
A Distributed Rule Engine for Streaming
Big Data

Debo Cai1(&), Di Hou1, Yong Qi1, Jinpei Yan1, and Yu Lu2

1 Department of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an, China

yushisx@163.com
2 Troops 69064 of PLA, Xinjiang, China

Abstract. The rules engine has been widely used in industry and academia,
because it can separate the rules from the execution logic and incorporate the
features of expert knowledge. With the advent of big data era, the amount of
data has grown at an unprecedented rate. However, traditional rule engines
based on PCs or servers are hard to handle streaming big data owing to limi-
tation of hardware performance. The structured streaming computing framework
can provide new solutions for these challenges. In this paper, we design a
distributed rule engine based on Kafka and Structured Streaming (KSSRE), and
propose a rule-fact matching strategy using the Spark SQL engine to support a
large number of event stream inferences. KSSRE uses DataFrame to store data
and inherits the load balancing, scalability and fault-tolerance mechanisms of
Spark2.x. In addition, in order to remove the possible repetitive rules and
optimize the matching process, we use the ternary grid model [1] for repre-
senting rules and design a scheduling model to improve the memory sharing in
the matching process. The evaluation shows that KSSRE has a better perfor-
mance, scalability and fault tolerance based on DBLP data sets.

Keywords: Rule engine � Spark2.x � Event stream

1 Introduction

The rules engine simulates the decision process of a human expert and handles events
and triggers corresponding actions based on prior knowledge in the pre-set rule base.
Because the rules engine separates the rules from the execution logic, and the interface
with expert experience is friendly, it has been successfully applied in insurance and
insurance claims, bank credit and many other areas. With the development of infor-
mation technology, big data has become one of the main themes of the information age.
For example, Mobike, which is based on the Internet of Things (IoT), officially
announces that the average amount of data generated per minute is close to 1G. How to
perform multi-dimensional analysis and processing of a large number of data streams in
real time and accurately will be a serious challenge for the rule engine to adapt to
development.

In order to solve the above problems, many researchers have designed a distributed
rule engine based on big data processing frameworks such as Hadoop and Spark to

© Springer Nature Switzerland AG 2018
X. Meng et al. (Eds.): WISA 2018, LNCS 11242, pp. 123–130, 2018.
https://doi.org/10.1007/978-3-030-02934-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02934-0_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02934-0_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02934-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-02934-0_12

improve the matching efficiency. However, these solutions also have their own
imperfections. Referring to these scenarios, based on the Kafka and Structured
Streaming computing framework, we designed and implemented a distributed rules
engine (KSSRE) to support a large number of event flow inference. The purpose is to
improve the matching efficiency of the rules engine and achieve better load balancing
and fault tolerance. Using the Kafka clustering feature to decouple the event flow, a
relatively efficient rule-fact matching strategy is designed and implemented on the
Spark SQL engine. At the same time, in order to improve the calculation rate, use
DataFrame/DataSet which is better than RDD in both time and space to store data. In
order to remove the possible repetitive rules and optimize the matching process, we
improved the ternary grid model for representing rules, and designed a scheduling
model to improve the memory sharing in the matching process. In addition, because
KSSRE is based on Structured Streaming, it inherits the load balancing, scalability, and
fault-tolerance mechanisms of Spark 2.x.

The rest of the paper is organized as follows. Section 2 provides some background
information and explains related work. Section 3 elaborates on the design and
implementation of KSSRE. In Sect. 4, we use the DBLP data set to conduct an
experimental analysis of the KSSRE. Section 5 concludes the paper and discusses
future work.

2 Background and Related Work

2.1 Rule Engine

The rule engine usually consists of three parts, namely rule base, fact collection, and
inference engine. The fact is that there is a multiple relationship between objects and
their attributes. Rules are inferential sentences that consist of conditions and conclu-
sions. When facts meet the conditions, the corresponding conclusions are activated.
The general form of the rule is as follows:

Rule_1: /* Rule Name*/
Attributes /* Rule-Attributes*/
LHS /* conditions*/ => RHS /* actions*/

The LHS is a condition and consists of several conditions. It is a generalized form
of known facts and a fact that it has not been instantiated. The RHS is a conclusion and
consists of several actions.

2.2 Apache Kafka and Structured Streaming

Apache Kafka [2] is a distributed streaming platform, which consists of Producer,
Kafka cluster and consumer. Producer publishes the message to the specified topic
according to the set policy. After receiving the message from the Producer, the Kafka
cluster stores it on the hard disk. The Consumer pulls the data from the Kafka cluster
and uses the offset to record the location of the consumption. Kafka guarantees high

124 D. Cai et al.

processing speed while guaranteeing low latency and zero loss in data processing. Even
with terabytes of data, it can guarantee stable performance.

Structured Streaming [3] is a real-time computational framework for Spark 2.x. It
uses DataFrame to abstract data. DataFrame is a collection of Row objects (each Row
object represents a row of records) and contains detailed structural information (pat-
terns). Spark clearly knows the structure and boundaries of the dataset, so that it is easy
to implement the exactly-once of the data at the framework level. In particular,
Structured Streaming re-uses its Catalyst engine to optimize SQL operations, which
improves computational efficiency.

2.3 Related Work

With the rise of big data and the IoT, some researchers based on the Hadoop framework
to decompose the rules and map the matching tasks into the Map and Reduce processes
in the cluster and obtain the matching results [4, 5]. Zhou and other researchers use the
message passing model to transform the matching process of rules into messages
between processes, and implement parallel and distributed reasoning [6]. Researchers
such as Chen and others used Spark 1.x’s stream data calculation framework to map
rules and facts to Dstream operations for event stream processing [7]. Researchers such
as Zhang and others used Spark’s process and relational API to map the matching
process of rules and facts to the operation of an enhanced RDD, which is DataFrame,
and achieved parallel distribution rule matching [8]. Referring to these scenarios, we
have designed and implemented a distributed rule engine based on Kafka and Struc-
tured Streaming for reasoning on a large number of event streams.

3 Implementation and Optimization of the KSSRE

3.1 Overall Design

The overall design of the KSSRE is shown in Fig. 1 and consists of three parts.

Fig. 1. KSSRE architecture

A Distributed Rule Engine for Streaming Big Data 125

Producer is the source of real-time data generation. The Kafka cluster receives real-
time events from Producer, which decouples these real-time data and performs pre-
processing. The Spark cluster pulls data from the Kafka cluster and processes it to
generate inference results.

3.2 Inference Process

KSSRE decoupled and preprocess event flows through Kafka clusters. Based on the
Structured Streaming real-time computing framework, we use DataFrame/DataSet
which is better than RDD in both time and space to store data. We designed and
implemented an effective rule-fact matching strategy, converting the rules to SQL
operations and using the Catalyst engine to optimize the SQL operations, ultimately
achieving inference.

As shown in Fig. 2, KSSRE divides the inference process into four stages of
“Hash-Filter-Trigger-Select”, and implements inference by periodically cycling
through four stages.

• The first layer is the Kafka data preprocessing layer that implements asynchronous
processing of data producers and consumers.

• The second layer is the Structured Streaming data filter layer, which implements the
matching of the LHS part of the rules and the facts.

• The third layer is the rule preprocessing layer, which implements conversion query
and conflict resolution from rules to SQL statements.

• The fourth layer is the SQL execution layer, which executes all SQL statements in
Agenda and produces a Result Table.

3.3 Optimization

In the actual experiment, the efficiency of the above algorithm is low. There are two
main reasons for this: First, there may be duplication of rules in the rule base. In
addition, in the Filter stage, all rules need to be filtered in turn, and for rules that have
mutually exclusive conditions, there will be a lot of redundancy. Second, the use
frequencies of conditions in the LHS part of the rules are different. The degree of

Fig. 2. Inference process.

126 D. Cai et al.

memory sharing corresponding to different execution orders has a great influence on
the matching efficiency. For these two reasons, we directionally optimize the algorithm.

On the one hand, the rules are handled in advance. As shown in Fig. 3, we have
designed a new rule storage style from the ternary grid [1]:

Ri stands for the rule and i is the rule ID. Fij indicates the conditions contained in
the rule. Status uses “−1/1/0/−2/2” to indicate the current status of the rule. “0”
indicates unused, “1” indicates that Fij is a sub-condition in the LHS part of the rule Ri.
“−1” indicates that Fij is a negative form of the sub-condition with the number j. “2”
indicates that Fij is a sub-statement in the RHS part of the rule Ri. “−2” indicates that Fij

is a negative form of the sub-sequence number j. The Queue Pointer is a pointer to a
rule ID queue in which there is an exclusive sub-condition with the rule Ri. The ternary
grid is mainly to convert rules into rule matrices to eliminate duplicate rules and
meaningless rules. The improved model not only pre-processes the rules, but also
reduces the number of rules and facts in the matching process through the Mutex
Queue.

The second is that for the problem that the rule LHS partial use frequency influ-
ences efficiency differently, we can directly set the priority of the rule through the
conditional use frequency. But this is a simple optimization method in the ideal case
where the LHS part of the rule contains only one condition. To this end, we have

Fig. 3. The representation of a rule.

A Distributed Rule Engine for Streaming Big Data 127

established a scheduling model. Trigger the execution sequence by changing the rules
to maximize the reuse of existing matching results. The scheduling model of the rule is:

Rp ¼ 1
3

Xn

i¼1
Ci þCm þ nð Þ ð1Þ

Among them, Ci is the frequency of use of each condition. n is the number of
conditions contained in the LHS. Cm is the most frequently used condition of all LHS
conditions. 1/3 indicates that these three factors each occupy the weight of the
scheduling model. Rp reflects the frequency of use of the LHS part of rule i in the rule
base. Finally, we optimize the Filter process based on the scheduling model. The
pseudo code of the optimization algorithm is shown in Algorithm 1.

4 Experiments

In this section, we refer to the OpenRuleBench [9] and use the DBLP [10] (Digital
Bibliography & Library Project) data set to perform an experimental analysis of the
KSSRE in terms of both performance and scalability. DBLP is an English literature
database in the field of computers. As of January 1, 2018, more than 6.6 million papers
and more than 2.1 million scholars were included. The rules use the four parts of the
DBLP filter, negative filter, and join operations to generate a total of 20 valid rules.

Query (Id, T, A, Y, M):
 - att (Id, title, T), - att (Id, year, Y)
 -att (Id, author, A), -att (Id, month, M)

The experiment was based on three servers. The CPU of each server is Inter E3-
1231*8 and the memory is 8 G. The servers were interconnected via Gigabit Ethernet
and the operating system was Centos 7.2. Each server runs three virtual machines
totaling nine nodes. In addition, considering that 90% of the time in the production
system is used for matching [11], we use match time as an indicator of performance
testing.

4.1 Performance Testing

Performance testing is mainly to compare KSSRE with Drools [12]. Deploying KSSRE
on 3 virtual machines on 1 server is compared with Drools 6.5 deployed on another
server.

As shown in Fig. 4, Drools has better processing performance than KSSRE when
the number of facts is less than 1 million. Drools and KSSRE has similar performance
when the amount of data increases to 1 million. When the amount of data increased to 2
million, KSSRE began to provide slightly better performance. When the number of
facts continues to increase to 5 million, Drools cannot handle it and KSSRE finishes
processing in about 80 s. Although we can make Drools continue to work with large
amount of data in a way that improves hardware performance, it is clear that Drools’

128 D. Cai et al.

memory model is less flexible in terms of garbage collection, which makes it impos-
sible to handle large data sets.

4.2 Extensibility Test

Extensibility testing extends the Spark cluster within the same facts, rules, and time
intervals to change the number of cluster nodes and record the processing time.

As shown in Fig. 5, matching times for different scales of facts are shown. It is
obvious that the matching time decreases as the number of nodes increases. With the
same order of magnitude of the fact, the matching time decreases as the number of
cluster nodes increases. And on a larger scale of fact, the effect is even more pro-
nounced. Therefore, we can improve the matching efficiency by simply scaling the
cluster. In addition, the graph can reflect that when the cluster increases from 3 to 5
nodes, the KSSRE matching time decreases the most. The decrease in the matching
time for the change in the number of other nodes is reduced. This is because when the
number of nodes of the cluster is 3, the data communication is the internal commu-
nication of the server, and when the number of the nodes is more than 3, the cost of the
network communication between the nodes needs to be considered.

Fig. 4. Performance testing.

Fig. 5. Comparison of match time.

A Distributed Rule Engine for Streaming Big Data 129

5 Conclusion

Based on Kafka and Structured Streaming, we extended the general algorithm of the
inference engine and implemented a prototype system of distributed rule engine, which
is suitable for streaming big data. According to the experimental situation, the rule
storage trinomial mesh model is improved and a scheduling model is designed to
remove repetitive rules and optimize the matching process. Most importantly, KSSRE
is characterized by the reliability, scalability, and fault-tolerance of Structured
Streaming. Finally, experimental results show that KSSRE not only supports large-
scale factual data inference, but also can achieve better performance by extending the
number of cluster nodes.

In the future, we plan to improve the performance of the rules engine from the
aspects of optimizing conflict resolution strategies and improving the degree of
memory sharing during matching. Moreover, the reasoning model of the current
KSSRE is relatively simple and does not consider the time of data generation (Event-
time in the data). In addition, we also plan to write inference results to storage or
display in real time.

Acknowledgment. This work is partially supported by the National Key Research and
Development Program of China under Grant No. 2016YFB1000600.

References

1. Erdani, Y.: Developing algorithms of ternary grid technique for optimizing expert system’s
knowledge base. In: 2006 Seminar Nasional Aplikasi Teknologi Informasi (2006)

2. Apache Kafka. http://kafka.apache.org/. Accessed May 2018
3. Structured Streaming. http://spark.apache.org. Accessed May 2018
4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.

ACM 51, 107–113 (2008)
5. Cao, B., Yin, J., Zhang, Q., Ye, Y.: A MapReduce-based architecture for rule matching in

production system, pp. 790–795. IEEE (2010)
6. Zhou, R., Wang, G., Wang, J., Li, J.: RUNES II: a distributed rule engine based on rete

network in cloud computing. Int. J. Grid Distrib. Comput. 7, 91–110 (2014)
7. Chen, Y., Bordbar, B.: DRESS: a rule engine on spark for event stream processing, pp.

46–51. ACM (2016)
8. Zhang, J., Yang, J., Li, J.: When rule engine meets big data: design and implementation of a

distributed rule engine using spark, pp. 41–49. IEEE (2017)
9. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the performance of

rule engines. In: Proceedings of the 18th International Conference on World Wide Web,
pp. 601–610. ACM (2009)

10. DBLP: computer science bibliography. http://dblp.uni-trier.de/db/. Accessed May 2018
11. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern match problem.

Artif. Intell. 19, 17–37 (1982)
12. Drools. https://www.drools.org/. Accessed May 2018

130 D. Cai et al.

http://kafka.apache.org/
http://spark.apache.org
http://dblp.uni-trier.de/db/
https://www.drools.org/

	A Distributed Rule Engine for Streaming Big Data
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Rule Engine
	2.2 Apache Kafka and Structured Streaming
	2.3 Related Work

	3 Implementation and Optimization of the KSSRE
	3.1 Overall Design
	3.2 Inference Process
	3.3 Optimization

	4 Experiments
	4.1 Performance Testing
	4.2 Extensibility Test

	5 Conclusion
	Acknowledgment
	References

