
Decentralized Voting: A Self-tallying
Voting System Using a Smart Contract

on the Ethereum Blockchain

Xuechao Yang1(B), Xun Yi1, Surya Nepal2, and Fengling Han1

1 School of Science, RMIT University, Melbourne, VIC 3000, Australia
xuechao.yang@rmit.edu.au

2 CSIRO Data61, Sydney, NSW 2122, Australia

Abstract. Electronic online voting has been piloted in various coun-
tries in the recent past. These experiments show that further research
is required, to improve the security guarantees of such systems, in
terms of vote confidentiality and integrity and validity verification. In
this paper we argue that blockchain technology, combined with modern
cryptography can provide the transparency, integrity and confidentiality
required from reliable online voting. Furthermore, we present a decen-
tralized online voting system implemented as a smart contract on the
Ethereum blockchain. The system has no hardwired restrictions on pos-
sible vote assignments to candidates, protects voter confidentiality by
using a homomorphic encryption system and stores proofs for each ele-
ment of a vote. To the best of our knowledge, our proposed system is
the first decentralized ranked choice online voting system in existence.
The underlying Ethereum platform enforces the correct execution of the
voting protocol. We also present a security and performance analysis,
showing the feasibility of our proposed protocol for real-world voting
applications at large scale.

Keywords: Decentralized voting · Ethereum blockchain
Smart contract · Self-tallying

1 Introduction

A blockchain is a public, append-only, immutable ledger maintained by a decen-
tralised peer-to-peer network. Whilst first designed for digital currencies with-
out trusted third parties, blockchain technology has now moved into many fields
beyond finance.

In this paper, we focus on blockchain-based online voting. There are a number
of existing proposals for such a system, using the blockchain as a public bulletin
board to store the voting data, such as FollowMyVote [7] and TIVI [21]. These
proposals achieve voter privacy by involving trusted authorities that obfuscate
the relation between real-world identities and keys [7], or by shuffling encrypted
votes before decrypting [21].
c© Springer Nature Switzerland AG 2018
H. Hacid et al. (Eds.): WISE 2018, LNCS 11233, pp. 18–35, 2018.
https://doi.org/10.1007/978-3-030-02922-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02922-7_2&domain=pdf

Decentralized Voting: A Self-tallying Voting System 19

We propose a self-tallying online voting system using a smart contract
deployed on Ethereum. The system reduces the responsibilities of election
authorities to a minimum and allows candidate ranking, instead of just vot-
ing for one candidate [14]. The system’s voting mechanism is inspired by score
voting [23], which enables voters to assign points to different candidates directly
without any restrictions apart from the total number of available points specified
(Fig. 1).

In most online voting systems, a tallying authority tallies the votes and
decrypts the result [1,22]. Self-tallying was introduced by Kiayisa and Yung [10]
and developed by Groth [9], which converts tallying into an open procedure, that
allows any voter or a third-party observer to perform the tally computation once
all votes are cast. Unfortunately, self-tallying protocols have a fairness drawback,
as the last voter can compute the tallying before anyone else. McCorry et al.
[14] proposed a self-tallying protocol that avoids this adaptive issue. However,
the system requires voters to vote in two rounds. Our system does not have any
adaptive issue with only one round of voting.

Fig. 1. In this example six points can be distributed amongst candidates.

Online privacy preservation is one of the most pressing concerns in Inter-
net technology [11–13,16–20]. Therefore, maintaining the privacy and security
of voters is the priority for our online voting system. Our proposed decentral-
ized voting system uses the exponential ElGamal encryption system [3] and an
open vote network protocol [14]. The additive homomorphism property of the
cryptographic system makes it possible to tally encrypted votes directly without
decrypting them. Our proposed system also incorporates cryptographic proofs
to ensure the integrity of the voting process and to verify the validity of each
vote before it is saved to the blockchain. To the best of our knowledge our voting
system is the first decentralized ranked choice online voting system in existence,
which meets the following security requirements [22,23]:

Eligibility of Voters: Only authorized voters can submit their cast votes.

Multiple-Voting Detection: Multiple voting by any one voter is detected and
identified.

Privacy of Voters: All submitted votes must be stored securely and secretly
and should not reveal voting preferences of the voters.

Integrity of Ballot: No one can modify or duplicate any submitted votes.

Correctness of Tallied Result: Only verified votes are counted to calculate
the result.

20 X. Yang et al.

End-to-End Voter Verifiable: Every voter is able to verify whether his/her
vote is posted and counted correctly, and also able to verify the eligibility of
other submissions.

The rest of this paper is organized as follow: Sect. 2 demonstrates a simple
voting contract that is deployed on Ethereum. Section 3 describes the crypto-
graphic models used in our online voting system. Section 4 presents our pro-
posed online voting system. A security and performance analysis can be found
in Sects. 5 and 6, respectively. Finally, Sect. 7 concludes the paper.

2 Preliminaries on Smart Contract Voting

Blockchain-Based Smart Contracts: Blockchain technology was first intro-
duced by the Bitcoin digital currency in 2008 [2]. Bitcoin proposed a solution to
securely maintain a decentralized ledger in the presence of a Byzantine failure
model [4], in which nodes may act maliciously.

Blockchain ledgers were originally designed to record monetary transactions,
but the concept has been widened to provide support for general purpose com-
puting. Ethereum [5] provides a Turing complete platform for decentralized
smart contracts. Smart Contracts were first described in 1996 by Nick Szabo [6]
and are autonomously executing contracts written in computer code.

The Blockchain provides the following properties which make smart contracts
possible:

Transparency. Blockchain transactions are public and can be verified by any-
one.

Immutability. The transaction history of a blockchain cannot be altered. As
such, the Blockchain can be seen as an append-only database.

Trustless. Participants in blockchain transactions do not have to rely on a
trusted third party for their interactions. Trust is provided by the underlying
consensus protocol.

Decentralized Voting: Ethereum provides a natural platform for our dis-
tributed voting system, in that it provides a decentralized “public bulletin board”
to support coordination amongst voters. The execution of the election procedure
is enforced by the same consensus mechanisms that secures the Blockchain. The
smart contract code is stored on the Blockchain and executed by all peers to
reach consensus on its output.

We present a simple voting contract written in Ethereum’s Solidity language.
The implementation was deployed on Ethereum’s Kovan test network and the
contract’s interface is as follows:

VotingContract(candidateList, voterList, definedPoint): this is the constructor
function of the contract. In order for the election administrator to deploy a
new contract, there are three parameters that have to be provided: (1) a list of
candidates; (2) a list of eligible voters; and (3) total available points. Once the
contract is deployed, it is immutable.

Decentralized Voting: A Self-tallying Voting System 21

submitVote(vote, voterSign): an eligible voter is able to cast and submit a
vote via this function. This function calls a contract internal verifyPend-
ingVote(vote) function, which verifies the eligibility of the vote. The function
returns true (success) or false.
verifyAddedVote(voterID) constant returns (bool): Each voter is able to verify
the eligibility of any other voter’s submission before self-tallying.
tallyVotes(candidateName) constant returns (uint8): voters can tally any can-
didate’s final received points independently by using this self-tallying function.

The above voting contract submits and stores data in plaintext format. In
order to protect the privacy of voters, an encryption system has to be used.

3 Preliminaries on Cryptography

In this section, we introduce the underlying cryptographic building blocks for
our proposed online voting system. We combine two cryptographic systems to
ensure both voter privacy and verifiability of the result. The two systems involved
are the ElGamal Cryptosystem [3] and the distributed encryption protocol
described in [8].

ElGamal Cryptosystem: We assume that the cyclic group (G, q, g) is defined.
A user has a public key y and private key x. The ElGamal cryptosystem consists
of the following algorithms:

Encryption. To encrypt a plaintext message m ∈ G: Randomly choose an
integer r from Z

∗
q ; Computes c1 = gr; Computes c2 = gm ·yr. And the encrypted

message can be presented as E(m) = (c1, c2).

Decryption. A user computes and broadcasts a partially decrypted value, and
the final plaintext is revealed. For the ciphertext (c1, c2), decryption proceeds
as follows: The user with secret key x computes c1

x and broadcasts to others;
Everyone is able to compute

c2
c1x

= gm. Finally, m can be revealed by computing

a discrete logarithm.

Homomorphism. ElGamal encryption has an inherited homomorphic property
[23], which allows multiplication and exponentiation to be performed on a set of
ciphertexts without decrypting them, such as E(m1) × E(m2) = (gr1 , gm1 · yr1)
×(gr2 , gm2 · yr2) = (gr1+r2 , gm1+m2 · yr1+r2) = E(m1 + m2).

Distributed Encryption: works as follows: Let G denote a finite cyclic group
of prime order q in which the decision Diffie-Hellman problem is intractable. Let
g be a generator in G. There are n users, all of whom agree on (G, g). We assume
there are n different users u1, u2, · · · , un. Each user ui chooses a secret value
xi ∈R Zq, and computes a public value gxi , where 1 ≤ i ≤ n. Each ui computes
a yi as below:

yi =

∏i−1
j=1 g

xj

∏n
j=i+1 g

xj
(1)

which is publicly computable since the computation uses all public values gxi .

22 X. Yang et al.

We assume the message for each ui is mi, and the encrypted message
E(mi, yi, xi) is (yi)xi ·gmi , where E(mi, yi, xi) denotes the message mi encrypted
using yi and xi.

This cryptosystem also provides for homomorphism addition. There-
fore, anyone can compute the sum of all ciphertexts simple by multiplying all
encrypted messages:

n∏

i=1

E(mi, yi, xi) =
n∏

i=1

(yi)xigmi =
n∏

i=1

(yi)xi ×
n∏

i=1

gmi =
n∏

i=1

gmi = g
∑n

i=1 mi

where
∏n

i=1(yi)
xi = 1, according to [8].

Zero knowledge Proof: Our zero knowledge proof protocol is based on [15].
Given a cyclic group G =< g >=< h > and public knowledge A = gx and
B = hx, the prover wants to convince verifier(s) A and B have the same expo-
nentiation, but the verifier(s) cannot learn the value of x.

Prover: choose t ∈ Zq, computes T1 = gt, T2 = ht, c = Hash(T1||T2),
s = x · c + t sends T1, T2, s to Verifier

Verifier: computes c = Hash(T1||T2), verifies if gs = Ac · T1 and if hs =
Bc · T2

If both verifications are passed, the verifier believes the prover knows x, but
cannot determine the value of x.

4 Our Proposed Voting System

In this section we present our proposed decentralized, self-tallying, ranked choice,
smart contract-based voting system. The basic idea is as follows: The election
administrator deploys a voting contract by confirming public parameters (such as
the public key of the election). Each voter can then submit a vote via the voting
contract, with each vote constituting a transaction of the blockchain system.
In case of the vote not being verified as valid by the checks performed in the
smart contract, the transaction reverts. After being mined by the blockchain’s
consensus algorithm, the vote is considered final. Figure 2 presents the stages of
our proposed election.

Fig. 2. The five steps of our proposed decentralized online voting system.

The involved participants in our proposed system are:

Election Administrator: An election administrator is required to set the elec-
tion’s parameters, begin the registration stage and add voters to the list of
eligible voters. The administrator should also generate a key pair (public key

Decentralized Voting: A Self-tallying Voting System 23

and private key) of the election and contribute the public key to the blockchain.
Furthermore, the administrator is responsible for voter registration, generating
a candidate list, setting rules of the election, and deploying the voting contract,
which cannot be changed once the election started.

Candidates: A list of candidates is generated by the election administrator.
Each candidate is a contestant in the election and will receive points from dif-
ferent voters.

Voters: Each voter has a private key and public key. The public key is added
to the blockchain after the eligibility of the voter is verified by the election
administrator. The voter can submit his/her cast vote via the function provided
by the smart contract.

Blockchain Database: A distributed and append-only database. All submis-
sions will be added to the latest block of the chain once they are verified.

Table 1 provides the notations used to explain our protocols.

Table 1. Notations that used in the rest of the paper

nc: number of Candidates

nv: number of Voters

vi: i-th voter; i ∈ [1, nv]

cj : j-th candidate; j ∈ [1, nc]

x
cj
vi : secret key of i-th voter that is used to vote for cj candidate;

i ∈ [1, nv], j ∈ [1, nc]

pk: public key of election administrator

sk: secret key of election administrator

P : the pre-defined point, where the sum of all assigned points must equal
to P

p
cj
vi a point that is assigned by vi to cj , i ∈ [1, nv], j ∈ [1, nc]

pcj total received point of cj , j ∈ [1, nc]

ZPK{...}: proof of zero knowledge

4.1 Initialization and Voter Registration

Before an election can start the cyclic group (G, p, g) is defined. The election
administrator generates an ElGamal key pair (public key pk and secret key sk),
and pk is added to the blockchain database, which can be accessed by all voters.

The only rule for defining the election parameters is that the sum of all
assigned points must be a fixed number (which we treat it as P), the election
administrator defines a list of the candidates and the value of P before the
election starts.

In order to register, each voter must select nc secret keys x
cj
vi ∈ Zp and com-

pute the nc corresponding public keys gx
cj
vi (modp). The voter must register his

24 X. Yang et al.

real-world identification and his/her nc pubilc keys to the election administra-
tor. Once the eligibility is verified, the voter will be added to the list of eligible
voters, and all his/her gx

cj
vi will be added to the blockchain. Once all eligible

voters are registered for the election (or the deadline of registration has passed),
the election administrator deploys the voting contract.

4.2 Voting Process

The proposed voting system allows voters to assign different scores to different
candidates according to their personal preferences. There are three phases in the
voting stage: pre-computing, vote casting and proof generation.

We do not remove the connection between the identity of voters and their
votes, meaning everyone can see that a voter submitted his/her vote. However,
the content of votes is encrypted, meaning no-one is able to reveal the content
of any individual vote.

Pre-computing: We assume there are nv registered voters, and all gx
cj
vi are

viewable in the blockchain database. Thus, the pre-computing values ycjvi of voters
can be computed by using all other gx

cj
vi via Eq. 1. At the end, each vi has nc

pre-computed values as yc1vi
, yc2vi

, · · · , ycnc
vi , and each value can only be used to

vote for the particular cj .

Vote Casting: Each vi is able to assign any integer point (from 0 to P) to
different candidates, but the sum of all assigned points must equal to P (see
Fig. 1), which is the rule each voter has to follow. Because each vote consists of
multiple assigned points (according to the number of candidates), those points
are treated as private and confidential to the voters. Thus, those scores must be
encrypted before submission. In our case, we use p

cj
vi to denote a score that is

assigned by voter vi to candidate cj , which will be encrypted twice: ElGamal
encryption and distributed encryption.

ElGamal Encryption. Each assigned point is encrypted using the public key
pk of the election administrator. For example

E(pcjvi
, pk) = gr, g(p

cj
vi

) · pkr

meaning the score pvi
cj is encrypted using pk according to the ElGamal

encryption.

Distributed Encryption: Once the point is encrypted by ElGamal encryption,
the first part (gr) of the encrypted value will be “encrypted” again by using the
private voting key (xvi

) of the voter vi, such as

gr → (ycjvi
)x

cj
vi · gr

where y
cj
vi is computed during the pre-computing phase and publicly accessible.

Decentralized Voting: A Self-tallying Voting System 25

To summarise, we developed the encryption algorithm based on both the
ElGamal encryption and group-based encryption, meaning each assigned point
will be encrypted as per Eq. 2

E(pcjvi
, pk, ycjvi

, xcj
vi

) = (ycjvi
)x

cj
vi gr, g(p

cj
vi

) · pkr (2)

where pcjvi is encrypted by using pk (public key of the election), ycjvi (pre-computed
value that is used by vi to vote cj) and x

cj
vi (the particular private key of vi to

vote for cj). Thus, a cast Votevi
(with nc candidates) can be presented as:

Votevi
=

⎡

⎢
⎣

E(pc1vi
, pk, yc1vi

, xc1
vi

)
...

E(pcnc
vi , pk, y

cnc
vi , x

cnc
vi)

⎤

⎥
⎦

Proof Generation: In order to allow anyone to verify the eligibility of each
vote without decrypting the cipher text and revealing the content, each voter
is required to generate several proofs for his/her vote before submission (ZKP
denotes zero knowledge proof):

– ZKP(xcj
vi): to prove each encrypted point for the candidate cj is computed

correctly using the voter’s private key x
cj
vi .

– ZKP(P): to prove that the sum of all encrypted points is equal to P .

The voter vi has to generate ZKP(xcj
vi) for each encrypted point E(pcjvi ,

pk, y
cj
vi , x

cj
vi), and ZKP(P) for the Votevi

. The summarised processing procedure
of the voting stage is shown in Algorithm 1.

Remark 1. The computation details about how to generate the ZKP(xcj
vi) and

ZKP(P) can be found in Appendix.

4.3 Vote Verification Stage

In order to prevent multiple counting of any individual vote into the final result,
vote verification is required as follows:

Verify Each Encrypted Point: In order to prevent having any error during
tallying all submissions, each encrypted point E(pcjvi , pk, y

cj
vi , x

cj
vi) has to be con-

firmed as to have been computed with the correct parameters. The verification
can be done by using the corresponding proofs ZKP(xcj

vi) that are generated
during vote casting.

Verify Sum of All Encrypted Points: According to the rules of the elec-
tion, each voter cannot assign more than the pre-defined total available point
P in his/her cast vote. Using homomorphic addition, anyone is able to compute
the sum (encrypted) of all encrypted points and verify the value by using the
corresponding proof ZKP(P) that are generated by the voter.

The processing procedure of the verification is shown as Algorithm 2 (The
purpose of function verifyAddedVote is similar, but the input parameters
differ).

26 X. Yang et al.

Algorithm 1. function submitVote
Input : pre-defined point: P , public key pk,

all secret keys of vi: xc1
vi , · · · , x

cnc
vi

voting public keys of all voters gx
c1
v1 , · · · , g

xnc
vnv

Output: Votevi
1 computes y

cj
vi , j ∈ [1, nc]. � refer to Eq. 1

2 set Votevi = []
3 for j ← 1 to nc do

4 E(p
cj
vi , pk, y

cj
vi , x

cj
vi) =

(
(y

cj
vi)

x
cj
vi · gr, gp

cj
vi · pkr

)
� refer to Eq. 2

5 ZKP(x
cj
vi): {K1, K2, Z1, Z2} � Remark 1

6 Votevi = Votevi ∪ [E(p
cj
vi , pk, y

cj
vi , x

cj
vi), ZKP(x

cj
vi)]

7 end
8 ZKP(P): {T1, T2, s, z} � Remark 1
9 Votevi = Votevi ∪ [ZKP(P)]

10 Signaturevi = Sign(Votevi)

11 if verifyPendingVote(Votevi) == False then
12 | return False
13 end

14 return Votevi =

⎡

⎢
⎢
⎢
⎣

E(pc1
vi , pk, yc1

vi , x
c1
vi), ZKP(xc1

vi)
...

E(p
cnc
vi , pk, y

cnc
vi , x

cnc
vi), ZKP(x

cnc
vi)

ZKP(P)

⎤

⎥
⎥
⎥
⎦

, Signaturevi

Remark 2. The computation details about how to verify the ZKP(xcj
vi) and

ZKP(P) can be found in Appendix.

4.4 Votes Tally Stage

Once all voters have submitted their Votevi
and the deadline of submission has

passed, the election administrator must do the following: (1) compute the tal-
lying result (via homomorphic addition), (2) compute their partially decrypted
value and proof; (3) send partially decrypted values (including proofs) to the
blockchain.

Each point is encrypted using our developed encryption algorithm (Eq. 2), in
which the cipher texts can be computed by homomorphic addition. In this case,
we can simply multiply all Votevi

in the blockchain database as shown below,
where we assume there are nv voters and nc candidates, and all Votevi

have been
verified as valid.

nv∏

i=1

Votevi
=

⎡

⎢
⎣

∏nv

i=1 E(pc1vi
· · ·)

...∏nv

i=1 E(pcnc
vi · · ·)

⎤

⎥
⎦ =

⎡

⎢
⎣

∏nv

i=1(y
c1
vi

)x
c1
vi gr1 , g

∑nv
i=1 pc1

vi pkr1

...
∏nv

i=1(y
cnc
vi)x

cnc
vi grnc , g

∑nv
i=1 p

cnc
vi pkrnc

⎤

⎥
⎦

(3)

Decentralized Voting: A Self-tallying Voting System 27

Algorithm 2. function verifyPendingVote

Input : Votevi , g, all gx
cj
vi , all y

cj
vi

Output: Valid or Invalid
1 for j ← 1 to nc do
2 sum ∗ = E(p

cj
vi , · · ·)

3 //verify E(p
cj
vi , · · ·) using corresonding ZKP(x

cj
vi) � Remark 2

4 E(p
cj
vi , · · ·) = (c1, c2) � refer to Algorithm 1

5 ZKP(x
cj
vi) = {K1, K2, Z1, Z2} � refer to Algorithm 1

6 compute c = Hash(K1‖K2)

7 if (y
cj
vi)

Z1gZ2 �= K1 × (c1)
c OR gZ1 �= K2 × (gx

cj
vi)c then

8 return False
9 end

10 end
11 //verify sum using corresonding ZKP(P) � Remark 2
12 assume sum = (c1, c2)
13 ZKP(P) = {T1, T2, s, z} � refer to Algorithm 1
14 compute c = Hash(T1||T2)

15 if (y
cj
vi)

s �= (
c1
z

)c · T1 OR pks �= (
c2
gP

)c · T2 then

16 return False
17 end
18 return True

Due to
∏nv

i=1(y
cj
vi)x

cj
vi = 1 (refer to Sect. 3),

∏nv

i=1 Votevi
can be treated as nc

ciphertexts by ElGamal encryption, such as E(
∑nv

i=1 p
cj
vi), j ∈ [1, nc].

The election administrator then has to compute partially decrypted values,
such as (gr1)sk, · · · , (grnc)sk. He/she must also generate the corresponding proof
for each partially decrypted value to prove that each value is computed cor-
rectly using the secret key sk. Finally, the election administrator broadcasts
the partially decrypted values (including the corresponding proofs ZKP(sk)) to
the blockchain. The winner of the election can be computed by any voter with
Algorithm 3.

Remark 3. The verification of each partial decrypted value can be treated as
verifying if (grj)sk has the same exponentiation as pk, where pk = gsk. The
procedure is same as the example in Sect. 3.

Because the tallying algorithm is a function of the voting contract, the tal-
lying result can be computed by any voter individually, without any key or
decryption function.

5 Security Analysis

This section is devoted to a theoretical security analysis of our system. Noted
that none of the previous related papers provided a formal security model, includ-
ing only a description and an informal security discussion of their systems. Our

28 X. Yang et al.

Algorithm 3. function tallyVotes
Input : all valid votes Votev1 , · · · , Votevnv

in blockchain
all paritial decryption values (gr1)sk, · · · , (grnc)sk by election

administrator
Output: pc1 , · · · , pcnc

1 compute
∏nv

i=1 Votevi � refer to Eq. 3
2 //verify each partial decryption value using corresponding ZKP(sk)
3 for j ← 1 to nc do

4 verify (grj)sk using corresponding ZKP(sk) � Remark 3
5 end
6 //reveal result for all candidate using partial decryption values
7 for j ← 1 to nc do

8 pcj =

∏nv
i=1 gp

c1
vi pkrj

(grj)sk
=

g
∑nv

i=1 p
cj
vi (gsk)

rj

(grj)sk
= gp

cj
v1+···+p

vcj
vnv � refer to Sect. 3

9 end
10 return pc1 , pc2 , · · · , pcnc

analysis makes the following assumptions: (1) the election administrator and
voters are always identifiable, as all blockchain transactions are signed with
sender’s private key. (2) Voters will never disclose their private voting keys x

cj
vi ;

(3) the blockchain database is secure and insert-only; (4) Our system relies on
several cryptographic protocols, which are presented in Sect. 3 and have reliable
published proofs of their security.

Theorem 1. If the digital signature algorithm (such as DSA) is non-falsifiable,
no one is able to submit a ballot by impersonating another voter.

Proof. In order to prevent adversaries from casting ballots by impersonating
authenticated voters, we require each voter to submit with his/her digital sig-
nature algorithm. In our proposed system, only eligible voters are added to the
voters list by the election administrator once their identities have been verified.
The signing verify key of each verified voter is stored on the blockchain, and
the voter is responsible for keeping their signing key secret. Once the election
starts, each authorized voter signs their votes by using his/her signing key and
submits the vote along with their signature. The smart contract is able to ver-
ify if each submission by verifying the digital signature using the corresponding
signing verify key.

Theorem 2. Only one submission from each voter is accepted as valid.

Proof. In our proposed system, only the content of a cast vote is encrypted,
the identification of the voter (and the digital signature) is in plaintext and
can be viewed by everyone. Thus, multiple-voting detection is achieved by our
system, as it can always detect whether a voter has previously submitted a
vote. Furthermore, depending on the requirements of the particular scenario, our
system can accept one submission of each voter or accept multiple submissions
for each voter and use the last vote as valid.

Decentralized Voting: A Self-tallying Voting System 29

Theorem 3. If the underlying cryptographic systems are semantically secure,
then the votes’ contents will never be revealed to anyone (including the election
administrator).

Proof. Every vote is encrypted twice before submission. We use the ElGamal
cryptosystem and a distributed encryption algorithm, which inherits the homo-
morphic property from the standard ElGamal system. Both algorithms are
semantically secure.

All the submitted votes remain in encrypted form as cipher texts all the
time. The homomorphic property makes it possible to add all encrypted votes
without decrypting them. Furthermore, there is no relationship between the
cipher texts and the corresponding plaintexts since the cryptosystem employed
is probabilistic. It applies random numbers, so that the cipher text can take
on different values even when the encryption is computed from the same input.
Finally, due to each value being encrypted by both the public key of the election
administrator and the secret voting key of the voter, the decryption must be
done via collaboration of the election administrator and the voter. This means
that, if the voter kept his/her secret voting keys as secret all the time (that
is also one of our assumptions), even the election administrator cannot reveal
anything.

Theorem 4. Integrity of all cast votes are secured after submission.

Proof. Firstly, we require voters to sign their cast votes by using their signing
keys (refer to Algorithm 1), and we assume voters do not share their signing
keys, to ensure that nobody can modify the content of a submission and fake
the voter’s signature. Secondly, all cast votes will be verified being before being
added to the blockchain. Third, all verified votes will be added to the blockchain,
being logged in an immutable ledger. Thus, the integrity of all submitted votes
is treated as secure.

Theorem 5. Invalid votes can be detected by any individual voter.

Proof. Each cast vote is added to the blockchain database with corresponding
proofs, generated by using Zero Knowledge Proof. The verification algorithm is
public to all voters, which means the voters are able to verify any vote without
any assistant.

Theorem 6. The self-tallying algorithm is proposed public accessible and any-
one can use it to tally votes without assistant.

Proof. Once all votes are verified and added to the blockchain, we require the
election administrator to compute the partially decrypted value in order to allow
voters to compute the tallied result by themselves. In the meantime, the election
administrator must generate corresponding proofs to convince all voters that all
partially decrypted values are computed correctly.

Theorem 7. Voters are able to verify everything of the election.

30 X. Yang et al.

Proof. In our system, all content (encrypted votes, proofs and signature) for each
submission is broadcasted and added to the blockchain database, where they can
be accessed by anyone. We assume that the blockchain database is secure, and
it is “append-only”. The voters can do the following without any assistant: (1)
Voters can verify the blockchain transactions themselves. (2) Voters can verify
the integrity of each submission by using the corresponding signing verify keys
from all voters. (3) Voters can verify each partially decrypted value (computed
by election administrator) is computed correctly. (4) Voters can self-tally all
votes and compute the final result of the election.

6 Performance Analysis

This section discusses the performance of our proposed voting system. The anal-
ysis is based on the computation time of each processing step, separated into
3 phases, vote casting performance, votes verification performance and votes
tallying performance. In our proposed protocol, each vote is encrypted twice
using different keys (common key of election administrator and secret key of the
voter, refer to Algorithm 1). All tests were performed using a 512-bit key (p is
512-bit), which provides a higher security level than one-time encryption using
a 1024-bit key.

We tested our proposed protocol using a high performance implementa-
tion of libgmp via the gmpy2 python module (https://gmpy2.readthedocs.io/
en/latest/), on a laptop with the following specifications: 2.8 GHz quad-core
Intel Core i7 with 6 MB shared L3 cache and with 16 GB of 1600 MHz DDR3L
on-board memory.

We use t to denote the computation time of one exponentiation, where
t = 0.09 ms. ElGamal encryption requires two exponentiations, and ElGamal
decryption requires one exponentiation, where the division can be avoided by
using an alternative method (https://wikipedia.org/wiki/ElGamal encryption).
Thus, we use tE and tD to denote the computation time of encryption and
decryption, respectively, where tE = 2t and tD = t, approximately. Pre-
computed values of distributed encryption (refer to Eq. 1) require one expo-
nentiation (the inverse power computation), and encryption also has cost of one
exponentiation.

6.1 Vote Casting Performance

The performance can be analysed for the following aspects:
Total Computation Time: According to the Algorithm 1, we use Tvoter

to denote the total time spent before submission (including the proof generation
time), where

Tvoter = (tE × nc + t ∗ nc) + (3 ∗ nc ∗ t) + (3 ∗ t) = (6nc + 3)t

In this experiment, we tested Tvoter in five rounds, varying the number of
candidates (nc = 3, 5, 10, 15, 20). The result is shown in (a) Fig. 3. From the

https://gmpy2.readthedocs.io/en/latest/
https://gmpy2.readthedocs.io/en/latest/
https://wikipedia.org/wiki/ElGamal_encryption

Decentralized Voting: A Self-tallying Voting System 31

results in (a) Fig. 3, we can see the time cost for casting a vote is less than 12
ms even if there are 20 candidates to be ranked.

Fig. 3. Performance of voter side when the number of candidates is 3, 5, 10, 15, 20:
(a) Time spent encrypting a cast vote, including generation time of all proofs (b) The
size of a submission, includes all encrypted values and all proofs.

Total Submission Size: We assume the size of digital signature is 1024-bit
(refer to Algorithm 1), and we use Svote to denote the total submission size
(bits) for a voter,

Svote = (1024 × nc) + (2048 × nc) + (2048 + 512 + 2 ∗ nc ∗ 512) + (1024) = 4096 ∗ nc + 3584

The test result is shown in (b) Fig. 3 based on different numbers of candidates
(nc = 3, 5, 10, 15, 20). From the result of (b) Fig. 3, we found the submission size
of one vote is less than 11 KB even for a 20-candidate ballot.

6.2 Votes Verification Performance

We have also evaluated the performance of the verification time for submissions
a member of the public or an independent observer might with to verify. Due
to the verification of each voter’s identification being equivalent to verifying the
digital signature of each submission, this is not computationally expensive. Thus,
we concentrated on the performance of Algorithm 2. We use Tverify to denote
the total time spent verifying votes and n to denote the total number of votes
being verified, which can be presented as follows:

Tverify =
(
(5t × nc) + (nc + 1 + 2 ∗ nc)t + (6t)

) × n = (8 ∗ nc + 7)t

We tested Tverify in five rounds, varying the numbers of votes verified (n
= 1000, 3000, 5000, 8000, 10000). In this experiment, we assume the number
of candidates is 10 (nc = 10), and the result is shown in Fig. 4(a). From the
results in Fig. 4, we found the time spent verifying 10, 000 ballots costs less than
1.5 min.

32 X. Yang et al.

Fig. 4. (a) Estimate time spent of verifying 1000, 3000, 5000, 8000, 10000 votes. (b)
Estimate time spent of tallying all votes, including verifying all partially decrypted
values.

6.3 Votes Tallying Performance

Our proposed system allows voters to self-tally all submitted votes by using
all partially decrypted values from the election administrators. However, before
tallying starts, each partially decrypted value must be verified using the corre-
sponding proofs (refer to Sect. 4.4). Treveal is used to denote the total time spent
verifying all partially decrypted values, tally all votes, reveal the result (refer to
Algorithm 3), which is presented as:

Treveal = (4t ∗ nc) + (nc ∗ t) = 5 ∗ nc ∗ t

Again, we tested Ttally in five rounds varying the number of candidates (nc =
3, 5, 10, 15, 20). The result of this experiment is shown in Fig. 4(b). We found the
time spent tallying all votes (including verifying all partial decryption proofs)
costs less than 10 ms using the same test machine.

7 Conclusion and Future Work

We have proposed a secure decentralized online voting system using cryptog-
raphy and a smart contract, which allows the voters to cast their ballots by
assigning arbitrary numbers of points to different candidates. This means that
the voters can assign equal points to different candidates, or they can assign dif-
ferent points to different candidates. Each cast vote in our system is encrypted
before submission and remains encrypted at all times. The additive homomor-
phic property of the ElGamal cryptosystem enables effective processing of the
cipher texts during these procedures. Furthermore, the eligibility of voters and
their submissions can be verified by anyone without revealing the contents of
the ballots. The security and performance analysis confirm the feasibility of our
proposed cryptographic voting contract.

Decentralized Voting: A Self-tallying Voting System 33

There is a limitation in that our system may suffer abortive issue [10,14]. We
have to assume that all registered voters submit their valid votes since otherwise,
any voter can abort the tally without submitting his/her vote. In future work,
we will address this issue and consider further generalizations. Furthermore, we
will migrate the whole system to an Ethereum network and perform trials of the
protocol at a larger scale.

Appendix

In order to protect the privacy of the voters, each assigned point is encrypted
(refer to Eq. 2) before submission. However, voters have to generate correspond-
ing proofs to prove their votes are cast correctly by observing the following: 1.
each encrypted score is computed correctly using the voter’s private key x

cj
vi ; 2.

sum of all encrypted points are equaled to pre-defined total available point P .

Each Encrypted Value is Computed Correctly: We present the proofs
generation and verification for an encrypted score in Votev1 , where we assume
v1 assigned 5 points to c1, and the encrypted value should be E(5, pk, yc1v1

, xv1) =
(c1, c2), where c1 = (yc1v1

)x
c1
v1 · gr, c2 = g5 · pkr:

Prover: generates a random number k1, k2 ∈ Zq, computes K1 = (yc1v1
)k1 · gk2 ,

computes K2 = gk1 , c = Hash(K1‖K2), Z1 = xc1
v1
c + k1, Z2 = rc + k2. And

ZKP(xc1
vi

) = {K1,K2, Z1, Z2}
Verifier: compute c = Hash(K1‖K2), verify if (yc1v1

)Z1gZ2 = K1 × (c1)c, verify
if gZ1 = K2 × (gx

c1
vi)c, where yc1vi

and gx
c1
vi are public values, and the verifier(s)

will never know the value is encrypted from 5.

Sum of All Encrypted Values is Equavelent to Encrypted from P : We
present the proofs generation and verification for the sum of all encrypted points
in Votev1 , where we assume P = 10, and there are 3 candidates c1, c2 and c3.
Voter v1 cast a vote as:

E(5, pk, yc1v1
, xc1

v1
) = (yc1v1

)x
c1
v1 · gr1 , g5 · pkr1

E(2, pk, yc2v1
, xc2

v1
) = (yc2v1

)x
c2
v1 · gr2 , g2 · pkr2

E(3, pk, yc3v1
, xc3

v1
) = (yc3v1

)x
c3
v1 · gr3 , g3 · pkr3

Prover: multiply them as

E(5, pk, yc1v1
, xc1

v1
) × E(2, pk, yc2v1

, xc2
v1

) × E(3, pk, yc3v1
, xc3

v1
)

=(yc1v1
)x

c1
v1 · (yc2v1

)x
c2
v1 · (yc3v1

)x
c3
v1 · gr1+r2+r3 , g5+2+3 · pkr1+r2+r3

=(yc1v1
)x

c1
v1 · (yc2v1

)x
c2
v1 · (yc3v1

)x
c3
v1 · gr4 , g10 · pkr4

We use c1 and c2 to denote (yc1v1
)x

c1
v1 · (yc2v1

)x
c2
v1 · (yc3v1

)x
c3
v1 · gr4 and g10 · pkr4 ,

respectively.

34 X. Yang et al.

And then, compute z =
∏nc

j=1(y
cj
v1)x

cj
v1 . In this case, z = (yc1v1

)x
c1
v1 · (yc2v1

)x
c2
v1 ·

(yc3v1
)x

c3
v1 . Selects random numbers k1, k2, k3 ∈ Zq, computes K1 = (yc1v1

)k1 ·(yc2v1
)k2 ·

(yc3v1
)k3 , K2 = gk1 , K3 = gk2 , K4 = gk3 , c = Hash(K1‖K2‖K3‖K4), Z1 = xc1

v1
c+

k1, Z2 = xc2
v1
c+k2, Z3 = xc3

v1
c+k3. And ZKP(z) = {K1,K2,K3,K4, Z1, Z2, Z3}.

Prove
c1
z

(= gr4) and
c2
g10

(= pkr4) has the same exponentiation (refer to Sect. 3),

select t ∈ Z, compute T1 = (g)t, compute T2 = pkt, compute c = Hash(T1||T2),
compute s = r4 · c + t (r4 in this case). ZKP(P) = {T1, T2, s, z,ZKP(z)}.

Verifier: firstly verify z using ZKP(z), compute c = Hash(K1‖K2‖K3), verify
if (yc1v1

)Z1(yc2v1
)Z2(yc3v1

)Z3 = K1 × (z)c, verify if (yc1v1
)Z1 = K1 × (gx

c1
v1)c, verify if

(yc2v1
)Z2 = K2 × (gx

c3
v1)c, verify if (yc3v1

)Z3 = K3 × (gx
c3
v1)c.

Secondly verify P using T1, T2, s and z, multiply E(5, · · ·), E(2, · · ·) and E(3, · · ·)
as (c1, c2), compute c = Hash(T1||T2), verify if gs = (

c1
z

)c · T1, verify if pks =

(
c2
g10

)c · T2. Same as to verify
c1
z

and
c2
g10

has the same exponentiation r4.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete

logarithms. In: Advances in Cryptology, pp. 10–18 (1984)
4. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals. ACM Trans. Pro-

gram. Lang. Syst. 4(3), 382–401 (1982)
5. Buterin, V.: A next-generation smart contract and decentralized application plat-

form (2015). https://github.com/ethereum/wiki/wiki/White-Paper
6. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY J.

Transhumanist Thought 16 (1996)
7. Followmyvote.com. Introducing a secure and transparent online voting solution for

the modern age: Follow My Vote (2016). https://followmyvote.com/
8. Hao, F., Ryan, P.Y., Zieliński, P.: Anonymous voting by two-round public discus-

sion. IET Inf. Secur. 4(2), 62–67 (2010)
9. Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broad-

cast. In: International Conference on Financial Cryptography, pp. 90–104 (2004)
10. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Inter-

national Workshop on Public Key Cryptography, pp. 141–158 (2002)
11. Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with

trust management in web service. World Wide Web 14(4), 407–430 (2011)
12. Kabir, M.E., Wang, H.: Conditional purpose based access control model for pri-

vacy protection. In: Proceedings of the Twentieth Australasian Conference on Aus-
tralasian Database, vol. 92, pp. 135–142 (2009)

13. Kabir, M.E., Wang, H., Bertino, E.: A role-involved purpose-based access control
model. Inf. Syst. Front. 14(3), 809–822 (2012)

14. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting
with maximum voter privacy. In: International Conference on Financial Cryptog-
raphy and Data Security, pp. 357–375 (2017)

https://github.com/ethereum/wiki/wiki/White-Paper
https://followmyvote.com/

Decentralized Voting: A Self-tallying Voting System 35

15. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

16. Sun, X., Li, M., Wang, H.: A family of enhanced (L, α)-diversity models for privacy
preserving data publishing. Future Gener. Comput. Syst. 27(3), 348–356 (2011)

17. Sun, X., Wang, H.: Satisfying privacy requirements before data anonymization.
Comput. J. 55(4), 422–437 (2012)

18. Sun, X., Wang, H., Li, J., Truta, T.M.: Enhanced p-sensitive k-anonymity models
for privacy preserving data publishing. Trans. Data Priv. 1(2), 53–66 (2008)

19. Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access
control. IEEE Trans. Knowl. Data Eng. 17(3), 425–436 (2005)

20. Wang, H., Zhang, Y., Cao, J.: Effective collaboration with information sharing in
virtual universities. IEEE Trans. Knowl. Data Eng. 21(6), 840–853 (2009)

21. Business Wire. Now you can vote online with a selfie. Business Wire (2016). http://
www.businesswire.com/news/home/20161017005354/en/Vote-Online-Selfie

22. Yang, X., et al.: A verifiable ranked choice internet voting system. In: Bouguettaya,
A., et al. (eds.) WISE 2017. LNCS, vol. 10570, pp. 490–501. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68786-5 39

23. Yang, X., Yi, X., Nepal, S., Kelarev, A., Han, F.: A secure verifiable ranked choice
online voting system based on homomorphic encryption. IEEE Access (2018)

http://www.businesswire.com/news/home/20161017005354/en/Vote-Online-Selfie
http://www.businesswire.com/news/home/20161017005354/en/Vote-Online-Selfie
https://doi.org/10.1007/978-3-319-68786-5_39

	Decentralized Voting: A Self-tallying Voting System Using a Smart Contract on the Ethereum Blockchain
	1 Introduction
	2 Preliminaries on Smart Contract Voting
	3 Preliminaries on Cryptography
	4 Our Proposed Voting System
	4.1 Initialization and Voter Registration
	4.2 Voting Process
	4.3 Vote Verification Stage
	4.4 Votes Tally Stage

	5 Security Analysis
	6 Performance Analysis
	6.1 Vote Casting Performance
	6.2 Votes Verification Performance
	6.3 Votes Tallying Performance

	7 Conclusion and Future Work
	References

