
Chapter 11
Dependability and Security

with Ralph Holz, Vincent Gramoli, and Alex Ponomarev

In this chapter, we discuss dependability and security aspects of blockchain-based
applications and analyse how the different properties of dependability and security
relate to these applications. As is the case throughout the book, our viewpoint for the
discussion in this chapter is that of a system architect or developer using blockchain
as a component. We thus analyse how blockchains impact the dependability and
security of systems built upon them, in part with studies using observations from
the mainstream proof-of-work blockchains Ethereum and Bitcoin. As such, we are
not going into the details of cryptography and security infrastructure of blockchain
platforms.

Dependability and security are tightly interlinked. According to the widely
accepted taxonomy of Avizienis et al. (2014), dependability and security are
comprised of six attributes as shown in Fig. 11.1. The first five sections of this
chapter give an overview of the influence on dependability and security attributes of
blockchain as a component within a multiparty system.

We then focus on the availability of functions that such systems need, in
particular transaction inclusion, and how they may be adversely impacted by a
number of factors. When viewing blockchain as a component for data storage,
communication, or code execution, whether a transaction is included or not can
largely be equated to write/send availability.

Finally, in Section 11.7, we discuss issues around aborting and retrying
transactions—a functionality that is not provided by blockchain client software
today.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_11

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_11

214 11 Dependability and Security

Fig. 11.1 Attributes of
security and dependability. ©
2004 IEEE. Reprinted, with
permission, from Avizienis
et al. (2014)

Dependability Security

Confiden�ality

Maintainability

Integrity
Safety

Availability
Reliability

11.1 Confidentiality

Confidentiality means that unauthorized disclosure of information does not take
place. This is usually harder to establish in blockchain-based systems, because the
default is that information is visible for everyone in the network. Information can be
encrypted: asymmetrically with a particular party’s public key, so that only this party
can decrypt it, or symmetrically with a shared secret key, so that the group of parties
with access to the secret key can decrypt it. The latter case requires a secure means
of exchanging the secret key, typically off-chain. However, once information needs
to be processed by smart contract methods, this information needs to be decrypted.
This is because smart contract code runs on all nodes of the network, and thus
any of them needs to be able to process the input data. The ability for anyone to
execute smart contracts is required to achieve consensus on the outcomes of smart
contract execution. Embedding keys within a smart contract would reveal the key to
all participants.

As discussed in the supply chain use case in Section 4.1, commercially sensitive
data can be at risk if it is shared on a blockchain, even if pseudonyms are used
and even if encryption is used. Private and permissioned blockchains can provide
read access controls, but this will not provide commercial confidentiality between
competitors using the same blockchain.

There are interesting technologies on the horizon, which could alleviate some
of these pain points. For instance, zero-knowledge proof methods like zk-SNARKs
can be used to hide the contents of a transaction, while still allowing independent
validation of the integrity of that transaction. Current implementations are limited
to hiding simple transfers of cryptocurrency, but in the future the same could be
achieved for more sophisticated transactions. As for computation on encrypted
data, that is the goal of techniques like homomorphic encryption and confidential
computing. However, such approaches have not been utilized for smart contracts
as yet, in part due to their significantly increased computational requirements
over regular computation. Alternatively, authorized ‘witnesses’ could have special
access to the data. These witnesses could be certifying agencies or consumer group
advocates. The data would be encrypted using the witness’ public key, so that only
the witness can decrypt it. The witness can then pass on the provenance information
to interested parties, but not share information that is commercial in confidence.
How the data is to be encrypted and stored would be part of the smart contracts
created for various supply chain events and, as such, can be customized for different
scenarios and supply chains.

11.2 Integrity 215

11.2 Integrity

Integrity is the absence of improper (invalid or unauthorized) system alterations and
is a key attribute for blockchains. Once a transaction is included in a blockchain and
committed with sufficiently many confirmation blocks, it becomes part of the effec-
tively immutable ledger and cannot be altered. This also applies to smart contracts:
their bytecode is deployed in a transaction and thus is subject to the same integrity
guarantees; and invocation of smart contracts happens through transactions as well.
The key integrity property of Bitcoin is that addresses cannot spend money they
do not have. Ethereum’s integrity property is more complicated, because it requires
the correct operation of a Turing complete smart contract programming language.
However, for client applications, Ethereum provides significant power by allowing
user-defined integrity conditions to be implemented as checked preconditions and
defined behaviours in smart contracts.

Blockchain emerged to support a cryptocurrency, and so it is unsurprising that
integrity is a key dependability attribute, because integrity is the key dependability
attribute for commercial computer security. The seminal work on this topic is the
Clark–Wilson security policy model, and blockchains are broadly consistent with
its requirements. Smart contracts can implement Clark–Wilson’s transformation
procedures to generate and update internal data or other smart contracts that realize
Clark–Wilson’s constrained data items. Blockchains natively create the log required
by Clark–Wilson for reconstructing operations. Finally, blockchains use a kind of
separation of duty through the replicated validation performed by all mining nodes.

Ethereum smart contracts are written in a Turing-complete programming lan-
guage. This makes it more difficult to verify that the smart contracts correctly
implement required integrity properties. Formal verification techniques can be used,
but these can be costly and time-consuming in practice. A lighter-weight approach
is to use a smart contract language with strong typing mechanisms, which can help
programmers support integrity. The Pact language on the Kadena blockchain1 is an
example of that approach. Some blockchains, such as Kadena and Corda,2 avoid
the use of Turing-complete smart contract languages for this reason, and instead use
less-expressive domain-specific languages that can be automatically checked.

High integrity and non-repudiation are not always ideal. For example, sometimes
historical data must be deleted or changed. If a vexatious or improper registry entry
has been created, a court may order the registrar to change the registry to remove
that entry, ‘as if it had never been created’. This is not technically possible on many
blockchain platforms. Similarly, this may create problems for blockchains that have
been ‘poisoned’ by illegal content. Some blockchains have been proposed to deal
with this challenge, but there is not yet widespread acceptance and adoption of good
solutions.

1http://kadena.io/.
2https://www.corda.net/.

http://kadena.io/
https://www.corda.net/

216 11 Dependability and Security

11.3 Safety

As defined by Avizienis et al. (2014), safety means that using a system does not
lead to catastrophic consequences on the users and the environment. The use of
blockchain technology does not directly pose specific risks in this regard, when
compared to other components in distributed systems. There may be economic and
environmental risks from investments in ineffective blockchain mining strategies.
By using non-mining nodes, private or permissioned chains, and/or alternative
consensus mechanisms, these risks can be mitigated. If a blockchain is used as
a component in a safety-critical application, then failures of integrity, confiden-
tiality, availability, or other dependability attributes may have consequences for
safety. However, this is a prevalent issue of safety-critical system engineering.
A noteworthy difference exists when the cryptocurrency or token features of a
public blockchain are used, in which case an organization or user is exposed to
the monetary risk of loss or devaluation of the cryptocurrency and tokens. If this
risk can bankrupt the organization or users, it may lead to situations that could be
seen as catastrophic. With respect to cryptocurrency, a difference to regular internet-
related flow of monetary assets lies in the fact that there is no additional safety net.
No banks will stop attacks on your Bitcoin wallet or reimburse your losses. In most
cases of theft, lost crypto-coins or tokens remain unrecoverable.

An alternative, informal definition of safety by Lamport (1977) states that some
‘bad thing’ does not happen during execution. Alpern and Schneider (1985) later
formalized this definition with regard to discrete execution states of programs but
did not formalize what a ‘bad thing’ might be due to the inherently informal nature
of this concept. Examples of safety properties mentioned in the above sources are
mutual exclusion of concurrent processes, deadlock freedom, partial correctness,
and first-come-first-served execution.

This perspective is indeed interesting when considering blockchain. When
considering a public blockchain network execution itself as the program, discrete
states are almost meaningless: the states of different nodes around the world are
only very loosely synchronized, and substantial differences between, say, the current
transaction pools of set of nodes can be expected. Considering the committed blocks
in a blockchain (e.g. the current Ethereum blockchain minus the most recent 11
blocks), discrete execution states become a valid model. Concerning the above-
quoted examples, concurrent processes and mutual exclusion are a non-issue (since
the execution has been sequentialized).

Deadlocks on the application level can exist as in any other program, be it on
the smart contract level or off-chain programs. It might be easier to avoid deadlocks
in blockchain-based applications, since smart contracts can be used as a neutral
mediator, which handles all resources (e.g. cryptocurrency in exchange for tokens),
instead of distributed processes responsible for different resource types.

11.4 Maintainability 217

Though not mentioned in the early literature, livelocks or infinite loops in a smart
contract would, in the case of Ethereum, be resolved by the platform itself: each
invocation has a limited amount of gas available. If the execution does not terminate
before the gas has been consumed, it is aborted.

Partial correctness on the application level is not impacted by blockchain.
However, correctness of the execution when computing a new block is higher: in
many public blockchains, all full nodes verify each newly announced block by
checking digital signatures and hashes and executing all transactions. If the results—
e.g. of a smart contract invocation check—are inconsistent, the new proposed block
is discarded.

If first-come-first-served is required, typically that requires special consideration
on blockchain. In Bitcoin, strict ordering of transactions can be established by
consuming an output of one transaction as input of another transaction—the second
is only valid once the first has been included, although both transactions can be
included in the same block. Similarly, Ethereum transaction nonces can be used to
ensure ordering of transactions, but this feature is only available for transactions
originating from a single account. A smart contract can ensure ordering to a degree,
e.g. if the order can be prescribed. For scenarios where neither of these options
suffice, e.g. open bidding processes, off-chain mechanisms might be required
to ensure fair processing. Generally, the inclusion of a given transaction is not
guaranteed by blockchain protocols, let alone in any particular order. This issue
of availability from the viewpoint of an application will be discussed in depth in
Section 11.6.

11.4 Maintainability

Maintainability refers to a system’s amenability to undergo modifications and
repairs. In blockchain-based systems that use smart contracts, this is harder to
implement for the smart contracts than in regular distributed systems. This is
because smart contracts comprise code that regulates the interactions between
mutually untrusting parties; trust is derived from the fact that the code cannot be
changed easily. Consider an example where an organization has established trust in
the code of a particular contract and verified that it implements the agreed rules for
handling cryptocurrency. If others can change the code without that organization’s
knowledge or consent, any trust in the code would be void. Although the code of an
Ethereum smart contract cannot be changed, the current state of variables within that
smart contract can be updated by invoking its methods. In particular, these variables
may refer to other smart contracts. This mechanism provides a kind of indirection
that allows the dynamic updating of smart contract code, through mechanisms like
the Contract Registry Pattern (Section 7.4.1). However, support for this kind of
updating must be specifically provisioned ahead of time.

Finally, changes may be made to a blockchain-based system not by changing the
data stored on a blockchain but instead by changing the interpretation of data on the

218 11 Dependability and Security

blockchain. As an extreme example, a client application might choose to not honour
all data previously written to the blockchain under some previously acknowledged
addresses. Instead, the client could in principle re-create all required data on the
blockchain under some new address. A distinctive benefit of blockchain-based
systems is that there is no single party with control of the system. However, this
inherently creates challenges for governance: the management of the evolution of
blockchain-based systems. Changes may be made to correct defects, add features, or
migrate to new IT contexts. However, in a multiparty system with no single owner,
managing these changes is more like diplomacy than traditional risk management
or conventional product management. Lessons may be drawn from governance in
open-source software, which face similar development challenges. However, the
governance of a blockchain is not just a software development problem—it is
also a deployment and operations problem. For both public and private blockchain
systems, key stakeholders include the users of the blockchain, software developers
with moral or contractual authority over the code base, miners or processing nodes
in the blockchain ecosystem, and government regulators in related industries. There
are still lessons being learned about who the key stakeholders for blockchains are.
For instance, the 2016 hard fork of Ethereum in response to the DAO controversy
made it apparent in hindsight that digital currency exchange markets are a key
stakeholder for public blockchain systems. (The market initially provided by the
Poloniex exchange for trading the unforked ‘Ethereum classic’ digital currency has
supported the ongoing operation of that blockchain, which might have otherwise
failed to continue to be viable.)

It is unknown how to best perform governance for blockchains and blockchain-
based systems. How should relevant stakeholders influence and manage changes
to the software and the operational infrastructure for blockchains and blockchain-
based system when there might be no central owner and where the blockchain
platform might be serving many purposes for different stakeholder groups?

11.5 Availability and Reliability

According to Avizienis et al. (2014), availability is the readiness for correct service,
whereas reliability is the continuity of correct service. More specifically in our
context, availability concerns the users or dependent systems’ ability to invoke
functions of the system, whereas reliability refers to receiving consistently correct
outcomes from those invocations.

For blockchains, there are scenarios in which the distinction between reliability
and availability can be blurred as there is no globally specified time by which a
transaction should complete. If a blockchain system never includes a transaction
(perhaps because other connected nodes ostracize that transaction, address, or
interface node), that will be both an availability and reliability failure of the
blockchain system from the perspective of a client application. However, if a
transaction is initially included in some block, that does not guarantee that blockwill

11.6 Variation in Blockchain Transaction Inclusion 219

be recognized as being part of the blockchain in future. One could take the following
view: first an application designer can specify a number of confirmation blocks by
which they will regard a transaction to have been committed. If a fork happens
that invalidates transactions thought to be committed, the system will have had a
reliability failure, because a transaction thought to have been committed will have
turned out not to be. Alternately, if a fork affects less than the specified number of
confirmation blocks, the systemmay experience enough delay to have an availability
failure.

The operation of public blockchains can involve hundreds or thousands of
independent processing nodes. Each node holds a full replicated instance of the
blockchain transaction history and can operate for users as a transaction interface
to the blockchain network. Because of this massive redundancy, naively we might
expect that a blockchain system has extremely high availability. We can assume
that local components of a blockchain-based system are connected to a local full
node on the blockchain network. Submitting a transaction to a blockchain network
is done through the local full node, which broadcasts that transaction to all nodes
it is connected to. The availability of a locally reachable full node is thus heavily
reliant on the organization operating a blockchain-based system. The more complex
question is: how certain can one be that the transaction is included in a block and
committed, in a timely manner? We address this question in the next section in
detail.

Transactions deploying smart contracts or invoking their methods add a further
level of complexity. First, they are subject to more parameters, like current gas
limit, that may impact their successful inclusion. Second, they utilize more complex
functionality of the network and thus rely on the network sharing the same accepted
norms about this functionality with the system. For instance, parts of the network
may change to not accept certain commands present in compiled smart contracts. If
the blockchain-based system is unaware of the change, it might attempt to use these
commands, and its contracts might get rejected, or method calls might be terminated
unexpectedly. Again, we discuss these issues in more detail in the next section.

Finally, we note that the well-known CAP theorem indicates that there is
inevitably some trade-off between consistency, availability, and partition-tolerance
for distributed databases. As described above, blockchain platforms sacrifice tradi-
tional notions of consistency, but strive for availability and partition-tolerance.

11.6 Variation in Blockchain Transaction Inclusion

Blockchains are distributed systems, and so the states of different parts of the system
are inevitably different. Different nodes will hear about new pending transactions
and new blocks at different times. There is also variation in how long it takes
for the system to commit transactions in the ledger. For public blockchains like
Bitcoin and Ethereum that use Nakamoto consensus, there is much greater variation
in transaction inclusion time, which is exacerbated by the probabilistic nature of
transaction inclusion.

220 11 Dependability and Security

In fact, there can be so much timing variation that it can impact core dependabil-
ity attributes. If transactions takes too long to be included, they will violate latency
or service availability requirements. Integrity can also be impacted if transaction
reordering occurs because of the probabilistic nature of Nakamoto consensus. This
section explores these issues in some detail, for both Bitcoin and Ethereum.

11.6.1 Variation in Bitcoin Transaction Commit Time

In this section, we explore the factors that impact Bitcoin commit time and show
that reordering of transactions play an active role.

A peculiarity of Bitcoin is the way transactions are linked: they transfer currency
from a number of source addresses to a number of destination addresses. Recall
from Section 2.1 that transaction outputs become the inputs of new transactions. If
the sum of the outputs is less than the sum of the inputs, this is interpreted as an
additional output that pays a fee to the miner who mines the block containing this
transaction. This acts as an incentive for miners. As a result, miners tend to optimize
block creation by preferring transactions with higher fees. The transaction fee is
often the only variable that client software asks Bitcoin users to choose consciously
when creating a new transaction.

However, transactions can also experience delay due to other factors. An
important one is that transactions must arrive (roughly) in order, for a node (and
the network) to be able to process them fast. Incoming transactions are handled
by the so-called mempool. If the referenced input transactions (the ‘parents’) are
yet unknown, a miner will delay the inclusion of the new transaction—it is then
a so-called ‘orphan’. Miners may choose to keep orphans in the mempool while
waiting for the parent transactions to arrive, but they may also expunge orphans
after a timeout they choose. A second factor that could come into play, albeit one
that only experienced users will set, is so-called locktimes: a transaction can contain
a parameter declaring it invalid until the block with a certain sequence number has
been mined. This makes it possible to set an ‘execution date’ for transactions.

Note that out-of-order arrival may be the result of a number of factors: the
forwarding behaviour of a node depends on the implementation and is different
even between versions of the ‘official’ Bitcoin Core client. It may naturally also
depend on the load on miners (leading to low throughput as evidenced by an
ongoing community discussion3). Transient connectivity issues and Internet routing
constellations may also be at play.4 Also note that transactions may be rejected by
the mempool for certain reasons. We explain these below as we encounter them.

3https://en.bitcoin.it/wiki/Block_size_limit_controversy.
4This is why projects such as Fibre (http://bitcoinfibre.org/public-network.html) aim to provide
high-speed links between certain locations.

https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://bitcoinfibre.org/public-network.html

11.6 Variation in Blockchain Transaction Inclusion 221

To observe transaction inclusion and commit times on Bitcoin, we ran an experi-
ment twice to allow for varying network conditions and growth of the network. Each
experiment lasted ca. 25 h; the first was conducted in November 2016, the second
in April 2017. We collected roughly 300,000 transactions in each experiment. It
should be noted that websites like https://blockchain.info/unconfirmed-transactions
reported high network load while the second experiment was being carried out, with
25,000–30,000 transactions waiting for inclusion.

We summarize the commit times (using 6-confirmation) we determined in
Table 11.1. Note that they are significantly higher and more varied in the second
experiment. Figure 11.2 plots the commit times for the two forms of transactions that
are our primary interest. The blue curves refer to transactions that were a ‘straight-
accept’, i.e. the parent transactions were known and the incoming transaction passed
all mempool tests. The violet curves are the transactions that were orphans upon
arrival.

Table 11.1 Summary of commit time distributions (in seconds) for orphans and straight-accepts
during our experiments

Type Min Q1 Median Mean Q3 Max

Experiment 1

Orphans 944 3096 4635 7582 8334 117,585

Accepts 676 2887 4234 5475 5901 150,123

Experiment 2

Orphans 1293 4280 6337 34,912 51,352 174,516

Accepts 1165 3873 5364 18,417 19,286 171,566

© 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

Time between announcement and six−block commit (sec)

P[
co

m
m

it]

0.0

0.2

0.4

0.6

0.8

1.0

l

l

l

l
l

l l l l l l l l l l l l l l l l

ll

l
l l l l l

l l
l

l
l l l l l l l l l l

l

Straight−accepts Exp 1
Orphans Exp 1
Straight−accepts Exp 2
Orphans Exp 2

50
0

10
00

0
25

00
0

50
00

0
75

00
0

10
00

00

Fig. 11.2 Time between reception of transaction and commit. Note the logarithmic x-axis. © 2017
IEEE. Reprinted, with permission, from Weber et al. (2017)

https://blockchain.info/unconfirmed-transactions

222 11 Dependability and Security

In an underutilized network, the theoretical median 6-block commit time should
be around 3900 s: six blocks of 10min or 600 s, plus on average half an inter-
block time of waiting time for mining on a new block to start. In experiment 1, the
median commit time for straight-accepts was 4234 s and the 90th percentile 9501 s.
For experiment 2, these times were 5364 s as a median and 55,976 s for the 90th
percentile. In summary, even if waiting twice as long as the median time, more than
10% of transactions were not committed yet. This is an important factor to consider
when building an application based on the Bitcoin blockchain:median commit times
are high, but individual commit times can be much higher.

We then did a number of analyses to examine delays and orphans further. In both
experiments, orphans seem to be committed later than transactions that were directly
accepted. However, the additional delay is much higher in the second experiment
(where the network was under high load). In our first experiment, about 60% of
orphans were included within the same time span as normal transactions. In fact,
31% of orphans took longer than 2 h to be included, 21% longer than 3 h, and 8%
took longer than 5 h. For directly accepted transactions, these values were slightly
different: 17% of them took longer than 2 h, 9.5% longer than 3, and 5% longer than
5 h. In our second experiment, roughly 40% of orphans had similar commit times
as directly accepted transactions. The majority experienced very significant delays:
the median was almost 20% higher, and the third quantile is more than 2.5 times as
high as that for straight-accepts.We also note that only 1.2% of orphans and 1.6% of
directly accepted transactions had not been included by the end of our observation
period in experiment 1. In experiment 2, more than 20% of orphans had not been
included (but almost all straight-accept transactions).

Factors other than the out-of-order arrival might still exercise considerable
influence on commit times. We hence decided to investigate two further factors:
transaction fees and locktimes. We first determined the number of transactions with
a zero fee. This was always very low: for the straight-accepts, it was 74 and 12
transactions in experiments 1 and 2, respectively. The orphans never had a zero
transaction fee. Figure 11.3 shows a box plot of transactions fees with the zero
values filtered out. We can see that transaction fees are considerably higher in the

Fig. 11.3 Box plot of
transaction fees by
transaction category. Note the
logarithmic y-axis. © 2017
IEEE. Reprinted, with
permission, from Weber et al.
(2017)

11.6 Variation in Blockchain Transaction Inclusion 223

second experiment, but there is no difference between straight-accepts and orphans
in experiment 1. In experiment 2, orphans even have slightly higher fees. It is very
unlikely that lower transaction fees are a cause for delayed commit of orphans.

We extracted the locktimes for our collected transactions and the locktimes of
their parents. As our logger had not captured the full content of transactions arriving
in the mempool (but only hash value and timestamp), we conducted this analysis
only for those transactions that had been incorporated into the blockchain. The
vast majority of transactions had no locktime set: in experiment 1, only 15% of
straight-accepts and 12% of orphans had a value that was not zero. In experiment 2,
the numbers were 23% and 17%, respectively. While this may signal an increase
in the use of the feature, orphans never had locktimes beyond the observation
window. Orphans in experiment 1 had locktimes that ended at least 3 h before the
end of the observation window; in experiment 2 it was 6 h. In contrast, straight-
accepts did have locktimes that extended considerably beyond the end of the
observation window. In experiments 1 and 2, nearly 100% of transactions also had
locktimes similarly near the end of the observation window. However, we found
some decidedly optimistic locktimes on the order of 1.5–1.7 billion (block sequence
number). With 10min being the average time between two Bitcoin blocks, these
transactions cannot be included before the year 30,166. The obvious limitation of
our work here is that we do not know the locktimes of those orphans that were not
included in the blockchain by the end of our observation period. Given the above
results, however, we still feel confident to say that locktimes are not likely to be a
decisive factor in commit delay of orphans.

Naturally, there may still be confounding factors in our study that we could not
control for in this experiment. For example, we do not have information about node
connectivity outside of our observation post, Australia, and could not determine the
(ever changing) Internet routing constellation that the Bitcoin network is exposed to.
Note that propagation times in the Bitcoin network have been investigated before.
Our study suggests that it is worthwhile to revisit this topic.

11.6.2 Variation in Ethereum Transaction Commit Time

In this section, we first explain why Ethereum transactions are not guaranteed to be
committed regardless of their validity. We then analyse if gas price, gas limit, and
the network as factors affect commit time.

Recall the life cycle of individual transactions in the Ethereum blockchain from
Section 2.2, depicted in Fig. 11.4. It starts with the submission of a transaction into
the (virtual distributed) transaction pool across all miners. A transaction lifespan
can be split into consecutive phases: (i) the announcement of the transaction in the
system; (ii) the inclusion of the transaction in a newly mined block on some branch
of the chain; (iii) the inclusion of the transaction in a block part of the main chain;
and (iv) the commit of the transaction after sufficiently many confirmation blocks
are subsequently mined.

224 11 Dependability and Security

Tx in pool Tx in block(s)

validated & included

all blocks containing Tx
part of shorter chain

Tx
commi�ed

11 subsequent blocks

Tx dropped Tx outdated

superseded

submi�ed

Fig. 11.4 Life cycle of an individual Ethereum transaction (notation: state machine; repetition of
Fig. 2.7). © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

There is no certainty whether a particular transaction will eventually be commit-
ted or whether it will be outdated, in that it will be considered an invalid transaction
forever. Moreover, it is impossible to know whether a transaction that is invalid
in some state of the system will never be valid in a later state. More specifically,
the aforementioned step (ii) is not sufficient to guarantee that a transaction Tx
is permanently added to the blockchain: if the blockchain forks, then the block
comprising the transaction may simply be discarded, in which case the transaction
could be re-included later.

To put it differently: there are only two final states in this life cycle, namely,
committed or outdated, and only these and inclusion in a block are observable
transaction states for each client. In order to build a robust application on this basis,
one needs to ensure that each transaction ends up in one of the final two states in
a reasonable time. Otherwise the status of the transaction is, from the viewpoint of
the client, undefined and unknown.

When a transaction is included in a block, it has been validated beforehand, i.e.
its digital signature has been checked, as well as the validity of parameters like the
nonce (sequence number of transactions relative to a given source account), and
that there are sufficient funds in the source account. If all blocks that included the
transaction become uncles—i.e. part of a shorter chain than the main chain—then
the transaction goes back into the transaction pool. This may happen more than
once, and, theoretically, there is no upper limit. While the transaction is in the pool,
it may also be dropped. This is a local decision of miners, and it is impossible for
any node in the network to know with certainty that all miners have dropped the
transaction. Only when the nonce of the transaction becomes outdated, i.e. another
transaction from the same source account with the same nonce got committed, can
a node be certain that the transaction is invalid and will not be included in any valid
block. Otherwise the transaction may resurface at a later point and get included in
the chain.

Ethereum’s transaction handling and inter-block time differ significantly from
Bitcoin, and the chance of a chain fork occurring is higher. If a fork occurs, there is
usually no certainty as to which branch will be permanently kept in the blockchain

11.6 Variation in Blockchain Transaction Inclusion 225

Fig. 11.5 Time (s) for first inclusion and commit (12 or 36 confirmations), as well as second and
third inclusions of transactions that were previously included in uncles. © 2017 IEEE. Reprinted,
with permission, from Weber et al. (2017)

and which branch(es) will be discarded. In particular, transactions that were only
included in uncles need to go back to the transaction pool. Before investigating the
factors that cause commit delays, we investigate how fast transactions proceed from
first inclusion to commit.

To empirically investigate transaction inclusion time in Ethereum, we collected
data on approx. 6 million transactions over a 3.5-month period, discarding any short
periods affected by network or system outages. The observations were conducted
between December 2016 and April 2017. Figure 11.5 depicts the observed distri-
butions of the time it takes for an Ethereum transaction to be included in a block
and committed (using 12-confirmation, i.e. 11 subsequent confirmation blocks after
inclusion, and 36-confirmation).

As shown in the figure, the inclusion times tend to follow similar curves.
However, compare the slopes of the curves for first to third inclusion to the slopes
for 12-confirmation and 36-confirmation: the latter are less steep, indicating the
growing fraction of transactions that have to wait longer for a ‘commit’. For a ‘12-
block commit’, the median time is around 200 s, and even the third quantile is not
much higher. But the more blocks we require for a commit (say, 24 or 36 blocks),
the more likely it becomes that a transaction needs (even considerably) longer than
the median would suggest.

In contrast to Bitcoin, for the observed period the 90th percentile of commit
happened significantly earlier than twice the median: at about 270 s for 12 blocks
and around 650 s for 36 blocks. Still, while the curves converge towards 100%,
they do not reach it within 1000 s. As a consequence, applications sending larger
volumes of transactions need to be prepared that some of these will not be committed
in due time.

Concerning transactions that become ‘unincluded’, however, we find that these
are rare indeed.We observed that 113,122 first transaction inclusions (0.021%)were
not permanent; and the same is true for 2602 second inclusions (0.0005%) and 41
of the third inclusions (0.000007%).

Ethereum has two user-defined parameters around the concept of gas, namely,
the gas price and the maximum gas offered for including a given transaction. We

226 11 Dependability and Security

Fig. 11.6 Commit delay (s) for transactions based on gas price. Note the logarithmic x-axis.
© 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

proceeded to investigate how these affect the commit times. In particular, we were
interested to see if it is possible to speed up the commit time by offering particularly
high rewards for miners by setting a high gas price.

Based on our collected data, we analysed the effect of the user-defined gas price
on the time it took for the transaction to be committed. Figure 11.6 depicts this
relation for five bands of gas price (all in Gwei5): [0, 0], (0, 20), [20, 25), [25, 105),
[105,+∞).

As shown in the graph, the higher the gas price in a given band, the less likely
we observed long delays. However, we did not observe any meaningful differences
from 25 Gwei onwards. At the time of writing in 2018, this observation is unlikely
to hold true to the same degree: from anecdotal evidence, it appears miners behave
more rationally. Finally, there is a sharp contrast between the 0-band and all other
bands: the 0-band has significantly longer commit times.

A second user-defined variable around transaction fees is maximum gas, i.e. how
much gas the execution of the transaction may use. We analysed its impact on
commit delay. While we discovered individual transactions that were delayed due
to an exceedingly high gas limit, our analysis was inconclusive: we could not find
a strong correlation in any direction between maximum gas and commit delay. This
remains an open question for now and warrants longer observation.

We were also curious to see whether the Ethereum network suffered from
transaction reordering as we had observed it for Bitcoin. Ethereum does not link
transactions in the way Bitcoin does, but every transaction has a running sequence
number (‘nonce’) for each sender account. This sequence number starts from 0 and
increments by 1 for each transaction sent from the same account. It is intended to
provide an assurance that transactions from the same account will be executed in a
particular deterministic order. However, it also means that a transaction with a nonce
n + 1 cannot be included into the blockchain unless there is an already included
transaction with nonce n—it is ‘orphaned’. The transaction with the higher nonce
will wait in the transaction pool until the arrival of a transaction with n as nonce.

51 Ether are 1018 wei.

11.6 Variation in Blockchain Transaction Inclusion 227

We hence carried out an experiment that is similar in nature to our previous
Bitcoin experiment. We analysed the commit times for in-order and out-of-order
arrival of transactions during the same interval as for our second Bitcoin experiment,
in April 2017. The total number of transaction announcements, which were also
committed during this period, was 87,384. The number of transactions with out-of-
order nonces was 5403 (6.18%). The commit time for both categories is shown in
Fig. 11.7. The graph suggests that the commit delay for out-of-order transactions is
almost doubled, compared to in-order transactions. To exclude the gas price as a
confounding factor, we plot the gas price distribution for both categories, shown
in Fig. 11.8. We did not find a significant difference in gas prices between two
categories.

As with Bitcoin, it is hard to rule out other confounding factors that we cannot
control for, e.g. Internet routing or overall network connectivity. However, our data
allowed us some partial insight into the latter. We inspected transactions with nonce
n that were announced after transactions with nonce n+ 1 and compared these with
in-order transaction announcements. Figure 11.9 plots the distribution of unique
Ethereum nodes that we saw broadcasting the transaction before inclusion in the
block. We found that delayed transactions were known to much fewer nodes. While

Fig. 11.7 Commit delay (s) for transactions based on ordering. © 2017 IEEE. Reprinted, with
permission, from Weber et al. (2017)

Fig. 11.8 Gas price distribution (GWei) for transactions based on ordering. Note the logarithmic
x-axis. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

228 11 Dependability and Security

Fig. 11.9 Number of different peers from which in-order and out-of-order transactions arrive. ©
2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

not conclusive, this provides first indications that network connectivity may have
negatively impacted transaction propagation.

Ethereum has a second form of limit, the so-called gas limit per block. Unlike
the gas price in a transaction, it is defined by the network of miners and applies to
the sum of gas consumed by all transactions in a block. If the limit is lower than
the gas required for a given transaction, the transaction cannot possibly be included.
The development of the gas limit over time is readily available, e.g. on Etherscan.6

The rationale for the limit is to prevent denial-of-service (DoS) attacks on the
network by limiting the amount of computation that can be done per block. Due to
several DoS attacks against the network, a majority of miners on Ethereum agreed to
lower the limit to approx. 500,000 gas temporarily—from October 15 to 17, 2016,
according to Etherscan. The network still kept a low limit prior to and after these
3 days: from September 23, 2016, to November 22, 2016; with 1-day exception,
the limit was around 2M gas. Around December 5, it returned to 4M gas. This
limitation can negatively impact the inclusion of transactions which require a high
amount of gas. This is not a hypothetical case: in earlier work, we deployed contracts
using around 1.5M gas ourselves. However, simple transfers of assets should not be
negatively impacted.

We hence chose to investigate whether we could find evidence for this hypothesis
in our data. We analysed all transactions that happened before the DoS attacks and
used block 2,303,121 as the pre-DoS cut-off block. We considered the amount of
gas used for three different types of transactions: financial transfers, regular function
calls to contracts, and contract creation.

Figure 11.10 shows the distribution of gas used for these transaction types. It
highlights the gas limits mentioned above as vertical lines. No financial transfer
transaction used more than 100,000 gas. This was an expected finding, as a financial
transfer will incur 21,000 gas as base cost for any transaction, plus possibly a small
amount for attached data: between 4 and 68 gas per byte (used, e.g. for a description

6https://etherscan.io/chart/gaslimit.

https://etherscan.io/chart/gaslimit

11.7 Aborting and Retrying Blockchain Transactions 229

Fig. 11.10 Distribution of gas usage for different types of transactions, prior to DoS attacks.
Dotted vertical lines show limits in response to the attacks. © 2017 IEEE. Reprinted, with
permission, from Weber et al. (2017)

of the transfer. As for function call transactions, 94% of them used at most 200,000
gas. Only 0.62% of the remaining function call transactions would not have been
possible with the 500,000 gas limit. This contradicted a part of our hypothesis and
highlighted that most of the functions that were in use were not highly demanding
in terms of computation or storage.

However, when inspecting contract creation, we found that only 53.79% of all the
contracts created before the DoS attack could have been created with the 500,000
gas limit, while 46.21% requiredmore gas. This confirmed our hypothesis that many
contracts would not have been deployablewhile the low block gas limit was in place.
Even for the 2-month period where the network kept the block gas limit at about 2
million, 18.78% of contract creation transactions would have been impossible.

11.7 Aborting and Retrying Blockchain Transactions

One issue for a system designer who is building a blockchain-based system is that
there is no option to abort a transaction. In this section, we propose a mechanism
to artificially abort Ethereum transactions by superseding them with an idempotent
or counteracting transaction. This abort mechanism can be useful if, for instance,
the system observes that the transaction has not been committed within a specified
time frame (as can be the case with, e.g. orphans). As such, the retry and abort
mechanisms could be implemented to increase the user-friendliness or robustness
of software clients or wallets.

Another motivation for abort is the accidental duplication of transactions, which
we discovered thousands of times in our observation of Ethereum: the same
transaction was submitted twice, often within seconds, but with different nonces,
and the funds in the sender’s account were insufficient for both transactions to
execute. Seemingly the senders thought they were retrying the same transaction,

230 11 Dependability and Security

when really they created two separate transactions with the same parameters,
except for the nonce. Instead of transferring the desired amount once, it would be
transferred twice (if the balance was or became sufficient). This has also happened
to individuals we know personally.

11.7.1 Aborting and Retrying Transactions in Ethereum

There are some options to achieve an effect that is similar to an explicit abort. In
Ethereum, for instance, the system or user can issue a competing transaction from
the same source account, i.e. another transaction with the same nonce. Assume user
Alice transfers 1 Ether to Bob by issuing transaction Txi with nonce i. After an
acceptable time frame, e.g. 10min, has elapsed and Txi has not been committed,
Alice wants to abort Txi . She then submits a new transaction Tx′

i , with the same
nonce i as specified in Txi and a higher transaction fee in order to increase the
chances for Tx′

i to be included. For this transaction Tx′
i , she does not want to spend

more Ether than necessary; thus, she sets the transaction value to 0 and her own
account as receiver. Once Tx′

i is committed, Txi is superseded by it and becomes
outdated. If, in the meantime, Txi were to succeed, Tx′

i becomes outdated. This is
acceptable, since that was the original intent.

Alternatively to aborting, Alice can ‘retry’ Txi by submitting Tx′′
i as follows: the

fields in Tx′′
i contain the same data as in Txi , including nonce i—except Alice offers

a higher fee for it. Therefore, the hash and digital signature of Tx′′
i will be different

from Txi , and thus it will be perceived by the miners as a separate transaction.
If Alice tried resending Txi without any changes, hash and signature would be
the same, and the miners would not consider it any differently—unless they have
previously dropped Txi . In the latter case, the reasons for dropping Txi might not
have changed, and thus the same would likely happen again. If either Txi or Tx′′

i

succeeds, the respective other transaction would become outdated and invalid, since
they both have the same nonce i.

11.7.2 Aborting and Retrying Transactions in Bitcoin

The Bitcoin blockchain does not offer transaction abort. In a German newspaper
article from late 2017, the author described that he ‘lost’ BTC7 worth several
hundred Euros, since he did not offer a transaction fee, and his transaction had not
been included for more than 2 weeks. His wallet application did not offer options to
abort or retry the application, and simply reported his account balance to be zero. In
cases like that, we believe the following method should work.

7BTC is the currency code for Bitcoin’s cryptocurrency.

11.7 Aborting and Retrying Blockchain Transactions 231

Say, Alice wants to transfer 5 BTC to Bob. She previously received 2 BTC from
Charlie, as output 0 (abbreviated as #0) in Tx1, 1 BTC from David as #0 in Tx2, and
4 BTC from Erin as #1 in Tx3. Her virtual account thus holds 7 BTC. To achieve the
transfer, Alice creates transaction Txorig that has two inputs: Tx1 #0 (2 BTC) and
Tx3 #1 (4 BTC), so that Txorig has a transaction volume of 6 BTC. Alice then adds
two outputs: #0 with 5 BTC to Bob and #1 with 0.99 BTC to herself. Txorig thus
offers a transaction fee of 0.01 BTC, and subsequently her virtual account will hold
1.99 BTC.

Now, say the commit of this transaction does not happen within Alice’s time-
frame of 6 h and Alice wants to abort. Since each input can only be spent once,
Alice can achieve that by submitting Txabort with the same inputs as Txorig, but as
single output #0 she specifies 5.98 BTC to herself (thus offering a transaction fee of
0.02 BTC). If either Txorig or Txabort succeeds, Alice’s account is not in limbo, and
she can continue to use the network as normal.

As an alternative to abort, Alice can re-attempt the transfer with Txretry as
follows. The inputs are the same as in Txorig, output #0 stays at 5 BTC to Bob,
but output #1 is changed to transfer 0.98 BTC to herself. Txretry thus offers a higher
transaction fee of 0.02 BTC, and if Txretry succeeds then Txorig becomes outdated.

11.7.3 Experiments for Aborting Transactions in Ethereum

We tested the above method for abort on the public Ethereum blockchain for three
scenarios: (i) a transaction does not get included in the usual period of time; (ii) a
client changes its mind and decides to roll-back the issued transaction; and (iii) a
transaction is in indefinite pending state due to insufficient funds. We describe these
below in more detail.

Abort Experiment 1 In order to test the situation where a sent transaction does not
get included in the usual timeframe, we submitted 100 transactions that underbid the
market rate. Specifically, we assumed the average gas price from the previous day
(December 1, 2016) as market rate (mr) and submitted ten transactions each for
different prices, which are 0, 0.1×mr , 0.2×mr , . . . , 0.9×mr . As cut-off time, we
rounded up the 99% percentile from our earlier experiment (cf. Fig. 11.7) to 10min.
If the transaction had not been included then, we submitted an abort transaction
Txabort as described above, with the same nonce but at full market rate mr , target
0x0, and value of 0.

The results are shown in Fig. 11.11. Surprisingly, most transactions were
accepted by the network. Six out of ten transactions with either 0 or 0.2 × mr

were accepted. In addition, only two out of ten transactions with 0.1 × mr were
accepted. All of the 16 timed-out transactions were successfully aborted with our
Txabort mechanism described above.

Abort Experiment 2 For this experiment, we assumed a client that underbids the
market fee and changes its mind regarding an issued transaction. As in the previous

232 11 Dependability and Security

6

2

6

10 10 10 10 10 10 10

4

8

4

0 0 0 0 0 0 0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered gas price (factor of market price)

Original Tx success Abort Tx success

Fig. 11.11 Underbidding market fee and automatic abort after 10min if the original Tx was not
included. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

0 0

2

7

3

5
6 6

8

1010 10

8

3

7

5
4 4

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered gas price (factor of market price)

Original Tx success Abort Tx success

Fig. 11.12 Underbidding market fee and automatic abort after 3min if the original Tx was not
included. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

experiment, we sent another 100 transactions with gas prices as above, i.e. 0, 0.1 ×
mr , 0.2×mr , . . . , 0.9×mr for ten transactions each. Rather than waiting for 10min,
we set the timeout value to the target median for Ethereum transaction commit, i.e.
3min.

The results of this experiment are shown in Fig. 11.12. A much higher percentage
of transactions were not included in a block after 3min, in comparison to Fig. 11.11
with 10-min timeout. As before, 100% of Txabort succeeded. Interestingly, all
of them were included in a block after 3min. In 2 out of the 100 cases, the
3-min timeout for the original transaction was reached, Txabort was sent, but the
original transaction Txorig still won the race and got included and committed in

11.7 Aborting and Retrying Blockchain Transactions 233

the blockchain. Thereby, Txabort was outdated. As stated above, this is a possibility
that clients should be prepared for. The reasons for such a situation can include
(i) processing time in our client when preparing the Txabort ; (ii) broadcast delays
or other network effects where the winning miner does not receive Txabort before
including Txorig; or (iii) non-rational scheduling of transactions in the pool, where
no preference is given to the transaction with the higher fee.

Abort Experiment 3 In this last experiment, we submitted two transactions, creat-
ing a situation that corresponds to faulty inputs from a user (or user’s program). We
have observed such behaviour during our live observation of the public Ethereum
blockchain. To replicate it, we submitted two transactions, Tx1 and Tx2, as follows.
Assume that the last nonce for the sender address was n and its account balance k.
Then we create Tx1 with nonce n + 1 and value 1

1000k and Tx2 with nonce n + 2
and value 999

1000k. For both transactions, we set the gas price to 0.7 × mr . Due to the
nonce, Tx1 must be included before Tx2. However, due to the positive gas price, the
account balance resulting from the inclusion of Tx1 is insufficient for Tx2.

Finally, we submit Tx2, wait 5 s, and then submit Tx1. This gives Tx2 the chance
to get broadcast before Tx1 is known to any node, including our own. This procedure
is needed so that the client submits Tx2 to the network; since geth is not aware of Tx1
and its contents when we submit Tx2, it broadcasts Tx2. Otherwise, it might detect
the insufficient balance and not accept Tx2.

Once Tx1 has been included in a block, Tx2 is invalid due to insufficient funds.
However, this does not always get checked, and hence Tx2 may remain in the
transaction pool for a long time. In fact, if another transaction deposited funds
into the sender account, Tx2 would become valid and be executed. This, again, is
behaviour that we observed. Here, we send a Txabort with the nonce n + 2, to abort
Tx2.

We ran this experiment until we had submitted Txabort 100 times. All 100
submitted Txabort were successful. We measured the time it took for Txabort to be
included in a block (first inclusion) and plotted that as shown in Fig. 11.13. The
median for those times was 45 s and the maximum 230 s.

0

5

10

15

20

25

30

20 40 60 80 100 120 140 160 180 200 More

Fr
eq

ue
nc

y

Dura�on (s)

Fig. 11.13 Abort duration histogram, from experiment 3. © 2017 IEEE. Reprinted, with permis-
sion, from Weber et al. (2017)

234 11 Dependability and Security

Our experiments support the hypothesis that transactions can be aborted with our
proposedmethod. Although it would be better to have explicit abort mechanisms for
blockchains, this is a fall-back method for certain applications to address commit
delays that are due to some of the factors we have described in Section 11.6.2.

11.8 Summary

We started this chapter with a broad discussion on the impact that using blockchain
as a component can have on dependability and security properties. In short,
confidentiality can be harder to achieve, due to the replication of the data structure
to the whole network; integrity is blockchain’s strong suit; in terms of safety,
the picture is less clear; maintainability requires planning and governance; and
availability and reliability features are high for reading/receiving, but potentially
low for writing/sending.

To give a clearer picture of the write/send availability and reliability characteris-
tics, we studied the public Bitcoin and Ethereum networks. For Bitcoin, we found
that even if waiting for a transaction commit twice as long as the median time,
more than 10% of transactions were not committed yet. For Ethereum, this was less
common, but still above 1%. This is important when building an application based
on public blockchains: commit times vary significantly and can take significantly
longer than in common cases.

Finally, we discussed methods for transaction abort and retry, which are not built-
in functions of blockchain clients. Applications can use these methods to handle
transactions that take unusually long.

11.9 Further Reading

This chapter is partly based on Weber et al. (2017) and draws on earlier ideas from
Anderson et al. (2016).

As stated in the beginning of the chapter, we did not cover security infrastructure
or cryptography. A number of books discuss these points in detail, e.g. Bashir
(2018).

In this chapter, we refer to a few seminal works, specifically the Clark–Wilson
security policy model (Clark and Wilson 1987), and the taxonomy of dependable
and secure computing by Avizienis et al. (2014). The alternative definitions of safety
are described in Lamport (1977) and Alpern and Schneider (1985). Finally, the CAP
theorem (Fox and Brewer 1999) indicates that there is inevitably some trade-off
between consistency, availability, and partition-tolerance for distributed databases.

The Ethereum yellow paper (Wood 2015–2018) specifies gas costs for various
operations and describes the function of block gas limits.

11.9 Further Reading 235

As mentioned in the previous chapter, live statistics about the public Ethereum
chain, including inter-block times and the influence of the gas price on transaction
inclusion times, are available at https://ethstats.net/ and the ETH Gas Station
(https://ethgasstation.info/). ETH Gas Station also gives recommendations for gas
price settings, relative to desired inclusion times; these can also be accessed through
an API. From these recommendations it appears that, at the time of writing, miners
now react more to gas prices and the network is less likely to accept transactions
offering no fee than it did when we conducted our experiments.

An earlier investigation on propagation times in the Bitcoin network has been
conducted by Decker and Wattenhofer (2013).

https://ethstats.net/
https://ethgasstation.info/

	11 Dependability and Security
	11.1 Confidentiality
	11.2 Integrity
	11.3 Safety
	11.4 Maintainability
	11.5 Availability and Reliability
	11.6 Variation in Blockchain Transaction Inclusion
	11.6.1 Variation in Bitcoin Transaction Commit Time
	11.6.2 Variation in Ethereum Transaction Commit Time

	11.7 Aborting and Retrying Blockchain Transactions
	11.7.1 Aborting and Retrying Transactions in Ethereum
	11.7.2 Aborting and Retrying Transactions in Bitcoin
	11.7.3 Experiments for Aborting Transactions in Ethereum

	11.8 Summary
	11.9 Further Reading

