
Efficient Processing of k-regret Queries
via Skyline Priority

Sudong Han1, Jiping Zheng1,2(B), and Qi Dong1

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China

{sdhan,jzh,dongqi}@nuaa.edu.cn
2 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing, China

Abstract. Extracting interesting points from a large database is an
important problem in multi-criteria decision making. The recent pro-
posed k-regret query attracted people’s attention because it does not
require any complicated information from users and the output size is
controlled within k for users easily to choose. However, most existing
algorithms for k-regret query suffer from a heavy burden by taking the
numerous skyline points as candidate set. In this paper, we define a sub-
set of candidate points from skyline points, called prior skyline points, so
that the k-regret algorithms can be applied efficiently on the smaller can-
didate set to improve their performance. A useful metric called skyline
priority is proposed to help determine the candidate set and correspond-
ing strategies are applied to accelerate the algorithm. Experiments on
synthetic and real datasets show the efficiency and effectiveness of our
proposed method.

Keywords: k-regret query · Skyline priority · Prior skyline points
Candidate set determination

1 Introduction

Returning points that users may be interested in is one of the most important
goals for multi-criteria decision making. Top-k [1] and skyline [2] queries are two
well-studied tools used to return a representative subset of a large database. But
these two types of queries suffer in either requiring a predefined utility function
to model user’s preference over the points, or returning an uncontrollable number
of points. To avoid the deficiencies of top-k and skyline queries, Nanongkai et
al. [3] first proposed regret-based query which returns k points that minimize a
criterion called the maximum regret ratio. It quantifies how regretful a user is
if s/he gets the best point among the selected k points but not the best point
among all the tuples in the database.

Technically, the input of k-regret algorithms is the points in the whole
dataset, but existing algorithms [3–5] usually take the skyline points as the can-
didate points. This is because the points dominated by skyline points have less
c© Springer Nature Switzerland AG 2018
X. Meng et al. (Eds.): WISA 2018, LNCS 11242, pp. 413–420, 2018.
https://doi.org/10.1007/978-3-030-02934-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02934-0_38&domain=pdf
https://doi.org/10.1007/978-3-030-02934-0_38

414 S. Han et al.

possibility of being k representative points. By removing the non-skyline points,
the running time of the algorithms can be largely reduced. However, taking sky-
line points as candidate points is of low efficiency for computing k representative
points because the size of skyline points grows exponentially with dimensionality
[6]. Extremely, the size of skyline points is even close to the whole dataset when
the dimension is high.

Motivated by these, we devote to finding a small size of candidate set from
the entire skyline points so that the k-regret algorithms can be applied efficiently
on the smaller candidate set to improve its efficiency. In this paper, we define
a set of candidate points called prior skyline points based on skyline priority.
Skyline priority is a metric that indicates the least dimensionality of subspace in
which a point p is a skyline point. Intuitively, a point with a high skyline priority
is more interesting as it can be dominated on fewer combinations of dimensions.
To avoid the expensive cost of calculating skyline priority given by the naive
method, we further propose SPSkycube using sharing and promoting strategies
to determine the candidate set. The main contributions of this paper are listed
as follows:

– Skyline priority based on subspace skyline is firstly proposed to rank skyline
points for candidate set determination of k-regret query.

– We present efficient algorithm based on sharing and promoting strategies to
compute skyline priority.

– Results of extensive experiments on both synthetic and real datasets confirm
the efficiency of our proposed algorithm.

The rest of this paper is organized as follows. We present related work in
Sect. 2. Section 3 contains the required preliminaries and problem definition. In
Sect. 4, we present our algorithm. We show our experimental results in Sect. 5.
In Sect. 6, we conclude this paper and point out possible future work.

2 Related Work

Motivated by the deficiencies of top-k and skyline queries, various approaches [7,
8] were proposed to find the k skyline points that represented the skyline points.
Unfortunately, the two methods are neither stable, nor scale-invariant. The most
relevant study to our work is k-regret query was proposed by Nanongkai et al.
[3]. A number of algorithms were proposed to extend the concept to some extent
[4,5,9] However, these studies aim at minimizing the maximum regret ratio of
a selected set, ignoring the importance of reducing the size of candidate set to
improve the efficiency.

There are also some researches related to subspace skyline. Yuan et al. [10]
and Pei et al. [11] proposed the concept of Skycube, which computes the sky-
lines of all possible subspaces. But the methods mentioned above focus on com-
puting skylines in subspaces efficiently, ignoring to explore the properties, such
as skyline priority, and they have not been involved in reducing the number of
candidate points for k-regret query.

Efficient Processing of k-regret Queries via Skyline Priority 415

Table 1. English teacher recruiting example

Candidate S1 S2 S3 Priority

p1 8.4 5.1 8.3 2

p2 5.2 6.2 6.6 3

p3 9.3 6.1 7.4 1

p4 4.7 5.2 10 1

p5 4.2 8.8 9.2 2

p6 5.6 10 3.1 1

p7 8.2 9.2 2.5 2

p8 5.1 9.3 5.3 2

Table 2. Skylines of all subspaces

Subspace Skyline

S1 {p3}
S2 {p6}
S3 {p4}
S1, S2 {p3, p6, p7}
S2, S3 {p4, p5, p6, p8}
S1, S3 {p1, p3, p4}
S1, S2, S3 {p1, p2, p3, p4, p5, p6, p7, p8}

3 Preliminaries

To define the problem, we need to introduce the concepts of k-regret query
and explain how the size of candidate set influences the performance of k-regret
algorithms.

First, we assume that the user’s preference to a point can be expressed using
a utility function f , where f(p) is the utility of a point p for the user with the
utility function f . Then the regret ratio of a user with the utility function f after
seeing a subset R instead of a database D is rrD(R, f) = maxp∈Df(p)−maxp∈Rf(p)

maxp∈Df(p) .
Since utility functions vary across users, any algorithm for a k-regret query

must minimize the maximum regret ratio for a class of utility functions. In this
paper, we only consider linear utility functions, denoted by F , because they are
very popular in modeling user preferences [3,12,13]. Thus the worst possible
regret for any user with a utility function in F is defined as follows.

Definition 1 (Maximum Regret Ratio). Define rrD(R,F) = supf∈F
maxp∈Df(p)−maxp∈Rf(p)

maxp∈Df(p) .

Now we explain how the size of candidate set influences the performance of
k-regret algorithms. One of the classical algorithms for k-regret query is Greedy
[3]. Based on the idea of “greedy”, Greedy iteratively construct the solution by
selecting the point that currently contributes to the greatest value of maximum
regret ratio. To be specific, the algorithm needs to inspect each of the candidate
points (except selected points) by computing the maximum regret ratio to decide
whether the point will be included in the result set or not. So the running time of
the algorithm is largely dependent on the size of the candidate set. By reducing
the size of candidate set, the efficiency of the algorithm can be greatly improved.
Now we explain the idea of reducing the size of candidate set via skyline priority
by a simple example.

Consider the following example, a Chinese school wants to recruit k teachers.
They measure the candidates from d aspects, such as the capability of speaking,
listening, reading, writing, educational background, computer skills and so on.
Table 1 shows a list of candidates which are also the skyline points of all the

416 S. Han et al.

candidates (only consider three aspects: S1: reading, S2: writing, S3: speaking).
The values in Table 1 represent their ability in each corresponding attribute
where greater values are better. Now our task is to select k best persons from
the candidates. Intuitively, the school may want to hire someone who is the most
popular in one aspect among all the candidates. For example, the school may
prefer p3, p4 and p6 with the highest priority because they are the best in S1,
S3 and S2 respectively. So, when choosing persons from the candidates, p3, p4
and p6 have more probability of being selected than other candidates. When it
comes to higher dimensions, the priority of higher dimensional skyline points are
lower. For example, we observe that p2 is only the skyline of the full space and
p2 has the lowest priority. So the possibility of being selected of p2 is small for
it is mediocre in all attributes.

The above example shows that if we consider a smaller subset of skyline points
as the candidate set, the points with higher skyline priority are preferred. So we
define the problem of candidate set determination based on skyline priority.

Problem Definition. Given a set D of n points in d dimensions, our problem
of processing k-regret query via skyline priority is to determine the candidate set
of k-regret query by selecting the points with high skyline priority, meanwhile
keeping the maximum regret ratio as small as possible.

4 Algorithm

In this section, we first give the formal definition of skyline priority and we con-
centrate on the computation of skyline priority and develop efficient algorithm
to solve our problem.

Given a d-dimensional dataset D, S is the dimension set consisting of all
the d dimensions and Si represents each dimension. Let p and q be two data
points in D, we denote the value of p and q on dimension Si as p.Si and q.Si.
For any dimension set B, where B ⊆ S, p dominates q if ∀Si ∈ B, p.Si ≤ q.Si

and ∃Sj ∈ B, p.Sj > q.Sj(i ≥ 1, j ≤ d). The skyline query on B returns all
data points that are not dominated by any other points on B. The result is
called subspace skyline points, denoted by SKYB(D). See the running example
in Table 1, SKYB1(D) = {p3}, SKYB2(D) = {p3, p6, p7}, where B1 = {S1} and
B2 = {S1, S2}.

Given D on S, a Skycube consists of a set of subspace skyline points in
2d − 1 non-empty subspaces. The Skycube is shown in Table 2. In Skycube,
each SKYB(D) is called cuboid B. For two cuboids B1 and B2 in the Skycube,
if B1 ⊆ B2, we call B2 (B1) ancestor (descendant) cuboid. If their levels differ by
one, we also call B2 (B1) parent (child) cuboid.

Definition 2 (Skyline Priority). Given a skyline point p, skyline priority,
denoted by prt(p) is the least dimensionality of subspace in which p is a skyline
point. The smaller the value of prt(p) is, the higher priority p has.

Efficient Processing of k-regret Queries via Skyline Priority 417

For example, Table 2 shows all the subspace skyline points. p3 is the skyline
point of subspace {S1}, {S1, S2}, {S1, S3} and {S1, S2, S3}, and the least dimen-
sionality of the subspaces is 1, so the skyline priority of p3 is 1. Table 1 shows
the priority of 8 candidates.

Now we focus on how to compute skyline priority efficiently. The naive
method to compute prior skyline points is to enumerate all the 2d − 1 subspace
skyline points and tag priority of the point with the least dimensionality. The
low efficiency of the naive method lies in that the skyline points of each subspace
are computed separately, resulting in a great number of redundant computation.

Algorithm 1. SPSkycube algorithm
Input: dataset D, x%, n, k.
Output: the set of prior skyline points SP

1 sort D on every dimension to form d sorted list LSi
;

2 initialize SP to be empty;
3 m = MAX(n ∗ x%, k);
4 for each cuboid B from bottom to top of the skycube do
5 SKY = the union of all the child cuboids;
6 choose a sorted list LSi

;

7 for q in D \ SKY do
8 evaluate(q, SKYB(D));

9 if |SP | ≤ m then
10 remove the point with the largest priority in SP when |SP | = k;
11 insert q into SP ;

12 return SP ;

To cover the problem of repeated computation, we proposed a sharing strat-
egy of subspace skyline points based on the relationship between a parent and
child cuboid, as stated in the following Lemma 1.

Lemma 1. Given a set D of data points on dimension set S. For any two data
points p and q, p.Si �= q.Si(∀Si ∈ S), for two sub dimension sets B1,B2(B1,B2 ⊆
S), where B1 ⊂ B2, SKYB1(D) ⊆ SKYB2(D).

The conclusion that the union of child cuboids belongs to the parent cuboid
can be easily obtained. Therefore, if we compute the priority from bottom to
top, once the priority of a point p in the child cuboid is settled, it is unnecessary
to compute the priority in parent cuboids. For example, in Table 2, since p3 is
the skyline of {S1}, prt(p3) = 1. So there is no need to compute the priority of
p3 in the skyline of subspace {S1, S2}. A large number of skyline computation
are saved due to this strategy.

Besides, a pre-sorting of the data is executed for optimization. This is based
on the observation that the efficiency of skyline computation is dependent on
the order in which the data points are processed. Furthermore, we also define a
value called Entropy to promote skyline points without dominating test where
EB(p) =

∑
∀ai∈B p(ai). The procedure using the promoting strategy is shown in

Algorithm 2. This is based on the property that for two data points p and q, if

418 S. Han et al.

EB(p) ≤ EB(q) and p is already a skyline point, then q is definitely a skyline
point (Line 2 to 3), avoiding extra dominating test between p and q. Otherwise,
we do a dominating test to decide whether q is a skyline point (Line 4 to 6).

Based on the above techniques, we develop the algorithm SPSkycube, which
computes skyline priority and determines the candidate set. The main procedure
of our approach is shown in Algorithm1. At the beginning of the algorithm,
the pre-sorting operation of the data is invoked for optimization (Line 1). m,
the maximum of the size of candidate points and k, ensures at least k points in
candidate set. The tunable parameter x provides a flexible tradeoff between CPU
time and maximum regret ratio for users. If a data is a skyline point of child
cuboid, there is no necessary to compute its priority. Otherwise it is compared
to the current skyline to determine its priority by calling the function Evaluate
(Line 7 to 8). To get the set of at least k candidate points with high skyline
priority, a point p is inserted into SP when the set SP has fewer than m points.
Specially, the point with largest priority is replaced by p if p has smaller priority
and the size of SP is m.

Algorithm 2. evaluate(p, SKYB(D))
Input: a data point q, the computed cuboid B
Output: rank the q with skyline priority if p is a skyline of B

1 for each p in SKYB(D) do
2 if fB(q) > fB(p) then
3 insert q into SKYB(D); prt(p) = |B|; return;
4 else if p dominates q on B then
5 discard q; return;

6 insert q into SKYB(D); prt(p) = |B|;

5 Experiments

In this section, we show the prior skyline points are efficient to select the k-
representative skyline points by comparing them with the skyline points, running
on the k-regret algorithm Greedy [3]. All the experiments were implemented
in C++ and the experiments were performed on a 3.3 GHz CPU and 4 G RAM
machine running Ubuntu 14.04 LTS.

We ran our experiments on both synthetic and real datasets. For synthetic
datasets, we use anti-correlated synthetic data, generated by the generator in
[2]. Unless specially stated, the cardinality is ten thousand (n= 10,000), the
dimensionality is six (d = 6), and k = 10. The real-world datasets we adopted
are three datasets called Household (www.ipums.org), Color (kdd.ics.uci.edu),
and NBA (www.basketballreference.com), which are widely used in this area.

We conduct our experiments on two kinds of candidate sets, namely skyline
points (S) and prior skyline points (P −x%), where x% means the candidate set
is composed of the top x% prior skyline points. Then, we show the prior skyline
points can be used for the algorithm Greedy for k-regret query in terms of

www.ipums.org
http://kdd.ics.uci.edu/
www.basketballreference.com

Efficient Processing of k-regret Queries via Skyline Priority 419

maximum regret ratio and running time. Different values of x (x = 2, 4, 6, 8,
10) have been chosen.

The effects of P on maximum regret ratio and time on anti-correlated
datasets for different k are shown in Figs. 1(a) and 2(a) respectively. When k
increases, the maximum regret ratio of all candidate sets decreases which is in
accordance with the results in [3]. We observe that the maximum regret ratio
of P is close to S or even smaller in some situation while the running time is
only 1

10 of S. This is because the candidate points P with high skyline priority
have more possibility to be the representative skyline points. From the above, we
have the conclusion that prior skyline points can efficiently speed up the original
algorithm with a close maximum regret ratio.

Besides, we evaluate the effect of different cardinalities and dimensionalities
on our algorithm. Figure 1(b) shows that when d increases, the maximum regret
ratio of different candidate sets increases. Figure 1(c) shows that the maximum
regret ratio is independent of n. The same conclusion can be reached that the
maximum regret ratio of prior skyline points is close to S and the running time
in Fig. 2(b) and (c) is much less than that of S.

Fig. 1. Effect on maximum regret ratio of different candidate sets

Fig. 2. Effect on time of different candidate sets.eps

We can observe the similar trends on real datasets. Similar to the experiments
on synthetic datasets, with prior skyline points, the algorithm GREEDY achieves
a close maximum regret ratio with less running time shown compared with the
skyline points. The figures are omitted due to space limitation.

420 S. Han et al.

6 Conclusions and Future Work

We studied the problem of reducing the size of candidate set for k-regret query
basing on skyline priority. Skyline priority is proposed to rank skyline points
and efficient algorithm is provided to determine the candidate set for k-regret
query. Extensive experiments verify the efficiency and accuracy of our method.
Since our candidate set are the points of “the best - higher skyline priority of
the best - skyline points of the whole dataset”, we do think there are certain
theoretical results to be found to guarantee our proposed method to be efficient
and effective. We leave this as an open problem and also as our future work.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China under grants U1733112, 61702260, Funding of Graduate Innova-
tion Center in NUAA under grant KFJJ20171601.

References

1. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of Top-k query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4), 1–58 (2008)

2. Börzsöny, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–
430 (2001)

3. Nanongkai, D., Sarma, A.D., Lall, A., Lipton, R.J., Xu, J.: Regret-minimizing
representative databases. VLDB 3, 1114–1124 (2010)

4. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for k-regret
minimizing sets. CoRR, abs/1702.01446 (2017)

5. Xie, M., Wong, R.C.-W., Li, J., Long, C., Lall, A.: Efficient k-regret query algo-
rithm with restriction-free bound for any dimensionality. In: SIGMOD (2018)

6. Godfrey, P.: Skyline cardinality for relational processing. In: Seipel, D., Turull-
Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 78–97. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24627-5 7

7. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: ICDE, pp. 86–95 (2007)

8. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: ICDE,
pp. 892–903 (2009)

9. Qi, J., Zuo, F., Samet, H., Yao, J.C.: From additive to multiplicative utilities,
K-regret queries (2016)

10. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: VLDB, pp. 241–252 (2005)

11. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic
approach based on decisive subspaces. In: VLDB, pp. 253–264 (2005)

12. Nanongkai, D., Lall, A., Das Sarma, A., Makino, K.: Interactive regret minimiza-
tion. In: SIGMOD, pp. 109–120 (2012)

13. Chester, S., Thomo, A., Venkatesh, S., Whitesides, S.: Computing k-regret mini-
mizing sets. In: VLDB, pp. 389–400 (2014)

https://doi.org/10.1007/978-3-540-24627-5_7

	Efficient Processing of k-regret Queries via Skyline Priority
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Algorithm
	5 Experiments
	6 Conclusions and Future Work
	References

