addition for 1-bit data using two full adders working in parallel
for both cases of the carry input, i.e., ‘T’ and ‘F’. The final values for sum and
carry-out are chosen based on the input value of carry using a Mux. The formal
definitions and theorems of the implementation and specification of the n-bit
Carry Select Adder are almost same as for the Ripple Carry Adder. The proof
script for the formal reasoning consists of about 200 lines of HOL code [26].
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3.8 Multiplier

The recursive implementation of a n-bit Multiplier [20] is shown in Fig. 1(g),
where each bit of the multiplicand, d2, is multiplied one-by-one with the mul-
tiplier d1, making partial products, which are then added using a Ripple Carry
Adder. The 1-bit Multiplier is implemented using a Ripple Carry Adder and
arrays of AND gates and array [26]. Implementation and specification of n-bit
multiplier formalized as mult imp d1 d2 and mult spec d1 d2 [27] are formally
verified as following theorem

Theorem 6. � ∀ d1 d2. mult imp d1 d2 = mult spec n d1 d2

The proof script for Theorem 6 consists of about 2000 lines of HOL code [26].
The main advantage of the results presented in this section, i.e., the formal

verification of the universally quantified theorems for the correctness of generic
combinational circuits with arbitrary inputs, is the ability to use them for verify-
ing a wide range of combinational circuits in a very straightforward manner. This
benefit is attained at the cost of extensive user-effort spent in guiding the HOL
theorem prover for verifying these theorems. The formalization, presented in this
section, took around 7000 lines of HOL code and approximately 12 man-months
[27]. These lines and effort include a number of general list and arithmetic the-
ory proofs that are built upon to reason about Theorems 1 to 6. A significant
amount of time was also spent on identifying the generic implementations of the
common combinational circuits that can be expressed recursively as well.

4 Formal Verification of n-bit ALU

In this section, we use the library of formally verified combinational circuits,
described in the previous section, to formally verify an n-bit arithmetic logic
unit (ALU), shown in Fig. 2(a). It takes three n-bit inputs, a, b and c, which can
be optionally inverted depending upon the signals nega, negb and negc. These
signals along with other enable signals, enab and enc, generate different outputs
of the ALU: a.b, −a.b, a.b+c, a.b−c, −a.b+c, −a.b−c, etc. This ALU has been
recently formally verified for operand widths ranging form 4 to 256 bits taking
0.01 to 34.66 s [33]. We extend this work by formally verifying this ALU design
for n-bit operands.

The first step is the formalization of the implementation of the given cir-
cuit, which can be defined using the pre-verified components of the library as
follows:
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(a) (b)

Fig. 2. Implementations (a) n-bit ALU (b) mux neg1 imp

∀ n a b c nega negb negc enab enc y co. alu n a b c nega

negb negc enab enc y co = ∃ FA FB FC FAB FABen FCen.

mux_neg1_imp a nega FA ∧ mux_neg1_imp b negb FB

∧ mux_neg1_imp c negc FC ∧ mult_imp_n FA FB FAB

∧ and_list_imp FAB enab FABen ∧ and_list_imp FC

enc FCen ∧ Adder_imp_n (n + n) FABen (make_list_F n ++

FCen) F y co

Where, the variable n represents the operand widths for variables a, b and c
and co denote the carry out signal. The function Adder imp n and mult imp n
are the formally verified ripple carry adder and multiplier of the generic library,
respectively. The function mux neg1 imp represents a combination of a multi-
plexer and a not gate, shown in Fig. 2(b), such that it allows to select between a
given arbitrary-width input and its inverted signal depending upon the select sig-
nal nega. The implementation and specification of mux neg1 is formally defined
below:

Definition 1. Implementation of mux neg1
� ∀ a sel y. mux neg1 imp a sel y <=>

mux list imp (not list a) a sel y

Definition 1a. Implementation of mux list
� ∀ a b sel.(mux list 0 [] b sel= []) ∧(mux list 0 (h::t) b sel =

mux 0 imp h (HD b) sel::mux list 0 t (TL b) sel)
� ∀ a b sel y. mux list imp a b sel y = (y = mux list 0 a b sel)

where not list returns the list by inverting all of its input data elements,
the expression mux 0 imp is 2:1 mux, defined as nand (nand in2 (not sel))
(nand sel in1) and the HOL function HD and TL returns the head and tail of
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the input list respectively. The behavior of the mux list and mux neg1 is for-
mally defined as:

Definition 1b. Specification of mux list
� ∀ a b sel. mux list spec a b sel = if sel then a else b

Definition 2. Specification of mux neg1
� ∀ a sel y. mux neg1 imp a sel y<=>

if sel then y = (not list a) else y = a

The relationship between the specification and implementation of the mux neg1
is formally verified in HOL as the following theorem:

Theorem 7. Formal Verification of mux neg1
� ∀ a b sel y. (mux neg1 imp a b sel y <=> mux neg1 spec a b sel y)

Similarly, the component and list is used for either transferring the input data
list or list of all false elements. The implementation and specification of this
component is formally defined below:

Definition 3. Implementation of and list
� ∀ a b sel. (and list 0 [] en = []) ∧
(and list 0 (h::t) en = (and [h;en]::(and list 0 t en)))
� ∀ a en out. and list imp a en out = (out = and list 0 a en)

where the function and recursively performs the logical and between all the
elements of a boolean list [27] and the function and list 0 models a series of
AND gates for performing the logical conjunction of a single bit signal en with
all elements of input list a individually. The function and list imp represents
an and list component in the predicate form.

Definition 4. Specification of and list
� ∀ a en. and list spec a en = if (en) then a

else make list F (LENGTH a)‘;

where the expression (make list F n) returns a list of n false elements [26].
The relationship between the specification and implementation of the and list is
formally verified as:

Theorem 8. Formal Verification of and list
� ∀ a en. (and list 0 a en <=> and list spec a en)

The behaviour of the ALU is formally defined by carrying the binary sub-
traction using the 1’s complement of the desired input, i.e., BV n (not list a),
where BV n converts its argument boolean list into a number [27].
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(if (enab) then

if (enc) then

if (~nega /\ ~negb /\ ~negc) then

(co::y) = (num_BV_f(SUC (n + n))((BV_n a* BV_n b)+BV_n c))

else if (~nega /\ ~negb /\ negc) then

(co::y)=(num_BV_f(SUC (n + n))((BV_n a*BV_n b)+(BV_n (not_list c))))

else if (~nega /\ negb /\ ~negc) then

(co::y)=(num_BV_f(SUC (n + n))((BV_n a*(BV_n (not_list b)))+BV_n c))

else if (~nega /\ negb /\ negc) then

(co::y) = (num_BV_f(SUC (n + n))

((BV_n a*(BV_n (not_list b)))+(BV_n (not_list c))))

else if (nega /\ ~negb /\ ~negc) then

(co::y)=(num_BV_f(SUC (n + n))(((BV_n (not_list a))*BV_n b)+BV_n c))

else if (nega /\ ~negb /\ negc) then

(co::y) = (num_BV_f(SUC (n + n))

(((BV_n (not_list a))*BV_n b)+(BV_n (not_list c))))

else if (nega /\ negb /\ ~negc) then

(co::y) = (num_BV_f(SUC (n + n))

(((BV_n (not_list a))*(BV_n (not_list b)))+BV_n c))

else

(co::y) = (num_BV_f (SUC (n + n))

(((BV_n (not_list a))*(BV_n (not_list b))) + (BV_n (not_list c))))

else

if (~nega /\ ~negb) then ((co::y) = (num_BV_f (SUC (n + n))

(BV_n a * BV_n b)))

else if (~nega /\ negb) then ((co::y) = (num_BV_f (SUC (n + n))

(BV_n a * (BV_n (not_list b)))))

else if (nega /\ ~negb) then ((co::y) = (num_BV_f (SUC (n + n))

((BV_n (not_list a)) * BV_n b)))

else ((co::y) = (num_BV_f (SUC (n + n))

((BV_n (not_list a))*(BV_n (not_list b)))))

else

if (~enc /\ ~negc) then ((co::y) = (F::make_list_F (n+n)))

else if (~enc /\ negc) then ((co::y) = (F::make_list_F (n+n)))

else if (enc /\ ~negc) then ((co::y) =

(num_BV_f (SUC (n + n)) (BV_n c)))

else ((co::y) = (num_BV_f (SUC (n + n)) (BV_n (not_list c))))

where num BV f converts a number into a list with n booleans [27] and the expres-
sion SUC n represents the successor of the variable n. The equivalence between
the formal implementation and specification of the given circuit is verified as the
following theorem.
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Theorem 9. Formal Verification of n-bit ALU
� ∀ n a b c nega negb negc enab enc y co.

(LENGTH a = n) ∧ (LENGTH b = n) ∧ (LENGTH c = n) ∧ n > 0 ⇒
(ALU n imp n a b c nega negb negc enab enc y co <=>

ALU n spec n a b c nega negb negc enab enc y co)

where the assumptions ensure that the length of all input data vectors is equal
to the width of the ALU and that should be greater than zero. The proof script
of Theorem 9 is very straightforward and its first part is given below:

e (REPEAT STRIP_TAC THEN RW_TAC bool_ss [ALU_n_spec] THEN

RW_TAC std_ss[ALU_n_imp,AND_LIST_THM,and_list_spec,

and_list_imp,mult_imp_n,MULT_N_THM,mult_spec_n,

mux_neg1_thm,mux_neg1_spec,make_list_F,not_0,

LENGTH,Adder_imp_n,ADDER_RIPPLE_N,Adder_spec_n,

BV_n_make_list_F_a,LENGTH_make_list_F,

LENGTH_APPEND,BV,LENGTH_num_BV_f,

LENGTH_not_0,BV_n_make_list_F]);

The verification process mainly involves rewriting with the already verified
theorems in a very straightforward manner involving very little user interaction.
The first step is the removal of universal quantifiers using STRIP TAC. This is
followed by rewriting with the specification definition using RW TAC bool ss,
which produces 16 subgoals depending upon the conditional statements used
in the specification of the circuit. The verification of these 16 subgoals is not
shown above due to space limitations but it involves simple rewriting with all
definitions and theorems for the components of library used in the given sub-
goal using (RW TAC std ss). So we merely had to plug-in the definitions of the
specifications and the names of the definitions and theorems for the components
used in the subgoal to be verified in the rewriting tactics. The proof script is
around 800 lines long and required about a couple of hours of development tme.
Hence, use of the library of formally verified components made the verification
process almost automatic, i.e., with very minimal user interaction. Moreover, it
is important to note that based on this formally verified equivalence theorem
with universally quantified input variables, we are able to verify correspond-
ing equivalence relationships for any width size by appropriately instantiating
Theorem 9, which clearly indicates the strength of the proposed methodology in
verifying combinational circuits.

5 Conclusions

In this paper, we have presented our efforts in developing a framework for the
formal verification of generic combinational circuits using a higher-order-logic
theorem prover HOL4 while minimizing the user interactive efforts. The main
idea is to develop a higher-order-logic library of all commonly used combina-
tional circuits that includes their generic circuit implementations, their generic
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specifications and the proof of their equivalences. Since, these formalizations are
done for arbitrary n-bit circuits so they can be used in turn to formalize and
verify other n-bit combinational circuits. In this paper, we used this methodol-
ogy to verify an n-bit ALU and the user effort in proof guidance was found to
be very little. Moreover, the user did not need to have an extensive knowledge
of theorem proving for using this library. This ALU is now part of our library
and can be further used to verify more complex blocks.

The proposed work opens the door to many interesting future directions
of research. The formally verified library of circuits needs to be enhanced and
advanced components like, Wallace Tree, Booth multipliers and components of
floating-point arithmetic units may be added. More case studies for evaluation
purposes are also underway. As long term goals, we plan to integrate a model
checker with the proposed methodology to verify both combinational and sequen-
tial circuits within the same framework. Our work can also be combined with
the recently proposed theorem proving-based analog circuit verification approach
[29] to form a theorem proving-based Analog and Mixed Signal (AMS) circuit
analysis framework.
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Abstract. In response to the challenges associated with a Coq-based
extraction of readable and traceable Scala code, the Scallina project
defines a grammar delimiting a common subset of Gallina and Scala along
with an optimized translation strategy for programs conforming to the
aforementioned grammar. The Scallina translator shows how these con-
tributions can be transferred into a working prototype. A typical appli-
cation features a user implementing a functional program in Gallina, the
core language of Coq, proving this program’s correctness with regards to
its specification and making use of Scallina to synthesize readable Scala
components.
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1 Introduction

Coq [16] and Isabelle/HOL [18] are currently two of the world’s leading proof
assistants; they enable users to implement a program, prove its correctness with
regards to its specification and extract a verified implementation1 expressed
in a given functional programming language. Coq has been successfully used to
implement CompCert, the world’s first formally verified C compiler [12]; whereas
Isabelle/HOL has been successfully used to implement seL4, the world’s first
formally verified general-purpose operating system kernel [10]. The languages
that are currently supported by Coq’s extraction mechanism are OCaml, Haskell
and Scheme [15], while the ones that are currently supported by Isabelle/HOL’s
extraction mechanism are OCaml, Haskell, SML and Scala [7].

The code generation capabilities of these proof assistants enable the synthesis
of verified programs. However, they do not fully address the verification needs
of existing software programs2. This need is covered by other initiatives such as
Leon [3,11], Why3 [4] and Sireum Logika3. Leon and Logika allow the automatic
1 An implementation extracted from a program which is proven-correct in a proof
assistant can be considered correct when one assumes that the proof assistant itself
and its corresponding extraction mechanism are correct.

2 Unless these programs are rewritten from scratch and manually proven using the
proof assistant.

3 http://logika.sireum.org.
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verification of Scala programs. Leon can also resort to Isabelle/HOL machine-
checked proofs when its automatic verification mechanism fails to give a timely
answer. Similarly, Why3 allows the automatic verification of OCaml programs
with the option of resorting to Coq on failure.

The Scala programming language [20] is considerably adopted in the indus-
try. It is the implementation language of many important frameworks, including
Apache Spark, Kafka, and Akka. It also provides the core infrastructure for
sites such as Twitter, Coursera and Tumblr. A distinguishing feature of this lan-
guage is its practical fusion of the functional and object-oriented programming
paradigms. Its type system is, in fact, formalized by the calculus of Dependent
Object Types (DOT) which is largely based on path-dependent types [1]; a lim-
ited form of dependent types where types can depend on variables, but not on
general terms.

The Coq proof assistant, on the other hand, is based on the calculus of induc-
tive constructions; a Pure Type System (PTS) which provides fully dependent
types, i.e. types depending on general terms [5]. This means that Gallina, the core
language of Coq, allows the implementation of programs that are not typable in
conventional programming languages. A notable difference with these languages
is that Gallina does not exhibit any syntactic distinction between terms and
types [16].

To cope with the challenge of extracting programs written in Gallina to
languages based on the Hindley-Milner [8,17] type system such as OCaml and
Haskell4, Coq’s native extraction mechanism implements a theoretical function
that identifies and collapses Gallina’s logical parts and types; producing untyped
λ-terms with inductive constructions that are then translated to the designated
target ML-like language, i.e. OCaml or Haskell. During this translation process,
a type-checking phase approximates Coq types into ML ones, inserting unsafe
type casts where ML type errors are identified [14]. For example, these unsafe
type casts are currently inserted when extracting Gallina records with path-
dependent types. However, as mentioned in Sect. 3.2 of [15], this specific case
can be improved by exploring advanced typing aspects of the target languages.
Indeed, if Scala were a target language for Coq’s extraction mechanism, a type-
safe extraction of such examples could be done by an appropriate use of Scala’s
path-dependent types.

It is precisely this Scala code extraction feature for Coq that constitutes
the primary aim of the Scallina project. Given the advances in both the Scala
programming language and the Coq proof assistant, such a feature would prove
both interesting and beneficial for both communities. A typical application fea-
tures a user implementing a functional program in Coq, proving this program’s
correctness with regards to its specification and making use of Scallina to syn-
thesize Scala components which can then be integrated into larger Scala or Java
applications. In fact, since Scala is also interoperable with Java, such a feature
would open the door for a significantly larger community of programmers to
benefit from the Coq proof assistant.

4 Scheme will not be considered in this paper since it is not statically typed.
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However, Scala’s type system, which is based on DOT, significantly differs
from that of OCaml and Haskell. For instance, Scala sacrifices Hindley-Milner
type inference for a richer type system with remarkable support for subtyping
and path-dependent types [1]. So, on the one hand, Scala’s type system requires
the generation of significantly more type information but, on the other hand,
can type-check some constructs that are not typable in OCaml and Haskell.

Furthermore, Coq’s native extraction mechanism aims to produce readable
code; keeping in mind that confidence in programs also comes via the read-
ability of their sources, as demonstrated by the Open Source community. For
this purpose, Coq’s extraction sticks, as much as possible, to a straightforward
translation and emphasizes the production of readable interfaces with the goal
of facilitating the integration of the extracted code into larger developments [13].
Scallina also aims to produce readable code; adopting a straightforward transla-
tion strategy which favors the synthesis of idiomatic Scala code that is traceable
back to the source Gallina code representing its formal specification. This trace-
ability of the generated Scala code clarifies and facilitates potential adaptations
of the corresponding formal specification to the needs of the larger Scala or Java
application.

In response to the challenges associated with a Coq-based extraction of read-
able and traceable Scala code, the Scallina project defines a grammar delimiting
a common subset of Gallina and Scala; facilitating the reasoning about the frag-
ment of Gallina that is translatable to readable Scala code using a relatively
straightforward translation strategy. This subset is based on an ML-like frag-
ment that includes both inductive types and a polymorphism similar to the
one found in Hindley-Milner type systems. This fragment was then augmented
by introducing the support of Gallina records, which correspond to first-class
modules. In this extended fragment, the support of Gallina dependent types is
limited to path-dependent types; enabling types to depend on variables, but not
on general terms [1].

This paper exposes the Scallina grammar in an incremental fashion. Through
the same notation system as Coq’s reference manual [16], it elaborates each part
of the delimited Gallina subset by providing the corresponding grammar produc-
tions followed by pertinent examples of Gallina to Scala translations; illustrating
the validity of the underlying translation strategy. This exposition of the Scall-
ina grammar is organized into two main parts: the syntax of terms described in
Sect. 2 and the syntax of sentences described in Sect. 3. The Scala code samples
exhibited in this paper were all synthesized by an experimental implementation
of the Scallina translator which is available online5. This prototype facilitates
the incremental and iterative development of the Scallina grammar by providing
a practical way to test different experimental translation strategies. It also shows
how our contributions can be successfully transferred into a working tool.

5 https://github.com/JBakouny/Scallina/tree/v0.5.0.

https://github.com/JBakouny/Scallina/tree/v0.5.0
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2 The Syntax of Terms

Since Gallina is based on the calculus of inductive constructions, it does not
exhibit any syntactic distinction between terms and types6 [16]; implying that
the syntax of terms in its grammar is used to represent both value and type
terms. This contrasts with conventional typed programming languages where a
clear distinction is drawn between type terms and value terms. When it comes
to its translation to Scala, a given Gallina term should therefore be processed
differently depending on whether or not it is a type. For example, a term appli-
cation “x y” should be translated as a Scala function application“x(y)” if it
represents a value or as a Scala generic type application “x[y]” if it represents
a type. This difference is reflected in the Scallina grammar which, in contrast
with the unrestricted Gallina grammar, distinguishes the syntax of value terms,
portrayed in Sect. 2.1, from the syntax of type terms, portrayed in Sect. 2.2.

2.1 Value Terms

The syntax of value terms is given below. Each of the depicted productions is
detailed thereafter; demonstrating the expressiveness of the supported subset
along with its straightforward Scala translation strategy.

term ::= anonymousFunction
| letInDefs
| ifExpression
| termApplication
| infixOperation
| patternMatch
| recordProjection
| qualid
| num
| tuple
| parens

Qualids. Qualids, or qualified identifiers, are the simplest form of values. Most
qualids are therefore translated using the identity function.

qualid ::= ident
| qualid . ident

Shallow Embedding. The few qualids that are not translated using the identity
function pertain to Coq library entities which are identified with the correspond-
ing Scala standard library equivalents. For example, a reference to the Gallina
list monad is translated to its equivalent Scala standard library List class.
This is known as shallow embedding; a concept heavily used by Isabelle’s code

6 Except that types cannot start by an abstraction or a constructor.
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generation mechanism [6] and Leon’s Isabelle extension [9]. Although shallow
embedding does carry the risk of semantic mismatches, it has the advantage of
improving the reusability of the generated Scala code; facilitating its integration
into larger applications. Indeed, a synthesized Scala component which reuses
Scala’s standard library List class can integrate better with conventional appli-
cations when compared with a Scala component that uses a Coq-generated Scala
list class.

As of this writing, Coq’s extraction mechanism does not use shallow embed-
ding by default but provides Extract commands enabling a user-defined cus-
tomization of Coq’s extraction that allows the mapping of Gallina constants
and inductives to target language equivalents. However, this implies that the
user is trusted with the relatively error-prone task of correctly identifying Coq
library entities with target language equivalents. Instead, Scallina proposes shal-
low embedding by default similarly to what is done by Isabelle’s code generation
mechanism; improving both the reusability and the correctness of the synthe-
sized Scala code. This feature could easily be integrated in future versions of
Coq’s extraction mechanism as an additional flag representing a sensible default
which can be set or unset depending on the user’s preferences. In such a case,
the user would not have to configure the shallow embedding of Gallina entities
manually but would just set a flag in Coq’s extraction mechanism triggering a
pre-configured shallow embedding for each target language. When it comes to the
Scala language, this pre-configured shallow embedding is already implemented
into the Scallina prototype.

Practically, to cope with the name differences between Gallina and Scala, the
Scallina prototype provides a set of predefined name aliases constituting a cen-
tral part of the Scallina standard library; a dependency which should be included
when compiling the synthesized Scala code. For example, when mapping Gallina
list functions to Scala list methods, Scallina provides Scala list functions match-
ing the names of the corresponding Coq functions while delegating their work
to the appropriate Scala standard library method. An example of such a Scala
function is given in Listing 1, it portrays the list append function. In addition
to conserving the traceability of the output code, this approach conforms with
Coq’s Extract commands which generate such aliases. Future versions of Scall-
ina are, in fact, expected to be integrated into Coq’s extraction mechanism and
should, therefore, provide support for Coq’s Extract commands enabling the
user to modify these pre-configured defaults.

Listing 1. The app Scallina standard library function

def app[A](l1: List[A], l2: List[A]): List[A] = l1 ++ l2
def app[A] = (l1: List[A]) => (l2: List[A]) => l1 ++ l2

Note that, in Listing 1, both a curried and an uncurried version of the func-
tion are provided, this allows the support of a mixture of both curried and
uncurried Scala code. Note also that the curried append function is written as
an anonymous function to allow the Scala compiler to distinguish it from its
uncurried equivalant. Scallina’s curried translation is described in a subsequent
section.
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Numbers. Gallina’s mathematical integers, denoted Z, are mapped to Scala’s
BigInt which implements integers that are not subject to overflows. This con-
forms with Isabelle’s code generation mechanism that also maps integer types
to Scala’s BigInt. Furthermore, Leon also recommends the use of BigInt to
represent mathematical integers in its supported Hindley-Milner based fragment
of the Scala language, dubbed as “Pure Scala”7.

Natural Numbers. When natural numbers are used in Isabelle’s source code, they
are mapped, by default, to a generated Scala nat datatype which conforms with
Isabelle’s internal Peano representation of natural numbers. Section 4 of [9] also
mentions a Pure Scala implementation of natural numbers which is mapped to
Isabelle’s nat type. Similarly, Scallina maps Coq’s Peano natural numbers to a
Scala Nat datatype included in Scallina’s standard library. A large portion of this
Nat implementation, available online8, was itself generated, using the Scallina
prototype, from Coq’s proven-correct Coq.Init.Nat library. This is congruent
with Coq’s native extraction mechanism which generates a nat datatype when
a program referencing Coq’s natural numbers is recursively extracted to OCaml
or Haskell.

To facilitate the integration of the extracted code into larger OCaml devel-
opments, some Coq users might use the Extract Inductive command for the
purpose of mapping Coq’s nat type to OCaml’s int type. This approach also
improves the readability of the generated code since numbers would no longer be
represented by repetitive calls to nat’s successor constructor. So, for example,
the output OCaml code will no longer use S (S (S (S (S O)))) to represent 5.
On the other hand, as explained in Sect. 23.2.4 of [16], the resulting OCaml code
could eventually suffer from integer overflows if a given Coq nat value exceeds
OCaml’s max_int. When it comes to Scala, the integer overflow issue can easily
be resolved by mapping Coq’s nat to Scala’s BigInt instead of Scala’s Int type.
However, this mapping of natural numbers to integers does not take into account
the semantic difference between these two types: natural numbers exclude neg-
ative values while integers include them. How can one conserve the semantics
of the source Gallina program in the generated Scala code while preserving its
readability and reusability in larger Scala or Java developments? A solution pro-
posed by Scallina consists in providing implicit conversions between Nat and
BigInt; making good use of Scala’s implicits in Scallina’s standard library. This
solutions produces an output Scala code that conserves the Nat type but avoids
the unreadable representation of numbers as a succession of constructors. It also
caters for a better interoperability with regular Scala or Java code since all nat-
ural numbers can implicitly be converted to BigInt values and back-again9.

7 More information about Leon’s Pure Scala is available in paragraph 3 of [3] and in
the documentation section of http://leon.epfl.ch.

8 https://github.com/JBakouny/Scallina/blob/master/src/main/resources/scala/of/
coq/lang/PeanoNat.scala.

9 Note that BigInt values can, in turn, easily be converted to Java BigInteger
values.

http://leon.epfl.ch
https://github.com/JBakouny/Scallina/blob/master/src/main/resources/scala/of/coq/lang/PeanoNat.scala
https://github.com/JBakouny/Scallina/blob/master/src/main/resources/scala/of/coq/lang/PeanoNat.scala
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In the latter case, a runtime check is required to signal an error if the regular
code ever attempts to implicitly convert negative values to natural numbers.

Value Binders Value binders are not mentioned by the previously exhibited
grammar productions but they are indirectly referenced by them. As shown
below, the Scallina grammar uses the keyword binder to reference value binders
which are distinct from the type binders detailed in Sect. 2.2. This distinction
highlights the fact that value binders are translated to Scala value parame-
ters and type binders are translated to Scala type parameters, also known as
generics.

binders :: = binder . . . binder

binder :: = ( ident . . . ident : type )

In common Scala developments, value parameters are, for the most part,
explicitly specified by the user while generic type parameters are usually inferred
when applying a given function or method. This is reflected in Scallina’s grammar
where it is recommended to specify value binders as explicit and type binders as
implicit; paving the way for the establishment of coding conventions for Gallina
developers that intend to extract traceable Scala code. In this way, a simple
value binder (x : Z) with Gallina’s mathematical integer is translated to an
equivalent Scala parameter (x: BigInt) with the BigInt type.

Anonymous Functions. In contrast with Gallina’s standard grammar, the
binders supported by Scallina’s anonymous function syntax are restricted to
value binders. This reflects the limitations of Hindley-Milner based languages,
such as OCaml and Haskell, where universal quantifiers must be scoped over
the entire type. Section 3.1.5 of [14] gives the classical distr_pair example por-
traying this limitation: as shown by Listings 2 and 3, the distr_pair function
cannot be translated to typable OCaml code. Similarly, Scala anonymous func-
tions support only value parameters [19]; as reflected by the below grammar
productions.

anonymousFunction :: = fun anonFunBinders => term

anonFunBinders :: = anonFunBinder . . . anonFunBinder

anonFunBinder :: = binder | ident

Listing 2. The distrPair example

Definition distrPair : (∀ X:Set, X → X) → nat*bool :=
fun f => (f nat O, f bool true).
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Listing 3. The OCaml extraction of the distrPair example

let distrPair f =
Pair ((Obj.magic f __ O), (Obj.magic f __ True))

Currying. Listings 4 and 6 show two Gallina anonymous functions that are trans-
lated to the same Scala anonymous function exhibited in Listing 5. This example
portrays the generation of curried Scala code recommended by the Scallina trans-
lation strategy; conforming with functional programming languages, like OCaml
and Gallina, which solely rely on unary functions. In fact, the Gallina function
in Listing 6 is mere syntactic sugar for the one in Listing 4.

Listing 4. An addition anonymous function

fun (x : Z) => fun (y : Z) => x + y

Listing 5. The Scala translation of the addition anonymous function

(x: BigInt) => (y: BigInt) => x + y

Listing 6. An alternate notation for the addition anonymous function

fun (x y : Z) => x + y

This default production of curried Scala code facilitates the traceable transla-
tion of Gallina programs including higher-order functions or partial applications
such as the one in Listing 7. The curried Scala translation portrayed in List-
ing 8 demonstrates the traceability and readability of the code compared to the
tupled alternatives where a code similar to (aa: BigInt)=> (ba: BigInt)=>

plus(aa, ba) would be used to pass the plus function to the higherOrder

function.

Listing 7. A Gallina program including higher-order functions and partial applications

Definition plus (a b : nat) : nat := a + b.
Definition higherOrder (f: nat → nat → nat) (a b : nat) : nat := f a b.
Definition plusAgain : nat → nat → nat := higherOrder plus.

Listing 8. The curried translation of the higher-order function and partial application

def plus(a: Nat)(b: Nat): Nat = a + b
def higherOrder(f: Nat => Nat => Nat)(a: Nat)(b: Nat): Nat = f(a)(b)
def plusAgain: Nat => Nat => Nat = higherOrder(plus)

Technical Note. Nevertheless, since most Scala developers are used to writing
tupled code as highlighted by Isabelle’s code generation mechanism [6], the Scal-
lina prototype does provide an uncurried translation strategy which can be acti-
vated through the “--uncurrify” command line option. However, the current
implementation of this uncurried strategy is quite experimental and its use is
not recommended.
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Let-In Definitions and Pattern Matches. In congruence with Isabelle’s
code generation mechanism, let-in definitions are translated to Scala’s val

declarations.

letInDefs :: = let ident [binders] [: type ] := term in term
| let ( [name , . . . , name] ) := term in term
| let ’ pattern := term in term

As shown by Listings 9 and 10, let-in definitions pertaining to the same
expression are translated to equivalent val declarations in the same block.

Listing 9. A function calculating the square of the distance between 2 points

Require Import ZArith.
Open Scope Z_scope.

Definition squareDistance (a b: Z * Z) : Z :=
let (x1, y1) := a in
let ’ pair x2 y2 := b in
let square (u: Z) := u * u in
let x := x2 - x1 in
let y := y2 - y1 in
(square x) + (square y).

Listing 10. The translation of the function calculating the square of the distance

def squareDistance(a: (BigInt, BigInt))(b: (BigInt, BigInt)):
BigInt = {

val (x1, y1) = a
val Tuple2(x2, y2) = b
val square = (u: BigInt) => u * u
val x = x2 - x1
val y = y2 - y1
square(x) + square(y)

}

Note that “let ’ pattern” are translated to Scala val declarations which
also support patterns. As shown by the translation of pair to Tuple2, these
patterns are subject to the previously described shallow embedding. The syn-
tax of patterns, along with that of pattern matches, is given below. A simple
translation of a pattern match is portrayed by Listings 11 and 12.
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patternMatch :: = match term , . . . , term with
[[|] equation | . . . | equation] end

equation :: = multPattern | . . . | multPattern => term
multPattern :: = pattern , . . . , pattern

pattern ::= qualid pattern . . . pattern
| qualid
| _
| num
| ( orPattern , . . . , orPattern )

orPattern ::= pattern | . . . | pattern

name ::= ident
| _

Other Terms. Although Coq’s native extraction mechanism translates if
expressions to pattern matches, Scallina proposes a more traceable translation
strategy, similar to that of Isabelle, which produces Scala if expressions.

ifExpression :: = if term then term else term

As shown by Listings 7 and 8, term applications are translated to Scala cur-
ried function applications while the + infix operator remains unchanged thanks
to Scallina’s overloading of this operator for the Nat Scala class.

termApplication :: = term . . . term

infixOperation :: = term infixOp term
infixOp :: = + | - | * | / | > | < | = | <=? | <= | >= | <? | =? | ::

recordProjection ::= term .( qualid )

Record projections are translated to Scala field selections, as explained by
Sect. 3.4. Finally, below is the syntax of parenthesis and tuples; both of which
are translated to Scala using the identity function.

tuple :: = ( term , . . . , term )
parens :: = ( term )

2.2 Type Terms

The syntax of type terms is giving below. Each of the depicted productions is
detailed thereafter; demonstrating the Scallina grammar’s clear separation of
types from terms; in accordance with conventional programming languages.
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type ::= typeApplication
| arrowType
| pathDependentType
| qualid
| tupleType

Type Applications. As previously mentioned, Gallina type applications, like
list nat, are translated to Scala generic type applications such as List[Nat].

typeApplication ::= type . . . type
| @ qualid type . . . type

Arrow Types. As explained in Sect. 2.1, Scallina prohibits the use of anony-
mous function type binders; actively restricting product types to non-dependent
product types, or arrow types. This complies with Coq’s type extraction function
where the “prod2” rule in Sect. 3.3.5 of [14] transforms potentially dependent
products types to arrow types; adequately replacing “∀ ” by “→ ”.

arrowType ::= type → type

Path-Dependent Types. As mentioned in Sect. 1, Gallina supports fully
dependent types while Scala supports a limited form of dependent types known
as path-dependent types. This practically means that Gallina allows types to
depend on general terms while Scala only supports types that depend on vari-
ables referencing an object containing a type field. Although Scala’s support of
dependent types is considerably limited compared to that of Gallina, it neverthe-
less enables a considerable improvement of Coq’s Record extraction described in
Sect. 3.4.

pathDependentType ::= ident .( ident )

Tuple Types. As portrayed by Listings 9 and 10, Gallina tuple types, like
Z * Z, are translated to Scala tuple types such as (BigInt, BigInt).

tupleType ::= type * . . . * type

Type Binders. The Scallina grammar uses the keyword typeBinder to refer-
ence type binders which are clearly distinguishable from the previously detailed
value binders. As explained in Sect. 2.1, and shown by Listings 11 and 12, these
implicit Gallina type binders are translated to Scala’s generics.
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typeBinders ::= typeBinder âŁ¦ typeBinder

typeBinder ::= { ident âŁ¦ ident : Set }
| { ident }

3 The Syntax of Sentences

sentence ::= definition
| typeDef
| record
| recordInstance
| inductive
| fixpoint
| function

As explained in Sect. 1.3 of [16], the Vernacular is Gallina’s language of com-
mands. It is constituted of sentences beginning with a capital letter and ending
with a dot. A significant part of these sentences are commands that extend
the environment by defining new types and declaring new constructs. Scallina
proposes an optimized Scala translation of a subset of these sentences.

3.1 Function Definitions

Since Gallina’s Definition, Fixpoint and Function are all used to repre-
sent Coq function definitions, their translation produces Scala def declarations.
While Scala supports unrestricted recursion, Coq imposes strict requirements on
the termination of recursive functions:

• Fixpoint enables a primitive form of recursion on a structurally decreasing
inductive argument; as described in Sect. 1.3.4 of [16]

• The Function plugin [2] is a generalization of Fixpoint that supports
advanced recursive definitions on non-structurally decreasing arguments;
requiring a proof of termination, as mentioned in Sect. 2.3 of [16].

• Definition can be used to define non-recursive functions.

definition :: = Definition ident [typeBinders] [binders] : type := term .

fixpoint :: = Fixpoint fixBody .
fixBody :: = ident [typeBinders] binders [fixAnnotation] : type := term
fixAnnotation :: = { struct ident }

function :: = Function functionBody . [proof]
functionBody :: = ident [typeBinders] binders funcAnnotation : type := term
funcAnnotation :: = fixAnnotation | { measure ( anonymousFunction ) ident }

As explained in Sect. 2.1 and exhibited by Listings 11 and 12, Scallina pro-
duces curried Scala code from Gallina function definitions.
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Listing 11. A tail recursive Gallina definition of the length function

Function lenTailrec {A} (xs : list A) (n : nat)
{ measure (fun xs => length(xs)) xs } : nat :=
match xs with
| nil => n
| _ :: ys => lenTailrec ys (1 + n)
end.
Proof.

intros.
simpl.
omega.

Qed.

Listing 12. The Scala translation of the tail recursive length function

def lenTailrec[A](xs: List[A])(n: Nat): Nat =
xs match {

case Nil => n
case _ :: ys => lenTailrec(ys)(1 + n)

}

Perspective. The current version of the Scallina prototype requires Gallina func-
tion prototypes to be explicitly typed by specifying the parameter and return
types; a limitation which should be alleviated once Scallina is integrated into
Coq’s native extraction mechanism. Notably, Coq’s type inference algorithms,
such as the M’ algorithm described in Sect. 3.2.3 of [14], could potentially be
adapted to Scala with the notable benefit of supporting the extraction of all
Gallina constructs through the insertion of unsafe type casts in constructs that
are not typable in Scala. In this regards, the Scallina grammar could potentially
guide this implementation by providing insight on the Gallina subset that is
translatable to Scala using a relatively straightforward translation strategy.

3.2 Type Definition.

In accordance with the “def1” in Sect. 3.3.5 of [14], Gallina type defi-
nitions, like“Definition total_map (A:Type) : Type := nat → A.”, are
translated to Scala type definitions such as “type total_map[A] =Nat =>A”.

typeDef :: = Definition ident [typeDefBinders] : Set := type .
typeDefBinders = typeDefBinder . . . typeDefBinder
typeDefBinder :: = typeBinder

| ( ident . . . ident : Set )
| ident

3.3 Inductive Definition

Coq supports the implementation of Algebraic Data Types (ADT) using Gal-
lina’s inductive definitions.
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inductive :: = Inductive indBody .

indBody :: = ident [typeDefBinders] [: Type] : =
[[|] indBodyItem | . . . | indBodyItem]

indBodyItem :: = ident [typeBinders] [binders]

Listing 13. A Gallina binary tree ADT

Inductive Tree A := Leaf | Node (v: A) (l r: Tree A).

Listing 14. The translation of the binary tree ADT

sealed abstract class Tree[+A]
case object Leaf extends Tree[Nothing]
case class Node[A](v: A, l: Tree[A], r: Tree[A]) extends Tree[A]
object Node {

def apply[A] =
(v: A) => (l: Tree[A]) => (r: Tree[A]) => new Node(v, l, r)

}

As exhibited by Listings 13 and 14, Scallina emulates ADTs by Scala case
classes. This conforms with Scala best practices [21] and is already adopted by
both Isabelle/HOL and Leon [9]. However, note that Scallina optimizes the trans-
lation of ADTs by generating a case object instead of a case class where
appropriate; as demonstrated by Leaf. Note also that this optimization makes
good use of Scala’s variance annotations and Nothing bottom type in accordance
with the best practices implemented by Scala standard library data structures
such as List[+A] and Option[+A]. Last but not least, the curried construction
of case classes is enabled by the generation of a helper object with a curried
apply method for every case class with multiple constructor arguments, such
as Node.

3.4 Record Definition and Instantiation

Scallina proposes the translation of Gallina records to Scala functional object-
oriented code with support for path-dependent types.

record ::= recordKeyword ident [typeBinders] [: Type] :=
[ident] { [field ; . . . ; field] } .

recordKeyword ::= Record | Structure | Inductive

field ::= typeField | valueField

typeField ::= ident : Type
| ident : Type := type

valueField ::= ident [binders] : type
| ident [binders] : type := term
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Since the objective of the Scallina project is not to redefine the Coq extrac-
tion process but to extend it with readable Scala code generation, it assumes
that a prior removal of logical parts and fully dependent types was already per-
formed by Coq’s theoretical extraction function and subsequent type-checking
phase; catering for a future integration of the Scallina translation strategy into
Coq’s native extraction mechanism. In this context, Scallina proposes some mod-
ification to the latter with regards to the typing of records with path-dependent
types. These modifications were explicitly formulated as possible future works
through the aMonoid example in [15]. Listing 15 shows a slight modification
of the aMonoid example which essentially removes its logical parts. While, as
explained in [15], the current extraction of this example produces unsafe type
casts in both OCaml and Haskell; Scallina manages to translate this example to
the well-typed Scala code exhibited in Listing 16.

Listing 15. The aMonoid Gallina record with its logical parts removed

Record aMonoid : Type := newMonoid {
dom : Type;
zero : dom;
op : dom → dom → dom

}.
Definition natMonoid := newMonoid nat 0 (fun (a: nat) (b: nat) => a + b).

Listing 16. The proposed Scala extraction of the aMonoid Gallina record

trait aMonoid {
type dom
def zero: dom
def op: dom => dom => dom

}
def newMonoid[dom](zero: dom)(op: dom => dom => dom): aMonoid = {

type aMonoid_dom = dom
def aMonoid_zero = zero
def aMonoid_op = op
new aMonoid {

type dom = aMonoid_dom
def zero: dom = aMonoid_zero
def op: dom => dom => dom = aMonoid_op

}
}
def natMonoid = newMonoid[Nat](0)((a: Nat) => (b: Nat) => a + b)

In accordance with their Scala representation given in [1], record definitions
are translated to Scala traits and record instances are translated to Scala objects.
Alternatively to using the newMonoid record constructor shown in Listings 15
and 16, Gallina record instances can be created using the below named fields
syntax.
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recordInstance ::=
Definition ident [typeBinders] [binders] : type :=
{| [fieldImpl ; . . . ; fieldImpl] |} .

fieldImpl ::= ident [binders] := term

In this case, as portrayed by Listings 17 and 18, record instances are trans-
lated to Scala conventional object definitions provided the recordInstance def-
inition omits typeBinders and binders.

Listing 17. The instantiation of a record without any binders

Definition intMonoid : aMonoid := {|
dom := Z;
zero := 0;
op := fun (a: Z) (b: Z) => a + b

|}.

Listing 18. The translation of the instantiation of a record without any binders

object intMonoid extends aMonoid {
type dom = BigInt
def zero: dom = 0
def op: dom => dom => dom = (a: BigInt) => (b: BigInt) => a+b
}

As portrayed by Listings 19 and 20, if typeBinders or binders are speci-
fied by the recordInstance definition, record instances are translated to Scala
anonymous class instances; in congruence with the representation of record
instances in [1].

Listing 19. The instantiation of a record with binders

Definition genMonoid {A} (z: A) (f: A → A → A) : aMonoid := {|
dom := A;
zero := z;
op a b := f a b

|}.

Listing 20. The translation of the instantiation of a record with binders

def genMonoid[A](z: A)(f: A => A => A): aMonoid = new aMonoid
{

type dom = A
def zero: dom = z
def op: dom => dom => dom = (a: dom) => (b: dom) => f(a)(b)

}



106 Y. El Bakouny and D. Mezher

A complete and well-commented example of a significant Gallina record
translation to conventional Scala object definitions is available online10. This
example also contains a proof showing the equivalent behavior, with regards to
a given program, of two Scala objects implementing the same trait.

4 Conclusion and Perspectives

In conclusion, the Scallina project enables the translation of a significant subset
of Gallina to readable and traceable Scala code. As exhibited by this paper,
the Scallina grammar, along with its proposed translation strategy, facilitates
the reasoning about the fragment of Gallina that is translatable to conventional
programming languages such as Scala. This strategy embodies several optimiza-
tions such as shallow embedding, implicit Nat conversions, an improved record
translation and the generation of curried Scala code while leveraging the lan-
guage’s variance annotations and Nothing bottom type during the translation
ADTs. The Scallina prototype shows how these contributions can be successfully
transferred into a working tool. It also allows the practical Coq-based synthe-
sis of Scala components that can be integrated into larger applications; open-
ing the door for Scala and Java programmers to benefit from the Coq proof
assistant.

Future versions of Scallina11 are expected to be integrated into Coq’s extrac-
tion mechanism by re-using the expertise acquired through the development of
the current Scallina prototype. In this context, an experimental patch for the
Coq extraction mechanism12 was implemented in 2012 but has since become
incompatible with the latest version of Coq’s source code. The implementation
of Scallina’s translation strategy into Coq’s extraction mechanism could poten-
tially benefit from this existing patch; updating it with regards to the current
state of13 the source code. During this process, the external implementation of
the Scallina prototype, which relies on Gallina’s stable syntax independently
from Coq’s source code, could be used to guide the aforementioned integration;
providing samples of generated Scala code as needed.

Acknowledgement. The authors would like to thank the National Council for Sci-
entific Research in Lebanon (CNRS-L) for their funding, as well as Murex S.A.S for
providing financial support.

10 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
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12 http://proofcafe.org/wiki/en/Coq2Scala.
13 https://www.murex.com/.
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4. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

5. Guallart, N.: An overview of type theories. Axiomathes 25(1), 61–77 (2015).
https://doi.org/10.1007/s10516-014-9260-9

6. Haftmann, F., Bulwahn, L.: Code generation from Isabelle/HOL theories, October
2017. https://isabelle.in.tum.de/dist/Isabelle2017/doc/codegen.pdf

7. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

8. Hindley, R.: The principle type-scheme of an object in combinatory logic. Trans.
Am. Math. Soc. 146, 29–60 (1969)

9. Hupel, L., Kuncak, V.: Translating Scala programs to Isabelle/HOL. In: Olivetti,
N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 568–577. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 38

10. Klein, G., et al.: sel4: formal verification of an OS kernel. In: Matthews, J.N.,
Anderson, T.E. (eds.) Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, 11–14 October
2009, pp. 207–220. ACM (2009). https://doi.org/10.1145/1629575.1629596

11. Kuncak, V.: Developing verified software using Leon. In: Havelund, K., Holzmann,
G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 12–15. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 2

12. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, South Carolina, USA, 11–13 January 2006, pp.
42–54. ACM (2006). https://doi.org/10.1145/1111037.1111042

13. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1 12

14. Letouzey, P.: Programmation fonctionnelle certifiée : L’extraction de programmes
dans l’assistant Coq. (Certified functional programming : Program extraction
within Coq proof assistant). Ph.D. thesis, University of Paris-Sud, Orsay, France
(2004). https://tel.archives-ouvertes.fr/tel-00150912

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/11737414_9
https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/s10516-014-9260-9
https://isabelle.in.tum.de/dist/Isabelle2017/doc/codegen.pdf
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-319-40229-1_38
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-319-17524-9_2
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://tel.archives-ouvertes.fr/tel-00150912


108 Y. El Bakouny and D. Mezher

15. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

16. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2004). http://coq.inria.fr, version 8.0

17. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

18. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

19. Odersky, M.: The scala language specification. Technical report, Programming
Methods Laboratory, EPFL, Lausanne, Switzerland, June 2014

20. Odersky, M., Rompf, T.: Unifying functional and object-oriented programming
with Scala. Commun. ACM 57(4), 76–86 (2014). https://doi.org/10.1145/2591013

21. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive
Step-by-Step Guide, 2nd edn. Artima Incorporation, USA (2011)

https://doi.org/10.1007/978-3-540-69407-6_39
http://coq.inria.fr
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/2591013


VDM at Large: Modelling
the EMV R© 2nd Generation Kernel

Leo Freitas(B)

School of Computing, Newcastle University, Newcastle upon Tyne, UK
leo.freitas@newcastle.ac.uk

Abstract. The EMVR© (EMVR© is a registered trademark or trademark
of EMVCo, LLC in the US and other countries.) organisation specify
payment protocols to facilitate worldwide interoperability of secure elec-
tronic payments. This paper is about the application and scalability
of formal methods to a current and complex industry application. We
describe the use of VDM to model EMVR© 2nd Generation Kernel (A
preliminary version of this paper was presented at the 16th Overture
Workshop, Oxford July 2018, where papers became a Newcastle Tech-
nical Report.). VDM is useful for both formal specification, as well as
simulation, test coverage, and proof obligation generation for functional
correctness.

1 Introduction

EMVCo is a technical body that publishes and manages the EMV R© specifica-
tions to facilitate worldwide interoperability and acceptance of secure payment
transactions. Their protocols have been around since the late nineties and are
used by major payment services providers (i.e. American Express, Discover,
JCB, MasterCard, UnionPay, and Visa). As of 2018, there are over 7 billion
EMV R© payment cards, up from 4.8 billion in 2016, representing 55% of all pay-
ment cards issued globally. Their cards cover 64% of all worldwide transactions,
and 99% of transactions in Europe. They are responsible for major payment tech-
nologies, such as contact (Chip & Pin), contactless (Wave & Pay), 3D-Secure
online payment validation, and so on. In practice, relevant attacks on EMV1
were discovered [2,4–6], with financial fraud related to payment systems rising
in the last few years both in volume and type: for example, in the UK, there
has been a 80% increase in value between 2011–16, when the fraud losses were
£M618 [10].

In this paper we describe our experience in using VDMSL as a tool for under-
standing a complex ( 1900 pages) requirements specification of the upcoming
EMV R© 2nd Generation Acceptance System Specifications (EMV2) [8]. They
include the familiar Chip & Pin and contactless protocols, as well as a number
of new operational modes and security verification types (including biometric).
We assume the reader is familiar with VDM [15]. Unfortunately, due to NDA
restrictions, detailed information about the model, the choice of VDM, what
the model exercise achieved, and how its application might have an impact in
c© Springer Nature Switzerland AG 2018
T. Massoni and M. R. Mousavi (Eds.): SBMF 2018, LNCS 11254, pp. 109–125, 2018.
https://doi.org/10.1007/978-3-030-03044-5_8
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industry cannot be given. We hope to talk about this in future publications
once EMV2 becomes public. Nevertheless, the underlying methodology we are
following has recently been published [13].

We use VDMSL to formally specify the EMV 2nd Generation kernel to enable
specific protocol runs. The results have been productive and substantial. To
date, we have modelled about 80% of the EMV2 kernel, and hope to complete it
before public release. It comprises 135 VDM-SL modules and about 50 KLOC
in VDMSL, some (20%) of which is automatically generated from an XSD/XML
data dictionary, which describe the data structures used by the kernel APIs.

Elegance, which academics have in high-regard and can be useful for clarity
and maintainability, often needs to be compromised in order to ensure stake-
holders notice/accept the formal results: they ought to see the formal model
built as something they recognise, as their artefact, rather than a nicer (more
elegant) abstraction. Moreover, the complexities involved are quite substantial.
The system needs to run seamlessly for long periods of time in different countries,
currencies, financial services, policies and banking institutions; quite a task.

The work unravelled many technical issues in VDM, the identification of
VDM tool bugs, as well as the limits of Overture as a tool. We hope these issues
are interesting and that the VDM community finds tool suggestions useful.

2 EMV Protocols and EMV2

The most common payment protocols are Chip & Pin and contactless, but a
number of variations is technically possible. Analysis of EMV protocols is non-
trivial due to the complexity of its requirements [7,9]. They have to incorporate
competing (and conflicting) interests from multiple user needs, banks and finan-
cial regulators worldwide.

A key differentiating feature of EMV2 is the fact its many (14) modules are
completely distributed and may run concurrently (see Fig. 1), as opposed to the
monolithic sequential world of EMV1.

EMV protocols have many similarities. They constitute a series of steps
encompassing a number of players, stages and features. The most common play-
ers are the so-called “point of interaction” (POI) terminals used by merchants
(e.g. ATM machines, supermarket fuel pumps, card payment machines, etc.) and
a card-profile used by customers (e.g. plastic cards, electronic tokens like smart-
phones/watches, etc.), as well as the issuer (e.g. banks and payment clearing
systems). The main stages are:

1. Application Selection establishes the functionality of interest (e.g. credit
card payment, or cash withdrawal from a specific account, etc.) with any
additional extras (e.g. loyalty points, air miles, cash back, etc.), as well as the
kind of transaction to engage with (e.g. acceptable challenge mechanisms,
risk levels, information required by all parties, etc.);

2. Transaction Processing performs the necessary checks around agreed chal-
lenge mechanisms (e.g. pin-number, signature, biometric readers, etc.) and
information required to make a decision about whether payment is to be
approved, which may involve the issuer’s approval;
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3. Other (kernel administrative) stages exist for transaction restarting, res-
cuing, configuring, etc.

The core functionality comprises most kernel modules managing various protocol
stages and features. The acceptance system comprises the POI and card com-
munication layers. The former includes terminal management and card holder
verification entry devices (e.g. pin pad, biometric scanners, etc.); whereas the
latter implements a communication abstraction layer with the card-profile. This
enables varying communication protocols to be instantiated outside the kernels
core functionality.

Fig. 1. EMV2 modules architecture
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3 Socio-technical Challenges in Modelling EMV2

We have prior experience with formal verification of protocols in Mondex [14],
and in discovering attacks in EMV1 [5]. We are developing a methodology for
the modelling and analysis of payment protocols. It involves a number of speci-
fication languages and tools used to capture different aspects of the process (see
Fig. 2). Crucially, these languages serve to shield payment-system engineers from
formalism details, as well as to increase levels of automation as much as possible.

Fig. 2. EMV2 modelling methodology (Color figure online)

Green arrows indicate informal (if rigorous) steps where we encode/capture
requirements in a semi-formal notation akin to UML sequence diagrams. Blue
arrows indicate formal steps through formal simulators (e.g. VDM Over-
ture/VDMJ), new domain specific language semantics (e.g. PEAL) and com-
pilers, and proof tools (e.g. Isabelle/HOL). For instance, PEAL is part of a
current Newcastle PhD, and the work with AnB, an IBM protocol description
language, is being developed with collaborators [18,19]. This is ongoing work
and more details are beyond the scope of this paper.

Given the size of EMV2 (i.e. 17 books in 1,900 pages of requirements), we
followed a set of principles advocated by Praxis: clear separation of concerns,
consistent and well-defined “modelling hygiene” (e.g. naming conventions, inden-
tation/documentation practices, dependency management, etc.).

4 VDM and Its Tools

We used Z (CZT and Z/Eves, see czt.sourceforge.net) to analyse EMV1 [12] and
uncover some relevant attacks [5]. This approach worked well because we had
a combination of empirical knowledge of EMV1 through understanding of its
specification in implemented simulators (thanks to our collaborator Dr. Martin

http://czt.sourceforge.net
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Emms). This meant our abstractions for how to represent the relevant parts of
EMV1 were suitable to the practical realities of its protocols. Proof (or rather
their failures) was used as the mechanism to identify and prevent theoretical
threats, which we next tested for in practice with simulators using mobile-devices
to perform attacks. This enabled us to practically demonstrate the severity, as
well as the ease/difficulty, in enacting such attacks.

For EMV2, on the other hand, we believed a similar approach might not
get us far. That is mostly because EMV2’s considerably higher complexity and
distinction in comparison to EMV1, in our view. We decided to use VDM and
its formal simulation capabilities with Overture and VDMJ (see overturetool.org
and github.com/nickbattle/vdmj) instead. This enabled a quicker prototyping
of the kernel from its requirement specifications in order to provide us with the
necessary knowledge about EMV2, and to start the discussion about its design
decisions, as well as to enable the discovery of potential issues. We also envisaged
the use of VDM’s combinatorial testing [16] in order to exercise the number of
protocol scenarios of most interest.

Moreover, we needed libraries for binary blobs and matrix manipulations. For
the former, we used the nice VDM “DLL” style link with natively implemented
libraries following the examples of IO and VDMUtil; whereas for the latter we
used a combination of available and our own libraries from years of working
with VDM’s mathematical toolkit. For the most crucial libraries of binary blob
transformers used for interfacing EMV1 legacy transactions within EMV2, and
for matrix calculations used for transaction processing decision making, we used
Isabelle/HOL (see isabelle.in.tum.de) to formally verify that proof obligations
generated by the library definitions were correct. For example, in the binary
library with varied word-size precision:

It transforms a bit vector into a nat and vice-versa, as well as their word-
bounded variations with adequate padding. Beyond proving satisfiability of proof
obligations in Isabelle/HOL, we also proved by induction interesting theorems
like

bin2byte(byte2bin(bp − 1), bp − 1)

where bp = 2wsize. This library also contains various operations over bit vectors
like and, or, not, xor, etc.

4.1 VDM Language Issues

Our strategy to tackle design decisions led to interesting choices within the VDM
language. In the process, a number of corner cases and interesting situations
about language semantics arose. This led to a number of fruitful discussions with
the VDM community, as well as tool extensions and corrections. Abstracting

http://overturetool.org
http://github.com/nickbattle/vdmj
http://isabelle.in.tum.de
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away all involved details in order to get to a minimal example was often time
consuming and hard to tolerate. For example, lambda-expressions mistakenly
allowed access to mutable state, which when used as a function-parameter or
on-the-fly, led to unexpected behaviours.

Here Overture would not give an error, whereas VDMJ complains. In prac-
tice these lambda expressions were part of parameters to functions partici-
pating in the postcondition. The other example mistakenly allowed access to
explicit-operation definition’s return values within the operation’s body or its
precondition.

Another interesting example had to do with type-invariant cascading/checks
that were not quite right, and despite being very common, have not been uncov-
ered before. All three print statements ought to flag a type invariant violation.

VDM does not seem to handle cross product type parameters uniformly.
For instance, it treats (T * T) -> T as a single tuple-input, whereas T * T
-> T as a two parameter input. In itself, this is okay. Yet when develop-
ing libraries that involved polymorphic parameters and high-level functions
(i.e. lambda-expressions as parameters) this distinction creates unnecessary con-
fusion and difficult-to-debug/understand situations in the development of our
generic libraries for binary numbers and matrixes. It took a number of iterations
(and a lot of time) to get to the bottom of it with this minimal example of the
larger-scale scenario involving matrix calculations.
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Calls to f fail with a cryptic error message, which did not help to figure out
the underlying problem. It was about the same name of parameter @T was being
used by f and g, but with @T referring to a different type in each case. When more
than one polymorphic function is used in a call chain, the type parameter @T
was not being uniformly passed. This, in combination with the function call non-
uniformity, explained the reason why error messages were cryptic, and figuring
out what was happening was difficult.

In Overture, export and import clauses are not treated properly. In imports,
one can mix names of operation and functions without error or warnings, whereas
VDMJ complaints. More seriously, struct export in Overture is not prop-
erly implemented at all, and works partially in what is quite confusing. Again
VDMJ’s stricter choices means if it is happy, so will Overture be. In a large
specification where exports all is not adequate, the mishandling of (struct-
)exports by Overture was a surprise with some cost as it was only discovered
late. Finally, another quirk is VDM’s “possible semantics”, which in complex
scenarios again led to a considerable amount of time to figure out what was
going on. For example:

As expected, the definition of g1 gives an error about an inappropriate type
for the argument. Nevertheless, g2 only gives a type-error at run time thanks to
the possibility of a nil input. A nicer/stronger warning in such cases would be
welcome.
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In all, all these scenarios served to highlight relatively simple issues that
have been fixed in recent versions of both Overture and VDMJ. This brings
up some interesting question to ask. How much do we trust our own tools to
do work in safety and reliability? What evidence do we have that the tools
themselves are sound? Having two independent tools can be practically useful,
yet theoretically also increase this soundness concern. Interesting examples of
how this has been mitigated for some tools exist, such as the Circus model
checker [11], the CakeML compiler (https://cakeml.org), and the seL4 verified
system (https://sel4.systems).

4.2 VDM Language Patterns

We had to come up with a number of ingenious VDM constructs in order to
capture specific design decisions. In some cases, an alternative (more elegant)
solution would be possible in theory, but we could not afford to take it in practice.
Yet, in other cases, we could not think of a nicer solution at all.

Payment protocols by nature involve a considerable amounts of data from
both the kernel to the card and vice versa. For example, different cards/terminals
might require different information in order to setup a transaction and enable
variability. Effectively, they entail a sort of reflective request over internal ker-
nel/card state. For example, if the kernel might need the card for its long number
and its expiry date in some transactions, or its public signature keys in others.

One solution to this kind of query would be to have the kernel state defined
as a map from a somewhat structured string into whatever the target type was.
Unfortunately, there are hundreds of type (and invariant) definitions, some of
which are grouped as records with invariants between constituent fields. That
means a kernel module state map would require an extraordinarily complex (and
pretty much unreadable) invariant. Thus, we kept (often simple) invariants very
close to where they were defined, and the various composition needs imposed
the overall compound invariant of interest.

Our solution to enable reflective access was to take the XSD-schemas used to
define EMV’s type dictionary in order to automatically generate (6,528 LOC over
52 VDMSL modules) various data types of interest, as well as map transformers
needed for reflective access. Maps were defined from ID (structured strings) into
the so-called VDM wildcard (“?”) type1. This enabled both reflective access and
update, where we transformed records into maps and vice-versa.

1 An example of its use can be seen in the VDMUtil library definition.

https://cakeml.org
https://sel4.systems
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For this we wrote a Java program (4,058 LOC) that processed XSD and
XML files and transformed them into VDMSL based on a template VDMSL file
of about 90 LOC. This is used to produce the actual VDMSL files populated
with XML/XSD information, where XSD files has a corresponding VDMSL files
representing data types and constraints. These VDMSL files varied from 80 to
500 LOC depending on the underlying record type size and complexity. The
VDMSL template key functionality is defined by four exported functions.

The ‘‘IDs of interest’’, as well as the actual implementation of these
functions, are populated through the data structures defined in the XSDs. The
[P] stands for different packages, whereas [M] stand for different modules. Not
all modules have packages and some packages have no modules API signatures
for each kernel module and a few global configuration options are also defined
by XSDs, which again we used to automatically generate top-level and internal
operation signatures.

The use of “?” effectively enables a unbounded union type, something that
arguably could have serious semantical consequences: that is why we do not
struct export the map type. Even though this is arguably semantically danger-
ous, we are left with no alternative choice we could think of for specifying reflec-
tive (string based) access/update for records. The functions provide a default
initialiser for the underlying record type (i.e. emv [P] [M]), conversion from the
record to the corresponding map type (i.e. emv [P] [M] map), conversion from
the map type back to the record type, and finally a map update function for a
given ID. The use of polymorphic type @T is important in order to ensure exter-
nal users of the function satisfy the record type invariant not imposed within its
corresponding map type. The update function has a precondition about the ID
belonging to the domain of the map type as the invariant requires: this ensures
only fields known within the record type can be “reflected” over the map type.
With this setup, it is possible to write expressions like

which projects a record (x) of corresponding record type (emv [P] [M]) into its
map type (emv [P] [M] map), updates it at the specific id name with a specific
value of the right Type, and then transforms it back to the original record type.
Thus, this provide reflective access/update to records represented as maps with
type invariants implicitly guaranteed.
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This way, we managed to have both strong type invariants across multiple
fields and records, and yet still allow for reflective (string-based) access to kernel
state via our automatically generated map transformers. In practice, this worked
quite well: we anticipate changes to the kernel over time will most often come
from data structure variations, rather than new API or protocol stages. When
such changes happen, all we have to do is regenerate the mapping specification,
and mostly all is automatically up to date with internal version updates prior
to release. This process has proved invaluable for productivity: that is because
considerable amount of (tedious and error prone) work is completely (and cor-
rectly/safely) automated.

Another pattern of interest was in the use of data structures for data exchange
between the kernel and the external world (of the card and the POI). As with
reflective state access, the data structures have to fetch kernel state data for a
given list of IDs requested. That entails different (if often predictable under var-
ious conditions) data structures with invariants depending on the ids requested.
In order to define such dynamic invariants, which are often only knowable once
the specific request has been assembled, we defined records with structures like

A concrete example of such dynamic invariants could be given by a
mk Container expression with a lambda-expression or invariant function with
known conditions; or when in less unpredictable circumstances, an extended
record where the actual known invariant per module can be checked:
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4.3 Pushing Language Boundaries

Use of VDM Wildcard Type
In discussion with the VDM community about these issues, a number of language
extensions were discussed. For instance, what roles (if any) should the wildcard
(“?”) type play? I first came across it within VDMUtil library, and when I looked
at the VDMSL manual, it was not in the Lexer’s token vocabulary! Yet, once
I understood what it achieved, I started playing with its possibilities. Perhaps
types involving “?” cannot ever be struct-exported. It was incredibly useful in
a few places, yet it can also be incredibly dangerous to have around untamed.
Without it, however, we would struggle to provide a sensible/scalable solution
to state reflective-access and other problems. It can be quite dangerous to use,
though: for the reflective maps above, our initial type was map ID to [?], given
some values could be nil. The combination of wildcard that can be nil leads to
a situation where both Overture and VDMJ get in quite some trouble without
any sensible error message. The solution was to realise that nil was already part
of “?”, hence no need to define it twice!

Another interesting example was inspired by SPARK/Ada modules. We
defined a Stack type as an abstract data type, which in SPARK terms means
an opaque type with public APIs to manipulate it (e.g. push, pop, peek, etc.).
In VDM, that would mean having a non-struct exported Stack type so that
its internal implementation can never be exploited by its users, and only its
public APIs are usable. This worked well in VDM with VDMJ checking for
struct exports properly, but up to a point. Like with C++ template-class or
Java Generics, what if we wanted a stack (however it is implemented), but of a
specific type (e.g. Stack<nat>)? Because VDM does not allow polymorphic type
declarations to participate in type definitions, this was quite hard/convoluted
to impose/define. Again, we used the wildcard type for such module parametric
types. Perhaps allowing polymorphic type variables in type definitions, or even
have module type parameters might be an interesting language extension.

Framing Conditions
Coming from the Z world, I found the lack of linguistic support for complex state
framing conditions an issue. VDM explicit-extended operation definitions allow
the specifier to define framing conditions in terms of what can be read/written,
which also define access conditions in pre/post specifications. This is quite useful,
yet also quite limited. Assuming complex state, say with a number of fields, each
as records with other fields, totalling 10 to 50 fields. What happens when an
operation touches only one or two fields of one of these records? For example:
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It writes on one of the state fields (x), and uses information from another
(y). The only state update involved is to change one field, and everything else
remains constant. The VDM frame condition does not allow changes to y, but
it does allow changes to any of the other fields in x that must remain constant.
That entails the definition of a framing postcondition as:

These framing postconditions may also be conditional on possible paths taken
within the API. The lack of a linguistic mechanism in VDM to tackle such
complex-state simple framing-conditions became quite a drag within the many
API implementations. In Z, this is easily done with a combination of schema
calculus (e.g. Ξ and hiding) operators. An anecdotal summary was given by a
collaborator within the VDM community: “you’ve touched on a couple of really
interesting points: one about how the tools work, and one about the best way
to write a specification!”.

4.4 Overture and VDMJ

As a tool, Overture offers all the modern-day IDE “bells and whistles” most users
expect, such as asynchronous specification checking (i.e. type check as you type),
various useful dialogs and keyboard shortcuts for common tasks, integrated exe-
cution/building/debugging, and so on. VDMJ, on the other hand, works like a
Linux command-line killer app, which includes all the functionalities Overture
provides, as well as debugging and other facilities. So, users may wonder: why
have both? Well, they are independent implementations from different sources.
Yet, given their different interpretation of the language semantics, they effec-
tively “speak” different VDM “dialects”.

As far as I know, internally they are quite different in the sense that VDM
ASTs were reengineered for various reasons [1]. In practice, the experience was
that Overture cannot cope with the scale of a model of this size. From very early
on, Overture started to lag considerably, and parsing/typechecking would take
too long (5 to 20 s) to be productive. The debugger also stopped working without
any warning/error: it simply freezes for reasons yet unknown. It was often more
lax with language construct issues/errors, which entailed hours wasted chasing
complicated red herrings of no interest.

VDMJ, on the other hand, has always been quite reliable. Most important,
it is fast. All debugging and simulation since at least half way through the
project has been done through it. Debugging in VDMJ is not as smooth as in
the Overture Eclipse-like environment, but it works quite well and is more stable.
Complex breakpoint conditions in Overture often led to connection errors and
tool freezes, whereas in VDMJ they work reliably and were invaluable.
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In practice, I work with a combination of both, where I use Overture for
typesetting and project management chasing top-level (quick to parse and feed-
back) errors, and VDMJ for guaranteeing all is well, and for simulation, testing
and debugging. It often happens that Overture will say a specification is okay,
when VDMJ will throw you a number of residual errors; this is yet to happen
the other way round. In early 2018, we experienced a quite severe lag in Over-
ture, which led to some profiling with VisualVM (https://visualvm.github.io),
and provided evidence there is a serious (deterministic) memory leak somewhere.
In an industrial setting, this kind of complication, alongside the already alien
nature of formal reasoning, can sadly become the excuse for non-adoption.

5 Evaluation and Discussion

Overall, the exercise has been quite worthwhile, and VDM and its tools have
worked well. To give a clearer sense of scale, Table 1 gives a specification break-
down per module, where we point to the relative completion of each module, and
its size in VDM lines2. Some modules have a large number of public APIs like the
“Point of Interaction”, but they are simple; whereas others like the “Cardholder
Verification Manager” is small in API numbers but is way more complex. We
are yet to work on the payment data and secure channel modules, as they are
not crucial for the overall kernel functionality, but rather its additional services
and secure communication features. The module data store comprises reflective
access to state information via string-based named, data container types used
for exchange between modules and external entities. We have an initial Java
emulator implementation that is also development and is informed by our VDM
model. At first, we considered using the Overture automatic code generator for
Java with its translation of VDMSL into Java specifications in JML. Unfortu-
nately, it quickly became clear the code generator’s breath over VDMSL was not
good enough for our needs. Simple constructs like constant value declarations
could not be translated, even though constant functions with no input parame-
ters (i.e. an alternative way to define constant values) did work. It would be a
valuable exercise to extend the code generator for the future.

The lack of a mechanism for a VDM mathematical library/repository is a
problem, and entails many people using VDM have to reinvent the wheel with
respect to commonly used specification constructs. Perhaps something like the
Maven-central (https://search.maven.org) repository in style, where all the nec-
essary due diligence can be done by the repository manager would encourage
more people to submit libraries themselves.

The distinction in error handling between Overture and VDMJ can be quite
dangerous: it might completely knock of the confidence of users leaving them
uncertain whether their choice for VDM was the right one. This, together
with more targeted error messages to help developers fix the problems is quite

2 Numbers were calculated with a mixture of string search, and Linux tools like find

and wc.

https://visualvm.github.io
https://search.maven.org


122 L. Freitas

Table 1. EMV2 VDM specification

Kernel module Book APIs % LOC

Kernel director 2 40 100 3,950

Selection manager 3 23 95 3,647

Transaction manager 4 20 95 3,423

Cardholder verification manager 5 18 100 3,613

Terminal risk manager 6 16 100 1,691

Additional services manager 7 9 10 1,081

Payment related data 8 ? 0 0

Issuer authorisation manager 9 16 100 2,272

Data communication manager 10 31 95 2,633

Secure channel manager 11 ? 0 0

Communication abstraction layer 12 11 20 1,006

Point of interaction terminal 13 35 90 1,944

Card profile and detection service 14 9 20 690

Data dictionary XSDS 15 0 100 9,537

Support

Module data store - 0 100 8,591

EMV database link - 0 80 593

VDM support libraries - 0 100 1,242

Total 228 80 137,739

important. The inability to debug/run EMV2 in Overture due to its freezing
caused quite some concern at the time because it created a sense of time wasted
and wrong choice of language made; this issue is still pending.

5.1 Tools Wish List

Throughout this work, there were a number of tool extension ideas. Some of
them are EMV2-specific, yet a number can be of wider use, and we list them
here as a suggestion to the VDM community in our perceived order of relevance.

1. VDM profiler. For larger modules, identifying where resources
(time/memory) are being consumed is quite important in order to fine-tune
modelling decisions. In CZT, users can instrument the tools to have coun-
ters for various specification constructs (i.e. number of names, or predicate
parts, etc.), as well as detailed information about load times at what stages
(e.g. parsing, typechecking).

2. Direct separation between dialects. In the current exercise, we had to
cope with asynchronous API calls and a concurrent programming paradigm
that we wanted to specify. VDM-RT already has asynch and thread concepts,
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but it imposes on the user the extras of VDM++. That is, the VDM dialects
(SL, ++, RT) are somewhat (unnecessarily) interwoven. In CZT, developers
can pick and choose (sub-)dialects (e.g. Circus composes Z and CSP; TCOZ
composes Object Z, CSP and Time; OhCircus comprises Z, CSP and an
object oriented extension) and compose them according to need without hav-
ing to have unwanted (sub-)dialects. It would be nice to have say SL with
real time constructs and/or asynchronous calls and threads without VDM++
extensions.

3. Dependencies-graph generator for imports xand operation call-
graphs. One way we found that minimised load time (from 57 s to 20 s in
VDMJ) was to minimise dependencies, particularly circular dependencies. I
presume Eclipse-based plugins already exists (in C and Java) for such depen-
dency and call graph management.

4. Heap images/serialisation to speed processing/execution. For large
specifications, reload time is costly. Once a specification stabilises and sim-
ulation time will be spent running/adjusting minor issues, avoiding total
(lengthy) reloads would be useful. In CZT, that is viable through the use
of ZML: an XML-encoding of ISO-Z that is lightening fast to process.
Isabelle/HOL use Poly-ML heap images to store “compiled” proofs of larger
libraries. Both these solutions serve to improve scalability and usability of
tools and would greatly benefit users of larger VDM specifications.

5. Test case generation from specification based on something like
Eisenbach patterns. Combinatorial testing in VDM is great, and enables
productive specification validation. Yet, identifying what to test is sometimes
difficult. A tool can create test cases of interest based on the shape of spec-
ifications involved and user instrumentation. For example, a disjunctive pre-
condition A or B might need specific tests per disjunct; earlier work on VDM
for this exist [3]. Predicate pattern-languages like Isabelle/HOL’s Eisbach [17]
could be used to determine what shapes tests should come from.

6. Quickcheck/nitpick style test case generator for simulations.
QuickCheck is a test case generator written for Haskell programs3, and now
ported to a number of different situations. Nitpick identify counter examples
to conjectures in Isabelle/HOL. A combination of these tools in Isabelle/HOL
considerably improves proof effort. Something similar in VDM could help cre-
ate test cases of interest and root out specification errors quickly.

7. Record form filler for long record initialisers. When modelling complex
records, mk expressions can be quite awkward. Having an automatically gen-
erated GUI to construct such values from declared type information would
be quite useful.

8. XSD/XML/Swagger VDM integration. XSD/XML and JSON-based
languages like Swagger are used in industry to provide a semi-formal/rigorous
type/API-signature definitions. A translator to/from VDM would be valu-
able: translating to VDM increases productivity, whereas translating from
VDM keeps requirement specification documents accurate and up to date.

3 See https://hackage.haskell.org/package/QuickCheck

https://hackage.haskell.org/package/QuickCheck
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9. “Fix imports”+“quick-format” refactoring on imports and inden-
tation. Imports in VDM are a bit awkward. Explicit module imports
(i.e. Module‘Type) make it difficult to identify module dependencies, whereas
complete import listing with renaming is quite tedious to do. Something like
Eclipse’s fix-imports and quick-formatting for indentation would be quite
useful.

6 Conclusions

The work presented in this paper demonstrates it is possible to use VDM for a
large scale (50 KLOC VDMSL) specification, despite various tool problems and
practical challenges involved. The availability of a formal simulator for EMV2
and the careful documentation of its assumptions/commitments will hopefully
pave the way for the influence of formal modelling within payment systems
industry.
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Abstract. Refinement-based model checking is an approach to software
verification: Starting with an abstract software model, the model is iter-
atively refined until it is precise enough to prove or refute the prop-
erty of interest. A downside is that it typically takes several iterations
until the necessary precision is reached, and thus, resources are spent on
repeating work that has already been performed in previous iterations.
We tackle this by introducing a concept for reusing information between
refinement iterations in order to reduce the computational overhead. Our
approach extends our previous work on three-valued abstraction (3VA)
and bounded model checking (BMC). 3VA allows to translate a verifica-
tion problem into a SAT-encoded three-valued BMC problem that can be
checked via a SAT solver. While there was formerly no information shar-
ing between refinement iterations, we now show that logic constraints
learned by the solver in the current iteration are also valid in future
iterations. Reusing such constraints enables to prune the search space
of SAT which leads to a speed-up of the iterative approach. Since we
previously used standard BMC, the technique was incomplete and could
be only used for detecting property violations but not for proving their
absence. Here we combine three-valued BMC with k-induction, which
makes the approach complete for model checking safety properties.

1 Introduction

Three-valued abstraction refinement (3VA) [15] is a technique for reducing
the complexity of software verification. It proceeds by generating an abstract
software model over predicates with the possible truth values true, false and
unknown, where the latter is used to represent the loss of information due to
abstraction. The model is iteratively refined by adding predicates until it is pre-
cise enough to prove or refute some temporal logic property. The evaluation
of properties on such models is known as three-valued model checking (3MC)
[3]. In 3VA both true and false results can be immediately transferred to the
modelled system, whereas unknown indicates that the current abstract model
is too coarse for a definite outcome. The advantage of 3VA is that it allows to
gradually adjust the level of abstraction until the right balance between sim-
plicity and precision is reached in order to verify the property. The downside is
c© Springer Nature Switzerland AG 2018
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that it typically takes several iterations until this happens, and thus, computa-
tional resources are spent on repeating work that has already been performed
in earlier iterations. Here, we tackle this drawback by introducing a concept for
sharing gathered information between refinement iterations in order to reduce
the computational overhead.

Our approach extends previous work where we presented a verification tech-
nique for concurrent systems based on 3VA and three-valued bounded model
checking (3BMC) [17,18]. Three-valued abstraction allows to translate ver-
ification problems into SAT-encoded 3BMC problems. Thus, verification is
reduced to SAT solving. In each refinement iteration, a propositional formula
that encodes the 3BMC problem for the current level of abstraction is gener-
ated and processed via a SAT solver. While there was formerly no information
sharing between iterations, we now show that logic constraints learned by the
solver in the current iteration are also valid in future iterations. SAT solvers
employ conflict-driven clause learning [2] while processing a propositional for-
mula, which generates constraint clauses that are used to prune the search space
of the current SAT check. We prove that certain constraints that have been
learned for our model checking encodings correspond to definite temporal logic
properties of the encoded system. Since definite properties are preserved under
three-valued abstraction refinement, it is permissible to reuse the associated
constraints among iterations. Our inter-refinement iteration constraint reusing
concept enables to considerably reduce the computational effort of 3VA-based
verification.

In standard bounded model checking the bound k ∈ N restricts the length
of execution paths of the modelled system, which makes the technique incom-
plete and only usable for detecting property violations but not for proving their
absence. While our previous approach [17,18] has this limitation, we now estab-
lish completeness by integrating k-induction [16] into our approach. k-induction
was originally introduced for verifying safety of hardware systems. It proceeds
as follows: Given a state transition model of the system to be analysed and
a state predicate Safe, it is checked whether all paths of length k that start
in an initial state of the model are safe, i.e. whether Safe holds in each state
along the paths. This is the base case of k-induction, which is equivalent to stan-
dard bounded model checking. If the base case holds, then the inductive step is
checked: Assuming k consecutive states where Safe holds in each state, then
Safe also has to hold in every (k+1)-st successor state. The inductive step does
not restrict the k consecutive states to start in an initial state. If the inductive
step holds as well, then it can be concluded that all possible execution paths
of the system are safe. Otherwise the procedure needs to be repeated with an
incremented k.

Since hardware systems naturally correspond to state transition models, the
application of k-induction is straightforward. In our software verification app-
roach, we generate an implicit state transition model by applying abstraction
and by encoding the state space of the abstract system in propositional logic. For
the integration of k-induction, we define the base case and the inductive step of
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our verification tasks as 3BMC problems. Moreover, we combine our refinement
procedure with a bound incrementation procedure. We use a top-level bound
incrementation loop and therein two refinement loops, one for the base case and
one for the step, that we independently abstract and refine. Each iteration is
now characterised by a bound and a level of abstraction of the base case and the
inductive step. Depending on the SAT-based verification outcome in an iteration,
either the bound is incremented, refinement is applied, or the procedure termi-
nates with a definite result that can be transferred to the input system. Learned
constraints are reused between refinement iterations based on our novel clause
reusing concept. Furthermore, we reuse constraints between bound iterations,
which is permissible due to the incremental bounded model checking principle
[11]. In experiments, we demonstrate that our approach enables the complete
verification of concurrent systems within linear integer arithmetic and we show
that our constraint reusing leads to significant performance improvements.

2 Concurrent Software Systems

Our approach focusses on linear integer concurrent systems. Almost all control
structures of the C language, concurrency and the variable types bool and int are
supported. There is currently no support for arrays and pointers. A system Sys
consists of processes P1 to Pn composed in parallel: Sys = ‖n

j=1 Pj . It is defined
over a set of variables V ar = V arSys ∪ V arPC . V arSys is a set of arbitrary
system variables and V arPC is a special set that holds for each Pj a program
counter pcj ranging over the binary control locations Locj = {00, 01, ...} of Pj .
Locations of a process are labelled with guarded commands over system variables
and with a reference to the next location. The form of a guarded command is
assume(e) : v1 :=e1, ..., vm :=em where v1, ..., vm ∈ V arSys and e, e1, ... em are
expressions over V arSys. The state space over V ar corresponds to the set SV ar

of all variable valuations. Given a s ∈ SV ar and an expression e over V ar, s(e)
denotes the valuation of e in s. An example system for mutual exclusion is:

y : semaphore where y = 1;

P1 ::

⎡
⎢⎢⎣

loop forever do⎡
⎣
0: acquire (y, 1);
1: CRITICAL

release (y, 1);

⎤
⎦

⎤
⎥⎥⎦ ‖ P2 ::

⎡
⎢⎢⎣

loop forever do⎡
⎣
0: acquire (y, 1);
1: CRITICAL

release (y, 1);

⎤
⎦

⎤
⎥⎥⎦

We have two processes operating on a counting semaphore y. The seman-
tics of the operations are: acquire(y, 1) = assume(y > 0) : y := y − 1
and release(y, 1) = assume(true) : y := y + 1. We assume that for any
Sys a deterministic initialisation of V ar is given by a predicate Init, e.g.
Init = (y = 1) ∧ (pc1 = 0) ∧ (pc2 = 0). A computation of Sys corre-
sponds to a sequence of commands where in each step one process is non-
deterministically selected and the command at its current location is attempted
to be executed. If the execution is not blocked by a guard, the variables are
updated according to the assignment part and the process advances to the
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next location. A computation can be likewise considered as a state sequence
π = s0s1s2 . . . where the transition from si to si+1 correctly characterises the
execution of the associated command. A computation of our example system
is: π = 〈y = 1, pc1 = 0, pc2 = 0〉〈y = 0, pc1 = 1, pc2 = 0〉〈y = 1, pc1 = 0, pc2 = 0〉 . . .
Explicit-state verification constructs transition models that represent all possible
computations of the analysed system. In our approach, we construct a proposi-
tional encoding that represents the computations implicitly. Before we introduce
our encoding, we look at the temporal properties that we want to verify.

3 Checking Safety via k-Induction

Verification involves checking all possible computations of a system with regard
to correctness requirements. Of particular interest are safety properties, which
require that all states reached in a computation satisfy some predicate Safe. For
our example system mutual exclusion is a safety property that corresponds to
Safe = ¬(pc1 =1) ∨ ¬(pc2 =1). It requires that not both processes are at their
critical location 1 at the same time. Verification means to prove or refute that
for all computations starting in an initial state Safe always holds, or formally:

[Sys, Init |=∀ always Safe] := ∀π = (s0s1s2 . . .) : s0(Init) → ∧∞
i=0si(Safe)

A method to address such verification problems is k-induction [16]: Let Sys be
a system with computations in terms of state sequences and let k ∈ N. In the
base case it is checked if for all computations starting in an initial state the first
k states are Safe. In the induction step it is checked if, assuming a computation
consisting of a sequence of k Safe states, also any successor state is Safe. In con-
trast to the base case, the step does not contain a constraint on the initial state.
This is necessary for the soundness of k-induction. These universal problems,
referring to the safety of all computations, can be transformed into complemen-
tary existential problems referring to the existence of unsafe computations; as
we can see, only the base case contains the initial state constraint s0(Init):

[Sys, Init |=∃ Base]k := ∃π = (s0 . . . sk) : s0(Init) ∧ ∨k
i=0si(¬Safe)

[Sys, true |=∃ Step]k+1 := ∃π = (s0 . . . sk+1) :
∧k

i=0si(Safe) ∧ sk+1(¬Safe)

Hence, proving the universal problems is equivalent to disproving the existential
ones. The latter can be efficiently done via SAT or SMT solving. k-induction
is typically performed incrementally with regard to k. Thus, when checking the
base case for some k we can assume that all shorter base cases have already been
proven to be safe, and we can add these facts as constraints to the problem to
be solved. Furthermore, in order to make k-induction complete, i.e. terminating
for finite-state systems, it is necessary to restrict the inductive step to loop-
free computations [16]. This gives us a slightly revised base case and step, for
simplicity we abbreviate the verification problems by just [Base]k and [Step]k+1:

[Base]k := ∃π = (s0 . . . sk) : s0(Init) ∧ ∧k−1
i=0 si(Safe) ∧ sk(¬Safe)

[Step]k+1 := ∃π = (s0 . . . sk+1) : π(LoopFree) ∧ ∧k
i=0si(Safe) ∧ sk+1(¬Safe)
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where π(LoopFree) =
∧

0≤i<j≤k+1(si �= sj) assuming that π = (s0, . . . , sk+1).
k-induction is still applicable to systems with loop computations in terms of
recurring states, but for checking safety it is sufficient to only consider loop-free
ones. The procedure below illustrates the principle of incremental k-induction:

1 for k = 0 to ∞ do
2 if ([Base]k holds) then
3 return ”safety property fails”
4 if ([Step]k+1 does not hold) then
5 return ”safety property holds”

k-induction allows to reduce an unbounded verification problem to two bounded
ones: the base case and the inductive step. Base case and step can be formulated
as bounded model checking problems. Bounded model checking requires a state
transition model of the system to be analysed. For hardware, such models can be
straightly encoded in propositional logic and verification can be done via SAT
solving. k-induction-based hardware verification has been applied in [7,16]. For
software it is significantly harder to capture its complex features in propositional
logic. Therefore, most k-induction approaches to software verification use an
SMT solver [6,10]: The input system is transformed into a k-bounded one, where
k typically refers to the number of unrollings of loops. The bounded system is
then fed into an SMT solver to check the base case and the step of the verification
problem. In our new approach, we use a combination of SMT and SAT: Via
SMT solving we generate a three-valued abstraction of the system. Due to the
reduced complexity the abstract system can be straightforwardly encoded in
propositional logic and verification can be efficiently done via SAT solving. Next,
we give a brief introduction to three-valued abstraction.

4 Three-Valued Predicate Abstraction and Refinement

To make SAT-based k-induction applicable to software verification, we follow
the abstraction refinement paradigm: We employ SMT-based three-valued predi-
cate abstraction [15] to our concrete systems, which yields abstract systems over
predicates that can take the values true, false and unknown. Unknown represents
loss of details due to abstraction. Three-valued abstraction generates an approx-
imation in the sense that all definite verification results (true, false) obtained
for an abstract system can be transferred to the concrete system. Only unknown
results necessitate refinement for which we developed an automatic procedure
[17]. Later we show that for an abstract system and a safety property any base
case or step of k-induction can be reduced to two Boolean SAT problems. We
now briefly outline three-valued abstraction. Details can be found in [15]. Our
approach is based on the Kleene logic K3 [8] where unknown, abbreviated by u, is
a used as a third truth value. In abstract systems guarded commands do not refer
to concrete variables but to abstract predicates ASys over V arSys. Predicates in
ASys may be set to u due to the execution of an abstract command. While our
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three-valued abstraction reduces the complexity induced by system variables, it
preserves the original control flow. For this, we use the set of two-valued pred-
icates APC = {(pcj = bm ... b0) | pcj ∈ V arPC , bm ... b0 ∈ Locj} that covers all
possible locations of the system. The overall predicate set is A = ASys ∪ APC .
Given a concrete system Sys over V ar, an initialisation Init and a property ψ,
we refer to the corresponding concrete verification task by V ar[Sys, Init |=Q ψ]
with Q ∈ {∀,∃}. Additionally given a predicate set A over V ar we refer to the
abstract verification task by A[Sys, Init |=Q ψ]. From [15] we get the theorem:

Theorem 1 (Property Preservation under Three-Valued Abstraction).
Let Sys, V ar, Init, A and Q as above. Moreover, let ψ be a property that is
expressible in linear temporal logic (LTL) and let z ∈ {true, false}. Then:

A[Sys, Init |=Q ψ] = z ⇒ V ar[Sys, Init |=Q ψ] = z

Since the properties in our k-induction approach are expressible in LTL, we can
make use of Theorem 1. Definite results under abstraction can be transferred to
the concrete system. For unknown results we have our refinement technique [17]
that yields an extended predicate set Ar+1 = Ar ∪ {p|p predicate over V ar, p /∈
Ar} where r = 0, 1, . . . denotes the current refinement iteration. We get:

Corollary 1. Let Sys, Init, ψ, Ar, Ar+1, Q and z as above. Then:

Ar [Sys, Init |=Q ψ] = z ⇒ Ar+1 [Sys, Init |=Q ψ] = z

Thus, definite properties are also preserved under abstraction refinement.

5 Three-Valued Bounded Model Checking

So far, we have defined verification tasks and corresponding abstractions. To
practically perform verification, we need a computational model. Abstract state
spaces can be defined as three-valued Kripke structures and safety properties can
be formalised in temporal logic. On this basis, verification tasks can be expressed
as three-valued bounded model checking (3BMC) problems.

Definition 1 (Three-Valued Kripke Structure). A three-valued Kripke
structure over a set of atomic predicates A is a tuple M = (S, S0, R, L) where S
is a set of states, S0 ⊆ S is a set of initial states, R : S × S → {true, u, false}
is a transition function, and L : S ×A → {true, u, false} is a labelling function.

We assume that Kripke structures are complementary-closed, i.e. for each p ∈ A
there is a complementary p ∈ A such that ∀s ∈ S : L(s, p) = ¬L(s, p). A path π
is a sequence of states s0s1s2 . . . with ∀i : R(si, si+1) ∈ {true, u}. π(i) denotes
the i-th state of π. By ΠM we denote the set of all paths of M starting in an
initial state. Paths are considered for the evaluation of temporal properties. Here
we use the bounded temporal logic (BTL) which is a fragment of LTL.
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Definition 2 (Syntax of Bounded Temporal Logic (BTL)). Let A be a
predicate set and k ∈ N a bound. The set of BTL formulas BTL over A and
k is

– if p ∈ A and i ∈ [0, k] then pi ∈ BTL and ¬pi ∈ BTL,
– if ψ ∈ BTL then ¬ψ ∈ BTL,
– if ψ ∈ BTL and ψ′ ∈ BTL then ψ ∨ ψ′ ∈ BTL and ψ ∧ ψ′ ∈ BTL.

Definition 3 (Three-Valued Evaluation of BTL). Let M = (S, S0, R, L)
be over A and let π be a path of M . Let k ∈ N and i ∈ [0, k]. Then the evaluation
of a k-bounded BTL formula ψ on π, written [π |= ψ]k, is inductively defined as:

[π |= pi]k = L(π(i), p) ∧ ∧i−1
j=0R(π(j), π(j + 1))

[π |= ¬pi]k = L(π(i), p) ∧ ∧i−1
j=0R(π(j), π(j + 1))

[π |= ψ ◦ ψ′]k = [π |= ψ]k ◦ [π |= ψ′]k with ◦ ∈ {∧,∨}
[π |= ¬(ψ ◦ ψ′)]k = [π |= ¬ψ]k ◦ [π |= ¬ψ′]k with ∧ = ∨ and ∨ = ∧

The universal evaluation of a BTL formula ψ on M over A is A[M,S0 |=∀ ψ]k =∧
π∈ΠM

[π |= ψ]k. The existential one is A[M,S0 |=∃ ψ]k =
∨

π∈ΠM
[π |= ψ]k.

Checking BTL properties of three-valued Kripke structures is three-valued
bounded model checking [18] with the possible outcomes true, false, u. The state
space of an abstracted system Sys can be modelled as a Kripke structure M
such that there is a one-to-one correspondence between the states of Sys and
M , and the transitions of M correspond to the execution of guarded commands
of Sys. Hence, paths of M represent computations of Sys. From [15] we get the
theorem:

Theorem 2. Let Sys be abstracted over A and let M be the three-valued Kripke
structure representing the abstract state space of Sys. Moreover, let Q ∈ {∀,∃}.
Then for all linear temporal logic properties ψ the following holds:

A[Sys, Init |=Q ψ]k ≡ A[M,S0 |=Q ψ]k

Thus, verification is equivalent to solving the corresponding 3BMC problem. This
is an important fact since 3BMC can be reduced to propositional satisfiability
and thus effectively performed via SAT solving. We now define the base case and
the step of k-induction-based verification as 3BMC problems. For our example
with Safei = ¬(pc1 = 1)i ∨ ¬(pc2 = 1)i and (pc1 = 1), (pc2 = 1) ∈ A we get

A[Base]k ≡ A[M,S0 |=∃
∧k−1

i=0 Safei ∧ ¬Safek]k
A[Step]k+1 ≡ A[M,S |=∃

∧k
i=0Safei ∧ ¬Safek+1 ∧ LoopFree(0..k + 1)]k+1

with LoopFree(0..k +1) =
∧

0≤i<j≤k+1

(
∨

p∈A

(
(pi ∧¬pj)∨ (¬pi ∧ pj)

)
)

. The

loop-free property expresses that all states along a prefix are pairwise different.
Note that in the 3BMC problem representing the inductive step the set of initial
states is simply S, i.e. an arbitrary state can be the initial state. Next, we take
a look on how these 3BMC problems can be encoded in propositional logic.



Constraint Reusing and k-Induction 133

6 Propositional Logic Encoding

In [18] we showed how a 3BMC problem A[M,S0 |=∃ ψ]k corresponding to a
system Sys abstracted over A and a property ψ can be encoded as a propo-
sitional formula A[[M,ψ]]k. The encoding can be directly constructed based on
the abstract system. It corresponds to an implicit representation of the model
checking problem such that the construction and exploration of an explicit state
transition model is avoided. A[[M,ψ]]k is defined over a set of Boolean atoms
Atoms, the constants true, false, and a special atom ⊥ that we use to repre-
sent the unknowns due to abstraction. ⊥ occurs solely non-negated in A[[M,ψ]]k.
3BMC can now be performed via two SAT checks. One check considers an over-
approximating completion, marked with ‘+’, where all ⊥’s are assumed to be
true:

A[[M,ψ]]+k := A[[M,ψ]]k[⊥ �→ true]

and the second check considers an under-approximating completion, marked with
a ‘−’, where all ⊥’s are assumed to be false:

A[[M,ψ]]−k := A[[M,ψ]]k[⊥ �→ false].

Here [⊥ �→ z], z ∈ {true, false} denotes the assumption that the special atom
⊥ is assigned to z. This gives us the notion of three-valued satisfiability sat3:

Definition 4 (sat3). Let A[[M,ψ]]k over Atoms be the propositional encoding of
A[M,S0 |=∃ ψ]k, let {A|A : Atoms → {true, false}} be the set of all possible
truth assignments to the atoms in Atoms. Then sat3 is defined as:

sat3(A[[M,ψ]]k) =

⎧
⎨

⎩

false if ∀A : A(A[[M,ψ]]+k ) = false
true if ∃A : A(A[[M,ψ]]−k ) = true
unknown else

In [18] the following theorem has been proven:

Theorem 3. Let A[[M,ψ]]k and A[M,S0 |=∃ ψ]k be as above. Then:

sat3(A[[M,ψ]]k) = A[M,S0 |=∃ ψ]k

Hence, the sat3 result obtained for the encoding corresponds to the model check-
ing result. We now briefly explain how the translation into Boolean satisfiability
works. The details can be found in [18]. Remember that paths of Kripke struc-
tures as well as BTL properties correspond to expressions over A = ASys ∪APC

indexed with i ∈ [0, k] where i denotes a position along a k-prefix. Thus, our
encoding is inductively defined over indexed expressions. Predicates in ASys have
a three-valued domain, whereas the encoding is two-valued and we use the special
atom ⊥ to represent the ‘unknown’. In order to reduce a three-valued problem
to a two-valued one, we use two Boolean atoms for each p ∈ ASys and i ∈ [0, k]:

AtomsSys := {p[u]i, p[b]i | p ∈ ASys, i ∈ [0, k]}
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Atom p[u]i will let us indicate whether p evaluates to unknown or to a definite
value at position i, and p[b]i will let us indicate whether p evaluates to true or
false. For encoding counter predicates (pcj = lm . . . l0) ∈ APC we use the set

AtomsPC := {lj [m]i, . . . , lj [0]i | (pcj = lm . . . l0) ∈ APC , i ∈ [0, k]}
Since a program counter location lm . . . l0 is a binary number, it can be straight-
forwardly encoded as a conjunction of literals over lj [m]i, . . . , lj [0]i. The overall
set of atoms of our encoding is Atoms = AtomsSys ∪ AtomsPC . Now we can
define the Boolean encoding of arbitrary indexed expressions over A and [0, k]:

Definition 5 (Encoding of Logical Expressions). Let A = ASys ∪ APC

be a predicate set with p ∈ ASys and (pcj = lm . . . l0) ∈ APC . Let k ∈ N. The
encoding of expressions e over A indexed over [0, k], written [[e]]k, is defined as:

[[pi = unknown]]k := p[u]i
[[pi = true]]k := ¬p[u]i ∧ p[b]i
[[pi = false]]k := ¬p[u]i ∧ ¬p[b]i
[[pi]]k := [[pi = true]]k ∨ ([[pi = unknown]]k ∧ ⊥)
[[¬pi]]k := [[pi = false]]k ∨ ([[pi = unknown]]k ∧ ⊥)
[[(pcj = lm . . . l0)i]]k :=

∧m
d=0(if ld = 1 then lj [d]i else ¬lj [d]i)

[[¬(pcj = lm . . . l0)i]]k := ¬[[(pcj = lm . . . l0)i]]k

The encoding of e ∨ e′, e ∧ e′, ¬(e ∨ e′) and ¬(e ∧ e′) is trivial and thus omitted.

We can build the formula A[[M,ψ]]k = A[[M ]]k ∧A[[ψ]]k over Atoms where A[[M ]]k
encodes all k-bounded paths of M and A[[ψ]]k constrains paths to those satisfying
ψ. E.g., the property

∧k
i=0 Safei with Safei = ¬(pc1 = 1)i ∨ ¬(pc2 = 1)i gets

encoded to
∧k

i=0(¬l1[0]i ∨ ¬l2[0]i). Each assignment A that satisfies A[[M,ψ]]−k
characterises a path π in M with [π |= ψ] = true. If there is no such assignment
for A[[M,ψ]]+k then ∀π we have [π |= ψ] = false. This reduces 3BMC to SAT.

7 Iterative Refinement with Constraint Reusing

Our SAT-based verification technique combines three-valued abstraction with
iterative refinement. Given a system Sys over V ar, a k-bounded property ψ and
a predicate set Ar, we construct the encoding Ar [[M,ψ]]k of the corresponding
three-valued bounded model checking problem Ar [M |=E ψ]k, where r = 0, 1, . . .
denotes the current refinement iteration. In this section, we introduce the con-
cept of constraint reusing between refinement iterations. Algorithm SATBMC
illustrates our refinement approach and gives a first idea of constraint reusing:
SATBMC gets a model checking problem and a predicate set Ah as an input,
where h ∈ N denotes the refinement level to start with. h is typically 0 but may
be also greater when we combine iterative refinement with bound incrementation
(Sect. 8). Unsatisfiability of the over-approximating completion and satisfiabil-
ity of the under-approximating one let us immediately derive a corresponding
definite model checking result. If this is not possible in iteration r, we apply
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Algorithm 1. SATBMC([M,S0 |=E ψ]k, Ah)
1 definite constraint set C := ∅

2 for r = h to ∞ do
3 if Ar [[M, ψ]]+k ∧ C unsatisfiable then
4 return Ar [M, S0 |=E ψ]k = false

5 if Ar [[M, ψ]]−k ∧ C satisfiable then
6 return Ar [M, S0 |=E ψ]k = true
7 else
8 Ar+1 := Ar ∪ {p | p /∈ Ar}
9 add definite constraints learned in current iteration to C

our counterexample-guided refinement [17] which yields an extended predicate
set Ar+1 := Ar ∪ {p|p predicate over V ar, p /∈ Ar} and a corresponding refined
encoding Ar+1 [[M,ψ]]k. We then run the necessary SAT tests and repeat these
steps until a definite result is obtained. As we can see, the encodings in our algo-
rithm are conjuncted with a constraint set C. A constraint is a clause over the
atoms of the encoding that has been inferred by the solver via clause learning [2].
C is extended with newly learned constraints in each iteration. Thus, constraints
learned in the past are reused in future iterations. The motivation for constraint
reusing is that adding (valid) constraints to a formula reduces the search space
of the corresponding SAT problem, which can improve the solving time.

However, reusing constraints between refinement iterations is not straight-
forward. A clause learned in iteration r is not necessarily a valid constraint in
r + 1. The formulas Ar [[M,ψ]]k and Ar+1 [[M,ψ]]k evidently share a common set
of atoms over which they are defined, but their structure is typically completely
different: The addition of new predicates by refinement can involve extensive
changes of the abstract state space and its encoding. Thus, Ar+1 [[M,ψ]]k can-
not be obtained from Ar [[M,ψ]]k by simply adding more clauses. This makes
our refinement generally incompatible with standard incremental SAT solving
[13] where learned constraints can be reused between consecutive SAT instances
without any restriction. Our novel constraint reusing concept for iterative refine-
ment is based on a check of whether a learned constraint is definite in terms of
the encoded three-valued model checking problem. A definite constraint charac-
terises a temporal property that definitely holds at the current refinement level.
Since definite properties are preserved under refinement (Corollary 1), we can
prove that definite constraints are also valid at any higher refinement level.

We start with a few basics. A learned constraint is a clause C that is syn-
tactically inferred from a formula F by the solver: F � C. The following holds:
(F � C) ⇒ (F |= C), i.e. a syntactic consequence is also a semantic one. If
F |= C holds, we say C is a valid constraint of F . We implemented over- and
under-approximating completions of F = Ar [[M,ψ]]k as assumptions over ⊥.
This has the effect that all learned constraints are assumption-independent [7],
i.e. they are logical consequences irrespective of the value assigned to ⊥. Hence,
we say C has been learned for F if it has been learned for F+ or for F−. Since
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F+ and F− only differ in the assumption over ⊥, we get (F+ � C) ⇒ (F− |= C).
Thus, all C learned for F+ can be reused when solving F− in the same iteration.

We now describe how constraints can be reused between refinement iterations
r < r′. This is feasible for constraints that characterise temporal properties that
definitely hold in iteration r. In order to identify such definite constraints we use
an enhancement of the encoding Ar [[M,ψ]]k based on the Tseytin transformation
(TT) [19] where sub-formulas are represented by auxiliary atoms:

AtomsAux = {p[t]i, p[f ]i | p ∈ Ar
Sys, i ∈ [0, k]}

The enhanced encoding revises Definition 5 in two cases only:

Definition 6 (Enhanced Encoding). Let p ∈ Ar
Sys and i ∈ [0, k]. Then:

[[pi = true]]k := p[t]i [[pi = false]]k := p[f ]i

Hence, definite information with regard to a predicate p at position i can now be
derived from a single literal (e.g. p[t]i), rather than from a conjunction of literals
(e.g. ¬p[u]i ∧ p[b]i) as in the original encoding. Note that a constraint is always
a disjunction of single literals. Thus, only with our enhanced encoding a learned
constraint may tell us something definite about a predicate p. We still need to
put p[t]i, p[f ]i and p[u]i into a relation to correctly encode that a three-valued
predicate can only hold one truth value at a time. According to TT, we conjunct
the overall encoding with the following equivalences:

∧

p∈Ar
Sys

∧k

i=0

(
(p[t]i ↔ ¬p[u]i ∧ p[b]i) ∧ (p[f ]i ↔ ¬p[u]i ∧ ¬p[b]i)

)

Thus, the single auxiliary atoms represent sub-formulas that indicate defi-
nite information with regard to predicates. Let Ar [[M,ψ]]k over Atoms be the
resulting enhanced encoding. We now define the set of definite literals DL over
Atoms as:

DL = {p[t]i, p[f ]i | p ∈ Ar
Sys, i ∈ [0, k]}

∪ {lj [d]i,¬lj [d]i | (pcj = lm . . . l0) ∈ Ar
PC , i ∈ [0, k], d ∈ [0,m]}

DL contains all auxiliary atoms, and all program counter atoms and their
negations. We denote constraints that are purely composed of literals from DL
as definite constraints. BTL formulas corresponding to definite constraints are:

Definition 7 (BTL Formulas Corresponding to Definite Constraints).
Let Ar [[M,ψ]]k be the enhanced encoding of Ar [M,S0 |=∃ ψ]k. Moreover, let C =
c1 ∨ . . . ∨ cn over DL be a definite constraint learned for Ar [[M,ψ]]k. Then the
BTL formula corresponding to C, written btl(C), is inductively defined as:

btl(p[t]i) := pi

btl(p[f ]i) := ¬pi

btl(lj [d]i) :=
∨

(lm...l0)∈Locj ,ld=1(pcj = lm . . . l0)i

btl(¬lj [d]i) :=
∨

(lm...l0)∈Locj ,ld=0(pcj = lm . . . l0)i

btl(c1 ∨ . . . ∨ cn) := btl(c1) ∨ . . . ∨ btl(cn)



Constraint Reusing and k-Induction 137

We get the following lemma wrt. constraints and corresponding BTL formulas:

Lemma 1. Let Ar [[M,ψ]]k be the enhanced encoding of Ar [M,S0 |=∃ ψ]k. More-
over, let C over DL be a definite constraint. Then

Ar [[M,ψ]]k � C ⇒ Ar [M,S0 |=∀ (ψ → btl(C))]k = true

Proof. See http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf.

Hence, even if the current refinement level is too coarse to prove the actual
property of interest ψ, a learned definite constraint C tells us that all paths
satisfying ψ must also satisfy btl(C). This is a definite result of a three-valued
model checking problem with refinement level r. Corollary 1 allows us to trans-
fer this result to all refinement levels r′ > r: Ar [M,S0 |=∀ (ψ → btl(C))]k =
true ⇒ Ar′ [M,S0 |=∀ (ψ → btl(C))]k = true. Next, we show that a constraint
C associated with a definite property ψ → btl(C) is also valid at higher levels.

Lemma 2. Let Ar [[M,ψ]]k be the encoding of Ar [M,S0 |=∃ ψ]k and let C be a
definite constraint. Then

Ar [M,S0 |=∀ (ψ → btl(C))]k = true ⇒ Ar [[M,ψ]]k |= C

Proof. See http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf.

We get the following Corollary that establishes the reusability of definite con-
straints between refinement iterations.

Corollary 2 (Reusability of Definite Constraints). Let Ar [[M,ψ]]k be the
encoding of Ar [M,S0 |=∃ ψ]k. Let C be a definite constraint and r′ > r. Then

Ar [[M,ψ]]k � C Ar′ [[M,ψ]]k |= C

⇐= Lemma 1

=
⇒ Lemma 2

Ar [M,S0 |=∀ (ψ→ btl(C))]k = true
Cor. 1=⇒
Thm. 2 Ar′ [M,S0 |=∀ (ψ→ btl(C))]k = true

Hence, a definite constraint C learned in iteration r implies that ψ → btl(C)
universally holds at r and any higher refinement level r′ as well. Consequently,
C must be also a valid constraint of the encoding in all iterations r′ > r. We
utilise this by determining definite constraints in each iteration and adding them
to the set C that we use as a constraint set of the SAT problems to be solved in
SATBMC. Our concept is based on TT. Thus, it does not lead to an increased
complexity of the SAT problem. In fact, we also use TT to transform the overall
encoding into conjunctive normal form, which introduces further auxiliary atoms.
This does not affect our constraint reusing since we use the same auxiliary atoms
for representing sub-formulas recurring in multiple refinement iterations. After
TT, all clauses purely containing definite literals and auxiliary atoms referring
to definite constraints can be reused between refinement iterations.

http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf
http://github.com/ssfm-up/TVMC/raw/unbounded/proofs.pdf
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We illustrate our constraint reusing concept based on our running exam-
ple. Let A0 [[M,Safe0 ∧ Safe1]]1 with A0 =

{
(pc1 = 0), (pc1 = 1), (pc2 = 0),

(pc2 = 1)
}

and Safei = ¬(pc1 = 1)i ∨ (pc2 = 1)i be the encoding of the base
case of checking safety of the mutual exclusion system. The atom set used
for the encoding is Atoms = {l1[0]0, l2[0]0, l1[0]1, l2[0]1, }. SAT solving yields
unknown, since no information about the semaphore is considered at the cur-
rent abstraction level. However, the solver infers the following constraint clauses(¬l1[0]1 ∨ ¬l2[0]1

)
and

(
l1[0]1 ∨ l2[0]1

)
with the corresponding temporal logic

formulas:
(
(pc1 =0)1 ∨ (pc2 =0)1

)
and

(
(pc1 =1)1 ∨ (pc2 =1)1

)

Hence, at position 1 of any execution path either only process 1 or only process
2 is at its critical location. According to our corollary, the constraint clauses
that characterise this property can be reused in all future refinement iterations
for pruning the search space of SAT. In the next iteration, we add the predicate
p := (y=1) and SAT solving infers another reusable constraint clause (p[f ]1). It
tells us that at position 1 of any path the semaphore will be occupied. Next, we
show how we integrated SATBMC into an incremental k-induction procedure.

8 Implementation

We implemented an automatic verification tool for concurrent software systems1.
Our tool extends our existing SAT-based bounded model checking framework
[17] by integrating the k-induction principle with base case and inductive step,
which makes our formerly incomplete approach complete. It employs three-
valued abstraction in order to reduce the complexity of the state space encod-
ings. Abstraction is combined with iterative refinement. As an input we take
a system Sys in a C-like syntax with int, bool and semaphore as data types,
an initial state predicate Init and a safety predicate Safe. To verify whether
[Sys, Init |=∀ always Safe] holds, we determine the abstract model checking
problems corresponding to the base case and step of k-induction

[Base]k = [M,S0 |=∃
∧k−1

i=0 Safei ∧ ¬Safek]k over ArB

[Step]k+1 = [M,S |=∃
∧k

i=0Safei∧ ¬Safek+1∧ LoopFree(0..k+1)]k+1 over ArS

where ArB denotes the predicate set used for the three-valued abstraction of the
base case and ArS the set used for the inductive step. The bound k and the
predicate sets are so far only uninitialised parameters and instead of explicitly
constructing the Kripke structure M and exploring its state space, we take the
bounded model checking problems as the input of our k-induction algorithm:

The variables rB and rS indicate the current refinement iteration of the base
case and of the inductive step. Both are initialised with 0. The corresponding
sets of abstraction predicates ArB and ArS are also initialised by the k-induction

1 Available at www.github.com/ssfm-up/TVMC/tree/unbounded.

www.github.com/ssfm-up/TVMC/tree/unbounded
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Algorithm 2. k-induction([Base]k, [Step]k+1)

1 rB := 0, ArB := initialiseArB ()
2 rS := 0, ArS := initialiseArS ()
3 for k = 0 to ∞ do
4 if (SATBMC([Base]k, ArB ) = true) then
5 return ”safety property fails”
6 if (SATBMC([Step]k+1 , ArS ) = false) then

7 return ”safety property holds”

algorithm. Initially, they contain all control flow predicates and potentially fur-
ther predicates over system variables that are referenced in the property to be
checked. After the initialisation, k-induction iterates over the bound. In each
k-iteration SATBMC is called for the bounded model checking problems asso-
ciated with the base case and with the step. Within SATBMC we have a further
iteration: The set of abstraction predicates is iteratively extended via refinement.
Each refinement iteration consists of the propositional encoding of the three-
valued model checking problem for the current predicate set and the execution
of the corresponding SAT checks. SATBMC terminates once a refinement level
is reached where a definite model checking result can be obtained. k-induction
terminates when it can be either proven or refuted that safety holds for the
system. Termination is guaranteed for finite-state systems.

As another new feature, our tool supports constraint reusing on three levels.
(I): Constraints are reused between bound iterations k < k′ based on incre-
mental SAT with assumption literals [13]. (II): Similarly, we reuse assumption-
independent constraints between the over- and the under-approximating com-
pletion in each refinement iteration r. (III): Finally, we reuse definite constraints
between refinement iterations r <r′ based on the results from Sect. 7. The dia-
gram below illustrates the directions of constraint reusing for the base case:

Ar [Base]+k
(II)

−−−−→ Ar [Base]−k Ar′ [Base]+k
(II)

−−−−→ Ar′ [Base]−k

Ar [Base]+k ′
(II)

−−−−→ Ar [Base]−k ′ Ar′ [Base]+k ′
(II)

−−−−→ Ar′ [Base]−k ′

(I) increment bound

(III)

refinement

(III)

refinement

(I) increment bound

9 Experimental Results

We experimentally investigated the impact of our novel clause reusing con-
cepts (II) and (III) on the verification time. While detecting safety violations in
faulty systems was generally very fast, we focused in our case study on proving
safety of correct systems: We verified deadlock-freedom of a semaphore-based
dining philosophers algorithm and we proved mutual exclusion of Dijkstra’s
mutex algorithm [5]. In each benchmark we considered systems with increasing
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numbers of processes. A general optimisation that we used was checking the
over-approximation of the base case always first and in case of a false result
skipping the then redundant under-approximation check (see Definition 4 and
Theorem 3). Analogously, we always checked the under-approximation of the
step first and in case of a true result skipped the over-approximation check. The
intuition behind this is that for safe systems we can always expect a sequence
of iterations where the base case fails and the step holds until in the final itera-
tion the step fails, which corresponds to a correctness result. The experimental
results are depicted below.

Benchmark Processes Final bound Refinements
(base/step)

Time with
(I) only

Time with
(I), (II) and
(III)

Philosophers 2 3 1/2 0.45 s 0.44 s

3 6 2/3 0.75 s 0.66 s

4 12 3/4 4.67 s 3.85 s

5 24 4/5 91.1 s 68.5 s

Dijkstra 2 12 1/6 4.80 s 3.32 s

3 16 1/9 31.87 s 22.21 s

4 21 2/12 73min 52min

5 25 2/15 244min 158min

The experiments were conducted on a 3.4 GHz Core i7 with 8 GB memory. As
we can see, our two novel constraint reusing concepts (II) and (III) together
could lead to noticeable performance improvements in comparison to only using
the established inter-bound constraint reusing (I). The computational savings
were more evident for Dijkstra’s algorithm where the number of refinement iter-
ations was generally higher, i.e. where there were more capabilities for inter-
refinement clause reusing. When we investigated the individual speed-up effect
of (II) and of (III), we observed that (II) had a stronger impact when the number
of refinements was small, whereas for cases with many refinements the perfor-
mance impact of the two concepts was nearly equally strong, e.g. for Dijkstra
4: savings of 12 min with (II) only, savings of 14 min with (III) only, and of
21 min both together. This also shows that there is an overlap of savings due
to (II) and due to (III). The experiments also revealed that it is beneficial to
abstract and refine the base case and the step individually. The base case could
be always accomplished based on fewer refinements, i.e. a less complex encoding.
This advantage would not come into effect with a joint abstraction refinement
of base case and step.

10 Related Work

k-induction was first introduced in [16] as a technique for verifying hardware
systems that correspond to finite-state transition models. It extends classical
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bounded model checking from falsification to verification. It has been combined
with incremental SAT, which allows to reuse learned constraints between bound
iterations [7]. In comparison to our approach, the bound is the only dimension
of incrementation. Since hardware is generally simpler than software, there is no
concept for abstraction refinement used in the above-mentioned papers. Our soft-
ware verification technique adds the level of abstraction as a second dimension
of incrementation and we show that constraint reusing is also feasible between
refinement iterations. Our major focus is the verification of safety properties of
concurrent systems, e.g. mutual exclusion and deadlock-freedom. In the context
of software verification, k-induction has been used for checking safety of loop
programs [1,6,9,10,14]. In these papers, the bound k determines the number of
loop unwindings. The unwound program is encoded into a formula that can be
processed by an SMT solver. SMT generally allows for more compact encod-
ings than SAT. While [1,6,9,10,14] directly operate on the concrete program, we
follow the abstraction refinement paradigm [4]. SMT-based predicate abstrac-
tion [12] allows us to generate a propositional state transition encoding that is
compact enough to be efficiently processed by a SAT solver. In particular, our
abstraction approach enables to omit details along the explored paths that are
not relevant for solving the verification problem. Missing but necessary details
are iteratively added by refinement, where our constraint reusing concept alle-
viates the computational overhead of the iterative approach. In [1,6,9,10,14]
the performance of verification is improved by inferring loop invariants that are
added as assumptions to the program, which is a particular form of constraint
using in the context of loop programs. While earlier works are based on manually
specified invariants [6], recent approaches use automatic invariant generation [14]
or refine invariants in each bound iteration [1]. Regarding background theories,
k-induction approaches to the verification of loop programs range from integer
arithmetic [9], real arithmetic and uninterpreted functions [1] to pointers [10].

11 Conclusion

We introduced a safety verification technique for concurrent software systems
based on a combination of three-valued abstraction refinement and SAT-based
k-induction. The approach extends our prior work on (incomplete) three-valued
bounded model checking [17,18]. The main contributions of this paper are as
follows: We showed that, after the application of abstraction, base case and
inductive step of the k-induction technique can be formulated as bounded model
checking problems and encoded in propositional logic, which facilitates complete
verification. We integrated the k-induction approach into a twofold-iterative ver-
ification procedure that enables to reach the necessary bound and the right level
of abstraction in order to prove or refute safety properties. We enhanced this
iterative approach by adopting k-incremental SAT solving and by extending the
idea of reusing logical constraints to two new levels: In our three-valued set-
ting, constraints can be reused between over- and under-approximations and
also between refinement iterations. The latter is a non-straightforward concept
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that we proved to be sound. In experiments we demonstrated the effectiveness
of our approach as formal method for software model checking and we showed
that our novel constraint reusing concepts can lead to significant computational
savings.
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Abstract. Runtime verification is concerned with monitoring program
traces. In particular, stream runtime verification (SRV) takes the pro-
gram trace as input streams and incrementally derives output streams.
SRV can check logical properties and compute temporal metrics and
statistics from the trace. We present TeSSLa, a temporal stream-based
specification language for SRV. TeSSLa supports timestamped events
natively and is hence suitable for streams that are both sparse and fine-
grained, which often occur in practice. We prove results on TeSSLa’s
expressiveness and compare different TeSSLa fragments to (timed)
automata, thereby inheriting various decidability results. Finally, we
present a monitor implementation and prove its correctness.

1 Introduction

The essence of software verification is to check whether a program meets its spec-
ification. Runtime verification (RV) is an applied formal technique that has been
established as a complement to traditional verification techniques such as model
checking [19,22]. Compared to static verification, RV considers only a single run
of a system and checks whether it satisfies a property. Thus, RV can be seen as
a lightweight, but formal extension to testing and debugging. RV can be applied
offline to previously recorded traces or online to evaluate correctness properties
at the runtime of the system under scrutiny. Typically, a property to be checked
is specified as a logical formula, e.g. in (past time) LTL, and then synthesized to
a monitor which can evaluate a run [5,20]. Stream runtime verification (SRV) [7],
as pioneered by the language LOLA [10,15], takes a different approach by incre-
mentally relating a set of input streams to a set of output streams. This allows
not only the monitoring of correctness properties but also of quantitative mea-
sures. In this paper we introduce the novel temporal stream-based specification
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language TeSSLa which is tailored for SRV of cyber-physical systems, where tim-
ing is a critical issue. While traditional SRV approaches process event streams
without considering timing information, TeSSLa supports timestamped events
natively, which allows efficient processing of streams with sparse and fine-grained
event sequences. Preliminary versions of TeSSLa have already been studied with
regard to their usability to monitor trace data generated by embedded tracing
units of processors [11]; how to implement stream-based monitors on hardware
has been studied in theory [23] and practice [12]. These versions share the basic
idea of transforming timed event streams but they did not allow for recursive
equations and comprised only a set of ad-hoc operators. In this paper we define a
minimal language with support for recursive definitions that allows us to obtain
strong guarantees for evaluation algorithms, expressiveness results and mean-
ingful fragments. While the practical applicability of such a language has been
demonstrated by the previous papers, these papers lack a concise and clear the-
oretical basis and investigation. As an example for SRV, consider the following
specification which checks whether a measured temperature stays within given
boundaries. For every new event (measurement) on the temperature stream, new
events on the derived streams low, high and unsafe are computed:

low := temperature < 3
high := temperature > 8

unsafe := low ∨ high

6 2 1 5 9

ff tt tt ff ff

ff ff ff ff tt

ff tt tt ff tt

temperature

low

high

unsafe

SRV is a combination of complex event processing (CEP) and traditional RV
approaches: Streams are transformed into streams and there is not only one
final verdict but the output is a stream of the property being evaluated at every
temperature change. Furthermore, the user gets more detailed information about
why an error occurred by being able to distinguish between the two separate
causes low and high.

In the rest of this section we introduce the main features of TeSSLa and
contrast them with related specification languages. The next section presents
the language and its semantics formally, in Sect. 3 we present several results
regarding the expressiveness of TeSSLa and in Sect. 4 we focus on comparing
(fragments of) the language to variants of (timed) automata. Finally in Sect. 5
we discuss different approaches to implement TeSSLa monitors and present our
TeSSLa tool suite. An extended preprint version of this paper is available as [9].

Asynchronous Streams. In the previous example of traditional SRV, every stream
has an event for every step of the system. TeSSLa requires the events of all
streams to be in a global order, but doesn’t require all streams to have simul-
taneous events. As a consequence, both sparse and high-frequency streams can
be modeled. As cyber-physical systems often give rise to streams at unstable fre-
quencies or continuous signals, this asynchronous setting is especially suitable.
Consider as an example a ring buffer where the number of write accesses should
not exceed the number of read accesses too much:
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numReads := count(read)
numWrites := count(write)

safe := numWrites − numReads ≤ 2

read

write

numReads 0 1 2 3

numWrites 0 1 2 3 4

safe tt ff tt

Read and write events occur independently at different frequencies. The derived
stream numReads (numWrites) counts the number of events of the input stream
read (write). While the read and write streams contain only discrete events, the
number of events can be seen as a piece-wise constant signal with the initial
value of 0. The difference between the two signals is evaluated every time one
of the two signals changes its value using the last known value of both signals.
We call this concept signal semantics: TeSSLa handles internally only streams
of discrete events, but one can express operators following signal semantics in
TeSSla and hence these discrete events can be seen as those points in time
where the signal changes its value. In these introductory examples operators are
automatically lifted to signal semantics, which is formally introduced as the slift
operator later.

Recursive Equations. Like existing SRV approaches, TeSSLa relates a set of input
streams to a set of output streams via mutually recursive equations, which allows
self-references to the past, e.g. counting events of a stream x as in the previous
example is expressed in TeSSLa as follows:

count := merge(last(count , x) + 1, 0)

The last operator outputs the last known value of the count stream, on every
event of the stream x. The base of the recursion is provided by merging with
0, which is a stream with one initial event of value 0. Since last only refers to
events strictly lying in the past, the unique solution of such recursive equations
can be computed incrementally (see Sect. 2).

Time as First-Class Citizen. In TeSSLa, every event has a timestamp which can
be accessed via the time operator. Since every event has a timestamp which is
referring to a global clock and is unique for its stream, accessing the timestamps
of events serves two purposes: Accessing the global order of events by comparing
timestamps and performing calculations with the timestamps. Consider e.g. the
following specification which checks whether the lapse of time between two write
events exceeds 5 time units and outputs the overtime if it does:

diff := time(write) − last(time(write),write)
error := filter(diff > 5, diff − 5)

2 5 7 15 18

write

3 2 8 3diff

3error

In the example, the stream diff −5 is filtered by the condition diff > 5. Note
that the property violation is only reported when the delayed event happens. To
report such errors as soon as possible, TeSSLa has the ability to create events at
certain points in time via the delay operator. The following specification checks
the same property but raises a unit event on the error stream as soon as we
know that there was no write event in time:
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timeout := const(5)(write)
error := delay(timeout ,write)

2 5 7 12 15 18
write

5 5 5 5 5timeout

error

The delay function works as a timer, which is set to a timeout value with
the first argument and reset with any event on the second argument. In the
example, the function const(5)(write) maps the values of events to the constant
value of 5, which is then used as timeout value. While in all the other examples
the derived streams only contain events with timestamps taken from the input
streams, in this example events with additional timestamps are generated. Like
last, the delay operator can be used in recursive equations, for example the
equation

period := merge(const(5)(delay(period ,unit)), 5)

produces an infinite stream with an event every 5 time units. The merge is used
to provide a base case for the recursion and const is used to map the value of
the generated events to 5 so that they can be used as the new timeout value.

Efficient Parallel Evaluation. TeSSLa’s design follows two principles to allow
efficient evaluation on parallel hardware: Explicit memory usage and local oper-
ator composition. If TeSSLa operates only on streams with bounded data-types
of constant size, then the operators only need finite memory because every oper-
ator only needs to store at most one data value. This allows implementations
on systems without random access memory, e.g. FPGAs or embedded systems.
TeSSLa consists of a small set of primitive operators which can be flexibly com-
bined. The TeSSLa semantics is defined in a way that allows a local composition
of the individual operators, which can be realized via message passing without
the need for global synchronization. Because of an explicit notion of progress for
every stream describing how far the stream is known, local message passing is
also sufficient to compute solutions for the recursive TeSSLa equations. Imple-
menting an efficient evaluation on FPGAs is part of our EU research project
COEMS1.

Related Work and Comparison. LOLA [10,15] is a synchronous stream
specification language in the following sense: Events arrive in discrete steps and
for every step, all input streams provide an event and all output streams pro-
duce an event, which means that it is not suitable for handling events with arbi-
trary real-time timestamps arriving at variable frequencies. The not yet formally
published RTLola [16] is an extension of LOLA which introduces asynchronous
streams to perform aggregations over real-time intervals. A major difference
between RTLola and TeSSLa is that RTLola focuses on splitting input streams
and aggregating over them, whereas TeSSLa provides a more general framework
that in particular allows the (recursive) definition of aggregation operators while
giving strict memory guarantees at the same time. Focus [8] is a formalism for the
specification of stream-based systems. Their timed streams progress by discrete

1 https://www.coems.eu.

https://www.coems.eu
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ticks that separate events inbetween, thereby allowing multiple events at the
same timestamp. The synchronous stream programming languages Lustre [18],
Esterel [6] and Signal [17], the stream specification language Copilot [25] as well
as the class of functional reactive programming (FRP) languages [14] allow the
description of the transformation in a linear style, i.e. an input stream is read
chronologically and is thereby evaluated. TeSSLa also supports linear evalua-
tion because there are no future-references and the number of past-references
is limited by the specification size. The only complement to linear evaluation is
the creation of additional events via the delay operator. Quantitative regular
expressions (QREs) [2] and logics like Signal Temporal Logic (STL) [24] and
Time-Frequency Logic (TFL) [13] allow the mapping from complete streams to
one final verdict/quantity. They cannot generally be evaluated in a linear way.
The idea used in TeSSLa of supporting signals and event streams has also been
used for Timed Regular Expressions [4], but those have two explicitly differ-
ent stream types, where TeSSLa internally represents signals as event streams.
Recently, synthesis of hardware-based monitors from stream specifications has
become an important field: For LOLA [10] constant memory bounds for an algo-
rithm that evaluates well-formed specifications exist and for LOLA 2.0 [15] future
references must be eliminated to gain constant memory bounds. There has been
work on synthesis of STL to FPGAs in different ways as well [21,26].

2 Formal Definition of the TeSSLa Core Language

In this section we introduce syntax and semantics of the minimal core of TeSSLa.
In examples we use parametrized definitions, e.g. merge(x, y) := . . . on top,
which are expanded to their definitions until only core operators remain.

Preliminaries. Given a partial order (A,≤), a set D ⊆ A is called directed if
∀a, b ∈ D : a ≤ b∨b ≤ a. (A,≤) is called directed-complete partial order (dcpo) if
there exists a supremum

∨
D for every directed subset D ⊆ A. Let f ∈ A → B be

a function and (A,≤), (B,≤′) partial orders. f is called monotonic if it preserves
the order, i.e. ∀a1, a2 ∈ A : a1 ≤ a2 ⇒ f(a1) ≤′ f(a2). f is called continuous if it
preserves the supremum, i.e.

∨
f(D) = f(

∨′
D) for all directed subsets D ⊆ A.

By the Kleene fixed-point theorem, every monotonic and continuous function
f : A → A has a least fixed point μf if (A,≤) is a dcpo with a least element ⊥.
μf is the least upper bound of the chain iterating f starting with the bottom
element: μf =

∨{fn(⊥) | n ∈ N}.

Syntax. A TeSSLa specification ϕ consists of a set of possibly mutually recursive
stream definitions defined over a finite set of variables V where an equation has
the form x := e with x ∈ V and

e ::= nil | unit | x | lift(f)(e, . . . , e) | time(e) | last(e, e) | delay(e, e).

All variables not occuring on the left-hand side of equations are input variables.
All variables on the left-hand side are output variables. We call a TeSSLa specifi-
cation flat if it does not contain any nested expressions. Every specification can
be represented as a flat specification by using additional variables and equations.
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Semantics. We define the semantics of TeSSLa in terms of an abstract time
domain which only requires a total order and corresponding arithmetic operators:

Definition 1. A time domain is a totally ordered semi-ring (T, 0, 1,+, ·,≤) that
is not negative, i.e. ∀t∈T 0 ≤ t.

We extend the order on time domains to the set T∞ = T ∪ {∞} with
∀t∈T t < ∞.

Conceptually, streams are timed words that are known inclusively or exclu-
sively up to a certain timestamp, its progress, that might be infinite. A stream
might contain an infinite number of events even if its progress is finite.

Definition 2. An event stream over a time domain T and a data domain D is
a finite or infinite sequence s = a0a1 · · · ∈ SD = (T · D)ω ∪ (T · D)+ ∪ (T · D)∗ ·
(T∞T · {⊥}) where a2i < a2(i+1) for all i with 0 < 2(i + 1) < |s| (|s| is ∞ for
infinite streams). The prefix relation over SD is the least relation that satisfies
s � s, u � s if uv � s and ut′⊥ � s if ut � s, t′ < t, t ∈ T∞ and t′ ∈ T.

We say a stream has an event with value d at time t if in its sequence d
directly follows t. We say a stream is known at time t if it contains a strictly
larger timestamp or a non-strictly larger timestamp followed by a data value
or ⊥. Where convenient, we also see streams as functions s ∈ T → D ∪ {⊥, ?}
such that s(t) = d if the stream has value d at time t, s(t) = ⊥ if it is known to
have no value, and s(t) = ? otherwise. We refer to the supremum of all known
timestamps of a stream as inclusive or exclusive progress, depending on whether
it is itself a known timestamp. The prefix relation realises the intuition of cutting
a stream at a certain point in time while keeping or removing the cutting point.

In the following, we present the denotation of a specification ϕ as a function
between input streams and output streams.

Definition 3 (TeSSLa semantics). Given a specification ϕ of equations
yi := ei, every ei can be interpreted as a function of input streams s1, . . . , sk

and output streams s′
1, . . . , s

′
n, that is composed of the primitive functions whose

denotation is given in the rest of this section. Input variables are mapped to
input streams, �xi�s1,...,sk,s′

1,...,s′
n

= si and output variables to output streams,
�yi�s1,...,sk,s′

1,...,s′
n

= s′
i. Thus for fixed input streams s1, . . . , sk and every ei, we

obtain a function �ei�s1,...,sk
∈ SD

′
1

× . . . × SD′
n

→ SD
′
i

and in combination a
function �e1, . . . , en�s1,...,sk

∈ SD
′
1
× . . . × SD′

n
→ SD

′
1
× . . . × SD′

n
. We now define

the denotation of a specification ϕ as the least fixed-point of this function.

�ϕ� ∈ SD1 × . . . × SDk
→ SD

′
1
× . . . × SD′

n

�ϕ�(s1, . . . , sk) = μ (�e1, . . . , en�s1,...,sk
)

The function �e1, . . . , en�s1,...,sk
is monotonic and continuous because all

primitive TeSSLa functions defined later in this section are monotonic and con-
tinuous and both properties are closed under function composition and carte-
sian products. (SD,�) and by extension (SD1 × . . . × SDn

,� × . . . �) are dcpos.
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By the Kleene fixed-point theorem �e1, . . . , en�s1,...,sk
has a least fixed point,

which is the least upper bound of its Kleene chain.
Next we give the semantics of the primitive TeSSLa functions. The depen-

dency of the input and output streams s1, . . . , sk, s′
1, ..., s

′
n is assumed implicitly.

Definition 4. Nil is a constant for the completely known stream without any
events: �unit� = ∞ ∈ SD.

We use the unit type U = {�} for streams that can carry only the single
value �.

Definition 5. Unit is a constant for the completely known stream with a single
unit event at timestamp zero: �unit� = 0 � ∞ ∈ SU

The following functions are given by specifying two conditions: the first for
positions where an output event occurs, and the second where no output event
occurs. Thereby the progress of the stream is defined indirectly as the position
where the output can no longer be inferred from these conditions.

Definition 6. The time operator returns the stream of the timestamps of
another stream �time(e)� = time(�e�) where time ∈ SD → ST is defined as
time(s) = s′ such that

∀ts
′(t) = t ⇔ s(t) ∈ D ∀ts

′(t) = ⊥ ⇔ s(t) = ⊥.

The lift operator lifts an n-ary function f from values to streams. The nota-
tion A1 × . . . × An � B denotes the set of functions where all Ai and B have
been extended by the value ⊥.

Definition 7. Unary lift is defined as �lift(f)(e)� = lift1(f)(�e�) where lift1 ∈
(D � D

′) → (SD → SD′) is given by lift1(f)(s) = s′ such that

∀t,d∈D′s′(t) = d ⇔ s(t) ∈ D ∧ f(s(t)) = d

∀ts
′(t) = ⊥ ⇔ s(t) = ⊥ ∨ s(t) ∈ f(s(t)) = ⊥.

Definition 8. Binary lift is given as �lift(f)(e1, e2)� = lift2(f)(�e1�, �e2�) where
lift2 ∈ (D1 × D2 � D

′) → (SD1 × SD2 → SD′) is given by lift2(f)(s, s′) = s′′ s.t.

∀t,d∈D′s′′(t) = d ⇔ (s(t) ∈ D1 ∨ s′(t) ∈ D2) ∧ known(t) ∧ f(s(t), s′(t)) = d

∀ts
′′(t) = ⊥ ⇔ (s(t) = ⊥ ∧ s′(t) = ⊥) ∨ known(t) ∧ f(s(t), s′(t)) = ⊥

where known(t) := s(t) �= ? ∧ s′(t) �= ?.

The binary lift can naturally be extended to an n-ary lift by recursively
combining two streams into a stream of tuples or partially applied functions
until the final result is obtained. Alternatively, the scheme of the binary lift can
be easily extended to higher arities.
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Example 1. Merge combines events of two streams, prioritising the first one.

merge(x, y) := lift(mergeaux)(x, y)

mergeaux(a �= ⊥, b) := a

mergeaux(⊥, b) := b

6 4 2

5 7

6 5 4 2

x

y

merge(x, y)

Example 2. Const maps the values of all events of the input stream to a constant
value: const(c)(a) := lift(constaux(c))(a) with constaux(c)(a) := c. Using const
we can lift constants into streams representing a constant signal with this value,
e.g. true := const(true)(unit) or zero := const(0)(unit).

Definition 9. The last operator takes two streams and returns the previous
value of the first stream at the timestamps of the second. It is defined as
�last(e1, e2)� = last(�e1�, �e2�) where lastD,D′ ∈ SD × SD′ → SD is given as
last(s, s′) = s′′ such that

∀t,d∈Ds′′(t) = d ⇔ s′(t) ∈ D
′ ∧ ∃t′<ts(t′) = d ∧ noData(t′, t)

∀ts
′′(t) = ⊥ ⇔ s′(t) = ⊥ ∧ defined(t) ∨ ∀t′<ts(t′) = ⊥

where noData(t, t′) := ∀t′′|t<t′′<t′s(t′′) = ⊥ and defined(t) := ∀t′<ts
′′(t′) �= ?.

Note that while TeSSLa is defined on event streams, last realizes some essen-
tial aspects of the signal semantics: With this operator one can query the last
known value of an event stream at a specific time and hence interpret the events
on this stream as points where a piece-wise constant signal changes its value.

Example 3. By combining the last and the lift operators, we can now realize
the signal lift semantics implicitly used in the introduction:
slift(f)(x, y) := lift(sliftaux(f))(x′, y′) with

x′ := merge(x, last(x, y)) and
y′ := merge(y, last(y, x)).

sliftaux(f)(a �= ⊥, b �= ⊥) := f(a, b)
sliftaux(f)(⊥, b) := ⊥
sliftaux(f)(a,⊥) := ⊥

1 5 3 1

2 4

1 1 5 3 1

2 2 2 4

3 7 5 5

x

y

x′
y′

x + y

Example 4. In order to filter an event stream with a dynamic condition, we
apply the last known filter condition to the current event:
filter(z, x) := lift(filteraux)(merge(z, last(z, x)), x)

filteraux : B × A � A

filteraux(c �= true, a) = ⊥
filteraux(true, a) = a

tt ff

tt tt ff ff

z

x

z′
filter(z, x)

Definition 10. The delay operator takes delays as its first argument. After a
delay has passed, a unit event is emitted. A delay can only be set if a reset event
is received via the second argument, or if an event is emitted on the output.
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Formally, �delay(e1, e2)� = delay(�e1�, �e2�) where delay
D

∈ ST\{0} × SD → SU

is given as delay(s, s′) = s′′ such that

∀ts
′′(t) = � ⇔ ∃t′<ts(t′) = t − t′ ∧ setable(t′) ∧ noreset(t′, t)

∀ts
′′(t) = ⊥ ⇔
defined(t) ∧ ∀t′<ts(t′) �= ? ∧ s(t′) �= t − t′ ∨ unsetable(t′) ∨ reset(t′, t)

where setable(t) := s′′(t) = � ∨ s′(t) ∈ D, unsetable(t) := s′′(t) = ⊥ ∧ s′(t) = ⊥,
noreset(t, t′) := ∀t′′|t<t′′<t′s′(t′′) = ⊥ and reset(t, t′) := ∃t′′|t<t′′<t′s′(t′′) ∈ D.

In many applications the delay operator is used in simplified versions: In the
first example of the introduction that uses the delay operator, the delay and the
reset argument can be the same because the delay is used only in non-recursive
equations and every new delay is a reset, too. If a periodical event pattern is
generated independently from input events then the second argument can be set
to unit because only an initial reset event is needed. The full complexity of the
delay operator is only needed if the delay is used in recursive equations with
input dependencies and ensures that the fixed-point is unique.

We can observe that all basic functions are monotonic and continuous. From
the fact, that these properties are closed under composition and the smallest
fixed-point is determined by the Kleene chain, we can therefore conclude:

Proposition 1. The semantics of a TeSSLa specification is monotonic and con-
tinuous in the input streams.

In other words, the semantics will provide an extended result for an extended
input and is therefore suited for online monitoring.

We can further observe that the pre-fixed-points on the Kleene chain have
the following property: the progress only increases a finite number of times until
a further event has to be appended. This is due to the basic functions that do
handle progress in this way. We therefore obtain:

Theorem 1. For a specification ϕ every finite prefix of �ϕ�(s1, . . . , sk) can be
computed assuming all lifted functions are computable. Assuming they are com-
putable in O(1) steps, the prefix can be computed in O(k · |ϕ|) steps where k is
the number of events over all involved streams.

Note that in case the specification contains no delay output streams cannot
contain any such timestamps that did not occur already in the inputs. Further
note, that fixed-points might contain infinitely many positions with data values
(in case of delay) and we can thus only compute prefixes. A respective monitor
would exhibit infinite outputs even for finite inputs.

Due to Proposition 1 we can reuse a previously computed fixed-point if new
input events occur and hence also compute the outputs incrementally.

Well-Formedness. While the least fixed-point is unique it does not have to
be the only fixed-point. In that case, the least fixed-point is often the stream
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with progress 0 or some other stream with too little progress and one would
be interested in (one of) the maximal fixed-points. Since the largest fixed-points
would be more difficult to compute, especially in the setting of online monitoring,
we define a fragment for which a unique fixed-point exists.

Definition 11. We call a TeSSLa specification ϕ well-formed if every cycle
of the dependency graph (of the flattened specification) contains at least one
delayed-labelled edge. The dependency graph of a flat TeSSLa specification
ϕ of equations yi := ei is the directed multi-graph G = (V,E) of nodes
V = {y1, . . . , yn}. For every yi := ei the graph contains the edge (yi, yj) iff
yj is used in ei. We label edges corresponding to the first argument of last or
delay with delayed.

Theorem 2. Given a well-formed specification ϕ of equations yi := ei and input
streams s1, . . . , sk then μ(�e1, . . . , en�s1,...,sk

) is the only fixed-point.

Proof. From the Kleene fixed-point theorem we know μ (�e1, . . . , en�s1,...,sk
) =⊔{�e1, . . . , en�n

s1,...,sk
(⊥) | n ∈ N}. Because ϕ is well-formed, every �ei�s1,...,sk

is either constant or contains at least one last or delay. The input
streams s1, . . . , sk limit progress, i.e. the maximal timestamp produced, of
�ei�s1,...,sk

. The progress strictly increases with every step of the iteration of
�e1, . . . , en�s1,...,sk

in the Kleene chain until the limit given by the input streams
is reached. Every other fixed-point of �e1, . . . , en�s1,...,sk

must be an extension of
the least fixed-point, but the least fixed-point has already the maximal progress
permitted by the input streams.

3 Expressiveness of TeSSLa

We discuss the expressiveness of four different TeSSLa fragments: TeSSLa spec-
ifications without the delay operator can only produce events with timestamps
which are already included in the input streams and TeSSLa specifications with
the delay operator can produce arbitrary event patterns even without any input
event. On the other hand we distinguish between TeSSLa specifications which
use only bounded data structures, which can only consider finitely many past
events, and those with unbounded data structures which can consider infinitely
many past events in the computation of new events. For an overview of the
different TeSSLa fragments see Fig. 1 at the end of the next section.

To characterize functions which can be expressed in TeSSLa we define times-
tamp conservatism and future independence in addition to monotonicity and
continuity. For a stream a ∈ SD we denote with T (a) the set of timestamps
present in the stream a and for multiple streams T (a1, . . . , an) :=

⋃
1≤i≤n T (ai).

Definition 12 (Timestamp Conservatism). We call a function f ∈ SD1 ×
. . . × SDk

→ SD
′
1

× . . . × SD′
n

on streams timestamp conservative iff it does not
introduce new timestamps, i.e. for input streams a ∈ SD1 × . . . × SDk

and output
streams b ∈ SD

′
1
× . . . × SD′

n
we have f(a) = b implies T (a) ⊇ T (b).
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Note that TeSSLa specifications without delay are timestamp conservative
because only delay can introduce new timestamps.

For a stream a ∈ SD we denote with a|t the prefix of a with progress t.

Definition 13 (Future Independence). We call a function f ∈ SD1 × . . . ×
SDk

→ SD
′
1

× . . . × SD′
n

on streams future independent iff output events only
depend on current or previous events, i.e. for input streams a ∈ SD1 × . . . ×
SDk

and output streams b ∈ SD
′
1

× . . . × SD′
n

we have f(a) = b implies
∀t∈T f(a1|t, . . . , ak|t) = (b1|t, . . . , bn|t).

Note that every TeSSLa specification is future independent because the oper-
ators last and delay are the only operators referring to events with different
timestamps and they refer only to previous events.

Theorem 3 (Expressiveness of TeSSLa Without Delay). Every function
f ∈ SD1 × . . .×SDk

→ SD
′
1
× . . .×SD′

n
on streams can be represented as a TeSSLa

specification without delay iff it is (a) monotonic and continuous, (b) timestamp
conservative and (c) future independent.

Proof Sketch. Represent the function f as the iterative function f̃(m, d, t) = m′

taking a memory state m, the current input values d, and the corresponding
current timestamp t and returning the new memory state m′. Output events
for all output streams can be derived from m′. Because f is monotonic it is
sufficient to compute the output events step by step; because f is future inde-
pendent it is sufficient to allow f̃ to store arbitrary information about the past
events; and because f is timestamp conservative it is sufficient to execute f̃
for every timestamp in the input events. Translate f(x1, . . . , xk) = y1, . . . , yn

into an equivalent TeSSLa specification: t := time(merge(x1, . . . , xk)), m :=
lift(f̃)(last(m, t), x1, . . . , xk, t) and ∀i≤n yi := lift(õi)(m).

If all data types in the TeSSLa specification ϕ are bounded, f̃ uses a finite
memory cell m, which can only store a constant number of current and previous
events. Monotonicity guarantees that we can compute output events incremen-
tally and by future independence we know that knowledge about the previous
events is sufficient to derive new events. From the combination of both proper-
ties we know that it is not necessary to queue (arbitrarily large) event sequences
to compute the output events. Instead one memory cell (capable of storing one
element of the data domain) per delay and per last operator in the specification
is sufficient. Restricting TeSSLa to bounded data types allows TeSSLa implemen-
tations on embedded systems without addressable memory because then finite
memory is sufficient. Such a restricted TeSSLa specification can compute new
events only based on a finite number of current and previous events.

Theorem 4 (Expressiveness of TeSSLa With Delay). Every function f ∈
SD1 × . . . × SDk

→ SD
′
1
× . . . × SD′

n
can be represented as a TeSSLa specification

with delay iff it is (a) monotonic and continuous and (b) future independent.
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The proof accompanies the step-function f̃ with a timeout function ũ which
is evaluated on every new memory state. ũ returns the timestamp of the next
evaluation of f̃ , which allows arbitrary event generation. The effect of ũ can be
realized using the delay operator.

We call a stream Zeno if it contains two timestamps t1 and t2 with infinitely
many events between t1 and t2. With the delay operator it is possible to construct
such Zeno streams because the timeout function is not restricted in any way.
By Rice’s theorem it is impossible to check for an arbitrary timeout function
whether it only generates non-Zeno timestamp sequences. Hence, one would
need to restrict allowed timeout functions more drastically, which would restrict
the possible event sequences generated by a TeSSLa specification further than
necessary. For that reason we decided to include the capability to generate Zeno
streams with TeSSLa.

As a consequence of Theorem 4 we obtain:

Corollary 1. A TeSSLa specification with multiple delays can be translated into
an equivalent specification with only one delay.

TeSSLa with and without delay are closely related because TeSSLa with-
out delay can verify the relation of given input/output streams with respect
to a TeSSLa specification that uses delay. The delay is only needed to
actively generate the events at specified times. In the following we denote with
�ϕ|y�(x1, . . . , xk) ∈ B the boolean function indicating whether the boolean out-
put stream y ∈ SB of the TeSSLa specification ϕ contains only events with value
true for the input streams x1, . . . , xk ∈ SD1 × . . . × SDk

.

Theorem 5 (Delay Elimination). For every TeSSLa specification ϕ with
�ϕ� ∈ SD1 × . . . × SDk

→ SD
′
1

× . . . × SD′
n

with delay operators there exists a
TeSSLa specification ϕ′ without delay operators, which derives a boolean stream
z ∈ SB, s.t. for any input streams x1, . . . , xk and output streams y1, . . . , yn we
have �ϕ�(x1, . . . , xk) = y1, . . . , yn iff �ϕ′|z�(x1, . . . , xk, y1, . . . , yn).

The above theorem follows from Theorem 3 and the fact that �ϕ′|z� is times-
tamp conservative, because the output stream z only contain events when any
input stream contains an event.

4 TeSSLa Fragments and Transducers

In this section we investigate two TeSSLa fragments related to deterministic
Büchi automata and timed automata, resp. We translate TeSSLa specifications
to transducers, which can be seen as automata taking the in- and output of the
corresponding transducer as input word. Thus by relating TeSSLa fragments to
certain transducer classes, we inherit complexity and expressiveness results from
the well-known automata models.
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Boolean Fragment. The fragment TeSSLabool restricts TeSSLa to boolean
streams and the operators last, lift and slift with ≥ on timestamps. In the
syntax expressions are restricted as follows, where f is a function f : Bn � B:

e := nil | unit | x | lift(f)(e, . . . , e) | slift(≥)(time(e), time(e)) | last(e, e)
Note that since one can only compare timestamps, for a TeSSLabool-formula ϕ
and two tuples of input streams S, S′ ∈ SD1×. . . SDn

we have �ϕ�(S) = �ϕ�(S′) iff
all events in S′ carry the same values in the same order as those in S, independent
from the exact timestamps of the events.

A deterministic finite state transducer (DFST) is a 5-tuple R =
(Σ,Γ,Q, q0, δ) with input alphabet Σ, output alphabet Γ , state set Q, initial
state q0 ∈ Q and transition function δ : Q × Σ → Q × Γ . For an input

word w = w0w1w2 . . . we call a sequence s0
w0/o0−−−−→ s1

w1/o1−−−−→ s2
w2/o2−−−−→ · · ·

a run of a DFST R with output �R�(w) = o0o1o2 · · · ∈ Γ∞ iff s0 = q0 and
δ(si, wi) = (si+1, oi) for all i ≥ 0. To show that TeSSLabool and DFSTs have the
same expressiveness, we encode DFST words as TeSSLabool streams and vice
versa. The function αΣ(w) = S encodes a DFST word w = w0w1 · · · ∈ Σ∞

as a corresponding set of TeSSLabool streams: For every p ∈ Σ a stream
sp ∈ S exists with sp = 0d01d1 . . . ∞ ⇔ ∀i : (di ⇔ wi = p). The func-
tion βΣ(s1, . . . , sk) = w = w0w1 · · · ∈ Σ∞ encodes TeSSLabool streams as a
synchronized DFST word w over the alphabet Σ = {z1, . . . , zk} → Val with
Val = {⊥, d,<′,⊥′, d′ | d ∈ {tt, ff}} which maps stream names to their current
values: Let T = {t0 = 0, t1, t2, . . .} be the set of all timestamps present in the
streams including 0 with ti < ti+1. Then wi(s) = <′ if s has exclusive progress
of ti, wi(s) = s(ti)′ if s has inclusive progress of ti or wi(s) = s(ti) otherwise.

Theorem 6. For a DFST R = (Σ,Γ,Q, q0, δ) there is a TeSSLabool formula ϕR

and for a TeSSLabool formula ϕ there is a DFST Rϕ = (Σ,Γ,Q, q0, δ) s.t.

αΓ ◦ �R� = �ϕR� ◦ αΣ and βΓ ◦ �ϕ� = �Rϕ� ◦ βΣ .

Note that since the boolean transducers produce one output symbol per input
symbol one could reattach the timestamps of the input streams to the output
streams to preserve the exact timestamps, too.

Translating DFST to TeSSLabool. We represent the states q ∈ Q\{q0} as stream
which is true iff the transducer is in it: aq := merge(xq, false) and the initial
state aq0 := merge(xq0 , true), where xq′ :=

∨
(aq,σ,aq′ ,γ)∈δ daq,σ. For every tran-

sition ηi = (q, σ, q′, γ) we add dq,σ := last(aq,merge{sp | p ∈ Σ}) ∧ sσ and
oi := filter(dq,σ, const(γ)(dq,σ)). The merge of all the output streams is the
output: output := merge{oi | ηi ∈ δ}.

Translating TeSSLabool to DFST. We translate every equation of the flattened
specification ϕ into individual DFSTs, which are then composed into one DFST
Rϕ. For every DFST the input symbols are functions from the names of the
input streams to Val and the output symbols are functions from the name of
the equation to Val. As discussed in the previous section, for this finite data
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domain we only need to consider finitely many different internal states for every
equation. The transition function realizes the state changes the current output
based on the current state.

For the composition of the individual DFSTs every two R = (I → Val, O →
Val, Q, q0, δ) and R′ = (I ′ → Val, O′ → Val, Q′, q′

0, δ
′) are then composed parallel

into R′′ = (I ∪I ′ → Val, O∪O′ → Val, Q×Q′, (q0, q′
0), δ

′′) with δ′′((s1, s2), g′′) =
((s′

1, s
′
2), h

′′) ⇐⇒ δ(s1, g) = (s′
1, h) ∧ δ′(s2, g′) = (s′

2, h
′) ∧ g′′ = g ∪ g′ ∧ ∀σ ∈

I ∩ I ′ : g(σ) = g′(σ) ∧ h′′ = h ∪ h′ until one transducer RA = (IA → Val, OA →
Val, QA, q0A, δA) represents all equations. RA contains transitions with the same
in- and output values for certain propositions which represents dependencies
between the original equations. We now build the closure of this transducer which
roughly resembles substituting the variables and computing the fixed-point of
the equations: Rϕ = (IA\OA → Val, OA → Val, QA, q0A, δϕ), where δϕ(s, g) =
(s′, h) ⇐⇒ δA(s, g′) = (s′, h) ∧ g = g′|IA\OA

∧ (∀a ∈ IA ∩ OA : g′(a) = h(a)) for
g|I := g ∩ (I × Val).

Equivalence of deterministic Büchi automata is in P and because the con-
structed DFSTs can be represented as those we can conclude:

Theorem 7. Equivalence of TeSSLabool-formulas is in P.

Timed Fragment. TeSSLabool+c extends TeSSLabool with the comparison of
a timestamp with another, previous timestamp and a constant. In the syntax,
expressions are restricted as follows, where f ∈ B

n � B:

e := nil | unit | x | lift(f)(e, . . . , e) |
lift(gv)(time(e), last(time(e), e)) | last(e, e)

Time comparison is restricted to expressions lift(gv)(time(a), last(time(b), a))
for streams a, b ∈ SB and a constant v ∈ T, where gv is a function gv : T×T → B

of the form gv(t1, t2) = t1 ≶ t2 + v with ≶ ∈ {<,>}, which allows checking the
temporal distance of the current events of two streams. This is directly related
to how clock constraints in timed automata [1,3] work.

A timed finite state transducer (TFST) is a DFSTs with an additional set
of clocks C and δ : Q × Σ × Θ(C) → Q × 2C × Γ where Θ(C) is the set of
clock constraints. A clock constraint ϑ ∈ Θ(C) is defined over the grammar
ϑ :: = true | T ≤ x + c | T ≥ x + c | ¬ϑ | ϑ ∧ ϑ, where x ∈ C, and c ∈ T is a
constant and T refers to the current time. δ now also takes a clock constraint and
provides a set of clocks that have to be reset to T when taking this transition. A
run of a TFST extends a run of a DFST with timestamps in the input and output
word. An additional clock constraint has to be fulfilled to take a transitions and
when taking a transitions, some clocks are set to the current time T .

TFSTs resemble timed automata using the notion of clock constraints
from [3]. A TFST is called deterministic, or DTFST, iff for any two differ-
ent transitions η1, η2 ∈ δ their conjuncted clock constraints ϑη1 ∧ ϑη2 are
unsatisfiable.
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To show that TeSSLabool+c and DTFSTs have the same expressiveness, we
again encode words as streams and vice versa, but this time αΣ and βΣ preserve
the timestamps. Hence both representations are now isomorphic and we can use
the inverse encoding functions for decoding:

Theorem 8. For a DTFST R = (Σ,Γ,Q, q0, C, δ) a TeSSLabool+c formula ϕR

exists and for a TeSSLabool+c formula ϕ a DTFST Rϕ = (Σ,Γ,Q, q0, C, δ) exists:

�R� = α−1
Γ ◦ �ϕR� ◦ αΣ and �ϕ� = β−1

Γ ◦ Rϕ ◦ βΣ .

Translating DTFST to TeSSLabool+c. We reuse the translation for DFSTs with
the following adjustments: We extend the stream dq,σ to dq,σ,ϑ by adding the
timing constraint ϑ, which is translated by lifting the boolean combination to
signal semantics and translating the constraint T ≶ x + c to time(merge{sp |
p ∈ Σ}) ≶ last(time(merge(bx,unit)),merge{sp | p ∈ Σ}) + c. Also for every
clock x ∈ C we add bx := merge

{
filter(dq,σ,ϑ, dq,σ,ϑ) | (q, σ, ϑ, q′, r, γ) ∈ δ∧

x ∈ r
}
.

Fig. 1. TeSSLa fragments are restricted regarding (a) event values and available data
structures and (b) event timestamps and how events sequences are recognized and
generated: TeSSLabool only checks event ordering like deterministic Büchi automata
and BSRV [7] (LOLA restricted to boolean streams). TeSSLabool+c additionally has
timestamp comparison with constants like deterministic timed automata. TeSSLa has
arbitrary bounded data structures and arbitrary computations on the timestamps. Full
TeSSLa allows unbounded data structures and the creation of new timestamps via
delay.

Translating TeSSLabool+c to DTFST. The transducers from the equa-
tions in ϕ are build as before, but instead of translating equations
that compare timestamps, we now translate equations of the form
lift(gv)(time(a), last(time(b), a)). Besides the lift and last operators, it also
contains a comparison on timestamps, which is translated using the clocks and
clock constraints of the DTFSTs to remember and compare timestamps. The
parallel composition algorithm for DFSTs is extended by conjuncting the timing
constraints of the composed transducers. Afterwards the same closure algorithm
is applied. Equivalence of deterministic timed automata is PSPACE-complete [1]
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and because the constructed DTFSTs can be represented as those we can
conclude:

Theorem 9. Equivalence of TeSSLabool+c-formulas is PSPACE-complete.

Figure 1 shows the modularity of the different TeSSLa fragments.

5 TeSSLa Implementations and Tool Support

The TeSSLa semantics presented in this paper allows multiple implementation
styles: Centralized implementations using global memory which take one synchro-
nized input word, as well as distributed implementations using message passing
which take individual asynchronous input streams.

Centralized implementations are based on the same idea as the transduc-
ers: A global step function triggers the reevaluation of all TeSSLa operators
involved in the specification for one timestamp, i.e. until a delayed-labelled edge
in the dependency graph is reached. This step function is either triggered by new
input events or a timeout of a delay if that has a smaller timestamp. Therefore
every delay can register its timeouts globally s.t. the programs main loop can
check with every incoming new events if the step function must be triggered for
earlier delays before handling the external input. This implementation form is
well-suited for software implementations running on traditional CPUs because it
minimizes the internal communication overhead. Because software implementa-
tions can use dynamic memory management, the integration of unbounded data
structures is straightforward.

As motivated in the introduction, one goal of TeSSLa’s design is to allow
distributed, parallel implementations with finite memory, e.g. on embedded sys-
tems or FPGAs. In this scenario we neither have dynamic memory management
nor can we implement a global step function. Instead, every operator in the
dependency graph is translated into a computation node with a fixed-size mem-
ory cell and finite input queues storing incoming events for every dependency.
This setup has already been discussed for a preliminary non-recursive version
of TeSSLa in [23]. The streams used in the TeSSLa semantics presented in this
paper have an explicit notion of progress, which allows the local composition of
TeSSLa operators without a global synchronization. Hence every computation
node can produce a new output value if at least one input queue contains a new
event and all other input queues contain at least progress until the timestamp of
this event. The output value is sent to the input queues of all nodes depending
on this node. While recursive equations in the transducers are solved by building
the closure of the transducer created by applying the parallel composition to all
computation nodes, in this message passing scenario we actually implement the
Kleene chain of the fixed-point defined in the TeSSLa semantics in Definition 3:
Progress and values are circulated in the cyclic graph of computation nodes
until the progress increases no longer, which is exactly when the fixed point is
reached. Since every computation node only produces new output events if there
is enough progress on every input queue, we can guarantee that the fixed point
is computed before new external events are processed.
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For practical evaluations of TeSSLa we implemented a TeSSLa compiler in
Scala which parses the TeSSLa specification, performs static type checking and
converts the specification to flat TeSSLa. Additionally we added a macro system
to be able to specify more complex functions based on the basic TeSSLa oper-
ators. The macro system allows to build application-domain-specific standard
libraries, which makes TeSSLa a very flexible and powerful but still convenient
and easy-to-learn specification language.

Furthermore, the types of the input streams are declared explicitly and the
user can specify which streams should be contained in the output. Using the
macro system, implicit application of slift to functions and implicit conversion
from constants to constant signals, we can write the event counting example
from the introduction as follows:

def count[A](a: Events[A]) := {
def c: Events[Int] := merge(last(c, a) + 1, 0)
c }

in x: Events[Unit]
def y := count(x)
out y

We combined the compiler with an interpreter written in Scala, which allows the
usage of Java data structures. In order to apply TeSSLa for runtime verification
we instrument the LLVM byte code of C programs and analyse this trace online
with TeSSLa. This tool chain is available as a Docker container and a web IDE2.

6 Conclusion

In this paper we presented the real-time specification language TeSSLa which
operates on independent, timed streams and proved that it is suitable for online
monitoring. We characterized the expressiveness of TeSSLa in terms of certain
classes of stream-transforming functions. We also proved the equivalence of a
boolean and a timed fragment of TeSSLa to respective classes of transducers
and thereby obtained that equivalence for those fragments is in P and PSPACE,
resp. These results facilitate advanced optimizations and static analyses of spec-
ifications, e.g. whether such a specification can generate certain outputs. We
presented an implementation based on infinite-state transducers and sketched
how TeSSLa is also suitable for parallelized implementations.
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Abstract. Contemporary computing applications have an increasing
level of concurrency; new techniques are demanded to tackle the chal-
lenge of testing the plentiful interactions that arise from concurrent
behaviour. Current approaches for automatic test generation from natu-
ral language models do not allow the explicit specification of concurrent
behaviour. This paper extends our previous test case generation app-
roach to support concurrent mobile device features. A natural language
notation is proposed to express the composition of sequential and con-
current behaviour. The notation can be automatically translated to a
CSP model, from which tests are automatically produced using the FDR
refinement checker. The approach is illustrated with a mobile application
that includes concurrent features.
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1 Introduction

Testing is an expensive activity that can be even more costly when the implemen-
tation under test is concurrent. Verifying the behaviour of concurrent software
is challenging because of the possible interleaving among a variety of execution
flows [4]. New technologies like multi-core and distributed architectures have
stimulated the significant increase of concurrency in computational systems [6].
For instance, in the most recent versions of Android [1], the user has the possi-
bility to interact within a multi-window perspective, where various applications
may be exhibited at the same time. Therefore, concurrent systems demand fast
and efficient testing approaches.

Model-based testing (MBT) enables the automatic generation and execu-
tion of tests of sequential and concurrent systems [7]. One of the barriers to the
adoption of MBT is that the main input for test generation is formal models. For-
mal notations contrast with the ones adopted by traditional software engineering
approaches, such as use case models. To facilitate its adoption, MBT approaches
that use (structured) natural language notations to specify input models have
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been proposed [8,10]. Such approaches automatically generate test cases from
formal models that are automatically and transparently obtained from natural
language input models. As an example, in previous work [15] we present an app-
roach that is implemented by an automatic test case generation tool, TaRGeT,
which is used in a partnership with Motorola Mobility (a Lenovo company) to
generate black-box tests for mobile applications. The input model for TaRGeT
is a use case template that is authored using a structured natural language
notation. These templates are automatically translated into CSP [16,17] mod-
els, from which test cases are automatically generated and translated back into
natural language, for manual execution or to serve as a basis for automation. A
limitation of this approach is that it cannot handle concurrency.

Concurrency in the context of black-box testing of mobile applications can
arise from multiple sources. We consider two sources of concurrency that are
often found in this context. One is the concurrency in the scope of a single
application. For instance, the user of an email application can list emails while
new emails can be received and handled by another part of the application, which
updates the email list. Another possibility is the concurrency that arises from
distinct applications that run simultaneously. For instance, an email application
running concurrently with a video player application in different parts of the
screen.

This paper extends our previous approach to support automatic test case
generation for concurrent features. An extension of the use case template is
proposed to allow modelling of concurrent features. This extension allows the
specification of the two levels of concurrency discussed above: intra-feature con-
currency is used to specify active use cases, whose execution flow interleaves
with other use cases that are part of the same feature; and inter-feature concur-
rency that is used to model the interleaving of different features. The extended
template can be automatically translated to a CSP model, from which test cases
are automatically produced using the FDR refinement checker. The approach is
illustrated with a mobile device application that includes concurrent features.

The next section gives an overview of the notation and semantics of CSP.
Section 3 introduces the extension of the use case template to allow the specifi-
cation of concurrent behaviour. Section 4 presents the CSP model that defines
a formal semantics to the use case template with concurrent behaviour. Then,
Sect. 5 shows how test cases are automatically generated from the CSP models
using the FDR model checker. Finally, Sect. 6 summarises our results and discuss
related and future work.

2 CSP

This section introduces the notation and the traces semantic model of CSP used
in this paper. Notably, we use the notation of CSPM [19], a machine-readable
version of CSP and input format for the FDR tool [11].

The core element of the CSP notation is a process: it is an entity that can
specify sequential and concurrent behaviour. The set of events communicated by
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a process forms its alphabet. The simplest CSP process is STOP. Such a process
specifies deadlock behaviour; it does communicate events and does not progress.
Another primitive process is SKIP, which represents successful termination. After
communicating the special event � this process deadlocks.

Basic CSP operators are used to model the sequential behaviour of use cases.
The prefix operator -> is used to specify sequential events. The notation a ->
P specifies a process that offers the event a and waits until the environment is
ready to communicate. Once a is communicated, it behaves as the process P.
A channel in CSP is an abstraction for a set of events with a common prefix.
The notation channel c : T stands for a channel c that communicates events
in {c.t | t ∈ T}. For instance, consider the channel channel c : 0,1,2, the
process c!0 -> STOP communicates the event c.0 and deadlocks. Additionally,
the syntax c?t denotes the environment binds a value v in T to the variable
t and communicates the event c.v. Sequential composition is another suitable
operator to model sequential behaviour. The expression P;Q behaves like P until
it terminates successfully (behave as SKIP), then the control is taken by Q. For
instance, the behaviour of the process a -> SKIP; b -> STOP is equivalent to
a -> b -> STOP.

CSP allows the specification of choice between processes. For instance, the
external choice between the processes P and Q, namely P [] Q, can behave as the
process P or Q. The choice is made by the environment. The concurrent behaviour
between features is specified using the parallel composition operator of CSP. The
expression P [|X|] Q denotes the parallel composition of the processes P and
Q. In this composition, the events in the set X happen synchronously (simulta-
neously in both sides); other events communicate independently. The expres-
sion P ||| Q denotes the interleave of the processes P and Q, a special case
of the parallel composition where there is no synchronisation (empty synchro-
nisation set). For instance, the process a -> b -> STOP [|{a}|] a -> b ->
STOP behaves as the process a -> (b -> STOP ||| c -> STOP), which com-
municates the event a and then behaves as b -> STOP ||| c -> STOP. The
latter interleaves the communication of the events b and c. A parallel composi-
tion only terminates if both process in the composition terminate (distributed
termination).

The CSP operator \ is used to hide process communications. Therefore, the
process P\X communicates the events of P, except the events in the set X. Finally,
we introduce the notation P /\ Q, where /\ stands for the interruption operator.
This notation indicates the process Q can interrupt the behaviour of P if an event
of Q is communicated. The simplest semantic model of CSP is the traces model,
where a process is identified with the set of all the traces it can perform. Our
approach performs traces refinement verifications using the FDR tool [20] to
generate test scenarios. A trace is a sequence of visible actions performed by a
process. For instance, the traces model of the process x -> y -> STOP is the
set {<>, <x>, <x,y>}. A process Q refines a process P, namely P [T= Q, if the
traces Q is a subset of the traces of P. If a refinement does not hold, FDR yields
a (counter-example) trace of Q that is not in P. For instance, the process P1 = a
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-> SKIP; accept -> STOP is refined, in the traces model, by the process STOP,
namely P1 [T= STOP. The traces of the former process is {<>,<a>,<a,�>} and
those for the latter is {<>}. Let the CSP process Q1 be defined by the expression
Q1 = a -> SKIP. The refinement Q1 [T= P1 does not hold because <a,accept>
belongs to the traces of P1 and does not belong to the traces of Q1, which is the
set {<>,<a>,<a,�>}. Thus, <a,accept> is a counter-example for Q1 [T= P1.
More details about the traces (and other semantic models of CSP) can be found
in [16].

3 Modelling Concurrency

Figure 1 gives an overview of the approach we proposed in previous work [15] and
adapt to handle concurrent features in the current paper. The approach inputs
document templates written in natural language and generates black-box test
cases for manual testing of mobile application. Feature descriptions are auto-
matically translated into CSP models, from which test cases are automatically
generated using FDR. Finally, test cases are translated from CSP to a Con-
trolled Natural Language (CNL) notation. A limitation of this approach is that
it can only generate tests for sequential behaviour. It is not possible to model
and generate test cases for concurrent features.

Fig. 1. TaRGeT test generation approach.

A relevant adaptation of the previous approach is the extension of the use
case template to allow the specification of concurrency. The remainder of this
section introduces an extension of the TaRGeT use case template to model con-
current features. Such an extension is conservative since it adds new elements
and preserves all the previous template elements. Thus, the extension allows
modelling and generating test cases for both sequential and concurrent features.

The main contribution of this work is to introduce two forms of concurrency:

1. Intra-feature: models the concurrent execution of use cases that belong to the
same feature. This abstracts concurrent behaviour that arises from different
parts of the same application. Use cases can perform concurrent access of
data shared in the scope of the feature.

3. Inter-feature: models the concurrent execution of features, abstracting con-
current behaviour that arises from the interaction of applications of different
features.

The next subsections detail each of these forms of concurrency using as run-
ning example features that run on mobile devices.
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3.1 Modelling Active Use Cases

The previous use case template [15] for automatic test case generation is formed
of features, and each feature can have multiple use cases. Each use case has one
or more execution flows that can be interconnected. In the previous template,
in a feature a unique execution flow is performed at a time; one flow is resumed
before the next starts; the use cases are performed sequentially. We extend the
template with active use cases, which can be performed concurrently with the
flow of other use cases of a feature.

For illustrating intra-feature concurrency, our running example is the partial
model of an email application that is composed of two use cases. This application
is modelled as the Feature F1 whose model includes some data definition (Fig. 2)
and two uses cases (Figs. 3 and 4). Figure 2 exhibits data within the scope of the
email feature. Types, constants and variables are defined. For test generation,
the range of values is limited to avoid the explosion of the number of test cases.
The type Natural specifies the range of integer values to the set {0, 1, 2, 3, 4, 5},
which is abbreviated by the notation [0,5]. The constant MAX EMAILS is the
maximum number of emails that the inbox folder can reach. The variable read
represents the number of read emails, and has two as the initial value. The
variable unread stands for the number of unread emails; its initial value is one.

Fig. 2. Data definition for Feature F1.

The first use case of Feature F1, namely UC01, describes the behaviour of
checking unread emails (Fig. 3). This use case has main and alternative flows.
Each flow has a sequence of identified steps that are composed of three fields: the
user input action, a system condition (the precondition for performing the step)
and the respective system response. The first step of UC01 main flow (1M) verifies
the existence of new emails. In this feature, an unread email is equivalent to a
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Fig. 3. Use case 1 (Email).

new email. Thus, the condition for this step is that there is at least one unread
email. The use case template defines a CNL notation to specify user input values
(in the user action), conditional expressions (in the system state) and system
outputs/updates (in the system response). These appear enclosed between two
occurrences of the % symbol. For instance, the expression %unread > 0% in the
Step 1M is a guard that is true if the value assigned to unread is greater than 0
(zero). In the sequel, the second step (2M) captures opening unread emails. The
expression in the user action %Input x: Natural from {1..unread}% specifies an
input value x that is defined by the user. Such a value is between one and the
current number of unread messages. The system response is to mark messages
as read, decrement (increment) the number of unread (read) messages by the
number of read messages (%unread := unread x, read : = read + x%). For more
details about the CNL notation refer to [15].

Use case flows are preceded by the fields From Step and To Step, which
are used to indicate the origin and continuation of the flow, respectively. In
UC01, the origin of the main flow is START which indicates this flow can be
performed in the initial state of the feature. The continuation of this use case
is END, which indicates this flow resumes after completing its last step. If the
origin (continuation) is a step id, then the flow starts (continues) in the step of
another flow.

The bottom part of Fig. 3 shows the alternative flow of UC01, which continues
after the initial state of the main flow. The condition of the Step 1A is that there
are no unread emails (%unread = 0%). This condition is only satisfied if the
condition of the Step 1M is not. In this case, the alternative flow is performed



Automatic Test Case Generation for Concurrent Features 169

instead of the main flow. The action of the Step 1A is to verify the existence of
new emails and the system response is that no emails are found at all.

Figure 4 presents an active use case, namely Use Case UC02, which speci-
fies the handling of new emails that can be performed concurrently with email
reading. Active use cases are identified by the label <<active>> that is placed as
a suffix of the use case name. The structure of an active use case is the same
as that for non-active use cases; however, it has an independent execution flow.
As a consequence, an active use case can interleave with the execution of other
use cases. The active use case of our example takes as input a number of mes-
sages that are received from the network. This is specified in Step 1M by the
input x whose value must not exceed the maximum capacity of the messages,
considering the already existent messages in the application (%Input x: Natural
from {1..MAX EMAILS - (read+unread)} %). The enabling condition for this
step is that the number of existent messages must be less than the maximum
allowed (%read + unread < MAX EMAILS%). If the condition holds, the amount
of unread messages is updated (%unread := unread + x%). This use case mimics
a component of the email application that is responsible for receiving new emails
and runs simultaneously with Use Case UC01.

Fig. 4. Active use case.

3.2 Modelling Concurrent Features

This section proposes an extension of the template to deal with concurrent
features.

We use an Android functionality as illustration. The android split screen is
introduced in Android N [2] and allows the screen to be split into two separate
views; each view runs a distinct application. At the uppermost part of the screen
is a main (fixed) application, and at the bottom part of the screen is a second
application that is executed concurrently with the main one. We show how to
model the Email Application (specified as the Feature F1 in the previous section)
running in the uppermost view, and a Video Player application executing in the
bottom view, simultaneously.
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Figure 5 depicts Feature F2 that specifies the Video Player Application. This
feature has a single use case with a main flow, whose steps consist on selecting
a video (Step 1M) and verifying whether the selected video starts playing after
clicking play (Step 2M).

Fig. 5. Use case 1 (Video).

The extension proposed to model concurrency between features consists on
specifying how the features of a document are composed. The internal structure
of features is not changed. The features can be configured to execute sequen-
tially, concurrently, or the combination of these two possibilities. We introduce
a notation for the specification of such composition in what follows.

Composition := fid

| (Composition OR Composition)

| (Composition AND Composition)

According to the notation above, a composition has one or more feature iden-
tifiers that can be combined with the constructors OR and AND. The constructor
OR specifies that the arguments of the composition are executed as a choice, so
only one of the features is executed at a time; in the case of iterated executions,
they happen sequentially. The constructor AND specifies that the composed
features are performed simultaneously, so their behaviours are interleaved. For
instance, the composition (F1 AND F2) defines that the features F1 and F2 are
executed concurrently, so it models the behaviour of the aforementioned Android
functionality while executing Email and Video Player applications in the same
screen. As another example, the composition (F1 OR F2) defines that F1 and F2
are executed one at a time.

4 CSP Semantics for Concurrent Features

This section presents the CSP semantics for the extended use case template
introduced in the previous section. The presentation follows the order of the
elements in the use case template.
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Types and constants are translated into types and constants in the CSP
model. Table 1 shows the CSP representation for the data elements defined in
the scope of Feature F1 (Fig. 2). The type Natural becomes a nametype in CSP
(line 01), and the constant MAX EMAILS a constant with the same name in the
CSP model (line 03). Variables become elements of the set Vars that is defined
in CSPM as a datatype (line 05).

Table 1. CSP model for data elements of Feature F1.

01 nametype F1 Natural = {0..5}
02
03 MAX EMAILS = 4

04
05 datatype Vars = F1 read | F1 unread

06
07 channel get,set : Var.F1 Natural

08
09 channel startStep, endStep : IDS F.IDS UC.IDS S

CSP processes are stateless and, therefore, there are no variables. We adopt
the usual approach to modelling state as a memory process. The channels get
and set declared in Table 1 (line 07) are used in the CSP model of a use case to
read the value of a variable in the memory and to update the value of a variable,
respectively. Later, we show that the memory process is composed in parallel
with the feature use cases, so the use cases can communicate with the memory
through these channels. We exemplify the usage of such channels in the semantics
of Use Case UC01 depicted in Table 2. In line 08 of Table 2, the communication
get!F1 unread?unread reads the value of the variable F1 unread from the
memory and binds this value to unread. As another example, in line 16 of the
same table, the event set!F1 read!(read + x) is a message to the memory to
update the variable F1 read to the value of the expression (read + x). The
complete CSP model for this use case is presented in what follows. More details
about the memory process can be found in [13].

The next part of Feature F1 is the Use Case UC01 whose CSP model is pre-
sented in Table 2. In this table, UC01 is specified by the process F1 UC01 that
behaves as F1 UC01 START. Remember from Sect. 3.1 that START represents
the initial state of a use case, consequently START is represented as a process
in the CSP model. Since main and alternative flows initiate from START, the
behaviour of F1 UC01 START is the choice between the processes F1 UC01 1M
(first step of the main flow) and F1 UC01 1A (first step of the alternative flow).
The process F1 UC01 1M represents the step 1M of UC01. Initially, this process
communicates the control event startStep.1.1.1 and reads the current value
of the variable unread by communicating the event get!F1 unread?unread
(line 08). The guarded process g & P, where g is a guard and P is a process,
is equivalent to if g then P else STOP. After reading the variable value, the
CSP model verifies the system condition, modelled as a guard (line 08). If the
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guard holds (unread > 0) the process flow continues, otherwise it deadlocks. If
the flow continues, the event verify newly received that represents the step
action is performed, followed by the event that represents the system response
(unread highlithed), the control event endStep.1.1.1 and successful termi-
nation. After terminating, the control is taken by the process that represents
Step 2M (F1 UC01 2M).

Table 2. CSP model for Use Case UC01 of Feature F1.

01 channel in 1 UC01 2M x : Naturals

02
03 F1 UC01 = F1 UC01 START

04
05 F1 UC01 START = (F1 UC01 1M [] F1 UC01 1A)

06
07 F1 UC01 1M = startStep.1.1.1 ->

08 get!F1 unread?unread -> unread > 0 &

09 verify newly received -> unread highlithed ->

10 endStep.1.1.1 -> SKIP ; (F1 UC01 2M)

11
12 F1 UC01 2M = startStep.1.1.2 ->

13 get!F1 unread?unread -> get!F1 read?read ->

14 in 1 UC01 2M x?x:{1..unread} ->

15 open unread -> unread marked read ->

16 set!F1 unread!(unread - x) -> set!F1 read!(read + x) ->

17 endStep.1.1.2 -> SKIP

18
19 F1 UC01 1A = startStep.1.1.3 ->

20 get!F1 unread?unread -> unread == 0 &

21 verify newly receive A -> no unread A ->

22 endStep.1.1.3 -> SKIP

In the testing theory originally developed in [14], and adopted here, traces
of the CSP model must not mix events of different steps, as it requires that an
user action (categorised as an input event) must be followed by the respective
system response (an output event). However, mixing steps of use cases performed
concurrently does not violate any aspect of the theory. To ensure the atomicity
of a step, a standard mechanism of critical region is used. The control events
startStep.1.1.1 and endStep.1.1.1 are used to define the start and end of
a critical region. Table 1 declare the channels startStep and endStep (line 09).
The sets IDS F, IDS UC and IDS S are indices for the features, use cases and
steps. In our example, these sets are {1..2}, {1..2} and {1..3}, respectively.

The process F1 UC01 2M (line 12) is the CSP model for Step 2M of Use
Case UC01. This process initially reads, from the memory, the variable values
using get, then inputs a value x (line 14) that represents the number of emails
to be opened. The input is communicated by the channel in 1 UC01 2M x
(line 01). Subsequently, the process communicates the events that represent
the action of opening emails (open unread) and the system response that
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shows the opened messages marked as read (unread marked read). Next, the
events set!F1 unread!(unread - x) and set!F1 read!(read + x) represent
the updates specified in Step 2M. Finally, the process terminates successfully.

The process F1 UC01 1A (line 19) is the CSP model for Step 1A. Initially, it
gets the number of unread messages from the memory (variable unread) using
a get event and verifies the system condition (unread == 0). If the condition
fails, the process deadlocks; otherwise, the process communicates the events for
verifying the existence of new received email and the system response that there
are no unread email. Afterwards, the process terminates.

The processes F1 UC01 1M and F1 UC01 1A are in choice in the process
F1 UC01 START (line 05) and their guards are disjoint. The first process pro-
gresses if there are unread messages, otherwise the second one progresses. Hence
the main and the alternative flow are excluding.

Table 3 shows the CSP semantics for the active use case UC2 defined in
Feature F1. As commented in Sect. 3.2, the structure of an active use case has
no particularities. The difference is that it interleaves with the non active use
cases of the feature, as will be explicit in the CSP model for the feature. The
process F1 UC02 (line 03) specifies the behaviour of this use case. The CSP
semantics for this process uses the same strategy used to obtain the semantics
of Use Case UC01, so we abbreviate the explanation. Initially, this process reads
the values for the variables using get events (line 08) and evaluates the system
condition (line 09). If the condition holds, it inputs a value x defined by the
environment (line 10), communicates the events that represent the action to
handle new emails and the respective system response (line 11). Next, it uses a
set event to update the value for the unread variable (line 12) and terminates.

Table 3. CSP model for Use Case UC02 from Feature F1.

01 channel in 1 UC02 1M x : Naturals

02
03 F1 UC02 = F1 UC02 START

04
05 F1 UC02 START = F1 UC02 1M

06
07 F1 UC02 1M = startStep.1.2.1 ->

08 get!F1 unread?unread -> get!F1 read?read ->

09 read + unread < MAX EMAILS &

10 in 1 UC02 1M x?x:{1..(MAX EMAILS - (read+unread))} ->

11 handle emails -> inbox updated ->

12 set!F1 unread!(unread + x) ->

13 endStep.1.2.1 -> SKIP

The CSP model for a feature F that does not have variables behaves as F UCs,
where F UCs is the process that specifies the composition of the use cases. The
composition of the use cases is defined as the external choice between the use case
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processes (F UC1 [] ... [] F UCi) interleaving with the combination of the
active use cases (F UCa 1 ||| ... ||| F UCa j), where i is the number of
non active use cases and j is the number of active use cases. Moreover, F UCa k
is defined as the choice (F UCak [] SKIP), where F UCak is the process that
represents an active use case for 1 ≤ k ≤ j . The choice in (F UCak [] SKIP)
states that this process behaves as F UCak or as SKIP, as a consequence, the use
case combination considers execution flows that interleave with the active use
case and flows that do not (when the process behaves as SKIP). In other words,
it considers all the combinations of behaviour.

The CSP model for a feature F that has variables is defined as the compo-
sition F UCs [|aMEM|] (F MEMORY /\ SKIP), where F MEMORY is the memory
process and aMEM the memory alphabet. In the right-hand side of the parallel
composition, the process F MEMORY is interrupted by SKIP to allow the successful
termination of the feature process.

The process F1 presented in Table 4 is the CSP model for Feature F1. In this
process, the combination of the use cases is F1 UC01 and the combination of
active use case is (F1 UC02 [] SKIP).

Table 4. CSP model for Feature F1.

01 F1 = (F1 UC01 ||| (F1 UC02 [] SKIP))

02 [|aF1 MEM|]

03 (F1 MEMORY /\ SKIP)

For conciseness, we omit the CSP model for the Feature F2.
The model for the system to be tested combines all the features and uses the

process stepCR in its definition. Such a process when composed in parallel with
the features ensures the use case steps are executed atomically. Table 5 shows
the specification for this process. The process stepCR is a recursive process that
waits for the environment to communicate an event from the channel startStep
and then an event from the channel endStep. Consider CONTROL is the set that
includes all the events of the channels startStep and endStep. The parallel
composition of stepCR with the features with synchronisation set equals CONTROL
ensures only a step is performed at time.

Table 5. CSP process that ensures critical region.

01 stepCR = startStep?f?uc?s -> endStep!f!uc!s -> stepCR

Finally, the CSP process that models the system to be tested, namely SYS,
behaves as (Fs [|CONTROL|] (stepCR /\ SKIP)) \ CONTROL, where the process
Fs stands for the composition of features. For our example, we have:
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SYS0 = ((F1 [] F2) [|CONTROL|] (stepCR /\ SKIP)) \ CONTROL

SYS1 = ((F1 ||| F2) [|CONTROL|] (stepCR /\ SKIP)) \ CONTROL

The process stepCR is interrupted by SKIP to allow the parallel composition
in SYS to terminate successfully. Recall from Sect. 3.2 that features can be com-
bined using the constructors OR and AND. The CSP model for a composition
of features Fs is obtained replacing the feature id by the respective feature pro-
cess, the constructor OR by the CSP external choice operator, and the construct
AND by the CSP interleaving operator. For instance, the system models for the
compositions F1 OR F2 and F1 AND F2 are the processes SYS0 and SYS1. One
can find the complete semantics of sequential features in our previous work [14].
We intend to further detail the semantics for concurrent features in future work.

5 Test Generation for Concurrent Features

This section illustrates the use of FDR for automatic generation of test cases for
concurrent features, following the approach introduced in [15].

To generate test scenarios using FDR, our approach uses a special event
(accept) to mark the scenarios we want to produce from the specification pro-
cess, say S. Consider S’ is the specification process modified by including an
accept event at the end of the scenarios. Since the mark event is not in the
alphabet of S, the refinement S [T= S’ does not hold, and counter-examples
yielded by FDR for this refinement verification are test scenarios. We exemplify
test generation using the system specification model SYS0 introduced in the pre-
vious section. The modified process for SYS0 that includes the event accept after
the traces that lead to successful termination is the process SYS0; accept ->
STOP. The assert command of FDR runs a refinement verification and yields
the shortest counter-example trace if the refinement does not hold. Thus, the
FDR assertion

assert SYS0 [T= SYS0; accept -> STOP

does not hold and yields the following counter-example trace.

t1 = <get.F1_unread.1, verify_newly_received, unread_highlithed,
get.F1_unread.1, get.F1_read.2, in_1_UC01_2M_x.1, open_unread,
unread_marked_read, set.F1_unread.0, set.F1_read.3, accept>

Excluding get and accept events, the trace above represents the behaviour
of the alternative flow of the Use Case UC01 of Feature F1. To generate other test
scenarios from SYS0 we use the CSP function Proc that is introduced in [14]. Such
a function receives as input a sequence of events and generates a process whose
maximum trace corresponds to the input sequence. For instance, to generate a
second test scenario we use the process SYS0 [] Proc(t1) as the specification
process. Such a process contains the trace t1, hence t1 is not a counter-example
for the refinement assertion below,
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assert SYS0 [] Proc(t1) [T= SYS0; accept -> STOP

which yields the following test scenario as a counter-example for the above
refinement.

t2 = <get.F1_unread.1, get.F1_read.2, in_1_UC_02_1M_x.1,
handle_emails,inbox_updated, set.F1_unread.2, get.F1_unread.2,
verify_newly_received, unread_highlithed, get.F1_unread.2,
get.F1_read.2, in_1_UC01_2M_x.1, open_unread, unread_marked_read,
set.F1_unread.1, set.F1_read.3, accept>

In general, for obtaining the (n+1)th test scenario (counter-example) from a
specification, we need to augment the left-hand side of the refinement expression
with the test scenarios already generated, and verify the expression using FDR.
Formally, the refinement expression for obtaining the (n + 1)th test scenario is

S [] Proc(ts_1) [] ... [] Proc(ts_n) [T= S’

There is a total of six test scenarios that can be obtained from the process SYS0
using the expression above. A future work is to integrate the proposed model for
concurrent features in the TaRGeT tool. Such a tool automatizes the process of
generating test scenarios for sequential features by running FDR refinements in
background until some stop criteria is reached [15]. The simplest criteria is to
generate test scenarios until the number of test scenarios reaches a threshold.
Natural language test purposes can also be used to describe scenarios that match
particular steps and states of the use case specification. Recently, TaRGeT has
been improved to consider structural coverage [12]. Using FDR, it is possible to
have access to the underlying LTS models (operational semantics) for the CSP
specification and to measure the coverage of events or transitions for a set of
test scenarios. Since there is a mapping between the underlying LTS models and
the CSP specification, TaRGeT considers three structural criteria to stop the
generation of test scenarios: (1) coverage of use case steps (at least once), (2)
coverage of use case steps and all possible combinations of inputs values, and
(3) coverage of use case steps and all possible combinations of input values that
match a given test purpose.

The trace t2 represents a test scenario for intra-feature concurrency in Fea-
ture F1. In this scenario, the main flow of the the Use Case UC01 is preceded by
the active use case (Use Case UC02), which is performed concurrently. Figure 6
depicts a test case that can be obtained from this test scenario.

The format of the generated test cases is suitable for manual execution (see
Fig. 6). In related work [5,18], we introduce tools for automating the execution
of test cases written in natural language. Such tools can support the automation
of concurrent test cases in the style generated by the approach proposed here.
However, currently, there is no integration between our test generation approach
and existing test automation tools. This will be addressed as future work.
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Fig. 6. Test case from t2.

6 Conclusion

This work adapts and extends our previous test case generation approach to
allow the automatic generation of tests cases for concurrent features as well as
concurrent use cases of the same feature. We have proposed an extension of
the use case template to allow modelling these two forms of concurrency: intra-
feature and inter-feature concurrency. The first one introduces the concept of
active use cases, whose flow interleaves with the flow of other use cases that are
part of the same feature. The second one proposes a notation for specifying the
composition of features. Such a notation allows combining features sequentially
as well as concurrently. Furthermore, the templates in natural language are given
a formal semantics via a mapping into the CSP process algebra. Finally, traces
refinement checking is used to extract test cases automatically from the CSP
model using the FDR refinement checker. The contribution is illustrated using
a mobile device application that has concurrent behaviour.

The proposed extension is conservative, so the previous template capabilities
are preserved, and the same template can be used for the specification of sequen-
tial or concurrent behaviour. Additionally, to our knowledge, the approach we
propose is the only automatic test case generation approach that input docu-
ments authored using natural language to model the two considered forms of
concurrency, allowing data sharing between concurrent use cases.

The test generation strategy proposed in [3] is close to ours. It inputs test
models authored in natural language (use case templates) and is designed for
modelling interruptions in mobile device applications; these interruptions are
urgent events like an incoming call that pause the execution of the current state
of the application until the interruption event is concluded. An interruption
may be seen as a particular type of concurrent behaviour since it allows the
main flow to be interrupted at any time during its execution. The approach we
propose in this paper does not model interruption because current mobile device
applications are not interrupted by calls or by other events; all applications must
run concurrently. Another difference to our work is that we consider two forms
of concurrency, and data sharing between concurrent use cases.

Another related approach is introduced in [9]. This work proposes a strategy
(NAT2TEST) that automatically extracts DFRS (Data-Flow Reactive Systems)
formal models from requirements written in natural language, aiming at gener-
ating sound test cases for reactive systems. The structure of the input specifica-
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tion and domain of application in [9] are very different from ours. We focus on
mobile applications describe as interactions via a user interface, whereas their
application domain is reactive applications like avionics and automobile control
systems. Similarly to our approach, their work represents data information as
inputs/output values and can model interleaving between different system flows.
On the other hand, in their work concurrent behaviour arises only when the
precondition guards of different system functionalities become enabled at the
same time. Hence, concurrency is not expressed explicitly, as it is specified by
our approach. On the other hand, they deal with time aspects and we do not.

As future work, we intend to automate our test case generation approach,
extending TaRGeT to implement the proposed approach. This will allow the tool
to generate both sequential and concurrent test case scenarios. Additionally, we
plan to integrate the proposed approach with existent tools that generate scripts
for the automatic execution of concurrent test cases. Another future work is
to perform a controlled experiment to compare the quality of the test cases
generated using our approach with that of the tests produced manually in the
context of the partnership with Motorola.
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Abstract. The EMVCo (EMVR© is a registered trademark or trade-
mark of EMVCo, LLC in the US and other countries.) organisation
(i.e. MasterCard, Visa, etc.) protocols facilitate worldwide interoperabil-
ity of secure electronic payments. Despite recent advances, it has proved
difficult for academia to provide an acceptable solution to construction
of secure applications within industry’s constraints. In this paper, we
describe a methodology we have applied to EMV1. It involves domain
specific languages and verification tools targeting different analysis of
interest. We are currently collaborating with EMVCo on their upcoming
EMVR© 2nd Generation (EMV2) specifications.

1 Introduction

In principle, payment protocols are designed to be secure, with adequate and
effective cryptographic methods employed to ensure confidentiality, integrity,
authentication, identification, etc. In practice, relevant attacks [9,17–19] still
occur in the industry, with financial fraud related to payment systems rising in
the last few years: for example, in the UK, there has been a 80% increase in value
of losses between 2011 and 2016, when the fraud losses were £618 million [24].

EMV, commonly termed Chip & PIN, is the dominant card based payment
technology and is managed by EMVCo (www.emvco.com). In 2015, their pro-
tocols generated US$433 billion in payments worldwide, protecting users from
fraud and identity theft. Their protocols were designed to operate with cards
being physically inserted into POS-terminal/ATM and used a wired connection
to communicate. The introduction of EMV contactless made payments more
convenient but created new security challenges as a wireless interface has been
added to EMV cards and PIN entry has been waived.

More in general, with the recent publication of PSD2 [13] and Open Bank-
ing APIs (openbanking.org.uk), regulation is pushing innovation. The pay-
ment/banking industry is being driven towards novel complex (cloud-based)
protocols. Potential threats from systematic fraud are real. Thus, current devel-
opment strategies would benefit from early safety-critical mindset.

Despite recent advances [14,15], adequate solutions suitable for indus-
try’s problems, within its constraints, are still lacking. Solutions developed in
c© Springer Nature Switzerland AG 2018
T. Massoni and M. R. Mousavi (Eds.): SBMF 2018, LNCS 11254, pp. 180–197, 2018.
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academia are too complex to be used effectively by practitioners, who generally
prefer to describe requirements in a way that is understandable by a wide range
of IT professionals. Therefore, it is common to find in software requirement spec-
ification documents, even for large application such as EMV, an informal/semi-
formal description based on natural language sentences and diagrams.

Analysis of EMV protocols is non-trivial due to the complexity of its require-
ments [22,23]. They have to incorporate competing (and conflicting) interests
from multiple issuers and from financial regulators worldwide. The introduc-
tion of contactless payments has significantly increased its complexity. While
EMV contact (Chip & PIN) specification describes a unified payment protocol
sequence (kernel) for all card types, the specification for contactless payments
contains seven protocol sequences, one per card issuer. Complexity is reflected in
expansion from four books (765 pages) for contact transactions [22], to additional
ten books (1627 pages) for contactless [23].

This paper presents a new methodology used for the analysis of the safety
and security of EMV’s contactless protocols. It is illustrated by considering the
security of contactless transaction protocols as stand-alone processes and the
wider impact of contactless technology. Our key contribution is a structured
analysis methodology involving various languages and tools that is tailored to
EMV audiences/developers (i.e. acceptable to the industry partners we have
been working with). Such methodology has identified and demonstrated the
impact of vulnerabilities in the EMV1 protocols.

Related Work. Several works have investigated on various aspects of the EMV
protocol suite. Some researchers focused on attacks on existing implementations.
The discovery in [39] allows attackers to buy goods from retailers, whereas the
discovery in [9] allows attackers to extract money from the victim’s account.
Relay attacks [17,18] allow fraudulent transactions to be collected from con-
tactless cards without the knowledge of the cardholder. In the area of formal
methods, the first comprehensive formal description of EMV [15] used an F#
model translated to Applied-pi [6], in order to make it amenable for analysis
with the ProVerif verifier [7]. This analysis confirmed all known weaknesses
without revealing any new vulnerabilities. [14] proposes an open specification of
an EMV-compliant protocol that can be securely used on mobile devices, even
if infected by malicious applications. The model is validated with Tamarin [40].
Other works [10,30] have analysed cryptographic aspects, focusing on protocols
for secure key agreement and channel establishment. Finally, we worked on a Z
encoding of Kernel 3 [25] that lead to new discoveries [18,20].

Contribution. Our work complements other formal approaches, as we benefit
from existing verification techniques (e.g. model checking), but provides addi-
tional insights that cannot be captured by protocol verifiers. For example, the
capability to formally specify user-defined functions in VDM-SL [33] and val-
idate a model, in the protocol specification language AnB [36], against them.
We also abstract from the underlying cryptographic aspects, assuming specific
primitives are made available according to the protocol specification.
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We use abstract (uninterpreted) functions in AnB to represent control flow
and problem-related state updates, which the declarative nature of the AnB lan-
guage lacks. Such functions can be formally specified, and are indeed imple-
mented (i.e. function for public key of agents pk in AnB is only defined by
different tools’ implementations). This approach is inspired in their successful
use by the CSP model checker FDR, and SMT-Lib decision procedures and pred-
icate solvers. Beyond their implementation in different tools, we formally specify
the functions behaviour in VDM, the same language that is being used here for
the formal specification of AnB . This is different from other approaches [1,2,5],
which compile AnB to different languages (e.g. CSP [32], operational strands
[31], IF [3]), with a formally specified compilation strategy/set of rules which
consider uninterpreted functions only symbolically.

In our case, as with the semantics of AnB , these functions are also specified
to be executable, hence enabling symbolic simulation of various protocols of
interest. Presence of such functions does not compromise security goals checked,
given that the intruder has access to them just like it has to access to symbolic
public (non-cryptographic) functions in the abstract model. Therefore, all the
intruder can do is to ask the environment to perform the computation and get
the result. We think this is important to set the scene and clarify the scope of
this methodology.

Outline. In Sect. 2, we present an overview of our methodology, in Sect. 3 we
introduce the specification language AnB through a simplified version of the
EMV1 Kernel and present the method applied to the full Kernel 3 including
key user-defined functions linked to the underlying verification environment in
VDM. Section 4 presents our findings, and Sect. 5 summarises our results and
discusses future work.

2 Methodology

Working with the payment protocols industry motivated the development of
the methodology described here. It is a variation and extension of a successful
application of rigorous/formal reasoning [18,21] applied top-down.

Our approach applies model-based techniques for the formal specification and
verification of protocol requirements and designs. It focuses on the construction
by protocol designers of a declarative description of protocol sequences using the
AnB (Alice & Bob) notation [36] (see Sect. 3.1). This model is used to investigate
the consistency of requirements, identify descriptive errors, and generate test
cases for our POS-terminal emulator capable of performing transactions with
both EMV contact and contactless protocols.

This has proved to be effective in both documenting decisions precisely [20,
21,25], and detecting significant protocol flaws early in the development pro-
cess [18,19], way before deployment or actual implementations. Specifically, it
is a variation of a successful industry approach by Praxis (now Altran UK, see
www.adacore.com/sparkpro/tokeneer), where formal specifications are used to

www.adacore.com/sparkpro/tokeneer
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clarify requirements and then later used to inform its design and implementa-
tions. That is, the sound rigour of the formalism does neither hamper the user’s
experience nor impose unrealistic expertise, yet provides a number of important
verification outcomes and challenges (i.e. proof obligations) of interest. To illus-
trate the process, we analysed one of the EMV1 contactless kernels [23]. The
process is depicted in Fig. 1, and is explained below.

Fig. 1. Methodology
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2.1 AnB Protocol modelling

Starting from the requirements in natural language (EMV Protocol Specifica-
tion), protocol developers in industry produce flowcharts and UML-sequence
diagrams describing protocol message exchanges and information flow. We intro-
duce AnB to stake holders in order to systematically capture these exchanges
between entities involved in a declarative fashion. Given AnB ’s simplicity, our
experience shows that the process is generally fast and straightforward. The
model (AnB Protocol Model) is then used to check message-format consistency
(i.e. messages sent are within agents’ knowledge), and to verify security proper-
ties such as secrecy and authentication goals.

In our settings, we have used the OFMC model-checker [4]. If an error is
found on the message-formats, it is likely that the developer has made one or
more errors in the encoding of the AnB model. For example, some message
exchanges specification could have been misinterpreted, w.r.t. the specification
document, and therefore a model revision may be necessary.

If these consistency checks are successful, the model checker will try to verify
the protocol against the security goals. If the goals are violated (i.e. the intruder
may attack the protocol and the protocol is unsafe), a revision of the specification
may be again necessary. If a fix is found amending the AnB model, then the same
will have to be incorporated in the original specification.

Such iterative process may require several steps and it is aimed at building
a correct and reliable AnB model that can be used in the next phases of the
methodology.

2.2 VDM Protocol Modelling

We compile AnB protocols to VDM-SL [33] to automatically obtain a VDM-SL
model of protocols. These VDM models of AnB protocols can be symbolically
evaluated by the formal language semantics of AnB described in VDM (AnB
Sigma). This provides a formal characterisation of the AnB protocol, where
the underlying program state in VDM represents the accumulated knowledge
accreted as a result of performing a protocol run, which also includes what the
intruder is capable of knowing in the worse case. This semantic encoding of
AnB enables knowledge computation that is symbolic, and a notion of intruder
model that is directly linked with (and limited by) the language semantics.

It should be noted that AnB is not expressive enough to capture control flow
or to represent important computations explicitly. Instead, the user can define
abstract function symbols to be used by the verification tools in implementation-
dependant manners. For example, if the user defines a new function foo to
perform some computation, what most tools will do is to ensure the function
types/results are correct and execute as Skip. We make use of these user-defined
functions (VDM transparent functions specification) to link the AnB model with
the protocol’s underlying required state and specific computations, by formalis-
ing their meaning.
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Therefore, a protocol/formal-methods expert can write the library, provid-
ing executable formal specifications for functions involved in the protocol, and
its underlying state once, which can then be reused across a number/family
of protocols. For example, EMV1 contactless payment protocols are defined in
kernels per issuer-specific implementation (e.g. Kernel 3 presented in Sect. 3 is
Visa NFC).

The VDM model of the protocol is used for symbolic simulation of protocol
runs, as well as test case specification (with the Overture and VDMJ tools).

2.3 Protocol Implementation and Tool Support

We currently use the AnBx Compiler and Code Generator [37] to translate the
AnB model to Java reference code. The compiler uses template files (Java Tem-
plates) which are instantiated with the protocol logic and the concrete Java
implementation of the transparent functions. The compiler can also apply opti-
misation techniques in order to minimise the number of cryptographic operations
and reduce the execution time [38].

The same tool is also used for translating the AnB model to VDM-SL. More-
over, in order to facilitate the adoption by practitioners, we have developed an
Eclipse-based IDE [29] supporting many tools used in this methodology.

3 Case Study - EMV1 Kernel 3

In this section, we present the methodology through a case study.

3.1 AnB Language

The AnB language [36] is a simple, abstract, and declarative language, where
AnBx [11,12] is a syntactic extension including various useful patterns of use
and a stronger type system for user-defined (abstract) function symbols. Its
key feature is the declaration of Agents representing protocol actors, Actions
representing message exchanges between agents, and Goals representing desired
properties of interest for the messages exchanged to have. Action messages are
described in a simple expression language that include user-defined function
symbols, some of which are security protocols primitives like private/public keys
functions.

A protocol has always five sections: (i) its name; (ii) declaration of agents,
types, and user/pre-defined functions; (iii) declaration of initial knowledge for all
declared agents, which implicitly include self-awareness (i.e., agent C knows its
own identity); (iv) declaration of actions as message exchanges between agents,
where various criteria/restrictions (described below) apply; and (v) declaration
of desirable security goals, which include messages being kept secret between
agents and agents being authenticated by other agents on specific messages.
An optional section with reusable (non-recursive) Definitions provides local
(let-style) abstractions for names.
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Fig. 2. AnBx Protocol example

Figure 2 depicts a simplified version of our EMV1 contactless implementa-
tion: the simplification is the lack of many user-defined functions, which will
appear in Sect. 3. This is a deliberate simplification (EMV1 has other complexi-
ties, as illustrated in [15], and elided here): our point is to illustrate that with an
abstracted version of the protocol, certain security goals of interest are already
breached (see Sect. 4.1).

To complete a payment, a card C needs to endorse the payment information
(ACPayload) and this can be verified by both the terminal T and the card issuer
iss. The card never exchanges messages directly with issuers, but only using
the terminal as an intermediary.

In Types section we define the following identifiers: the Agents (C,T,iis), a
component of the payload PDOL which abstracts information about the payment
(e.g. amount, date, etc) and a Nonce. The issuer identifier (iis) is a constant
(first letter lowercase), therefore, by convention in AnB , it is considered trusted.
We assume that the issuer systems are uncompromised. Variable identifiers (first
letter uppercase) of type Agents can be impersonated by the intruder, while
variables of type Number represent abstract values which are different at every
run of the protocol.

To illustrate the use of function abstraction, fcnSeqNo is used to represent
the capability of agents to generate sequence numbers (used typically in the
interaction between the card and the issuer). Public key cryptography is mod-
elled using a function sk, mapping agents to public keys, with the purpose of
representing the public keys used for digital signature. Therefore, sk(C) is the
public key of agent C, whilst inv(sk(A)) is the corresponding private key. This
key is added to the initial knowledge of agent C, while function sk is known by
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all agents representing the capability of retrieving a certified public key from a
keystore or public repository.

Use of cryptographic expressions is shown in section Definitions. AC rep-
resents the payload (ACPayload) encrypted with ShkCiss, the symmetric key
agreed between the card and the issuer. We assume that the issuer and the card
had agreed on a session key (ShkCiss) prior to the protocol run. An example
of asymmetric encryption is SDAD, the digital signature of the payload, obtained
encrypting the ACPayload with the private key of the card.

The actions are written in order of exchange, for a message from the source
to the target agent. The next action must always be a response from the target
of the previous action to another agent.

In the first action, the terminal sends its identity and the information about
the payment options back to the card. We have shortened the (application selec-
tion) EMV1 protocol sequence here for simplicity. Then the card replies with the
digital signature of the payload, which is encrypted with their pre-shared key
(ShkCiss). The digital signature is used by the terminal to authenticate the card,
while the ciphertext is forwarded to the card issuer, which uses the pre-shared
key to authenticate the card, validate and authorise the payment request.

This description of the protocol actions, describes how knowledge is accreted
as a result of the protocol execution. Crucial to this process is the intruder knowl-
edge. It is characterised as what is knowable by a malicious party attempting
to interfere with the protocol by either impersonation or passively listening to
communication. Different tools will define different knowledge acquisition rules
for the intruder, which will determine its threat capability, where a commonly
implemented approach follows the Dolev-Yao model [16].

The Goals section can specify goals of the following type:

Weak Authentication : B weakly authenticates A on M and are defined in
terms of non-injective agreement [34];

Authentication : B authenticates A on M and are defined in terms of injec-
tive agreement on the runs of the protocol, assessing the freshness of the
exchange;

Secrecy : M secret between A1,...,An and are intended to specify which
agents are entitled to learn the secret message M at the end of a protocol run.

For EMV1, we illustrate goals of interest based on our understanding of the pro-
tocol. The first two goals represent the terminal and the issuer authenticating the
card on the payment information endorsement (ACPayload): payment authorisa-
tion request is made by a legitimate card and not by an attacker. Moreover, the
protocols would like to achieve freshness, i.e., the same authorisation request
cannot be used twice and the issuer is able to link each authorisation with
the correct payment request. The two final goals states that various keys must
remain secret.
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3.2 From Specification to the Model

Following our methodology, after the user writes the AnB protocol that is well-
formed (i.e. no type or name violations, knowledge provisos for message exchange
are valid, etc.), we translate it to its VDM semantics. For the user-defined func-
tions, VDM library implementations are required. In what follows, we describe
the complete AnB model for EMV1, including these abstract functions, together
with an excerpt of the underlying VDM state and abstract functions module.

EMV1 Visa kernel 3 contactless requirements are given in [23]. The
document describes the Visa-specific contactless protocol, which is a varia-
tion/simplification of other common kernel features [22].

First, we read and understood these requirements. In the practice we envis-
age, protocol experts ought to know (or at least have a good idea of) what they
are trying to describe. Second, we thought about what security goals would be
of interest. Different from other protocols, such as Mondex [28], where security
goals were clearly defined from the outset, such goals are not explicitly declared in
the EMV1 requirements [22], yet we assume practitioners will know what goals
to check; we added some we found relevant below in Sect. 4.1. Finally, before
constructing the AnB model for EMV, we create UML sequence diagrams to
illustrate the key stages/players as described by the requirements.

3.3 EMV1 Kernel 3

Our model of EMV Visa kernel 3 considers three agents: a card issuer iss,
a card C and a terminal (i.e. card reader) T. When the card is issued, it is
preloaded with a unique pre-shared asymmetric key that is used to run a key
agreement protocol which generates the session key ShkCiss, whose computation
is based on the transaction counter. The pre-shared key is known only by the
card issuer and the card itself. The session key can be used to ensure that the
communication between card and issuer is secure, even though the two agents
during a protocol run never exchange messages directly but only through the
terminal. The protocol, using the DDA authorisation technology, assumes that
the issuer can be trusted. In other words, it is assumed that the issuer systems
are not compromised by the intruder, and that for legitimate cards pre-shared
keys and session keys with the issuer are stored securely and kept secret.

Along with the ability to encrypt data with the session key, the card is also
able to digitally sign messages that can be used to authenticate the card with the
terminal. We use a number of abstraction functions in AnB actions to represent
protocol functionality beyond simple message exchanges between parties through
user-defined functions (e.g. fcnAgree, fcnCVM, fcnUsage, etc). We also use
definitions to name commonly used message expressions (e.g. CardVisaCap,
TermTransVisaCap, etc). We illustrate here the actions performed during the
protocol run, and we will describe the result of the security analysis in Sect. 4.1.

1. T → C: cmdListApps
The terminal asks the card the list of applications (cmdListApps) (i.e. differ-
ent EMV Kernels) it is able to run (e.g. Visa, MasterCard, etc.).
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2. C → T: C,respVisa
The card replies with its identity and the application it intends to run, in this
case Visa - respVisa. A card could store different kernels for different card
issuers.

3. T → C: fcnSelect(C,respVisa)
The terminal tells the card to start running the Visa program, by sending the
selection message fcnSelect(C,respVisa). fcnSelect is a function imple-
mented by the EMV kernel, and it abstracts the request as part of the message
exchange.

4. C → T: CardVisaPDOL,CardVisaCap
The card replies with the meta information it requires for engaging in a
transaction (i.e. CardVisaPDOL contains transaction date, amount, currency,
country, etc.) and what verification methods the card is capable of perform-
ing. That is, CardVisaCap contains the card verification methods (CVM) to
be used (e.g. online pin number, or offline signature, etc). It is defined as
fcnCVM(C,respVisa), where fcnCVM abstracts the card computing its verifi-
cation method for the requested application.

5. T → C: PDOL,TermTransVisaCap
The terminal replies with the actual PDOL, a list of values corresponding
to the CardVisaPDOL request list (PDOLDate, PDOLAmount, PDOLCountry,
PDOLCurrency, etc). It includes the unpredictable number PDOLUPN gen-
erated by the terminal and used to identify the transaction. More-
over, the terminal send to the card TermTransVisaCap, which is the
intersection between the general terminal capabilities as well as trans-
action specific capabilities. It is defined by the abstraction function
fcnCVM(T,fcnCVM(T,TermUsageValid)), where TermUsageValid is defined
as fcnAgree(fcnUsage(C,respVisa),fcnUsage(T,respVisa)). That is,
fcnUsage returns the usage scenarios for both card and terminal for the
requested Visa Kernel 3 application, whereas fcnAgree ensures that there is
an agreeable choice between them. Usage examples include information where
the transaction is taking place (e.g. shop, ATM, etc.) as well as kernel-specific
limits (e.g. maximum value limit before going online, maximum overall limit
per contactless transaction, etc.). The innermost application of fcnCVM to
the result of usage agreement between card and terminal determines the
transaction-specific capabilities between both parties, whereas the outermost
application of fcnCVM ensures this transaction-specific agreement is within
what’s generally possible for the terminal.

6. C → T: fcnAgree(CardVisaCap,TermTransVisaCap),SDAD,AC
The card is now ready to start the transaction, provided the capabilities
between card and terminal within chosen transaction are agreed
(fcnAgree(CardVisaCap,TermTransVisaCap)). The other two components
are SDAD and AC. SDAD is a message digitally signed by the card contain-
ing the application cryptogram payload (ACPayload), which is composed by
the terminal transaction data required by the card (PDOL), the card unique
sequence number (CSN) per application, and the card unpredictable number
CUPN. The second component is the application cryptogram (AC), which is a
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ciphertext of the PDOL and CSN encrypted with the session key ShkCiss, and
it serves as an acknowledgement from the card held by the terminal. Since
the key is only known to the card and the issuer, only the issuer will be able
to decrypt this message.

7. T → iss: PDOL,AC,C
In the last step, the terminal forwards the information to the issuer including
the PDOL, AC and the card identity. This represents the terminal “cashing” in
its “I owe you”’s given by the card for the transaction.

3.4 EMV1 User-Defined Functions in VDM

The user defined functions for our EMV1 model are interpreted/implemented
within our VDM formal semantics of AnB abstract functions, which include
cryptographic primitives (i.e., the default environment for our AnB semantics
specify pk, sk, etc.). They exist in the context of certain types and a global state.

Listing 1.1 provides the highlights of types defined for our AnB abstract
functions for EMV1. We abuse the VDM notation slightly here: record fields
of the same type are separated by commas to save space; “. . .” represent
types/invariants that may have more fields/predicates. These types (and func-
tions), have been thoroughly investigated in [25] and key findings were presented
in [18].

For instance, the Card type models the card identity (i.e. its 16-digit num-
ber), its card verification methods per application, and if a card has more than
one application (e.g. Visa Debit, MasterCard Credit). The verification method
is defined by choosing the adequate CVM (Cardholder Verification Method)
value (e.g online pin-verified, offline signature, etc.) and usage value (e.g. POS-
terminal, ATM, etc.).

Note this abstracts away underlying cryptographic verification technologies
actually employed like CDA, SDA, or DDA. That means we are assuming the
AnB cryptographic primitives’ implementation would be assigned to one of these
schemes, which makes them transparent (and orthogonal) to what we are cap-
turing, which is the flow of control and information between protocol entities in
order to ensure certain security goals.

Listing 1.1. VDM types used by EMV1 AnB user-defined functions
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The AnB type system is too weak to represent what we need, hence the
need for using VDM types. These types provide an interpretation for the space
of possible values for the parameters of AnB functions (see Listing 1.2) like
fcnSelect, fcnUsage, etc. Other details aside, the point of Listing 1.2 is to
illustrate how we concretely represent AnB abstract functions within our method
framework.

This VDM model needs to be written once (most likely by a formal methods
expert) for a variety of EMV1 protocols. Given EMV invariants are not mathe-
matically deep, but rather simple if numerous (something common in industrial
models), the required expertise is not onerous. We tested this hypothesis by
having a good MSc student without formal background develop most of the
necessary EMV1 user-defined libraries for another EMV protocol (relay resis-
tance) [35].

Listing 1.2. AnB user-defined functions for EMV1 given in VDM

For instance, function fcnSelect insists that the chosen agent application
must have cardholder verification methods (CVM) validation criteria in order
for it to be selected, and given this test passes, the result is the given application.
This illustrates the underlying checking, in this case rather simple, under which
conditions the first stage of the protocol can operate.

In general, the precise documentation of various conditions of all EMV pro-
tocol stages is at the heart of our methodology. Cumulatively, this forms the
compound conditions for every specific successful protocol run. More impor-
tantly, it can also be used for further investigation through test case generation
that is minimal with accountable coverage, or to have proof obligations about
the individual satisfiability of each step (i.e. are the given contracts sound?).

For instance, in order to query the expected usage for a chosen agent appli-
cation (fcnUsage), the input parameters must have passed the conditions for
selection (pre fcnSelect) first. That being the case, the result is the usage
present within the corresponding agent type structure. This use of (precondi-
tion) referencing makes protocol state dependencies easily accounted for.

Overall, we model these functions and their underlying state (i.e. card, ter-
minal, and transaction internal states), hence encoding all necessary invariants,
pre/postconditions for the protocol’s functional correctness.

This is different from OFMC because we can make claims about the under-
lying expected protocol specification via the VDM functional correctness model
of protocol transparent functions and state. Moreover, when problems are dis-
covered by a VDM simulation or proof, we have to identify whether this is
a problem for AnB (i.e. something about the information flow that OFMC
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missed), or a problem within the transparent function’s behaviour themselves.
The former strengthens the verification capability of AnB tools, whereas the
latter strengthens and precisely documents the underlying assumptions about
required transparent functions.

Given the nature of their use, the specification of these transparent functions
are a more onerous job. That is because they are capturing the underlying system
state and updates, and their verification will require theorem proving, yet these
can be done once for a family of AnB security protocols. A concrete example
of such verification of transparent functions for a family of protocols are the
public-key cryptography primitive functions in AnB (e.g. pk and inv), which
must represent an injective relationship between public and private keys.

Because we have a direct formal semantics of AnB in VDM as well, a number
of further verification and specification opportunities arise, and we are working
on integrating those within our methodology in Fig. 1.

4 Results and Extensions

In our simulation environment for the AnB language semantics, we have explicit
definitions for the pre-defined (cryptographic) and user-defined (EMV1 protocol
specific) transparent functions, as well as the other parts of the EMV1 common
kernel can perform. This enables us to perform a number of interesting analy-
ses. This model is used to investigate the consistency of requirements, identify
descriptive errors, and generate test cases for our POS-terminal emulator capable
of performing transactions with both EMV contact and contactless protocols.

The AnB protocol semantics, defined in VDM, provides the knowledge accu-
mulated by each agent, including our model of the intruder capabilities, as a
result of executing the protocol according to the language semantics. This is
a different strategy from other AnB tools [4,5]: we explicitly model allowed
behaviours by each AnB program constructs as defined by the language seman-
tics in VDM, rather than by observing exchanged messages in a translated (IF-
notation [4]) format. Arguably, our approach prioritises safety before security.
Another way to look at such differences is that we do not encode AnB in other
languages (e.g. CSP [34] or IF-notation) for these languages’ tool consumption
and limitations. Instead, we represent the underlying AnB semantic state and
operational semantics transitions using VDM (i.e. our approach consists among
other things in defining the semantics of AnB in VDM-SL).

We derive VDM test cases to exercise key (or if possible all) specification
entities (e.g., type invariants, pre and postconditions, etc.). We also derive proof
obligations that if/when discharged demonstrate the correctness of the model as
a whole: without the proofs we have a debugging/testing tool, whereas with such
proofs we have a verified functionally correct abstract execution environment for
the specific EMV1 protocol of interest.

We have already worked with the Isabelle/HOL theorem prover to discharge
VDM proofs, and are currently translating key aspects of EMV’s infrastructure
to be proved. To ensure proofs in different logics (i.e., VDM’s LPF and Isabelle’s
HOL) can be addressed properly, we follow ideas from [27,41].
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Moreover, we can also use other available tools to perform further security
analysis (e.g. the AnBx compiler translates AnB to ProVerif [8]), as well as code
generation for a concrete implementation in Java that we plan to deploy to real
terminals and run on real cards, all this within our Eclipse-based AnBx IDE [29].
Overall, all this gives a valuable exploration and testing platform for protocol
experimentation and prototyping. These implementations and their generated
test cases can also serve as oracles to real implementations including the myriad
complexities involved in an actual EMV1 protocol stack.

4.1 Security Analysis

The security goals we considered in our modelling (Sect. 3.3) are exactly the
four goals described in Fig. 2. The only difference is that for the authentication
goals we consider SDADPayload, which contains few more components than just
ACPayload.

We analysed the protocol with the OFMC model checker. This tool uses the
AVISPA Intermediate Format IF [3] as “native” input language, which allows
to describe security protocols as an infinite-state transition system using set-
rewriting. The major techniques employed by OFMC are the lazy intruder, which
is a symbolic representation of the intruder, and constraint differentiation, which
is a search-reduction technique that integrates the lazy intruder with ideas from
partial-order reduction achieving a reduction of the search space associated with-
out excluding attacks (or introducing new ones).

As the terminal is capable of engaging only in one session at a time, we tested
initially the protocol run only for one session. For each goal, our findings were:

– Goal: T authenticates C on SDADPayload
This goal implies that the terminal is able to authenticate the transaction
request endorsed by the card. This goal seems problematic to achieve for
two reasons. First, the terminal does not always have an identifier that can
be sent by the terminal to the card. Second, the ACPayload that is signed
with the private key of C does not include the terminal identity T, therefore
it is not possible to prove the injective agreement, i.e. the intention of the
card to endorse a message intended for the terminal. A possible fix, if the
terminal has an identifier, is simply to add T to the definition of ACPayload.
Moreover, at the first step (as in the protocol in Fig. 2) the terminal should
send its identifier to the card. This vulnerability can be exploited as shown in
attacks, such as [9]: the attacker pre-generates authorisation codes on its own
terminal, then goes to a merchant and replies that authorisation code. This
will trick the merchant terminal to accept the transaction, hence enabling
goods to be taken for free.

– Goal: iss authenticates C on ACPayload
This goals implies that the card issuer is able to authenticate the transaction
request endorsed by the card. We found that this goal is satisfied. Therefore,
the asymmetric encryption mechanism (using the session key ShkCiss) seems
sufficiently robust.
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– Goal: ShkCiss secret between C,iss
This goal implies that the session key ShkCiss is kept confidential during the
protocol run. This goal is also satisfied, as the key never leaves the card during
the protocol execution. Therefore, as long as the card is uncompromised (i.e.
keys are stored securely) this goal is satisfied.

– Goal: inv(sk(C)) secret between C
This goal implies that the private asymmetric key of the card used for signa-
ture remain secret after the protocol run. Again, this goal is satisfied for the
same reason of the previous goal.

We also tested the protocol for two parallel sessions, and found that the
second goal can be satisfied only for the weak authentication, but not for the
injective agreement. Since a terminal does not engage in parallel session, this is
not a problem for now, but if, in the future, terminals will be able to handle con-
tactless payments in parallel, this might be a matter of concern, as a transaction
authorisation can be used twice, unless mechanisms of prevention are enforced
(e.g. counters).

5 Conclusion and Future Work

In this paper, we presented a new methodology that puts industry-accepted
languages (AnB) and state-of-the-art formal reasoning tools (OFMC, ProVerif,
Overture/VDM, Isabelle/HOL, etc) to the analysis of payment protocols. In par-
ticular, this is motivated by our current work collaborating with EMVCo on the
development of their upcoming EMVR©2nd Generation (EMV2) specifications.
Given the current confidentiality of EMV2, we illustrated the methodology with
EMV1 Kernel 3 for contactless payments. Many of the tools and techniques
presented are not new. The key of what is novel is a mixture between how we
put these tools together, what new theories (e.g. executable formal semantics of
AnB in VDM), and new tools (e.g. formal simulation of EMV1&2 kernels) are
being used by industry.

With the upcoming developments in the “FinTech” industry as a result of
not only EMV2 but also PSD2 and Open Banking APIs, our aim is to enable
the dependable development of payment protocols faster and cheaper, with an
accountable demonstration of why that is the case. This follows in the footsteps
of a proven approach by Altran Praxis: we took considerable inspiration from
their work on Tokeneer, as well as our own work on Mondex [28].

We are currently working on publishing the details of the novel AnB seman-
tics, which will enable an extended set of goal verifications automatically beyond
what is possible at the moment. Moreover, we could also work on the automatic
generation of the reference implementation, including the user-defined functions,
from the VDM model rather than directly from the AnB model. The workflow
presented in Fig. 1 is currently being applied within the EMV2 protocol. Further
details appear in another paper in these proceedings [26], yet a number of techni-
cal details had to be removed until EMV2 becomes public due to non-disclosure
agreement restrictions.
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Abstract. Robotic systems have applications in many real-life scenar-
ios, ranging from household cleaning to critical operations. RoboChart
is a graphical language for describing robotic controllers designed specif-
ically for autonomous and mobile robots, providing architectural con-
structs to identify the requirements for a robotic platform. It also pro-
vides a formal semantics in CSP. RoboChart has a probabilistic operator
(©P ) but no associated probabilistic CSP semantics. When ©P is used,
currently a non-deterministic choice (�) is used as semantics; this is a
conservative semantics but it does not allow the analysis of stochastic
properties. In this paper we define the semantics of the operator ©P in
terms of the probabilistic CSP operator �. We also show how this aug-
mented CSP semantics for RoboChart can be translated into the PRISM
probabilistic language to be able to check stochastic properties.

Keywords: Robotic systems · CSP · Probabilistic analysis · PRISM

1 Introduction

Robotic systems have been used in many real-life scenarios, ranging from simple
domestic assistants [26] (household cleaning) to safety-critical activities, such
as driverless cars [4] and pilotless aircraft [27]. Despite their complexity, the
current practice for implementing such robots applications is performed in an
ad-hoc manner. These practices are often based on standard state machines,
without formal semantics, to describe the robot controller only.

In [20], a domain-specific modelling language, called RoboChart, based on
UML, is proposed. It is a graphical language for describing robotic controllers,
specifically designed for autonomous and mobile robots. It provides architectural
constructs to identify the requirements for a robotic platform. Features of the
RoboChart graphical notation allow, for instance, the behavioural description of
timed, continuous, and probabilistic properties.

Concerning formal verification, RoboChart has a formal semantics in
CSP [22] that can be automatically calculated by RoboTool1, a tool that sup-
ports the use of RoboChart. CSP is a well established process algebra to model
1 www.cs.york.ac.uk/circus/RoboCalc/robotool.
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and verify concurrent systems. It defines the behaviours of a system in terms of
events and the interactions of processes. CSP has support for model checking
with FDR [24], which provides a high degree of automation for early validation.
Using FDR, we can, for instance, establish determinism, and absence of deadlock
and divergence.

Besides functional aspects, RoboChart has also a probabilistic operator (©P )
that can be used to express stochastic behaviours. Currently, however, it has no
associated probabilistic CSP semantics. When it is present, for instance, between
processes P and Q , a non-deterministic choice (P � Q) is used as semantics.

The work reported in [8] presents a version of FDR supporting the probabilis-
tic operator �. But instead of modifying the FDR algorithm itself to perform
probabilistic analysis, the work [8] adds a new algorithm that creates a PRISM
specification [14] from a probabilistic CSP specification. This translation was
named WatchDog Transformation. PRISM is a probabilistic language and model
checking tool (both have the same name) which has already been successfully
deployed in a wide range of application domains, such as real-time communica-
tion protocols, robots applications, and biological signalling pathways.

In this paper we define the semantics of the RoboChart probabilistic operator
©P in terms of the CSP probabilistic operator �, preserving all the original
CSP semantics of RoboChart. To check for probabilistic properties, we specify
a CSP property specification; this is different from the usual way of handling
probabilistic model checking, which is based on a temporal logic language to
express properties. We reuse the WatchDog Transformation provided by [8],
which combines the two CSP processes (property and process under analysis),
yielding a PRISM specification. With this specification, we just have to check
for a specific probabilistic temporal logic formula using the PRISM tool.

The remaining of this paper is structured as follows. The next section provides
an overview of RoboChart, and its CSP semantics. Section 3 briefly presents
PRISM. The translation from CSP to PRISM is discussed in Sect. 4. Section 5
presents our proposed strategy, and case studies are described in Sect. 6. Finally,
we draw our conclusions, and discuss future work in Sect. 7.

2 RoboChart

RoboChart [20] is a UML-like notation designed for modelling autonomous and
mobile robots. It provides constructs for capturing the architectural patterns of
typical timed and reactive robotic systems, and probabilistic primitives as well.
As opposed to other approaches for describing robotic systems, RoboChart has
a formal semantics that can be automatically calculated.

We give an overview of RoboChart using a toy model, illustrated in Fig. 1. A
robotic system is defined in RoboChart by a module. In our example, it is called
CFootBot, and specifies a robot that can move around and detect obstacles. A
module contains a robotic platform and one or more controllers that run on this
platform. The robotic platform FootBot defines the interface of the system with
its environment, via variables, operations, and events. In our example, the oper-
ation move(lv,av) captures the movement of the robot with linear speed lv and



200 M. S. Conserva Filho et al.

angular speed av. The event obstacle occurs when the robot gets close to any
object in its environment; it is an abstraction of a sensor that detects obstacles.
There may be one or more controllers, interacting with the platform via asyn-
chronous events, and between them via synchronous or asynchronous events. Our
example has just a single controller Movement. The behaviour of a controller is
defined by one or more state machines, specifying threads of execution. Here,
the behaviour of Movement is defined by the machine SMovement.

Event Constant Initial state Controller
State machine Robotic Platform Used Interface Event
Operation Required Interface Clock Provided Interface

Fig. 1. RoboChart: obstacle detection

Interfaces can group variables, operations, and events. In Fig. 1, the interface
MovementI has only the operation move(lv,av), provided by the robotic platform,
and required by the controller. ObstacleI has just the event obstacle, which is used
in the platform, the controller, and the state machine. In general, different events
may be connected, as long as they have the same type, or no type. Types are
used when an event communicates an input or output value.

A state machine is the main behavioural construct of RoboChart. It is similar
to that in UML, except that they have a well defined action language. In our
example, the behaviour of SMovement is as follows: upon entry in the state
Moving, after calling the operation move(lv,0), the robot waits for one time unit.
The operation call move(lv,0) takes no time; it can be, for example, implemented
as a simple assignment to the register of an actuator. The machine, however, is
blocked by wait(1) for one time unit (which is a budget for the platform to react
to this operation) before it completes entry to Moving.

SMovement declares a clock MBC. In Moving, when an obstacle is detected,
MBC is reset (#MBC) and the machine moves to the state Turning. There, a
call move(0,av) turns the robot. A transition back to Moving is guarded by
since(MBC) >= PI/av. As soon as the guard is satisfied, the transition is taken.
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The guard requires that the value of MBC is greater than or equal to that of
PI/av, to ensure that the robot waits enough time to turn PI degrees, before
going back to Moving, and proceeding in a straight line again.

There may be one or more controllers, interacting with the platform via
asynchronous events, and between them via synchronous or asynchronous events.
Here, we have just a single controller CForaging. The behaviour of a controller is
defined by one or more state machines, specifying threads of execution. In the
example, the behaviour of CForaging is defined by the machine SForaging.

Interfaces can group variables, operations, and events. In Fig. 1, the interface
IForaging has the events stop, forage and flip, which are used in the platform, the
controller, and the state machine. In general, different events may be connected,
as long as they have the same type, or no type. Types are used when an event
communicates an input or output value.

Further information regarding RoboChart can be found in [19–21].

2.1 Semantics

The semantics of RoboChart is defined using a dialect of CSP called tock-
CSP [22]. It is used to describe concurrent reactive systems that are composed
by interacting components, which are independent entities called processes, that
can be combined using high level operators to create complex concurrent sys-
tems. In tock-CSP, a special event tock marks the discrete passage of time.

Before presenting the semantics for our example, we first introduce the
required CSP syntax. The process SKIP represents the terminating process,
and STOP represents a deadlock process. The prefixing a → P is initially able
to perform only the simple event a, and behaves like process P after that. Events
may also be compound. For instance, b.n is composed by the channel b and the
value n. The process P � Q is an external choice between process P and Q .
The process P ; Q combines the processes P and Q in sequence. The process
if b then P else Q behaves as P if b holds and as Q otherwise. Further informa-
tion regarding CSP can be found in [22].

We present below a CSP process CFootBot that specifies the behaviour of
our example in Fig. 1. The formal semantics of RoboChart is implemented by
a tool (RoboTool) that automatically calculates a process that is equivalent to
CFootBot below.

CFootBot = EMoving ; Obstacle; ETurning ; wait(PI /av); CFootBot

CFootBot composes in sequence processes EMoving, Obstacle, ETurning, and
wait(PI/av) followed by a recursive call. EMoving is below; it engages in the event
moveCall.lv.0, which represents the operation call move(lv,0) in the entry action
of the state Moving. In sequence (prefixing operator →), EMoving engages in the
moveRet event that marks the return of that operation, and then behaves like
the process wait(1).

EMoving = moveCall .lv .0 → moveRet → wait(1)
wait(n) = if n == 0 then SKIP else tock → wait(n − 1)
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The definition of the parameterised process wait(n) is recursive; it engages
in n occurrences of tock to mark the passage of n time units, and after that
terminates: SKIP . So, wait(1) corresponds directly to the wait(1) primitive of
RoboChart. The process Obstacle defined below allows time to pass until an
event obstacle occurs, when it then terminates. So, the events obstacle and tock
are offered in an external choice (�).

Obstacle = obstacle → SKIP � tock → Obstacle

Finally, the process EntryTurning models the entry action of Turning.

EntryTurning = moveCall .0.av → moveRet → SKIP

3 PRISM

Probabilistic model checking [1] is a complementary form of model checking
aiming at analyzing stochastic systems. The specification describes the behaviour
of the system in terms of probabilities (or rates) in which a transition can occur.

Probabilistic model checkers can be used to analyze quantitative properties
of (non-deterministic) probabilistic systems by applying rigorous mathematics-
based techniques to establish the correctness of such properties. The use of proba-
bilistic model checkers reduces the costs during the construction of a real system
by verifying in advance that a specific property does not conform to what is
expected about it. This is useful to redesign models.

There are some tools that specialize in probabilistic model checking. The
most well-known are: PRISM [14], Storm [3], PEPA [25], and MRMC [11].

This work focuses in the syntax of the language PRISM, which can be ana-
lyzed by the PRISM tool, the Storm model checker and other probabilistic model
checkers as well. The next section gives an overview of PRISM.

The PRISM Language. The PRISM language [14] is a probabilistic specifi-
cation language designed to model and analyze systems of several application
domains, such as multimedia protocols, randomized distributed algorithms, secu-
rity protocols, and many others.

The PRISM tool uses a specification language also called PRISM. It is an
ASCII representation of a Markov chain/process, having states, guarded com-
mands and probabilistic temporal logics such as PCTL, CSL, LTL and PCTL∗.

PRISM can be used to effectively analyze probabilistic models such as Discre-
te-Time Markov Chains (DTMCs), Continuous-Time Markov Chains (CTMCs),
Markov Decision Processes (MDPs), Probabilistic Automata (PAs), and Proba-
bilistic Timed Automata (PTAs).

To introduce the syntax of the PRISM language, consider the simple prob-
abilistic algorithm due to Knuth and Yao [12] for emulating a 6-sided die with
a fair coin (see Fig. 2) that can be found in the PRISM website2. The PRISM
code corresponding to this algorithm can be seen in what follows.
2 http://www.prismmodelchecker.org/tutorial/die.php.

http://www.prismmodelchecker.org/tutorial/die.php
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Fig. 2. Graphical illustration of the 6-sided die with a fair coin

dtmc
module die
s : [0..7] init 4;
d : [0..6] init 0;
[] s = 0 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 2);
[] s = 1 → 0.5 : (s ′ = 3) + 0.5 : (s ′ = 4);
[] s = 2 → 0.5 : (s ′ = 5) + 0.5 : (s ′ = 6);
[] s = 3 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 7)&(d ′ = 1);
[] s = 4 → 0.5 : (s ′ = 7)& (d ′ = 2) + 0.5 : (s ′ = 7)&(d ′ = 3);
[] s = 5 → 0.5 : (s ′ = 7)& (d ′ = 4) + 0.5 : (s ′ = 7)&(d ′ = 5);
[] s = 6 → 0.5 : (s ′ = 2) + 0.5 : (s ′ = 7)& (d ′ = 6);
[] s = 7 → (s ′ = 7);

endmodule

The first thing to note is the reference to the kind of Markov chain being
addressed. In this example, a Discrete-Time Markov Chain (DTMC) was used.

This PRISM specification is composed of a single module, but if more than
one module is presented an implicit parallel composition of them is considered
as semantics [14]. This standard parallel composition can be customised to a
new semantics by the use of a system . . . endsystem section.

Inside a module, we can have local variables such as the s and d of this
example. Both are natural numbers, ranging from 0..7 and 0..6, respectively.
They need an initialisation. In this case, s is initially set to 4 and d to 0.

The rest of the module’s body is basically composed of a sequence of proba-
bilistic transitions, each one starting with a choice ([]) operator. A transition has
a guard (expression before the → operator), followed by the destination alter-
natives. The alternatives are identified by the use of + signals. Each alternative
has a probability (or rate) before the colon and update rules afterwards. Each
update comes inside parentheses and the apostrophe is used to characterise the
value of the variable in the next state of the system. The symbol & is used to
describe logic conjunction.
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Thus the transition

[] s = 0 → 0.5 : (s ′ = 1) + 0.5 : (s ′ = 2);

may be read as follows: if s = 0 holds, then this transition is fired. At this state,
we have a 50-50% alternative to update the variable s. In the first alternative,
the new value of s is set to 1. Otherwise, 2. Figure 3 shows its Markov chain3.

Fig. 3. Markov chain for the 6-sided die

Finally, we can perform probabilistic analysis. For this example, we can calcu-
late the probability of getting one of its 6-sides by writing the following property
(standing for “What is the chance of eventually s becomes 7 and d becomes x?”)

const int x ;
P =? [F s = 7 & d = x ]

where the constant x refers to a specific face of the die (x ∈ {1, 2, . . . , 6}). In
this example, the probability for each value of x equals 16.67%.

4 WatchDog Transformation

The process algebra CSP was extended to incorporate probabilistic and timed
aspects in [16]. The probabilistic operator � was defined. However, this extension
was entirely theoretical; no tool support was available at that time. In the work
reported in [8], a version of FDR was implemented to handle the operator �.

Essentially, the standard CSPM notation (the machine-readable version of
CSP used by FDR) was augmented by the following new operator ([· ∼ ·]). Let
P and Q be CSP processes. Then

P m
(m+n)

� n
(m+n)

Q == P [m ∼ n]Q

where m and n are natural numbers.

3 To create such a graph, we export the Markov model in the PRISM tool and use the
graphviz tool (http://www.graphviz.org/) to create Fig. 3.

http://www.graphviz.org/
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The work [8], however, did not change the FDR algorithm to perform prob-
abilistic analysis. Instead, FDR was extended to create a PRISM specification
from a refinement assertion. This translation is briefly described as follows.

The WatchDog Transformation consists in analysing the probability with
which a probabilistic CSP implementation (I ) refines a non-probabilistic CSP
specification process (S ). In this paper it is enough to briefly present the Watch-
Dog Transformation concerning the traces semantics

S �T I

It consists in mapping a specification process, say S , to a watchdog process that
monitors the traces of an implementation process, say I , to indicate whether
or not I refines S according to CSP’s traces semantics. Precisely, a watchdog
process WDTS is defined such that it can perform a distinguished fail event
when I performs a trace not allowed by S .

WDTS (i) = (� e ∈ αI ∩ A(i) • e → WDTS (after(i , e)))
�

(� e ∈ αI \ A(i) • e → fail → STOP)

where A(i) is calculated by FDR as part of the transformation.
The intention is that WDTS (i0) can perform any trace tr of I that S can

perform, but it can also perform events from the alphabet αI of I not allowed by
S/tr (after which it can only perform the event fail ). Note that this definition
of WDT is expressed in terms of the alphabet of the implementation process
I which again must be calculated as part of the transformation. The original
refinement check S �T I is true precisely when WDTS (i0) ||αI I can never
perform the event fail .

The previous CSP process in its LTS semantic form is translated into a
PRISM specification based on a very few set of variables. The boolean variable
trace error matches the event fail . With this, the WatchDog Transformation
is able to calculate a probability using the following formula4

Pmax =? [F trace error ]

which mathematically corresponds to the following relation

S �T I ⇔ Pmax = 0% [F trace error ]

The refinement holds exactly when the maximum probability of trace error
becoming true is zero (or the event fail never happens). Other interesting prob-
abilities emerge when such a refinement can eventually fail. The interpretation of
the above relation is that Pmax =? [F trace error ] gives us the degree on which
the refinement S �T I may fail.

4 Pmin can be used to calculate the minimum probability as well.
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Thus, to explore the traces refinement to get useful probabilistic temporal
analysis, one has to think of CSP processes as properties in such a way that
the traces refinement holds up to a certain point and then fails. From the tem-
poral formula operator F , the traces refinement must resemble a reachability
analysis.

By default, the WatchDog Transformation creates an MDP PRISM specifi-
cation. But, if non-determinism may be ignored (for instance, in the 6-sided die
example presented in Sect. 3), one can simply change the mdp directive to a dtmc
one in the PRISM specification. In such a case, the PRISM tool can calculate a
single probability instead of a min/max probabilistic interval.

4.1 CSP to PRISM

To illustrate that the Markov chain generated by this approach is exactly what
we need, we use the same example of Sect. 3. That algorithm written in CSP can
be described as follows.

channel die : {1..6}
SixSidedDie =

let
S0 = S1 [1 ∼ 1] S2
S1 = S3 [1 ∼ 1] S4
S2 = S5 [1 ∼ 1] S6
S3 = S1 [1 ∼ 1] DIE (1)
S4 = DIE (2) [1 ∼ 1] DIE (3)
S5 = DIE (4) [1 ∼ 1] DIE (5)
S6 = S2 [1 ∼ 1] DIE (6)
DIE (x ) = die.x → DIE (x )

within S0

To obtain the exact Markov chain as depicted in Fig. 3, it suffices to apply the
WatchDog Transformation on the following refinement

RUN (αSixSidedDie) �T SixSidedDie

The reason is simple. The process RUN (αSixSidedDie) can be refined by any
process in the traces model and thus the PRISM variable trace error is always
false and the formula Pmax =? [F trace error ] will always return 0%.
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The generated PRISM code in what follows is naturally different from the
one presented in Sect. 3. But its Markov chain is the same of Fig. 3.

dtmc
moduleWATCHDOG

pc : [0..1] init 0;
trace error : bool init false;
[e2] pc! = 0 → 1 : (trace error ′ = true); //die.1
[e2] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.1
[e3] pc! = 0 → 1 : (trace error ′ = true); //die.3
[e3] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.3
[e4] pc! = 0 → 1 : (trace error ′ = true); //die.2
[e4] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.2
[e5] pc! = 0 → 1 : (trace error ′ = true); //die.4
[e5] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.4
[e6] pc! = 0 → 1 : (trace error ′ = true); //die.6
[e6] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.6
[e7] pc! = 0 → 1 : (trace error ′ = true); //die.5
[e7] pc = 0 → 1 : (pc′ = pc = 0?0 : 1); //die.5

endmodule
moduleP0

pc0 : [0..13] init 0;
[] pc0 = 0 → 0.5 : (pc′

0 = 1) + 0.5 : (pc′
0 = 2); // prob.0

[] pc0 = 1 → 0.5 : (pc′
0 = 3) + 0.5 : (pc′

0 = 4); // prob.1
[] pc0 = 2 → 0.5 : (pc′

0 = 5) + 0.5 : (pc′
0 = 6); // prob.2

[] pc0 = 3 → 0.5 : (pc′
0 = 1) + 0.5 : (pc′

0 = 7); // prob.3
[] pc0 = 4 → 0.5 : (pc′

0 = 8) + 0.5 : (pc′
0 = 9); // prob.4

[] pc0 = 5 → 0.5 : (pc′
0 = 10) + 0.5 : (pc′

0 = 11); // prob.5
[] pc0 = 6 → 0.5 : (pc′

0 = 2) + 0.5 : (pc′
0 = 12); // prob.6

[e2] pc0 = 7 → 1 : (pc′
0 = pc0 = 7?7 : 13); //die.1

[e3] pc0 = 9 → 1 : (pc′
0 = pc0 = 9?9 : 13); //die.3

[e4] pc0 = 8 → 1 : (pc′
0 = pc0 = 8?8 : 13); //die.2

[e5] pc0 = 10 → 1 : (pc′
0 = pc0 = 10?10 : 13); //die.4

[e6] pc0 = 12 → 1 : (pc′
0 = pc0 = 12?12 : 13); //die.6

[e7] pc0 = 11 → 1 : (pc′
0 = pc0 = 11?11 : 13); //die.5

endmodule
system

WATCHDOG || P0
endsystem

Instead of the variables s and d , we have integer variables whose prefix start
with pc (resembling the program counter of an assembly code and matching the
LTS state) and the trace error boolean variable. Therefore, if one is interested
to analyse this generated PRISM code directly, instead of using the formula
P =? [F s = 7& d = x ], it is necessary to use P =? [F pc0 = y ] where y must
assume one of the values 7, 8, 9, 10, 11, or 12, corresponding to the events
die.1,. . . , die.6, which can be detected by simply reading the comments.

Fortunately, we do not need to know anything about the pc variables, nor
the above automatically generated PRISM specification. Instead, we just have
to formulate the appropriate traces refinement directly in CSP terms and check
for Pmax =? [F trace error ]. For this example, the CSP refinement could be

Prop �T SixSidedDie

where Prop = die.x → STOP and x ∈ {1..6} to check the probability of each
face of the die. The property Pmax =? [F trace error ] yields the probability of
83.33%. This means that the refinement Prop �T SixSidedDie has a 16.67%
complementary probability of holding. This corresponds exactly to the calcula-
tion in the PRISM website, shown in Sect. 3.
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5 Using Probabilities in RoboChart

This section presents our strategy for analysing probabilistic RoboChart models.
We first introduce the use of the probabilistic RoboChart operator and then the
extended RoboChart probabilistic semantics.

5.1 The RoboChart Probabilistic Operator

To create RoboChart models with probabilistic properties, we have to use a
specific operator: Probabilistic Junction (©P ). To illustrate its usage, we now
consider an extension of the state machine of the RoboChart model presented
in Sect. 2. We consider that the robot is equally likely to turn to the right and
to the left. This new model is shown in Fig. 4.

Probabilistic Junction

Fig. 4. RoboChart: obstacle detection with probabilities

In this new version, when an obstacle is detected, the control of the model
proceeds to a probabilistic junction between two equally likely alternatives. One
alternative moves into the TurningLeft state, in which the robot turns to the left.
The other alternative moves into the TurningRight state, turning the robot to
the right. Afterwards, in both cases, the control goes back to the Moving state.

In the current state of RoboChart, probabilistic properties cannot be auto-
matically analysed, since there is no direct translation from RoboChart to a
probabilistic language. Recall from Sect. 2.1 that RoboChart models are auto-
matically translated into CSP. This translation loses probabilistic aspects by
using internal choices as semantics. This does not represent the correct meaning
of a probabilistic specification; stochastic analyses cannot be done.
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5.2 Dealing with Probabilities

To extend the semantics of RoboChart models to deal with probability aspects,
we have to consider the CSP probabilistic operator � to define the semantics of
©P , instead of internal choices. Let 〈| · |〉 be this extended semantics.

To be able to analyse probabilistic RoboChart models, it suffices to apply
the strategy presented in Sect. 4. That is, take a RoboChart model R, formulate
the desired property about R as a CSP specification S , apply the WatchDog
Transformation on the refinement

S �T 〈|R|〉
and use the PRISM model checker using the single LTL formula

Pmax =? [F trace error ]

Finally, interpret the result of the above formula as it is related to S ��T 〈|R|〉.

6 Case Study

In this section, we present a RoboChart model with probabilistic primitives.
Furthermore, we also illustrate the kind of probabilistic analysis made available
for RoboChart models.

6.1 Obstacle Detection

In this section we just illustrate the kind of analysis we can perform on our
running example from Sect. 5.1.

We can use as property the following CSP specification.

Prop = moveCall → moveRet → SMovement obstacle →
SMovement turnRight → STOP

After performing the refinement

Prop �T Obstable Detection

and checking for the probability of Pmax =? [F trace error ] we get 100%,
indicating that (by the probabilistic complement) such a refinement does not
hold.

6.2 Foraging Robot

This is a more complex example than the previous one. It is a simple foraging
robot. It is equipped with an idealised randomising device with two activities
that are equally likely to occur; the device generates an outcome in every time
step. The robot uses the device to decide whether to terminate or to continue a
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Fig. 5. RoboChart model

particular activity (here, foraging). For reasons of its own, the robot may choose
to ignore the outcome of the device. Finally, the robot considers only a limited
number of times whether to continue foraging (see Fig. 5).

The initial transition in Foraging leads to state Forage, in which a number
of transitions can be taken. If a flip is allowed (represented by the occurrence
of the event flip), the robot may ignore the randomising device and remain in
the Forage state. Another possible transition from Forage happens when the
event flip occurs and the number of choices has not been exhausted, given by
(flips < N). The constant N represents the maximum number of choices. In this
case, the control proceeds to a probabilistic junction between two equally likely
alternatives. One alternative is to move into the Stop state, which it signals with
the stop event. The other is to return to the Forage state, signalling this with
the forage event. In both cases, the value of flips is incremented (flips = flips+1).
This is used by the machine to keep track of the number of choices made.

There is only one transition available in the Stop state: the flip event keeps
the controller in Stop; this transition is included to model the fact that flip occurs
in every time step, even when the controller has terminated.

The CSP refinement property to check this model can be written as:

Prop = (� e : {flip, forage} • e → Prop)
� stop → STOP

By varying the N from 1 to 20 we get the graph depicted in Fig. 6.
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Fig. 6. Graph for Foraging Robot model plotting N from 1 to 20

7 Conclusions

This paper defines the semantics of the RoboChart probabilistic operator ©P as
the CSP probabilistic operator �, preserving all the original CSP semantics of
RoboChart as provided by [20]. We reuse the WatchDog Transformation pro-
vided by [8], obtaining a PRISM specification corresponding to the analysis of
a refinement such as P �T Q , where Q is the probabilistic CSP specification
automatically generated by RoboTool and P is some property of interest.

The strategy reported in this paper has two main advantages over other
attempts found in the literature. The first is that it is based on CSP refine-
ment and not in LTL model checking. This allows a more closer analysis style
as already present in RoboChart. The second is that all data structures and
functional language already available in CSP is inherited by the automatically
generated PRISM specification. This is very interesting because it is hard to find
rich data structures as well as a readable PRISM specification in the literature.

One drawback of our strategy is that we never get a parameterised PRISM
specification. But we can generate several models, each one corresponding to
the values of the parameters being analysed. This is what the PRISM tool does
directly from a parameterised PRISM specification.

Some works have been proposed for analyzing stochastic properties of robotic
systems. In [13], probabilistic analysis are performed focusing on the robotic
control software, ignoring the environment. It manually captures probabilistic
state machines (using the PRISM language) of swarm systems from [15] in order
to check specific properties in PCTL. No formal semantics is reported in this
work. Probabilistic properties of swarm robotic models are also verified in [17].
It uses the process algebra Bio-PEPA [2] for modelling such models, which can
be mapped to PRISM models by the Bio-PEPA suite of software tools.
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We are working on another route to analysis of RoboChart models. This
route goes from RoboChart to PRISM’s Reactive Modules formalism via prob-
abilistic Statecharts [10], and will give an alternative way of establishing proba-
bilistic temporal properties. This translation is being built from metamodels of
RoboChart, probabilistic Statecharts, and Reactive Modules, with the transla-
tion carried out using the Epsilon model transformation tool5. Our translation
can also be expressed in Unifying Theories of Programming [9] as a Galois con-
nection between Statecharts and Reactive Modules, suggesting a bidirectional
transformation in Epsilon, supporting traceability of analysis results and coun-
terexamples, and giving a formal way of verifying the translation using a seman-
tics based on probabilistic predicate transformers in the style of McIver [18]. An
interesting question is whether this more direct route will lead to models with
different analysis performance in the PRISM tool.

Our translations will allow the use of more than just PRISM: the Reactive
Modules formalism is also used for input to the MRMC and Storm model check-
ers, amongst others, and a dialect of probabilistic CSP is used for input to the
PAT model checker [23]. We plan to explore the use of these alternatives and
compare their performance on benchmarks that we will establish in robotic and
autonomous control.

Finally, we plan to verify the results used in this paper, and in particular,
the WatchDog Transformation as an implementation technique, using the CSP
theories in Isabelle/UTP [5–7].
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Abstract. We develop a new method for determining the consistency
of timed scenarios. If the scenario is consistent, we obtain a canonical
representation for the entire class of equivalent scenarios. This allows us
to optimise a scenario according to various criteria. In particular, we are
able to minimize the largest constant in the scenario’s set of constraints:
this technique is directly relevant to decreasing the costs of verification
for timed automata synthesized from timed scenarios.

1 Introduction

Using scenarios for specification and implementation of complex systems, includ-
ing real time systems, has been an active area of research for over three decades
[8,15,20,21]. Synthesis of formal models of systems from scenarios has also been
studied in the past [8,13,15,20,21], and recently there has been renewed interest
in this area [4,16,19].

We have recently proposed [19] a form of timed scenarios (called Timed Event
Sequences or TES) for specifying partial behaviours of real-time systems. We also
developed a synthesis method for constructing a timed automaton from a set of
TES. What was not addressed in that work was the question of the consistency
of timed scenarios.

We set out to develop, from first principles, a method for detecting whether
a scenario is consistent. As a byproduct we obtained a canonical representation
for the entire class of scenarios that are equivalent to the given one. This in turn
allowed us to optimise scenarios (according to various criteria), by replacing a
given scenario with an equivalent one that has more desirable properties. The
current paper summarizes the results of this study.

Specifically, the main contributions of the paper are as follows:

1. We present a generalized and simplified notion of timed scenarios and their
semantics. The new notion is independent of modes and mode graphs [19].

2. We propose a method for determining the consistency of timed scenarios.
The method is developed from the fundamental equations and inequations
that hold, in general, between the times at which ordered events occur. As a

c© Springer Nature Switzerland AG 2018
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byproduct we obtain a canonical representation (a “distance table”) for the
entire class of scenarios that are equivalent to the given one.

3. We use the distance table to optimise scenarios according to various criteria.
In particular, given a time distance table corresponding to a scenario we
show how to minimize the maximum constant in the scenario. For example,
our prototype tool can convert scenario ξ of Fig. 1 to the equivalent scenario
η. The maximum constant in η is smaller than that in ξ, so η is better suited
for the purpose of synthesizing a timed automaton: the cost of verifying a
timed automaton crucially depends on the size of the maximum constant in
its time constraints.1

4. It turns out that our distance tables are essentially isomorphic to the Differ-
ence Bounds Matrices studied by Dill in the context of verification of timed
automata [11]. We show how to apply Dill’s method to the case of scenarios,
both to check consistency and to minimise the maximum constant.

Fig. 1. Two equivalent scenarios

2 Concepts

2.1 Events

Let Σ be a finite set of symbols called events. Let Σ∗ denote the set of all
sequences (finite or infinite) formed from elements of Σ. The subset of Σ∗ that
contains only all the sequences of length n will be denoted by Σn.

The intended interpretation is that e ∈ Σ is the name of a concrete event in
the real world, such as “a button is pressed”.

Given a sequence σ = e0e1e2 . . . ∈ Σ∗ we will use the term “event i of σ” (or
“the i-th event”, etc.) to denote the i-th element of σ, i.e., the i-th occurrence of
an event in the sequence. This should not be confused with ei, which is a symbol
in Σ, and which may have many occurrences in σ.

1 Most model-checking tools for timed automata (e.g., UPPAAL [7] and KRONOS [9])
use region-based and zone-based abtraction methods in order to make verification
possible in spite of the infinite state spaces of timed automata. It is well-known that
both of these abstraction methods depend on the number of clocks and on the size
of the constants that appear in constraints. In fact, the size of the region graph is
exponential in the number of clocks and the (encoding of) constants [3].
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2.2 Behaviours

Definition 1. A behaviour2 over Σ is a sequence (e0, t0)(e1, t1)(e2, t2) . . . ,
such that ei ∈ Σ, ti ∈ R

≥0, t0 = 0 and ti−1 ≤ ti for i ∈ {1, 2 . . . }.
We will omit the phrase “over Σ” when doing so does not lead to confusion.

A behaviour can be infinite or finite, even empty. In this paper we will discuss
mostly finite behaviours.

The intended interpretation of (ei, ti) is that the i-th occurrence of an event is
an occurrence of event ei, and takes place ti time units after the initial occurrence
of an event (namely, e0).

A behaviour can be thought of as a pattern for an infinite number of concrete
behaviours that differ only in their starting time. We say that the (abstract)
behaviour represents all those concrete behaviours.

Given a behaviour B = (e0, t0)(e1, t1)(e2, t2) . . . we will use eseq(B) to denote
the sequence e0e1e2 . . . and tseq(B) to denote t0t1t2 . . . .

We often say “event i of B” (or“the i-th event”) to denote event i of eseq(B).

Definition 2. Let B = (e0, t0)(e1, t1) . . . (en−1, tn−1) be a behaviour of length n.
Then, for any 0 ≤ i < j < n, the symbol tBij denotes the distance, in time units,
of event j from event i in B. That is, tBij = tj − ti.

We often write simply tij when this does not lead to ambiguity.

Observation 1. For any behaviour of length n, and for 0 ≤ i < j < k < n:

tij + tjk = tik (1)

Proof. Obvious: tij + tjk = tj − ti + tk − tj = tk − ti = tik. ��
We are often interested not in a particular behaviour, but in a set of behaviours
that satisfy certain time constraints, e.g., that the door will open sufficiently
quickly after the button is pressed. To describe sets of behaviours that satisfy
such constraints we use timed scenarios.

2.3 Timed Scenarios

Definition 3. Given a natural number n, let Φ(n) denote the set of constraints
of the form d ∼ c, where ∼∈ {≤,≥,=}3 and c is a constant in the set of rational
numbers, Q. d is the symbol τi,j, for some integers 0 ≤ i < j < n.

2 Behaviours are essentially the “timed words” of Alur [2].
3 To keep the presentation compact, we do not allow sharp inequalities: allowing them

would complicate our definitions and proofs, without affecting the general principles.
Notice that sharp inequalities are of mainly theoretical interest: in practice we can
measure time only with some finite granularity γ, so x < c is for all practical purposes
equivalent to x ≤ c − γ.
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The intended interpretation is that τi,j is the time distance between events i
and j in the behaviours described by a timed scenario. This will become clear
in Definitions 4 and 5.

Definition 4. Let n be a natural number and Σ the set of events. A timed
scenario of length n over Σ is a pair (E , C), where

– E = eoe1...en−1 is a sequence of events (i.e., E ∈ Σn);
– C ⊂ Φ(n) is a finite set of constraints.

Given a scenario ξ = (E , C), we will use events(ξ) to denote E and constraints(ξ)
to denote C.

In this paper the term “scenario” will always refer to a timed scenario. We
will omit the phrase “over Σ” when that does not lead to confusion.

We will use the term “event i of ξ” to denote event i in events(ξ).

External Representation. To make scenarios fit for human consumption, we
will usually describe them in a notation that is not unlike a simple programming
language. A scenario will be written as a sequence of events, separated by semi-
colons and terminated by a period. If the scenario contains a constraint such as
τi,j ≤ c, then event i in the sequence will be labelled by a unique symbol Li,
and event j will be annotated with a set of constraints that contains Li ≤ c.

In Fig. 2, ξ2 is a representation of (abcf, {τ0,1 ≥ 2, τ1,2 ≥ 2, τ0,3 ≤ 2}).

2.4 Scenarios and Behaviours

Definition 5. Let ξ be a scenario of length n over Σ.
A behaviour B = (e0, t0)(e1, t1) . . . (en−1, tn−1) over Σ is supported by ξ iff

– events(ξ) = e0 . . . en−1 and
– every τi,j ∼ c in constraints(ξ) evaluates to true after τi,j is replaced by tBij.

For a given scenario ξ, we use Supp(ξ) to denote the set of behaviours that are
supported by ξ. (We will often say simply: “the set of behaviours of ξ”.)4

The set of behaviours of scenario ξ1 of Fig. 2 is
Supp(ξ1) = {(a, t0)(b, t1)(c, t2)(b, t3) | t0 = 0 ∧ t3 ≥ t2 ≥ t1 ≥ t0 ∧ t1 − t0 ≤

5 ∧ t2 − t0 ≤ 4}.

Observation 2. Let ξ be a scenario of length n and let ξ′ be the scenario
obtained by adding some constraint to constraints(ξ). Then Supp(ξ′) ⊂ Supp(ξ).

Proof. A behaviour of ξ′ must satisfy all the constraints in ξ. ��
Definition 6. The semantics of scenario ξ, denoted by �ξ�, is the set of
behaviours that are supported by ξ, i.e., �ξ� = Supp(ξ).

4 There is nothing new in the intuition that a scenario describes a set of behaviours:
see, e.g., the paper by Somé et al. [20].
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Definition 7. Two scenarios ξ and η are equivalent iff �ξ� = �η�.

Definition 8. Let ξ = (E , C) and η = (E , C′) be two scenarios (with the same
sequence of events). C and C′ are equivalent iff ξ and η are equivalent.

Definition 9. A scenario ξ is consistent iff �ξ� 
= ∅. A scenario is inconsistent
iff it is not consistent.

For instance, scenario ξ1 of Fig. 2 is consistent, while ξ2 is inconsistent, as the
constraint that annotates event 3 (f) cannot be satisfied.

Definition 10. For a consistent scenario ξ of length n, and for 0 ≤ i < j < n,
we define

mξ
ij = lmin{tBij | B ∈ Supp(ξ)}

M ξ
ij = max{tBij | B ∈ Supp(ξ)}

The absence of an upper bound for some i and j will be denoted by Mξ
ij = ∞.

We will often write just mij and Mij when ξ is understood.

Observation 3. For any behaviour in Supp(ξ),

0 ≤ mij ≤ tij ≤ Mij ≤ ∞ (2)

Proof. A direct consequence of Definition 10. ��
Observation 4. Let ξ be a scenario of length n, and let B be a behaviour such
that eseq(B) = events(ξ). If mξ

ij ≤ tBij ≤ M ξ
ij for every 0 ≤ i < j < n, then

B ∈ Supp(ξ).

Proof. B obviously satisfies all the constraints of ξ. ��
In other words, the set of values from Definition 10 completely characterizes

the semantics of a scenario.

Observation 5. Let ξ and η be two scenarios of length n, such that events(ξ) =
events(η). Then �ξ� = �η� iff ∀0≤i<j<n(mξ

ij = mη
ij ∧ M ξ

ij = Mη
ij).

Proof. A direct consequence of Observations 3 and 4. ��
A behaviour of ξ can be viewed as a sequence of discrete timed events in a Carte-
sian plane, where the x-axis represents event numbers and the y-axis represents
time. It might be useful to visualize this as a curve that is obtained by connecting
all such timed events. For instance, Fig. 3 shows a consistent scenario along with
one of its behaviours (shown with a solid line), namely (a, 0)(b, 1)(c, 3)(d, 4)(e, 5).

The upper and lower curves (in dashed lines) correspond to m0j and M0j ,
for 0 < j < 5. Notice that the constraints that annotate the first four events
of the scenario seem to indicate that the maximum distance between events
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Fig. 2. Two scenarios Fig. 3. A scenario and one of its
behaviours

0 and 3 should be 8, but the constraint associated with event 4 reduces it to 6:
the curves must obviously be monotonically non-decreasing.

These two curves can be viewed as the boundaries of the set of all behaviours
of the scenario, that is, the plot of every supported behaviour must fit between
these two curves.

This is necessary, but not sufficient. For example, the curve of the behaviour
(a, 0)(b, 2)(c, 4)(d, 4)(e, 6) would fit between these boundaries, but the constraint
L1 ≥ 3 that annotates event 3 (corresponding to τ1,3 ≥ 3) would be violated.

As noted above, in order to fully characterize the set of all behaviours of
a scenario ξ of length n we must determine the minimum and maximum time
distances between every pair of events in any member of Supp(ξ). That is, we are
interested in computing mξ

ij and M ξ
ij for every i and j such that 0 ≤ i < j < n.

As an example consider scenario ξ1 of Fig. 2 once more. The time distance
between events 0 and 1 (a and the first b) is constrained to be no greater than
5, event 2 (c) occurs after event 1, but its distance from event 0 is at most 4.
Surely, the time distance between events 0 and 1 must be at most 4 in all the
behaviours of ξ1: the constraint L0 ≤ 5 on event 1 is not tight. The tightest
constraint that can replace it without changing the semantics of ξ1 is L0 ≤ 4.
Supp(ξ1) does, indeed, include a behaviour for which the time distance between
events 1 and 2 is exactly 4.

An immediate question is how to determine the various values of mij and
Mij for a given scenario. We begin by elucidating some fundamental relationships
between these values.

Observation 6. Let ξ be a consistent scenario of length n. Then the following
inequations hold, for any 0 ≤ i < j < k < n:

mij + mjk ≤ mik (3)

mij + Mjk ≥ mik (4)

mij + Mjk ≤ Mik (5)

Mij + Mjk ≥ Mik (6)

Mij + mjk ≥ mik (7)

Mij + mjk ≤ Mik (8)
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Proof. In equations (3) and (6) are direct consequences of Eq. (1).
For (4), assume mij + Mjk < mik. But then mij or mik is not tight enough,

or Mjk is too tight. That is, Supp(ξ) cannot include a behaviour for which
tij = mij , because then tjk > Mjk would have to hold for Eq. (1) and mik ≤ tik
to be satisfied.

For (5), assume mij + Mjk > Mik. But then Supp(ξ) cannot include a
behaviour for which tjk = Mjk, because tij < mij would have to hold for Eq. (1)
and tik ≤ Mik to be satisfied.

The proofs for (7) and (8) are analogous to those for (4) and (5). ��
The inequations of Observation 6 can be presented in compact form:

mij + mjk ≤ mik ≤
{

mij + Mjk

Mij + mjk

}
≤ Mik ≤ Mij + Mjk (9)

It is worth emphasizing that none of the inequations of Observation 6 can be
replaced by equations. For instance, consider scenario ξ3 of Fig. 4. It is easy to
see that m01 = 0 and m12 = 0, but m02 = 2. That is, within Supp(ξ3) there are
behaviours for which t01 = m01 and behaviours for which t12 = m12, but there
is no behaviour for which t01 = m01 and t12 = m12. Similarly, in scenario ξ4 of
Fig. 4, M01 = 2, M12 = 3, but M03 = 4.

Fig. 4. Two scenarios Fig. 5. The bounds on three
events

Inequation (9) can be used to reason about the behaviours of a scenario. For
example, consider a scenario ξ of length 3, such that events(ξ) = aba, where the
minimum and maximum values of tij , for 0 ≤ i < j < 3, in the behaviours of
ξ are summarized in Fig. 5. If we limit our attention to those of the supported
behaviours whose time annotations contain only integers, we find a set of six:

{(a, 0)(b, 2)(a, 4), (a, 0)(b, 2)(a, 5), (a, 0)(b, 2)(a, 6),
(a, 0)(b, 3)(a, 5), (a, 0)(b, 3)(a, 6), (a, 0)(b, 3)(a, 7)}

Assume the minimum time distance between 0 and 2, i.e., m02, is increased to
6. The inequation m02 ≤ M01 + m12 no longer holds. A way to repair it5 is to
increase m12 to 3. As a result, our set will change to:

{(a, 0)(b, 2)(a, 6), (a, 0)(b, 3)(a, 6), (a, 0)(b, 3)(a, 7)}
5 The other way is to increase M01 to 4, but that would introduce new behaviours.
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If we increased m02 to 7 (instead of 6), m01 and m12 would change to 3 and 4,
respectively. The set would then include only one behaviour: {(a, 0)(b, 3)(a, 7)}.

We generally have to deal with scenarios that have more than three events,
so a tabular representation similar to that of Fig. 5 will be even more useful.

2.5 Distance Tables

Definition 11. Let ξ = (E , C) be a scenario of length n.
C is pruned iff, for any given integers i and j such that 0 ≤ i < j < n,

– C does not contain a constraint of the form τi,j = c;
– C contains at most one constraint of the form τi,j ≥ c and at most one

constraint of the form τi,j ≤ c.

If constraints(ξ) is pruned, then we also say that ξ is pruned.
Obviously, given a set of constraints C it is easy to convert it to a set that is

equivalent, but pruned. First, replace every constraint of the form τi,j = c with
two constraints, τi,j ≥ c and τi,j ≤ c. Second, for each 0 ≤ i < j < n,

– if C contains more than one constraint of the form τi,j ≥ c, retain only one
with the maximal constant;

– if C contains more than one constraint of the form τi,j ≤ c, retain only one
with the minimal constant.

Definition 12. Let ξ = (E , C) be a pruned scenario of length n.
A distance table for ξ is a triangular matrix Dξ, such that:

– Dξ
ij is defined iff 0 ≤ i < j < n;

– for 0 ≤ i < j < n, Dξ
ij = (lij , hij), where

• lij and hij are rational numbers;
• if C contains a constraint τi,j ≥ c then lij = c, otherwise lij = 0;
• if C contains a constraint τi,j ≤ c then hij = c, otherwise hij = ∞.

We will sometimes refer to an lij as a low value, and to an hij as a high value.
If ξ is of length n, then we will say that Dξ is of size n.

Obviously, given Dξ we can construct a set of constraints that is equivalent
to constraints(ξ). So the distance table for ξ is just another representation for
the constraints of ξ.

Figure 6 shows a distance table corresponding to scenario ξ of Fig. 1.

Definition 13. A distance table of size n is valid iff lij ≤ hij, for all 0 ≤ i <
j < n. A table that is not valid is invalid.

Observation 7. If Dξ is invalid, then ξ is inconsistent.

Proof. Obvious from Definition 12. ��
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Fig. 6. A distance table for ξ of Fig. 1 Fig. 7. A stable version of the
same table

Definition 14. A distance table of size n is stable iff it is valid and, for all
0 ≤ i < j < k < n,

lij + ljk ≤ lik ≤
{

lij + hjk

hij + ljk

}
≤ hik ≤ hij + hjk (9′)

The distance table of Fig. 6 is not stable. Figure 7 shows its stable version.
The distance table for a scenario with no constraints is obviously stable.

Theorem 1. Let Dξ be a stable distance table. Then ξ is consistent.

Proof. Let events(ξ) = e0e1 . . . en−1. It is enough to show that there exists a
behaviour B = (e0, t0)(e1, t1) . . . (en−1, tn−1), such that B ∈ Supp(ξ).

That is, we must show a sequence t0t1 . . . tn−1 such that, for 0 ≤ j < k < n,
ljk ≤ tk − tj ≤ hjk, i.e., tjk satisfies the appropriate constraint in the table.

Let t0 = 0, and for 0 < j < n let tj = l0j . Then the constraints in the first
row of the table are satisfied: tk − t0 = l0k ≤ h0k.

Let 0 < j < k < n. The table is stable, so l0j + ljk ≤ l0k, hence ljk ≤
l0k − l0j = tk − tj . Moreover, l0k ≤ l0j + hjk, hence l0k − l0j ≤ hjk. ��
Definition 15. Let D be a stable distance table, let p and q be integers such
that 0 ≤ p < q < n, and let S = tptp+1 . . . tq be a sequence of real numbers.
We say that S is compatible with D iff

– 0 ≤ tp ≤ tp+1 ≤ . . . ≤ tq;
– lij ≤ tij ≤ hij for any two integers i and j such that p ≤ i < j ≤ q.6

Of course, if B ∈ Supp(ξ), then tseq(B) is compatible with Dξ. And vice versa, a
compatible sequence S whose length is the size of Dξ satisfies all the constraints
of ξ, so there is a B ∈ Supp(ξ) such that S = tseq(B).

Lemma 1. Let D be a stable distance table of size n, let b and c be integers such
that 0 ≤ b < c < n, and let tbtb+1 . . . tc be compatible with D. Then

1. if 0 
= b then the sequence can be extended to the left in such a way that the
extended sequence is compatible with D;

2. if c 
= n − 1 then the sequence can be so extended to the right.

6 As elsewhere, tij = tj − ti.



224 N. Saeedloei and F. Kluźniak

Proof. We consider here only case 1; case 2 is similar.
Let a = b − 1. We must show that there exists a real number ta, such that

0 ≤ ta ≤ tb and laj ≤ taj ≤ haj for a < j ≤ c.
For j = b, we must have

lab ≤ tab ≤ hab (10)

Since 0 ≤ lab ≤ hab, it is possible to find a tab that satisfies (10).
For any j > b, we must have laj ≤ taj ≤ haj . This is equivalent to laj ≤

tab + tbj ≤ haj , and therefore to

laj − tbj ≤ tab ≤ haj − tbj (11)

Obviously, laj − tbj ≤ haj − tbj , because laj ≤ haj . Moreover, 0 ≤ haj − tbj .
This is because, from (9′), lab +hbj ≤ haj , hence lab ≤ haj −hbj . But haj −hbj ≤
haj − tbj (because tbj ≤ hbj), so lab ≤ haj − tbj , and of course 0 ≤ lab.

And so, for any particular j > b, it is possible to find a tab that satisfies (11).
We must now show that a single tab can satisfy all these constraints simulta-

neously, i.e., first, that the following inequations hold for any j such that b < j:

lab ≤ haj − tbj (12)

laj − tbj ≤ hab (13)

Second, for b < j0 < j1 ≤ c, we must have

laj0 − tbj0 ≤ haj1 − tbj1 (14)

laj1 − tbj1 ≤ haj0 − tbj0 (15)

If these inequations are satisfied, then the maximum of the low bounds on tab

does not exceed the minimum of the high bounds, therefore it is possible to
choose a satisfactory tab, and hence ta.

From (9′) we have lab + hbj ≤ haj , hence lab ≤ haj − hbj . But tbj ≤ hbj , so
haj − hbj ≤ haj − tbj , and therefore (12) holds.

From (9′) we have laj ≤ hab+lbj , hence laj −lbj ≤ hab. But laj −tbj ≤ laj −lbj ,
because lbj ≤ tbj , so (13) holds.

From (9′), laj0 + hj0j1 ≤ haj1 , so laj0 ≤ haj1 − hj0j1 . But haj1 − hj0j1 ≤
haj1 − tj0j1 , hence laj0 ≤ haj1 − tj0j1 , hence laj0 − tbj0 ≤ haj1 − tbj0 − tj0j1 . But
tbj0 + tj0j1 = tbj1 , so (14) holds.

From (9′), laj1 ≤ haj0 + ljoj1 , so laj1 ≤ haj0 + tjoj1 , i.e., laj1 − tjoj1 ≤ haj0 .
Hence laj1 − tbj0 − tjoj1 ≤ haj0 − tbj0 , i.e., laj1 − tbj1 ≤ haj0 − tbj0 : (15) holds. ��
Theorem 2. Let Dξ be a stable distance table of size n. Then each constraint
in the table is tight, i.e., for any two integers i and j such that 0 ≤ i < j < n,
there exist behaviours BL,BH ∈ Supp(ξ) such that tBL

ij = lij and tB
H

ij = hij.7

7 If hij = ∞ then tB
H

ij can be an arbitrary number not smaller than lij .
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Proof. We consider here only the case of BL; for BH the reasoning is similar.
Let ti = l0i, and for i < m ≤ j let tm = ti + lim. So tij = lij . From elemen-
tary reasoning (very similar to that in the proof of Theorem 1) we know that
titi+1 . . . tj is compatible with Dξ.

Lemma 1 shows that we can repeatably extend the sequence to the left and/or
right, while maintaining compatibility with Dξ as an invariant. The result will
be a sequence of length n, and we can use that as tseq(BL).8 ��
Theorem 3. Let Dξ be a stable distance table of size n. Then, for any 0 ≤ i <
j < n, Dξ

ij = (mξ
ij ,M

ξ
ij).

Proof. By Definition 12 ξ has explicit constraints that require supported
behaviours to satisfy lij ≤ tij ≤ hij , for all 0 ≤ i < j < n. Moreover, from
Theorem 2 we know that each constraint is tight. ��

From Theorem 3 and Observation 5 we immediately see that if we could find
an effective way of computing a stable distance table equivalent to the constraints
of any consistent scenario ξ, then we would have an effective way of checking
whether any other scenario η is equivalent to ξ: they would be equivalent if and
only if the stable distance table computed from ξ were identical to that computed
from η. A stable distance table could then be treated as a convenient canonical
representation of all the equivalent scenarios.

An effective method of computing a stable distance table equivalent to
the constraints of a given scenario does in fact exist, and is presented below
(Sects. 3.1 and 3.2).

3 Algorithms

3.1 Stabilising a Distance Table

How can we stabilise a distance table without changing the semantics of the
associated scenario? If we relax any of the existing constraints, then we are in
dire danger of supporting new behaviours. So, if the table is not stable, we must
find a way of restoring the validity of (9′) by increasing some low values and/or
decreasing some high values. We must make sure that the modified values are
not changed more than is strictly necessary, as we do not want to introduce new
constraints that are not implied by the existing ones.

Inspection of in equation (9′) shows that, if it does not hold, it can be restored
by applying one or more of six rules (we assume that 0 ≤ i < j < k < n):

lij + ljk > lik −→ lik := lij + ljk (R1)

lik > lij + hjk −→ lij := lik − hjk (R2)

lik > hij + ljk −→ ljk := lik − hij (R3)

8 We are only proving the existence of such a behaviour. A method of actually con-
structing it is discussed in Sect. 3.3.
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lij + hjk > hik −→ hjk := hik − lij (R4)

hij + ljk > hik −→ hij := hik − ljk (R5)

hik > hij + hjk −→ hik := hij + hjk (R6)

For example, if it is not the case that lij + hjk ≤ hik, then the right way to fix
it is to decrease the value of hjk, but only enough to make lij + hjk = hik: this
is the function of rule (R4).

Of course, application of a rule may lead to another violation of (9′): if we
decrease hjk, then lik ≤ lij + hjk may cease to be true. So the rules must be
applied over and over again, until either the table becomes invalid, or no rule
is applicable (i.e., the table satisfies (9′) for all values of i, j and k). One of
these things must eventually happen, because each application of a rule strictly
decreases the difference between a high value and the corresponding low value,
and if this difference becomes negative, the table becomes invalid.9

Notice that if the various values in the table were integer to begin with, then
application of any of the rules keeps them integer. Notice also that if a rule
assigns a new high value, then that value is finite.

In our prototype the algorithm is implemented along the following lines:
for k := n − 1 downto 2:

for i := k − 2 downto 0:

for j := k − 1 downto i + 1:

while there is an applicable rule R for i, j and k:

apply R;

if the table is invalid, stop.

It turns out that this triple loop does the job: the table becomes either invalid
or stable. The cost of stabilisation is thus of the order of O(n3). This is not very
surprising, since there are clear similarities with the Floyd-Warshall algorithm
for computing distances in a graph.

Observation 8 (Confluence). Let D be a distance table, and let a valid D′ be
the result of applying the stabilisation procedure outlined above to D. Then D′

is determined by D uniquely, i.e., regardless of the particular order in which the
rules R1–R6 are applied.

Proof. We give an informal outline of a proof.
Consider applying the rules iteratively to a particular instance of inequation

(9′) (i.e., for some particular choice of i, j and k). There are six rules, and six
values that should satisfy six inequalities. Each unsatisfied inequality enables
one rule, which modifies one value, and that value can be modified only by that
rule. More than one rule can be applicable at the same time, e.g., (R1) and
(R6) (lij + ljk > lik and hik > hij + hjk can hold simultaneously). However,

9 The values in the table are rational numbers, but they have a least common denom-
inator. Adding or subtracting two such values cannot produce a result that does not
share that common denominator. So our algorithm cannot decrease the difference
between two such values indefinitely without making it negative.
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simple inspection shows that it is impossible for an applicable rule to affect
either the value set by another applicable rule or its condition of applicability.10

So the order in which rules are applied for this instance of (9′) cannot affect the
outcome.

Consider a particular low value in the table (the argument for a high value is
similar). This value may appear in different guises in different instances of (9′):
in some of them as lij , in others as ljk or lik. Regardless of the order in which
the instances are treated, the low value will grow only as much as is needed to
satisfy all of them. ��
Theorem 4 (Equivalence). Let Dξ be a distance table, and let D be the result
of applying the stabilisation procedure to Dξ. Then D is equivalent to Dξ.

Proof. Let η be a scenario such that events(η) = events(ξ) and Dη = D.
Observation 8 shows that the result of stabilisation is unique. Each low (high)

value is increased (decreased) only by as much as is needed to make the table
stable. So, for each i < j, lij ≤ mξ

ij and hij ≥ M ξ
ij (because the various mξ and

M ξ must satisfy (9)). From this and from Observation 4 we have Supp(η) ⊃
Supp(ξ). But the process of stabilisation did not relax any of the constraints, so
Supp(η) ⊂ Supp(ξ). ��

3.2 Checking Consistency, Computing a Stable Table

We are now ready to present our method of checking the consistency of a given
scenario ξ of length n.

1. We begin by pruning ξ. Its constraints are then arranged in a sequence Ψ =
ψ0ψ1 . . . ψK .

2. We then iteratively compute a finite sequence of scenarios, η0, η1, . . . ηk, such
that:
(a) k ≤ K;
(b) events(ηi) = events(ξ) (for 0 < i ≤ k);
(c) �η0� ⊃ �η1� ⊃ . . . ⊃ �ηk� ⊃ �ξ�;
(d) η0 is a scenario with no constraints and �ηk� = �ξ�;
(e) each ηi+1 is obtained by adding ψi to ηi.
This is done by iteratively modifying a single table, D. After iteration i the
contents of D represents Dηi

.
Each new constraint is added by amending D. If the constraint is not tighter
than the one that is already present in the table, then adding it is an empty
action. (This is essentially a stronger version of pruning, performed “on the
fly”. In practice there is no need for the initial pruning in step 1).

10 For example, (R5) depends on hik and ljk, which can be changed by (R6) and (R3).
But if (R5) is applicable, i.e., if hij + ljk > hik holds, then (R6) is not applicable: we
cannot have hik > hij + hjk, because ljk ≤ hjk (the table is valid); similarly, (R3) is
not applicable: lik > hij + ljk would imply lik > hik.
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3. After all the constraints in Ψ have been added to the table, D is stabilised
to make explicit those constraints that are only implicitly implied by the
constraints in the table (cf. Theorem 4).

The cost of this algorithm is dominated by that of stabilisation, i.e., O(n3).11

If step 3 ended with an invalid Dηk

, then by Observation 7 ηk is inconsistent,
i.e., �ηk� = ∅. But �ηk� ⊃ �ξ�, so ξ is inconsistent. If, however, the resulting table
is valid, then:

– �ηk� = �ξ�, since �ηk� ⊃ �ξ�, and all the constraints of ξ are accounted for in
ηk;

– by Theorem 1, ηk (and therefore ξ) is consistent;
– by Theorem 3 for each 0 ≤ i < j < n, Dηk

ij = (mηk

ij ,Mηk

ij ), and by Observa-
tion 5 this is equal to (mξ

ij ,M
ξ
ij), since �ηk� = �ξ�.

We will use Dξ
s to denote the stable table obtained from ξ. Figure 7 shows Dξ

s

for scenario ξ of Fig. 1.

Theorem 5. Let ξ and η be two consistent scenarios, such that events(ξ) =
events(η). Then �ξ� = �η� iff Dξ

s = Dη
s .

Proof. A direct consequence of Theorem 3 and Observation 5.

3.3 Using a Distance Table to Find Particular Behaviours

A stable distance table D equivalent to Dξ is useful for constructing particular
behaviours of scenario ξ. If we are interested in a behaviour that has a particular
value tij for some i < j, we must, of course, consult D to ensure that lij ≤ tij ≤
hij . Once we have chosen tij , we tighten the constraint by assigning this value
to both lij and hij , then restabilise the table. This will give us a new set of
constraints that will guide us in choosing the value of tij for some other i and j.
We continue to do so, until the complete behaviour is known, i.e., lij = hij for
0 ≤ i < j < n.

More generally, we can use a distance table D to quickly verify whether it
is possible for a behaviour to simultaneously satisfy several constraints that are
tighter than the ones in the table. We just make those constraints tighter in D,
and see whether an attempt to restabilise produces a valid table. In this case
our stabilisation method becomes a “poor man’s constraint solver”.

11 In practice it is often convenient to pinpoint the first “offending” constraint that
makes a scenario inconsistent. This is easily done by making sure that the order of
constraints in Ψ corresponds to the textual order of constraints in the scenario, and
attempting to stabilise the table each time a new constraint is added to it. If the
number of constraints is proportional to n, the cost becomes O(n4).
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4 Optimizing Scenarios

Now that we have an effective method of establishing the equivalence of scenarios,
it is tempting to convert a scenario to an equivalent one that is “better”. For
instance, one might want to decrease the number of constraints, or to make them
detect an unsupported behaviour as early as possible.

A particularly interesting possibility is that of finding a scenario that is equiv-
alent to the given one, but that has smaller constants in its constraints. As
explained in Sect. 1, this has direct consequences for the cost of verifying timed
automata that are synthesised from scenarios.

The optimisation is carried out by building the constraints of the new scenario
from the distance table in such a way that the constraints with larger constants
need not be added if they are implied by constraints with smaller constants.

More specifically, given a scenario ξ of length n we proceed as follows:

1. We use the method of Sect. 3.2 to produce a stable distance table Dξ
s .

12

2. We copy all the information from Dξ
s into a list L of items with two forms:

mij = c and Mij = c.
3. The list is sorted by the constants c, in increasing order.
4. We create a scenario η = (events(ξ), ∅) and its distance table Dη.
5. We now iteratively take consecutive items from L, compare each item with

the contents of Dη, and modify η and Dη as follows:13

(a) If the item is of the form mij = c and lij < c then lij := c;
otherwise the item is of the form Mij = c, and if hij > c then hij := c.

(b) If the table (i.e., Dη) was modified in the above step, add the correspond-
ing constraint to η and stabilise the table.

Upon termination Dη is identical to Dξ
s , so �η� = �ξ�. However, if a constraint

with a higher constant is implied by constraints with lower constants, then by
the time we get to it in step (a) it will already be present in the table, and will
not be explicitly added to η in step (b).

Given scenario ξ of Fig. 1 and its stable distance table (shown in Fig. 7), the
algorithm described above produces the optimised scenario η shown in Fig. 1.

5 Comparison with Difference Bounds Matrices

Difference Bounds Matrices (DBMs) have been proposed by Dill [11] as an effi-
cient technique for representing clock zones in the context of verification of timed
automata. A clock zone is a set of constraints, each of which puts a bound on the
difference between the values of two clocks. A consistent DBM has a canonical
form that can be obtained by computing all-pairs shortest paths.
12 If the attempt to do so fails because of the inconsistency of ξ, then producing an

equivalent scenario with smaller constants is trivial (and probably pointless).
13 More formally, we create a finite sequence of scenarios, η0η1 . . . and a corresponding

sequence of tables, Dη0Dη1
. . .. We felt that a more pedantic presentation would be

harder to follow.
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We will now show how Dill’s technique can be adapted to address the con-
sistency of scenarios and the minimisation of constants in their constraints.

Given a scenario ξ, one can construct a timed automaton Aξ, such that the
set of timed words over which Aξ has an accepting run is equivalent to the set of
behaviours of ξ. For instance, Fig. 8 shows a scenario, ξ, and its corresponding
timed automaton Aξ. If we make sure that every transition of Aξ (including the
last transition) is annotated with a new clock reset, then, after applying Dill’s
technique, the DBM that corresponds to the final zone of the augmented Aξ will
contain information that is equivalent to the stable distance table for ξ.

Assume A′
ξ is the automaton obtained by annotating transitions labeled with

c and e in Aξ with two new clocks c3 and c5, respectively. Figure 9 shows the
stable distance table of ξ and the DBM that represents the final zone of A′

ξ (in
Dill’s original work the DBM would also contain information about whether the
inequalities are sharp). c0 is a clock whose value is always 0, and an entry a in
row ci and column cj is interpreted as ci − cj ≤ a. For example, c5 − c2 ≤ −4,
i.e., 4 ≤ c2 − c5: this corresponds to the minimum in row 1, column 4 of the
distance table.

Fig. 8. Scenario ξ and its corresponding timed automaton Aξ

Fig. 9. The distance table of ξ of Fig. 8 and the final DBM of Aξ (with c4 and c5
added)

If ci − cj ≤ a, cj − ci ≤ b and a < b, then the DBM is inconsistent: this corre-
sponds to the minimum becoming larger than the maximum in the corresponding
entry of the distance table.

The equivalence of a distance table and a DBM has interesting implications.
On the one hand, we can replace the distance table with a DBM in the algo-
rithm of Sect. 4 (the process would be slightly more complicated, because the
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constraints are encoded in a DBM somewhat less directly than in a distance
table). On the other hand, it is possible to take advantage of various techniques
for DBMs and apply them to scenarios: for instance, the method of removing
redundant constraints from a DBM (as described by Bengtsson [6]) can be used
to remove redundant constraints from a distance table, and therefore—as we
have shown—from a timed scenario.

The computational cost of applying Dill’s original method to a scenario of
length n would be O(n4): we would have to construct n instances of a DBM for
n zones, and make each instance canonical at a cost of O(n3). However, it turns
out that there are ways of preserving the canonicality of a DBM while moving
to the next zone [6], so the overall cost would be O(n3), i.e., the same as ours.

In the final analysis, the technique of computing distance tables can be seen
as an alternative and more direct approach to dealing with constraints in timed
scenarios: in this context we find it simpler and more intuitive.

6 Related Work and Conclusions

For over three decades scenarios (including timed scenarios) have been proposed
and used for specification, implementation and also synthesizing formal models
of complex systems [4,8,10,21].

For describing scenarios for real-time systems, researchers have proposed
extending Message Sequence Charts (MSCs) with time constraints [1,5].

En-Nouaary et al. [12] use timed scenarios for specifying systems, and inte-
grate them to obtain a set of Timed Finite State Machines (TFSMs), a variant of
timed automata. Their scenarios are described in a semi-formal language based
on structured English or a graphical representation, and are therefore quite dif-
ferent from ours.

Somé et al. [20] propose a method for synthesizing timed automata from a
set of scenarios. Our timed scenarios are different from theirs: we do not include
“conditions” in our scenarios. These “conditions” are not related to time and
assert some facts about the status/mode of the decribed system.

The question of consistency and optimization of scenarios is not considered
in any of the references cited above.

Harel et al. [14] study the problem of synthesizing state-based object sys-
tems from Live Sequence Charts (LSCs). They perform a consistency check of
a set of LSCs to make sure that they are not contradictory with each other, in
particular to check that the ordering of the events is correct. This consistency
check is different from ours: we consider individual timed scenarios and check
their consistency in terms of time.

In our previous work [19] we proposed a form of timed scenarios and devel-
oped a method for synthesizing a timed automaton from a set of scenarios: we
did not consider checking the consistency of scenarios or optimising them.

In the current paper we propose a notion of timed scenarios and their seman-
tics that is both simpler and more general. We define the semantics of a scenario
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in terms of the set of behaviours that are supported by the scenario, and propose
a method for checking the consistency of scenarios.

Checking the consistency of a set of constraints has already been studied in
various contexts [11,17,18]. Our method is different: the consistency check is a
simple byproduct of the construction of a “stable distance table”. The table can
be used as a canonical representation of the constraints of a class of equivalent
scenarios, and is thus a good starting point for converting a scenario to an
equivalent “optimised” form. Our optimisation minimizes the largest constant
that appears in the constraints of a scenario, thus decreasing the maximum
constant in the timed automaton synthesized from a set of scenarios.

We also show that the technique developed by Dill for representing clock
zones in timed automata [11] can be applied to the domain of timed scenarios,
both to check consistency and to minimise constants in constraints.
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Abstract. Component Based Software Development (CBSD) is an
established paradigm to build systems from reusable and loosely coupled
units. However, it is still a challenge to ensure, in a scalable way, that
desired properties hold for component integration. We present a com-
ponent based model for UML, including a metamodel, well-formedness
conditions and a formal semantics via translation into BRIC. We use
(our previous work on) BRIC as an underlying (and totally hidden) com-
ponent development framework so that our approach benefits from all
the formal infrastructure developed for BRIC using CSP (Communicat-
ing Sequential Processes). Component composition, specified via UML
structural diagrams, ensures, by construction, adherence to classical con-
current properties: our focus is on the preservation of deadlock freedom.
Partial automated support is developed as a plug-in to the Astah mod-
elling tool. We illustrate our overall approach with two case studies.

Keywords: Component-based development
Correctness by construction · CSP

1 Introduction

Component Based Software Development (CBSD) is a widely disseminated
paradigm to build software systems by integrating independent and potentially
reusable units called components. One of the motivations for this paradigm is
replacing conventional programming with the systematic composition and con-
figuration of components [17].

In some contexts, particularly when there is some criticality involved, a reli-
able architecture becomes a demand. The architecture is expected to be designed
with the goal of verifying the integration of its components in a rigorous and
scalable way. However, a posteriori verification, can be costly, and is often
infeasible.

There are several approaches to CBSD in the literature. For example, in
Reo [1], a concurrent system consists of a set of components which are glued
c© Springer Nature Switzerland AG 2018
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together by a circuit that enables flow of data between components. Components
can perform I/O operations on the boundary nodes of the circuit to which they
are connected. There are formal semantics for Reo, based on coalgebras [11] and
automata. Another example is [5], which presents component-based refinement
that focuses on the separation of interface and functional contracts, support-
ing different levels of abstraction. The approach in [2] is based on a semantic
model encompassing composition of heterogeneous components; the behaviour
of a component is described as an automaton or Petri net extended by data and
functions given in C++. In [12], the authors introduce a framework for assessing
component properties, like completeness and consistency of requirement specifi-
cations, using Z [21] and State-charts [10], and an approach to verifying reliability
using stochastic modelling formalisms.

In previous work we have proposed a formal component model, together with
a rule-based composition strategy, called BRIC [17,18]. BRIC has the process
algebra CSP [19] as an underlying semantic model. Given that the argument
components are deadlock free, each composition rule ensures that the resulting
(composed) component preserves deadlock freedom. By using some metadata
and communication patterns, it has been shown that the formal and mechanised
verification of component integration, using the FDR tool [8], can scale. In spite
of the promising results, in order to use BRIC a developer needs to have a
considerable knowledge of CSP and of model checking techniques.

Our aim here is to foster a formal CBSD model for UML [14], motivated
by the fact that UML is a widely used notation in industry, and amenable to
mechanized analysis. We benefit from the overall formal infrastructure built
around BRIC, but this is totally hidden from the developer.

While UML is well-suited for modelling software systems in general, it lacks
support for modelling components in the sense of a CBSD approach. The usual
design notation to represent a component is a subsystem. This is a package
stereotype with an explicit interface and a set of encapsulated elements (includ-
ing classes, interfaces and other subsystems). Nevertheless, an appropriate com-
ponent notion must also include a dynamic behaviour (that can be defined by
a state machine) and, considering components as independent units, ports for
message passing communication should also be a component design feature. The
syntactic (metamodel) definition of a component notion in UML is the first
contribution of this work.

In general, UML design elements and diagrams can be used in a very flex-
ible way. However, to tailor the design to a CBSD approach, besides defining
a component metamodel, we need additional (context sensitive) conditions to
ensure the well-formedness of component systems. In particular, we define how
components can be composed to give rise to more elaborate components. This
is our second contribution.

Finally, as a third contribution, we define a formal semantics for the pro-
posed component model by translation into BRIC. Components, instances and
connections are translated into CSP, and deadlock freedom verifications are con-
ducted in FDR, using the BRIC composition rules. If the verification fails, the
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problem is traced back to the UML component level, and the problematic com-
position is exhibited to the developer. Partial automated support is developed
as a plug-in to the Astah modelling tool [4].

The next section introduces BRIC. In Sect. 3, we present the proposed UML
component model, the well-formedness conditions, the approach to component
(instance) composition, and the translation into BRIC. Section 4 is dedicated to
tool support and the development of a case study. The final section summarises
our results, and discusses related and future work.

2 The BRIC Component Model

BRIC formalises concepts of interfaces, dynamic behaviour, component con-
tracts, and communication protocols with focus on the interaction points of
black box components and their runtime behaviour. CSP, as the underlying
formal notation, allows modelling system components in terms of synchronous
processes that interact through message-passing communication. Process alge-
braic operators allow specifying elaborate concurrency and distributed process
networks. CSP offers rich semantic models that support a wide range of process
verification, and comparisons.

A component contract is defined in terms of a component behaviour (CSP
process), its ports (CSP channels) and their respective types (interfaces).

Definition 1 (Component Contract). A component contract Ctr : 〈B ,R, I ,C 〉
comprises an observational behaviour B, a set of communication channels C ,
a set of interfaces I , and a total function R : C → I between channels and
interfaces, such that B is an I/O process (see Definition 2).

Definition 2 (I/O Process). An I/O process is a CSP process P that satisfies
the following properties:

– I/O channels Every event in P is either an input or an output,that is:

inputs(c,P) ∪ outputs(c,P) ⊆ {| c |} ∧
inputs(c,P) ∩ outputs(c,P) = {}

where {| c |} yields the set of all events on channel c, and inputs(c,P) and
outputs(c,P) yield all input and output events on c in process P, respectively.

– Non-terminating P is a non-terminating process but has a finite state space.
– Divergence free P has no livelocks.
– Input determinism If a set of input events in P is offered by the environ-

ment, none of them are refused by P.
– Strong output decisive All choices (if any) among output events on a given

channel in P are internal. The process, however, must offer at least one output
on that channel.
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In the Dining Philosophers problem, one can model a philosopher and a
fork as components. As an example, the behaviour of a fork is described in
UML as a state machine stm fork , in Fig. 3. Initially, the fork is available for
both philosophers (available state); however, two philosophers cannot hold the
same fork simultaneously. This is represented in the state machine by two states,
busy1 and busy2, capturing the interactions with the two philosophers that share
the fork.

This is given a semantics in CSP for the purpose of formal verification, as
explained in detail in Sect. 3. The resulting process Fork is parametrised by its
id , so that several instances for distinct identifiers can be created. It is defined
as process stm fork that captures the behaviour of the UML state machine.

Fork(id) = stm fork(id)
stm fork(id) = available(id)

The behaviour of the state machine itself is that of its initial state, which, in this
case, is captured by the process available that offers two alternative behaviours.

available(id) = (port fork right .id .picksup I →
port fork right .id .picksup O → busy1(id))

�

(port fork left .id .picksup I →
port fork left .id .picksup O → busy2(id))

This choice is denoted as an external choice in CSP (�). It allows the envi-
ronment to choose between two processes by communicating an initial event,
which resolves the choice. If the first choice of available is taken, the philoso-
pher on the right holds the fork, and similarly for the one on the left. Each of
these choices is defined as a sequence of events defined using the CSP prefix
(→) operator. For instance, in the first case, the process performs the event
port fork right .id .picksup I , and then the event port fork right .id .picksup O
where the former represents the intention to pick the fork, and the latter indi-
cates that it has been performed; finally, it behaves as the process busy1. The
processes below complete the definition of FORK .

busy1(id) = port fork right .id .putsdown I →
port fork right .id .putsdown O → available(id)

busy2(id) = port fork left .id .putsdown I →
port fork left .id .putsdown O → available(id)

The process busy1 engages in two events in sequence, capturing the release of a
fork, and then behaving again as available. The event putsdown I indicates an
input operation. Similarly, putdown O is used as an output operation. The pro-
cess busy2 is analogous, dealing with the second choice. The process FORK (id)
is an example of an I/O process that, as explained previously, has infinite traces,
is divergence free, input deterministic and strong output decisive.
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Apart from the notation for prefix and external choice, as illustrated in the
previous example, CSP offers some basic processes and a rich repertoire of pro-
cess operators. The processes SKIP and STOP represent successful termination
and deadlock, respectively. The sharing parallel composition (P1 ||

cs
P2) synchro-

nises P1 and P2 on the events in the synchronisation set cs; events that are not in
cs occur independently. A particular case is when the processes are composed in
interleaving, denoted by P1 ||| P2, in which case P1 and P2 run independently.
For a more detailed introduction to CSP [19].

BRIC provides four composition rules: interleave, communication, feedback
and reflexive compositions. Each rule has well defined conditions that ensures a
sound composition [18]. The first composition rule is interleave, which aggregates
two independent components that will not communicate with each other; the
components do not share any channels, so no synchronisation is performed. The
second rule is based on the traditional way to compose two components, by
connecting two channels, one from each component.

The other two rules provide unary compositions: feedback and reflexive,
which enable building systems with cyclic topologies, connecting two channels of
the same component. Feedback composition represents the simpler unary com-
position, where two channels of the same component are assembled, but do not
introduce a new cycle. Reflexive composition deals with more complex systems
that indeed present cycles of dependencies in the system topology.

In order to connect channels, protocols must be defined. The protocol imple-
mented by a component is given by the abstraction of its behaviour projection
over a specific channel. The protocol has the same traces and failures as the
projection, but it is divergence-free. We can define one process, PROT FK (ch),
representing the protocol related to each channel ch from component FORK .
This process is represented by:

PROT FK (ch) = ch.picksup I → ch.picksup O →
ch.putsdown I → ch.putsdown O → PROT FK (ch)

Interactions between two component contracts in a composition must be asyn-
chronous, mediated by a bidirectional buffer(BUFF IO). Buffers work as inter-
mediate elements of the composition, copying information from one component
channel to another. Information is always accepted, independent of the other
component being ready to input. These buffers are not first-class elements; they
are implicit to the component model. Buffers are considered infinite [17].

3 Component Model, Design and Verification in UML

Although BRIC provides a sound and systematic development strategy, it is not
appealing for practical use, as it requires deep knowledge of CSP. This was the
main motivation for our UML based approach. First, in Sect. 3.1, we define a
component model in UML, including the relevant well-formedness conditions.
Then, in Sect. 3.2, we present the approach to create and compose component
instances. Finally, in Sect. 3.3, we define a formal semantics for the proposed
component model and composition by translation into BRIC.
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3.1 Component Metamodel and Well-Formedness

Although UML has a metamodel for components, this is normally used as a
way to represent concrete artifacts, typically component implementations. We
propose a component metamodel at the design phase, which is closer to the
notion of a subsystem in UML, but we define the necessary elements to form a
detailed component model, including structure and behavioural aspects, as well
as composition rules to produce more elaborate components from basic ones.

In Fig. 1, we define a metamodel that formally captures the structure of the
component model we propose. This metamodel extends constructs from a subset
of UML that are identified as grey filled boxes. The unfilled boxes are the new
elements introduced; these are defined as stereotypes of standard UML design
elements. Next, we explain each element of our component metamodel.

Fig. 1. The component metamodel.

A component is a UML Subsystem. A component must be either a Bas-
icComponent or a HierarchicalComponent. A BasicComponent is not defined
in terms of other components. It has one BasicComponentClass that describes
the behaviour of the component and its ports. A BasicComponentClass is a
UML EncapsulatedClassifier element, which, apart from attribute and methods,
includes ports. This is the core class of a component metamodel. Its behaviour
is defined by a state machine that should be referenced in STM REF ; this
represents a reference to a State Machine that defines the behaviour of the com-
ponent. In the model, it is represented by a UML Comment, also known as a
Note. The content of this comment must be the State Machine name. The ports
can be defined either in a class diagram or in a composite structure diagram. For
the latter case, the BasicComponentClass must be linked to a Structure REF
comment.

In the Dining Philosophers, FORK is an example of a BasicComponent.
In Fig. 2, it is defined as a Subsystem stereotyped BasicComponent. It has
a BasicComponentClass with two ports, right and left, both realising the
interface phil fork interface. Also, it has a comment stereotyped STM REF
with the name of the state machine of this component. Figure 3 shows the state
machine STM FORK , which represents the reactive behaviour of the FORK
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Fig. 2. Class diagram of the
FORK component.

Fig. 3. State machine diagram for the FORK
component.

component. It cyclically offers the possibility of picking up the fork through its
left or right ports, and then waits for the fork to be put down via the same port.

A HierarchicalComponent is defined by the composition of other components.
It can have a state machine to define its behaviour, which must have its name
specified in a STM REF comment. This component must have a Hierarchi-
calComponentClass, which owns a collection of other component classes. The
connections between them should be expressed in the Composite Structure Dia-
gram referred by the Structure REF comment. A HierarchicalComponentClass
is a UML EncapsulatedClassifier element, hence, it may have ports to interact
with other components. Similar to a STM REF, Structure REF is represented by
a UML comment element. The content of this comment is the name of the Com-
posite Structure Diagram that models the structure of the component. Finally,
a System is a specialisation of a HierarchicalComponent and it can be seen as
the root component from where the entire system is specified.

The Dining Philosophers problem is modelled as a System element and, there-
fore, as a HierarchicalComponent ; see Fig. 4. It has a HierarchicalComponent-
Class that is related to one or more FORK and one or more PHIL components,
using a composition relationship. Also, it has a linked comment specifying the
composite structure diagram (STR-DINING-PHIL) that details how the parts
are connected. The approach to compose component instances is described in
the next section.

In addition to the metamodel, we need to define some well-formedness condi-
tions to characterise meaningful models that can be assigned a formal semantics.
Furthermore, a precise characterisation of a meaningful model can be seen as a
modelling style to guide practitioners during the design of systems. The well-
formedness conditions are as follows.

System Element. There must be exactly one System, which is the root com-
ponent. This is a special type of HierarchicalComponent that is specified by
a class diagram and a composite structure diagram. The former must have a
subsystem stereotyped System which has composition relationships between its
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Fig. 4. Class diagram of the Dining Philosophers.

HierarchicalComponentClass (root) and the other component classes. The latter
describes the internal structure of its HierarchicalComponentClass, that is, how
the component instances are connected.

Basic Component. This kind of component is specified by a subsystem stereo-
typed BasicComponent that has one class stereotyped BasicComponentClass
whose behaviour must be described by a State Machine. The name of the Bas-
icComponentClass must be the same as the one for the component. A Bas-
icComponent may have an associated structure to describe the ports of the
BasicComponentClass.

Hierarchical Component. This kind of component is specified by a subsys-
tem stereotyped HierarchicalComponent that has one class stereotyped Hierar-
chicalComponentClass. Similar to the BasicComponentClass, the name of the
HierarchicalComponentClass should be the same as the one for the component.
This class must be the head of a composition relationship with other component
classes to express the ownership of other components. The HierarchicalCompo-
nentClass must have its structure described by a composite structure diagram
where the connections between the owned component classes are specified.

Multiplicities. Multiplicities with the * character are not allowed in the com-
posite structure diagram because we are dealing with instances. This is important
to make the formal analysis feasible. Also, all parts in a composition relation-
ship must appear in the associated composite structure diagram in numbers
compatible with their multiplicities.

Binding Structure and Behaviour to Component. UML Comments (or
Notes) are used to bind a state machine or a composite structure to a component.
To bind a state machine to a component class the associated comment must be
stereotyped STM REF and the content of the note must be the name of the state
machine diagram. Likewise, in order to bind a composite structure, the comment
must be linked to the component class and be stereotyped Structure REF. The
content must be the name of the composite structure diagram.
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Component Services. The contract of a component must be modelled using
ports. Each component class must have ports exposing the required and provided
services. Ports must realise Required and/or Provided Interfaces that describe
the operations that a component needs or perform.

Port Multiplicity. In case there is a connector between two ports where at
least one of them has multiplicity greater than one, the connector must be
labelled to indicate the port being connected. The label must follow the pat-
tern “port1 name”< − >“port2 name[i ]”, where port1 name is the name of
a port that has multiplicity one, port2 name[i ] is the name of a port that has
multiplicity greater than one and i is the index of the port of the connection
which ranges from one to the number of the multiplicity.

In the next section we explain in detail how component instances can be
composed at the UML level and the relationship with the BRIC forms of
composition.

3.2 Composition of Component Instances

Composition of component instances is described using a Hierarchical Compo-
nent element. In this section we describe how to compose component instances
based on the metamodel detailed in Sect. 3.1.

The simplest form of composition is Interleave composition. This is achieved
by instantiating components in the composite structure diagram of a hierarchical
component. Each instance has a type: a component previously defined. For exam-
ple, in Fig. 5 we show two instances of FORK and two of PHIL in a hierarchical
component. Before introducing a connection between phil1 and fork1, the four
instances were in interleaving, as the communication of events through the ports
can happen without any interference. Therefore, when component instances are
created, they are, by default, in interleaving.

Communication composition is performed through the connection of ports
from two different components. The same interface must be provided by one
component and required by the other one. Figure 5 illustrates in (1) a commu-
nication between fork1 and phil1.

Fig. 5. Inter-component composition UML.



Safe and Constructive Design with UML Components 243

Even when starting with deadlock free components, communication composi-
tion can lead to a deadlock if some conditions are not obeyed by the components
being connected. It is necessary to verify protocol compatibility of the channels
that are to be connected. Broadly, there must always be an output event to
be performed, and at least one of the processes must have all enabled outputs
accepted by the other process. In our approach, this is verified by translation
into BRIC, and using the related verification techniques automated by the FDR
tool, completely hidden from the user.

As an illustration, Fig. 6 shows some additional communication compositions
in the Dining Philosophers example. While the first three compositions preserved
deadlock freedom, the fourth one, labelled (4), introduces a deadlock. This is
evidenced by the red line connection, and is displayed to the user by the tool
interface, as explained in detail in the next section.

The reason for this well-known deadlock is the symmetry of the design of
the philosophers and forks: it allows all the philosophers (two in our example)
to pick up, say, the left fork, and then prevents any of the philosophers to pick
up the right fork; as a result, the philosophers will starve.

Fig. 6. Component with deadlock.

A possible solution is to break the symmetry and design one of the philoso-
phers to pick up the forks in a different order than the other ones. This fix makes
the system deadlock free and the red line is turned into black.

An interesting feature of this step by step composition is that, when a dead-
lock is found, the developer is warned of the particular connection that is caus-
ing the problem. We can identify this connection because, when a deadlock
is detected, a counterexample is generated from which we can trace the event
related to that particular connection. Also, with the separation of concerns we
have adopted in our approach, all the semantic details of the formal verifica-
tion is totally hidden from the user, who can concentrate on the more appealing
graphical UML notation.

As already mentioned, one of the distinguishing features of this work is to
verify the properties in background while the UML model is being created to
help the user construct a deadlock free model.
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3.3 Semantics via Translation into BRIC

In order to perform a mechanised compositional verification during the model
construction, we translate, on demand, the UML models to BRIC, which itself
uses CSP as the underlying formal notation. We then use tool support for CSP
to automatically check properties and trace back any results to the UML level.
In this section, we give an intuition on how the UML models are represented as
CSP processes according to the BRIC component model.

Fig. 7. Illustration of a BasicComponent in CSP.

Figure 7 illustrates a BasicComponent in CSP. It is translated to a CSP
process that composes in parallel two other processes, one for the structural
part and another related to its behaviour. The former defines a memory for
accessing the attributes of the component, which are defined in the UML Bas-
icComponentClass. The need to represent this as a process is that, as a process
algebra, a CSP process is stateless. The latter results from the translation of
the component State Machine. Both processes synchronise on the set of events
αC , which has events for reading and setting the value of each attribute. UML
operations, signals and ports are translated to CSP channels that communicate
the related events. Components may expose their services to other components
through ports. For instance, the incoming and outgoing arrows shown in Fig. 7
communicate these events.

Considering again our running example, the Dining Philosophers, in Sect. 2
we presented the CSP process for the FORK, which is a BasicComponent.
Only the translation of the State Machine depicted in Fig. 3 was presented;
its structural part is simply the SKIP process, as the component Fork has no
attributes. The case study presented in the next section considers components
with attributes.

The State Machine of the process Fork is translated to a CSP process where
each state is a process, as shown in Sect. 2. The main process is stm fork from
which we can reach the available process, and later, the busy1 or the busy2
process. Triggers between states are represented by channels; in this case, the
trigger port fork right is a channel that represents the communication through
the port named right from the FORK component. Events are communicated
through this channel whose type is a pair: id .operation: id (the component iden-
tifier) and operations (putsdown I , putsdown O , picksup I , picksup O).

Events that represent operations are derived from the interfaces realised by
the component. Each operation from the interface produces two datatypes, both
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named after the operation, but, the first, suffixed by I , indicates that this type
encodes the operation call and the input parameters; the second, suffixed by O ,
indicates that this type encodes the reply to the call together with the output
parameters. The FORK component provides one interface that has two opera-
tions: picksup and putsdown. Then they are translated to one CSP datatype:

datatype operation = picksup I | picksup O | putsdown I | putsdown O

A HierarchicalComponent is specified by the parallelism of its internal compo-
nents. For instance, consider a HierarchicalComponent that has two connected
internal components, namely C1 and C2. Wherever two components are con-
nected in UML, such a connection is represented in CSP by the parallel com-
position of the component processes and a Buffer process that orchestrates the
communication between the components. Communication in CSP is synchronous
while message passing in UML is asynchronous: two events are used to rep-
resent the sending and the receiving of a message. Thus, the Buffer process
simply defines the order in which the events happen through the ports of the
components.

The synchronisation alphabet of a component process and the buffer is
defined by the events sent to and received from the ports for that particular
connection. For instance, if component C1 requires a service provided by C2,
which is represented by the connection between their ports, then αC1 has the
events of the port of C1 used in this connection, and αC2 has the events of
the port of C2. The Buffer process simply guarantees that the first event comes
from the port of C1 followed by the event related to the port of component C2.
Finally, a HierarchicalComponent can also receive communication from exter-
nal entities through its ports. These events can be relayed to one of its internal
components.

As in the case of basic components, component compositions are also trans-
lated to CSP. For instance, the interleave composition of two forks involves no
communication and, therefore, no intermediate buffer. This composition is trans-
lated to the following process:

FORK1 2 = FORK (1) ||| FORK (2)

This is checked for deadlock freedom using the BRIC rule for interleaving: it will
be deadlock free if one of the components is deadlock free. In this case, both
FORK (1) and FORK (2) are deadlock free.

When a connection between two components happens, at the UML level, this
entails a communication composition. In BRIC, this can be mapped to feedback
or a reflexive composition. As already explained, communication composition in
BRIC is used to connect channels of distinct components, whereas feedback and
reflexive compositions link two channels of the same component. When a new
instance of a component is deployed in the model of Hierarchical Component, it is
composed in interleaving with existing instances generating a new BRIC compo-
nent. Therefore, if we connect two instances at the UML level, such a connection
can only be represented in BRIC by a feedback or reflexive composition.
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For simplicity, we map the instances in a UML composite structure diagram
to a single component, and then decide between applying feedback or reflex-
ive composition for deadlock analysis. Then feedback composition is tried first,
which requires that the channels being connected are decoupled, meaning that
their connection does not establish a cyclic topology [18]. If it fails, then the
reflexive composition rule can be applied, as, despite being more expensive, it
can handle cyclic networks. The result is then traced back to the UML model.

Figure 5 shows a feedback composition of a communication between phil1
and fork1 in the process that interleaves two forks and two philosophers. The
communication uses the port named left from phil1 with port right from fork1.

The Feedback composition represents the simple unary composition case,
where two channels of the same component are assembled but do not introduce
a new cycle [18]. The process inter fork 1 2 phil 1 2 contains all forks and
philosophers with no communication. This whole process is now considered a
new component. This process interleaves the process for the two forks and two
philosophers. For simplicity, we omitted the definition of FORK1 2 PHIL1, but
it simply composes the processes FORK1 2 and PHIL(1) in interleaving.

inter fork 1 2 phil 1 2 = (FORK1 2 PHIL1 ||| PHIL2)

When we connect two ports of this component, it is considered a
Feedback composition, which generates a new component whose process is
feed inter fork 1 2 phil 1 2. This new component is the parallel composition
between the process of forks and philosophers (in interleaving) and the buffer,
synchronizing on the channels related to the connected ports:

feed inter fork 1 2 phil 1 2 = (inter fork 1 2 phil 1 2)
||

{|port fork left.1,port phil right.1|}
BFIO(port fork left .1, port phil right .1)

The subsequent connections, as presented in Fig. 6, are all translated to the
application of feedback composition, except for the last one, which creates a
cycle in the process network; this is translated into a reflexive composition.
All these compositions are checked using FDR and, for the symmetric version
of philosophers and forks, a deadlock is identified in the final composition, as
already explained in the previous subsection.

4 Tool Support and Case Study

To support the proposed CBSD approach, we envision the implementation of a
tool with the following features: implementation of the component metamodel
and the well-formedness conditions presented in the previous section; editing
facilities for model elements and diagrams; creation of component instances and
composition of instances by connecting their channels; translation of compo-
nent models into BRIC; verification of the composition conditions in background
(using the FDR tool); and traceability of the verification counterexamples back
to the UML component model.
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We are currently developing a plug-in in the Astah modelling environment
[4] to support the above features. Astah has been chosen due to the following
reasons: its extension capabilities facilitates the creation of plug-ins; models can
be created using several UML elements and diagrams, which allows us to reuse
the notation to define our component model, and extend our approach to other
model elements in the future; and it has a large community of active users. Also,
Astah plug-ins allow an easy integration with other tools. In our case, we need
to integrate with FDR for the purpose of mechanised verification.

Creating models using Astah is considerably intuitive for UML practitioners.
With the plug-in, while the user creates a model, this is incrementally translated
into CSP, according to the BRIC metamodel; the BRIC composition rules are
used to check deadlock freedom preservation using FDR in background. Given
that a deadlock is identified, the user is notified.

Currently, we have a simple prototype of the plug-in. Editing facilities are
borrowed from Astah, but adherence to the metamodel and well-formedness
presented in Sect. 3 is not yet enforced. However, assuming the developer con-
structs an adherent model, the prototype automatically generates the CSP from
the state machines, run FDR in background, and presents a deadlock trace, when
a problem is found.

Apart from the Dining Philosopher that we used as a running example, to
validate our strategy we developed another case study: a Ring Buffer. It rep-
resents a reactive bounded buffer which is composed by a ring of storage cells
with a controller and a cache. Each cell is able to store one value. The controller
is responsible to intermediate the communication between the environment and
the ring, receiving input requests and sending values to be stored inside the cells.

The model of the Ring Buffer system in UML is shown in Fig. 8. It is
a HierarchicalComponent composed by at least one Cell and exactly one
Controller . We omit the design of these basic components.

In order to allow communication among the controller component and the
cells, a common interface is realized by them: INTERFACE CONTROL CELL.
Similarly, INTERFACE ENV is the interface of the Controller with the
environment.

The connections are captured by the composite structure diagram STR-
RingBuffer ; see Fig. 9. We consider a configuration with three cells. The
Controller has one port (with multiplicity three), represented by port ctr [3],
which is indexed, from 1 to 3, to establish the connections with the three cells.
To define which index of port ctr is connected with a port from a Cell com-
ponent, a label is used, for instance: port cell <-> port ctr [1]. The values to be
stored to (and recovered from) the Ring Buffer are communicated by port env
that interfaces with the environment and realises INTERFACE ENV .

As detailed for the Dining Philosophers, after each connection is performed,
BRIC rules are applied to the automatically generated CSP model, and veri-
fied using the FDR tool. The complete UML and CSP models for the Dining
Philosophers and the Ring Buffer case studies can be found in www.cin.ufpe.br/
∼fmcf2/extendedReport.

www.cin.ufpe.br/~fmcf2/extendedReport.
www.cin.ufpe.br/~fmcf2/extendedReport.
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Fig. 8. Ring Buffer system. Fig. 9. Ring Buffer composition.

5 Related Work

There are several approaches to defining component models and verification
strategies, based on a variety of formalisms. For instance, in Reo [1], a concurrent
system consists of a set of components which are glued together by a circuit
that enables flow of data between components. Its formal semantics are based
on coalgebras and automata. Another example is rCOS [5], which has a formal
semantics based on an extension of the Unifying Theories of Programming (UTP)
and automatically generates CSP processes to verify the compatibility between
sequence diagrams and the state machine diagram of a contract. A tool for
rCOS is introduced in [6], which allows specifying components using operators
like parallel composition, hiding, and delegation. However, a process algebraic
notation is used as an intermediate specification language, and this has no direct
representation in UML.

The Foundational UML Subset (fUML) [16] provides a precise semantic for
UML classes, activities and actions. The operational semantics of fUML is an
executable model with methods written in Java, with a mapping to UML activity
diagrams. The declarative semantics of fUML is specified in first order logic and
based on PSL (Process Specification Language) [9]. Despite providing a reliable
semantics for a subset of UML, fUML lacks tools for formal reasoning. This could
be used to prove the correctness of our transformations, however, as the focus
of fUML is on classes and activities, several elements of our strategy, like, state
machines, composite structures, among others, would be left out. Therefore, we
hope these elements will be covered in the future in order to allow us to prove
the correctness of our transformations from UML to CSP.

We use as a basis for our translation from UML to CSP the work presented in
[13], which presents a formal semantics for a comprehensive subset of SysML [15]
via a mapping into CML [20], a formalism that combines CSP and VDM [7].
The work proposes guidelines that assign some design roles to be played by each
of the considered elements in an integrated model. It focuses on state machine,
activity, sequence, block definition (class) and internal block (composite struc-
ture) diagrams. However, the purpose of [13] is not on component-based design
nor on ensuring property preservation by construction.
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To our knowledge, there is no work that provides a UML component meta-
model and well-formedness conditions that constructively enables the composi-
tional verification of deadlock freedom, including traceability between the under-
lying formal analysis and the UML model.

6 Conclusion

We propose a UML component model, with associated well-formedness condi-
tions, that supports an incremental design and ensures the preservation of desired
properties; we have focused on deadlock freedom. We also define a formal seman-
tics for the proposed component model by translation into BRIC. Components,
instances and connections are translated into CSP processes, and deadlock veri-
fications are conducted using the FDR tool, using the BRIC composition rules.

We have also implemented part of the approach as a prototype in the form
of a plug-in to the Astah modelling tool. Astah has been chosen due to sev-
eral facts: its extension capabilities facilitate the creation of modelling plug-ins;
UML models can be created using several diagrams that allow us to extend our
approach to other model elements in the future; and it has a large community
of active users and provide a free edition for students. Using the prototype, the
CSP notation and the formal verification is hidden from the user. If the verifi-
cation fails, the problem is traced back to the UML component level, and the
problematic composition is exhibited to the developer who does not need to have
CSP knowledge.

To illustrate the overall approach, we developed two case studies (the classical
Dining Philosophers and a Ring Buffer) that exemplify the modelling of basic and
hierarchical components, with associated state machine and composite structure
diagrams with the connection of component instances. We have also described
how a UML model, adherent to the proposed metamodel and the well-formedness
conditions, is translated to CSP and the BRIC composition rules.

Despite the promising results and the emphasised contributions, our app-
roach has some limitations. The BRIC constraints may reduce the applicability
of our approach but they are necessary to ensure the preservation of desired
proprieties like deadlock freedom. The Dining Philosophers and the Ring Buffer
models, while suitable to illustrate a compositional approach, are not realistic
examples in the context of CBSD. We intend to explore more elaborate indus-
trial examples. Concerning automation, the prototype that was developed needs
to be significantly improved to support all the features listed in Sect. 4. Par-
ticularly, we need to implement adherence to the metamodel and the related
well-formedness conditions. Currently, our translation from UML to CSP can
be regarded as a semantic definition for the subset of UML involved. In order
to establish a notion of correctness for our translation, a formal semantics for
UML is necessary; unfortunately, to our knowledge, there is no complete formal
semantics for UML in the literature. A possible contribution in this direction is
to use the fUML approach as a basis for proving correctness, but this requires
extending fUML with a formal semantics for the elements used by our strategy.
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As another future direction we plan to adapt the approach proposed in [3] for the
construction of heterogeneous collections of components that are defined as pat-
terns using generic (rather than concrete) instances. This allows to parametrise
a composite structure diagram by the number of instances involved in a system
configuration, rather than being forced to statically determining a particular
configuration.
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Abstract. When creating system models, further to system behaviour
one should take into account properties of the environment in order to
achieve more meaningful models. Here, we extend a strategy that for-
malises data-flow reactive systems as CSP processes to take into account
environment restrictions. Initially, these restrictions are written in natu-
ral language. Afterwards, with the aid of case-grammar theory, they are
formalised by deriving LTL formulae automatically. Finally, these for-
mulae are used to prune infeasible scenarios from the CSP-based system
specification, in the light of the environment restrictions. Considering
examples from the literature, and from the aerospace (Embraer) and the
automotive (Mercedes) industry, we show the efficacy of our proposal in
terms of state space reduction, up to 61% in some cases.

Keywords: Natural language · Environment restrictions
Case grammar · Linear temporal logic
Communicating Sequential Processes

1 Introduction

A central element when applying formal methods is capturing the system
behaviour precisely, which is typically modelled using some formal notation.
Besides modelling the system behaviour, it is also relevant to consider its envi-
ronment. Although some interactions are possible when only considering the
system model, they might not be feasible in practice due to characteristics of
the environment. For example, considering a control system operating the car
turn lights, in the presence of a turn indicator lever, the control system might
not capture a direct change from left flashing to right flashing, since the lever
cannot change directly between its extreme positions; it must reside for some
moment in the neutral position.
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Here, we consider as environment the collection of entities that interact with
the system being modelled. In the aforementioned example, the turn indicator
lever would be part of the environment that interacts with the control system
operating the car turn lights. Therefore, in order to develop more meaning-
ful models, it is also recommended to take into consideration properties of the
environment that, for instance, restrict how the user interacts with the system.
In this way, unrealistic interactions are not considered by the models, which
tends to reduce the overall system state space. This is more widely beneficial
for model checking, simulation, testing and the final system implementation and
deployment. For example, when applying model-based testing strategies, infea-
sible test cases, which cannot be performed due to environment restrictions, are
not derived from models.

In this work, we define a controlled natural language (CNL) for specifying
restrictions on how a system interacts with its environment. There is a trade-off
concerning the adoption of a CNL for requirements specification: one can use
a low-constrained CNL to enforce general writing styles, but, typically, formal
analysis is not possible by automatic means; on the other extreme, one can adopt
a highly-constrained CNL that enables automatic reasoning at the expense of
writing naturalness. We seek a compromise between these two extremes: our
CNL enforces enough structure to allow for automatic processing of environment
restrictions, but aiming at not losing naturalness.

After specifying the restrictions adhering to our CNL, we derive LTL formulae
to formalise these restrictions. These formulae are then used to prune, from
the specification model, defined using the process algebra CSP (Communicating
Sequential Processes) [16], infeasible scenarios in the light of the restrictions.
We propose two approaches for restricting CSP models: the first one is based
on filtering the inputs, by checking, via a monitor process, which ones satisfy
the environment restrictions; the second one involves syntactically modifying
the specification so that only valid inputs are selected, but this is done by the
process itself, rather than by another process like in the first approach.

Formal modelling of environments is addressed, for instance, in [9,14], where
a model is created to capture how the test environment interacts with the sys-
tem. In our work, the model of the environment restrictions is automatically
derived from natural-language descriptions, which are formalised by LTL formu-
lae. Previous works, such as [12], also define ways of generating LTL formulae
from natural language, but we differ from them since our formulae are defined
over variables and values (not event-based), which enables an easier and more
natural way of writing expressions (e.g., one can write x > 10, instead of writing
x11 ∨ x12 ∨ x13 to denote the events representing all values x can have that are
greater than 10; here, assuming that the greatest possible value of x is 13).

The strategy for modelling environment restrictions presented here is part of
a broader research effort for generating test cases from natural-language require-
ments: the NAT2TEST strategy. In [4], we describe how models of data-flow
reactive systems (DFRSs) are automatically derived from controlled natural-
language specifications of system requirements. Afterwards, different formal



254 T. Santos et al.

notations can be used to represent models of DFRSs, such as the process
algebra CSP, allowing the exploitation of different techniques and tools. In [3] we
describe tool support for this strategy: the NAT2TEST tool. A comprehensive
explanation of this strategy is presented in [2].

Our strategy for modelling environment restrictions was integrated into the
NAT2TESTCSP, a version of the NAT2TEST strategy that uses CSP, and, con-
sidering examples from the literature, and from the aerospace (Embraer) and
the automotive (Mercedes) industry, we show the efficacy of our proposal in
terms of state space reduction (up to 61% in some cases). Therefore, the main
contributions of this work are the following:

– A CNL for describing environment restrictions;
– A strategy for formalising environment restrictions as LTL formulae;
– Two approaches for imposing environment restrictions on CSP models;
– Integration of this work into the NAT2TESTCSP strategy;
– Empirical analyses concerning examples from the literature and the industry.

This paper is organised as follows. Section 2 briefly introduces background
material: linear temporal logic, the process algebra CSP, and modelling data-
flow reactive systems as CSP processes. Section 3 presents our CNL for speci-
fying environment restrictions, and explains how LTL formulae are automati-
cally derived from specifications in CNL. Section 4 details the two approaches
for imposing environment restrictions on CSP models of the system behaviour.
Section 5 gives empirical evidence on the efficacy of our proposal. Finally, Sect. 6
presents our conclusions, and addresses related and future work.

2 Preliminaries

In this section we present an overview of the related background: linear temporal
logic (Sect. 2.1), besides the process algebra CSP (Sect. 2.2), which is used to
represent the behaviour of data-flow reactive systems (Sect. 2.3).

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [15] is a logic for reasoning about linear-time
temporal propositions. Given an alphabet Σ of elementary propositions (denoted
by lower-case letters), the syntax of LTL is given by the following grammar:

φ ::= false | true | a | ¬ φ | φ ∧ φ | φ ∨ φ | © φ | φ U φ | φ R φ

Classically, © is the next operator (φ holds in the next state), U is the until
operator (φ U ψ means that for every execution of the system the formula ψ must
eventually become true and the formula φ must be true until, not necessarily
including, the first point at which ψ becomes true), and R is the release operator
(the dual of U). Two other derived operators are the eventually and the always
operators: �φ ≡ true U φ and �φ ≡ ¬ �¬ φ, respectively. The formula �φ
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means that, for every execution of the system, φ must hold for some state in
the future, whereas �φ means that, for every execution, φ holds for all states.
In this work, we also consider the weak-until operator: φ W ψ ≡ (φ U ψ) ∨ �φ,
where ψ is not required to occur.

A practical application of LTL is to formalise properties of systems. However,
as discussed in [5], it is not always straightforward to define a formula that
correctly captures the intended behaviour. In order to make this task easier,
a repository1 was developed to collect patterns that commonly occur in the
specification of concurrent and reactive systems. These patterns also have an
application scope. Here, our restrictions fit the absence and the universality
patterns, considering the global, the after and the after-until application scopes.

As noted in [11], when considering LTL formulae in the context of CSP speci-
fications, we need to assume an adapted interpretation of the classical LTL oper-
ators, since LTL is usually defined for state-based models while the operational
semantics of CSP is defined in terms of labelled transition systems (labels are
associated to transitions and not states; moreover, some transitions are labelled
by the invisible action τ). We follow [11] in this respect.

2.2 Communicating Sequential Processes

CSP is a formal language designed to describe behavioural aspects of systems.
The fundamental element of a CSP specification is a process. CSP has two prim-
itive processes: one that represents successful termination (SKIP) and another
that stands for an abnormal termination (STOP), also interpreted as a dead-
lock. In the simplest semantic model (traces semantics), a process behaviour is
described by the set of sequences of events it can perform. To define a process
as a sequence of events, we use the prefix operator (P = ev → Q), where ev is
an event, and P and Q are processes.

The sequential composition P = P1 ; P2 states that the behaviour of P
is equivalent to the behaviour of P1, followed by the behaviour of P2, if and
when P1 terminates successfully. Concerning parallel composition, CSP allows
a composition with (‖) or without (|||) synchronisation between the composed
processes. CSP processes synchronise between themselves by means of events.
For instance, P ‖

X
Q requires synchronisation on the events in X .

A channel can be declared to denote a particular set of events. The term
c!e, where c is a channel, denotes the event c.e resulting from the evaluation of
e, which is any CSP valid expression, whereas the term c?v denotes any event
c.v where v is a value of the declared type of c. It is also possible to interpret
these symbols (! and ? ) as a process sending or receiving a value through a
channel, respectively. Another CSP operator used in this work is hiding (\): it
encapsulates events within a process and, thus, makes them internal (represented
as τ). CSP also has a functional language for manipulating local data.

1 http://patterns.projects.cs.ksu.edu/.

http://patterns.projects.cs.ksu.edu/
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From a CSP specification written in its machine-readable version called
CSPM, the FDR tool2 [8] can check desirable properties, such as: (1) deadlock-
freedom, (2) divergence-freedom, (3) deterministic behaviour, and (4) refinement
according to different semantic models (traces, failures, and failures-divergences).

2.3 DFRSs as CSP Processes

The NAT2TEST strategy generates test cases fully automatically from natural-
language requirements [3]. The data-flow reactive system (DFRS) model serves
as an intermediate formal notation from which it is possible to generate models
in several formal target notations, such as CSP. As detailed in [4], any DFRS
can be encoded as a Timed Input-Output Transition System (TIOTS), a labelled
transition system extended with time, which is widely used to characterise con-
formance relations for timed reactive systems. However, being more abstract, a
DFRS comprises a more concise representation of timed requirements.

Here, we are interested on the CSP-based specialisation of the NAT2TEST
strategy (NAT2TESTCSP), since it provides us with a sound testing theory. Test
generation is mechanised in terms of a high-level strategy by reusing successful
techniques and tools: refinement checking (FDR) and SMT solving (Z33). More
information is available in [2]. Nevertheless, our results on formal modelling of
environment restrictions can also be applied to other strategies, taking as starting
point the LTL formulae automatically derived from the textual descriptions.

In what follows, we present a concise explanation of DFRS models, and how
they are encoded as CSP processes. A DFRS model represents an embedded
system whose inputs and outputs are always available as signals. The input
signals can be seen as data provided by sensors, whereas the outputs as data
provided to actuators. A DFRS can also have internal timers, which can be used
to trigger time-based behaviour.

In the CSP notation, the system behaviour is denoted by the process S , which
is defined as SYSTEM , hiding all of its internal events (only events related to
input, output and time behaviour are visible).

S = SYSTEM \ {...}
SYSTEM = SPECIFICATION ‖

{|get,set|}
SYSTEM MEMORY

The process SYSTEM MEMORY is defined to allow the parallel compo-
nents of the system to communicate via shared memory (i.e., global variables,
which are not directly supported by CSP). The process SPECIFICATION inter-
acts with the memory reading and writing values via the channels get and set ,
respectively; {| c |} represents all values that can be communicated over the
channel c (e.g., {| get , set |} denotes all events communicated over the channels
get and set).

2 https://www.cs.ox.ac.uk/projects/fdr/.
3 https://github.com/Z3Prover/z3.

https://www.cs.ox.ac.uk/projects/fdr/
https://github.com/Z3Prover/z3
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A DFRS model has delay and function transitions. The former occur when
the system is in a stable state (no system reaction is enabled, and time might
evolve), whereas the latter occur when the state is not stable (system reacts to
input stimuli). The process SPECIFICATION captures this behaviour.

SPECIFICATION =
... → FUN ; ... → INPUTS ; DELAY ; SPECIFICATION

The first events (not shown) are related to a symbolic encoding of time in
CSP, which enables the representation of discrete and continuous time using the
standard CSP notation. Since explaining the details of this codification is outside
the scope of this paper, we refer to [2] for further details.

After performing these first events, this process behaves as FUN , which per-
forms function transitions until the system reaches a stable state, when an output
event is performed over the channel output. Afterwards, the system performs a
delay transition. Basically, time evolves (represented by the DELAY process)
and new inputs are received (process INPUTS ) over the channel input. In the
CSP definition, INPUTS takes place before DELAY as a consequence of our
symbolic time representation – see [2] for more details. Then the process recurses.
Therefore, when we analyse a trace of S we observe an alternating sequence of
time, input, and output-related events; representing time elapsing, system stim-
uli and system reaction, respectively.

3 Environment Restrictions

In this section we define a CNL that is convenient to capture restrictions on
the environment (Sect. 3.1) and, with the support of case-grammar theory [7]
(Sect. 3.2), we devise an automatic translation into LTL formulae (Sect. 3.3). To
illustrate our ideas, we consider an adaptation of the vending machine (VM)
presented in [9]. We also refer to a Mercedes’ turn indicator system (TIS) to
illustrate some specific features (explained on demand).

Initially, the VM is in the idle state. When it receives a coin, it goes to the
choice state. When the coffee option is selected, the system goes to the weak or
strong coffee state depending on the time elapsed since the coin insertion. After
producing coffee, the system goes back to the idle state.

3.1 A CNL for Environment Restrictions

An environment restriction can be seen as the description of an interaction
between the environment and the system that is not allowed to happen. It
describes input scenarios that are not feasible in practice. The grammar of our
CNL for specifying environment restrictions (EnvReq-CNL) is given in Table 1.

The EnvReq-CNL allows for the specification of restrictions that fit the
absence and universality property patterns, considering global, after and after-
until application scopes (see [5] for more details on LTL property patterns). The
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Table 1. The EnvReq-CNL grammar

TestEnvRestriction ::= (NEVER | ALWAYS) Scope?

(StatementClause | ImplicationClause)

Scope ::= AFTER AndCondition, (AND UNTIL AndCondition,)?

AndCondition ::= ...

StatementClause ::= AndCondition

ImplicationClause ::= ConditionalClause COMMA THEN ConsequenceClause

ConditionalClause ::= CONJ AndCondition

ConsequenceClause ::= RestrictionOrClause

| COLON RestrictionOrClause

(COMMA AND RestrictionAndClause)+

RestrictionAndClause ::= RestrictionOrClause

| RestrictionAndClause

COMMA AND RestrictionOrClause

RestrictionOrClause ::= RestrictionClause

| RestrictionOrClause OR RestrictionClause

RestrictionClause ::= NounPhrase VerbPhraseRestriction

NounPhrase ::= ...

VerbPhraseRestriction ::= VerbRestriction VerbComplement

VerbRestriction ::= (CNOT | CONLY) VBASE

VerbComplement ::= ...

terminal symbols NEVER and ALWAYS are mapped to the words “It is never
the case that” (absence pattern) and “It is always the case that” (universality
pattern). After these words, one can specify the application scope (global is the
default one), followed by the restriction as a statement (StatementClause) or as
an implication (ImplicationClause) clause.

A statement comprises clauses according to a conjunctive normal form
(CNF): this structure is ensured by the symbol AndCondition. An implica-
tion clause is composed by a conditional clause, whose structure is also a CNF
preceded by a conjunction, followed by a consequence clause. The consequence
clause (also a CNF) describes something that shall be performed (CONLY ) or
cannot be performed (CNOT ) by the environment. Therefore, this grammar
allows for the specification of restrictions in one of the following four templates.

T1 — It is always the case that S , C .
T2 — It is never the case that S , C .
T3 — It is always the case that S , when C1 then C2.
T4 — It is never the case that S , when C1 then C2.

The symbol S denotes a scope, and if absent it means the global one. The
symbol C denotes conditions describing restrictions on the environment. As it
can be seen, T2 is the dual of T1; and T3/T4 can be rewritten as T1/T2, respec-
tively, using classical transformations (C1 ⇒ C2 ≡ ¬ C1 ∨ C2). Nevertheless,
we permit different writing styles aiming at flexibility.

To illustrate our CNL for environment restrictions, consider the VM exam-
ple. Suppose that a coin can only be inserted when the system is in the idle
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state: when it is waiting for a coffee request or it is producing a weak (strong)
coffee, some mechanical device blocks the hole where the coin should be inserted.
The following sentence describes this restriction in accordance to the grammar
previously presented. This sentence adheres to T3, considering a global scope.

– VM-RST001: It is always the case that when the system mode is not idle,
then the coin sensor cannot be true.

Similarly, suppose that the coffee request button can only be pressed when
the system is expecting such an input from the user (the system mode is choice).
This restriction can be described as follows (template T2 and global scope).

– VM-RST002: It is never the case that the coffee request button is pressed,
and the system mode is not choice.

The restrictions can also refer to the previous value of input and output
variables. To give a concrete example, consider the following restriction related to
the turn indicator system (TIS) of Mercedes vehicles (made available by Daimler;
more information in Sect. 5). It is not possible to move the turn indicator lever
from the left position directly to the right position. It is necessary to move the
lever to the neutral position first. The following sentence (TIS-RST001) specifies
this restriction according to the grammar of EnvReq-CNL.

– It is always the case that when the turn indicator lever was in the left position,
then the turn indicator lever cannot change to the right position.

The analysis whether the sentences adhere to the EnvReq-CNL is performed
by the CNL-Parser, which is part of the NAT2TEST tool [3]. To integrate
our work to the NAT2TEST strategy, we modify its CNL (i.e., SysReq-CNL)
in order to allow for the specification of both system requirements and envi-
ronment restrictions. This is achieved by updating the rewriting rule of the
start symbol (Sentence) as follows. Here, Sentence is the start symbol of the
NAT2TEST context-free grammar (SysReq-CNL) for specifying system require-
ments, which can now be rewritten as a system requirement (the non-terminal
symbol SysRequirement), but also as a restriction on the test environment (the
non-terminal symbol TestEnvRestriction – see Table 1). More details about the
SysReq-CNL are available in [2].

Sentence ::= SysRequirement | TestEnvRestriction

Before generating the corresponding LTL formulae, we automatically extract
requirement frames from the syntax trees of the restrictions. This additional step
is performed to decouple the generation of LTL formulae from the structure of
the CNL, besides making easier the LTL generation step.

3.2 From Syntax Trees to Requirement Frames

The case-grammar theory [7] is a linguistic theory that can be used to provide
semantics to natural-language requirements. In this theory, a sentence is analysed
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in terms of the thematic roles (TR) played by each word, or group of words in
the sentence. The verb is the main element of the sentence, and it determines
its possible semantic relations with the other words, that is, the role that each
word plays with respect to the action or state described by the verb.

The verb’s associated TRs are aggregated into a structure named as case
frame (CF). Each verb in a requirement (describing an environment restriction)
gives rise to a different CF. All derived CFs are joined afterwards to compose
a Requirement Frame (RF). Additionally, a RF also has information about the
application scope of the restriction. In this work, we consider five thematic roles:
the condition action (CAC – the verb related to the condition), the condition
patient (CPT – entity who is referred by the condition verb), the condition
modifier (CMD – a modification applied to the condition verb), and the condition
from/to value (CFV, CTV – values associated to the condition patient). For
instance, Table 2 shows the RF obtained from VM-RST001.

Table 2. Requirement frame of VM-RST001

Scope: global

Condition 1: main verb (CAC): is

CPT: the system mode CFV: –

CMD: not CTV: idle

Restriction 1: main verb (CAC): be

CPT: the coin sensor CFV: –

CMD: cannot CTV: true

In order to infer the requirement frame of a given restriction we apply infer-
ence rules, which map parts of the CNL structure to thematic roles. The descrip-
tion of these inference rules is outside the scope of this paper.

3.3 From Requirement Frames to LTL

After identifying the requirement frames, we formalise the environment restric-
tions by generating LTL formulae. First, we identify the core formula (π), which
is derived from conditions C or C1 and C2 (see Table 3). The symbols φ and ψ
refer to conditions described by C (or C1) and C2, respectively.

Afterwards, we conclude the generation of the LTL formula by considering
the application scope (see the correspondence in what follows). The symbol γ
refers to the conditions associated to the after application scope, and ω to the
conditions of the until clause (if present). The symbol π denotes the core formula,
previously identified.

– Global scope: �(π)
– After scope: �(γ ⇒ �(π))
– After-until scope: �(γ ∧ ¬ ω ⇒ �(π W ω))
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Table 3. Mapping writing templates to LTL: core formula

Template Text Core formula (π)

T1 It is always the case that S , C φ

T2 It is never the case that S , C ¬ φ

T3 It is always the case that S , when C1 then C2 φ ⇒ ψ

T4 It is never the case that S , when C1 then C2 ¬ (φ ⇒ ψ)

If the application scope is global, the formula is preceded by a single � oper-
ator. When considering an after scope, the restriction applies globally only after
γ holds. Similarly, regarding the after-until scope, the restriction applies globally
after γ holds, but until ω holds, which might never occur.

After identifying the general outline of our formulae, we use the thematic roles
to generate γ and ω from S , and φ and ψ from C (or C1) and C2, respectively.
The generation of boolean expressions from thematic roles is similar to the one
described in [4]. The condition patients (CPT) turn into variables, while their
values are extracted from the roles condition from/to value (CFV and CTV). The
verbs (CAC) and modifiers (CMD) are used to determine the associated boolean
operators. Algorithm 1 summarises the process for generating LTL formulae from
requirement frames.

Algorithm 1. generateLTLFormulae
input : reqFrames
output : ltlFormulae

1 for reqFrame ∈ reqFrames do
2 γ, ω, φ, ψ ← generateBooleanExpressions(reqFrame);
3 π ← mapWritingTemplateToLTL(φ, ψ, reqFrame);
4 if identifyScope(reqFrame) = global then
5 lflFormulae.add(�(π));

6 else if identifyScope(reqFrame) = after then
7 lflFormulae.add(�(γ ⇒ �(π)));

8 else
9 lflFormulae.add(�(γ ∧ ¬ ω ⇒ �(π W ω)));

For instance, considering the roles presented in Table 2 for Condition 1, we
have that the system mode (CPT) turns out to be a variable whose value is
(CAC) not (CMD) equal to idle (CTV) (i.e., the system mode 	= 1). We note
that the value 1 is used to represent the value idle. When performing these
translations, our tool automatically represents string values as enumeration val-
ues. Concerning Restriction 1, the coin sensor is another variable (CPT) whose
value cannot (CMD) be (CAC) true (CTV), i.e., the coin sensor 	= true. Fill-
ing these expressions into the LTL formula associated to T3 (the template used
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in VM-RST001), and considering its global scope, we have the following LTL
formula: �(the system mode 	= 1 ⇒ the coin sensor 	= true).

The LTL formulae derived for the other environment restrictions previously
presented (VM-RST002 and TIS-RST001) are the following, respectively.

�(¬ (the coffee request button = true ∧ the system mode 	= 0))
�(old the turn indicator lever = 1 ⇒ the turn indicator lever 	= 2)

In the first formula, being pressed is represented as true (an optimisation
automatically performed when the possible string values are s and ¬ s – the
former is treated as true, and the latter as false). Concerning the system mode,
the value 0 represents the choice state.

Regarding the turn indicator system, the positions of the turn indicator lever
(the neutral position, the left position, and the right position) are represented by
the values 0, 1, and 2, respectively. It is also important to note that the old
prefix is used to refer to the previous value of a variable.

The next step of our strategy is to impose the environment restrictions (rep-
resented as LTL formulae) to the CSP specification of the system. We do not
translate from the environment restrictions (in natural language) directly to CSP
to make our strategy extensible to other situations when the system behaviour
is not being modelled as CSP processes. In such situations, the effort to apply
our strategy would be to define a translation between LTL formulae and the
adopted formalism to represent the system behaviour.

4 Imposing Restrictions

After obtaining the LTL formulae from the natural-language descriptions of the
environment restrictions, the next step is to consider them to constrain the CSP
model of the system, which is automatically derived from the system require-
ments by the NAT2TESTCSP strategy; therefore, we emphasise that the CSP
model of the system is also generated from a controlled natural-language specifi-
cation of the system behaviour (more details in [2]). In the following sections we
propose two different approaches for enforcing the test environment restrictions.

As already mentioned, the first one (Sect. 4.1) imposes the restrictions by
filtering the inputs that obey the environment restrictions; this is captured by
a monitor process. The effect of pruning is achieved by composing the original
system model in CSP in parallel with this monitor. In this way, the original
CSP system specification is totally preserved. Differently, the second approach
(Sect. 4.2) modifies the original CSP model so that only valid inputs are selected.
In addition to reducing the system state space, this approach has the additional
advantage of producing a simpler CSP model that requires less time to compile.
On the other hand, it is not compositional.

4.1 Approach 1: Monitoring Input Generation

In this approach, a monitor process deadlocks (prohibits the system process to
advance) under undesired scenarios. Considering the VM example, part of this



Formal Modelling of Environment Restrictions 263

monitoring is performed by the CHECK RST process (shown below); it dead-
locks (STOP) when at least one of the restrictions is violated. The expressions in
the if-clause are derived from the corresponding LTL formulae (see requirements
VM-RST001 and VM-RST002 in Sect. 3.

CHECK RST (the coffee request button,
the coin sensor , the system mode) =

if (not(the system mode != 1) or the coin sensor != true) and
not(the coffee request button == true and the system mode != 0)

then ... else STOP

Now, we present a detailed explanation of how this monitor process is created
for any system. The monitor process (MONITOR) interacts synchronously with
the system (S – see Sect. 2.3) over the channels input and output.

S ′ = S ‖
{|input,output|}

((MONITOR(...) ‖
{|get,set|}

MONITOR MEMORY ) \ {...})

The process MONITOR receives as parameters the initial value (init in vali
and init out valk ) of the system variables (inputs — in vari , and outputs —
out vark ). Then, it synchronises on the output event to record the first output
values (out valk ). It is necessary to keep track of the current and the previous
value of variables since the restrictions might refer to the old value (see Sect. 3.3).
Afterwards, MONITOR behaves as MONITOR LOOP .

MONITOR(init in val1, ..., init in valn ,
init out val1, ..., init out valm) =

output .out var1?out val1...out varm?out valm →
MONITOR LOOP(init in val1, ..., init in valn ,

init in val1, ..., init in valn , init out val1, ...,
init out valm , out val1, ..., out valm)

The process MONITOR LOOP has the following cyclic behaviour. First, it
reads the input values that can be generated (synchronising over input). Then,
it checks the conditions related to application scopes.

The auxiliary variables gammai and omegai are used to keep track of whether
γi and ωi (for a given i -th restriction) hold in the current state. It is necessary
to perform basic syntactic translations to adhere to the CSPM syntax (e.g., ¬
becomes not(...)). Therefore, Γi denotes γi in CSPM (similarly to Ωi). We note
that gammai is only reset to false if the corresponding until condition is satisfied.

MONITOR LOOP(old in val1, ..., old in valn , in val1, ..., in valn ,
old out val1, ..., out out valm , out val1, ..., out valm) =

input .in var1?in val ′1...in varn?in val ′n →
(if Γ1 then set !gamma1!true → SKIP else SKIP ) ; ...
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(if Ω1 then set !omega1!true → set !gamma1!false → SKIP
else set !omega1!false → SKIP) ; ...

CHECK RST (in val1, ..., in valn , in val ′1, ..., in val ′n ,
old out val1, ..., old out valm , out val1, ..., out valm)

After setting the value of these auxiliary variables, it checks whether each
scenario is valid according to the restrictions (auxiliary process CHECK RST ).
Being valid means that all environment restrictions (Πi as the CSPM version
of πi) are satisfied, if within their application scopes. Since the CSPM syntax
does not support a ⇒ b, the implications are represented as “not(a) or b”. If
the application scope is global, the values (v ) of gammai and omegai are not
considered. If the application scope is after, the value of omegai is not considered.

CHECK RST (old in val1, ..., old in valn , in val1, ..., in valn ,
old out val1, ..., out out valm , out val1, ..., out valm) =

get !gamma1?v gamma1 → ... → get !gammal?v gammal → ...
get !omega1?v omega1 → ... → get !omegal?v omegal → ...
if (not(v gamma1 and not(v omega1)) or Π1) and ... and

(not(v gammal and not(v omegal)) or Πl) then
output .out var1?out val ′1...out varm?out val ′m →
MONITOR LOOP(old in val1, ..., old in valn ,

in val1, ..., in valn , out val1, ..., out valm ,
out val ′1, ..., out val ′m)

else STOP

If all restrictions are satisfied, the if-condition evaluates to true, and the
monitor process allows for system responses (synchronisation over output) before
behaving as MONITOR LOOP again (passing as argument the updated value
of variables). However, if this condition is not true, then the monitor process
deadlocks. As a consequence, it makes the system process (S ) to deadlock as
well, since it can only perform input/output events if the monitor process agrees
(synchronises) on them.

Deadlock is a desired effect here, since it prohibits the system to advance
under undesired scenarios; some traces will not have an output after the inputs
that violate the environment restrictions. These traces will not be considered
when generating test cases, since we only take into account traces where for
each input one can observe the expected system reaction (output).

Although this approach is compositional (it does not require modifications
on S ) and reduces the final model (S || MONITOR) state space, it does not
simplify the original model of the system (S ) to consider only valid inputs; conse-
quently, it does not reduce the final model compilation time, which is a relevant
aspect when using FDR. The underlying reason is the way FDR deals with the
parallel composition. In Sect. 4.3 we discuss in more detail the importance of
optimising the compilation of CSP models when using FDR. Nevertheless, this
approach might be useful if compositionality is mandatory, when modifying the
system model is not possible; for instance, when performing black-box model-
based testing.
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4.2 Approach 2: Changing Input Generation

Our second approach also imposes the environment restrictions, and the result-
ing labelled-transition system (LTS) is created in less time. This approach is
even simpler to encode than the previous one, but it requires the modifica-
tion of the CSP process originally created for the system behaviour (S ). The
idea here is to modify the process INPUTS (see Sect. 2.3) to block (dead-
lock on) the undesired scenarios. Considering the VM example, it suffices to
define a process CHECK RST ′ (similar to the one defined in Sect. 4.1), and
to compose it sequentially with INPUTS : defining a new process INPUTS ′ =
INPUTS ; CHECK RST ′.

In details, let CHECK RST ′ be the following CSP process. After reading
the current and previous values of the system variables, along with the values of
the auxiliary variables gammai and omegai , it checks whether the environment
restrictions hold. If so, the process finishes successfully (SKIP ). Otherwise, it
deadlocks (STOP ).

CHECK RST ′ =
get !old in var1?old in val1 → ...

→ get !old in varn?old in valn →
get !in var1?in val1 → ... → get !in varn?in valn →
get !old out var1?old out val1 → ...

→ get !old out varm?old out valm →
get !out var1?out val1 → ... → get !out varm?out valm →
get !gamma1?v gamma1 → ... → get !gammal?v gammal → ...
get !omega1?v omega1 → ... → get !omegal?v omegal → ...
if (not(v gamma1 and not(v omega1)) or Π1) and ... and

(not(v gammal and not(v omegal)) or Πl) then SKIP else STOP

Now, we update the original SPECIFICATION process considering a new
process for generating inputs (INPUTS ′). After generating inputs, the scenar-
ios that are not feasible in practice are pruned from the resulting LTS, since
CHECK RST ′ deadlocks. S ′′ denotes the process created using this second
approach. This approach yields a faster compilation time, since the environment
restrictions are imposed during the creation of the LTS of S ′′.

INPUTS ′ = INPUTS ; CHECK RST ′

SPECIFICATION ′ =
... → FUN ; ... → INPUTS ′ ; DELAY ; SPECIFICATION ′

SYSTEM ′ = SPECIFICATION ′ ‖
{|get,set|}

SYSTEM MEMORY

S ′′ = SYSTEM ′ \ {...}

It is important to note that our second approach is semantically equivalent
to the first one in the CSP trace semantics (Theorem 1). Let S be the set of all
CSP specifications of data-flow reactive systems, S be a given CSP specification,
and appr1 and appr2 functions that yield a CSP specification considering the



266 T. Santos et al.

environment restrictions of S (RS ) according to the first (Sect. 4.1) and the
second (Sect. 4.2) approaches, previously described.

Theorem 1. ∀S : S • appr1(S ,RS ) �T appr2(S ,RS ) ∧ appr2(S ,RS ) �T

appr1(S ,RS )

In CSP, the traces refinement relation means trace inclusion. Therefore, if
P �T Q ∧ Q �T P holds, it means that both processes have the same set of
traces (i.e., they are equivalent in this semantic model). The proof of Theorem1
relies on the fact that both approaches create a deadlock on situations where the
restrictions are not satisfied. The difference between them is that the first one
creates the deadlock via parallel synchronisation, whereas the second one uses
the primitive process STOP . �

Another important theoretical result of our work is described by Theorem2.

Theorem 2. ∀S : S • S �T appr1(S ,RS )

The CSP specification yielded by appr1 (or appr2 — see Theorem 1) might
deadlock on some (or none) of the traces of S , where undesired input scenar-
ios occur, but it does not produce new traces (new events are not performed).
Therefore, the traces of appr1(S ,RS ) are a subset of the traces of S . �

Differently, appr1(S ,RS ) �T S does not hold in general, since we expect the
left-hand side process to have less traces than S due to the imposed restrictions.

4.3 Relevance of Compilation Optimisation

Consider the following CSP specification.

channel input , output : {0..20000}
A(v) = if v >= 0 then output .v → A(v − 1) else STOP
P = input?v → A(v)
Q = input?v → if v == 2 then A(v) else STOP
R = P ‖

{|input,output|}
Q

P ′ = input?v → if v == 2 then A(v) else STOP
R′ = P ′

A is an auxiliary process that performs the event output .i , with i varying
from v to 0. P receives an input value v and then behaves as A(v). Q behaves
similarly to the process MONITOR: it synchronises on all communications over
the input and the output channels, and restricts P to behave as A(2) (suppose
that 2 is the only feasible input).

The process R′ is equivalent to R (both processes have the same set of traces),
but it is defined differently. It follows our second approach (detailed in Sect. 4.2)
to restrict the behaviour of P , which involves modifying the definition of P (i.e.,
defining a new process P ′). Considering the channels input and output ranging
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from 0 to 20,000, more than 60s is necessary to create the LTS of R, whereas
the LTS of R′ is created within 20s4.

When constructing (compilation phase) the LTS of R, FDR first expands
the LTS of P and Q , and then constructs the resulting LTS via bisimulation.
Therefore, although the resulting LTS has less states (reduction of the state
space), the time required to construct this LTS tends to be the same or even
greater. In other words, in general, the approach described in Sect. 4.1 does not
represent performance gains with respect to compilation time, but only regarding
analysis time (when the resulting LTS model has already been created).

5 Empirical Analyses

Our evaluation considers examples from four different domains: (i) the vending
machine (VM) discussed in Sect. 3; (ii) the control system for safety injection in
a nuclear power plant (NPP) presented in [10]; (iii) a priority command function
(PC) provided by Embraer5; and (iv) part of the turn indicator system (TIS) of
Mercedes vehicles6.

In order to provide an argument to the efficacy of our proposal, we measured
the achieved reduction in terms of number of states and transitions. We only
consider the approach described in Sect. 4.2, since the other one (Sect. 4.1) does
not improve the model compilation time, and, thus, it is does not scale for
complex examples such as the TIS (exceeds available RAM memory).

Threats to external validity (the ability to generalise our conclusions) apply
to our analyses, since we do not consider a large set of examples. Despite that, the
results give some evidence about the efficacy of our proposal. Table 4 summarises
our findings; S is the original system model, whereas S ′′ is the system model
constrained by the test environment restrictions (as described in Sect. 4.2).

Table 4. Metrics of the empirical analyses

VM NPP PC TIS

#restrictions of S ′′ 2 3 1 2

#states of S 4,652 14,681 5,592 215,470

#states of S ′′ 1,814 12,261 2,728 189,644

Reduction (states) 61.01% 16.48% 51.22% 11.99%

#transitions of S 4,761 15,617 6,137 228,141

#transitions of S ′′ 1,841 12,975 2,949 200,339

Reduction (trans.) 61.33% 16.92% 51.95% 12.19%

A significant reduction in the number of states/transitions was achieved for
the VM (61.01%/61.33%) and for the PC (51.22%/51.95%) examples, whereas
4 Considering an i7-5500U @ 2.40 GHz × 4, 8 GB of RAM, with Ubuntu 16.04 LTS.
5 http://www.embraer.com/en-us/pages/home.aspx.
6 http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/index e.html.

http://www.embraer.com/en-us/pages/home.aspx
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/index_e.html
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it was smaller for the NPP (16.48%/16.92%) and the TIS (11.99%/12.19%).
The reduction was smaller for the NPP and TIS examples, since the infeasible
scenarios specified by the environment restrictions are less common than the
ones considered in the other two examples (VM and PC). Nevertheless, as said
before, besides the benefit of reducing the state space, there is a more general
benefit of developing more meaningful models, since infeasible scenarios can be
ignored by analysis via model checking, simulation and the final implementation.

6 Conclusion

This paper presents a strategy for modelling environment restrictions formally in
order to develop more meaningful models of the system behaviour, besides taking
advantage of them to reduce the input space of models. The proposed approach
integrates different techniques and notations (natural-language processing, linear
temporal logic, CSP, and model checking). The restrictions are formalised as LTL
formulae, which are automatically generated with the aid of a controlled natural
language. Then, these formulae are used to impose the restrictions to a CSP
model of the system.

The contribution of this work integrates with the NAT2TEST strategy, which
provides means for generating test cases from natural-language requirements,
ruling out infeasible test scenarios. The efficacy of our proposal is illustrated
considering examples from the literature, and from the aerospace (Embraer) and
the automotive (Mercedes) industry. Despite the integration with NAT2TEST,
our results can also be applied to other contexts, taking as starting point the
LTL formulae automatically derived. For instance, it is possible to take into
account these LTL formulae to perform classical model checking [11].

Generating temporal logic formulae from natural-language specifications is
not a new research topic. In [6] an action-based branching temporal logic (ACTL)
is used to formalise requirements in order to support verification of specification
properties. More recently, reference [17] presents another strategy for formal
consistency checking of natural-language requirements via the generation of LTL
formulae. In [12], similarly to our work, the authors use case-grammar theory to
support the generation of LTL formulae. A common aspect between these works
and ours is the definition of an underlying structure (via templates or CNL)
for writing requirements. However, differently from them, our LTL formulae are
defined over variables and values, and not over events.

Formal modelling of the environment has already been addressed too. For
instance, in [9] a conformance relation (i rtiocoe s) is proposed to relate imple-
mentation (i) and specification (s) models in the light of an environment model
(e); all models are defined as timed input-output transition systems. In the
RT-Tester tool [14], the system behaviour and the test environment are both
modelled as state machines. In [13], considering programmable controllers, the
authors propose a strategy for reducing the set of test cases by modelling the
plant behaviour, additionally to the system behaviour, as finite state machines.
Differently from our work, the user needs to manually and formally model the
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environment. Here, the formal model of the environment restrictions is automat-
ically generated from high-level descriptions in natural language. However, these
other works can model arbitrary properties, which is not our case.

As future work, we intend to: (1) extend our CNL to allow the specification
of other types of restrictions, (2) investigate the use of valency grammar [1] in
contrast to the case-grammar theory, and (3) conduct further empirical analyses.
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