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Abstract. Object-oriented (OO) programs, which use subtyping and
dynamic dispatch, make specification and verification difficult because
the code executed by a method call may dynamically be dispatched to
an overriding method in any subtype, even ones that did not exist at
the time the program was specified. Modular reasoning for such pro-
grams means allowing one to add new subtypes to a program with-
out re-specifying and re-verifying it. In a 2015 ACM TOPLAS paper
we presented a model-theoretic characterization of a Hoare-style mod-
ular verification technique for sequential OO programs called “super-
type abstraction,” defined behavioral subtyping, and proved that behav-
ioral subtyping is both necessary and sufficient for the validity of super-
type abstraction. The present paper is aimed at graduate students and
other researchers interested in formal methods and gives a comprehen-
sive overview of our prior work, along with the motivation and intuition
for that work, with examples.
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1 Introduction

The goal of our prior work [17] and the 2017 SETSS lectures, was to explain
how to modularly reason about sequential object-oriented (OO) programs that
use subtyping and dynamic dispatch. The key modular verification technique is
“supertype abstraction” [16,20,21]. In supertype abstraction, one verifies a call
to a method by using the specification of the receiver’s static type. The validity
of this reasoning technique depends on two conditions:
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1. in each method call, E.m(), the dynamic type of the actual receiver object
(the value of E) must be a subtype of the static type of the receiver expression,
E, and

2. every override of the method named m must correctly implement each of the
specifications (given in its supertypes) for that method.

Together, these two conditions allow the specification of the method m in
E’s static type to be used in verification of the call E.m(), since any subtype
of that static type will correctly implement that specification. The first condi-
tion can be enforced by a static type system, such as the one in Java, in which
the static type of an expression is an upper bound on the dynamic types of all
objects it may denote (in the sense that the expression’s static type must be a
supertype of the runtime classes of those objects). The second condition is the
essence of behavioral subtyping [1–3,17,20–23]. To a first approximation, behav-
ioral subtyping is necessary for valid use of supertype abstraction, because the
supertype’s specification is used in reasoning, so the subtypes must all correctly
implement that specification.

1.1 JML

This paper illustrates (with examples, not pictures) the idea of supertype
abstraction using sequential Java, with specifications written in the Java Mod-
eling Language (JML) [16,19]. As a behavioral interface specification language,
JML specifies the functional behavior of Java methods, classes, and interfaces.
Functional behavior involves the values of data; thus a JML method specification
describes the allowed values of variables (e.g., method formals) and object fields
before the method starts running (its precondition) and the relationship between
such values and the method’s result after the method finishes (its postcondition
and frame condition).

JML and the work reported here only deal with sequential Java programs,
so we henceforth assume that there is no multi-threading or parallelism in the
programs discussed.

1.2 OO Programs and Dynamic Dispatch

As the start of a JML example that illustrates how OO programs use dynamic
dispatch, consider the type IntSet, which is shown in Fig. 1 on the next page.

JML specifications are written as comments that start with an at-sign
(@); these are processed by the JML compiler (but would be ignored by
a standard Java compiler). Figure 1 on the next page shows the specifica-
tion of an interface, which specifies five methods. The contains method
is only specified as being pure, which means that it has no write effects
(i.e., assignable \nothing). It has no precondition (the default in JML
is requires true), which means it can be called in any state. It also has
no postcondition; the default (ensures true) imposes no obligations on an
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Fig. 1. A JML specification of the interface IntSet.

implementation. The last method, size, is also specified as being pure. How-
ever, size has a specified postcondition, which is that the result of the method
is always non-negative. (As can be seen in this example, the specification for
each method is written before the method’s header.) The contains and size
methods are used to specify the behavior of the other methods. This specifica-
tion technique is similar to that used in equational algebraic specifications [10]
and in Meyer’s Eiffel examples [24].

The other methods in Fig. 1 have more extensive specifications. The pick
method exhibits the three standard clauses used in a JML method specification.
The pick method’s precondition, given by its requires clause, is that the
result of calling size() must be strictly greater than zero; that is, the method
should only be called when the object contains some elements. The frame condi-
tion for pick is given by its assignable clause, which says that it may assign
to the locations in the data group named state; this datagroup is declared in
the interface. The state datagroup will be populated with fields in the types
that implement the IntSet interface (as we will see below). The postcondition,
given in the ensures clause, says that the result will be an element of the set,
since the value returned will satisfy the assertion this.contains(\result).
The add method has a default precondition of true, can assign to the locations
in the datagroup state, and has a postcondition that says that its argument
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(i) will be in the set at the end of the operation, and that the size of the set
will not decrease. The notation \old(E), which is borrowed from Eiffel [24],
denotes the value of the expression E in the method’s pre-state. (The pre-state
of a method m is the state of the program after passing parameters to m, but
before running any of its code.) Similarly, the remove method’s postcondition
says that after the method executes, its argument (i) will no longer be in the
set and the size will not increase.1

1.3 Verifying Method Calls with Supertype Abstraction

The basic technique for verifying a method call is to:

1. check (assert) the method’s precondition before the call,
2. “havoc” all locations that are assignable by the method, and
3. assume that the method’s postcondition holds after the call.

Locations that are assignable by the called method are imagined to be set by the
method to an arbitrary, unknown value; this is what “havoc” does. However, such
locations will usually be constrained by the method’s postcondition to values that
satisfy that postcondition. On the other hand, locations that are not assignable
in the method are preserved by the method’s execution. Thus the frame in the
method’s specification can be used to prove that properties that hold before
the call (in the call’s pre-state) also hold after the call (in the call’s post-state).
Properties are automatically preserved by the call if they do not depend on
locations that may be assigned by the method called (i.e., if they are independent
of the method’s frame).

This technique for method call verification is modular because it avoids check-
ing the correctness of the method’s implementation each time the method is
called. The verification technique is independent of the method’s implementa-
tion, as verification relies only on its specification (its precondition, frame, and
postcondition). Therefore a method’s specification plays the key role in verifying
calls to that method.

With supertype abstraction, once we know the specification of IntSet, we
can verify client code written for it, even though we do not know any of the
details of the classes that implement IntSet. Two simple examples of some
client code are shown in Fig. 2.

We demonstrate the above technique by verifying the testPick method; the
verification is recorded with intermediate assertions in Fig. 3 on the next page.
At the beginning of the method testPick, its precondition is assumed. To
verify the call to pick, following supertype abstraction we use the specification
of pick from the static type of the call’s receiver (iset), which is IntSet. So
the method’s specification is taken from Fig. 1. Its precondition is the same as the
assumption (with the receiver substituted for the implicit receiver (this) in the

1 The size is not specified to decrease, since it can stay the same if the element being
removed was not in the set in the pre-state.
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Fig. 2. Client code that uses IntSet.

specification2). Since we are assuming that iset.size()>0, that follows, and
so we can assume the postcondition of the pick method. Again, in the assumed
postcondition the actual receiver (iset) is substituted for the implicit receiver
(this) in the specification. With this assumption, the assertion to prove at the
end of the method follows immediately.

Fig. 3. Client code that uses IntSet with intermediate assertions.

For the testAddRemove method, the assertions can also be verified using
just the specifications given for IntSet’s methods (see Fig. 4 on the next page).
Again this is independent of the implementation of the argument iv. Note that
only the specifications given in IntSet can be used, so one cannot conclude
that the value of s, the size of iv after adding 1 to iv, will be 4, only that s
will be no less than the original size (3).
2 Recall that a call such as size() is shorthand for this.size() in Java, thus

substituting iset for this in size()>0 turns it into iset.size() > 0.
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Fig. 4. Client code that uses IntSet’s add and remove methods, with a verification
recorded using assertions. The assertions use labelled statements and the operator
\old(,) with a label argument, to reference the prestate of the statement with the
given label.

These examples illustrate the modularity properties of supertype abstraction.
There are two important points to make. First, the specification is modular in
the sense that it is given independently of any subtypes of IntSet, and does
not need to be changed if new subtypes implementing IntSet are added to the
program. Second, the verification of the client code is similarly modular in the
sense that it does not depend on the possible subtypes of IntSet, and thus
does not need to be redone when new subtypes are added to the program.

1.4 Subtypes for the IntSet Example

To make some of these ideas more concrete, we will consider several subtypes of
IntSet.

One family of simple implementations for IntSet are closed intervals of
integers, represented by objects that track a lower and upper bound in the fields
lb and ub. The in declaration adds these fields to the datagroup state. This
design’s common parts are described in the abstract class AbsInterval (see
Fig. 5 on the next page). The objects of subtypes of this class represent closed
intervals of integers, which we can think of as containing all integers between
the instance field values lb and ub, inclusive, i.e., [lb,ub]. An interval such as
[3, 2] represents the empty set.

The abstract class AbsInterval represents lb and ub as long (64-bit)
integers. These fields have protected visibility in Java, but are also declared to
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be spec_public in the first JML annotation. One can think of spec_public
fields as being declared to be public for purposes of specification, but having the
declared visibility (protected in this case) for use in Java code. Declaring the
fields to be public for specification purposes allows them to be used in specifi-
cations intended to be seen by all clients. There is a public invariant; invariants
state properties that must hold whenever a method call is not in progress [19,
Sect. 8.2]. The invariant states that lb must be in the range of int values
(between Integer.MIN_VALUE and Integer.MAX_VALUE). It also says that
ub cannot be greater than the largest int value and that it can only be one
smaller than the smallest int value. The type long is used for the fields lb
and ub in order to (a) avoid integer overflow, and (b) to allow representation of
extreme cases of empty intervals. An empty interval is one in which the value
of ub is less than the value of lb; indeed the invariant lb <= ub+1 implies
that this only happens when lb-1 == ub. (Note that conjunct of the invari-
ant would not make sense if both these fields had type int and if lb held the
smallest int value.)

The constructor for AbsInterval has a requirement that its arguments,
l and u, must be such that l is not greater than u+1, so that the invariant
will hold when l is assigned to lb and u is assigned to ub. The constructor of
AbsInterval has a “heavyweight” specification [19, Sect. 2.3], which says that
when called in a state that satisfies its precondition, it must terminate normally
(without throwing an exception), as it is a normal_behavior specification.

The specification of the contains method starts with the keyword also,
to indicate that the specification adds to the specification inherited from the
supertype IntSet. Since both specifications have the same precondition (true),
effectively this adds an additional postcondition to the method’s specification for
all subtypes of AbsInterval. This specification thus allows a verifier to equate
contains(i) with (lb <= i &&i <= ub) in proofs, as <==> means “if and
only if” in JML.

The specification of the method size (at the end of the figure) is similar.
It says that the size of the set is the value of the expression ub - lb + 1.
The reader can check that this expression is the number of integers i such that
contains(i) is true.

The add method in AbsInterval inherits the specification from IntSet
unchanged. Thus, if iv is an object of type AbsInterval, then when
iv.add(i) returns, it must be that iv.contains(i) holds. The implemen-
tation may add more elements to the set, in addition to the argument (i), as the
implementation can only represent closed intervals. Indeed the implementation
will set either the lower bound (lb) or the upper bound (ub) to i. This may not
seem like the expected behavior for sets, but it satisfies the specification given
in IntSet.

The remove method similarly inherits its specification from IntSet. The
implementation will set either the lower or the upper bound to just past the
element to be removed. The assert statements used in the method are designed
to help the prover in the JML tools conclude that the method is implemented
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Fig. 5. The abstract class AbsInterval, which is a subtype of IntSet.
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correctly. In each case the method must ensure that the argument is no longer in
the set and that the second invariant (lb <= ub+1) holds. The reader is urged
to verify these assertions, recalling that both the lower and upper bound fields
are of type long.

As an example of supertype abstraction, the verification of the client code in
figure Fig. 4 still holds, even if the argument is a subtype of AbsInterval.

To understand these modularity properties better, it will be useful to consider
some concrete subtypes of IntSet, which implement the pick method.

The first of these concrete subtypes of AbsInterval is the class Interval
shown in Fig. 6. This class’s implementation of pick always returns the lower
bound of the interval. The specification of pick in Fig. 6 says that, in addition
to the inherited specification, it returns the value of lb, when lb <= ub, i.e.,
when the interval is not empty. Since that precondition is equivalent (by the
specification of contains) to the precondition of pick given in IntSet (see
Fig. 1), this added specification case effectively adds an additional postcondition
to pick, when the receiver’s type is a subtype of Interval. The implemen-
tation satisfies both the inherited postcondition and the postconditions in this
additional specification when the interval is not empty.

Fig. 6. A subtype of IntSet, the concrete class Interval.

The second of these concrete subtypes of AbsInterval is the class
Interval2 shown in Fig. 7 on the next page. This class’s implementation of
pick returns the value of the field next_pick, which is constrained by its
invariants to be an element of the interval and to have a value that can be rep-
resented by an int. The added specification for pick in Fig. 7 describes this
behavior. Again, the implementation is correct if the interval is not empty.
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Fig. 7. A subtype of IntSet, the class Interval2.

Consider now the code in Fig. 8 on page 10. The final assertion in that figure
verifies because iv has type Interval, and the added specification case for
pick in Interval’s specification (see Fig. 6) says it returns the lower bound of
the interval. In JML, a method that is specified with several specification cases
(some of which may be inherited) must obey all of them, so a client can either
pick one specification case and use that to verify a call to the method, as is done
in Fig. 8, or use the combined meaning of the specification cases.

However, suppose that the type of iv in Fig. 8 were changed to IntSet, and
the initialization for that variable called the constructor of Interval2. In that
case, the value of iv would be an object of the class Interval2. And in that
case the last assertion in Fig. 8 would not always be valid, since Interval2’s
method pick need not always return the lower bound of the interval. Supertype



An Illustrated Guide to the Model Theory of Supertype Abstraction 49

Fig. 8. A test of the pick method for a concrete subtype of IntSet.

abstraction safely avoids drawing such invalid conclusions, because it only allows
using the specification of the supertype (e.g., IntSet) in such cases.

2 Background and Motivation

Ideally, one could characterize supertype abstraction in a way that does not
depend on the details of a specification language and the details of a particular
verification logic. This is what was done in our earlier TOPLAS paper [17].
Instead of repeating that formal development, in what follows we will try to
adapt those more general results (from the TOPLAS paper [17]) to Java and
JML. In the process we will skim over some of the formal details, which may not
match Java and JML exactly.

2.1 Background: Denotational and Axiomatic Semantics

A verification logic that is sound must, by definition, only draw conclusions that
are valid in all possible executions. This requires a model of both the meaning of
a specification and of how a program executes: the semantics of the specification
language and the semantics of the programming language.

There are three broad families of programming language semantics, developed
in the 1960s:

– Denotational semantics, developed by Strachey and Scott [28–31]. A standard
summary is found in Schmidt’s book [27]. A denotational semantics describes
the meaning of a program as a mathematical function.

– Operational semantics, developed by Landin [14,15]. A modern treatment is
given in Hennessy’s book [11]. An operational semantics describes the mean-
ing of a program as a rewrite machine.

– Axiomatic semantics, developed by Floyd and (Tony) Hoare [9,12]. An
axiomatic semantics describes the meaning of a program as a proof system.
A modern treatment is given in Apt and Olderog’s book [4].

For example, in the denotational semantics of a simple imperative language,
one may use states, σ, that are finite functions from variable names to values.
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Thus the denotational semantics of an assignment statement such as k = k+1;
would be given by a meaning function, such as C, that maps commands (state-
ments) and states to states; for example

C[[k = k+1;]](σ) = [σ | k : σ(k) + 1]

where the notation [σ | k : (σ(k) + 1)] means a mapping that is the same as σ
except that for the argument k the result is the value σ(k) + 1:

[f | x : v] = λy · if y ≡ x then v else f(y).

An axiomatic semantics describes states using predicates; one can think of
a predicate as representing the set of all states that satisfy it. For example, the
predicate k > 0 describes all states in which the value of the variable k (presum-
ably an integer) is strictly greater than zero. A Hoare logic for a programming
language gives axioms and rules for drawing conclusions about program states.
Hoare logic uses “Hoare triples” of the form {P} C {Q} which mean that if
the command C is executed starting in a state satisfying the predicate P (the
precondition), and if C terminates normally, then the predicate Q (the post-
condition) will hold. For example, the following is a valid Hoare triple (ignoring
integer overflow):

{k > 0} k = k+1; {k > 1}.

We will sometimes write Hoare triples using assume and assert in JML; thus the
example above would be written in JML as follows.

//@ k > 0;
k = k+1;
//@ k > 1;

To define a programming language’s meaning, one must generalize from spe-
cific examples, such as those above. In a Hoare Logic, this is done by giving

Fig. 9. Some simple Hoare Logic rules. These rules assume that test expressions in
while and if statements are variables, since those have no side effects, and that the
expressions in assignment statements have no side effects.
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axiom schemes for simple statements and proof rules for compound statements.
Some simple axioms and inference rules in a Hoare Logic are presented in Fig. 9.
The “turnstile”, �, can be read as “one can prove that.” The rules Seq, Conseq,
While, and If are inference rules, with hypotheses above the horizontal line and
a conclusion below it. The Conseq rule has a side condition, starting with if,
which tells when the rule can be used.

Example 1. A proof in Hoare logic can be written as a tree. For example to prove
the Hoare triple in the conclusion below, one uses the Seq rule, with two sub-
derivations (sub-trees, growing upwards), named (A1) and (I1), corresponding
to the two hypotheses of the Seq rule. So overall the tree looks as follows, where
the subderivations (A1) and (I1) will be explained below.

(A1),
(C1), (C2)

(I1)
If

� {true} xGty = x>y; (xGty) {m=x;} {m=y;} {m>=x&&m>=y} Seq

Derivation (A1) uses the Conseq rule and has a hypothesis that is an
instance of the Assign axiom scheme. The conclusion of (A1) is the first hypoth-
esis needed by the Seq rule above.

(A1)
� {(x>y) == (x>y)} xGty=x>y; {(xGty)==(x>y)} Assign

� {true} xGty=x>y; {(xGty)==(x>y)} Conseq

The derivation (I1) uses the If rule. Since the If rule has two hypotheses,
there are two more sub-derivations, named (C1), and (C2) as required by the If
rule.

(I1)
(C1), (C2)

� {(xGty)==(x>y)} (xGty) {m=x;} {m=y;} {m>=x&&m>=y} If

The derivation (C1) is as follows. Note that the conclusion is the formula
needed for the first hypothesis of the If rule. The implications can be proven
using the theory of integer arithmetic.

(C1)
� {x>=x&&x>y} m=x; {m>=x&&m>y}

� {((xGty)==(x>y))&&xGty} m=x; {m>=x&&m>=y} Conseq

The derivation (C2) is similar. Its conclusion is the formula needed for the
second hypothesis of the If rule.

(C2)
� {y>=x&&(y>=y)} m=y; {y>=x&&m>=y}

� {((xGty)==(x>y))&&!xGty} m=y; {m>=x&&m>=y} Conseq

�
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Another way to display this proof is to use intermediate assertions, as shown
in Fig. 10 below. In the figure preconditions of Hoare triples follow the keyword
assume and postconditions follow assert. Two such conditions written next
to each other indicate a use of the Conseq rule. Overall the first assume and
the last assert are the formulas in the main derivation given above, with the
assertion (xGty) == (x>y) being the assertion that is between the two state-
ments as demanded by the Seq rule. The proof of the first statement (lines 1–5)
corresponds to the derivation (A1) above. The proof of the if-statement is given
in the rest of the lines, with the five lines around each assignment statement
corresponding to derivations (C1) and (C2) above. Comments to the right of
each assume or assert indicate which rule these preconditions and postcondi-
tions correspond to.

Fig. 10. Code for computing the maximum value of x and y with intermediate asser-
tions.

In sum, Hoare Logic uses predicates to represent sets of states. Statements
transform preconditions into postconditions. And intermediate assertions can
stand for a Hoare Logic proof.

The challenge is to extend this verification technique in a modular way to
the verification of method calls in Java.

2.2 Specification Language Semantics

A fundamental step towards modular verification of method calls is to specify
the state transformation that a method call achieves. Declaring method speci-
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Fig. 11. Specification of a max function in JML.

fications avoids having to inline method bodies to verify method calls. It also
allows the verification of recursive and mutually-recursive methods.

In JML method specifications are written with requires and ensures
clauses (and possibly with assignable clauses). For example, a specification
for a max method on two int arguments is shown in Fig. 11.

To deal with Java’s return statement, some extension to Hoare Logic is
needed, as this statement does not terminate normally, but abruptly stops exe-
cution of the surrounding method [13]. Instead of investigating such extensions
here, we will content ourselves with proving that the value returned satisfies the
appropriate condition, just before the return statement.

In this way one can show that the code given in Example 1, when put in
sequence with return m; correctly implements the specification of Fig. 11.3

To abstract a bit from the syntax of specifications we define some terms,
following the TOPLAS paper [17]. (A table of notations appears in Fig. 18 on
page 42 at the end of this paper.)

A pair of a precondition and a postcondition, (P,Q), is called a simple spec-
ification [17].

Validity of specifications is defined with respect to the denotational semantics
of the language. If C is the meaning function for commands, then a Hoare formula
{P} C {Q} is valid in state σ, written σ |= {P} C {Q} if and only if: whenever
P holds in state σ and the meaning of C starting in state σ is a state σ′, then
Q holds in state σ′. As a mathematical formula, we write this as follows

σ |= {P} C {Q} def= (σ ∈ P ∧ C[[C]](σ) = σ′) ⇒ (σ′ ∈ Q) (1)

thinking of predicates as sets of states, so that σ ∈ P means that P holds in state
σ and using C[[C]](σ) = σ′ to mean that the meaning of command C started in
state σ is state σ′. This is partial correctness; since if the command C does not
terminate normally (does not produce a state σ′), then the implication holds
trivially.

A Hoare triple {P} C {Q} is valid, written |= {P} C {Q}, if and only if it is
valid for all states.

Definition 1 (Validity of Simple Specifications). A command C correctly
implements a simple specification (P,Q) if and only if |= {P} C {Q}.

The concept of refinement of specifications is of great importance
in what follows. To define refinement, it is useful to define the set
3 There still are some other details omitted, such as how declarations (e.g., of the

variable xGty) are handled.
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of commands that correctly implement a specification. We notate this
Impls(P ,Q) def= {C | |= {P} C {Q}}.

Definition 2 (Refinement). Let (P,Q) and (P ′, Q′) be simple specifica-
tions. Then (P ′, Q′) refines (P,Q), written (P ′, Q′) � (P,Q), if and only if
Impls(P ′,Q ′) ⊆ Impls(P ,Q).

It is an easy corollary that if (P ′, Q′) � (P,Q), then for all commands C, if
|= {P ′} C {Q′}, then |= {P} C {Q}.

2.3 Programming Language Semantics

An object in an OO language is data with an identity (its address on the heap)
and several named fields (also called instance variables). In most OO languages
objects have infinite lifetimes and live on the heap. Objects are referred to indi-
rectly by their addresses and their fields are mutable (can hold different values
over time). In addition, in a class-based OO language, like Java, objects refer to
their class, so it is possible to determine their class dynamically.

A class is a code module that describes objects. Classes are a built-in feature
of Java and other OO languages, such as Smalltalk-80, C++, and C#. Classes
contain declarations for the fields of objects of that class, methods, which are
procedures that operate on objects, and constructors, which initialize objects.
Examples of classes in Java are given in Figs. 6 and 7. A method declaration in a
class may be abstract if it does not have an implementation. In Java an abstract
method is either declared with a semicolon (;) instead of a method body or is
inherited from a supertype but not implemented.

An interface is like a class, but with no method implementations; that is, all
the methods it declares are abstract. Interfaces can be used as types in Java.

In Java, subtype relationships are declared. A class may declare that it imple-
ments one or more interfaces, making it a subtype of all of those interfaces, and
those interfaces are its supertypes. For example, the examples in the introduction
directly declare the following subtype relationships.

AbsInterval ≤ IntSet
Interval ≤ AbsInterval
Interval2 ≤ AbsInterval

In addition, subtyping is reflexively and transitively closed, so Interval ≤
IntSet.

Types are upper bounds in an OO language. Thus, if S is a subtype of T ,
which we write as S ≤ T , then one can assign an object of type S to a variable
declared to have type T and one can pass an actual parameter of type S to a
formal parameter of type T .

To have indefinite lifetimes, objects are stored in the heap, as shown in Fig. 12.
Local variables, such as ivl, are stored in the runtime stack. When a variable’s
type is a reference type its contents consist of a reference (i.e., a pointer) to an
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Fig. 12. Picture of the stack and heap after executing the statement
ivl = new Interval(3,5);.

object, in this case an object of class Interval. Objects are typically repre-
sented as records that can be mathematically modeled as mappings from field
names to values. There is a distinguished field named class that contains a
reference to the class object, which is a run-time representation of the class
declaration.

Class objects themselves contain their name, a reference to their superclass
object, and a method table that maps method names to the a closure for that
method. The closure contains the code for the method’s body as well as the
names of its formal parameters.

To explain how the dynamic dispatch mechanism for method calls works in
Java and other OO languages, consider the call ivl.size(). To evaluate this
expression, Java:

1. Evaluates ivl, producing a reference to an object, o (a pointer).
2. Finds the class of o (o.class), say this is the class whose class object is Iv.
3. Looks up the method code for the method named size (with no arguments)

in the method table found via Iv.
4. Allocates space for the result of the call.
5. Creates a stack frame for the call, binding this to o (and in general also

binding formals to actuals).
6. Runs the code in the new stack frame.
7. Executing a return E; statement evaluates the expression E, copies the

value of E to the space allocated for it, and then pops the call’s stack frame
off the runtime stack.

Calling methods indirectly via the method table found at runtime from the
receiver object is what makes this calling mechanism dynamic. Consider the
call to pick in Fig. 3. The argument iset could be any subtype of IntSet,
including Interval, Interval2, and even subtypes of IntSet that have not
yet been programmed.

As another example, consider the call to pick shown in Fig. 13. In this figure,
the argument has type AbsInterval, and thus the actual argument could
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Fig. 13. A method that demonstrates the problems that dynamic dispatch causes for
reasoning about method calls.

have a dynamic type that is Interval, Interval2, or any other subtype of
AbsInterval. The integer returned by the call must be in the interval, but
although Interval’s method will return 5, there is no guarantee that if iv
denotes an object of dynamic type Interval2 (or some other subtype) that
the result will be 5, so the last assertion may fail. Thus the verification technique
must take dynamic dispatch into account.

The essence of the problem is that specification and verification are done
statically, before runtime, but the dynamic types of objects are only known (in
general) at runtime. Furthermore, OO programs are “open” in the sense that
new types may be added after the program is specified and verified, so even
an exhaustive case analysis of the program’s existing types will not be sound.
Finally, not only is the code of the method that is run by a call determined
dynamically, but the different subtypes may have different specifications for what
the method should do. (However, for modular verification to be possible, we will
always assume that methods correctly implement their specifications.)

To explain this problem in verification, imagine a verification technique that
relies on a table of specifications for each method, indexed by dynamic types,
and that verifies code involving method calls exhaustively, with a verification
for each possible dynamic type of each call’s receiver, using the dynamic type’s
specification. When new types are added to a program, all proofs must be exam-
ined and new cases must be added where needed to account for the new types.
An advantage of this verification technique is that it would be very precise, as it
could consider the exact effects of each method call. However, such a technique
would not be scalable, since adding a new type to a program would require find-
ing and reproving an unbounded number of assertions. The number of cases that
would need to be considered would explode with the number of combinations of
different dynamic types that are possible in a program fragment that is to be
verified. In essence, such a technique would not be modular.

We would like a reasoning technique that is both static (so that specification
and verification are done before runtime) and modular (so that adding new types
to a program does not cause re-specification or re-verification). In addition, a
suitable reasoning technique should be not much more difficult than reasoning
about non-OO programs.
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2.4 Supertype Abstraction

A reasoning technique for OO programs that is both static and modular is super-
type abstraction [16,17,20,21]. Supertype abstraction relies on static type infor-
mation to give upper bounds on the types of expressions; in a language without
a built-in static type system, a separate static analysis could provide this infor-
mation. Verification of a method call uses the specification of the method being
called found in the receiver’s static type. For validity, an overriding method in a
subtype must obey all specifications for that method in all its supertypes, since
these supertype specifications could be used in reasoning; that is, all subtypes
must be behavioral subtypes [1–3,17,20–23]. In addition, if other properties of
supertypes, such as invariants, can be used in reasoning, then subtype objects
must also obey those properties.

An example of reasoning using supertype abstraction is shown in Fig. 2, which
uses the specifications found in the supertype IntSet to verify the call to pick.

Behavioral subtyping, which is necessary for the validity of supertype abstrac-
tion [17], must be checked when new types are added to a program. These new
types must each be behavioral subtypes of all of their supertypes (in particular
of those that are already present in the program).

Even though supertypes generally have more abstract (less precise) specifica-
tions than subtypes, one can recover the precision of reasoning by using dynamic
type information, while still using supertype abstraction. The way to do this is
to use type tests (instanceof in Java) and downcasting to align the static
types of receiver objects with dynamic type information. Figure 14 shows an
example in which there is a supertype Staff of types Doctor and Nurse, and
type tests and downcasting are used to specialize the static types of receivers.
Then supertype abstraction can be used to verify the calls to methods on these
subtypes. Thus by using supertype abstraction, one does not lose any ability to
verify OO programs, compared to an exhaustive case analysis, since by using
type tests and downcasts, one can add explicit case analysis on dynamic types.

Fig. 14. Using downcasting to do case analysis.
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3 Semantics

In order to investigate the connection between supertype abstraction and behav-
ioral subtyping, our TOPLAS paper [17] used a small “core” programming lan-
guage that is similar to Java. To avoid repeating that formal development here,
we will simply outline the main ideas and results.

3.1 A-Normal Form

A small problem with verification in a language such as Java is that expressions
may, in general, have side effects. These side effects make it unsound to use
substitution (of such expressions) in verification rules. To avoid these problems
the core language used in the TOPLAS paper has a syntax that is in “A-normal
form” [26]. In A-normal form, variables are used for certain expressions, such as
the tests in while loops and if-statements, so that effects in such sub-expressions
do not complicate the semantics. Although Java and JML do not require A-
normal form syntax, we assumed it in presenting Hoare Logic rules for Java
previously (in Fig. 9). Some verification tools (such as OpenJML) transform a
complex expression in Java into A-normal form by rewriting the program; for
example, if the condition x > y were used as the test in an if-statement, it
would first declare a boolean variable, such as xGty, and assign xGty the value
of that expression, as was done in Fig. 10. This transformation would be applied
recursively to eliminate complex subexpressions within expressions. For example
the code

(a[i] > y) .

would be transformed into A-normal form in a way similar to the following.4

x; xGty;
x = a[i];
xGty = (x > y);

(xGty) .

Such a program transformation would be carried out mechanically and would
need to respect the semantics of Java expressions. The idea would be to allow
Java expressions that involve at most one operation in an assignment statement,
so that the semantics of that operator can be isolated from any side effects (or
exceptions) caused by other operators.

Since method calls are expressions in Java, using A-normal form requires
each actual argument be evaluated and its value stored in a variable, if it is not
already a variable. Thus a call such as

iv.add(i+j);

would be transformed to something like the following (depending on the types
of i and j, which the following assumes to be int).

4 Note that the transformation must ensure that any variables declared are fresh.
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ipj;
ipj = i+j;
iv.add(ipj);

Henceforth let us assume that all programs have been converted to A-normal
form.

3.2 Semantic Domains and Meaning Functions

In order to prove the soundness of a verification technique (i.e., that all con-
clusions reached are valid), one needs a semantics of the programming language
and the specification language. To that end, the following development will dis-
cuss (but not precisely define all the details of) a denotational semantics for
the programming and specification languages Java and JML. This subsection is
adapted from our TOPLAS paper [17].

Java is a statically typed language, and our specification and verification
approach requires that the static types of expressions are upper bounds of the
types of values they may denote. We write typing judgments using a context
(type environment), Γ , which is a finite mapping from names to types. Such finite
maps are often treated as sets of pairs; for example, suppose Γ0 = [x : K, y : int].
Then the value of Γ0 applied to x, Γ0(x), is K and Γ0(y) is int. We extend
such finite mappings using a comma, thus [Γ0 , z : boolean] is the finite map
[x : K, y : int, z : boolean]. This extension notation (with the comma) is only
used when the variable is not in the domain of the finite function; if it may be
in the domain, then we use an override notation, such as [Γ0 | x : L], which is
the finite map [x : L, y : int].

Types in Java can be either primitive (value) types, such as int and
boolean or reference types, which are class or interface names (instantiated
with type parameters if necessary). The notation RefType denotes the set of all
reference types.

Our denotational semantics for a language like Java [17,18] assumes that the
class and interface declarations of a program are available in a class table, CT ,
that maps reference types to their declarations. From now on the class table,
CT , of the program being considered is assumed to be fixed.5

Types are partially ordered by the subtype relation ≤, which is derived from
the reflexive-transitive closure of the declarations in classes and interfaces in
the same way as in Java. Primitive types such as int are only subtypes of
themselves. Subtyping for method types follows the usual contravariant ordering
[6], although the formal parameter names must be identical. That is,

x : T→T1 ≤ y : U→U1

if and only if U ≤ T , T1 ≤ U1, and x is identical to y [17].

5 If classes can be created or loaded at runtime, then CT would contain all the classes
that might be available to the program at runtime.
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Fig. 15. The classes AbsCounter two subtypes.

Example 2. Consider the interface and classes declared in Fig. 15 on the
next page. This figure would produce a class table, call it CT1, that maps
AbsCounter to its declaration, Counter to its declaration, and Gauge to
its declaration.

In this example Counter ≤ AbsCounter and Gauge ≤ AbsCounter, and
each of these types is also a subtype of itself. �

As in Java, both expressions and commands (i.e., statements) can have effects.
To model exceptions, our earlier work used a distinguished variable, exc in the
post-state of a command; when no exception is thrown, exc is null, otherwise it
contains the exception object thrown [17].

We formalize semantics uses the domains shown in Fig. 16 below.
We assume that there is a set, Ref, of references; these are the abstract

addresses of objects.
To model the “class” field in an object’s runtime representation that was

shown in Fig. 12 we use a ref context, which is a finite partial function, r, that
maps references to class names (and not interface names). The idea is that if
o ∈ dom(r) then o is allocated and moreover o points to an object of dynamic
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Fig. 16. A guide to the domains used in the semantics, adapted from our earlier work
[17].

type r(o). We define the set of reference contexts:

RefCtx = Ref ⇀ ClassName

where ⇀ denotes finite partial functions. For r and r′ in RefCtx, r ⊆ r′ means
that dom(r) ⊆ dom(r′) and, for objects allocated in r, the dynamic types are
the same in r′ [17].

For data type T its domain of values in a reference context r is defined by
cases on T , where K is a class name and I is an interface name [17]:

V al(int, r) = {. . . , −2, −1, 0, 1, 2, . . .}
V al(boolean, r) = {true, false}
V al(K, r) = {null} ∪ {o | o ∈ dom(r) ∧ r(o) ≤ K}, if K ∈ ClassName
V al(I, r) = {null} ∪ {o | ∃K · K ≤ I ∧ o ∈ V al(K, r)}, if I ∈ InterfaceName

A store, s, for a context Γ is a dependent function from variables in scope to
type-correct and allocated values. Thus for each x ∈ dom(Γ ), s(x) is an element
of V al(Γ (x), r). In a store, this cannot be null.

s ∈ Store(Γ, r)
⇐⇒ s ∈ ((x : dom(Γ )) → V al(Γ (x), r)) ∧ (this ∈ dom(Γ ) =⇒ s(this) �= null) (2)

A heap h maps each allocated reference o to an object record, where the
auxiliary function fields returns a context for all the fields of the given class
(taking inheritance into account) [17].

Obrecord(K, r) def= Store(fields(K), r)
Heap(r) def= (o : dom(r)) → Obrecord(r(o), r)

Given a type environment, Γ , a state for Γ is a tuple consisting of a ref
context, r, together with an appropriate heap and store for r:

State(Γ ) def= (r : RefCtx) × Heap(r) × Store(Γ, r)
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Example 3. An example of a state for the class table CT1 (in Example 2) is as
follows. Let the type environment Γ2 be [c : AbsCounter,g : AbsCounter].
Let the store s2 be [c : o1,g : o2]. Let a reference context, r2 be [o1 :
Counter, o2 : Gauge]. Let a heap for r2 be defined by h2(o1) = [count : 0] and
h2(o2) = [count : 2]. Then (r2, h2, s2) is an element of State(Γ2). �

A state transformer, which is an element of Γ �Γ ′ is a function ϕ that maps
each state σ in State(Γ ) to either ⊥ or a state ϕ(σ) in State(Γ ′), with a possibly
extended heap, subject to some additional conditions.

Γ � Γ ′ def=
(σ : State(Γ )) → ({⊥} ∪ {σ′ | σ′ ∈ State(Γ ′), extState(σ, σ′), imuThis(σ, σ′)})

The predicate extState(σ, σ′) says that the ref context of σ is extended by the
ref context of σ′. The predicate imuThis(σ, σ′) says that this is not changed
(if present in both states).

Example 4. Let Δ3 be [this : Counter] and Δ′
3 be [res : void,exc :

Throwable]. A state transformer that is an element of Δ3 � Δ′
3 is ϕ3 defined

by

ϕ3(r, h, s) = (r, h′, s′)

where for some o ∈ Ref and integer n, if s(this) = o and (h(o))(count) = n,
then the resulting heap is defined by h′ = [h | o : [h(o) | count : n+1]], and the
resulting store is defined by s′ = [res : it,exc : null]. (This state transformer
would be appropriate for a call to Counter’s method inc; see Fig. 15. This
transformer uses res to hold the method’s normal result. It also uses it as a
value of type void, which avoids a special case for void state transformers.) �

State transformers are used for the meanings of expressions, commands, and
methods as follows (where mtype returns the declared type of a method from
the class table):

SemExpr(Γ, T ) def= Γ � [res : T,exc : Throwable]
SemCommand(Γ ) def= Γ � [Γ , exc : Throwable]
SemMeth(T,m) def= Γ � [res : U,exc : Throwable]

wheremtype(T,m) = z : U→U

Note that the meanings for expressions and method bodies are similar and nei-
ther contains this (or the formals in the case of methods). This means that
expressions and method calls cannot change the store. Thus the conversion to
A-normal form must make any expressions that have effects on the store that
occur in a command or expression become commands that store the expression’s
value in a fresh variable, with this fresh variable replacing the expression with
the effect. For example to convert a command such as the following

b = count++ > 0;



An Illustrated Guide to the Model Theory of Supertype Abstraction 63

into A-normal form, one would add extra commands to evaluate the expression
count++ first, such as the following.

ocount = count;
count = count +1;
b = ocount > 0;

In Java, arguments are passed by value,6 so a method itself cannot change
the formal parameters (or this).

Example 5. Let Γxy be [x : int,y : int]. A state transformer in
SemExpr(Γxy,boolean) is the following. ϕxy(r, h, s) def= (r, h, s′), where s′ =
[res : s(x) > s(y),exc : null]. The state transformer ϕxy would be the denota-
tion of the expression x>y in the context Γxy. �

Example 6. Exceptions in expressions and commands are handled by examining
the special variable exc in the post-state. For example, the semantics of the
Java assignment statement x=E; would be as follows.

[[Γ � x=E;]](η)(r, h, s) def=
lets (r1, h1, s1) = [[Γ � E : T ]](η)(r, h, s)
in if s1(exc) = null

then (r1, h1, [[s | x : s1(res)] , exc : null])
else (r1, h1, [s , exc : s1(exc)])

If the expression goes into an infinite loop, then the meaning of the command is
an infinite loop (⊥) also, since lets is a strict let expression in the notation. If
the expression completes normally, then the state is updated with the variable
being assigned bound to the result of the expression. Otherwise, if the expression
threw an exception, then the command throws the same exception (and the store
does not undergo any changes). (The meaning functions [[·]] are curried functions
that take a typing judgment and a method environment and then a state and
produce a state of the appropriate type. Typing judgments for commands have
no result type, but typing judgments for expressions do include a result type.)

�

Example 7. The state transformer ϕ3 in Example 4 is an element of
SemMeth(Counter,inc), where Counter is defined in Fig. 15. The trans-
former ϕ3 would be the denotation of Counter’s inc method. �

A normal method environment is a table of denotations for all methods in
all classes:

MethEnv def= (K : ClassName) × (m : Meths(K)) → SemMeth(K,m).
6 In Java, and Smalltalk-80 and C#, the values of expressions may be references, but

the parameter passing mechanism is call by value, since one cannot write a method
that modifies variables passed as actual parameters, such as swap. However, the
semantics of method calls would need to be different for a language like C++ where
parameters can be declared to be passed by reference (using &).
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A normal method environment η is defined on pairs (K,m) where K is a class
with method m; and η(K,m) is a state transformer suitable to be the meaning
of a method of type mtype(K,m). In case m is inherited in K from class L,
η(K,m) will be the restriction of η(L,m) to receiver objects of type K.

In our formulation of modular reasoning based on static types, we need to
associate method meanings to interfaces as well as to classes, even though the
receiver of an invocation is always an object of some class. So we define the set
of extended method environments by

XMethEnv def= (T : RefType) × (m : Meths(T )) → SemMeth(T ,m).

The metavariable η̇ is used to range over extended method environments; think
of the dot as a reminder that interfaces are included.

3.3 Dynamic vs Static Semantics

Mathematically modeling supertype abstraction is essentially about modeling a
reasoning process that uses static type information for method calls and com-
paring that to the actual (dynamic) semantics of the programming language. In
our prior work [17] we avoided committing to a particular verification technique
by using an imaginary semantics for the language that runs method calls using
a state transformer for a called method that is based on a specification table,
given statically, and the static types of receivers. Thus, following this prior work,
we will work with two different semantics for Java:

– D[[·]], the dynamic dispatch semantics, which is the operationally accurate and
models dynamic dispatch for method calls, and

– S[[·]], the static dispatch semantics, which models static reasoning by using a
static dispatch semantics based on method specifications as the semantics for
method calls.

These semantics differ primarily in the way they treat method calls.
The dynamic dispatch semantics of method call expressions is as follows [17]:

D[[Γ � x.m(y) : U ]](η)(r, h, s) def=
if s(x) = null
then except(r, h, U,NullPointerException)
else let K = r(s(x)) in let z = formals(K,m) in

let s1 = [this : s(x), z : s(y)] in (η(K,m))(r, h, s1).

(3)

This semantic function’s definition makes use of a helping function except,
that returns a state that has the reference context and heap passed to it
along with res bound to null and exc bound to a new object of type
NullPointerException [17]. The auxiliary function formals returns the list
of formal parameter names for a method. Note that in this semantics, K is the
dynamic type of the receiver x and η(K,m) is the meaning of the method m in
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the method environment, η. That method meaning is applied to a state, (r, h, s1),
which has bindings for this and the formal parameters (z).

The static dispatch semantics of a method call uses the receiver’s static type
(T below) and a method meaning taken from an extended method environment,
η̇, which is ultimately determined by specifications [17]:

S[[Γ � x.m(y) : U ]](η̇)(r, h, s) def=
if s(x) = null
then except(r, h, U,NullPointerException)
else let T = Γ (x) in let z = formals(T,m) in

let s1 = [this : s(x), z : s(y)] in (η̇(T,m))(r, h, s1).

(4)

Note that in the static dispatch semantics, not only is the method meaning taken
from an extended method environment, but the type used to look up the method
is based on the context (type environment) Γ , so the meaning can be determined
statically.

There are both dynamic and static semantics for other expressions and state-
ments, D[[·]] and S[[·]], which are constructed with identical definitions, except for
their treatment of method call expressions.

The method environment for a program is constructed, using the dynamic
disptach semantics D, from the program’s declarations (i.e., from the program’s
class table). Since methods may be mutually recursive, a chain of approxima-
tions is used to reach a fixed point [17,27]. We write D[[CT ]] for the method
environment that is the least upper bound of this fixed point.

4 Specification Semantics

In order to formalize behavioral subtyping and supertype abstraction, we need
to formalize specifications and refinement of specifications.

Recall that we think of the meaning of predicates as sets of states. For exam-
ple, the meaning of the predicate x>y is {(r, h, s) | s(x) > s(y)}. As another
example, the meaning of the predicate this.num>0 would be {(r, h, s) | o =
s(this), (h(o))(num) > 0}.

To consider the relationship between specifications in supertypes and sub-
types, we need a notion of subtyping for contexts and state transformers.

Subtyping for type contexts, Γ ≤ Δ, holds when the domains of Γ and Δ
are equal and for each x in their domain, Γ (x) ≤ Δ(x). Since a subtype relation
between types, S ≤ T , implies that for each ref context r, V al(S, r) ⊆ V al(T, r),
states for Γ are a subset of the states for Δ when Γ ≤ Δ:

Γ ≤ Δ =⇒ State(Γ ) ⊆ State(Δ). (5)

Subtyping for state transformer types follows the usual contravariant rule [6]:

(Γ � Γ ′) ≤ (Δ � Δ′) def= (Δ ≤ Γ ) ∧ (Γ ′ ≤ Δ′) (6)
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4.1 Formalizing JML Specifications

In JML, postconditions specify a relationship between two states, by using the
notation \old() to refer to the pre-state. We formalize such specifications as a
pair of a predicate and a relation.

Definition 3 (Specification in two-state form). Let Γ and Γ ′ be contexts,
Then (P,R) is a specification in two-state form of type Γ � Γ ′ if and only if P
is a predicate on State(Γ ) and R is a relation between State(Γ ) and State(Γ ′).

However, Hoare logic typically uses one-state specifications, where each asser-
tion only refers to a single state, as in our semantics for predicates above. JML
does have a way to turn two-state postconditions into one-state postconditions,
by using universal quantification over a specification.

Example 8. For example, the specification of AbsCounter’s method inc in
Fig. 15,

/*@ count < Integer.MAX_VALUE;
@ count;
@ count > \ (count); @*/

can be written with JML’s forall clause in an equivalent way as follows.

/*@ oldCount;
@ oldCount == count;
@ && count < Integer.MAX_VALUE;
@ count;
@ count > oldCount; @*/

The idea is that this specification applies for all values of oldCount that happen
to equal the pre-state value of count.

One must also remember that references to field names such as count mean
this.count in Java. Furthermore, since this is not available in the denota-
tional semantics of the post-state, one also needs to use a forall to save the
value of this and thereby allow the postcondition to access its fields. (This
works because this cannot be changed by commands.) Thus the above should
be rewritten as follows.

/*@ oldCount; AbsCounter oldThis;
@ oldThis == && oldCount == .count
@ && .count < Integer.MAX_VALUE;
@ oldThis.count;
@ oldThis.count > oldCount; @*/

To approach Hoare logic even more closely, the formalization in the TOPLAS
paper [17] assumed that the meaning of JML’s assignable clauses could be writ-
ten into the method’s postcondition; these added postconditions would state that
all locations that are not assignable are unchanged. For example, if the only other
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location in the program is the field size, then the above specification would be
translated as follows into an equivalent specification.

/*@ oldCount , oldSize; AbsCounter oldThis;
@ oldThis == && oldCount == .count
@ && oldSize == .size
@ && .count < Integer.MAX_VALUE;
@ oldThis.count > oldCount
@ && oldThis.size == oldSize; @*/

(As can be seen from this example, this translation to eliminate assignable
clauses is not modular, as it depends on the locations in the rest of the program.)

�
Such specifications as last the one above, which have universally quantified

variables, a precondition, and a postcondition, are termed “general specifications”
in our TOPLAS paper [17].

Definition 4 (General Specification). A general specification of type Γ �Γ ′

is a triple of form (J, pre, post) such that:

1. J is a non-empty set,
2. pre is a J-indexed family of predicates over Γ -states, i.e., a function from J

to the powerset of State(Γ ), and
3. post is a J-indexed family of predicates over Γ ′-states, i.e., a function from

J to the powerset of State(Γ ′).

Example 9. Let Γ3 be [this : AbsCounter] and Γ ′
3 be [res : void,exc :

Throwable]. Let Jcst be the set of triples of two integers and an AbsCounter
reference. Let precst and postcst be the functions defined by:

precst(oc, os, ot)
def= {(r, h, s) | s(this) = ot, (h(ot))(count) = oc,

(h(ot))(size) = os, oc < MaxInt}
postcst(oc, os, ot)

def= {(r, h, s′) | (h(ot))(count) > oc, (h(ot))(size) = os}.

(We assume that Integer.MAX_VALUE denotes MaxInt.) Then
(Jcst, precst, postcst) is a general specification of type Γ3 � Γ ′

3 that would be
an appropriate meaning for the specification of AbsCounter’s method inc
(from Fig. 15) with the rewrites shown in Example 8. �

As a general technique, one can use the entire pre-state as the index set J ,
which allows one to access any features of the pre-state in postconditions [17].
This idea allows us to define an operator for converting specifications in two-state
form into general specifications.

Definition 5 (Translation from two-state to general specifications). Let
(P,R) be a specification in two-state form of type Γ � Γ ′. Then the translation
of (P,R) into a general specification of type Γ � Γ ′ is as follows.
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〈〈P,R〉〉 def= (J, pre, post)
whereJ = State(Γ )
and for all σ ∈ State(Γ ),

pre(σ) = {τ | τ = σ ∧ σ ∈ P}
post(σ) = {σ′ | (σ, σ′) ∈ R}

4.2 Satisfaction and Refinement

With the above semantics of Java and JML in hand, we can resume the study
of their relationship.

4.2.1 Satisfaction
The key relation is satisfaction of a method specification by its implementation;
in the formal model this boils down to satisfaction of the meaning of a specifica-
tion by the meaning of a method implementation, which is a state transformer.
For simple (pre/post) specifications (P,Q) of type Γ � Γ ′, a state transformer
ϕ : Δ�Δ′, whose type is a subtype of the specification’s, Δ�Δ′ ≤ Γ �Γ ′, we
say that ϕ satisfies (P,Q), written ϕ |= (P,Q), if and only if for all σ ∈ State(Γ ),
σ ∈ P ⇒ ϕ(σ) ∈ Q. The definition for general specifications is analogous [17].

Definition 6 (Satisfaction). Let (J, pre, post) be a general specification of type
Γ � Γ ′. Let ϕ : Δ � Δ′ be a state transformer, where Δ � Δ′ ≤ Γ � Γ ′. Then
ϕ satisfies (J, pre, post), written ϕ |= (J, pre, post), if and only if for all j ∈ J ,
and for all σ ∈ State(Γ ),

σ ∈ pre(j) ⇒ ϕ(σ) ∈ post(j).

This definition of satisfaction is a total correctness one, since the resulting
state of a state transformer, ϕ(σ), must be defined.

Example 10. Consider the general specification (Jcst, precst, postcst) from Exam-
ple 9, which has the type:

[this : AbsCounter] � [res : void,exc : Throwable].

This is a formalization of the specification in AbsCounter for the method inc
(from Fig. 15). Consider also the state transformer ϕ3 from Example 4. This state
transformer has type:

[this : Counter] � [res : void,exc : Throwable].

However, the type of ϕ3 is not a subtype of the type of the specification, since
Counter is a subtype of AbsCounter, but for subtyping of transformer types
the argument contexts should be in a supertype relationship (as subtyping is
contravariant on arguments) and the opposite is true. Thus ϕ3 does not satisfy
(Jcst, precst, postcst). �
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4.2.2 Restrictions of Specifications
The above example shows that the type of the receiver argument (this) requires
a careful treatment in an OO language like Java. The problem is that the
dynamic dispatch mechanism will guarantee that the receiver for a method m
in class K has a dynamic type that is a subtype of K, but the receiver’s type
is part of the context that is used to define the state spaces in the semantics,
which leads to the subtyping problem in the above example.

In what follows, we use the auxiliary function selftype, which is defined as:

selftype(r , h, s) def= r(s(this)).

Using selftype we can define two restrictions on predicates.

Definition 7 (Exact Restriction). Let T be a reference type and let Γ be a
context which is defined on this. If pre is a predicate on State(Γ ), then the
exact restriction of pre to T , written pre�T , is the predicate on State([Γ | this :
T ]) defined by

σ ∈ (pre�T ) def= selftype(σ) = T ∧ σ ∈ pre.

If (J, pre, post) is a general specification of type, Δ � Δ′, where this is
in the domain of Δ, then the exact restriction of (J, pre, post) to T , written
(J, pre, post)�T , is the general specification (J, pre′, post) of type [Δ | this :
T ] � Δ′, where pre′(j) def= pre(j)�T .

For simple specifications, (P,Q)�T is (P �T,Q).
As methods may be inherited in subtypes in Java, they may be applied to

receivers that do not have the exact type of the class in which they are defined.
Thus it is useful to have a similar notion that permits the type of this to be a
subtype of a given type.

Definition 8 (Downward Restriction). Let T be a reference type and let Γ
be a context that is defined on this. If pre is a predicate on State(Γ ), then the
downward restriction of pre to T , written pre�∗T , is the predicate on State([Γ |
this : T ]) defined by

σ ∈ (pre�∗T ) def= selftype(σ) ≤ T ∧ σ ∈ pre.

If (J, pre, post) is a general specification of type Γ � Γ ′ where this ∈
dom(Γ ), then the downward restriction of (J, pre, post) to T , written
(J, pre, post)�∗T , is the general specification (J, pre′, post) of type [Γ | this :
T ] � Γ ′, where pre′(j) def= pre(j)�∗T .

Example 11. Consider the precondition specification (Jcst, precst, postcst) from
Example 9, which has the type:

[this : AbsCounter] � [res : void,exc : Throwable].
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The exact restriction (Jcst, precst, postcst)�Counter, is (Jcst, pre′
cst, postcst),

where

pre′
cst(oc, os, ot)

def= {(r, h, s) | s(this) = ot, (h(ot))(count) = oc,
(h(ot))(size) = os, oc < MaxInt
selftype(r , h, s) = Counter}.

Note that (Jcst, precst, postcst)�Counter, has the type

[this : Counter] � [res : void,exc : Throwable].

Since the type of this exact restriction is the same as the type of ϕ3 from Exam-
ple 4, the reader can check that ϕ3 |= (Jcst, precst, postcst)�Counter.

The downward restriction (Jcst, precst, postcst)�∗Counter is (Jcst, pre′′
cst,

postcst), where

pre′′
cst(oc, os, ot)

def= {(r, h, s) | s(this) = ot, (h(ot))(count) = oc,
(h(ot))(size) = os, oc < MaxInt
selftype(r , h, s) ≤ Counter}.

The reader can check that the type of this downward restriction is the
same as the type of the state transformer ϕ3 from Example 4, so that
ϕ3 |= (Jcst, precst, postcst)�∗Counter. �

4.2.3 Refinement of Specifications
In general, a specification S2 refines a specification S1 if S2 restricts the set
of correct implementations such that every correct implementation of S2 is a
correct implementation of S1. The importance of this is that if a verifier uses
S1, then any conclusions it draws are valid for implementations that satisfy S2.
This is exactly the property that supertype abstraction should have to permit
modular reasoning about OO programs, hence refinement is key to the results
reported in our TOPLAS paper [17].

Definition 9. Let spec1 be a specification of type Γ � Γ ′ and let spec2 be a
specification of type Δ � Δ′ where Δ � Δ′ ≤ Γ � Γ ′. Then spec2 refines spec1,
written spec2 � spec1, if and only if for all ϕ : Δ � Δ′,

(ϕ |= spec2) ⇒ (ϕ |= spec1).

In terms of specifications, refinement can be characterized as follows [17].

Theorem 1. Let (I, pre, post) be a specification of type Γ � Γ ′ and let
(J, pre′, post′) be a specification of type Δ � Δ′ where Δ � Δ′ ≤ Γ � Γ ′. Then
the following are equivalent:

1. (J, pre′, post′) � (I, pre, post),
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2. ∀i ∈ I · ∀σ ∈ State(Γ ) ·
σ ∈ pre(i)

⇒ ((∃j ∈ J · σ ∈ pre′(j))
∧ (∀τ ∈ State(Δ′) ·

(∀j ∈ J · σ ∈ pre′(j) ⇒ τ ∈ post′(j))
⇒ τ ∈ post(i)))

�

Example 12. Imagine that in the abstract class AbsInterval the method pick
was specified as follows:

//@ AbsInterval othis;
//@ .lb < .ub;
//@ othis.lb <= \ && \ <= othis.ub;

/*@ @*/ pick ();

This JML specification corresponds to the general specification (Jpai, prepai,
postpai) of the type [this : AbsInterval] � [res : int,exc : Throwable],
where

Jpai
def
= State([this : AbsInterval])

prepai(σ)
def
= {(r, h, s) | σ = (r, h, s), ot = s(this), (h(ot))(lb) < (h(ot))(ub)}

postpai(r, h, s)
def
=

{(r′, h′, s′) | ot = s(this), r ⊆ r′, h ⊆ h′,
(h(ot))(lb) ≤ s′(res), s′(res) ≤ (h(ot))(ub)}

Consider the following JML specification for pick in the subtype Interval.

//@
//@ Interval othis;
//@ .lb < .ub;
//@ othis.lb == \ ;

/*@ @*/ pick() { /* . */ }

This JML specification corresponds to the general specification (Jpi, prepi,
postpi), which has type [this : Interval] � [res : int,exc : Throwable],
where

Jpi
def= State([this : Interval])

prepi(σ)
def=

{(r, h, s) | σ = (r, h, s), ot = (h(ot))(s(this)),
(h(ot))(lb) < (h(ot))(ub)}

postpi(r, h, s) def=
{(r′, h′, s′) | r ⊆ r′, h ⊆ h′,

(h(ot))(lb) = s′(res), s′(res) < (h(ot))(ub)}

Then (Jpi, prepi, postpi) � ((Jpai, prepai, postpai)�Interval), since

ϕ |= (Jpi, prepi, postpi) ⇒ ϕ |= (Jpai, prepai, postpai)�Interval.
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To see this, let ϕ be such that ϕ |= (Jpi, prepi, postpi) and consider an arbitrary
pre-state (r, h, s) ∈ State([this : AbsInterval]) such that

(r, h, s) ∈ (prepai�Interval)(r, h, s).

The above means that (r, h, s) ∈ prepai(r, h, s) ∧ selftype(r , h, s) = Interval.
It follows that (r, h, s) ∈ State([this : Interval]) and (r, h, s) ∈ prepi(r, h, s).
Let reference ot be such that (s(this)) = ot. By assumption ϕ(r, h, s) ∈
postpi(r, h, s). Let (r′, h′, s′) be ϕ(r, h, s). Then by definition of postpi(r, h, s):
r ⊆ r′, h ⊆ h′, (h(ot))(lb) = s′(res), and s′(res) < (h(ot))(ub). It follows that
(h(ot))(lb) ≤ s′(res) and s′(res) ≤ (h(ot))(ub), so ϕ(r, h, s) = (r′, h′, s′) ∈
postpai(r, h, s). �

As in the above example, due to subtyping and inheritance, it is useful to
consider combinations of refinement with exact or downward restrictions of spec-
ifications (from supertypes). So we make the following definitions [17].

Definition 10 (Refinement at a subtype). Let spec1 be a specification of
type Γ � Γ ′, where this ∈ dom(Γ ). Let spec2 be a specification of type [Δ |
this : T ] � Δ′, which is such that ([Δ | this : T ] � Δ′) ≤ (Γ � Γ ′).

Then spec2 refines spec1 at exact subtype T , written spec2 �T spec1, iff
spec2 � (spec1�T ).

Further, spec2 refines spec1 at downward subtype T , written spec2 �∗T

spec1, if and only if spec2 � (spec1�∗T ).

Example 13. Consider the specifications (Jpai, prepai, postpai) and (Jpi, prepi,
postpi) from Example 12. Since that example showed that

(Jpi, prepi, postpi) � ((Jpai, prepai, postpai)�Interval)

it follows that (Jpi, prepi, postpi) �Interval (Jpai, prepai, postpai). The reader
can check that it is also the case that (Jpi, prepi, postpi) �∗Interval

(Jpai, prepai, postpai). �

It happens that the downward restriction of a specification refines the exact
restriction of that specification (at the same type), and so downward refinement
implies exact refinement [17]. Thus downward refinement is a stronger notion
than exact refinement.

Corollary 1. Let spec1 be a specification of type Γ�Γ ′, where this ∈ dom(Γ ).
Let spec2 be a specification of type [Δ | this : T ] � Δ′, which is such that
([Δ | this : T ]�Δ′) ≤ (Γ �Γ ′). Then spec2 �∗T spec1 implies spec2 �T spec1.

�

5 Supertype Abstraction

Armed with the understanding of the semantics of specifications and programs
discussed above, we can return to the topic of supertype abstraction and its
soundness and completeness.
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Recall that we want verification to be modular, so that one can verify OO
programs in a way that will remain valid when new subtypes are added to the
program. In addition, for the verification technique to be practical, it should be
able to verify one method at a time, using the specifications of all other methods
(to allow for mutually-recursive methods).

5.1 Specification Tables

The method specifications available in a program are modeled [17] in a specifi-
cation table, ST , which is a function from pairs of reference types and method
names to general specifications. That is, for all reference types T and method
names m such that mtype(T,m) = x : U → V :

ST (T,m) : [this : T, x : U ] � [res : V,exc : Throwable]. (7)

An element of ST , ST (T,m) is a general specification, and thus models the
meaning of specification of m in type T , taking into account all of the specifica-
tion language’s semantics.

Each method in a program should satisfy its specification; this can be sum-
marized by saying that the method environment satisfies the specification table.

Definition 11 (Satisfaction of ST by a method environment). Let ST
be a specification table.

An extended method environment η̇ satisfies ST , written η̇ |= ST , if and
only if for all reference types T and method names m ∈ Meths(T ),
η̇(T,m) |= ST (T,m).

A normal method environment η satisfies ST , written η |= ST , if and only if
for all class types K and methods m ∈ Meths(K), η(K,m) |= ST (K,m).

5.2 Modular Verification

Verification is modular with respect to methods if it relies on the specifications
of called methods, from the specification table for a program, not on the code of
those methods (from the class table). The main advantage of modular verification
is that it is scalable, since verification can proceed one method at a time and does
not depend on how many other methods are called in a method (or how deep
the call graph is in a program). Another advantage is that modular verification
does not need to be changed when the code changes. For example, code in a
method may be changed in any way (e.g., to make it more efficient), and as long
as it correctly implements the method’s specification (and that specification is
unchanged), then verification of method calls that uses that method does not
need to change. Another important example is that one should be able to add
new subtypes to a program without re-verifying it. The main disadvantage of
modular verification is that when the specifications used (to make it modular)
are too weak, then one will not be able to draw all the conclusions that might
be valid operationally.
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In Java all code is part of a method. If every method has a (JML) speci-
fication, then satisfaction of the specification table means that the program is
correct. That is, a program with class table CT and specification table ST is
correct if and only if D[[CT ]] |= ST , i.e., when the method environment con-
structed by the dynamic semantics satisfies the specification table, so that every
method correctly implements its specification. This models the way a verifica-
tion logic would prove the implementation of each method separately, using the
specifications of all methods as assumptions.

To formalize that reasoning is not dependent on method implementations,
but only relies on the specifications of methods, one can quantify over all correct
method implementations, as in the following.

Definition 12. Let ST be a specification table, let Γ be a context, and let C be
a command that type checks in the context Γ , i.e., Γ � C. Then C modularly
satisfies spec with respect to ST , written ST, (Γ � C) |=D spec, if and only if
for all η ∈ MethEnv,

(η |= ST ) ⇒ (D[[Γ � C]](η) |= spec).

We will use a similar notation for any phrase-in-context (i.e., typing judg-
ment), P, so that ST,P |=D spec if and only if in every correct method environ-
ment for ST , D[[P]](η) |= spec. The idea is that modular satisfaction can only
depend on the specifications in ST , since all correct method environments must
satisfy the specification.

Example 14. Let ST be such that ST (AbsCounter,inc) is the general specifi-
cation from Example 9: (Jcst, precst, postcst). Let Γ3 and Γ ′

3 be as in Example 9.
Let the command Cinc be as follows.

.count = .count +1;

Then Γ3 � C is a valid typing judgment. Let η be a method environment that
satisfies ST and in particular η(AbsCounter,inc) is the state transformer ϕ3.
Since Cinc does not involve any method calls, the following is independent of the
type environment η.

D[[Γ3 � C]](η)(r, h, s) = (r, h′, s′)
where s′ = [res : it,exc : null]

and ot = h(s(this))
andh′ = [h | ot : [h(ot) | count : ((h(ot))(count)) + 1]]

Then ST, (Γ3 � C) |= (Jcst, precst, postcst) follows (ignoring overflow and the
field size, which is mentioned in the specification). �

More interesting examples involve method calls. For example, the verification
shown in Fig. 4 is modular, as it only uses the specifications from IntSet to
verify several commands in sequence. We formalize such modular reasoning using
the specifications associated with static types as follows [17].
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Definition 13. Let ST be a specification table. Let P be a phrase-in-context.
Let spec be a specification. Then P modularly satisfies spec with respect to ST
under static dispatch, written ST,P |=S spec, if and only if for all extended
method environments η̇ ∈ XMethEnv,

(η̇ |= ST ) ⇒ (S[[P]](η̇) |= spec).

5.3 Supertype Abstraction

Supertype abstraction allows one to prove modular correctness using the static
dispatch semantics. What we call strong supertype abstraction is formalized as
modular satisfaction under static dispatch implying modular satisfaction [17].

Definition 14 (strong supertype abstraction). Let ST be a specification
table. Then ST allows strong supertype abstraction if and only if for all phrases-
in-context P and specifications spec,

(ST,P |=S spec) ⇒ (ST,P |=D spec).

Specification tables that allow strong supertype abstraction thus have the
property that one can reason in a modular way using just specifications based
on static type information, and yet can draw conclusions that are dynamically
valid, in spite of subtyping and dynamic dispatch.

Of course, we would like to reason in a way that is more economical than
considering all possible extended method environments. The approach for doing
this is to use specifications in reasoning, as in JML.

5.4 Supertype Abstraction and Behavioral Subtyping

Leaving aside many technical details, we can point to the main theoretical result
of our TOPLAS paper [17].

One approach to more economical reasoning is to treat calls of the form
x.m(y), where x has static type T as indicated in the introduction as predicate
transformers. If ST (T,m) is the simple specification (pre, post), then the call
can be treated as a specification statement that asserts pre and then assumes
post, which in JML can be written as follows.

;
;

Following the TOPLAS paper [17], we can give semantics to such specifi-
cation statements as weakest precondition (wp) predicate transformers, which
map postconditions to the weakest preconditions that guarantee the postcondi-
tion will be reached. Recall that one can think of predicates as set of states, so
a predicate transformer can also be thought of as mapping sets of states to sets
of states. We write {[(pre, post)]} for the weakest precondition predicate trans-
former above that maps the predicate post to the predicate pre. One can also
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think of this as mapping the set of all states that satisfy post to the set of all
states that satisfy pre.

The weakest precondition transformer for a general specification [17]
(J, pre, post) of type Γ � Γ ′, written {[(J, pre, post)]}, is defined such that for
any state σ and predicate Q:

σ ∈ {[(J, pre, post)]}(Q) def= (∃j ∈ J · σ ∈ pre(j))
∧(∀τ · (∀i ∈ J · σ ∈ pre(i) ⇒ τ ∈ post(i)) ⇒ τ ∈ Q)

The TOPLAS paper used such wp predicate transformers to define an
environment of predicate transformers derived from the specifications of each
method. That is, the method environment, {[ST ]}, is such that for all types T
and method names m, the transformer for the method m in type T is the weakest
precondition predicate transformer that corresponds to the specification of that
method:

{[ST ]}(T,m) def= {[ST (T,m)]}.

This extended method environment is called the least refined specification table
[17].

The least refined specification table and predicate transformers provide
another characterization of modular verification [17]. This notion of modular
verification uses a static dispatch predicate transformer semantics (S{[·]}) and
the least refined specification table that satisfies ST ({[ST ]}), to avoid quantify-
ing over all extended method environments.

Definition 15 (Modular Verification). Let ST be a specification table. Let
Γ be a type context that type checks a command C, i.e., Γ � C. Let spec be a
specification of type Γ � [Γ , exc : Throwable]. Then C is modularly verified
for spec with respect to ST if and only if

S{[Γ � C]}({[ST ]}) � {[spec]}.

Supertype abstraction means that one can establish modular correctness
using supertype specifications and static type information. Our TOPLAS paper
[17] formalized this in two ways. Weak supertype abstraction uses the idea of
modular verification above.

Definition 16 (Weak supertype abstraction). Let ST be a specification
table. Then STallows weak supertype abstraction if and only if for every phrase-
in-context P and every specification spec:

(S{[P]}({[ST ]})) ⇒ (ST,P |=D spec).

We explained the notion of strong supertype abstraction above (Defini-
tion 14). Strong supertype abstraction says that any conclusions drawn using
the static dispatch semantics are valid using the dynamic dispatch semantics.
Thus strong supertype abstraction generalizes from any particular reasoning
technique.
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Behavioral subtyping is a property of a specification table, as it relates the
specifications of subtypes to their supertypes. There are two notions of behav-
ioral subtyping, corresponding to exact refinement and downward refinement of
specifications.

Behavioral subtyping means that each overriding method in a class K refines
the specification of that method at exact type K (i.e., assuming that the type
of this is equal to K).

Definition 17 (Behavioral Subtyping). Let ST be a specification table. Then
ST has behavioral subtyping if and only if for all reference types U , method
names m ∈ Meths(U) and classes K:

(K ≤ U) ⇒ (ST (K,m) �K ST (U,m)).

Robust Behavioral subtyping means that each overriding method in a class
K downward refines the specification of that method at type K (i.e., assuming
that K is an upper bound on the type of this).

Definition 18 (Robust Behavioral Subtyping). Let ST be a specification
table. Then ST has robust behavioral subtyping if and only if for all reference
types U , method names m ∈ Meths(U) and classes K:

(K ≤ U) ⇒ (ST (K,m) �∗K ST (U,m)).

Note that in neither case is there any necessary relationship between specifi-
cations in interfaces. Although JML insists that overriding methods in interfaces
(downward) refine the specifications in the interfaces that they override, this is
not needed for such specifications that appear in interfaces. What is needed is
that overriding methods in classes refine all specifications in their supertypes
(including interfaces).

Practical examples seem to have robust behavioral subtyping, which corre-
sponds to what JML enforces. Even Parkinson and Bierman’s Cell and DCell
examples [25], which make liberal use of a selftype primitive in specifications,
exhibit robust behavioral subtyping [17, Example 8.5].

Since downward refinement is stronger than exact refinement, robust behav-
ioral subtyping implies behavioral subtyping [17].

The main result in our TOPLAS paper is the following theorem [17, Theo-
rem8.15].

Theorem 2. Let ST be a specification table that is satisfiable. Then the follow-
ing are equivalent:

1. ST has behavioral subtyping,
2. ST allows strong supertype abstraction, and
3. ST allows weak supertype abstraction.
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6 Specification Inheritance

Because supertype abstraction is desirable for modular reasoning about OO pro-
grams, and because the validity of supertype abstraction is equivalent to speci-
fications having behavioral subtyping, it is desirable to have a way to either: (a)
check that specifications have behavioral subtyping, or (b) construct specifica-
tions with behavioral subtyping. Some authors (e.g., Findler and Felleisen [8])
take the view that it is the responsibility of the specifier to ensure behavioral
subtyping, and thus that tools should check that what has been specified satisfies
some definition of behavioral subtyping. An advantage of this approach is that
specifiers will know exactly what specifications are being used for each type. A
disadvantage is that writing such specifications may be more work than with the
other approach.

JML uses specification inheritance to force all subtypes to be behavioral
subtypes [7,16], which implicitly constructs specifications with behavioral sub-
typing. An advantage of this approach is that behavioral subtyping is automatic.
A disadvantage is that specifiers need to be aware of how specifications are auto-
matically constructed.

In this section we will explain the formal model of specification inheritance
developed in our prior work [17] and how it forces behavioral subtyping.

6.1 Joining Specifications

The idea of specification inheritance is that the obligations for a method should
be inherited from supertypes in a way that is similar to the way code is inherited.
This makes the construction of new subtypes easier, approaching the ease of
constructing new subclasses in code.

The approach that is adopted in JML is due to Alan Wills, whose mechanism
for Smalltalk [32] combines method specifications from supertypes. The basic
idea is simple: all the specifications from all supertypes are combined so that
an implementation that satisfies the combined specification also satisfies each
inherited specification (considered separately). In JML a method specification
may have several “specification cases,” each of which can be formally modeled
with a general specification. Methods must correctly implement each of these
specification cases [33]. Conversely, a client, when calling a method, may choose
any of a method’s specification cases to use when verifying a call to the method
(by checking the precondition of that case and assuming its postcondition).

Example 15. Consider the method pick, specified in both the interface IntSet
and the subtype Interval. The specifications of this method from IntSet (see
Fig. 1) and from Interval (see Fig. 6) are combined by JML into the specifi-
cation shown in Fig. 17. This combined specification has two specification cases,
separated by also. The first specification case is the specification inherited from
IntSet. The second specification case is the one added for the type Interval.

This textual combination form is the source of the also that must precede
added specifications in overriding methods in JML [19]. �
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Fig. 17. The combined specification (for the class Interval) of the method pick.

To connect the idea of specification inheritance to the formal model devel-
oped so far, we need a way to combine several method specifications into one
specification. This will also serve to explain the meaning of how method specifica-
tions are combined. As with behavioral subtyping, however, one must be careful
about typing. However, unlike the typing of specification refinement related to
behavioral subtyping, for specification inheritance the problem is not the type
of this, which can be handled by a (downward) restriction, but the type of the
result.

Example 16. Imagine a method in a supertype T has a general specification
(J, pre′, post′) of type Γ � Γ ′. A subtype K can also write a specification for
the same method, (I, pre, post) of type Δ � Δ′. The type system ensures that
(Δ � Δ′) ≤ ([Γ | this : K] � Γ ′), (i.e., [Γ | this : K] ≤ Δ and Δ′ ≤ Γ ′).

Suppose I ∩ J = ∅ and we combined these disjoint partial specifications to
form the general specification (I ∪J, pre∪pre′�∗K, post∪post′) for the subtype’s
method. This nearly formalizes the idea of combining specification cases [7,32],
since a call can satisfy the precondition by choosing either i ∈ I or j ∈ J
such that pre(i) or pre′(j)�∗K holds, and then, given the choice for i or j, the
corresponding postcondition can be assumed. Conversely, an implementation
must satisfy all these partial specifications, due to the definition of satisfaction
of a general specification by a predicate transformer (Definition 6), which requires
the transformer to satisfy the specification for each index.

However, this specification should have a type appropriate for the subtype,
i.e., Δ � Δ′. For the arguments, [Γ | this : K] ≤ Δ, so for any j ∈ J ,
pre′(j)�∗K ∈ State(Δ), which works. However, for the result Δ′ �≤ Γ ′, since for
some j ∈ J , post′(j) may not be contained in State(Δ′), so the postcondition
cannot be inherited in this way. �

The problem shown in the above example is the type of the method’s result.
In a method specification, the domain of the result context always contains just
res and exc. The type of exc is always Throwable, so that does not cause any
difficulties. The problem is that in a supertype’s method, the type of res may
be a supertype of the type of the result type in the subtype’s method, so post′

needs to be strengthened to make the result have the type needed (Δ′(res)).
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(Note that if one writes code in the subtype for an overriding method, the type
checker will ensure that the result has the declared type, but that type might be
a subtype of the declared type of the result in the method being overridden.)

To solve this problem, our earlier work [17] used an operator �, defined as
follows.

Definition 19 (Restricting Postconditions). Let X be a set of states of
type State(Γ ′) and let post′ be a J-indexed family of predicates of type State(Γ ′).
Then (post′ � X) is the J-indexed family of predicates defined by:

(post′ � X)(j) def= (post′(j) ∩ X).

This operator can be used to define the join of two general specifications with
disjoint index sets.

Definition 20 (Inheriting Join of Specifications). Suppose I and J are
disjoint non-empty sets. Let (I, pre, post) : Δ � Δ′ where Δ(this) = T , and
(J, pre′, post′) : Γ � Γ ′ be general specifications such that Δ � Δ′ ≤ [Γ | this :
T ] � Γ ′. Then the inheriting join of these specifications, a general specification
of type Δ � Δ′ is defined by:

(I, pre, post)� (J, pre′, post′) def= (I ∪J, pre∪ (pre′�∗T ), post∪ (post′ �State(Δ′)).

To illustrate this using the pick method’s specifications as in Example 15, a
formal model of those specifications is needed. Since the pick method’s specifi-
cation involves pure method calls, we define the following notation for evaluating
Boolean expressions to help shorten the presentation of these models.

beval[[Γ � E]](r, h, s) def= lets (r′, h′, s′) = D[[Γ � E : boolean]](r, h, s)
in if s′(exc) = null then s′(res) else ⊥

The result of beval[[Γ � E]] in a given state will thus be either true or false (or
⊥).

To deal with index sets that may have a non-empty intersection, we define
[17]:

I + J
def= {(i, 0) | i ∈ I} ∪ {(j, 1) | j ∈ J}.

with injections inl : I → (I + J) and inr : J → (I + J) defined by inl(i) = (i, 0)
and inr(j) = (j, 1).

Example 17. Consider the two specification cases for the pick method in Fig. 17.
Ignoring the assignable clauses, the first specification case (from IntSet)

can be thought of as the general specification of type Γis � Γir,
(State(Γis), preis, postis), where the context Γis is [this : IntSet], Γir =
[res : int,exc : Throwable], and

preis(r, h, s)
def
= {(r, h, s) | beval[[Γis � this.size() > 0]](r, h, s)}

postis(r, h, s)
def
= {(r′, h′, s′) | s′(res) = n, s′′ = [s , res : n], Γisr = [Γis , res : int],

beval[[Γisr � this.contains(res)>0]](r, h, s′′)}
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The second specification case (from Interval) can modeled as the general
specification of type Γiv � Γir, (State(Γiv), preiv, postiv), where the context Γiv

is [this : Interval], Γir is as above, and (assuming long2int converts a value
from a long to an int):

preiv(r, h, s) def= {(r, h, s) | s(this) = ot, (h(ot))(lb) ≤ (h(ot))(ub)}
postiv(r, h, s) def= {(r′, h′, s′) | s(this) = ot, (h′(ot))(lb) = (h(ot))(lb),

(h′(ot))(ub) = (h(ot))(ub),
s′(res) = long2int((h′(ot))(lb))}

So the inheriting join of the above two general specifications is

(State(Γiv) + State(Γis),
(preiv ◦ inl−1) ∪ (preis�∗Interval ◦ inr−1),
(postiv ◦ inl−1) ∪ (postis ◦ inr−1)).

This general specification has type Γiv � Γir. The � operator is not needed to
form the postcondition in this case, as the same result context, Γir, is used for
both specifications.

Thus the precondition of the join is equivalent to the following.

pre((r , h, s), 0) = {(r , h, s) | s( ) = ot , (h(ot))(lb) ≤ (h(ot))(ub)}
pre((r , h, s), 1) = {(r , h, s) | selftype(r , h, s) ≤ Interval,

beval[[Γis � .size()>0]](r , h, s)}

Similarly the postcondition of the join is equivalent to the following.

post((r , h, s), 0) = {(r ′, h ′, s ′) | s( ) = ot , (h ′(ot))(lb) = (h(ot))(lb),
(h ′(ot))(ub) = (h(ot))(ub),
s ′( ) = long2int((h ′(ot))(lb))}

post((r , h, s), 1) = {(r ′, h ′, s ′) | s ′( ) = n, s ′′ = [s , :n], Γisr = [Γis , : ],
beval[[Γisr � .contains( )>0]](r , h, s ′′)}

�
As in the above example, it is possible to combine the index sets of general

specifications as if they were disjoint, by using the operator + as shown above
[17]. Thus the inheriting join can always be used to combine general specifica-
tions.

The inheriting join is a “join” in the sense of lattice theory, as it is the least
upper bound in the refinement ordering.

Lemma 1. Suppose I and J are disjoint sets (I, pre, post) is a general specifica-
tion of type Δ � Δ′, Δ(this) = T , and (J, pre′, post′) is a general specification
of type Γ � Γ ′ such that Δ � Δ′ ≤ [Γ | this : T ] � Γ ′. Then the inheriting
join (I, pre, post) � (J, pre′, post′) is the least upper bound of (I, pre, post) and
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(J, pre′, post′ � State(Δ′)) with respect to the refinement ordering for specifica-
tions of type Δ � Δ′. That is, for all spec : Δ � Δ′,

spec � (I, pre, post) � (J, pre′, post′)

if and only if the following both hold:

spec � (I, pre, post),
spec � (J, pre′, post′ � State(Δ′)).

As the above lemma states, the join of two specifications refines both of them.
However, satisfying two specifications simultaneously may be impossible.

Example 18. Consider the following JML specification, which has two specifica-
tion cases.

//@ \ == lb;
//@
//@ \ == ub;

/*@ @*/ pick ();

These specification cases can be modeled formally as follows. Let the type
context Γiv = [this : Interval]. The first specification case is then modeled
as (State(Γiv), true, postlb), where

postlb(r, h, s) = {(r′, h′, s′) | s(this) = ot, (h′(ot))(lb) = s′(res),
(h′(ot))(lb) = (h(ot))(lb), (h′(ot))(ub) = (h(ot))(ub)}

The second specification case is similarly modeled as (State(Γiv, true, postub),
where

postub(r, h, s) = {(r′, h′, s′) | s(this) = ot, (h′(ot))(ub) = s′(res),
(h′(ot))(lb) = (h(ot))(lb), (h′(ot))(ub) = (h(ot))(ub)}

Since the index sets are the same (State(Γiv)), the join is the specification

(State(Γiv)+State(Γiv), true ◦ inl−1∪true ◦ inr−1, postlb ◦ inl−1∪postub ◦ inr−1).

This is equivalent to the general specification (State(Γiv) × {0, 1}, true, postc),
where the family of postconditions postc is equivalent to the following.

postc((r, h, s), 0) = {(r′, h′, s′) | s(this) = ot, (h′(ot))(lb) = s′(res),
(h′(ot))(lb) = (h(ot))(lb), (h′(ot))(ub) = (h(ot))(ub)}

postc((r, h, s), 1) = {(r′, h′, s′) | s(this) = ot, (h′(ot))(ub) = s′(res),
(h′(ot))(lb) = (h(ot))(lb), (h′(ot))(ub) = (h(ot))(ub)}

However, postc is unsatisfiable. Why? Because an implementation will need to
produce a state with a fixed value for res; if it makes res be the value of lb,
then it will not satisfy postc when the state passed is paired with 1, but in the
formal model it must satisfy postc for all indexes, as the precondition is always
satisfied. (One might think of the 0 or 1 passed in a pair with a state as an
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input that the program cannot observe.) Thus, if the values of lb and ub can
be different, then it will not be possible to write a correct implementation of this
specification, since the result cannot simultaneously have two different values.

In more detail, recall that an implementation is modeled as a state
transformer, ϕ, which is a function. To satisfy a general specification,
such as (State(Γiv) × {0, 1}, true, postc), ϕ must be such that for each
((r, h, s), j) ∈ State(Γiv) × 0, 1, if σ |= true then ϕ(σ) |= postc((r, h, s), j).
However, if ϕ(σ) |= postc((r, h, s), 0), so that res is lb’s value, then
ϕ(σ) �|= postc((r, h, s), 1), assuming that ub’s value is different. �

Expressed in JML, the join of two specification cases

//@ pre_1;
//@ post_1;

and

//@ pre_2;
//@ post_2;

is the JML specification

//@ pre_1 || pre_2;
/*@ (\ (pre_1) post_1)

@ && (\ (pre_2) post_2 ); @*/

This combined specification [7,16,19,33], requires the implementation to sat-
isfy both of the separate specification cases (which corresponds to the formal
requirement that the specification be satisfied at all indexes). Note that if both
pre_1 and pre_2 are true, then both post_1 and post_2 must hold.

Thus in JML, and in the formal model, the join of two specifications may be
unsatisfiable. Another way of looking at this is that joining specifications can only
add more constraints to a specification, and that may result in a specification
that cannot be correctly implemented [7,16,17].

6.2 Constructing the Specification Table

Overall, the goal of specification inheritance, in our formal model, is to construct
a specification table that has behavioral subtyping. Thus we can state the goals
of a technique for constructing a specification table as follows [17]:

1. It should refine the written specifications,
2. It should have behavioral subtyping.
3. It should be the least refined specification table with these properties.
4. It should provide the most complete modular verification in the sense when-

ever conclusions are modularly correct, then these conclusions can be verified
using the technique.
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Our TOPLAS paper [17] discussed several technical approaches to construct-
ing a specification table and compared each against the above goals.

Refinement for specification tables is defined pointwise, that is,

ST ′ � ST
def= (∀T,m · ST ′(T,m) � ST (T,m)). (8)

From this definition, it follows that if ST ′ � ST , then for all phrases-in-
context P,

ST ′,P |=S spec ⇒ ST,P |=S spec.

One way to formalize the construction of a specification tables with behav-
ioral subtyping is to define a function that takes a specification table argument
and returns a specification table based on the argument, which has behavioral
subtyping.

Definition 21 (Robust Class Inheritance). Let ST be a specification table.
Then the specification table rki(ST ) is defined for class names K and interface
names I by:

(rki(ST ))(K,m) def= �{ST (T,m)�∗K | m ∈ Meths(T ),K ≤ T}
(rki(ST ))(I,m) def= ST (I,m)

The following is closest to what JML does.

Definition 22 (Robust RefType Inheritance). Let ST be a specification
table. Then the specification table rrti(ST ) is defined for reference types U by:

(rrti(ST ))(U,m) def= �{ST (T,m)�∗U | m ∈ Meths(T ), U ≤ T}

A variant of the above uses exact restriction instead of a downward restric-
tion.

Definition 23 (Exact RefType Inheritance). Let ST be a specification
table. Then the specification table erti(ST ) is defined for reference types U by:

(erti(ST ))(U,m) def= �{ST (T,m)�U | m ∈ Meths(T ), U ≤ T}

In our prior work, we showed that both of the robust flavors of inheritance
produce specification tables that refine the original table: rki(ST ) � ST and
rrti(ST ) � ST . However, it is not the case that erti(ST ) refines ST , because
in general exact restrictions do not produce refinements.
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Both robust flavors of inheritance produce specification tables with robust
behavioral subtyping, although etri only produces a specification table with
behavioral subtyping (not robust behavioral subtyping). It turns out [17] that if
rki(ST ) is satisfiable, then it is the least refinement of ST that is satisfiable and
has robust behavioral subtyping. So rki satisfies our first three goals. However,
rrti also satisfies these first three goals and also provides the most complete
modular verification [17].

7 Conclusions

Supertype abstraction allows for modular reasoning about OO programs that is
both powerful and simple. In combination with rewriting code to use downcasts,
it can be used to reach any conclusions that an exhaustive case analysis could.

Our definition of behavioral subtyping [17] is both necessary and sufficient
for sound supertype abstraction.

Robust behavioral subtyping, which itself implies behavioral subtyping, can
be obtained by specification inheritance.

7.1 Future Work

Our prior work [17] did not give a modular treatment of framing and how to
modularly specify and verify frame conditions in OO programs. Thus an impor-
tant area of future work is to provide such a modular treatment of framing
with supertype abstraction and behavioral subtyping. This work would benefit
practical tools. Bao has been working on solving this problem [5].

An interesting line of future work would be to conduct human studies with
programmers to see what the true advantages and disadvantages of using super-
type abstraction are for reasoning about OO programs.

Acknowledgments. Thanks to David Cok for comments on an earlier draft and for
fixing some errors with the IntSet example. Thanks also to David for his work on the
OpenJML tool (see http://www.openjml.org/) and his help with using it.
Notations. As an aid to the reader, we present a table of defined notations in Fig. 18
on the next page.

http://www.openjml.org/
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Fig. 18. Table of notations used in this paper.
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