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Key Points
55 Fertility preservation options for pubertal 

boys and adult men include sperm banking 
and testicular sperm extraction (TESE).

55 For prepubertal boys, there are no 
standard of care options. The only option 
for prepubertal boys is testicular tissue 
cryopreservation, which is still consid-
ered experimental.

55 Experimental techniques currently in the 
pipeline for restoring fertility with 
cryopreserved testicular tissues include 
spermatogonial stem cell transplanta-
tion, de novo testicular morphogenesis, 
testicular tissue grafting and xenograft-
ing, and testicular tissue organ culture.

55 Many centers around the world are 
actively cryopreserving testicular tissues 
for prepubertal boys who are at risk for 
infertility in anticipation that those 
samples can be use in the future for 
reproductive purposes.

17.1  �Introduction

Improvements in cancer therapies have resulted 
in improved 5-year survival rates [68] and an 
increasing focus on quality of life after cure. 
Cancer survivors report that parenthood is 
important to them, and distress over infertility 
has long-term psychological and relationship 
implications [152]. Therefore, the American 
Society for Clinical Oncology [96, 100] and the 
American Society for Reproductive Medicine 
[37, 38] recommend that patients be educated 
about the reproductive risks associated with 
their therapy as well as options for preserving 
fertility.

Whole-body radiation, radiation to the hypo-
thalamus, pituitary, or testes, and alkylating and 
heavy metal chemotherapies are particularly toxic 
to male fertility [54, 67, 80, 94, 97, 105, 171]. This 
is an important public health concern because 
nearly 25,000 males under the age of 44 will be 
diagnosed with cancer each year in the United 
States. Epidemiological data [54, 68, 106] indicate 
that most of these patients will survive their can-
cer, but many will receive treatments that put 
them at significant risk for infertility. The 
Childhood Cancer Survivor Study (CCSS) has 

shown that male survivors of childhood cancer 
are half as likely to achieve a pregnancy with their 
partner compared to their male siblings [54]. 
When rates of infertility were studied in the CCSS, 
46% of cancer survivors compared to 18% of sib-
lings reported experiencing infertility [172].

Patients and families with children facing a 
cancer diagnosis and planning for treatment may 
be ill-prepared to discuss, think about, or take 
action to preserve their future fertility before ini-
tiating treatment. Unfortunately, while healthcare 
professionals acknowledge the need to discuss 
fertility preservation with their patients, fertility 
counseling is not consistently implemented [154, 
155]. Consequently, many families are inade-
quately informed of the risk of infertility [154] 
and the options they have to preserve their child’s 
fertility [140]. Insufficient training for medical 
staff to counsel patients on this sensitive topic has 
been identified as an important factor, along with 
patient factors such as degree of disease, age, and 
cultural/religious concerns [48]. Both parents and 
adolescent cancer patients identify fertility as an 
important life goal after cancer [87].

Spermatogonial stem cells (SSCs) are at the 
foundation of spermatogenesis and maintain 
continuous sperm production throughout the 
postpubertal life of men [27, 123, 161, 165]. 
Spermatogenesis is an extraordinarily produc-
tive process that generates more than 100 million 
sperm each day from the testes of adult men 
[156]. Because spermatogenesis is such a pro-
ductive system, it can sometimes become an 
unintended target of cancer therapies that are 
toxic to rapidly dividing cells. Therapies that 
deplete the stem cell pool and/or damage the 
somatic niche can cause temporary or perma-
nent infertility. Infertility in male cancer survi-
vors is due to impaired spermatogenesis, which 
can be characterized as oligospermia (<15 mil-
lion sperm/ml of semen) or azoospermia (no 
sperm in the semen). High-dose alkylating 
agents (e.g., cyclophosphamide, busulfan, mel-
phalan, chlorambucil), bleomycin, testicular 
radiation >400 cGy, or genitourinary surgery are 
associated with the highest risk of developing 
azoospermia [20, 97, 105, 107, 171, 172]. In con-
trast to spermatogenesis, the steroidogenic func-
tion of the testes appears to be less affected by 
cancer therapy and the testosterone-producing 
Leydig cells appear to be fairly resistant to dam-
age by chemotherapy [22].
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17.2  �Sperm Banking: The Gold 
Standard Procedure for Male 
Fertility Preservation

Boys who have reached Tanner III of pubertal 
development and adult men have the option to 
cryopreserve a semen sample containing sperm 
before initiating treatment, which can be thawed 
at a later date to achieve pregnancy by intrauter-
ine insemination [3], in  vitro fertilization (IVF, 
[159]), or IVF with intracytoplasmic sperm injec-
tion (ICSI, [118]). Unfortunately, only about 24% 
of adult men freeze a semen sample before initiat-
ing their therapy [153]. Some males as young as 
12 or 13 years of age are capable of producing a 
semen sample. Semen is produced via masturba-
tion, but other methods such as vibratory stimula-
tion [151] or electroejaculation [2, 45] have been 
used. Ideally, patients should provide two to three 
specimens obtained at 2–3 day intervals. Standard 
semen analysis would be performed by the 
andrology laboratory, and results will be available 
within 1 day to confirm whether the semen speci-
mens contain sperm. Some patients have asked if 
it is safe to preserve sperm if they have just started 
chemotherapy. There is insufficient data and no 
consensus about best practices in this scenario. 
Please see the following references for discussion 
[15, 21, 104].

17.3  �Testicular Sperm Extraction 
(TESE)

For patients who did not preserve a semen sample 
and have persistent azoospermia after cancer 
therapy, there is the option to retrieve rare sperm 
directly from the testis during a surgical proce-
dure called testicular sperm extraction (TESE). 
This is possible because a few SSCs may survive 
the gonadotoxic therapy and produce focal areas 
of spermatogenesis in the seminiferous tubules. 
Hsiao and colleagues recently described their 
experience with 73 patients with postchemother-
apy azoospermia [70]. They reported that sperm 
were successfully retrieved from 37% of patients 
on initial attempt, with an overall success rate of 
42.9%. Fertilization rate with the retrieved sperm 
was 57%; the pregnancy rate was 50%; and the live 
birth rate was 42%. Success in retrieving sperm 
was treatment dependent in that study, with the 

lowest sperm recovery success rates (21%) in 
patients receiving alkylating chemotherapy [70]. 
Picton and colleagues surveyed results from a 
total of five centers (including the Hsiao et  al. 
study) and reported an overall sperm recovery 
rate of 44% in azoospermic patients undergoing 
TESE after chemotherapy [124].

There are currently no standard options to 
treat the infertility of adult patients who did not 
cryopreserve a semen sample and were not suc-
cessful with the TESE/ICSI procedure. Adoption 
and third-party reproduction are family-building 
options for these patients, but most cancer survi-
vors prefer to have their own biological children 
[96]. Therefore, sperm banking should be dis-
cussed with all pubertal, adolescent, and adult 
males who are able to produce a semen sample.

17.4  �TESE for Men and Adolescent 
Boys with Klinefelter 
Syndrome

TESE is also used effectively for Klinefelter 
Syndrome (KS) patients who typically have a 46, 
XXY karyotype and azoospermia, often character-
ized as a Sertoli cell only phenotype. However, 
germ cells are sometimes present in the testes of KS 
patients, which produce focal areas of spermato-
genesis in the testes. Success rates for retrieving 
sperm by TESE from the testes of KS patients are 
consistently above 50% (50–72%) [14, 88, 114, 130, 
147, 183] and are similar to the success rates 
reported for TESE in azoospermic patients without 
Klinefelter syndrome. Most importantly, pregnancy 
rates and live birth rates after ICSI are similar in 
couples with or without KS, and children fathered 
by KS patients have a normal karyotype [14, 147, 
183]. The infertility phenotype of KS patients is 
considered progressive, with rapid declines in sper-
matogenesis during the teenage years [5, 103, 174]. 
Previous studies in adult KS patients reported that 
sperm recovery rates were significantly lower after 
the age of 35 [14, 114, 130]. Therefore, early inter-
vention may be important to preserve the fertility 
of Klinefelter patients. In fact, some centers have 
protocols to retrieve sperm by TESE from adoles-
cent boys with KS based on the understanding that 
the likelihood of retrieving sperm in later years will 
be reduced [103, 112]. Other groups, however, did 
not find that performing TESE at a younger age 
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increased the chances of successful sperm retrieval 
[126, 174], and there is considerable debate about 
the benefit of early fertility intervention for KS 
patients [112, 134].

Typically, pubertal development is determined 
by Tanner staging of pubic hair and genitalia 
development, testicular size, and hormone levels. 
In most boys, the median age of onset of sper-
matogenesis is 13–14 years, correlating to a geni-
tal Tanner stage III. However, in patients with KS, 
the early stages of pubertal development that con-
sist of increase in size of the testes are not reliable 
since testicular size is often diminished. It is cur-
rently unknown when spermatogenesis starts in 
boys with KS.  While it seems to be commonly 
accepted that there is a progressive depletion of 
germ cells in the testes of KS patients after the 
onset of puberty, the evidence to support this 
notion is equivocal with small patient popula-
tions, lack of controls, and no longitudinal data. 
In addition, the standard therapy for boys with KS 
is testosterone replacement therapy in order to 
trigger entry and progression of puberty, second-
ary sexual characteristics, bone development, and 
longitudinal growth. However, testosterone sup-
plementation also suppresses spermatogenesis (if 
present) even further through negative feedback 
on the hypothalamus-pituitary-gonadal axis. 
Some argue that any intervention to preserve fer-
tility for KS patients should ideally precede hor-
mone replacement therapy [169], although recent 
studies have shown that testosterone replacement 
therapy might not negatively affect spermatogen-
esis in KS patients [42, 103]. The risks of invasive 
surgical procedures like TESE for boys should be 
carefully weighed against the possible benefits for 
this unique patient population. Systematic, longi-
tudinal studies are needed to characterize sper-
matogenic decline in KS patients.

17.5  �Gonadal Shielding

Gonadal shielding can be used to protect the tes-
tes from scatter radiation using lead shielding. 
The proper shielding technique should be care-
fully evaluated on a case-by-case basis depending 
on total radiation dose, fractionation, and the 
specific mode of delivery of the external beam 
therapy [39, 142, 180]. However, when the testic-
ular tissue requires radiation therapy as a part of 
cancer treatment, shielding cannot be used. At 

other times, the proximity of the testes to the tar-
get of radiation results in scatter radiation to the 
testes, which can also result in impaired sper-
matogenesis.

17.6  �Testicular Tissue Banking: 
An Experimental Procedure 
for Fertility Preservation

There are currently no standard of care options to 
preserve the future fertility of prepubertal boys 
who are not yet producing sperm. This is an 
important human health concern because, with 
improved therapies, the event-free survival rate of 
children with cancer is 85% [69], and these survi-
vors can look forward to a full and productive life 
after cure. We estimate that each year in the 
United States, more than 2000 boys will receive 
gonadotoxic treatments for cancer or other condi-
tions (e.g., myeloablative conditioning prior to 
bone marrow transplantation) that put them at 
high risk for infertility [166]. Prepubertal boys are 
not producing sperm, but they do have spermato-
gonial stem cells (SSCs) in their testes that are 
poised to initiate sperm production at the time of 
puberty [119]. There are several methods in the 
research pipeline, including SSC transplantation, 
testicular tissue grafting or xenografting, testicu-
lar tissue organ culture, and de novo testicular 
morphogenesis that might be used to restore 
spermatogenesis or fertility from cryopreserved 
SSCs and/or testicular tissue. Induced pluripotent 
stem cell (iPSC) technologies may also be a fertil-
ity option for cancer survivors in the future. These 
methods are reviewed in this chapter.

Anticipating that new therapies will be avail-
able in the future, many centers in the United 
States and abroad have determined that it is rea-
sonable to preserve testicular tissue for young 
patients who are at risk for infertility and have no 
other options to preserve their fertility [50, 53, 81, 
116, 124, 139, 141, 178]. Testicular tissue-based 
fertility preservation methods for children are 
considered experimental and should be per-
formed with institutional review board (IRB) 
oversight and approval. Although no pregnancies 
from cryopreserved testicular tissues have been 
reported in humans to date, two centers reported 
that the majority of parents consented to fertility 
preservation procedures on behalf of their chil-
dren [49, 176, 178].

Male Fertility Preservation: Current Options and Advances in Research
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17.7  �Considerations for Testicular 
Tissue Collection, Processing, 
and Freezing

Testicular tissue for cryopreservation is obtained 
via needle biopsy, wedge biopsy, or orchiectomy, 
ideally before the initiation of gonadotoxic treat-
ment (surgery, chemotherapy, radiation). There is 
insufficient experience or evidence to recommend 
a particular surgical approach or orchiectomy, 
and each center will make those decisions based 
on individual and/or institutional biases about 
what is in the best interest of the patient in the 
short term and long term. Needle biopsy may be 
the least invasive but has an increased risk of 
unmitigated bleeding and recovers the least 
amount of tissue for downstream fertility applica-
tions. Wedge resection is more invasive than nee-
dle biopsy but may allow recovery of more 
testicular tissue (depending on surgeon prefer-
ence), and bleeding can be controlled during sur-
gery. Orchiectomy (removal of an entire testis) is 
the most invasive procedure but allows for the 
greatest recovery of testicular tissue for down-
stream fertility applications, and bleeding can be 
controlled during surgery. Collection of more tis-
sue at the time of surgery should correlate with 
increased recovery of SSCs and greater flexibility 
for future fertility applications. However, limited 
tissue should not be a deterrent to enrollment in a 
testicular tissue cryopreservation protocol. There 
are several experimental cell-based and tissue-
based options under development with different 
requirements for the amount of cells/tissue that 
will be needed.

There are no established “best practices” for 
processing and freezing testicular tissue or cells. 
Two labs examined the postthaw recovery of sper-
matogonia from cryopreserved human testis cell 
suspensions versus intact pieces of testicular tissue. 
Yango and colleagues reported that recovery of 
SSEA4+ (undifferentiated spermatogonia marker) 
spermatogonia from cryopreserved fetal testicular 
tissue was similar to cryopreserved testicular cells, 
but recovery of SSEA4+ cells from cryopreserved 
adult testicular cells was greater than cryopre-
served testicular tissue [182]. Pacchiarotti and 
coworkers reported that cryopreservation of 
testicular tissue was comparable in most aspects to 
cryopreservation of a cell suspension. However, 
while the viability of total cells from the 

cryopreserved tissue was higher than the cryopre-
served cell suspension, the recovery of SSEA4+ and 
VASA+ (pan germ cell marker) germ cells from 
cryopreserved tissue pieces tended to be greater 
than cryopreserved cell suspensions. These differ-
ences were not significant [117].

For fertility preservation, most centers are 
freezing intact pieces of testicular tissue for 
patients because this preserves the option for 
both tissue-based and cell-based therapies in the 
future [11, 50, 53, 81, 115, 124, 164, 178]. Biopsied 
testicular tissues are typically cut into small 
pieces (1–9 mm3), suspended in a DMSO-based 
freezing medium, and frozen at a controlled slow 
rate using a programmable freezing machine 
(.  Fig. 17.1) [50, 81, 82, 116, 124, 164, 177, 178]. 
Some centers have reported using an ethylene 
glycol-based freezing medium instead of DMSO 
[19, 93, 163], and some centers have reported 
that the viability of vitrified testicular tissue is 
similar to tissue frozen at a controlled slow rate 
[13, 26, 127, 138]. This may improve access to 
testicular tissue freezing technology in centers 
that do not have programmable freezing 
machines. The experimental endpoints that have 
been used to evaluate freezing protocols have 
been varied and include cell viability, immuno-
cytochemistry for spermatogonial markers, 
ultrastructural, histological and/or immunohis-
tochemical examination of cultured or grafted 
tissue, and hormone production. Systematic 
studies on prepubertal human testicular tissues 
with evaluation of both cell-based and tissue-
based endpoints are needed. It is possible that the 
optimal freezing condition depends on the 
intended use of the tissue or cells.

17.8  �Testicular Cell-Based Methods 
to Preserve and Restore Male 
Fertility

Spermatogonial Stem Cell Transplantation  
Spermatogonial stem cell transplantation was first 
described by Ralph Brinster and colleagues in 
1994, who demonstrated that SSCs could be iso-
lated and transplanted to regenerate spermatogen-
esis in infertile recipient mice [17, 18]. SSC 
transplantation has now been reported in mice, 
rats, pigs, goats, bulls, sheep, dogs, and monkeys, 
and donor-derived progeny have been produced by 
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natural breeding in mice, rats, goats, and sheep [16, 
60–62, 72, 73, 84, 108, 110, 113, 148, 157]. SSCs 
from donors of all ages, newborn to adult, are com-
petent to regenerate spermatogenesis [137, 157], 
and SSCs can be cryopreserved and retain sper-
matogenic function upon thawing and transplanta-

tion [28, 29, 60]. Thus, it appears feasible that a 
testicular tissue biopsy (containing SSCs) could be 
obtained from a prepubertal boy prior to gonado-
toxic therapy, frozen, thawed at a later date, and 
transplanted back into his testes to regenerate sper-
matogenesis. If spermatogenesis from transplanted 
cells is robust, this approach may restore natural 
fertility, allowing survivors to achieve pregnancy 
with their partner by natural intercourse and have 
biological children.

Radford and colleagues already reported cryo-
preserving testicular cells for 11 adult non-
Hodgkin’s lymphoma patients in 1999 and 
subsequently reported transplanting autologous 
frozen and thawed testis cells back into the testes 
of seven survivors [128, 129]. The fertility out-
comes for patients in that study have not been 
reported, and even if the men fathered children, it 
would not be possible to ascertain whether the 
sperm arose from transplanted stem cells or sur-
viving endogenous stem cells. This uncertainty 
will always plague the interpretation of human 
SSC transplant studies where it is not ethically 
possible to genetically mark the transplanted cells 
because the genetic modification would be trans-
mitted to the progeny. Therefore, large epidemio-
logical datasets generated over decades will be 
required to prove the fertility benefit of SSC trans-
plantation. Nonetheless, this study demonstrates 
that patients are willing to pursue experimental 
stem cell-based options even when there is no 
guarantee of a fertile outcome. There are no pub-
lished reports of SSC transplantation in humans 
since Radford’s follow-up report of his non-
Hodgkin’s lymphoma patients in 2003 [128].

17.9  �Translating Spermatogonial 
Stem Cell Transplantation into 
the Clinic: Challenges 
and Opportunities

Considering the progress in several animal mod-
els and the fact that testicular tissues have already 
been cryopreserved for hundreds of human 
patients worldwide [50, 53, 81, 116, 128, 129, 139, 
141, 178], it seems reasonable to expect that SSC 
transplantation and/or other stem cell technolo-
gies will impact the fertility clinic in the next 
decade. However, there are several safety and fea-
sibility issues that must be considered.

Sterile
environment

Tissue received in
sterile specimen

container
Sterile
tools

Cryopreservation media Ice pack

a

b

c

.      . Fig. 17.1  Testicular tissue cryopreservation. Testicular 
tissues are transported on ice from the operating room 
to the andrology lab in a sterile specimen container 
containing medium. (a) The tissue is kept cool and 
processed in a sterile environment with sterile tools. 
(b) Most centers cut the testicular tissue into small pieces 
(1–9 mm3) and deposit these pieces in cryovials with 
DMSO-based freezing medium. (c) Controlled slow rate 
freezing using a freezing machine
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Spermatogonial Stem Cell Culture  Based on our 
experiences at the Fertility Preservation Program 
in Pittsburgh [116] and published reports [50, 81], 
it is reasonable to expect that 50–1000 mg of tes-
ticular tissue can be obtained by wedge biopsy or 
needle biopsy from a single testis of a prepubertal 
boy. This is a small amount of tissue relative to the 
size of adult human testes that can range from 11 to 
26 g in size [167]. It is widely believed that the num-
ber of stem cells in biopsies from prepubertal boys 
will be small and that SSCs will have to be expanded 
in culture prior to transplant. Conditions for main-
taining and expanding rodent SSCs in culture are 
well established, and SSCs maintained in long-term 
culture (e.g., several months to 1 year) remain com-
petent to regenerate spermatogenesis and restore 
fertility [56, 76, 77, 92, 133, 136].

If cultured human SSCs function like cultured 
rodent SSCs, it should be feasible to expand a few 
stem cells obtained from the testis biopsy of a pre-
pubertal boy to a number sufficient to produce 
robust spermatogenesis upon transplantation 
back into his testes when he is an adult. Several 
studies have reported culturing human SSCs [1, 4, 
9, 23, 24, 44, 51, 55, 58, 89, 98, 99, 102, 109, 111, 
125, 139, 141, 158, 175, 184], including two studies 
in which cultures were established from the testes 
of prepubertal patients [139, 175]. Human SSC 
cultures have been evaluated by quantitative PCR 
or immunocytochemistry for spermatogonial 
markers or xenotransplantation into mouse testes. 
Strategies to isolate and culture human spermato-
gonia have been unique to each study, and to date, 
no approach has been independently replicated in 
another laboratory. Also, the field is frustrated by 
the lack of a functional assay to test the full sper-
matogenic potential of cultured human cells.

Malignant Contamination  A testicular biopsy 
obtained from a cancer patient could harbor malig-
nant cells, especially for patients with leukemia. 
Kim and colleagues [83] reported that 20% of boys 
with acute lymphocytic anemia had malignant cells 
in their testicular tissue prior to the initiation of 
oncologic treatment. Jahnukainen and colleagues 
[74] reported the transmission of leukemia after 
transplantation of testis cells from terminally ill 
leukemic rats into the testes of nonleukemic recipi-
ents. The same group further demonstrated that 
transplantation of as few as 20 leukemic cells was 
sufficient for disease transmission, leading to ter-
minal leukemia within 3 weeks.

Because infertility is not life threatening and 
fertility treatments are elective, it is essential that 
the risk of cancer recurrence after transplant be 
reduced to zero. Fluorescence-activated cell sort-
ing (FACS) and magnetic-activated cell sorting 
(MACS) strategies to isolate and enrich therapeu-
tic spermatogonia from testis cell suspension while 
removing malignant contamination have been 
explored with mixed results. Fujita and coworkers 
isolated germ cells from the testes of leukemic 
mice in the forward scatter high and side scatter 
low fraction (positive selection), which was then 
further divided into fractions that were CD45/
MHC class I antigens (H-2Kb/H-2Db) double-
positive and CD45/MHC class I double-negative 
cells. All recipient males injected with the CD45+/
MHC class I+ cells developed terminal leukemia 
within 40  days. All mice injected with CD45-/
MHC class I− cells survived for 300 days without 
the onset of leukemia and produced donor-derived 
offspring [40]. In a subsequent study, the same 
group reported that seven out of eight human leu-
kemic cell lines expressed the cell surface antigens 
CD45 and MHC class I [41]. In a rat model of 
Roser’s T-cell leukemia, Hou and colleagues con-
cluded that single parameter selection using either 
leukemic (CD4 and MHC Class I) or SSC 
(Ep-CAM) markers was not sufficient to eliminate 
malignant contamination [66], but malignant con-
tamination was successfully removed using a com-
bination of leukemia and SSC markers (plus/
minus selection) [32, 59]. Using similar positive/
negative selection strategies, Hermann and col-
leagues isolated VASA+ germ cells in the THY-1+/
CD45− fraction of leukemia-contaminated prepu-
bertal nonhuman primate testis cells [59], and this 
fraction did not produce tumors in mice. Dovey 
and colleagues contaminated human testis cells 
with MOLT-4 acute lymphoblastic leukemia cells 
and demonstrated by xenotransplantation that the 
Ep-CAMlo/HLA-ABC−/CD49e− fraction was 
enriched 12-fold for transplantable human SSCs 
and was devoid of malignant contamination [32]. 
Collectively, these results are encouraging, but 
caution is still warranted as Geens and colleagues 
concluded, using EL-4 lymphoma contaminated 
mouse and human testis cells, that FACS- and 
MACS-based methods were insufficient to remove 
malignant contamination [47].

It will not be possible to perform comprehen-
sive in  vivo testing on patient samples because 
this would limit the amount of sample available 
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for fertility therapy. More sensitive PCR-based 
methods have been described for detection of 
minimal residual disease (MRD), and this 
approach has identified malignant contamination 
in many ovarian tissue samples that were pre-
served for leukemia patients, even after negative 
histology and immunocytochemistry examina-
tion [30, 135]. However, in one of those studies, 
Dolmans and colleagues obtained disparate 
results from histology, qRT-PCR, and xenograft-
ing of ovarian tissues from leukemia patients. 
Quantitative RT-PCR to detect MRD revealed the 
possibility of malignant contamination in 9 of the 
16 samples that was not detected by histological 
examination. However, when those ovarian tis-
sues were grafted into recipient mice, only five of 
the nine samples with positive MRD had evidence 
of leukemic cells 3  months after transplantation 
[30]. Were the MRD results in the other four cases 
nefarious or were they accurate and the leukemic 
cells simply failed to survive freezing, thawing, 
and grafting? In the absence of a definitive and 
practical test of malignant contamination, alter-
natives to autologous transplantation are needed 
for patients with hematogenous cancers, testis 
cancers, or cancers that metastasize to the testes.

De Novo Testicular Morphogenesis  Testicular 
cells (including germ cells, Sertoli cells, peritubular 
myoid cells, and Leydig cells) have the remarkable 
ability to reorganize to form normal looking semi-
niferous tubules when grafted under the skin of 
recipient mice [8, 33, 43, 64, 86]. Ina Dobrinski and 
colleagues disaggregated neonatal pig and sheep 
testis cells, pelleted them by centrifugation, and 
grafted under the skin of immune-deficient mice. 
When grafts were recovered between 16 and 
41 weeks after transplant, cells had reorganized to 
form seminiferous tubules with complete sper-
matogenesis [8, 64]. In a remarkable extension of 
this approach, Kita and colleagues [86] mixed fetal 
or neonatal testis cells from mice or rats with GFP+-
cultured mouse germline stem cells and growth 
factor-reduced matrigel (extracellular matrix) and 
grafted under the skin of immune-deficient mice. 
Seven to 10  weeks after grafting, seminiferous 
tubules with complete spermatogenesis originating 
from both intrinsic germ cells and cultured (GFP+) 
germ cells were observed. Tubules were dissected 
and GFP+ round spermatids were recovered and 
injected into mouse oocytes. The resulting embryos 
were transferred to recipient females, which gave 

birth to ten mouse pups, including four with the 
GFP transgene. In vitro organoid systems have also 
been developed. In mice and rats, the most promis-
ing results have been achieved using 3D scaffolds 
[6, 95, 160], where postmeiotic cells and spermato-
zoa developed. In vitro organoid cultures have been 
less successful with human cells. Maintenance of 
early and late spermatogonia was reported by sev-
eral studies [10, 122, 170]; however, only two of the 
studies observed the presence of postmeiotic mark-
ers [122, 170]. These reports used pubertal or adult 
human tissues that already contain postmeiotic 
cells, which can make it difficult to determine the 
origin of the cells expressing the postmeiotic mark-
ers. To date, no human sperm has been produced 
using this model. One day it may be possible to 
“build a testis,” in vitro or in vivo, on the scaffold of 
a decellularized human testis [12].

17.10  �Testicular Tissue-Based 
Methods to Preserve 
and Restore Male Fertility

Testicular Tissue Grafting and Xenografting  
Testicular tissue grafting may provide an alternative 
approach for generating fertilization competent 
sperm from small testicular biopsies. In contrast to 
the SSC transplantation method in which SSCs are 
removed from their cognate niches and trans-
planted into recipient seminiferous tubules, grafting 
involves transplantation of the intact SSC/niche 
unit in pieces of testicular tissue. Honaramooz and 
colleagues reported that grafted testicular tissue 
from newborn mice, rats, pigs, and goats, in which 
spermatogenesis was not yet established, could 
mature and produce complete spermatogenesis 
when xenografted into nude mice [65]. The same 
group later reported the production of live offspring 
from sperm obtained from mouse testicular tissue 
grafts [149]. Fertilization-competent sperm was 
also produced from xenografts of prepubertal non-
human primate testicular tissue transplanted into 
mice [63]. These results suggest that it may be pos-
sible to obtain fertilization-competent sperm by 
xenografting small pieces of testicular tissue from a 
prepubertal cancer patient under the skin of mice or 
other animal recipients such as pigs that are already 
an established source for human food consumption, 
replacement heart valves [7, 75], and potentially 
other organs [25]. Xenografting would also circum-
vent the issue of malignant contamination. However, 
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the xenografting approach raises concerns about 
xenobiotics because viruses from mice, pigs, and 
other species can be transmitted to human cells [85, 
173]. There is no evidence to date that xenografted 
human testicular tissue can produce spermatogen-
esis or sperm in mice [46, 52, 146, 150, 168, 179]. 
However, there is reason for optimism because Sato 
and colleagues observed primary spermatocytes 
1  year after xenografting testicular tissue from a 
3-month-old boy who clearly did not have sper-
matocytes at the time of transplantation [146]. 
Xenografting of human testicular tissue to species 
other than mice has not been tested to our 
knowledge.

If malignant contamination of the testicular 
tissue is not a concern, autologous testicular tissue 
grafting can be considered. Luetjens and col-
leagues demonstrated that fresh autologous tes-
ticular tissue grafts from prepubertal marmosets 
could produce complete spermatogenesis when 
transplanted into the scrotum, but not under the 
skin [101]. Frozen and thawed grafts did not pro-
duce complete spermatogenesis in that study, but 
those grafts were only transplanted under the 
skin. Therefore, additional experimentation is 
merited. Testicular tissue grafting will not restore 
natural fertility, but could generate haploid sperm 
that can be used to fertilize oocytes by ICSI.

Testicular Tissue Organ Culture  Sato and col-
leagues reported that intact testicular tissues from 
newborn mice (2.5–3.5  days old) could be main-
tained in organ culture and mature to produce sper-
matogenesis, including the production of 
fertilization-competent haploid germ cells [144, 
145]. Testicular tissues from neonatal mice were 
minced into pieces (1–3 mm3) and placed in culture 
at the gas–liquid interface on a slab of agarose that 
was soaked in medium. Haploid round spermatids 
and sperm were recovered from the tissue after 
3–6  weeks in culture and used to fertilize mouse 
eggs by ICSI.  The resulting embryos were trans-
ferred to pseudopregnant females and gave rise to 
healthy offspring that matured to adulthood and 
were fertile. If testicular tissue organ culture can be 
translated to humans, it will provide an alternative 
to autologous SSC transplantation, autologous 
grafting, and xenografting in cases where there is 
concern about malignant contamination of the tes-
ticular tissue. The same authors were also successful 
to produce haploid germ cells in an organ culture  
of frozen and thawed testicular tissues, which is 

particularly relevant to the cancer survivor para-
digm. However, the fertilization potential of those 
sperm was not tested [144]. In the initial studies, the 
testicular tissue deteriorated with time. However, 
when tissues were maintained in a microfluidics 
device with continuous media flow to deliver nutri-
ents and remove waste, testicular tissues could be 
maintained for up to 6  months with continuous 
production of testosterone and fertilization-
competent sperm [91]. To make the microfluidics 
system more accessible, Komeya and colleagues 
[90] developed a pumpless microfluidics device 
that could maintain spermatogenesis in cultured 
seminiferous tubules for up to 3 months. Testicular 
tissue organ culture is a promising technology that 
now needs to be replicated in other laboratories and 
extended nonhuman primate and human tissues to 
set the stage for clinical translation.

17.11  �Induced Pluripotent Stem 
Cell-Based Methods to 
Preserve and Restore  
Male Fertility

Several groups have now reported that it is possi-
ble to produce germ cells from pluripotent embry-
onic stem cells (ESCs) or induced pluripotent 
stem cells (iPSCs) [31, 34, 35, 57, 71, 78, 79, 120, 
121, 131, 132, 143, 162, 181]. Hayashi and cowork-
ers reported that it is possible to differentiate 
ESCs or iPSCs into epiblast-like cells (EpiLCs) 
that then give rise to primordial germ cell-like 
cells (PGCLCs) when cultured in the presence of 
BMP4 [57]. The resulting germ cells were trans-
planted into the seminiferous tubules of infertile 
recipient mice where they regenerated spermato-
genesis and produced haploid gametes that were 
used to fertilize mouse oocytes by ICSI.  The 
embryos were transferred to recipient females and 
gave rise to live offspring. However, some of the 
offspring developed tumors in the neck area and 
died prematurely, suggesting that further optimi-
zation of the culture and differentiation protocols 
will be required [57]. Two groups recently 
reported the differentiation of human pluripotent 
stem cells into putative hPGCLCs exhibiting gene 
expression patterns similar to bona fide human 
PGCs [71, 143]. Of course, functional validation 
by generation of progeny is not possible in studies 
with human cells.
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An important implication of the iPSC to germ 
cell differentiation technology, if responsibly 
developed, is that it will no longer be necessary to 
preserve fertility before the initiation of gonado-
toxic treatments. An adult survivor of a childhood 
cancer who desires to start his family and discov-
ers that he is infertile can theoretically produce 
sperm and biological offspring from his own skin, 
blood, or other somatic cell type. This scenario 
applies not only to childhood cancer survivors, 
but all survivors who did not preserve semen or 
testicular tissue prior to gonadotoxic therapy. 
Nonhuman primate and human pluripotent stem 
cells have also been differentiated to the germ 
lineage, producing putative transplantable germ 
cells and even rare cells that appear to be haploid 
[31, 34–36, 78, 79, 120, 121, 132, 162, 181]. The 
challenge with the human studies is that it is not 
possible to test the spermatogenic potential or fer-
tilization potential of putative germ cells, which 
are the gold standards in animal studies. Thus, the 
burden of proof required of human studies is 
much lower than animal studies. Spermatogenic 
lineage development and testicular anatomy in 
nonhuman primates is similar to humans [165], 
and this may serve as a platform for safety and 
feasibility studies in which putative germ cells can 
be tested by transplantation and the resulting 
gametes can be tested by fertilization [60], embryo 
transfer and production of live offspring. Perhaps 
one day, it will be possible to build a human testis 
in vitro or in vivo on a decellularized human testis 
scaffold, and this will provide the ultimate plat-
form to test the spermatogenic potential of exper-
imentally derived human germ cells.

17.12  �Conclusions

Many centers worldwide are actively preserving 
testicular tissue or testicular cells for cancer 
patients in anticipation that those samples can be 
used in the future for reproductive purposes. 
Therefore, it is incumbent on the medical and 
research communities to responsibly develop the 
technologies that will allow patients to use their 
samples to achieve their family-building goals. 
This is important because cancer survivors report 
that fertility has a significant impact on their qual-
ity of life after cure. It seems reasonable to assume 
that similar quality of life issues are relevant to 
men who are infertile due to genetic (e.g., 

Klinefelter), surgical, age-related, accidental, or 
other causes. The first, best, and proven approach 
for fertility preservation in males is to freeze 
sperm that can be obtained in a semen sample or 
extracted from the testis. With IVF and IVF with 
ICSI, only a relatively small number of sperm are 
required to achieve fertilization and pregnancy. 
Unfortunately, sperm banking is not an option for 
all patients, including prepubertal boys who are 
not yet producing sperm.

There are several testicular cell- and tissue-
based technologies in the research pipeline that 
may have application for patients who cannot pre-
serve sperm. All of the technologies described in 
this chapter are dependent on stem cells (SSCs or 
iPSCs) with the potential to generate or regenerate 
autologous spermatogenesis. Spermatogonial stem 
cell transplantation, de novo testicular morpho-
genesis, testicular tissue organ culture, testicular 
tissue grafting/xenografting, and iPSC-derived 
germ cells have all produced spermatogenesis with 
sperm that are competent to fertilize oocytes and 
give rise to viable offspring in mice. Several of 
these methods have also been translated to larger 
animal models, including nonhuman primates, 
indicating a potential for application in the human 
fertility clinic.

The greatest challenge in the development of 
stem cell technologies for treatment of human 
male infertility is the lack of experimental tools 
for testing the spermatogenic and fertile potential 
of human cells. This means that human studies 
cannot be held to the same standard for burden of 
proof that is required of animal studies. While it is 
not realistic or possible to demonstrate the fertil-
ization potential of human stem cell-derived 
gametes, it may be possible to develop systems to 
test the spermatogenic potential of human cells, 
such as de novo testicular morphogenesis or 
engraftment of a decellularized testis. Progress 
along these lines will provide powerful tools to 
ensure responsible development and validation of 
stem cell technologies before they are translated 
to the male fertility clinic.
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�Review Questions and Answers

?? 	Q1.	� What are the standard of care fertility 
preservation options for pubertal boys 
and adult males?

vv 	A1.	� Sperm banking is the gold standard 
for male fertility preservation. If no 
sperm is present in the ejaculate, 
testicular sperm extraction (TESE) 
could be considered.

?? 	Q2.	� Which fertility preservation options 
are available for prepubertal boys?

vv 	A2.	� Currently, there are no standard of 
care options available. The only option 
for prepubertal boys is testicular tissue 
freezing, which is still considered 
experimental.

?? 	Q3.	� How is testicular tissue obtained from 
prepubertal patients?

vv 	A3.	� Either through needle biopsy, wedge 
biopsy, or orchiectomy

?? 	Q4.	� What are the possible future options 
for using stored testicular tissue?

vv 	A4.	� Methods to restore fertility using 
cryopreserved testicular tissue in the 
future include spermatogonial stem 
cell transplantation, de novo testicular 
morphogenesis, testicular tissue 
grafting and xenografting, and 
testicular tissue organ culture.
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