
An Efficient Algorithm for Computing
k-Average-Regret Minimizing Sets

in Databases

Xianhong Qiu1 and Jiping Zheng1,2(B)

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China

{qiuxianhong,jzh}@nuaa.edu.cn
2 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing, China

Abstract. Returning a small set of data points instead of the whole
dataset to a user is a major task of a database system which has been
studied extensively in recent years. In this paper, we study k-average-
regret query, a recently proposed query, which uses “average regret ratio”
as a metric to measure users’ satisfaction to avoid the biases towards a
few dissatisfied users that the best-known k-regret query suffers from.
The main challenge of executing a k-average-regret query is the low effi-
ciency of existing algorithms. Fortunately, as the average regret func-
tion exhibits the properties of supermodularity and monotonictity, the
computational complexity of k-average-regret query can be significantly
reduced exploiting lazy evaluations, thus leading to our accelerated algo-
rithm which we called Lazy-Greedy. Experiments on both synthetic and
real datasets confirm the efficiency and quality of output of our proposed
algorithm.

Keywords: k-average-regret query · Representative skyline
Lazy evaluation

1 Introduction

Finding a small set of data points from a large dataset to support multi-criteria
decision making is an important functionality in many application domains. A
number of queries have been proposed in the literature to effectively support
such functionality. Top-k [1] and skyline [2] are two representative queries. A
top-k query returns k points that have the greatest scores under the utility/score
functions specified by a user where k is a positive integer. A skyline query returns
points that are not dominated by any other point in the database with no need
to ask users to appoint utility functions. Instead, a concept called domination
is applied in skyline queries. Specifically, a point p is said to dominate another
point q if p is as good or better in all dimensions, and strictly better in at least
one dimension. However, both queries suffer from some drawbacks. Top-k queries
c© Springer Nature Switzerland AG 2018
X. Meng et al. (Eds.): WISA 2018, LNCS 11242, pp. 404–412, 2018.
https://doi.org/10.1007/978-3-030-02934-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02934-0_37&domain=pdf
https://doi.org/10.1007/978-3-030-02934-0_37

An Efficient Algorithm for Computing k-Average-Regret Minimizing Sets 405

ask for users to specify their exact utility functions, which is difficult to most
users. Skyline queries find all points that are not dominated by other points in
the database, so the exact number of result set is uncontrollable and cannot be
foreseen before the whole database is accessed. In addition, the output size of
skyline queries will increase rapidly with the dimensionality.

Recently, the k-regret query [3] was proposed which integrates the merits
of top-k and skyline queries. For k-regret queries, any utility function specified
by a user is not required and the output size is controllable since only k points
that minimize a criterion called maximum regret ratio are returned. However,
k-regret queries only consider the regret ratio of the most unhappy user, in other
words, there is only one point that satisfies a user among the selected points,
so this query suffers from the drawback that it will be skewed towards the least
satisfied users only and ignore the other users. Zeighami et al. [4] proposed
“average regret ratio” as a metric to measure a user’s satisfaction which gives
a better impression of how a user in general feels towards the selected points
and provided a result set of k points that the average regret ratio of the result
set is minimized. Specifically, their method exploits N utility functions sampled
from the probability distribution of all utility functions and picks out the point
whose removal makes the average regret ratio minimized. Unfortunately, the
calculation of the average regret ratio is time-consuming. Motivated by this, in
this paper, an efficient algorithm called Lazy-Greedy is proposed with a (1-1/e)
approximation guarantee to the optimum solution. Lazy-Greedy is extended from
existing greedy algorithm by exploiting lazy evaluations and obtains significant
speedups.

The main contributions of this paper are listed as follows.

1. Based on the supermodularity and monotonicity of the average regret ratio,
we introduce an efficient approximation algorithm called Lazy-Greedy. The
algorithm exploits some lazy evaluations to avoid some unnecessary calcula-
tions when picking out the point whose removal increases the average regret
ratio the least.

2. Extensive experiments on both synthetic and real datasets are conducted to
evaluate our method and the experimental results confirm that our proposed
algorithm achieves the same minimum average regret ratio as WO-Greedy
proposed in [4] but runs much faster.

The remainder of this paper is organized as follows. In Sect. 2, previous work
related to this paper is discussed. Section 3 introduces the problem definition
and background techniques which are applied in our algorithm. Followed by
the accelerated greedy algorithm in Sect. 4. The performance of our algorithm
compared with existing algorithms on synthetic and real datasets is presented
in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

Due to the drawbacks of top-k and skyline queries, a lot of alternatives have
been proposed in recent years. First, efforts are put forward to improve top-k

406 X. Qiu and J. Zheng

queries. [5,6] asked users to specify some kinds of utilities/preferences to pro-
vide alternative ways to users to specify utility functions for top-k queries. Sec-
ondly, researchers attempt to reduce the output size of the skyline queries. The
representative skyline [7,8] was proposed which returns k skyline points best
representing the full skyline. Unfortunately, all these methods are not stable,
scale-invariant or with deficiencies of top-k or skyline queries.

Recently, k-regret queries were first proposed in [3] which do not heavily
rely on top-k queries and skyline queries and have been studied in [9–11] using
different approaches. However, the k-regret queries have the deficiencies that
they will be skewed towards the least satisfied users only, ignoring the other users,
as they only consider the regret ratio of the most unhappy user. [4] proposed
a k-average-regret query which returns a result set that minimizes the average
regret ratio and can avoid the drawback that the k-regret query suffers from.
But, the efficiency of the algorithm proposed in [4] is very low as it will result in
a total running time of O(dNn3) where d is the dimensionality of the database, n
is the size of the database and N is the number of utility functions. Our research
aims at answering the k-average-regret query with an efficient algorithm.

3 Problem Definition and Background Techniques

In this section, we first formulate our problem and then point out the background
techniques used in our algorithm.

3.1 Problem Definition

Let D be a set of n d-dimensional points over positive real values. Each point in D
can be regarded as a tuple in the database. For each point p ∈ D, the value on the
i-th dimension is represented as p[i]. We assume that smaller values are better.
If users prefer large values, we convert them to small values by subtraction with
the maximum value. Before we define our problem, definitions of utility function,
regret ratio and average regret ratio are given [3,4].

Definition 1 (Utility Function). A utility function u is a mapping u: Rd
+ →

R+. The utility of a user with utility function u is u(p) for any point p and shows
how satisfied the user is with the point.

Definition 2 (Regret Ratio). Given a dataset D, a subset S ⊆ D and a utility
function u. The regret ratio of S, represented as rrD(S, u), is defined to be

rrD(S, u) =
maxp∈D u(p) − maxp∈S u(p)

maxp∈D u(p)

Definition 3 (Average Regret Ratio). Given a dataset D, a subset S ⊆ D,
a set U containing all utility functions and the probability distribution function

An Efficient Algorithm for Computing k-Average-Regret Minimizing Sets 407

η(u)(u ∈ U) of the utility functions for different users. The average regret ratio
of S, represented as arrD(S,U), is defined to be

arrD(S,U) =
∫

u∈U

rrD(S, u)η(u)du

Especially, if the utility functions are defined on a discrete space, the average
regret ratio of S can be rewritten as follows:

arrD(S,U) =
∑
u∈U

rrD(S, u)η(u)

The calculation of the average regret ratio arrD(S,U) involves calculating
the average of the regret ratios of all utility functions. If the distribution of the
utility functions is continuous, the calculation of the average regret ratio requires
the calculation of a d-dimensional integral. If the set of the utility functions is
defined on a discrete space, we can calculate the average regret ratio by summing
for all the utility functions their regret ratios multiplied by their probabilities. In
this paper, our utility functions U are sampled from the linear utility space, since
linear utility functions are widely used in modeling users’ preferences. Specially,
a utility function u is linear if there exist non-negative reals v1, v2, · · · , vd such
that u(p) =

∑d
i=1 vi · p[i] for any d-dimensional point p. Alternatively, a linear

utility function can be represented by a vector u = (v1, · · · , vd), i.e., u(p) is the
dot product u · p.

Problem Definition: Given a dataset D of size n, a positive integer k, a set U of
utility functions of size N and the probability distribution function η(u)(u ∈ U)
of the utility functions, the problem of average regret ratio minimizing is trying
to find a subset S ⊆ D containing at most k points such that the average
regret ratio is minimized while simultaneously keeping the query time as short
as possible.

S = arg min
s′ ⊆D,|S′ |=k

arrD(S
′
, U)

3.2 Background Techniques

We will introduce the concept of supermodular function and describe supermod-
ularity and monotonicity of it as they are the properties used in our Lazy-Greedy.

Definition 4 (Supermodularity). A set function f : 2D → R
+ is supermod-

ular if for every S1, S2 ⊆ D it holds that

f(S1) + f(S2) ≤ f(S1 ∪ S2) − f(S1 ∩ S2)

Definition 5 (Monotonicity). A set function f : 2D → R
+ is monotone and

non-increasing if for every S1 ⊆ S2 ⊆ D, it holds that f(S1) ≥ f(S2).

408 X. Qiu and J. Zheng

Lemma 1. [4] The average regret ratio arrD(S,U) is a monotone non-
increasing supermodular set function, namely, it satisfies the properties of super-
modularity and monotonicity.

Based on the definitions of supermodularity and monotonicity, Lemma1 can
be proved directly. Due to space limitation, we omit proofs here.

4 Lazy-Greedy Algorithm

In the following, we first describe how to determine the appropriate size of utility
functions that are required to sample from the linear utility space and then
present our Lazy-Greedy whose performance is boosted with lazy evaluations.

4.1 Sampling N Utility Functions

Since we have no idea of user’s utility functions, the number of utility functions
is infinite in linear utility space. We can select N utility functions based on the
probabilities distribution of the utility functions. For this, we need to choose the
number of utility functions N that approximates the true value of the average
regret ratio with a high confidence and within a reasonable error parameter.

Theorem 1. Given a confidence parameter δ ∈ (0, 1] and an error parameter
ε ∈ [0, 1], then when the confidence is at least 1-δ and the calculated average
regret ratio is within ε of its true value, N is at least 3 ln(1

δ)

ε2 .

Proof. We need to show that for 0 < ε ≤ 1,

Pr(
X − μ

μ
≥ ε) = Pr(X ≥ (1 + ε)μ) ≤ δ (1)

According to Chernoff bounds and let μ = N > 0, we can get

Pr(X ≥ (1 + ε)μ) ≤ e−με2/3 ≤ e−Nε2/3 ≤ δ

Take the logarithm of both sides and rearrange it, we obtain N ≥ 3 ln(1
δ)

ε2 . 	

4.2 Lazy Evaluation for Greedy Algorithm

At each iteration, WO-Greedy [4] must identify the point p whose removal makes
the average regret ratio arrD(Si\{p}, U) minimized then remove it from Si,
where Si is the result set of the (i + 1)-th iteration. Unfortunately, a large
number of calculations are needed when we run WO-Greedy algorithm [4] which
is time-consuming. The key insight from the supermodularity of arrD(S,U),
the average regret ratio obtained by any fixed point p ∈ D is monotonically
non-decreasing during the iterations of removing points, i.e., arrD(Si\{p}, U) ≥
arrD(Sj\{p}, U), whenever i ≤ j. Instead of recomputing for each point p ∈ Si,

An Efficient Algorithm for Computing k-Average-Regret Minimizing Sets 409

we can use lazy evaluations to maintain a list of lower bounds {�(p)} on the
average regret ratio sorted in ascending order. Then in each iteration, Lazy-
Greedy needs to extract the minimal point p ∈ arg minp′ :Si−1\{p}{�(p

′
)} from

the ordered list and then updates the bound �(p) ← arrD(Si−1\{p}, U). After
this update, if �(p) ≤ �(p

′
), then arrD(Si−1\{p}, U) ≤ arrD(Si−1\{p′}, U) for

all p = p
′
, and therefore we have identified the point with the minimal average

regret ratio, without having to compute arrD(Si−1\{p′}, U) for a potentially
large number of point p

′
. We set Si ← Si−1\{p} and repeat until i = n−k. This

idea of using lazy evaluations is useful to our algorithm and can lead to orders
of magnitude performance speedups. The pseudocodes of lazy-Greedy are shown
in Algorithm 1.

Algorithm 1. Lazy-Greedy(D, k, U)
Input: A set of n d-dimensional points D = {p1, p2, · · · , pn} and an integer k. U denotes

d-dimensional utility functions whose size is N .
Output: A result set S, |S| = k.

1 Initially, let S = D, p∗ = NULL;
2 for (i = 1; i ≤ n − k; i + +) do
3 if i = 1 then
4 for each p ∈ S do
5 calculate the value of arrS(S\{p}, U);
6 �(p) = arrS(S\{p}, U);

7 p∗=Lazy-Evaluation(D, S, i, {�(p)}, U);
8 S = S\{p∗};
9 return S;

The calculation of the average regret ratio based on WO-Greedy takes time
O(dnN) and there are O(n2) iterations in the greedy algorithm thus resulting
in a total running time of O(dNn3). For our Lazy-Greedy, the algorithm keeps
track of the points which have not been visited and their average regret ratios
are the smallest in the list {�(p)} instead of calculating the average regret ratio
of all points that still inside the current result set S in each iteration. Hence,
Lazy-Greedy has some important features. First, it provides a greedy solution
identical to the solution provided by WO-Greedy [4]. Secondly, Lazy-Greedy
is more efficient compared with WO-Greedy as it can avoid some calculations
to minimum average regret ratio by exploiting lazy evaluations. Unfortunately,
these cannot be demonstrated theoretically and it is easy to build worst-case
examples for which Lazy-Greedy requires the same number of calculations as
WO-Greedy. However, subsequent experiments provide an experimental confir-
mation of the efficiency of Lazy-Greedy when applied to answer the k-average-
regret minimizing set. In a sense, Lazy-Greedy is still optimal in terms of number
of calculations.

410 X. Qiu and J. Zheng

5 Experimental Results

In this section, we show the performance of our proposed algorithm via experi-
ments. The algorithms were implemented in C++ and run on a 64-bit 3.3 GHz
Intel Core machine which was running Ubuntu 14.04 LTS operating system. We
ran our experiments on both synthetic and real datasets. Unless stated explicitly,
for synthetic datasets created adopting the dataset generator of [2], the number
of points is set to 10,000 (i.e., n = 10, 000) and the dimensionality is set to 6
(i.e., d = 6) and k is set to 10. The real-world datasets include a 5-dimensional
ElNino1 of 178,080 points, a 6-dimensional Household2 of 127,391 points and
an 8-dimensional NBA3 of 17,265 points. All experiments are conducted with
964 utility functions sampled from a uniform distribution on the linear class of
the utility functions where ε = 0.0707716 and δ = 0.2. Moreover, like studies in
the literature [3,9], we computed the skyline first and our queries returned any-
where from 5 to 30 points on these datasets except the ElNino dataset (when
k > 10, the average regret ratio on ElNino dataset is close to 0, so we only
show the results when k is small). In our experiments, we consider Lazy-Greedy
introduced in this paper. To verify the superiority of our proposed algorithm, we
compare it with RDP-Greedy (they called Greedy in [3]) and WO-Greedy [4].
We measure the computational cost in terms of the running time of CPU and
the quality of result set by means of the average regret ratio.

Fig. 1. Query time on the anti-correlated dataset

Results on Synthetic Datasets: The query time on anti-correlated datasets
for different k, n and d are shown in log scale in Fig. 1. In all cases, our Lazy-
Greedy has negligible query time as unnecessary calculations to average regret
ratio are avoided while RDP-Greedy and WO-Greedy result in a much longer
query time. The average regret ratio on anti-correlated datasets with k, d and
n varied are presented in Fig. 2. Lazy-Greedy and WO-Greedy have the same
and low average regret ratio which are much lower than RDP-Greedy as they
share the same greedy skeleton. Besides, the average regret ratio of all algorithms
degrade with the increase of k. But, the average regret ratio increases with d for
all algorithms due to the curse of dimensionality, and increases with n.
1 http://archive.ics.uci.edu/ml/datasets/El+Nino.
2 http://www.ipums.org/.
3 https://www.basketball-reference.com/.

http://archive.ics.uci.edu/ml/datasets/El+Nino
http://www.ipums.org/
https://www.basketball-reference.com/

An Efficient Algorithm for Computing k-Average-Regret Minimizing Sets 411

Fig. 2. Average regret ratio on the anti-correlated dataset

Results on Real Datasets: Figure 3 shows the query time on real datasets.
The query time of all algorithms increase with k, but our Lazy-Greedy keeps
much less query time and maintains a stable level as we analyze in the previous
section. The average regret ratio of all algorithms for different k are shown
in Fig. 4. We observe similar trends as the experiments on synthetic datasets
presented in Fig. 2(a). Besides, similar to the experiments on synthetic datasets,
our Lazy-Greedy achieves near-minimal average regret ratio with substantially
shorter query time compared with RDP-Greedy and WO-Greedy as it’s optimal
in terms of numbers of calculations.

Fig. 3. Query time on the real datasets

Fig. 4. Average regret ratio on the real datasets

6 Conclusions

This paper studies a k-average-regret query and proposes an accelerated algo-
rithm exploiting some lazy evaluations. Experiments on synthetic and real

412 X. Qiu and J. Zheng

datasets confirm the efficiency and effectiveness to answer k-average-regret
queries. Future work aims at extending a single user into a multi-user.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China under grants U1733112,61702260, Funding of Graduate Innovation
Center in NUAA under grant KFJJ20171605.

References

1. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4), 11:1–11:58
(2008)

2. Börzsöny, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–
430 (2001)

3. Nanongkai, D., Sarma, A.D., Lall, A., Lipton, R.J., Xu, J.: Regret-minimizing
representative databases. In: VLDB, pp. 1114–1124 (2010)

4. Zeighami, S., Wong, R.C.W.: Minimizing average regret ratio in database. In: SIG-
MOD, pp. 2265–2266 (2016)

5. Mindolin, D., Chomicki, J.: Discovering relative importance of skyline attributes.
Proc. VLDB Endow. 2, 610–621 (2009)

6. Lee, J., You, G.W., Hwang, S.W.: Personalized top-k skyline queries in high-
dimensional space. Inf. Syst. 34(1), 45–61 (2009)

7. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: ICDE, pp. 86–95 (2007)

8. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: ICDE,
pp. 892–903 (2009)

9. Peng, P., Wong, R.C.W.: Geometry approach for k-regret query. In: ICDE, pp.
772–783 (2014)

10. Xie, M., Wong, R.C.W., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm
with restriction-free bound for any dimensionality. In: SIGMOD (2018)

11. Qi, J., Zuo, F., Samet, H., Yao, J.: K-regret queries using multiplicative utility
functions. ACM Trans. Database Syst. 43, 10 (2018)

	An Efficient Algorithm for Computing k-Average-Regret Minimizing Sets in Databases
	1 Introduction
	2 Related Work
	3 Problem Definition and Background Techniques
	3.1 Problem Definition
	3.2 Background Techniques

	4 Lazy-Greedy Algorithm
	4.1 Sampling N Utility Functions
	4.2 Lazy Evaluation for Greedy Algorithm

	5 Experimental Results
	6 Conclusions
	References

