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Abstract. Attributed network embedding, which aims to map struc-
tural and attribute information into a latent vector space jointly, has
attracted a surge of research attention in recent years. However, exist-
ing methods mostly concentrate on either the local proximity (i.e., the
pairwise similarity of connected nodes) or the global proximity (e.g., the
similarity of nodes’ correlation in a global perspective). How to learn the
global and local information in structure and attribute into a same latent
space simultaneously is an open yet challenging problem. To this end,
we propose a Neural-based Attributed Network Embedding (NANE)
approach. Firstly, an affinity matrix and an adjacency matrix are intro-
duced to encode the attribute and structural information in terms of
the overall picture separately. Then, we impose a neural-based frame-
work with a pairwise constraint to learn the vector representation for
each node. Specifically, an explicit loss function is designed to preserve
the local and global similarity jointly. Empirically, we evaluate the per-
formance of NANE through node classification and clustering tasks on
three real-world datasets. Our method achieves significant performance
compared with state-of-the-art baselines.

Keywords: Attributed social networks - Deep learning
Local and global information - Pairwise constraint

1 Introduction

Social networks are ubiquitous in our daily lives, ranging from online social-
networking sites such as Facebook and Weibo, biological gene-disease networks
[6,18], to citation networks [14,16]. Network embedding, which maps the infor-
mation of each node into a latent space, has grown up to be an effective method
in social network data mining. As a result, various data mining methods, e.g.,
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group clustering [27], link prediction [21], anomaly detection [3], node classifica-
tion [2,21], can be directly conducted in the latent space.

Early works(e.g., DeepWalk [24], LINE [28], node2vec [9]) explore the effect
of local and global structure similarity [8,12,17,31] on network embedding. Local
structure similarity indicates that a pair of nodes with edges are more prone to
be similar. On the other hand, global structure similarity reveals node status in
the network. For instance, a pair of nodes with semblable structural neighbors
tend to be closer. However, these methods need to be improved for lack of abun-
dant nodes’ attribute information. Recently, several algorithms pay attention
to attributed network embedding leveraging structural and attribute informa-
tion both. LANE [10] only takes the local attribute similarity into consideration
which means that nodes in the network with similar attribute are more likely
to be in a same community. UPP-SNE [35] is more prone to capturing global
structural and attribute similarity under the framework of DeepWalk. How to
extract the local and global information in structure and attribute jointly is still
an arduous problem.

In this paper, we propose a Neural-based Attributed Network Embedding
framework named NANE to address the aforementioned problem. In our app-
roach, various information is comprehensively considered, including the local
and global information in structure and attribute. We impose an autoencoder
model to encode the global attribute and structural information into a latent
space with a pairwise constraint to preserve the local information. Specifically,
we regard the attribute similarity of two nodes as an uncertain link and the
similarity indicates the possibility of connecting two nodes. On top of that, an
affinity matrix is introduced to represent the attribute global proximity.

In conclusion, the main contributions can be summarized as follows:

— We propose a generic neural-based framework NANE to represent attributed
social network capturing both structural and attribute non-linear similarity.
To our best of knowledge, our model is the first attempt to capture the
local and global similarity in structure and attribute jointly. Specifically,
we introduce an affinity matrix to measure the global attribute similarity
among nodes.

— We empirically conduct experiments on three real-world datasets with multi-
class classification of vertices and node clustering tasks. Comparing with
cutting-edge network embedding algorithms, we evaluate the effectiveness of
NANE.

The rest of this paper is organized as follows. Firstly, we discuss the related
work in Sect. 2, and then we show some definitions in our work in Sect. 3. On top
of that, we propose the NANE algorithm in Sect. 4, followed by experiments in
Sect. 5. Finally, Sect. 6 concludes the paper and visions the future work.

2 Related Work

In this section, we briefly summarize the development of network embedding
methods which we can simply divide into two parts. The first part is named
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structure-based network embedding which focuses on structural information
only. The latter is named content-aware network embedding that combines addi-
tional information with network structure for a better performance on graph
representation.

2.1 Structure-Based Network Embedding

Some earlier works utilize manifold learning to capture structure proximity [1,
25,29]. Recently, inspired by Skip-Gram [19,20], DeepWalk [24] imposes random
walks to generate sequences of nodes, and feeds them into Skip-Gram to capture
the similarity of nodes. However, DeepWalk is prone to preserving the global
structural proximity since the limit of random walks. On top of that, node2vec
[9] introduces biased random walks to balance the global and local structural
information. LINE [28] designs an explicit objective function to capture both
global and local structural information while it lacks further fusion.

On the other hand, some researchers try to introduce neural networks to
extract node high non-linearities. DNGR [5] adopts a random surfing model to
capture network structure and reduces it into a limit dimension by a SDAE model.
It happens that there is a similar case. SDNE [33] also exploits a deep neural net-
work with a supervised component to extract the structural information.

All the methods mentioned above are based on network structure only with-
out considering attribute information which is extremely beneficial to graph
representation.

2.2 Content-Aware Network Embedding

Some recent efforts have been devoted to leveraging additional information for
a better performance.

TADW [34], a text-associated DeepWalk model, creatively explores the con-
tribution of nodes contents in network embedding. It imposes matrix factoriza-
tion to encode text features into network representation learning. TriDNR [22]
exploits DeepWalk and Doc2Vec [13] to extract structural information and cap-
ture content information respectively. Relying on a late fusion which is a series
of weighted sums only, it ignores the correlation between structure and contents
since it lacks further convergence. Further, these two models which concern about
node contents only cannot handle noisy attribute information.

LANE [10] is the first attempt to utilize label information and node
attributes. It utilizes three matrices to measure networks: the network adja-
cent matrix, node content-level similarity matrix and node label-level similarity
matrix, and then maps them into the same vector space by dimension reduction.
LANE projects node embedding with matrix factorization which cannot reflect
the non-linear correlation between nodes. UPP-SNE [35] is the first attempt to
take user profiles into consideration. The basic idea is to extract the similarity
of nodes by random walks and embed user profile information via a non-linear
mapping into a low-dimensional latent space. However, UPP-SNE is more prone
to extracting the global proximity while it ignores the local information.
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3 Problem Definition

We first summarize some notations used in this paper. We denote scalars as
lowercase alphabets(e.g., n) and represent vectors as boldface lowercase alpha-
bets(e.g., s). Moreover, matrices are represented by boldface uppercase alpha-
bets(e.g., S). s; is the i*" row of a matrix S, and the (i,j)*" element of it is
denoted by s;;. We list the main notations in Table 1.

We regard a social network as a homogeneous attributed network which indi-
cates that there is only one relationship between nodes, each edge is undirected
and some nodes have their attributes. Under these assumptions, we denote a
social graph as G = (V, &, U), where V is a set of n nodes, £ is a set of edges
and U is the node attribute matrix. A is the adjacent matrix, and a;; is defined
as 1 if there is a edge between node ¢ and node j.

The aim of this paper is to project the nodes into a low-dimensional vector
space while preserving structural and attribute information jointly. It is vital to
map the matrices U, A into the same latent space jointly. In this end, we propose
a neural-based attributed network embedding model to learn a comprehensive
representation.

Table 1. Main notations and descriptions

Notations Descriptions

n Total number of nodes in the network

m Total number of attribute categories of all nodes

d The dimension of embedding space

t The dimension of the output of self-feedforward layer

K The number of deep autoencoder layers

A e R™ The adjacent matrix

U e R™™ The user attribute information matrix

S e R The node attribute similarity matrix

X ¢ R™*4 The final embedding matrix

R e R™2" The output of reconstruction layer

hgj) 4" Hidden layer of node i

W& ) The k** hidden layer weight matrix and biases

W strue, Waetr | The weight matrix of structural information and attribute
information

4 Methodology

In this section, we first elaborate the framework of our final model NANE
preserving structural and attribute information jointly. And then we give the
explicit loss function and its optimization in detail.
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4.1 Overall Architecture

In this paper, we propose a neural-based attributed network embedding model
to capture structural and attribute information jointly. As shown in Fig.1,
NANE consists of three major steps. Specifically, we first convert structural
and attribute information to a set of binary features, and then leverage a self-
feedforward layer to measure the weight of each feature. We then concatenate
the output of self-feedforward layer and feed it into a neural network structure.
The early fusion operation makes it possible to optimize all parameters simul-
taneously. To capture the highly non-linear node correlation, we utilize a deep
autoencoder [26] model to reconstruct overall information and design a specific
loss function to preserve both local and global similarity in the end. The details
of each step are elaborated as follows.

econstructing Procedure

Reconstruction Layer 0000 ---00

Hidden Layers - STREEENEAVEL

Self-Feedforward Layer ‘

struc \ / attr \

Input Layer (. 000 - )

Structural Information Attribute Information

Fig. 1. The framework of NANE

4.2 Global Information Encoding

To economize the global attribute and structural information, we introduce an
affinity matrix S and an adjacent matrix A respectively. In this paper, we take a
row of the adjacency matrix to represent for structural information. For example,
a; is the structural information of vertex . Furthermore, we utilize a cosine sim-
ilarity to represent the global attribute information. We simply take a row of the
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similarity matrix S to represent the attribute information, and s; is the attribute
similarity information of vertex i.

To generate the attribute affinity matrix S, we need to define the user
attribute information matrix U in the first place. As is well-known, attribute
information is rich and diverse in social networks. However, it is inevitably incom-
plete and noisy due to its heterogeneity and feature of manual filling. To tackle
this problem, we first convert all discrete attributes, e.g., user demographics [4],
user interest [23], to a set of binary features by one-hot encoding. For instance,
the marital status attribute has four values {married, single, divorced, widowed},
we can encode a married user as the vector v = {1,0,0,0}, where the first binary
feature of value 1 represents married. For continuous attributes, e.g. age, we nor-
malize it to reduce the impact of value by Max-Min Normalization. For missing
attribute values, we set the feature vector to all zeros. Thus, we aggregate all
the feature vectors together and then we obtain the user attribute information
matrix U. We obtain s;; by calculating the cosine similarity of u; and u;.

4.3 Self-Feedforward Layer

To weight features in structure and attribute, we design a self-feedforward
layer for both structure and attribute embedding. As shown in Fig. 1, the self-
feedforward layer consists of two fully connected layers, which convert features
in structural and attribute information into two dense vectors respectively. And
we apply dropout, residual connections and layer normalization on the self-
feedforward layer to prevent overfitting and improve the efficiency of neural
network. The weights of each feature are denoted as Wty and W gy, sepa-
rately. The final output of self-feedforward layer of vertex i is denoted as hio)7
which can be expressed as follows:

hgo) = [Dropout(U(Wstmc - a;)), ADropout(a(W g4, - sz))] (1)

where hz(»o) denotes the input layer of the autoencoder of vertex i, A adjusts
the impact of attributes, o denotes the activation function, W sye and W g4
are parameters we need to learn, which measure the weights of structural and
attribute information respectively. For a better convergence and preventing over-
fitting, we design an £2-norm regularizer in this part, which is defined as follows:

2 2
L:F*TGQ = ”WstMCHF + HWattr”F (2)

where H||% denotes the square of F-norm.

4.4 Reconstructing Procedure

To capture the local and global proximity in structure and attribute jointly,
we extend a deep autoencoder model to measure the interplay between struc-
ture and attribute and encode them into a latent space. A deep autoencoder
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consists of two parts, i.e. the encoder and decoder. At the encode step, multilayer
non-linear function f(-) is applied to map the input data into a low-dimensional
vector space, which is also called embedding space. On the contrary, there are
also multilayer mirrored non-linear function g(-) is extended to map the embed-
ding space to the reconstruction space. In this paper, the input data of deep
autoencoder is the output of self-feedforward layer hgo)’ and the representation
of hidden layers can be denoted as follows:

W) = o(W® ) 4 pk)) (3)

where W) b(%) is the k" hidden layer weight matrix _and biases.

The output of reconstruction layer is denoted as R. Our goal of this step
is to minimize the reconstruction error of output and input. The input data R
that need to be reconstructed is shown as follows:

R = [A, )\S] (4)
And the loss function is denoted as follows:
c=|a-r|
p— _— 5
[R-r[, )

However, due to the sparsity of the input data, the number of zero elements
in R is much larger than that of non-zero ones, which means that it is more
prone to reconstruct the zero elements rather than non-zero ones. However, it is
contrary to our intention. To address this problem, we impose an offset coefficient
matrix to reset the weights of different elements, and the redesigned loss function
is denoted as follows:

Lgiobal = H(ﬁ—R)QBHi (6)

where B is the offset coefficient vector, b;;=1 when r;;=0 while b;; = 5 > 1
when 1;;=1, and ® means the Hadamard product. With the help of the deep
autoencoder, the vectors of the vertexes which have semblable features would
have similar representation. However, it is not only necessary to capture the
global similarity, but also vital to preserve the local similarity. A pair of nodes
with edges should also have semblable embedding i.e. the local structure simi-
larity. Therefore, we aggrandize a loss function for local structure similarity, and
the expression is shown as follows:

n
['st'r'uc—local = Z Q5 Hxi - Xj”; (7)

ij=1

where a;; is an element of adjacency matrix, a;; = 1 when there is a link between
node ¢ and node j. x; denotes the final embedding of node . The local structure
loss function aims to make the embedding of two connected nodes closer.
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Similar with the local structure similarity, we also design a loss function to
constraint the local attribute similarity. A pair of nodes with semblable attributes
should also have semblable embedding. The loss function for local attribute
similarity is denoted as follows:

n

Lattr—local = Z Sij sz - Xj”; (8)

ij=1

where s;; is an element of attribute similarity matrix. The greater value of s;;,
the attributes of node i and node j are more similar. Akin to the local structure
loss function, the local attribute loss function aims to make the embedding of
two nodes which have similar attributes closer.

4.5 Loss Functions and Optimization

To preserve the global and local similarity simultaneously, we combine the afore-
mentioned loss functions in a integrated framework and propose a unified struc-
ture and attribute preserving model NANE. The joint loss function is denoted
as follows:

L= OZ‘Cglobal + ’Y‘cstruc—local + eﬁattr—local + 77£7'eg

R 2 n
=aH(R—R)®BH Y ag % — x5
r 7JZ=:1 (9)

n
0 sij 1% = X515 + nLreg

ij=1

where «,7,0,n are four hyper-parameters to adjust the weights of each part. More-
over, L4 is the total regularization which consists of two parts: the regulariza-
tion of self-feedforward layer Lp_,.4 and the regularization of deep autoencoder
Loe—reg- We define L,..4 as

£7‘eg = LF—reg + 'Cae—reg

K
= ||Wstruc||2 + ||Wattr||2 + Z(Hw(k) H2 + Hb(k)H2 ) (10)
' " k=1 E F

To optimize the aforementioned framework, we apply RMSProp to minimize
the objective in Eq.(9), which is able to adjust the learning rate for each param-
eter. We feed mini-batch into our model each time to accelerate the speed of
training. Besides, in order to prevent falling into a local optimum solution, it
is essential to find a good set of initialized parameters. Therefore, we adapt
Restricted Boltzmann Machine to pre-train the parameters at first, which is a
classic method of parameter initialization in neural network [7]. The integrated
algorithm is presented in Algorithm 1.
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Algorithm 1. NANE model

Input: The network G = (V, £, U) with the adjacency matrix A and hyper-parameters
Output: Network embedding X

1: Extract the feature vectors and calculate the attribute similarity matrix S;

2: Feed matrix A,S into self-feedforward layer, and merge them together;

3: Pre-train the parameters of deep autoencoder through RBM to get initial parameter

values;

4: Feed the output of self-feedforward layer into deep autoencoder;
repeat
6: Based on the input data and the weights of each layer, apply Eq.(1) to generate

o

the reconstruct matrix R;
7 minimize Eq. (9) by RMSProp, and update parameters at each epoch;
until converge
9: Acquire the network embedding X= HE/2

®

5 Experiments

In this section, we evaluate our method by performing experiments on three
real-world network datasets and compare it with several state-of-the-art baseline
algorithms.

5.1 Datasets

We conduct experiments on three real-world networks: Facebook, Hamilton and
Rochester. The statistics of the three datasets is summarized in Table 2.

Ego-Facebook is an ego-network which was collected from survey partic-
ipants using the Facebook app. The dataset contains 1403-dimensional node
features, 4039 nodes and 88234 edges. Besides, people education type is used as
group label [15].

Hamilton and Rochester are two datasets collected by Adam D’Angelo of
Facebook, consists of nodes from the Facebook networks at each of 100 American
institutions [30]. Each node contains 7 attributes: student/faculty status flag,
gender, major, second major/minor, dorm/house, year, and high school, which is
described by a 144-dimensional and 235-dimensional feature vector respectively,
and student /faculty status flag is selected as group class. Two datasets include
2314 nodes, 192788 edges and 4563 nodes, 322808 edges separately.

Table 2. The statistics of the three datasets

Dataset | Node | Edge | Attribute
Facebook | 4039 | 88234 | 1403
Hamilton | 2314 | 192788 | 144
Rochester | 4563 | 322808 | 235
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5.2 Baseline Methods

We compare NANE with several state-of-the-art network embedding methods,
which are divided into two categories.

Structure-Based NRL Methods

— DeepWalk [24] generates node sequences by random walks, and feed them
into Skip-Gram model to learn network embedding.

— node2vec [9] introduces biased random walks to DeepWalk, which aims to
capture the local and global structure jointly.

— LINE [28] imposes two separate objective functions to extract the first-order
and the second-order proximity both.

— SDNE [33] leverages a deep neural network which is a non-linear mapping
operation to exploit structural information.

Attribute-Aware NRL Methods

— LANE [10] fuses structural, attribute and label information together to pre-
serve node similarity. Here, we only use the version without utilizing label
information.

— UPP-SNE [35] generates random walks to capture node pairwise similarity
and embeds user profile information into a low-dimensional vector space.

5.3 Parameter Settings

For a fair comparison, we set the embedding dimension to 256 for all methods.
In DeepWalk, node2vec and UPP-SNE, we set the window size ¢ to 10, the walk
length [ to 80. In node2vec, we empirically set the return hyperparameter p to
2.0, and the in-out hyperparameter ¢ to 0.5. In LINE, we set the first-order
vector dimension to 128, and the second-order vector dimension to 128 in the
same way. In SDNE, we set the weight v, «, 8 to 1, 500, 100 respectively, and the
learning rate is 0.01. In LANE, we tune the hyper-parameters of 51, 82 by grid
search. In UPP-SNE, we set the number of iterations to 20. For our method, we
use a grid search to find the best parameters. We set a to 1000, 8 to 100, and
v,0 and n to 1. The rest parameters are given in Table 3.

Table 3. Parameter settings of the three datasets

Dataset | Batch size | A |t
Facebook | 600 1.5| 256
Hamilton | 400 1.5 1000
Rochester | 600 1 256
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5.4 Node Classification

We first evaluate the effectiveness of NANE by multi-class node classification.
To be fair, we range the training size from 15% to 75% by taking 10% as a
step, and apply a rbf-kernel svimm classifier with v = 100 to all of the generated
node representations. For each training size, we split train and test set in a
random way for 10-times, and then conduct 5-fold cross-validation and output
the average micro Fl-score of node classification on three different datasets.

Table 4. Node classification Fl-score(%) on Facebook

Train size | 15% |25% |35% |45% |55% |65% |75%
LINE 68.93 |68.93 |68.56 | 68.87 |69.73 |68.78 | 68.56
DeepWalk | 68.31 |68.98 |69.76 |69.98 |69.14 |68.88 |69.01
node2vec |68.84 |69.34 [69.5 |69.89 69.36 |69.34 |69.01
SDNE 63.51 |63.73 | 64.09 |64.32 |63.32 | 64.01 | 63.13
LANE 70.03 |70.2 |69.9 |70.2 |69.86 |69.66 |70.1
UPP-SNE | 85.53 | 85.87 |86.41 |86.81 |87.18 |87.13 |87.82
NANE 88.62 | 88.92 | 89.16 | 89.18  89.03 | 89.79 | 90.97

Table 5. Node classification Fl-score(%) on Hamilton

Train size | 15% | 25% |35% |45% |55% |65% |75%

LINE 90.04 [90.45 91.18 |91 91.41 | 91.56 | 92.36
DeepWalk |92.32 | 92.86 |92.62 | 92.77 |93.19 |92.72 | 92.75
node2vec |92.43 |92.86 |92.56 |92.46 |92.9 [93.09 |93.09
SDNE 91.2 ]91.65 |92.36 |92.46 |92.71 | 92.59 | 92.4

LANE 79.36 |79.26 |79.27 | 82.88 |87.04 |89.88 |92.26
UPP-SNE | 93.86 |93.55 |93.52 | 93.17 |93.75 |93.45 | 94.25
NANE 94.76 | 94.47 | 94.35 | 94.27 | 94.32 | 94.44 | 95.16

Tables4, 5 and 6 show the average classification accuracy of all the methods
on Facebook, Hamilton and Rochester, where the best results are bold-faced.
It is not hard to see that our method consistently yields the best classifica-
tion results among all the baselines. Extraordinary accuracy compared with
structure-based NRL algorithms demonstrates that our method works well on
the fusion of attribute information. Especially on Facebook, NANE achieves
more than 30% improvement over all the structure-based NRL baselines, point-
ing to the significant performance on node classification. Moreover, NANE also
outperforms all the attribute-aware NRL baselines, demonstrating its effective-
ness on capturing the local and global similarity in structure and attribute. Our
method imposes an early fusion of structural and attribute information, which
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Table 6. Node classification F1-score(%) on Rochester

Train size | 15% [25% |35% |45% |55% |65% |75%
LINE 86.22 | 86.58 |86.73 | 87.28 | 87.79|87.65 |87.56
DeepWalk | 88.1 |88.29 |88.57 1 88.97 |88.9 |89.74 |88.69
node2vec |88.32 |88.14 |88.71 [89.4 |89.29|89.36 | 88.52
SDNE 86.08 |86.21 |86.92 | 86.57 |87.2 |86.73 |85.89
LANE 80.97 |81.27 |81.56 |81.35 |80.87|81.1 |80.89
UPP-SNE | 89.46 |89.89 |90.26 | 90.08 |89.87|89.80 | 88.96
NANE 89.53 | 90.61 | 90.86 | 90.58 | 90.8 | 90.61 | 90.62

enables our method to exploit the interplay between structure and attribute.
On top of that, our method economizes the global information with a pairwise
constraint, resulting in remarkable consequences.

5.5 Parameter Sensitivity

In this section, we explore the parameter sensitivity of our method. We select
three crucial parameter batch size, A and t to conduct our experiments and
investigate how these parameters affect the results. The train ratio is selected
as 55%. We report the accuracy of node classification on different datasets with
disparate parameters. In turns, we study the effect of one parameter with fixing
the rest. And the results of our experiments are shown in Fig. 2.

We first show how the batch size affects the performance in Fig. 2(a). As we
can see, the performance of our method on Hamilton and Rochester is stable
with different values. However, performance on facebook is much fluctuant. The
best value of batch size on facebook is 600. We then show how the weight of
attribute information A influence the result in Fig. 2(b). It not hard to see that
when the weight of attribute information approach to 1, which means structural
information is as important as attribute information, the performance is much
better. However, the performance of our method falls badly when lambda is
larger than 10. It indicates that it may leads to the very opposite effect when
the influence of attributes is too large. At last, how the dimension of the output
of self-feedforward layer t affects the result is shown in Fig. 2(c). We can see that
when t is close to the embedding dimension, the performance is much better in
most case.

5.6 Node Clustering

For node clustering task, we apply K-Means++ to network embedding on three
datasets and leverage ARI [11] and NMI [32] to evaluate the consequence of
clustering. We set the number of clusters same as the group number, calculate
the indexes 10 times to reduce occasionality. the average results are shown in
Fig. 3.
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As we can see, NANE achieves the best performance among almost all the
cutting-edge baselines. Similar clusterings have a positive ARI, whereas nega-
tive values indicate poor performance. Furthermore, values of exactly 0 on NMI
present purely independent label assignments. On Facebook, the values of ARI
are lower than zero for LINE and SDNE, verifying that the representations of
LINE and SDNE have independent labelings. Specifically, NANE achieves 0.125
improvement compared with the second best results. On Hamilton, NANE also
yields the best clustering results, outperforming 0.127 and 0.178 lift on ARI and
NMI respectively. It firmly demonstrates the better performance of NANE on
unsupervised learning task.
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Fig. 3. The results of node clustering on three datasets

6 Conclusion and Future Work

Attributed network, due to its inherent heterogeneity and sparsity, presents
new challenges for many tasks. In this paper, we propose a Neural-based
Attributed Network Embedding method to capture structural and attribute
information jointly. We deem that it is crucial to explore the global and local
similarity simultaneously for a better representation. Firstly, we impose a fully-
connected layer with some dropout to extract the relevance in attribute and
structure respectively. And then we leverage a deep autoencoder model which is a
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non-linear mapping to reconstruct the global information with a local constraint.
Experiments on three different real-world datasets demonstrate the remarkable
performance of our method comparing with cutting-edge algorithms. Our future
work in this area will focus on the following directions. We will develop NANE
to a multi-task learning algorithm and make it suitable for large-scale industrial-
grade data. Furthermore, We are also interested in exploring how to capture user
behaviors in time series and user images and map them into embedding space.
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