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Abstract. The relocation of carsharing vehicles is one of the main chal-
lenges facing its economic viability, in addition to the operational costs
and infrastructure deployment. In this paper, we take advantage of an
innovative technological proposal of a one-way carsharing system, to test
and validate a user-based relocation strategy. The new technology allows
vehicles to be driven in a road train by either an operator (up until eight
vehicles) or a customer (up to two). The proposed strategy encourages a
customer to take a second vehicle along the way, when he/she happens to
be moving from a station with excess of vehicles, to a deficient station. As
a case study, we have considered a suburban area of the city of Lyon, of
which we have a 2015 household travel survey to build a synthetic popula-
tion undertaking various activities during a day. Then, we inject this pop-
ulation in a detailed multi-agent and multi-modal transport simulation
model, to compare the relocation performance of a lower/upper-bound
availability algorithm with three other naively intuitive algorithms. The
study shows that: (i) relocation algorithm is very sensitive to the ratio
of parking slots to fleet size, and (ii) with the right infrastructure we can
relocate one vehicle and generate at least one additional trip.
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1 Introduction

Carsharing systems are innovative mobility services that are increasingly becom-
ing popular in urban and sub-urban areas and have the potential to solve real-
world problems of urban transports [17]. The principle of a carsharing system is
that customers can rent for limited period of times a car from a fleet of shared
vehicle operated by a company or a public organisation. Although carsharing ser-
vices have been proposed in the early 1970s, they have emerged as a worldwide
phenomenon only in the last decade. This is due to the deployment of one-way
carsharing systems in which the customers are allowed to leave the rented car
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at a drop-off location different from the pickup location [3]. This provides an
increased flexibility for the users compared to two-way systems.

Typically, one-way carsharing systems suffer from unbalance distribution of
available vehicles in the service area. Specifically, some locations can be more
popular than others at different times of the day (e.g., residential areas at night-
time as opposed to industrial and commercial areas at peak hours). This imbal-
ance of demand easily results into situations in which vehicles accumulates in
areas where there is a lower number of rental requests, while at the same time
there is shortage of vehicles where they are more needed [5]. When this happens,
the operator can resort to rebalancing policies, i.e., relocation of vehicles from
where they are not needed (taking into account the expected demand in the
near future) with the objective of serving more effectively the travel demands.
Clearly, this has a cost for the operator, thus relocation should be performed
only when economically viable.

However, before the operator resorts to rebalancing, he needs to know the
optimal solution for infrastructure planning, giving the high investments costs
and travel demand. In other words, he needs to determine the number, size and
location of parking stations to deploy in the area where the carsharing system
is supposed to operate in. In the literature, this problem is generally solved con-
sidering a spatial-temporal formulation of a MILP [1,10]. In our previous work,
we formulated a set-covering model coupled with queuing theory to guarantee
certain level of service to customers [8].

Different approaches for vehicle relocation in carsharing systems exist [29].
Operator-based solutions require the use of dedicated staff for executing the
redistribution tasks. On the contrary, user-based solutions rely on users willing
to relocate vehicles to locations where they are needed, usually on the basis of
an economic incentive. However, both approaches can be costly. Furthermore,
it is still uncertain whether users are willing to accept incentives for deviations
from their destinations. Finally, the design of optimisation frameworks for the
decision of which vehicles to relocate to which location can become intractable
due to the extremely large number of relocation variables [10].

To cope with the aforementioned issues, in this paper we suggest a user-based
relocation algorithm that takes a conservative stance in order to predict the
excess and deficiency of vehicles. When a customer queries the carsharing system
about trip he/she desire to perform, the system reacts by verifying whether the
origin station is in excess of vehicle and if the destination station is in deficiency
of vehicles. In this case, the system will encourage the customer to take a second
vehicle so to help at the rebalancing. The possibility to drive a second vehicle
assume a new class of lightweight vehicles, called ESPRIT cars, which can be
stacked, recharged and driven in a road train [13]. This is supposed caters for
more efficient relocations since a single customer can relocated two vehicles at
the same time.

To validate the performance of the proposed relocation strategy on a mean-
ingful case we use the city of Lyon as case study. Specifically, we use a multi-
agent simulation framework that we have previously designed [23]. It is based
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on MATSim, a popular open-source and agent-based traffic simulation platform,
which supports dynamic traffic assignment, large scenarios and detailed mod-
elling of transportation networks [2]. Then we set up a scenario using data from
the 2015 Lyon conurbation household travel survey, which provides information
about more than three million trips, and public data on the Lyon’s public transit
systems. Then, we analyse the impact of the infrastructure planning strategy on
the user-based relocation in terms of number of rental trips and relocation trips.

The remainder of this paper is organised as follows. Section 2 provides an
overview of related literature on infrastructure planning, vehicle relocation and
carsharing performance evaluation. It also introduces the ESPRIT carsharing
system and the user-based relocation in such a system. Section 3 sets the method-
ological ground of the relocation strategies on which is based this paper. Section 4
describes the Lyon case scenario, travel demand. Section 5 discusses the simu-
lation results. Finally, the conclusion summarizes the paper and outlines future
work.

2 Related Work

2.1 Models for Infrastructure Planning

Infrastructure planning tries to determine the number, size and location of park-
ing stations in a carsharing system in order to maximise some performance mea-
sure, such as demand coverage or profit. From a general point of view, this is
an instance of the facility location problem, which is an optimisation problem
extensively studied in the field of logistics and transportation planning [14].

Existing planning frameworks typically rely on time-space optimisation
approaches, which are models that assume a deterministic knowledge of the
demand of vehicles at each time interval of the control period. For instance, A
MILP formulation is used in [1] to maximise the profits of car-sharing system,
which simultaneously optimises the location of parking stations and the fleet
size under several trip fare schemes. The proposed model is then used to analyse
a case study in Lisbon. A recent work [10] addresses the planning of an elec-
tric car-sharing system using a multi-objective MILP model that simultaneously
determines the number, size and locations of stations, as well as the fleet size
taking into account vehicle relocation and electric vehicle charging requirements.
More recently, new modelling approaches (eg. queuing theory and fluid models)
have been proposed to take into account that the demand process of customers is
stochastic and exhibits seasonal effects. For instance, a closed queuing network
modelling of a vehicle rental system is proposed in [16] to derive some basic
principles for the design of system balancing methods. In our previous work [8],
we formulated a set-covering model that minimises the cost of deployment (in
terms of number of stations and their capacity) and leveraged on queuing the-
ory to also guarantee a pre-defined level of service to the customers (in terms of
probability of finding an available car/parking space).
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2.2 Relocation: State of Art

Vehicle relocation strategies can be classified into the following two broad cat-
egories: (i) user-based schemes, which incentive customers to participate in the
relocation program, and (ii) operator-based schemes, which leverage on dedi-
cated staff for relocation activities.

In [20] two operator-based strategies are simulated. The shortest time strat-
egy relocates vehicles to minimise the travel times of staff members. The inven-
tory balancing strategy moves vehicles from over-supplied stations to stations
with vehicle shortage. In [21] an inter-programming model is developed to min-
imise the costs associated to staff-based relocation. A similar model is developed
in [19] to maximise the profit of the carsharing operator. In [25] a stochastic MIP
model is formulated to optimise vehicle relocations, which has the advantage of
considering demand uncertainty. A multi-objective MILP model for planning
one-way car-sharing systems is developed in [10] taking into account vehicle
relocation, station deployment and electric vehicle charging requirements. The
design of optimal rebalancing algorithms with autonomous, self-driving vehi-
cles has been recently addressed in [26] using a fluidic model, and [30] using
a queueing-theoretical model. An alternative approach for operator-based relo-
cation scheme consists in selecting trips so as to reduce vehicle imbalance, for
instance by rejecting trips to stations with parking shortage [1,27].

User-based relocation policies are typically considered more convenient for
the carsharing operator as they do not require the use of a staff. However, it is still
uncertain whether users would be willing to participate in a rebalancing program
by accepting an alternative destination or a more distant vehicle [18]. For this
reason, most of the studies in this field focus on designing pricing incentive
policies for encouraging users to relocate the vehicles themselves [12,15]. Clearly,
the effectiveness of these schemes highly depends on users’ participation and their
willingness to accept changes of their travel behaviours.

2.3 Relocation: Stackable Vehicles

The underlying design principles of cars are rapidly evolving and the design of
innovative lightweight vehicles is coming to the fore of current academic and
industrial research programs. The long-term vision is to reinvent urban mobility
systems by leveraging on vehicles specifically designed for city use with significant
smaller spatial use and carbon footprints, as well as considerably less expensive
to own and operate [24]. For instance, several concept prototypes of stackable,
and foldable two-seat urban electric cars are currently under development, such
as the MIT BitCar [28], or EO Smart [7]. A step forward is take by the ESPRIT
European Project that is designed and prototyping a new vehicle that is stackable
with mechanical and electrical coupling, and it can be driven in road trains as
shown in Fig. 1.

ESPRIT vehicles have the potential to facilitate the deployment of one-way
carsharing by also supporting more efficient operational procedures. In partic-
ular, redistribution is made easier because the vehicles can be driven in a road
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Fig. 1. The architecture of an ESPRIT-based car-sharing system [13].

train. As a consequence, a single staff can drive a road train of up to eight vehi-
cles, or users may drive a road train of two vehicles with a conventional driving
license. As discussed in the previous section, one of the main hurdles for user-
based relocation strategies is to encourage the users to change their destination
to perform a relocation task.

With ESPRIT, we can afford a different way of user-based relocation, where
operator can take advantage of actual trips and augmenting their relocation
efficiency by delivering two vehicles instead of just one. However, this strategy
has been proven, in the following paper, to have a low impact on the total number
of carsharing trips.

2.4 Simulation of Carsharing Systems

In general, evaluating the performance of a carsharing system is a difficult task
due to the complex and time-variant interplay between the demand and supply
processes. Specifically, the availability of vehicles in a carsharing system is intrin-
sically dependent on trips that are demanded by the customers and vice-versa.
In addition, there are several operational conditions that add uncertainties to
the system about the future location of vehicles, such as the impact of pric-
ing schemes impact on the decisions of individual users. Therefore, a simulation
approach can be very useful to cope with operation complexities and to quickly
evaluate the effectiveness of different planning and operation models.

Studies of micro-simulation for performance evaluation of carsharing system
has been investigated as early as 1982 [9]. During that period, there was not
yet the large panel of traffic simulation tools that are existing nowadays. Thus,
the critics held by the author in [9] regarding the computational complexity and
availability of data should be taken in moderation. In 1999, a queuing-based
transport simulation has been proposed by [4] for the assessment of the per-
formance of a shared one-way vehicle system. Different measures of efficiency
were determined, such availability of vehicles, their distribution and energy con-
sumption, while some relocation strategies were tested. However, the simulation
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model is exactly predictive and does not capture the inherent uncertainty of real
world systems. A more detailed carsharing simulation model and open source
was introduced by [11], where it is based on multi-modal agent-based traffic
simulator, such that each agent seeks to fulfils its daily plan as a set of activ-
ities connected by legs. In our previous work, we designed a similar but more
sophisticated carsharing simulator [23], in such a way to separate the carsharing
mobility simulation model from the operational and demand model. The purpose
is to allow users test different operational models and strategies using the same
tool. We have, therefore, used this simulation model to study the performance
of a new carsharing system deployed in a suburban area of Lyon.

3 Relocation Strategies

The need for vehicles relocation in carsharing systems stems from the unbalance
of availability of vehicles that naturally emerges at different moments of the day.
A station manifesting an excess of availability of vehicles should be leveraged to
provide additional vehicles to stations manifesting a deficiency of vehicles. In this
work we assume that customers are encouraged to relocate a second vehicle if
they are planning to make a trip between stations with an excess and a shortage
of vehicles, respectively.

Defining the metric that can be used to detect whether a station has an
excess/deficiency of vehicles is not an easy task. In principle, availability might
undergo large fluctuations due to a continuous stream of pickups and drop-offs
of vehicles. In principle, relocating a vehicle from/to a highly variable station
may negatively interfere with the natural flow of vehicles and cause a butterfly
effect in the network. On the other hand, complex availability metrics would
require to have additional knowledge about the carsharing system, e.g. to predict
the minimum availability of vehicles over some time interval. In the following
we explore both approaches. Specifically, we first propose a set of relocation
policies that only rely on a simple characterisation of the carsharing dynamics
based on the instantaneous number of vehicles that are available for rent at a
station. Then, we descrive a more elaborated relocation heuristic, which assumes
a knowledge of carsharing demand patterns.

Before describing our proposed scheme, it is also important to point out that
are several business and operational factors that can affect the effectiveness of
the relocation process. As a matter of fact, a relocation task is costly, since it
consumes fuel and makes the vehicle unavailable during the trip period. Fur-
thermore, a carsharing operator might want to ensure a high availability in a
certain station by contrast to others following a specific marketing strategy. In
this paper, we will not dive into all these complexities of real world systems, but
we assume that a relocation strategy is effective if one relocated vehicle generates
at least one additional trip i.e. the fraction of additional trips over the relocation
trips should be superior or equal to one, as the minimum accepted performance.
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Algorithm 1. Uniform relocation.

1: procedure Relocate(i, j, t)
2: rand ← uniform random generator(0,1)
3: if (vi(t) > 2 AND pj(t) > 2) then � Check relocation feasibility
4: if rand ≤ γ then
5: return TRUE � Yes
6: end if
7: end if
8: return FALSE � No
9: end procedure

3.1 Policies Based on Current System State

First of all, we describe relocation policies that do not require to maintain the
past system state, or to predict the future system state. This implies that these
strategies are not influenced by the history of the carsharing system, and do
not rely on a knowledge of the carsharing demand. The only information that is
maintained by the carsharing operator is vi(t), defined as the number of available
vehicles at station i at time t, and pi(t), defined as the number of available
parking spaces at station i at timet. Clearly, pi(t) = ci − vi(t), where ci is the
capacity of station i.

The simplest relocation strategy is the uniform policy, illustrated in Algo-
rithm 1, which incentivises each customer to take a second vehicle to his intended
destination with a fixed probability γ. Specifically, let us assume that at time t
a customer generates a request for a rental vehicle from location O to location
D. The central controller of the carsharing system determines the station i that
is the closest to location O with an available vehicle, and the station j that is
the closest to location D with an available parking space. A relocation task is
assigned to the customer with probability γ if and only if there are at least two
vehicles available at station i and there is enough available parking space at
station k to accomodate the train of two vehicles.

The second relocation strategy is illustrated in Algorithm 2, and it simply
restricts the relocation task to destination stations that are empty. The rationale
behind this strategy is to avoid situations in which two close booking requests
can not be satisfied by a system.

Algorithm 2. Prioritise empty station.

1: procedure Relocate(i, j, t)
2: if (vi(t) > 2 AND pj(t)) == 0) then
3: return TRUE � Yes
4: end if
5: return FALSE � No
6: end procedure
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The third relocation strategy is the balance policy, illustrated in Algorithm 3,
in which a customer takes a second vehicle to his intended destination only if this
contributes to reduce the difference in the occupancy levels of the stations. The
rationale behind this strategy is to use the redistribution to equalise as much
as possible the utilisation of stations. This can be mathematically expressed
computing the difference between the new occupancy levels that would be due
to the movement of a single vehicle or a train of two vehicles. After standard
algebraic manipulations it is straightforward to show that if vi(t) > vj(t) + 4 it
is always beneficial to encourage a customer to take a second vehicle with him.

3.2 Policies Based on Predicted Minimum Availabilities

As noted before, the instantaneous car availability at a station is typically highly
variable. We conjecture that a more reliable parameter for guiding the relocation
decision is an estimates of the number of vehicles that will not be used because
they are in excess with respect to the carsharing demand. This excess of vehicles
can be estimated by measuring the minimum car availability over a period of
time. Specifically, let us assume that the system time is divided into time intervals
of duration τ . Then, let us denote with αk

i the minimum car availability that
is expected at station i during the time interval [kτ, (k + 1)τ ]. The estimation
of the minimum car availability of a carsharing system that does not perform
relocation, say αk,nr

i , is straightforward as it is given by

α̂k,nr
i (t) = min {vi(s) : s ∈ [kτ, t]} . (1)

In Eq. (3), the function vi(t) is provided by historical information. On the
other hand, the relocation process changes the system dynamics and observa-
tions from a system without relocation might be quite different from the ones of
the system with relocation. Thus, we decide to also compute an expected min-
imum availability using forecasts of the carsharing demand. More precisely, let
us denote with αk,r

i the minimum availability in the time interval [kτ, (k + 1)τ ]
based on the estimated number of vehicles that will be dropped off and picked
up at station i during [kτ, (k + 1)τ ] according to the carsharing demand, and

Algorithm 3. Balanced offer.

1: procedure Relocate(i, j, t)
2: if (vi(t) ≥ 2 AND pj(t) ≥ 2) then � Check relocation feasibility
3: u1 ← [(vj(t) + 1)/cj ] − [(vi(t) − 1)/ci]
4: u2 ← [(vj(t) + 2)/cj ] − [(vi(t) − 2)/ci]
5: if |u1| > |u2| then
6: return TRUE � Yes
7: end if
8: end if
9: return FALSE � No

10: end procedure
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taking into account that the initial number of vehicles is vi(kτ) and the station
has finite capacity ci. To clarify the procedure used to estimate the minimum car
availability Fig. 2 illustrates an example. As shown in the figure, we consider the
sequence of expected pick-up and drop-off events to estimate the future evolution
of the vi(t) function. Note that we discard pick-up and drop-off events that are
not feasible, i.e. pick-ups that would occur when the estimated vi(t) function is
equal to zero, and drop-offs that would occur when the estimated vi(t) function
is equal to ci.

Fig. 2. Example of αk,r
i estimation for a station with capacity equal to 3.

Finally, we have that

αk
i = min

{

αk,nr
i , αk,r

i

}

. (2)

Different approaches can be used to estimate αk
i . The simplest one is to

use historical information about the car availability from a carsharing system
in which relocation is not used. In this case, αk

i would simply be equal to
min {vi(t) : t ∈ [kτ, (k + 1)τ ]}. However, the shortcoming of this approach is that
the relocation process changes the system dynamics and observations from a sys-
tem without relocation are not representative of the system with relocation. In
particular, rental requests that failed in the system without relocation can be
successful in the system with relocation (and viceversa). Thus, we decide to use
a combination of historical data and carsharing demand forecast. Specifically,
let us assume that at time t, with t ∈ [kτ, (k +1)τ ], a customer wants to pick up
a car at station i. Then, we split the computation of αk

i into two components.
The first one is α̂k

i (t), which is given by:

α̂k
i (t) = min {vi(s) : s ∈ [kτ, t]} . (3)

In other words, α̂k
i (t) is the exact minimum availability of station i consid-

ering only the time interval [kτ, t] and the knowledge of the real car availability
given by vi(t). The second one is αk

i (t), which represents the minimum availabil-
ity in the time interval [t, (k + 1)τ ] based on the estimated number of vehicles
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that will be dropped off and picked up from station i during [t, (k +1)τ ] accord-
ing to the carsharing demand, and taking account that the initial number of
vehicles is vi(t) and the station has finite capacity ci. Finally, we have that

αk
i (t) = min

{

α̂k
i (t), α

k
i (t)

}

. (4)

Following the same line of reasoning it is possible to also estimate βk
i , defined

as the availability parking space availability at station i during time interval
[kτ, (k +1)τ ]. Intuitively, βk

i is the complement of the maximum car availability.
We are now able to define a relocation policy that leverages the knowledge of
the predicted minimum car and parking space availability, which is illustrated in
Algorithm 4. Clearly, first the relocation strategy checks if the relocation tasks
is feasible, i.e. there are at least two vehicles available at station i and there
is enough available parking space at station k to accomodate the train of two
vehicles. Then, the algorithm checks a similar but more restrictive condition,
i.e. relocation is feasible if also minimum car and parking space availabilities are
considered.

Algorithm 4. Minimum availabilities.

1: procedure Relocate(i, j, t)
2: if (vi(t) ≥ 2 AND pj(t) ≥ 2) then � Check relocation feasibility
3: if (αk

i ≥ 2 AND βk
i ≥ 2) then � Check minimum availabilities

4: return TRUE � Yes
5: end if
6: end if
7: return FALSE � No
8: end procedure

4 Case Study

4.1 Scenario

Similarly to the work previously done in [22], we will test and validate the sug-
gested user-based relocation strategies using the Lyon case study. The operating
area of the simulated carsharing system is shown in Fig. 3, and corresponds to
three suburban district of the city of Lyon. The road network is constructed from
OpenStreetMap data and made of 141,795 links, not only limited to the study
area with green background. Regarding the public transit systems, we used data
publicly available from Grand Lyon Data platform1 to define transit routes and
modes (buses, tram, underground), transit stops, as well as schedules and vehi-
cles capacities. One of the most important modelling task is to construct the
travel demand for different transportation modes. Traditionally, travel demand
1 http://data.grandlyon.com/.

http://data.grandlyon.com/
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data is organised as trip origin/destination (O/D) matrices, which simply con-
tain the number of trips that are taken from an origin node to a destination
node in a specific period of time. However, since we use a multi-agent modelling
approach, the travel demands are constructed as individual daily plan dairies,
which contain sequence of activities and the preferred transportation mode for
trips between activities. As for [22], we created the demand for Lyon based on
used census data from the INSEE website and uses data from the Lyon Travel
Diary Survey 2015. The synthetic population representing the demand is of the
order of 1.4 million agents, all of whom pass through the choice model to deter-
mine the destination and mode of trips. For this model, we considered five types
of facilities: home, work, education, shopping and leisure. Such that home facility
represents most of the facilities with 35,853 instance, while the remaining others
make up 1549 instances. The Lyon Household and travel diary survey 2015 were
used to estimate coefficients for generating the synthetic population. The records
were split according to whether the synthetic person had both a driving licence
and the household a car or not. The trip records were fitted to a nested mode
(Car or PT) and destination choice model, and the coefficients at both levels of
the nest were estimated simultaneously.

Fig. 3. Map of the simulated area, with blue diamond referring to the Esprit stations
deployed within the study area (green background). The red and grey lines refer to,
respectively, the PT and car networks [22]. (Color figure online)

The main novelty considered in this new version of the Lyon demand com-
paring to the one tested in [22], is at the level of the mode choice. We introduced
a “walk” mode, as well as new combinations of modes, such:
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1. Private car (car)
2. Park and Ride
3. Public Transport (pt)
4. ESPRIT (no Public Transport)
5. ESPRIT followed by Public Transport, “ESPRIT first”
6. Public Transport followed by ESPRIT, “ESPRIT last”
7. and Walk

ESPRIT first and ESPRIT last match to the concept of first and last kilome-
tre. These trips are of particular interest. Individual agents make travel choices
according to whether they have a driving licence, and whether there is car belong-
ing to their household. If they can drive and have access to a car then all seven
modes are available, but if the household does not have a car they may still
choose to use ESPRIT. The choice nest takes account of their car availability
status and directs the agent through the appropriate part of the choice nest
accordingly. The demand contains a total number of agents of 80.740 agents and
a customer base of 6.416 agents. While the modal share as shown in Fig. 4, shows
Esprit share of represents 6.7% of the modal share, while private car is leading by
a modal share of 64.3%, then public transport 17.3% and finally walking mode
representing 11.7% of the modal split.

Fig. 4. Modal share of the base demand.

In this case study we considered a scenario where 350 vehicles were deployed
in 77 stations, which are represented as diamonds in Fig. 3. The deployment
was undertaken following the optimal deployment strategy introduced in [6].
However, we branched off two main variants of this scenario, so to compare
the impact of the ratio of the parking slots to the vehicles on the relocation
strategies. We assumed, therefore, in the first variant that each of the stations
have reasonably very large parking space of 20 slots, in total 1540, i.e. a ratio
slot:vehicle equal to 4.4. While in the second variant we assumed a reasonably
smaller parking space of 10 slots per station, in total 770, i.e. a ratio equal to
2.2. We will see in the following why this ratio has a significant impact of the
performance of the relocation strategies.
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4.2 Results and Discussion

Considering the environment described above, we have executed multiple simu-
lations with different set-ups. On one hand, we have executed two simulations
with no relocation strategy activated on the two different parking slots: 1540 and
770. The goal is to obtain a reference line for deducing the performance of the
relocation strategies. This reference line is represented with a straight solid line
on both Figs. 5 and 8. It indicates the threshold of 100% of the number of trips
without relocation, and any bar plot rising above it means that the Algorithm
led to new successful bookings that have failed beforehand. Both variants of
parking slots have produced roughly same number of trips: Successful bookings
are dependent less on parking availability than fleet size [6].

20.3%

−4.7%

10.8%

−1.2%

16.5%

+0.0%

3.3%

+1.1%

26.0%

−3.0%

13.6%

+4.7%

19.4%

+9.4%

5.7%

+7.0%

Slots: 770 Slots: 1540

S1 S2 S3 S4 S1 S2 S3 S4
0

2500

5000

7500

10000

Scenarios

N
um

be
r o

f T
rip

s

Trips
total
relocation

Scenarios 1,2,3&4: 77 stations, 350 vehicles

Fig. 5. Comparison of relocation performance when considering the four scenarios,
with respect to the ratio vehicle/parking slot. Performance is measured in terms of (1)
percentage of number of trips relative to a simulation without relocation (2) percentage
of trips where a second vehicle has been offered to be relocated.

On the other hand, we run a first set-up using the different relocation strate-
gies on the two variants of slot:vehicle ratios. The purpose is to compare the
performance of each strategy and the impact of the ratio. The second set-up
focused on the proposed sophisticated relocation strategy, Algorithm 4. Since
this algorithm depends on the predefined bin of time per contra to other algo-
rithms. Therefore, we have tested it on a set of time bins to observe their impact
on its performance.

In order to compare between the performance of the different strategies and
in different time interval, we have decided to use two metrics M1 and M2:

– M1: the difference of trips obtained from the simulation without relocation
and the one with relocation. A positive difference means that the relocation
decisions allowed the booking success of new trips comparing to the simulation
without relocation.



User-Based Relocation of Stackable Car Sharing 269

– M2: The fraction of carsharing trips that actually served for transporting a
second vehicles by the agent. The purpose is to know how many relocation
trips have been required to get more successful booking trips.
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Fig. 6. Fluctuation of the sum of 30min average availability of vehicles of all stations,
for the different scenarios and solely for the case of 1540 parking slots.

Let us start with the graph result of first set-up shown in Fig. 5. The uniform
relocation strategy S1, has scored negatively in both situations, respectively
−4.7% and −3.0% for the metric M1. While it led to the highest number of
relocation such that M2 > 20% of the shares of the total trips that served
for relocating a second vehicle. This strategy based on uniformly distributed
random numbers demonstrate that it cannot be at all a solution in dealing with
the relocation problem. In addition to the fact that it can not be even used as a
reference strategy with which we would measure how well our relocation strategy
scores in comparison to a random behaviour.

Algorithm 2 scores quite well in the case of the large parking space variant:
M1 = +4.7% that is more than 400 additional trips. In contrast, it required
M2 = 13.6% of relocation trips, which is around 1300 trips. This strategy that
consists in prioritising empty stations has led to a ratio of approximately 1:3. In
other words, the decision maker will have to relocate 3 vehicles to ensure 1 new
successful booking. This strategy is costly for the carsharing operator but it can
be used as strategy with lower bound performance.

The balancing relocation strategy described in Algorithm 3 scores the highest
number of additional trips in case of 1540 slots: M1 = +9.4%. To generate
the additional 900 trips, the systems had to encourage around 2000 agents to
relocate a second vehicle (M2 = 19.4%). This is equivalent to a ratio of 1:2, one
additional vehicle for 2 relocation trips. In the case of 770 slots, the score is tied:
M1 = +0.0%, while M2 = 16.5% is still significantly high. We conclude that the
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Fig. 7. Comparison of the ongoing activity of all carsharing trips with carsharing trips
transporting a second vehicle to be relocated and solely for the case of 1540 parking
slots.

three Algorithms 1, 2 and 3 all behave quite poorly when the ratio of slots to
vehicles is low.

The proposed strategy based on minimum availability outperformed the other
strategies in terms of M1 to M2 ratio. Even though it has scored less than
strategy S3 in the case of 1540 slots: M1 = +7.0%. Yet the second metric has
a score significantly lower than the other strategies: M2 = 16.5%, resulting in
a ratio greater than 1:1. In other words, the carsharing system will require less
relocation trips to generate more additional trips, in the case of a significantly
large parking space availability. In the 770 slots variants, the algorithm offer
poor performance, but still positive score and 1:3 ratio way better than the
other algorithms.

In addition to Fig. 5, two other comparison plots were generated and depicted
by Figs. 6 and 7. The average availability figure show the slight mitigation of the
availability due to the relocation algorithms. While there is a drop of average
availability of only 5 to 20 vehicles when comparing with the no relocation case,
the Algorithm 4 remains the one with less mitigation availability relative to the
three other algorithms. This observation led us to hypothesize that the poor per-
formance of the other algorithms was due to the unavailability of vehicles due to
excessive relocation decisions. This hypothesis is supported by the plots in Fig. 7,
which shows that Algorithm 4 led to less relocation activities in comparison with
the other algorithms.



User-Based Relocation of Stackable Car Sharing 271

+7.2%

+5.2% +5.3%

+7.0%

+6.1%

+6.4%

+6.0%

+2.7%

+6.1%

7.3%6.8%6.6%5.7%5.3%5.2% 4.4%
3.2%

4.0%

+0.8%

+1.2%

+0.9%

+1.1%

+1.4%

+0.4% +0.6%

+2.0%

+0.9%

5.1%4.5%
3.5%3.3%3.0%2.6% 2.3% 2.1% 1.7%

Slots: 1540 Slots: 770

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0 10 20 30 40 50 60 70 80 90 10

0
11

0
12

0

8500

9000

9500

10000

Minutes

N
um

be
r o

f T
rip

s

Trips
relocation
total

Scenario 4: 77 stations, 350 vehicles

Fig. 8. Comparison of fluctuation of relocation performance when considering different
time bins, with respect to the ratio vehicle/parking slot.

The results obtained with Algorithm4 was in the case of predefined time
bin of 40 min. At each start of the interval, the algorithm classifies the stations
that are expected to be in excess and deficiency of vehicles. This list is not
updated until the start of the next time interval. Since the minimum availability
is sensitive to the time bin, we had to test the performance of the algorithm with
different time bins.

The outcomes of these simulations have confirmed that (1) the ratio
slots:vehicles is a sensitive factor on the performance of the relocation Algo-
rithm2) larger is the time interval, more conservative is the algorithm and less
relocation trips were encouraged without degrading much the M1 metric. Indeed,
a quick calculation of the rate of change2 in both cases led to a negative slope of
−0.03%/min in terms of percentage of relocation trips, meanwhile the slope is
no less than −0.01%/min (even positive in case of 770 slots) for the percentage
of additional trips.

5 Conclusion

We have seen in this article how it is possible to achieve positive relocation
performance, if the customer is encouraged to transport a second vehicle with
him/her. This will be possible thanks to the ESPRIT model where it seeks to
design stackable vehicles that can be driven in train of two by a customer with a
car driving license. We have demonstrated that with a proper demand model and
the right station deployment and parking slots to vehicles ratio, we can ensure a
positive relocation performance with a ratio greater than 1:1, that is at least one
additional trips is generated when relocating one vehicle, using the proposed
lower/upper-bound availability algorithm. Still further studies are required to
understand better the relationship between the relocation performance and the

2 The rate of change was computed following the traditional formula: 1.7−5.1
120−10

≈
4.0−7.3
120−10

= −0.03%/min.
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parking slots to vehicle ratio. While we aim for improving the proposed algorithm
in such a way to always guarantee a ratio greater or equal to 1:1.
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