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Foreword

This book provides an excellent overview of the engineering aspects of block-
chains. You will learn what blockchains are, the current options for platforms,
the application areas in which they may be used, and how do you, as a software
engineer, design software to utilize blockchain technology. What I will do in this
foreword is explore the disruptive nature of blockchains. Every popular article about
blockchains mentions its disruptive nature. What does this mean?

Let me begin by discussing the general problem of technology transition. It is
generally accepted in the technology transition community that it takes roughly 15
years from the inception of a technology to its broad adoption. Some technologies,
notably the smart phone and the World Wide Web, have shortened that period
and others have languished until the supporting infrastructure is ready for the
technology. Containerization is a technology that existed for almost 30 years before
Docker began and made it mainstream. Two important elements that help determine
the time for a concept to become mainstream are the existence of educational
materials such as this book and the publicity around the technology.

Although blockchains did not spring fully realized and built on prior work, the
introduction of Bitcoin in 2009 can be considered the birth of blockchain. Since we
are now a decade into its life, the 15-year estimate for widespread adoption seems
to be proving out. As detailed in this book, preliminary applications are emerging
beyond cryptocurrency. It seems reasonable that in another 5 years, blockchains
will have entered the software engineering toolbox as a mature option with various
offerings, and an engineer can apply the techniques discussed here to help design
systems that utilize blockchains in some form.

Now let us turn to the disruptive nature of blockchains. Calling blockchains
disruptive begs two questions: disruptive to whom and what does the disruption
consist of?

Technologies that are disruptive to the consumer are actually quite rare. Smart
phones and the World Wide Web are two of the most recent ones. These have
changed the lives of almost everyone. The distinction between the disruption caused
by the World Wide Web and the cloud is a useful example. One changed the lives of
the consumers, and the other changed the lives of the producers.
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The World Wide Web changed the manner in which people interact with each
other, with businesses, and with government. The cloud, on the other hand, is
an enabling technology that supports the expansion of the World Wide Web but
is mostly invisible to the consumer. As a consumer, I do not care whether my
news source is delivered from a cloud platform or a local platform. As a producer,
however, I am concerned with production issues such as reliability, scalability, and
cost. Consumers see an indirect impact for the cloud, but the disruption is primarily
to the producers.

Blockchains in this dichotomy are disruptive to the producer, and their existence
will be only indirect on the consumer. To use a supply chain example, as a supplier,
I am happy to have a more efficient and reliable mechanism for me to get paid, but
it is not disruptive to a great extent. One place where the use of blockchains disrupts
the life of consumers is in areas where there is no functioning bank system. An
example of this is the UN use of blockchains for refugees.1

In places with functioning government services, it is the producers who are
potentially disrupted by blockchains. So let us dig more deeply into some of the
use cases for blockchains and see where the disruption might occur.

• Supply chain. The current process for a supply chain that traverses international
borders is that the producer and consumer agree on a price. The purchaser
provides some proof of funds—for example, a letter of credit. The producer now
produces the goods and ships the goods. They travel through several changes of
responsibility and end up at the consumer. To see what is meant by changes
of responsibility, consider a cotton grower in Australia who sells cotton to a
consumer in Thailand. Cotton is priced in US dollars. The cotton grower loads
the cotton on a train (one change in responsibility), the train goes to a port where
it is loaded on a ship (another change in responsibility), the ship goes to a port
in Thailand where it is loaded onto a truck (another change in responsibility),
and the truck goes to the consumer where it is finally delivered. At this point, the
cotton grower can cash in the letter of credit. Two points to mention. First, this
process takes months, and the Australian dollar may have fluctuated relative to
the US dollar, so the cotton grower is engaged in currency speculation. Secondly,
each of the changes of responsibility is accompanied by entering information into
at least one computer system, if not two. Any discrepancy between the relevant
computer systems must be reconciled manually.

How does this process change utilizing blockchains? It changes in two
fashions. First there is only one source of truth—the blockchain. All of the
participants have agreed to interact with the blockchain. Thus, there is no
reconciliation necessary. Secondly, the consumer deposits the purchase money
(in US dollars) into the blockchain, replacing the letter of credit. This allows the
cotton grower to get incremental payments at each change of responsibility. This
reduces the risk of currency fluctuation to the grower.

1https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-
blockchain/.

https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-blockchain/
https://www.technologyreview.com/s/610806/inside-the-jordan-refugee-camp-that-runs-on-blockchain/
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Now where is the disruption in this scenario? Because there is no need for
reconciliation, the labour costs for reconciliation disappear. Secondly, letters
of credit are difficult for banks to handle, as they involve much manual
operation. Thus, the disruption consists of automating some processes that used
to be manual. Easier, smoother, faster—yes. Disruptive? In the same sense that
automation is disruptive to those displaced.

• Proof of identity. Currently, you acquire a proof of identity—e.g. driver’s license
or passport—by providing some other proof of identity, e.g. a birth certificate, to
a trusted authority that then issues the proof of identity. You can carry this proof
with you and produce it on demand.

How will this change with blockchain? You prove your identity by providing
some proof of identity—the UN in the example cited uses retinal scans—to a
trusted authority that then enters your identity onto the blockchain. You can save
this proof of identity on a smart card or retrieve it through some form of secure
access. The individual or system that is interested in your identity will recover it
from the blockchain, although the person or system checking your identity may
be interested in some attribute of you that they can retrieve from the blockchain
without the necessity of retrieving your identity.

Where is the disruption here? Proofs of identity do not depend on physical
papers such as passports, although they do depend on the ability to retrieve
the proof of identity. You will not need multiple forms of identification; the
blockchain will suffice, although this depends on all of the institutions that
you interact with accepting the blockchain identification and being able only to
retrieve information relevant to them. Disruptive? More than the supply chain
in that there is a single source of identity and attributes for you. This will
simplify life for you and, again, displace personnel involved in the production
and verification of identification documents. It will also reduce the incidence of
forgery of identification documents.

• As a final example, let us examine the problem of compliance. Financial insti-
tutions, e.g. banks, must comply with a variety of regulations. Each regulation
is verified by individuals in some regulatory agency. Compliance is verified
through an audit process. Individuals from the regulatory agency coordinate
with individuals from the financial institution to perform an audit. This requires
the individuals from the financial institution to collect the relevant information.
The individuals from the regulatory agency will then examine the information
provided to determine whether it conforms to the regulation. They will also
do spot audits of the source of the information to determine that the provided
information is, in fact, representative of the data that they are auditing. Errors and
‘red flags’ are identified by the regulators, and they work with representatives of
the financial institution to resolve errors and determine processes to eliminate the
‘red flags’.

How will this change with blockchains? First, the auditors and the financial
institution can both access the data from the blockchain with assurance that they
are looking at the same data. The auditors will have extraction software that will
produce the reports they need without them relying on the financial institution.
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Since the auditors have real-time access to up-to-date information, they are able
to produce the quarterly reports that they need to have. Since the blockchain
provides a single source of truth for the information, automated systems can
produce the reports either on the regulatory side or the financial institution side.

Where is the disruption here? Both regulators and financial institutions will
find their work simplified. Since there is only a single source of truth, errors
are reduced. Since the auditors will have real-time access to the blockchain, the
delay in gathering the information is reduced. Again, the personnel involved in
producing reports from the financial institution will be reduced, and the personnel
involved in auditing will be reduced.

Examining other use cases enumerated in Chapter 1, my conclusion is that
introduction of blockchain technology will speed up existing processes, reduce the
labour involved in performing operations, and reduce errors. These advantages are
substantial, but disruptive in the same way that smart phones or the World Wide
Web have been? I do not think so.

Why then does every popular article about blockchain mention ‘disruption’?
First, there is the question of what could be achieved with existing technol-
ogy. A blockchain is a distributed data base + encryption + immutability + stored
procedures (in the form of ‘smart contracts’). There is no inherent reason why
existing distributed database systems cannot be extended to add cryptography and
immutability as features. So, the disruption consists of replacing one technology
with another. Better, faster, less error prone, but not necessarily life changing for
any of the participants except for those displaced by the labour savings.

Secondly, let us go back to the compliance example. The World Economic
Forum, when discussing the disruption caused by blockchain, has this to say
about compliance2: ‘Given no legal/regulatory precedent, establishing a shared
arrangement between the regulator and [financial institutions] will be arduous’.
They say something similar for all of the use cases they analyse.

In other words, to achieve the benefits touted from blockchain will require a
degree of cooperation among institutions that has not yet been achieved and that
could have been achieved with modifications of existing technology.

So why all the hype and discussion of disruption? Blockchains offer the
opportunity to rethink financial systems and arrangements. This is a tough sell to
top management who must sign off on the costs associated with redoing existing
systems. A look back in history might be instructive in this regard.

Recall the year 2000 (Y2K) problem. The year 2000 was coming, and the
problems it would cause were well known in advance. Suppose you are an IT
manager in a bank in 1995. You know you have to fix the Y2K problem but you also
know that your systems are dated and need to be updated. You have been telling
management for years that the systems needed to be updated, but they have been
unwilling to allocate the money. Now you have a forcing function. You need to

2World Economic Forum, The Future of Financial Infrastructure, p. 99.
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update your systems by the year 2000 or your bank will not be able to function.
Management caves.

Now fast forward 20 years. The last time you updated your systems was 1999.
They are again dated and badly in need of being updated. Your management again
is reluctant to spend the money necessary. Now comes blockchain. Your argument
is that all of the organizations with which you are interacting will be moving to
blockchains and your bank needs to do this in order to function in the global market.
More than this, there will be cost savings from the automation of tasks that are
currently manual. Your argument is not as compelling as the year 2K argument,
but it still carries weight with your management partially because of the publicity
surrounding blockchains. Management is in the process of providing the financing
for updating and rethinking your systems.

As a software engineer, you are on the receiving end of questions and instructions
to convert your systems to use blockchains. Hence, you should read this book since
it will provide answers to the questions and instructions for the conversion. You
should look for opportunities both to deepen your understanding about blockchains
and to apply them in situations where they provide the correct set of functionalities
that you need for your particular problem.

Pittsburgh, PA, USA Len Bass
August 2018



How to Read This Book

When we first learned about Ethereum and its smart contracts, we were thrilled
about the world of possibilities enabled by blockchain technology. As researchers,
we have worked in this area from around mid-2015, which also marked the genesis
of the public Ethereum blockchain. In our project work with startups, corporates,
and government agencies, and in many interactions with the community, we found
that the knowledge, tools, and methodologies for tapping into that potential were
lacking. Therefore, we started investigating the issues in our core research: what do
architects and developers need to build applications on blockchain? The result is
this book, based on a stream of our earlier research publications, tools, and projects.

This book is primarily written for developers, software architects, and CIOs
(Chief Information Officers), as well as students and researchers in these areas. The
book captures the architectural view on software systems that use blockchain.
It provides guidance on assessing the suitability of blockchain, on designing
blockchain applications, and on assessing different architecture designs and trade-
offs. The book is also a reference for blockchain design patterns and design analysis
and refers to practical examples of blockchain-based applications.

This book is not a step-by-step tutorial on coding for blockchain, although
the case study chapters contain code samples where these provide added insights.
Instead, we focus on the bigger picture, the concepts, and technical considerations in
the design of blockchain-based applications. We also limit the use of mathematical
formulas except where they are critical, for cost estimation.

Readers who are familiar with particular platforms can easily skip that back-
ground, and also the initial example use cases which are more for illustration.
Because we have drawn on our previous publications, there are a number of
experiments that are included in the book. These experiments are similar to practical
benchmarking and design studies that might be conducted by system architects, but
in case the exact results matter less to you, you can jump over those sections easily.
At the end of each chapter, we include a section called Further Reading, where
references to additional material and the relevant literature can be found.

The book is structured into four parts, starting with the background. The
introduction gives an overview of the issues discussed throughout the book, and
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motivates the use of blockchain. It also contains a number of textual definitions of
the most important terms, and a non-technical explanation of blockchain, in case
you have to explain it to your parents, partner, or kids.

Chapter 2 gives background on existing blockchain platforms. We start, of
course, with Bitcoin, and describe Ethereum. For enterprise use, several blockchain
platforms have emerged, and we describe Hyperledger Fabric as an example of that
class. The chapter closes with an overview of other platforms.

There are many varieties of blockchain platforms and possible configurations. In
order to help the architect navigate this space, we describe the main dimensions and
their implications for non-functional properties in Chapter 3.

In Chapter 4, we provide four use case examples of blockchain-based applica-
tions to convey a concrete understanding of how blockchain can be used to solve
real-world issues. The domains of these use cases are supply chains, government
registries, international money transfers, and electricity provision.

In Part II, we focus on the functional part of software architecture. We start with
the main roles blockchain can play in an architecture in Chapter 5. Blockchain can
be used as a data store, a computational element, a communication mechanism, and
to manage assets and exert control. We also discuss considerations for integrating
blockchain into a bigger system design.

Chapter 6 describes the design process, starting with the question of suitability:
when should you use blockchain and when should you not? Once you settled on
using blockchain, we then discuss how to make important decisions, such as what
functionality to provide on-chain and what off-chain.

Making good use of blockchain in systems often requires solutions that are non-
obvious, especially when starting out in this area. Chapter 7 provides a catalogue
of 15 design patterns with in-depth descriptions, which have proven valuable in
practice.

Due to specific properties of blockchain technology, model-driven engineering
(MDE) is particularly amenable for blockchain-based applications. Chapter 8
describes two MDE methods, one for business processes and one for registries of
assets.

Part III covers the non-functional aspects of blockchain applications, which are
often cross-cutting concerns. Cost and cost estimation are discussed in Chapter 9.
Similarly, Chapter 10 discusses performance, with a focus on latency. In both cases,
estimates allow understanding the implications of a particular choice of platform,
parameters, or blockchain configuration.

Dependability and security are discussed in Chapter 11. These two topics are
related to six properties: confidentiality, integrity, safety, maintainability, availabil-
ity, and reliability. We include some insights from observing the Ethereum and
Bitcoin blockchains in this chapter, which architects and developers should consider
when designing and building applications.

In Part IV, three use cases give practical insights. AgriDigital describe their
experiences from three supply chain pilots in Chapter 12, with a focus on reducing
the counterparty risk in supply chains. SecureVote developed a blockchain-based
voting solution, which they describe in Chapter 13. This system runs in production
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on the public Ethereum blockchain. originChain’s use case in Chapter 14 is also on
supply chain, but specifically targets provenance tracking in international trade.

Finally, in the Epilogue we reflect on the contents of the book and its major
points. There we also speculate on the role blockchain and its applications can play
in the future.
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This book contains a number of code samples, in the following referred to as
‘SOFTWARE’.

The SOFTWARE is provided ‘as is’, without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors, contributors,
or copyright holders be liable for any claim, damages or other liability, whether in
an action of contract, tort or otherwise, arising from, out of or in connection with
the SOFTWARE or the use or other dealings in the SOFTWARE.
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Part I
Blockchain in Software Architecture



Chapter 1
Introduction

1.1 What Is Blockchain and Why Should I Care?

Blockchains are an emerging digital technology that combine cryptography, data
management, networking, and incentive mechanisms to support the checking,
execution, and recording of transactions between parties. A blockchain ledger is
a list (‘chain’) of groups (‘blocks’) of transactions. Parties proposing a transaction
may add it to a pool of transactions intended to be recorded on the ledger. Processing
nodes within the blockchain system take some of those transactions, check their
integrity, and record them in new blocks on the ledger. The contents of the
blockchain ledger are replicated across many geographically-distributed processing
nodes. These processing nodes jointly operate the blockchain system, without the
central control of any single trusted third-party. Nonetheless, the blockchain system
ensures that all nodes eventually achieve consensus about the integrity and shared
contents of the blockchain ledger.

Transactions between parties such as payments, escrow, notarization, voting,
registration, and process coordination are key in the operations of government
and industry. Traditionally, these transactions are supported by trusted third-parties
such as government agencies, banks, legal firms, accounting firms, and service
providers in specific industries. Blockchains provide a different way to support these
transactions. Instead of trusting third-parties, we would trust the collective jointly
operating the blockchain and the correctness of their shared technology platform.

Blockchain technology was originally used for the Bitcoin digital currency, but
blockchains are now being implemented in many other platforms and used for many
other purposes. Just like a traditional database, a blockchain can in principle be
used to represent transactions or information in any kind of application domain.
But blockchains are different from traditional databases in important ways. These
differences impact the design of systems that use blockchain.
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The successful operation of a blockchain system relies on several key elements,
including:

• Appropriate integrity criteria to be checked for each transaction and block
• The correctness of the system’s software and technical protocols
• Strong cryptographic mechanisms to identify parties and check their authority to

add new transactions
• A suite of incentive mechanisms to motivate processing nodes to participate in

the community and to behave honestly, in their interests

For the software architect and engineer, blockchains are exciting because they
can be used as a new foundation for re-imagining systems. They form a neutral
infrastructure for processing transactions and executing programs. That is of poten-
tial interest for innovation at all touch-points between organizations or individuals.
As such, blockchain applications have the potential to disrupt the fabric of society,
industry, and government. Blockchains can also be used as a technology platform to
handle some of the hard issues of data replication and system state synchronization
with high integrity.

A Non-technical Explanation of Blockchain by Analogy
Imagine that a group of people, say the population of your community,

want to introduce a special community currency. Let’s call this currency the
Community Dollar C$, which will be a noncash virtual currency. Initially
everyone gets C$ 100, and everyone starts a physical ledger book where they
note these holdings. The goal is to keep track of C$ ownership in all these
ledger books, by ensuring the ledger books of everyone contain the same
information.

Say, person A wants to pay C$ 50 to person B. Therefore, A asks everyone
in the community to add that transaction to their ledger. Everyone checks if A
has the money and signed the transfer order. If so, the transaction is added to
the ledger. This results in an updated state where A has C$ 50 and B owns C$
150.

Now the Community Dollar is starting to become popular, and many
people use it. We start by grouping transactions onto paper pages, and rather
than agreeing on each transaction individually, the whole community needs
to find agreement which page to include. (Pages correspond to blocks in
the blockchain.) Everyone still checks every transaction. To ensure that no
one claims a transaction did not happen, we introduce cryptographic hashes
that make sure no one can go back on the agreed set of ledger pages and
the transactions on them. Assume we also have an incentive mechanism that
encourages community members to stay honest and process transactions.
That is needed to make such a decentralized system work. All of this can
then happen without a trusted third-party, purely operated by members of the
community.
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1.1.1 Defining Blockchain

Before delving further into the details of the technology, we first define the
main concepts. Blockchains maintain a ledger and implement a specific kind of
distributed ledger technology.

Definition 1 (Distributed Ledger) A distributed ledger is an append-only
store of transactions which is distributed across many machines.

Being ‘append-only’ is important: new transactions can be added, but old
transactions cannot be deleted or modified. A new transaction might reverse a
previous transaction, but both of them remain part of the ledger to allow auditability
and ensure long-lasting integrity. We define the concept of a blockchain as follows.

Definition 2 (Blockchain) A blockchain is a distributed ledger that is struc-
tured into a linked list of blocks. Each block contains an ordered set of
transactions. Typical solutions use cryptographic hashes to secure the link from
a block to its predecessor.

A graphical representation of this concept is shown in Fig. 1.1. Cryptographic
hashes ensure that a previous block cannot be changed. If the previous block was
changed, its new hash would not match the originally recorded hash, so the link
between the two blocks would break. We explain this mechanism in more detail in
the next chapter, where we discuss specific blockchain platforms.

Some ingredients are necessary for the blockchain concept to work in practice as
a system.

...
Block

n
Block
n+1

Block
n+2Block n+1

includes hash
of Block n

Block n+2
includes hash
of Block n+1

Fig. 1.1 Blockchain data structure
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Definition 3 (Blockchain System) A blockchain system consists of:

(i) a blockchain network of machines, also called nodes;
(ii) a blockchain data structure, for the ledger that is replicated across the

blockchain network. Nodes that hold a full replica of this ledger are
referred to as full nodes;

(iii) a network protocol that defines rights, responsibilities, and means of
communication, verification, validation, and consensus across the nodes
in the network. This includes ensuring authorization and authentication
of new transactions, mechanisms for appending new blocks, incentive
mechanisms (if needed), and similar aspects.

For the verification of transactions, consider the example of Alice spending 2
Bitcoin (BTC), by transferring them to Bob. The system needs to ensure that the
party initiating the transaction has Alice’s authority and that Alice has the 2 Bitcoin
available.

The above definition is still relatively broad and can capture blockchains of
various sizes, degrees of openness, for various purposes, etc. The most well-known
blockchains are Bitcoin and Ethereum, which are public blockchains.

Definition 4 (Public Blockchain) A public blockchain is a blockchain system
that has the following characteristics:

(i) it has an open network where nodes can join and leave as they please
without requiring permission from anyone;

(ii) all full nodes in the network can verify each new piece of data added to the
data structure, including blocks, transactions, and effects of transactions;
and

(iii) its protocol includes an incentive mechanism that aims to ensure the cor-
rect operation of the blockchain system including that valid transactions
are processed and included in the ledger and that invalid transactions are
rejected.

Public blockchains are often open leaderless peer-to-peer systems that manage
the ownership of assets of value. Examples of such assets on Bitcoin and Ethereum
blockchains are Bitcoin (BTC) and Ether (ETH) cryptocurrencies and digital tokens.
In a public blockchain, there is not a high degree of trust in information from other
nodes. Therefore, all full nodes verify everything, to reduce the risk of integrity
violations jeopardizing the value of their own work. While this leads to redundant
computation across the network, it is a direct consequence of the community of
nodes collectively safeguarding the integrity of the blockchain.
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In other settings, for example, within a large enterprise or in a consortium
of companies, all blockchain nodes might be known and governed by other
organizational or contractual mechanisms. These applications can be served by
adopting a more relaxed trust assumption.

Finally, we define the term blockchain platform, which refers to the software
used to run a blockchain.

Definition 5 (Blockchain Platform) A blockchain platform is the technology
needed to operate a blockchain. This comprises the blockchain client software
for processing nodes, the local data store for nodes, and any alternative clients
to access the blockchain network.

Note that any blockchain platform must have client software with which
processing nodes can operate the network, including for transaction propagation and
block creation. Light clients may additionally exist, e.g. to enable mobile devices to
read and write transactions to the network; these typically do not hold a full copy
of the blockchain data structure. Alternative clients, both for processing and light
nodes, may exist, particularly if the protocol is specified well.

1.1.2 Smart Contracts and Decentralized Applications

The transactions stored on a blockchain can be more than simple records of the
exchange of assets—emerging blockchain systems also allow computer programs
to be stored and to execute as part of transactions on the ledger. These are often
called ‘smart contracts’, although the programs are typically not very smart and are
often not related to legal contracts.

Definition 6 (Smart Contract) Smart contracts are programs deployed as
data in the blockchain ledger and executed in transactions on the blockchain.
Smart contracts can hold and transfer digital assets managed by the blockchain
and can invoke other smart contracts stored on the blockchain. Smart contract
code is deterministic and immutable once deployed.

The Bitcoin blockchain allows only very simple forms of smart contracts, but
other blockchains such as Ethereum allow computer programs to be written in
a ‘Turing complete’ language, that is, in principle, as expressive as every other
general purpose programming language. As a result, blockchains can be more
than a simple distributed database—they can be general computational platforms—
albeit currently with severe practical limitations on computational complexity. This
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capability significantly expands the power of blockchain systems and increases their
range of use and potential for innovation.

Smart contracts can be used to administer the ownership of assets represented
by the blockchain cryptocurrency or by digital token implementations using a smart
contract—more on that below. Although smart contracts are not always used for
legal contracts, they can sometimes be used to automate or monitor the execution of
parts of legal contracts. Smart contracts can also implement games, bets, or lotteries.
They can also define a protocol of interaction between different parties, like in a
collaborative business process across companies, and can support many more use
cases. Throughout the book, you will find many applications of blockchain that are
only possible due to the smart contract capability.

Applications can be designed to provide their main functionality through smart
contracts. Such applications are called decentralized applications or dapps, and
we will discuss them in more detail in Section 2.2.5. Tokenvote, the system
described in Chapter 13, is an example of a dapp. In this book, we generally talk
about blockchain-based applications, i.e. applications that make significant use of
blockchain. This includes dapps but is not limited to them—significant portions of
such applications can be based on traditional systems.

1.1.3 Cryptocurrencies and Tokens

Cryptocurrencies are the base currencies of blockchains. Ether is the currency
of the public Ethereum blockchain, and Bitcoin is the currency of the public
Bitcoin blockchain (thereby highlighting a source of confusion due to overloaded
terminology). The respective blockchain keeps track of the ownership of portions
of that currency. Say, Alice owns 2 Ether and announces a transaction to transfer
1 Ether to Bob, offering a fee of 0.01 Ether. Once the transaction is included in a
block mined by Charly, Alice has 0.99 Ether, Bob has 1, and Charly received the fee
of 0.01 Ether. The sum of the money is not changed by these transactions, but the
ownership of portions of it is.

Fees for transaction inclusion are paid in the base currency of a blockchain,
although the client can choose to offer a fee of 0 (typically reducing the speed
and/or likelihood of inclusion). Fees often relate to the size of a transaction, not
its value: more data (including larger smart contracts to be deployed) incur higher
fees. Similarly, more complex computations as a result of smart contract invocations
incur higher fees. Transfers of 0.01 Ether incur the same fees as transfers of 100
Ether.

Digital tokens can be created and exchanged on blockchains. Usually tokens are
created using smart contracts. Similar to a cryptocurrency, each token is controlled
by an actor on the blockchain. Tokens might represent shares in a company, the right
to benefit from future earnings, or perhaps virtual gold in an online game. The use
of tokens has become widespread, and tokens can be seen as the first ‘killer app’ of
using blockchain for things other than cryptocurrency.
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1.2 Blockchain-Based Applications

Bitcoin has been operational since 2009, and its digital currency had a peak market
capitalization of about US$335B in December 2017. The next-largest blockchain,
Ethereum, had a market capitalization of US$138B in the same time frame, and there
are many other small public blockchains with their own digital currencies. Private
blockchains are increasingly deployed inside large enterprises and across industry
consortia. The wide array of interest in blockchain technology is underlined by the
fast evolution of its ecosystem, including easier deployment through Blockchain-as-
a-Service, e.g. from Microsoft Azure1 and IBM.2

Many banks are involved in trials of blockchain technology, including through
the R33 or Ripple4 organizations, which are applying blockchain to trade finance
and cross-border payments. Financial transactions are the first, but not the only
use case being investigated for blockchain technology. A blockchain implements
a distributed ledger, which can in general verify and store any kind of transactions.
Globally, many financial services companies, enterprises, startups, and governments
are exploring its applications in areas as diverse as supply chain, electronic health
records, voting, energy supply, ownership management, and protecting critical civil
infrastructure. New businesses and business models are expected to arise, but as yet
there are not a lot of examples of significant use in production of blockchain systems
within industry or government.

Blockchains, particularly public blockchains, offer opportunities for disruptive
innovation when implementing decentralized applications. Blockchains provide a
new basis for trust in relationships in society, which can allow existing trusted third-
party organizations to be disintermediated. In economies where trusted third-parties
are not always trustworthy, a significant benefit of blockchain systems may be in
the support they can provide for immutability (not changing prior records on the
ledger) and non-repudiation (not being able to disown prior actions on the ledger).
In developed societies, trusted third-party organizations are usually trustworthy,
so the benefits of using blockchain technologies would instead likely arise from
enabling faster business model innovation, reducing the cost of establishing business
relationships and mitigating risks, and perhaps by reducing the cost or risk of
transactions.

For applications of blockchain, there are two categorically different types: (1)
does the blockchain hold the default source of truth, or (2) does it hold a (possibly
incorrect) view of reality? Cryptocurrency is a case of the former: if Bob’s account
on the blockchain holds 1 Ether, he can control that. By default he is the owner—
although a court might determine that he did not fulfil his part of an agreement

1https://azure.microsoft.com/en-us/solutions/blockchain/.
2http://www.ibm.com/blockchain/.
3http://www.r3.com/.
4http://www.ripple.com.

https://azure.microsoft.com/en-us/solutions/blockchain/
http://www.ibm.com/blockchain/
http://www.r3.com/
http://www.ripple.com
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and has to pay the 1 Ether back to Alice. In the traditional world, there are some
examples of things whose existence and ownership rely on database entries, such
as land ownership rights, companies, and patents. These could be ported to a
blockchain application of the first type. In contrast, a blockchain record of a physical
asset and its state (location, quality, temperature, etc.) is an example of the second
category. The view of the asset could be outdated, incorrectly measured, or wrong
in some other way. As such, blockchain applications of the first type tend to be
more straightforward in their implementation, although they require higher buy-in
from the adopters due to their higher degree of reliance on a relatively new piece of
technology.

We preview some application areas below and describe some particular use cases
in Chapter 4. Three case study chapters in Part IV give detailed accounts from the
industry.

1.2.1 Enterprise and Industry

Blockchains were first used for cryptocurrency but are now being used for many
other purposes. The full potential of blockchain technology is likely to be realized
outside financial services and government. Blockchains are a foundational hori-
zontal platform technology that could be used in any industrial sector including
agriculture, utilities, mining, manufacturing, retail, transport, tourism, education,
media, healthcare, and the sharing/P2P economy. Generic applications in these
sectors include:

Supply Chain When tracking physical assets through changes in ownership and
handling, key events and agreements can be recorded and communicated through
data stored on a blockchain. This results in provenance information for goods
and can provide improved logistics visibility and supply chain quality. Key events
within the supply chain could also be linked to automatic payments with the use of
smart contracts. Supply chain cases are also captured in the use case chapters on
AgriDigital (Chapter 12) and originChain (Chapter 14) as well as Section 4.1.

Internet of Things (IoT) Storage, Compute, and Management Devices con-
nected to the Internet can use the blockchain as a persistent and highly available
storage solution. They can also use smart contracts to provide a global distributed-
computing capability and can rely on the blockchain as a secure channel for
receiving information about software and configuration updates and dynamically-
delegated access control. This can include physical access control, for locking and
unlocking devices.

Metered Access to Resources and Services Monitoring and payment for usage of
utilities or services can be provided by IoT devices and associated smart contracts.
An electricity use case is described in Section 4.4.
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Digital Rights and IP Management A blockchain can provide a trusted registry
of media assets or other intellectual property and can provide the ability to manage,
delegate, or transfer access and rights information for those assets. Note that media
are not necessarily stored on the blockchain itself. Instead, cryptographic hashes,
metadata, and other identifiers stored on the blockchain might be integrated with
bulk off-chain storage and communication technologies.

Data Management A blockchain can create a metadata layer for decentralized
data sharing and analytics. Although large datasets themselves are unlikely to be
stored on it, a blockchain can help to discover and integrate those datasets and data
analytics services. Access control mechanisms implemented on a blockchain may
allow public data sources to be integrated more easily with private datasets and
analysis services. See also Section 4.2 for a use case on open data.

Attestation and Proof of Existence A blockchain can be used to record evidence
of the existence of data or documents, by creating a timestamped record of a
cryptographic hash of the contents of those documents. This can be combined with
records of the attestation or witnessing of corresponding physical documents by
trusted third-parties. However, it can be significantly harder to demonstrate the
uniqueness or non-existence of such document records, unless there is a widely
accepted strict normal form for their contents.

Interdivisional Accounting Multinational companies or large enterprises with
separate divisional business units often have jurisdictional or governance needs
to control their own internal accounting but also share accounting information
with other divisions. A straightforward application of blockchain technologies on
a shared private network can create a shared distributed ledger of interdivisional
accounts at the interfaces between divisions.

Corporate Affairs (Board and Shareholder Voting and Registrations) The
voting authorities of board members or shareholders in companies can be recorded
and proxied on a blockchain. Smart contracts on blockchains can use that record
to adjudicate votes conducted on the blockchain for specific motions. As block-
chain transactions are not necessarily hidden, cryptographic mechanisms may
be required to prevent potentially undesirable strategic voting behaviours. The
company SecureVote describes their approach and architecture in Chapter 13.

1.2.2 Financial Services

Financial services applications using blockchain technology may include:

Digital Currency New forms of money can be implemented on blockchains, but
these can also serve as a foundation for incentive models that support integrity
for many blockchain systems. Blockchains allow digital currency to be transferred
between parties, often without those transfers being processed or recorded by banks
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or payment services. With smart contracts, blockchains may be able to support
‘programmable money’, where automatically enforced policies are attached to
specific parcels of currency.

(International) Payments Can be facilitated by blockchain, often via digital
currency with local exchanges between the digital currency and fiat currencies.
Public blockchain cryptocurrency payments are usually pseudonymous. For exam-
ple, on Bitcoin, transacting agents (which are not necessarily persons) are only
identified with a cryptographic key. Therefore international exchange of the Bitcoin
digital currency can be performed without establishing real-world identity, and
we may not know which actual person is behind which account. Nonetheless,
international payments usually have regulatory requirements to establish the identity
of participants, as part of Anti-Money Laundering (AML) and Counter-Terrorism
Financing (CTF) regulations, and AML/CTF requirements are not obviated by the
use of a blockchain. Still, transacting parties can choose to establish their real-world
identities to each other and to local exchanges, and this is typically how regulation
of blockchain-based international payments is enforced. This topic is also covered
in Section 4.3.

Reconciliation for Correspondent Banking Reciprocal nostro/vostro accounts
can be replaced by a single shared ledger. Rather than conducting laborious end-of-
day reconciliation as a batch task, the two banks can create a single shared view of
truth between their accounts, maintained in real time. To limit the distribution of this
commercially sensitive information, usually the shared ledger would be restricted to
just the two correspondent banks concerned.

Securities Settlement The joint exchange of payment and security holdings is
enacted as a single transaction on a blockchain. The exchanged assets are typically
represented by tokens implemented on the blockchain, either using smart contracts
or other asset representation capabilities provided by the underlying blockchain
platform. Payments too are sometimes made using such tokens standing for con-
ventional fiat currency or can sometimes be made using the native cryptocurrency
on the blockchain.

Markets Smart contracts on blockchains can provide a platform for making and
accepting offers to trade assets or services. The blockchain will record the status
of these trade offers. Individual smart contracts could themselves carry the digital
currency required to be paid on fulfilment of these offers. This functions as a kind
of escrow, without the need for a trusted third-party organization. However, today’s
blockchain systems are not suitable for high-frequency (low latency) market trading.
Also, for public blockchains, pending transactions are visible across the network
which can allow a kind of ‘front-running’, where participants (here, usually the
nodes operating the blockchain) might unfairly take advantage of information in
these as-yet unexecuted instructions.

Trade Finance The blockchain can be used to evidence trade-related documents
in order to reduce lending risk and improve access to finance for industry. Smart
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contracts could control inter-organizational process execution (see also Chapter 8)
and transparently automate delayed or instalment payments. This can improve
assurance about previous trading history and about current commitments by coun-
terparties, which can reduce risk to trade finance providers, thus allowing more
widespread and economical trade finance offerings into the market. AgriDigital’s
case study chapter, Chapter 12, discusses these issues.

1.2.3 Government Services

Blockchains could target improved government service delivery, and private block-
chains could be used to facilitate information sharing and process coordination
across agencies within government. Application areas being explored in govern-
ments globally include:

Registries and Identity Including the identities and attributes of persons, compa-
nies, or devices, licensing, qualifications, and certifications. Storing registry entries
or cryptographic certification of registry entries on a blockchain can facilitate
access to and validation against the register. Blockchains could be used to share
authenticated identifiers for individuals and companies, and these identifiers could
in turn also enable many other blockchain applications. Blockchains can support
federated management of multiple related registries, by allowing different agencies
to retain authoritative control over the contents of their registers, but still provide a
shared view of truth about how their registers are interrelated—see also Chapter 8.
The contents of some government registers are public, but in general there are often
complex considerations about privacy and confidentiality.

Grants and Social Security Smart contracts could automate the process coor-
dination to apply for, decide on, and distribute payments for grants and social
security. With a sufficiently sophisticated payment environment, a smart contract
could automatically limit payments to approved suppliers or categories of expenses.
One early use of blockchain in this way was to account for allowances and payments
by refugees in a UN refugee camp. Other experiments have been carried out in the
context of disability support grants.

Quota Management Government-granted quotas, allocations, and rights to phys-
ical resources could be awarded and tracked through tokens established on a
blockchain. Examples include water access licences providing rights to take a
certain volume of water from specific sources during specific time frames or CO2
emission credits. Where policy allows, blockchain could support an independent
secondary market for these rights. The blockchain creates an ongoing immutable
audit log of these rights and their use.

Taxation Possible applications range from automated collection of tax using smart
contracts to improved compliance by authoritative publication of taxation regulation
and calculation tools as smart contracts on blockchain.
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1.3 Blockchain Functionality

Software architects need to understand functional and non-functional characteristics
of blockchains. In this section, we sketch the functionality of blockchain as a
data store and as a computational infrastructure. Figure 1.2 gives an overview of
the functionality a blockchain can offer. Blockchains are complex, network-based
software components, which can provide data storage, computation services, and
communication services. Blockchain features can include cryptographically secure
payment, mining, transaction validation, incentive mechanisms, and permission
management. What is called an oracle supplies information about the external
world to the blockchain, usually by adding that information to the blockchain as
data in a transaction. Below we expand on the two major functional capabilities of
blockchain, for data storage and for computation.

OracleOracleOracle
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control
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Fig. 1.2 Overview of the functionality that blockchain can offer as an architecture element. ©
2016 IEEE. Reprinted, with permission, from Xu et al. (2016)
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1.3.1 Blockchain as Data Storage

As a data structure, a blockchain is an ordered list of blocks, where each block
contains a small (possibly empty) list of transactions. Each block in a blockchain is
‘chained’ back to the previous block, by containing a hash of the representation of
the previous block. Thus historical transactions in the blockchain may not be deleted
or altered without invalidating the chain of hashes. Combined with computational
constraints and incentive schemes on the creation of blocks, this can in practice
prevent tampering and revision of information stored in the blockchain. As a data
storage facility, information in a blockchain is recorded within the transactions
and within blocks. Important categories of information are transactions about
cryptocurrency and transactions involving tokens for other kinds of assets.

Transactions

Transactions update the state recorded on a blockchain. For cryptocurrency trans-
actions, the state information is about the transfer of holdings of cryptocurrency
between accounts (addresses). Sometimes additional data can be recorded with
a transaction which might have meaning for participants or systems outside of
the blockchain. On blockchains such as Ethereum, transactions can record code,
variables, and the results of function calls. Public key cryptography and digital
signatures are normally used to identify accounts and to ensure integrity and
authorization of transactions initiated on a blockchain.

A simplified life cycle of transactions is shown in Fig. 1.3. Once created,
the transaction is signed with the signature of the transaction’s initiator, which
provides the authorization to spend the money, create a contract, or pass the data
parameters associated with the transactions. A signed transaction should contain all
the information needed to be executed.

A proposed transaction is sent to a node connected to the blockchain network,
which checks the validity of the transaction. Invalid transactions are discarded.
Valid transactions that are previously unknown to the node are propagated to other
connected nodes. These will in turn further validate the transactions and send them
to their peers, until the transactions reach every node in the network.

In a global network, this flooding approach means that a valid transaction
will usually reach the whole network within a few seconds. To ensure that the
transaction propagates, senders do not need to trust any individual node they send
the transaction to, as long as they send it to enough other nodes. Recipients do not
need to trust senders, because all transactions are signed and can be independently
validated by any node.

When a transaction reaches a ‘mining’ node, it is verified and may be included
in a block. Mining is the process of appending new blocks to the blockchain data
structure. A blockchain network relies on miners to aggregate valid transactions
into blocks and append them to the blockchain. New blocks are broadcast across
the whole network, so that each full node holds a replica of the whole ledger.
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Fig. 1.3 Simplified
transaction life cycle
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The network aims to reach a consensus about the latest block to be included into
the blockchain. There are different consensus mechanisms, e.g. ‘proof of work’ or
‘proof of stake’, which we will describe in more detail later.

However, there is no certainty about whether a particular transaction will
eventually be committed or whether it will be outdated. An outdated transaction will
be considered an invalid transaction forever, e.g. due to an alternative transaction
getting committed. Also, it is often impossible to know whether a transaction that is
invalid in some state of the system could ever become valid in a later state. For
some consensus mechanisms, the inclusion of the transaction in a newly mined
block on some branch of the chain is not sufficient to guarantee that a transaction
is permanently added to the blockchain: if the blockchain forks (i.e. conflicting
versions of new blocks are proposed simultaneously), then the block comprising
the transaction may simply be discarded, in which case it could be re-included later.
Each of these inclusions takes time as they require the system to solve computation-
ally hard cryptographic puzzles. If during that time a conflicting transaction Tx′ is
included first, then the original transaction Tx may simply become invalid, e.g. until
a possible third transaction Tx′′ compensates for the effect of transaction Tx′.

Depending on the consensus mechanism and the required guarantees, differ-
ent blockchain platforms and applications can have different notions of when
a transaction is committed or confirmed and thus be immutable. For example,
in Bitcoin users often wait five subsequent blocks to be appended to the block
containing a transaction before viewing the transaction as committed. However, this
is a probabilistic commitment, and so the number of blocks one should wait can
depend on the value at risk in the transaction, and the likelihood of it unexpectedly
failing. In practice, waiting long enough will make that transaction an immutable
part of the earlier history of the Bitcoin blockchain. In contrast, in many private
blockchains, committed transactions are more like normal database transactions and
so, when accepted under the blockchain’s consensus protocol, will immediately be
a permanent part of the ledger.



1.3 Blockchain Functionality 17

Digital Assets

One of blockchain’s most distinctive capabilities is allowing the creation and secure
transfer of digital assets. Normally when you give information or digital files to
someone, then you both end up with a copy. However, the fundamental characteristic
of property is that of exclusion: when I have property, no one else has it; and when
I transfer that property to you, then I no longer have it. Blockchain transactions and
the globally visible blockchain ledger allow everyone to recognize and check the
transfer of control or ownership of digital assets registered on the blockchain. This
is how blockchain technology supports digital assets. The two most important kinds
of digital assets have been discussed earlier: cryptocurrencies and tokens.

Cryptocurrencies are normally ‘baked in’ to the core platform of public block-
chains. They have a kind of symbiotic relationship: the blockchain enables exclusive
ownership and secure transfer of the cryptocurrency, and the cryptocurrency enables
the incentive mechanism for the operation of the blockchain. Cryptocurrency uses
cryptography to control the issuance of money (i.e. minting new coins) and to
secure its transfer. Transfers are performed and recorded as financial transactions
on a ledger. This virtual money can be transferred directly between users without
using a trusted authority such as a bank. The first cryptocurrency, Bitcoin, created in
2009, is still the dominant one in terms of total market value at the time of writing
in 2018. There are many cryptocurrencies, most of which are managed through
the basic platform capabilities of specific blockchains, such as Ethereum’s Ether,
Ripple’s XRP, and Nxt’s NXT. Platforms such as Ripple and Nxt also provide native
capabilities to define new cryptocurrencies.

In contrast to cryptocurrencies, tokens are usually not implemented directly
in the core platform of a blockchain. Instead, they are implemented on top of
blockchain platforms, using transaction data or smart contract features provided
by the blockchain. Bitcoin allows developers to add 40 bytes of arbitrary data to a
transaction, which is then permanently recorded on the blockchain. Thus, Bitcoin
has been used for purposes such as representing digital assets (like document
notarization) or physical assets (like diamonds). Bitcoin can also represent tokens
using ‘overlay networks’, for example, using so-called colored coins, where a
portion of Bitcoins is tainted to represent and manage real-world assets. Other
overlay networks define a completely new transaction syntax, such as Omni and
Counterparty. In Ethereum, tokens are usually implemented using smart contracts
that maintain a register or table of ownership of tokens. Regardless, as a digital asset,
there is much more variation among tokens than there is among cryptocurrencies.
Tokens might represent fungible (interchangeable) commodities or might represent
unique or serialized assets. Tokens might represent rights to use a service or might
represent shares or voting rights in a company. Tokens are often implemented
with features allowing their independent transfer or sale, but it is also possible to
implement tokens that are not transferable or have other limitations on their transfer.
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1.3.2 Blockchain as a Computational Infrastructure

Software components are the fundamental building blocks for software architecture,
and blockchain can be a software component offering computational capabilities.
As discussed earlier in Section 1.1.2, smart contracts allow us to execute small
programs on the blockchain.

Ethereum views smart contracts as a first-class element. Smart contracts on
Ethereum can express triggers, conditions, and business logic, to enable complex
programmable behaviours. Smart contracts are used by components connected
to a blockchain to reach agreements and solve common problems with minimal
trust. A common simple example of a smart contract-enabled service is escrow,
which can hold funds until the obligations defined in the smart contract have been
fulfilled. As escrow holder, a smart contract’s code has control over the assets held.
Smart contracts can also be used to enable machine-to-machine communication for
Internet of Things (IoT) applications.

One of the main kinds of architectural decisions is about which pieces of func-
tionality should be allocated to which components. For blockchain-based systems,
this includes the key decisions about which parts of the data and computation should
be placed on-chain or kept off-chain. Parts of an application can be implemented
inside the blockchain component using the blockchain ledger and smart contracts.
However the amount of computational power, data storage space, and control of read
accesses on a blockchain can be limited. So, parts of an application implemented
outside the blockchain component might host off-chain data and application logic.
Blockchain transactions and their effects sit at the interface between on-chain and
off-chain functions.

A common practice is to store hashed data, metadata, and some small-sized
public data on-chain and to keep large or private data off-chain. Due to the limited
size of the data store provided by the blockchain, an off-chain data store is necessary
for some applications. There are existing platforms providing a data layer on top of
the blockchains, such as Factom,5 which stores only the hash of the private data and
small amounts of public data in their own blockchain. Distributed data storage, like
IPFS,6 or systems using DHTs (distributed hash tables) are also sometimes used in
combination with blockchains to build decentralized applications.

Blockchain computation has a closed-world assumption; smart contracts can
usually only examine state that is stored on the blockchain ledger. So in order to
interact with the external world, oracles are invoked to bring external state into
the blockchain. There are various sorts of oracles: some are like normal users of
the blockchain and merely record facts about the world as normal transactions on
the ledger; while others are components or nodes within the blockchain platform
that can invoke smart contracts privileged to them. In either case, oracles typically
become a trusted party for the respective data about the external world.

5https://www.factom.com/.
6InterPlanetary File System (IPFS)—https://ipfs.io/.

https://www.factom.com/
https://ipfs.io/
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1.4 Blockchain Non-functional Properties

Besides blockchain’s main functionality described above, software architects need
to understand the non-functional properties of a system. We next give an overview
of these for blockchain and touch on the implications for systems built on block-
chain. As we will discuss in Section 1.5, understanding these issues is of central
importance in the design of blockchain-based systems.

1.4.1 Non-functional Properties and Requirements

When specifying a system, software engineers often distinguish functional require-
ments from non-functional requirements. For a computer system, simple functional
requirements characterize the relationship between observable inputs and outputs.
Non-functional requirements (NFRs) are needs expressed for non-functional prop-
erties (NFPs), which are also known as ‘qualities’, or ‘ilities’. These include
characteristics such as cost, security (confidentiality, integrity, availability, privacy,
non-repudiation), performance (latency, throughput), modifiability, and usability.

NFRs are expressed separately from functional requirements because they are
often ‘cross-cutting concerns’ that span many system functions. For example, a
requirement for the scalability of system performance might constrain the resources
that can be used to respond to a given level of concurrent demand in a timely manner,
up to some limit on that demand. The demand in this requirement would typically
be a mix of many different kinds of system functions in normal usage.

Different use cases carry different NFRs. For example, in safety-critical indus-
tries such as medical devices or aerospace systems, NFRs for safety are paramount.
In enterprise software systems, regulatory requirements often constrain NFPs such
as privacy and data integrity. In regulated industries, legislation or regulation can
provide constraints on minimum standards for critical NFPs within the industry.
These constraints may be mandated to provide consumer protections or to manage
systemic risks or negative economic externalities within the industry. NFPs are also
important in understanding innovation: NFPs are quality or performance dimensions
for technology, and technological progress pushes out the frontiers of performance
on these various dimensions. Orders of magnitude improvements in performance on
NFP dimensions open up possibilities for new markets and new business models
using that technology innovation.

1.4.2 Non-functional Properties of Blockchain

Compared to conventional centralized databases and computational platforms (on-
premise or cloud), blockchains can reduce some counterparty and operational risks
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by providing neutral territory between organizations. Blockchain technologies may
provide advantages for immutability, non-repudiation, integrity, transparency, and
equal rights. If data is contained in a committed transaction, it will eventually
become in practice immutable. The immutable chain of cryptographically signed
historical transactions provides non-repudiation of the stored data. Cryptographic
tools also support data integrity, the public access provides data transparency, and
equal rights allows every participant the same ability to access and manipulate the
blockchain. These rights can be weighted by the compute power or stake owned by
the miner.

Trust in the blockchain is achieved from the interactions between nodes within
the network. The participants of a blockchain network rely on the blockchain
network itself rather than relying on trusted third-party organizations to facilitate
transactions. These five properties (immutability, non-repudiation, integrity, trans-
parency, and equal rights) are the main properties supported in existing blockchains.

Data privacy and scalability are two points of criticism of public blockchains. As
discussed earlier, in this setting privacy is limited: there are no privileged users, and
every participant can join the network to access all the information on blockchain
and validate new transactions. Often, applications need to find an acceptable trade-
off between data privacy/confidentiality and transparency.

Current public blockchains have scalability limits on:

1. the size of the data on blockchain, due to the global replication of all data across
all full nodes.

2. the transaction processing rate. For example, mainstream public blockchains
can only handle on average 3–20 transactions per second,7 whereas mainstream
payment services, like VISA, handle an average of 1700 transactions per
second.8

3. the latency of data transmission. Because nodes can have a local copy of the
blockchain, read latency can be good, but because updates must be propagated
across a global network, write latency is typically not good. The number of
transactions included in each block is also limited by the bandwidth of nodes
participating in leader election (for Bitcoin the current bandwidth per block is
1 MB). Latency between submission and confirmation that a transaction has been
included on a blockchain is affected by the consensus protocol. This is around 1 h
(10-min block interval with 6-block confirmation) on Bitcoin and around 3 min
(14-s block interval with 12-block confirmation) on Ethereum.

7https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/.
8https://usa.visa.com/run-your-business/small-business-tools/retail.html.

https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://usa.visa.com/run-your-business/small-business-tools/retail.html
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1.5 Blockchain Architecture Design

Understanding the main functional and non-functional properties of blockchain
described above is vital for good architectural design for systems using Blockchain,
which we introduce below.

1.5.1 Software Architecture: Design and Analysis

The software architecture of a software-based system is the high-level structure
of relationships between software elements (components and connectors) in the
system. In the creation of a software architecture, there are many possible options
for these structures, and the choices between these options are important design
decisions. A key realization in the discipline of software architecture is that these
design decisions have a critical impact on a system’s ability to meet NFRs. Given
a design candidate for a software system, software engineers may use qualitative,
analytical, or simulation-based tools to evaluate the design for its predicted ability
to achieve an NFR.

To achieve an NFR, the right design decisions must be made, and each design
decision will impact a number of NFPs, either positively or negatively. Often this
will lead to conflicts between NFPs, so it is important to manage trade-offs between
these when designing a system. An important part of software architecture as a
practice is to document the design for a system, including the rationale for why
specific design options were chosen.

1.5.2 Designing Blockchain-Based Applications

Blockchain-based systems can be different from traditional systems in various ways,
as outlined below. Chapter 3 provides a more comprehensive taxonomy.

Admittance of Processing Nodes In a public blockchain system, such as Bitcoin,
anyone may become a processing node (or ‘miner’). In private blockchain systems,
the admittance of processing nodes is controlled by its governing bodies. Public
blockchains provide very low barriers to entry for new participants, which can
facilitate competition, innovation, and productivity. However, public blockchains
typically do not mandate authentication of those participants, which creates chal-
lenges regarding AML/CTF and tax avoidance. Private blockchains can impose
more controls on authentication and access, which can partly address those regu-
latory concerns.

Consensus Mechanism Most public blockchains use Nakamoto consensus, where
processing nodes by convention treat the longest history of blocks as the author-
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itative history. The rate at which blocks can be created is limited, often by using
a proof-of-work mechanism, whereby a processing node can only add a new
block by demonstrating that a difficult task has been completed. Proof-of-work is
widely used, but the auxiliary effort required to complete the difficult task can be
economically inefficient. In a proof-of-stake system, the processing node that can
add a new block in the next round is determined by the size of its stakeholding in
the global blockchain and/or in that round. Proof-of-stake can be more efficient than
proof-of-work but to date has been less widely used. Proof-of-work implementations
have demonstrated operational stability over years. Other consensus mechanisms
have been proposed. On private blockchains where there are a smaller number
of more trustworthy processing nodes, conventional replication algorithms such
as Practical Byzantine Fault Tolerance (PBFT) can be used instead of Nakamoto
consensus.

Representation of Transactions A distributed ledger may record financial trans-
actions, such as in Bitcoin. However as a shared database, a distributed ledger might
allow other kinds of data to be recorded. In particular, the data recorded for a
transaction may be the text of a computer program, and the integrity check for that
transaction may involve executing that program. This allows participants to create
smart contracts, which allow transactions to represent behaviour as well as data.

There are several kinds of blockchains, and to provide more general insights
we take a broad view. For example, the Bitcoin system is a public blockchain,
which allows unfettered public participation in both its operation and use. Other
well-known systems, such as the Ethereum9 blockchain, are similar in this regard.
It is possible to use a separate instantiation of the Bitcoin or Ethereum computer
programs to operate a blockchain within a private context, for example, on a virtual
private network. These would then be one kind of ‘private blockchain’. Note that
operators of such networks would not normally use proof-of-work consensus in
private networks, because of limitations with that kind of consensus and because
other controls or assumptions can be used to address integrity. The access controls
possible for private networks and private computer systems allow for greater
administrative control over such blockchains. However, the software for public
blockchains is not always the best technical solution to use in a private setting.
Many industry consortia, such as Hyperledger,10 R3,11 and Ripple,12 are actively
developing specialized private blockchain solutions. These typically support a
smaller number of processing nodes than public blockchain solutions, but can
provide confidentiality and increased performance.

Recently, proof-of-authority (PoA) has gained popularity as a consensus mech-
anism for private or permissioned blockchain systems, and implementations in

9https://www.ethereum.org/.
10https://www.hyperledger.org/.
11https://www.r3.com/.
12https://ripple.com/.

https://www.ethereum.org/
https://www.hyperledger.org/
https://www.r3.com/
https://ripple.com/
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Fig. 1.4 Core components of different types of blockchain

Fig. 1.5 Non-functional properties of different types of blockchain

Ethereum client software are gaining adoption. PoA assigns the right to mine new
blocks to a set of authorities (blockchain accounts, i.e. key pairs) that produce new
blocks.

Figures 1.4 and 1.5 show the core components of different types of blockchains
and the corresponding quality impacts. In practice, the lack of standard and reliable
technology evaluation criteria makes a precise comparison difficult. When building
applications based on blockchains, we need to systematically consider the features
and configurations of blockchains and assess their impact on quality attributes for
the overall systems. For example, a blockchain transaction is not appropriate for all
data: because it is replicated globally, transactions should not contain very large data
nor plain-text data which must be kept confidential. Similarly, for competitors within
an industry consortium, private blockchains may not be private enough to provide
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normal levels of commercial confidentiality for business operations, competitive
position, and customer relationships. Consequently there are choices about what
data should be stored on-chain inside transactions and what should be stored off
chain, in external systems. Although a specific blockchain platform may have
significant limitations, if it can be combined in a design with other components
in an effective way, then many kinds of business challenges can be targeted by
blockchain-based systems.

1.6 Summary

Blockchains and distributed ledgers are currently very hot topics in computing.
In this chapter, we introduced what they are and why there is wide interest in
them within various application areas. To provide clarity, we have defined the most
important terms used in this book.

Then we discussed, at a high level, the most important aspects for the software
architect and engineer aiming to develop a blockchain-based application: what does
blockchain offer in terms of functional and non-functional properties and how to
approach designing blockchain-based applications?

In the next chapter, we will present an in-depth view of some existing blockchain
platforms. Chapter 3 then discusses the conceptual differences between various
blockchain technologies and their implications for architectural design. Concrete
use cases are discussed in Chapter 4.

1.7 Further Reading

This chapter is partly based on our earlier works (Staples et al. 2017).
The original conception of blockchain was first discussed in the Bitcoin paper

(Nakamoto 2008). A more complete introduction of blockchain and Bitcoin can
be found in Swan (2015) and Antonopoulos (2015). The original conception of
smart contracts predated blockchain technology (Szabo 1997). Smart contracts
were originally a way of realizing legal contracts in physical computing systems.
However, in the blockchain context, smart contracts are not necessarily related to
legal contracts.

Comprehensive surveys on the state of the art of existing cryptocurrencies
include Morisse (2015), Bonneau et al. (2015), and Tschorsch and Scheuermann
(2016). The market value of cryptocurrencies can be found on http://coinmarketcap.
com.

Some government reports discuss potential applications of blockchain in various
scenarios, for example, Walport (2016) and Staples et al. (2017). The case of the
UN refugee camp’s use of blockchain has been described by Juskalian (2018). The
experiments on blockchain for programmable money to automate disability support
grants are described by Royal et al. (2018).

http://coinmarketcap.com
http://coinmarketcap.com
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For an interesting historical account of a community dollar, read The Island of
Stone Money by Friedman (1991). It describes the island Yap in Micronesia, where
currency was held by ownership designation on big stones.

The software architecture of a software-based system is the high-level structure
of relationships between software elements (components and connectors) in the
system (Clements et al. 2003; Bass et al. 2012). The design of software architecture
needs to consider non-functional requirements, which are needs expressed for
non-functional properties. These include characteristics such as cost, security and
dependability (Anderson 2008; Avizienis et al. 2014) (confidentiality, integrity,
availability, maintainability, safety, reliability, privacy, non-repudiation), perfor-
mance (latency, throughput), modifiability, and usability.



Chapter 2
Existing Blockchain Platforms

This chapter introduces some of the most prominent and representative blockchain
platforms, including Bitcoin, Ethereum, and Hyperledger Fabric. Other blockchain
platforms are also briefly discussed.

2.1 Bitcoin

Bitcoin is a cryptocurrency operated on a peer-to-peer (blockchain) network. Unlike
traditional banking and payment systems, Bitcoin is based on decentralized trust;
there is no central trusted authority in the Bitcoin system. Trust emerges from
the interactions of different participants in the ecosystem. Figure 2.1 gives an
overview of Bitcoin system. In the Bitcoin system, there is a distributed ledger
that stores all Bitcoin transactions. The content of the ledger is replicated across
many geographically-distributed processing nodes within the Bitcoin network. We
described its operating principles in the sidebar on page 4 in an informal, non-
technical way.

For clarity, we will refer to the tokens on the Bitcoin blockchain using their
currency code BTC. There are three main types of nodes within the Bitcoin network.
(1) Users with wallets: a wallet maintains the key pairs of the user, which are used to
authenticate the transactions initiated by the user by means of digital signatures. (2)
Miners that compete with each other to add new blocks to the shared ledger as the
authoritative source of all the transactions. (3) Exchanges, i.e. places where users
can buy BTC in exchange for other currencies.

Below we describe the pieces and concepts out of which the Bitcoin blockchain
is built. Many of these concepts were known before Bitcoin, but their combination
as a blockchain was new and has created a technology with interesting properties.
Many of these concepts are also used by other blockchain platforms and distributed
ledger technologies. Interestingly, it is not only the technical concepts that make

© Springer Nature Switzerland AG 2019
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Fig. 2.1 Overview of Bitcoin system

public blockchains work but also the economics and social incentives. For instance,
network participants who have invested in the most (computational) power are also
rewarded the most in the Bitcoin system, and because of that investment would
be penalized the most if trust in the network eroded causing the value of BTC to
decrease. So, they are incentivized to act in the interest of the network.

2.1.1 Bitcoin Transactions

A simplified life cycle of a blockchain transaction was introduced in Fig. 1.3.1

A peculiarity of Bitcoin is the way transactions are linked: they transfer currency
from a number of source addresses to a number of destination addresses. As shown
in Fig. 2.2, the outputs of transactions become the inputs of new transactions.
If the sum of the outputs is less than the sum of the inputs, the difference is
interpreted as an additional output that serves as a fee to the miner who creates
the block containing this transaction. The transaction fee is an incentive for miners
to contribute their computing power. As a result, miners tend to optimize block
creation by preferring transactions with higher fees. The transaction fee is often the
only variable that client software asks Bitcoin users to choose consciously when
creating a new transaction.

However, transactions can experience delay due to other factors. One important
factor is that transactions must arrive (roughly) in-order, for a node (and the
network) to be able to process them fast. Incoming transactions are handled by the
so-called mempool. If the referenced input transactions, called parents, are as-yet
unknown, a miner will delay the inclusion of the new transaction—it is then a so-
called orphan. Miners may choose to keep orphans in the mempool while waiting

1The life cycle is simplified in that transactions may not always make it to the ‘confirmed’ state
after the initial validation, e.g. when a conflicting transaction is included instead.
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for the parent transactions to arrive, but they may also expunge orphans after a
timeout they choose. A second factor that could come into play, albeit one that
only experienced users will set, is so-called locktimes: a transaction can contain a
parameter declaring it invalid until the block with a certain sequence number has
been mined.

2.1.2 Script

Bitcoin uses a scripting system for transactions. The script language is called Script,
which is simple, stack-based, and processed from left to right. Script is not Turing
complete. It has limited complexity without looping and complex flow control. A
script is a list of instructions associated with each transaction that describes how
the BTC transferred with the transaction can be spent. A locking script is placed
on an output, which specifies the conditions that must be met to spend the BTC.
An unlocking script is placed in an input that ‘solves’ or satisfies the conditions of
the locking script. To validate a transaction, the unlocking script and the locking
script are combined and executed. If the result is true, the transaction is valid. The
most common case implements a simple transfer, referred to as Pay-to-PubKey-
Hash (P2PKH), where the locking script specifies which (hashed) public key and
corresponding signature are required to unlock the output. In other words: only the
holder of the designated key pair can spend the output.

Script provides certain flexibility to change the parameters of the conditions to
spend the transferred BTC. For example, a transaction can require multiple keys



30 2 Existing Blockchain Platforms

and signatures. OP_RETURN is a Script keyword, called opcode, used to mark a
transaction output as invalid. OP_RETURN has been used as a standard way to
embed arbitrary data to the Bitcoin blockchain for other purposes, like representing
assets. By design, Script programs are pure functions, which cannot poll external
servers or import any external state. An oracle can be used to include external state
into the blockchain execution environment. See Section 5.4.2 for more details.

2.1.3 Mining

Mining nodes compete in a proof-of-work system to create new blocks by solving
hard cryptographic puzzles. Bitcoin uses the hashcash2 proof-of-work function.
Some miners are full nodes, maintaining a full copy of the blockchain data structure,
while others are lightweight nodes participating in pool mining and depend on a
coordinating pool server to maintain a full replica.

Miners are always listening for new transactions and new blocks, as do all the
nodes. When a transaction reaches a mining node, it is verified, included into the
mempool, and propagated to the network. To the miners, the arrival of a new block
means the completion of the previous round of competition and an announcement
of a winner. The end of one round of a competition is the beginning of the next
round. To start mining a new block, the miner first removes the transactions from
the mempool that belong to the received block and aggregates a set of the remaining
valid transactions into a candidate block, reassessing the validity of each transaction
at the point where it is added to the candidate block. It also adds the so-called
coinbase transaction as the first transaction to the list of transactions for the new
block. The coinbase transaction pays a block reward to the miner, which is another
incentive for mining (in addition to the transaction fees). Then the miner constructs
the block header, which includes a hash of the previous block and a summary of all
the transactions in a binary tree, called a Merkle tree, for more efficient searching.

Next, a solution to the proof-of-work function needs to be found. It requires
finding a value for a free field in the block header, the nonce, which leads to the
block hash being smaller than a given threshold. In short, finding such a nonce
requires a lot of trial and error: at the time of writing, on average 2.4 × 1021 nonces
are tried and hashes computed per Bitcoin block, but across the global network
without coordination on which nonces to try, and therefore highly redundant. The
threshold is adjusted over time to ensure that the average time between blocks is
around 10 min. In other words, the puzzle is so hard that all Bitcoin miners around
the world together still take 10 min on average to solve it. Every candidate block is a
new puzzle, and the likelihood to solve it first is proportional to the compute power
invested relative to all compute power in the network.

Once a solution is found, the result is inserted into the block header, and the
new block is immediately propagated to the network. This situation is depicted in

2https://en.bitcoin.it/wiki/Hashcash.

https://en.bitcoin.it/wiki/Hashcash
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Fig. 2.3 A new block: the miner in the lower left corner found the next block n+2 and broadcasts
it to the network

Fig. 2.3. The nodes receiving the new block verify it, then include it into their replica
of the blockchain data structure, as shown in Fig. 2.4, before starting the search for
the next block.

Mining is also the way in which new coins are minted: the coinbase transaction
has an output but does not consume any inputs. Therefore it creates new BTC. At
the time of writing, each coinbase can have an output of 12.5 BTC, paid to the miner
who created the block.

2.1.4 Accounts and State

An account in Bitcoin is associated with a cryptographic key pair. The public key is
used to create the account address, which is somewhat similar to the bank identifier
and account number in traditional banking (or their combination as an International
Bank Account Number, IBAN). BTC can be sent to an account address. The
corresponding private key is required to sign transactions originating from the
account. Because the source account is known, every node in the network can verify
the signature. This is achieved with the locking/unlocking scripts mentioned above.

The state of the blockchain, and specifically the account balances of all users,
results from the set of transactions and the genesis block, which is the first block
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Fig. 2.4 After the new block has been propagated (from Fig. 2.3), the other nodes in the network
accept it and append it to their local copy of the blockchain data structure

(block number 0). Some accounts might be preloaded with an initial account balance
from the beginning, i.e. in the genesis block. When a transaction from A to B occurs,
A’s balance is reduced by that amount, and B’s account is increased by that amount.
The miner C may also receive a transaction fee, if A specified that, in which case
B receives less than A sends. The transaction becomes part of the ledger when the
miner creates a block that includes it and when that block is included by consensus
in the blockchain data structure. Then the transfer has occurred. The miner C is
paid a block reward for this new block through the coinbase transaction mentioned
above.

Bitcoin does not track account balances explicitly. The Bitcoin blockchain
platform has exactly two first-class elements: transactions and blocks. The account
balance is therefore derived as the sum of unspent transaction outputs (abbreviated
to UTXO) that an account has control over. Bitcoin’s record-keeping model is
therefore referred to as UTXO, in contrast to Ethereum’s account/balance model.
Either way, every node has access to the full transaction history and thereby knows
which account holds how much currency. Because accounts are pseudonymous,
typically the persons holding each account are not known to most actors. As
transactions are grouped into blocks, the entire system moves from one discrete state
to another through the addition of whole blocks each containing many transactions.
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Fig. 2.5 A fork in the blockchain offers two possible versions of the new state (a), which are
decided by the additional blocks n + 2 and n + 3 (b)

2.1.5 Nakamoto Consensus

Most public blockchains use Nakamoto consensus, which was introduced with the
Bitcoin blockchain. In Nakamoto consensus, processing nodes by convention treat
the longest history of blocks as the authoritative history—it is called the main chain.
Before one chain is longer than the other, it is unclear which state will prevail. This
situation is illustrated in Fig. 2.5a and resolved in Fig. 2.5b. In combination with
proof-of-work, the longest chain corresponds to the one that (on average) received
most computation.

Mining the next block is a constant global race between ten thousands of comput-
ers in the Bitcoin network. Multiple computers might more or less simultaneously
find and announce the next block, say n + 1 in the example above. The decision
which version of block n+1 becomes part of the main chain is made by the winning
block n+ 2 and to which block n+ 1 it refers as predecessor. However, there might
be multiple conflicting versions of block n + 2 referring to different predecessors
n+1. While possible, the Bitcoin protocol renders it very unlikely that such parallel
forks continue for more than a block or two (unless the network is separated, which
is unlikely for larger portions of the Internet).

Due to this possibility, users want to determine with high probability that a
transaction is permanently included in the blockchain. Users therefore wait for
several blocks to be mined after the first inclusion of their transaction to gain con-
fidence that the block including their transaction is part of the main chain. Each of
these subsequent blocks is called a confirmation block, and when sufficiently many
confirmations occurred after the transaction block inclusion, then the transaction
is considered committed. Depending on the importance of the transaction and the
risk of it being excluded, the number of required confirmation blocks might need
to be higher or lower. A default number is six blocks (one for inclusion and five
confirmation blocks), though the source of this number is somewhat arbitrary.3 This
equates to a probabilistic guarantee meeting a (usage-specific) likelihood threshold.

3This number goes back to an early wallet of Bitcoin: its UI suggested that the transaction was
finalized after six blocks. Commit after six blocks also corresponds to a double-spending attack
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2.1.6 Deflationary Cryptocurrency

Blockchains that support primarily a cryptocurrency, like Bitcoin, are regarded as
the first generation of blockchains. Bitcoin provides a deflationary cryptocurrency
by defining certain rules. The total amount of BTC that will be released over the
life cycle of Bitcoin is 21 million. As discussed earlier, new BTCs are issued during
the mining process. Each time a new block is mined and successfully added into the
blockchain, new BTCs are rewarded to the miner who created the valid block. The
reward is halving every 210,000 blocks. Initially, the reward was set to 50 BTC and
fell to 25 BTC in late 2012. Mining rewards in Bitcoin will run out in 2140, when
no more new BTC will be issued (unless the rules change).

2.1.7 Wallets

A software wallet allows users to manage a collection of private keys corresponding
to their accounts and to create and sign transactions on the Bitcoin network. A
wallet may include a full node but does not have to. SPV (Simplified Payment
Verification)4 nodes maintain only part of the blockchain and verify if and when
particular transactions are included in a block without downloading the entire
blockchain ledger. That allows running wallets on resource-constrained devices,
such as smart phones.

Hardware wallets are specialized devices that provide part of the above function-
ality, typically in combination with suitable software. A common split is to create
and store private keys on the hardware; they never leave the device. Public keys are
exported, so that payments can be received. For outgoing payments, the unsigned
transaction is sent from the software to the device, verified by the user on the display
of the device and confirmed with a PIN, and then signed by the device and sent back
to the software wallet.

To avoid accidental loss of private keys, and thereby loss of the ability to spend
one’s funds, there are cold-storage solutions as backups. These work by storing
a representation of the keys in a way that is independent of the user’s current
hardware wallets and machines. The simplest way is to write key pairs down on
paper. More user-friendly methods work by writing (or printing) 12 or 24 words out
of a dictionary on paper. All cold-storage solutions of course need to be protected
from conventional threats. An interesting alternative to paper is custom metal plates
in which the keys are set and physically locked in place—these have the advantage
of being fireproof.

with 10% of the mining power having a 0.1% chance of success, as outlined in a theoretical analysis
paper.
4https://bitcoin.org/en/glossary/simplified-payment-verification.

https://bitcoin.org/en/glossary/simplified-payment-verification
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2.1.8 Exchanges

Bitcoin exchanges are places (usually websites) to buy Bitcoin in exchange for other
currencies (fiat currencies like US$ or cryptocurrencies). During this process, the
exchange holds currency on behalf of users, which makes exchanges a kind of
trusted party within the Bitcoin system. Clients may choose to ask the exchange
to transfer purchased Bitcoin to an address under their control. But until they do
that, if the exchange’s system fails, their users may lose control of ‘their’ Bitcoin.
Exchange markets provide liquidity for cryptocurrency, which supports its real-
world value and thus underpins the incentive mechanisms at work for miners to
operate the Bitcoin blockchain. Therefore, exchanges are key stakeholders for public
blockchain platforms.

2.2 Ethereum

Bitcoin led the development of the first generation of blockchain systems, providing
a public ledger to record cryptographically signed financial transactions. Bitcoin
has limited support for programmable transactions, and only very small pieces of
auxiliary data can be embedded in the transactions to serve other purposes. The
second generation of blockchain systems provides a general-purpose programmable
infrastructure where the public ledger not only stores financial transactions but
also has facilities to deploy and execute programs on the blockchain system. The
Ethereum blockchain platform views smart contract as a first-class element and
includes a virtual machine for executing smart contracts.

2.2.1 Ethereum Protocol

Ethereum is configured to have a relatively short time interval between blocks:
13–15 s on average. This of course addresses the issue of long delays of Bitcoin
transactions, where the inter-block time averages around 10 min. Ethereum’s inter-
block time is not many times longer than the time required to propagate information
throughout the global blockchain network. Because of that, it is much more likely in
Ethereum that multiple new (competing) blocks are created concurrently at similar
times. A stale block is one that was successfully created by a miner, propagated to
the network and verified by some nodes as being correct, but is eventually discarded
when another longer chain achieves dominance. As shown in Fig. 2.6, a stale block
is created when miner B and miner C find new blocks and propagate their blocks
almost at the same time. In Bitcoin, the probability of finding a block at the same
time is relatively low because the average inter-block interval is 10 min.
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Fig. 2.6 Ethereum blockchain

The Ethereum blockchain uses a modified GHOST (Greedy Heaviest Observed
Subtree) protocol, which was proposed as a way to address this problem. In the
GHOST protocol, miners reference competing independently mined blocks (so-
called uncles in Ethereum terminology; in the figure, BlockMinerB and BlockMinerF
are uncles), to add weight to their chain in the calculation of which chain is longest
or has the highest cumulative difficulty. In Ethereum, not the longest chain wins, but
the ‘heaviest’—and recognized uncles contribute to the weight. This recognition of
concurrent work allows shorter inter-block times which can improve throughput.
The recognition is backed by a strong financial incentive: miners of uncle blocks
receive 87.5% of a standard block reward. For every uncle included in the block, the
miner gains an additional 3.125% and increases the weight of the chain including
its block.

2.2.2 Ethereum Transactions

A high-level life cycle of a transaction is discussed in Fig. 1.3. Here we discuss
the life cycle of an Ethereum transaction, from it arriving in the transaction pool
until it is committed. As shown in Fig. 2.7, the transaction life cycle can be split
into consecutive phases: (i) the announcement of the transaction in the system;
(ii) the inclusion of the transaction in a newly mined block on some branch of
the chain; (iii) the block in which the transaction is included is part of the main
chain; and (iv) the commitment of the transaction after sufficiently many blocks are
subsequently mined.

Before a transaction is included in a block, it gets validated. This includes
checks of the digital signature, parameters such as the nonce (sequence number
of transactions relative to a given source account), and that there are sufficient funds
in the source account.
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Fig. 2.7 Life cycle of an individual Ethereum transaction Tx (notation: state machine). © 2017
IEEE. Reprinted, with permission, from Weber et al. (2017)

Note that Step (ii) above is not sufficient to guarantee that a transaction is
permanently added to the blockchain: if the blockchain forks, then the block
comprising the transaction may simply be discarded, and it could be re-included
later. While uncle blocks may be recognized in Ethereum, their content is discarded
at any rate. If all blocks that include the transaction become part of a shorter
chain than the main chain (i.e. they are uncles), then the transaction returns to the
transaction pool. This might happen repeatedly. While the transaction is in the pool
at a miner, it may also be dropped at the discretion of the miner. It is impossible for
any node in the network to know with certainty whether all miners have dropped the
transaction. Only when the nonce of the transaction becomes outdated, i.e. another
transaction from the same source account with the same nonce has been committed,
can a node be certain that the old transaction cannot be included in any valid block.
Otherwise the transaction might later resurface and be included in the chain.

Ethereum uses proof of work, like Bitcoin, and the GHOST protocol states that
the longest/heaviest chain becomes the main chain. Therefore, like for Bitcoin,
Ethereum users wait for X confirmation blocks before seeing a transaction as
committed. Due to the higher rate of uncle blocks, X is typically higher than for
Bitcoin: 12 blocks (block that includes the transaction + 11 confirmation blocks) are
typical on Ethereum. For an in-depth discussion, see Section 11.6.2.

2.2.3 Smart Contract

Smart contracts are programs deployed and run on a blockchain system. Smart
contracts can express triggers, conditions, and business logic to enable complex
programmable transactions. On the Ethereum blockchain, smart contract developers
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can use high-level programming languages, like Solidity,5 to define smart contracts.
Solidity code is compiled into a low-level stack-based bytecode language, which
is run by the Ethereum Virtual Machine (EVM) included in every node within the
Ethereum blockchain network. To guarantee coherence across different copies of
the blockchain, EVM code is specified to execute deterministically. Smart contracts
in Ethereum should not be seen as representations of legal contracts that should be
‘fulfilled’ or ‘complied with’; rather, they are more like agents that can be invoked
within the Ethereum execution environment.

As shown in Fig. 2.8, a smart contract is deployed on the blockchain through
a contract creation transaction. The data payload of the transaction contains the
object code of the smart contract. The signature of the transaction sender authorizes
the transaction to create the smart contract on the blockchain. After the contract
creation transaction is successfully included in to the blockchain, the smart contract
is identified by a contract address. Every smart contract has a blockchain account
which can hold Ether (the Ethereum cryptocurrency) and internal state. Thus, an
Ethereum smart contract account contains:

• A piece of executable code
• An internal storage to store its internal state
• An amount of Ether, i.e. the contract balance

After a smart contract is successfully deployed on blockchain, blockchain users
can transfer Ether to the smart contract by using a basic monetary transaction.

Smart contracts are programs that need to be externally invoked. Blockchain
users can invoke the functions defined in the smart contract by sending contract-
invoking transaction to the address of the smart contract. The contract-invoking
transaction contains (1) the interface of the function being invoked and its param-
eters in the data payload and (2) an amount of Ether to pay for the execution of
the invoked functions. The signature of the transaction sender authorizes the data
payload of the transaction to execute a smart contract. The functions defined in a
smart contract can also be invoked by other smart contracts.

5https://solidity.readthedocs.io/.

https://solidity.readthedocs.io/
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2.2.4 Paying Fees in ‘Gas’

A smart contract on the Ethereum blockchain is locally executed by every miner,
and so consumes their computational resources. In a Turing complete language, it
is not always possible to predict the computational resources that will be required
by a program or even whether the program will terminate. It is important that
the replicated execution of a nonterminating program does not freeze the whole
network.

To limit the use of resources, and to compensate miners for the use of their
computational resources, Ethereum uses the concept of gas, as a fee proportional
to the required data storage and computation. In rough terms, there is a fixed gas
cost for each transaction, plus variable gas cost for data (proportional to its size)
and execution of a smart contract method (charged per bytecode instruction). There
is an additional gas cost for the deployment of new contracts. The Ethereum yellow
paper defines a detailed cost model. All costs in Ethereum follow a pricing table,
specified in the unit gas. Gas cost is converted to Ether according to a user-defined
gas price, i.e. how much Ether-per-gas the creator of a transaction is willing to
pay. By default, Ethereum clients set the gas price to a market rate, an average
over previously included transactions. The gas price can be set to 0, meaning the
transaction sender is not offering a fee. Intuitively, users set higher gas prices if
inclusion of their transaction is urgent for them and lower gas prices if inclusion can
take time or may fail altogether—but this intuition does not always match reality as
we discuss in Chapter 11.

Other than gas price, when users send contract-invoking transactions, a gasLimit
must be set, which bounds the computation for a smart contract. The miner who
successfully includes the transaction in the blockchain receives a transaction fee
corresponding to the amount of gas the execution has actually used, multiplied
by the gas price. An execution which requires more gas than gasLimit causes an
exception, and the state of the smart contract is rolled back to the state before the
execution.

To prevent denial-of-service attacks, Ethereum also defines a gas limit at the
block level: the sum of gas used by the transactions included in a block cannot
exceed this limit. The block gas limit is influenced by the miners, where each miner
winning a block can vote to increase, decrease, or keep the current block gas limit.
However, the block gas limit also limits the complexity for blocks which also bounds
throughput.

2.2.5 Decentralized Application (dapp)

With Ethereum and its smart contract capabilities, the idea of decentralized appli-
cations (dapps) has gained popularity. A dapp is an application whose core logic
resides in smart contracts and where the code is accessible to the users (typically
as open-source). Therefore, the users do not have to trust any single entity: they
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can inspect the code to understand what it does; and because it is run on top of a
blockchain system and is deterministic, they can trust in its faithful execution.

The backend of a dapp is executed in a decentralized environment. This is
different from the backend of normal apps which are executed on a centralized
server. A dapp, like a normal app, can have frontend code and user interfaces that
interact with its backend through an API. The frontend can be hosted as a website
on a centralized server. A dapp could also, like a normal app, use decentralized
data storage such as IPFS.6 State of the dapps7 is a directory of dapps running on
Ethereum. This directory is also recorded on the Ethereum blockchain.

2.3 Hyperledger Fabric

Hyperledger is an umbrella project of open-source blockchains and related tools.8

It is a global collaboration, hosted by the Linux Foundation since December
2015. Members are from domains such as finance, banking, Internet of Things,
supply chain, manufacturing, and technology. There are currently more than 185
members and 8 ongoing projects, including Hyperledger Fabric. Hyperledger Fabric
is a business blockchain framework, intended as a foundation for developing
blockchain-based applications with a modular architecture. Data can be stored in
multiple formats, and various consensus algorithms can be configured. Figure 2.9
gives an overview of Hyperledger Fabric system. More details can be found in the
Hyperledger documentation.9

... ...
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Fig. 2.9 Overview of Hyperledger Fabric system

6https://ipfs.io/.
7https://www.stateofthedapps.com/.
8https://www.hyperledger.org.
9https://hyperledger-fabric.readthedocs.io.

https://ipfs.io/
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https://www.hyperledger.org
https://hyperledger-fabric.readthedocs.io
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2.3.1 Permissioned Blockchain

Hyperledger Fabric is a private and permissioned blockchain. Members of a network
need to enrol through a trusted membership service provider (MSP). All the
participants of a Fabric network have known identities. Public keys are used as
cryptographic certificates tied to organizations, network components, and end users.
Data access control is applied on network and channel levels.

The concept of channels helps to address scenarios where privacy and confiden-
tiality are important and reduced transparency is acceptable. A channel allows a
group of participants to create a separate ledger of transactions, shared only with
a set of members for that channel. A channel might cover the entire blockchain
network, similar to a public blockchain system, or might include only a few
participants from the entire network.

Channels are important for systems where participants might be competitors
and do not want to disclose all of their transactions to each other. For example, a
company will not want to disclose the identity of its customers or the volume of its
sales to its competitors. If a company forms a channel with one of its customers, then
only those two participants and no others can see the transactions on the associated
ledger for that channel.

The ledger associated with a channel comprises two components: the world state
and the transaction log. The world state is the latest state of the contents of the
ledger. The transaction log records all historical transactions which have resulted
in the world state. The ledger of a channel also contains a configuration block that
defines information such as policies and access control lists.

2.3.2 Chaincode as Smart Contract

Hyperledger Fabric leverages container technology to host smart contracts called
chaincode that comprise the application logic of the system. Chaincode can be
implemented in programming languages such as Go or Java and is invoked through
a transaction proposal. The execution of chaincode is based on the world state stored
in the ledger for a channel.

2.3.3 Nodes

There are three types of nodes within a Hyperledger Fabric system: client, peer, and
orderer.

• Client: A client acts on behalf of an end user. It connects to peers to communicate
with the blockchain. A client node can create transactions and broadcasts
messages to Orderers (see below) through communication channels.
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• Peer: A peer node receives ordered state updates in the form of transactions from
the orderers, commits transactions, and maintains the state of the ledger. Some
peers can take a special role of endorser. Every transaction invoking particular
chaincode needs to be endorsed before being committed. Each chaincode might
specify an endorsement policy that defines the necessary and sufficient conditions
for valid transaction endorsement. Such endorsement might involve multiple
endorsers. In the case of deploying new chaincode through transactions, the
endorsement policy is applied to the system chaincode. System chaincode is a
system-level chaincode for management functions.

• Orderer: An orderer node validates the transactions based on the endorsement
policy and orders the transactions into a sequence before broadcasting them into
the network. Orderers provide shared communication channels to clients and
peers. Clients connected to a channel may broadcast transactions on the channel
which are then delivered to all peers within the channel by the orderers.

The ordering service provided by the orderers supports multiple channels,
similar to the topics of a publish/subscribe messaging pattern. Clients first
connect to a channel and can then send and receive transactions. Clients
connecting to one channel may be unaware of the existence of other channels.
Clients can connect to multiple channels.

2.3.4 Transactions

The life cycle of a Hyperledger Fabric transaction, as shown in Fig. 2.10, is different
from the life cycles discussed in Fig. 1.3 and Section 2.2.2. At a high level, the
life cycle of a transaction starts from a transaction proposal being created by an

Fig. 2.10 Hyperledger
transaction life cycle
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application client and sent to specific peers as endorsers. The endorsers verify the
signature of the initiator and execute the referred chaincode functions to prepare
the transaction. The result of the execution is a set of key-value pairs read from
the chaincode and a set of key-value pairs written into the chaincode. The proposal
response with the signature(s) of the endorsement is sent back to the client.

The client composes the endorsements into payload of the transaction before
broadcasting the transaction to an orderer. The orderer is responsible for transaction
validation, ordering transactions into blocks and delivering the blocks to all peers
on the channel. Once the peers receive transactions, they check the endorsement
policy to ensure that the correct peer(s) as endorser(s) have signed the result and
authenticate the signature(s) against the endorsements included in the transaction
payload. The peer(s) ensure data integrity of the transaction through checking that
the data that was read during chaincode execution has not been changed since the
time of endorsement, so that the valid execution result can be committed. If the data
that was read had been changed by other transactions, the transaction in the new
block is marked as invalid. In this case, the client is alerted and needs to handle the
error somehow.

2.3.5 Consensus

Based on the life cycle of transactions, consensus in Hyperledger Fabric requires
the full verification of transactions and is achieved if the order and/or a set of
transactions and execution results of the corresponding chaincode within a block
meet the policy criteria checks. These checks take place during the life cycle of a
transaction, which can be broken out into three stages: endorsement, ordering, and
validation.

• Endorsement is driven by the policy defining which peer(s) endorse a certain
transaction.

• Ordering accepts the endorsed transactions and orders the transactions into a
sequence to be committed to the corresponding ledger.

• The blocks of transactions are ‘delivered’ to all peers on the channel. Validation
checks the correctness of a set of ordered transactions within a block, considering
the endorsement policy and versioning checks for data integrity.

The modular architecture design of Hyperledger Fabric allows pluggable con-
sensus for all the three phases so that applications may use different models
for endorsement, ordering, and validation according to their requirements. Other
than endorsement, ordering, and validation, identity verification occurs during the
consensus process.
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2.4 Other Representative Blockchain Platforms

Similar to Hyperledger Fabric, Corda10 proposed by R311 also has ledgers shared
only between defined groups of parties. This is aimed to improve privacy and
scalability by reducing the replication of data across the network. Because these
systems do not implement a single global ledger, they are arguably not blockchains
but nonetheless still implement a kind of distributed ledger.

Ripple12 is a real-time gross settlement system, currency exchange, and remit-
tance network across financial institutions. Ripple uses a common ledger that is
managed by a network of independently validating servers that constantly compare
transaction records. These validating servers can belong to individuals or banks.

Various techniques have been proposed to preserve privacy on blockchain.
For example, Zcash13 encrypts payment information in transactions but uses a
cryptographic method to allow any node to nonetheless verify the validity of the
encrypted transactions. A zero-knowledge proof construction is used to allow the
blockchain network to maintain a secure ledger and enable private payment without
disclosing the parties or amounts involved. Monero14 uses other cryptographic tools
to shield sending and receiving addresses and transacted amounts.

2.5 Further Reading

A more comprehensive background of blockchain functionality, features, and
potential applications is discussed in Swan (2015). An early description of smart
contracts on blockchain can be found in Omohundro (2014). A number of other
books focus on the internal details of various blockchain platforms.

The Nakamoto proof-of-work consensus protocol, first used by Bitcoin, was
introduced in the original Bitcoin paper (Nakamoto 2008).

The Ethereum yellow paper defines a detailed cost model (Wood 2015–2018)
to compensate the data storage and computation power contributed by miners. The
GHOST (Greedy Heaviest Observed Subtree) protocol used by Ethereum was first
introduced in Sompolinsky and Zohar (2013) to tackle problems including network
propagation time of blocks, short inter-block times, and miner centralization.

The Hyperledger Fabric platform is described in more detail by Androulaki et al.
(2018) and in online documentation.15

10https://www.corda.net/.
11https://www.r3.com/.
12https://ripple.com/.
13https://z.cash/.
14https://getmonero.org/.
15https://hyperledger-fabric.readthedocs.io.
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Chapter 3
Varieties of Blockchains

Since the advent of Bitcoin in 2008, a diverse range of blockchains has emerged.
Blockchain has a complex internal structure and has many configurations and vari-
ants. When building applications based on blockchains, we need to systematically
consider the features and configurations of blockchains and assess their impact on
quality attributes for the overall systems. Since blockchains are still at an early stage,
there is little product data or reliable technology evaluation available to compare
different blockchains. The lack of product data and reliable technology evaluation
resources makes the comparison difficult.

In this chapter, we address the manifold varieties of blockchains by presenting a
design taxonomy that defines dimensions and categories for classifying blockchains
and ways of using them in systems. Taxonomies have been used in software
architecture to understand existing technologies. The compact framework provided
by a taxonomy allows architects to explore the conceptual design space and to
compare and evaluate design options. Our taxonomy captures major architecturally
relevant characteristics of various blockchains and indicates their support for various
quality attributes. This includes performance and quality attributes of blockchain-
based systems, as well as core concerns of blockchains like decentralization and
the data structure used. The taxonomy is informed by existing industrial products,
technical forums, academic literature, and our own experience of using blockchains
and developing prototypes.

3.1 Fundamental Properties of Blockchain

If data is contained in a committed transaction, it will eventually become in practice
immutable. The immutable chain of cryptographically signed historical transactions
provides non-repudiation of the stored data. Cryptographic tools also support data
integrity, the public access provides data transparency, and equal rights allows

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_3
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every participant the same ability to access and manipulate the blockchain. These
rights can be weighted by the compute power or stake owned by the miner. A
distributed consensus mechanism governs addition of new items; it consists of the
rules for validating and broadcasting transactions and blocks, resolving conflicts,
and the incentive scheme. The consensus ensures all stored transactions are valid
and that each valid transaction is added only once.

Trust in the blockchain is achieved from the interactions between nodes within
the network. The participants of blockchain network rely on the blockchain network
itself rather than relying on trusted third-party organizations to facilitate transac-
tions. These five properties (immutability, non-repudiation, integrity, transparency,
and equal rights) are the main properties supported in existing blockchains.

3.2 Decentralization

Decentralization is one of the distinguishing capabilities of blockchain technology,
but there are various aspects and varieties of decentralization. Decentralization
devolves responsibility and capability from a central location or authority. In a
centralized system, all users rely on a central authority to mediate transactions. For
example in a bank, customers rely on the bank’s systems to correctly adjust their
account balances when a bank transfer occurs. A central authority could manipulate
the whole system, including by directly updating backend databases or by upgrading
the software that implements the system. Thus, a central authority is a single point
of failure for a centralized system. In contrast, a fully decentralized currency system
like Bitcoin allows people to reach agreement on who owns what without having
to trust each other or a separate third-party. Such a system is highly available since
every full node in Bitcoin network downloads every block and transaction, checks
them against Bitcoin’s core consensus rules, and provides functionality to process
transactions. There are currently more than 9000 nodes in the Bitcoin network,1

although not all are full nodes that form the backbone of Bitcoin.
Table 3.1 represents a spectrum of (de)centralization, from full centralization

to full decentralization. The column ‘fundamental properties’ refers to the five
properties discussed in Section 3.1. In a system it is possible that some components
or functions are decentralized while others are centralized.

There are two types of centralized systems. In the first there is a monopoly service
provider, including governments and courts within a jurisdiction, and business
monopolies. In the other type, there are competing alternative providers, such as
banks, online payments, or cloud computing providers. Any centralized system is a
single point of failure for its users. However, where there are alternative providers,
the failure of a single service provider only affects its users. Users may switch
providers or may be able to use multiple providers.

1https://bitnodes.21.co/nodes/.

https://bitnodes.21.co/nodes/
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At the other end of the spectrum, fully decentralized systems include permission-
less public blockchains, such as Bitcoin and Ethereum. Permission-less public
blockchains are completely open: new users can at any time join the network,
validate transactions, and mine blocks. Decentralized systems using anonymous
validators need to protect against Sybil attacks, where attackers create many hostile
anonymous nodes. Bitcoin partly guards against this through its proof-of-work
mechanism, so that it is not the total number of nodes that is important for
integrity but rather the total amount of computational power. While it is easy for
an attacker to create anonymous nodes, it is not easy for them to amass large
amounts of computational power. Any system can be defeated if an attacker controls
a majority of authority (nodes, computational power, or stakeholding). Game-
theoretic attacks can change this threshold, requiring a higher (e.g. 66%) majority
to maintain integrity. There is a spectrum of possibilities between centralization
and decentralization. There are two dimensions to classify a blockchain, including
permission and the type of deployment. These two dimensions are discussed in the
next two subsections.

Another hybrid approach is the use of off-chain transaction protocols to progress
transactions between parties and then later to reconcile the effects of those protocol
executions on-chain. The Bitcoin Lightning network2 moves some transactions off-
chain by establishing a multi-signature transaction between two participants as a
micropayment channel to transfer value off-chain. Once both sides wish to close the
micropayment channel and finalize the value transfer, a transaction is submitted
to the global Bitcoin blockchain. Such bidirectional channels can be connected
to establish a payment network leveraging Bitcoin. The intermediate transactions
occurring in the payment channel are not included in the blockchain. Raiden3 is a
similar project on Ethereum, using its smart contract facilities.

3.2.1 Permission

Instead of anonymous public participation, a blockchain may be permissioned
in requiring that one or more authorities act as a gate for participation. This
may include permission to join the network (and thus read information from
the blockchain), permission to initiate transactions, or permission to mine. Some
permissioned blockchains, e.g. MultiChain,4 allow more fine-grained permissions,
such as the permission to create assets. Permissioned blockchain networks include
Ripple5 and Eris.6 The code for public blockchains can also be deployed on private

2https://lightning.network/.
3https://github.com/raiden-network/raiden.
4http://www.multichain.com/.
5https://ripple.com/.
6https://monax.io.

https://lightning.network/
https://github.com/raiden-network/raiden
http://www.multichain.com/
https://ripple.com/
https://monax.io
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networks to create a kind of permissioned blockchain using network access controls.
Permission information can be stored either on-chain or off-chain.

Permissioned blockchains may be especially suitable in regulated industries. For
example, banks are required to establish the real-world identity of transacting parties
to satisfy Know Your Customer (KYC) regulation. In contrast, a transaction on
a permission-less blockchain across jurisdictional boundaries can circumvent this
and undermine regulatory controls. Permissioned blockchains may be able to better
control access to off-chain information about real-world assets.

There are often trade-offs between permissioned and permission-less block-
chains including transaction processing rate, cost, censorship resistance, reversibil-
ity, finality, and the flexibility in changing and optimizing the network rules. The
suitability of a permissioned blockchain may also depend on the size of the network.
Nonetheless, the permission management mechanism may itself become a potential
single point of failure, not just operationally but also from a business perspective.

3.2.2 Deployment

When using a blockchain, there are different types of deployments, including public
blockchain, consortium/community blockchain, or private blockchain. An overview
is given in Table 3.2.

Most digital currencies use public blockchains, which can be accessed by anyone
on the Internet. Using a public blockchain results in better information transparency
and auditability but sacrifices performance and has a different cost model. In a public
blockchain, data privacy relies on encryption or cryptographic hashes.

A consortium blockchain is typically used across multiple organizations. The
consensus process in a consortium blockchain is controlled by pre-authorized nodes.
The right to read the blockchain may be public or may be restricted to specific
participants. In a private blockchain network, write permissions are often kept
within one organization, although this may include multiple divisions of a single
organization.7

Whether using a consortium blockchain, private blockchain, or permissioned
public blockchain,8 a permission management component will be required to autho-
rize participants within the network. Private blockchains are the most flexible for
configuration because the network is governed and hosted by a single organization.
Many blockchain platforms support deployment as consortium blockchains or
private blockchains, e.g. MultiChain and Eris.

7There is a grey area between consortium blockchains and private blockchains, and the differences
may be more administrative than technical. Nonetheless we distinguish them here because at their
extremes they have architectural differences.
8Ripple can arguably be seen as a permissioned public blockchain.
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Table 3.2 Blockchain deployment (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Deployment option Fundamental properties Cost efficiency Performance Flexibility

Public blockchain ⊕⊕⊕ ⊕ ⊕ ⊕
Consortium/community
blockchain

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Private blockchain ⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕
© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

Table 3.3 Ledger structure (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Option Fundamental properties Cost efficiency Performance Flexibility

Global list of blocks
(Bitcoin)

⊕⊕⊕ ⊕ ⊕ ⊕

Global DAG of blocks
(Hashgraph)

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Global DAG of
transactions (IOTA)

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Restricted shared
ledgers (Corda)

⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

3.3 Ledger Structure

The ledger can be structured in different ways; Table 3.3 provides an overview.
In Bitcoin, the history of all transactions is captured in the blockchain structure.
This is a single global list (chain) of lists (blocks) of transactions, as discussed in
Chapters 1 and 2. Bitcoin nodes actually record the blockchain as a tree of blocks,
where shorter branches attached to the main chain represent alternative competing
histories. However, the tree data structure is relevant mainly for the nodes operating
the blockchain and determining consensus; under the logical view from a user’s
perspective, the blockchain is a list of blocks. This is similar for Ethereum.

Other blockchain and distributed ledger systems have different data structures.
For example, the logical view of transactions recorded in Hashgraph9 is based on
a directed acyclic graph (DAG) of blocks, rather than a list. Somewhat similarly,
IOTA10 also uses a DAG but of individual transactions rather than blocks of
transactions.

These systems all maintain a single global transaction history. Other distributed
ledger systems such as Hyperledger Fabric and Corda have been proposed where
there are essentially many small ledgers, shared only between parties of interest

9https://www.hederahashgraph.com/.
10https://www.iota.org/.

https://www.hederahashgraph.com/
https://www.iota.org/
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who are authorized to view the transactions recorded in those ledgers. For the Corda
distributed ledger, the abstract logical view of transaction history is of a global graph
of transactions. However, transactions are only distributed to parties of interest;
special agents (notaries) can be used to further limit the distribution of transactions
while attesting to the integrity of unseen parts of the transaction graph. So although
there is notionally a global graph of transactions, the view that most parties see
is a collection of small ledgers, each shared with their related business contacts.
Hyperledger Fabric is somewhat similar, because parties also see a collection of
small ledgers shared with related business contacts (via ‘channels’). However,
Fabric has a more rigid transaction distribution policy, isolating transactions within
the channels.

3.4 Consensus Protocol

The choice of consensus protocol impacts security and scalability. An overview
is given in Table 3.4. Once a new block is generated by a miner, the miner
propagates the block to its connected peers in the blockchain network. However,
miners may encounter different competing new blocks and resolve this using the
blockchain’s consensus mechanisms. Usually the approach is fixed for a particular
blockchain; but Hyperledger Fabric deviates from this norm, as a framework with a
modular architecture that caters for pluggable implementations of various consensus
protocols.

The typical overall approach is called Nakamoto consensus, as introduced in
Section 2.1.5. This relies on participants selecting as authoritative the longest chain
of blocks they have observed at every point in time. In Bitcoin, new blocks are
generated through a proof-of-work mechanism. Proof-of-work uses a cryptographic
puzzle which is easy to verify, but solving it is difficult and takes effectively random

Table 3.4 Consensus protocol (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Fundamental
Option properties Cost efficiency Performance Flexibility

Security-wise Proof-of-work ⊕⊕⊕ ⊕ ⊕ ⊕
Proof-of-
retrievability

⊕⊕⊕ ⊕ ⊕ ⊕

Proof-of-stake ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕⊕
Practical Byzantine
Fault Tolerance
(PBFT)

⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕

Scalability-wise Bitcoin-NG ⊕⊕⊕ ⊕ ⊕ ⊕
RBBC ⊕⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)
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time. Bitcoin miners compete to solve such a puzzle for each block, using large
amounts of computer power (and hence electricity) to increase their chances of
winning the competition for the block. The investment required by miners for
this acts to align their incentives with the good operation of the overall system.
There are various proof-of-work mechanisms, such as Ethash11 used by Ethereum
and Hashcash12 used by Bitcoin. The work done in proof-of-work systems can
sometimes be put to good use. For example, the mechanism in Primecoin13

generates prime number chains which are of interest to mathematical research.
Permacoin uses ‘proof-of-retrievability’ to repurpose Bitcoin’s mining resources to
distributed storage of archival data.

Proof-of-stake is an alternative mechanism for Nakamoto consensus, which
selects the next mining node based on the control of the native digital currency
of the blockchain network. For example, the miners in Peercoin14 need to prove the
ownership of a certain amount of Peercoin currency to mine blocks. Thus, proof-of-
stake naturally aligns the incentives of digital currency holders in the blockchain
with the good operation of the blockchain. There are various proof-of-stake
protocols, e.g. Tendermint15 used in Eris and Casper16 for Ethereum. These have
different design goals, favouring some non-functional properties over others. Proof-
of-stake does not necessarily select the next miner based on largest stakeholding,
e.g. Nxt17 also uses a random factor, and Peercoin combines randomization and coin
age. BitShares18 uses delegated proof-of-stake, where the accounts may delegate
their stake to other accounts, rather than participating in the process of validating
transactions directly. The representatives take turns in a round-robin manner, signing
blocks. Compared with proof-of-work, proof-of-stake is more cost-efficient because
much less computational power is used in mining and latency is also shorter.
However, passive holding of assets may become harder.

The Practical Byzantine Fault Tolerance (PBFT) protocol has been applied for
consensus in permissioned blockchains, e.g. in Stellar.19 PBFT ensures consen-
sus despite arbitrary behaviour from some fraction of participants. Compared to
Nakamoto consensus, it is a more conventional approach within distributed systems.
Roughly speaking, PBFT-based blockchains offer a much stronger consistency
guarantee and lower latency but for a smaller number of participants. The core
of Tendermint is also a PBFT protocol but uses a proof-of-stake mechanism to
prevent Sybil attacks. PBFT requires that all participants must agree on the list of

11https://github.com/ethereum/wiki/wiki/Ethash.
12https://en.bitcoin.it/wiki/Hashcash.
13http://primecoin.io/.
14http://peercoin.net/.
15http://tendermint.com/.
16https://github.com/ethereum/casper/.
17https://nxt.org/.
18https://bitshares.org/.
19https://www.stellar.org/.

https://github.com/ethereum/wiki/wiki/Ethash
https://en.bitcoin.it/wiki/Hashcash
http://primecoin.io/
http://peercoin.net/
http://tendermint.com/
https://github.com/ethereum/casper/
https://nxt.org/
https://bitshares.org/
https://www.stellar.org/
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participants in the network. Thus, the protocol is normally only used in permissioned
blockchains.

Some new protocols have been proposed to improve scalability. Bitcoin-NG
decouples Bitcoin’s operation into two planes: leader election and transaction
serialization. Once a leader is selected, it is entitled to serialize transactions until the
next leader is selected. Thus, the leader election in Bitcoin-NG is forward-looking
and ensures that the system is able to continually process transactions. Another new
protocol is used in the Red Belly Blockchain (RBBC). This algorithm is a kind
of democratic Byzantine consensus approach in not requiring leader nodes. The
approach starts with submitted transactions being collected by a set of proposers.
These nodes collectively decide on a proposed set of transaction to send to a verifier
nodes, who enforce consensus using hashes exchanged for the proposed sets of
transactions.

3.5 Block Configuration

Block configuration concerns options for the size (number/complexity of transac-
tions) allowed in blocks and the frequency by which blocks are generated. These
choices can impact scalability in terms of transaction processing rate. An overview
is given in Table 3.5.

One configuration change would be to adjust mining difficulty to shorten the
time required to generate a block, thus reducing latency and increasing throughput.
However, a shorter inter-block time would lead to an increased frequency of
forks. Ethereum has a much shorter inter-block time (10–20 s) than Bitcoin, while
still using Nakamoto consensus and proof-of-work. The increased frequency of
forks (‘uncle blocks’ in Ethereum’s terminology) leads to users waiting for more
confirmation blocks than in Bitcoin, though still achieving overall lower transaction
latency.

Another important block configuration parameter concerns block size. Depend-
ing on the blockchain used, this is specified differently, e.g. as block size limit in
Bitcoin (data size in MB) or as block gas limit in Ethereum (limiting the complexity
of the contained transactions). For example, there are some proposals for Bitcoin to
increase its block size from 1 to 8 MB, to include more transactions into a block and

Table 3.5 Block configuration (⊕, less favourable; ⊕⊕, more favourable)

Impact

Option Fundamental properties Cost efficiency Performance Flexibility

Original block
size and
frequency

⊕⊕ n/a ⊕ n/a

Increase block
size/decrease
mining time

⊕ n/a ⊕⊕ n/a

© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)
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thus increase maximum throughput. The decision on the size of blocks is subject
to a trade-off between speed of replication, inter-block time, and throughput and
works as follows. When a new block has been proposed, processing nodes need
to select a set of transactions from the transaction pool/mempool and validate and
execute those. This cannot be done before observing the latest block, because the
state changed as a result of the new block and may render some transactions invalid
or alter their effects. Once that is complete, the block can be formed, and, in the
case of proof-of-work consensus, mining can start. On the one hand, if the block
can be too big or too complex, transaction processing may take too much time.
Take the extreme example of having no limit; then, the system could be subject to
a DoS attack by flooding it with transactions, such that the inter-block time would
rise to unacceptable levels. Very big blocks also take longer to replicate among the
full nodes. On the other hand, high limits can result in higher throughput. For these
reasons, block limits should be set with care in private and permissioned networks.
On the public Bitcoin blockchain, the long-time limit of 1 MB sparked significant
controversy20 and led to an effective increase to 2–4 MB. Public Ethereum’s block
gas limit has changed a number of times (see also Section 11.6.2) and is about eight
million gas at the time of writing.21 On public proof-of-work blockchains, high
block limits also increase the risk of empty blocks. Consider the case where miner
A tries to include many transactions and miner B tries to mine empty blocks. While
A is processing transactions, B is already working on its proof-of-work, thereby
increasing its relative chances to find a new block first. If block limits and block
mining rewards are high, it might actually be economical to mine as many empty
blocks as possible. Unfortunately, that also deteriorates the value of the network,
because now it does not process new transactions anymore.

3.6 Auxiliary Blockchains

When building and deploying a new blockchain, it might be combined with or built
on an existing blockchain, thus forming an auxiliary blockchain. Different strategies
can be used to achieve security and scalability. An overview is given in Table 3.6.

For security, the new blockchain can be aligned with public blockchains, utilizing
existing infrastructure, resources, and trust. The first option is merged mining, which
reuses the mining power of an existing public blockchain to mine and secure the new
blockchain. In this case, a proof-of-work found by a miner of the public blockchain
is used by both blockchains. First, the miner produces a transaction set for both
blockchains. The hash of the block produced for the new blockchain is added
to the public blockchain. Then, once the miner finds a proof-of-work solution at
the difficulty level of either blockchain, the proof-of-work is combined with the

20https://en.bitcoin.it/wiki/Block_size_limit_controversy.
21https://etherscan.io/chart/gaslimit.

https://en.bitcoin.it/wiki/Block_size_limit_controversy
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Table 3.6 Auxiliary blockchains (⊕, less favourable; ⊕⊕, neutral; ⊕⊕⊕, more favourable)

Impact

Fundamental
Option properties Cost efficiency Performance Flexibility

Security-wise Merged mining ⊕⊕⊕ ⊕⊕ ⊕ ⊕
Hook into
popular
blockchain at
transaction level

⊕⊕ ⊕ ⊕⊕ ⊕⊕⊕

Proof-of-burn ⊕ ⊕ ⊕⊕⊕ ⊕⊕
Scalability-wise Sidechains ⊕⊕⊕ ⊕ ⊕ ⊕

Multiple private
blockchains

⊕ ⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕

Mini-blockchain ⊕⊕ ⊕⊕ ⊕ ⊕⊕
© 2017 IEEE. Reprinted, with permission, from Xu et al. (2017)

transaction set and submitted to the corresponding blockchain. Namecoin is the first
blockchain that uses merged mining with the Bitcoin blockchain. Merged mining
reuses an established blockchain network. It might be difficult initially to persuade
the miners of an existing blockchain to join a new blockchain network.

A more loosely coupled way is to hook the new blockchain into a public
blockchain, by periodically adding hashes of the new blockchain to transactions of
the public blockchain. For instance, Factom22 anchors into the Bitcoin blockchain
by submitting a transaction to the Bitcoin blockchain every 10 min, with the current
hash of the Factom blockchain.

The third option is proof-of-burn. The purpose of proof-of-burn is to verifiably
destroy tokens on the existing chain rather than minting new tokens on the new
chain. To ‘transfer’ tokens from a public blockchain to the new blockchain, the
participants need to provide proof that their tokens were sent to a verifiably unspend-
able address. The burnt tokens, originally mined by proof-of-work, represent the
corresponding computational power. Proof-of-burn can be used for bootstrapping a
new cryptocurrency, e.g. Counterparty,23 as it ensures serious commitment.

Auxiliary blockchains can also be used to improve scalability. Rather than using
a unique chain to record all types of transactions, multiple blockchains can be
used to isolate information of separate concerns and with different characteristics
and therefore improve scalability. Different mechanisms have been proposed to
support interaction across multiple blockchains. One of the mechanisms is to use
an off-chain hash lock. In the Bitcoin ecosystem, using a hash lock with contracts
can enable atomic cross-chain trading,24 which allows one cryptocurrency (e.g.
the Bitcoin cryptocurrency, BTC) to be traded for another cryptocurrency (e.g.

22http://factom.org/.
23http://counterparty.io/.
24https://en.bitcoin.it/wiki/Atomic_cross-chain_trading.
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tokens on a Bitcoin sidechain). This mechanism is also applicable in the Ethereum
ecosystem.25

The first option for scalability is to use sidechains. Sidechaining is a mechanism
that allows tokens of one blockchain to be securely transferred and used in another
blockchain; eventually, they can be moved back to the original chain securely. The
original chain is called main chain, and the one that accepts the tokens from the
original chain is called sidechain. The second option is to have multiple private
chains, where each of the private chains could link with a public blockchain. With
sidechains, there is a layer of separation between two blockchains, which means
that the main chain can be protected from issues or damages on the sidechains.
Sidechains can help to build a blockchain ecosystem based on a popular main
blockchain, without significantly increasing the load on the main chain. However,
the clients of sidechains may become complex, because they typically need to be
able to process transactions from the main chain and the sidechain.

There are two ways of sidechaining: unilaterally pegged sidechain and bilaterally
pegged sidechain. For a unilateral (or one-way) peg, the interaction is only from
the main chain to the sidechain, e.g. through proof-of-burn. For a bilateral peg, the
interaction is bidirectional. One mechanism to secure bilateral pegged sidechains
is essentially a voting system, where a group of custodians cast votes on when
to lock and unlock tokens on one blockchain and where to send tokens on the
other blockchain. The first option is to have an exchange holding the locked
tokens from one blockchain and the unlocked equivalent tokens from the other
blockchain. The exchange would locally enforce the promise of locking the tokens
from one blockchain before unlocking the tokens of the other blockchain. This
design introduces a central trusted third-party to control the exchange. A better
option is to have a group of notaries control a multi-signature wallet, where a
majority has to approve unlocking tokens. This is more decentralized than the first
option but still centralizes control to a degree. To achieve better decentralization, the
notaries could be from different jurisdictions and geographies with good reputation
and good security.

The full nodes of most blockchain networks need to keep all historical transac-
tions and the state of blockchain network, which requires sizeable storage space.
For example, Bitcoin and Ethereum require more than 200 GB26 and 600 GB27 of
storage space, respectively, at the time of writing, and these sizes keep growing. To
reduce the storage burden of blockchain participants and address other scalability
concerns, applying the concept of sharding to blockchain has been proposed.
Sharding means to divide the state of blockchain into pieces. The participating
blockchain nodes only hold data of some shards instead of the complete blockchain
data structure. There are two types of sharding, including transaction sharding and

25https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/.
26https://bitnodes.earn.com/dashboard/bitcoind/.
27https://bitinfocharts.com/ethereum/.

https://dappsforbeginners.wordpress.com/tutorials/two-party-contracts/
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state sharding. Elastico and Zilliqa28 support transaction sharding. Ethereum 2.029

plans to improve scalability of its public blockchain through sharding based on
structuring the network into two layers.

Instead of keeping all transaction information, a mini-blockchain scheme pro-
posed by Cryptonite30 periodically forgets old transaction history. The Cryptonite
network maintains an account tree that holds the balance of all addresses and a
separate proof chain that stores all the historical block headers. The account tree
is updated according to the transactions, and after a period of time, the transactions
are forgotten by the network. Neither off-chain transactions nor the mini-blockchain
stores all the transactions on the blockchain. Thus, both sacrifice the fundamental
properties of blockchain. The mini-blockchain saves space by forgetting historical
transactions, but its performance is not necessarily better because the consensus
mechanism is still the same.

3.7 Anonymity

Although the Bitcoin blockchain is perceived to be anonymous, research has
shown that Bitcoin transactions can be linked to compromise the anonymity of
Bitcoin users. Different techniques have been proposed to preserve anonymity
on blockchain. Zcash,31 also called Zerocash or Zerocoin, encrypts the payment
information in the transactions and uses a cryptographic method to verify the
validity of the encrypted transactions. A zero-knowledge proof construction is used
to allow the blockchain network to maintain a secure ledger and enable private
payment without disclosing the parties or amounts involved.

Mixing services offer an alternative method for anonymization. A mixing service
groups several transactions together so that a payment contains multiple input
addresses and multiple output addresses. Anonymity is preserved because it is
hard to track which output address is paid by which input address. To further
improve the way that mixing service operates, a series of mixing services can be
linked sequentially. If the mixed transactions are uniform in value, the traceability
between input and output addresses is minimized. Uniform values can be achieved
by using standardized denominations, similar to bank notes and coins in traditional
cash. A centralized mixing service requires a third-party to operate, e.g. CoinJoin32

and Blindcoin. Distributed mixing services, on the other hand, do not rely on a
single third-party, e.g. CoinSwap.33 Some blockchains have a kind of native, built-in

28https://zilliqa.com/.
29https://github.com/ethereum/wiki/wiki/Sharding-FAQs.
30http://cryptonite.info/.
31https://z.cash/.
32https://bitcointalk.org/index.php?topic=279249.0.
33https://bitcointalk.org/index.php?topic=321228.0.
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https://github.com/ethereum/wiki/wiki/Sharding-FAQs
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https://z.cash/
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0
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mixing service, including Dash and Monero. Dash pre-anonymizes funds of users
through mixing rounds, so that the funds can later be spent without delay.34 In
contrast, Monero uses ring signatures, such that the sender of a transaction cannot
be identified among a group of possible senders.

3.8 Incentives

Blockchains and their applications (especially on public blockchains) introduce
financial incentives in the cryptocurrencies of the respective networks. Incentives
are paid to make miners to join the network, validate transactions, generate blocks,
and (where applicable) execute smart contract functions correctly. For example,
in Bitcoin, miners have two incentives: the reward for generating new blocks and
the fees associated with transactions. Miners in Ethereum also charge a fee to
execute smart contracts. Enigma35 has a fixed price for storage, data retrieval, and
computation within the network. Enigma also requires a security deposit for nodes
to join the network. If a node is found to lie, its deposit will be split among the
honest nodes.

3.9 Summary

Blockchain platforms can have various configurations and design options. Using
blockchain in different scenarios requires the comparison of blockchain options
and products with different implementations and configurations. In this chapter,
we discussed a taxonomy of blockchain systems. The taxonomy can be used when
comparing blockchains and assist in the design and evaluation of software archi-
tectures using blockchain technology. Our taxonomy captures major architectural
characteristics of blockchains and the impact of different decision decisions. This
taxonomy is intended to help with important architectural considerations about the
performance and quality attributes (e.g. availability, security, and performance) of
blockchain-based systems.

3.10 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2017).
Taxonomies have long been used in the software architecture community to

understand existing technologies (see, e.g. Mehta et al. 2000; Gorton et al. 2015).

34https://docs.dash.org/en/latest/introduction/features.html#privatesend.
35https://www.media.mit.edu/projects/enigma/overview/.
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From a software architecture perspective, blockchain can also be characterized as
a software connector (Xu et al. 2016), which has a complex internal structure and
many configurations and variants. Blockchain is a decentralized system that can be
defeated unless there is a majority of honest or favourable authority (computational
power, stakeholding, etc., depending on the consensus mechanism). Eyal and Sirer
(2018) show that game-theoretic attacks can change this threshold for proof-of-
work, requiring a higher (e.g. 66%) majority to maintain integrity and prevent
double-spending attacks. More definitions of different types of blockchain and
discussion on the trade-offs between them can be found in Swanson (2015) and
Buterin (2015).

Nakamoto consensus provides probabilistic immutability. There is always a
chance that the most recent few blocks get replaced by a competing chain fork.
The impact of inter-block time on the frequency of forks is discussed in Decker and
Wattenhofer (2013). A detailed comparison between proof-of-work and proof-of-
stake can be found in Gervais et al. (2016). Permacoin’s ‘proof-of-retrievability’
is discussed in Miller et al. (2014). Discussion on PBFT-based blockchains can
be found in Vukolić (2015). The Red Belly Blockchain (Crain et al. 2017) uses
a new kind of democratic Byzantine consensus protocol. Some protocols have been
proposed to improve scalability, for example, Bitcoin-NG (Eyal et al. 2016) and the
Bitcoin Lightning network (Poon and Dryja 2016).

More information on sidechaining can be found in Back et al. (2014). Block-
chains that apply sharding technology are discussed in Luu et al. (2016) and Danezis
and Meiklegohn (2016).

Detail of Blindcoin can be found in Valenta and Rowan (2015).



Chapter 4
Example Use Cases

To convey a more concrete picture of applications of blockchain, this chapter
presents four exemplar use cases which illustrate some of the techniques and
considerations discussed in the previous chapters. These use cases are also used as
running examples throughout the book, but their details are not strictly necessary for
understanding later parts of the book. For every use case, we give a brief background
and describe their key non-functional requirements.

4.1 Agricultural Supply Chains

In manufacturing, retail, and agricultural industries, supply chains are critical in
the movement of goods and services across organizational boundaries. Supply
chain contracts are complex, dynamic, multiparty arrangements, with regulatory and
logistical constraints. They often cross jurisdictional boundaries. The information
exchange in a supply chain can be as important as the physical exchange of goods.
For example, customs inspections would not start until both the physical goods
and the information about those goods are present. Confidence in supply chain
documentation can expedite customs and biosecurity processes, reduce risk and
insurance costs, and be used as leverage in trade finance. Payments are made
between parties at many points in the supply chain.

For agricultural food products, being able to tell where ingredients were grown
and how products were processed and distributed can be important in establishing
confidence in food safety, creating and building high-quality brands, reducing fraud,
and improving supply chain efficiency. There are many stakeholders in an agricul-
tural supply chain, ranging from producers to transport providers, sorting/processing
facilities, wholesalers, distributors, retailers, and consumers. In international supply
chains, there are also stakeholders related to customs and biosecurity. A simplified
configuration of some stakeholders and functions is shown in Fig. 4.1.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_4
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Producer Processor
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Wholesaler

Retailer

Food service

Fig. 4.1 Stakeholders in a simple agricultural supply chain. © 2017 by the Commonwealth
Scientific and Industrial Research Organisation, reprinted with permission

The information systems supporting supply chains normally reside at the indi-
vidual supply chain participants and are integrated to varying degrees, i.e. from no
digital integration to machine-readable barcodes that can be understood by a number
of participants, through to full system integration with digital message exchanges.

4.1.1 Key Non-functional Requirements

• Interoperability: A huge challenge in logistics is to coordinate information
exchange across the many different kinds of goods, modes of transport, and
information systems. Individual shipments can be aggregated into larger con-
signments, which means tracing information about the status of goods can require
integration of different interlinked information sources.

• Latency: The exchange of physical goods must sometimes wait upon exchange
of documentation associated with the delivery. Information exchange should not
introduce significant additional delays at these points.

• Integrity: Supply chain quality and provenance require that information about
goods and supply chain events cannot be falsified or created without proper
authority.

• Confidentiality: Some information in supply chain documentation should be
held commercial-in-confidence. Even metadata can expose aggregate trade flows
which can be commercially sensitive. However, because of long supply chains
and the use of subcontractors, parties’ interests in information about supply
chain events may extend beyond the parties directly involved in that event.
Balancing transparency and commercial confidentiality is a complex business
model problem.

• Scalability: There are many supply chain processes in progress at any time across
a large number of different parties. Each process instance creates a large number
of events, although not all events are relevant to all participants. A system must
scale to handle the total throughput of transactions, with parties using resources
in proportion to their level of involvement in the process.
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4.1.2 Conventional Technology

Traditionally, supply chain information is recorded separately by each entity in the
chain. Each participant only sees the information they are a direct party to. As supply
chain systems have become more digitized, information sharing has become more
common. Standards such as GS1’s EPCIS (Electronic Product Code Information
Services) define uniform schemes for representing supply chain events. This can
help parties in a supply chain to record and exchange information.

Figure 4.2 depicts a design for a supply chain system using EPCIS and other data
with conventional technologies. All EPCIS data is sent to a central event aggregation
server for an agreed portion of the supply chain. A group of supply chain participants
agree on a trusted party to operate and control access to the aggregation server. Note
that this design would be an advance over many current supply chain systems, but
it has been implemented in some industrial settings. Note also that the centralized
server creates a risk as a single point of failure, either for operational reasons or
for business reasons. (Business reasons may include complete business failures or
perhaps merely unfavourable changes in pricing or terms of use.)

Supply chain events are not the only type of information that needs to be
exchanged. Other documents may include letters of credit, bills of lading, booking
confirmations, arrival notices, container releases, terminal load lists, delivery orders,
tax invoices, and so on. These other types of documents are normally kept locally to
the systems of the different supply chain participants and exchanged directly using

Fig. 4.2 Model of supply chains using conventional event aggregation server and point-to-point
integration. © 2017 by the Commonwealth Scientific and Industrial Research Organisation,
reprinted with permission
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point-to-point integration between parties. Currently, it can be hard to guard against
fraud that uses forged or tampered documents.

4.1.3 A Blockchain Solution

One possible alternative solution using blockchain is to control the execution of
the process of a supply chain using smart contracts. A group of participants that
want to implement a shared supply chain process first agree on a design for the
collaborative process that regulates how their interactions should take place. The
controls for this process are implemented using smart contracts, and the participants
coordinate the progress of that process by calling those smart contracts in turn. The
smart contract can enforce the process as follows. First, it can reject messages if they
arrive at the wrong point in the process. Second, messages are only accepted from
the participant who is authorized to send them. Third, conditions can be specified
within the process model and can be executed in smart contract code directly. So
particular process branches will be automatically activated when their conditions
are met.

Consider an example: containerized export of wine from a rural Australian
producer. This starts when the producer initiates a shipment and ends when the
container is on a ship. One process instance deals with exactly one container, and
once the container number is assigned, it can be used as an identifier of the process
instance. Figure 4.3 shows the process model.

These smart contracts can be generated automatically from process models, as
we discuss in Chapter 8. In the resulting system, the supply chain participants
interact with each other by sending messages through the blockchain. To facilitate
interaction through blockchain, so-called trigger components act as bridges between
the blockchain and enterprise applications. The trigger can translate conventional
service calls to blockchain transactions and vice versa. This can keep the imple-
mentation cost relatively low. For message formats, we can use the same standards
as in the conventional design, i.e. GS1 EPCIS.

4.1.4 Non-functional Property Discussion

Interoperability Both designs use the GS1 EPCIS standard for events. The first
design requires point-to-point integration between any two participants for other
documents. Extending the supply chain to a new participant requires integration
of that participant’s system with all participants that need to exchange documents
directly with the new participant. The second design requires the same amount
of integration initially: the data formats also need to be agreed upfront. However,
each new participant only needs to integrate their systems once, with the blockchain
process, and thus the overall integration burden is reduced.
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Fig. 4.3 Process model of an agricultural export supply chain process. FF freight forwarder, TP
transport provider, P producer. Notation: BPMN. © 2017 by the Commonwealth Scientific and
Industrial Research Organisation, reprinted with permission

Latency Supply chains typically involve the physical movements of goods, so
many latency requirements on information transfer are usually on the order of
minutes to hours. Neither of the designs should suffer from latency exceeding
these time frames. However, at points of handover of goods, there may be low
latency requirement for confirmation of receipt of goods. Commit times on public
blockchains are likely to be too long for this, but it may be possible to instead
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provide cryptographically signed receipts off-chain, with the delivery agent able
to lodge those to the blockchain at a later time.

Integrity The first design relies on a trusted party to operate the aggregation server
and is subject to the possibility of manipulation with a low chance of detection.
Integrity is a strong inherent feature of blockchains: information captured as part
of committed transactions would be exceedingly hard to change. If large blocks of
data (such as photos or video) need to be stored, this could be done off-chain, with
integrity preserved by storing a cryptographic hash of this data on-chain. This allows
detection of alterations or corruption of the off-chain data, but increases design
complexity.

Scalability In both designs, each party has to deal with the scalability of their own
enterprise applications, which we do not discuss here. Instead, we focus on scala-
bility of the components shared by all parties. In the first design, this is the central
aggregation server. If all participants publish all event data for item movements,
this might become a bottleneck. There are many design options available to address
scaling of web-based centralized information systems, including filtering to only
publish events that are relevant for other parties and using load balancing services
to federate data access across multiple aggregation servers.

In the second design, the component shared by all participants is the blockchain.
Scalability of reading from the blockchain can be good, since each participant can
hold their own full copy of the blockchain. For writing new transactions and smart
contract method calls, scalability is currently limited on public blockchains. For this
design, we propose using a consortium blockchain, where transaction volumes can
be controlled and where other technical options for block formation and consensus
are available to improve performance. As with the first design, only relevant events
should be stored on-chain. In the second design, communication is also limited to
the messages exchanged as part of the collaborative process execution. Throughput
scalability can be achieved by careful design and performance tuning. As discussed
in the previous chapter, specific types of blockchains that do not use Nakamoto
consensus have been designed for private or consortium blockchains with high
scalability requirements.

Confidentiality Confidentiality requirements for supply chain data are not the
same across industries or participants. This affects both designs: for a specific
supply chain and a specific set of participants, the confidentiality requirements
need to be formulated and analysed, and potentially the design needs to be adapted
accordingly. The main trade-off is between the benefits of sharing data within
the group of collaborators—visibility and cross-party optimizations are impossible
without that—retaining confidentiality between competitors where needed. Supply
chain information can be commercial-in-confidence. This may include the identities
of participants, trade volume, prices, and delivery times.

While it is possible to restrict access to the aggregation server in the first design
and the consortium blockchains in the second design, it should be expected that
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for some supply chain roles multiple competing participants have access to the
same system. Even a private blockchain does not protect commercial-in-confidence
information. Unless the supply chain is entirely vertically integrated within one
organization, competitors will be sharing access to information on the blockchain.
The only way to prevent that is by setting up a separate aggregation server or
blockchain for each group of parties. That is, switching transport providers would
require setting up a separate system, which would not only be tedious and resource-
intensive, but would also severely hamper the analysis of supply chain data across
specific instances. Alternative distributed ledger technologies, such as R3’s Corda
or Hyperledger Fabric, natively support the creation of separate ledgers for related
parties, e.g. through Fabric’s channels. However, they still suffer from the second
issue: the lack of visibility hampers global analysis and optimization.

Data stored on a blockchain is readable to all participants of that blockchain.
Confidential data can be encrypted, and keys can be exchanged between supply
chain participants so that only the ‘right’ group of participants can decrypt that
data. However, this requires off-chain key exchanges and diligent handling of keys.
Moreover, normally encrypted data can itself not be processed by the blockchain or
its smart contracts. Thus, transfers of assets that are managed by the blockchain
cannot be encrypted; and encrypted data cannot be transformed or actioned by
smart contracts. New sophisticated cryptographic techniques such as homomorphic
encryption and zero-knowledge proofs allow various kinds of computation or
transaction validation to be performed on encrypted data, without decrypting it.
These techniques are being explored for use in blockchain platforms and may
provide an alternative treatment for this issue.

Finally, a confidentiality concern can arise from metadata, not just data inside
the transactions. For example, the volume of interactions between parties may
reveal trade volumes. It would be possible to create new account addresses for each
participant and each new process instance, but the flow of assets may still be used to
infer relationships between addresses, revealing aggregate trade volumes. Dummy
transactions might be used to attempt to hide this. Such protection mechanisms
can help, but may erode the benefit of using a blockchain. These trade-offs require
careful consideration.

4.2 Open Data Registry

Registries are authoritative collections of information, usually managed centrally,
often by government agencies. A registry holds information about a class of
entities. Examples of such entities include individuals, businesses, species, and
organizations. In Australia, familiar registries include the immunization registry,
the business name registry, and land title registries. There are also well-known
international registries such as the Domain Name System (DNS). Some government
registries are described as ‘public’ and can be queried by individuals. However,
query access to these registries may be limited to prevent attempts at republishing or
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data mining. Unfettered data mining could threaten commercial or personal privacy
and is often restricted using regulatory policies, query rate limits, and user access
controls.

Some government registries contain periodically published open data. In Aus-
tralia, these are published throughdata.gov.au.1 In this use case, we specifically
consider the use of blockchains for managing an open data registry of datasets, data
sources, and data analytics services. This means we do not consider confidentiality
or privacy issues for this use case. Blockchains provide transparency about their
entire transaction history to all processing nodes. In a public blockchain, this means
that the information is openly published. It is possible to run a private blockchain
hidden behind a web service or other interfaces. This could limit access to the
registry in a way that satisfies an appropriate access policy. However, many of the
benefits of using a blockchain would be foregone in such an architecture.

For open data, the major stakeholders are data providers, data consumers, and the
data registry. Data providers may include government agencies, research institutes,
universities, and companies. Data providers record metadata about their datasets on
the data registry and make their data available on their websites. Data consumers
query to discover datasets in the data registry based on the metadata. They can then
download the datasets from the data providers for analysis.

4.2.1 Key Non-functional Requirements

• Integrity: each data provider should only be able to create and change registry
entries for their own datasets.

• Availability: there should be high likelihood of being able to access the registry
when desired, for both data providers and data consumers. This particularly
applies to national public registries, which form the basis for many other services
that utilize the data from the registries.

• Read latency: data consumers may need to repeatedly query the registry while
browsing and searching for relevant datasets. This may be done programmati-
cally from a graphical user interface and so should have low latency.

• Interoperability: a registry may reference other registries to reduce duplication
and errors.

• Ease of integrating new data providers: to grow the network effects of the registry
as a data portal, it is important to have low barriers (time, cost, and administrative
burden) to add new data providers to the registry.

1https://data.gov.au.

https://data.gov.au
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Fig. 4.4 Design for a registry using conventional technologies, operated by a single agency.
© 2017 by the Commonwealth Scientific and Industrial Research Organisation, reprinted with
permission

4.2.2 Conventional Technology

Data portals such as data.gov.au implement a dataset registry using conven-
tional technologies such as CKAN.2 For each portal, the CKAN software is run and
managed by a single government agency. Data consumers interact with a registry
to discover datasets but retrieve datasets directly from data providers. The data
providers may perform some permission management for data access independently.
An illustrative high-level design is shown in Fig. 4.4.

In the CKAN ecosystem, datasets in different CKAN repositories refer to each
other by importing metadata from each other.

4.2.3 A Blockchain Solution

We consider a design which replaces the registry with a public blockchain. In this
design there is no single agency that operates the registry. Instead the data providers
independently record metadata on the public blockchain and perform their own
permission management and access control for their datasets independently. Note
that there may still be an agency leading governance for the registry. In this design,
data consumers are required to interact directly with the blockchain, rather than
with a consumer-facing user interface or API. Those consumer interfaces may be
provided by commercial or personal systems. An illustrative high-level design is
shown in Fig. 4.5.

2https://ckan.org/.

https://ckan.org/
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Fig. 4.5 Design for a registry using a public blockchain. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

4.2.4 Non-functional Property Discussion

Integrity The conventional design relies on a registrar to create registry entries
on behalf of data providers. New registry entries are validated by the registrar.
In the blockchain-based design, registry entries can be created directly by the
data providers, using their private key. Registry entries are validated by smart
contracts checking data integrity conditions, and all transactions are validated by
all processing nodes in the blockchain network. Data consumers hold a local copy
of the blockchain, through which they access the registry.

Availability In the conventional design, the data registry system is a single point of
failure for availability for all stakeholders. In the blockchain-based design, there is
increased data redundancy which can improve read availability for data consumers.
For the open data use case, write latency is not critical, which allows satisfactory
service availability despite possibly lower write availability than the conventional
design.

Interoperability In the conventional design, the datasets in different CKAN
repositories refer to each other by importing the metadata from each other using
standard formats but optionally with customer-defined fields. The blockchain-based
design has a uniform technical infrastructure. The shared smart contract validation
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rules will reduce the likelihood of incompatible data formats, which means different
registries will be more consistent with each other.

Read Latency Reading in the conventional design is performed through a remote
API over the Internet. Compared with the blockchain-based design, this is slower: a
local blockchain node is collocated with the consumer’s query interface, and reading
is done locally at high speed.

Ease of Adding Providers In the conventional design, new data providers are
added by the central registrar using registry backend services. In the blockchain-
based design, new providers can join by independently creating a new public/private
key pair. Authentication of their public key could be certified by a registrar on
the blockchain or separately off-chain. Data providers must integrate with the
blockchain, and should ideally run a blockchain node.

4.3 International Money Transfers

Many workers in Australia regularly send money back to their families overseas.
These flows of cash constitute up to about 10% of GDP in some developing
countries (and even 27% in Tonga and 20% in Samoa). Thus, high remittance costs
have important implications on socio-economic development of these countries.
Remittances are low-value, high-volume payments. However, remittance costs in
Pacific Island countries are among the highest in the world. For example, to send
$200 from Australia to Vanuatu costs $33.20 and $28.60 to Samoa.

There can be many parties involved in the chain of transactions made for these
payments, and there is sometimes little transparency on the total cost of exchange
rates and fees. Remittance payments can also be complicated by the difficulties
of satisfying AML/CTF (Anti-Money Laundering/Counter-Terrorism Financing)
regulation, especially where the receiving party may not have a bank account. These
transactions can have high latency, with transaction times ranging from less than 1 h
to 5 days.

In this use case, stakeholders include remitters, beneficiaries, and different types
of financial institutions, including banks and Money Transfer Operators (MTOs).
We consider the stakeholders and functions depicted in Fig. 4.6.

To be able to complete a remittance payment, both the remitter and beneficiary
initiate a relationship with the financial institution. A Know Your Customer (KYC)
process is conducted by the financial institution. The remitter pays a financial
institution from the remitting territory who transfers the money across the border.
Another financial institution from the beneficiary territory receives the money,
exchanges it to local currency, and disburses it to the beneficiary. Prior to the
completion of the exchange, and depending on the amount of money transferred,
transactional level Anti-Money Laundering (AML) and Counter-Terrorism Financ-
ing (CTF) checks required by regulators in either territory (and in any financial
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Beneficiary Territory Remitting Territory 
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Local financial Institute  
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Fig. 4.6 Stakeholders and functions for remittance payments. © 2017 by the Commonwealth
Scientific and Industrial Research Organisation, reprinted with permission

institutions in intermediate territories) may be performed on the identity of the
remitter and beneficiary, perhaps including assessment of the purpose of the transfer.

4.3.1 Key Non-functional Requirements

• Transaction latency: completing a remittance payment should ideally be instanta-
neous, or at least take place comfortably within the context of human interaction
with a physical kiosk or web form.

• Cost: the total cost of remittance should be a low percentage of the transaction
value.

• Cost transparency: the total expected cost including fees and exchange rate
should be visible to participants.

• Controlled confidentiality: for regulatory compliance, all required AML/CTF
checks must be performed, but appropriate levels of commercial confidentiality
must also be maintained.

• Barriers to entry: increased competition can drive lower costs and greater service
innovation, but this requires low barriers to entry (cost, time, and regulatory
burden) for new remittance service providers.

4.3.2 Conventional Technologies

The process for banks depicted in Fig. 4.7 starts when the remitter deposits money
into their bank. The remitter’s bank then initiates a SWIFT wire transfer to send
the money across to the beneficiary bank, possibly through several intermediary
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Fig. 4.7 Remittance through banks. © 2017 by the Commonwealth Scientific and Industrial
Research Organisation, reprinted with permission

correspondent banks. It can take 2–3 days for the money to be sent. The receiving
bank then informs the beneficiary’s bank that the money in the foreign currency has
arrived and transfers the local currency equivalent to the beneficiary’s bank. Finally,
the beneficiary’s bank disburses the local currency to the beneficiary.

Another widely used way to do remittance is through a Money Transfer Operator
(MTO), as depicted in Fig. 4.8. In this case, a remitter uses either cash or other
payment instruments to pay the MTO. Once a group of payments is received, the
remitting MTO pools all money into a single transaction. The MTO also prepares a
file with instructions on breaking down the remittance to individual orders and sends
the file to the beneficiary MTO. Then, the money is transferred by the MTO to its
foreign bank as a normal international transfer, as per the above process. The bank

Beneficiary Territory Remitting Territory 

Remitters Beneficiaries  
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3
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5
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!" #!" #

Fig. 4.8 Remittance through MTOs. © 2017 by the Commonwealth Scientific and Industrial
Research Organisation, reprinted with permission
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Fig. 4.9 Payment through blockchain. © 2017 by the Commonwealth Scientific and Industrial
Research Organisation, reprinted with permission

charges the MTO once for all the remittances. When the beneficiary MTO receives
the money, it distributes it according to the instructions received earlier.

4.3.3 A Blockchain Solution

Banks, financial institutions, and MTOs could join a private blockchain to enable
real-time settlement, as depicted in Fig. 4.9. Apart from speeding up money
transfers, blockchain could also help banks to operate continuously, 24 h a day. The
on-chain portion of the design can include SWIFT instructions or other payment
instructions and the payment status. The native currency of the blockchain can be
used as an intermediary currency by banks to facilitate foreign exchange. KYC
and risk information, fees, and foreign exchange rates are exchanged through
conventional means, off-chain.

When Bitcoin is used, this is sometimes called ‘rebittance’. Some companies use
Bitcoin directly as an intermediary currency for foreign exchange. The underlying
Bitcoin layer is invisible to end users. In this case, every remittance has a corre-
sponding transaction recorded on the Bitcoin blockchain. Other companies maintain
a separate blockchain to facilitate settlement among branches and anchor their
blockchain with the Bitcoin blockchain as a way to leverage Bitcoin’s immutable,
independently auditable ledger.

4.3.4 Non-functional Property Discussion

Transaction Latency The systems following conventional designs can result in
time-consuming transactions, e.g. depending on the route, specifically the number of
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correspondent banks involved. End-of-day batch processing causes delays of up to
24 h, and time zone differences can cause delays of up to 24 h. The blockchain-based
design enables real-time processing with latencies that vary from seconds to hours,
depending on the blockchain. For example, on Bitcoin the latency averages around
1 h if 6 confirmation blocks are used; using public Ethereum with 12 confirmation
blocks would on average take around 3 min.

Cost In both designs, remitting banks charge transaction fees, and liquidity
providers charge via the spread on foreign exchange (FX) rates. There are also
correspondent bank fees in the conventional design.

Transparency In the conventional design, each bank in the payment chain is aware
of its own actions, but some KYC information is transmitted through the chain of
correspondent banks. How FX spread is calculated and what will be charged in fees
is not always predictable. In the blockchain-based design, a common shared view
of the payment status enables real-time fraud analysis and prevention. On Bitcoin,
regulators and others can access historical data in the blockchain but would need
additional information to know how to interpret the pseudonymous addresses and
the identities of senders and recipients.

Controlled Confidentiality In the conventional design, KYC regulatory com-
pliance requires costly technology capabilities and complex business processes.
There is substantial duplicated effort between banks and other financial institutions.
The blockchain-based design replaces intermediary banks with a blockchain to
provide a shared record of payments and KYC checks and thus may simplify
regulatory compliance along the payment chain. Some automated and real-time
compliance checks may be available on-chain using smart contracts, depending on
the blockchains used.

Barriers to Entry The conventional design requires participants to have banking
or financial services licenses, and business relationships with correspondent banks.
The second design requires new technology development and integrations, but
some existing transaction standards can be reused. Interaction between separate
proprietary blockchains would require inter-ledger protocols. Public blockchains
have low barriers to entry for new participants, but regulatory or banking constraints
for digital currency exchanges apply to end-points within countries.

4.4 Electricity Contract Selection and Continuous Reporting

Electricity consumers may change their electricity retailers based on their usage and
current offers from electricity retailers. Typically, there are conditions associated
with the contract between the electricity consumer and the retailer. For example,
retailers may offer discounts if bills are paid on time or may require exit fees if the
contract is terminated ahead of time. Some retailers also allow flexible payments,
such as weekly, fortnightly, or monthly payments. There are two participants in this
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scenario: the end user and the electricity retailer. We assume that a smart meter is
attached to the end user’s place of supply and that this smart meter is connected to
the network and can digitally sign messages using a private key.

4.4.1 Key Non-functional Requirements

• Integrity: The monthly usage of an electricity consumer is an important criterion
for consumers to select an electricity retailer and for electricity retailers to make
special offers. Therefore, accurate records of usage are important to prevent
deception between the parties.

• Privacy: Current and historic electricity usage data can be used to infer private
information—researchers have even shown that accurate high-frequency smart
meter readings allow identifying which movie an end user is currently watching.
More coarse-grained data could also be used by burglars to find out when
someone is on vacation. Therefore, usage data should only be shared at the
discretion of the end user.

• Transparency: Historical electricity usage, perhaps associated with previous
electricity retailers, could be used by a prospective retailer to customize new
special offers. As discussed above, we assume that consumers are able to
authorize the sharing of their usage information with other parties.

4.4.2 Conventional Technologies

In conventional environment, every electricity retailer uses its own bespoke system
to maintain customer data and smart meter information. Historical electricity usage
is not normally shared among electricity retailers. Payments are made through
traditional banking systems.

4.4.3 A Blockchain Solution

In this blockchain-based design, we propose using a consortium blockchain as a
platform to track historical electricity usage of every smart meter and to provide
payment services. The architecture of the solution is shown in Fig. 4.10.

When a user wants to find a new retail supplier, they create a retailer selection
smart contract on the blockchain, against which retailers can bid. To bid, retailers
create a smart contract offer from an offer template. The offer contract is defined
using variables such as start time, end time, energy level, level price, service fee, and
charge date. Transactions listed on the blockchain provide a history of usage asso-
ciated with smart meters and users. This information can be accessed by retailers
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Fig. 4.10 Architecture of blockchain-based electricity contracts using smart meters. © 2017 by
the Commonwealth Scientific and Industrial Research Organisation, reprinted with permission
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Fig. 4.11 Interaction of smart contracts among themselves and with other entities. © 2017 by the
Commonwealth Scientific and Industrial Research Organisation, reprinted with permission

as they prepare their offer. The user’s retailer selection contract collates all the bids,
which can then be shown on a web page accessible to the user for final selection.
The interaction with and among the relevant smart contracts is shown in Fig. 4.11.

After the electricity retailer is selected, a usage contract that is specific to the
pair of the user and the retailer is generated and uploaded to the blockchain. The
usage contract is used by the smart meter to report the monthly usage. There are
two options to pay the bills. The user could either pay the bill to the retailer’s
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account directly before the deadline or deposit money into the contract and let
the retailer withdraw from it when the payment is due. When the user decides to
switch retailers, she could create a replacement usage contract from the new retailer
selection contract. The usage contract with the previous retailer will terminate after
the new contract is created.

4.4.4 Non-functional Property Discussion

Integrity The conventional approach relies on individual electricity retailers to
maintain the internal system and usage data. New usage data is validated solely
by the electricity retailer. In the blockchain-based design, usage records can only be
created by the smart meters using their private keys. All transactions are validated
by all processing nodes in the blockchain network. Electricity retailers hold local
copies of the blockchain, through which they can access the historical electricity
usage of any smart meter.

Privacy In the conventional design, the usage data is only shared with the current
electricity provider. In contrast, in the blockchain-based design, the data is shared
with all electricity providers that are on the consortium blockchain. Design of the
blockchain-based system is important to meet privacy requirements. For example,
the blockchain might be a private permissioned blockchain or distributed ledger,
and users and smart meters might access the blockchain only through controlled
web interfaces or APIs.

Transparency In the conventional design, information from smart meters and
historical usage are stored by each separate electricity retailer. Such information
is not accessible by other electricity retailers. The consortium blockchain used in
the blockchain-based design provides a common shared data storage for historical
usage associated with any electricity retailer.

4.5 Further Reading

This chapter is partly based on our earlier works (Staples et al. 2017).
A detailed use case from a startup company, focussing on the reduction of

counterparty risks in agricultural supply chains, is described in Chapter 12.
A model-driven approach is proposed in Weber et al. (2016), which can generate

smart contracts automatically from process models. This approach is also discussed
in Chapter 8.

Reports from the World Bank (Ratha et al. 2016; The World Bank 2016) provide
data and insights about remittance.

Bitcoin has been applied to smart meters deployed in South Africa (Prisco 2015),
where each smart meter is equipped with its own Bitcoin address. The smart meters
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directly pay for their metered electricity and water supply from their balance and
form an interesting middle ground between prepaid and post-paid services. Bitcoin
has also been applied in smart grid scenarios (Dimitriou and Karame 2013) to
facilitate aggregating energy production and consumption reports without relying
on a single point of trust. This enables anonymous tasking and privacy-preserving
billing and barter of energy.

The use of smart contracts to enable machine-to-machine communication in IoT
has, for example, been demonstrated by the ADEPT (Autonomous Decentralized
Peer-To-Peer Telemetry) project (IBM 2015).
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Chapter 5
Blockchain in Software Architecture

Software components are the fundamental building blocks for software architecture.
In a blockchain-based system, a blockchain platform is a component. A reference
architecture for a software system where blockchain is one of the components
is shown in Fig. 5.1. Viewing the blockchain as a software component helps us
understand important architectural impacts it has on the performance and quality
attributes of systems. These attributes can include security, privacy, scalability,
sustainability, and more. We can then consider design trade-offs regarding these
quality attributes and provide rationales to support architectural decisions about
whether to employ a blockchain or some conventional component.

5.1 Blockchain as an Architectural Element

As a component, blockchain has unique properties and limitations. Blockchains
are complex, network-based software components, which can provide data storage,
computation services, and communication services. Blockchain features can include
cryptographically secure payment, mining, transaction validation, incentive mech-
anisms, and permission management. A so-called oracle may supply information
about the external world to the blockchain, usually by adding that information to
the blockchain as data in a transaction.

One of the main kinds of architectural decisions is about which pieces of func-
tionality should be allocated to which components. For blockchain-based systems,
this includes the key decisions about which parts of the data and computation should
be placed on-chain or kept off-chain. Part of an application can be implemented
inside the blockchain component using the blockchain ledger and smart contracts.
However the amount of computational power, data storage space, and control of read
accesses on a blockchain can be limited. So, parts of an application implemented
outside the blockchain component might host off-line data and application logic.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
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Fig. 5.1 Blockchain in a software architecture. This work is based on an earlier work: Xu et al.
(2018) © ACM, 2018. https://doi.org/10.1145/doi. Included here by permission

Blockchain transactions and their effects sit at the interface between on-chain
and off-chain functions. Blockchains can be used as software components, which
can provide data storage, computation services, communication services, and asset
management and control functions. We discuss these aspects in the remainder of
this chapter.

5.2 Blockchain as Storage Element

Blockchains emerged as the key technology behind Bitcoin. The Bitcoin blockchain
is a public ledger maintained by all the nodes within its network and stores all
transactions that have ever occurred in the system. Later, the technology concept
was generalized to a distributed ledger able to verify and store a wider variety of
transactions, including transactions that do not transfer cryptocurrency.

As a data structure, a blockchain is an ordered list of blocks, where each block
contains a small (possibly empty) list of transactions. Each block in the data
structure is ‘chained’ back to the previous block, by containing a cryptographic hash
of the representation of the previous block. Historical transactions in the blockchain
may not be deleted or altered without invalidating this chain of hashes. Combined
with computational constraints and incentive schemes on the creation of blocks,
this can in practice prevent tampering and revision of information stored in the
blockchain.

Transactions on a blockchain represent authorized state transitions. Transactions
can record data and transfer control of digital assets among participants. Cryp-
tocurrencies are one kind of digital asset, but other kinds of digital asset tokens
can be implemented on blockchains. For example, on Ethereum digital asset tokens
can be represented using smart contracts, which can represent the tokenized asset

https://doi.org/10.1145/doi
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and store holdings as values of private variables. Public key cryptography and
digital signatures are normally used to identify accounts and to ensure integrity and
authorization of transactions initiated on a blockchain.

There are two ways to store data on the blockchain. One is to add data into
transactions, which is the only option in Bitcoin; the other is to add data into
contract storage, which can be done e.g. on Ethereum. Both ways store data through
submitting transactions to the blockchain, which may contain the information of
money transfer (possibly with a transfer value of 0), together with optional other
data. After the transaction is included in the blockchain, the data becomes publicly
accessible to all the participants within the network.

There are various representations of cryptocurrency holdings. In Bitcoin, the
holdings of an address comprise the collection of unspent transaction outputs
(UTXO) from all previous transactions to that address. In Ethereum, the holdings
of an address are represented in a global system state. In Ethereum, every smart
contract has its own storage which only it can update. Contract storage can be
viewed as a flexible key-value data store. Smart contracts have an address, which
can be used to invoke the contract. Blockchains are immutable, so the updates to
variables in the contract store do not change the data in old blocks. Instead, the
transactions only update the values of those variables in the contract store.

5.2.1 Comparison with Centralized Databases

Operation Shared data stores, like key-value stores, provide a basic Create/Read-
/Update/Delete (CRUD) interface. A blockchain is an append-only data store and
does not support in-place updates but rather only supports the creation of new
transactions. The current view of smart contract variable values can mimic the
behaviour of conventional data stores. However, any changes/updates on contract
states are appended to the blockchain as new transactions. An analogy with this so-
called ledger in data stores is the concept of log where data items get appended but
never deleted or updated. This immutability-of-stored-information property is key
to the traceability of assets recorded on blockchains.

Consensus Protocol Traditional shared data stores have their own consensus
protocols to synchronize replicas in a fully trusted environment, such as 2-Phase
Commit and Paxos. Blockchains also rely on consensus protocols, and private
blockchains often use the same protocols as traditional shared data stores. However
on public blockchains, the assumptions required for conventional consensus proto-
cols do not hold. In particular, on a public blockchain there may be no master nodes,
many thousands of nodes, and there may be an unknown number of nodes. Each of
these violates assumptions required for some conventional consensus algorithms.
Some private blockchains assume that nodes are somewhat trustworthy, but on
a public blockchain that assumption is not always reasonable. A comparison of
consensus protocols used for blockchains and for general distributed systems is
given in Section 5.2.4.
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Consistency Blockchains validate the consistency of transactions by using global
rules implemented in the blockchain platform, and by using application-specific
rules implemented in smart contracts. Global rules on public blockchains include,
for example, that regular cryptocurrency transactions do not create money nor
transfer money without authorization.

5.2.2 Comparison with Cloud Services

When keeping data on conventional cloud storage, cloud providers are trusted to
store data uploaded by users and to provide access to that data. Users are normally
not able to influence to how the data is stored. Data integrity and access availability
may not be guaranteed.

In contrast, on blockchain there is no need to trust a single entity. Storage
integrity is guaranteed (probabilistically) through the actions of the collective of
nodes that operates the blockchain. Users can monitor that collective and could even
participate themselves as nodes that store the blockchain if desired. A variety of on-
premise computers or independent cloud providers could be used to operate nodes.
At the application level, users as smart contract developers define their own storage
mechanisms and interaction with off-chain services. While high read availability
can be achieved, by reading from multiple independent blockchain nodes, there
are no guarantees or defined service-level agreements (SLAs) provided by public
blockchains.

5.2.3 Comparison with Peer-to-Peer Data Storage

Peer-to-peer technology can be used for distributed data storage and file sharing.
Such systems allow users to access data that is stored in other computers connected
to the same peer-to-peer network. A centralized server is not required. Existing
platforms include BitTorrent1 and IPFS (InterPlanetary File System).2 These peer-
to-peer systems use various mechanisms to share data with peers and to replicate
data across nodes. IPFS is an open-source content-addressable, globally distributed
file system for sharing a large volume of data with high throughput.

In contrast, on blockchain access to data will be possible while users have access
to nodes that are active in the blockchain network. Users could access any node
in the network collective, because all nodes will have the same shared copy of the
blockchain data. This can give very high levels of availability for blockchain-based
data storage. On the other hand, blockchain is not suitable for storing large data, and

1http://www.bittorrent.com/.
2https://ipfs.io/.

http://www.bittorrent.com/
https://ipfs.io/
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so blockchain is often combined with other data storage mechanisms, such as peer-
to-peer data storage. Blockchain can then provide integrity in the sense of revealing
possible tampering of off-chain files. However, blockchain could not stop off-chain
manipulation of files or file shards, only make it detectable.

5.2.4 Comparison with Replicated State Machines

Replicated state machines are a technology that is somewhat similar to blockchains.
We discuss the differences in terms of key properties below.

Fault Tolerance Replicated state machines are a mechanism to implement fault-
tolerant services in a distributed system. To cope with failures, they replicate state at
several servers and coordinate service requests issued by the clients. Similarly, the
blockchain uses distribution to not depend on any single entity. Smart contracts on
blockchain can then implement many kinds of service logic.

Consensus Replicated state machines typically rely on a consensus protocol that
takes as input update requests from components and decides upon receiving
these requests. In the case of a distributed locking service, the consensus will
guarantee that only one particular client acquires a lock, even if multiple clients
request it concurrently. Blockchain systems also use a consensus protocol to ensure
that among multiple conflicting proposed transactions, only one is approved for
inclusion in the blockchain.

Voting To reach consensus on a transaction request, replicated state machines
typically require a quorum of voters and may use a concept of weighted votes.
Typical blockchain implementations also require a large enough portion of the
community operating the system to agree to achieve consensus. In Ripple, this is
when a minimum of nodes in a unique node list have voted, whereas in Bitcoin
this is (tentatively) when a sufficiently long chain of blocks (ratified by others) is
discovered.

Communication A replicated state machine supports communication by trans-
mitting state update data among components. Components can store and retrieve
information that will persist despite failures. The system guarantees that information
stored by one component is replicated and delivered to the other components
even when some failures occur. Public blockchains offer no strict guarantees on
transaction inclusion, but once transactions are seen as committed, they have been
replicated and persisted and are exceedingly unlikely to be removed.

Cryptography To address arbitrary failures or Byzantine failures, replicated state
machines exploit security mechanisms. The sender of a message is typically
authenticated with public key cryptography by signing their messages with a private
key. Digital signatures are similarly used by blockchains to authorize transactions.



88 5 Blockchain in Software Architecture

Facilitation Finally, a replicated state machine totally orders the requests from
components. It controls concurrency by scheduling requests issued by components
and thus serves as a facilitation connector. Such a total order is also a key property
of the blockchain: blocks in the blockchain data structure are totally ordered and so
are the transactions within a block.

5.3 Blockchain as Computational Element

In first-generation blockchains like Bitcoin, there was very limited native capability
for programmable transactions. Native smart contracts on Bitcoin are very simple
and do not support complex control flow. Some external services attempted to
address this, to allow end users to build self-executing contracts on the Bitcoin
blockchain network,3 but the blockchain platform does not guarantee the integrity
of the execution of these smart contracts. Instead, smart contract execution is
performed by external oracles.

Ethereum is the most widely used blockchain allowing smart contracts to
be written in a Turing complete language that is in principle as expressive as
every other general purpose programming language. Ethereum can be seen as
general computational platform, albeit currently with severe practical limitations on
computational complexity. This kind of capability significantly expands the power
of blockchain systems and increases their range of use and potential for innovation.

In Ethereum, smart contracts are a first-class element. They can control cryp-
tocurrency and express triggers, conditions, or business logic (see also Chapter 8),
to enable complex programmable transactions. Smart contracts are used by compo-
nents connected to a blockchain to reach agreements and solve common problems
with minimal trust. A common simple example of a smart contract-enabled service
is escrow, which can hold funds until the obligations defined in the smart contract
have been fulfilled. Smart contracts can also be used to enable machine-to-
machine communication in IoT, for example, as demonstrated by IBM’s ADEPT
(Autonomous Decentralized Peer-To-Peer Telemetry) project.

The status of smart contracts as legal contracts is currently debated. A legal
contract is an agreement between parties, and a computer program is either the
text of source code or an executing physical machine. Therefore smart contracts,
as computer programs, may be the wrong category of thing to be a legal contract.
Nonetheless, a smart contract may provide evidence for there being a legal contract
and may be able to facilitate the execution of a legal contract. Importantly, as a
mechanism for the execution of provisions of a legal contract, smart contracts can
carry and conditionally transfer digital currency and other digital assets or tokens
between parties. This can be done in a predictable and transparent way on the neutral
ground provided by the mechanized infrastructure of a blockchain.

3http://www.smartcontract.com/.

http://www.smartcontract.com/
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5.4 Blockchain as Communication Mechanism

Software components communicate by using communication elements, which are
also components. A communication element can transfer data and coordinate
computation among components. Blockchain systems perform all of these functions
as well, but of course with some differences to traditional communication elements.

5.4.1 Data Communication

Components can use blockchain as a mediator to transfer data, as shown in Fig. 5.2.
The components at the application layer exchange data by sending data to the
blockchain using transactions, and query the blockchain data structure to retrieve
the data.

Most blockchain platforms provide an API or tools to access and filter the
historical transactions. Ethereum suggests to cache all transactions to prevent the
blockchain network from being stressed by frequent queries.

An alternative, discussed in some detail in Chapter 8, is to have a component
that continuously monitors the updates from new blocks. This component can
store relevant data in a local database or pass it on through proactive API calls to
components on the application layer.
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Blockchain network

TX TX

Data

Component

Computation

Data

Component

Computation

TX TX

OracleOracleOracle

Fig. 5.2 Interaction between applications and blockchain. © 2016 IEEE. Reprinted, with permis-
sion, from Xu et al. (2016)
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5.4.2 Computation Communication

Different components of an architecture can coordinate computation through a
blockchain. To do so, it is possible to submit transactions to smart contracts to invoke
their functions or use an oracle to sign transactions that depend on external state.

Typically the control flow of an application is initiated from externally owned
accounts and is transferred among contract accounts. Smart contracts behave like
agents that live in the execution environment of the blockchain system and its
network. Contracts are instantiated by submitting transactions with the code of the
contracts to the blockchain network—depending on the blockchain platform, the
code is source code or compiled. A smart contract defines a set of functions. When
invoked in a transaction, the contract runs the function code using the supplied
parameter values. Contracts can also create new contracts, and can terminate
themselves. A contract cannot respond to transactions after termination, but the code
of the contract remains on the blockchain, permanently stored in the transaction that
created the contract.

The execution environment of a blockchain system is a closed environment,
which is not allowed to import external states through polling external servers.
To address this limitation, oracles evaluate conditions about the external world
which cannot be derived solely from information within the blockchain. An oracle
facilitates component coordination with external state. An oracle is a component in
a blockchain-based system. Some blockchain platforms provide direct support for
oracles, while in other blockchain platforms, an oracle is an independent external
service that interacts with the blockchain through normal transactions. When
validation of a transaction depends on some external state, platform-supported
oracles can validate and sign the transaction. This may block progress of the
transaction until the oracle completes. Oracles that are external services inject data
into the blockchain by adding a transaction, and other smart contracts can then use
that data to validate transactions. This can reduce the above-mentioned delay but
can increase the delay between the external state changes and the time when those
are recorded in the blockchain. Often oracles are automated external systems, but
sometimes an oracle represents decisions made by a human, e.g. an arbitrator. When
automated external service oracles are used, they can periodically update values.
Regardless of the approach, oracles are a trusted third-party. However, this does not
always introduce additional trusted parties, if they are already trusted parties. For
example, for government services, the government is inevitably a trusted party.

5.5 Blockchain as an Asset Management and Control
Mechanism

Blockchains can be used for asset management by using the concept of tokenization.
Tokens can represent either digital assets or physical assets. Such assets can
be fungible or non-fungible. Fungible assets are interchangeable, for example,
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cryptocurrencies, gasoline, and commodities. Non-fungible assets are often unique
and cannot be interchanged, for example, CryptoKitties,4 artwork, and land.

On the first generation of blockchains, the cryptocurrency is the native asset.
However, the identity of portions of that cryptocurrency or other associated data
can be used to represent other kinds of assets. Such tokens are generally used to
track claims of title over physical assets. Transactions on blockchains record the
transfer of title from one user to another in the system. The Bitcoin blockchain
allows developers to add 40 bytes of arbitrary data to a transaction. This has been
used to implement other cryptocurrencies or tokens as overlay networks on Bitcoin.
For example, colored coins5 ‘taint’ a subset of Bitcoins to represent and manage
real-world assets. However, using the native cryptocurrency token in a blockchain
for tokenization of other assets is limited, because few attributes can be recorded
and few conditions can be checked within the blockchain.

Second-generation blockchains, like Ethereum, provide more expressive data
structures and smart contracts. This provides more flexibility for tokenizing a wider
variety of assets. Tokenization as a process starts when an asset under custody is
represented using a cryptographic token. The control of this token aligns with the
ownership of the corresponding asset. The reverse process can take place if the user
redeems the token to recover the asset. By using smart contracts, some conditions
can be implemented and associated with the transfer of ownership. ERC206 has been
proposed as a standard for Ethereum-based fungible tokens. ERC7217 is currently
a draft standard for Ethereum-based non-fungible tokens. These token standards
describe the functions and events that token smart contracts should implement.
Newly proposed tokens should follow the respective standard.

Note that title over assets is a legal construct, which might not always completely
align with the records on a blockchain. For example, the ownership of assets
might be legally transferred during bankruptcy proceedings, without recourse to the
blockchain. So, unless the blockchain is backed by legislation (similar to Torrens
title legislation for land) as an authoritative title of register, it will not necessarily be
authoritative.

5.6 Integrating Blockchain into a System as a Component

In the system shown in Fig. 5.1, the blockchain stores and shares data and executes
smart contracts. The blockchain component might also control digital currency or
represent other assets. Due to limitations of privacy and scalability, there are also
off-chain auxiliary databases used in the system. First, private data is stored in an

4https://www.cryptokitties.co/.
5http://coloredcoins.org/.
6https://theethereum.wiki/w/index.php/ERC20_Token_Standard.
7https://github.com/ethereum/EIPs/issues/721.

https://www.cryptokitties.co/
http://coloredcoins.org/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://github.com/ethereum/EIPs/issues/721
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internal database. Second, large data is stored separately, e.g. in a cloud service.
There is an API layer between the three data storage mechanisms. Key management
is an essential component when working with blockchains. Every participant in a
blockchain network has one or more private keys, which are used by the participant
to digitally sign its transactions. The security of these private keys is very important.
If the private key of a user is stolen, any other user holding it can forge transactions
from that user to spend the assets belonging to the user or to invoke smart contracts
in their name.

5.7 Summary

In this chapter, we characterized blockchain functions from software architecture
perspective and describe blockchain in the role of a software component. Blockchain
can be used as a storage element, a computation element, or a communication
element for interaction between system components. It can also be used as an
asset management and control mechanism. We compared blockchain as a software
element with central shared data stores, cloud storage, peer-to-peer storage, and
replicated state machines.

5.8 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2016; Yu et al. 2017).
The concept of software components and software connectors was introduced by

Clements et al. (2003). A technical survey on blockchains and distributed ledgers is
given in Tschorsch and Scheuermann (2016).

In this chapter, blockchain is compared with centralized databases having their
own consensus protocols to synchronize replicas in a fully trusted environment,
such as 2-Phase Commit and Paxos. More details are discussed in Kemme and
Alonso (2010). Blockchain is then compared with cloud services. Cloud providers
have access to the data of their users. The issues of data privacy and provenance
on cloud are discussed in Ion et al. (2011) and Asghar et al. (2012). Blockchain
is further compared with replicated state machines (see Schneider 1990; Lamport
1998). Replicated state machines aim to address arbitrary failures or Byzantine
failures, which are described in Lamport et al. (1982) and Castro and Liskov (1999).
The voting mechanism used by replicated state machines is discussed in Malkhi and
Reiter (1997) and Gifford (1979).



Chapter 6
Design Process for Applications
on Blockchain

with Sin Kuang Lo

Software design is a creative process, which includes proposing and evaluating
solutions to complex problems with many conflicting constraints. The final design of
a software system is the result of many design choices about the selection, configura-
tion, and integration of software, hardware, and communications components. This
chapter presents a design process for architecting systems based on blockchains.

For a system that can potentially use blockchain, the first design choice is
to decide whether to use a blockchain or conventional technologies. We discuss
this choice in Section 6.1 and give four examples in Section 6.2. When using a
blockchain, there are subsidiary design choices including whether to use a private
blockchain or a public blockchain, what consensus protocol fits best, and what the
block frequency should be. Chapter 3 identifies a variety of design choices, and in
Section 6.3 we discuss how to address them. Often in a blockchain-based system,
some data is stored on the blockchain, while other data is stored and communicated
using conventional technologies, so another design choice is which data should be
stored where.

6.1 Evaluation of Suitability

Due to their fundamental properties and limitations, blockchains do not fit all
scenarios. Thus, before designing a system, the suitability of blockchain needs to
be evaluated against the scenarios and requirements.

Figure 6.1 shows a process to evaluate the suitability of blockchain technology.
There are seven main questions to be answered, shown as white diamonds. For
some of them, subsidiary questions are shown as grey diamonds. The following
subsections discuss these questions in detail.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
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Is immutability 
required?

Consider Blockchain

Consider Conventional 
Database

Is transparency 
required?

Is multi-party 
required?

Is operation 
centralised? 

Is trusted authority 
required? 

Is trusted authority  
decentralizable? 

Is high performance 
required? 

Can encrypted data 
be shared? 

Can big data be 
stored off-chain? 

Consider DLTs

Fig. 6.1 Evaluation of suitability of blockchain and other DLTs. © 2017 IEEE. Reprinted, with
permission, from Lo et al. (2017)

6.1.1 Multiparty

Does the system need to serve multiple different parties? A blockchain is not
suitable for systems that only serve individual isolated users, because a conventional
database will be simpler and more efficient. There are many different kinds
of multiparty systems. Consider the supply chain domain, which has complex,
dynamic, multiparty arrangements with regulatory and logistical constraints span-
ning jurisdictional boundaries. Information exchange in a supply chain can be as
important and difficult as the physical exchange of goods. The multiple users here
may be manufacturers, shipping companies, transport infrastructure organizations,
financial services firms, or regulators. Another example domain might be inter-bank
payments and reconciliation. Here the multiple parties are at least two different
banks, but may also include the account holders performing payment transfers
between the banks. So, parties might be organizations or individuals. In these
examples, the different parties are legally distinct. However, even within one
large enterprise (or government), there may be different functional or geographic
divisions or departments. These informational or administrative ‘silos’ may need to
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be served as multiple parties. Blockchains can be suitable for supporting multiparty
systems, because the blockchain is a physically distributed but logically centralized
infrastructure, providing a single view of truth across those parties.

6.1.2 Trusted Authority

A trusted authority is an entity that is relied upon to perform a function, like
operating a system. If a single party can or must be relied upon as a trusted authority
by all of the parties served by a system, then a blockchain may not be necessary.
Instead, that trusted authority could implement a traditional centralized solution
using conventional technologies. Most current complex systems are controlled by
a trusted authority. Examples of these authorities include banks and government
departments. The scope of the system being designed is important in deciding this
question. For bank accounts, the bank will be a trusted authority. However, for inter-
bank payments, each participating bank will not be a trusted authority; instead the
conventional approach is for banks to collectively rely upon separate authorities to
facilitate inter-bank payments. For example, within a country that trusted authority
might be a central bank.

Relying on a trusted authority creates a single point of failure for the system.
When a trusted authority experiences a problem, users accessing its services are
affected. Technical single points of failure can be mitigated by using redundancy
in conventional distributed systems architectures. However, those solutions do not
address single points of organizational or business failure that remain present
when relying on a trusted authority. These possible failures might include business
failures, service interruptions, data loss, or fraud. For situations where the trusted
authority is a monopoly or oligopoly service provider, there is also the possibility of
what economists call ‘rent-seeking’ behaviour, which can unreasonably limit access
to the service and can reduce efficiency through excessive charges.

Even when a natural trusted authority might in principle be available, in practice
it might be difficult for everyone to accept reliance on that party. Consider a
government with multiple different departments or agencies. Large enterprises or
government could in principle define a central agency to provide services for
coordinated operation across their whole organization. However, centralization of
services can be perceived as a loss of control or power, and so in practice it may be
difficult to achieve this kind of administrative centralization.

Blockchain can support systems where there is no single party that is acceptable
or suitable for operating the system. That is because a blockchain is operated jointly
by a collective of nodes. Using a blockchain does not remove trust, because users
are still exposed to risk in their use of blockchain technology. In a blockchain, what
is trusted (i.e. relied upon) is the blockchain software, the incentive or contractual
mechanisms driving the behaviour of processing nodes that operate the blockchain
system, and the trusted third-parties that act as ‘oracles’ which record information
about the external world on the blockchain. Although a blockchain does not remove
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trust, it can remove the need to trust a single specific third-party to maintain a ledger
and so is sometimes called a ‘distributed trust’ mechanism.

6.1.3 Operation

Given that a system supports multiple parties, and given no party is suitable as a
trusted authority for administering the system, might centralized operation of the
system still be possible? A common approach is that a group of parties might form
a joint venture to operate a conventional centralized system. Credit card associations
such as Visa and Mastercard are examples of this approach, formed as kinds of joint
ventures between banks.

However in some cases, it is not possible or desirable to centralize operation of
the system. The centralized operation of the system may lead to the administering
party becoming a trusted authority, which will not always be acceptable to the
parties using the system. Forming a new entity like a joint venture might be too
costly for a given scenario. Also, the centralized administration of the system may
still allow single points of business failure for the system. A distinctive benefit of
blockchain-based systems is that there does not have to be a single authority or
system operator. Eliminating single points of failure can increase system reliability
or availability.

6.1.4 Data Immutability and Non-repudiation

Is data immutability required and acceptable? Data immutability means data cannot
be changed or altered after its creation. Immutability supports non-repudiation
which is the assurance that a party cannot deny the authenticity of their signature
on a document or a message from them. Blockchains naturally support data
immutability in the ledger, whereas conventional technologies naturally support
mutable data. What is important as a requirement can vary from system to system.

Although the blockchain transaction history is immutable, the latest view of the
current state in a blockchain can change. For example, a transaction may need to
update the owner of an asset. What is recorded to the ledger in this case is the
new owner for the asset, and so all that changes is our view of the latest owner.
In a blockchain, the linking of blocks in a chain of cryptographic hashes supports
immutability for historical transactions. In practice, past blocks in the blockchain
data structure cannot be changed because it is continually replicated across many
different locations and organizations; attempts to change it in one location will
be interpreted as an attack on integrity by other participants and will be rejected.
In economies where third-party service providers are not always trustworthy, a
significant benefit of blockchain systems may be in the strong support that they can
provide for immutability and non-repudiation. On a blockchain, the immutability
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of historical transactions which are cryptographically signed means that there is
always strong evidence that those transactions were performed by someone with
control over those cryptographic keys.

On the other hand, it is not possible to change the transaction history in most
blockchains. This is normally a good thing in supporting data integrity. However,
it can cause problems if blockchain contains illegal content, or if a court orders
content to be removed from the blockchain. It will be easier to support these
requirements using conventional technologies. Similarly, in blockchain systems,
problems may arise such as disputed transactions, incorrect addresses, exposure or
loss of private keys, data-entry errors, or unexpected changes to assets tokenized on
blockchain. The immutability of blockchain ledgers may make them less adaptable
than conventional technologies controlled by trusted third-party organizations that
support rollback.

Using blockchain to achieve immutability and non-repudiation may be rela-
tively expensive compared to other persistence mechanisms. There are existing
mechanisms available to prove the originality of data, like hashing technology, and
cryptographically signed data. In traditional database systems, the ACID properties
(Atomicity, Consistency, Isolation, and Durability) are critical. However, for block-
chains that use Nakamoto consensus (longest chain wins), the classic durability
property does not hold because a transaction initially thought by a participant to
be committed (i.e. on the longest chain) may later turn out to have been on a
shorter chain, and so no longer be committed. Such blockchains only offer a long-
run probabilistic durability property, and therefore are not immutable in a simple
way. However, (a) switching to a longer chain is evident to participants, and (b)
when a transaction has been committed to a blockchain for a sufficiently long time,
it will in practice be immutable. Blockchains that use other consensus mechanisms
(such as Practical Byzantine Fault Tolerance) can offer stronger, more conventional
immutability properties. However, typically these consensus mechanisms can only
be used where there is a small number of well-known nodes participating in the
operation of the blockchain.

6.1.5 High Performance

Does the system need to support extremely short response times or process very
large amounts of data? If so, conventional technologies may be more suitable than
blockchain technology.

System performance usually relates to latency which is the system response
time and throughput which is the aggregate system work rate. Blockchain systems
such as Bitcoin and Ethereum cannot currently match the maximum throughput of
conventional transaction processing systems such as the Visa payments network.
This is a known and current limitation but is being addressed by the development of
new mechanisms such as sharding, state channels, and reduced inter-block time.
While blockchains are currently not highly scalable, this is not necessarily an
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inherent limitation, and may be overcome in the future. Consortium and private
blockchains with careful design and performance tuning have much better perfor-
mance compared to public blockchains. When data has previously been written
to the blockchain, read latency is the response time for accessing historical data
from a blockchain client. Read latency can be much faster on blockchain than with
conventional technologies, because clients can keep a full local copy of the database,
and so there are no network delays. The request to write data into a blockchain is
done by sending a transaction to the network. The write latency is probabilistic, and
there are several sources of uncertainty. All blockchains will have small network
delays. For blockchains with Nakamoto consensus, a node should not be highly
confident that the most recent block it saw will ultimately be included in the main
chain. So, to increase the confidence that data has successfully been committed to
the blockchain, we can wait for a number of confirmation blocks. Waiting for more
confirmation blocks will increase write latency.

Blockchains are inherently not suitable for storing Big Data, i.e. large volumes
of data or high-velocity data. This is because on a blockchain there is massive
redundancy in the large number of processing nodes holding a full copy of the
distributed ledger. Big Data is hard to physically move in a distributed system, and
the large numbers of replicas make it infeasible to store it on a blockchain.

6.1.6 Transparency

The third question in the design process is whether data transparency is required or
acceptable in the system. Data transparency is the property that data is available
and accessible to by other parties in the system. Examples include Facebook public
newsfeed posts or Twitter public tweets. Anyone can access and read these posts.
Social media such as Facebook or Twitter support confidentiality by allowing users
to choose what they publish to the public or to specific audiences. Consider also
the supply chain domain. Logistics efficiency can be improved by providing greater
transparency on the status of shipments and processes, which are currently often
opaque. Using blockchain in trade finance to evidence trade-related documents can
reduce lending risk, and smart contracts can control inter-organizational process
execution, and transparently automate delayed or instalment payments. However,
very often customer relationships, pricing, or even aggregate transaction volume are
commercially sensitive information that parties do not want to share widely.

Blockchain provides a neutral platform where all participants can see and
audit the published data. This is important to guard integrity, with validation by
all processing nodes. In a public blockchain, nodes validate that cryptocurrency
transfers are from addresses that have enough cryptocurrency and signed with an
authorized private key. For smart contracts, nodes validate that the effects of the
smart contract program execution are correctly recorded on the blockchain. If data
transparency is required or acceptable, a blockchain may be suitable. However, if
data transparency is not acceptable, it can be difficult to use a blockchain to manage
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that data. Confidentiality is harder to establish in blockchain-based systems, because
information is visible to all participants.

Another confidentiality concern is the amount of interactions between parties.
It is possible to create a new address for each transaction, but the flow of assets
may still be used to infer relationships between addresses. Even if parties try to use
pseudonyms, the contents of a transaction are publicly visible. Reuse of addresses
and their connection via transfers of digital currency can provide opportunities
to reidentify participants. Nonetheless, this limitation does not matter for all use
cases. For example, public blockchains may be suitable as infrastructure for public
advertising or fully open government registries, even in highly regulated industries.
Consider that banks advertise on television, but television is not a highly regulated
banking transaction system. Integrity in advertising may be required, but rather than
privacy or confidentiality, publicity is important. Public blockchains can provide
integrity and publicity. Other examples might include systems for secure software
package management and IoT device configuration updates.

Sometimes, although raw data cannot be shared, it may be acceptable to
share encrypted forms of that data, and in such cases a blockchain could be
used. Information could be encrypted before being uploaded to the blockchain:
asymmetrically with a particular party’s public key, so that only this party can
decrypt it, or symmetrically with a shared secret key, so that the group of parties
with access to the secret key can decrypt it. The latter case requires a secure means
of exchanging the secret key. Encrypting data before storing it on a blockchain may
increase confidentiality, but will reduce performance and may harm independent
auditability.

Encrypting data will make it difficult or impossible to use smart contracts with
that data. If information needs to be processed by smart contracts, the information
typically has to be decrypted. This is because smart contract code runs on all nodes
of the network, and thus any of them needs to be able to process the input data.
This is required to achieve consensus on the outcomes of smart contract execution.
Embedding keys within a smart contract would reveal the keys to all participants of
the blockchain network.

Sometimes encryption is not acceptable because there may be concerns about
successful encryption key management or future technological developments in
decryption (such as through quantum computing). Encrypted data may still reveal
information as metadata, such as aggregate transaction volume.

Greater transparency is in tension with confidentiality, even if pseudonyms and
encryption are used. Consortium and private blockchains can provide read access
controls, but this will not provide commercial confidentiality between competitors
on a consortium blockchain. The main trade-off is between the benefits of sharing
data within the group of collaborators (visibility) and retaining confidentiality
towards competitors where needed. In situations where full data transparency
between all participants may not be acceptable, and where encrypting data is
not acceptable or workable, a more-controlled data sharing can be enabled by
distributed ledger technology platforms that are not full blockchains. Platforms
such as R3’s Corda or Hyperledger Fabric provide small ledgers shared between
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parties of interest to each transaction. These platforms may be suitable where greater
control is required over confidentiality.

6.2 Example Use Cases for Suitability Evaluation

This section uses the above evaluation framework to assess the suitability of using
blockchain for four use cases. The first use case, supply chain, is aligned with
the one described in Section 4.1. To illustrate other outcomes, we introduce three
additional use cases in brief. Table 6.1 gives the summary of the evaluation results
based on the seven questions. Note that these results are illustrative only and should
not be taken as valid guidance for real-world systems.

6.2.1 Use Case 1: Supply Chain

A supply chain is the collection of processes involved in creating and distributing
goods, from raw materials to completed products, through to consumers. According
to a Deloitte survey, 42% of the companies in consumer goods and manufacturing
planned to spend at least $5 million on blockchain technology in 2017.1 Walmart has
tested blockchain technology for their supply chain management in a pilot project
that started on the first quarter of 2017 on tracking pork in the USA and China. The
use of blockchain for supply chain is an extremely active area of innovation and
technology development.

Supply chains are highly complex multiparty systems that span participants such
as farmers, factories, transport providers, and retailers. Operations are distributed
and often loosely coupled between participants. Data transparency is desired by
participants to support logistics planning and to identify and respond to problems.
Controlled confidentiality is required for open supply chain infrastructure, and
this could be supported by the use of related-party ledgers in distributed ledger
systems or by combining conventional information exchange technologies with
hashed information on blockchains to ensure integrity and authorization. However,
in vertically controlled supply chains, confidentiality can be managed by the use
of a private blockchain. Transaction history and data immutability are desired to
enable traceability back to the origin of goods and to control fraud and substitution.
Current supply chain systems are often still paper-based, and thus cannot easily
share information in real time. Digital solutions often only apply within vertically
controlled parts of the supply chain, and information gaps can be created when
subcontractors are used or when goods leave the scope of control. The time taken in

1 https://www.bloomberg.com/news/articles/2016-11-18/wal-mart-tackles-food-safety-with-test-
of-blockchain-technology.

https://www.bloomberg.com/news/articles/2016-11-18/wal-mart-tackles-food-safety-with-test-of-blockchain-technology
https://www.bloomberg.com/news/articles/2016-11-18/wal-mart-tackles-food-safety-with-test-of-blockchain-technology
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a supply chain is dominated by physical transportation and storage, which moderates
demand for performance. Reasonably short latency is required at key points of
handover of goods, but there is no requirement for extreme throughput or latency.

Supply chains are a promising area for blockchain-based applications. The
complex, dynamic structure of business relationships and operations in a supply
chain can be accommodated by the flexible structure of blockchain node networks,
and the logically centralized view of information provided by a blockchain supports
many of the demands for transparency in a supply chain.

6.2.2 Use Case 2: Electronic Health Records (EHRs)

Electronic health records (EHRs) are collections of patient medical records. They
contain clinical data such as blood type, vital signs, past medical records, med-
ications, and radiology reports for patients.2 Currently, these records are often
maintained by specific healthcare providers over time, in siloed systems not
connected to other EHRs.

Multiple parties including patients, professionals, and organizations from dif-
ferent medical jurisdictions are involved in data exchange to allow more efficient
healthcare and research. Healthcare service providers are decentralized trusted
authorities. Each has access to patient data and has the authority to make the
changes to that data. The operation of EHR systems is often distributed across
healthcare service providers. Data transparency remains one of the main issues in
existing EHRs. Patient privacy is critical, and normally information should only
be shared with patient consent. Sometimes exceptions are made, for example, to
access medical records in emergency situations, or to allow access to anonymized
data for approved medical research. Accesses made to EHRs are often required to
be logged for audit purposes. In addition to tight controls on read access, it is also
important that health records cannot be inappropriately created or updated. EHRs
do not typically need very low latency updates, and most patients’ records do not
change often. However, sometimes large diagnostic image information needs to be
managed for an EHR.

Because of privacy constraints, blockchains are not normally used to store
patient records directly, even in encrypted form. Instead, conventional systems are
used to manage EHR source data, with blockchains providing auxiliary services.
One example is the use of blockchains to keep audit logs of accesses made to
EHRs. Records in these audit logs are typically encrypted or hashed to maintain
patient privacy. MedRec3 is an initiative to explore on blockchain architecture in
contributing to secure and interoperable EHR systems. MedRec stores a pointer to

2https://www.cms.gov/Medicare/E-Health/EHealthRecords/index.html.
3https://medrec.media.mit.edu/.

https://www.cms.gov/Medicare/E-Health/EHealthRecords/index.html
https://medrec.media.mit.edu/


6.2 Example Use Cases for Suitability Evaluation 103

patients’ data in the blockchain and allows patients to choose when and with whom
to share their data.

6.2.3 Use Case 3: Identity Management

Identity management underlies most business and social interactions. Individuals,
organizations, devices, and assets can be identified by many schemes such as
passports, wedding certificates, serial numbers, and registration certificates. An
identity management system (IDM) manages user identities within an enterprise
system. Conventionally, the operations of such systems are centralized and managed
by a trusted authority. The authority sets permissions and roles for users to ensure
they only access parts of the system relevant to them. Integrity is critical for IDM, to
allow only authorized updates to users and their authorizations. Authorization can
be complicated by requirements for delegated authorization and by requirements
to enable dynamic revocation of authorizations. Logs of system accesses are often
required, to be able to audit and investigate proper use of the system. Read accesses
to an IDM can be frequent, to confirm authorized access, but updates to information
in an IDM are normally much less frequent. It is often acceptable for there to be
some delay in propagating updates to information about user identities and their
authorizations.

Blockchain has been trialled for the management of individuals’ identity for
authorization, authentication, user role, and privileges within enterprise systems.4,5

Blockchain allows the roles, permissions, and privileges of users to be verified
by the distributed peers connected to the blockchain network. This removes the
need for a centralized administrator and centralized database. Data on blockchain
is transparent to everyone on the network by default. The immutable transaction
history is duplicated to all connected peers. IDMs on a blockchain ensure that
user identities, roles, and authorizations will not be altered improperly. Despite the
fact that most current blockchains’ performance does not match that of existing
systems, it can still be viable to implement IDMs on blockchain because most
operations require read access, which can have low latency for blockchains. Privacy
is a critical requirement for IDMs, and so plaintext identity information for users is
not normally stored directly on a blockchain. Instead, that is either kept off-chain
or perhaps encrypted on-chain. For any solution, a significant privacy concern for
system designers must be the possibility of reidentification attacks that may allow
identities to be inferred from metadata or relationships stored on the blockchain.

4https://www.ibm.com/blogs/blockchain/2017/05/its-all-about-trust-blockchain-for-identity-
management/.
5https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-
and-authentication/.

https://www.ibm.com/blogs/blockchain/ 2017/05/its-all-about-trust-blockchain-for-identity-management/
https://www.ibm.com/blogs/blockchain/ 2017/05/its-all-about-trust-blockchain-for-identity-management/
https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-and-authentication/
https://letstalkpayments.com/22-companies-leveraging-blockchain-for-identity-management-and-authentication/
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6.2.4 Use Case 4: Stock Market

A stock market is a place where stocks, bonds, and securities are traded. A stock
market system inherently involves multiple entities to issue and trade stocks and
conventionally is implemented by a centrally controlled and maintained register
of stock ownership. In most jurisdictions, regulatory approval is required for the
operation of stock market infrastructure, and regulatory approval may be required
for the trading of specific stocks. In those contexts, the stock market is a natural
trusted authority. Integrity, immutability, and non-repudiation are critical to ensure
that high-value trades cannot be undone by either party. Transaction history is
important in providing evidence for trades and current stock holdings. Stock markets
typically have a high-volume, extremely low-latency price-setting mechanism to
match buyers and sellers. However, stock markets typically settle trades (i.e.
exchange the stocks and payment) at a later time. Settlement can have high
throughput requirements but typically does not have extreme latency requirements.

Blockchain technology allows trades to be settled by the blockchain infras-
tructure using peer confirmation, removing the need for centralized operation and
centralized authority to verify trades. Data transparency, however, is an issue for
blockchains in the context of the stock market. All investors and market participants
are exposed to blockchain participants. Even in a consortium blockchain between
brokers, this creates a disadvantage to the investor and may be prohibited by a
regulator. Transaction history is important because it keeps track of the ownerships
of shares and also any changes that happen. Data immutability is also crucial
as it ensures that no successful transactions can be tampered with by anyone.
Looking at the scalability of existing stock exchanges, blockchain technology
might not be suitable for this use case until the performance of blockchain can
match up with current conventional technologies. Overall, blockchain is not highly
suitable for the operation of conventional regulated stock markets. However, some
blockchain solutions are being explored. NASDAQ offers its Linq blockchain ledger
for registration and settlement of private securities,6 and the Australian Stock
Exchange (ASX) is also exploring distributed ledger technology to replace their
current Clearing House Electronic Subregister System, for core modules such as
trade registration and settlement.7

6.3 Design Process for Blockchain-Based Systems

In this section, we discuss an indicative model for the design of systems that
might use blockchain technology. The process is shown in Fig. 6.2. Every step
in the process is a procedure to decide between alternative options. The available

6http://ir.nasdaq.com/releasedetail.cfm?releaseid=948326.
7http://www.asx.com.au/services/chess-replacement.htm.

http://ir.nasdaq.com/releasedetail.cfm?releaseid=948326
http://www.asx.com.au/services/chess-replacement.htm
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Fig. 6.2 Design process for blockchain-based systems. © 2017 IEEE. Reprinted, with permission,
from Xu et al. (2017)

options discussed in Chapter 3 are used to assist decision-making and to guide the
system design at different stages of the design process. This enables a systematic
comparison of the capabilities of different design options. Chapter 3 describes
the impact of the design options on quality attributes. Trade-off analysis between
affected quality attributes is the foundation for the comparison of design options.
The design process starts after the initial evaluation of blockchain suitability. The
arrows illustrate one possible sequence of design decisions.

6.3.1 Trade-Off Analysis

As with any software system, there are trade-offs between quality attributes in
the design of blockchain-based systems. Some decisions mainly affect scalability
(like block size and frequency), security (like consensus protocol), cost efficiency
(like type of blockchain), or performance (like data structure). Design decisions
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that improve the performance of one quality attribute for a system may harm the
performance of other quality attributes. Some simple examples of this include:

• Encrypting data before storing it on a blockchain may increase confidential-
ity, but will reduce performance, and may harm transparency or independent
auditability.

• Storing only a hash of data on-chain and keeping the contents off-chain will
improve confidentiality and may improve performance but partly undermines the
distinctive benefit of blockchains in providing distributed trust. This may create
a single point of failure, reducing system availability and reliability.

• Using a private blockchain instead of a public blockchain may allow greater
control over the admittance of processing nodes and transactions into the system
but will also increase barriers to entry for participation and thus partly reduce
some of the benefit of using a blockchain.

• For blockchains that use Nakamoto consensus such as Bitcoin or Ethereum,
waiting for a higher number of confirmation blocks may increase confidence in
integrity and durability of transactions but will harm latency and thus may impact
service availability.

6.3.2 Decentralization

According to the discussion in Section 6.1, a blockchain is used in scenarios where
no single trusted authority is required or acceptable and where the trusted authorities
can be decentralized or partially decentralized. For the deployment and operation
of systems, there is a spectrum of options ranging from centralized monopolies to
central parties with a competition between parties, to services provided jointly by a
consortia, through to fully open service provision in a public peer-to-peer system.
It is possible that some components or functions are decentralized while others
are centralized. Design decisions regarding trust decentralization are discussed in
Section 3.2.

6.3.3 On-Chain vs. Off-Chain

Blockchains are usually combined with other components in a broader system.
Functionality such as user interfaces, cryptographic key management, IoT integra-
tion, and communication with other external systems is inherently off-chain. Many
kinds of data are also better stored off-chain, for scalability reasons (big data), for
confidentiality reasons (private data), or for dealing with legacy databases. Although
we say ‘big data’ is not suitable for storing on a blockchain, even ‘not tiny’ data
may be too large to feasibly store on a blockchain. Cost calculations can help to
determine the resolution of design decisions for this issue (see also Chapter 9).
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While blockchains provide some unique properties, the amount of computational
power and data storage space available on a blockchain network remains limited.
In addition, the monetary cost of using public blockchains follows a different cost
model than conventional software systems. In regard to cost efficiency, performance,
and flexibility, major design decisions in using a blockchain include choosing what
data and computation should be placed on-chain and what should be kept off-chain.
Table 6.2 captures some of these options, which are described in more detail below.

Data

A common practice for data management in blockchain-based systems is to store
raw data off-chain and to store on-chain just metadata, small critical data, and hashes
of the raw data. However, the applications of storing item data on blockchain are not
just for integration with external data. There are various uses for wholly on-chain
auxiliary data, including ‘colored coins’ which are a class of overlays on Bitcoin to
represent and manage real-world assets.

A detailed discussion of on-chain data storage cost can be found in the respective
cost chapter, in Section 9.1. Here we focus on a higher-level consideration as part
of the design process.

In the Bitcoin blockchain, there are different ways to store data in transactions.
This was not a core feature in the original design of Bitcoin but has now been
incorporated with a specific command, called OP_RETURN. Table 6.2 compares
this mechanism with alternatives. While it offers some level of flexibility, storing
data on the Bitcoin blockchain is slow and costly and limited to 40 bytes.

Ethereum, on the other hand, theoretically allows storing arbitrary structured data
of any size in a transaction directly. However, the size of a transaction is limited
by the maximum size of a block, and in practice transactions typically need to be
smaller to be accepted due to the transaction load from other users. In addition,
Ethereum provides two other ways to store arbitrary data, using smart contracts.
The first option is to store the data as a variable in a smart contract. The second
option is to store arbitrary data as a log event of a smart contract. Storing data as a
variable in a smart contract is more efficient to manipulate, but less flexible due to
the constraints of the Solidity language on the value types and length. The flexibility
and performance of using smart contract log events is intermediate because log
events allow up to three parameters to be queried.

Finally, we reiterate that data storage on blockchain follows a different cost
model than conventional data storage. Although it may seem more expensive,
storing data on blockchain is a one-time cost for permanent storage. (However, note
that Ethereum allows a partial refund on reclaimed smart contract variable storage.)

Selection of off-chain data storage concerns the interaction between the block-
chain and the conventional data storage facilities. Off-chain data storage can
be through conventional enterprise IT systems, a private cloud on the client’s
infrastructure, or a public storage provided by a third-party. The flexibility of using
cloud to store data depends on the implementation. Some peer-to-peer data storage
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facilities are designed to be friendly to blockchain, such as IPFS8 and Storj.9 IPFS is
free, but ensuring availability requires providing an IPFS server that hosts the data.
The cost of Storj is US$0.015/GB/month. In a peer-to-peer data storage, the data is
replicated automatically by the peer-to-peer network or based on the behaviour of
users, e.g. data is replicated once a user accesses it. In a cloud environment, data
replication needs to be managed by the system or consumer.

Computation

Computation in a blockchain-based system can be performed on-chain (e.g. through
smart contracts) or off-chain. Different blockchains offer different levels of expres-
siveness for on-chain computation. For example, Bitcoin only allows simple scripts
and conditions that must be satisfied to transfer Bitcoin payments. Ethereum
allows more general (Turing complete) programs, and these programs can not only
perform conditional payments but also make modifications to the working data in
smart contract variables. There are other smart contract languages which are more
expressive than Bitcoin’s simple scripts, but which are purposefully not Turing
complete, in order to facilitate static analysis. An example is the Digital Asset
Modelling Language (DAML),10 which is designed to codify financial rights and
obligations.

Smart contracts are not processed until their invoking transactions are included in
a new block. Blocks impose an order on transactions, thus resolving nondeterminism
which might otherwise affect their execution results. One benefit of using on-chain
computation, rather than using blockchain as a data layer only, is the inherent
interoperability among the systems built on the same blockchain network. Other
benefits are the neutrality of the execution environment and immutability of the
program code once deployed. This facilitates building trust in the shared code
among untrusting parties.

Other Considerations

Deciding between on-chain and off-chain not only depends on trade-offs among
quality attributes, but also on how information and computation are used by other
components in the broader system. Take identity information (Section 6.2.3) as
an example. Identity supports systems where there is a requirement to know the
individual human or system involved in transactions. Services such as international
payments have regulatory requirements to establish the identity of participants, as
part of Anti-Money Laundering (AML) and Counter-Terrorism Financing (CTF)

8https://ipfs.io/.
9https://storj.io/.
10https://digitalasset.com/press/introducing-daml.html.

https://ipfs.io/
https://storj.io/
https://digitalasset.com/press/introducing-daml.html
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policies. From a purely technical perspective, real-world identities are not necessar-
ily required. For example on Bitcoin, transacting agents (which are not necessarily
persons) are only cryptographically identified, pseudonymously. So international
exchange of the Bitcoin digital currency can be performed without establishing real-
world identity. Nonetheless, AML/CTF requirements are not obviated by the use
of a blockchain. Identity is critical here, and identity on blockchain is sometimes
considered to be a key enabler for many financial services on blockchain. However
identity information does not necessarily need to be stored on-chain, off-chain
protocols might be used instead. Privacy and confidentiality can be a challenge when
integrating identity information into a blockchain-based system.

6.3.4 Blockchain Selection and Configuration

At this stage, a blockchain platform is selected according to the requirement of the
use case and characteristics of blockchain platforms and trade-off analysis discussed
in Chapter 3. Normally, the consensus protocol and some other decisions are fixed
once a particular blockchain is selected. Hyperledger Fabric is an exception, where
a modular architecture is used to support pluggable implementations of various
consensus protocols. For some blockchain platforms, for example, those using a
proof-of-work protocol, the inter-block time can be configured through adjustments
to the difficulty of mining.

6.3.5 Deployment and Operation

Finally, the choice of where to deploy the modules of the blockchain-based system is
also important for the quality attributes of blockchain-based systems. For example,
deploying a blockchain on a cloud provided by a third-party, or using a blockchain-
as-a-service model directly, introduces the uncertainty of cloud infrastructure into
the system. Here the cloud provider becomes a trusted third-party and a potential
single point of failure for the system. Deploying a public blockchain system on a
virtual private network can make it a private blockchain, with permissioned access
controls provided at the network level. However the virtual private network will
introduce its own additional latency overhead.

There are specific design challenges related to the operation of blockchain-based
systems, which architects should be aware of when deciding to use a blockchain.
Blockchain-based systems can be harder to modify than conventional systems. The
blockchain platform software runs on multiple independently operating nodes, and
updating that software can be physically and administratively difficult to coordinate.
The blockchain ledger is also immutable by design and so cannot be retrospectively
updated to facilitate system modification. Similarly, in blockchain-based systems
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that use smart contracts to regulate interactions between mutually untrusting parties,
trust is derived partly from the fact that the code cannot be changed easily.

This inherently creates challenges for governance: the management of the
evolution of blockchain-based systems. Changes may be made to correct defects,
add features, or migrate to new IT contexts. However, in a multiparty system with no
single owner, managing these changes is more like diplomacy than traditional risk
management or conventional product management. Hence, the current configuration
of blockchain is not suitable to implement on a system that may need to change or
be modified frequently. Lessons may be drawn from governance in open-source
software, which faces similar development challenges. However, the governance of
a blockchain is not just a software development problem—it is also a deployment
and operations problem. For both public and private blockchain systems, key
stakeholders include the users of the blockchain, software developers with moral
or contractual authority over the code base, miners or processing nodes in the
blockchain ecosystem, and government regulators in related industries. However,
blockchain immutability may also simplify governance oversight to some degree.
For instance, smart contracts deployed on a blockchain will be resistant to tampering
and will continue to be individually available for execution while the whole
blockchain operates normally. These factors should be taken into consideration
when deciding to use blockchain as a component.

6.4 Summary

Due to their fundamental properties and limitations, blockchains do not fit to all
scenarios. Thus, before designing a system, the suitability of a blockchain needs to
be evaluated against the system requirements. This chapter started with a suitability
framework for assessing the suitability of using blockchain in a various contexts,
based on the characteristics of the use case. After the suitability framework, a gen-
eral process for designing blockchain-based applications was discussed. Throughout
this design process, the available options discussed in Chapter 3 are used to assist
decision-making and to guide the system design at different stages of the design
process, by enabling a systematic comparison among the capabilities of different
design options.

6.5 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2017; Lo et al. 2017).
MedRec is an initiative to explore how a blockchain-based architecture can

contribute to secure and interoperable EHR systems. More details of MedRec can
be found in Azaria et al. (2016).



Chapter 7
Blockchain Patterns

with Cesare Pautasso and Qinghua Lu

In this chapter, we present a collection of patterns for the design of blockchain-
based applications. In software engineering, a design pattern is a reusable solution
to a problem that commonly occurs within a given context during software design.
A design pattern defines constraints that restrict the roles of architectural elements
(processing, connectors, and data) and the interaction among those elements.
Adopting a design pattern causes trade-offs among quality attributes. Our pattern
collection includes three patterns about interaction between blockchain and the
external world, four data management patterns, three security patterns, and five
contract structural patterns. The pattern collection provides architectural guidance
for developers to build applications on blockchain. Figure 7.1 gives an overview
of these patterns. Using the patterns in an application architecture can better align it
with the unique properties provided by blockchain, avoid its limitations, and achieve
other quality attributes.

The three patterns that describe different ways for blockchains to communicate
data with the external world are oracle (Section 7.1.1), reverse oracle
(Section 7.1.2), and legal and smart contract pair (Section 7.1.3). The patterns
about managing data on and off blockchain are encrypting on-chain data
(Section 7.2.1), tokenization (Section 7.2.2), off-chain data storage (Section 7.2.3),
and state channel (Section 7.2.4). There are three patterns about the security
of blockchain-based applications: multiple authorization (Section 7.3.1) and off-
chain secret enabled dynamic authorization (Section 7.3.2) are aimed at adding
dynamism to authorization of transactions and smart contracts, and X-confirmation
(Section 7.3.3) further increases the security of transactions. The five structural
patterns are concerned with the dependencies among and the behaviour of smart
contracts. Smart contracts on blockchain are immutable. The challenge of how to
upgrade a smart contract can hinder the evolution of blockchain-based applications.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_7
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Fig. 7.1 Overview of the blockchain-based application pattern collection, adapted from Xu et al.
(2018)

Contract registry (Section 7.4.1), data contract (Section 7.4.2), and factory contract
(Section 7.4.4) are three patterns that target improved upgradability of smart
contracts. Embedded permission (Section 7.4.3) aims to provide permission control
of functions of smart contracts. Finally, incentive execution (Section 7.4.5) concerns
maintenance of smart contracts.

In this chapter we follow an established form to describe each pattern, which
includes the name of the pattern, a short summary, the context, the problem
statement, an explicit discussion of the forces which make the problem difficult,
the solution, its consequences, and some examples of known real-world uses of the
pattern. Forces are identified with the corresponding quality attribute, as sometimes
the solution will propose a trade-off between them. Regarding the consequences, we
distinguish the benefits and drawbacks. Some of the discussions are only applicable
to certain types or deployments of blockchain, such as monetary cost of data
storage (public blockchains) and code execution (blockchains with smart contract
capabilities).
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7.1 Patterns on Interacting with the External World

Due to the unique properties and limitations of blockchain, a major architec-
tural consideration for blockchain-based software applications is what data and
executable code (smart contracts) should be kept on-chain and what should be
kept off-chain. Two factors need particular attention, namely performance and
privacy. Performance highly depends on the type of deployment of the blockchain.
For example, a consortium blockchain can be configured to achieve much better
performance than a public blockchain. As a component of a larger software system,
blockchain needs to communicate data with other components within the software
system (as shown in Fig. 5.1).

7.1.1 Pattern 1: Oracle

Summary Introducing the state of external systems into the closed blockchain
execution environment.

Context From the software architecture perspective, a blockchain can be viewed
as a component within a larger software system. In the case the blockchain is used
as a distributed database for more general purposes other than purely blockchain-
based services, the applications built on a blockchain will need to interact with other
external systems. Thus, the validation of transactions on blockchain will depend on
those external systems.

Problem The execution environment of a blockchain is self-contained. It can only
access information present in the data and transactions on the blockchain. Smart
contracts running on a blockchain are pure functions by design. The state of external
systems is not directly accessible to smart contracts. Yet, function calls in smart
contracts sometimes need to access state of the external world.

Forces

• Closed environment.Blockchain is a secure, self-contained environment, isolated
from external systems. Smart contracts on blockchain cannot directly read the
states of the external systems.

• Connectivity. In addition to the data found on the blockchain, general purpose
applications might require information from external systems. For example,
information such as geolocation information or weather data from a Web API1

may be required.
• Long-term availability. While transactions on a blockchain are immutable, the

external state used to validate a transaction may change or even disappear after
the transactions were originally appended to the blockchain.

1https://openweathermap.org/api.

https://openweathermap.org/api
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Solution To connect the closed execution environment of a blockchain with the
external world, an oracle is introduced to evaluate conditions that cannot be
expressed in a smart contract running within the blockchain environment. An oracle
is a trusted third-party that provides smart contracts with information about the
external world. When validation of a transaction depends on external state, the
oracle is requested to check the external state and to provide the result to the
validator (miner), which then takes the result provided by the oracle into account
when validating the transaction. The oracle can be implemented inside a blockchain
network as a smart contract with external state being injected into the oracle
periodically by an off-chain injector. Other smart contracts can then access the
data from the oracle smart contract. An oracle can also be implemented as a
server outside the blockchain. Such an external oracle needs permission to sign
transactions. To improve the reliability or trustworthiness of the oracle, a distributed
oracle uses multiple servers. Figure 7.2 is a graphical representation of the pattern
with the external oracle solution approach. Participants who wish to transact with
each other on a blockchain could rely on an ad hoc arbitrator trusted by all the
participants to resolve disputes or check external state. An arbitrator may be a
human with a blockchain account who is able to sign transactions. Alternatively,
an arbitrator may be automated and validate transactions based on state taken from
the blockchain and the external world.

Consequences
Benefits:

• Connectivity. The closed execution environment of a blockchain is connected
with the external world through the oracle. The applications based on blockchain
can access external states through the oracle and use these external states in their
execution.

Fig. 7.2 Oracle pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission
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Drawbacks:

• Trust. Using an oracle introduces a trusted third-party into the system. The oracle
selected to verify or supply the external state needs to be trusted by all the
participants involved in relevant transactions.

• Validity. External states injected into the transactions cannot be fully validated by
other miners. Thus, when miners validate transactions including external state,
they rely on the oracle.

Related Patterns Reverse oracle (Section 7.1.2)

Known Uses

• The concept of oracle is used in Bitcoin.2 An oracle is a server outside the Bitcoin
blockchain network which can evaluate user-defined expressions based on the
external state.

• Orisi3 is a distributed oracle scheme on Bitcoin. Orisi maintains a set of
independent oracles and allows participants involved in a transaction to select
a set of oracles and to define the quorum required before initiating a conditional
transaction.

• Hyperledger Fabric chaincode (smart contracts) can in principle invoke any
off-chain function, including to access external state. Chaincode is specified
with endorsement policies, to specify which nodes are required to validate its
execution. Chaincode with a singleton endorser node thus acts as a platform-
supported oracle for Hyperledger Fabric. Endorsement policies can also specify
M-of-N validation constraints, to act as platform-supported distributed oracles.

• Gnosis4 is an example of arbitrator selection by participants. Gnosis is a
decentralized prediction market that allows users to choose any oracle they trust,
such as another user or a web service, e.g. for weather forecasts.

7.1.2 Pattern 2: Reverse Oracle

Summary The off-chain components of an existing system rely on smart contracts
running on a blockchain to supply requested data and check required conditions.

Context In a software system, where a blockchain is one of the components, the
off-chain components might need to use the data stored on blockchain and the smart
contracts running on blockchain to supply data or check conditions.

Problem Many pre-existing or legacy systems do not have direct interfaces to
blockchains. Data or functionality on a blockchain may have to be integrated with

2https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state.
3http://orisi.org/.
4https://gnosis.pm/.

https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
http://orisi.org/
https://gnosis.pm/
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legacy systems, but a nonintrusive approach is required, not changing the core of
the existing systems.

Forces

• Connectivity. Integrating blockchain into an existing system to leverage the
unique properties or data of a blockchain.

Solution A component that can interact with both the blockchain and existing
system components is added to the system. The reverse oracle component pro-
vides broader system functionality by mediating with blockchain data and smart
contract functionality. Well-known smart contract functions can be configured in
the component to access blockchain functionality, or the identity of transactions on
the blockchain can be made visible to the system for integration. Figure 7.3 is a
graphical representation of the pattern.

Consequences
Benefits:

• Connectivity. The blockchain is integrated into an existing system, either by
configuring well-known smart contract functions to be invoked, or by making
blockchain transactions visible to the system for integration.

Drawbacks:

• Nonintrusive. It is not always possible to use a blockchain in a nonintrusive way
depending on the extensibility of the existing system. In particular, the proba-
bilistic commit of blockchains using Nakamoto consensus may be inconsistent
with normal transaction semantics in enterprise systems. Additional logic in the
reverse oracle component may be required to cover these differences.

Fig. 7.3 Reverse oracle
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission
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Related Patterns Oracle (Section 7.1.1)

Known Uses

• Identitii5 provides a solution to enrich payments in banking systems with
documents and attributes, using blockchain. Identitii uses the concept of identity
token, which is an entity reference stored on a blockchain. Every payment is
associated with an identity token, which is used to exchange enriched information
about a payment. The identity token is exchanged between banks by being
embedded into the SWIFT protocol.

• Slock.it6 aims to build autonomous objects and a universal sharing network
by using blockchain and IoT devices. Devices can sell or rent themselves and
also pay for services provided by others. When renting a device, availability
information is stored on blockchain; thus, validity checking is done using
blockchain.

7.1.3 Pattern 3: Legal and Smart Contract Pair

Summary A bidirectional binding is established between a legal agreement and a
corresponding smart contract.

Context The legal industry is becoming digitized, for example, using digital
signatures has become a valid way to sign legal agreements. The Ricardian contract
was developed in the mid-1990s as a concept for cryptographically identified legal
contracts to also be machine interpretable. Digital legal agreements need to be
executed and enforced.

Problem An independent trustworthy execution platform trusted by all the
involved participants is needed to execute digital legal agreements. Blockchain can
provide that platform, using on-chain smart contracts to digitize legal agreements.

Forces

• Authoritative source. A valid mapping is required between a legal contract and
its corresponding smart contract, so that the smart contract can correspond with
the authoritative legal contract.

• Secure storage. Blockchain provides a trustworthy data storage to keep the legal
agreement.

• Secure execution.Blockchain provides a trustworthy computational platform that
can execute digital agreements to enforce certain conditions as defined in a legal
contract.

5https://identitii.com/.
6https://slock.it/.

https://identitii.com/
https://slock.it/
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Solution

A smart contract is created to implement some of the conditions defined in the
legal agreement. When deployed, there is a variable to store the hash value of the
legal agreement but initially has a blank value. The address of the smart contract
is included in the legal agreement, and then the hash of the legal agreement is
calculated and added to the contract variable. The immutability of the legal contract
hash variable is implemented in custom code. By binding a physical agreement with
a smart contract, the bridge between the off-chain physical agreement and the on-
chain smart contract is established. The two-directional binding shows the intended
mapping between the legal agreement and smart contract.

The smart contract digitizes some of the conditions defined in the agreement.
These conditions can be checked and enforced automatically by the smart contract.
However, not all legal terms can be digitized. The smart contract can also facilitate
automated regulatory compliance checking, but extent of this might be limited
depending on the data represented on the blockchain and on constraints of smart
contract programming language. Figure 7.4 is a graphical representation of the
pattern.

Consequences
Benefits:

• Automation. Some of the conditions defined in the legal contract, for example, a
conditional payment, can be automatically executed or enforced by blockchain.

• Audit trail. Blockchain permanently records all historical transactions related to
the legal contract and the smart contract. This immutable data enables auditing
of the contract and its execution.

Drawbacks:

• Expressiveness. Smart contracts are written in programming languages. These
programming languages might not be able to express all contractual terms or
regulatory compliance conditions.

Fig. 7.4 Legal and smart
contract pair pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission
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• Enforceability. If a public blockchain is used, there is no central administering
authority to decide on disputes nor to enforce court judgements.

• Interpretation. There might be many possible ways to interpret contract condi-
tions and encode them in smart contracts. Ambiguity in natural language makes
it a challenge to accurately implement legal terms in a way that will be agreed
upon by all the involved participants.

Related Patterns N/A

Known Uses

• Ricardian contracts were not defined using blockchain smart contracts but have
subsequently inspired approaches to using blockchain-based smart contracts
for legal contracts in systems such as Corda7 and EOS.8 The Smart Contract
Template proposed by Barclays9 uses legal document templates to facilitate smart
contracts running on Corda blockchain platform.

• Specific proposals for the representation of machine-interpretable legal terms
have been explored in KWM’s project on digital and analogue (DnA) contracts10

and in the Accord Project.11 Academic work has proposed logic-based languages
to declaratively define smart contracts on blockchain.

• Open Law12 is a platform that allows lawyers to make legally binding and
self-executable agreements on the Ethereum blockchain. The legal agreement
templates are stored on a decentralized data storage, IPFS.13 Users can create
customized contracts for specific uses.

7.2 Data Management Patterns

This section discusses three data management patterns that manage data on and off
blockchain.

7.2.1 Pattern 4: Encrypting On-Chain Data

Summary Ensure confidentiality of the data stored on blockchain by encrypting it.

7https://www.corda.net/.
8https://eos.io/.
9https://www.barclays.co.uk/.
10https://github.com/KingandWoodMallesonsAU/Project-DnA.
11https://www.accordproject.org/.
12http://openlaw.io/.
13https://ipfs.io/.

https://www.corda.net/
https://eos.io/
https://www.barclays.co.uk/
https://github.com/KingandWoodMallesonsAU/Project-DnA
https://www.accordproject.org/
http://openlaw.io/
https://ipfs.io/
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Context For some blockchain applications, commercially sensitive data should be
only accessible to specific participants. An example would be a special discount
price offered by a service provider to a subset of its users. Such information might
not be supposed to be accessible to the other users who do not get the discount.

Problem Data privacy is one of the main limitations of blockchain. All the
information on blockchain is publicly available to participants. There is normally no
privileged user within a blockchain network. On a private or consortium blockchain,
the ability of parties to participate might be limited by the consortium agreement and
by network access controls, but all participants will normally be able to see the full
blockchain history. On a public blockchain, new participants can join the blockchain
network freely.

Forces

• Transparency. Every participant within a blockchain network is able to access all
the historical transactions on blockchain. This enables them to all collectively
validate previous transactions. The transactions on a public blockchain are
accessible to everyone, using blockchain explorer tools such as Etherscan.14

• Lack of confidentiality. Since all the information on blockchain is publicly
available to everyone in the network, commercially sensitive data meant to be
kept confidential should not be stored on blockchain in plain form.

Solution Symmetric or asymmetric encryption can be used to encrypt data before
inserting the data into blockchain. One possible design for sharing encrypted data
among multiple participants is as follows. First, one of the participants creates a
secret key for encrypting data and distributes it during an initial key exchange. When
one of the participants needs to add a new data item to the blockchain, they first
symmetrically encrypt it using the secret key. Only the participants allowed to access
the transaction are given the secret key and can decrypt the information. Figure 7.5
is a graphical representation of the pattern.

Consequences
Benefits:

• Confidentiality. Using encryption, the publicly accessible information on a
blockchain is encrypted, so that is not readable by anyone who does not hold
the secret key.

Drawbacks:

• Key management. Both symmetric and asymmetric encryption require off-chain
key management. If key management is not done properly, it can lead to loss
or disclosure of private or secret keys. If the required private key or secret
key is compromised, the encryption mechanism will not protect the sensitive
information.

14http://etherscan.io.

http://etherscan.io
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Fig. 7.5 Encrypting on-chain data pattern. This work is based on an earlier work: Xu et al. (2018)
© ACM, 2018. http://dx.doi.org/10.1145/3282308.3282312. Included here by permission

• Access revocation. Revoking read access is a challenge after the encrypted data
has been published to the blockchain. It is difficult to ensure that a party has
destroyed their knowledge of a secret key. The encrypted data on a blockchain
is immutable, and so as long as the participant retains the secret key, it retains
access to the encrypted data.

• Immutable data. Even if stored in encrypted form, the sensitive data will remain
in the blockchain forever. In addition to the risk of key compromise, the
encrypted data may be subject to brute force decryption attacks at some time
in the future. Breakthroughs in technology like quantum computing might render
current encryption technologies ineffective. So even if the data is considered to
be secure with a given key size when it is stored in the blockchain, this may no
longer be the case in the future.

• Key sharing. The encryption key needs to be shared before the encrypted data
on the blockchain can be read. Although blockchain itself can be used as a
software connector to communicate data, secret keys cannot be shared in plain
form through blockchain because the shared key would be publicly accessible if
being communicated through blockchain.

Related Patterns N/A

Known Uses

• Oraclize15 is a smart contract running on Ethereum public blockchain, which
provides a service to access state from the external world. Oraclize allows smart
contract developers to encrypt the parameters of their queries locally by using a

15https://blog.oraclize.it/encrypted-queries-private-data-on-a-public-blockchain-71d893fac2bf.

http://dx.doi.org/10.1145/3282308.3282312
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public key before passing them to a smart contract. The only one who can decrypt
the call parameters is Oraclize, using the paired private key.

• Crypto digital signature has been suggested by MLG Blockchain16 to encrypt
data and share the data between the parties who interact through blockchain.

7.2.2 Pattern 5: Tokenization

Summary Using tokens on blockchain to represent transferable digital or physical
assets or services.

Context Physical tokens such as tickets, share certificates, and casino chips are
commonplace examples of representations of assets or services. These tokens (as
paper documents or plastic chips) can be physically transferred between parties.
Holding or redeeming a token will allow access to the assets or services represented
by the token. The underlying assets can be digital or physical. Digital tokens can be
electronically communicated between parties, but like physical tokens can represent
digital or physical assets or services.

Problem Tokens representing assets or services should be transferable, so that they
are no longer held by the original party after the transfer. The holding of a token by
someone should be able to be authoritatively determined by others.

Forces

• Representation. Rather than holding an underlying asset, which might be risky
or physically difficult, a token represents the asset and is easy to handle.

• Holding and transfer. For tokens to function as property or to support other
exclusive rights, it must be possible to determine whether someone holds a token,
and it must be possible to transfer the token, so that the original party no longer
holds the token.

Solution Blockchain provides a trustworthy platform to realize tokenization. There
are different ways to implement tokenization using blockchain. Native tokens
exist on public blockchains (e.g. BTC on Bitcoin, ETH on Ethereum), but in
addition to being cryptocurrency, they can also represent other assets or services
using transaction identifiers or other auxiliary data. Cryptocurrency transfers on
the blockchain are then also interpreted as a transfer of those assets or services.
However, using blockchain cryptocurrency as tokens is limited because there is little
expressive power to represent assets, and there can be limitations on checking token
transfer conditions.

A more flexible solution is to define tokens as a data structure in a smart contract.
For an asset, tokenization is a process starting from an asset (e.g. money) being
held in custody (e.g. at a bank) and being represented as this data in the smart

16https://mlgblockchain.com/crypto-signature.html.

https://mlgblockchain.com/crypto-signature.html
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contract. The smart contract imposes constraints to ensure that holding and transfer
of the token support the requirements of the token scheme. Depending on the token
scheme, transfer of the token may correspond to transfer of ownership of the asset,
or perhaps some other right to use the asset. Conditions programmed into the smart
contract can enforce conditions on the transfer of tokens.

Consequences
Benefits:

• Representation.Tokens implemented on blockchain, especially when using smart
contracts, have a great range of expressive power suitable for representing many
kinds of assets or services.

• Holding and transfer. Blockchain transactions record the transfer of tokens and
ensure that a token cannot be ‘double spent’. The transparency of a blockchain
allows all participants to inspect the latest state of token holdings.

Drawbacks:

• Integrity. Integrity of tokens is guaranteed by the blockchain infrastructure, but
bugs in smart contracts can lead to problems in the holding or transfer of assets.
Even if the digital token is secure, the authenticity of the corresponding physical
or digital asset is not guaranteed automatically.

• Legal processes for ownership. A token on a blockchain is not necessarily the
authoritative source of information about the ownership of a physical asset. The
owner of an asset may be entitled to sell the asset without being required to create
a transaction on the blockchain. Also, legal processes such as court orders and
bankruptcy proceedings can change the ownership of physical assets without any
associated transaction being recorded on the blockchain.

Related Patterns Reverse oracle (Section 7.1.2)

Known Uses

• ColoredCoin17 is an open source protocol for tokenizing digital assets on Bitcoin
blockchain.

• Ethereum token standards. Twenty-four percent of the existing financial smart
contracts on Ethereum use tokenization. The ERC2018 token standard has been
proposed for fungible tokens and describes the functions and events that a token
smart contract should implement. Other standard interfaces have been defined for
other token types, such as unique or serialized assets.

• Digix19 uses tokens to track the ownership of gold as a physical asset.

17http://coloredcoins.org/.
18https://theethereum.wiki/w/index.php/ERC20_Token_Standard.
19https://digix.global/.

http://coloredcoins.org/
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7.2.3 Pattern 6: Off-Chain Data Storage

Summary Use hashing to ensure the integrity of arbitrarily large datasets which
may not fit directly on the blockchain.

Context Some applications consider using the blockchain to guarantee the integrity
of large amounts of data.

Problem The blockchain, due to its full replication across all participants of the
blockchain network, has limited storage capacity. Storing large amounts of data
within a transaction may be impossible due to the limited size of the blocks of the
blockchain. For example, Ethereum has a block gas limit to constrain the number,
computational complexity, and data size of the transactions included in any block.
Data cannot take advantage of the immutability or integrity guarantees without
being stored on the blockchain.

Forces

• Scalability. Blockchain provides limited scalability because every bit of data is
replicated across all nodes, where it is kept permanently.

• Cost. If a public blockchain is used, storing data on blockchain costs money
(cryptocurrency), although the cost is a one-time cost to write the data. This
is in contrast to traditional distributed data storage, like cloud, where costs are
based on the amount of allocated storage space over time. A piece of data can be
stored on blockchain by being embedded in a transaction, as a variable in a smart
contract or as a log event. Storing data in a contract is an effective way to enable
its manipulation but can have constraints from the smart contract languages on
the value types and length. Different blockchains have different cost models for
storing data.

• Size. There are limits on transaction size or block size. For example, on the
Bitcoin blockchain, the default client only relayed OP_RETURN transactions
up to 80 bytes, which was reduced to 40 bytes in February 2014.20 Ethereum has
a block gas limit that limits the sum of gas all transaction in a block are allowed
to use.

Solution A blockchain can be used as a general purpose replicated database, as
transactions logged in the blockchain can include arbitrary data on some blockchain
platforms. For data of big size (essentially data that is bigger than its hash value),
rather than storing the raw data directly on blockchain, a representation of the data
with smaller size can be stored on blockchain with other small-sized metadata about
the data (e.g. a URI pointing to it). The solution is to store a hash value (also called
digest) of the raw data on chain. The value is generated by a hash function, e.g. one
from the SHA-2 family, which maps data of arbitrary size to data of fixed size. Hash
functions are one-way functions which are easy to compute, but hard to invert. If

20https://github.com/bitcoin/bitcoin/pull/3737.

https://github.com/bitcoin/bitcoin/pull/3737
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Fig. 7.6 Off-chain data
storage pattern. This work is
based on an earlier work: Xu
et al. (2018) © ACM, 2018.
http://dx.doi.org/10.1145/
3282308.3282312. Included
here by permission
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even one bit of the input data changes, its corresponding hash value would change
radically. A hash value can be used as a check to ensure the integrity of the raw data
stored off-chain. The hash value recorded immutably in a blockchain transaction
guarantees the integrity of the hash value as well as the original raw data from
which the hash was derived. Figure 7.6 is a graphical representation of the pattern
solution. Depending on the context, the hash value might double as (part of) a URI.

Consequences
Benefits:

• Integrity. Blockchain guarantees the integrity of the hash value that represents the
raw data. The integrity of the raw data can be checked using the on-chain hash
value.

• Cost. If a public blockchain is used, blockchain is utilized at a lower cost (fixed
cost as the size of the hash value is fixed) for integrity of data with arbitrary size.

Drawbacks:

• Integrity. The raw data is stored off-chain, where the off-chain data store
might not be as secure as blockchain. The raw data might be changed without
authorization. This change will be detected, thanks to the hash of the original data
stored on the blockchain. However, without additional measures, it will neither
be possible to recover the original data nor to prevent the change from happening
in the first place.

• Data loss. Since the raw data is stored off-chain, it may be deleted or lost. Only
its hash value remains permanently on the blockchain.

• Data sharing. The on-chain data can be shared through using blockchain
platforms. Additional communication mechanisms and storage platforms are
required for data sharing off-chain.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312


128 7 Blockchain Patterns

Related Patterns N/A

Known Uses

• Proof-of-Existence (POEX.IO21). This service allows entering an SHA-256
cryptographic hash of a document into the Bitcoin blockchain as a ‘proof-of-
existence’ of the document at a certain time. The hash value guarantees the data
integrity of the document.

• Chainy22 is a smart contract running on Ethereum blockchain. Chainy stores a
short link to an off-chain file and its corresponding hash value.

7.2.4 Pattern 7: State Channel

Summary Transactions that are too small in value relative to a blockchain transac-
tion fee or that require much shorter latency than can be provided by a blockchain
are performed off-chain with periodic recording of net transaction settlements on-
chain. Micropayments are a typical example of such transactions, but many other
kinds of state updates or off-chain protocols can be treated in a similar way.

Context Micropayments are payments that can be as small as a few cents and very
frequently executed. For example, payment of a very small amount of money to a
Wi-Fi hotspot might be made frequently for small amounts of Wi-Fi data usage.
Blockchain can back these kinds of transactions, but it is not necessary and cost-
effective to store all such transactions on the blockchain.

Problem The decentralized design of blockchain has limited performance. Trans-
actions can take several minutes or even 1 h (for Bitcoin blockchain) to be committed
on the blockchain. Due to the long commit time and high transaction fees on a public
blockchain (where fees are largely independent of the transacted amount), it is often
infeasible to store many low-value transactions on the blockchain network. During
a recent peak in demand, the average fee per transaction rose to the equivalent
of US$5523 on Bitcoin. On-chain transactions are suitable for transactions with
medium to large monetary value, relative to the transaction fee.

Forces

• Latency. Blockchain transactions may take a long time to be committed, while
users expect many kinds of transactions to happen instantaneously.

• Throughput. Blockchain has limited throughput scalability because every bit of
data is replicated across all nodes and kept permanently.

21https://poex.io/.
22https://chainy.info/.
23Recorded for 22 Dec 2017 by https://bitinfocharts.com/comparison/bitcoin-transactionfees.html.
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• Cost. Storing data on a public blockchain costs money (cryptocurrency). The
transaction fee of an individual micropayment transaction might be higher than
the monetary value associated with the micropayment transaction.

Solution Storing every low-value transaction on blockchain is infeasible due to
the high relative cost of transaction fees. The state channel solution is to establish
an agreed off-chain protocol between two participants, with a deposit from one or
both locked up as security in a smart contract for the lifetime of the channel. The
state channel keeps the intermediate states of the small transactions off-chain, and
only stores the finalized aggregated (net) transaction on chain. The frequency of
transaction settlement depends on the use case and agreement between the two sides.
For example, in scenarios around utilities, internet service providers or electricity
companies might establish payment channels with their consumers for an agreed
monthly billing period. As the consumer uses data or energy daily, the intermediate
state is stored in the off-chain state channel until the end of the month, when
the channel is closed to finalize the payment for the whole month. A network of
micropayment channels can be built where the transactions transferring small values
occur off-chain. The individual transactions take place entirely off the blockchain
and exclusively between the participants, across multiple hops where needed. Only
the final transaction that settles the payment for a given channel or set of channels is
submitted to the blockchain. The technologies used to implement state channels are
specific to each blockchain platform. For example, the Lightning network24 on the
Bitcoin blockchain is a proposed implementation of Hashed TimeLock Contracts
(HTLCs)25 with bidirectional payment channels which allows secure payments
across multiple peer-to-peer channels. A HTLC is a type of payments that use the
features of Script, like hashlocks and timelocks, to require that the receiver of a
payment acknowledges receiving the payment prior to a deadline by generating
cryptographic proof. Figure 7.7 is a graphical representation of the pattern. Such
off-chain channels could be generalized to exchange state for more general purposes
other than monetary value.

Consequences
Benefits:

• Speed.Without involving the blockchain for every transfer, off-chain transactions
can be settled without waiting for the blockchain network to process and commit
each transaction.

• Throughput. The number of off-chain transactions that can be processed is not
limited by the configuration of blockchain, such as the block size, block interval,
or gas limit, and thus a much higher total throughput can be achieved than for
on-chain transactions.

24https://lightning.network/.
25https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts.

https://lightning.network/
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts


130 7 Blockchain Patterns

Fig. 7.7 State channel
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission
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• Privacy. Other than the final settlement transaction, the individual off-chain
transactions do not show up in the public ledger; thus, the detail of these
intermediate off-chain transactions is not publicly visible.

• Cost. If a public blockchain is used, only the initial and the final transaction incur
a transaction fee to be included in the blockchain. Individual off-chain transac-
tions do not have blockchain transaction fees. Multi-hop off-chain transactions
may be charged small transaction fees to compensate for reduced liquidity of
channel providers, which are typically charged as a percentage of the transacted
amount.

Drawbacks:

• Trustworthiness. Individual off-chain transactions might not be as trustworthy
as the on-chain transactions because the transactions are not stored in the
blockchain’s immutable data store. The intermediate states of a state channel
might be lost after the channel is closed.

• Reduced liquidity. To establish a payment channel, money from one or both sides
of the channel needs to be locked up in a smart contract for the lifetime of the
payment channel. The liquidity of the channel participants is thereby reduced.

• Wallet. A new wallet or extensions to existing wallets may be needed to support
off-chain protocols.

Related Patterns N/A

Known Uses

• The Lightning network uses an off-chain protocol to enable micropayments
of Bitcoin and several other cryptocurrencies. Micropayments are enabled by
establishing a bidirectional payment channel through committing a funding
transaction to the blockchain. This can be followed by a number of micropayment
transactions that update the distribution of the funds within the channel without
broadcasting transactions to the blockchain network. The payment channel can
be closed by broadcasting the final version of the funding transaction to settle the
payment.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
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• The Raiden Network26 on the Ethereum blockchain is somewhat similar to
the Lightning network. The basic idea is to avoid the consensus bottleneck
by leveraging a network of off-chain payment channels that allow to securely
transfer monetary value. Smart contracts are used to deposit value into the
payment channels.

• Orinoco27 is a payment channel solution built on the Ethereum blockchain.
Other than payment channels, Orinoco also provides a payment hub for payment
channel management. However, the payment hub introduces an extra party that
needs to be trusted by both the sender and the recipient of the payment channel.

• State channel on Ethereum28 and Gnosis Go29 offer a more generalized form of
state channels that support exchanging state for general purpose applications.

7.3 Security Patterns

This section discusses three security patterns that mainly concern the security of
blockchain-based applications.

7.3.1 Pattern 8: Multiple Authorization

Summary A set of blockchain addresses which can authorize a transaction is
predefined. Only a subset of the addresses is required to authorize transactions.

Context In blockchain-based applications, activities might need to be authorized
by multiple blockchain addresses. For example, a monetary transaction may require
authorization from multiple blockchain addresses.

Problem

• The actual addresses that authorize an activity might not be able to be decided in
advance, due to sporadic or limited availability of some authorities.

Forces

• Flexibility. The actual authorities who authorize the transaction can be from a set
of predefined authorities.

• Tolerance of compromised or lost private key. Authentication on blockchain uses
digital signature. However, blockchain does not offer any mechanism to recover
a lost or a compromised private key. Losing a key results in permanent loss of
control over an account, and potentially smart contracts that refer to it.

26https://raiden.network/.
27http://www.orinocopay.com/.
28http://www.jeffcoleman.ca/state-channels/.
29https://forum.gnosis.pm/t/how-offchain-trading-will-work/63.

https://raiden.network/
http://www.orinocopay.com/
http://www.jeffcoleman.ca/state-channels/
https://forum.gnosis.pm/t/how-offchain-trading-will-work/63
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Fig. 7.8 Multiple
authorization pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission
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Solution On the Bitcoin blockchain, a multi-signature mechanism can be used to
require more than one private key to authorize a Bitcoin transaction. In Ethereum,
smart contracts can mimic multi-signature mechanisms. More flexibly, an M-of-N
multi-signature can be used to define that M out of N private keys are required
to authorize the transaction. M is the threshold of authorization. This on-chain
mechanism enables more flexible binding of authorities. Figure 7.8 is a graphical
representation of the pattern.

Consequences
Benefits:

• Flexibility. This pattern enables flexible binding of authorities but depends on the
availability of authorities when the activity is conducted.

• Lost key tolerant. One participant can own more than one blockchain address to
reduce the risk of losing control over their smart contracts due to a lost private
key. In a smart contract implementation, of this pattern, there could be a function
to update the list of allowed authorities and the authorization quorum. This update
function may also require a quorum.

Drawbacks:

• Predefined authorities. Although the pattern enables flexible binding, all the
possible authorities still need to be known in advance of any decision or update.

• Lost key. At least M private keys among the N private keys should be kept safely
to avoid losing control.

• Cost of dynamism. If a public blockchain is used, updating the list of authorities
costs money (cryptocurrency), as does deploying the logic for multiple authori-
ties. There is greater cost for storing multiple addresses compared to only one.

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
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Related Patterns Off-chain secret enabled dynamic authorization (Section 7.3.2).
An off-chain secret enabled dynamic authorization pattern is used when the possible
authorities are unknown beforehand.

Known Uses

• Multisignature mechanism provided by Bitcoin.30

• Multisignature wallet, written in Solidity and running on the Ethereum block-
chain, is available in the Ethereum dapp browser Mist.31

7.3.2 Pattern 9: Off-Chain Secret Enabled Dynamic
Authorization

Summary Using a hash created off-chain to dynamically bind authority for a
transaction.

Context In blockchain-based applications, some activities need to be authorized
by one or more participants that are unknown when a first transaction is submitted
to blockchain.

Problem Sometimes, the authority who can authorize a given activity is unknown
when the corresponding smart contract is deployed or the corresponding transaction
is submitted to the blockchain. Blockchain uses digital signatures for authentication
and transaction authorization. Blockchain does not support dynamic binding with
an address of a participant which is not initially defined in the respective transaction
or smart contract. All accounts that can authorize a second transaction have to be
defined in the first transaction before that transaction is added to the blockchain.

Forces

• Dynamism. Dynamically binding one or more unknown authorities with a second
transaction representing an activity after the first transaction was submitted to
blockchain.

• Predefined authorities. Using only on-chain mechanisms, all the possible author-
ities are required to be defined beforehand.

Solution An off-chain secret can be used to enable a dynamic authorization when
the participant authorizing a transaction is unknown beforehand. In the context of
payment, for example, a smart contract can be used for escrow. When the sender
deposits the money to the escrow smart contract, the hash of a secret (e.g. a random
string, called pre-image) is also submitted with the money. Whoever receives the
secret off-chain can claim the money from the escrow smart contract by revealing
the secret. With this solution, the receiver of the money does not need to be defined

30https://en.bitcoin.it/wiki/Multisignature.
31https://github.com/ethereum/mist.

https://en.bitcoin.it/wiki/Multisignature
https://github.com/ethereum/mist
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Fig. 7.9 Off-chain secret
enabled dynamic
authorization pattern. This
work is based on an earlier
work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/
10.1145/3282308.3282312.
Included here by permission
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beforehand in the escrow contract. This can be generalized to any transaction that
needs authorization from a dynamically bound participant. Note that once the secret
is revealed, it cannot be reused. One variant is to lock multiple transactions with the
same secret—by unlocking one, all of them are unlocked. Figure 7.9 is a graphical
representation of the pattern. This solution is also referred to as Hashlock.

Consequences
Benefits:

• Dynamism. This pattern enables dynamic binding of unknown authorities after
the transaction is added into the blockchain.

• Lost key tolerant. No specific private key is required to authorize transactions.
• Routability. This pattern has the useful property that once the secret is revealed,

any other transactions secured using the same secret can also be opened. This
makes it possible to create multiple transactions that are all locked by the same
secret. This property is used by micropayment channels to enable multi-hop
transfers where the money hosted by every hop and secured by a same secret
can be released after the end receiver claims the money with the secret (i.e. the
secret is revealed). The secret can be exchanged through off-chain channels.

• Interoperability. There is no need for a special protocol to exchange the secret.
The secret can be exchanged in any way off-chain. This provides a mechanism
for other systems to trigger events on blockchain.

Drawbacks:

• One-off secret. The secret used in this pattern is a one-off secret. Verification of
the secret is on-chain. Thus, once a secret is embedded in a transaction submitted
to the blockchain, the secret is revealed.

• Combination of signature and secret. Because this pattern has the property
that once the secret is revealed, any other transactions secured using the same

http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.1145/3282308.3282312
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secret can also be opened, sometimes the transaction protected by the secret
should also be associated with a public key so that both a correct secret and an
appropriate signature with the respective private key are required to authorize the
transaction. This is applicable to the situation where a large set of authorities
is known beforehand, but not all of them are allowed to authorize a certain
activity/transaction. Thus, a hash secret is used to dynamically bind one or
multiple authorities from the larger predefined set of authorities.

• Lost secret. The sender/initiator of a transaction takes the risk of losing the off-
chain secret. If the secret is lost, the transaction cannot be authorized and being
proceeded anymore. In the case of money transfer, the money associated with
the transaction would be locked forever if the transaction cannot be authorized
properly.

• Man-in-the-middle attack. A man-in-the-middle attack is possible when the
transaction that reveals the secret is in the transaction pool of a miner (not
included in the blockchain yet).

Related Patterns Multiple authorization (Section 7.3.1). The multiple authoriza-
tion pattern is used when all the possible authorities are known beforehand. Multiple
authorization pattern is an on-chain mechanism.

Known Uses

• Raiden Network32 is a network of off-chain payment channels on top of
Ethereum blockchain network, which enables secure value transfer. The multi-
hop transfer mechanism in Raiden Network uses hashlocked transactions to
securely route payments through a middleman.

• In the Bitcoin ecosystem, atomic cross-chain trading33 allows one cryptocur-
rency (e.g. Bitcoin) to be traded for another cryptocurrency (e.g. tokens on a
Bitcoin sidechain) using an off-chain hash secret.

7.3.3 Pattern 10: X-Confirmation

Summary Waiting for sufficiently many blocks as confirmations to ensure that a
transaction added into blockchain is immutable with high probability.

Context The immutability of a blockchain using Nakamoto consensus is only
probabilistic immutability. There is always a chance that the most recent few blocks
are replaced by a competing chain fork.

Problem At the time a fork occurs, there is usually no certainty as to which branch
will be permanently kept in the blockchain and which branches will be discarded.
The transactions that were only included in the unsuccessful branches turn out not to

32https://raiden.network/.
33https://en.bitcoin.it/wiki/Atomic_cross-chain_trading.

https://raiden.network/
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading


136 7 Blockchain Patterns

have been included in the ledger and will revert to the transaction pool to be added
into a later block.

Forces

• Chain fork. Chain fork may occur on a blockchain using Nakamoto consensus,
like Bitcoin and Ethereum.

• Frequency of chain fork. Transaction handling and inter-block time differ
significantly from one blockchain to another. A shorter inter-block time would
lead to an increased frequency of forks.

Solution From the application perspective, one security strategy is to wait for a
certain number (X) of blocks to be generated after the transaction is included into
one block. After X blocks (1 inclusion block and X-1 confirmation blocks), the
transaction is taken to be committed and thus perceived as immutable. The value of
X can be decided by the developers of the blockchain-based applications, based on
characteristics of the blockchain platform and the value or risk of the transaction.
Figure 7.10 is a graphical representation of the pattern.

Consequences
Benefits:

• Immutability. The more blocks being generated after the block including the
transaction, the higher probability of the immutability of the transaction.

Drawbacks:

• Latency. Latency between submission and commit of a transaction is affected by
the consensus protocol, the inter-block time, and the number of confirmation
blocks X. For example, this is around 1 h (10-min block interval with 6-
confirmation) on Bitcoin. The larger value of the X, the longer the latency.

Blockchain

Receive transaction 2-confirmation
announcement  

Fig. 7.10 X-Confirmation pattern. This work is based on an earlier work: Xu et al. (2018) © ACM,
2018. http://dx.doi.org/10.1145/3282308.3282312. Included here by permission
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Related Patterns N/A

Known Uses

• Bitcoin users often choose 6-confirmation. The value 6 for the Bitcoin blockchain
corresponds to the assumption that an attacker is unlikely to amass more than
10% of the total amount of computing power within Bitcoin network (measured
by hash rate34) and that a negligible risk of less than 0.1% is acceptable.35

• Ethereum users sometimes recommend to choose 12-confirmation before assum-
ing that a transaction is committed permanently with high probability.36

7.4 Contract Structural Patterns

This section discusses five smart contracts patterns. Essentially, smart contracts are
programs running in transactions on a blockchain. Some of the design patterns and
programming principles for conventional software environments are also applicable
to smart contracts. If a public blockchain is used, the structural design of the smart
contract has large impact on its execution cost. The cost of deploying a smart
contract depends on the size of the smart contract(s) because the code is stored
on blockchain, resulting in a data storage fee that is proportional to the code size.
Thus, a structural design with more lines of compiled code costs more money. A
consortium blockchain does not necessarily have tokens/cryptocurrency; therefore
the monetary cost of smart contract deployment and execution is typically not a
significant issue for consortium blockchains. However, blockchain size is still a
design concern because the total size of the blockchain keeps growing as more
blocks are appended to it and no block can ever be detached from it, and every
full node stores a full replica of blockchain. Different structural designs of smart
contracts may also affect performance.

7.4.1 Pattern 11: Contract Registry

Summary Before invoking a smart contract, the address of the latest version of the
smart contract is located by looking up its name on a contract registry.

Context As with any software application, blockchain-based applications need to
be upgraded to new versions. For instance, the on-chain functions defined in smart
contracts need to be updated to fix bugs as well as to fulfil new requirements.

Problem Smart contracts deployed on blockchain cannot be upgraded because the
code of the smart contracts is a type of data and data stored on a blockchain is
immutable.

34https://blockchain.info/charts/hash-rate.
35https://en.bitcoin.it/wiki/Confirmation.
36https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/.

https://blockchain.info/charts/hash-rate
https://en.bitcoin.it/wiki/Confirmation
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
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Forces

• Immutability. Every bit of data (including deployed smart contracts code) stored
on a blockchain is immutable.

• Upgradability. There is a fundamental need to be able to upgrade all but short-
lived applications and their smart contracts over time.

• Human-readable contract identifier. The identifier of a smart contract on block-
chain platforms, like Ethereum, is a hexadecimal address, which is not human-
readable.

Solution An on-chain registry contract is used to maintain a mapping between user-
defined symbolic names and the blockchain addresses of the registered contracts.
The address of the registry contract needs to be advertised off-chain. The creator of
a contract can register the name and the address of the new contract to the registry
contract after the new contract has been deployed. The invoker of a registered
contract retrieves the latest address of the new smart contract from the registry
contract. The corresponding functions provided by the registered contract can be
upgraded by replacing the address of the old version contract in the registry contract
with the address of a new version without breaking the dependency between the
upgraded smart contract and other smart contracts that depend on its functions.
The address of a contract is stored as a variable in the registry contract. The value
of contract variables can be updated. The registry contract can have a permission
control module to maintain write permissions. Note that all the previous values of
the variable are still stored in the blockchain history. Figure 7.11 is a graphical
representation of the pattern.

On-chain Off-chain

Blockchain

Registry 
Contract

Contract1

name --> addr

name --> addr

name --> addr

Contract2

Contract3

Contract

X

Fig. 7.11 Contract registry pattern. This work is based on an earlier work: Xu et al. (2018) ©
ACM, 2018. http://dx.doi.org/10.1145/3282308.3282312. Included here by permission
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Consequences
Benefits:

• Human-readable contract name. The registry contract maintains a mapping
between human-readable names and the hexadecimal addresses of the smart
contracts. A human-readable form of smart contract names may be desired, for
example, to be exposed to the user interface. A human-readable name is also
useful for developers.

• Constant contract name. The smart contract associated with a registered name
can be updated without changing its name. This way dependencies relying on the
name of the smart contract do not get broken.

• Transparent upgradability. The smart contract associated with a registered name
could be replaced by a new version without breaking the dependencies based on
the human-readable name.

• Version control. Version control can be integrated in the registry contract to allow
a lookup based on the name and version of a smart contract. Old versions of a
smart contract that are no longer needed should be terminated.

Drawbacks:

• Limited upgradability. Upgradability is still limited if the functions defined
in the smart contract are directly invoked by other contracts. Although the
implementation of the function can be upgraded, the interface (i.e. function
signature) cannot be modified without breaking the link to dependent smart
contracts. Similar methods as for API/service interface management need to be
implemented, e.g. through versioning and depreciation flags.

• Cost. There is an additional cost to maintain a registry that contains the mapping
between the contract names and their addresses. Furthermore, all inter-contract
function calls require a registry lookup to find the latest version of the smart
contract to be invoked.

Related Patterns Embedded permission (Section 7.4.3) can be used for write
permissions. Data contract (Section 7.4.2) and this pattern can work together to
further improve upgradability of smart contracts.

Known Uses

• ENS37 is a name service on Ethereum blockchain, which is implemented as smart
contracts. ENS maintains a mapping between both smart contracts on-chain and
resources off-chain and simple, human-readable names.

• ENS can be viewed as a contract registry built in a blockchain platform, which
is accessible to everyone. A blockchain-based application can also maintain a
separate registry contract for the application.

37https://ens.domains.

https://ens.domains
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• Regis38 is an in-browser application that makes it easy to build, deploy, and
manage registries as smart contracts on Ethereum. It allows user-defined key-
value pairs. It can be used to create a contract registry.

7.4.2 Pattern 12: Data Contract

Summary Store data in a separate smart contract.

Context Many blockchain-based applications must be upgraded over time. In gen-
eral, the logic and the data that form part of the application on the blockchain may
change at different times and with different frequencies. There are different ways to
store a data on blockchain, as discussed in hash integrity pattern (Section 7.2.3).

Problem Storing data on blockchain is expensive, and there is a limitation on the
amount of data and amount of computation a transaction can contain. In the context
of upgrading smart contracts, the upgrading transactions might contain a large data
storage for copying the data from the old version of the smart contract to the new
version of the smart contract. Porting data to a new version might even require
multiple transactions, e.g. when the block gas limit on Ethereum prevents an overly
complex data migration transaction.

Forces

• Coupling. Smart contracts can live forever on blockchain if they are not explicitly
terminated. If a smart contract is deactivated in this way, the data stored in
the smart contract cannot be accessed through the smart contract functions any
more—although it can still be accessed externally with some effort, e.g. for
provenance or audit purposes.

• Upgradability. Many applications need to be able to be upgraded over time.
• Cost. If a public blockchain is used, storing data on blockchain costs money.

Copying data from an old version of a smart contract to a new version should be
avoided or minimized.

Solution To avoid moving data during upgrades of smart contracts, the data store
is isolated from the rest of the code. In the context of blockchain, data could be
separately stored in different smart contracts to enable isolation. One example of
a generic data structure is a mapping to store SHA3 key and value pairs. The keys
are used in lieu of variable names. Figure 7.12 is a graphical representation of the
pattern.

38https://regis.nu/.

https://regis.nu/
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Fig. 7.12 Data contract
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission
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Consequences
Benefits:

• Upgradability. By separating data from the rest of the code, the logic of the
application can be upgraded without affecting the data contract.

• Cost. Since the data is separated from the rest of the code, there is no cost for
migrating data when the application is upgraded.

• Generality. If the data can be cleanly separated and generalized, there would be
an additional benefit: the generic data contract can be used by all related logic
smart contracts.

Drawbacks:

• Cost. If a public blockchain is used, storing a piece of data in a generic data
structure costs more money than a strictly defined data structure. For example, a
mapping between SHA3 key and value pairs will use more memory than a more
strictly defined data structure that does not store key names. Querying the data is
also more indirect. This is the cost of a generalized solution.

Related Patterns Contract registry (Section 7.4.1) and this pattern can work
together to further improve upgradability of smart contracts.

Known Uses

• ChronoBank39 is a blockchain project that tokenizes labour and provides a
market for professionals to trade their labour time with businesses. It uses a smart
contract with a generic data structure as the data store used by all the other logic
smart contracts.

39https://chronobank.io/.

http://dx.doi.org/10.1145/3282308.3282312
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• Colony,40 a platform for open organizations running on Ethereum. Similar to
ChronoBank, Colony has a data contract with a generic data structure.

7.4.3 Pattern 13: Embedded Permission

Summary Smart contracts use embedded permission control to restrict access to
the invocation of the functions defined in the smart contracts.

Context All smart contracts running on a blockchain can be accessed and called
by any blockchain participants or other smart contracts by default. There are no
privileged users, and, in the case of public blockchain, anyone can join the network
to access all the information and code stored and running on blockchain.

Problem A smart contract by default has no owner, meaning that once deployed the
author of the smart contract has no special privilege to invoke on the smart contract.
A permission-less function can be triggered by unauthorized users accidentally or
maliciously. Such a permission-less function can be a vulnerability for a blockchain-
based application. For example, a permission-less function discovered in a smart
contract library used by the Parity multi-sig wallet caused the freezing of about
500K Ether.41 In 2016, seven percent of smart contracts on the public Ethereum
blockchain could be terminated without authority.

Forces

• Security. The functions defined in the smart contracts should be only callable
by authorized participants. Due to the transparency of public blockchains, all
smart contracts are also publicly available. In contrast, in a conventional software
system, the internal logic is normally not visible to end users. Interaction with the
software system is either through a user interface or API, where it is possible to
enforce access control policies.

Solution Add permission control to every smart contract function to check per-
missions for every caller that triggers the functions defined in the smart contract.
Permission is determined based on the blockchain addresses of the caller. This
can be done by checking the authorization of the caller before executing the logic
of the function: unauthorized calls are rejected and the execution of the function
terminated before reaching the core logic of the function. Figure 7.13 is a graphical
representation of the pattern.

40https://colony.io/.
41https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/.

https://colony.io/
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Fig. 7.13 Embedded
permission pattern. This work
is based on an earlier work:
Xu et al. (2018) © ACM,
2018. http://dx.doi.org/10.
1145/3282308.3282312.
Included here by permission
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Consequences
Benefits:

• Security. Only the participants and smart contracts that are authorized by the
smart contract can call the corresponding functions successfully.

• Secure authorization. Authorization is implemented in smart contracts running
on blockchain, which leverages the properties provided by blockchain.

Drawbacks:

• Cost. On a public blockchain, extra code that implements the permission control
mechanism also has additional deployment and runtime cost.

• Lack of flexibility. Permissions are defined in the smart contract before its
deployment; therefore they are difficult to change. However, permissions may
be required to be dynamic. A mechanism is needed to support dynamic granting
and removal of permissions.

Related Patterns Multiple authorization (Section 7.3.1) and off-chain secret
enabled dynamic authorization (Section 7.3.2) are different ways to design autho-
rization.

Known Uses

• The Mortal contract discussed in the Solidity tutorial42 restricts the permission of
invoking the selfdestruct function to the ‘owner’ of the contract—where ‘owner’
is a variable defined in the contract code itself.

• The Restrict access pattern suggested in the Solidity tutorial43 uses modifier
to restrict who can make modifications to the state of the contract or call the
functions of the contract. Modifier is a mechanism to add a piece of code before
the function to check certain conditions. Modifier can make such restrictions
highly readable.

42http://solidity.readthedocs.io/en/develop/contracts.html.
43http://solidity.readthedocs.io/en/develop/common-patterns.html.

http://dx.doi.org/10.1145/3282308.3282312
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7.4.4 Pattern 14: Factory Contract

Summary An on-chain template contract is used as a factory that generates
contract instances from the template.

Context Applications based on blockchain might need to use multiple instances
of a standard contract with customization. Each contract instance is created by
instantiating a contract template. For example, in a business process management
system, each of the business process instances might be represented by a smart
contract being generated from a contract template representing the business process
model. The template can be stored off-chain in a code repository, or on-chain, within
its own smart contract.

Problem Keeping the contract template off-chain cannot guarantee consistency
between different smart contract instances created from the same template because
the source code of the template can be independently modified.

Forces

• Dependency management. Storing the source code of a smart contract off-chain
in a code repository introduces the issue of integrating more systems into the
blockchain-based application.

• Secure code sharing. Blockchain can be used as a secure platform to share code
of smart contracts. As opposed to a traditional code repository, changes of code
deployed on a smart contract can be strictly limited or prohibited.

• Deployment. If a public code repository, like GitHub, is used to store the source
code of a smart contract, a component is needed to implement the function
of deploying smart contracts on blockchain, otherwise the end users need to
understand how to deploy smart contracts by sending transactions with the
customized source code of the contract definition.

Solution Smart contracts are created from a contract factory deployed on block-
chain. The factory contract is deployed once from the off-chain source code. The
factory may contain the definition of multiple smart contracts. Smart contract
instances are generated by passing parameters to the contract factory to instantiate
customized smart contract instances. A factory contract is analogous to a Class in
an object-oriented programming language. Every transaction that generates a smart
contract instance instantiates an object of the factory contract class. This contract
instance (the object) will maintain its own properties independently of the other
instances but with a structure consistent with its original template. Figure 7.14 is a
graphical representation of the pattern.
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Fig. 7.14 Factory contract
pattern. This work is based on
an earlier work: Xu et al.
(2018) © ACM, 2018. http://
dx.doi.org/10.1145/3282308.
3282312. Included here by
permission
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Consequences
Benefits:

• Security. Keeping the factory contract on-chain guarantees the consistency of the
contract definition.

• Efficiency. If the contract definition is kept on-chain in a factory contract, smart
contract instances are generated by calling a function defined in the factory
contract.

Drawbacks:

• Deployment cost. If a public blockchain is used, using factory contract requires
extra cost to deploy the factory contract.

• Function call cost. If a public blockchain is used, creating a new smart contract
instance requires extra cost to call a function defined in the factory contract.

Related Patterns Contract registry (Section 7.4.1). A contract registry can be used
to store the addresses of all the smart contract instances generated from a factory
contract. The factory and instance registry can be implemented in the same contract,
although that limits upgradability.

Known Uses

• A tutorial from Ethereum developers44 about how to create a contract factory
from which smart contract instances can be created.

• The factory pattern has been applied in a real-world blockchain-based healthcare
application.

44https://ethereumdev.io/manage-several-contracts-with-factories/.

http://dx.doi.org/10.1145/3282308.3282312
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• The business process management system in an academic work uses a contract
factory to generate process instances.

7.4.5 Pattern 15: Incentive Execution

Summary A reward is provided to the caller of a contract function for invoking it.

Context Smart contracts are event-driven programs, which cannot execute
autonomously. All the functions defined in a smart contract need to be triggered
by a transaction either from an external account or from another smart contract
to execute. Other than the functions that provide regular services to users, some
functions need to run asynchronously from regular user interaction, for example,
to clean up expired records or make dividend payouts, etc. Such functions usually
involve a time, after which the function should start.

Problem Users of a smart contract have no direct benefit from calling accessory
functions. If a public blockchain is used, executing these functions causes extra
monetary cost. Some accessory functions are expensive to execute.

Forces

• Completeness. The regular services provided by a smart contract are supported
by some accessory functions.

• Cost. Execution of accessory functions causes extra cost to users.

Solution Reward the caller of a function defined in a smart contract for invoking
the execution, for example, sending back a percentage of payout to the caller to
reimburse the (gas) execution cost. Figure 7.15 is a graphical representation of the
pattern.

Fig. 7.15 Incentive
execution pattern. This work
is based on an earlier work:
Xu et al. (2018) © ACM,
2018. http://dx.doi.org/10.
1145/3282308.3282312.
Included here by permission
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Consequences
Benefits:

• Completeness. The execution of the accessory function helps to complete the
regular services provided by the smart contract.

• Cost. Users who expend resources to execute the accessory functions are
compensated by the reward associated with the execution.

Drawbacks:

• Unguaranteed execution. Execution cannot be guaranteed even with incentives.
Thus, another option is to embed the logic of accessory functions into other
regular functions that users have to call to use the services.

Related Patterns N/A

Known Uses

• Regis45 is an in-browser tool for developers to create smart contracts representing
registries on Ethereum. The functions that clean up the expired records provide
incentives for users to execute them.

• Ethereum alarm clock46 is a service provided by a smart contract running on
Ethereum. It facilitates scheduling function calls for a specified block in the
future and provides incentive for users to execute the scheduled function.

7.5 Summary

Blockchain can be used as a core component of (possibly large-scale) decentralized
software systems. For effective use of blockchain to this end, patterns can convey
means to make good use of blockchain in the design of systems and applications. In
this chapter, we present a pattern collection for blockchain-based applications. Our
pattern collection includes three patterns about interaction between blockchain and
the external world, four data management patterns, three security patterns, and five
contract structural patterns. The pattern collection provides architectural guidance
for developers to build applications on blockchain. Some patterns are designed
specifically for blockchain-based applications considering the unique properties
of blockchain. Others are variants of existing software patterns applied to smart
contracts.

45https://regis.nu/.
46http://www.ethereum-alarm-clock.com/.

https://regis.nu/
http://www.ethereum-alarm-clock.com/
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7.6 Further Reading

This chapter is partly based on our earlier works (Xu et al. 2018).
In software engineering, a design pattern is a reusable solution to a problem that

commonly occurs within a given context during software design. A definition and
a formalization of design patterns are given in Beck and Cunningham (1987) and
Meszaros et al. (1998).

A few other design patterns of blockchain-based applications or smart contracts
can be found in the literature. Bartoletti and Pompianu (2017) conduct an empirical
analysis on smart contracts supported by different blockchain platforms. The paper
focuses on the two most widespread ones, Bitcoin and Ethereum. Nine common
programming patterns are identified in Solidity-based smart contracts by manually
inspecting the publicly available source code. The identified programming patterns
include tokens, authorization, oracle, randomness, poll, time constraint, termination,
math, and fork check. Zhang et al. (2017) apply four existing object-oriented
software patterns to smart contract programming in the context of a blockchain-
based healthcare application. The applied software patterns include abstract factory,
flyweight, proxy, and publisher-subscriber. Eberhardt and Tai (2017) propose five
patterns for blockchain-based applications focusing on what data and computation
should be on-chain and what should be kept off-chain, which include challenge
response pattern, off-chain signatures pattern, content-addressable storage pattern,
delegated computation pattern, and low contract footprint pattern.

The background of Ricardian contracts as one of the known uses is discussed
in Grigg (2004). The details of the Smart Contract Template proposed by Barclays
are discussed in Clack et al. (2016a,b). The logic-based language for smart contract
definition can be found in Idelberger et al. (2016).



Chapter 8
Model-Driven Engineering
for Blockchain Applications

with Alex Ponomarev and An Binh Tran

8.1 Introduction

Model-driven engineering is a methodology for using models at various levels
of abstraction and for different purposes during software development. For some
models the level of abstraction is low, so that the production code can be directly
derived from the models. Other models use a high level of abstraction and only guide
developers. Intermediate levels of abstraction can support model-based system
analysis or might be used by system management tools. Depending on the purpose
and the system, there can be various dimensions captured in models, from static
structures (such as data models or deployment schemes) to dynamic aspects (like
activity sequences). For code generation specifically, there are further options: code
generation can be once-off, with subsequent evolution of the code independently
of the model; or it can be repetitive, where the code is regenerated from the model
following changes to the model. In the latter case, we can also distinguish one-way
model-to-code code generation from round-trip code generation. In round-trip code
generation, if the generated code is updated, the changes can be propagated back to
the model level. This is an often desired but rarely achieved vision for model-based
development.

In the context of blockchain-based applications, model-driven development is
of particular relevance. First, code generation tools can implement best practices
and well-tested building blocks, thereby avoiding code that contains common
errors or is vulnerable to known attacks. Second, models can be independent of
specific blockchain technologies or platforms, and code generation tools might
cater for multiple target platforms. This can avoid lock-in to a specific blockchain
platform and help application developers migrate to alternative technologies. Third,

© Springer Nature Switzerland AG 2019
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models are often easier to understand than code. This can be particularly useful
for communicating with business partners about smart contracts, and strengthen
confidence in that code from all parties. Take the example of a contract that will
hold funds in escrow and specifies conditions under which the funds will be paid.
Such a smart contract is written by one party but used by others. All parties need to
rely on the contract code working as expected (and not, say, transfer all funds held in
escrow to its developer). It can be easier to verify the correctness of the model than
the raw code, and tooling can ensure that the deployed code has not been changed
after being derived from the model. Of course, the code generation tool also needs
to be correct, but confidence in that can be established across many and varied uses
of the tool.

We discuss two approaches for model-driven code generation in this chapter.
The first uses process models for collaborative business processes that cross
organizational boundaries. The second targets registries for assets, such as land
titles, cars, or digital assets. It focuses on non-fungible assets, i.e. where the specific
identity of an asset is important. For example, you probably care about which car
you own, not just whether you own one (any) car. This is in contrast to fungible
assets, such as shares in a company, where you care how many shares you own
and where individual shares might not even be easily identifiable. For the latter,
standards like ERC201 exist on Ethereum. Non-fungible assets often have asset-
specific peculiarities that make model-driven development more useful.

8.2 Model-Driven Generation of Smart Contract Code
for Collaborative Business Processes

8.2.1 Motivation

The integration of business processes, e.g. along the supply chain, has been found to
contribute to better operational and business performance. A lack of trust, however,
may hamper collaborative process performance. Once service-level agreements are
in place, it can be a highly delicate question which partner should serve as a hub for
controlling the collaborative process of several parties, or where a mediator process
is hosted. While control asymmetries can be avoided by adopting a decentralized
view (such as process choreographies) instead of central orchestration, it does
not solve the general problem of trust in the control of the collaborative business
process.

In this section, we describe how blockchain technology can address this lack-
of-trust problem in collaborative business processes. More specifically, we describe
an approach to map a collaborative process to a blockchain-based execution infras-
tructure that offers the following benefits. First, it provides a monitoring facility

1https://theethereum.wiki/w/index.php/ERC20_Token_Standard.

https://theethereum.wiki/w/index.php/ERC20_Token_Standard
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that integrates an automatic and immutable transaction history, which is useful for
dispute resolution and even mandatory in some highly regulated industries. Second,
smart contracts can be used as a direct implementation of the process control logic,
specifically the mediator process that orchestrates the coordination between the
involved parties. Third, the process logic can be enforced automatically, including
payments, escrow, and conflict resolution.

8.2.2 Challenges of Collaborative Business Process Execution

We illustrate challenges of executing collaborative business processes by using an
example supply chain scenario, shown in Fig. 8.1. The process starts with a Bulk
Buyer placing an order with a Manufacturer. The latter calculates the demand and
places an order for materials via a Middleman. This Middleman forwards the order
to a Supplier and arranges transportation by a Special Carrier. Once the materials
are produced, the Carrier picks them up at the Supplier site and delivers them to the
Manufacturer. The Manufacturer produces the goods and delivers them to the Bulk
Buyer. The process model as shown falls into the category of choreography since it
is modelled from a global viewpoint and there is no party that sees all messages. A
choreography is a global, participant-independent view of a collaborative process
and focusses on the interaction points between different participants. This view
only vaguely specifies what needs to be done by whom, but not how. In contrast,
if all messages were sent and received by the Manufacturer, it could be modelled

Fig. 8.1 Supply chain process example (Notation: BPMN). © 2016 by Springer International
Publishing, part of Springer Nature, reprinted with permission
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as an orchestration with the Manufacturer serving as a mediator. An orchestration
is modelled from the viewpoint of a single party in a collaborative process and
provides sufficient details to be executed on behalf of that party; other parties’
activities are not specified in detail either.

This simple scenario already involves five participants. In case of delays and
errors in the process, it would not be uncommon if the participants started blaming
each other. Consider the case where the Manufacturer receives the materials 3 days
later than agreed, with eight pallets being delivered instead of ten. The Supplier
might argue that this is exactly in line with what was ordered by the Middleman,
while the Middleman would claim the fault to be on the side of the Supplier. The
situation could delicate for the Carrier if the Manufacturer refused to accept the
delivery. The Carrier and the Manufacturer may be entitled to compensation from
the Supplier or the Middleman, depending on who is responsible for the fault.

8.2.3 Blockchain-Based Collaborative Process Execution

In the following, we discuss a blockchain-based approach to address the lack-of-
trust problem in collaborative business processes. A number of technical challenges
arise during the adoption of blockchain for this purpose. As is the case for all
blockchain-based applications, there is a cost (though not necessarily in cryptocur-
rency in private/consortium blockchains) for new transactions, computation, and
data storage on blockchain platforms. As discussed throughout the book, not all
aspects of collaborative processes should be dealt with inside smart contracts. Smart
contracts cannot call external APIs outside the blockchain environment nor directly
create blockchain transactions. This section describes how the approach addresses
these challenges.

An overview of the approach is shown in Fig. 8.2. It uses blockchain to facilitate
the collaborative processes in one of two ways:

(i) As a choreography monitor, a smart contract stores the process execution
status of all participants by observing message exchanges. In this setting, the
blockchain serves as immutable data storage to share process execution status
and create an audit trail. Smart contracts check if interactions conform to the
choreography model and enforce that model. In addition, the choreography
monitor can manage automated payment points and escrow.

(ii) As an active mediator among the participants, it coordinates collaborative
process execution. This includes all the above, as well as using smart contracts
to drive the process execution and to implement data transformation, checking
of conditions, and calculations.
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These options are supported by the following main components:

• At design time, a translator derives from a process specification described
in, e.g. Business Process Model and Notation (BPMN),2 a smart contract in a
programming language (such as Solidity, the language used by Ethereum). The
generated smart contract is a factory for mediators or choreography monitors and
as such implements the factory contract patterns discussed in Section 7.4.4.

• For Option (i), a choreography monitor or C-Monitor uses smart contracts
to monitor the collaborative business processes. The C-Monitor is split into a
factory and case-specific C-Monitor instances. All of them are smart contracts.
The factory instantiates the case-specific monitors as needed and contains the
blueprint for C-Monitor instances. The C-Monitor instance tracks the interactions
of a choreography instance and combines them into a consolidated view of the
current state of the execution. Optionally, it can trigger automatic conditional
payment from escrow, when certain points in the choreography are reached.

2http://www.bpmn.org/.

http://www.bpmn.org/
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• For Option (ii), an active mediator uses a smart contract to implement the
collaborative business processes. As with the C-Monitor, it is split between a
factory and a set of instances and offers a consolidated view of the process state.
In contrast to the C-Monitor, the mediator always plays an active role, receiving
and sending messages according to the business logic defined in the process
model. It also may transform data or execute other computations.

• Interfaces or triggers connect the process executing on blockchain and the
external world. Because smart contracts cannot directly interact with the world
outside the blockchain, a trigger plays the role of an organization’s agent. It
holds confidential information and runs on a full blockchain node, keeping track
of the execution context and status of running business processes. The trigger
calls external APIs if needed, receives API calls from external components, and
updates the process state in the blockchain based on external observations. It
further keeps track of data payload in API calls and keeps the data in an external
database when appropriate.

With these components, the approach ensures that (1) participants can execute
collaborative processes over a blockchain network of untrusted nodes; (2) the state
only progresses when messages (in the form of transactions) are received that are
expected at the current execution state of the process, and only if they come from
the correct party (else they are rejected); (3) payments and escrow can be coded into
the process; and (4) the immutable blockchain ledger keeps a log of all transactions,
successful or not. Next, we explain the above components in more detail.

Design Time: Translator

The translator is used at design time: it takes an existing business process spec-
ification as input and generates a corresponding factory smart contract, which
implements the C-Monitor or mediator and can be deployed and executed on the
blockchain.

In a collaborative process, the complete functionality must be split and dis-
tributed between the smart contract and the triggers. The translator creates the
artefacts in such a way that the triggers and the smart contract collaborate directly
with each other over the blockchain network. The smart contract contains all on-
chain code, and the triggers connect enterprise systems, UIs, and other external
components to the contract and vice versa.

When the translator is called, it is often not known which participants will play
which roles. Also, organizations may want to execute many instances or cases of
a process over time. Therefore, the translator outputs a factory contract, which in
turn contains all information needed for instantiating the process. In addition to the
factory contract, the translator can output an interface specification per role (e.g.
buyer, manufacturer, and shipper) in a collaborative process, to be distributed to the
respective triggers. The factory contract includes a method for instantiation, which,
if invoked, creates a process instance contract. The process instance contract
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contains the implementation of the business logic and takes the form of a C-Monitor
or mediator, depending on the content of the original process specification and how
it was translated.

The process instance contract (see Listing 8.1) is generated from the business
logic which the translator inserted into the factory contract. The process instance
contract consists of a list of storage variables that represent the execution state of
the process instance. To optimize the cost, we could further minimize the size of
the data stored on chain, but that lowers readability of the code, and we therefore
include the less optimized version here. Two types of elements in a business process
are implemented as functions in Solidity, namely, tasks and AND-Join gateways.
Tasks are called by triggers, gateways only internally within the smart contract and
therefore can be marked as private functions.

To start the process execution, the first task is activated in the constructor
function ProcessMonitor(). To execute the task ‘order goods’, the function
Order_Goods() is called in a blockchain transaction, e.g. through an invo-
cation of the trigger. The corresponding function in the code first checks if the
task that has been called is activated and whether it was called by the right
participant (msg.sender == participants[0]); if not, the call is aborted
with return false. Otherwise, task-specific code is executed, and finally the
execution state of the process is advanced by updating the activation variables. The
technology can handle complex processes with various types of gateways, details of
which we omit here.

The task activation variables define the execution state of the process instance.
Each task invocation includes steps that implement process enforcement: The call
is accepted only if the call conforms to the process model in its current state and
only if the call is made by the participant that is assigned to the role that is supposed
to execute the task. Otherwise, it returns false to indicate that the execution has not
succeeded, which can be interpreted as an alert to all participants. The data (e.g. a
message) included in the function call is forwarded, as a smart contract log entry (not
shown in the code). Payments (direct or to/from escrow, relating to cryptocurrencies
or tokens) can be associated with tasks, in which case they are performed on-chain.
Computational tasks, e.g. for data transformation, could be performed on-chain or
off-chain depending on cost analyses.

After generating a smart contract, the translator can also calculate the gas cost
estimates for executing the smart contract. This serves as an indication of the cost to
execute process instances in the blockchain, which can in turn be used for budgeting
and/or capacity planning, depending on the blockchain configuration to be used at
runtime. For more details on cost estimates, see Chapter 9.

Runtime Environment: Executing Processes as Smart Contracts

The translator generates all artefacts needed for runtime execution. We start their
description with C-Monitors, which allow passive monitoring of choreographies
with optional escrow. Active mediators can be seen as an extension of C-Monitors,
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1 contract ProcessMonitor {
2 address[] participants;
3
4 // ---------- process variables
5 bool taskOrderGoodsActivated = false;
6 bool taskPlaceOrderForSuppliesActivated = false;
7 ...
8
9 function ProcessMonitor(address[] _participants) {

10 taskOrderGoodsActivated = true;
11 ...
12 }
13
14 function Order_Goods(...) returns(bool) {
15 if ((taskOrderGoodsActivated && msg.sender ==

participants[0]) {
16 // task-specific code
17 ...
18 // update execution state
19 taskOrderGoodsActivated = false;
20 taskPlaceOrderForSuppliesActivated = true;
21 return true;
22 }
23 return false;
24 }
25 ...
26 }

Listing 8.1 Example of C-Monitor contract code in Solidity, © 2016 by Springer International
Publishing, part of Springer Nature, reprinted with permission

and the additional functionality is explained next. The third important concept
for runtime, the triggers, and the interaction between triggers and smart contracts
are covered afterwards. Finally, we describe how technical challenges like key
distribution and encryption are handled.

Choreography Monitor The first way of facilitating collaborative processes is
to use a smart contract as a C-Monitor, with optional escrow and conditional
payment at certain points of the processes. How the private processes of participants
are executed within their regular enterprise systems is largely out of scope here;
however, the assumption is that they can make API calls (to their respective triggers)
for coordination. Of course the internal enterprise systems can be extended to
directly incorporate the triggers as well.

For a new process instance, an instance contract is generated from the fac-
tory contract. Initialization includes registering participants and their public keys
(account addresses) to roles. This enables the instance contract to ensure authentica-
tion, e.g. such that the goods can only be ordered by the Bulk Buyer in our running
example process. The C-Monitor instance contract contains variables for storing
the role assignment and for the process execution status, as shown in Listing 8.1.
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During execution, the participants do not interact with each other directly. Instead,
they invoke functions on the instance smart contract to exchange messages as data
payloads. The contract checks if a message is a transaction signed by the correct
participant and that the message is permitted at the current state of the process. It
then writes the result into the smart contract event log. The log is analysed by all
triggers, which react upon observing relevant information. With this mechanism,
participants exchange the messages and simultaneously advance the state of the
collaborative process.

Consider the choreography in Fig. 8.3, which is a representation of the collab-
orative process from Fig. 8.1. All tasks are communication tasks between roles.
The C-Monitor is used to exchange messages, to check conformance with the
choreography model, and to track the status. While triggers and smart contracts
together forward messages and update the state of the process, the state can also be
inferred from the raw blockchain data. In this way, conformance checking is done
implicitly by the C-Monitor, and all transactions (successful or not) are logged in
the blockchain. The handling of escrow is described below.

As discussed throughout the book, a main design decision for blockchain-based
systems is about which parts of computation and data should be on-chain and
which should be off-chain. The blockchain provides neutral territory to verify
computational results and provide agreement on transactions’ outcomes, but the
amount of computational power and data storage space available on the network
remains limited, even in non-public settings. The computational power and data
storage space on public blockchains incur monetary costs. If the input/output data
payload is sizeable, it should likely be stored off-chain. In this case, we can use the
off-chain data storage pattern (Section 7.2.3): the transactions include a URI of the
input/output data payload and its hash value on the blockchain. The data can then be
retrieved from the URI, and the hash allows verification of the integrity of the data.
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Mediator The second way of facilitating collaborative processes is to use the smart
contract as an active mediator. This orchestrates calls between different organiza-
tions. Like the C-Monitor, the mediator is implemented as factory and instance
contracts. The instance contracts use the same components as the C-Monitor
instances, including registration of involved participants and their roles, informa-
tion specific to a process instance, and escrow. Mediators also implement active
components, to transform data and to receive and send messages and payments.

While message and payment handling are straightforward to achieve using smart
contracts, data transformation can easily become uneconomical. In this case, we
can apply the oracle pattern from Section 7.1.1 as follows. One of the triggers
can be designated to be called from the mediator, transform the data, and send a
message with the output back to the mediator. The smart contract can also require
that multiple triggers agree on the result of the computation, either using multi-
signatures or using a separate transaction from each trigger confirming the result.

Triggers A blockchain is a closed environment, where the deployed smart contracts
cannot directly call external APIs. In the approach discussed here, a trigger (or
blockchain interface) can connect the participants’ internal processes with the
blockchain. It monitors the process execution status, logically receives messages
from smart contracts and calls external APIs, or receives API calls and logically
sends messages to smart contracts accordingly.

Triggers are programs running on full nodes of the blockchain network. Triggers
can be distributed on multiple full nodes for increased reliability. In the typical
setup, every participant operates its own trigger deployed on a node it controls,
and the participant’s internal systems only communicate with their own triggers.
Since a trigger is required to hold private keys for the participants on whose behalf
it operates, a high degree of trust in the individual trigger is required. Normally each
participant should operate its own trigger.

When a new process instance is created, the participants register their roles
and public keys. Recall that the public key corresponds to the account address of
a participant. All keys and role assignments are passed to all triggers associated
with the process instance, so everyone knows which role is played by whom and
can verify messages accordingly. With the private key it holds, the trigger can
encrypt or sign a message, allowing the contract and the other participants to
verify its messages. In this fashion, it can also create payment transactions using
cryptocurrency held in the accounts it controls.

During process execution, the trigger is receptive to API calls from its owner,
as well as to logical messages from the process instance contracts. The interaction
between internal process implementations, triggers, and the process instance smart
contract is shown in simplified form in Fig. 8.4. When a trigger’s API is called from
its owner, the trigger translates the received message into a blockchain transaction,
test-calls the smart contract locally, and if that is successful sends the transaction
to the instance contract. The local test call allows the trigger to check if the
choreography task that expects this message is activated. If not, the local test call
will return false, and the trigger will know the smart contract is not in a state where
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the message can be sent. In turn, the trigger can alert its caller or delay the message
and retry periodically. Note that, even if the local test call is successful, the real
transaction can still fail, e.g. if the status has been updated between the test call and
the transaction being processed. When the trigger receives a logical message from
the instance contract, it updates its local state and makes an API call to the internal
enterprise application that implements the private process for its owner.

Finally, the trigger can take care of sizeable data payloads. For incoming API
calls, it moves the data to secure storage, hashes it, and attaches a URI and the
hash to the outgoing transaction. For incoming messages from the blockchain, it
retrieves the data via its URI, checks if the hash matches, and sends it on to the
internal process implementation.

Encryption and Key Distribution All information on a blockchain is accessible
to all nodes within the network. We store two types of information on blockchain,
namely the process execution status and the data payload (or its URI/hash). To
preserve the privacy of the participants, we have the option to encrypt the data
payload before inserting it into the blockchain. However, the process execution
status is not encrypted because the C-Monitors and mediators need to process this
information. Encrypting the data payload means that mediators cannot perform data
transformation at all, but can resort to the source participant’s trigger for this task.

We assume the participants exchange their public keys with each other before a
process instance is initiated by one of the participants. Thus, the key distribution
is handled off-chain. Since participants need to find each other through off-chain
mechanisms before starting a collaborative process, this typically does not introduce
much overhead.

Encrypting data payload for all process participants can be achieved as follows.
One participant creates a secret key for the process instance and distributes it during
initial key exchange. When a participant adds data payload to the blockchain, it first
symmetrically encrypts this information using the secret key. Thus, the publicly
accessible information on blockchain is encrypted, i.e. useless to anyone who has
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no access to the secret key. The participants involved in the process instance have
the secret key and can decrypt the information.

Encrypting data payload between two process participants, in contrast, may
be desired if two participants want to exchange information privately through
the process instance. For this case, the sender can asymmetrically encrypt the
information using the receiver’s public key; only the receiver can decrypt it with
its private key.

Escrow The C-Monitor or mediator can also work as an escrow for conditional
payment at designated points. Similar to an escrow agent, e.g. in real estate
transactions, the smart contract receives money from one or more parties, and only
releases the money to other parties once certain criteria are met. For the receivers
this has the benefit that they can observe that the money is actually there before
doing work; and the sender does not have to pay upfront, trusting it will eventually
receive the goods or service in return.

In the running example process, the Manufacturer needs to pay the Middleman,
Supplier, and Carrier when it receives the goods. But the Supplier is unwilling
to send the goods without some guarantee that it will get paid. Therefore, the
Manufacturer puts the money in escrow, namely the account of the process instance
contract, when ordering the goods. This account is exclusively controlled by the
smart contract code, but the presence of the funds in escrow is visible to everyone on
the blockchain (including the Supplier). Later, both the Carrier and the Manufacturer
confirm the delivery of the goods, which triggers automatic payment from the
escrow account to the Middleman, Supplier, and Carrier.

The smart contract defines under what conditions the money can be transferred
and how the money should be transferred. Thus, when a payment function is
triggered, the smart contract automatically checks the defined conditions, and
transfers the money according to the defined rules. It is, however, of high importance
to specify rules that cover all possible scenarios and the respective outcomes:
e.g. what shall happen with money in escrow if the Manufacturer and the Carrier
disagree about the delivery of the goods or their condition? Implementing the rules
in a smart contract does not prevent possible conflicts, but it allows their automatic
enforcement.

8.2.4 Discussion

Conflict Resolution Following up on the conflict example from Section 8.2.2, we
discuss how conflict resolution can be implemented in our approach. Recall that
there was disagreement about the amount of supplies ordered. The blockchain
inherently provides an immutable audit trail. Thus it is trivial to review the
original order and waybill messages, and the culprit can be identified through such
inspection. Say that the Supplier was at fault, but the Manufacturer paid crypto-coins
into escrow. How does it get its money back? The conditions for reimbursement
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from escrow need to be specified in the smart contract, but then they can be invoked
at a later time. For instance, the participants may agree upfront that the Manufacturer
gets reimbursed only if the Middleman agrees to that; then the Middleman sends a
transaction to that effect, and the Manufacturer’s money is transferred back to its
account.

Trust Blockchain provides a trustworthy environment, without requiring trust in
any single entity. In contrast, in the traditional model participants who do not trust
each other need to agree on a third-party which is trusted by all. Blockchain can
replace this trusted third-party. This is of particular interest in cases of coopetition,
i.e. organizations cooperate for specific cases to achieve business goals that are
mutually beneficial, but compete in other cases. In such cases, it is important
that the entity which executes the joint business process is neutral. Say, Org1,
Org2, and Org3 are in coopetition but want to have a joint process to achieve
some business goal. However, Org1 would not accept Org2 or Org3 to control the
process, and neither of those would accept Org1. Using the blockchain for process
execution enables trustless collaboration, as it is not controlled by a single entity.
The translator allows the deployment of business processes on a blockchain network
without the need to manually implement the corresponding smart contract.

Trust in the deployed bytecode for a process can be established as follows:
each participant has access to the process model, translates it to Solidity with
the translator, and uses an agreed-upon Solidity compiler. This results in the
same bytecode, and each participant can verify that the bytecode deployed on
the blockchain has not been manipulated. Finally, the trigger allows for seamless
integration into service-based message exchanges. However, each trigger is a fully
trusted party, and by default each organization should host its own trigger.

Privacy Public blockchains do not guarantee data privacy: anyone can join a
public blockchain network without permission, and information on the blockchain
is public. Thus, for scenarios like collaborative process execution, a permissioned
blockchain may be more appropriate, configured so that joining it requires explicit
permission. Even with permission management, the information on blockchain
is still available to all the node operators on the blockchain network. While we
discussed a method to encrypt the data payload of messages, the process status
information is available to all nodes. As such, if Org1’s competitor, Org4, knows
which account address belongs to which participant, it can infer with whom Org1 is
doing business and how frequently. This can be mitigated by creating a new account
address for each process instance: the space of addresses is huge and account
creation trivial. However, this method prevents building a reputation, at least on
the blockchain.

Off-Chain Data Store As discussed above, for large data payloads the off-chain
data storage pattern from Section 7.2.3 can be used: only metadata with a URI and
a hash is stored on-chain, and the actual payload data is kept off-chain—accessible
with the URI.
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8.2.5 Conclusion

Collaborative process execution is problematic if the participants involved have a
lack of trust in each other. In this section, we discussed using blockchain and its
smart contracts to circumvent the traditional need for a centralized trusted party in a
collaborative process execution. First, a translator can translate process models into
smart contracts that can be executed on a blockchain. Second, the approach utilizes
the computational infrastructure of blockchain to coordinate business processes.
Third, to connect the smart contracts on blockchain with enterprise systems and the
external world, we discussed the concept of triggers. A trigger converts API calls to
blockchain transactions directed at a smart contract and receives status updates from
the contract that it converts to API calls. Triggers can thus act as a bridge between
the blockchain and an organization’s private process implementations. Additional
benefits of this approach include the option to build escrow and automated payments
into the process and that the blockchain transactions from process executions form
an immutable audit trail.

8.3 Model-Driven Registry Generation for Blockchain

In this section, we discuss model-driven development of registries for assets, such
as land titles, cars, or digital assets. A registry is a list of information recorded
and managed by a trusted authority. For example, a government might maintain
a registry to store information about businesses, including their business number
and name. Usually registries are operated as a centralized service, but this creates a
single point of failure for the whole system. One approach to address this limitation
is to use blockchain and smart contract technologies. As explained in the beginning
of the chapter, we focus here on non-fungible assets, where the identity of the
individual asset is important. Fungible assets like interchangeable tokens can instead
make use of well-proven standards like ERC20, and are not discussed here.

Building registries on a blockchain can provide increased confidence in data
integrity, availability, transparency, and immutability, and there is strong interest
from industry and government around this idea. In particular, data integrity and
availability are two of the key requirements of registries. Additionally, if we use a
blockchain as a unified infrastructure, multiple registries can more easily interact
with each other. There are registries being built on blockchain in ad hoc ways, for
example, Namecoin,3 which is a domain name registry that shares the same network
with Bitcoin, and Ascribe,4 which is an artwork registry that allows artists to register

3https://namecoin.org/.
4https://www.ascribe.io/.

https://namecoin.org/
https://www.ascribe.io/
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and manage the ownership of their digital artwork. However, building a registry on
blockchain is non-trivial, and the code needs to be of very high quality since it
typically manages assets of value.

In this section, we discuss Regerator, which is a tool that follows a model-
driven approach to provide templates for developers to create customized registries
by automatically generating and deploying registries on blockchain. For users,
there is a web forms-based interface, and a model that is not closely bound to
the underlying blockchain technology. Regerator includes (1) a smart contract
generator that can generate and deploy smart contracts representing registries on
the Ethereum blockchain and (2) a generator for web-based RESTful APIs and user
interfaces to interact with the generated registries. The feasibility of the approach
is illustrated through a case study of applying it to an open data registry, using
metadata from data.gov.au, and a registry model derived from an existing metadata
registry platform.

8.3.1 Registries on Blockchain

Registries are authoritative databases for specific entities and are used to manage
many aspects of daily life, such as land titles, business names, books, marriages,
births and deaths, music, films, and domain names. Being an authoritative database
means that a registry contains the default version of the truth. Sometimes a registry
will be the legally authoritative source of truth, such as for land under a Torrens
Title system.

Many public registries are hosted and maintained by government agencies whose
authority guarantees authenticity for the registered entities. Every change to a
registry is recorded with a digital fingerprint, which can be verified independently.
A registry should store a history of all changes and be open to independent
scrutiny. A registry may reference other registries to reduce duplication and errors.
Registries should be highly available, because other registries and services depend
on them. Open registries are publicly available, which means that the registry may
be accessed, copied, or derived freely by the public. For instance, a business name
registry, such as the Australian Business Register,5 is a public registry whose entities
can be requested by anyone at any given time. Building registries on blockchain
can leverage key properties provided by blockchain and utilize the infrastructure of
blockchain to achieve interoperability.

The main non-functional properties for registries on blockchain are as follows:

• Integrity concerns the accuracy and consistency of data over its entire life cycle.
Data integrity is a key requirement of a registry, which means that the items
can be only registered and changed by the authorized users. Many blockchain

5https://abr.gov.au/.

www.data.gov.au
https://abr.gov.au/
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techniques are censorship-resistant, which helps to ensure the ongoing integrity
of the full log behind the registry.

• Availability is also a key requirement for registries, especially national public
registries, which form the basis for many other services that utilize the data from
the registries. A blockchain system maintains consensus on data that is replicated
across the network with many processing nodes. Therefore, there is no single
point of failure since the infrastructure is fully decentralized.

• Interoperability is needed for registries to refer to and interact with each other
and can be supported on a blockchain as it provides a common underlying
infrastructure.

• Efficient reading is required to allow large-scale users of the registry to access
local copies of the registry directly, to control latency and cost. On a blockchain,
this is achieved because every node within the blockchain network has a local
copy of all historical data. However, light users might find the cost of operating
a full node relatively high, e.g. when compared to API calls.

• Programmability is required to allow more sophisticated, flexible, and finer-
grained access control models to register and manipulate the items in the
registry. On a blockchain this can be supported by using smart contracts. The
computational results are verified by the participants of the network and recorded
on blockchain, providing a full audit log of function calls in transactions as well
as logical states of the registries.

• Immutability is required to enable an audit trail of all historical operations on
the registry, to create complete traceability of records. This is a key property of
blockchains. However, some registries need to provide functionality to remove
records from the registry as if those records were never created, e.g. to respond
to a court order for the removal of those records. This can be a challenge on a
blockchain.

8.3.2 A Tool for Registry Generation: Regerator

In the remainder of this section, we discuss a tool called Regerator, which was
developed in our research. Regerator is a model-driven framework for the generation
of registries on a blockchain and for the generation of interface components for those
registries. Currently it generates registries in Solidity for Ethereum. As a model-
driven framework, it could support additional backend blockchain platforms in the
future, provided that those platforms have sufficiently expressive smart contract
languages. Regerator has three core components: a smart contract generator, a
registry of registries, and interfaces for smart contract management, as shown in
Fig. 8.5.
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Fig. 8.5 Overview of registry generator on blockchain. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

Smart Contract Generator

The smart contract generator allows the users of Regerator to generate smart contract
registries from registry models and to deploy the generated smart contracts onto the
blockchain. The smart contract model has four parts, including basic information,
registry type, basic operations, and advanced operations.

• Basic information includes the registry name, description, and user-defined data
fields and their types.

• Registry type can be ‘single’ or ‘distributed’. The ‘single’ registry type holds all
records as values in the data store for a singleton smart contract for the registry.
The ‘distributed’ type manages each record as a separate smart contract. A main
registry smart contract creates these contracts and stores pointers to them. The
‘single’ option is suitable for simple registries, while the ‘distributed’ option is
suitable for registries with complex operations, such as finer-grained permission
management at individual record level.

• Basic operations are the operations that can be performed on an individual
record, including Create/Read/Update/Delete and existence checking. Users can
configure whether or not a record is updatable. The Delete operation is a logical
delete only, since it is impossible to remove historic records on a blockchain.

• Advanced operations include access control, foreign key, version control, prove-
nance, trading, and multi-signature. We explain them in more detail below.

– Access control is required to restrict users to certain operations. In the case of
a public registry, only authorized government agencies are allowed to insert or
update records, even though the registry is readable by the public. To enable
permission management, a whitelist or a blacklist of addresses can be provided
for the invocation of operations. We allow for the definition of access control
mechanisms at the registry layer or the record layer. (For more restrictive read
access control, a private blockchain can be hidden behind a web interface that
implements those access control mechanisms, but this is not discussed here.)
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We provide two types of access control management. The basic type is to
check the permissions directly before executing an operation. The second type
is to use a separate indirectly invoked permission smart contract as a gateway
to manage a whitelist or blacklist; the operations of the registry then only
check against the address of the permission contract. Deciding between these
two alternatives depends on several factors, such as coupling, modifiability,
and the size of the smart contract, which impacts the cost of deployment.

– Foreign key is a concept borrowed from relational database, which allows
users to include the identity of a record from one registry as an attribute of
a record to another registry as a way to define the relationship between two
registries.

– Version control allows users to explicitly add a version number to an update
on a registry and enables more efficient querying.

– Provenance in the context of registry refers to a log of all the operations
that have been executed on a given registered entity. Such information is
necessary for auditing data integrity. Blockchain-based registries naturally
support provenance, as all data on the blockchain is immutable and valid.

– Trading or transferring ownership is required by registries that allow the
trade of registered items, such as domain names registered in Domain Name
System (DNS). This function is implemented as an escrow, which holds the
money from the buyer first when they make an offer; when the current owner
accepts the offer, the smart contract transfers the money to the seller and
changes the ownership of the item to the buyer.

– Multi-signature requires multiple parties to jointly sign a transaction to
invoke a smart contract operation. For instance, a publication registry like
arXiv.org might require the permissions from all the authors of an article to
update or delete the record. This function is planned for future work.

After registries have been defined, the smart contract generator provides a view
to show the registries and the relationships among them as a graphical model. A
screenshot of this functionality is shown in Fig. 8.6. The user can then decide to
deploy the registries on blockchain.

Registry of Registries on Blockchain

The registry of registries stores references to all registries generated using Regerator
on-chain. This facilitates version control of the generated registries. If a registered
registry is updated to a new version, the address of the new smart contract is added
to the registry of registries. Other tools and users can query the registry of registries
to retrieve the current location and status of a registry or to view a historical version.

www.arXiv.org
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Fig. 8.6 Screenshot of the data model view of Regerator. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

Smart Contract Manager

The smart contract manager provides web-based RESTful APIs and user interfaces
to allow users to manage and interact with the generated registries. Similar to
the business process execution approach discussed in the previous section, there
is a dry-run mechanism that validates and tests the transaction for each of the
functions defined in a registry by invoking the function on the local blockchain node
behind the interface. If the output of the dry-run matches the user’s expectation,
the transaction is submitted into the blockchain network. This dry-run mechanism
allows users to check the effect of their transactions before making permanent
changes and incurring actual cost for submitting the transactions to the blockchain
network. A smart contract monitor provides functionality to monitor contract events.
In Ethereum, smart contracts can emit events and write logs to the blockchain when
a transaction is processed. Tools and users can watch for new events, which show up
on the page when there are events being recorded on blockchain during the contract
execution.

8.3.3 Exemplar Case Study: Open Data Registry

To demonstrate the feasibility of the Regerator approach for model-driven gen-
eration of blockchain-based registries, we used Regerator to build a metadata
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registry inspired by the Comprehensive Knowledge Archive Network (CKAN).6 We
populated this example registry with metadata taken from data.gov.au. We discuss
some design considerations from the implementation as well as transaction cost
below.

CKAN

CKAN is a web-based open-source data registration system, which provides
functionalities to streamline publishing, sharing, finding, and using data. CKAN has
been used by public institutions and governments to open their data to the general
public, e.g. data.gov.au and data.gov.uk.

The central entity type in CKAN is a package. A package defines a variety
of metadata of datasets, such as name, description, license, and tags. CKAN also
supports an unlimited amount of customized metadata in the form of key/value pairs.
The relationships between packages can be defined, such as depends on, child of,
and derived from. Another entity type in CKAN is resource, which represents the
raw data in the dataset, such as files or APIs. A package can be associated with
multiple resources.

Implementation

We modelled elements of CKAN’s metadata schema using Regerator and generated
a blockchain-based registry system for the metadata of datasets. One architectural
decision to be made is either to manage one entity as part of the attributes of another
entity or to model both entities as separate registries. For the first choice, the nested
entity will not have a unique, identifiable ID. As for the second choice, foreign key
references between them need to be defined in order to encode the relationship, and
both the entities can be uniquely identified. For the entity to be modelled as registry,
another architectural decision to be made is either to model the entity as a ‘single’
registry or a ‘distributed’ registry. The factors to consider include the complexity of
the data structure, the nature of the relationship between entities (coupling), and the
cost of deploying and executing the registries on blockchain.

In the case of CKAN, there are potentially three entities that could be imple-
mented as separate registries, including package, resource, and organization.
Although resources are associated with a package, a resource is also an independent
entity with its own metadata and can be managed separately. Thus, we have decided
to record resources in a separate registry. Finally, organization is implemented as a
separate registry that groups the address of all the users from the same organization.
The organization registry can be used to define access, akin to role-based access
control (RBAC).

6http://ckan.org/.

www.data.gov.au
www.data.gov.au
www.data.gov.uk
http://ckan.org/
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Table 8.1 Cost of using blockchain

Registry deployment Record creation (average)
Gas cost Cost in US$ Gas cost Cost in US$

Entity Single Distr Single Distr Single Distr Single Distr

Organization 1.84M 2.54M US$30.9 US$42.7 183k 0.93M US$3.0 US$15.8

Package 1.84M 2.54M US$30.9 US$42.7 340k 1.09M US$5.7 US$18.5

Resource 1.78M 2.55M US$29.9 US$42.7 302k 1.07M US$5.0 US$17.8

© 2017 by the Commonwealth Scientific and Industrial Research Organisation, reprinted with
permission

Example Data

After implementing the blockchain-based registry, we queried the metadata of all
the datasets from data.gov.au and added that to our registry to test the feasibility of
our approach. Information about the number of each entity and the collected fields
are shown as below.

• Organization (533 entries): name, jurisdiction, spatial_coverage, email, tele-
phone, website

• Package (33,810 entries): name, owner_org, license_id, contact_point, spa-
tial_coverage, temporal_coverage

• Resource (64,147 entries): name, url, package_id, format, hash, size

During the metadata import, we collected data about the blockchain cost as gas
consumed (i.e. transaction execution cost) for deploying a registry and adding a
record to the registry. We use this information to calculate the monetary cost of
using blockchain as metadata repository according to the cost model of Ethereum.
Table 8.1 reports the cost for the different design options (‘single’ or ‘distributed’
registry). The data also shows how different architectural decisions can affect the
cost of deploying and executing the registry. We assume the gas price is 2 × 10−9

ETH (2 Gwei) and the exchange rate for Ether is US$420/ETH7 as of 2 August
2018.

Discussion

Impact of Architecture Design on Cost On the Ethereum blockchain, the cost
of creating a registry contract is comprised of fixed costs and variable costs. Fixed
costs are the base amount for the transaction itself and the cost for allocating an
address on the blockchain. Variable costs are affected by the architectural design
of the registry contract, e.g. the cost of data payload. Similarly, the cost of adding
records to a registry is also comprised of a fixed cost for the transaction itself and

7ETH is the currency code for Ethereum’s cryptocurrency.

www.data.gov.au
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some variable costs including for the data payload and to execute the functions
defined in the registry contract.

In contrast to existing practice, where adding a record is not normally inde-
pendently accounted for financially, using a public blockchain means that adding
a record costs real money (cryptocurrency). However, the blockchain ecosystem
will retain this data indefinitely as long as the blockchain exists, at no additional
cost. The most costly field (with the biggest size) of both package and dataset in
our experiment was ‘description’, which amounted to approx. 85% of the total cost
if included on blockchain. If it is not of high importance to store this information
on-chain, storing it off-chain could significantly reduce the cost.

Interoperability In the ecosystem of CKAN, the datasets in different CKAN
repositories refer to each other through importing the metadata from the referred
repository to the primary repository and transferring it to the correct format due
to the customer-defined fields. Regerator allows references to be defined as foreign
keys, thus avoiding redundancy and preventing inconsistent drift.

8.3.4 Conclusion

In this section we discussed applying a model-driven approach for registries on
blockchain. The Regerator system allows users to configure a registry model in a
browser-based application and to automatically generate and deploy smart contract
code implementing the registry on a blockchain. In addition, Regerator can also
create user interfaces and RESTful APIs.

Execution cost for a generated registry is affected by architectural options repre-
sented within the registry model, and we have explored this through experiments
on the Ethereum blockchain. The cost model for blockchains is different from
conventional (cloud or in-house) servers, because transactions are expensive but data
is retained indefinitely at no additional cost. Qualities like cost will be discussed in
the next part of this book.

8.4 Summary

This chapter started with an argument about why model-driven engineering is
particularly useful for blockchain-based applications: to avoid known vulnerabilities
and technology lock-in, to implement best practices, and to facilitate understanding
across parties and thereby increase trust in smart contract code.

We then elaborated on two methods for model-driven engineering: one for
collaborative business processes and one for registries of non-fungible assets, like
land titles or ownership of intellectual property. We also discussed how architectural
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decisions impact qualities like cost and maintainability. The next part of the book
will look at some of these qualities in more detail, starting with cost and how to
estimate it.

8.5 Further Reading

For a brief summary of model-driven engineering, including its history and role in
software engineering, see, e.g., Schmidt (2006).

Parts of this chapter are based on our own research publications, in particular the
business process monitoring and execution approach (Weber et al. 2016), and the
registry generator tool Regerator (Tran et al. 2017). For the business process part,
we devised an optimized version of the approach (García-Bañuelos et al. 2017).
This variant minimizes gas cost by trading it against lower readability of the code
and lower isolation between process instances. It has been implemented in the tool
Caterpillar (see López-Pintado et al. 2017). In contrast to these approaches, Prybila
et al. (2017) present an approach to track flexible processes that can deviate from the
model using the Bitcoin blockchain. Hull et al. (2016) propose to use an artefact-
centric process modelling method for blockchain-based processes. Recently, the two
model-driven engineering approaches discussed in this chapter have been combined
in the Lorikeet tool (Tran et al. 2018).

Findings that the integration of business processes contributes to better opera-
tional and business performance are discussed in Flynn et al. (2010) and Narayanan
et al. (2011). A lack of trust, however, may hamper collaborative process perfor-
mance (Panayides and Lun 2009).

The supply chain scenario shown in Fig. 8.1 is derived from the literature (Fdhila
et al. 2015).

The research literature on collaborative business processes has intensively inves-
tigated different notions of compatibility between the local processes of different
partners and between local processes and a global process. Such compatibility can
be achieved by design, for instance, using a P2P approach (van der Aalst and Weske
2001), transformations from a global choreography (Mendling and Hafner 2008;
Weber et al. 2008), or interaction modelling (Decker and Weske 2011).

Business processes involve different trust issues (see, e.g. Viriyasitavat and
Martin (2011) for a summary) which can be addressed in different ways. For
example, Carminati et al. (2014) relaxed the assumption that the broker hosting the
process engine has to be trusted: using selective encryption, data access for both the
broker and the service partners can be restricted. Mont and Tomasi (2001) designed a
trust service for cross-company collaboration based on a hybrid architecture mixing
a trusted centralized control with untrusted peer-to-peer components. Li et al. (2010)
put forward an agent-based architecture that can remove the scalability bottleneck
of a centralized orchestration engine and provides more efficiencies by executing
portions of processes close to the data they operate on. In virtual organizations,
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Squicciarini et al. (2008) proposed to select partners on the basis of disclosure
policies and credentials (i.e. identity attributes issued by a ‘credential authority’).

Key requirements and characteristics of registries were discussed in a UK
Government report by Downey (2016). Regis8 is a contract generator for registries
on the Ethereum blockchain but only provides very basic operations.

8https://regis.nu/.

https://regis.nu/


Part III
Quality Impact of Using Blockchain

Blockchain systems emerged to support financial transactions (digital currency),
and so it is not surprising that the major supported non-functional properties (NFPs)
are those that are critical in that domain: integrity and non-repudiation (including
immutability of data, and transparency). As a highly distributed and redundant data
store, blockchain systems can also support high levels of availability for reading
data. As discussed earlier, there are some well-known limitations on NFPs for
blockchain systems. Some are inherent to the technology, but others are only current
limitations and may well be overcome in the near future. We discuss a variety of
NFPs below.



Chapter 9
Cost

with Paul Rimba and An Binh Tran

In software architecture for blockchain-based applications, one of the most critical
non-functional properties to consider is cost. The (monetary) costs of execution and
storage are as important for blockchain technologies as they are for conventional
technologies. However, blockchain systems have different kinds of cost models,
and the cost for storing too much data on-chain can explode rather quickly. In this
chapter, we discuss different options for storing data, and the principles of cost for
smart contract deployment and execution.

Blockchains enable decentralized trust in storage and execution, but bring trade-
offs against execution cost and latency. Therefore, we present mathematical cost
models for blockchain and a particular cloud technology. Using these models, we
investigate the question: What kinds of cost trade-offs are there for blockchain vs.
cloud?

To illustrate answers to these questions below, we use an exemplar system of col-
laborative business process execution, implemented on both blockchain and cloud
technologies. We use Ethereum because, like cloud platforms, it supports general
purpose computation. In this chapter, we use the exchange rates of US$7650/BTC1

and US$420/ETH2 from August 2, 2018. We also assume a gas price of 2 × 10−9

ETH (2 Gwei) on Ethereum.

1BTC is the currency code for Bitcoin’s cryptocurrency. Source for exchange rates is https://
poloniex.com/exchange#usdt_btc.
2ETH is the currency code for Ethereum’s cryptocurrency. Source for exchange rates is https://
poloniex.com/exchange#usdt_eth.

© Springer Nature Switzerland AG 2019
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9.1 On-Chain Data Cost

A common practice for data management in blockchain-based systems is to store
raw data off-chain and to store on-chain just metadata, small critical data, and hashes
of the raw data. We touched on this topic at various points of the book already,
specifically in Section 6.3.3 and its comparison table (Table 6.2). Here we provide an
in-depth discussion of the specific methods that can be used and the costs incurred.

In the Bitcoin blockchain, before OP_RETURN3 was made a valid opcode (i.e.
function of Bitcoin Script language) to store arbitrary bytes in an unspendable
transaction, users were able to include limited information into transactions on-
chain using one of four methods. These were: writing in a coinbase transaction
which is only editable by miners, using the nSequence field, using a fake account
address, or using unreachable script code defined through if and else conditions.

Four Ways to Store Arbitrary Bytes in an Unspendable Bitcoin Transaction
In the first method, every block has a coinbase transaction that mints new coins. The
recipient of the coinbase transaction is the miner who generates the block. There is a
parameter coinbase in the coinbase transaction, which can contain arbitrary data from
the miner, and only the miner has access to this parameter.

In the second method, the blank field nSequence of a normal transaction is used
to distinguish some transactions from other Bitcoin transactions, e.g. presenting assets
other than the BTCs. Every participant which has the permission to submit transaction
can set the value of nSequence.

For the third method, data can be encoded into a fake account address. The data is
recorded on blockchain by sending a small amount of coins to the fake account. Any
coin sent to the fake address is lost forever. One way to extend the mechanism is to use
1-of-n multi-sig transaction. Thus, if the recipient account of the transaction belongs
to the owner of the arbitrary data, no coins are lost. To avoid denial-of-service attacks,
Bitcoin sets a minimum amount of funds that can be transferred to an address, so that
transactions with outputs below this threshold are discarded by the miners.

In the fourth method, smart contracts use conditional statements, such as in
Bitcoin’s Script or Ethereum’s EVM. For example, Bitcoin Script has OP_IF,
OP_ELSE, and OP_ENDIF. A clause within a conditional statement, which cannot
be reached under any condition, can be used to store arbitrary data. This conditional
statement causes extra overhead.

All four methods are deprecated now that OP_RETURN has been introduced as
an official way to embed arbitrary data in a Bitcoin transaction.

Table 6.2 compares the OP_RETURN mechanism with other options provided
by public Ethereum to store arbitrary data. There are trade-offs in cost efficiency,
performance, and flexibility. The OP_RETURN instruction returns immediately
with an error so that the included data is not interpreted as a script. The default
Bitcoin client only relayed OP_RETURN transactions up to 80 bytes, which was

3https://bitcoinfoundation.org/core-development-update-5/.

https://bitcoinfoundation.org/core-development-update-5/
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reduced to 40 bytes in February 2014.4 Storing 80 bytes of arbitrary data on the
Bitcoin blockchain costs roughly US$0.459.5 It is debatable whether Bitcoin should
be used to record arbitrary data.

Ethereum, on the other hand, theoretically allows storing arbitrary structured data
of any size. According to the cost model given in the Ethereum yellow paper, every
transaction has a fixed cost of 21,000 gas (gas is the internal pricing for executing
a transaction or storing data), and every non-zero byte of data costs additional 68
gas. Thus, the total cost of storing 80 bytes of data on Ethereum blockchain by
submitting a transaction is 26,440 gas (assuming all bytes are non-zero), which is
roughly US$0.22.

Ethereum provides two other ways to store arbitrary data in smart contracts. For
32 bytes of data, the first option is to store the data as a variable in a smart contract
(all simple types in Solidity, the script language on Ethereum, are 32 bytes). The cost
of storing data in the contract storage is based on the number of SSTORE operations
required for the contract variable. In the case of storing 32 bytes, there is one
SSTORE operation that changes the data from zero to non-zero, which costs 20,000
gas. As mentioned, the transaction as the carrier costs a base 21,000 gas. The data
payload of the transaction including the function signature and the actual data costs
extra gas. Other than these two costs, there is a cost for creating the smart contract
depending on its complexity. In total, the cost is larger than US$0.036(20,000 +
21,000 + 32 ×68 gas). A subsequent transaction that updates the variable will incur
5000 gas, instead of 20,000 gas, for keeping the data as non-zero. Therefore, the
subsequent transaction will be US$0.024 (5000 + 21,000 + 32 × 68 gas).

The second option is to store arbitrary data as a log event. This follows different
rules for calculating cost. Logged data is stored in log topics which cost 375 gas,
and where every byte of data in a log topic costs an extra 8 gas. Including the fixed
cost of the carrier transaction with data payload, the rough cost of using a log event
to store 32 bytes of data is US$0.018 (21,000 + 375 + 32 × 8 gas). Storing data as a
variable in a smart contract is more efficient to manipulate but less flexible due to the
constraints of the Solidity language on the value types and length. The flexibility and
performance of using smart contract log events is intermediate because log events
allow up to three parameters to be queried.

Finally, we reiterate that data storage on blockchain follows a different cost
model than conventional data storage. Although it may seem more expensive,
storing data on blockchain is a one-time cost for permanent storage. (However, note
that Ethereum allows a partial refund on reclaimed smart contract variable storage.)

Selection of off-chain data storage concerns the interaction between the block-
chain and the conventional data storage facilities. Off-chain data storage can

4https://github.com/bitcoin/bitcoin/pull/3737.
5Assuming a typical Bitcoin transaction with one input and one output, which has about
220 bytes, the default transaction fee rate of 2 × 10−4 BTC/KB (see https://en.bitcoin.it/wiki/
Transaction_fees).

https://github.com/bitcoin/bitcoin/pull/3737
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Transaction_fees
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be through conventional enterprise IT systems, a private cloud on the client’s
infrastructure, or a public storage provided by a third-party. The flexibility of using
cloud to store data depends on the implementation. Some peer-to-peer data storage
facilities are designed to be friendly to blockchain, such as IPFS6 and Storj.7 IPFS is
free, but ensuring availability requires providing an IPFS server that hosts the data.
The cost of Storj is US$0.015/GB/month. In a peer-to-peer data storage, the data is
replicated automatically by the peer-to-peer network, or based on the behaviour of
users, e.g. data is replicated once a user accesses it. In a cloud environment, data
replication needs to be managed by the system or consumer.

9.2 Smart Contract Cost

There is a cost charged on Ethereum for transactions in relation to their complexity.
A detailed cost model is presented in Section 9.3.1. In rough terms, there is a fixed
base cost for any transaction, the 21,000 gas mentioned above, plus variable com-
ponents: data attachments as discussed above; executing a smart contract method
is charged per bytecode instruction; and additional cost arises during deployment
of new contracts. All costs in Ethereum follow a fixed pricing table, specified in the
unit gas. Gas cost is converted to Ether, Ethereum’s own cryptocurrency, with a user-
defined gas price factor, i.e. how much Ether-per-gas the creator of the transaction
is willing to pay. By default, Ethereum clients set the gas price to the current market
rate, an average over previously included transactions.

To prevent denial-of-service attacks, Ethereum has a block gas limit: the sum
of gas used by the set of transactions included in a given block cannot exceed this
limit. The block gas limit is set by the miners. Each miner winning a block can
slightly increase or decrease the block gas limit or keep it unchanged. Because the
block gas limit is defined in terms of gas usage, not the transaction fee in Ether,
this limit cannot be influenced by variations that the user has power over (such
as underbidding the market price), effectively making it a limit of complexity for
new blocks. As such, the block gas limit acts also as an upper bound to throughput
scalability. But since the cost of transactions can vary, it is non-trivial to understand
how that bound relates to transaction throughput for a given application.

9.3 Cost Models

In this section, we describe models (formulae) to estimate the cost of running
an application on two different types of infrastructure. We use the execution of
an instance of a business process model as sample application. For blockchain

6https://ipfs.io/.
7https://storj.io/.

https://ipfs.io/
https://storj.io/
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infrastructure, we use Ethereum because its smart contracts are in a Turing complete
programming language which can be used to represent business process logic—
see Chapter 8. For conventional cloud infrastructure, we use Simple Workflow
Service (SWF) from Amazon Web Services (AWS), because it is dedicated to
process execution and offered by a leading commercial cloud computing provider
(i.e. Amazon). It can implement the commonly used workflow patterns, as well as
synchronous and asynchronous messaging patterns.

Executing collaborative processes across organizations requires three types
of components: (i) the implementation of the collaborative process model, to
coordinate the work across participants; (ii) implementations of the activities that
participants perform; and (iii) interfaces (or triggers as in Section 8.2) that control
interactions between the collaborative process and the participants’ activities.
The details of a participant’s activities (ii) are typically shielded from external
organizations and given a good interface (iii) are independent of the choice of
coordination technology. As such, we disregard factor (ii) in our cost models.

First, consider (i), the cost overhead of process coordination. For a cost model for
a single instance of a coordinating process, both for blockchain and Amazon SWF,
we send all messages synchronously and in a way that conforms to the business
process model. Next, consider (iii), the cost for running a virtual machine (VM)
that hosts the interface between the coordinating process and the internal systems.
This is dependent on the choice of technology as well as on the workload. When
the workload exceeds the VM’s capacity, a more powerful or additional VM will be
required. Blockchain infrastructure also needs a ‘full node’ of the blockchain, which
is relatively heavyweight.

We describe the two components of the cost model, first for Ethereum in
Section 9.3.1 and then for SWF in Section 9.3.2.

9.3.1 Ethereum Blockchain Cost Model

There are three types of transactions in Ethereum: financial transfer, message
call, and contract creation. Each has the following basic elements: from, to,
gasLimit, value, and data.

The from and to fields signify the sender and the recipient of the transaction,
respectively. For a financial transfer transaction, the amount transferred is given in
the value field. The data field is optional but can contain data in arbitrary other
forms, e.g. XML, pictures, or MP3s. The fee for a transaction with attached data
covers the cost for storing the data permanently in the blockchain and is proportional
to the size of the data—see the details in Section 9.1. A message call transaction
invokes a function of a contract, where the data field carries the method to be
invoked and the parameters. The gasLimit is used to specify the maximum gas
that can be used in this transaction. Gas is paid for each bytecode instruction that
is executed. Finally, a contract creation transaction is indicated by a to value of
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NULL and data that contains the contract bytecode. For both message call and
contract creation transactions, the value field is optional.

We divide our business process blockchain cost model into two parts, one for the
cost of deploying a smart contract and one for the cost of executing business process
coordination.

A contract creation transaction includes compiled bytecode in the data field,
and the permanent storage of this data incurs cost. An optional ‘endowment’ can
be provided, so that the new contract has a positive balance upon initialization.
When a contract is created, a particular Ethereum address is assigned to it, which is
subsequently used to interact with that contract. This contract address is calculated
with a deterministic function that depends only on the creator’s Ethereum account.

The details of the costs of contract creation are outlined in the Ethereum yellow
paper. We refer to this cost as Ccreate. A contract creation transaction costs a base
amount of 21,000 gas for the transaction itself (Ctx), plus 32,000 for allocating
a new address (Caddr), plus the cost of data payload (Cpload, the size of contract
bytecode multiplied by gas per byte), plus any additional gas that is consumed by
the opcodes in the function definition (Cfndef ). The contract creation cost formula is
shown in Eq. (9.2). An online tool is provided by Ethereum to estimate the amount
of gas required in Ethereum. At the time of writing, the cost of payload for contract
bytecode is 200 gas per byte, while the cost of payload for data in a financial
transaction and message call is 68 gas per non-zero byte and 4 per zero byte.

Cpload = payload (in bytes) × Cgas/byte (9.1)

Ccreate = Ctx + Caddr + Cpload + Cfndef (9.2)

In Ethereum, a contract can create another contract. This is cheaper because this
does not incur Ctx. So, the cost of creating a new contract by an existing contact,
Ccreateinternal , can be calculated as shown in Eq. (9.3).

Ccreateinternal = Caddr + Cpload + Cfndef (9.3)

The second part of our cost model concerns the cost for executing the coordi-
nating business process and is summarized in Eq. (9.4). A coordination message
is treated as a function call in Ethereum. A function call costs a base amount of
21,000 gas for the call itself, plus any additional gas that is consumed by the opcodes
present during the function execution (Cfnexec ) and the cost for the data payload.

Ccoord = Ctx + Cpload + Cfnexec (9.4)

The costs calculated with Eqs. (9.1)–(9.4) are in gas. In order to convert these
costs into Ether, the digital currency of Ethereum, the total gas consumed must be
multiplied by the gas price in wei (one wei is 10−18 Ether). Finally, the cost in
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Ether can be converted into another currency through an exchange service at some
exchange rate, EXCETH2CUR. We specify this in Eq. (9.5).

Cin$ = CinGas × gasPrice × 10−18 × EXCETH2CUR (9.5)

Equations (9.2) and (9.4) are concerned with the setup and coordination cost
for component (i) in the introduction of this section, for blockchain infrastructure.
Component (ii) is disregarded as explained, but component (iii) needs to be
considered: the cost of the VM that acts as an interface between the process and
the enterprise systems of participants.

To calculate the cost of the interface VM, we need a few more definitions. Let
EC2t be the set of all available VM types in AWS Elastic Compute Cloud (EC2)8

and ec2t ∈ EC2t . We define each VM type’s capacity as T Pbc : EC2t �→ R.
Next, we define a function that determines the VM type based on the coordination
workload, WLbc, and VM capacity: fbc : (T Pbc, WLbc) �→ EC2t . The cost of
running a VM of this type per billing time unit (BTU) is captured as EC2price :
EC2t �→ R. Finally, we obtain the VM cost by multiplying the price with the
number of BTUs it is required to run, as shown in Eq. (9.6).

Ccomp = EC2price(ec2t ) × time (9.6)

Note that, in the blockchain setup, the interface VM operates a full node. As
such, if the VM is not constantly online, the required duration for this VM needs to
include the time to synchronize the blockchain with the network. Ethereum clients
have a ‘fast’ flag that allows faster synchronization: instead of downloading the full
set of known blocks, only transaction receipts from blocks are downloaded. The
receipts show that these transactions happened but do not show the results of the
smart contract function executions, so provide less evidence for integrity. This can
only be done when downloading the blockchain from scratch and takes on the order
of hours to days for the public Ethereum blockchain, depending on the machine and
connectivity chosen and the size of the data structure.

9.3.2 Amazon SWF Cost Model

AWS provides a service for workflow execution, called Simple Workflow Service
(SWF), which we use as a representative for cloud-based business process exe-
cution. We chose SWF as it provides a clear mapping to our process model, for
comparison. SWF has a tiered pricing model,9 i.e. more usage will result in cheaper

8https://aws.amazon.com/ec2/instance-types/; AWS calls VMs ‘instances’. To avoid confusion
with process instances, we use the term ‘VMs’ instead.
9https://aws.amazon.com/swf/pricing/.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/swf/pricing/
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cost per unit. It has the following main elements: workflow, actor, task, and signal.
A workflow is a collection of activities that can be performed by different actors in a
specified sequence. A workflow in SWF represents an instance of a business process,
while actors play participant roles from the business process. There are two different
types of task: activity and decision. An activity task is used to schedule a notification
to the appropriate actors to proceed with the next activity in the workflow execution.
A decision task is used to determine whether the current state of execution conforms
to the workflow and to determine which activity to execute next. A signal is an
externally triggered event to a currently executing workflow. Table 9.1 shows the
mapping of a business process to elements of Blockchain and SWF.

Figure 9.1 is a sequence diagram that shows how an example of a supply chain
business process is executed using Amazon SWF workflow. Every actor involved in
the business process implements its own trigger, which is a program that interacts
with Amazon SWF through AWS API calls. When a trigger’s API is called by
its owner, the trigger translates the message into an Amazon SWF signal. SWF
then schedules a decision task to evaluate the signal’s content and to perform
conformance checking. If successful, an activity task is scheduled to notify the
actor of the next business activity. Task execution requires the actor to have a
running Amazon SWF worker module, which can be operated either on AWS EC2

Table 9.1 Business process mapping to Amazon SWF elements and blockchain elements

Business process Blockchain Amazon SWF

Process instance Instance of smart contract Workflow

Conformance checking Contract execution (partial) Decision task

Activity Contract execution (partial) Activity task

Incoming message Transaction Signal

Outgoing message Entry in contract event log Notification

© 2017 IEEE. Reprinted, with permission, from Rimba et al. (2017)
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Fig. 9.1 Supply chain process implemented using Amazon SWF Workflow (cf. Fig. 8.4). © 2018
by Springer International Publishing, part of Springer Nature, reprinted with permission
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or the actor’s own infrastructure. This Amazon SWF worker module will execute
both decision task and activity task scheduled by SWF. Conformance checking is
a technique in process mining, which compares an existing process model with an
event log produced by the process model. Conformance checking is used to check if
what happened in reality conforms to the process model, and can be used at runtime.

The total cost for SWF-based execution has several components. First, the base
cost for workflow instances Cwf can be calculated by multiplying the number of
instances with the SWF cost of starting a workflow execution (SWFwf) as shown
in Eq. (9.7).

Cwf = #wf × SWFwf (9.7)

The execution of activity tasks is done by the SWF worker, which we discuss
below. The cost for scheduling tasks, Ctask, is the price per task (SWF task)
multiplied with the sum of activity tasks and decision tasks that are executed; see
Eq. (9.8). Note that the number of activities in a process instance equals the number
of SWF activity tasks, whereas the number of decision tasks is that number plus one
additional decision task (immediately after the start of the workflow instance).

Ctask = (#actTask+ #decTask) × SWF task (9.8)

The number of signals can be obtained from the number of activities in a business
process instance. We can calculate the cost of signals, Csig, by multiplying the
number of signals with the price per signal, as shown in Eq. (9.9).

Csig = #signals× SWF signal (9.9)

Data generated during the workflow execution is retained by SWF for a user-
specified duration after completion of workflow execution (retT) and is charged
for storage per 24 h. The workflow execution time (execT) is also charged per 24 h
at the same rate as data retention cost (SWF ret). This is reflected in Eq. (9.10).
Finally, cost of data transferred, Cdat, inwards and outwards during the workflow
execution, is the total payload data size (payload) multiplied with the cost per data
unit (SWFdata). See Eq. (9.11).

Cret = (execT + retT) × SWF ret (9.10)

Cdat = payload× SWFdata (9.11)

The formula to calculate the total cost of business process execution on Amazon
SWF is shown in Eq. (9.12), which is the sum of individual costs incurred from
Eqs. (9.7) to (9.11).

Cswf = Cwf + Ctask + Csig + Cret + Cdat (9.12)
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Equation (9.12) provides the coordination cost when using SWF services and
does not include the cost of the VMs to run the triggers and the Amazon SWF
workers. In order to calculate the cost for the VMs, we first need to determine the
VM type required for a specific workload, WLswf . For that we again define the
throughput per VM type as T Pswf : EC2t �→ R. The throughput values here are
different from the ones for blockchain triggers, due to the different modules that
are running for SWF. Analogous to the blockchain calculations, we determine the
required VM type based on the capacity of VM types and the workload: fswf :
(T Pswf , WLswf ) �→ EC2t .

We use that information to calculate the cost for running the VMs for the time
needed as per Eq. (9.6). The minimum requirement is one VM to host the trigger
and worker, with the caveat that all participants trust this VM. In a preferable setup,
each participant involved provisions at least one VM to host their own trigger and
worker.

In the cost model, we need to know the maximum throughput of each different
VM type, T P , for process execution on both blockchain and Amazon SWF. These
need to be established through benchmark tests.

9.4 Using and Evaluating the Cost Model

In this section, we show how the cost models can be used to compare costs. We use
the example of business process execution on Ethereum and Amazon SWF. We also
describe some benchmark experiments that allow us to explore the accuracy and
limitations of the cost models. Finally, we discuss how we can use the models to
conduct sensitivity analyses, to better explore the cost consequences of the design
in different business scenarios.

9.4.1 Experiment Setup, Methodology, and Benchmarking

For the cost comparison experiment, we use two datasets. The first is a process
for incident management from the literature. Figure 9.2 shows the business process
model, which has nine tasks and six gateways. The model has four conforming
traces, all of which we use. Such a process would be cross organizational if, e.g. first-
level support was outsourced. The second dataset is based on a real-world invoicing
process, provided to us by the Minit process mining platform in the form of a log
file with 5316 traces that comprise 65,896 events. We derived a process model from
these with standard process discovery methods. The model has 40 tasks and 18
gateways. Due to the presence of loops, there is an infinite number of conforming
traces. We use that model and the 5316 traces.
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Fig. 9.2 Incident management case study workflow, adapted from literature (Notation: BPMN).
© 2017 IEEE. Reprinted, with permission, from Rimba et al. (2017)

The test instances for the business process are read from a message trace log
file. For each log line, we send a message to the respective actor’s business process
trigger, which sends a transaction to the blockchain or a signal to Amazon SWF.

Blockchain

For the incident management process, we reuse the results from our previous work,
with experiments on the public Ethereum blockchain. For the invoicing process, we
ran separate large-scale experiments. In both scenarios, each actor maintains a local
Ethereum node, running go-Ethereum (geth). For incident management/invoicing
respectively, we used geth versions 1.3.5/1.5.4, connected to the public/a private
Ethereum blockchain, and compiled our smart contracts using Solidity compiler
version 0.2.0/v0.2.1 with optimization enabled. We implemented the triggers in
Node.js using the Ethereum library web3 version 0.15.1 for both processes.

Amazon SWF

For Amazon SWF, each actor was implemented with a business process trigger in
Java, using the AWS SDK for Java version 1.11.13. This trigger calls the Amazon
SWF API to send signals to the Amazon SWF. We deployed the trigger and SWF
worker on an EC2 t2.micro VM.

VM Throughput Measurements

As mentioned in the previous section, we need to establish the maximum throughput
of each different VM type, T P , in order to use the cost model. We have run
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Table 9.2 AWS EC2 VM types and specification

VM types vCPU specifications Memory (GiB)

t2.small 1 Intel Xeon E5-2676 2.40 GHz v3 w/ Turbo up to 3.3 GHz 2

m3.medium 1 Intel Xeon E5-2670 2.50 GHz v2 (Ivy Bridge) processors 3.75

m3.large 2 Intel Xeon E5-2670 2.50 GHz v2 (Ivy Bridge) processors 7.5

m3.xlarge 4 Intel Xeon E5-2670 2.60 GHz v2 (Ivy Bridge) processors 15

© 2018 by Springer International Publishing, part of Springer Nature, reprinted with permission

Table 9.3 Throughput experiment result

Blockchain Amazon SWF
m3.medium m3.medium

Metrics t2.small m3.medium m3.large (default) (incr. limit)

Transactions or signals 13,580 7336 20,104 73,871 152,404

Network in (MB) 102 114 128 138 168

Network out (MB) 195 131 278 353 376

Duration (s) 3610 3605 3604 3605 3605

Average Tx/s or 3.8 2.0 5.6 20 42

Average signal/s

© 2018 by Springer International Publishing, part of Springer Nature, reprinted with permission

benchmark tests to empirically determine this, using synthetic load based on the
incident management process described earlier. We do not present the details of
this test here but do show the results below. We used several types of EC2 VMs
for a private Ethereum deployment. We used t2 VMs and m3 VMs which provide
a consistent baseline performance for general purpose applications. All the VMs
used solid state drives as disks. The specifications for the VM types are shown in
Table 9.2. Table 9.3 summarizes the results for both blockchain and Amazon SWF.

9.4.2 Blockchain Results

For the invoicing process, we deployed a factory contract and ran 5316 process
instances with a total of 65,896 transactions. As per our business process execution
approach, when invoked for process instantiation, the factory contract generates a
new instance smart contract, which contains the blueprint of the business logic.
This smart contract also performs conformance checking during execution: for each
transaction after instantiation, the process instance contract checks if this transaction
is expected in the current state of the instance. There are 49 unique traces, i.e. 49
different paths through the process model were explored during the experiment. The
deployment of the factory contract costs 0.0031 Ether (approx. US$1.30), and each
unique trace has different costs associated to it, ranging from 0.0006 to 0.0017 Ether.
We ran this experiment on a private blockchain where it cost a total of 15.66 Ether
(approx. US$ 6577.20 on public Ethereum). Our private blockchain uses the same
code as the public one, including for cost calculation.
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For the incident management process, we refer to experiment runs that were
reported previously (Weber et al. 2016). In these experiments on the public
Ethereum blockchain, we ran 32 process instances with a total of 256 transactions.
With a gas price of 20 Gwei, which was the market rate at the time (March 2016),
the deployment of the factory contract costs 0.032 Ether, and each run of the
incident management process, with data transformations, cost on average 0.0347
Ether. At the time when we conducted the experiment, the exchange rate was around
US$10/ETH, and these costs equated to about US$0.30–0.40. With a current gas
price of 2 Gwei and exchange rate of US$420ETH, the costs are approx. US$1.34
and US$1.46, respectively. The sharply increased exchange rate has, to a degree,
been compensated by a lower market gas price.

9.4.3 Amazon SWF Results

In the SWF experiment, we created a new process instance (SWF workflow
instance) for each run. On receiving a signal, Amazon SWF schedules a decision
task for the worker. The worker checks the received signal for conformance with
the business process implemented in the workflow and the state of the instance, and
if successful progresses the workflow state accordingly.

If the signal frequency during the execution of a workflow instance is too high,
AWS may schedule the next decision task to handle the decision logic for all the
received messages in a batch. SWF would thus allocate a single decision task to
handle multiple signals for a single workflow instance at once, which could distort
our results. To prevent SWF from batch processing the signals for a single workflow
instance, we send messages synchronously: once the result has been received, we
send the next message for that instance.

We deployed an EC2 t2.micro VM for the trigger and the Amazon SWF task
worker and executed process instances in sequence. For each process instance, the
initialization creates a new workflow (instance) and a decision task to instruct the
workflow to wait for the first signal. For each additional message, the trigger sends
one signal which results in one activity task and two decision tasks: the workflow
schedules a decision task each time it receives a signal or a completion message
from an activity task. Thus, for X process instances with a total of Y events, there
are X workflows, Y − X signals and activity tasks, and 2Y − X decision tasks.

In our experiments, we set both the data retention rate and workflow execution
to 1 day. The total cost for the invoicing experiment with 5316 process instances
was US$7.23. This equates to an average cost of US$0.0014 per process instance,
with 1-day data retention. The cost per process instance would be US$0.00318 if
we increased the data retention to 365 days. Table 9.4 shows the cost breakdown.
Amazon SWF data transfer is charged per GB, with 1 GB as the lowest denomina-
tion. As we incurred 4522 MB of data transfer during the Invoicing experiment, the
cost for data transfer is rounded up to 5 GB.
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Table 9.4 Amazon SWF
cost breakdown—invoicing

Elements in Unit cost Total cost

Elements experiment (US$) (US$)

Decision task 126,476 0.000025 3.16

Activity task 60,580 0.000025 1.51

Signal 60,580 0.000025 1.51

Workflow 5316 0.0001 0.53

Retention (24 h) 5316 0.000005 0.027

Execution time (24 h) 5316 0.000005 0.027

Data transfer 5 0.09 0.45

© 2018 by Springer International Publishing, part of Springer
Nature, reprinted with permission

Table 9.5 Amazon SWF
cost breakdown—incident
management

Elements in Unit cost Total cost

Elements experiment (US$) (US$)

Decision task 15,000 0.000025 0.375

Activity task 7000 0.000025 0.175

Signal 7000 0.000025 0.175

Workflow 1000 0.0001 0.1

Retention (24 h) 1000 0.000005 0.005

Execution time (24 h) 1000 0.000005 0.005

Data transfer 1 0.09 0.09

© 2017 IEEE. Reprinted, with permission, from Rimba et al.
(2017)

For the incident management process with 1000 process instances, the total cost
for the experiment was US$0.925, resulting in an average cost of US$0.000925
per process instance. If we increased the data retention to 365 days, the cost per
process instance would be US$0.002745. Table 9.5 shows the cost breakdown. The
data transfer volume for incident management was 358 MB, which is rounded up to
1 GB.

9.4.4 Completeness, Correctness, and Comparative Analysis

We believe the cost model is complete because in our implementations of both
variants we did not encounter any cost that is (1) not part of the cost models and
(2) specific to either system. Take, for instance, broadband network access from the
enterprise systems: we take that as a given, and there are no particular differences
between the network requirements for blockchain or Amazon SWF.

In terms of correctness, we found the outputs of the 5348 process instances from
both blockchain experiments to be consistent with the outputs of the Amazon SWF
experiments, given the same inputs.
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For the invoicing process, executing one process instance costs US$0.001359
on average in Amazon SWF. In comparison, executing the same process instance
on Ethereum costs on average 0.00294 Ether, or approx. US$ 1.24, plus 0.0031
Ether (US$1.30) as a one-time cost for deploying the factory contract. Excluding the
one-time factory contract deployment, the cost per process instance on blockchain
is currently three orders of magnitude higher than on Amazon SWF. Blockchain
stores the result in perpetuity (as long as the blockchain is in existence), while SWF
has a 90-day limit on data retention. To put the higher one-time cost for executing
a process instance on Ethereum into perspective with the ongoing cost for data
storage on Amazon SWF: to reach break-even, the data would have to be stored for
243,863 days or approx. 668 years.

Similar findings are observed in the incident management process, where
executing one process instance costs US$0.000925 on average on Amazon SWF.
In comparison, executing the same process instance on Ethereum costs on average
0.00347 Ether, or approx. US$ 1.46, plus 0.0032 Ether (US$1.34) as a one-time cost
for deploying the factory contract. The cost per process instance on blockchain in
the incident management process is about three orders of magnitude higher than on
Amazon SWF. The data needs to be retained for 266,447 days or approx. 730 years
to reach break-even.

The Ethereum blockchain cost estimates from the online tool have a difference
of up to ±2.4% for the contract creation part, i.e. factory contract and process
instance deployment. For the cost of coordination (Ccoord), the online tool estimates
this as transactional cost, which is the execution cost (Cfnexec ) + 21,000 gas (Ctx) +
cost of payload (Cpload). The cost of payload is (4 bytes of function signature +
parameters in bytes) × Cgas/byte. For most of the activities in incident management,
our cost model can estimate the gas usage accurately, with the exception of
customer_has_problem activity which has an unusual gas refund behaviour that
affects the calculation of the execution cost by 15,000 gas. To achieve accurate gas
usage and cost estimation for function execution, this is best achieved by deploying
a private Ethereum blockchain. In a private blockchain setting, the conversion to fiat
currency (Eq. (9.5)) may not be required.

The Amazon SWF cost model is accurate in estimating the costs for the SWF
elements, with a possible variation for workflow execution time and data transfer.
Estimating the cost of VM based on the maximum throughput of the VM type and
the workload may vary due to performance variation in AWS EC2 and complexity
of the activity task implementation.

One of the benefits of having a cost model is the ability to predict the cost
for different workload settings. Having previously validated the cost models for
Ethereum blockchain and Amazon SWF, this gives us all the components needed
for us to predict the cost of business process execution for different workloads.
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Table 9.6 Cost of blockchain experiments for invoicing and incident management processes
under different exchange rates

Exchange rate (in US$)
Costs Ethereum (in Ether) 0.10 1.00 10.00 100.00 1000.00

Incident management
(contract deployment)

0.0032 0.00032 0.0032 0.032 0.320 3.20

Incident management
(per process instance)

0.00347 0.000347 0.00347 0.0347 0.347 3.47

Invoicing process
(contract deployment)

0.0031 0.00031 0.0031 0.031 0.31 3.10

Invoicing process
(per process instance)

0.00294 0.000294 0.00294 0.0294 0.294 2.94

© 2018 by Springer International Publishing, part of Springer Nature, reprinted with permission

9.4.5 On the Volatility of Cryptocurrency to Fiat Currency
Exchange Rate

The results of our comparative analysis are sensitive to the volatility of the exchange
rate from cryptocurrency (Ether in our case) to fiat currency (US$ in our case). In
order to illustrate this, consider a sensitivity analysis where we set the exchange
rates for Ether to US$ in logarithmic scale from US$0.1 to US$1000. Another
parameter we can vary is the retention rate, where we calculate for the cost of 24-
h and 99 years (long-term) data retention. Table 9.6 shows the predicted costs of
business process execution for both invoicing and incident management processes
on Ethereum blockchain in this parameter space.

The costs of business process execution for both the invoicing and incident
management processes on SWF with 24-h retention rate are US$0.001359 and
US$0.000925, respectively. For 99 years retention rate, invoicing process will cost
US$0.182029, and the incident management process will cost US$0.181595.

Blockchain and SWF costs are compared under different exchange rates (for
blockchain) and different retention rates (for SWF) in Table 9.7. For the invoicing
process, the cost on SWF (with long-term data retention) is two orders and one order
of magnitude higher than Blockchain if the exchange rate is US$ 0.10 and US$1.0,
respectively. This is consistent with our finding for the incident management
process, where the cost on SWF is also two orders and one order of magnitude
higher than Blockchain with the same exchange rates.
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9.5 Discussion

Below we discuss the cost of business process execution on Amazon SWF vs.
Ethereum blockchain. Section 9.5.1 looks at why we might ever consider using
blockchain if it costs orders of magnitude more than cloud services. We then
look into trade-offs between cost and maintainability for different smart contract
configurations on blockchain. Scalability of blockchain and SWF is discussed in
Section 9.5.3. Finally, we discuss possible cost savings and improved throughput by
improving the business process execution in Section 9.5.4.

9.5.1 Cost of Distrust

We have seen that blockchain costs orders of magnitude more than cloud services for
realistic uses for business process execution. So why should anyone use a blockchain
for this? The key difference is that blockchain technology can provide a trustworthy
storage and execution environment, without requiring trust in any single third-party
organization. In contrast, conventionally participants who do not yet know or trust
each other need to jointly agree on a mutually trusted third-party. In the SWF setup,
participants need to trust both AWS (for confidentiality and truthful execution) and
the party controlling the Amazon SWF account in which the process is hosted.

This is of particular interest in situations of coopetition, where organizations
cooperate for specific cases where achieving some business goals is mutually
beneficial but compete in other cases. In our age of globalization, high market
pressure, diversified organizations, and complex business networks, coopetition is
a common situation. If multiple parties come together to achieve a joint goal, but
some are in coopetition, it is important that the entity executing the joint business
process is neutral.

Blockchain can be used to enable ‘trustless’ collaboration as it is not controlled
by a single entity. However, as our experiments in Section 9.4.4 show, this comes
at a premium price that can be three orders of magnitude higher than using
cloud services like Amazon SWF. Although blockchain provides pseudonymity,
companies involved in the coopetition will need to share their addresses (e.g.
contract addresses and wallet) that will be involved in the business process. These
addresses preserve their pseudonymity to other users of Ethereum.

Public blockchains inherently support payments and escrow handling. Due to
a flat fee structure in blockchains, sending cryptocurrency along with existing
messages would not incur any additional cost. This can offset the premium cost
of distrust offered by blockchain. Commercial escrow services often charge 0.5–
3.25%. Depending on exchange rates and amounts to put into escrow, blockchain’s
flat fees may actually lower the cost of process executions involving monetary
transaction despite the additional cost of smart contract execution and data storage.
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9.5.2 Cost vs. Maintainability

Different contract deployment methods impact cost and other non-functional prop-
erties. To illustrate this, we set out two sample configurations: (1) one smart
contract with two functions and (2) two smaller contracts, each implementing one
function where one of the contracts acts as an entry point. Both these configurations
provide the same functionality, and intuitively the function definition costs should
be the same. However, the first configuration will have lower deployment cost,
even in terms of payload cost, than the second configuration. This is due to several
reasons:

• For (2), one has to pay Ctx and Caddr twice.
• The total payload of the contracts in (2) is higher than in (1), as there are header

bytes in the payload.

The trade-off is between cost and maintainability. (1) is cheaper but is not as
maintainable as (2). If one of the functions needs to be modified, in (1) the updated
contract needs to be redeployed as a whole. In contrast, in (2) only one of the
contracts needs to be redeployed. Redeployment of a contract means getting a new
address for the updated contract. In (1), the triggers need to be updated to point to
the address of the updated contract, whereas in (2) this can be avoided.

9.5.3 Scaling Triggers for Blockchain and SWF

With increasing workload, additional resources are needed to accommodate the
triggers’ workloads. Two common ways to add resources are vertical (bigger VM)
and horizontal scaling (more VMs). We discuss these for blockchain and SWF.

Blockchain nodes can scale vertically in order to accommodate increasing
workload. However, horizontal scaling has complications. Although it is easy to
add additional VMs into the network, using one account actively from multiple VMs
may lead to what could be considered a double-spending attack. One way around
this may be to use different accounts on different VMs. However, this may create
maintainability issues and increase storage costs across the multiple VMs.

SWF can scale both horizontally and vertically. Vertical scaling is straightfor-
ward in SWF by choosing larger VM configurations. Horizontal scaling requires
launching a new VM and registering it with SWF. SWF then acts as load balancer,
distributing requests to multiple VMs.
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9.5.4 Optimization and Throughput

Our approach to creating a cost model uses benchmark data collected from specific
versions of our business process execution framework. Optimizations that reduce
the (gas) cost for process execution on blockchain are available. In particular, these
optimizations can minimize the storage space required to capture process execution
state and to reduce the number of write operations. These improvements can reduce
execution cost by around 25%. However, the overall structure of the cost models and
cost modelling methodology outlined in this chapter still applies. The only changes
are in the values for some of the variables in the blockchain cost model, which can
be established by rerunning the cost benchmark tests.

Our cost model calculates the amount of gas that is required to send a particular
transaction. The reduction in cost for this transaction leads to an increase in the
maximum throughput for transactions of this type. This is because maximum
throughput can be obtained by dividing the block gas limit with the gas required
for this transaction type. Furthermore, the cost model can inform an analysis of
whether a public blockchain can cope with the demand of your business process or
application, by calculating the required gas based on the transactions involved.

9.6 Summary

Cost is a critical concern in the design of a software system. The cost of basic
compute and storage on public blockchains has a different cost structure than
conventional cloud infrastructure but can overall be orders of magnitude more
expensive.

To illustrate that, we compared the cost of executing business processes on
blockchain with the cost on cloud services, using a large-scale process dataset
from industry and an example process from the literature. We demonstrated how to
construct and benchmark cost models for both kinds of infrastructure and described
experiments that show the cost models performed consistently. The experiments
also showed that the cost for business process execution on Ethereum blockchain
can be three orders of magnitude higher than on Amazon SWF: for the processes,
the average cost per process instance was US$ 1.22 vs. US$ 0.0013 (invoicing),
respectively, US$ 1.34 vs. $ 0.0010 (incident management). Given the high volatility
of the exchange rate, a cost estimation model that incorporates exchange rate is more
important than ever. Our cost model allows to calculate the gas cost per transaction
for a given application. On this basis, we have discussed how our approach can be
used to build an understanding of the throughput scalability limits for blockchain-
based applications. Furthermore, we analysed the impact of different operational
workload assumptions on the cost.

If blockchain costs so much more than cloud infrastructure, then why should
we use it? The major reason is to benefit from blockchain’s trust assumptions.
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Blockchains, especially public blockchains, are not controlled by a single party
and provide a neutral ground for people and organizations. This can be ideal for
multiparty business process execution. The increased cost can be thought of as
offsetting the ‘cost of distrust’ in cloud services across an ecosystem. Another
reason is that some blockchain services are much less expensive than conventional
services. For example, transaction fees and escrow fees for conventional services
can be much higher than on blockchain, and directly incorporating these services
into process execution can lead to blockchain being cheaper overall, despite its
higher cost for storage and computation.

Finally, we note that cost is often in trade-off with other non-functional prop-
erties. We discussed some blockchain-specific factors leading to cost trade-offs for
maintainability and scalability.

9.7 Further Reading

This chapter is partly based on our earlier works (Rimba et al. 2017, 2018). More
details, especially on the experiments, can be found there.

The Ethereum yellow paper (Wood 2015–2018) defines the specification and the
costs of different operations in Ethereum; the experiments reported here are based
on the Homestead Draft version.

The incident management case study workflow is adapted from the litera-
ture (Object Management Group 2010, p. 18), and we use the process execution
approach described in Weber et al. (2016) and the previous chapter. The mentioned
optimizations are discussed in (García-Bañuelos et al. 2017).

The performance variation on AWS EC2 has been investigated in the research
literature (Iosup et al. 2011; Schad et al. 2010).

The book by Bass et al. (2012) lists many non-functional properties of a software
architecture, with cost being one of them.

An online tool to estimate the amount of gas required in Ethereum is available
at http://remix.ethereum.org. Live statistics about gas prices on the public Ethereum
chain are available on https://ethgasstation.info/.

http://remix.ethereum.org
https://ethgasstation.info/


Chapter 10
Performance

with Rajitha Yasaweerasinghelage

The performance characteristics of blockchains (especially public blockchains)
are drastically different from conventional systems. In this chapter we look at
how architects can predict the performance of blockchain-based systems, where a
blockchain is just one component. We start with a general discussion blockchain
performance characteristics, and then describe how to do performance modelling
and simulation for specific blockchain-based system architectures.

10.1 Performance Characteristics of Blockchain

Time-related performance requirements are often critical for software systems.
There are a number of different kinds of performance requirements, and the two
most common are latency, which is about how quickly the system responds to a
request, and throughput, which is about how many requests can be processed within
a time period.

Public blockchain platforms have well-known performance limitations for both
latency and throughput. The maximum throughput for Bitcoin is estimated to be
less than 7 transactions per second and for Ethereum less than 20 transactions per
second. This performance is much less than can be achieved with conventional
technology using administratively centralized distributed systems. Consider also
latency. In a blockchain using Nakamoto consensus (longest chain wins), to confirm
a transaction, it needs to be included in a block, which should be endorsed
by dependent blocks, known as confirmation blocks. Transaction inclusion is
probabilistic, so the number of confirmation blocks that one should wait for is a
risk-dependent decision. However, on Bitcoin, the average inter-block time is about
10 min, and 6-block confirmation is often used. On the public Ethereum blockchain,

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_10
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the average block generation time is between 14 and 15 s (in July 2018), and 12
confirmation blocks are typically recommended.1 Individual inter-block times can
deviate substantially from those averages.

Clearly, the latency for initial inclusion of a transaction is already higher than
for traditional systems, and a large number of confirmation blocks will multiply
this delay. Transaction delays can also arise from network delays, the transaction
fee offered, the number of transactions being processed, and the strategic decisions
made by miners. So, transaction inclusion and commit times can vary widely. Some
of these issues are discussed in depth in Section 11.6.

Private blockchain platforms can rely on stronger trust assumptions for nodes
than public blockchains, and use consensus algorithms that result in much better
latency and throughput. In particular, private blockchains tend not to use Nakamoto
consensus, and instead use consensus mechanisms with more conventional commit
semantics; when a transaction is included, it is always included, so confirmation
blocks are unnecessary. However, even private blockchains tend to have worse
latency and throughput than conventional distributed systems.

Regardless, although blockchains often have worse performance than conven-
tional systems, that performance may be perfectly acceptable for some use cases.
Once some basic performance threshold is met, often there are diminishing returns
for improved performance. The question for architects is: will basic performance
requirements be met by the design of a blockchain-based system? This concerns
all the functions of a blockchain which an architecture uses, be it for storage,
computation, communication, or asset management and control as per Chapter 5.
For all these functions, read/receive operations can be very fast and with unbounded
throughput, but write/send operations are subject to limited transaction inclusion
and commit times.

An inability to predict overall performance may itself be a barrier to the adoption
of blockchain technology. It is important for designers to be able to accurately
predict system-level performance, during the design phase. This allows designers to
assess the impact of platform performance limitations on system requirements and
to make choices from among the varieties of blockchains discussed in Chapter 3.
This includes choices between public and private blockchain, the number of
confirmation blocks, and the appropriate integration with off-chain communications
and enterprise systems.

Some high-level performance characteristics are known for blockchain plat-
forms, as discussed above. However it is not as widely known how to predict the
performance of blockchain-based systems. In Section 9.5.4, we discussed how to
obtain throughput estimates from gas price modeling. This chapter shows how we
can use architectural performance modelling and simulation tools to predict the
latency of blockchain-based systems. We use established tools and techniques but
show how blockchain-specific issues can be treated. This includes configuration

1http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-
my-dapp/203#203.

http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203#203
http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203#203
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options such as the number of confirmation blocks and choice of inter-block
time. We illustrate the approach using a lab-based experimental study of the
incident management system previously introduced in Chapter 9. The method made
predictions of median system-level response time, with a relative error of mostly
under 10%, making the approach precise enough for capacity planning. We discuss
how the approach can be used to support architectural decision-making during the
design of blockchain-based systems.

10.2 Architectural Performance Modelling

Architectural models can be used to predict the non-functional properties including
latency, throughput, resource usage, and cost. These models can be used by
analytical solvers or simulation engines to predict non-functional performance of
a system at various stages of the development life cycle.

There are two types of performance models:

• Analytical performance models capture performance aspects of the system and
serve as input for the analytical solvers. Petri nets (PN), queueing networks (QN),
and layered queueing networks (LQN) are examples for common analytical
models.

• Architecture-level performance models capture key factors influencing the per-
formance of a system. Examples are the Palladio Component Model (PCM);
UML profile for Schedulability, Performance, and Time; and Descartes Mod-
elling Language. Architectural models can be either simulated or automatically
converted to analytical models. Generally, simulations take a longer time than the
solvers to execute but may be more flexible.

In this chapter, we have used the Palladio workbench2 for architecture modelling
of the latency of blockchain-based systems. Palladio is freely available, supports the
simulation of architecture models, has a ‘UML-like’ interface for model construc-
tion, and has proven flexibility for extensions such as architectural optimization and
new qualities.

10.3 Predicting Latency for Blockchain-Based Systems

To enable latency prediction on the architecture level, we first need to measure
latency of individual components. This section first describes our approach to
benchmarking transaction inclusion and commit times for blockchain. We then
describe our approach for system-level performance modelling, using the method

2https://www.palladio-simulator.com.

https://www.palladio-simulator.com
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for business process execution on the blockchain described in Section 8.2. These
performance models are configured using the benchmarking results.

10.3.1 Benchmarking Transaction Inclusion and Commit
Times

A key parameter for our performance model is the transaction commit time: the
time taken from submitting a transaction until we have sufficient confidence that the
transaction has been successfully included in the blockchain. We need to benchmark
this in a representative deployment of the blockchain to be used by the client
application. The idea is simple: start the clock when we submit a transaction, and
stop the clock when the transaction is ‘committed’. In the Ethereum blockchain we
use in this chapter, a transaction is committed when the broadcasting node receives
a sufficient number of confirmation blocks after receiving a block which includes
the transaction, as mentioned earlier. If one block is enough as confirmation, we
call this transaction inclusion time instead. The total time will depend on the
transaction propagation time, inter-block time, transaction inclusion probability,
block propagation time, and the number of confirmation blocks. Our benchmark
measurement abstracts from these details to create a transaction inclusion time
distribution that we use in our performance model. Our benchmark measurements
also include latency overhead for our trigger code and the communication between
the trigger and the Ethereum node. However, this overhead is in milliseconds range,
compared to the seconds for inter-block times, so it is not significant; and in any
event, client applications using the blockchain encounter similar delays.

As discussed previously, the number of confirmation blocks is a design choice for
client applications using a blockchain. Although 12 confirmation blocks are often
recommended for the public Ethereum blockchain, the ‘right’ number depends on
the business risk involved in the transaction and on other trade-offs with latency.

To demonstrate the approach, we ran benchmarks on a private instance of the
Ethereum blockchain. We used a private deployment to prevent flooding the public
Ethereum blockchain, to reduce our cost, and to be able to vary inter-block time.
We used one virtual machine to deploy the trigger and a go-Ethereum (geth) full
node with mining disabled. The mining node was deployed on a different virtual
machine. This situation would mimic practical deployment to some degree: each
organization would deploy their own full node and trigger in a virtual machine
controlled by them, whereas miner nodes are operated on separate machines. Both
virtual machines run on one Intel(R) Xeon(R) CPU E5-2697 v3 at 2.60 GHz core
each. The virtual machines were located in the same data centre and had a LAN
connection. The trigger was implemented in Node.js version 4.2.6 using Ethereum
JavaScript library (web3) version 0.15.3. Geth version 1.5.4-stable was used, and
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Fig. 10.1 Transaction inclusion time measured on Ethereum (cumulative). © 2017 by the
Commonwealth Scientific and Industrial Research Organisation, reprinted with permission

the trigger was configured to use remote procedure call (RPC) communication3 to
interact with the geth node.

For benchmarking latency, we submitted many transactions as follows. A script
invoked the trigger API, which submitted the transaction. The trigger then listened
to the blockchain for the announcement of a sufficient number of confirmation
blocks after observing a block including the transaction and forwarded the result
of successful inclusion/commit back to the script. The script initiated the next
transaction directly afterwards.

As a baseline, we report here the observations of transaction inclusion time
(i.e. where sufficient confidence of inclusion is judged to have occurred on seeing
the transaction in a block, as defined above). We ran the experiment on a private
blockchain, where we varied inter-block time, by either controlling the complexity
mechanism or using the default implementation (uncontrolled). The mean inter-
block time of the uncontrolled blockchain was 13.6 s. In two settings of controlled
private blockchain settings, we measured mean inter-block times of 2.3 and 6.3 s.

For each of the three settings, we measured transaction inclusion time across
1000 transactions. The results are shown as cumulative distributions in Fig. 10.1.
While median transaction inclusion time was 25.8 s on an uncontrolled private

3Note that the communication latency between geth and other components can be reduced by using
inter-process communication, as discussed by García-Bañuelos et al. (2017). Note also that IPC
requires fully asynchronous communication between these components, and the decision should
be made before major refactoring of code becomes necessary to implement that.
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blockchain, it was 6.91 and 14.65 s, respectively, for the two controlled private
blockchains with 2.3 and 6.3 s mean inter-block times. To understand these times,
note that miners roughly operate as follows: when they receive or mine a block, they
gather a set of transactions from the pool for inclusion in the next block and then
try to solve the proof-of-work puzzle. For a transaction to be included, it therefore
needs to be in the pool already when work on the next block begins. Therefore
transaction inclusion time is always higher than inter-block time. It should also be
noted that median transaction inclusion time would be higher on public blockchains,
because of additional network delays and strategic transaction inclusion by miners.
For inclusion times on the public Ethereum blockchain, refer to the experiments in
Section 11.7.

10.3.2 Blockchain-Based System Performance Modelling

The benchmark tests above tell us the latency for an individual transaction. We
can use those performance benchmarks to build higher-level predictive models
of latency for an entire blockchain-based system. This section describes how,
illustrated using a blockchain-based system generated using the model-driven devel-
opment method described in Section 8.2 and based on the incident management
process model shown in Fig. 9.2. The performance models refer to specific aspects
of the incident management process; therefore we briefly explain it first. There
are four issue resolution stages: account manager, first-level support, second-level
support, and developer support. When a customer reports an issue first, the account
manager requests a problem description and attempts to solve the issue. If the
issue is solved directly, the account manager provides the solution to the customer.
Otherwise, the account manager asks first-level support, and if first-level support
cannot solve the issue, they ask second-level support and so on. At each stage, if
someone finds the solution, they give feedback to the upper level, and finally the
account manager explains the solution to the customer.

For performance prediction, we model the blockchain as a single component,
from the perspective of the client application. So, we do not model the details of the
blockchain mining network, node intercommunication, or consensus algorithm. All
of these factors are aggregated in our abstract model and measurements. The client
application interacts with the blockchain through a local blockchain node, and we
model the resource and performance characteristics of this local blockchain node
running as a component. In the architecture of a scalable client application, one
may need to operate multiple blockchain nodes, each independently participating in
the blockchain system; in such cases, we would model those as multiple deployed
instances of the blockchain client. Note that these blockchain clients do not need
to be resource-intensive mining nodes attempting to create new blocks on the
blockchain. Instead, it is enough for these nodes to be full nodes, submitting and
observing transactions and blocks on the blockchain network.
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Component Repository Model

In our model-driven development method, off-chain business process systems
interact with the blockchain through trigger components. Figure 10.2 shows an
example Palladio Component Model (PCM) of a trigger component connected
to an Ethereum blockchain client node (using the Ethereum geth client). They
are modelled as two components, each exposing a relevant interface that defines
various operations. These operations correspond to actions in the example incident
management business process. The trigger interface also provides a createInstance
operation, which creates an instance of a process monitor by invoking the factory
smart contract for the business process, pre-configured on the blockchain. The
trigger translates API calls into corresponding blockchain transactions and submits
them for execution on the blockchain through the locally deployed Ethereum client.

Fig. 10.2 PCM repository diagram showing connected components and the operations provided
by their interfaces. © 2017 by the Commonwealth Scientific and Industrial Research Organisation,
reprinted with permission
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Fig. 10.3 RDSEFF diagram of operation transaction. © 2017 by the Commonwealth Scientific
and Industrial Research Organisation, reprinted with permission

Resource-Demanding Service Effect Specifications (RDSEFF)

The PCM repository diagram is a model of the components, interfaces, and their
relationships. We also need to model the non-functional behaviour of component
operations. In PCM, each component operation’s behaviour is specified in a
resource-demanding service effect specification (RDSEFF). The model describes
how each operation translates an API call to a blockchain transaction and uses
an external action to forward the transaction to the blockchain node, as illustrated
in Fig. 10.3. The resource utilization of each component is configured as a prob-
ability distribution function (PDF) constructed using benchmarks as described in
Section 10.3.1. Each operation is benchmarked and modelled separately to account
for variation in the operations and to demonstrate the capability of modelling their
different behaviours. The manual steps in the process (such as operator resolution
time) must be separately benchmarked for inclusion into the model, but this is not
dealt with in this chapter.

Usage Model

To simulate the execution of the system, we specify a usage model that captures
representative use of the system. Our example usage model in Fig. 10.4 reflects
process flow in our example business process for incident management. The points
of variation are for the optional branches of the process. For the purpose of our
laboratory experiments, we assumed that at each stage of incident response (except



10.3 Predicting Latency for Blockchain-Based Systems 205

F
ig
.1

0.
4

PC
M

us
ag

e
m

od
el

di
ag

ra
m

of
in

ci
de

nt
m

an
ag

em
en

tb
us

in
es

s
pr

oc
es

s.
©

20
17

by
th

e
C

om
m

on
w

ea
lt

h
Sc

ie
nt

ifi
c

an
d

In
du

st
ri

al
R

es
ea

rc
h

O
rg

an
is

at
io

n,
re

pr
in

te
d

w
it

h
pe

rm
is

si
on



206 10 Performance

for the final developer stage), 75% of issues received were resolved in that stage.
The final developer support stage resolves every request. Figure 10.4 shows the
branching probabilities used to represent this behaviour.

Here we show a usage model as a single scenario with branching probabilities.
Variation in the possible resolution times, e.g. due to randomness in the path taken,
is explored through multiple simulation runs. However, it would also be possible to
examine multiple usage scenarios separately, each using different probabilities or
execution/resolution times. This could be done to drill down onto specific issues or
opportunities regarding the design of the business process.

10.3.3 Using Simulation for System-Level Latency Predictions

Now we show the simulation results from our performance model, and show how
accurate the predictions (based on micro-benchmarks and architecture models) are
by comparing them to macro-level measurements from an implementation. In our
approach, our system has to use the same or similar underlying blockchain platform
for which we have collected transaction performance benchmarks. So our imple-
mentation here uses the same private Ethereum environment as in Section 10.3.1.
Here we only measure the business process’s end-to-end latency, for example,
incident management process described in Chapter 9. Further details are discussed
below.

A synthetic workload was generated which follows the same 75% resolution
rate at each stage as in Section 10.3.1. Trigger operations were invoked by HTTP
requests using an external python script, which was deployed separately, and
we measured the time from initializing a process instance until observing its
completion. Between the completion of one instance and the start of the next
instance, the script waited for 1 s. The experiment was run for 1000 times (creating
1000 process monitor instances), which took approximately 20 h.

For simulation, the SimuCom simulation engine was used for executing the PCM
model and ran the same number of scenario executions. SimuCom is the standard
simulation engine for PCM model simulation.

The measured and predicted latency results are shown in a boxplot diagram
in Fig. 10.5, where the box indicates median values in red and the first and third
quartiles as upper and lower bound of the box. The predictions appear largely
accurate when compared visually, and statistically the simulation predicted the mean
latency of the process scenario with a relative error of 1.6%. The measured mean
latency of the process was 136.29 s, and the simulation predicts the mean latency as
134.08 s where the standard error of mean (SEM) is 1.27 and 1.07, respectively.
For many applications, 95th and 99th percentiles are significant measures when
considering the latency and the skewness of the distribution. The PCM model
predicted the 95th and 99th percentiles with a relative error of 9.4% and 11.5%
accuracy. Errors in predicted maximum and minimum are, respectively, 7.62% and
16.89%.
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Fig. 10.5 Boxplot diagrams of measured and simulated scenario latency—measured median is
132.83 s, simulated median is 130.93 s, relative error of median is 1.42%, and relative error of 95th
percentile is 14.6%. © 2017 IEEE. Reprinted, with permission, from Yasaweerasinghelage et al.
(2017a)

Applying Simulation to Other Systems

The architectural performance and simulation approach we have used is largely
consistent with the previous body of work in this field which has been applied
to a variety of application systems. Our approach should similarly apply to other
systems. However, when doing so, a few aspects deserve attention:

• The transaction inclusion time benchmarks we showed in Section 10.3.1 are
specific to our customized version of the Ethereum client. In particular, our
experiment setting had no significant network delays for transaction or block
propagation among peers, and there is no occurrence of uncles (short-lived
alternate competing recent histories). These factors are likely to affect transaction
inclusion and commit times. We recommend benchmarking end-to-end latency
of transaction commit time in the target blockchain platform in order to account
for all sources of delay and variation in transaction inclusion.

• Similarly, our experiments on Ethereum use Nakamoto consensus and proof-of-
work. We expect our modelling approach would be usable for other consensus
mechanisms, after benchmarking transaction inclusion and commit times in
those systems. Our general approach would be applicable in blockchains using
classical distributed consensus algorithms, but the stronger transaction commit
semantics supported by those algorithms means that confirmation blocks would
not be required.

• Our focus in this chapter is on latency, not throughput or scalability. We have
therefore benchmarked latency and evaluated predictions under low demand. In
our experiments, we observed low CPU load, so assume that CPU utilization did
not impact latency. In real-world situations, latency is affected by high demand,
resource bottlenecks, and architectural mechanisms (e.g. load balancing) used for
scalability. We expect that for a particular use case, if a representative load can be
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used on a representative deployment of a blockchain, then latency benchmarking
could be performed as we have described in this chapter.

• In a blockchain-based system, in addition to CPU, network, and disk, there are
other resources. We have not modelled smart contract gas consumption, gas
limits, and public blockchain transaction fees, although these may able to be
modelled as passive resources in Palladio.

10.4 Architectural Decision-Making

Design alternatives can be evaluated by predicting latency in example scenarios.
This lets us explore what-if questions in architectural decision-making. Here we
focus on latency and how it is impacted by architectural changes.

10.4.1 Choice of Inter-Block Time

In a public blockchain, the target inter-block time is fixed. However, in private
blockchains, it can be varied as a design choice. This reduces transaction inclusion
and commit times, which can reduce system-level latency. When evaluating inter-
block time alternatives, we use the same system-level models and only change the
transaction inclusion time parameters.

We conducted an experimental evaluation of the accuracy of our simulation for
various transaction inclusion times, on a private blockchain. To illustrate this, the
results for transaction inclusion time for a 2.3-s inter-block time is shown as a
boxplot in Fig. 10.6. The relative errors are still good: the relative error of median
was 9.4%, and the relative error of 95th percentiles was 8.5%.

Fig. 10.6 For 2.3-s average inter-block time: median time (measured 28.1 s, simulated 30.7 s),
relative error (median 9.4%, 95th percentile 8.5%). © 2017 IEEE. Reprinted, with permission,
from Yasaweerasinghelage et al. (2017a)
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The median latency dropped from about 130 s to about 29 s. Whether this is
acceptable for the system design depends on the system requirements, but in any
event the simulation results would provide a reasonable basis for making this
decision before the system is implemented.

10.4.2 Choice of Number of Confirmation Blocks

Blockchain-based systems using Nakamoto consensus can be vulnerable to double-
spending attacks. This vulnerability can be reduced by increasing the number of
confirmation blocks. However, this introduces additional latency to the system.

To illustrate this, we show results from an experiment using 12 confirmation
blocks in Fig. 10.7, using a controlled blockchain with a mean inter-block time
of about 2.3 s. The measured median process latency was 152 s vs. the simulation
prediction of 164 s. The relative error of the median prediction was 7.9%, and the
relative error of 95th percentile was 12.3%.

The latency for 12 confirmation blocks of around 160 s is much higher here
than the latency for 1 confirmation block of around 29 s. Whether this additional
delay matters or not is a question for the system requirements. The key point is
that the simulation model provides a reasonable basis for exploring the performance
consequences of these design options before they are implemented.

Fig. 10.7 12 confirmation blocks: median time (measured 152 s, simulated 164 s), relative
error (median 7.9%, 95th percentile 12.3%). © 2017 IEEE. Reprinted, with permission, from
Yasaweerasinghelage et al. (2017a)
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Fig. 10.8 Measured and simulated latency of modified business process. Median time (measured
26.8 s, simulated 27.6 s), relative error (median 2.9%, 95th percentile 0.3%). © 2017 IEEE.
Reprinted, with permission, from Yasaweerasinghelage et al. (2017a)

10.4.3 Process-Level Changes

The previous two simulation scenarios have involved changes to the configuration
of the blockchain platform. However, we can also use simulation to predict the
performance impacts of process-level changes. Instead of changing the performance
benchmark parameters, we instead change the Palladio usage model. There are many
kinds of possible process redesign such as task elimination, process integration,
or task composition. All of these can be modelled by changing the workflow.
Most business process control flow patterns can be directly translated to Palladio
Component Model patterns.

To explore this, we experimented with a changed process model, where the
account manager assigns issues directly to second-level support (skipping the first
level) in 5% of cases. We used a private Ethereum blockchain with a mean inter-
block time of 2.3 s. The results are shown in Fig. 10.8. The median process latency
was measured as 26.8 s vs. 27.6 s from simulation. The relative error of median was
2.9%, and the relative error of 95th percentile was 0.3%. So there are some small
performance improvements. However, a full cost-benefit analysis would depend not
just on latency considerations but also on the relative cost and resource utilization
of various support tiers.

10.5 Summary

This chapter started with a broad discussion of performance and blockchain’s
impact on application performance. We have then shown how to predict the
latency of blockchain-based systems using architectural performance modelling
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and simulation. In the approach, we benchmark transaction inclusion time for the
blockchain platform being used, then include those performance benchmarks in a
system model. The blockchain is treated as a black-box component, and blockchain
transactions are connected to operations at the application level. In experiments,
the system-level latency predictions have a relative error of mostly under 10%,
which means that the approach is precise enough to use to evaluate designs before
they are implemented. The importance of this for architects is that a wide range
of architectural alternatives can be analysed. Some of these decisions are about
blockchain-specific issues, such as inter-block time or the number of confirmation
blocks. Other design decisions, such as possible business process changes, are
system-level design options but are impacted by latency arising from the blockchain-
related factors.

We have focussed on latency in this chapter, because it is mostly under the control
of designers of blockchain-based systems. The throughput of a blockchain is mostly
governed by the initial choice of blockchain platform and its block configuration,
and this might not be easily changed. However, latency and performance more
generally are not the only non-functional properties that are important in the design
of systems. Trade-off decisions need to balance predicted latency impacts with the
predicted impacts to other qualities.

10.6 Further Reading

This chapter is partly based on our earlier works (Yasaweerasinghelage et al.
2017a,b). Additional details on experiments can be found there.

Architectural models can be used by analytical solvers or simulation engines
to predict non-functional performance of a system at various stages of the devel-
opment life cycle (Brunnert et al. 2015). Analytical performance models capture
performance aspects of the system and serve as input for the analytical solvers. Petri
nets (PN) (Molloy 1982), queueing networks (QN) (Bolch et al. 2006), and layered
queueing networks (LQN) (Franks et al. 2009) are examples for common analytical
models. Architecture-level performance models capture key factors influencing the
performance of a system. Examples are the Palladio Component Model (PCM)
(Becker et al. 2009); UML profile for Schedulability, Performance, and Time (Xu
et al. 2003); and Descartes Modelling Language (Kounev et al. 2014).

In this chapter, we have used the Palladio workbench (Becker et al. 2009)
for architecture modelling of the latency of blockchain-based systems. Palladio’s
extensions allow for architectural optimization (Koziolek et al. 2011; De Gooijer
et al. 2012) and can be enhanced with new qualities (Willnecker et al. 2014).

For live statistics about the public Ethereum chain, including inter-block times
and the influence of the gas price on transaction inclusion times, see https://
ethgasstation.info/ and https://ethstats.net/.

https://ethgasstation.info/
https://ethgasstation.info/
https://ethstats.net/
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The blockchain-based system we used in our experimental evaluation is a
business process system using the approach from Weber et al. (2016), which also
measured transaction inclusion time and utilized the incident management exemplar
use case we use here. The same system was also discussed in the previous two
chapters, albeit not the experiments mentioned above. García-Bañuelos et al. (2017)
discuss gas cost optimization for such a system and include a large-scale throughput
experiment.



Chapter 11
Dependability and Security

with Ralph Holz, Vincent Gramoli, and Alex Ponomarev

In this chapter, we discuss dependability and security aspects of blockchain-based
applications and analyse how the different properties of dependability and security
relate to these applications. As is the case throughout the book, our viewpoint for the
discussion in this chapter is that of a system architect or developer using blockchain
as a component. We thus analyse how blockchains impact the dependability and
security of systems built upon them, in part with studies using observations from
the mainstream proof-of-work blockchains Ethereum and Bitcoin. As such, we are
not going into the details of cryptography and security infrastructure of blockchain
platforms.

Dependability and security are tightly interlinked. According to the widely
accepted taxonomy of Avizienis et al. (2014), dependability and security are
comprised of six attributes as shown in Fig. 11.1. The first five sections of this
chapter give an overview of the influence on dependability and security attributes of
blockchain as a component within a multiparty system.

We then focus on the availability of functions that such systems need, in
particular transaction inclusion, and how they may be adversely impacted by a
number of factors. When viewing blockchain as a component for data storage,
communication, or code execution, whether a transaction is included or not can
largely be equated to write/send availability.

Finally, in Section 11.7, we discuss issues around aborting and retrying
transactions—a functionality that is not provided by blockchain client software
today.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_11

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-03035-3_11


214 11 Dependability and Security

Fig. 11.1 Attributes of
security and dependability. ©
2004 IEEE. Reprinted, with
permission, from Avizienis
et al. (2014)
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11.1 Confidentiality

Confidentiality means that unauthorized disclosure of information does not take
place. This is usually harder to establish in blockchain-based systems, because the
default is that information is visible for everyone in the network. Information can be
encrypted: asymmetrically with a particular party’s public key, so that only this party
can decrypt it, or symmetrically with a shared secret key, so that the group of parties
with access to the secret key can decrypt it. The latter case requires a secure means
of exchanging the secret key, typically off-chain. However, once information needs
to be processed by smart contract methods, this information needs to be decrypted.
This is because smart contract code runs on all nodes of the network, and thus
any of them needs to be able to process the input data. The ability for anyone to
execute smart contracts is required to achieve consensus on the outcomes of smart
contract execution. Embedding keys within a smart contract would reveal the key to
all participants.

As discussed in the supply chain use case in Section 4.1, commercially sensitive
data can be at risk if it is shared on a blockchain, even if pseudonyms are used
and even if encryption is used. Private and permissioned blockchains can provide
read access controls, but this will not provide commercial confidentiality between
competitors using the same blockchain.

There are interesting technologies on the horizon, which could alleviate some
of these pain points. For instance, zero-knowledge proof methods like zk-SNARKs
can be used to hide the contents of a transaction, while still allowing independent
validation of the integrity of that transaction. Current implementations are limited
to hiding simple transfers of cryptocurrency, but in the future the same could be
achieved for more sophisticated transactions. As for computation on encrypted
data, that is the goal of techniques like homomorphic encryption and confidential
computing. However, such approaches have not been utilized for smart contracts
as yet, in part due to their significantly increased computational requirements
over regular computation. Alternatively, authorized ‘witnesses’ could have special
access to the data. These witnesses could be certifying agencies or consumer group
advocates. The data would be encrypted using the witness’ public key, so that only
the witness can decrypt it. The witness can then pass on the provenance information
to interested parties, but not share information that is commercial in confidence.
How the data is to be encrypted and stored would be part of the smart contracts
created for various supply chain events and, as such, can be customized for different
scenarios and supply chains.
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11.2 Integrity

Integrity is the absence of improper (invalid or unauthorized) system alterations and
is a key attribute for blockchains. Once a transaction is included in a blockchain and
committed with sufficiently many confirmation blocks, it becomes part of the effec-
tively immutable ledger and cannot be altered. This also applies to smart contracts:
their bytecode is deployed in a transaction and thus is subject to the same integrity
guarantees; and invocation of smart contracts happens through transactions as well.
The key integrity property of Bitcoin is that addresses cannot spend money they
do not have. Ethereum’s integrity property is more complicated, because it requires
the correct operation of a Turing complete smart contract programming language.
However, for client applications, Ethereum provides significant power by allowing
user-defined integrity conditions to be implemented as checked preconditions and
defined behaviours in smart contracts.

Blockchain emerged to support a cryptocurrency, and so it is unsurprising that
integrity is a key dependability attribute, because integrity is the key dependability
attribute for commercial computer security. The seminal work on this topic is the
Clark–Wilson security policy model, and blockchains are broadly consistent with
its requirements. Smart contracts can implement Clark–Wilson’s transformation
procedures to generate and update internal data or other smart contracts that realize
Clark–Wilson’s constrained data items. Blockchains natively create the log required
by Clark–Wilson for reconstructing operations. Finally, blockchains use a kind of
separation of duty through the replicated validation performed by all mining nodes.

Ethereum smart contracts are written in a Turing-complete programming lan-
guage. This makes it more difficult to verify that the smart contracts correctly
implement required integrity properties. Formal verification techniques can be used,
but these can be costly and time-consuming in practice. A lighter-weight approach
is to use a smart contract language with strong typing mechanisms, which can help
programmers support integrity. The Pact language on the Kadena blockchain1 is an
example of that approach. Some blockchains, such as Kadena and Corda,2 avoid
the use of Turing-complete smart contract languages for this reason, and instead use
less-expressive domain-specific languages that can be automatically checked.

High integrity and non-repudiation are not always ideal. For example, sometimes
historical data must be deleted or changed. If a vexatious or improper registry entry
has been created, a court may order the registrar to change the registry to remove
that entry, ‘as if it had never been created’. This is not technically possible on many
blockchain platforms. Similarly, this may create problems for blockchains that have
been ‘poisoned’ by illegal content. Some blockchains have been proposed to deal
with this challenge, but there is not yet widespread acceptance and adoption of good
solutions.

1http://kadena.io/.
2https://www.corda.net/.

http://kadena.io/
https://www.corda.net/
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11.3 Safety

As defined by Avizienis et al. (2014), safety means that using a system does not
lead to catastrophic consequences on the users and the environment. The use of
blockchain technology does not directly pose specific risks in this regard, when
compared to other components in distributed systems. There may be economic and
environmental risks from investments in ineffective blockchain mining strategies.
By using non-mining nodes, private or permissioned chains, and/or alternative
consensus mechanisms, these risks can be mitigated. If a blockchain is used as
a component in a safety-critical application, then failures of integrity, confiden-
tiality, availability, or other dependability attributes may have consequences for
safety. However, this is a prevalent issue of safety-critical system engineering.
A noteworthy difference exists when the cryptocurrency or token features of a
public blockchain are used, in which case an organization or user is exposed to
the monetary risk of loss or devaluation of the cryptocurrency and tokens. If this
risk can bankrupt the organization or users, it may lead to situations that could be
seen as catastrophic. With respect to cryptocurrency, a difference to regular internet-
related flow of monetary assets lies in the fact that there is no additional safety net.
No banks will stop attacks on your Bitcoin wallet or reimburse your losses. In most
cases of theft, lost crypto-coins or tokens remain unrecoverable.

An alternative, informal definition of safety by Lamport (1977) states that some
‘bad thing’ does not happen during execution. Alpern and Schneider (1985) later
formalized this definition with regard to discrete execution states of programs but
did not formalize what a ‘bad thing’ might be due to the inherently informal nature
of this concept. Examples of safety properties mentioned in the above sources are
mutual exclusion of concurrent processes, deadlock freedom, partial correctness,
and first-come-first-served execution.

This perspective is indeed interesting when considering blockchain. When
considering a public blockchain network execution itself as the program, discrete
states are almost meaningless: the states of different nodes around the world are
only very loosely synchronized, and substantial differences between, say, the current
transaction pools of set of nodes can be expected. Considering the committed blocks
in a blockchain (e.g. the current Ethereum blockchain minus the most recent 11
blocks), discrete execution states become a valid model. Concerning the above-
quoted examples, concurrent processes and mutual exclusion are a non-issue (since
the execution has been sequentialized).

Deadlocks on the application level can exist as in any other program, be it on
the smart contract level or off-chain programs. It might be easier to avoid deadlocks
in blockchain-based applications, since smart contracts can be used as a neutral
mediator, which handles all resources (e.g. cryptocurrency in exchange for tokens),
instead of distributed processes responsible for different resource types.
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Though not mentioned in the early literature, livelocks or infinite loops in a smart
contract would, in the case of Ethereum, be resolved by the platform itself: each
invocation has a limited amount of gas available. If the execution does not terminate
before the gas has been consumed, it is aborted.

Partial correctness on the application level is not impacted by blockchain.
However, correctness of the execution when computing a new block is higher: in
many public blockchains, all full nodes verify each newly announced block by
checking digital signatures and hashes and executing all transactions. If the results—
e.g. of a smart contract invocation check—are inconsistent, the new proposed block
is discarded.

If first-come-first-served is required, typically that requires special consideration
on blockchain. In Bitcoin, strict ordering of transactions can be established by
consuming an output of one transaction as input of another transaction—the second
is only valid once the first has been included, although both transactions can be
included in the same block. Similarly, Ethereum transaction nonces can be used to
ensure ordering of transactions, but this feature is only available for transactions
originating from a single account. A smart contract can ensure ordering to a degree,
e.g. if the order can be prescribed. For scenarios where neither of these options
suffice, e.g. open bidding processes, off-chain mechanisms might be required
to ensure fair processing. Generally, the inclusion of a given transaction is not
guaranteed by blockchain protocols, let alone in any particular order. This issue
of availability from the viewpoint of an application will be discussed in depth in
Section 11.6.

11.4 Maintainability

Maintainability refers to a system’s amenability to undergo modifications and
repairs. In blockchain-based systems that use smart contracts, this is harder to
implement for the smart contracts than in regular distributed systems. This is
because smart contracts comprise code that regulates the interactions between
mutually untrusting parties; trust is derived from the fact that the code cannot be
changed easily. Consider an example where an organization has established trust in
the code of a particular contract and verified that it implements the agreed rules for
handling cryptocurrency. If others can change the code without that organization’s
knowledge or consent, any trust in the code would be void. Although the code of an
Ethereum smart contract cannot be changed, the current state of variables within that
smart contract can be updated by invoking its methods. In particular, these variables
may refer to other smart contracts. This mechanism provides a kind of indirection
that allows the dynamic updating of smart contract code, through mechanisms like
the Contract Registry Pattern (Section 7.4.1). However, support for this kind of
updating must be specifically provisioned ahead of time.

Finally, changes may be made to a blockchain-based system not by changing the
data stored on a blockchain but instead by changing the interpretation of data on the
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blockchain. As an extreme example, a client application might choose to not honour
all data previously written to the blockchain under some previously acknowledged
addresses. Instead, the client could in principle re-create all required data on the
blockchain under some new address. A distinctive benefit of blockchain-based
systems is that there is no single party with control of the system. However, this
inherently creates challenges for governance: the management of the evolution of
blockchain-based systems. Changes may be made to correct defects, add features, or
migrate to new IT contexts. However, in a multiparty system with no single owner,
managing these changes is more like diplomacy than traditional risk management
or conventional product management. Lessons may be drawn from governance in
open-source software, which face similar development challenges. However, the
governance of a blockchain is not just a software development problem—it is
also a deployment and operations problem. For both public and private blockchain
systems, key stakeholders include the users of the blockchain, software developers
with moral or contractual authority over the code base, miners or processing nodes
in the blockchain ecosystem, and government regulators in related industries. There
are still lessons being learned about who the key stakeholders for blockchains are.
For instance, the 2016 hard fork of Ethereum in response to the DAO controversy
made it apparent in hindsight that digital currency exchange markets are a key
stakeholder for public blockchain systems. (The market initially provided by the
Poloniex exchange for trading the unforked ‘Ethereum classic’ digital currency has
supported the ongoing operation of that blockchain, which might have otherwise
failed to continue to be viable.)

It is unknown how to best perform governance for blockchains and blockchain-
based systems. How should relevant stakeholders influence and manage changes
to the software and the operational infrastructure for blockchains and blockchain-
based system when there might be no central owner and where the blockchain
platform might be serving many purposes for different stakeholder groups?

11.5 Availability and Reliability

According to Avizienis et al. (2014), availability is the readiness for correct service,
whereas reliability is the continuity of correct service. More specifically in our
context, availability concerns the users or dependent systems’ ability to invoke
functions of the system, whereas reliability refers to receiving consistently correct
outcomes from those invocations.

For blockchains, there are scenarios in which the distinction between reliability
and availability can be blurred as there is no globally specified time by which a
transaction should complete. If a blockchain system never includes a transaction
(perhaps because other connected nodes ostracize that transaction, address, or
interface node), that will be both an availability and reliability failure of the
blockchain system from the perspective of a client application. However, if a
transaction is initially included in some block, that does not guarantee that block will
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be recognized as being part of the blockchain in future. One could take the following
view: first an application designer can specify a number of confirmation blocks by
which they will regard a transaction to have been committed. If a fork happens
that invalidates transactions thought to be committed, the system will have had a
reliability failure, because a transaction thought to have been committed will have
turned out not to be. Alternately, if a fork affects less than the specified number of
confirmation blocks, the system may experience enough delay to have an availability
failure.

The operation of public blockchains can involve hundreds or thousands of
independent processing nodes. Each node holds a full replicated instance of the
blockchain transaction history and can operate for users as a transaction interface
to the blockchain network. Because of this massive redundancy, naively we might
expect that a blockchain system has extremely high availability. We can assume
that local components of a blockchain-based system are connected to a local full
node on the blockchain network. Submitting a transaction to a blockchain network
is done through the local full node, which broadcasts that transaction to all nodes
it is connected to. The availability of a locally reachable full node is thus heavily
reliant on the organization operating a blockchain-based system. The more complex
question is: how certain can one be that the transaction is included in a block and
committed, in a timely manner? We address this question in the next section in
detail.

Transactions deploying smart contracts or invoking their methods add a further
level of complexity. First, they are subject to more parameters, like current gas
limit, that may impact their successful inclusion. Second, they utilize more complex
functionality of the network and thus rely on the network sharing the same accepted
norms about this functionality with the system. For instance, parts of the network
may change to not accept certain commands present in compiled smart contracts. If
the blockchain-based system is unaware of the change, it might attempt to use these
commands, and its contracts might get rejected, or method calls might be terminated
unexpectedly. Again, we discuss these issues in more detail in the next section.

Finally, we note that the well-known CAP theorem indicates that there is
inevitably some trade-off between consistency, availability, and partition-tolerance
for distributed databases. As described above, blockchain platforms sacrifice tradi-
tional notions of consistency, but strive for availability and partition-tolerance.

11.6 Variation in Blockchain Transaction Inclusion

Blockchains are distributed systems, and so the states of different parts of the system
are inevitably different. Different nodes will hear about new pending transactions
and new blocks at different times. There is also variation in how long it takes
for the system to commit transactions in the ledger. For public blockchains like
Bitcoin and Ethereum that use Nakamoto consensus, there is much greater variation
in transaction inclusion time, which is exacerbated by the probabilistic nature of
transaction inclusion.
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In fact, there can be so much timing variation that it can impact core dependabil-
ity attributes. If transactions takes too long to be included, they will violate latency
or service availability requirements. Integrity can also be impacted if transaction
reordering occurs because of the probabilistic nature of Nakamoto consensus. This
section explores these issues in some detail, for both Bitcoin and Ethereum.

11.6.1 Variation in Bitcoin Transaction Commit Time

In this section, we explore the factors that impact Bitcoin commit time and show
that reordering of transactions play an active role.

A peculiarity of Bitcoin is the way transactions are linked: they transfer currency
from a number of source addresses to a number of destination addresses. Recall
from Section 2.1 that transaction outputs become the inputs of new transactions. If
the sum of the outputs is less than the sum of the inputs, this is interpreted as an
additional output that pays a fee to the miner who mines the block containing this
transaction. This acts as an incentive for miners. As a result, miners tend to optimize
block creation by preferring transactions with higher fees. The transaction fee is
often the only variable that client software asks Bitcoin users to choose consciously
when creating a new transaction.

However, transactions can also experience delay due to other factors. An
important one is that transactions must arrive (roughly) in order, for a node (and
the network) to be able to process them fast. Incoming transactions are handled
by the so-called mempool. If the referenced input transactions (the ‘parents’) are
yet unknown, a miner will delay the inclusion of the new transaction—it is then
a so-called ‘orphan’. Miners may choose to keep orphans in the mempool while
waiting for the parent transactions to arrive, but they may also expunge orphans
after a timeout they choose. A second factor that could come into play, albeit one
that only experienced users will set, is so-called locktimes: a transaction can contain
a parameter declaring it invalid until the block with a certain sequence number has
been mined. This makes it possible to set an ‘execution date’ for transactions.

Note that out-of-order arrival may be the result of a number of factors: the
forwarding behaviour of a node depends on the implementation and is different
even between versions of the ‘official’ Bitcoin Core client. It may naturally also
depend on the load on miners (leading to low throughput as evidenced by an
ongoing community discussion3). Transient connectivity issues and Internet routing
constellations may also be at play.4 Also note that transactions may be rejected by
the mempool for certain reasons. We explain these below as we encounter them.

3https://en.bitcoin.it/wiki/Block_size_limit_controversy.
4This is why projects such as Fibre ( http://bitcoinfibre.org/public-network.html ) aim to provide
high-speed links between certain locations.

https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://bitcoinfibre.org/public-network.html
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To observe transaction inclusion and commit times on Bitcoin, we ran an experi-
ment twice to allow for varying network conditions and growth of the network. Each
experiment lasted ca. 25 h; the first was conducted in November 2016, the second
in April 2017. We collected roughly 300,000 transactions in each experiment. It
should be noted that websites like https://blockchain.info/unconfirmed-transactions
reported high network load while the second experiment was being carried out, with
25,000–30,000 transactions waiting for inclusion.

We summarize the commit times (using 6-confirmation) we determined in
Table 11.1. Note that they are significantly higher and more varied in the second
experiment. Figure 11.2 plots the commit times for the two forms of transactions that
are our primary interest. The blue curves refer to transactions that were a ‘straight-
accept’, i.e. the parent transactions were known and the incoming transaction passed
all mempool tests. The violet curves are the transactions that were orphans upon
arrival.

Table 11.1 Summary of commit time distributions (in seconds) for orphans and straight-accepts
during our experiments

Type Min Q1 Median Mean Q3 Max

Experiment 1

Orphans 944 3096 4635 7582 8334 117,585

Accepts 676 2887 4234 5475 5901 150,123

Experiment 2

Orphans 1293 4280 6337 34,912 51,352 174,516

Accepts 1165 3873 5364 18,417 19,286 171,566

© 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)
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https://blockchain.info/unconfirmed-transactions
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In an underutilized network, the theoretical median 6-block commit time should
be around 3900 s: six blocks of 10 min or 600 s, plus on average half an inter-
block time of waiting time for mining on a new block to start. In experiment 1, the
median commit time for straight-accepts was 4234 s and the 90th percentile 9501 s.
For experiment 2, these times were 5364 s as a median and 55,976 s for the 90th
percentile. In summary, even if waiting twice as long as the median time, more than
10% of transactions were not committed yet. This is an important factor to consider
when building an application based on the Bitcoin blockchain: median commit times
are high, but individual commit times can be much higher.

We then did a number of analyses to examine delays and orphans further. In both
experiments, orphans seem to be committed later than transactions that were directly
accepted. However, the additional delay is much higher in the second experiment
(where the network was under high load). In our first experiment, about 60% of
orphans were included within the same time span as normal transactions. In fact,
31% of orphans took longer than 2 h to be included, 21% longer than 3 h, and 8%
took longer than 5 h. For directly accepted transactions, these values were slightly
different: 17% of them took longer than 2 h, 9.5% longer than 3, and 5% longer than
5 h. In our second experiment, roughly 40% of orphans had similar commit times
as directly accepted transactions. The majority experienced very significant delays:
the median was almost 20% higher, and the third quantile is more than 2.5 times as
high as that for straight-accepts. We also note that only 1.2% of orphans and 1.6% of
directly accepted transactions had not been included by the end of our observation
period in experiment 1. In experiment 2, more than 20% of orphans had not been
included (but almost all straight-accept transactions).

Factors other than the out-of-order arrival might still exercise considerable
influence on commit times. We hence decided to investigate two further factors:
transaction fees and locktimes. We first determined the number of transactions with
a zero fee. This was always very low: for the straight-accepts, it was 74 and 12
transactions in experiments 1 and 2, respectively. The orphans never had a zero
transaction fee. Figure 11.3 shows a box plot of transactions fees with the zero
values filtered out. We can see that transaction fees are considerably higher in the

Fig. 11.3 Box plot of
transaction fees by
transaction category. Note the
logarithmic y-axis. © 2017
IEEE. Reprinted, with
permission, from Weber et al.
(2017)
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second experiment, but there is no difference between straight-accepts and orphans
in experiment 1. In experiment 2, orphans even have slightly higher fees. It is very
unlikely that lower transaction fees are a cause for delayed commit of orphans.

We extracted the locktimes for our collected transactions and the locktimes of
their parents. As our logger had not captured the full content of transactions arriving
in the mempool (but only hash value and timestamp), we conducted this analysis
only for those transactions that had been incorporated into the blockchain. The
vast majority of transactions had no locktime set: in experiment 1, only 15% of
straight-accepts and 12% of orphans had a value that was not zero. In experiment 2,
the numbers were 23% and 17%, respectively. While this may signal an increase
in the use of the feature, orphans never had locktimes beyond the observation
window. Orphans in experiment 1 had locktimes that ended at least 3 h before the
end of the observation window; in experiment 2 it was 6 h. In contrast, straight-
accepts did have locktimes that extended considerably beyond the end of the
observation window. In experiments 1 and 2, nearly 100% of transactions also had
locktimes similarly near the end of the observation window. However, we found
some decidedly optimistic locktimes on the order of 1.5–1.7 billion (block sequence
number). With 10 min being the average time between two Bitcoin blocks, these
transactions cannot be included before the year 30,166. The obvious limitation of
our work here is that we do not know the locktimes of those orphans that were not
included in the blockchain by the end of our observation period. Given the above
results, however, we still feel confident to say that locktimes are not likely to be a
decisive factor in commit delay of orphans.

Naturally, there may still be confounding factors in our study that we could not
control for in this experiment. For example, we do not have information about node
connectivity outside of our observation post, Australia, and could not determine the
(ever changing) Internet routing constellation that the Bitcoin network is exposed to.
Note that propagation times in the Bitcoin network have been investigated before.
Our study suggests that it is worthwhile to revisit this topic.

11.6.2 Variation in Ethereum Transaction Commit Time

In this section, we first explain why Ethereum transactions are not guaranteed to be
committed regardless of their validity. We then analyse if gas price, gas limit, and
the network as factors affect commit time.

Recall the life cycle of individual transactions in the Ethereum blockchain from
Section 2.2, depicted in Fig. 11.4. It starts with the submission of a transaction into
the (virtual distributed) transaction pool across all miners. A transaction lifespan
can be split into consecutive phases: (i) the announcement of the transaction in the
system; (ii) the inclusion of the transaction in a newly mined block on some branch
of the chain; (iii) the inclusion of the transaction in a block part of the main chain;
and (iv) the commit of the transaction after sufficiently many confirmation blocks
are subsequently mined.
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Fig. 11.4 Life cycle of an individual Ethereum transaction (notation: state machine; repetition of
Fig. 2.7). © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

There is no certainty whether a particular transaction will eventually be commit-
ted or whether it will be outdated, in that it will be considered an invalid transaction
forever. Moreover, it is impossible to know whether a transaction that is invalid
in some state of the system will never be valid in a later state. More specifically,
the aforementioned step (ii) is not sufficient to guarantee that a transaction Tx
is permanently added to the blockchain: if the blockchain forks, then the block
comprising the transaction may simply be discarded, in which case the transaction
could be re-included later.

To put it differently: there are only two final states in this life cycle, namely,
committed or outdated, and only these and inclusion in a block are observable
transaction states for each client. In order to build a robust application on this basis,
one needs to ensure that each transaction ends up in one of the final two states in
a reasonable time. Otherwise the status of the transaction is, from the viewpoint of
the client, undefined and unknown.

When a transaction is included in a block, it has been validated beforehand, i.e.
its digital signature has been checked, as well as the validity of parameters like the
nonce (sequence number of transactions relative to a given source account), and
that there are sufficient funds in the source account. If all blocks that included the
transaction become uncles—i.e. part of a shorter chain than the main chain—then
the transaction goes back into the transaction pool. This may happen more than
once, and, theoretically, there is no upper limit. While the transaction is in the pool,
it may also be dropped. This is a local decision of miners, and it is impossible for
any node in the network to know with certainty that all miners have dropped the
transaction. Only when the nonce of the transaction becomes outdated, i.e. another
transaction from the same source account with the same nonce got committed, can
a node be certain that the transaction is invalid and will not be included in any valid
block. Otherwise the transaction may resurface at a later point and get included in
the chain.

Ethereum’s transaction handling and inter-block time differ significantly from
Bitcoin, and the chance of a chain fork occurring is higher. If a fork occurs, there is
usually no certainty as to which branch will be permanently kept in the blockchain
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Fig. 11.5 Time (s) for first inclusion and commit (12 or 36 confirmations), as well as second and
third inclusions of transactions that were previously included in uncles. © 2017 IEEE. Reprinted,
with permission, from Weber et al. (2017)

and which branch(es) will be discarded. In particular, transactions that were only
included in uncles need to go back to the transaction pool. Before investigating the
factors that cause commit delays, we investigate how fast transactions proceed from
first inclusion to commit.

To empirically investigate transaction inclusion time in Ethereum, we collected
data on approx. 6 million transactions over a 3.5-month period, discarding any short
periods affected by network or system outages. The observations were conducted
between December 2016 and April 2017. Figure 11.5 depicts the observed distri-
butions of the time it takes for an Ethereum transaction to be included in a block
and committed (using 12-confirmation, i.e. 11 subsequent confirmation blocks after
inclusion, and 36-confirmation).

As shown in the figure, the inclusion times tend to follow similar curves.
However, compare the slopes of the curves for first to third inclusion to the slopes
for 12-confirmation and 36-confirmation: the latter are less steep, indicating the
growing fraction of transactions that have to wait longer for a ‘commit’. For a ‘12-
block commit’, the median time is around 200 s, and even the third quantile is not
much higher. But the more blocks we require for a commit (say, 24 or 36 blocks),
the more likely it becomes that a transaction needs (even considerably) longer than
the median would suggest.

In contrast to Bitcoin, for the observed period the 90th percentile of commit
happened significantly earlier than twice the median: at about 270 s for 12 blocks
and around 650 s for 36 blocks. Still, while the curves converge towards 100%,
they do not reach it within 1000 s. As a consequence, applications sending larger
volumes of transactions need to be prepared that some of these will not be committed
in due time.

Concerning transactions that become ‘unincluded’, however, we find that these
are rare indeed. We observed that 113,122 first transaction inclusions (0.021%) were
not permanent; and the same is true for 2602 second inclusions (0.0005%) and 41
of the third inclusions (0.000007%).

Ethereum has two user-defined parameters around the concept of gas, namely,
the gas price and the maximum gas offered for including a given transaction. We
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Fig. 11.6 Commit delay (s) for transactions based on gas price. Note the logarithmic x-axis.
© 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

proceeded to investigate how these affect the commit times. In particular, we were
interested to see if it is possible to speed up the commit time by offering particularly
high rewards for miners by setting a high gas price.

Based on our collected data, we analysed the effect of the user-defined gas price
on the time it took for the transaction to be committed. Figure 11.6 depicts this
relation for five bands of gas price (all in Gwei5): [0, 0], (0, 20), [20, 25), [25, 105),
[105,+∞).

As shown in the graph, the higher the gas price in a given band, the less likely
we observed long delays. However, we did not observe any meaningful differences
from 25 Gwei onwards. At the time of writing in 2018, this observation is unlikely
to hold true to the same degree: from anecdotal evidence, it appears miners behave
more rationally. Finally, there is a sharp contrast between the 0-band and all other
bands: the 0-band has significantly longer commit times.

A second user-defined variable around transaction fees is maximum gas, i.e. how
much gas the execution of the transaction may use. We analysed its impact on
commit delay. While we discovered individual transactions that were delayed due
to an exceedingly high gas limit, our analysis was inconclusive: we could not find
a strong correlation in any direction between maximum gas and commit delay. This
remains an open question for now and warrants longer observation.

We were also curious to see whether the Ethereum network suffered from
transaction reordering as we had observed it for Bitcoin. Ethereum does not link
transactions in the way Bitcoin does, but every transaction has a running sequence
number (‘nonce’) for each sender account. This sequence number starts from 0 and
increments by 1 for each transaction sent from the same account. It is intended to
provide an assurance that transactions from the same account will be executed in a
particular deterministic order. However, it also means that a transaction with a nonce
n + 1 cannot be included into the blockchain unless there is an already included
transaction with nonce n—it is ‘orphaned’. The transaction with the higher nonce
will wait in the transaction pool until the arrival of a transaction with n as nonce.

51 Ether are 1018 wei.
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We hence carried out an experiment that is similar in nature to our previous
Bitcoin experiment. We analysed the commit times for in-order and out-of-order
arrival of transactions during the same interval as for our second Bitcoin experiment,
in April 2017. The total number of transaction announcements, which were also
committed during this period, was 87,384. The number of transactions with out-of-
order nonces was 5403 (6.18%). The commit time for both categories is shown in
Fig. 11.7. The graph suggests that the commit delay for out-of-order transactions is
almost doubled, compared to in-order transactions. To exclude the gas price as a
confounding factor, we plot the gas price distribution for both categories, shown
in Fig. 11.8. We did not find a significant difference in gas prices between two
categories.

As with Bitcoin, it is hard to rule out other confounding factors that we cannot
control for, e.g. Internet routing or overall network connectivity. However, our data
allowed us some partial insight into the latter. We inspected transactions with nonce
n that were announced after transactions with nonce n+ 1 and compared these with
in-order transaction announcements. Figure 11.9 plots the distribution of unique
Ethereum nodes that we saw broadcasting the transaction before inclusion in the
block. We found that delayed transactions were known to much fewer nodes. While

Fig. 11.7 Commit delay (s) for transactions based on ordering. © 2017 IEEE. Reprinted, with
permission, from Weber et al. (2017)

Fig. 11.8 Gas price distribution (GWei) for transactions based on ordering. Note the logarithmic
x-axis. © 2017 IEEE. Reprinted, with permission, from Weber et al. (2017)
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Fig. 11.9 Number of different peers from which in-order and out-of-order transactions arrive. ©
2017 IEEE. Reprinted, with permission, from Weber et al. (2017)

not conclusive, this provides first indications that network connectivity may have
negatively impacted transaction propagation.

Ethereum has a second form of limit, the so-called gas limit per block. Unlike
the gas price in a transaction, it is defined by the network of miners and applies to
the sum of gas consumed by all transactions in a block. If the limit is lower than
the gas required for a given transaction, the transaction cannot possibly be included.
The development of the gas limit over time is readily available, e.g. on Etherscan.6

The rationale for the limit is to prevent denial-of-service (DoS) attacks on the
network by limiting the amount of computation that can be done per block. Due to
several DoS attacks against the network, a majority of miners on Ethereum agreed to
lower the limit to approx. 500,000 gas temporarily—from October 15 to 17, 2016,
according to Etherscan. The network still kept a low limit prior to and after these
3 days: from September 23, 2016, to November 22, 2016; with 1-day exception,
the limit was around 2M gas. Around December 5, it returned to 4M gas. This
limitation can negatively impact the inclusion of transactions which require a high
amount of gas. This is not a hypothetical case: in earlier work, we deployed contracts
using around 1.5M gas ourselves. However, simple transfers of assets should not be
negatively impacted.

We hence chose to investigate whether we could find evidence for this hypothesis
in our data. We analysed all transactions that happened before the DoS attacks and
used block 2,303,121 as the pre-DoS cut-off block. We considered the amount of
gas used for three different types of transactions: financial transfers, regular function
calls to contracts, and contract creation.

Figure 11.10 shows the distribution of gas used for these transaction types. It
highlights the gas limits mentioned above as vertical lines. No financial transfer
transaction used more than 100,000 gas. This was an expected finding, as a financial
transfer will incur 21,000 gas as base cost for any transaction, plus possibly a small
amount for attached data: between 4 and 68 gas per byte (used, e.g. for a description

6https://etherscan.io/chart/gaslimit.

https://etherscan.io/chart/gaslimit
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Fig. 11.10 Distribution of gas usage for different types of transactions, prior to DoS attacks.
Dotted vertical lines show limits in response to the attacks. © 2017 IEEE. Reprinted, with
permission, from Weber et al. (2017)

of the transfer. As for function call transactions, 94% of them used at most 200,000
gas. Only 0.62% of the remaining function call transactions would not have been
possible with the 500,000 gas limit. This contradicted a part of our hypothesis and
highlighted that most of the functions that were in use were not highly demanding
in terms of computation or storage.

However, when inspecting contract creation, we found that only 53.79% of all the
contracts created before the DoS attack could have been created with the 500,000
gas limit, while 46.21% required more gas. This confirmed our hypothesis that many
contracts would not have been deployable while the low block gas limit was in place.
Even for the 2-month period where the network kept the block gas limit at about 2
million, 18.78% of contract creation transactions would have been impossible.

11.7 Aborting and Retrying Blockchain Transactions

One issue for a system designer who is building a blockchain-based system is that
there is no option to abort a transaction. In this section, we propose a mechanism
to artificially abort Ethereum transactions by superseding them with an idempotent
or counteracting transaction. This abort mechanism can be useful if, for instance,
the system observes that the transaction has not been committed within a specified
time frame (as can be the case with, e.g. orphans). As such, the retry and abort
mechanisms could be implemented to increase the user-friendliness or robustness
of software clients or wallets.

Another motivation for abort is the accidental duplication of transactions, which
we discovered thousands of times in our observation of Ethereum: the same
transaction was submitted twice, often within seconds, but with different nonces,
and the funds in the sender’s account were insufficient for both transactions to
execute. Seemingly the senders thought they were retrying the same transaction,
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when really they created two separate transactions with the same parameters,
except for the nonce. Instead of transferring the desired amount once, it would be
transferred twice (if the balance was or became sufficient). This has also happened
to individuals we know personally.

11.7.1 Aborting and Retrying Transactions in Ethereum

There are some options to achieve an effect that is similar to an explicit abort. In
Ethereum, for instance, the system or user can issue a competing transaction from
the same source account, i.e. another transaction with the same nonce. Assume user
Alice transfers 1 Ether to Bob by issuing transaction Txi with nonce i. After an
acceptable time frame, e.g. 10 min, has elapsed and Txi has not been committed,
Alice wants to abort Txi . She then submits a new transaction Tx′

i , with the same
nonce i as specified in Txi and a higher transaction fee in order to increase the
chances for Tx′

i to be included. For this transaction Tx′
i , she does not want to spend

more Ether than necessary; thus, she sets the transaction value to 0 and her own
account as receiver. Once Tx′

i is committed, Txi is superseded by it and becomes
outdated. If, in the meantime, Txi were to succeed, Tx′

i becomes outdated. This is
acceptable, since that was the original intent.

Alternatively to aborting, Alice can ‘retry’ Txi by submitting Tx′′
i as follows: the

fields in Tx′′
i contain the same data as in Txi , including nonce i—except Alice offers

a higher fee for it. Therefore, the hash and digital signature of Tx′′
i will be different

from Txi , and thus it will be perceived by the miners as a separate transaction.
If Alice tried resending Txi without any changes, hash and signature would be
the same, and the miners would not consider it any differently—unless they have
previously dropped Txi . In the latter case, the reasons for dropping Txi might not
have changed, and thus the same would likely happen again. If either Txi or Tx′′

i

succeeds, the respective other transaction would become outdated and invalid, since
they both have the same nonce i.

11.7.2 Aborting and Retrying Transactions in Bitcoin

The Bitcoin blockchain does not offer transaction abort. In a German newspaper
article from late 2017, the author described that he ‘lost’ BTC7 worth several
hundred Euros, since he did not offer a transaction fee, and his transaction had not
been included for more than 2 weeks. His wallet application did not offer options to
abort or retry the application, and simply reported his account balance to be zero. In
cases like that, we believe the following method should work.

7BTC is the currency code for Bitcoin’s cryptocurrency.
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Say, Alice wants to transfer 5 BTC to Bob. She previously received 2 BTC from
Charlie, as output 0 (abbreviated as #0) in Tx1, 1 BTC from David as #0 in Tx2, and
4 BTC from Erin as #1 in Tx3. Her virtual account thus holds 7 BTC. To achieve the
transfer, Alice creates transaction Txorig that has two inputs: Tx1 #0 (2 BTC) and
Tx3 #1 (4 BTC), so that Txorig has a transaction volume of 6 BTC. Alice then adds
two outputs: #0 with 5 BTC to Bob and #1 with 0.99 BTC to herself. Txorig thus
offers a transaction fee of 0.01 BTC, and subsequently her virtual account will hold
1.99 BTC.

Now, say the commit of this transaction does not happen within Alice’s time-
frame of 6 h and Alice wants to abort. Since each input can only be spent once,
Alice can achieve that by submitting Txabort with the same inputs as Txorig, but as
single output #0 she specifies 5.98 BTC to herself (thus offering a transaction fee of
0.02 BTC). If either Txorig or Txabort succeeds, Alice’s account is not in limbo, and
she can continue to use the network as normal.

As an alternative to abort, Alice can re-attempt the transfer with Txretry as
follows. The inputs are the same as in Txorig, output #0 stays at 5 BTC to Bob,
but output #1 is changed to transfer 0.98 BTC to herself. Txretry thus offers a higher
transaction fee of 0.02 BTC, and if Txretry succeeds then Txorig becomes outdated.

11.7.3 Experiments for Aborting Transactions in Ethereum

We tested the above method for abort on the public Ethereum blockchain for three
scenarios: (i) a transaction does not get included in the usual period of time; (ii) a
client changes its mind and decides to roll-back the issued transaction; and (iii) a
transaction is in indefinite pending state due to insufficient funds. We describe these
below in more detail.

Abort Experiment 1 In order to test the situation where a sent transaction does not
get included in the usual timeframe, we submitted 100 transactions that underbid the
market rate. Specifically, we assumed the average gas price from the previous day
(December 1, 2016) as market rate (mr) and submitted ten transactions each for
different prices, which are 0, 0.1×mr , 0.2×mr , . . . , 0.9×mr . As cut-off time, we
rounded up the 99% percentile from our earlier experiment (cf. Fig. 11.7) to 10 min.
If the transaction had not been included then, we submitted an abort transaction
Txabort as described above, with the same nonce but at full market rate mr , target
0x0, and value of 0.

The results are shown in Fig. 11.11. Surprisingly, most transactions were
accepted by the network. Six out of ten transactions with either 0 or 0.2 × mr

were accepted. In addition, only two out of ten transactions with 0.1 × mr were
accepted. All of the 16 timed-out transactions were successfully aborted with our
Txabort mechanism described above.

Abort Experiment 2 For this experiment, we assumed a client that underbids the
market fee and changes its mind regarding an issued transaction. As in the previous
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experiment, we sent another 100 transactions with gas prices as above, i.e. 0, 0.1 ×
mr , 0.2×mr , . . . , 0.9×mr for ten transactions each. Rather than waiting for 10 min,
we set the timeout value to the target median for Ethereum transaction commit, i.e.
3 min.

The results of this experiment are shown in Fig. 11.12. A much higher percentage
of transactions were not included in a block after 3 min, in comparison to Fig. 11.11
with 10-min timeout. As before, 100% of Txabort succeeded. Interestingly, all
of them were included in a block after 3 min. In 2 out of the 100 cases, the
3-min timeout for the original transaction was reached, Txabort was sent, but the
original transaction Txorig still won the race and got included and committed in
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the blockchain. Thereby, Txabort was outdated. As stated above, this is a possibility
that clients should be prepared for. The reasons for such a situation can include
(i) processing time in our client when preparing the Txabort ; (ii) broadcast delays
or other network effects where the winning miner does not receive Txabort before
including Txorig; or (iii) non-rational scheduling of transactions in the pool, where
no preference is given to the transaction with the higher fee.

Abort Experiment 3 In this last experiment, we submitted two transactions, creat-
ing a situation that corresponds to faulty inputs from a user (or user’s program). We
have observed such behaviour during our live observation of the public Ethereum
blockchain. To replicate it, we submitted two transactions, Tx1 and Tx2, as follows.
Assume that the last nonce for the sender address was n and its account balance k.
Then we create Tx1 with nonce n + 1 and value 1

1000k and Tx2 with nonce n + 2
and value 999

1000k. For both transactions, we set the gas price to 0.7 × mr . Due to the
nonce, Tx1 must be included before Tx2. However, due to the positive gas price, the
account balance resulting from the inclusion of Tx1 is insufficient for Tx2.

Finally, we submit Tx2, wait 5 s, and then submit Tx1. This gives Tx2 the chance
to get broadcast before Tx1 is known to any node, including our own. This procedure
is needed so that the client submits Tx2 to the network; since geth is not aware of Tx1
and its contents when we submit Tx2, it broadcasts Tx2. Otherwise, it might detect
the insufficient balance and not accept Tx2.

Once Tx1 has been included in a block, Tx2 is invalid due to insufficient funds.
However, this does not always get checked, and hence Tx2 may remain in the
transaction pool for a long time. In fact, if another transaction deposited funds
into the sender account, Tx2 would become valid and be executed. This, again, is
behaviour that we observed. Here, we send a Txabort with the nonce n + 2, to abort
Tx2.

We ran this experiment until we had submitted Txabort 100 times. All 100
submitted Txabort were successful. We measured the time it took for Txabort to be
included in a block (first inclusion) and plotted that as shown in Fig. 11.13. The
median for those times was 45 s and the maximum 230 s.
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Our experiments support the hypothesis that transactions can be aborted with our
proposed method. Although it would be better to have explicit abort mechanisms for
blockchains, this is a fall-back method for certain applications to address commit
delays that are due to some of the factors we have described in Section 11.6.2.

11.8 Summary

We started this chapter with a broad discussion on the impact that using blockchain
as a component can have on dependability and security properties. In short,
confidentiality can be harder to achieve, due to the replication of the data structure
to the whole network; integrity is blockchain’s strong suit; in terms of safety,
the picture is less clear; maintainability requires planning and governance; and
availability and reliability features are high for reading/receiving, but potentially
low for writing/sending.

To give a clearer picture of the write/send availability and reliability characteris-
tics, we studied the public Bitcoin and Ethereum networks. For Bitcoin, we found
that even if waiting for a transaction commit twice as long as the median time,
more than 10% of transactions were not committed yet. For Ethereum, this was less
common, but still above 1%. This is important when building an application based
on public blockchains: commit times vary significantly and can take significantly
longer than in common cases.

Finally, we discussed methods for transaction abort and retry, which are not built-
in functions of blockchain clients. Applications can use these methods to handle
transactions that take unusually long.

11.9 Further Reading

This chapter is partly based on Weber et al. (2017) and draws on earlier ideas from
Anderson et al. (2016).

As stated in the beginning of the chapter, we did not cover security infrastructure
or cryptography. A number of books discuss these points in detail, e.g. Bashir
(2018).

In this chapter, we refer to a few seminal works, specifically the Clark–Wilson
security policy model (Clark and Wilson 1987), and the taxonomy of dependable
and secure computing by Avizienis et al. (2014). The alternative definitions of safety
are described in Lamport (1977) and Alpern and Schneider (1985). Finally, the CAP
theorem (Fox and Brewer 1999) indicates that there is inevitably some trade-off
between consistency, availability, and partition-tolerance for distributed databases.

The Ethereum yellow paper (Wood 2015–2018) specifies gas costs for various
operations and describes the function of block gas limits.
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As mentioned in the previous chapter, live statistics about the public Ethereum
chain, including inter-block times and the influence of the gas price on transaction
inclusion times, are available at https://ethstats.net/ and the ETH Gas Station
(https://ethgasstation.info/). ETH Gas Station also gives recommendations for gas
price settings, relative to desired inclusion times; these can also be accessed through
an API. From these recommendations it appears that, at the time of writing, miners
now react more to gas prices and the network is less likely to accept transactions
offering no fee than it did when we conducted our experiments.

An earlier investigation on propagation times in the Bitcoin network has been
conducted by Decker and Wattenhofer (2013).

https://ethstats.net/
https://ethgasstation.info/
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Chapter 12
Case Study: AgriDigital

Blockchain Technology in the Trade
and Finance of Agriculture Supply Chains

with Bridie Ohlsson and Katherine Davison

12.1 Agricultural Supply Chains

12.1.1 Global Agricultural Supply Chains

Agriculture is an industry that provides food and fibre to feed and clothe the world’s
7 billion citizens. Over 25% of the world’s working population are employed in
the agriculture sector.1 In order to meet demand in a globalized world, agriculture
supply chains have formed as long and complex networks of production, processing,
distribution, and marketing channels. They are made up of farmers, processors,
traders, logistics providers, financiers, consumers, and many others, each having
widely varied and often competing interests.

Globally, agriculture is a $6 trillion industry.2 Agriculture broadly includes
the production of commodities such as rice, corn, wheat, livestock, cotton, and
vegetables. While each individual supply chain is unique, across many geographies
and commodities agricultural supply chains face common challenges.

Counterfeit Goods Supply chain participants are vulnerable to fraud, with global
food fraud costing US$40 billion annually.3 More broadly, the annual global trade
in fake goods amounts to a staggering US$460 billion.4 Without verifiable and data-
rich physical assets, counterfeit goods move in large quantities along supply chains.
The human cost of food security has become a very real challenge in many parts of
the world.

1International Labour Organization, ILOSTAT database, 2017.
2World Bank and OECD National Accounts data, 2016.
3John Spink, Michigan State University Food Fraud Initiative 2014.
4OECD & EUIPO ‘Trade in Counterfeit and Pirated Gods: Mapping Economic Impact’, 2016.
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Counterparty Risk Payment security and counterparty risk are faced by buyers
across the supply chain. Often, buyers and sellers cannot operate with confidence,
because they do not know that they will receive timely payment for their commodi-
ties and be able to access the finance necessary for business stability and growth.
Farmers often do not receive payment for their products and commodities until
months after delivery.

A lack of liquidity across the supply chain makes access to finance a real
challenge for buyers, who are unable to pay farmers in a timely way. Commodity
finance is often limited to reputable borrowers with bricks and mortar security, and
is often only accessible for commodities where the risk price can be hedged. This
results in settlement latency, with title transferring months before payment is made,
introducing enormous counterparty risk which most often falls on the producer at
the start of the supply chain. A key challenge faced by the bulk commodity supply
chains has been providing clear visibility over commodity ownership. Paper-based
systems or spreadsheets provide little to no security for farmers when payment fails.

Cooperation Supply chains are typically characterized by competition rather than
cooperation. Individuals and organizations along supply chains lack the trust and
incentive to openly share data around the status of goods. Only 43% of agri-supply
chain participants feel confident that they can collaborate with their counterparties.5

12.1.2 Blockchain and Agriculture

Despite the overall digitization of the global economy, agriculture remains one of the
world’s least digitized industries.6 Agriculture missed out on many of the benefits
of the ‘first wave’ of the internet and associated technologies, due to a lack of
connectivity and ready technical skills. Global trade is still largely paper-based and
manual, and information around a commodity does not flow freely between supply
chain participants. Costly back-office reconciliation processes, and manual double
data entry, continue to add additional costs and human error into agri-supply chains.

Supply chains are consistently recognized as a natural market for blockchain
technology. These are networks where multiple participants operate who do not trust
each other but who require access to a single set of verifiable data and claims about
a common asset. The natural state of agri-supply chains is distributed networks
relying on a single source of truth. This led AgriDigital to see blockchains as critical
components for building robust digital supply chains.

53M, Supplier Survey Whitepaper, ‘Driving Growth and Innovation through Supplier Partner-
ships’, 2017.
6McKinsey Global Institute Industry Digitization Index 2015.
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12.2 The AgriDigital Vision

12.2.1 Building Digital Trust

Since being founded in 2015, AgriDigital has been using blockchain technology as
part of a technical stack to build digital trust across agriculture supply chains. At the
core of the AgriDigital vision is a platform and community approach to digitizing
agriculture, and that doing so will bring security, trust, and value to agri-supply
chains.

For AgriDigital, digital trust means supply chain participants can transfer
commodities with complete security, can accurately attribute value to those goods,
and can recognize financially and otherwise where that value has been contributed
along the supply chain. The building of digital trust is the accumulation of a robust
digital infrastructure, comprising multiple different components. Blockchain is part
of the technical solution that will deliver digital trust to agriculture supply chains
globally (Fig. 12.1).

AgriDigital was founded by a team of Australian farmers and agribusiness
professionals. The AgriDigital founding team has a combined 80 years’ experience
in the grains industry and deep personal experience of the challenges agriculture
faces.

Taking the approach of first delivering a cloud-based platform to market in the
Australian grains industry, AgriDigital has been able to gain commercial traction

Fig. 12.1 Building blocks of digital trust in AgriDigital’s vision. © 2018 AgriDigital, reprinted
with permission
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while continuing to pilot and test components of blockchain and other technologies.
The AgriDigital platform is a commodity management solution connecting farmers,
traders, and site operators to seamlessly manage contracts, deliveries, inventory,
invoices, and payments. Through the application layer, AgriDigital is able to capture
and validate information about the physical commodity and streamline interactions
between supply chain participants.

The AgriDigital platform acts as the application layer through which customers
can leverage the benefits of blockchain technology across agri-supply chains.
Using this interface, AgriDigital has conducted world-first proof of concepts and
pilots with leading agribusinesses, applying blockchain technologies to help solve
embedded agri-supply chain challenges.

12.2.2 AgriDigital’s Blockchain Solution

AgriDigital has designed a library of smart contracts to facilitate the trade and
finance of agricultural commodities. In traditional supply chains, trade, finance,
and data flows are kept separate, both within organizations and between them. This
siloed approach to data flows contributes to the risks, delays, and fraud across agri-
supply chains, as participants have a difficult time verifying commodities, managing
costly processes to do so, and only trusting a limited number of counterparties
(Fig. 12.2).

Fig. 12.2 Traditional agri-supply chains, with separate flows for trade, data, and finance. © 2018
AgriDigital, reprinted with permission
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Fig. 12.3 AgriDigital solution: integrating the flow of data, trade, and finance using digital
technologies. © 2018 AgriDigital, reprinted with permission

There is an enormous opportunity to drive value and innovation along supply
chains, by bringing together these otherwise disparate information flows. Not only
would this provide network and market efficiencies, but it would also act as a single
source of truth providing supply chain assurance and transaction security. Bringing
together trade, finance and data flows, applications, and individual users in one
solution can leverage that information and contribute to solving challenges such
as the lack of liquidity, counterparty risk, and counterfeit goods (Fig. 12.3).

At the core of the AgriDigital solution is the creation of digital assets. The digital
assets become the anchor from which these trade, finance, and data flows are brought
together. As the digital asset moves from participant to participant along the supply
chain, an immutable and data-rich record of the physical asset is created on the
blockchain-based protocol.

Once a digital asset is issued, participants can attach data including certificates
and production records, seamlessly sharing this verifiable information with others in
the network. Using smart contracts, counterparties can execute secure transactions,
providing transparent chains of custody and proof of ownership. With full visibility
over the asset, financiers can provide supply chain finance in new and innovative
ways.
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12.2.3 Architecturally Significant Non-functional
Requirements

The vision and business context described above drive several architecturally
significant non-functional requirements for AgriDigital’s blockchain solution. The
key quality is integrity, to ensure secure records of title and confidence in payments.
Transparency of blockchain data to participants and security of transactions build
digital trust in the physical asset. However in negotiating the commercial use case,
complete transparency may only exist between specified parties; for other parties
and especially competitors, there may be a need for data privacy.

The need for real-time payments and the need to support transactions in the
context of deliveries in the physical world also drive requirements for acceptably
low latency. Implicit in the vision for an industry-scale platform is a demand for high
availability and acceptably high throughput scalability. All of these qualities are
likely to be also requirements for other blockchain-based supply chain platforms. An
interesting non-functional requirement directly related to AgriDigital’s technology
strategy is system adaptability, to allow the trial and gradual digitization at the
application layer to incrementally increase the data richness of digital assets within
the blockchain-based platform.

12.2.4 Pilots and Proof-of-Concept Overview

AgriDigital has conducted a number of proofs of concepts with industry partici-
pants. We give an overview of three of them here, before delving into more in-depth
details of the second proof of concept in the next section.

Pilot 1: Fletcher International Exports
December 2016, Dubbo, NSW

In December 2016, AgriDigital executed the world’s first settlement of a physical
commodity on a blockchain. This pilot was significant in its delivery of real-time
settlement for physical commodity transactions, opening the doors for elimination
of the counterparty risk that all sellers face.

An Australian wheat farmer, David Whillock from Geurie, NSW, delivered 23.46
metric tonnes of wheat to Fletcher International Exports (FIE) who run a processing
and exports business in Dubbo, New South Wales. In a global first, Whillock was
paid instantaneously using blockchain technology.

A smart contract from the proprietary AgriDigital library auto-executed the
settlement. At the moment of delivery to the silo at Dubbo, the quality and
quantity of wheat being delivered was recorded at the weighbridge and sample
station. The smart contract then valued the particular delivery of wheat against
an existing legal contract, then verifying FIE had sufficient funds in their digital
wallet to pay Whillock and securing the funds in Whillock’s name pending delivery
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confirmation. Once the farmer completed the physical delivery at site, title to the
grain transferred from Whillock to FIE, and simultaneously payment was made from
FIE to Whillock.

For this pilot, though transaction settlement occurred on the blockchain,
Whillock received the payment in local currency using traditional banking methods:
a message was sent out as a bank file for the buyer to upload and pay, on the same
day, via existing payment mechanisms. Typically, payment terms in the Australian
grains industry range from 2 to 5 weeks, and these terms are the ones that pose
counterparty or credit risk to growers. Using smart contracts to match title transfer
to payment provides instant benefits to farmers and other sellers by removing
counterparty risk and increasing security over the asset up until the moment the title
transfers.

The pilot ran in December 2016 using a private instance of the Ethereum block-
chain. AgriDigital managed the three-node network, simulating the situation where
AgriDigital, the buyer, and a third-party regulator each operated a full blockchain
node. The private blockchain was configured to mine approximately one block
per second, where each block may or may not contain transactions. The delivery
information was provided through integrations with electronic weighbridges, which
automatically created messages as measurements were taken and sent these to the
AgriDigital system. Additional manual data entry from the sampling station was
entered into the AgriDigital frontend. At the time, Ethereum was limited in its
handling of decimal values, and thus some rounding error occurred as expected.

Pilot 2: CBH Group
July 2017, Bordertown, SA

In partnership with CBH Group, Australia’s largest grain exporter, AgriDigital
completed a pilot that focused on matching title transfer of a grain asset to payment,
as well as supply chain provenance and traceability of organic oats.

This pilot and the design and architecture decisions are discussed in greater detail
below in Section 12.3.

Proof of Concept: Rabobank
December 2017, Sydney, NSW

AgriDigital teamed up with the world’s leading agricultural bank, Rabobank, to
conduct a proof of concept that successfully demonstrated a purchase and sale of
commodities on a blockchain in a lab environment.

The objective was to test whether the AgriDigital platform, supported by a
blockchain, could facilitate purchase and sale transactions. The proof of concept
simulated the execution of a commodity purchase and sale transaction in the form
of a Rabobank structured inventory product (SIP), with automated settlement of the
purchase and forward sales contract, involving three parties: a farmer, a grain trader,
and Rabobank. Under the traditional SIP arrangement, a grain trader enters into
an agreement with Rabobank to act as an agent in purchasing grain from farmers.
Under the agreement, the trader can purchase the grain from Rabobank within a
specified period, at which point the legal title passes to the trader (Fig. 12.4).
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Rabobank issues AUD token to the Facility under Master Agreement.

Grain delivered and registered at warehouse.

The Digital Title to the grain is issued to the Grower by Trader as Agent acting as
Site Operator.

Grower allocates the grain to Purchase Contract with Trader as Agent for Rabobank.

Digital Transfer Agreement Executes payment from Rabobank to the Grower in AUD
token, ownership of digital title token transfers from the Grower to Rabobank.

Trader requests to purchase the grain which is the subject of a forward Sale Contract.

Simultaneously Swap Agreement Executes payment from Trader to the Rabobank
Facility and beneficiaries (Buyer Digital Wallet and Rabobank) in AUD token.
Ownership transfers from Rabobank to Trader.

Fig. 12.4 Overview of the proof of concept with Rabobank. © 2018 AgriDigital, reprinted with
permission

On a private Quorum blockchain, the smart contract layer auto-executed the
transfer of ownership of the digital title in the commodity from the farmer to
Rabobank in exchange for payment made via the buyer’s SIP facility. At a later time
when the trader was ready to sell the grain to a third-party, smart contracts were
used to simultaneously execute the title transfer and settle a number of payments.
These payments included repaying the Rabobank facility, passing on interest to the
bank and the trader receiving the remaining proceeds of the sale. All payments were
made in real time using a Rabobank-backed digital dollar pegged one to one with
the Australian dollar.

Using smart contracts to execute the complexities of an inventory finance product
goes a long way to automating time-consuming business processes. In turn this
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reduces the cost and error rate when making loans under structured inventory
products. Traditionally these types of financing arrangements incur substantial back-
office costs through numerous title transfer processes and asset valuations including
weekly mark-to-market valuation based on third-party reference prices. Financing
digital assets backed by live data inputs reduces the risk and cost in executing these
financing arrangements. Additionally, using a distributed database to store data on
the quality and quantity of grain enables financiers, growers, and traders to access a
single source of truth about the commodity, valued in real time.

A highly novel outcome of this proof of concept was the incorporation of
a bank-backed digital currency, meaning real-time payment to the farmer was
possible in a currency that the farmer recognized and could easily transfer from
digital to traditional Australian dollars. Providing stable, digital currencies that are
widely accepted by traditional businesses remains a challenge across the blockchain
ecosystem globally.

12.3 Designing for a Business Use Case

In this section, we describe the second proof of concept in some technical detail,
including requirements, architecture design decisions, and outcomes.

12.3.1 Overview

In July 2017, AgriDigital and CBH Group, Australia’s largest exporter of grain,
conducted a pilot to test the application of blockchain in the Australian grains
industry at CBH’s wholly owned subsidiary, an oat processor in South Australia.
The pilot comprised two distinct scenarios built on the AgriDigital commodity
management platform, blockchain infrastructure and smart contract library:

1. Generating digital title to a physical commodity and executing payment on a
blockchain, including secure 7-day payment terms

2. Verifying the organic status of a batch of oats along the supply chain: from a
delivery leaving the farm gate, then commingling with other farmers’ produce in
processing and milling, through to the point of sale to a retail customer

The pilot aimed to cater for a real business use case and therefore needed to
integrate seamlessly with existing technology solutions and meet realistic business
requirements. This included more accurately reflecting the industry demands, by
allowing 7-day payment terms while providing security over the asset for the farmer
during this period. It was also important to ensure a level of privacy could be
maintained between participants, as the exact processes and procedures on site
should not be disclosed to all network participants.
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Fig. 12.5 Pilot components (AD, AgriDigital; DB, database). © 2018 AgriDigital, reprinted with
permission

12.3.2 Pilot Scenarios

We explain the solution here, before describing the challenges and design decisions
in the subsequent section.

Components Based on the protocol design decisions discussed below, the infras-
tructure shown in Fig. 12.5 was designed for the purpose of conducting the two
pilot scenarios. The pilot used the AgriDigital platform and a basic web application
as the user interfaces to capture the data. The blockchain protocol ran using a private
Quorum network with three physical nodes.

Scenario 1 Transaction and Payment Security Using the AgriDigital platform,
digital title to a delivery of oats was generated on a private Quorum network and
held in the farmer’s digital wallet. Seven days later, settlement occurred in an atomic
transaction: payment was made from the buyer to the farmer and simultaneously
title transferred from the farmer to the buyer. For the period up until payment, the
farmer had clear ownership of the digital title token that represented the physical
grain delivery and therefore security over their asset (Fig. 12.6).

The farmer’s delivery was received at the buyer’s site using the AgriDigital
platform, where information around the quantity and quality of the commodity
was captured at the point of receival. This information was then pushed through
various integrations in order to generate a digital title token on the blockchain. The
token was then held and flagged for payment in 7 business days. The payment
on the blockchain layer was made using a second token, minted by AgriDigital
and known as ‘AgriCoin’, which was pegged 1:1 with the Australian dollar. Smart
contracts, agreements codified for execution on a digital distributed platform, were
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Fig. 12.6 Process flow for grain delivery, sale, and settlement. © 2018 AgriDigital, reprinted with
permission

used to auto-execute payment on the blockchain layer. In parallel, the payment
was processed using traditional banking methods, using a platform named Sybiz,
to ensure the farmer received payment in Australian dollars.

A transaction normally taking days to execute in current grain supply chains
happened in less than 1 s under the pilot conditions. This pilot therefore solved
the challenge of matching delivery to payment and proved the ability to eliminate
counterparty risk by running commodity transactions on a blockchain. This allows
the supply chain to operate in confidence: farmers are assured they continue to own
their commodity up to the moment they are paid. This goes a long way toward
removing counterparty risk along supply chains.

Scenario 2: Provenance and Traceability In a second scenario, AgriDigital and
CBH used a private Quorum blockchain to trace the movement of a batch of organic
oats from the farm gate, through milling and production, to a retail consumer. Data
on the provenance including all intermediate steps was stored and analysed on the
private Quorum network.

A range of physical inventory data points were captured on a web application
and bundled into assertions, each representing an event or claim determined to be
critical to the organic status of the oats. Each assertion was then hashed and recorded
on the blockchain layer. At the point of sale to a consumer, the assertions pertaining
to that particular batch run were analysed to produce a report that either confirmed
or denied the organic status of the oats.

AgriDigital developed an analytics model to determine whether the oats were
organic at the farm gate and checked a predefined business process through hulling,
milling, and packaging. The analytics model then produced a true/false statement
as to whether the organic status had been retained while the batch of oats passed
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Fig. 12.7 Process flow for analysing the organic status of oats along the supply and processing
chain. © 2018 AgriDigital, reprinted with permission

through the various stages of the supply chain to the point of packaging and
readiness for delivery to the retailer (Fig. 12.7).

12.3.3 Design Decisions

1. Choice of Protocol AgriDigital had experience working with the Ethereum
platform from the first proof of concept. However in designing for a commercially
viable use case, there was a strong need to address business concerns around trans-
parency and scalability. The critical technical requirements in designing a solution
to meet the business use case were throughput and privacy, and Ethereum was not
the best fit. As for privacy, production information around the commodity can be
incredibly sensitive and reveal the comparative advantage of individual businesses.
However, at the same time, if information or claims need to be proven, the business
needs to be able to share this data or otherwise reveal a claim or certificate in a way
that the party receiving the information can have complete confidence in its validity.
Regarding throughput, at any point in time an enormous volume of transactions are
being executed across agriculture supply chains. However due to the nature of the
physical transaction, there is a higher degree of tolerance for delay in the transaction
time. For this reason, the transaction speed (latency) itself was not as critical as the
number of transactions processed per unit of time (throughput). For these reasons,
AgriDigital investigated using Quorum as a technology platform for this trial.

The Australian grains industry produces a total of 40–45 million tonnes of grain
(cereal crops, primarily including barley, grain sorghum, maize, oats, triticale, and
wheat) each year, the majority of which is transacted over intense harvest periods.
The Quorum network uses the Raft consensus mechanism with 50 ms block times,
meaning transactions can be processed in real time. This allowed AgriDigital to
produce sub-second transaction times for the exchange of digital currency and
digital title. At a rate of four transactions per second, this settlement method is
scalable to satisfy the throughput and latency requirements of the Australian grains
industry.
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In comparison to solutions available in July 2016, Quorum seemed to offer
the most promising solution to business challenges in dealing with the radical
transparency of other blockchain protocols. During the protocol investigation stage,
tests were conducted on the Quorum chain to determine the utility of the privacy
settings in the specified use case. While allowing for some sophistication, ultimately
the privacy settings available at the time were inadequate to properly facilitate
the business case as required. Using the ‘privateFor’ parameter, Quorum allowed
for transaction details to be made visible only to the parties specified in the
contract. However this feature was only available at the level of nodes, rather than
between individual addresses. Requiring each participant within the agri-supply
chain network to run their own node is not a feasible model in this industry. While
Quorum allowed for the transfer of private information in the pilot scenario, it was
recognized this was not a scalable or commercial solution for the problem at hand
at the time.

2. Network Incentives The scenario was conducted in a closed and controlled
network, so there was not a real concern around incentivizing good behaviour by the
pilot participants. However, the design of the solution had to cater for the possible
scenario where participants did not trust one another and might try to gain an unfair
advantage.

The impetus behind including blockchain as part of our technology stack was
specifically to allow for unknown counterparties to trust the business transaction.
It was therefore critical to design a protocol that incentivized good behaviour and
prohibited or revealed bad behaviour wherever possible.

Supply chains are inherently complex, and designs for digital assets must meet
the realities of the industry. AgriDigital’s understanding of these complexities,
particularly in the grains industry with both on-farm and off-farm storage of assets
and the various points of sale, directed the design of the systems architecture. Given
that the grains industry is largely a handshake industry revolving around physical
assets, it was critical to design a network that was capable of giving confidence to
the digital asset. Part of this are the incentive structures and network rewards, to
ensure good behaviour in the digital ecosystem by the range of participants along
the supply chain.

For example, the generation of the digital asset and the issuance of that asset on-
chain needed to incorporate means of protection against the potential for fraudulent
or deceptive behaviour. It is necessary to separate the issuance of the digital asset
from the owner of that commodity, to give confidence that the digital asset was
reflective of the commodity in the physical sense. In practice, this means that while
the farmer is the owner of the physical asset, it is the warehouse or site operator who
takes the quality and quantity measurements and issues the digital asset to the digital
wallet of the farmer. By permissioning the different roles of custodian or owner into
the network, we are able to prevent bad behaviour. Otherwise an actor could, e.g.
issue a digital asset to themselves multiple times without others having any way of
verifying whether this reflects physical commodities.
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3. Secure Payment Terms AgriDigital’s previous work looked at executing smart
contracts that facilitate the payment for a commodity at the exact time that delivery
was made by the farmer. However, to cater for real business needs, a commercial
payment model needs to allow for alternative payment terms. Even where payment
for a commodity is not made at the precise time of delivery, the critical requirement
is that the farmer continues to own the asset in their digital wallet until the payment
is executed.

There were a number of ways this could be managed. AgriDigital decided to
employ a fairly straightforward model where both the digital asset and the payment
amount were locked or escrowed until the moment the smart contract executed the
transactions several days later.

The design of the escrow smart contract was as follows:

1. The buyer adds a pending payee.
2. A smart contract function checks the digital wallet of the buyer to ensure they

have the available balance. If the balance is insufficient, an exception is thrown.
Returning ‘false’ is not useful if we are calling the function directly from the
blockchain API, as this will only return the transaction hash. Alternatively
transaction results could be checked with the hash, but this would be less
convenient and require more API calls.

3. If sufficient funds are available, reduce the balance by the amount required, and
add it to the escrow balance of the smart contract.

4. Add a new mapping from the payee to the amount requested.
5. Emit an escrow event.

If there is an issue with payment, or the sale is otherwise cancelled during the
payment period, the asset or payment amount can be unlocked and returned to the
available balance in the digital wallet.

In the escrow function, digital assets were locked using the same functionality.
Double sale of assets remains a significant challenge in agriculture supply chains.
Revealing a clear and verifiable chain of custody and ownership assists in preventing
the problem of double sale, as each digital asset can only be sold once by each party
in the supply chain.

4. On-Chain and Off-Chain Data Storage Across the various stages of growing,
transporting, and producing organic oats, there are thousands of data points available
to be captured. Determining the data points which are valuable to the supply chain
as a whole, to individual consumers and those relevant to proving the organic status
of the oats, requires close matching of the digital assertions to business processes.
In the provenance model, a range of physical inventory data points were captured on
a web application and bundled into assertions, each representing an event or claim
determined to be critical to the organic status of the oats. The decision was made to
store the majority of data points off-chain, while recording the assertion on-chain.

The analytics model was designed to provide a true/false statement as to whether
the oats were organic at the point of sale to a retail consumer. Fundamental to
making this claim is a model that is flexible enough to cater to a range of use
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cases, while ensuring that defined tolerances are not exceeded. Rather than being
stored in a contract state, each assertion was recorded on-chain as log events. The
decision to store as log events significantly reduces the cost of storing data on-chain.
In making this decision, it is important to note that querying log events is much less
straightforward than querying contract state.

From the data stored on the blockchain, a graph database (Neo4J) can then be
created containing each of the assertions. The choice to use a graph database was
made because it provides a flexible model for querying by matching patterns in the
graph. The assertions recorded are, by nature, highly variable—in terms of both their
associated properties and the connections they draw between entities and artefacts in
the supply chain. The flexibility of the graph model was therefore deemed essential
in implementing a system that could adapt to the variety of possible scenarios arising
in the business case. The final analytics model ran in a web application with access
to the graph database.

5. Integrations and the Application Layer Blockchain technology alone does not
provide certainty that the digital record reflects the physical commodity. While
the digital asset can be highly trustworthy, it is the confidence in the broader
data integrity that gives it value. To this end, a commercial solution requires a
robust digital infrastructure that connects the physical commodity to the digital
representation at every stage along the supply chain. AgriDigital sought to use
integrations with platforms and Internet of Things devices, sensors, and machinery
such as weighbridges wherever possible.

It was considered whether users could interact directly with the blockchain or
whether the interaction had to come through an application layer. Manual, human
data input continues to act as a threat to data integrity with poor, incorrect, or
incomplete data being hashed to the blockchain. For this reason, the choice was
made to interact only through application layers, making the AgriDigital platform
and web application both critical components in ensuring that data of a high quality
and consistency was posted to the blockchain.

Given the pilot used a trusted network of selected participants, it ran using a
private three-node Quorum chain and did not operate distributed components or a
clustered graph database. In a completely decentralized system, the Quorum chain
would have multiple operators interacting with various platforms and APIs, with
access to the same raw data allowing them to make independent verifications that
the assertions were correct.

Furthermore, where the blockchain or the application, such as the AgriDigital
platform, can integrate with machines and digital systems, such as a weighbridge
integration and quality testing instrumentation or processing equipment, this is
clearly preferred. Removing human data input and increasing the number of such
integrations allows for much more reliable data entry and increases the integrity
of the blockchain-backed data overall. Part of facilitating these integrations is
increasing digitization across businesses generally in order to build out the entire
digital infrastructure.

As a blockchain is an immutable store of data, it is critical to ensure both the
data and the actor making an assertion are correctly identified at the time of record
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on the blockchain. Digital identity was not a primary requirement for this particular
business use case, and therefore an identity component was considered, though not
integral, in the design for this pilot. A more robust digital identity solution should
be considered in subsequent work.

6. Digital Currency Operating digital currencies across a network remains a
challenge. New kinds of ‘programmable money’ aim to represent fiat currencies and
leverage the benefits of blockchain technology in being programmable. Approaches
such as ‘stablecoins’ attempt to provide stable exchange rates with fiat currencies
but were only in their infancy and were not considered.

Three methods of payment were considered for this pilot:

1. Payment in cryptocurrency
2. Payment in a network token
3. Payment off-chain using traditional banking methods

For the purpose of the business use case, cryptocurrencies such as Bitcoin were
considered to be too volatile and difficult for businesses to hold on a balance sheet.
Without the existence of a centrally issued Australian digital dollar, it was not
feasible to consider making payment in a cryptocurrency.

Payment on a blockchain can be significantly more efficient as it occurs in real
time and has the benefit of being programmable. This means complex sequences
of events and dependencies can be written into the blockchain itself to allow
certain events, such as matching title transfer to payment and automating financing
arrangements, within a single atomic transaction.

However, in designing for a commercial use case, it was critical that the farmer
received payment in a currency of value to them. Therefore a decision was made
to execute the payment on-chain in a network token, AgriCoin, and make a parallel
payment using traditional banking rails. This allowed the smart contracts to leverage
the programmable nature of digital currency through the AgriCoin and allowed the
farmer to receive payment in a currency of value to their business, being Australian
dollars. Payment on a blockchain using digital currency payment was proven to
be significantly more efficient, as it occurred in real time and had the benefit of
matching title transfer to payment. However, the trade-off in this model was that
the full benefit of this efficiency was not realized, and risk reintroduced, by moving
off-chain to make the final payment in Australian dollars.

12.4 Summary

With global caloric demand said to increase by 70% by 2050,7 the agriculture
industry is only growing. AgriDigital is building a piece of the digital infrastructure
to support the development of digital trust across agriculture supply chains. The

7FAO Synthesis Report, ‘How to Feed the World in 2050’, 2009.
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AgriDigital blockchain protocol aims to be a low-cost product accessible to all
participants across the supply chain.

The AgriDigital pilot program has continued to test the logic and technical
solution. Each iteration has included advances in the technology stack and more
complicated use of smart contracts to facilitate novel trade and finance arrange-
ments. Key challenges for the AgriDigital blockchain product going forward include
solving for digital identity, data integrity, and business privacy requirements.

Some commentators claim that in a few years’ time blockchain will no longer be
a buzzword—it will be as ubiquitous as the internet. Others believe that blockchain
is all hype; that it is an untested technology with huge risks and little upside. Farmers
have always been eager adopters of technologies that make sense and deliver real
value. AgriDigital is already starting to realize that value for farmers and agri-
supply chain participants, with a clear vision to incorporate blockchain as part of
the solution to solve the big challenges in agriculture supply chains.
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Case Study: SecureVote

Taking a Dapp from MVP to Production

with Max Kaye and Nathan Spataro

‘Democratise the world.’
— SecureVote’s Massive Transformative Purpose (MTP)

13.1 Introduction and Background

Voting seems simple enough. With paper, voters just fill out a ballot sheet and put
it in a box. To count the votes, the box is emptied and the ballots are counted in
public. However, there are many underlying complications. How do we know extra
votes have not been added? How do we know each voter has voted at most once, or
exactly once? If a voter claims their vote was not in the final tally, how could we
check? How do we know the count is accurate, especially if it can vary every time
votes are counted?

Solving all of these problems can be hard, even with paper systems. With
electronic voting systems, some things become easier. For example, there may be a
public electorate-wide list of voters, and we could ensure each vote has some kind of
verifiable cryptographic authentication. This can help us check to who did not vote.
And, of course, tallying votes is fast and reliable in an electronic system. However,
electronic systems present us with other problems. How can we anonymize votes in
an electronic system? How do voters know whether their vote was included without
revealing who they voted for? How can we decide which votes are valid without a
privileged role?

The potential utility of blockchain technology for voting was identified early,1

and blockchain can help to solve some of these problems. However, using a block-
chain alone is not enough. The exact blockchain chosen, the consensus mechanisms
used, and the architecture of the voting platform are all important design decisions

1At least by December 2010: https://bitcointalk.org/index.php?topic=2299.msg31851#msg31851.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_13

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03035-3_13&domain=pdf
https://bitcointalk.org/index.php?topic=2299.msg31851#msg31851
https://doi.org/10.1007/978-3-030-03035-3_13


258 13 Case Study: SecureVote

that impact system capabilities. While this chapter does not describe solutions to all
of the hard problems with online voting, it does describe architectural concerns for
robust, upgradable, multi-user smart contracts used by SecureVote to address these
problems.

This case study concerns the development of Tokenvote, a general purpose, mul-
tichain governance system for blockchain-based tokens developed by SecureVote.
Tokenvote uses the Solidity language and is deployed to Ethereum.2 Tokenvote
supports arbitrarily complex append-only voting systems and has been designed
to be modular, upgradable, and configurable. SecureVote was founded in 2016 to
provide affordable, turn-key voting systems of all types and at all scales.

In this chapter we will cover many of the challenges encountered and trade-
off decisions made while taking this smart contract-based voting solution from a
minimum viable product (MVP) to production. This journey spanned 4 months,
numerous redesigns, and all of the ecosystem issues mentioned above. We will not
describe the voting functionality in detail—the principles are outlined in the sidebar
below—but rather focus on how the architecture and overall design changed over
development. The discussion is in terms of the Solidity language on Ethereum,
but many of the architectural issues apply across smart contract languages and
platforms.

Principles of Anonymous Voting Using Blockchain
Through a combination of public-private key cryptography and peer-to-

peer shuffling, SecureVote achieves that voters can vote anonymously and
later verify and confirm that their vote has been recorded correctly. Voters
cannot prove which vote was theirs, and no one else can find out how they
voted.

To achieve these goals, a ballot is prepared with an electoral roll, contain-
ing all addresses that are allowed to vote. For this ballot, voters first create and
anonymize an ephemeral voting key pair, which is discarded after the ballot
completes. The voters use this key pair to anonymously sign their actual vote.

Two rounds of shuffling are necessary: the first one to create the ephemeral
anonymized key pairs and the second one for the actual voting. In each round,
the shuffling is done off-chain, in a peer-to-peer fashion but relying on on-
chain information like the electoral roll; and the results of the round are
published on-chain. After each round completes, each voter confirms that the
result is well-formed and that their vote/ephemeral public key was recorded
correctly, by signing the result.

(continued)

2Links to the Tokenvote source code and Ethereum documentation appear in Section 13.6 at the
conclusion of this chapter.
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Say there are 50 voters. The ballot ensures that each voter can vote at most
once and only voters on the anonymized electoral roll can vote. If all 50 voters
confirm that their individual vote was recorded correctly, then we know that
all votes were recorded correctly. In other words, the number of signatures on
the ballot must match the number of voters exactly.

More details can be found at https://gitlab.com/exo-one/svst-docker/blob/
master/svst-docs/secure.vote.white.napkin.md.

13.2 The MVP Prototype

In late 2017, SecureVote implemented a small MVP to facilitate early governance
for the US-based Swarm Fund, a blockchain-based organization facilitating the
creation of securitized tokens. Although Swarm Fund’s security tokens live on a
Stellar-based blockchain, their organization-wide token (SWM) is an ERC20 token
on Ethereum.

Swarm (unlike many ERC20-based organizations) were proactive about gover-
nance from the start. In their whitepaper they described the first version of their
Liquid Democracy Voting Module (LDVM), a system designed to support the
governance of both the foundation and the investment opportunities offered via
their platform.3 There are two important aspects of their design that are common
in systems of distributed governance: delegation and stake-weighted votes.

• Stake-weighted votes: In many ballots, not every vote is weighted equally, or
some parties may have an unequal number of votes. The most common example
of stake-weighted voting is by shareholders at a company’s annual general
meeting (AGM). Each shareholder votes with a weighting proportional to the
number of shares they own: 1 share, 1 vote; 2000 shares, 2000 votes. For similar
reasons, most token-based communities choose to use stake-weighted votes.

• Delegation: Voters can choose another party to act on their behalf. On a
blockchain, this could be another account they own, for example, allowing voters
to delegate voting power from tokens they own in a cold wallet to a ‘voting-only’
account in a hot wallet. Or, the delegate could be someone else’s account, for
example, a prominent community member. Delegation is a common feature of
modern digital governance systems. It is similar to the idea of a representative
in government but can be done on a per-voter basis. In some systems multiple
delegations can be chained together. The original voter can always stop the

3Swarm’s LDVM design uses fairly standard patterns, and the requirements are currently met by a
subset of Tokenvote’s capabilities.

https://gitlab.com/exo-one/svst-docker/blob/master/svst-docs/secure.vote.white.napkin.md
https://gitlab.com/exo-one/svst-docker/blob/master/svst-docs/secure.vote.white.napkin.md
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delegation and vote directly; only if a voter does not vote does the delegate inherit
the voter’s weighting.

SecureVote was responsible for the initial implementation of Swarm’s gover-
nance framework. This initial deployment had only a few requirements:

R1.1 Facilitate an open ballot for all SWM token holders and all delegates.
R1.2 Support optional delegation to arbitrary Ethereum addresses.
R1.3 Stake-weight votes according to voters’ SWM balances and delegations.
R1.4 Support the deterministic audit of the ballot by arbitrary actors.
R1.5 Support the encryption of votes such that the result is unavailable until the

respective secret key has been published.

These requirements seem simple but are practically impossible to meet using
only smart contract platforms like Ethereum and on-chain computation, where all
storage, auditing, and delegation resolution occurs within the blockchain’s virtual
machine. There are two primary reasons for this:

• Historical access: a naive voting system might check a voter’s balance at the
time the vote is cast. However, this approach introduces multiple race conditions
and makes handling delegation difficult. The correct approach is to use snapshots
at the start and end of the voting period to retrieve balances and delegations,
respectively. Ethereum does not support this kind of arbitrary historical access.

• Transaction cost: with fee-per-operation blockchain platforms, like Ethereum, it
is prohibitively expensive to repeatedly load items from storage (like balances,
delegations, and votes) and run tightly looped algorithms such as recursive
delegation resolution or vote counting. As an example: a well-tuned smart
contract could process a maximum of around 400 votes per Ethereum block,
or 1600 votes per minute, based on a gas limit of 8 million gas. Processing
greater volumes requires splitting the operation across multiple transactions, a
tactic which adds overhead and code complexity. Some of the more interesting
features, like on-chain decryption, are simply untenable under fee-per-operation
models.4

SecureVote has previously argued that secure voting (be that on paper or online)
is impossible at scale without the use of a well-constructed blockchain. This is due
to three goals:

• Immutability: the voting record must be append-only and cannot be changed
(even if individual votes can be replaced).

• Censorship resistance: no actor should be capable of preventing a voter from
submitting their vote, except through violence. This requirement precludes
purely proof-of-stake chains in most cases.

4Note: computations like on-chain decryption can be more practical with protocol-layer optimiza-
tions such as the ecrecover function supported by Ethereum.
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• Consensus: voters and auditors must agree on which votes are to be counted both
during and after the voting period, and these rules must be non-authoritarian (due
to the need for censorship resistance), objective, and non-discriminatory.

All centralized systems (including recent end-to-end verifiable designs such as Prêt
à Voter) fail at least one of these requirements (usually censorship resistance) and
are thus not fully secure.

Although Requirement R1.4 (deterministic audit) requires a blockchain to store
vote data, it does not require that the audit itself is performed on-chain. The lack of
historical access available to smart contracts5 meant SecureVote needed to audit the
ballot off-chain. Given this, we opted to move as much processing and functionality
off-chain as possible without compromising the platform’s integrity. Decryption of
votes was done every time an audit was run.

The initial MVP was incredibly simple, with only three components:

• A small smart contract of around 100 lines of Solidity code, to securely deliver
ballot details and store votes

• A rudimentary auditor to authenticate voters, decrypt votes, allocate the appro-
priate weighting, and resolve delegations

• A user interface

At this stage, the MVP was unable to handle multiple ballots or communities,
and an individual smart contract had to be deployed for each ballot, costing around
800,000 gas at a minimum. Although this rudimentary system was quite capable of
handling Swarm’s needs for the next few months, it was unsuitable for general use
and required costly manual attention for every deployment.

13.3 Building Tokenvote

Although the MVP was functional and satisfied basic requirements for one-off
ballots, it was not a fully fledged product. Prior to February 2018, SecureVote
intended to launch their platform via a custom, separate blockchain they had been
developing since June 2017. Although development had been progressing steadily
(two prototypes existed at this stage), it was not progressing quickly. In order to
launch a viable platform in the shortest period of time, they made the decision to
pause development of their custom chain, and pivoted to building out the MVP
into a general software-as-a-service (SaaS) platform: Tokenvote. This was to reduce
development time and support most of the features of their custom chain, albeit with
reduced capacity.

This section covers many of the problems SecureVote encountered while building
Tokenvote based on the MVP described above. For each problem we will look at one

5Ethereum smart contracts have access to the past 256 states only (corresponding to the past 256
blocks), a period of approximately 1 h.
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or more potential solutions and discuss compromises. Some simplified Solidity code
is used in the presentation.6 The simplifications are made to keep the examples as
short as possible, so best practices are sometimes ignored.

As a more generic platform, there were additional requirements:

R2.1 Centrally manage and track groups (democracies), including Ether payments
and permissions.

R2.2 Allow group administrators to create new ballots, and control permissions
around ballots from community members.

R2.3 Extensibility and maintainability: any component can be upgraded, new
components can be added, and Tokenvote must support migration to another
platform in the future.

R2.4 Browser compatible: the whole stack should be able to be run in a browser,
excluding the Ethereum nodes themselves, without compromising the secu-
rity model.

The goal was for Tokenvote to facilitate everything the Swarm prototype did and
more, but to cater for many groups, each with many ballots, without needing any
interaction with SecureVote staff.

13.3.1 Tokenvote Architecture Overview

The initial, planned architecture for Tokenvote is shown in Fig. 13.1. After numerous
iterations the final architecture is as shown in Fig. 13.3. Each is discussed below.

Planned Architecture

In the initial architecture of Fig. 13.1, administrators interact with an on-chain
component that serves as a central hub, which SecureVote call the Index. This
component is responsible for all administrative functions, including payment of
fees for holding a ballot. The Index also keeps track of groups of voters, called
Democracies. If fees are paid, a ballot is set up for a Democracy through a factory
contract, the Ballot Box Factory. See Section 7.4.4 for a general discussion
of the factory contract pattern. This factory contract can create a ballot by deploying
a new Ballot Box smart contract, through which voters can cast their votes.

For the reasons explained around the MVP above, tallying and weighting of the
votes is done offline through an Auditor component. This component is available
to any voter, so that independent auditing is possible. The Auditor also queries the
relevant ERC20 contract for token holdings and other details as required, including

6Simplifications include omitting keywords like view or pure on function declarations, and
declaring functions public instead of external.
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Democracy

ID (democHash)
Admin
ERC20 reference
Time remaining

Ballot

Start �me
End �me
Crea�on �me
Deprecated?
Public key
Private key
Misc data

Vote

Vote data
Cast �me
Sender
Misc data

0..* 1 0..* 1

Fig. 13.2 Logical view of the required data structure, as a UML class diagram

delegation and balances on other chains. This allows the auditor to consider tokens
across the public Ethereum and Ethereum Classic blockchains, among others.

The logical data structure for this design is depicted in Fig. 13.2. As shown, each
democracy can have an arbitrary number of ballots, and each ballot can have many
votes. Each vote belongs to one ballot and each ballot to one democracy.

The reference to the relevant ERC20 contract is stored for the democracy.
Encrypted ballots can be held by generating a key pair, publishing the public key
for all voters to encrypt their votes, and revealing the private (secret) key after the
end time of the ballot. This method avoids influence of intermediate results on voters
while the ballot is ongoing.

Final Architecture

In the final architecture depicted in Fig. 13.3, the basic components are still present,
but there are some significant changes:

• Instead of creating one smart contract per ballot, all ballots that use a particular
feature set are stored in the same contract, the Ballot Box Storage.
This includes ballots from different democracies. It in turn relies on the code
outsourced to the Ballot Box Library contract, implementing the data
contract and library contract patterns from Section 7.4. Collapsing all ballots
into few smart contracts is more efficient in terms of gas cost. As discussed in
earlier chapters, this results in reduced monetary cost, increased throughput, and
reduced danger of network congestion.

• Following the same patterns to achieve upgradability and separation of concerns
in the Index, data on payments is stored in the Payments Backend, and
all other data for the Index is stored in the Data Store Backend. Pricing
for community ballots is calculated in the Community Ballot Payment
contract; adaptive, context-dependent pricing is needed to avoid spamming
democracies with too many ballots.

• To allow easy addressing, the Ethereum Name Service, ENS, is used.
The ENS Proxy implements the contract registry pattern (Section 7.4.1).
Requesters can look up the reference for the latest version of the Index contract.



13.3 Building Tokenvote 265

U
se

rla
nd

D
at

a 
Fl

ow
D

at
a 

R
ef

er
en

ce
 / 

Li
nk

Sm
ar

t C
on

tra
ct

Pr
og

ra
m

Le
ge

nd

Et
he

re
um

A
dm

in
is

tr
at

or
Ba

llo
t c

re
at

io
n 

an
d

ad
m

in
 fu

nc
tio

ns

In
de

x
D

em
oc

ra
cy

 0
xa

82
7.

..

D
em

oc
ra

cy
 0

xf
9b

3.
..

D
em

oc
ra

cy
 0

x9
80

d.
..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t 0

x8
ff3

bc
...

B
al

lo
t 0

x0
1f

da
4.

..

B
al

lo
t 0

x4
f0

2c
1.

..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t 0

x8
ff3

bc
...

B
al

lo
t 0

x0
1f

da
4.

..

B
al

lo
t 0

x4
f0

2c
1.

..

B
al

lo
t B

ox
 S

to
ra

ge

B
al

lo
t I

D
: 0

x8
ff3

bc
...

- V
ot

es
[]

- V
ot

er
s[

]
- B

al
lo

t D
et

ai
ls

Al
l B

al
lo

ts
 o

f t
he

 s
am

e 
ty

pe

B
al

lo
t I

D
: 0

x0
1f

da
4.

..

B
al

lo
t I

D
: 0

x4
f0

2c
1.

..

Pa
ym

en
ts

 B
ac

ke
nd

A
cc

ou
nt

 fo
r 0

xa
82

7.
..

A
cc

ou
nt

 fo
r 0

xf
9b

3.
..

A
cc

ou
nt

 fo
r 0

x9
80

d.
..

C
om

m
un

ity
A

uc
tio

n
Pa

ym
en

ts

EN
S 

Pr
ox

y

B
al

lo
t B

ox
 L

ib
ra

ry

Fo
r d

em
oc

ra
cy

 0
xa

82
7.

..
ER

C
20

 C
on

tr
ac

t

D
el

eg
at

io
n

D
at

a 
B

ac
ke

nd
D

at
a 

fo
r 0

xa
82

7.
..

- B
al

lo
tID

s[
]

- A
dm

in
s,

 e
tc

D
at

a 
fo

r 0
xf

9b
3.

..
D

at
a 

fo
r 0

x9
80

d.
..

...

Vo
te

rs

A
ud

ito
rs

Vo
te

rs
 s

en
d 

vo
te

s
di

re
ct

ly
 to

 b
al

lo
t

bo
x 

st
or

ag
e

Th
e 

In
de

x 
st

or
es

 re
fe

re
nc

es
 to

ea
ch

 b
al

lo
t b

ox
 s

to
ra

ge
co

nt
ra

ct
, a

nd
 e

ac
h 

de
m

oc
ra

cy
ho

ld
s 

re
fe

re
nc

es
 to

 it
s 

ba
llo

ts
.

A
ud

ito
r

Vo
tin

g 
U

se
r

In
te

rf
ac

e

A
dm

in
 U

se
r

In
te

rf
ac

e ...

...

...

F
ig
.1

3.
3

T
he

ar
ch

ite
ct

ur
e

fo
r

To
ke

nv
ot

e
at

de
pl

oy
m

en
t.

M
an

y
al

te
ra

ti
on

s
w

er
e

ne
ed

ed
be

fo
re

Se
cu

re
V

ot
e

co
ns

id
er

ed
th

e
da

pp
pr

od
uc

tio
n

qu
al

it
y



266 13 Case Study: SecureVote

In Chapter 5, we discussed ways in which blockchain can be used architecturally. In
the Tokenvote architecture, we note the following:

• Tokenvote uses the blockchain as a storage element, as a communication
mechanism for publishing ballots and votes, and as an asset management and
control mechanism for payments and checking stakes.

• The use of blockchain as a computational element in this architecture is limited.
Most computation is done off-chain, for the reasons outlined earlier. On-chain
computation serves primarily to enforce checks such as authorization, what to
store, and hash integrity. Other smart contract codes implement schemas for data,
particularly ballot data stored in the ballot box storage. Not all data schemas are
implemented in smart contract code, to allow for more flexibility in schemas that
are immaterial to the core concerns of the solution.

• Regarding the integration of blockchain into a system as a component, this
architecture is rather interesting, in that there are only in-browser components
in addition to blockchain. However, running the auditor in-browser relies on
SecureVote’s full blockchain nodes, which introduces some level of trust on their
integrity and truthfulness. Alternatively, anyone could host their own full node
to function as an auditor. However, an auditor requires the full history including
all states, which prevents syncing the blockchain through fast-sync, and requires
over 1TB of SSD space at the time of writing.

SecureVote decided to use Ethereum as a technology platform for two main
reasons. First, Ethereum’s ecosystem was the most attractive, especially the support
for ERC20 tokens. Second, despite its limitations, Ethereum was the best available
option in terms of security, the execution environment, and the network. To
benefit from lower fees, Tokenvote contracts can also operate on Ethereum Classic:
transaction fees in fiat currency were a factor of 10–30 lower during the development
of Tokenvote.

Qualities and Trade-offs

The common blockchain trade-off is between transparency and confidentiality, and
this is present in Tokenvote. How voters voted needs to remain confidential, but each
voter needs the transparency and certainty that their vote has been counted. Out of
the options for how data can be stored (discussed in Section 6.3.3), SecureVote
decided to use smart contract variables. This was to (i) avoid the need for offline
interpretation as much as possible and (ii) ensure integrity, since, e.g., logs are
computed in each full node and are not directly part of consensus.7

Cost, as discussed in Chapter 9, played an important role. Gas cost, complexity
bounds, and limitations of the platform and their impact led to the revision of certain

7https://ethereum.stackexchange.com/a/1309.

https://ethereum.stackexchange.com/a/1309
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design decisions, such as collapsing all ballots into one smart contract and storing
most ballot details (e.g. title, description, and options) off-chain.

In terms of performance, discussed in Chapter 10, throughput plays the most
important role. The latency requirement is that feedback to users confirming the
recording of their vote should be given within reasonable time, on the order of 1–
2 min. For both throughput performance and cost reasons, SecureVote minimized
the complexity of voting transactions.

Dependability and security concerns (Chapter 11) are of course very important
for a voting platform. In terms of availability, the most impactful issue would
be transactions that are not included. This concerns primarily new or upgraded
contracts and the transactions deploying them, since these transactions can incur
high gas costs. This risk has partly been mitigated by collapsing all ballot contracts
into a few reused contracts. Reliability is prominent when running full nodes with
full history over a long time, due to high network load and high requirements
on fast and sizeable disk space. Maintainability and upgradability are addressed
using the patterns discussed throughout this chapter. Safety in the Lamport-Alpern-
Schneider sense (see Section 11.3) is addressed through good coding practices and
thorough testing with close to full code coverage, including negative tests that
test failure cases. In terms of integrity, the solution relies on the strong, inherent
integrity features of blockchain, and on implementing tight authorization checks
for all functions. To ensure integrity for the stake weighting, stake holdings are
taken from before and after each ballot. Also, the Auditor components ensure
that all votes are counted. Auditing starts only 15 min after end of a ballot, which
corresponds to approximately 60 confirmation blocks.

13.4 Details and Code Samples

In the following, we discuss some of the issues and lessons learned in detail and
provide code samples where they are helpful.

13.4.1 Indexing and Externally Accessing Data

SecureVote’s earliest component for Tokenvote was the multi-democracy framework
(the Index), which would allow ballots to be created within a namespace that only
the democracy’s administrators had access to. Each time a ballot was to be created,
a new BallotBox smart contract would be deployed. To begin, the voting smart
contract MVP was reused, but a different approach was ultimately required.
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1 // contract: Index
2 mapping (bytes32 => Democracy) public democs;
3 bytes32[] public democList;
4
5 struct Democracy {
6 address erc20;
7 address admin;
8 Ballot[] ballots;
9 }

10
11 // return the number of democracies
12 function getDemocN() external view returns (uint) {
13 return democList.length;
14 }
Listing 13.1 Referencing rich data types via unique IDs. SecureVote still uses this pattern today

Initially, each democracy had a unique identifier, via a hash generated from
a number of parameters.8 Unique identifiers are important because they facilitate
cheap lookups via arrays or mappings.

In this case, SecureVote stored democracies in the Index as in Listing 13.1. This
code sample uses patterns that are important when upgrading smart contracts. Since
blockchain data cannot be moved easily during an upgrade, it should either be stored
in a separate data contract, following the data contract pattern (Section 7.4.2), or
remain in the older version of the smart contract and locked from further mutations.
This is a direct consequence of Requirement R2.3 and the nature of smart contracts.
For Tokenvote, we adopted the latter solution.

Note that in Listing 13.1, the array democList keeps an index of known keys,
and the function getDemocN returns the number of democracies. These provide
means for external users to discover information about the contract. Solidity does
not have primitives for this nor otherwise directly supports discovery of this kind
of information, so developers have to implement it specifically. The combination of
this mapping, array, and length getter means that it is possible for everything but the
ballots (stored in Democracy.ballots) to be easily read externally.9 Reading
the Ballots in each Democracy requires another set of getter functions (shown
in Listing 13.2).

Accessing all data in a smart contract is an important prerequisite to ensure
upgrade paths are available. For this reason, important state variables (for the most

8Choosing multiple parameters, particularly parameters outside of the user’s control, is important
to avoid collisions when using this technique.
9Technically it is always possible to read any arbitrary data stored on a blockchain at some level;
in the case of Ethereum and Solidity, the curious reader can find out about accessing arbitrary
variables in contract storage here: https://medium.com/aigang-network/how-to-read-ethereum-
contract-storage-44252c8af925.

https://medium.com/aigang-network/how-to-read-ethereum-contract-storage-44252c8af925
https://medium.com/aigang-network/how-to-read-ethereum-contract-storage-44252c8af925
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1 // contract: Index
2 struct Ballot {
3 bytes32 ballotSpec; // hash of the ballot specification
4 BallotBox ballotBox; // external smart contract reference
5 }
6
7 function getBallotsN(bytes32 democID) public returns (uint) {
8 return democs[democID].ballots.length;
9 }

10
11 function getBallot(bytes32 democID, uint ballotID)
12 public
13 returns (bytes32, BallotBox)
14 {
15 Ballot memory b = democs[democID].ballots[ballotID];
16 return (b.ballotSpec, b.ballotBox);
17 }
Listing 13.2 Accessing nested dynamic elements in arrays and mappings

part) require external getters. This allows other smart contracts to read the complete
state and helps maximize upgrade potential.

13.4.2 Splitting Up Contracts

Design patterns can increase code size. In general, adding an external function has
a very low runtime overhead. However, the additional space required can easily
be hundreds of bytes, depending on the number of arguments and data returned.
Although this will usually be inconsequential, it can cause issues due to many
blockchain platforms setting limits for the size and deployment cost of smart
contracts. In Ethereum (due to EIP-17010) smart contracts are limited to 0x6000
bytes (approximately 24 KB). Refer also to the deployment risk of large contracts
mentioned in Section 11.6.

In SecureVote’s case, Index grew rapidly during development and hit
Ethereum’s deployment limit. Managing the size of smart contracts is necessary for
any complex dapp deployed to Ethereum and similar networks. In this section we
show three approaches: using auxiliary contracts for non-core but useful operations,
using tightly coupled ‘backend’ contracts to offload storage and data processing,
and using libraries to allow common code to be used by multiple contracts and
hosted separately on the blockchain.

10https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
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Augmenting Smart Contraction Functionality via Auxiliary Contracts

Often, smart contracts serve two purposes: storing data and processing that
data. For example, a ballot box smart contract might include logic for storing,
tracking, and retrieving individual votes. However, to avoid separate HTTP
calls to retrieve each vote, it makes sense to try and batch these requests
to return all votes at once. A straightforward approach would be to add
this function to the ballot box smart contract itself. Rather than just the
function for individual votes, getVote(uint voteID), we could add
another function getAllVotes() to return all votes, and functions such as
getAllVotesFrom(address voter) to return all votes from a particular
voter. However, adding such functions increases contract size and introduces
complexity to the integrity-critical primary contract.

As an alternative approach, we can use auxiliary contracts. In this example, the
primary contract would retain the individual getVote(..) function. However,
getAllVotes() would not be added to the primary ballot box contract. Rather,
we create a second contract with a function getAllVotes(BallotBox bb)
which calls bb.getVote(..) for every vote and returns a corresponding array.
A single auxiliary contract can work with every instance of the primary contract (in
this case BallotBox).

This technique has significant benefits: the auxiliary and primary smart contracts
are only loosely coupled, so the auxiliary contract can be more easily upgraded or
deprecated; code for complex data processing is moved out of the primary contract,
reducing testing and attack surfaces; and there is greater flexibility around the type
of data returned.

SecureVote uses auxiliary contracts for several purposes:

• Delegation between voters and self-delegation across network boundaries
• Retrieval and preprocessing of votes
• As a lookup table for human-readable names

Adding a Backend Smart Contract

Sometimes a large, interconnected contract must be broken up. We discuss several
methods for this purpose here.

The simplest approach is to separate the data storage and longer-term data
processing into different contracts. Exactly what is split between ‘frontend’ and
‘backend’ contracts should be based on an assessment of what functionality is
likely to be more stable in the long term and what is likely to be more frequently
upgraded or replaced. There is a small performance cost to this approach. As a
smart contract is split up, it will need to know about the backend contract (and load
its address from storage), and the backend contract will need to grant permissions
to the frontend contract and verify these permissions. Each call between contracts
will also incur some additional fee for invocation and parameter passing. So, this
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approach is valuable for infrequently called functions (such as democracy creation)
rather than for frequently called functions (such as voting).

In Tokenvote, the Index is split in this manner. For example, when democracies
are created (and administrated), most of the operations (like calculating the unique
ID, storing data, and setting initial permissions) take place in the backend. Only
minimal functions are left in the frontend contract. As mentioned, a consequence
of this approach is that two sets of permissions must be verified. The first is for the
user when calling the frontend contract, and the second is for the frontend contract
when calling the backend.

This approach has some nice properties. More than one editor can be added,
provided the backend authentication has been architected appropriately. This means
an alternate frontend can be introduced, or the original frontend swapped out,
augmenting or introducing functionality.

Tokenvote required two dedicated backends and several other supporting smart
contracts all using this approach. Examples are Tokenvote’s ENS (Ethereum Name
Service)11 integration and an auction system for publishing a particular kind of
ballot. The latter contract is currently simply a placeholder for future functionality.

Using Libraries

Another way to split up functionality and code is to use a library. These are deployed
like Solidity contracts but cannot be called directly and have no state of their own.
Rather, they are ‘linked’12 (similarly to the way libraries are linked in C) and allow
the library to modify the state of the contract calling it. This is particularly useful for
logic repeated in multiple contracts. Examples of these sorts of libraries are in the
OpenZeppelin13 framework, which includes many code examples, base contracts,
and useful libraries, such as the ubiquitously used SafeMath library that has safety
checks on inputs.

SecureVote uses libraries in a few specific cases. First, a library is used to handle
code that needs to be identical across contracts, such as extracting data from packed
variables. Second, a library is used to version and manage the handling of votes and
ballots, leaving the container contract (which holds many votes and ballots) with a
cleaner and simpler codebase. Third, libraries are used like macros across multiple
contracts to wrap common multistep operations. Only the first two uses reduce the
calling contract’s size.

11A simple name system has been implemented over Ethereum allowing names like data61.eth
to be registered and resolved to an address (in the same way domain names resolve to an IP
address). In this case the Tokenvote index is resolved via index.tokenvote.eth. More
information can be found at https://docs.ens.domains/en/latest/.
12Libraries are used via the delegatecall operation, which means ‘run this code as if it were
inline here and give it direct access to my storage’.
13https://openzeppelin.org/.

https://docs.ens.domains/en/latest/
https://openzeppelin.org/
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Libraries are not as simple to upgrade as contracts, and while this is technically
possible,14 it requires preparation and a deep understanding of the underlying
blockchain. It can be easier and safer to upgrade an individual contract linked to
a new library, rather than the library itself.

13.4.3 Upgrades and Trade-offs

Recently, there has been increased interest in upgradable smart contracts. There
are many reasons to upgrade, including to add functionality, to mitigate potential
attacks, or to fix bugs. In this section we will describe two techniques used
by SecureVote which, when used together, allow for atomic upgrades without
downtime for other smart contracts. We also describe how SecureVote plans to
improve their upgrade procedure to expand atomic interactions to all users and
eliminate any sorts of race conditions entirely.15

We start by looking at a simple case of replacing an existing contract. Then,
we examine the upgrade of a prototype delegation contract and how SecureVote
currently manages upgrading the Index. Finally, we describe an oversight and how
SecureVote plans to address this.

Replacing Smart Contracts

When the interface to a smart contract is well known, it is trivial to replace it at a
future date. A simple way to upgrade a contract factory is shown in Listing 13.3.
There are three smart contracts here: an instance of Frontend and two instances
of contracts which implement the Backend interface. The Index instance stores
a reference to a Backend implementation, and upgrading is as simple as replacing
this reference. This method is very general and forms the foundation for other
methods discussed below.

At compile time, Solidity knows about the interface of remote smart contracts, to
generate logic for communicating with them and to check type safety. At runtime,
these checks are not performed. In Listing 13.3, the doUpgrade function accepts
an address newBackend, and after the contract is deployed, the owner is free to
call doUpgrade with any address, including that of a smart contract which does
not adhere to the AuxContract interface. We can use this lack of runtime checks
to implement upgrade schemes.

14One way to implement upgradable libraries: https://blog.zeppelin.solutions/proxy-libraries-in-
solidity-79fbe4b970fd.
15Although well-designed smart contracts can interact with Tokenvote atomically, a race condition
exists where an upgrade could take place between the creation of a transaction to the index and the
inclusion of said transaction. In this case the transaction would only affect the old index, and would
revert in most cases as the index would have lost permissions to modify data on the backend.

https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd


13.4 Details and Code Samples 273

1 interface Backend {
2 function replaceWith(AuxContract newExternal) public view;
3 }
4
5 contract Frontend {
6 Backend _backend;
7 address owner;
8
9 constructor(Backend initBackend) public {

10 _backend = initBackend;
11 owner = msg.sender;
12 }
13
14 function doUpgrade(Backend newBackend) public {
15 require(msg.sender == owner);
16 // let the current _backend know we are upgrading, if

needed
17 _backend.replaceWith(newBackend);
18 _backend = newBackend;
19 }
20 }
Listing 13.3 A simple, general way to replace smart contracts

SecureVote’s First Upgrade

Delegation in voting systems is usually straight forward. A voter can choose
someone else (the delegate) to act on their behalf, and if the voter abstains the
delegate’s vote is used instead. So each delegate votes with the combined power
of all their delegators (the voters doing the delegation). Many systems of delegation
also include delegation by categories or similar ways for voters to choose one of
multiple delegates depending on context.

Less than a month after deploying their first delegation smart contract,
SecureVote found they had made an oversight. Although users could make and
check delegations, there was no way to iterate through them, and there was no
way to find delegators given some delegate. Although, functionally, delegation only
works in one direction (where a voter chooses a delegate), resolving delegations is
more complex. There were two complications:

• In standard ERC20 implementations, there is no complete list of account holders.
This means it is impractical to iterate through all potential voters to check their
delegations.

• If the voter abstains, only the delegate’s vote and address are known. Without
delegation backlinks it is not possible to efficiently find the voters who have
selected a particular delegate.
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1 contract Version1 {
2 mapping (uint => bytes32) data;
3 function getData(uint i) external returns (bytes32) {
4 data[i];
5 }
6 }
7
8 contract Version2 {
9 mapping (uint => bytes32) data;

10 Version1 prevContract;
11
12 constructor(Version1 _prev) public {
13 prevContract = _prev;
14 }
15
16 function getData(uint i) external returns (bytes32) {
17 bytes32 r = data[i]
18 if (r == bytes32(0))
19 r = prevContract.getData(i)
20 return r
21 }
22 }
Listing 13.4 The general pattern of a layered upgrade

Since looping through (and caching) all historic delegations was not particularly
elegant, SecureVote opted to upgrade their delegation functionality by implementing
a second delegation contract which operated ‘over the top’ of the first. Only when
this new contract could not find a delegation would it check the original contract.
Since SecureVote references most contracts via ENS names, the upgrade was a
simple matter of deploying the new contract and updating the ENS resolution. This
general pattern is shown in Listing 13.4.

This simple pattern is very useful in the right contexts. Ideally the first contract
can be locked down when upgrading, such that no data can be added, but often this
is not necessary. That is because the first contract is simply a fall-back, and only in
the case that no new data exists (which would be stored in the second contract) is
the first ever called.

There are also some drawbacks to be aware of. If users continue using the first
contract, they might be able to change the data returned from the second, newer
contract. The approach may also require software updates depending on the dapp
in question. Finally, this technique does not work when contracts need to return
dynamic arrays or strings, as these cannot be passed between contracts. So whether
this technique is appropriate depends on the nature of the contract being upgraded.

SecureVote’s delegation contract was designed to handle all delegation require-
ments across all democracies, so voters could simultaneously delegate on a per-
token basis and globally. If a delegation for a particular token was not found, the
global delegation would be used. This is useful for self-delegating from a cold
wallet to a hot wallet. SecureVote’s first improvement was logging all known tokens
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for which delegations had been made, allowing them to iterate through all known
tokens easily.

SecureVote’s other improvement was to look up all delegations to a particular
address, exposed in a function called findPossibleDelegatorsOf. This was
done by looping through all known delegations and constructing an in-memory
array of delegations matching the delegate in question. One consequence of this
approach is that only potential delegators are returned; delegations need to be
checked individually before being treated as valid when calculating the results of
a ballot. This demonstrates a trade-off between work done on-chain and work done
off-chain. If backlinks were stored with the delegations themselves, the contract
would also require additional data structures and logic to store and maintain the
accuracy of these backlinks, increasing the cost for the voter. However, the chosen
approach implies that the findPossibleDelegatorsOf function cannot be
called from other smart contracts. When this function is called, the computation is
only ever done on the Ethereum node responding to the call, not across all full nodes
on the Ethereum network itself.

Complex Upgrades

The method above may be applicable for individual contracts but does not support
upgrades of a complex system of contracts. The pattern used by SecureVote in
Listing 13.5 (called an ‘upgrade pointer’) is suitable for singly linked contracts,
where the contract being called might be upgraded. In this example AContract
would call checkIndexForUpgrade() before sending any data to Index.

This example code shows the core idea, but the doUpgrade function could
be easily extended to allow for upgrade hooks or notifications to be sent to other
contracts. SecureVote extensively use such an extension to manage the multiple
interactions and permissions between Tokenvote’s smart contracts. A sample from
their Index contract is shown in Listing 13.6.

Multiple other contracts are notified of an upgrade via their upgradeMe
(address) method. SecureVote use this mostly for permission management, but
it supports other complex upgrades. When Index calls upgradeMe on another
contract, the permissions of Index are transferred to the new contract. Note also
the modifiers only_owner, which allows only the owner of the contract to execute
this function, and not_upgraded, which checks that the function can only be
called on the latest version of the Index.

Atomic Upgrades and Tokenvote

Two lines in Listing 13.6 differ from the others: ensOwnerPx.setAddr
(nextSC); and ensOwnerPx.upgradeMeAdmin(nextSC);. The contract
ensOwnerPx is an ‘owner proxy’ for index.tokenvote.eth, defined using
the Ethereum Name Service. Since this contract has administrative control over this
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1 contract Upgradable {
2 address public _upgradePtr;
3 }
4
5 contract Index is Upgradable {
6 function doUpgrade(address next) external {
7 require(msg.sender == owner);
8 _upgradePtr = next;
9 }

10 }
11
12 contract AContract {
13 Index index;
14
15 function checkIndexForUpgrade() internal {
16 if (index._upgradePtr() != address(0))
17 index = Index(index._upgradePtr);
18 }
19 }
Listing 13.5 This pattern allows other smart contracts to know about an upgrade and act
accordingly

1 function doUpgrade(address nextSC) only_owner() not_upgraded
() external {

2 doUpgradeInternal(nextSC);
3 backend.upgradeMe(nextSC);
4 payments.upgradeMe(nextSC);
5 ensOwnerPx.setAddr(nextSC);
6 ensOwnerPx.upgradeMeAdmin(nextSC);
7 commAuction.upgradeMe(nextSC);
8
9 for (uint i = 0; i < bbFarms.length; i++) {

10 bbFarms[i].upgradeMe(nextSC);
11 }
12 }
Listing 13.6 A sample from SecureVote’s Index contract showing how upgrades notify other
linked contracts. © 2018 SecureVote, reprinted with permission

name, it can expose functionality (like setting the address associated with the ENS
name) to multiple other accounts. In this case, the other accounts are a SecureVote
cold wallet and the Index contract.

When other smart contracts interact with Tokenvote, they first resolve the ENS
name to an address to ensure they are invoking the current version of Tokenvote
and not an old contract. Somewhat similarly, when voters use the Tokenvote UI, the
software finds the Index address via an ENS lookup, but this only guarantees the
address is correct at the time of the lookup. As mentioned above, there may be a race
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condition if an upgrade is made after the user loads the UI but before they create a
new ballot.16

As an aside, SecureVote have made extensive use of events in their contracts,
though unfortunately forgot to add an event for upgrades. If they had included one,
it would be entirely feasible for the UI to listen for upgrade events and to reload
contract instances when such an event is emitted. This would reduce the risk of race
conditions causing failed transactions.

13.4.4 Reducing Complexity and Cost

In preparation for production deployment, SecureVote began benchmarking and
optimizing many of the methods users would call regularly, like casting a vote or
creating a ballot. Several optimizations greatly reduced transaction fees for the end
user. One advantage of platforms like Ethereum is that the performance and gas
cost of function invocation can be measured accurately in test environments. As
mentioned in Chapter 9, rather than implementing dynamic gas costs, Ethereum’s
design opts for a dynamic price per gas operation. Thus measuring (and optimizing)
gas costs is separate from the price of a transaction.

During SecureVote’s benchmarking, the primary offender in terms of gas use was
identified to be the creation of a new ballot. The original architecture used a contract
factory to deploy individual contracts to manage each ballot. Although this allowed
them to reuse much of the code from the MVP, as they added features the cost of
deployment grew to 3,000,000 gas. During the worst periods of congestion,17 this
corresponded to a transaction fee of around US$30. SecureVote felt this was too
high and designed a more sustainable architecture for ballot creation.

A standard solution to this kind of problem is to refrain from deploying new
contracts. Instead of deploying one contract per ballot, SecureVote would deploy
one contract per type of ballot: a ballot storage contract, implementing the data
contract pattern described in Section 7.4.2. In order to maximize code reuse, ballot-
specific functionality like recording votes was not included in the ballot storage.
Rather, this was refactored out into a library of its own, allowing SecureVote to reuse
the ballot storage contract and interface with different libraries for vastly different
kinds of ballots. The results of this new architecture reduced ballot creation cost to
between 200,000 and 300,000 gas, a reduction of 85–95%.

However, this kind of change has many flow-on impacts. For example, their
previous voting and auditing architecture included the assumption that each ballot
lived at its own address. Under this new pattern, many ballots lived at the same

16Direct user interaction with the index only occurs on write operations; read operations call the
backend directly, so an update to the index does not affect this functionality.
17Such as the CryptoKitties Congestion Crisis of late 2017. https://media.consensys.net/the-inside-
story-of-the-cryptokitties-congestion-crisis-499b35d119cc.

https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
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address, and each had a unique identifier. Not only did voting-specific code require
updating, but the entire state model of the UI required refactoring to accommodate
ballot storage contracts, each holding multiple ballots. Even the URL routing logic
needed to be updated.

In general a ‘hub and spoke’ architecture (where new spokes are created via
newly deployed contracts) should only be used in cases where the cost of such
deployment is warranted. Any developers using this architecture should strongly
consider whether refactoring to a single, heavily used contract will improve
performance, user experience, and maintainability.

13.5 Summary

In this chapter, SecureVote described their experience of moving from an MVP
to a production dapp. We contrast the initial, planned architecture and the final
one, which resulted from many lessons learned and optimizations made during
the development. We also describe how the architecture relates to the functions
blockchain can play, which patterns are used and how, as well as the considerations
of the qualities and the trade-offs in the architecture. Finally, the previous section
covers many details, code samples, and (occasionally hard) lessons learned.

13.6 Further Reading

The Tokenvote source code is available on GitHub at https://github.com/secure-
vote/sv-light-smart-contracts.

Solidity documentation, including a very good ‘by example’ section, is available
at https://solidity.readthedocs.io/en/latest/.

The end-to-end verifiable voting design Prêt à Voter is described in Ryan et al.
(2009).

https://github.com/secure-vote/sv-light-smart-contracts
https://github.com/secure-vote/sv-light-smart-contracts
https://solidity.readthedocs.io/en/latest/


Chapter 14
Case Study: originChain

A Blockchain-Based Food Traceability System

with Qinghua Lu

14.1 Introduction and Background

A traceability system enables tracking products by providing relevant information
(e.g. origination, item status, events, or locations) during production and distri-
bution. Product suppliers and retailers often work with independent traceability
companies who are certified to inspect the products throughout the supply chain. If
everything satisfies the supply chain quality requirements, the traceability company
issues inspection certificates that attest to the quality and origination of products.
A traceability system is employed to expose these assurances as certificates. In
this context, security is important for accountability and auditability. A traceability
system normally stores information in conventional databases controlled by the
company. However, such a centralized data storage becomes a potential single point
of failure (operationally, and as a business) and is exposed to the risk of insider
tampering.

originChain is the name of the blockchain system concept being developed by an
independent third-party traceability provider (called ‘ITTP’ in this chapter). ITTP’s
conventional system provides traceability information for products imported from
overseas to China. This system has been integrated with several large e-commerce
websites in China and with public service agencies. Its traceability services are used
by hundreds of product suppliers and retailers to manage traceability information
for their products, and by millions of product consumers to access traceability
information. Each product supplier, on average, has about 20 products to be traced;
the granularity of the traceability information is rather coarse as it corresponds to
product packages rather than individual products.

© Springer Nature Switzerland AG 2019
X. Xu et al., Architecture for Blockchain Applications,
https://doi.org/10.1007/978-3-030-03035-3_14
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This chapter discusses a pilot study on replacing the conventional traceability
system with one based on blockchain. For this purpose, we first extracted a
traceability process with scenarios adapted from ITTP’s current system. Based on
this process, we created a new architecture, replacing the central database with
blockchain and designing the architecture to support better adaptability. The new
system can provide transparent tamper-proof traceability information, enhance the
availability of the data, and automate regulatory compliance checking. We describe
the implementation of this new architecture and its tests under realistic conditions,
using data from the conventional system.

To assess the suitability of blockchain—see also Section 6.1—the following
factors were taken into account. originChain is a multiparty system that spans
many participants such as product suppliers, traceability companies, and service
providers such as testing labs. These participants create and update information
used in product traceability and also access information recorded by others. Data
transparency and immutability are desired because participants and consumers need
to check the origin and authenticity of the products. So, blockchain may be an
appropriate technology to use. Because of the nature of the traceability information
and business characteristics such as the numbers of suppliers and products, the
performance of blockchain is likely to be adequate in this use case.

14.1.1 Traceability Process

In order to illustrate the use case, we depict a simplified traceability process as
shown in Fig. 14.1, using BPMN.1 The traceability company here would administer
originChain, coordinate multiple service providers to perform inspection services,
and issue certificates based on information provided by the service providers.

The process starts when a product supplier submits a quality tracing application
for a batch of products to the traceability company. The administrator processes
the application paper work (e.g. trading contracts, invoices, and order forms) and
payment. Every batch of products triggers the application of traceability services.
The agency assigns a factory examiner to inspect the factory at its address, including
the factory’s production capability and quality control process. After inspecting the
factory, a freight yard examiner is sent to examine products in freight yards and
to inspect on-site loading. The examiner attaches lead seals to the containers with
products if the process of on-site loading meets requirements. Meanwhile, a product
sample is sent to labs for testing. Once the application passes inspections and
testing, the traceability company issues the supplier a traceability certificate for the
commodity. Traditionally, all the traceability-relevant information and certificates
are stored in a conventional database maintained by the traceability company.

1Business Process Model and Notation—http://www.bpmn.org/.

http://www.bpmn.org/
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14.2 Architecture of originChain

A blockchain architecture for originChain is illustrated in Fig. 14.2. It consists of a
UI layer, management layer, data layer (off-chain), and blockchain layer containing
both data and some business logic. In terms of the categories in Chapter 5, the
blockchain layer provides storage, computation, and communication.

14.2.1 Users of originChain

There are three types of users: service users, traceability company/service providers,
and blockchain administrators. Service users include product suppliers, retailers,
and consumers. Product suppliers manage product and enterprise information
through a Product & Enterprise Management module, while product retailers and
consumers check the quality and origin of products through a frontend in the
originChain system. Suppliers apply for traceability services through the system
and aim to receive certificates for compliance with traceability regulations, to
demonstrate the quality and origin of their products to retailers/consumers. Retailers
and consumers trust ITTP as a third-party, to verify the quality and origin of
products.

Depending on agreements reached by the users and ITTP, services may include
factory examination, sample testing, product checking, on-site loading supervision,
and sealing. ITTP manages sample testing results through a Sample Test Manage-
ment module and manages traceability information, certificates, and on-site photos
using a Traceability Management module.

Blockchain administrators develop and deploy smart contracts in a Smart
Contract Management module and control permissions of smart contracts using a
Permission Control module. The settings of the blockchain network are managed
using a Blockchain Management module.

14.2.2 On-Chain vs. Off-Chain

What should be stored on-chain and what should be stored off-chain is a major
design issue for blockchain-based applications. The blockchain contains a full
history of all transactions that have ever occurred in the blockchain network. Such
information remains on the blockchain permanently. The ever-growing size of
blockchain and full replication creates challenges for data storage on blockchains.

originChain only stores sensitive and small data on-chain. This includes the
hashes of certificates and on-site freight yard photos, other traceability information,
and permission control information. Traceability certificates and photos are critical
for end users, and storing the hashes on blockchain can guarantee data integrity.
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Blockchain transactions store this hash value as a proof of existence of the original
raw file. Traceability information includes the information about product (batch
number, traceability result and number, place of origin, manufacturer, manufacture
date, and expiration date) and freight yard (loading port and inspection date). This
information is stored on-chain as variables in smart contracts. Information about
blockchain-level permission control is stored on-chain in a separate smart contract.

Off-chain data includes smart contract addresses, product/enterprise information,
traceability certificates, photos, and smart contract source code. The information
displayed for users consists of product-/enterprise-/traceability-related information
and blockchain-related information. originChain saves the addresses of smart
contracts off-chain to access data on-chain and stores the information of product/
enterprise off-chain due to its size and non-sensitivity. Traceability certificates and
photos are large and not suitable to store on-chain and therefore kept off-chain.

The smart contracts deployed on blockchain are in a binary format rather than
source code. Thus the human-readable source code of smart contracts in high-level
programming languages is stored off-chain in a smart contract repository for the
blockchain administrators to manage.

14.2.3 Design of Smart Contracts

Blockchain can be used as a software connector, providing coordination services
for components to coordinate through shared data and smart contracts. Figure 14.3
illustrates the high-level design of smart contracts used in originChain.

There is a factory contract deployed on the blockchain as a template to generate
smart contracts corresponding to the agreements between ITTP, service providers,
and product suppliers. The factory contract contains a list of contract templates,
which represent different combinations of traceability services. The factory contract
is called when the supplier submits the web form through the frontend UI. The
conditions defined in the web form, e.g. what traceability services are selected,
are passed to the factory contract through parameters for the factory contract to
instantiate new smart contracts. Other than the conditions defined in the legal
agreement, the generated smart contract also implements functions to check if
all the information required by regulation is provided. Other regulatory rules and
procedures can be implemented in the smart contract as well. A parametrized
factory contract provides a flexible way to create smart contracts and improves the
confidence that the smart contract is not modified by unauthorized people.

When the factory contract is called, a registry contract, a service contract, and
a data contract are created. This design implements the patterns contract registry,
data contract, and factory contract from Section 7.4.

The registry contract represents the legal agreement. The legal agreement is
linked with the on-chain smart contract by adding the address of the smart contract
into the legal agreement and adding the hash of the legal contract back to the
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Fig. 14.3 Structural design of smart contracts

smart contract—see also the legal and smart contract pair pattern (Section 7.1.3).
By binding a physical agreement with a smart contract, a bridge between the off-
chain physical agreement and the on-chain smart contract is established. The smart
contract codifies the conditions defined in the agreement. These conditions can be
checked and enforced automatically by the smart contract. The smart contract also
enables some automated regulatory compliance checking.

The registry contract contains the addresses of the service contract and the data
contract. Separating data and control is a basic principle in software design. Such a
separation allows the logic to be updated without affecting the data (and vice versa).
The data contract is not supposed to change often, while the control contract can be
much more flexible.

All the smart contracts running on blockchain can be accessed and called by
all the blockchain participants by default, because there are no privileged users
and every participant can join the network to access all the information and code
on blockchain. A permission-less function might be triggered by unauthorized
users. Empirical studies show that many smart contracts on the public Ethereum
blockchain can be terminated without authority. To prevent unauthorized invoca-
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tion, every smart contract in originChain has an embedded mechanism to check
permissions for every caller that invokes any of the smart contract operations. As
such, the embedded permission pattern (Section 7.4.3) is also implemented.

14.2.4 Dynamic Behaviour of Smart Contracts

In originChain, conducting an activity (i.e. processing a transaction) might be
based on multiple authorities (i.e. multiple account addresses). Smart contracts
are specified with a list of addresses that can authorize the invocation of certain
functions. Quorums of a minimum number of addresses required to authorize a
transaction can also be specified.

Here, an authority is a validation oracle that signs transactions based on external
state. This might block the progress of a transaction until a condition over the
external state is verified by the validation oracle who controls one or multiple of
the predefined trusted addresses.

One reason to introduce multiple authorities is that blockchain does not offer
mechanisms to recover a lost or a compromised private key. Losing a key results in
permanent loss of control over an account or smart contract. Using the mechanism of
multiple authorities, one participant can control more than one blockchain address,
to reduce the risk of losing control over their smart contracts due to a lost or
compromised private key. The list of the authority addresses can be also updated
with authorization from a quorum of trusted addresses.

14.2.5 Permission Control and Blockchain Management

As shown in Fig. 14.2, the deployment of the blockchain layer is as a
geographically-distributed consortium blockchain within ITTP, which has branch
offices in three countries. The vision is to establish a trusted platform that covers
other organizations, including labs certified by government, big suppliers, and
retailers that have long-term relationship with the company (e.g. e-commerce
companies that have already built trusted reputations with their customers).

The control of data on the blockchain is stored in a permission control smart
contract that defines permission for content management, writing smart contracts
and joining the consortium blockchain. To join the traceability platform, a company
sends a request off-line. After successfully passing a number of checks, ITTP
updates the permission control smart contract, which will allow the requesting
company to join the blockchain network and synchronize the historical blockchain
data.
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14.3 Analysis

On the basis of the prototype implementation, a number of analyses were conducted
to assess if the approach fulfilled requirements and expectations for originChain.
Here we discuss specifically the topics adaptability and latency.

14.3.1 Qualitative Analysis: Adaptability

Changes handled by the originChain system include adding or removing traceability
services from the legal agreement after the initial legal agreement is signed or
dynamic binding of testing labs based on their availability. The structural design
of smart contracts affects how easy it is to update smart contracts and thus the
adaptability of the whole system.

As discussed in Section 14.1.1, traceability services can be dynamically defined,
because the legal agreements signed between the product supplier/retailer and ITTP
often change due to customizations of the traceability process. Customization is
done through the factory contract. The function of a service contract can be updated
by replacing the address of its old version with the address of a new version. As
long as the interface between the service contract and the data contract is the same,
the updated service contract can still use the previously stored data.

If there are new requirements, for example, new types of information required
by a new regulation or new services provided by the service providers, the factory
contract can be updated to a new version to fulfil the new requirements. In this
case, the old factory is disabled, and the configuration of other modules is updated
accordingly.

Dynamic binding of labs is enabled by multiple authorities. Multi-signature
is a mechanism in Bitcoin that requires more than one private key to authorize
a transaction. In Ethereum, we can use functions defined in smart contracts to
implement a multi-signature mechanism. More flexibly, an M-of-N multi-signature
can be used to define that M out of N public keys are required to authorize a
transaction. We call M the quorum, or threshold of authority.

The MultiSignature contract in Listing 14.1 implements a multi-signature mech-
anism. In originChain, a user sends a request to originChain to issue a certificate.
Such a request requires the approval from both the corresponding service provider
and ITTP. The IssueCert contract inherits MultiSignature to use the mechanism.

The addresses of trusted authorities are predefined. The modifier agreeSig-
nature() adds additional code to the function issue() to make sure that certain
conditions are met before proceeding to execute the body of function. An authority
invokes issue() to agree to the request. agreeResult() is called to check whether
there is a quorum of signatures every time issue() is invoked. If so, the certificate
can be issued. The requester can withdraw the request by invoking the function
cancelAgreeRequest().
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1 contract MultiSignature{
2 uint total;
3 address[] authorities;
4 uint agreeThreshold;
5 address agreeRequester;
6 mapping(address => bool) agreeState;
7 ...
8 modifier agreeSignature(){
9 agreeState[msg.sender] = true;

10 if(agreeResult()){_;}
11 }
12 function agreeResult() internal returns
13 (bool signatureResult){
14 uint k = 0;
15 for(uint i = 0; i < total; i++){
16 if(agreeState[authorities[i]] == true)
17 k++;
18 }
19 if(k >= agreeThreshold)
20 return true;
21 else
22 return false;
23 }
24 function cancelAgreeRequest(){
25 if(msg.sender == agreeRequester)
26 ...
27 }
28 ...
29 }
30
31 contract IssueCert is MultiSignature{
32 //inherits MultiSignature
33 string temID;
34 bytes32 temCertHash;
35 mapping(string => bytes32) certificate;
36 function set(string ID, bytes32 certHash){
37 temID = ID;
38 temCertHash = certHash;
39 }
40 function issue() agreeSignature(){
41 //below replaces "_;" in agreeSignature()
42 certificate[temID] = temCertHash;
43 }
44 ...
45 }

Listing 14.1 MultiSignature contract
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1 contract DynamicBinding{
2 struct hashSecret{
3 bytes32 hashKey;
4 bool init;
5 bool verified;
6 }
7 mapping (address => hashSecret) secret;
8 //distinguish the struct initiated by
9 //different address

10 function initial(bytes32 key){
11 hashSecret a = secret[msg.sender];
12 if(a.init != true){
13 a.hashKey = key;
14 a.init = true;}
15 }
16 function changeKey(string oldKey, bytes32 newKey){
17 hashSecret a = secret[msg.sender];
18 if(a.init == true)
19 if(a.hashKey == sha256(oldKey))
20 a.hashKey = newKey;
21 }
22 modifier verify(address initiator, string inputKey){
23 hashSecret a = secret[initiator];
24 if(a.verified == false) && a.hashKey == sha256(inputKey))

{_; }
25 a.verified = true;
26 }
27 ...
28 }
29
30 contract BindingLab is DynamicBinding{
31 ...
32 function sampleTest(address initiator, string key)
33 verify(initiator, key){...}
34 //passing the parameter to the modifier
35 }

Listing 14.2 DynamicBinding contract

The DynamicBinding contract in Listing 14.2 provides more flexible permission
control, where a user can authorize the execution of the smart contract by using
a hash secret initiated by originChain. The hash secret is generated off-chain and
verified on-chain—see also the off-chain secret pattern in Section 7.3.2. Similar
as above, the BindingLab contract inherits the DynamicBinding contract to use
the mechanism. To initialize a hash secret, an ITTP employee invokes the initial
function to link the hash key with his/her address so that only the employee has
permission to change the hash secret using the changeKey() function after the secret
is revealed. The hash secret is exchanged off-chain to the authorized labs. The secret
key is verified by the modifier verify(). If the result is true, the lab providing the
secret key proceeds with the sampleTest() function to upload the result of a sample
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test. The smart contract requires that the secret is sent in plain form through a
transaction to verify the hash secret. Thus, after verify() is invoked once, the secret
is revealed. As mentioned above, large data is stored off-chain, and hash secrets can
be used for both off-chain and on-chain permission control.

14.3.2 Quantitative Analysis: Latency of Writing and Reading

We conducted experiments to test the performance of originChain. As discussed in
Section 14.2.2, the hashes of traceability certificates and photos are stored on-chain
to support data integrity. Generating and storing the hash value on blockchain and
querying and comparing hash values are the main operations used by originChain
and the end users. Thus, we here describe the experiments that focus on testing the
latency of writing and reading hash values with both the blockchain and a central
database. ITTP currently maintains a central database at one of ITTP’s branch
offices (Section 14.2.5). Thus, we conducted three groups of experiments on a local
database (for the branch office hosting the database), a remote database (for the
other branch offices that access the database remotely), and a physically distributed
consortium blockchain.

Our experiments were run on an Ethereum-based consortium blockchain. The
difficulty of the blockchain was set to 0x4000. On the public Ethereum blockchain,
the difficulty dynamically adjusts so that blocks are generated every 12 s on average.
On a consortium blockchain, difficulty can be configured according to the desired
throughput of the system. In our experiment, the average block interval is 13.3 s, the
maximum block interval was up to 58 s, and the minimum block interval was 1 s.
For each experiment setup, we conducted an experiment that ran 200 times.

Table 14.1 shows some statistics for write latency, in milliseconds. For block-
chain, we report two times: inclusion time and commit time. Inclusion time is the
time spent for the transaction to be first included into a block on the blockchain. For
commit time, we assume 12-block commit—refer to Section 11.6 for an in-depth
discussion. The write latency of a remote database is higher than a local database
due to additional network latency. The write latency of a blockchain is much higher
than a remote database because it includes both network latency for the propagation
of transactions and blocks and latency introduced by the consensus process.

Table 14.1 Latency of
writing (ms)

Blockchain Database

Inclusion Commitment Local Remote

Minimum 1348 72,870 1 418

First quartile 15,971 152,749 8 435

Median 25,494 176,332 10 439

Third quartile 35,666 204,159 11 446

Maximum 106,374 592,270 20 542

Average 29,453 187,938 10 441
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Table 14.2 Latency of
reading (ms)

Database

Blockchain Local Remote

Minimum 8 1 422

First quartile 10 12 437

Median 11 15 443

Third quartile 13 17 449

Maximum 129 33 485

Average 17 15 444

In this prototype, a private instance of Ethereum with the default consensus
mechanism was used, for convenience. However, in a production implementation,
it would be more likely that an alternative consensus mechanism would be used.
Nakamoto consensus and proof-of-work can be slow to commit transactions and
only has probabilistic commit guarantees. Nonetheless, even using Ethereum with
proof-of-work, the transaction write performance was acceptable for this use case.

Table 14.2 compares the read latency of the three configurations, in milliseconds.
The read latency of the blockchain is comparable to the read latency of a local
database, because reading a blockchain does not send transaction to the blockchain
network and so can be served immediately. In comparison to remote reading,
blockchain is indeed significantly faster.

14.4 Discussion

14.4.1 Architectural Design of Blockchain-Based Systems

Due to the unique properties of blockchain, there are design considerations that
are specific to blockchain-based applications. However, because smart contracts
are programs running on the blockchain, some of the usual architectural design
principles are applicable to smart contracts. The structural design of the smart
contracts has a large impact on cost if a public blockchain is used. The cost to
deploy a smart contract depends on its size because the code is stored on the
blockchain, which costs a data storage fee that is proportional to data size. Thus,
more lines of code cost more money. A consortium blockchain does not have to
use a token/currency; therefore per-transaction cost is not an issue for a consortium
blockchain. However, blockchain size is still a design concern because the size of the
ledger grows due to immutability and the full replication of the blockchain across
all participants. The constraints on the size of transactions and blocks also restrict
the complexity of smart contracts.
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14.4.2 On-Chain vs. Off-Chain

What functionality and data to handle on-chain and what off-chain is a critical
consideration when designing applications on blockchain. Performance and privacy
factors need to be considered. Performance highly depends on the deployment of
the blockchain. For example, a consortium blockchain can be configured to have
much better performance than a public blockchain. In the case of originChain, due
to the characteristics of the current systems (low write throughput because of the
coarse granularity of traceability information), limited throughput of the blockchain
is not the main concern. However, the data on blockchain is publicly accessible to
all the participants of the blockchain network. As such, private data (e.g. customers’
personal information) should not be stored on-chain. In the context of traceability,
large-sized sensitive raw data (e.g. traceability certificates and photos) are required
to be tamper-proof. Thus, only the hash of raw data is stored on-chain, while the
corresponding raw data is placed off-chain in a secure database.

14.4.3 Adaptability of Blockchain-Based Systems

Adaptability is a quality attribute required by many industrial projects that are
inherently dynamic. However, adaptability is rarely discussed in existing work
for blockchain-based systems. We view a blockchain as one component of a
larger distributed system. In originChain, we implement some of the business
logic on-chain as smart contracts. Thus, the structural design of smart contracts
also affects the upgradability of smart contracts and the adaptability of the whole
system. However, if the blockchain is used for data storage only, not much can
be done to affect adaptability of the whole system. Moving some logic to the
blockchain as done on originChain can leverage the trustworthiness of blockchain
as a computational platform.

14.5 Summary

Blockchain enables decentralization in new forms of distributed software archi-
tectures, where components can reach agreements on the historical system states
without trusting a central integration point. In this chapter, we described experiences
from designing, implementing, and testing originChain, a blockchain-based product
traceability system that restructures an existing system by replacing the central
database with a consortium blockchain. Our experience shows that the design of
smart contracts can improve the adaptability of the system. Our experiments demon-
strated that using blockchain only negatively affected write operations because of
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the consensus process, while there was positive impact on read operations for remote
offices, because every participant hosts a local full copy of the blockchain data
structures.

This chapter is partly based on our earlier works (Lu and Xu 2017).



Epilogue

Our goal with this book is to help software architects and engineers (and students
and researchers in these fields) to understand the concepts and implications of using
blockchain in their applications. We hope you benefited from reading it.

Here we first summarize some of the main points in the book. First, blockchain is
just one of a number of elements in the architecture of an application—unless your
application is a blockchain platform, of course. Blockchain can be used as a data
store, a computing platform, a communication mechanism, and a vault for digital
assets—see Chapter 5. Other elements in a typical system include user interfaces,
cryptographic keys, software clients, enterprise systems and external services, and
auxiliary databases. Before starting to design and develop, you should ask yourself
if it is really necessary or advisable to use blockchain—see Chapter 6.

Blockchain has some rather unique properties, leading to specific trade-offs. The
most prevalent of the trade-offs is transparency vs. confidentiality—however, the
choices typically depend on the use case and the philosophy of the organization (or
group of open-source developers) that is building the application.

Other main trade-offs concern on-chain vs. off-chain: which data, computation,
and communication should be done through blockchain? These decisions can impact
most system properties, including transparency/confidentiality, cost, performance,
maintainability/upgradability, and availability.

Some trade-offs can be resolved by using clever design solutions, and we
discussed 15 reusable patterns for such solutions in Chapter 7. Given the specifics
of blockchain and smart contract development, it is also worth considering a model-
driven engineering methodology, like the ones we discussed in Chapter 8. Models
not only allow code generation but also cost estimation (Chapter 9) and performance
simulation (Chapter 10).

Blockchain poses a number of challenges for dependability—see Chapter 11.
For instance, the network could decide to lower its block gas limit to counter a
DDoS attack; but the lower limit might prevent applications and legitimate users
from deploying new smart contracts. Also, blockchains do not normally have built-
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in support for transaction retry or abort, so you might want to implement those to
improve overall system dependability.

The case studies highlighted how blockchain can be used to reduce counterparty
risks in agri-supply chains, for voting, and for provenance tracking of food. One
big lesson is that the immutability of deployed smart contracts means that you need
to plan ahead if you want to be able to fix bugs, patch vulnerabilities, or add new
features in the evolution of your blockchain-based application.

The big question now is of course: what will the future hold for blockchain? It
is clear that blockchain technology will be transformative, but not exactly how. As
we argued in the introduction, blockchain has the potential to change the fabric that
connects people, companies, governments, and whole societies. To quote Amara’s
law:

‘We tend to overestimate the effect of a technology in the short run and
underestimate the effect in the long run.’

Blockchain networks can mirror complex networks, such as in supply chains, and
can dynamically adjust to accept new participants. Decentralization can facilitate
trade. For example, in decentralized energy networks, neighbours could trade locally
produced and stored electricity. There are some natural areas of application where
production use is already happening or will soon start. Many more applications
and industries will follow. Business models will be disrupted, and new ones will
be developed. However, many of the fundamental changes will only happen in the
invisible infrastructure at the backend of applications, and users will not directly see
how these technology changes lead to impact for them.

The current phase of blockchain technology development is characterized by
a broad front of innovation, leading to a lot of diversity. There are over 1300
cryptocurrencies at the time of writing, and many blockchain platforms exist.
Chapters 3, 5, and 6 can help readers navigate the space of technologies and facilitate
decision-making. Following this phase of increased diversity, there might be a phase
of consolidation, and a small number of heavily used platforms might emerge.

Even without the complexity of the diversity of platforms, many people are
struggling with the concepts and the implications of blockchain. For people starting
to work in the space, there is a steep learning curve, but because of the ongoing rapid
rate of innovation, you will find that a year later you will still learn something new
and important about blockchain every week. This can be daunting and requires good
information and education, and we hope to contribute with this book by sharing our
learnings and insights gained from working in the area for the past 3 years.

In the platform game, everybody wants to own the platform—every company
wants to build the next app store. In blockchain, nobody needs to ‘own’ the
technology platform; it can be democratized. However, second-level platforms can
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be built on top of main chains, which in turn might be controlled or dominated by
one organization.

What is clear is that we live in interesting times. We hope you enjoyed the book
and are ready to be part of shaping the future of blockchain.
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