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Abstract. Automatic planning is a separate discipline of Artificial Intelligence
(AI). It aims to formalize the planning problems described by the concept of
state space. The Planning Domain Definition Language (PDDL) is a de facto
standard language in the field of automatic planning. PDDL-related dynamic
analysis tools, namely planners and validators, are insufficient for verifying and
validating PDDL descriptions. Such tools make it possible to detect errors a
posteriori by means of a test activity. In this article, we recommend a rigorous
approach coupling Event-B and PDDL for automatic planning. Event-B is used
for formal modeling by stepwise refinement with mathematical proofs of
planning problems. A refinement strategy appropriate to planning problems is,
then, proposed. The ultimate Event-B model, correct by construction, supposed
to be translatable into PDDL, is automatically translated into PDDL using our
MDE Event-B2PDDL tool. The obtained PDDL description is submitted to
efficient planners for generation of solution plans.
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1 Introduction

Automatic planning can describe and solve planning problems. It is applied in various
fields such as robotics, management projects, Internet browsing, managing crisis sit-
uations, logistics and games. In an informal way, a planning problem can be described
by a state space. A state models a stable situation of the processed planning problem. It
can be an initial state, final state (also called goal) or intermediate state. Moving from
one state to another is governed by transitions. Each transition is labeled by an action. It
has a specification showing two parts: its condition of applicability and its effect.
A planning problem can accept zero or many solutions. A solution called plan-solution
is a sequence of actions that leads from the initial state to the goal state.

The automatic planning community has developed a formal de facto standard
Planning Domain Definition Language (PDDL) [1, 2] to formally describe planning
problems. In addition, this community has developed solvers (so-called planners) able
to calculate solutions to PDDL-formalized planning problems. In addition, it has
developed validation tools for verifying whether a given plan-solution can be derived
from a PDDL description. In general, PDDL descriptions are difficult to write, read,
and evolve. Moreover, the tools associated with the PDDL language, namely the
planners and validators, do not allow a rigorous a priori analysis of the PDDL
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descriptions. Indeed, these tools are used a posteriori after establishing PDDL
descriptions.

In this work, we advocate the opening of the automatic planning community on the
formal methods community through Event-B [3]. To achieve this, we suggest a
transformation from Event-B to PDDL. This promotes the development correct by
construction [3] of planning problems. The ultimate Event-B model, derived from a
chain of refinements with mathematical proofs, is translated into PDDL in order to
generate quality plans through various planners supporting PDDL.

This article has five sections and one conclusion. The second section presents and
evaluates the PDDL language and verification and validation tools associated with this
language. The third section proposes an Event-B and PDDL coupling approach. The
fourth section provides a refinement strategy for formal modeling of Event-B planning
problems. The ultimate Event-B model stemming from this strategy is supposed to be
translatable into PDDL. Finally, the fifth section describes our MDE Event-B2PDDL
tool. The conclusion draws up the balance sheet of this article and proposes the pos-
sible extensions of this work.

2 Planning in Artificial Intelligence

Planning is a separate discipline of AI: planning community with dedicated confer-
ences such as ICAPS (International Conference on Planning and Scheduling). It aims to
formalize the planning problems described by the concept of state space. Thus, formal
languages based on the logic of first-order predicates are proposed and enriched within
the framework of the IPC-International Planning Competitions. In the following, we
present the fundamental aspects of PDDL considered as de facto standard language in
the field of AI planning.

2.1 The PDDL Language

A planning problem formalized using PDDL has two separate parts: domain and
problem. The domain construction offered by PDDL makes it possible to describe all
the aspects common to a class of problems known as generic domain. The AI planning
community, in the IPC framework, has identified more than 50 domains grouped into
four broad categories: logistics, robotics, gaming, and business applications. A domain
described in PDDL includes types, constants, predicates, numeric functions and
actions.

As an example, Listing 1 from [4] describes in PDDL the domain of the sliding
puzzle game. The domain of the sliding puzzle game has two types: position and tile.
In PDDL, a type does not have a structure and is designated by a name. The predicates
at (having two parameters ?tile type tile and ?position type position), neighbor and
empty allowing to formalize the concept of state of a sliding puzzle game problem.
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Listing 1. State of the application 

(define (domain n-sliding-puzzle) 
 (:types position tile) 
 (:predicates (at ?tile –tile ?position –position) 
              (neighbor ?p1 –position ?p2 –position) 
              (empty ?position –position)) 
 (:action move 
    :parameters (?tile –tile ?from ?to –position) 
    :precondition (and (neighbor ?from ?to) 
                  (at ?tile ?from) (empty ?to)) 
    :effect (and (at ?tile ?to) (empty ?from) 
                 (not (at ?tile ?from)) (not(empty ?to))) 
 ) 

Listing 2. Sliding puzzle game with 8 tiles 

(define (problem n-sliding-puzzle-bootstrap-33-01) 
 (:domain n-sliding-puzzle) 
 (:objects p_1_1 p_1_2 p_1_3 p_2_1 p_2_2 p_2_3 p_3_1 
           p_3_2 p_3_3 –position t_1 t_2 t_3 t_4 t_5 t_6 
           t_7 t_8 –tile) 
 (:init 
   ;; initial position of the tiles 
  (at t_4 p_1_1) (empty p_1_2) (at t_8 p_1_3) 
  (at t_6 p_2_1) (at t_3 p_2_2) (at t_2 p_2_3) 
  (at t_1 p_3_1) (at t_5 p_3_2) (at t_7 p_3_3) 
   ;;framework definition 
  (neighbor p_1_1 p_1_2) (neighbor p_1_2 p_1_1) 
  (neighbor p_1_2 p_1_3) (neighbor p_1_3 p_1_2) 
  (neighbor p_2_1 p_2_2) (neighbor p_2_2 p_2_1) 
  (neighbor p_2_2 p_2_3) (neighbor p_2_3 p_2_2) 
  (neighbor p_3_1 p_3_2) (neighbor p_3_2 p_3_1) 
  (neighbor p_3_2 p_3_3) (neighbor p_3_3 p_3_2) 
  (neighbor p_1_1 p_2_1) (neighbor p_2_1 p_1_1) 
  (neighbor p_1_2 p_2_2) (neighbor p_2_2 p_1_2) 
  (neighbor p_1_3 p_2_3) (neighbor p_2_3 p_1_3) 
  (neighbor p_2_1 p_3_1) (neighbor p_3_1 p_2_1) 
  (neighbor p_2_2 p_3_2) (neighbor p_3_2 p_2_2) 
  (neighbor p_2_3 p_3_3) (neighbor p_3_3 p_2_3)) 
 (:goal (and 
   ;; final position of the tiles    
  (at t_1 p_1_1) (at t_2 p_1_2) (at t_3 p_1_3) 
  (at t_4 p_2_1) (at t_5 p_2_2) (at t_6 p_2_3) 
  (at t_7 p_3_1) (at t_8 p_3_2)))) 
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In PDDL, an action can have parameters typed (parameters clause) and defined by
a Pre/Post specification: the two precondition and effect clauses. An operator (action
in PDDL) can be applied in a state if and only if all pre-conditions are satisfied in this
state. The effect of a PDDL action is defined by the additions and withdrawals of atoms
in the current state.

The construction problem shown in PDDL makes it possible to formalize a
problem belonging to the domain described by the construction domain. A problem
formalized in PDDL includes the domain of this problem, typed objects (objects), an
initial state (init) and a goal state (goal). For example, the Sliding Puzzle game con-
taining 8 tiles from [4] is shown in Listing 2.

A planning problem described using PDDL is solved by a software item called
planner. The AI planning community has developed several planners such as FF, LPG
[5] and FD. A planner combines exploration and logic. Indeed, it can be seen either as a
program that calculates a solution called plan-solution or as a program that demon-
strates the existence of a solution. For example, the Sliding Puzzle game planning
problem described by the two Listings 1 and 2 submitted to the LPG planner provides a
plan-solution comprising 52 actions, an extract of which is shown in Listing 3.

Listing 3. Plan-solution extract associated with the 8-tile problem of the Sliding Puzzle 
game

0:      (MOVE T_8 P_1_3 P_1_2) 
1:      (MOVE T_2 P_2_3 P_1_3) 
2:      (MOVE T_3 P_2_2 P_2_3) 
3:      (MOVE T_8 P_1_2 P_2_2) 
4:      (MOVE T_2 P_1_3 P_1_2) 
5:      (MOVE T_3 P_2_3 P_1_3) 
6:      (MOVE T_8 P_2_2 P_2_3) 
7:      (MOVE T_6 P_2_1 P_2_2) 
8:      (MOVE T_4 P_1_1 P_2_1) 
9:      (MOVE T_2 P_1_2 P_1_1) 

2.2 Evaluation

PDDL offers interesting ways to represent planning problems. Indeed, PDDL supports
various representations such as propositional representations, first order logic, both
numeric and temporal. This makes it possible to describe the states and actions of a
planning problem. The tools associated with the PDDL language are: planners and
validators. Unlike a planner who performs a plan-solutions production activity, a
validator [6] performs a verification activity. From the functional point of view, a
validator accepts as input: a PDDL description (domain and problem file) and one or
more plan-solutions files and outputs a verdict. A ‘YES’ means that plan-solutions can
be obtained from the subject PDDL description. A ‘NO’ means a failure. Validators can
be used with profit to appreciate PDDL domains by adopting the functional test. In
addition, the validators allow verification by checking the plan-solutions generated by
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various planners. Finally, a validator can be used as a tool to objectively compare the
abilities of various planners. The dynamic analysis tools associated with PDDL,
namely planners and validators, are insufficient for the verification and validation of
PDDL descriptions. Indeed, complex PDDL descriptions involving actions with
elaborated preconditions and postconditions are prone to errors that are hard to detect a
priori. In fact, the dynamic analysis tools associated with PDDL makes it possible to
detect errors a posteriori by means of a test activity.

3 From Event-B to PDDL

The formal Event-B method supports both horizontal and vertical refinement tech-
niques. It allows the modeling of various domains: sequential programs, concurrent
programs, distributed programs, reactive systems and recently hybrid systems. It has a
platform called Rodin [7] based on Eclipse, including tools for verification (mathe-
matical provers), validation (model-checker, animators and simulators) and code
generation. Introduced by Jean-Raymond Abrial, the Event-B method is an evolution
of B method [8]. Event-B is used to formally describe systems and reason mathe-
matically about their properties. Event-B supports modeling, correction (or proof) and
validation activities. These complementary activities characterize the development of
Event-B systems. An Event-B model can only contain contexts (construction CON-
TEXT), only machines (construction MACHINE) or both. In the first case, the model
represents a purely mathematical structure. In the third case, the model is parameterized
by the contexts. Finally, the second case represents a model that is not parameterized.
Contexts are modeling static properties of the model. Machines (construction
MACHINE) are modeling the dynamic behavior of the system. A machine may refine
(REFINES relation) and see another one or more contexts (SEES). The state of the
machine is defined by variables introduced by the VARIABLES clause. The invariance
properties related to these variables are grouped together in the INVARIANT clause.
An Event-B machine groups events that affect its state. An event consists of two parts:
a “guard” that defines the condition according to it the event may or may not be
triggered, and an “action” called body for evolving state variables.

We advocate a rigorous approach combining Event-B and PDDL for automatic
planning. Event-B is used for formal modeling by successive refinements with math-
ematical proofs of planning problems. The refinement of data supported by Event-B
can be used profitably to refine the notion of state of a planning problem step-by-step.
In addition, the one-to-many refinement shown in Event-B is very useful for deter-
mining the state change operators of a planning problem. Finally, the possibility of
reinforcing the guard of an Event supported by Event-B during a refinement step is
very useful for incrementally identifying the conditions of applicability of a state
change operator of a planning problem.

Proof tools associated with Event-B (generator of proof obligations and provers)
guarantee in particular the verification of the consistency of a planning problem
described by Event-B. The ProB [9] tool that accepts Event-B offers the possibility of
checking the dynamics of a planning problem by using the LTLe language to specify
temporal properties.
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The use of Event-B coupled to ProB allows to obtain Event-B model correct by
construction (thanks to the Event-B theory: proof obligations) and valid (thanks to
ProB) describing a planning problem. Then we have to translate this Event-B model
into a PDDL. To achieve this, several refinement steps are required in order to have a
model described by a subset of Event-B: the data are described by the language of the
first-order predicates of Event-B (the theory of sets is discarded because it is not
translatable to PDDL) and the processing are described only through deterministic
action (:=).

4 Proposed Refinement Strategy

Following numerous Event-B modeling of various planning problems, we have
established a refinement strategy that could be reused to model in Event-B various
planning problems in several areas [10]. Indeed, all planning problems can be for-
malized by the concept of state space: initial state, goal states, intermediate states and
state change operators. Based on all of its common aspects of planning problems, we
propose the refinement strategy that includes the steps outlined and justified below.

Step 1: Initial abstract model
The initial abstract model of a planning problem includes elements related to the notion
of state, the initial state, and the goal states. These elements are formalized respectively
in Event-B by typed variables and having invariant properties, INITIALISATION
event and an event called goal having a guard to see if the current state is a goal state.
The goal event does nothing (skip action). In addition, the initial abstract model of a
planning problem must involve an overly abstract and non-deterministic modeling of
the notion of state change operator. This is made possible by the ANTICIPATED status
of an Event-B event.
Step 2: Determination of actions by successive refinements
This step includes several successive refinements allowing, ultimately, obtaining an
Event-B model with state change operators having deterministic behaviors: The actions
(:2 and :|) are concretised. Each operator contains a guard modeling the condition of
applicability of the operator and its action. Refinement techniques supported by Event-
B as an event decomposition (one to many) and the strengthening guards are very
useful for implementing this step. The state change operators are modeled by events in
Event-B whose guards indicate the conditions of application of these operators and the
actions that are modeling the changes of state: transition from one state to another in
state spaces. To list all of the state change operators related to application, we rec-
ommend using parameterized non-deterministic events.
Step 3: Determination of parameters by successive refinements
This step aims to remove the non-determinism related to the parameters introduced in
the clause ANY of each operator of states changes. Eventually, we obtain events
without parameters. Technically, in this step, the one to many refinement technique and
the WITH clause are used with advantage.
Step 4: Reinforcing the conditions of applicability
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This step consists in reinforcing the conditions of applicability of the state change
operators (WHERE clause) introduced in the previous step. The ultimate model from
this step must have state change operators with rigorous semantics. Technically, this
step introduces new invariant properties (reinforcement of the invariant) and guards
(reinforcement of guards).
Step 5: Realization of data by successive refinements
The purpose of this step is to eventually provide an Event-B model translatable into
PDDL. All Event-B set constructions must be realized using the Event-B predicative
constructions. To achieve this, data refinement is used via Event-B gluing invariant.
Step 6: Conveying a reduced Event-B into PDDL
The reduced Event-B model from Step 5 is translated using our Event-B2PDDL tool
introduced in Sect. 5.

This refinement strategy has been successfully applied to the problem of three
cannibals and three missionaries.1

5 The Event-B2PDDL Tool

Our Event-B2PDDL tool takes as input a reduced Event-B model that is translatable
into PDDL and outputs a PDDL description acceptable to planners. Event-B2PDDL is
based on simple intuitive rules allowing the systematic translation of Event-B elements
to PDDL elements. Event-B2PDDL is made according to MDE technology.

5.1 Event-B to PDDL Transformation Rules

The PDDL description from the Event-B2PDDL tool has two domain and problem
constructions (see Sect. 2.1). Thus, in [10], we have respectively established rules
allowing the translation of Event-B elements related to the planning domain and the
planning problem.

The translation rules for Event-B elements related to the planning domain concern:
the translation of abstract sets, constants, Boolean constants or variables, Boolean
functions, events and formulas.

The rules for conveying Event-B elements related to the planning problem concern
the translation of the constants linked to the sets defined by enumeration and the
translation of two INITIALISATION and GOAL events.

5.2 Translation Automation from Event-B to PDDL

Using both MDE Xtext and Xtend tools, we developed the Event-B2PDDL tool based
on the transformation rules presented in 5.1. The Xtext tool allowed us to design a DSL
for our input language: A reduced Event-B with only those constructions that are taken
into account by the transformation. Transformation and generation of PDDL code is
programmed in Xtend.

1 https://crocodeal.tn/startbootstrap-resume-gh-pages/.
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6 Conclusion

In this work, we proposed an Event-B to PDDL coupling approach. The transition from
Event-B to PDDL makes it possible to model correct by construction and efficient
planning problems. Event-B ensures the correct by construction of the states change
operators. Whereas PDDL ensures the effectiveness of the plan-solutions obtained
thanks to the planners associated with PDDL. We proposed, in addition, a refinement
strategy which may be appropriate for any planning problem that favors Event-
B/PDDL coupling. The transformation of Event-B to PDDL gave rise to an MDE
Event-B2PDDL tool. Currently, we are working in two directions: experimentation of
the refinement strategy proposed in Sect. 4 on various more or less complex planning
problems and development of refinement schemes allowing the realization of Event-B
data in PDDL (from set representations to predictive representations). Eventually, such
schemes could be automated by adopting the technique of automatic refinement like the
BART tool [11] associated with the formal method B.
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