
Chapter 13
Case Study: SecureVote

Taking a Dapp from MVP to Production

with Max Kaye and Nathan Spataro

‘Democratise the world.’
— SecureVote’s Massive Transformative Purpose (MTP)

13.1 Introduction and Background

Voting seems simple enough. With paper, voters just fill out a ballot sheet and put
it in a box. To count the votes, the box is emptied and the ballots are counted in
public. However, there are many underlying complications. How do we know extra
votes have not been added? How do we know each voter has voted at most once, or
exactly once? If a voter claims their vote was not in the final tally, how could we
check? How do we know the count is accurate, especially if it can vary every time
votes are counted?

Solving all of these problems can be hard, even with paper systems. With
electronic voting systems, some things become easier. For example, there may be a
public electorate-wide list of voters, and we could ensure each vote has some kind of
verifiable cryptographic authentication. This can help us check to who did not vote.
And, of course, tallying votes is fast and reliable in an electronic system. However,
electronic systems present us with other problems. How can we anonymize votes in
an electronic system? How do voters know whether their vote was included without
revealing who they voted for? How can we decide which votes are valid without a
privileged role?

The potential utility of blockchain technology for voting was identified early,1

and blockchain can help to solve some of these problems. However, using a block-
chain alone is not enough. The exact blockchain chosen, the consensus mechanisms
used, and the architecture of the voting platform are all important design decisions

1At least by December 2010: https://bitcointalk.org/index.php?topic=2299.msg31851#msg31851.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_13

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_13&domain=pdf
https://bitcointalk.org/index.php?topic=2299.msg31851#msg31851
https://doi.org/10.1007/978-3-030-03035-3_13


258 13 Case Study: SecureVote

that impact system capabilities. While this chapter does not describe solutions to all
of the hard problems with online voting, it does describe architectural concerns for
robust, upgradable, multi-user smart contracts used by SecureVote to address these
problems.

This case study concerns the development of Tokenvote, a general purpose, mul-
tichain governance system for blockchain-based tokens developed by SecureVote.
Tokenvote uses the Solidity language and is deployed to Ethereum.2 Tokenvote
supports arbitrarily complex append-only voting systems and has been designed
to be modular, upgradable, and configurable. SecureVote was founded in 2016 to
provide affordable, turn-key voting systems of all types and at all scales.

In this chapter we will cover many of the challenges encountered and trade-
off decisions made while taking this smart contract-based voting solution from a
minimum viable product (MVP) to production. This journey spanned 4 months,
numerous redesigns, and all of the ecosystem issues mentioned above. We will not
describe the voting functionality in detail—the principles are outlined in the sidebar
below—but rather focus on how the architecture and overall design changed over
development. The discussion is in terms of the Solidity language on Ethereum,
but many of the architectural issues apply across smart contract languages and
platforms.

Principles of Anonymous Voting Using Blockchain
Through a combination of public-private key cryptography and peer-to-

peer shuffling, SecureVote achieves that voters can vote anonymously and
later verify and confirm that their vote has been recorded correctly. Voters
cannot prove which vote was theirs, and no one else can find out how they
voted.

To achieve these goals, a ballot is prepared with an electoral roll, contain-
ing all addresses that are allowed to vote. For this ballot, voters first create and
anonymize an ephemeral voting key pair, which is discarded after the ballot
completes. The voters use this key pair to anonymously sign their actual vote.

Two rounds of shuffling are necessary: the first one to create the ephemeral
anonymized key pairs and the second one for the actual voting. In each round,
the shuffling is done off-chain, in a peer-to-peer fashion but relying on on-
chain information like the electoral roll; and the results of the round are
published on-chain. After each round completes, each voter confirms that the
result is well-formed and that their vote/ephemeral public key was recorded
correctly, by signing the result.

(continued)

2Links to the Tokenvote source code and Ethereum documentation appear in Section 13.6 at the
conclusion of this chapter.



13.2 The MVP Prototype 259

Say there are 50 voters. The ballot ensures that each voter can vote at most
once and only voters on the anonymized electoral roll can vote. If all 50 voters
confirm that their individual vote was recorded correctly, then we know that
all votes were recorded correctly. In other words, the number of signatures on
the ballot must match the number of voters exactly.

More details can be found at https://gitlab.com/exo-one/svst-docker/blob/
master/svst-docs/secure.vote.white.napkin.md.

13.2 The MVP Prototype

In late 2017, SecureVote implemented a small MVP to facilitate early governance
for the US-based Swarm Fund, a blockchain-based organization facilitating the
creation of securitized tokens. Although Swarm Fund’s security tokens live on a
Stellar-based blockchain, their organization-wide token (SWM) is an ERC20 token
on Ethereum.

Swarm (unlike many ERC20-based organizations) were proactive about gover-
nance from the start. In their whitepaper they described the first version of their
Liquid Democracy Voting Module (LDVM), a system designed to support the
governance of both the foundation and the investment opportunities offered via
their platform.3 There are two important aspects of their design that are common
in systems of distributed governance: delegation and stake-weighted votes.

• Stake-weighted votes: In many ballots, not every vote is weighted equally, or
some parties may have an unequal number of votes. The most common example
of stake-weighted voting is by shareholders at a company’s annual general
meeting (AGM). Each shareholder votes with a weighting proportional to the
number of shares they own: 1 share, 1 vote; 2000 shares, 2000 votes. For similar
reasons, most token-based communities choose to use stake-weighted votes.

• Delegation: Voters can choose another party to act on their behalf. On a
blockchain, this could be another account they own, for example, allowing voters
to delegate voting power from tokens they own in a cold wallet to a ‘voting-only’
account in a hot wallet. Or, the delegate could be someone else’s account, for
example, a prominent community member. Delegation is a common feature of
modern digital governance systems. It is similar to the idea of a representative
in government but can be done on a per-voter basis. In some systems multiple
delegations can be chained together. The original voter can always stop the

3Swarm’s LDVM design uses fairly standard patterns, and the requirements are currently met by a
subset of Tokenvote’s capabilities.

https://gitlab.com/exo-one/svst-docker/blob/master/svst-docs/secure.vote.white.napkin.md
https://gitlab.com/exo-one/svst-docker/blob/master/svst-docs/secure.vote.white.napkin.md


260 13 Case Study: SecureVote

delegation and vote directly; only if a voter does not vote does the delegate inherit
the voter’s weighting.

SecureVote was responsible for the initial implementation of Swarm’s gover-
nance framework. This initial deployment had only a few requirements:

R1.1 Facilitate an open ballot for all SWM token holders and all delegates.
R1.2 Support optional delegation to arbitrary Ethereum addresses.
R1.3 Stake-weight votes according to voters’ SWM balances and delegations.
R1.4 Support the deterministic audit of the ballot by arbitrary actors.
R1.5 Support the encryption of votes such that the result is unavailable until the

respective secret key has been published.

These requirements seem simple but are practically impossible to meet using
only smart contract platforms like Ethereum and on-chain computation, where all
storage, auditing, and delegation resolution occurs within the blockchain’s virtual
machine. There are two primary reasons for this:

• Historical access: a naive voting system might check a voter’s balance at the
time the vote is cast. However, this approach introduces multiple race conditions
and makes handling delegation difficult. The correct approach is to use snapshots
at the start and end of the voting period to retrieve balances and delegations,
respectively. Ethereum does not support this kind of arbitrary historical access.

• Transaction cost: with fee-per-operation blockchain platforms, like Ethereum, it
is prohibitively expensive to repeatedly load items from storage (like balances,
delegations, and votes) and run tightly looped algorithms such as recursive
delegation resolution or vote counting. As an example: a well-tuned smart
contract could process a maximum of around 400 votes per Ethereum block,
or 1600 votes per minute, based on a gas limit of 8 million gas. Processing
greater volumes requires splitting the operation across multiple transactions, a
tactic which adds overhead and code complexity. Some of the more interesting
features, like on-chain decryption, are simply untenable under fee-per-operation
models.4

SecureVote has previously argued that secure voting (be that on paper or online)
is impossible at scale without the use of a well-constructed blockchain. This is due
to three goals:

• Immutability: the voting record must be append-only and cannot be changed
(even if individual votes can be replaced).

• Censorship resistance: no actor should be capable of preventing a voter from
submitting their vote, except through violence. This requirement precludes
purely proof-of-stake chains in most cases.

4Note: computations like on-chain decryption can be more practical with protocol-layer optimiza-
tions such as the ecrecover function supported by Ethereum.



13.3 Building Tokenvote 261

• Consensus: voters and auditors must agree on which votes are to be counted both
during and after the voting period, and these rules must be non-authoritarian (due
to the need for censorship resistance), objective, and non-discriminatory.

All centralized systems (including recent end-to-end verifiable designs such as Prêt
à Voter) fail at least one of these requirements (usually censorship resistance) and
are thus not fully secure.

Although Requirement R1.4 (deterministic audit) requires a blockchain to store
vote data, it does not require that the audit itself is performed on-chain. The lack of
historical access available to smart contracts5 meant SecureVote needed to audit the
ballot off-chain. Given this, we opted to move as much processing and functionality
off-chain as possible without compromising the platform’s integrity. Decryption of
votes was done every time an audit was run.

The initial MVP was incredibly simple, with only three components:

• A small smart contract of around 100 lines of Solidity code, to securely deliver
ballot details and store votes

• A rudimentary auditor to authenticate voters, decrypt votes, allocate the appro-
priate weighting, and resolve delegations

• A user interface

At this stage, the MVP was unable to handle multiple ballots or communities,
and an individual smart contract had to be deployed for each ballot, costing around
800,000 gas at a minimum. Although this rudimentary system was quite capable of
handling Swarm’s needs for the next few months, it was unsuitable for general use
and required costly manual attention for every deployment.

13.3 Building Tokenvote

Although the MVP was functional and satisfied basic requirements for one-off
ballots, it was not a fully fledged product. Prior to February 2018, SecureVote
intended to launch their platform via a custom, separate blockchain they had been
developing since June 2017. Although development had been progressing steadily
(two prototypes existed at this stage), it was not progressing quickly. In order to
launch a viable platform in the shortest period of time, they made the decision to
pause development of their custom chain, and pivoted to building out the MVP
into a general software-as-a-service (SaaS) platform: Tokenvote. This was to reduce
development time and support most of the features of their custom chain, albeit with
reduced capacity.

This section coversmany of the problems SecureVote encounteredwhile building
Tokenvote based on the MVP described above. For each problemwe will look at one

5Ethereum smart contracts have access to the past 256 states only (corresponding to the past 256
blocks), a period of approximately 1 h.



262 13 Case Study: SecureVote

or more potential solutions and discuss compromises. Some simplified Solidity code
is used in the presentation.6 The simplifications are made to keep the examples as
short as possible, so best practices are sometimes ignored.

As a more generic platform, there were additional requirements:

R2.1 Centrally manage and track groups (democracies), including Ether payments
and permissions.

R2.2 Allow group administrators to create new ballots, and control permissions
around ballots from community members.

R2.3 Extensibility and maintainability: any component can be upgraded, new
components can be added, and Tokenvote must support migration to another
platform in the future.

R2.4 Browser compatible: the whole stack should be able to be run in a browser,
excluding the Ethereum nodes themselves, without compromising the secu-
rity model.

The goal was for Tokenvote to facilitate everything the Swarm prototype did and
more, but to cater for many groups, each with many ballots, without needing any
interaction with SecureVote staff.

13.3.1 Tokenvote Architecture Overview

The initial, planned architecture for Tokenvote is shown in Fig. 13.1. After numerous
iterations the final architecture is as shown in Fig. 13.3. Each is discussed below.

Planned Architecture

In the initial architecture of Fig. 13.1, administrators interact with an on-chain
component that serves as a central hub, which SecureVote call the Index. This
component is responsible for all administrative functions, including payment of
fees for holding a ballot. The Index also keeps track of groups of voters, called
Democracies. If fees are paid, a ballot is set up for a Democracy through a factory
contract, the Ballot Box Factory. See Section 7.4.4 for a general discussion
of the factory contract pattern. This factory contract can create a ballot by deploying
a new Ballot Box smart contract, through which voters can cast their votes.

For the reasons explained around the MVP above, tallying and weighting of the
votes is done offline through an Auditor component. This component is available
to any voter, so that independent auditing is possible. The Auditor also queries the
relevant ERC20 contract for token holdings and other details as required, including

6Simplifications include omitting keywords like view or pure on function declarations, and
declaring functions public instead of external.



13.3 Building Tokenvote 263

U
se

rla
nd

D
at

a 
Fl

ow
D

at
a 

R
ef

er
en

ce
 / 

Li
nk

Sm
ar

t C
on

tra
ct

Pr
og

ra
m

Le
ge

nd

Et
he

re
um

A
dm

in
is

tr
at

or
Ba

llo
t c

re
at

io
n 

an
d

ad
m

in
 fu

nc
tio

ns

D
el

eg
at

io
n

Vo
te

rs

A
ud

ito
rs

Vo
te

rs
 s

en
d 

vo
te

s
di

re
ct

ly
 to

 b
al

lo
t

bo
x 

co
nt

ra
ct

A
ud

ito
r

Vo
tin

g 
U

se
r

In
te

rf
ac

e

A
dm

in
 U

se
r

In
te

rf
ac

e

In
de

x
St

or
es

 a
ll 

D
em

oc
ra

ci
es

D
em

oc
ra

cy
 0

xa
82

7.
..

- B
al

lo
tA

dd
re

ss
es

[]
- A

dm
in

A
dd

re
ss

es
[]

- P
ay

m
en

t l
og

 a
nd

su
bs

cr
ip

tio
n 

tim
e 

re
m

ai
ni

ng
- E

R
C

20
 c

on
tr

ac
t o

r
M

em
be

rs
hi

p 
re

co
rd

D
em

oc
ra

cy
 0

xf
9b

3.
..

D
em

oc
ra

cy
 0

x9
80

d.
..

...

Fo
r d

em
oc

ra
cy

 0
xa

82
7.

..
ER

C
20

 C
on

tr
ac

t

D
ep

lo
ys

 a
 s

in
gl

e 
ve

rs
io

n 
of

th
e 

Ba
llo

t c
on

tra
ct

. C
an

 b
e

up
gr

ad
ed

.

B
al

lo
t B

ox
 F

ac
to

ry
Ba

llo
t a

t 0
x8

89
cc

2.
..

Ba
llo

t a
t 0

x8
ee

4d
a.

..

B
al

lo
t C

on
tr

ac
t

at
 0

x7
24

fa
8.

..
- V

ot
es

[]
- B

al
lo

t S
pe

ci
fic

at
io

n
- E

nc
ry

pt
io

n 
de

ta
ils

- O
w

ne
r A

dd
re

ss
In

de
x 

lo
gs

 re
fe

re
nc

es
to

 in
di

vi
du

al
 b

al
lo

t
bo

x 
co

nt
ra

ct
s 

an
d

cr
ea

te
s 

th
em

 v
ia

 a
n

up
gr

ad
ab

le
 fa

ct
or

y

F
ig
.1

3.
1

Pl
an
ne
d
ar
ch
it
ec
tu
re

fo
r
To

ke
nv
ot
e
be
fo
re

de
ve
lo
pm

en
t



264 13 Case Study: SecureVote

Democracy

ID (democHash)
Admin
ERC20 reference
Time remaining

Ballot

Start �me
End �me
Crea�on �me
Deprecated?
Public key
Private key
Misc data

Vote

Vote data
Cast �me
Sender
Misc data

0..* 1 0..* 1

Fig. 13.2 Logical view of the required data structure, as a UML class diagram

delegation and balances on other chains. This allows the auditor to consider tokens
across the public Ethereum and Ethereum Classic blockchains, among others.

The logical data structure for this design is depicted in Fig. 13.2. As shown, each
democracy can have an arbitrary number of ballots, and each ballot can have many
votes. Each vote belongs to one ballot and each ballot to one democracy.

The reference to the relevant ERC20 contract is stored for the democracy.
Encrypted ballots can be held by generating a key pair, publishing the public key
for all voters to encrypt their votes, and revealing the private (secret) key after the
end time of the ballot. This method avoids influence of intermediate results on voters
while the ballot is ongoing.

Final Architecture

In the final architecture depicted in Fig. 13.3, the basic components are still present,
but there are some significant changes:

• Instead of creating one smart contract per ballot, all ballots that use a particular
feature set are stored in the same contract, the Ballot Box Storage.
This includes ballots from different democracies. It in turn relies on the code
outsourced to the Ballot Box Library contract, implementing the data
contract and library contract patterns from Section 7.4. Collapsing all ballots
into few smart contracts is more efficient in terms of gas cost. As discussed in
earlier chapters, this results in reduced monetary cost, increased throughput, and
reduced danger of network congestion.

• Following the same patterns to achieve upgradability and separation of concerns
in the Index, data on payments is stored in the Payments Backend, and
all other data for the Index is stored in the Data Store Backend. Pricing
for community ballots is calculated in the Community Ballot Payment
contract; adaptive, context-dependent pricing is needed to avoid spamming
democracies with too many ballots.

• To allow easy addressing, the Ethereum Name Service, ENS, is used.
The ENS Proxy implements the contract registry pattern (Section 7.4.1).
Requesters can look up the reference for the latest version of the Index contract.



13.3 Building Tokenvote 265

U
se

rla
nd

D
at

a 
Fl

ow
D

at
a 

R
ef

er
en

ce
 / 

Li
nk

Sm
ar

t C
on

tra
ct

Pr
og

ra
m

Le
ge

nd

Et
he

re
um

A
dm

in
is

tr
at

or
Ba

llo
t c

re
at

io
n 

an
d

ad
m

in
 fu

nc
tio

ns

In
de

x
D

em
oc

ra
cy

 0
xa

82
7.

..

D
em

oc
ra

cy
 0

xf
9b

3.
..

D
em

oc
ra

cy
 0

x9
80

d.
..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t 0

x8
ff3

bc
...

B
al

lo
t 0

x0
1f

da
4.

..

B
al

lo
t 0

x4
f0

2c
1.

..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t 0

x8
ff3

bc
...

B
al

lo
t 0

x0
1f

da
4.

..

B
al

lo
t 0

x4
f0

2c
1.

..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t I

D
: 0

x8
ff3

bc
...

- V
ot

es
[]

- V
ot

er
s[

]
- B

al
lo

t D
et

ai
ls

Al
l B

al
lo

ts
 o

f t
he

 s
am

e 
ty

pe

B
al

lo
t I

D
: 0

x0
1f

da
4.

..

B
al

lo
t I

D
: 0

x4
f0

2c
1.

..

Pa
ym

en
ts

 B
ac

ke
nd

A
cc

ou
nt

 fo
r 0

xa
82

7.
..

A
cc

ou
nt

 fo
r 0

xf
9b

3.
..

A
cc

ou
nt

 fo
r 0

x9
80

d.
..

C
om

m
un

ity
A

uc
tio

n
Pa

ym
en

ts

EN
S 

Pr
ox

y

B
al

lo
t B

ox
 L

ib
ra

ry

Fo
r d

em
oc

ra
cy

 0
xa

82
7.

..
ER

C
20

 C
on

tr
ac

t

D
el

eg
at

io
n

D
at

a 
B

ac
ke

nd
D

at
a 

fo
r 0

xa
82

7.
..

- B
al

lo
tID

s[
]

- A
dm

in
s,

 e
tc

D
at

a 
fo

r 0
xf

9b
3.

..
D

at
a 

fo
r 0

x9
80

d.
..

...

Vo
te

rs

A
ud

ito
rs

Vo
te

rs
 s

en
d 

vo
te

s
di

re
ct

ly
 to

 b
al

lo
t

bo
x 

st
or

ag
e

Th
e 

In
de

x 
st

or
es

 re
fe

re
nc

es
 to

ea
ch

 b
al

lo
t b

ox
 s

to
ra

ge
co

nt
ra

ct
, a

nd
 e

ac
h 

de
m

oc
ra

cy
ho

ld
s 

re
fe

re
nc

es
 to

 it
s 

ba
llo

ts
.

A
ud

ito
r

Vo
tin

g 
U

se
r

In
te

rf
ac

e

A
dm

in
 U

se
r

In
te

rf
ac

e ...

...

...

F
ig
.1

3.
3

T
he

ar
ch
ite
ct
ur
e
fo
r
To

ke
nv
ot
e
at
de
pl
oy
m
en
t.
M
an
y
al
te
ra
ti
on

s
w
er
e
ne
ed
ed

be
fo
re

Se
cu
re
V
ot
e
co
ns
id
er
ed

th
e
da
pp

pr
od

uc
tio

n
qu

al
it
y



266 13 Case Study: SecureVote

In Chapter 5, we discussed ways in which blockchain can be used architecturally. In
the Tokenvote architecture, we note the following:

• Tokenvote uses the blockchain as a storage element, as a communication
mechanism for publishing ballots and votes, and as an asset management and
control mechanism for payments and checking stakes.

• The use of blockchain as a computational element in this architecture is limited.
Most computation is done off-chain, for the reasons outlined earlier. On-chain
computation serves primarily to enforce checks such as authorization, what to
store, and hash integrity. Other smart contract codes implement schemas for data,
particularly ballot data stored in the ballot box storage. Not all data schemas are
implemented in smart contract code, to allow for more flexibility in schemas that
are immaterial to the core concerns of the solution.

• Regarding the integration of blockchain into a system as a component, this
architecture is rather interesting, in that there are only in-browser components
in addition to blockchain. However, running the auditor in-browser relies on
SecureVote’s full blockchain nodes, which introduces some level of trust on their
integrity and truthfulness. Alternatively, anyone could host their own full node
to function as an auditor. However, an auditor requires the full history including
all states, which prevents syncing the blockchain through fast-sync, and requires
over 1TB of SSD space at the time of writing.

SecureVote decided to use Ethereum as a technology platform for two main
reasons. First, Ethereum’s ecosystem was the most attractive, especially the support
for ERC20 tokens. Second, despite its limitations, Ethereum was the best available
option in terms of security, the execution environment, and the network. To
benefit from lower fees, Tokenvote contracts can also operate on Ethereum Classic:
transaction fees in fiat currencywere a factor of 10–30 lower during the development
of Tokenvote.

Qualities and Trade-offs

The common blockchain trade-off is between transparency and confidentiality, and
this is present in Tokenvote. How voters voted needs to remain confidential, but each
voter needs the transparency and certainty that their vote has been counted. Out of
the options for how data can be stored (discussed in Section 6.3.3), SecureVote
decided to use smart contract variables. This was to (i) avoid the need for offline
interpretation as much as possible and (ii) ensure integrity, since, e.g., logs are
computed in each full node and are not directly part of consensus.7

Cost, as discussed in Chapter 9, played an important role. Gas cost, complexity
bounds, and limitations of the platform and their impact led to the revision of certain

7https://ethereum.stackexchange.com/a/1309.

https://ethereum.stackexchange.com/a/1309


13.4 Details and Code Samples 267

design decisions, such as collapsing all ballots into one smart contract and storing
most ballot details (e.g. title, description, and options) off-chain.

In terms of performance, discussed in Chapter 10, throughput plays the most
important role. The latency requirement is that feedback to users confirming the
recording of their vote should be given within reasonable time, on the order of 1–
2min. For both throughput performance and cost reasons, SecureVote minimized
the complexity of voting transactions.

Dependability and security concerns (Chapter 11) are of course very important
for a voting platform. In terms of availability, the most impactful issue would
be transactions that are not included. This concerns primarily new or upgraded
contracts and the transactions deploying them, since these transactions can incur
high gas costs. This risk has partly been mitigated by collapsing all ballot contracts
into a few reused contracts. Reliability is prominent when running full nodes with
full history over a long time, due to high network load and high requirements
on fast and sizeable disk space. Maintainability and upgradability are addressed
using the patterns discussed throughout this chapter. Safety in the Lamport-Alpern-
Schneider sense (see Section 11.3) is addressed through good coding practices and
thorough testing with close to full code coverage, including negative tests that
test failure cases. In terms of integrity, the solution relies on the strong, inherent
integrity features of blockchain, and on implementing tight authorization checks
for all functions. To ensure integrity for the stake weighting, stake holdings are
taken from before and after each ballot. Also, the Auditor components ensure
that all votes are counted. Auditing starts only 15min after end of a ballot, which
corresponds to approximately 60 confirmation blocks.

13.4 Details and Code Samples

In the following, we discuss some of the issues and lessons learned in detail and
provide code samples where they are helpful.

13.4.1 Indexing and Externally Accessing Data

SecureVote’s earliest component for Tokenvotewas themulti-democracy framework
(the Index), which would allow ballots to be created within a namespace that only
the democracy’s administrators had access to. Each time a ballot was to be created,
a new BallotBox smart contract would be deployed. To begin, the voting smart
contract MVP was reused, but a different approach was ultimately required.



268 13 Case Study: SecureVote

1 // contract: Index
2 mapping (bytes32 => Democracy) public democs;
3 bytes32[] public democList;
4
5 struct Democracy {
6 address erc20;
7 address admin;
8 Ballot[] ballots;
9 }
10
11 // return the number of democracies
12 function getDemocN() external view returns (uint) {
13 return democList.length;
14 }
Listing 13.1 Referencing rich data types via unique IDs. SecureVote still uses this pattern today

Initially, each democracy had a unique identifier, via a hash generated from
a number of parameters.8 Unique identifiers are important because they facilitate
cheap lookups via arrays or mappings.

In this case, SecureVote stored democracies in the Index as in Listing 13.1. This
code sample uses patterns that are important when upgrading smart contracts. Since
blockchain data cannot be moved easily during an upgrade, it should either be stored
in a separate data contract, following the data contract pattern (Section 7.4.2), or
remain in the older version of the smart contract and locked from further mutations.
This is a direct consequence of Requirement R2.3 and the nature of smart contracts.
For Tokenvote, we adopted the latter solution.

Note that in Listing 13.1, the array democList keeps an index of known keys,
and the function getDemocN returns the number of democracies. These provide
means for external users to discover information about the contract. Solidity does
not have primitives for this nor otherwise directly supports discovery of this kind
of information, so developers have to implement it specifically. The combination of
this mapping, array, and length getter means that it is possible for everything but the
ballots (stored in Democracy.ballots) to be easily read externally.9 Reading
the Ballots in each Democracy requires another set of getter functions (shown
in Listing 13.2).

Accessing all data in a smart contract is an important prerequisite to ensure
upgrade paths are available. For this reason, important state variables (for the most

8Choosing multiple parameters, particularly parameters outside of the user’s control, is important
to avoid collisions when using this technique.
9Technically it is always possible to read any arbitrary data stored on a blockchain at some level;
in the case of Ethereum and Solidity, the curious reader can find out about accessing arbitrary
variables in contract storage here: https://medium.com/aigang-network/how-to-read-ethereum-
contract-storage-44252c8af925.

https://medium.com/aigang-network/how-to-read-ethereum-contract-storage-44252c8af925
https://medium.com/aigang-network/how-to-read-ethereum-contract-storage-44252c8af925


13.4 Details and Code Samples 269

1 // contract: Index
2 struct Ballot {
3 bytes32 ballotSpec; // hash of the ballot specification
4 BallotBox ballotBox; // external smart contract reference
5 }
6
7 function getBallotsN(bytes32 democID) public returns (uint) {
8 return democs[democID].ballots.length;
9 }
10
11 function getBallot(bytes32 democID, uint ballotID)
12 public
13 returns (bytes32, BallotBox)
14 {
15 Ballot memory b = democs[democID].ballots[ballotID];
16 return (b.ballotSpec, b.ballotBox);
17 }
Listing 13.2 Accessing nested dynamic elements in arrays and mappings

part) require external getters. This allows other smart contracts to read the complete
state and helps maximize upgrade potential.

13.4.2 Splitting Up Contracts

Design patterns can increase code size. In general, adding an external function has
a very low runtime overhead. However, the additional space required can easily
be hundreds of bytes, depending on the number of arguments and data returned.
Although this will usually be inconsequential, it can cause issues due to many
blockchain platforms setting limits for the size and deployment cost of smart
contracts. In Ethereum (due to EIP-17010) smart contracts are limited to 0x6000
bytes (approximately 24KB). Refer also to the deployment risk of large contracts
mentioned in Section 11.6.

In SecureVote’s case, Index grew rapidly during development and hit
Ethereum’s deployment limit. Managing the size of smart contracts is necessary for
any complex dapp deployed to Ethereum and similar networks. In this section we
show three approaches: using auxiliary contracts for non-core but useful operations,
using tightly coupled ‘backend’ contracts to offload storage and data processing,
and using libraries to allow common code to be used by multiple contracts and
hosted separately on the blockchain.

10https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md


270 13 Case Study: SecureVote

Augmenting Smart Contraction Functionality via Auxiliary Contracts

Often, smart contracts serve two purposes: storing data and processing that
data. For example, a ballot box smart contract might include logic for storing,
tracking, and retrieving individual votes. However, to avoid separate HTTP
calls to retrieve each vote, it makes sense to try and batch these requests
to return all votes at once. A straightforward approach would be to add
this function to the ballot box smart contract itself. Rather than just the
function for individual votes, getVote(uint voteID), we could add
another function getAllVotes() to return all votes, and functions such as
getAllVotesFrom(address voter) to return all votes from a particular
voter. However, adding such functions increases contract size and introduces
complexity to the integrity-critical primary contract.

As an alternative approach, we can use auxiliary contracts. In this example, the
primary contract would retain the individual getVote(..) function. However,
getAllVotes() would not be added to the primary ballot box contract. Rather,
we create a second contract with a function getAllVotes(BallotBox bb)
which calls bb.getVote(..) for every vote and returns a corresponding array.
A single auxiliary contract can work with every instance of the primary contract (in
this case BallotBox).

This technique has significant benefits: the auxiliary and primary smart contracts
are only loosely coupled, so the auxiliary contract can be more easily upgraded or
deprecated; code for complex data processing is moved out of the primary contract,
reducing testing and attack surfaces; and there is greater flexibility around the type
of data returned.

SecureVote uses auxiliary contracts for several purposes:

• Delegation between voters and self-delegation across network boundaries
• Retrieval and preprocessing of votes
• As a lookup table for human-readable names

Adding a Backend Smart Contract

Sometimes a large, interconnected contract must be broken up. We discuss several
methods for this purpose here.

The simplest approach is to separate the data storage and longer-term data
processing into different contracts. Exactly what is split between ‘frontend’ and
‘backend’ contracts should be based on an assessment of what functionality is
likely to be more stable in the long term and what is likely to be more frequently
upgraded or replaced. There is a small performance cost to this approach. As a
smart contract is split up, it will need to know about the backend contract (and load
its address from storage), and the backend contract will need to grant permissions
to the frontend contract and verify these permissions. Each call between contracts
will also incur some additional fee for invocation and parameter passing. So, this



13.4 Details and Code Samples 271

approach is valuable for infrequently called functions (such as democracy creation)
rather than for frequently called functions (such as voting).

In Tokenvote, the Index is split in this manner. For example, when democracies
are created (and administrated), most of the operations (like calculating the unique
ID, storing data, and setting initial permissions) take place in the backend. Only
minimal functions are left in the frontend contract. As mentioned, a consequence
of this approach is that two sets of permissions must be verified. The first is for the
user when calling the frontend contract, and the second is for the frontend contract
when calling the backend.

This approach has some nice properties. More than one editor can be added,
provided the backend authentication has been architected appropriately. This means
an alternate frontend can be introduced, or the original frontend swapped out,
augmenting or introducing functionality.

Tokenvote required two dedicated backends and several other supporting smart
contracts all using this approach. Examples are Tokenvote’s ENS (Ethereum Name
Service)11 integration and an auction system for publishing a particular kind of
ballot. The latter contract is currently simply a placeholder for future functionality.

Using Libraries

Another way to split up functionality and code is to use a library. These are deployed
like Solidity contracts but cannot be called directly and have no state of their own.
Rather, they are ‘linked’12 (similarly to the way libraries are linked in C) and allow
the library to modify the state of the contract calling it. This is particularly useful for
logic repeated in multiple contracts. Examples of these sorts of libraries are in the
OpenZeppelin13 framework, which includes many code examples, base contracts,
and useful libraries, such as the ubiquitously used SafeMath library that has safety
checks on inputs.

SecureVote uses libraries in a few specific cases. First, a library is used to handle
code that needs to be identical across contracts, such as extracting data from packed
variables. Second, a library is used to version and manage the handling of votes and
ballots, leaving the container contract (which holds many votes and ballots) with a
cleaner and simpler codebase. Third, libraries are used like macros across multiple
contracts to wrap common multistep operations. Only the first two uses reduce the
calling contract’s size.

11A simple name system has been implemented over Ethereum allowing names like data61.eth
to be registered and resolved to an address (in the same way domain names resolve to an IP
address). In this case the Tokenvote index is resolved via index.tokenvote.eth. More
information can be found at https://docs.ens.domains/en/latest/.
12Libraries are used via the delegatecall operation, which means ‘run this code as if it were
inline here and give it direct access to my storage’.
13https://openzeppelin.org/.

https://docs.ens.domains/en/latest/
https://openzeppelin.org/


272 13 Case Study: SecureVote

Libraries are not as simple to upgrade as contracts, and while this is technically
possible,14 it requires preparation and a deep understanding of the underlying
blockchain. It can be easier and safer to upgrade an individual contract linked to
a new library, rather than the library itself.

13.4.3 Upgrades and Trade-offs

Recently, there has been increased interest in upgradable smart contracts. There
are many reasons to upgrade, including to add functionality, to mitigate potential
attacks, or to fix bugs. In this section we will describe two techniques used
by SecureVote which, when used together, allow for atomic upgrades without
downtime for other smart contracts. We also describe how SecureVote plans to
improve their upgrade procedure to expand atomic interactions to all users and
eliminate any sorts of race conditions entirely.15

We start by looking at a simple case of replacing an existing contract. Then,
we examine the upgrade of a prototype delegation contract and how SecureVote
currently manages upgrading the Index. Finally, we describe an oversight and how
SecureVote plans to address this.

Replacing Smart Contracts

When the interface to a smart contract is well known, it is trivial to replace it at a
future date. A simple way to upgrade a contract factory is shown in Listing 13.3.
There are three smart contracts here: an instance of Frontend and two instances
of contracts which implement the Backend interface. The Index instance stores
a reference to a Backend implementation, and upgrading is as simple as replacing
this reference. This method is very general and forms the foundation for other
methods discussed below.

At compile time, Solidity knows about the interface of remote smart contracts, to
generate logic for communicating with them and to check type safety. At runtime,
these checks are not performed. In Listing 13.3, the doUpgrade function accepts
an address newBackend, and after the contract is deployed, the owner is free to
call doUpgrade with any address, including that of a smart contract which does
not adhere to the AuxContract interface. We can use this lack of runtime checks
to implement upgrade schemes.

14One way to implement upgradable libraries: https://blog.zeppelin.solutions/proxy-libraries-in-
solidity-79fbe4b970fd.
15Although well-designed smart contracts can interact with Tokenvote atomically, a race condition
exists where an upgrade could take place between the creation of a transaction to the index and the
inclusion of said transaction. In this case the transaction would only affect the old index, and would
revert in most cases as the index would have lost permissions to modify data on the backend.

https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd


13.4 Details and Code Samples 273

1 interface Backend {
2 function replaceWith(AuxContract newExternal) public view;
3 }
4
5 contract Frontend {
6 Backend _backend;
7 address owner;
8
9 constructor(Backend initBackend) public {
10 _backend = initBackend;
11 owner = msg.sender;
12 }
13
14 function doUpgrade(Backend newBackend) public {
15 require(msg.sender == owner);
16 // let the current _backend know we are upgrading, if

needed
17 _backend.replaceWith(newBackend);
18 _backend = newBackend;
19 }
20 }
Listing 13.3 A simple, general way to replace smart contracts

SecureVote’s First Upgrade

Delegation in voting systems is usually straight forward. A voter can choose
someone else (the delegate) to act on their behalf, and if the voter abstains the
delegate’s vote is used instead. So each delegate votes with the combined power
of all their delegators (the voters doing the delegation). Many systems of delegation
also include delegation by categories or similar ways for voters to choose one of
multiple delegates depending on context.

Less than a month after deploying their first delegation smart contract,
SecureVote found they had made an oversight. Although users could make and
check delegations, there was no way to iterate through them, and there was no
way to find delegators given some delegate. Although, functionally, delegation only
works in one direction (where a voter chooses a delegate), resolving delegations is
more complex. There were two complications:

• In standard ERC20 implementations, there is no complete list of account holders.
This means it is impractical to iterate through all potential voters to check their
delegations.

• If the voter abstains, only the delegate’s vote and address are known. Without
delegation backlinks it is not possible to efficiently find the voters who have
selected a particular delegate.



274 13 Case Study: SecureVote

1 contract Version1 {
2 mapping (uint => bytes32) data;
3 function getData(uint i) external returns (bytes32) {
4 data[i];
5 }
6 }
7
8 contract Version2 {
9 mapping (uint => bytes32) data;
10 Version1 prevContract;
11
12 constructor(Version1 _prev) public {
13 prevContract = _prev;
14 }
15
16 function getData(uint i) external returns (bytes32) {
17 bytes32 r = data[i]
18 if (r == bytes32(0))
19 r = prevContract.getData(i)
20 return r
21 }
22 }
Listing 13.4 The general pattern of a layered upgrade

Since looping through (and caching) all historic delegations was not particularly
elegant, SecureVote opted to upgrade their delegation functionality by implementing
a second delegation contract which operated ‘over the top’ of the first. Only when
this new contract could not find a delegation would it check the original contract.
Since SecureVote references most contracts via ENS names, the upgrade was a
simple matter of deploying the new contract and updating the ENS resolution. This
general pattern is shown in Listing 13.4.

This simple pattern is very useful in the right contexts. Ideally the first contract
can be locked down when upgrading, such that no data can be added, but often this
is not necessary. That is because the first contract is simply a fall-back, and only in
the case that no new data exists (which would be stored in the second contract) is
the first ever called.

There are also some drawbacks to be aware of. If users continue using the first
contract, they might be able to change the data returned from the second, newer
contract. The approach may also require software updates depending on the dapp
in question. Finally, this technique does not work when contracts need to return
dynamic arrays or strings, as these cannot be passed between contracts. So whether
this technique is appropriate depends on the nature of the contract being upgraded.

SecureVote’s delegation contract was designed to handle all delegation require-
ments across all democracies, so voters could simultaneously delegate on a per-
token basis and globally. If a delegation for a particular token was not found, the
global delegation would be used. This is useful for self-delegating from a cold
wallet to a hot wallet. SecureVote’s first improvement was logging all known tokens



13.4 Details and Code Samples 275

for which delegations had been made, allowing them to iterate through all known
tokens easily.

SecureVote’s other improvement was to look up all delegations to a particular
address, exposed in a function called findPossibleDelegatorsOf. This was
done by looping through all known delegations and constructing an in-memory
array of delegations matching the delegate in question. One consequence of this
approach is that only potential delegators are returned; delegations need to be
checked individually before being treated as valid when calculating the results of
a ballot. This demonstrates a trade-off between work done on-chain and work done
off-chain. If backlinks were stored with the delegations themselves, the contract
would also require additional data structures and logic to store and maintain the
accuracy of these backlinks, increasing the cost for the voter. However, the chosen
approach implies that the findPossibleDelegatorsOf function cannot be
called from other smart contracts. When this function is called, the computation is
only ever done on the Ethereum node responding to the call, not across all full nodes
on the Ethereum network itself.

Complex Upgrades

The method above may be applicable for individual contracts but does not support
upgrades of a complex system of contracts. The pattern used by SecureVote in
Listing 13.5 (called an ‘upgrade pointer’) is suitable for singly linked contracts,
where the contract being called might be upgraded. In this example AContract
would call checkIndexForUpgrade() before sending any data to Index.

This example code shows the core idea, but the doUpgrade function could
be easily extended to allow for upgrade hooks or notifications to be sent to other
contracts. SecureVote extensively use such an extension to manage the multiple
interactions and permissions between Tokenvote’s smart contracts. A sample from
their Index contract is shown in Listing 13.6.

Multiple other contracts are notified of an upgrade via their upgradeMe
(address) method. SecureVote use this mostly for permission management, but
it supports other complex upgrades. When Index calls upgradeMe on another
contract, the permissions of Index are transferred to the new contract. Note also
the modifiers only_owner, which allows only the owner of the contract to execute
this function, and not_upgraded, which checks that the function can only be
called on the latest version of the Index.

Atomic Upgrades and Tokenvote

Two lines in Listing 13.6 differ from the others: ensOwnerPx.setAddr
(nextSC); and ensOwnerPx.upgradeMeAdmin(nextSC);. The contract
ensOwnerPx is an ‘owner proxy’ for index.tokenvote.eth, defined using
the Ethereum Name Service. Since this contract has administrative control over this



276 13 Case Study: SecureVote

1 contract Upgradable {
2 address public _upgradePtr;
3 }
4
5 contract Index is Upgradable {
6 function doUpgrade(address next) external {
7 require(msg.sender == owner);
8 _upgradePtr = next;
9 }
10 }
11
12 contract AContract {
13 Index index;
14
15 function checkIndexForUpgrade() internal {
16 if (index._upgradePtr() != address(0))
17 index = Index(index._upgradePtr);
18 }
19 }
Listing 13.5 This pattern allows other smart contracts to know about an upgrade and act
accordingly

1 function doUpgrade(address nextSC) only_owner() not_upgraded
() external {

2 doUpgradeInternal(nextSC);
3 backend.upgradeMe(nextSC);
4 payments.upgradeMe(nextSC);
5 ensOwnerPx.setAddr(nextSC);
6 ensOwnerPx.upgradeMeAdmin(nextSC);
7 commAuction.upgradeMe(nextSC);
8
9 for (uint i = 0; i < bbFarms.length; i++) {
10 bbFarms[i].upgradeMe(nextSC);
11 }
12 }
Listing 13.6 A sample from SecureVote’s Index contract showing how upgrades notify other
linked contracts. © 2018 SecureVote, reprinted with permission

name, it can expose functionality (like setting the address associated with the ENS
name) to multiple other accounts. In this case, the other accounts are a SecureVote
cold wallet and the Index contract.

When other smart contracts interact with Tokenvote, they first resolve the ENS
name to an address to ensure they are invoking the current version of Tokenvote
and not an old contract. Somewhat similarly, when voters use the Tokenvote UI, the
software finds the Index address via an ENS lookup, but this only guarantees the
address is correct at the time of the lookup. As mentioned above, there may be a race



13.4 Details and Code Samples 277

condition if an upgrade is made after the user loads the UI but before they create a
new ballot.16

As an aside, SecureVote have made extensive use of events in their contracts,
though unfortunately forgot to add an event for upgrades. If they had included one,
it would be entirely feasible for the UI to listen for upgrade events and to reload
contract instances when such an event is emitted. This would reduce the risk of race
conditions causing failed transactions.

13.4.4 Reducing Complexity and Cost

In preparation for production deployment, SecureVote began benchmarking and
optimizing many of the methods users would call regularly, like casting a vote or
creating a ballot. Several optimizations greatly reduced transaction fees for the end
user. One advantage of platforms like Ethereum is that the performance and gas
cost of function invocation can be measured accurately in test environments. As
mentioned in Chapter 9, rather than implementing dynamic gas costs, Ethereum’s
design opts for a dynamic price per gas operation. Thus measuring (and optimizing)
gas costs is separate from the price of a transaction.

During SecureVote’s benchmarking, the primary offender in terms of gas use was
identified to be the creation of a new ballot. The original architecture used a contract
factory to deploy individual contracts to manage each ballot. Although this allowed
them to reuse much of the code from the MVP, as they added features the cost of
deployment grew to 3,000,000 gas. During the worst periods of congestion,17 this
corresponded to a transaction fee of around US$30. SecureVote felt this was too
high and designed a more sustainable architecture for ballot creation.

A standard solution to this kind of problem is to refrain from deploying new
contracts. Instead of deploying one contract per ballot, SecureVote would deploy
one contract per type of ballot: a ballot storage contract, implementing the data
contract pattern described in Section 7.4.2. In order to maximize code reuse, ballot-
specific functionality like recording votes was not included in the ballot storage.
Rather, this was refactored out into a library of its own, allowing SecureVote to reuse
the ballot storage contract and interface with different libraries for vastly different
kinds of ballots. The results of this new architecture reduced ballot creation cost to
between 200,000 and 300,000 gas, a reduction of 85–95%.

However, this kind of change has many flow-on impacts. For example, their
previous voting and auditing architecture included the assumption that each ballot
lived at its own address. Under this new pattern, many ballots lived at the same

16Direct user interaction with the index only occurs on write operations; read operations call the
backend directly, so an update to the index does not affect this functionality.
17Such as the CryptoKitties Congestion Crisis of late 2017. https://media.consensys.net/the-inside-
story-of-the-cryptokitties-congestion-crisis-499b35d119cc.

https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc


278 13 Case Study: SecureVote

address, and each had a unique identifier. Not only did voting-specific code require
updating, but the entire state model of the UI required refactoring to accommodate
ballot storage contracts, each holding multiple ballots. Even the URL routing logic
needed to be updated.

In general a ‘hub and spoke’ architecture (where new spokes are created via
newly deployed contracts) should only be used in cases where the cost of such
deployment is warranted. Any developers using this architecture should strongly
consider whether refactoring to a single, heavily used contract will improve
performance, user experience, and maintainability.

13.5 Summary

In this chapter, SecureVote described their experience of moving from an MVP
to a production dapp. We contrast the initial, planned architecture and the final
one, which resulted from many lessons learned and optimizations made during
the development. We also describe how the architecture relates to the functions
blockchain can play, which patterns are used and how, as well as the considerations
of the qualities and the trade-offs in the architecture. Finally, the previous section
covers many details, code samples, and (occasionally hard) lessons learned.

13.6 Further Reading

The Tokenvote source code is available on GitHub at https://github.com/secure-
vote/sv-light-smart-contracts.

Solidity documentation, including a very good ‘by example’ section, is available
at https://solidity.readthedocs.io/en/latest/.

The end-to-end verifiable voting design Prêt à Voter is described in Ryan et al.
(2009).

https://github.com/secure-vote/sv-light-smart-contracts
https://github.com/secure-vote/sv-light-smart-contracts
https://solidity.readthedocs.io/en/latest/

	13 Case Study: SecureVote
	13.1 Introduction and Background
	13.2 The MVP Prototype
	13.3 Building Tokenvote
	13.3.1 Tokenvote Architecture Overview
	Planned Architecture
	Final Architecture
	Qualities and Trade-offs


	13.4 Details and Code Samples
	13.4.1 Indexing and Externally Accessing Data
	13.4.2 Splitting Up Contracts
	Augmenting Smart Contraction Functionality via Auxiliary Contracts
	Adding a Backend Smart Contract
	Using Libraries

	13.4.3 Upgrades and Trade-offs
	Replacing Smart Contracts
	SecureVote's First Upgrade
	Complex Upgrades
	Atomic Upgrades and Tokenvote

	13.4.4 Reducing Complexity and Cost

	13.5 Summary
	13.6 Further Reading


