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Abstract. Helping end-users to find the most desired points in the
database is an important task for database systems to support multi-
criteria decision making. The recent proposed k-regret query doesn’t ask
for elaborate information and can output k points for users easily to
choose. However, most existing algorithms for k-regret query suffer from
a heavy burden by taking the numerous skyline points as candidate set.
In this paper, we aim at decreasing the candidate points from skyline
points to a relative small subset of skyline points, called frequent skyline
points, so that the k-regret algorithms can be applied efficiently on the
smaller candidate set to improve their efficiency. A useful metric based
on subspace skyline called skyline frequency is adopted to help determine
the candidate set and corresponding algorithm is developed. Experiments
on synthetic and real datasets show the efficiency and effectiveness of our
proposed method.
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1 Introduction

Extracting a few points to assist end-users to make multi-criteria decisions is an
important functionality of database systems. Top-k [1] and skyline [2] queries
are two well-studied tools that can effectively reduce the output size. But top-k
query requires the utility functions from users and skyline query cannot control
the output size. To solve these problems, Nanongkai et al. [3] first proposed
regret-based query which gives the user a concise, summary result of the entire
database and outputs k£ points that minimize the users’ maximum regret ratio.

Technically, the input of k-regret algorithms is the points in the whole
dataset, but existing algorithms [3-7] usually take the skyline points as the
candidate points. This is because the points dominated by skyline points have
less possibility of being k representative points. However, taking skyline points
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as candidate points is of low efficiency for computing k representative points
because the size of skyline points grows exponentially with dimensionality [8].

Motivated by these, we devote to finding a small size of candidate set from
the entire skyline points so that the k-regret algorithms can be applied efficiently
on the smaller candidate set to improve its efficiency.

In this paper, we define a set of candidate points called frequent skyline points
based on skyline frequency. Skyline frequency is a metric that indicates how often
the skyline points have been returned in the skyline when different numbers of
dimensions are considered. Intuitively, a point with a high skyline frequency is
more interesting as it can be dominated on fewer combinations of dimensions.

To avoid the expensive cost of calculating skyline frequency given by the
naive method, we propose SFapprox to determine the candidate set. The main
contributions of this paper are listed as follows:

— We define the concept of frequent skyline points based on skyline frequency
which provide candidate points for k-regret query.

— We present efficient algorithm to determine the candidate points and cor-
responding strategy is provided to make a tradeoff between the maximum
regret ratio and time complexity.

— Extensive experiments on both synthetic and real datasets are conducted
to evaluate our proposed method and the experimental results confirm the
efficiency and effectiveness of our proposed algorithm.

The rest of this paper is organized as follows. We present related work in
Sect. 2. Section 3 contains required preliminaries and problem definition for our
approach. In Sect. 4, we describe our algorithms to determine the candidate set.
We show our experimental results in Sects.5 and 6 concludes this paper and
points out possible future work.

2 Related Work

Motivated by the deficiencies of top-k and skyline queries, the k-regret query
was proposed by Nanongkai et al. [3]. A number of algorithms were proposed
to extend the concept to some extent [4,9]. Recently, a number of algorithms
[6—7] were proposed to obtain a solution with a small maximum regret ratio.
Specially, the algorithm Sphere proposed by [7] is an elegant algorithm, which
is considered as the state-of-art algorithm, because the maximum regret ratio
of the result is no restriction bound and can be executed on datasets of any
dimensionality. However, these studies aim at minimizing the maximum regret
ratio of a selected set, ignoring the importance of reducing the size of candidate
set to improve the efficiency.

There are also some researches related to subspace skyline. Yuan et al. [10]
and Pei et al. [11] proposed the concept of SKYCUBE, which computes the sky-
lines of all possible subspaces. But the methods mentioned above can only com-
pute the skylines in subspace, they have not been involved in reducing the num-
ber of candidate points for k-regret query.
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We adopted the metric for ranking skyline points called skyline frequency
proposed by [12]. However, the efficiency of skyline frequency is hard to verify.
In this paper, we combine the concept of skyline frequency with our candidate
set determination for k-regret query and provide a reasonable verification to the
superiority of the points with high skyline frequency.

3 Preliminaries

In this section, the concepts of k-regret query and candidate set are introduced
to bring out our problem definition.

Given a d-dimensional dataset D with n points and an output size k, where
d < k < n, the k-regret query takes a dataset D as input and outputs a set R
of k points from D such that the maximum regret ratio of R is minimized.

A user’s preference to a point is represented by the utility function f. Thus
the utility of a point p for the user with utility function f is f(p). The maximum
utility derived from a dataset D is the gain of D, denoted by gain(D, f). If we
consider gain(D, f) as the user’s satisfaction to the set D, then the regret the
user seeing a representative set R instead of the whole database is gain(D, f) —

gain(R, f) and the regret ratio is rrp(R, f) = gam(?&ﬁ(g?}?m’ﬂ.

Since utility functions vary across users, any algorithm for a k-regret query
must minimize the maximum regret ratio for a class of utility functions. In this
paper, we only consider linear utility functions, denoted by F, because they are
very popular in modeling user preferences [3,4]. Thus the worst possible regret

for any user with a utility function in F is defined as follows.

Definition 1 (Maximum Regret Ratio). Define rrp(R, F) = supfcr
mazpep f(p)—mazyerf(p)
mazpep f(p)

We take one of the classical k-regret query algorithms RDPGREEDY [3] for
example to illustrate how the size of candidate set affects the running time.
According to the definition of maximum regret ratio, RDPGREEDY needs to
find the point that currently contributes to the maximum regret ratio. To be
specific, the algorithm needs to inspect each of the candidate points (except
selected points) by computing the maximum regret ratio to decide whether the
point will be included in the result set or not. By reducing the size of candidate
set, the efficiency of the algorithm can be greatly improved. Now we explain
the idea of reducing the size of candidate set via skyline frequency by a simple
example.

Considering the following example, a Chinese school wants to recruit k
English teachers. They measure the candidates from d aspects, such as the capa-
bility of speaking, listening, reading, writing and so on, where greater values are
better. Table1 shows a list of candidates which are also the skyline points of
all the candidates (only consider the first three aspects). Intuitively, we always
want to hire someone who is competent in more aspects among all the candi-
dates. Table 2 lists all the subspace skylines. We observe that ps is the skyline of
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Table 1. English teacher recruiting example Table 2. Skylines of all subspaces

Candidate|Sy |S2 |Ss | Frequency Subspace | Skyline

P 8.4[5.1(8.3[2 Sy {ps}

P2 5.2|8.5(6.6(1 So {ps}

D3 9.3[6.1]7.4]4 Ss {pa}

Pa 4.7(5.2]10 [4 S1,8:  |{ps,ps,pr}

Ps 4.2]8.819.2]2 82,83 |{p4,p5,P6,Ps}

D6 5.6[10 [3.1]4 S1,8  |{p1,p3,pa}

p7 8.2[9.2]2.52 S1, 82, 83 |{p1, P2, P3,Pa, D5, 6, 7, Ps }
s 1.119.3]5.3[2

subspace {51}, {S1, S2}, {S1, 53} and {51, Ss, S5}, which means pj is better than
anyone else when considering these aspects mentioned above. So, if we choose
only one person, p3 has more probability of being selected. On the contrary, we
observe that ps is not the skyline of any subspace, so the possibility of being
selected of po is small.

The above example shows that if we consider a smaller subset of skyline points
as the candidate set, the points with high skyline frequency are preferred. So we
define the problem of candidate set determination based on skyline frequency.

Problem Definition. Given a set D of n points in d dimensions, our problem of
processing k-regret query via skyline frequency is to determine the candidate set
of k-regret query by selecting the points with high skyline frequency, meanwhile
keeping the maximum regret ratio as small as possible.

4 Candidate Set Determination via Skyline Frequency

In this section, we mainly concentrate on the computation of skyline frequency
and develop efficient algorithm to solve our problem.

Given a d-dimensional dataset D, S is the dimension set consisting of all the
d dimensions and .S; represents each dimension. Let p and ¢ be two data points
in D, we denote the value of p and ¢ on dimension S; as p.S; and ¢.5;. For any
dimension set B, where B C S, p dominates ¢ if VS; € B, p.S; < ¢.S; and 3S; €
B,p.S; > q.5;(i > 1,j < d). The skyline query on B returns all data points that
are not dominated by any other points on 3. The result is called subspace skyline,
denoted by SKY(D). See the running example in Table1, SKYg, (D) = {ps},
SKY52 (D) = {pg,pﬁ,p7}, where B; = {Sl} and By = {Sl,Sg}.

Given D on &, a SKYCUBE consists of a set of subspace skyline points in
2¢ — 1 non-empty subspaces. The SKYCUBE is shown in Table 2.

Definition 2 (Skyline Frequency). Given a skyline point p € D, skyline fre-
quency, denoted by freq(p) is the number of subspaces in which p is a skyline
point.
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For example, considering the example in Table1, we can get all the sub-
space skyline points (Table2) and count the freq(p) of each point. The skyline
frequencies of each skyline point are shown in Table 1.

The naive skycube-based approach, called SFsxycupg, calculates the skyline
frequency by dividing the full space into all 2¢ — 1 subspaces and counting the
number of occurrences of each subspace skyline points. However, it requires the
skylines to be computed for each of an exponential number of combinations of
the dimensions, and the algorithm does not scale well with dimensionality. Thus,
we propose an approximate algorithm named SFapprox t0 overcome these two
drawbacks. From this point of view, to avoid the high complexity of precise
counting, we present an effective approximate counting method that is based on
extending a Monte-Carlo counting algorithm [13]. In this section, we illustrate
how we adapt the method to combine with the computation of skyline frequency
and show the optimization we do to make the algorithm more effective. The main
procedure of our approach is shown in Algorithm 1.

Algorithm 1. SFppprox algorithm

Input: dataset D, n, 2%, k, 4, €.
Output: the set of candidate points F P

Sort the points in non-descending order of the sum of dimension values;
initialize FP to be empty, 6 = 0, m = MAX (n % 2%, k), T = 2nin(2/6)/€>;
for i =1 to T do
randomly choose a subspace B C S;
SKYg(D,0) = SkylineWithThreshold(D, B, 0, m, |FP|);
for each point p € SKYp(D) do

fre(p) ++;

if |FP| < m or fre(p) > 6 then

L if |[FP| = m then

©C © N0 Wk ®WN -

=

| remove the point with the smallest frequency in FP;

[
[

insert p into F'P and update 6 to be the smallest frequency in FP;

12 return FP;

The main difference between SFapprox and SFsyiycuss 1S that SEApprox
returns an approximate rank of skyline frequency within an error of ¢ and a
confidence level of at least 1 — §. To obtain the desired error bound, we select
a sample of T = 2nin(2/6)/e? number of subspaces out of 2¢ — 1 subspaces
randomly. The proof of the error bound follows from [13].

At the beginning of the algorithm, a preprocessing operation of the data is
invoked for optimization (Line 1). This is based on the observation that the
efficiency of the algorithm is dependent on the order in which the data points
are processed. For sake of simplicity, we pre-sort the points in non-descending
order of the sum of dimension values. Intuitively, a smaller sum is likely to
have smaller values on more dimensions and is therefore likely to have a higher
skyline frequency. Initialization of parameters are done in Line 2. To speed up
the algorithm, we maintain a frequency threshold 6 to avoid dominating tests
of a point p if p is determined not to be among the 2% frequent skylines. For
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each sample (Line 3), we randomly choose a subspace B (Line 4 to 11), we
compute the skyline of B and for each point p in the skyline of B, we increase
the frequency of p by 1. A point p is inserted into F'P when the set F'P has
fewer than m points or the threshold is larger than #. Meanwhile, we update 6
to be the smallest frequency in F'P. Specially, the point with smallest frequency
is replaced by p if p has larger frequency and the size of F'P is m. Finally, the
set of candidate points F'P is returned (Line 12).

The SkylineW ithT hreshold procedure computes the skyline points of D in
subspace B where skyline frequency exceeds # when the size of candidate points
|F'P| equals to m. The main idea of computing skyline in subspace is to inspect
all pairs of points and returns an object if it is not dominated by any other
object (Line 4 to 10). Specially, if there are already m intermediate frequent
skylines exceeds 6 (Line 3), then the point clearly cannot be among the top =%
frequent skylines. So it is unnecessary to do the dominating test. Therefore, the
algorithm can be accelerated by only considering the points with potentiality to
be frequent skyline points.

Algorithm 2. SkylineWithThreshold(D, B, 6, m, r)

Input: dataset D, subspace B, threshold 0, size m, size r.
Output: SKYg(D,0)

1 initialize SKYg (D, 0) with the first point in D, isSkyline = false;
2 for each point q € D do

3 if 7 =m and fre(q) > 6 then

a for each point p € SKYp(D,0) do

5

6

if ¢ dominates p in subspace B then
L replace p with gq;

7 else if p dominates q in subspace B then
L isSkyline = false; break;
9 else
10 L isSkyline = true; insert ¢ to SKYg(D, 0);

11 return SKYg(D,0);

5 Experiments

In this section, we show the frequent skyline points are efficient to select the k-
representative points by comparing them with the skyline points and the points
in the whole dataset, and taking them as input of the state-of-art k-regret algo-
rithm Sphere [7]. All the experiments were implemented in C++ and the experi-
ments were performed on a 3.3GHz CPU and 4G RAM machine running Ubuntu
14.04 LTS.

We ran our experiments on both synthetic and real datasets. For synthetic
datasets, we use correlated and anti-correlated synthetic data, generated by the
generator in [2]. Unless specially stated, the cardinality is ten thousand (i.e. n =
10,000), k = 10, d = 6, e = 0.2, 6 = 0.05, 2% = 0.02. The real-world datasets
we adopted are three datasets, a 6-dimensional Household of 127,931 points
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(www.ipums.org), a 9-dimensional Color of 68,040 points (kdd.ics.uci.edu), and
an 8-dimensional NBA of 17,265 points (www.basketballreference.com), which
are widely used in this area.

For the simplicity of describing, we first denote the three candidate sets, the
whole dataset points as D, skyline points as S, frequent skyline points F' — 2%,
where % means the candidate set is composed of the top % frequent skyline
points. Different values of  (z = 1, 10) have been chosen.

Then, we show the frequent skyline points can be used for the state-of-art
algorithm Sphere [7] for k-regret query in terms of maximum regret ratio and
running time. The effects of F' on maximum regret ratio and time on anti-
correlated datasets for different k are shown in Figs. 1(a) and 2(a) respectively.
When k increases, the maximum regret ratio of all candidate sets decreases
which is in accordance with the results in [3]. We observe that the maximum
regret ratio of F' is close to D and S or even smaller in some situation while the
running time is only % of D and S. This is because the candidate points F' with
high skyline frequency have more possibility to be the representative skyline
points. From the above, we have the conclusion that frequent skyline points can
efficiently speed up the original algorithm with a close maximum regret ratio.

Besides, we evaluate the effect of different cardinalities and dimensionalities
on our algorithm. Figure 1(b) shows that when d increases, the maximum regret
ratio of different candidate sets increases. Figure 1(c) shows that the maximum
regret ratio is independent of n. The same conclusion can be reached that the
maximum regret ratio of frequent skyline points is close to D and S and the
running time in Figs. 2(b) and (c) is much less than that of D and S.

We can observe the similar trends on real datasets. Similar to the experiments
on synthetic datasets, with frequent skyline points, the algorithm achieves a close
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maximum regret ratio with less running time compared with experiments on the
whole dataset and the skyline points. The figures are omitted for the same reason.

6 Conclusions and Future Work

We studied the problem of reducing the size of candidate set for k-regret query
basing on skyline frequency. Skyline frequency was adopted to rank skyline points
and an algorithm, SFapprox Was provided to determine the candidate set for
k-regret query. Our experimental study demonstrated the effectiveness and effi-
ciency of the proposed algorithm. Since our candidate set are the points of “the
best - higher skyline frequency of the best - skyline points of the whole dataset”,
we do think there are certain theoretical results to be found to guarantee our
validity. We leave this as an open problem and also as our future work.
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