
123

El Hassan Abdelwahed · Ladjel Bellatreche
Djamal Benslimane · Matteo Golfarelli
Stéphane Jean · Dominique Mery
Kazumi Nakamatsu · Carlos Ordonez (Eds.)

MEDI 2018 International Workshops
DETECT, MEDI4SG, IWCFS, REMEDY
Marrakesh, Morocco, October 24–26, 2018, Proceedings

New Trends in Model
and Data Engineering

Communications in Computer and Information Science 929

Communications
in Computer and Information Science 929

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

El Hassan Abdelwahed • Ladjel Bellatreche
Djamal Benslimane • Matteo Golfarelli
Stéphane Jean • Dominique Mery
Kazumi Nakamatsu • Carlos Ordonez (Eds.)

New Trends in Model
and Data Engineering
MEDI 2018 International Workshops
DETECT, MEDI4SG, IWCFS, REMEDY
Marrakesh, Morocco, October 24–26, 2018
Proceedings

123

Editors
El Hassan Abdelwahed
Cadi Ayyad University
Marrakesh, Morocco

Ladjel Bellatreche
ISAE-ENSMA
Chasseneuil-du-Poitou, France

Djamal Benslimane
LIRIS Lab
University Lyon 1, IUT
Villeurbanne Cedex, France

Matteo Golfarelli
Computer Science and Information
Technology
University of Bologna
Cesena, Italy

Stéphane Jean
ISAE-ENSMA
Chasseneuil-du-Poitou, France

Dominique Mery
LORIA
Nancy, France

Kazumi Nakamatsu
University of Hyogo
Himeji, Japan

Carlos Ordonez
University of Houston
Houston, TX, USA

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-02851-0 ISBN 978-3-030-02852-7 (eBook)
https://doi.org/10.1007/978-3-030-02852-7

Library of Congress Control Number: 2018958519

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-5700-8060

Preface

This volume presents the proceedings of the scientific workshops that were held in
conjunction with the 8th International Conference on Model and Data Engineering
(MEDI 2018), which took place in Marrakech, Morocco, October 24–26, 2018.

Four workshops were selected on a wide range of topics that fall into the main area
of the MEDI 2018 conference:

– The Model and Data Engineering for Social Good Workshop (MEDI4SG 2018)
– The International Workshop on Modeling, Verification, and Testing of Dependable

Critical Systems (DETECT 2018)
– The Second International Workshop on Cybersecurity and Functional Safety in

Cyber-Physical Systems (IWCFS 2018)
– The International Workshop: Formal Model for Multifaceted Systems (REMEDY)

Workshop proposals were submitted and the selection of appropriate workshops was
carried out by Djamal Benslimane, Jean Stéphane, and Kazumi Nakamatsu. Each
selected workshop was managed by its chairs and had its own Program Committee. An
introduction to the selected workshops is presented in the next pages.

We would like to thank the workshop chairs for their nice work and the Program
Committee members of the different selected workshops for their contribution to
evaluating submitted papers.

For readers of this volume, we hope you will find it both interesting and informative.
We also hope it will inspire and embolden you to greater achievements and to look
further into the challenges that still lie ahead in our digital society.

October 2018 El Hassan Abdelwahed
Ladjel Bellatreche

Djamal Benslimane
Matteo Golfarelli

Stéphane Jean
Dominique Mery

Kazumi Nakamatsu
Carlos Ordonez

Contents

DETECT 2018 Workshop

Steady-State Performability Analysis of Call Admission Control in Cellular
Mobile Networks . 5

Sana Younes and Maroua Idi

An MDA Approach for the Specification of Relay-Based Diagrams 17
Dalay Israel de Almeida Pereira, Ouahmed Malki, Philippe Bon,
Matthieu Perin, and Simon Collart-Dutilleul

A Problem-Oriented Approach to Critical System Design
and Diagnosis Support . 30

Vincent Leildé, Vincent Ribaud, Ciprian Teodorov,
and Philippe Dhaussy

Formal Specification and Verification of Cloud Resource Allocation Using
Timed Petri-Nets . 40

Saoussen Cheikhrouhou, Nesrine Chabouh, Slim Kallel,
and Zakaria Maamar

Petri Nets to Event-B: Handling Mathematical Sequences Through an
ERTMS L3 Case . 50

Zakaryae Boudi, Abderrahim Ait Wakrime, Simon Collart-Dutilleul,
and Mohamed Haloua

Model-Based Verification and Testing Methodology for Safety-Critical
Airborne Systems . 63

Mounia Elqortobi, Warda El-Khouly, Amine Rahj, Jamal Bentahar,
and Rachida Dssouli

MEDI4SG 2018 Workshop

Gamification and Serious Games Based Learning for Early Childhood
in Rural Areas . 79

Rachid Lamrani, El Hassan Abdelwahed, Souad Chraibi, Sara Qassimi,
and Meriem Hafidi

Context-Based Sentiment Analysis: A Survey . 91
Oumayma El Ansari, Jihad Zahir, and Hajar Mousannif

A Multi-agent System-Based Distributed Intrusion Detection System
for a Cloud Computing . 98

Omar Achbarou, My Ahmed El Kiram, Outmane Bourkoukou,
and Salim Elbouanani

IWCFS 2018 Workshop

Invited Talk: A Roadmap for Engineering Safe and Secure
Cyber-Physical Systems . 113

Alexander Egyed

Towards a Requirements Engineering Approach for Capturing Uncertainty
in Cyber-Physical Systems Environment . 115

Manzoor Ahmad, Christophe Gnaho, Jean-Michel Bruel,
and Régine Laleau

Assessment of Emerging Standards for Safety and Security Co-Design
on a Railway Case Study . 130

Christophe Ponsard, Jeremy Grandclaudon, Philippe Massonet,
and Mounir Touzani

Generation of Behavior-Driven Development C++ Tests from Abstract
State Machine Scenarios . 146

Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor

Hybrid Systems and Event-B: A Formal Approach to Signalised
Left-Turn Assist . 153

Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel,
and Neeraj K. Singh

Handling Reparation in Incremental Construction of Realizable
Conversation Protocols . 159

Sarah Benyagoub, Yamine Aït-Ameur, Meriem Ouederni,
and Atif Mashkoor

Analyzing a ROS Based Architecture for Its Cross Reuse
in ISO26262 Settings. 167

Xabier Larrucea, Pablo González-Nalda, Ismael Etxeberria-Agiriano,
Mari Carmen Otero, and Isidro Calvo

REMEDY 2018 Workshop

Reliability in Fully Probabilistic Event-B: How to Bound the Enabling
of Events . 185

Syrine Aouadi and Arnaud Lanoix

VIII Contents

Systematic Construction of Critical Embedded Systems Using Event-B 200
Pascal André, Christian Attiogbé, and Arnaud Lanoix

Component Design and Adaptation Based on Behavioral Contracts 217
Samir Chouali, Sebti Mouelhi, and Hassan Mountassir

Towards Real-Time Semantics for a Distributed Event-Based
MOP Language. 231

Mateo Sanabria, Wilmer Garzón Alfonso,
and Luis Daniel Benavides Navarro

Short Paper

Automatic Planning: From Event-B to PDDL . 247
Sabrine Ammar and Mohamed Tahar Bhiri

Author Index . 255

Contents IX

DETECT 2018 Workshop

Introduction to the International Workshop
on Modeling, Verification and Testing

of Dependable Critical Systems
(DETECT 2018)

The International Workshop DETECT 2018 (Modeling, Verification and Testing of
Dependable Critical systems) took place in Marrakesh, Morocco, on October 24, 2018,
in conjunction with the International Conference on Model and Data Engineering
(MEDI 2018).

Owing to their heterogeneity and variability, critical systems require the expertise
of modeling, verification, and testing to ensure their dependability and safety. DETECT
Workshops aim to provide a friendly and inclusive area with a great sense of com-
munity that presents excellent opportunities for collaboration. DETECT 2018 was
mainly based on the model-based system engineering paradigm and presented novel
research where human safety is dependent on the precise operation of the system.

This volume contains the papers selected for presentation at the workshop. The
acceptation rate was 31%. Indeed, DETECT 2018 received 19 submissions. Each
submission was reviewed by at least three Program Committee members. The com-
mittee decided to accept six papers. We note that the accepted papers address not only
the theoretical results, but also methodological results that can play an important
industrial transfer role.

DETECT 2018 would not have succeeded without the support and the cooperation
of the Program Committee members and also the external reviewers, who carefully
reviewed and selectted the best contributions. We would like to thank all the authors
who submitted the papers, the reviewers and the Organizing Committee members for
their investment and involvement in the success of DETECT 2018. The EasyChair was
used for the management of DETECT 2018 and it provided a very helpful framework
for the submission, review, and volume preparation process.

October 2018 Yassine Ouhammou
Abderrahim Ait Wakrime

DETECT 2018 Workshop Chairs

Yassine Ouhammou LIAS/ISAE-ENSMA, France
Abderrahim Ait Wakrime IRT Railenium, France

DETECT 2018 Program Committee

Abderrahim Ait Wakrime IRT Railenium, France
Mohamed Bakhouya International University of Rabat, Morocco
Youness Bazhar ASML, The Netherlands
Jamal Bentahar Concordia University, Canada
Alessandro Biondi Scuola Superiore Sant’Anna, Italy
Rachida Dssouli Concordia University, Canada
Mamoun Filali-Amine IRIT, France
Mohamed Ghazel IFSTTAR, France
Abdelouahed Gherbi ETS Montreal, Canada
Paul Gibson Telecom sudParis, France
Emmanuel Grolleau LIAS/ISAE-ENSMA, France
Geoff Hamilton Dublin City University, Ireland
Jameleddine Hassine KFUPM, KSA
Rafik Henia Thales, France
Slim Kallel University of Sfax, Tunisia
Yassine Ouhammou LIAS/ISAE-ENSMA, France
Mehrdad Saadatmand RISE SICS Västerås, Sweden
Laurent Voisin Systerel, France

Introduction to the International Workshop on Modeling 3

Steady-State Performability Analysis
of Call Admission Control in Cellular

Mobile Networks

Sana Younes(B) and Maroua Idi

Tunis El Manar University, Campus Universitaire El-Manar, 2092 Tunis, Tunisia
sana.younes@fst.utm.tn, maroua.idi@etudiant-fst.utm.tn

Abstract. In this paper we propose a performability model of multi-
class Call Admission Control (CAC) in cellular mobile networks. A per-
formability model is a combination between availability model and per-
formance model. A pure performance model, by ignoring failure and
recovery, overestimates the performance measures of the considered sys-
tem. On the other hand, a pure availability model is too conservative
since performance considerations are not taken into account. We extend
a previous work by proposing a composite model which considers perfor-
mance changes associated with failure and recovery of radio channels in
a CAC schema. We use the probabilistic model checking to perform the
analysis of the performability model that we propose in this work. We
first construct a composite multidimensional Continuous Time Markov
Chain (CTMC) of the considered CAC schema containing both perfor-
mance and failure-recovery events. Then we specify Quality of Service
(QoS) requirements through the CTMC using the Continuous Stochastic
Logic (CSL). Finally, we quantify the steady-state performability mea-
sures by checking CSL formulas using the PRISM model checker.

Keywords: CAC · CTMC · Failure · Performability · CSL · PRISM

1 Introduction

This paper deals with formal verification of performability model of CAC in
cellular mobile network. CAC is a mechanism regulating cellular network access
to ensure QoS provisioning. It determines whether a call should be accepted or
rejected at the base station (BS). A BS covers a geographic area (cell) and each
cell is equipped with a limited number of channels to serve user’s requests. Due
to the lack of radio resources, a call can be rejected. There are two major types
of calls that can arrive to a cell: new calls (NC) from within and handoff calls
(HC) coming from neighboring cells. The majority of CAC schemes gives priority
to HCs over NCs because from the user’s point of view it is more annoying to
drop a HC in progress than blocking a NC. In addition, nowadays and future
cellular network are required to serve different classes of traffic and each class
has different QoS requirements. These classes are defined by several standards
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 5–16, 2018.
https://doi.org/10.1007/978-3-030-02852-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_1&domain=pdf

6 S. Younes and M. Idi

[1,16]. Recently, many works propose multiservices CAC schemes and classify
traffic mainly into two classes [2,7,18]: real time (RT) class which can contain
voice, streaming and interactive applications such as voice over IP, and non-real
time (NRT) class which can contain non interactive applications such as web
services and file transfers. All these works prioritize RT class over NRT class
because RT class has stringent QoS requirements compared to NRT class.

In this context we have proposed in [17] a performance analysis of multi-
services CAC schemes. However, we neglect the possibility of failure of radio
channels. Likewise, the majority of works that propose CAC schemes ignores
the eventuality of failure of channels, which does not comply with the reality.
Indeed, there are various factors causing channel failure. These failures can be
permanent or transient. The permanent channel failures are caused by equip-
ment degradation. Whereas, the transient channel failures are caused by many
propagation factors, such as channel interference, multipath fading and shadow-
ing [14]. All these causes can cause the rejection of ongoing calls and increase
the call dropping probability.

We propose to extend our work in [17] by taking into account the possibil-
ity of failure of radio channels. In this former work we have proposed a pure
performance model of some investigated CAC schemes, and we have compared
their performances. These pure performance models are optimistic and not real-
istic because they evaluate the system under ideal conditions without taking
into account the failure and recovery events in the system. On the other hand,
the pure availability models focus on the availability and/or reliability and do
not take into account performance considerations. The performability model is a
combination of the pure performance model and the pure availability model, con-
siders performance changes associated with failure and recovery behaviors. We
recall that the performability is a concept defined by Meyer in [12]. It was intro-
duced to describe the capability of systems to operate in a degraded mode. In
order to obtain more realistic performance measures, we should consider changes
in performances associated with failure and recovery events. In this paper we
develop a performability model of a CAC schema proposed in [17] taking into
account performance changes due to failure related events. In order to ensure
the continuity of the ongoing call, we add to the performability model a recov-
ery strategy which consists in replacing an occupied failed channel by an idle
channel, if one is available. We note that this recovery strategy was proposed
and investigated in [10,11,15] but only in the context of a single class of service.
Therefore, we propose to adapt this strategy considering RT and NRT classes.

Probabilistic model checking (PMC) is a probabilistic extension of the model
checking formal verification technique. It is used to analyze stochastic systems
and has been used in different domains [9] such as wireless communication pro-
tocols and distributed algorithms. PMC requires two inputs: a description of the
system (model) and a specification of the system under investigation (require-
ment) expressed in temporal logics. Unlike discrete event simulation techniques
which compute approximate results by generating large numbers of samples,

Steady-State Performability Analysis of Call Admission Control 7

PMC computes exact results by checking formulas under a probabilistic model
which is constructed by generating exhaustively all reachable states.

The aim of this work is to use the probabilistic model checking to analyze
performability of a CAC schema proposed in a previous work. We develop a
composite CTMC model of this schema by considering both performance and
failure-recovery related events. We express performability measures with CSL
(Continuous Stochastic Logic) formulas. CSL [3] is a branching-time logic that
provides an ample means to specify state as well as path-based performance
and availability measures for CTMCs in a unambiguous way. This logic is a
probabilistic extension of CTL (Computational Tree Logic) [4]. We note that in
this paper we will focus on steady-state formulas of CSL since we are interested
on the evaluation of steady-state performability measures.

The main contributions of this paper are:

1. We extend a previous work by taking into account the possibility of failure
of the channel in use. In order to ensure the continuity of the ongoing call,
we adapt an existing recovery strategy, proposed in the context of one single
class of traffic, to support the two classes RT and NRT. Likewise the studied
CAC schema, we give priority to RT class in this adapted recovery strategy.

2. We develop a performability model containing both performance and failure-
recovery events and we specify QoS requirements using CSL logic.

3. We use the PRISM model checker to perform modelling, specification and
quantification of the performability measures by checking CSL formulas.

The paper is organized as follows. Section 2 is devoted to the related works. In
Sect. 3, we give a brief introduction to CTMC model and CSL logic. In Sect. 4,
a performability model of the considered CAC schema is presented. In Sect. 5,
we give numerical results. Finally, we make our conclusions in Sect. 6.

2 Related Works

Several works [2,7,18] propose CAC schemes and evaluate their performances
in the context of no failure of channels. In this section we focus on the main
works that evaluate performance of schemes which consider performance and
failure-recovery events. In [6,10,11,15], authors propose analytic performability
models of their proposed schemes in the context of one cell. All these schemes
prioritize HCs over NCs by using guard channels and treat the failed calls with
the same priority as a HC, in the sense that both of them can access any idle
channel.

In [10], authors consider a permanent single channel failures and propose a
two channel recovery schemes: in the first one they suppose that only a channel
in use can fail and that an idle channel never fails. The last assumption is
released in the second recovery strategy. Indeed, a failed channel is switched to
an idle channel, if one is available and the call continues. Otherwise, the call
with a failed channel is queued until an idle channel is available. For comparison
purposes, a pure performance model is also presented under the assumption that

8 S. Younes and M. Idi

the channels in a wireless network never fail. A method for multiple channel
recovery for time division multiple access (TDMA) in wireless system with base
repeaters is discussed in [11] where permanent and transient failure recoveries are
considered. It should be noted that the authors use the same principle of recovery
in [10]. The novelty of [15] compared to the previous works is the use of control
channel. The failure of the control channel will cause the failure of the whole
system. In this case, the system selects a channel from the rest of the non-failed
channels to substitute the failed control channel. If all non-failed channels are
busy, then one of them is forcefully terminated and is used as the control channel.
In [6], a quantitative assessment of survivability of cellular networks, considering
channel and infrastructure failures, is conducted. Indeed, the traffic is classified
into RT and NRT classes and the authors use guard channels to give priority to
RT calls. In [13], a performance model for CAC and the availability model for
a heterogeneous wireless network environment is developed. The model handles
the conversation traffic, the interactive traffic and the background traffic.

3 Preliminaries

In this section we briefly recall the basic concepts of CTMCs. Then, we present
the CSL logic. For more details we refer to [8] for CTMC and to [3] for CSL.

3.1 Labelled Continuous Time Markov Chains

A CTMC can be viewed as a finite state machine where transitions are labelled
with rates of exponential distributions. Let AP be a finite set of atomic propo-
sitions. A labelled CTMC M is a tuple (S,R, L) where S is a finite set of
states, R : S × S → R+ is the rate matrix and L : S → 2AP is the labelling
function which assigns to each state s ∈ S, the set L(s) of atomic proposi-
tions that are valid in s. The infinitesimal generator Q can be easily deduced
as Q(s, s′) = R(s, s′) if s �= s′ and Q(s, s) = −∑

s′∈S R(s, s′). A path through
a CTMC is an alternating sequence σ = s0t0s1t1 · · · with R(si, si+1) > 0 and
ti ∈ R+ for all i ≥ 0. ti represents the amount of time spent in state si. Let
us denote by paths the set of paths through M starting from the state s. For a
CTMC, there are two types of state probabilities: transient probabilities where
the system is considered at time t and steady-state probabilities when the system
reaches an equilibrium if it exists. Let ΠM

s (s′) be the steady-state probability to
be in state s′ starting from the initial state s. If M is ergodic, ΠM

s (s′) exists and
it is independent of the initial distribution that we will denote by ΠM(s′). Let
ΠM be the steady-state probability vector. For S′ ⊆ S, we denote by ΠM(S′)
the steady-state probability to be in states of S′, ΠM(S′) =

∑
s′∈S′ ΠM(s′).

3.2 Temporal Logic CSL

Specifications for CTMC models can be written in CSL [3] which is an extension
of CTL [4] with two probabilistic operators. Let p ∈ [0, 1], � ∈ {≤,≥, <,>} and

Steady-State Performability Analysis of Call Admission Control 9

I be an interval of real numbers. In the sequel, we denote by Sφ the set of states
that satisfy φ property and by |= the satisfaction relation.

The syntax of CSL is defined by:

φ ::= true | a | φ ∧ φ | ¬φ | P�p(φ UIφ) | S�p(φ)

P�p(φ1 UIφ2) asserts that the probability measure of paths satisfying φ1 UIφ2

meets the bound given by �p. Whereas, the path formula φ1 UIφ2 asserts that
φ2 will be satisfied at some time t ∈ I and that at all preceding time φ1 holds.
S�p(φ) asserts that the steady-state probability of Sφ meets the bound �p.

The semantic of CSL for boolean operators is identical to CTL. We give the
semantics of the probabilistic formulae. Let ProbM(s, φ1UIφ2) denote the prob-
ability measure of all paths σ starting from s (σ ∈ pathss) satisfying φ1 UIφ2.

s |= P�p(φ1 UIφ2) iff ProbM(s, φ1UIφ2) � p

s |= S�p(φ) iff ΠM(Sφ) =
∑

s′∈Sφ
ΠM(s′) � p (1)

In this paper, we will use S�p(φ) to define and quantify steady-state measures
of the studied system. We will use also the steady-state reward formula EJ(φ)
that belongs to CSRL logic. Continuous Stochastic Reward Logic (CSRL) [5] is
an extension of CSL by adding constraints over rewards. EJ(φ) asserts that the
long run reward rate in Sφ lies in J (J is an interval of real numbers). ρ : S → R+

is a reward structure that assigns to each state s ∈ S a reward ρ(s).

s |= EJ(φ) iff
∑

s′∈Sφ
ΠM(s′) · ρ(s′) ∈ J (2)

4 Performability Model

Now we present the performability model of the studied CAC schema to obtain
more realistic performance measures by considering failure and recovery events.

4.1 System Description

We consider a single cell and two classes of services: RT and NRT. The RT class is
prioritized over the NRT class. For each class, we distinguish NCs and HCs. The
radio resources are divided into: NRT channels and RT channels. According to
the studied schema, RT channels serve only RT calls whereas NRT channels can
serve both NRT and RT calls. Indeed, this schema was proposed in [17] and was
called RTP-CAC (Real Time Priority-CAC). A pure performance model of this
schema was developed and was analyzed by computing performance measures in
terms of NC blocking/HC dropping probabilities and the bandwidth occupation
rate for each class. It was observed that this schema provides good performances
comparing to the other investigated scheme. Therefore, we choose this schema
to be extended in order to quantify more realistic performance measures.

10 S. Younes and M. Idi

Let us recall the basic concept of this considered schema: RT calls can use
NRT channels if there is no RT available channels. Whereas, NRT calls are served
only by NRT channels. HCs are prioritized over NCs for each class by reserving
guard channels used only by HCs and RT calls have the higher priority. Let C1

(resp. C2) be the total number of NRT (resp. RT) channels. Let g1 (resp. g2)
be the number of guard channels reserved exclusively for HCs NRT (resp. RT).
A NRT NC is blocked if the number of available channels in NRT channel part
is less or equal to C1 − g1. Whereas, A NRT HC is dropped if the number of
occupied channels in NRT channel part is equal to C1. Concerning RT class, if
C2 − g2 channels are occupied and a RT NC arrives to BS, it is not blocked and
can take a NRT channel. In case of occupation of C1 − g1 channels (authorized
for NRT NC) then the RT NC will be blocked. A RT HC can take NRT channel
if all C2 channels are occupied. But if the number of busy NRT channels is equal
to C1 then it will be dropped.

In this paper we call this schema which ignores the failures of channels WoF-
CAC (Without Failure-CAC). And we call it extension with the possibility of
failures, FR-CAC (Failure Recovery-CAC). This latter schema is developed con-
sidering the failure and recovery strategy that we present in the sequel.

4.2 Failure and Recovery Strategy

Recall that the aim of the paper is to develop a formal model FR-CAC extended
from WoF-CAC by considering the possibility of the failure of a channel during
a service period. We assume that an idle channel can never fail. In order to
let the ongoing call continue, we consider a recovery strategy. This involves a
reduction of the dropping/blocking probabilities for NRT and RT classes. We
adapt an existing recovery strategy [10,11,15], proposed in the context of one
single class of traffic, to support the two classes RT and NRT. Similarly to WoF-
CAC which gives priority to RT calls over NRT calls, we prioritize the RT class
in the adapted recovery strategy. Indeed, when an occupied RT channel fails,
the ongoing call (can be only an RT call), is switched to an idle RT channel. If
all RT channels are occupied, then the call is switched to an idle NRT channel.
If all NRT channels are occupied, the call is dropped. Let us remark that this
RT call is treated as well as a RT HC. On the other hand, if an occupied NRT
channel fails, the ongoing call (can be RT or NRT call) is switched to a NRT
available channel if one is available otherwise this call is dropped. Similarly, we
can note that this ongoing call is treated with the same priority of an NRT HC.

4.3 Composite CTMC

We present the composite CTMC of FR-CAC. We assume that the arrival pro-
cesses for different traffic are independent and follow Poisson distribution with
rates: λNh for NRT HCs, λNn for NRT NCs, λRh for RT HCs, λRn for RT NCs.
We denote by λN = λNh+λNn (resp. λR = λRh+λRn) arrival rate of NRT (resp.
RT). We suppose that: the holding time of channels is exponentially distributed

Steady-State Performability Analysis of Call Admission Control 11

with mean 1/μ, the failure rate of the channel is a Poisson distribution with rate
λF and the channel repair is exponential time distribution with the mean 1/μr.

Based on these Markov assumptions, FR-CAC can be modeled by a multi
dimensional homogeneous CTMC where the state space is given by:

SFR−CAC = {(c1, p1, c2, p2) | 0 ≤ p1 ≤ c1 ≤ C1; 0 ≤ p2 ≤ c2 ≤ C2}

In state (c1, p1, c2, p2), c1 (resp. c2) represents the number of busy NRT (resp.
RT) channels. p1 (resp. p2) represents the number of failed NRT (resp. RT)
channels. Transition rates R(s; (c̄1, p̄1, c̄2, p̄2)) from the state s = (c1, p1, c2, p2)
to the state (c̄1, p̄1, c̄2, p̄2) are defined as:

– A call arrives to occupy a NRT channel, for all 0 ≤ p1 ≤ c1; 0 ≤ p2 ≤ c2

R(s; (c1 + 1, p1, c2, p2)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λN if(0 ≤ c1 < C1 − g1; 0 ≤ c2 < C2 − g2)
λN + λRn if(0 ≤ c1 < C1 − g1; C2 − g2 ≤ c2 < C2)
λN + λR if(0 ≤ c1 < C1 − g1; c2 = C2)
λNh if(C1 − g1 ≤ c1 < C1; 0 ≤ c2 < C2)
λNh + λRh if(C1 − g1 ≤ c1 < C1; c2 = C2)

– A failure happens in an active NRT channel and the ongoing call is switched
to an NRT channel.

R(s; (c1 + 1, p1 + 1, c2, p2)) =(c1 − p1)λF if (0 ≤ p1 < c1 < C1; 0 ≤ p2 ≤ c2 ≤ C2)

– A failure happens in an active NRT channel and the ongoing call is rejected
because all NRT channels are busy.

R(s; (c1, p1 + 1, c2, p2)) = (c1 − p1)λF if (0 ≤ p1 < c1 = C1; 0 ≤ p2 ≤ c2 ≤ C2)

– An active non-failing NRT channel is released.

R(s; (c1 − 1, p1, c2, p2)) = (c1 − p1)μ if (0 ≤ p1 < c1 ≤ C1; 0 ≤ p2 ≤ c2 ≤ C2)

– A failed NRT channel is repaired.

R(s; (c1 − 1, p1 − 1, c2, p2)) = p1μr if (0 < p1 ≤ c1 ≤ C1; 0 ≤ p2 ≤ c2 ≤ C2)

– A call arrives to occupy a RT channel, for all 0 ≤ p1 ≤ c1; 0 ≤ p2 ≤ c2.

R(s; (c1, p1, c2 + 1, p2)) =

{
λR if(0 ≤ c1 ≤ C1; 0 ≤ c2 < C2 − g2)
λRH if(0 ≤ c1 ≤ C1; C2 − g2 ≤ c2 < C2)

– A failure happens in an active RT channel and the ongoing call is switched
to a RT channel.

R(s; (c1, p1, c2 + 1, p2 + 1)) = (c2 − p2)λF if (0 ≤ p1 ≤ c1 ≤ C1; 0 ≤ p2 < c2 < C2)

12 S. Younes and M. Idi

– A failure arrives in an active RT channel and the ongoing call is switched to
occupy a NRT channel.

R(s; (c1 + 1, p1, c2, p2 + 1)) = (c2 − p2)λF if (0 ≤ p1 ≤ c1 < C1; 0 ≤ p2 < c2 = C2)

– A failure arrives in an active RT channel and the ongoing call is rejected
because all channels (RT and NRT) are occupied.

R(s; (c1, p1, c2, p2 + 1)) = (c2 − p2)λF if (0 ≤ p1 ≤ c1 = C1; 0 ≤ p2 < c2 = C2)

– A non-failing active RT channel is released.

R(s; (c1, p1, c2 − 1, p2)) = (c2 − p2)μ if (0 ≤ p1 ≤ c1 ≤ C1; 0 ≤ p2 < c2 ≤ C2)

– A failed RT channel is repaired.

R(s; (c1, p1, c2 − 1, p2 − 1)) = p2μr if (0 ≤ p1 ≤ c1 ≤ C1; 0 < p2 ≤ c2 ≤ C2)

4.4 Formal Specification of Steady-State QoS Requirements

In order to check CSL formulas that specify QoS requirements in terms of NC
blocking probability and HC dropping probability for NRT and RT classes,
we need to label CTMC states with atomic propositions that characterize
the state. Let AP = {NRT Block,RT Block,NRT Drop,RT Drop}. NRT Block
(resp. RT Block) is assigned to states in which NRT (resp. RT) NC is blocked.
NRT Drop (resp. RT Drop) is assigned to states in which NRT (resp. RT) HC
is dropped. Satisfaction sets of these atomic propositions are formally defined in
FR-CAC by:

SNRT Block = {(c1, p1, c2, p2) | C1 − g1 ≤ c1 ≤ C1&0 ≤ p1 ≤ c1&0 ≤ p2 ≤ c2 ≤ C2}
SRT Block = {(c1, p1, c2, p2) | C1 − g1 ≤ c1 ≤ C1 & 0 ≤ p1 ≤ c1 &

C2 − g2 ≤ c2 ≤ C2&0 ≤ p2 ≤ c2}
SNRT Drop = {(c1, p1, c2, p2) | c1 = C1 & 0 ≤ p1 ≤ c1 & 0 ≤ p2 ≤ c2 ≤ C2}
SRT Drop = {(c1, p1, c2, p2) | c1 = C1 &0 ≤ p1 ≤ c1 &c2 = C2 &0 ≤ p2 ≤ c2}

Let note that these sets are defined similarly for WoF-CAC in [17] without
considering p1 and p2 because in WoF-CAC a state is defined by (c1, c2).

Since in this work we focus on the computation of steady-state performability
measures, we check first S=?(φ) to determine the dropping/blocking probabili-
ties. Then we check E=?(true), which belongs to CSRL, to determine the mean
occupation rate of channels.

S=?(φ) The verification of this formula is given by the Eq. 1. In order to com-
pute steady-state dropping and blocking probabilities for each class of traffic

Steady-State Performability Analysis of Call Admission Control 13

we check the following formulas: S=?(RT Block) (resp. S=?(NRT Block)) spec-
ifies the expected steady-state blocking probability for NRT (resp. RT) NC.
S=?(RT Drop) (resp. S=?(NRT Drop)) specifies the expected steady-state drop-
ping probability for NRT (resp. RT) HC.

E=?(true) To determine the mean occupation rate of NRT channels (resp. RT
channels) we enrich models with the reward function ρNRT (s) (resp. ρRT). In
FR-CAC, we assign to each state s = (c1, p1, c2, p2) the reward values ρNRT (s) =
100(c1 − p1)/C1 and ρRT (s) = 100(c2 − p2)/C2. In the model WoF-CAC, we
assign to each state s = (c1, c2) the reward values ρNRT (s) = 100c1/C1 and
ρRT (s) = 100c2/C2. We check E=?(true) to quantify the occupation rate of NRT
(resp. RT) channels by considering ρNRT (resp. ρRT) and using Eq. 2. Let note
that for FR-CAC model we consider only the active channels that are occupied
by ongoing calls and we do not count failed channels.

5 Numerical Results

We compute the steady-state performability measures of the composite model
FR-CAC in order to give more realistic measures in terms of the NC blocking
probabilities, HC dropping probabilities and the channels occupation rate of RT
and NRT classes. We compare theses measures with performance measures com-
puted over the pure performance model WoF-CAC. This comparison shows the
efficiency of the recovery schema that we propose. We use the probabilistic model
checker PRISM [9] to construct and solve CTMCs of FR-CAC and WoF-CAC
schemes. This tool is a high-level modeling language and formulas are checked
automatically. Numerical results are obtained with the following parameters: the
number of RT channels (resp. NRT channels) is 50 (resp. 30), g2 = 5, g1 = 3,
the traffic intensity of NRT class is: λNh = λNn = 10 and the arrival rate of RT
HC is 20. The time unit is 1 min, the channel holding time μ = 1, the arrival
rate of channel failure λF = 0.1 and the reparation rate is μr = 0.5.

(a) NRT class. (b) RT class.

Fig. 1. Steady-state NC blocking probabilities.

We vary the arrival rate of RT NC from 10 to 50 and we plot in Fig. 1(a)
(resp. 1(b)) the steady-state NC blocking probability for NRT (resp. RT) class

14 S. Younes and M. Idi

and in Fig. 2(a) (resp. 2(b)) the steady-state HC dropping probability for NRT
(resp. RT) class. Clearly, these probabilities for both FR-CAC and WoF-CAC
models increase when the traffic load increases. Results show also that the call
blocking probability values for both classes are higher than call dropping prob-
ability values because the scheme give priority to HCs over NCs. Moreover, it is
observable that these probabilities are higher for FR-CAC than for WoF-CAC
and this is expectable because in FR-CAC which is a composite of availabil-
ity and performance models, a call is dropped or blocked due to two reasons:
channels are occupied (performance reason) or channels are failed (availability
reason). The former type of loss is captured by WoF-CAC. Moreover we can
observe that relatives curves to FR-CAC and WoF-CAC are near especially for
blocking probabilities Fig. 1(a) and (b). We can deduce that the recovery strat-
egy can reduce the dropped/blocked probabilities caused by failures.

(a) NRT class. (b) RT class.

Fig. 2. Steady-state HC dropping probabilities.

In Fig. 3(a) (resp. Fig. 3(b)), we present the mean channels occupation rate of
NRT (resp. RT) channels against increasing the RT NC arrival rate. Recall that
in FR-CAC we count only the active channels containing ongoing calls without
counting the failed ones. Obviously, when the traffic load increase the mean
channels occupation rate increases for FR-CAC and WoF-CAC. This is trivial

(a) NRT channels - ρNRT (b) RT channels - ρRT .

Fig. 3. Steady-state channels occupation rate.

Steady-State Performability Analysis of Call Admission Control 15

because when the number of calls increases the number of occupied channels
increases too. In addition, it can be observed that the mean occupation rate of
active channels of the performability model FR-CAC and the pure performance
model WoF-CAC is nearly the same due the use of recovery strategy. Indeed, in
FR-CAC when an active channel fails it is replaced by an idle one which let the
number of active channels almost the same in the FR-CAC and WoF-CAC.

6 Conclusion

In this paper we have presented a formal analysis of a composite performance and
availability model of a multi-service CAC schema. The aim is to compute more
realistic measures by considering the possibility of failures of active channels. In
order to reduce the dropping and blocking probabilities of respectively HCs and
NCs for both NRT and RT classes we have proposed a recovery strategy.

The Probabilistic model checking is used to construct CTMC models. We
have used CSL logic to express performance requirements in terms of the block-
ing probabilities, the dropping probabilities and the mean bandwidth occupation
rate. We have compared the performability measures obtained through the per-
formability model with performance measures obtained through the pure per-
formance model. Results show that the recovery strategy in the performability
model can reduce the dropping and the blocking probabilities and can maintain
the same level of the bandwidth utilization obtained by the performance model.

In the future we will extend this work by performing additional performance
measures related to the transient behavior of the system as reliability. These
measures are non traditional in the evaluation of CAC schemes and can be
performed by the use of the time bounded path formula of CSL.

References

1. Alasti, M., Neekzad, B., Hui, J., Vannithamby, R.: Quality of service in WiMAX
and LTE networks. IEEE Commun. Mag. 48(5), 104–111 (2010)

2. AlQahtani, S.A.: Delay aware and users categorizing-based call admission control
for multi-services LTE-A networks. AJSE 41(9), 3631–3644 (2016)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time
Markov chains. ACM Trans. Comp. Logic 1(1), 162–170 (2000)

4. Clarke, E.M., Emerson, A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lan-
guag. Syst. 8(2), 244–263 (1986)

5. Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.P., Baier, E.C.: Model checking
performability properties. In: Proceedings of the DSN, pp. 103–112. IEEE CS Press
(2002)

6. Jindal, V., Dharmaraja, S., Trivedi, K.S.: Markov modeling approach for surviv-
ability analysis of cellular networks. IJPE 7(5), 429 (2011)

7. Khdhir, R., Mnif, K., Belghith, A., Kamoun, L.: An efficient call admission control
scheme for LTE and LTE-A networks. In: ISNCC, pp. 1–6. IEEE (2016)

16 S. Younes and M. Idi

8. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall,
London (1995)

9. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking in prac-
tice: case studies with PRISM. ACM SIGMETRICS Perform. Eval. Rev. 32(4),
16–21 (2005)

10. Ma, Y., Han, J.J., Trivedi, K.S.: Channel allocation with recovery strategy in
wireless networks. Trans. ETT 11(4), 395–406 (2000)

11. Ma, Y., Han, J.J., Trivedi, K.S.: A method for multiple channel recovery in TDMA
wireless communications systems. Comput. Commun. 24(12), 1147–1157 (2001)

12. Meyer, J.F.: On evaluating the performability of degradable computing systems.
IEEE Trans. Comput. 29(8), 720–731 (1980)

13. Siddamallaiah, R.B.H., Subramanian, G., Satyanarayana, P.S.: Unified perfor-
mance and availability model for call admission control in heterogeneous wireless
networks. IJCNS 3(04), 406 (2010)

14. Tarkaa, N.S., Mom, J.M., Ani, C.I.: Drop call probability factors in cellular net-
works. IJSER 2(10), 1–5 (2011)

15. Trivedi, K.S., Ma, X., Dharmaraja, S.: Performability modelling of wireless com-
munication systems. IJCS 16(6), 561–577 (2003)

16. WiMAX Forum: WiMAX QoS Whitepaper, September 2006
17. Younes, S., Benmbarek, M.: Performance analysis of multi-services call admission

control in cellular network using probabilistic model checking. In: Barkaoui, K.,
Boucheneb, H., Mili, A., Tahar, S. (eds.) VECoS 2017. LNCS, vol. 10466, pp.
17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66176-6 2

18. Zarai, F., Ali, K.B., Obaidat, M.S., Kamoun, L.: Adaptive call admission control
in 3GPP LTE networks. IJCS 27(10), 1522–1534 (2014)

https://doi.org/10.1007/978-3-319-66176-6_2

An MDA Approach for the Specification
of Relay-Based Diagrams

Dalay Israel de Almeida Pereira1(B), Ouahmed Malki1, Philippe Bon1,
Matthieu Perin2 , and Simon Collart-Dutilleul1

1 Univ Lille Nord de France, IFSTTAR, COSYS, ESTAS,
59650 Villeneuve d’Ascq, France

{dalay.pereira,ouahmed.malki,philippe.bon,
simon.collart-dutilleul}@ifsttar.fr

2 Institut de Recherche Technologique Railenium, 59300 Famars, France
matthieu.perin@railenium

http://www.ifsttar.fr/en/welcome/, http://railenium.eu/en

Abstract. A railway interlocking system is one example of a critical sys-
tem, and therefore it must have a high level of reliability in order to avoid
problems that may result on the loss of people’s lives. However, many
railway systems are still specified using historical relay-based diagrams,
whose analysis are made by human inspection, which is error prone. This
paper constitutes a first step towards using Model Driven Architecture
(MDA) in order to specify railway interlocking systems. This work pro-
poses a restructuring methodology starting from relay-based diagrams to
produce formalized machine-readable XML models. This is performed by
formalizing industrial formalisms and knowledge into a complete Domain
Specific Language UML meta-model that is latter used to automatically
generate an XSD using Model-to-Text transformation. The conforming
XML models may then be understood by different stakeholders and used
as input for automated analysis tools.

Keywords: Model-driven architecture · Restructuring
Reverse engineering · Domain specific languages · UML · XML
Railway systems

1 Introduction

The use of increasingly complex applications is demanding a greater invest-
ment of resources in system specification. Furthermore, high field reliability is
an highly desirable attribute of any product, system or plant [7]. Railway Inter-
locking systems (RIS) is an example of critical systems, where reliability may be
the differentiating factor determining its success or the occurrence of significant

Results are part of FUI 21 LCHIP project, founded by French National Research
Agency (ANR).

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 17–29, 2018.
https://doi.org/10.1007/978-3-030-02852-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_2&domain=pdf
http://orcid.org/0000-0002-9726-2458

18 D. I. de Almeida Pereira et al.

negative consequences (like the loss of people’s lives, for instance). These sys-
tems must have strict requirements for security and safety, in order to protect
the user [17]. In this case, the use of advanced modelling techniques in order to
model these RIS may be a crucial factor in order to improve safety and reliability.

In the Model Driven Development (MDD), the models are the primary arte-
fact of the system development process. The most known example of MDD is
the Model Driven Architecture (MDA) [21], which separates the specification
of system functionality from the specification of its implementation. Created by
the Object Management Group (OMG), one of the primary activities to be per-
formed in MDA is the definition of a domain specific meta-model, which “may
make it possible to describe properties of a particular platform” [19]. In this
context a model is defined as an instance of a meta-model.

Despite the demand for new methodologies of specification, many railway
systems are still specified by historical relay-based diagrams, which is a Domain
Specific Language (DSL) describing how the physical elements of these systems
are connected (relays, electrical wires, dipoles, etc). These languages are usu-
ally described without any explicit formalisation, thus lacking a meta-model
and semantics description. Furthermore, in order to analyse the safety of these
systems, one must inspect the relay-based specification and draw conclusions,
which is not satisfactory for critical systems, since it is error prone [16].

This work proposes a restructuring [9] methodology starting from relay-based
diagrams to produce formalized machine-readable XML models using a UML
meta-model.

First section presents the previous works in the matter at hand, and the
used formalisms. The first step of the method, presented in Sect. 3, is to reverse
engineering [9], the industrial relay-based DSL, reviewed and then formalized
into the UML [3] DSL meta-model. The second step, explained in Sect. 4, consists
in the automated concretization of the meta-model into XSD/XML in order to
obtain a specification that can be understood by many stakeholders and which
will also be processed by computer software. Finally, a discussion on the proposed
approach and a conclusion are developed in Sects. 5 and 6.

2 Related Works and Formalism Used

2.1 MDA

The Model Driven Architecture is a framework for system development where
models are the primary artefact. It is the most know example of MDD [21] and
it uses UML (Unified Modelling Language) in order to specify and visualize the
code. MDA separates the operation specification of a system from the details of
the way that system uses the capabilities of its platform. As a result, by using
MDA, one is able to make specifications of platform independent models (PIM),
whose implementation may be proceeded into one of many different platforms
by model transformation.

An MDA Approach for the Specification of Relay-Based Diagrams 19

In the MDA context, a model “consists of sets of elements that describe
some physical, abstract, or hypothetical reality” [18]. A modelling language con-
sists of its abstract syntax (the vocabulary of concepts and how they can be
connected), concrete syntax (model as a diagram or a structured textual form)
and semantics (additional information to explain the meaning of the abstract
syntax) [8]. In the execution of a MDA process, it is necessary to accomplish
two main activities. Firstly, one may formalize the knowledge by gathering rele-
vant requirements of the domain, abstract it into some set of concepts and then
express it into a model. The second activity is the transformations of this model
into other models or its implementation.

Model transformations (MTs) are a way how models can be manipulated.
The general idea of a model transformation is the translation from a source
model (conforming with the source meta-model) into a target model (conform-
ing with the target metamodel). “The transformation specification is defined at
the level of metamodels whereas its execution operates on the model level” [6].
According to [11], there are many reasons for using MDA in the system develop-
ment, some of them are: improvement of productivity, lower maintenance costs
and reduced quality assurance costs, for instance.

Besides Model-to-Model (M2M) transformation, a model can also be used as
input for Model-to-Text (M2T, e.g. [2]) transformation to produce text-based
formats. This latter process allows the specification of an abstract model in a
concrete language as a way to process it within computerized tooling suite.

2.2 Meta-modelling Formalism

There are many meta-modelling formalisms present in the literature nowadays:
UML [3], Ecore [23], XMF [10], Kermeta [12], MOF [20], etc. Comparing these
formalisms is not an easy task, since they have generally been designed for
different needs, capacities and specificities that are not comparable [13]. In order
to chose a formalism for meta-modelling the relay-based diagrams, some criteria
were relevant:

– The language must be understandable for the majority of the project partners,
– The language must make it possible to model the abstract semantics of the

relay schemas,
– The language must be best equipped for the generation of concrete textual

semantics.

Considering these criteria, UML is the best candidate, since it is known by the
partners and its semantics reduced to basic principles is sufficiently precise and
rich to meet the needs of modelling. Besides, there are many tools that facilitate
the (partial) generation of concrete semantics. In this work, the meta-model was
developed in the Papyrus1 open-source tool of the Eclipse platform.

1 https://www.eclipse.org/papyrus/.

https://www.eclipse.org/papyrus/

20 D. I. de Almeida Pereira et al.

2.3 Model-To-Text Transformation

The transition from an abstract syntax into a concrete syntax requires strong
modelling decisions in order to organize data and allow the specification of a
model which conforms with the meta-model, decreasing the possibility of incon-
sistencies. Several possibilities are available to produce the concrete syntaxes,
like those presented in [13] and [24]. A previous work proposed in [4] focuses on
the behavioural translation of Relay-based specification into a formal language
to perform complete system analysis. The aim of this work is thus different as
we aim at providing an human readable exchangeable file across the project
members.

In order to define and describe the structure of XML documents, one may
define a XSD schema (XML Schema Definition), whose components constrain
and document the meaning, usage and relationships of the XML constituent
parts [14]. So, it is possible to define a XSD schema from our meta-model in
order to support the specification of relay-based diagrams in XML.

In order to generate the XSD schema, we chose to use the Acceleo Query
Language (AQL) [15], which is a language used to navigate and query a model.
Acceleo2 is the open-source Model-to-Text (M2T) implementation of the OMG
MOF2Text norm [2] in the Eclipse platform. The transformation allows us to
define characteristics of the XML specifications in the XSD schema. These char-
acteristics are, for instance, the type of the objects, the patterns and restrictions
to be followed (for the names of the objects, for instance) or the relations between
the objects.

2.4 Relay-Based Specification

In the railway field, in an environment where the trains are not computer-
controlled, the transmission, reception and use of information inside the system
are made by electromechanical switching elements. The most widely used ele-
ment is the Electromechanical Relay [22], which is composed by a electromagnet
and one or more mobile mechanical parts (contacts). A contact may connect dif-
ferent wires by changing its position when affected by the electromagnet inside a
relay. The different combinations of different power sources, contacts and relays
allows the creation of several different systems.

In order to describe relay-based systems, one may use relay-based diagrams,
which are drawings presenting all the elements of a system and their intercon-
nections (similar to the diagram depicted on Fig. 1, for instance). In fact, the
relay-based diagrams are undirected graphs. Two elements (nodes) are connected
when there is a cable (arc) whose each extremity makes contact with each of these
two elements. The cables have a explicit and unequivocal syntax: it physically
connects the elements of the system in order to allow the passage of electric
current.

However, the elements tend to be more complex as a consequence of its
different nature and representations. The Table 1 presents some of the elements
2 http://www.eclipse.org/acceleo/.

http://www.eclipse.org/acceleo/

An MDA Approach for the Specification of Relay-Based Diagrams 21

Fig. 1. Relay-based diagram example pointing the inputs and outputs

that may be used in a relay-diagram. The complexity of its representation arises
by the fact that an element may be described by many graphical representations
(contacts), or a graphical representation may describe a whole family of elements
(blocks), for instance.

In the relay diagram graph, the elements can be connected by cables, which
can be represented by a full or a dotted line. The former represents the pas-
sage of continuous current and the later describes the passage of alternating
current. Furthermore, there is another relation between the nodes, more specif-
ically, between contacts and relays denoted by a vertical mixed fine line. This
last notation represents the functional and mechanical link between a relay and
its associated contacts.

In the railway industry, a project of a train system specified by relay diagrams
contains several sheets of specification. Each sheet describes a small part of the
system and contains a diagram similar to the one presented on Fig. 1. Two
diagrams in two different sheets are connected by their inputs and/or outputs
and the union of all sheets describes the whole system of a project.

3 Meta-modelling

The meta-model of the relay-based diagram presents the elements that may be
used in a specification and their possible interconnections. The meta-model is
depicted on Fig. 2 and comes from the deep analysis of a representative set
of Relay diagrams (concrete syntax) associated with domain-related knowl-
edge provided by field experts from the SNCF, the French National Railway

22 D. I. de Almeida Pereira et al.

Table 1. Elements that may be used in a relay-based diagram.

Electrical Terminal or inputs (Sources, in
french) with negative or positive poles of
24Vdc.

Supply from another station or inputs
(Circuit issus du poste, in french). A
priori not stable (can be set to - or to +
for communication).

Two position relays (Relais, in french)
with one or two coils (bistable).

Junction points between arcs (Liasons, in
french).

Dipole-resistance couple (couple de dipôle
rèsistance, in french).

Functional blocks, used as substitutes for
other commonly used diagram sheets.

Some of the possible representations of
Contacts

Company (Société Nationale des Chemins de fer Français). The Project (“Pro-
jet”3) object is the root of the model, so, there must exist only one project in
the specification of a system. A project comprises several sheets (“Folios”). All

3 In this section French translation have been added in quotes to help readability of
the shown diagrams.

An MDA Approach for the Specification of Relay-Based Diagrams 23

the sheets together form a complete and autonomous unit of meaning: a railway
automation control-command. In each Folio one can find elements, which are
represented by nodes (“noeuds”). A node can be specialised to relay, contact,
block, dipole, terminal or an other element, as presented in the meta-model.

Fig. 2. Meta-model of the relay-based specification

Each node has one or more pins (“bornes”) which are connected to cables.
The connection between two pins of two different nodes represents the arc
between two elements. This decision allows us to anonymise the end of the cables
and make their use independent of the context (when it is possible). Pins are
part of the nodes and their use are refined into specific properties (for example,
BorneA or BorneB) in order to differentiate all the pins of a node.

Relays (“relais”), contacts and dipoles use inheritance to define the differ-
ent subtypes of these objects, as it is presented in Fig. 3, this is the case when
the number of bornes and/or the internal variables vary from one subtype to
another. A relay can be monostable (“neutre”) or bistable (“basculeur”), which
are related to a fixed contact (“contact neutre”) or a movable contact (“contact
translateur”), respectively. A dipole can be a button, a resistance or a capac-
itor, for instance. When the differences are only semantic (their meanings to
the human reader) then an enumeration typing explaining the types has been
preferred to limit the number of objects, which is how the terminals (“sources”)
are defined.

In order to connect more than two elements at the same time by cables, a
junction (“liaison”) must be used. This element can be connected to three or

24 D. I. de Almeida Pereira et al.

Fig. 3. Relay inheritance in order to represent relays monostable (“Neutre”) or
bistable (“Basculeur”)

four different nodes, allowing them to be connected all together. A GroupDipoles
element represents another set of arcs linking dipoles together, which represents
that these elements must operate always together.

An example of an instance of a system which was specified conforming to
this metamodel is presented in Fig. 4. This instance represents The control line
“HP” of the diagram presented in Fig. 1.

4 XML Generation Using Model to Text (M2T)
Principles

The XSD file allows the direct specifications of XML conforming with the meta-
model we defined. Using the Eclipse platform it is possible to validate the XML
files as the designer is specifying the system, showing errors when there is some-
thing inconsistent with what is defined in the XSD. By using these tools, a system
designer can make corrections on the specification as soon as errors appear, which
allows the creation of a XML specification conforming with our meta-model.

The generation of the XSD schema is conforming to the following principles:

– Types are translated into xsd:simpleType based on an analysis of their names.
In the model, to ease the transformation, all specific xsd-related types have
been prefixed with “XSD:” String. For example, names of Nodes are described
in the model using specific type“XSD:String” that is translated into the stan-
dard xsd:String type of xsd norm in the resulting XSD file.

An MDA Approach for the Specification of Relay-Based Diagrams 25

Fig. 4. Part of the instantiation of the diagram presented on Fig. 1

– Enumerations are translated into xsd:simpleType that extends xsd:NCName
with a restriction over values based on the enumeration values. Enumerated
values not starting with a letter (eg: “24Plus” for 24 volt plus power supply
entry) are prefixed with an underscore to ensure NCName compatibility.

– ID are translated using a specific set of rules, as identifiers and links between
objects are really concrete syntax specific:
• An unique couple of xsd:ID and xsd:IDREF is created for each ID type

that inherits from the “XSD:ID” type in the model,

26 D. I. de Almeida Pereira et al.

• Both the ID and IDERF in the couple implement a shared rule that make
them distinguishable from another ID/IDREF couple,

• Each time an instance reference to another one (non composite relation
in the UML meta-model) the target is swap with the according IDREF
of the “id” property owned by the target typing Class. For example, the
reference to a “Borne” in a “Cable” is translated in the XSD by an IDREF
associated to the Borne Class.

– Classes are translated into a couple xsd:complexType and xsd:element, the
first one contains all the informations and it is also typing the latter. The
type associated to the Class is created as follows:
• Name is the same as the Class;
• Set of non composition-related properties are translated into xsd:attribute,

following rules for Types, Enumeration and ID/IDREF presented before;
• Set of components (composition relations in UML) are translated using

a xsd:sequence of elements;
• Abstract classes are not translated, the generalizations are flattened as

all properties (both owned and gained from generalization) are taken into
account for each Class translation.

– Packages are explored to transform containing objects but they are not
directly translated.

Another set of formatting and organising rules (using folding mock elements
to help experts to read the XML) are implemented in the transformation but
they are not detailed in this paper.

Figure 5 presents a part of the XML file modelling the running example of
this paper (Fig. 1). This XML model is also the concrete textual representation
of the model presented in Fig. 4.

5 Discussion

The meta-model we presented in this work has been created by the efforts of
a group of researchers together with SNCF. The final goal of this project is
the translation of relay-based specification into B [5], a formal language, which
allows the verification and validation of systems according to defined properties.
For evaluation purposes, some relay diagrams provided by SNCF (real indus-
trial cases) has been successfully expressed in the meta-model and specified in
XML. The relay meta-model and the XML specifications have been validated by
SNCF. The names of the objects and the relation between them has been defined
according to the relay-based diagrams used in industry and the experience on
the field shared with us by SNCF.

The specification of relay-based diagrams in XML can cause many positive
impacts in the industry:

– It can be understood by computers, as consequence it can be translated
into formal models by the use of transformation languages (like QVT [1],
for instance);

An MDA Approach for the Specification of Relay-Based Diagrams 27

<?xml version="1.0" encoding="UTF-8"?>

<lchip:Projet nom="Example_Ifsttar_1_carte_LCHIP"

id="PR_1_carte_LCHIP" xmlns:lchip="http://lchip.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

...

<Folio id="FO_folio1">

...

<Cable borneB="BO_LI_HP_G" borneA="BO_CO_RE_ON_1_T" id="CA_30"/>

<Cable borneB="BO_CO_RE_ON_1_M" borneA="BO_RE_HP_G" id="CA_31"/>

<Cable borneB="BO_RE_HP_D" borneA="BO_CO_RE_CMD_1_T" id="CA_32"/>

<Cable borneB="BO_CO_RE_CMD_1_M" borneA="BO_LI_HP_D" id="CA_33"/>

...

<ContactNeutre relaisNeutre="RE_ON" id="CO_RE_ON_1" nom="Contact

ON 1" etatDessine="Repos">

<borneMobile id="BO_CO_RE_ON_1_M"/>

<borneRepos id="BO_CO_RE_ON_1_R"/>

<borneTravail id="BO_CO_RE_ON_1_T"/>

</ContactNeutre>

...

<ContactNeutre relaisNeutre="RE_CMD" id="CO_RE_CMD_1" nom="Contact

CMD 1" etatDessine="Repos">

<borneMobile id="BO_CO_RE_CMD_1_M"/>

<borneRepos id="BO_CO_RE_CMD_1_R"/>

<borneTravail id="BO_CO_RE_CMD_1_T"/>

</ContactNeutre>

...

<Liaison nom="Liaison ON_G" id="LI_HP_G" type="CircuitPoste">

<borneA id="BO_LI_HP_G" />

</Liaison>

<Liaison nom="Liaison ON_G" id="LI_HP_D" type="CircuitPoste">

<borneA id="BO_LI_HP_D" />

</Liaison>

...

<RelaisNeutre id="RE_HP" nom="Relais HP" type="Standard"

etatDessine="Desexcite" temporisationChute=""

temporisationAttraction="">

<borneA id="BO_RE_HP_G"/>

<borneB id="BO_RE_HP_D"/>

</RelaisNeutre>

...

</Folio>

...

</lchip:Projet>

Fig. 5. Part of the XML specification of the diagram described on Fig. 1

28 D. I. de Almeida Pereira et al.

– There is the possibility of generating programming code directly from the
XML specification, which can be used for animation or validation purposes,
or the implementation of a computer controlled system;

– It can be understood by many stakeholders.

6 Conclusion

In this paper we propose the creation of a meta-model for relay-based diagrams
and the use of XML as a concrete language for their specification. There are
many benefits of using XML for the specification of railway relay-based systems,
some of them are: the possibility of implementing and animating these systems,
the fact that this is a technology widely known in industry and the possibility
of using XML specifications as input for computer programs. This latter benefit
may allows us to implement a tool for the automatic translation from relay-based
diagrams into a formal language in order to prove their correctness.

As a reverse engineering process, we defined the meta-model based on the
diagrams and the knowledge offered by the industry (SNCF). The final result of
this process is a meta-model which can be used in order to guide the specification
of Relay-based systems. In order to use XML as a concrete specification language,
we used Acceleo to derived a XSD schema from the meta-model, which allows
the direct specification of XML conform with the relay-based meta-model.

Two different examples used in industry has been specified using our app-
roach with success. The meta-model and the XML specifications has been vali-
dated by SNCF. In order to improve the safety and the reliability of the railway
systems, we plan to expand our approach in some future works.

In order to prove the correctness of a relay-based specification of a railway
system, one must specify it in a formal language. Due to their mathematical
background and support tools, the use of formal languages allows the specifica-
tion and proof of systems. The translation of relay-based diagrams into a formal
language (B-method), is in our near future agenda. Then, we intend to build a
tool that allows the automatic transformation of relay-based specification and,
furthermore, its automatic verification. After this last step, we aim to give a feed-
back about the correctness of the specification to the designer of the relay-based
specifications.

References

1. Meta object facility (mof) 2.0 query/view/transformation specification. OMG
Standard ptc/07-07-07, Object Management Group (OMG) (2007)

2. MOF Model to Text Transformation Language, v1.0. OMG Specification
formal/2008-01-16, Object Managment Group (OMG), January 2008

3. Unified Modeling Language v2.5. OMG Specification, Object Management Group
(OMG), March 2015

4. Aanæs, M., Thai, H.P.: Modelling and verification of relay interlocking systems.
Master Thesis, Technical University of Denmark, DTU Informatics, Asmussens
Alle, Building 305, DK-2800 Kgs. Lyngby, Denmark (2012)

An MDA Approach for the Specification of Relay-Based Diagrams 29

5. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

6. Amrani, M., et al.: Formal verification techniques for model transformations: a
tridimensional classification. J. Object Technol. 14(3) (2015)

7. Barnard, R.: 3.2. 2 what is wrong with reliability engineering? In: INCOSE Inter-
national Symposium, vol. 18, pp. 357–365. Wiley Online Library (2008)

8. Cetinkaya, D., Verbraeck, A.: Metamodeling and model transformations in mod-
eling and simulation. In: Proceedings of the Winter Simulation Conference, pp.
3048–3058. Winter Simulation Conference (2011)

9. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy.
IEEE softw. 7(1), 13–17 (1990)

10. Clark, T., Willans, J.: Software language engineering with XMF and XModeler.
In: Computational Linguistics: Concepts, Methodologies, Tools, and Applications,
pp. 866–896. IGI Global (2014)

11. Duby, C.K., Solutions, P.: Accelerating embedded software development with a
model driven architecture R©. Technical report, Pathfinder Solutions (2003)

12. Fleurey, F., Drey, Z., Vojtisek, D., Faucher, C., Mahé, V.: Kermeta language -
reference manual (2010)

13. Fondement, F.: Concrete syntax definition for modeling languages. Ph.D. thesis,
École polytechnique fédérale de Lausanne (EPFL), Lausanne, SW (2007)

14. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S., Mendelsohn, N., Beech, D.,
Maloney, M.: W3C XML schema definition language (XSD) 1.1 part 1: structures.
W3C Candidate Recommendation 30(72), 16 (2009)

15. Goubet, L., Delaigue, L.: Acceleo user guide (2008)
16. Haxthausen, A.E.: Towards a framework for modelling and verification of relay

interlocking systems. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop
2010. LNCS, vol. 6662, pp. 176–192. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21292-5 10

17. Hinchey, M., Coyle, L.: Evolving critical systems: a research agenda for computer-
based systems. In: 2010 17th IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS), pp. 430–435. IEEE (2010)

18. Mellor, S.J.: MDA Distilled: Principles of Model-driven Architecture. Addison-
Wesley Professional, Boston (2004)

19. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: Model-driven architecture. In: Bruel,
J.-M., Bellahsene, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 290–297. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46105-1 33

20. Overbeek, J.: Meta Object Facility (MOF): investigation of the state of the art.
Master’s thesis, University of Twente (2006)

21. Parviainen, P., Takalo, J., Teppola, S., Tihinen, M.: Model-driven development
processes and practices. Technical report, VTT Technical Research Centre of Fin-
land (2009)

22. Rétiveau, R.: La signalisation ferroviaire. Presse de l’école nationale des Ponts et
Chaussées (1987)

23. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, London (2008)

24. Vu, L.H., Haxthausen, A.E., Peleska, J.: A Domain-specific language for railway
interlocking systems, pp. 200–209. Technische Universität Braunschweig, Braun-
schweig, Germany (2014)

https://doi.org/10.1007/978-3-642-21292-5_10
https://doi.org/10.1007/978-3-642-21292-5_10
https://doi.org/10.1007/3-540-46105-1_33

A Problem-Oriented Approach to Critical
System Design and Diagnosis Support

Vincent Leildé2(B), Vincent Ribaud1, Ciprian Teodorov2,
and Philippe Dhaussy2

1 Lab-STICC, team MOCS, Université de Bretagne Occidentale,
Avenue le Gorgeu, Brest, France
Vincent.Ribaud@univ-brest.fr

2 Lab-STICC, team MOCS, ENSTA-Bretagne, rue François Verny, Brest, France
{vincent.leilde,ciprian.teodorov,philippe.dhaussy}@ensta-bretagne.fr

Abstract. For critical software applications, dependability and safety
are required features that should respect security principles. To cope
with these constraints, the design activity should use methods that fos-
ter knowledge sharing and reuse, in particular security problems and
their solutions. In this paper, we present a new problem-oriented method
that follows a step-wise building of the solution. Problems are reused
using various mechanisms, and a solution is conceived, verified and diag-
nosed. We wish to illustrate the approach, building a secure SCADA
architecture.

Keywords: Problem oriented method · Diagnosis · Security patterns

1 Introduction

Critical software systems are pervading our daily lives and sustain many differ-
ent domains (transportation, avionics, health-care or information management).
To improve their dependability and safety, regardless their complexity, critical
software design should be carried out with respect to security principles.

Over time, knowledge about security issues has been captured into patterns,
a packaged solution to a recurrent problem in a specific context [6]. A security
pattern is a reusable solution for a recurring security problem. It is used to ana-
lyze, construct and evaluate secure systems [14]. It provides detailed guidelines
about the application of an architectural solution for a particular problem of
security. Several research works address security issues using security patterns,
and we exploit as a case study the approach set by Obeid [12]. The author
secures SCADA systems through the composition of the SCADA architecture
with security patterns. Safety and security requirements of the composition are
then validated through model-checking.

Our research work is focused on methods and tools intended to ease verifica-
tion activities, especially diagnosis activities. Briefly stated, our approach aims

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 30–39, 2018.
https://doi.org/10.1007/978-3-030-02852-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_3&domain=pdf

A Problem-Oriented Approach to Critical System Design 31

to address diagnosis issues with a general diagnosis ontology [10], a manage-
ment system to perform and enable verification and diagnosis activities [9], and
a domain-oriented method [11].

Fernandez’s seminal work [5] proposes to design a SCADA system using
security patterns. Built on this proposal, Obeid’s work proposes to formalize
security requirements using safety properties. Then, a model-checker is used to
verify the combination between security patterns and architecture. Both authors
do not address practical implementation issues. The research work presented
in this paper shows how Obeid’s case study can benefit from our combination
and diagnosis proposals and how he could build a secure SCADA architecture
through successive iterations, reusing security problem cases (package of solu-
tions addressing a problem) from a pattern-based knowledge base. This work
relies on the method we proposed in [11] that addresses the issues of build-
ing and reusing verified components and configurations (set of components).
Configurations assemble components thanks to three combination mechanisms
(property-based, pattern-based and component-based). The present work uses
only the pattern-based mechanism.

A software organization that manages quality should have a corporate infras-
tructure that links together and transcends single projects by capitalizing on
successes and learning from failures [2]. These tasks require to manage past
diagnosis experiences (gathering a set of heterogeneous artifacts) and to cor-
relate discovered abnormalities with experiences. This can be achieved with a
knowledge management system together with a well-defined method. To some
extent, the method we use in this paper borrows the Twin Peaks idea of per-
forming round trips between problem and solution spaces [8], with the goal
to improve the verification process. It should help the engineer to bring closer
high-level information and abnormalities observations. It focuses on a progressive
constitution of a problem cases knowledge base, containing both problems and
solutions, that can be reused. Solutions package formal designs and verification
runs, and problem cases are formalized with a set of properties together with
various structured solutions. Section 2 overviews the method and discusses how
problem cases is a support to design. In Sect. 3, we show an application of the
method to secure a SCADA system with security patterns. Section 4 concludes
the study.

2 A Problem-Oriented Approach

2.1 Overview of the Method

The method proposes a progressive understanding and solving of the problem.
First, this should help the designer to find efficiently a solution to his problem, by
decomposing the problem in smaller subproblems, and reusing existing solutions.
Second, it should help the verifier to understand the root causes of abnormalities
for a selected solution, by providing diagnosis with relevant information. This
section describes the process used to formalize problems and the different steps
of the process flow. The step-wise method is presented by the activity diagram

32 V. Leildé et al.

in Fig. 1. The method is reiterated until a satisfactory solution is achieved. The
method conforms to a metamodel (an excerpt is given in Fig. 2) and method
elements are briefly defined in Sect. 2.2.

Let us consider an example. Suppose a board game with one board and two
players. The board asks an infinite number of questions to each player, in a non
deterministic manner. If the player has a right answer, it increases its score by
one point, otherwise no point is awarded. The match ends when a player reaches
3 points. The game is not fair because in some cases, the board can ask more
questions to one player rather the other. The method steps are illustrated below.

Figure 1 and steps explanation are extracted from [11].

Fig. 1. Method steps

(1) The problem is formulated as a set of properties and constraints (archi-
tectural or technical choices). For instance, “at the end of the game, each player
has played the same number of times”. (2) The problem is decomposed into
subproblems, either known problems - called problem cases - selected from a
knowledge base, or unknown situations. For instance, we may decide that fair-
ness can be achieved by reusing a turn mechanism, available as a problem case.
(3) When the need for a concrete view occurs, we move towards the solution
space. The solution elements are organized. For instance, we introduce the turn
problem case into the solution in progress. (4) We consider how to combine the
selected problem case with the solution1. The problem case may be either (5)
composed with other parts of the solution, (6) applied as a pattern, or acts only
as specifications and (7) an ad-hoc design is left to the engineer. (8) At this
point, we built a part of the expected solution; hence we are able to start a ver-
ification cycle. When abnormalities are observed, it triggers a diagnosis process.

1 Each kind of combination is represented with a particular arrow shape.

A Problem-Oriented Approach to Critical System Design 33

Verification results are stored in the knowledge base. (9) When the diagnosis
process is performed, knowledge about problem cases can be used to ease the
process. The design is corrected, and the verification endeavor repeated. In some
cases, the selected problem case does not suit, hence we have to backtrack and
rework the problem cases combination, and it might be useful to keep track of
the failed attempt.

The step-wise method is repeated several times while useful components can
be combined. The engineer is left with a reduced problem for which no known
solutions exist and where a classical design and verification activities have to be
performed.

The method space is divided in two parts, the problem space, related to the
problem elaboration, and the solution space, related to the design and verifica-
tion of the solution. Whereas the problem elaboration produces specifications
to the solution design, the resulting solution produces expanded specifications
(stemming from design choices) to the problem space. The mutual enrichment is
inspired from the Twin Peak model [8], a software iterative development process
that focuses on the combination of problem structures and solution structures.

2.2 Problem Cases for System Design

Decomposing a complex problem into smaller problems that are more manage-
able and easier to solve, is a natural way to reduce the design complexity. When
past experiences are available, the method can be improved by analogical reason-
ing, i.e. reusing past known problems. But it raises the issue about the capture
of problems and how they have been solved.

A problem is reified as a problem case, that aims to understand and capture
both problems and solutions during the design of a software system. Engineers
thus constitute a reusable base of expertise related to their engineering domain.
A problem case is a combination of subproblem cases, which are made of vari-
ous problem elements, essentially related to system objects, for instance, states,
transitions, verification runs or properties. A problem case can be of different
kinds, a component-based, a pattern-based, or a property-based. An excerpt of the
problem case conceptual model is given by Fig. 2, but readers should refer to [11]
for more information about problem cases.

Fig. 2. Excerpt of problem case conceptual model

During reuse, problem cases are combined together. Combination can be of
different kinds, for instance component integration, pattern application and ad

34 V. Leildé et al.

hoc design. Component integration is the most easy way for reusing a prob-
lem case, as it requires few adaptations. When the component is too generic,
the counterpart is a lack of efficiency. Besides, the pattern application gener-
ally requires manual implementations. A pattern is a well-defined guidance for
a recurring problem, but the solution must be adapted to the context. With ad
hoc design, only specifications are reused, and the solution design is left to the
user. Thus, the kind of problem case has an impact on the reuse efficiency.

3 Application

We reuse a case study extracted from the work of [12]. The approach aims at
securing architectures by applying security patterns together with a security
policy. The approach has been demonstrated on several kinds of architectures.

3.1 Domain Description

We suppose that a knowledge base has been built from the domain together
with previous experiences. The base contains a set of problem cases structured
as security patterns. The author [12] defines a security pattern as a list of formal
properties, a name, a list of functionalities, a description of the problem it is
intended to solve, a static and a dynamic structure of the solution and some
examples of use.

The authorization problem case (AUTH) implements operation controls for
a resource (read, write, execution). AUTH ensures that a resource access by an
entity Ent, for an operation OpRes, is granted. When an access is authorized,
the access is realized, otherwise counter-measures are triggered.

The structure of the problem case is depicted in Fig. 3. Function hasRight
(e: Ent, opRes: OpRes):Boolean returns true if the entity e can perform the
opRes.oper operation on the opRes.res resource (either the resource is not pro-
tected for this operation or the entity has an explicit permission for this opera-
tion).

Fig. 3. Authorization problem case structure

AUTH includes also the problem specification described with two LTL prop-
erties. PRTAuth1 : when an access request respects the access rights, the resource
access is finally realized. PRTAuth2 : a resource access must respect access rights.

A Problem-Oriented Approach to Critical System Design 35

PRTAuth1 : ∀c ∈ Auth,∀e ∈ Ent,∀opRes ∈ OpRes,
[evtV erify(c,AccReq(e, opRes)) ∧ right(c, e, opRes) ⇒ ♦evtAccess(c, e, opRes)]

PRTAuth2 : ∀c ∈ Auth,∀e ∈ Ent,∀opRes ∈ OpRes,
[evtAccess(c, e, opRes) ⇒ right(c, e, opRes)].

3.2 Problem Formalization

The Fig. 4, issued from [12], represents a unsecured SCADA architecture com-
posed of four entities, a global controller (GC), two local controllers (LC1 and
LC2), and a communication network (NETWORK) that links together GC, LC1
and LC2. The local controller LC1 owns the resource RES1, while the local con-
troller LC2 owns the resource RES2. Some READ and WRITE operations on a
resource are granted to an entity according to its role. Different roles are ADMIN
(READ and WRITE access to RES1 and RES2), GCOWNER (READ access
to RES1 and RES2), LC1OWNER (READ and WRITE access to LC1) and
LC2OWNER (READ and WRITE access to LC2).

The architecture can be seen at a higher abstraction level, as a set of NET and
ACCESS components. A NET component is an abstraction of a NETWORK
entity that forwards messages to other components. An ACCESS component is
an abstraction of LC1, LC2 and GC entities that manage access to resources.
An ACCESS component behaves as depicted in Fig. 4.

In the figure, the transitions between states conforms to the Event-Condition-

Action scheme represented as Si
{Event}[Condition]Action−−−−−−−−−−−−−−−−−→ Sj. Si and Sj are

states, arrows stand for transitions, labeled with events that cause transitions
to be triggered. A condition is a boolean expression, and an action represents a
statement such as a variable assignment or event sending. When an event occurs,
the guard condition is evaluated and the transition is fired only if the condition
is true, and the action is performed.

Each ACCESS component starts with an Idle state, where it waits for a
request (req). If a request is received and if the request is properly addressed to
the component (req.target==id), the resource is accessed (Access) and the com-
ponent replies (sending). When the request is not intended to the component
(req.target!=id), the component forwards the request to other connected com-
ponents through the network. In our case, when the environment ENV wants to
access to an element of the architecture, it sends a message to GC together with
an indication about the target (either RES1 or RES2), and the corresponding
operation (READ or WRITE). When GC receives requests from the environ-
ment(ENV), GC forwards the request to LC1 or LC2 through the NETWORK.
LC1 or LC2 receives and processes requests from the NETWORK, and replies
to or acknowledges the request.

To guarantee integrity and confidentiality constraints about LC1 and LC2,
security mechanisms are applied. The security mechanisms must guarantee two
properties: -PRT1, when a component sends a request that respects the access
rights for accessing a resource, the access must be realized. -PRT2, any resource
access must respect the access rights.

36 V. Leildé et al.

An architecture composed of a global controller(GC),
a network, and local controllers(LC1, LC2).

Behavior of ACCESS components (GC, LC1 and LC2).

Fig. 4. Description of the application extracted from [12]

3.3 Problem Decomposition

According to the method, the problem is decomposed into smaller subproblems.
A global solution is built with a combination of smaller solutions. The structure
of the properties PRT1 and PRT2 is similar to the structure of PRTAuth1 and
PRTAuth2. Hence, the engineer selects the AUTH problem case.

3.4 Solution Design

The AUTH problem case is introduced in the solution building. The combination
strategy can be either a composition of self-contained and separated components,
an application of pattern, or a ad hoc design consistent with problem case prop-
erties.

Because the AUTH problem case is structured as a pattern, the most appro-
priate combination mechanism is the pattern application. Applying a pattern
requires that given hypotheses are respected. For instance, in order to apply the
authorization pattern we should have an Access state in the design, where the
authorization mechanism has to be introduced. The combination is realized in
two steps, first, hypotheses are checked, and second, transformations are applied
and verified. Let see how it works with the AUTH problem case. At the first
step, the following hypotheses must be respected: - Hypothesis 1, the reception
of a message is carried out by reading the input fifo. It happens in a transition
from the Idle state to the Receive state; Hypothesis 2, message sending is carried

A Problem-Oriented Approach to Critical System Design 37

The architecture is secured using the authorization pattern.

The finite state machine represents the secured behavior of LC1 and LC2.

Fig. 5. Description of the secured application

out by a write into the output fifo, along a transition from the Sending state to
the Idle state; - Hypothesis 3, each transition to the Compute state has a source
state called Receive; - Hypothesis 4, the Access state has a single source state
called Compute.

If hypotheses are respected, the second step applies the pattern transfor-
mation in order to produce a secured solution, as depicted in the Fig. 5. The
transformation rules are not presented in the article, but can be found in [12].

3.5 Solution Verification and Diagnosis

Generally speaking, a security pattern aims to implement security policies in a
system. According to Obeid, the set of formal properties materializes the security
policy [13]. Properties verification is performed with a model-checker. Exploring
the state space makes it possible to measure the effectiveness of the security
patterns. Model-checking different designs allows the engineer to study the com-
position of different patterns in order to establish an optimal assembly.

38 V. Leildé et al.

3.6 Causes

Researchers [1,3,4,7] divide the diagnosis in two main tasks: isolation (localiza-
tion) and causal analysis. Isolation extracts the subset of elements, part of mod-
els, that needs to be corrected. Causal analysis associates causes to the observed
abnormalities. In our method, a cause can be a model cause or a design cause. A
model cause happens when the selected problem is valid (for instance the AUTH
pattern is the good choice), but its implementation is not valid (for instance the
AUTH pattern is badly implemented). It locates the cause in the application of
the pattern. Conversely, a design cause happens when the combination of the
problem is valid (for instance the AUTH pattern is correctly implemented), but
the combined problem case is not appropriated, or incomplete.

3.7 Iterating Through Problem and Solution Spaces

Assume that a new security policy is required for the same architecture, some
counter-measures must be triggered in case of a security violation. According to
the method, existing problem cases can be retrieved and combined. The check-
point pattern (CHP) allows to apply specific regulations and defines properties
that are closed to the new security constraints. The CHP problem case is selected
and retrieved, and applied to the design already using the AUTH problem case.

Once CHP problem case has been applied and the solution verified, the result-
ing design gathers two problem cases, the checkpoint and the authorization. The
problem cases combination can be stored in the knowledge base as a new reusable
problem case named SECACCESS.

Let suppose that the architecture must evolve and a new local controller LC3
added. The new problem can be solved by reusing the SECACCESS problem
case. Note that SECACCESS is neither a pattern-based problem case but a
component-based problem case, a kind of COTS easy to reuse.

4 Conclusion

Designing a solution for a given security problem and diagnosing eventual faults
are tedious tasks. This is mainly due to a lack of domain knowledge and poorly
managed information, that complicate diagnosis support and solution reuse.
Security patterns capture basic problems and solutions of the domain, and make
them available in a form usable by the community. Moreover, catalog of com-
plementary, mutually-supporting patterns are available [14,15].

However, few research work address issues related to the progressive building
of a suitable knowledge base. Our research hypothesis is that a method is required
for analyzing the current problem, storing relevant information, and reusing
known solutions as much as possible. The problem-oriented method that we
propose follows a step-wise building of the solution, by reusing problem cases.
In this paper, we highlighted the application of problem cases for the security
domain, captured in a form of security patterns, and we discussed the possible
combination mechanisms.

A Problem-Oriented Approach to Critical System Design 39

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN Notices, vol. 38. ACM (2003)

2. Basili, V.R., Caldiera, G.: Improve software quality by reusing knowledge and
experience. MIT Sloan Manage. Rev. 37(1), 55 (1995)

3. Clarke, E.M., Kurshan, R.P., Veith, H.: The localization reduction and
counterexample-guided abstraction refinement. In: Manna, Z., Peled, D.A. (eds.)
Time for Verification. LNCS, vol. 6200, pp. 61–71. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13754-9 4

4. Cleve, H., Zeller, A.: Locating causes of program failures, p. 342. ACM Press (2005)
5. Fernandez, E.B., Larrondo-Petrie, M.M.: Designing secure SCADA systems using

security patterns, pp. 1–8. IEEE (2010)
6. Gamma, E. (ed.): Design Patterns: Elements of Reusable Object-oriented Software.

Addison-Wesley Professional Computing Series. Addison-Wesley, Reading (1995)
7. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,

T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

8. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating software
requirements and architectures using problem frames. IEEE Computer Society
(2002)

9. Leilde, V., Ribaud, V., Dhaussy, P.: An organizing system to perform and enable
verification and diagnosis activities. In: Yin, H., et al. (eds.) IDEAL 2016. LNCS,
vol. 9937, pp. 576–587. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46257-8 62

10. Leildé, V., Ribaud, V., Teodorov, C., Dhaussy, P.: A diagnosis framework for crit-
ical systems verification (short paper). In: Cimatti, A., Sirjani, M. (eds.) SEFM
2017. LNCS, vol. 10469, pp. 394–400. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66197-1 27

11. Leilde, V., Ribaud, V., Teodorov, C., Dhaussy, P.: Domain-oriented verification
management. In: 8th International Conference on Model and Data Engineering
(MEDI 2018), October 2018

12. Obeid, F.: Validation Formelle d Implantation de Patrons de Securite. Ph.D. thesis,
ENSTA-Bretagne (2018)

13. Obeid, F., Dhaussy, P.: Validation formelle d’implementation des patrons de
sécurité: application aux scada. In: Hurault, A., Stouls, N. (eds.) Actes des 15èmes
journées sur les Approches Formelles dans l’Assistance au Développement de Logi-
ciels, Besançon, France, pp. 13–18, June 2016

14. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns: Integrating Security and Systems Engineering. Wiley,
Hoboken (2013)

15. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Practices and Strate-
gies for J2EE, Web Services, and Identity Management. Pearson Education, Lon-
don (2012)

https://doi.org/10.1007/978-3-642-13754-9_4
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/978-3-319-46257-8_62
https://doi.org/10.1007/978-3-319-46257-8_62
https://doi.org/10.1007/978-3-319-66197-1_27
https://doi.org/10.1007/978-3-319-66197-1_27

Formal Specification and Verification
of Cloud Resource Allocation Using

Timed Petri-Nets

Saoussen Cheikhrouhou1(B), Nesrine Chabouh1, Slim Kallel1,
and Zakaria Maamar2

1 ReDCAD, University of Sfax, Sfax, Tunisia
{saoussen.cheikhrouhou,nesrine.chabouh,slim.kallel}@redcad.tn

2 Zayed University, Dubai, United Arab Emirates
zakaria.maamar@zu.ac.ae

Abstract. Context: Known for its resource elasticity and pay-per-use
model, more and more organizations are adopting cloud computing to
support the execution of their business processes. To support organi-
zations meet their financial restrictions, cloud providers offer different
time-based pricing strategies.

Objective: The proposed approach aims at assisting business process
designers identify necessary cloud resources with respect to temporal
and financial restrictions on business processes. The former minimizes
the search time for cloud resources while the latter minimizes the cost of
leasing these resources.

Method: The proposed approach considers 2 inputs, a time-
constrained business process specification and a list of allocated cloud
resources, and then confirms whether this process has the necessary
cloud resources, satisfies the temporal and financial restrictions, and is
deadlock-free. To this end, the specification is automatically translated
into a Temporal Petri-Net.

Results: The implementation on a real case study has shown that the
proposed approach ensures a proper matching between process activities
and cloud resources.

Keywords: Formal verification · Cloud resource · Business process
Temporal properties

1 Introduction

With the rapid evolution of information and communication technologies, many
organizations are taping into the world of cloud computing to reduce the oper-
ation costs associated with managing their Business Processes (BP). Among
cloud benefits, we cite resource availability upon-request (aka elasticity) and
pay-per-use model [12]. To cater to organizations’ multiple needs, cloud providers
offer different pricing strategies for their computation, storage, and communi-
cation resources. For instance, Amazon Web Services (AWS) offers on-demand,
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 40–49, 2018.
https://doi.org/10.1007/978-3-030-02852-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_4&domain=pdf

Cloud Resource Allocation 41

reserved, and spot-instance prices. Although competition is a sign of any healthy
marketplace, organizations should be made aware of the challenges associated
with selecting the best providers, in our case providers of cloud resources. Indeed,
the selection should permit to optimize first, the time of screening and selecting
providers’ offers and second, the cost of paying the selected providers’ resources.
In this paper, we raise the following question: how to assign organizations’ BPs to
cloud providers without violating temporal constraints (e.g., deadline) imposed
on these organizations.

Satisfying organizations’ temporal constraints with respect to cloud resources
availabilities has been reported in the literature [2,8,11].

However, how to formally define this satisfaction for the sake of verification
remains unexplored and handled on a case-by-case basis. This is, also, dependent
on specific pricing strategies of cloud resources. Our previous work in [9] is one
step towards a formal definition of time-constrained BPs. In this paper, we pro-
pose a formal specification of such BPs and their allocated cloud resources using
Timed Petri Nets (TPN). To this end, we provide an automatic transformation
of cloud resources, according to their pricing strategies, into TPN. In addition,
we propose a formal verification that checks BP correctness along with meeting
deadlines.

The remainder of this paper is organized as follows: Sect. 2 briefly defines
some concepts upon which our approach is built. Section 3 introduces a moti-
vating example. Section 4 details our approach for formal verification of cloud
resource allocation. Transformation rules associated with this approach and the
verification of this allocation correctness are presented. Prior to listing some
related work in Sect. 6 and concluding in Sect. 7, some implementation details
are discussed in Sect. 5.

2 Background

This section introduces the main concepts and definitions related to TPNs, time-
constrained BPs, and cloud pricing models.

Time Petri Nets. A PN is formed upon a mathematical theory that uses auto-
mated tools to offer an accurate modeling and analysis of systems’ behav-
iors [1]. Initially, PNs were a formal language without any reference to time
or probability. However, for many practical applications, time is a must-have
and designers should consider it when analyzing the correct behavior and per-
formance of their applications. TPNs incorporate clocks and temporal con-
straints into transitions to help describe and analyze properly time-dependent
systems. TPNs associate a firing time interval [a, b] with each transition (t),
where a and b are rational numbers such that 0 ≤ a ≤ b and a �= ∞.
Times a and b for t are relative to the moment at which t was enabled; a and
b are referred to as earliest-firing-time and latest-firing-time of t, respectively.
Formally, a TPN is a tuple Y = (P, T, Pre, Post, M0, IS) where:

42 S. Cheikhrouhou et al.

– (P, T, Pre, Post, M0) is a PN [1].
– IS: T → Q∗∗(Q∗∪{∞}) is a static interval function that associates each t

with a time interval IS(t)= [min, max], where Q∗ is the set of positive
rational numbers.

Cloud pricing models. Each cloud provider defines a proper model for selling
its resources. For instance, Google offers per-minute billing strategy while
others require the price of an hour. In our work, we adopt Amazon pricing
strategies where:

– On-Demand-instances means pay for a resource by the hour with no long-
term commitment.

– Reserved-instances means make a one-time, upfront payment for an
instance of a resource that could be reserved for 1 or 3 year-terms. In
return, the requestor receives a significant discount for each hour running
that instance.

– Spot-instances means pay according to the supply and demand.
Time-constrained business process. In [4,5], we propose the formal speci-

fication of BPs’ temporal constraints that can be relative and/or absolute.
On the one hand, a relative constraint specifies requirements such as activity
duration and temporal dependency. Activity duration corresponds to the min-
imum and maximum execution times of a given activity using a time interval
[MinD; MaxD] with 0≤ MinD≤MaxD. And, temporal dependency is a rela-
tionship between 2 activities in which one activity depends on either the start
or the finish of another in order to either begin or end. 4 temporal dependen-
cies exist: Start-to-Finish (SF), Start-to-Start (SS), Finish-to-Start (FS), and
Finish-To-Finish (FF). On the other hand, an absolute constraint specifies
the start and finish times of activities like an activity begins at a specific
time or cannot finish later than a specific time.

3 Motivating Example

In Fig. 1, the service supervision BP is triggered when a signal is sent by a cus-
tomer (request service trouble ticket) “a1” (a for activity). Then, necessary data
are retrieved “a2” or the service test management is initiated “a3”. Retrieving
data can be performed automatically “a4” or via a script “a5”. In parallel, the
service test is performed by “a6” and “a7”. The process ends by replying to the
customer “a8” and initiating trouble shooting “a9”.

Table 1 lists the time constraints on the service supervision BP. These con-
straints include duration of activities and temporal dependencies. For example,
a1 and a5 have a minimum and maximum duration of 1h and 2h, respectively.
A time interval is considered between the end of a7 and the beginning of a9,
which must be between 2h and 5h. Furthermore, some activities need resources
to run. For this, a1, a4, and a9 operate on 2 cloud Virtual Machines (VM1 and
VM2). VM1 is shareable between a1 and a9 and VM2 is used by a4, only.

Cloud Resource Allocation 43

Fig. 1. Service supervision BP in BPMN

Table 1. Temporal constraints on process activities

Activities
Temporal Constraints a1 a2 a3 a4 a5 a6 a7 a8 a9
Durations [1h,2h] [2h,3h] [2h,10h] [1h,4h] [1h,2h] [1h,4h] [2h,5h] [1h,1h] [1h,2h]
Temporal dependency TD(FS,a3,a7,2h,5h)

4 Our Approach for Formal Specification and Verification
of Cloud Resource Allocation

Our approach consists of 3 steps (Fig. 2): specification, transformation, and for-
mal verification. The specification step handles BPs enriched with time con-
straints and cloud resources. More details about modeling BPs during this step
are given in [9]. Then, the process models are transformed into TPNs during the
transformation step. This latter uses a set of transformation rules and is imple-
mented using a model-to-model transformation language, for instance XSLT.
The objective of this step is to convert an extended BPMN process into a TPN
model. Finally, the third step, formal verification, checks the correctness of the
designed BPMN process thanks to the model checker TINA [1]. This correctness
refers to specific properties written in S/E LTL [10] and means that matching
each BP activity to a corresponding cloud resource meets temporal constraints.
This is the main goal of the verification step.

4.1 Transformation Rules

We developed a set of rules that transform cloud and price enriched BPMN
processes into TPN. This one is then checked to detect time violations that
may occur while ensuring that the allocation of cloud resources is correct. We
begin by transforming BPMN basic elements (e.g., start/end event, activities,
and gateways) into TPN. Readers are referred to [3] for a complete description of
the transformation rules. For illustration, an activity with a minimum value m

44 S. Cheikhrouhou et al.

Fig. 2. General representation of our approach

and a maximum value M duration-constraint is transformed into 1 place and
2 transitions labeled with clocks depending on the activity’s duration (Fig. 3).

Fig. 3. Transformation of duration constraint on an activity into a TPN

We recall readers that 4 temporal dependencies (SF, SS, FS and FF) could
exist between activities. For instance, SF denotes that activity a2 can only finish
after a time interval [m,M] that a1 has started. Figure 4 shows SF transformation
into a TPN.

For the rest of temporal dependencies, namely SS, FS and FF, we refer
readers to [3].

Let’s now tackle the transformation rules related to cloud pricing strategies
of the allocated resources. The designer should choose one of the correspond-
ing cloud strategies, namely on-demand, spot instance predefined-duration, spot
instance non-predefined-duration, and reserved. Cloud pricing strategies have
a direct impact on the total process cost, and thus, on the organisation rev-
enue. First, the on-demand strategy does not need temporal constraint for cloud
resources. Figure 5 shows the mapping of a1, with a duration constraint in [m,
M] using a VM with on-demand strategy.

Reserved and spot-predefined duration pricing strategies require relative tem-
poral constraints that indicate the time interval of resource availability [MinVM,

Cloud Resource Allocation 45

Fig. 4. Transformation of SF constraint between activities into a TPN

Fig. 5. Transformation of on-demand pricing strategy into a TPN

MaxVM]. Figure 6 shows the transformation of a1 with [n, M] as a duration con-
straint using a VM with reserved strategy. At the crossing of transition start
of a1, a token is taken from UseVM place, which represents the cloud resource
but without interruption of the interval [MinVM, MaxVM]. At the end of the
allocation time of the cloud resource, a token is added to Pverif place to check
the allocation of the cloud resource. If there is still a token in place a1 then the
allocation of the cloud resource is declared invalid, otherwise the allocation is
valid.

The transformation of spot instances with non-predefined durations is not
considered in this work since it uses absolute temporal constraints attributes.

4.2 Formal Verification of BPs Using UPPAL

To formally verify a TPN against a set of properties, we use Tina model checker.
Properties include deadlock freeness and user-defined properties such as process
deadlines, and delays between activities.

– ♦ (- dead): to check the deadlock freeness of a process.
– ♦ (- dead process): Permits to verify if the deadline x has been met. This

means that dead process place (associated with an observer for the deadline
property) is false throughout the whole path leading to this place.

46 S. Cheikhrouhou et al.

Fig. 6. Transformation of reserved pricing strategy into a TPN

5 Implementation

Our previous work [9] resulted in an Eclipse plug-in that extends BPMN 2.0.
Using this plug-in, a designer represents a BP’s needs of cloud resources (VMs),
cloud pricing strategies, and time-constrained activities. This step helps generate
a source model, which is an XML document describing the BP. In this paper,
we discuss the rule-based implementation of BP transformation into TPN. This
transformation is executed by applying an XSLT file containing our transfor-
mation rules. Figure 7 exhibits an XSLT excerpt that transforms a SS temporal
dependency into 2 places and 1 transition with a delay of minFE and maxFE.
As a result, the output is an XML document that describes the generated TPN.
Figure 8 exhibits an excerpt of the automatic generation of the TPN document
of the motivating example (with focus on “a8” and “a9”). Finally, we formally
verify the matching between the activities, temporal constraints, and resource
temporal constraints. The generated TPNs are the inputs for the TINA model
checker. We check several properties using S/E LTL formulas such as deadline,
e.g., 17 hours, of the motivating example are met. The verification results show
that the resource allocation is correct (i.e., the S/E LTL property for deadlock
freeness is satisfied).

6 Related Work

Our related work consists of 2 parts. The first part is about BP formal specifi-
cation. The second part is about BP allocation into clouds. Many works in the
literature address the issue of defining BP formal specification.

First, Dijkman et al. in [6] propose a formal BPMN semantics defined in terms
of a transformation to standard PN. The transformation has been implemented
as a tool that generates Petri Net Markup Language (PNML) code. But, the
authors do not consider any temporal dimension in their analysis.

Rachdi et al. [11], propose an approach that takes into account time concepts
in BPMN proposes. They present a formal semantics of BPMN defined in terms

Cloud Resource Allocation 47

Fig. 7. XSLT excerpt (transformation rule for a SS temporal dependency)

Fig. 8. An excerpt of the generated TPN

of transformation to TPN but without taking into consideration of temporal
constraints as in our work nor the notion of resources.

48 S. Cheikhrouhou et al.

Cheikhrouhou et al. [4,5] address the problem of formal specification and
verification of temporal constraints of activities using timed automata. But,
cloud resources were not considered.

Hachicha et al. [8] extend of the BPMN meta-model to optimally manage
cloud resources. They formalize the resources consumed using a shared knowl-
edge base. Therefore, the authors propose a semantic framework for BPs enriched
by cloud resources. However, the temporal perspective for resources is out of
reach. Several works have addressed the specification and formal verification of
cloud resources in BPMN. Boubaker et al. [2] validate the consistency of the
allocation of cloud resources using Event-B. The latter is used to formally spec-
ify cloud resource allocation policies in business process models and to verify its
accuracy based on user requirements and resource properties. However, in this
work, neither BPs nor cloud resources are enriched by time constraints. There
are authors working on cloud pricing strategies in BPMN. Ben Halima et al. [9]
formally specify temporal constraints on pricing strategies for cloud resources,
especially virtual machines, and on BPMN activities. This specification is trans-
lated into timed automata to formally verify the correspondence between the
time constraints of the business process and the cloud resources. But, this work
does not support an automatic BPMN mapping to timed automata, which can
lead to errors during the transformation.

Several searches extend BPMN with time constraints and cloud resource
perspectives and use formal verification. Watahiki et al. [13] extend BPMN to
handle time constraints. They also provide an automatic mapping of extended
BPMN to timed automata. This approach aims to verify certain characteristics,
such as deadlock. However, the scope of this article is limited to a small subset of
BPMN elements. In addition, the extension proposed in this work gives specific
temporal constraints to a single activity of the business process model and does
not take into account time constraints related to a set of activities such as
temporal dependency.

There is previous research that aims to check whether the selected cloud
resource meets the time constraints of business processes. Du et al. [7] pro-
pose to dynamically verify the temporal constraints of multiple simultaneous
business processes with resources. However, to our knowledge, the relative and
absolute time constraints for cloud resources based on pricing strategies are not
yet addressed.

7 Conclusion

In this paper, we addressed the concern of limited work on formal verification of
matching BPs’ activities to cloud resources taking into account temporal con-
straints on these activities and pricing strategies of cloud resources. We extended
BPMN to enrich process activities with temporal constraints and needs of cloud
resources. To achieve this verification, we proposed an automatic generation and
conversion of the enriched BPs into TPNs using XSLT as a transformation lan-
guage. Afterwards, we checked the BP using the TINA model checker. Finally,

Cloud Resource Allocation 49

we implemented the proposed approach using a real use case. The adoption
od accurate and efficient formal methods should help designers detect temporal
inconsistencies of BP models. In term of future work, we would like to formally
verify the correctness of the transformation rules.

References

1. Berthomieu, B., Vernadat, F.: Time Petri Nets analysis with TINA. In: Proceedings
of the Third International Conference on the Quantitative Evaluation of Systems
(QEST), pp. 123–124 (2006)

2. Boubaker, S., Gaaloul, W., Graiet, M., Hadj-Alouane, N.B.: Event-b based app-
roach for verifying cloud resource allocation in business process. In: Proceedings of
the 2015 IEEE International Conference on Services Computing, SCC, pp. 538–545
(2015)

3. Cheikhrouhou, S., Chabouh, N., Kallel, S., Maamar, Z.: Transformation of
timed BPMN busines processes and cloud resources into timed Petri-Nets. Tech-
nical report (2018). http://www.redcad.tn/projects/bpmn2tpn/technicalreport-
0618.pdf

4. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Toward a time-centric
modeling of business processes in BPMN 2.0. In: The 15th International Conference
on Information Integration and Web-based Applications and Services, IIWAS, p.
154 (2013)

5. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspec-
tive in business process modeling: a survey and research challenges. Serv. Oriented
Comput. Appl. 9(1), 75–85 (2015)

6. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri Nets. Technical report, Queensland University of Tech-
nology (2007)

7. Du, Y., Xiong, P., Fan, Y., Li, X.: Dynamic checking and solution to temporal
violations in concurrent workflow processes. IEEE Trans. Syst. Man Cybern.-Part
A: Syst. Hum. 41(6), 1166–1181 (2011)

8. Hachicha, E., Gaaloul, W.: Towards resource-aware business process develop-
ment in the cloud. In: Proceedings of the 29th IEEE International Conference on
Advanced Information Networking and Applications, AINA, pp. 761–768 (2015)

9. Halima, R.B., Zouaghi, I., Kallel, S., Gaaloul, W., Jmaiel, M.: Formal verification
of temporal constraints in business processes and allocated cloud resources. In:
Proceedings of the 32nd IEEE International Conference on Advanced Information
Networking and Applications, AINA (2018)

10. Mukund, M.: Linear-time temporal logic and büchi automata. Tutorial talk, Winter
School on Logic and Computer Science, Indian Statistical Institute, Calcutta, p. 8
(1997)

11. Rachdi, A., En-Nouaary, A., Dahchour, M.: Liveness and reachability analysis of
BPMN process models. CIT 24(2), 195–207 (2016)

12. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE 3rd Inter-
national Conference on Cloud Computing (CLOUD), pp. 228–235. IEEE (2010)

13. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes
with temporal and resource constraints. In: Proceedings of the IEEE Interna-
tional Conference on Systems, Man and Cybernetics, Anchorage, Alaska, USA,
9–12 October 2011, pp. 1173–1180 (2011)

http://www.redcad.tn/projects/bpmn2tpn/technicalreport-0618.pdf
http://www.redcad.tn/projects/bpmn2tpn/technicalreport-0618.pdf

Petri Nets to Event-B: Handling
Mathematical Sequences Through

an ERTMS L3 Case

Zakaryae Boudi1, Abderrahim Ait Wakrime2(B), Simon Collart-Dutilleul3,
and Mohamed Haloua1

1 Ecole Mohammadia d’Ingénieurs, Med V University, Rabat, Morocco
zakaryae.boudi@gmail.com, haloua@emi.ac.ma

2 Institut de Recherche Technologique Railenium, 59300 Famars, France
abderrahim.ait-wakrime@railenium.eu

3 IFSTTAR-Lille, 20 Rue Elisée Reclus, BP 70317, 59666 Villeneuve d’Ascq Cedex,
France

simon.collart-dutilleul@ifsttar.fr

Abstract. Mathematical techniques known as formal methods have
demonstrated great value in building safe-by-design systems and pro-
cesses. However, the booming industry automation and digitalization
require sustained advances in engineering approaches to address the
emerging control-command challenges, all with respect to the highest
quality and safety standards. Our research suggests that combining dif-
ferent formal techniques can contribute in enriching the specification and
verification phases of industrial systems design. In this paper, we show -
and illustrate through an ERTMS (European Rail Traffic Management
System) L3 case study addressing the calculation of Movement Authority
- how the mapping of two specific features of Petri Nets (PNs) and Event-
B, namely Lists and sequences, could fit in the model transformation of
PNs to B-machines and be used both in modeling and verification.

Keywords: Colored Petri Nets · Event-B · ERTMS
Model transformation · Mathematical sequences

1 Introduction

Whether it is in transport, energy, healthcare, aerospace or industrial systems
tend to involve increasing amounts of automation, data and connectivity. It is
clear that this trend we can qualify as digital is not without bringing unprece-
dented sophistication and complex technical challenges, especially as the technol-
ogy and use expectations evolve so quickly. While industrial systems’ providers
as well as end-users might positively welcome the disruption of artificial intel-
ligence, IoT, big data or analytics, they are at the same time increasingly con-
cerned about the technical implications of overseeing quality standards, safety
and security.
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 50–62, 2018.
https://doi.org/10.1007/978-3-030-02852-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_5&domain=pdf

Petri Nets to Event-B: Handling Mathematical Sequences 51

It is true that advance in technology over the past decades, and particularly
the transition from a hardware-driven automation to software-driven devices,
brought the first use of mathematical and formal tools to produce safe-by-design
automation. But among the many reasons which put mathematics in scope,
besides technology, are changes in regulation requiring higher safety and qual-
ity demonstrations, such as certification and accreditation, bringing accordingly
formal analysis in the core of system and software development. What’s more,
exploiting mathematical models implies the automation of a larger amount of
development and validation work, and thus, reducing its provision costs. For
example, the development of tools aiming to generate comprehensive test cases
from formal specifications was one of the early interesting application of formal
methods [1]. Also, another, more recent, cost saving and effective use of formal
methods in the verification and validation process is theorem proving of systems
meeting their specification [2]. At their heart, formal methods came not only
to apply software based mathematical modeling on systems in order to help
demonstrate they meet their specifications, quality and safety properties, but
also to help build a sound understanding of systems’ functioning and interac-
tions, validate data before commissioning, generate test cases and reduce the
overall development costs [2,3].

In this respect and after introducing related works, the used definitions of
sequences, and qualifying general aspects surrounding the Petri net to Event-B
transformation, the next sections will summarize the suggested Petri net mod-
elling technique implementing the substring concept. On this basis, the follow-
ing sections will provide further detail to the initial transformation definition,
describing the way Lists are mapped into Event-B language, through a detailed
case study. It will be explained how these formal methods and their transforma-
tion can be used in modeling and validating a railway ERTMS Level 3, especially
with regards to the calculation of the Movement Authority (MA).

2 Focus and Related Works

This work falls in the research line aiming to bridge different formal techniques,
and in particular, introduces an approach to broaden the features of the trans-
formation of Petri nets to B-method, which is presented in [1,2]. For this pur-
pose, this paper shows how capturing the concept of mathematical sequences,
especially substrings, can be used as a mean to enhance modelling possibilities
and the overall design, verification and validation process. As a reminder, the
ultimate purpose of bridging Petri nets to Even-B is to open new ways of math-
ematically implement safety properties and prove they hold, in a direct, scalable
and comprehensive setup.

Related Petri net to B transformation works are presented and qualified in [2]
with regards to the proposed approach. In particular, it states that the transfor-
mation was developed in accordance with the mapping approach of Model Driven
Engineering [3], using the colored Petri net (CPN) meta-model presented in [4],
which is completely based on Jensen’s formal definition. Besides, few works aim-
ing at translating CPNs have been explored by the community. One is presented

52 Z. Boudi et al.

by Bon and Collart-Dutilleul in [5], where a set of transformation rules was
introduced and applied to a railway signaling scenario. However, after careful
consideration, we found that the resulting B-machines are not useable in prac-
tice within B tools. Indeed, those B-machines used a large amount of looping
definitions, which are combined to other semantic errors. What is more, our
analysis suggests that the theoretical aspects of this transformation can be very
hard to apply on large CPN models due to the complexity of the rules. A recent
research [6] attempted to correct and adapt these rules for a pattern of Petri
net models, but still, the transformation has not proved easily scalable to large
Petri net and B-method models.

It is also useful to mention the work in [7], where the authors presented a
mapping from Place/Transition Petri nets to the B-language. This work can be
seen as a simplified version of the authors’ original contribution form Evaluative
Petri Nets to B-machines. Although this mapping suggests a closer approach to
our transformation, it does not cover colored Petri nets.

3 The Essentials of Sequences

3.1 Defining Finite Mathematical Sequences

A useful starting point is to clearly understand what definition it will be referred
to when dealing with mathematical sequences all over this paper. Intuitively, a
mathematical sequence is intended to represent an ordered list of the elements
of a set, which might be infinite. In this paper, we will consider the following
formal definition.

Definition 1. A sequence is defined as a function whose domain is the set or a
subset of natural numbers.

We will use the symbol An to represent a sequence, where n is a natural
number and an is the value of the function An on n. Let us note that this
research considers only finite sequences, provided that a sequence may be finite
or infinite. We will write {a1, a2, a3, a4, ..., an} to represent the sequence.

3.2 From Subsequences to Substrings

Definition 2. We define a subsequence in mathematics as a sequence which
is derived from another sequence, by removing a number of elements without
altering the order of the remaining ones. For example, the sequence {a3, a6, a11}
is a subsequence of {a1, a2, a3, a4, ..., a20}.

The notion of subsequence brings us to what we call substrings, which is
a refinement of the subsequence in a way that the remaining elements of the
subsequence keep a successive order. As for the previous example, {a2, a3, a4, a5}
and {a20, a21, a22, a23} are substrings of {a1, a2, a3, a4, ..., a40}.

Petri Nets to Event-B: Handling Mathematical Sequences 53

4 Capturing Sequences with Petri Nets

4.1 Petri Nets at a Glance

In brief, colored Petri nets are an extension of Petri nets where the main strength
lies in the use of a functional language that is based on the notion of typing.
They accordingly link each token to a type called “color” which differentiates
tokens. Below Kurt Jensen’s formal definition of a colored Petri net:

Definition 3. A colored Petri net is a tuple CPN = (Σ,P, T,A,N,C,G,E, I)
satisfying the following requirements: Σ is a finite set of non-empty types, called
color sets. P is a finite set of places. T is a finite set of transitions. A is a finite
set of arcs such that: P ∩ T = P ∩ A = T ∩ A = ∅. N is a node function. It is
defined from A into P × T ∪ T × P . C is a color function. It is defined from P
into Σ. G is a guard function. It is defined from T into expressions such that
∀t ∈ T : [Type(G(t)) = Bool ∧ Type(V ar(G(t))) ⊆ Σ]. E is an arc expression
function. It is defined from A into expressions such that ∀a ∈ A : [Type(E(a)) =
C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]; Where p(a) is the place of N(a). I is an
initialization function. It is defined from P into closed expressions such that
∀p ∈ P : [Type(I(p)) = C(p)MS].

4.2 CPN-tools: Lists in Focus

CPN-tools is one of the most advanced existing platforms for editing colored
Petri nets. Architected by Kurt Jensen, Soren Christensen, Lars M. Kristensen,
and Michael Westergaard [8,9], it combines colored Petri nets with the “Stan-
dard ML” functional programming language. Standard ML enables the defini-
tion of data (i.e. places, transitions, colors, variables, etc.) types as well as the
corresponding algorithms. Many research projects have adopted CPN-tools for
the availability of references and its common use in literature. CPN-tools ML
environment allows the use of Lists and manipulating them via a number of
functions.

Definition 4. The List color is a variable-length color set, where values are a
sequence whose elements type (color set) must be the same.

The List structure provided by Standard ML gives a series of functions for
manipulating mathematical sequences as defined earlier, knowing that it is tra-
ditionally an important datatype in functional programming [10]. Going for-
ward, the next section will introduce the formal definitions of the Petri net to
B-machines transformation, herby slightly adapted to Event-B.

5 Transforming Petri Nets to Event-B

5.1 Event-B in Brief

Confusion can arise from our use of Event-B as the transformation target for-
malism. For this reason, it is important to point out the distinction of classical

54 Z. Boudi et al.

B (also called B for software) and Event-B. This distinction lays in the use of
the clause “EVENTS” for the latter case rather than the traditional “OPERA-
TIONS”. The nuance between these two B-method features can be explained by
the possibility to implement classical B “OPERATIONS” in the context of soft-
ware development. Such a possibility is not allowed for “EVENTS”, which are
intended for system specification and can only be refined. An Event-B model uses
two types of entities to describe a system: Machines and Contexts. A Machine
represents the dynamic part of a model, namely, states and transitions. A Con-
text contains the static part of the model. In this paper, we use Machine that
includes both static and dynamic parts.

5.2 CPN to Event-B Formal Transformation

The formal transformation we further in this research is the one introduced
in [1,2], which finds its roots on Jensen’s formal definition already recalled
in Sect. 2. Accordingly, the structure of CPN models is described as a tuple
CPN = (S, P, T,A,N,C,G,E, I) that satisfies a number of given requirements.
Let CPN2B : CPNs → EventBMCH be a mapping between colored Petri nets
and Event-B machines. EventBMCH is the image of CPNs through CPN2B.
The formal definitions of the transformation are provided hereafter. Note that
these definitions use the concepts of Jensen’s formal definition of colored Petri
nets.

Definition 5 (Structural transformation). Let cpn = (S, P, T,A,N,C,G,
E, I) be a colored Petri net such that cpn ∈ CPNs. Then the image
EventBmch = CPN2B(cpn) has the structure shown in Listing 1.

The structural transformation is captured by Listing 1 where: ∀i ∈
{1..k} ∀j ∈ {1..p}; the sets colori and the definitions colork+j correspond to the
elements of S, the finite set of non-empty types, called color sets. ∀i ∈ {1..k}; the
variables stateIdplacei correspond to the elements of P , the finite set of places.
∀i ∈ {1..k}; the variables Enabled Idtransitioni correspond to the elements of
T , the finite set of transitions. ∀i ∈ {1..k}; the variables colorIdplacei correspond
to Col = C(pl), where pl is the place corresponding to the variable stateIdplacei .
Ms(ss) == ss → NAT is a multiset based on ss defined as a total function
from ss to all natural numbers. Ms empty(ss) == {elt|elt : ss × {0}} is the
empty multiset, based on ss, is composed of pairs of elements of the support set
related to 0. Thus, it is a total function, which for each element of the starting
set combines the integer 0.

Note 1. A multiset is specified as a relationship between a set known as “base
set” of the multiset and natural numbers. The elements of a multiset are pairs
(ee 	→ nn) where ee belongs to the base set and nn is an integer representing
the coefficient (number of occurrences) of the element in the multiset.

Petri Nets to Event-B: Handling Mathematical Sequences 55

MACHINE Bmch
SETS
Color1 = {elt1C1, ..., eltNC1} ∧ ... ∧ Colork = {elt1Ck, ..., eltNCk}
DEFINITIONS
Ms(ss) == ss → NAT ∧ Ms empty(ss) == {elt|elt : ss × {0}} ∧
Colork+1 = {elt|elt ∈ ENS} ∧ ... ∧ Colork+p = {elt|elt ∈ ENS}
VARIABLES
stateIdplace1 ∧ ... ∧ stateIdplacek

∧
occ elt1 C1Idplace ∧ ... ∧ occ eltN C1Idplace ∧ ... ∧
occ elt1 CkIdplace ∧ ... ∧ occ eltN CkIdplace ∧
Enabled Idtransition1 ∧ ... ∧ Enabled Idtransitionk

INVARIANT
stateIdplace1 ∈ Ms(colorIdplace1) ∧ ... ∧ stateIdplacek

∈ Ms(colorIdplacek
) ∧

occ elt1 C1Idplace ∈ NATURAL ∧ ... ∧ occ eltN C1Idplace ∈ NATURAL ∧ ... ∧
occ elt1 CkIdplace ∈ NATURAL ∧ ... ∧ occ eltN CkIdplace ∈ NATURAL ∧
Enabled Idtransition1 ∈ BOOL ∧ ... ∧ Enabled Idtransitionk ∈ BOOL

Listing 1. Structural transformation.

Definition 6 (Behavioral transformation). Let cpn = (S, P, T,A,N,C,G,
E, I) be a colored Petri net such that cpn ∈ CPNs. Then the image
EventBmch = CPN2B(cpn) has an initialization and operations shown in List-
ing 2.

The behavioral transformation is captured by Listing 2 where: ∀i ∈
{1..k} ∀j ∈ {1..p}; the elements eltj colorIdplacei correspond to the elements
of the variables colorIdplacei . (refer to Definition 1). ∀i ∈ {1..p};nati ∈
NATURAL. ∀i ∈ {1..k}; booli ∈ BOOL. ∀i ∈ NATURAl; the predicates
predicatei correspond to Exp = (G(transition i) ∧ E(arc1) ∧ ... ∧ E(arcp))
where ∀j ∈ {1..p} : arcj ∈ A and (N(arcj) = (x, transitioni)). ∀i ∈ {1..k}; the
substitutions subtitutioni correspond to Exp = (G(transitioni)∧E(arc1)∧ ...∧
E(arcp)) where ∀j ∈ {1..p} : arcj ∈ A and (N(arcj) = (transitioni, x)).

Note 2. Although the behavioral transformation is characterized by the use of
two events for each transition, the use of only one event (Ev Fired Idtransition)
can be sufficient in many practical cases. The main idea behind the introduction
of the other one is to leave open possibilities for the use of the Boolean variables
enabled Idtransition in expressing property invariants related to transitions. In
fact, sometimes, it is hard to establish those invariants using variables corre-
sponding to places. Further, the predicates in the target Event-B machine could
be enriched in order to facilitate the proving process.

56 Z. Boudi et al.

INITIALISATION
stateIdplace1 := Ms(colorIdplace1) �− {(elt1 colorIdplace1 �→ n1) ∧ ...∧

(eltp colorIdplace1 �→ np)} ∧ ...∧
stateIdplacek

:= Ms(colorIdplacek
) �− {(elt1 colorIdplacek

�→ n1) ∧ ...∧
(eltp colorIdplacek

�→ np)}∧
occ elt1 C1Idplace := nat1 ∧ ... ∧ occ eltN C1Idplace := natp ∧ ...∧
occ elt1 CkIdplace := nat1 ∧ ... ∧ occ eltN CkIdplace := natp ∧
Enabled Idtransition1 := bool1 ∧ ... ∧ Enabled Idtransitionk := boolk
EVENTS
Ev Enabled Idtransition1 =
PRE predicate1
THEN Enabled Idtransition1 := TRUE
END;
...
Ev Enabled Idtransitionk =
PRE predicatek
THEN Enabled Idtransitionk := TRUE
END;
Ev Fired Idtransition1 =
SELECT predicate1
THEN substitution1
...
WHEN predicaten
THEN substitutionn

END;
...
Ev Fired Idtransitionk =
SELECT predicate1
THEN substitution1
...
WHEN predicaten
THEN substitutionn

END;
END

Listing 2. Behavioral transformation.

In addition, it is also convenient to recall that the use of “SELECT” in the
Ev Fired Idtransition is justified by the fact that the firing of the transition
may involve different tokens (colors) choices according to the elements of the
“color set” related to the incoming and outgoing places.

6 Moving to Sequences: The ERTMS L3 Movement
Authority Case Study

6.1 Description and CPN Modeling

Autonomous train driving and ERTMS are certainly part of the most topical
trends in rail transportation technology. In the present example, the purpose is
to specify a safe by design MA computation solution in an ERTMS L3 equipped
line. Before going further, let us remind that ERTMS, the European Rail Traffic
Management System, is composed of ETCS (European Train Control System)
and GSM-R. It is a railway signalling and traffic management system intended
to control and command rail traffic safely, based on interoperable technology
and operating rules, in such way to guarantee uninterrupted movement across
European countries.

Petri Nets to Event-B: Handling Mathematical Sequences 57

It is important to note that when we talk about ERTMS in this paper, we
refer to ETCS. The general architecture of ETCS is outlined in the System
Requirement Specification (SRS) developed by the European Union Agency for
Railways [11]. For information, GSM-R is a radio system used for communication
between trackside equipment and on-board computer. This system may however
be replaced by a more relevant protocol in the next few years. In the case of
ERTMS level 3, the transmission of information is carried out by the radio. The
detection and verification of the train integrity are performed at Radio Block
Center (RBC), along with the train computer which sends position and integrity
information [11]. Train detection and integrity functions are performed on-board,
and the MA is calculated without track-side signals or physical circuits.

As we consider particularly the MA calculation in our study, and more pre-
cisely the Virtual Blocks type of ERTMS L3 where train detection circuits can
be divided into several virtual blocks we call Virtual Sub-Sections (VSSs), we
define an MA as the ordered set of free VSSs ahead of the train, upon which
the train can move. The ‘occupied’ and ‘free’ status of a VSS is based on both
reported train position and trackside train detection. Of course, note that real
life MA computation is undoubtedly more complex and requires highly sophis-
ticated algorithms, for additional details see [12]. The present simplified case
can be of practical interest to showcase CPN’s modeling and transformation to
Event-B (Fig. 1).

Fig. 1. Virtual block ERTMS L3 case description

First, we assume that two trains circulate above a six virtual blocks track.
The system requires a safe software function that allows Train 1’s on-board
computer to compute the MA. It is also assumed both train can only advance
by one VSS distance (step) for each cycle, if the MA is not empty, and for each
cycle, Train 1 can measure its position as well as receive the position of Train
2. Mathematically speaking, we can consider that the MA is a substring of the
sequence:

{V SS1, V SS2, V SS3, V SS4, V SS5, V SS6}

where the elements have orders between the VSS occupied by the head
of Train 1 and the VSS occupied by the tail of Train 2. For example,
if we consider the initial state in Fig. 1, the MA should be obtained by
excluding V SS1, V SS2, V SS4, V SS5 and V SS6 from the overall sequence
{V SS1, V SS2, V SS3, V SS4, V SS5, V SS6}, leaving the MA = {V SS3}.

58 Z. Boudi et al.

Fig. 2. MA function Petri net

At this stage, we will design a Petri net command system using the Lists type
as a way to handle mathematical sequences, which provides a safe-by-design MA
at each cycle. We will then demonstrate that it can make the right decisions in
all configurations. Unlike the other programmatic techniques, Petri net models
make it easier to carry the specification of our solution on a graphical system
representation (inputs and outputs). In effect, the present model in Fig. 2 con-
tains three “places” representing the inputs of the MA algorithm, namely, state
of occupation of VSSs by Train 1 and Train 2, as well as free VSSs. As an output,
the transition “Update MA for T1” and system of “arcs” calculates the set of
VSSs representing the MA, and fills it accordingly in the green place “MA T1”.
We notice that the set of MA should contain ordered VSSs, which is explain-
ing the recourse to Lists and the two monitoring place “Order” and “Index”
we detail in the next section. The order of occupied VSSs is also important for
capturing the information about which VSS is occupied by the head or tail of
trains. Ultimately, the transition “Movement” implements a one-step movement,
i.e. Train 1 moving by a distance of one VSS.

Petri Nets to Event-B: Handling Mathematical Sequences 59

6.2 Computing the MA Using the CPN Model

Two monitoring places intended for increasing Petri net sequence manipulability
are the “Order” and “Index” places (Fig. 3). Those places help to identify which
parts of input Lists are relevant to the construction of the target substring
standing for the MA. This technique considers that the output sequence is a
substring of the sequence in the “Order” place, which stands for the overall
List. In order to fine-tune the calculation of MA and exploit the ML functions,
the “Index” place provides the pair (V SSn, n), where n is an integer equal to
the order of V SSn in the list of the place “Order”. In this respect, the model
visualizes those pieces of input data that the calculator needs to consider as it
determines the MA list.

Fig. 3. Sequence structure of colored Petri net

Let us note that such an approach is approximating a generalized structure
that can be applied in multiple problems. In future works, we will further assess
the suitability of the same structure for different modeling and application cases.

Inputs: l, l1, l2 and l3, variables of type V SSlist corresponding respectively to
the free VSSs, VSSs occupied by Train 2, VSSs occupied by Train 1 and the
overall VSS sequence. 1‘(vss, n) + +1‘(vss1, n1), two elements from the Index
Place which will be precised in the transition guard.

Transition Guard: hd (rev l2) = vss and also hd (rev l1) = vss1.

Output Arc (MA): intersect (List.drop((List.take(l3, n1)), n)) l.

6.3 Transforming List Manipulations into B Language

It has already been shown, in [1,2] and earlier sections in this paper, that the
structural and behavioural parts of the Petri net model can be transformed
into B-machines. The current rules of the transformation, however, require that
the designer implements Petri net Guards and Arcs inscriptions directly in the
EVENTS clause of the B-machine. A critical step is to fit the most common
algorithmic patterns in Petri nets to the mathematical programming features
provided by Event-B. In this regard, capturing mathematical sequences, repre-
sented by Lists, call for a specific mapping into sequence structures in the B
language and, in this case, a slightly different use of B-machine clauses.

60 Z. Boudi et al.

Among our findings, the color set of type “List” in the Petri net
model is mapped to the type “NATURAL 	→ Color”, i.e., a par-
tial function from the set of naturals to the set of the elements con-
tained in the list (expressed in ASCII). In the present case, the Petri
net declaration: colsetV SS = with V SS1|V SS2|V SS3|V SS4|V SS5|V SS6;
colsetV SSlist = list V SS; will correspond to the B-machine set: colorV SS =
{V SS1, V SS2, V SS3, V SS4, V SS5, V SS6} where state variables are of type
NATURAL 	→ colorV SS. The sequence structure will be found in the “DEFI-
NITIONS” clause of the B-machine (Listing 3).
MACHINE
ERTMS L3 Target Mch
SETS
colorV SS = {V SS1, V SS2, V SS3, V SS4, V SS5}
ABSTRACT_VARIABLES
State Free V SSs ∧ State Occupied V SSs by T1 ∧
State OccupiedvV SSs by T2 ∧ State MA T1 ∧
enabled Update MA for T1 ∧ enabled Movement
DEFINITIONS
color V SSlist == [V SS1, V SS2, V SS3, V SS4, V SS5] ∧
Ms(ss) == ss → NAT ∧ Ms empty(ss) == {elt|elt : ss × {0}}
INVARIANT
State Free V SSs : NATURAL �→ color V SS ∧
State Occupied V SSs by T1 : NATURAL �→ color V SS ∧
State Occupied V SSs by T2 : NATURAL �→ color V SS ∧
State MA T1 : NATURAL �→ color V SS ∧
enabled Update MA for T1 : BOOL ∧
enabled Movement : BOOL ∧
\\Safety Invariant : the VSS of the MA are all obligatorily free
ran(State MA T1) ∩ (ran(State Occupied V SSs by T1) ∪

ran(State Occupied V SSs by T2)) = ∅

Listing 3. Transformation of sequence structure.

The mapping of MA calculations, that uses Standard ML list functions from
the Petri net sid is done through the manipulation of sequences from the Event-B
side as presented in Listing 4.
EVENTS
Ev enabled Update MA for T1 =

SELECT State Free V SSs 	= ∅ ∧ State Occupied V SSs by T1 	= ∅ ∧
State Occupied V SSs by T2 	= ∅

THEN enabled Update MA for T1 := TRUE
END;

Ev fired Update MA for T1 =
SELECT State Free V SSs 	= ∅ ∧ State Occupied V SSs by T1 	= ∅ ∧

State Occupied V SSs by T2 	= ∅ ∧ enabled Update MA for T1 = TRUE
THEN State MA T1 := Seq V SS ↑ (Seq V SS (last(State Occupied V SSs by T2))

− card(State Occupied V SSs by T2)) ↓
Seq V SS (last(State Occupied V SSs by T1)) ∧
enabled Update MA for T1 := FALSE

END;

Listing 4. Events to manipulate the sequences.

6.4 Verifying Properties Using Event-B Tools

The ultimate purpose of bridging Petri nets to Even-B is to mathematically
implement safety properties and prove they hold. For this reason we run the

Petri Nets to Event-B: Handling Mathematical Sequences 61

obtained Event-B model using the semi-supervised simulation and verification
environments of ProB and Atelier-B, two tools which complete each other
towards validating and refining the understanding of the specification model.
To recognize whether the MA the model calculates is safe for the train, we run
for this example the ProB model checker from the desired initial state. This
rigorous analysis reveals that the safety invariant (expressed in red in Listing 3)
is not violated (Fig. 4).

Fig. 4. Model-checking and scenario animation using ProB.

7 Conclusion and Perspectives

In the evolution towards more automation and connectivity, development of safe
systems and use of mathematical approaches will become even more imperative.
Certainly, combining formal methods is not a totally new practice for safe-by-
design systems, but the fact remains that it has shown so little development with
regards to the rapid advance of systems’ connectivity and multiplicity of interac-
tions, which has given rise both to more diverse and sophisticated applications
and more complexity in design stages. Larger and more complex interactions
make it hard to rely on only few and disconnected techniques for engineering
systems, while respecting high quality and safety standards. This is one reason
this research opted for bridging formal methods, taking the specific case of Petri
nets and Event-B.

Therefore, this contribution addressed the way the transformation of Petri
net models into Event-B machines handles mathematical sequences, showing in
the meantime where such features could be applied in a real life railway ERTMS
use case. Today, this research and its applications are only in their early stages.

62 Z. Boudi et al.

Future work will attempt to expand and generalize Petri net applications for
sequences, and formalize their mapping into Event-B, all across multiple case
studies.

References

1. Boudi, Z., Ben-Ayed, R., Collart-Dutilleul, S., Nolasco, T., Haloua, M.: A CPN/B
method transformation framework for railway safety rules formal validation. Eur.
Transp. Res. Rev. 9(2), 13 (2017)

2. Boudi, Z., Collart-Dutilleul, S., et al.: Colored Petri nets formal transformation to
B machines for safety critical software development. In: 2015 International Con-
ference on Industrial Engineering and Systems Management (IESM), pp. 12–18.
IEEE (2015)

3. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X.: Essay on semantics defi-
nition in MDE. An instrumented approach for model verification. J. Softw. (JSW)
4(9), 943–958 (2009)

4. Istoan, P.: Methodology for the derivation of product behaviour in a software
product line. Ph.D. thesis, Université Rennes 1 (2013)

5. Bon, P., Dutilleul, S.C.: From a solution model to a B model for verification of
safety properties. J. UCS 19(1), 2–24 (2013)

6. Sun, P., Bon, P., Collart-Dutilleul, S.: A joint development of coloured petri nets
and the b method in critical systems. J. Univ. Comput. Sci. 21(12), 1654–1683
(2015)

7. Korečko, Š., Sobota, B.: Petri Nets to B-language transformation in software devel-
opment. Acta Polytech. Hung. 11(6), 187–206 (2014)

8. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (2013)

9. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer 9(3–4), 213–254 (2007)

10. Ratzer, A.V., et al.: CPN tools for editing, simulating, and analysing coloured Petri
Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679,
pp. 450–462. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-
1 28

11. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

12. Eurasian Economic Union Group: Hybrid ERTMS/ETCS Level 3: Principles, Brus-
sels, Belgium (July 2017)

https://doi.org/10.1007/3-540-44919-1_28
https://doi.org/10.1007/3-540-44919-1_28

Model-Based Verification and Testing
Methodology for Safety-Critical

Airborne Systems

Mounia Elqortobi(&), Warda El-Khouly, Amine Rahj,
Jamal Bentahar, and Rachida Dssouli

Concordia University, Montreal, QC, Canada
m_elqort@mail.concordia.ca, w_elkh@encs.concordia.ca,

{amine.rahj,jamal.bentahar,

rachida.dssouli}@concordia.ca

Abstract. In this paper, we address the issue of safety-critical software veri-
fication and testing that are key requirements for achieving DO-331 and DO-
178C regulatory compliance for airborne systems. Formal verification and
testing are considered two different activities within the airborne standards and
they belong to two different levels in avionics software development cycle. The
objective is to integrate model-based verification and model-based testing within
one framework and to capture the benefits of their cross-fertilization. It is
achieved by proposing a methodology for the verification and testing of parallel
communicating agents based on formal models. The results of formal verifica-
tion and testing can be used as evidence for certification.

Keywords: Model-based verification � Model checking
Communication graph � Methodology � Model-based testing
Partial reachability graph � MC/DC (Modified Condition/Decision Coverage)

1 Introduction

Developing safety-critical software requires rigorous processes. To prevent catas-
trophic events, the avionics industry has introduced a rigorous certification process
described in the RTCA [1, 2] standard. The DO-178C standard [1] includes a sup-
plement on formal methods called DO-333. In DO-333, a formal method is defined as
“a formal model combined with a formal analysis”. DO-178C and its supplement have
been successfully applied into a production of software systems at Dassault-Aviation
and Airbus [3]. The motivation of this work is to increase software dependability by
integrating formal verification techniques with testing and to capture the benefits of
their cross-fertilization. In addition, formal verification and test results can be used as
evidence for certification. Although model-based testing [5, 16] and verification
activities [3–5, 19] are natural approaches to the certification of avionics software, the

Sponsored by NSERC/CRD CMC CS Canada. Project CRIAQ AVIO 604, CRDPJ 463076-14.

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 63–74, 2018.
https://doi.org/10.1007/978-3-030-02852-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_6&domain=pdf

integrated model-based engineering approach is not yet well studied in the literature
and several challenges need to be addressed [17, 18].

In this paper, we propose a model-driven approach that encompasses two main
levels: verification/design and validation/implementation. As per Fig. 1, in the first
level, we adopt model checking, a formal and fully automatic technique for model-
based verification. It is a natural choice for a rigorous verification of avionics systems
against desirable properties including safety and liveness. In the second level, we
transform the finite state machines (FSM) verification model [11–13] to an Extended
Finite State Machine (EFSM) testing model using graph rewriting [20]. We generate
both local test cases for each EFSM agent in its context and global test cases for
Communicating EFSM (CEFSM) model. The test generation methods satisfy the
Modified Condition/Decision Coverage (MC/DC) criteria, all DU paths, and ensure

Fig. 1. An overview of our approach

64 M. Elqortobi et al.

that the verified properties hold in the implementation. The selection of coverage
criteria are based on the satisfaction of DO 178C for MC/DC and a use of middle
ground structural coverage for all DU paths. Better structural coverage criteria such as
all paths is impractical.

Section 2 presents an overview of the proposed approach and the case study called
landing gear system [9]. Section 3 introduces our model-based testing approach and
shows how to automatically generate test cases. Section 4 concludes and identifies
future work.

2 The Proposed Framework and Case Study

In this section, we introduce the proposed verification and testing framework. The
methodology begins with formally modeling the safety-critical airborne system from
the given informal requirement specification. Then, the obtained model is encoded
using ISPL+ (an extended version of the input language of the symbolic model checker
MCMAS+ introduced in [10]). We extract and express the system requirements in the
form of temporal properties using Computation Tree Logic (CTL) [8]. MCMAS+
automatically checks whether the model satisfies the intended properties and graphi-
cally produces witness-examples or counter-examples. The produced witness-examples
help the designer identify a successful execution, and in the case of existential prop-
erties claiming the existence of a successful path, these examples prove the satisfaction
of properties, while the produced counter-examples guide designers to detect and repair
design errors in the formal system model. In the validation/implementation part, we use
model transformation that automatically produces a reduced CEFSM that is the input to
our test generation tool. We use an approach that automatically generates abstract local
and global test cases from EFSM and CEFSM. The test generation environment
addresses the conformity of the implementation to low level requirements and the
satisfaction of the avionics standards such as DO-178C. The test case generation
algorithms take MC/DC and all DU paths as coverage criteria. Finally, our approach
analyzes the obtained test results and compares them with the produced witness-
examples to validate our properties via testing (see Fig. 1 for overview of the
approach).

2.1 Case Study: Landing Gear System

Frédéric Boniol and VirginieWiels proposed a case study of a landing gear system for an
aircraft [9]. It is a representative scenario for complex industrial needs. We adopt it as our
use case study. The landing system is responsible for maneuvering landing gears and
attached doors. It specifically consists of three landing packages situated in the front,
right, and left part of the aircraft. The landing system can be controlled by a software and
can be in twomodes: normal and emergency. In the outgoing and retraction situations, the
normal mode is the default one. The emergency mode is deployed to handle the failure
situation. This work considers only the outgoing sequence and its normal and emergency
modes. The architecture of the system consists of three parts: (1) a pilot part; (2) a

Model-Based Verification and Testing Methodology 65

mechanical part that incorporates themechanical devices and three landing packages; and
(3) a digital part that includes the control unit software.

Regarding the pilot part, a pilot has a button switch at his disposal with two
positions: UP and DOWN. When the button switch is going from UP to DOWN, the
outgoing sequence is initialized. The pilot has three lights in the cockpit, which reflect
the current status of the gears and doors. These lights are as follows:

• One green light meaning that “gears are locked down”.
• One orange light meaning that “gears maneuvering”.
• One red light meaning that “landing gear system failure”.

Before initializing the outgoing sequence, all the gears are locked up and all the
lights are off. In case of failure (i.e., the red light is on), the pilot manually pulls the
mechanical handle to deploy the emergency hydraulic system. When all the gears are
successfully extended and all accompanying sensors are valid, the green light must be
lit. Regarding the mechanical part, the motion of landing gears and doors is performed
by a set of hydraulic cylinders such that the cylinder position basically corresponds to
the door or landing gear location. The digital part is in charge of sending an electrical
order to activate each electro-valve. The digital part plays an intermediate role between
the pilot part and the mechanical part. Specifically, the software embedded in the digital
part is responsible for controlling gears and doors, detecting anomalies, and informing
the pilot through a set of lights about the status of the system. It also generates com-
mands directed to the hydraulic system to open or close the doors and extend or retract
the gears with respect to the values of employed sensors and it captures the pilot orders.

2.2 Modeling the Landing Gear System

In this section, we show how our modelM can formally model the landing gear system.
In our modeling, we specifically consider the normal and emergency modes of the
landing gear system without going into low-level details regarding the mechanical
devices of sensors and electro-valves. To achieve this aim, we introduce three agent
machine models: Mp for pilot, Mc for control unit, and Me for emergency. Specifically,
the pilot agent machine model Mp models the behavior of the pilot part and the control
unit agent machine model Mc models the behavior of the digital part. The emergency
agent machine model Me models the behavior of the emergency system. Instead of
adding another agent machine to model the behavior of the hydraulic cylinders, we
depend on the status of doors and gears to directly represent the status of the employed
cylinders.

Figures 2, 3, and 4 show the models of the pilot, control unit, and emergency agent
machines respectively. In each figure, we introduce the input and output of each
transition in a tabular form where the symbols “?” and “!” refer to the process of
receiving and sending an action. Moreover, the output of a transition can be directly
assigned by the shared and unshared variables when there is no explicit output action.
Given that, it is easy to define the Boolean predicate of each transition using the
conjunction operator between its input and output. The communication graph, as
shown in Fig. 5, shows the communication between the 3 agents. The obtained models
need experts’ validation.

66 M. Elqortobi et al.

Fig. 2. Pilot agent Mp

Fig. 3. Controller agent Mc

Model-Based Verification and Testing Methodology 67

2.3 Model Checking

To validate our model M (a combination of Mp, Mc and Me), we need to perform the
review and tracing activities. By tracing activity, we will be able to track the behavior
of the encoded model using the possibility released in the MCMAS + tool called
Explicit Interactive Mode. According to the model checking technique, we have to
formally: (1) model the system underlying the verification process; and (2) express the
requirements. The correctness of these requirements has been proven on the modeled
system using MCMAS+. So far, we completed the first activity. For the second activity,
we used the computation tree logic (CTL) [8] supported by the MCMAS+ model
checker tool to express the following requirements:

Fig. 4. Emergency agent Me

Fig. 5. Communication graph

68 M. Elqortobi et al.

/1 ¼ AG PressedDownð Þ ! AF GearsExtended ^ DoorsClosedð ÞÞ
/2 ¼ EG E PressedDown U PressedDown ^ GearsExtended ^ DoorsClosedð Þð Þ

/3 ¼ AF:E :PressedDown U ðGearsExtended ^ DoorsClosedð ÞÞ
/4 ¼ AG : PressedDown ^ AGð:GreenLightð ÞÞ

/5 ¼ AF GreenLightð Þ

In [9], a set of requirements is presented with respect to the normal mode. The
requirement called R11bis states that “when the command line is working (normal
mode), if the landing gear command handle has been pushed DOWN and stays
DOWN, then eventually the gears will be locked down and the doors will be seen
closed”. We expressed this requirement in the three different CTL formulae /1, /2 and
/3. The CTL formula /4 expresses the safety requirement. Finally, the CTL formula
/5 expresses the liveness requirement. The quantifier ranging over all computation
paths (“A”) enables us to check the status of both normal and emergency modes. For
example, the liveness formula /5 allows us to check the status of the ‘green light’ that
will eventually happen in each mode. All these formulas are evaluated to true on the
model M using MCMAS+. Therefore, our design model is error-free and at the same
time it is strong as it achieves the safety and liveness requirements urgently needed in
both modes. Moreover, we report on some statistical results such as the execution time
of verifying these formulas is 0.298 s and the memory consumed is 6 Megabytes.

3 Model-Based Test Generation Approach

The objectives of the proposed approach are to complement formal verification with
testing to increase software dependability (such as safety), and to offer both formal
verification and testing results as evidence for software certification. The main idea is to
demonstrate that the verified properties are properly propagated from the design level
to the implementation level and that they hold within the implementation under test
(IUT). Test cases are generated to satisfy both MC/DC and all DU paths criteria. In
addition, witness test cases from the verification model are covered by more refined and
concrete test cases that we apply to the implementation under test, and analyze the test
results.

Despite all published works on EFSM based test generation as described in recent
survey papers [6, 7, 14, 15], there are still a lot of challenges to address. We modified
the algorithms [11–13] to address MC/DC and all DU paths coverage criteria, and
implemented them with up to date research outcomes. In our approach, the generation
of test sequences starts with the verification model that is transformed/refined to a
testing model using graph rewriting technique that insures equivalence both ways [20].
From the testing model, the technique generates local test sequences for each EFSM
agent in its context and creates a list of transitions used for communication between a
pair of agents. A transition-marking algorithm marks every transition involved in the
communication between agents. A composition algorithm that is guided by a com-
munication graph of the EFSMs, builds a partial reachability graph of CEFSM. Local

Model-Based Verification and Testing Methodology 69

test cases generation is important since not all transitions are involved in the com-
munication. It also serves the purpose of standalone testing of an EFSM agent (Fig. 6).

3.1 Test Generation Process for the Case Study

In this case study, and for the sake of readability, the EFSMs are only a partial
representation of a landing gear system. Following the DO-178C standards, the sat-
isfaction of the MC/DC is mandatory, and it is used as a criterion in this paper for test
sequences generation. The steps of test generation process are: (1) derive the local test
sequences from each EFSM; (2) obtain the abstract communication graph of all
EFSMs; (3) following the communication graph, obtain the global system as a partial
reachability graph of CEFSMs; (4) from the local tests sequences and the CEFSM,
generate the global test sequences. Figure 7 represents the obtained system model with
the communication points, labels, transitions, and the input and output lists. We can see
that the Mc and MP agents are started at the same time. It is in fact a parallel com-
municating system. The transitions representing the communication between agents are
described as orange, green, and red to represent the landing gear system lights of the
same color.

The test generation approaches, that satisfy MC/DC and all DU-paths, are applied
to the landing gear system case study. To generate feasible test sequences, we use the
transformed model with all aforementioned information, the local test sequences, as
well as the communication graph. To generate def-use feasible test sequences, 4 dif-
ferent elements are defined for each transition in the EFSM: assignment-use (A-usage),
input-use (I-usage), computational-use (C-usage), and predicate-use (P-usage). These
elements enable the links between the test sequences of each machine, which will
render the test sequences feasible. The proposed algorithms provide a full set of feasible
and non-feasible test sequences that will go through all possible transitions existing in
the system under test. For every property being validated, there will always be feasible

Fig. 6. Test generation process

70 M. Elqortobi et al.

test sequences. We generate the paths linking two states from different machines by
marking them as synchronization points.

For the landing gear system, the communication variables are: start, acti-
vateEmergencySystem, orangeLight(on, off), greenLight(on,off), redLight(on,off).
These variables indicate the possible communication between the agents. For example,
if activeEmergencySystem is on, it means that the redLight variable is also on. Then,
communication points are identified, the input and output list for each transition is
defined. The communication points for the pilot, controller and emergency agents can
be seen respectively at P0, P2, P3, P4, P6, P8 - C0, C1, C5, C10, C11 - E0, and E6.
Table 1 shows examples of the application of the algorithm using the landing gear case
study. It identifies the different variable usage lists enabling the definition of feasible
test sequences. Table 2 shows examples of test sequences to reach specific transitions
in the system model. The chosen transitions represent a case of parallelism as shown in
Table 3.

Fig. 7. System model with communication points

Model-Based Verification and Testing Methodology 71

3.2 Witness Properties Verification

Table 4 below shows specific feasible test sequences for a selection of witness prop-
erties for liveness. The feasible test sequences are given by the input and output
information, as well as the transition for which those input and output prove the witness
example to be true. These tests sequences represent the transition in which the witness

Table 1. Example of usage lists

Trans. A-usage I-usage P-usage Preamble

tP2 Orange light – – tP1
tP4 – Green light tC11 Green light on tP1, tP2, tP3, [tC11]
tC11 – Green light on

Orange light off
Green light on tC1, tC2, tC3, tC4, tC5, tC9, tC10

Table 2. Test sequences of the landing gear system

Transition Tests sequences from a transition

tP5 Feasible tP1, tP2, tP3, tC1, tC2, tC3, tC4, tC5, tC9, tC10, tC11, tP4, tP5
tP5 Non-
feasible

tP1, tP2, tP3, tP4, tP5

tP9 Feasible tP1, tP2, tP3, tC1, tC2, tC3, tC4, tC5, tC6, tC7, tC8, tP6, tE1, tE2, tE3, tE4,
tE5, tE6, tP7, tP8, tP9

Table 3. Parallelism shown for feasible test sequences tP5 of the landing gear system

Feasible test sequences – tP5

Mp tP1, tP2, tP3 tP4, tP5
Mc tC1, tC2, tC3, tC4, tC5 tC9, tC10, tC11

Table 4. Feasible test sequences for witness example for liveness properties

Witness example for liveness properties Feasible test sequences

1 EF GreenLight Sequences leading to transitions:
Mp: tP4 – tP5 – tP8
Mc: tC10 – tC11
Me: tE5 – tE6

2 EF (RedLight && EF GreenLight) Sequences leading to transitions:
Mp: tP8 – tP9
Me: tE5 – tE6

3 EF (PressedDown && EF GreenLight) Sequences leading to transitions:
Mp: tP4 – tP5 – tP8 – tP9
Mc: tC10 – tC11
Me: tE5 – tE6

72 M. Elqortobi et al.

example holds. Hence, all the possible transitions forming a path need to render a
feasible test sequence up to the mentioned transition. For example, EF GreenLight
holds true when a sequence executes up to transition tp5 (refer to Table 2 for the
complete feasible test sequence).

3.3 Properties Verification

Several properties are defined below to verify whether the used algorithm validates the
properties. The two feasible test sequences shown in Table 2 were analyzed with
regards to those properties. Both feasible test sequences for transitions tP5 and tP9
verify all the properties identified so far.

AG ð PRESSED DOWN ! AF EXTENDED && CLOSED GEAR DOORSð Þ Þ
AGEF !PRESSED DOWN jjAF EXTENDED && CLOSED GEAR DOORSð Þð Þ
AF ð !E !PRESSED DOWN U EXTENDED && CLOSED GEAR DOORSð Þð Þ

AG ! PRESSED DOWN && AG !GREEN LIGHTð Þð Þð Þ
AFGREEN LIGHT

The satisfaction of MC/DC criterion will lead to the generation of several non-
feasible paths. It is necessary to ensure that these paths are handled correctly, which
will control both the satisfaction of the properties and the alternatives triggered by
glitches or possible malfunctions. Table 5 shows examples of tests cases generated to
satisfy MC/DC criterion. Some test cases for a specific transition are not feasible and
will either end in an error or be idle.

4 Conclusion and Future Work

The proposed methodology and its application show that the integration of verification
and testing activities is important to improve software dependability and achieve
software certification in airborne industry. For future work, we plan to address the
following challenging issues such as testing continuous and hybrid systems need more
research and innovation to address them properly. The oracle problem needs more data
mining and intelligence for analyzing and correlating outputs and searching in artifact
such as specifications, logs and test architectures.

Table 5. Examples of test cases for MC/DC satisfaction

Transition Test case Status

tP5 tP1, tP2, tP3, tP4 – Error: green light is on
tP5 tP1, tP2, tP3, tP4 – Error: red light is on

Model-Based Verification and Testing Methodology 73

References

1. http://www.rtca.org. RTCA/DO-178C: Software Considerations in Airborne Systems and
Equipment Certification, Supplement to DO-178C and DO-278A: DO-332 Object-Oriented
Technology and Related Techniques, DO-331 Model-Based Development and Verification,
DO-333 Formal Methods (2011)

2. Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA DO-178B)
information: conceptual model and UML profile. J. Softw. Syst. Model. 10(3), 337–367
(2011)

3. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or formal verification:
DO-178C alternatives and industrial experience. J. IEEE Softw. 30(3), 50–57 (2013)

4. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. S. Afr. Comput.
J. 19, 53–77 (1997)

5. Peleska, J.: Industrial-strength model-based testing - state of the art and current challenges.
MBT 2013, 3–28 (2013)

6. Yang, R., Chen, Z., Zhang, Z., Xu, B.: EFSM-based test case generation: sequence, data, and
oracle. Int. J. Softw. Eng. Knowl. Eng. 25(4), 633–667 (2015)

7. Dssouli, R., Khoumsi, A., Elqortobi, M., Bentahar, J.: Testing the control-flow, data-flow,
and time aspects of communication systems: a survey. Adv. Comput. 107, 95–155 (2017)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Massachusetts (1999)
9. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V., Ait

Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07512-9_1

10. El-Kholy, W., Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Conditional commit-
ments: reasoning and model checking. ACM Trans. Soft. Eng. Methodol. 24(2), 9:1–9:49
(2014)

11. Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: A test case generation approach for
conformance testing of SDL systems. Comput. Commun. 24(3–4), 319–333 (2001)

12. Bourhfir, C., Dssouli, R., Aboulhamid, E., Rico, N.: Automatic executable test case
generation for extended finite state machine protocols. In: Kim, M., Kang, S., Hong, K.
(eds.) Testing of Communicating Systems. ITIFIP, pp. 75–90. Springer, Boston, MA (1997).
https://doi.org/10.1007/978-0-387-35198-8_6

13. Bourhfir, C., Dssouli, R., Aboulhamid, E., Rico, N.: A guided incremental test case
generation procedure for conformance testing for CEFSM specified protocols. In: Petrenko,
A., Yevtushenko, N. (eds.) Testing of Communicating Systems. ITIFIP, vol. 3, pp. 279–294.
Springer, Boston, MA (1998). https://doi.org/10.1007/978-0-387-35381-4_17

14. Ammann, P.E., Black, P.E., Majurski. W.: Using model checking to generate tests from
Specifications. In: Proceedings of the Second IEEE International Conference on Formal
Engineering Methods (ICFEM 1998), pp. 46–54. IEEE Computer Society (1998)

15. Yin, X., Jiangyuan, Y., Wang, Z., Shi, X., Wu, J.: Modeling and testing of network protocols
with parallel state machines. IEICE Trans. Inf. Syst. 98(12), 2091–2104 (2015)

16. Utting, M., Pretschner, A., Legeard, B.: A Taxonomy on Model-Based Testing. University
of Waikato, Hamilton (2006)

17. Miller, S., Whalen, M., Cofer, D.: Software model checking takes off. Commun. ACM 53
(2), 58–64 (2010)

18. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey. Softw. Test.,
Verif. Reliabil. 19(3), 215–261 (2009)

19. Ouhammou, Y., et al.: A model-based process for the modelling and the analysis of avionic
architectures. IJIIDS 10(1/2), 117–144 (2017)

20. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions.
Fundam. Inf. 26(3/4), 287–313 (1996)

74 M. Elqortobi et al.

http://www.rtca.org
http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://dx.doi.org/10.1007/978-0-387-35198-8_6
http://dx.doi.org/10.1007/978-0-387-35381-4_17

MEDI4SG 2018 Workshop

Introduction to the International Workshop
on Models and Data Engineering for Social

Good (MEDI4SG 2018)

The MEDI International Workshop on Models and Data Engineering for Social Good
(MEDI4SG) was chaired by Prof. Essaid El Bachari, Prof. Mohammed El Adnani, and
Prof. Jihad Zahir from Cadi Ayyad University Morocco.

In September 2015, countries around the world adopted 17 sustainable develop-
ment goals (SDGs) to end poverty, protect the planet, ensure prosperity for all, and
achieve inclusive development by leaving no one behind. In fact, digital footprint, user-
generated content (UGC), sensors, and other new sources of data today offer an
unprecedented opportunity to dive into an ocean of structured and unstructured data.
These data allow for the development of new approaches to better inform policies, to
support effective decision-making, and to enhance quality of life for millions of humans
around the globe and in Africa, specifically, which will therefore increase chances to
achieve SDGs.

MEDI4SG fosters sound research using models and data engineering on real and
challenging problems that are related, but not limited, to health and well-being, edu-
cation, climate change, sustainable tourism, and sustainable cities. The workshop also
promotes south–north and junior–senior cooperation between researchers committed to
sustainable and inclusive development.

To encourage and promote the results and outcome of the MEDI4SG workshop, we
are pleased to inform authors that some of the best papers were accepted in special
issues of Computer Science and Information Systems (CSIS). All accepted papers for
the workshop are published by Springer in Communications in Computer and Infor-
mation Science.

We accepted three papers that tackle topics related to the overall orientations of the
workshop.

1. “Gamification and Serious Games-Based Learning for Early Childhood in Rural
Areas,” by Rachid Lamrani, El Hassan Abdelwahed, Souad Chraibi, Sara Qassimi,
and Meriem Hafidi. This paper proposes a Montessori method based on a serious
games solution. The authors developed several serious games according to an agile
method. They aim to test and to evaluate the user’s experience and assess the
children’s acceptance and usefulness of the proposed system in rural preschools
near Marrakech city in Morocco.

2. Context-Based Sentiment Analysis: A Survey, by Oumayma El Ansari, Jihad Zahir
and Hajar Mousannif. This paper is a short survey on context-based sentiment
analysis for English content. Different approaches from the literature and inter-
pretations of the notion of context are presented, and the challenges posed by
Arabic content are discussed. The paper is relevant to the topic of the workshop in
the sense that tracking perception of social phenomena on social media and

monitoring the online discussions on controversial issues, especially those related to
sustainable development, leads to an interesting set of evidence and knowledge.

3. “A Multi-Agent System-Based Distributed Intrusion Detection System for a Cloud
Environment,” by Omar Achbarou and My Ahmed El Kiram. This paper presents a
new distributed intrusion detection system based on a multi-agent system to identify
and prevent known and unknown attacks in this environment. Experiments
demonstrated the performance and efficiency of the proposed system integrated with
multi-agent technology.

The great success of the workshop is due to the hard work of all Program Com-
mittee members and external reviewers. We also thank all the authors for their con-
tributions.

October 2018 Essaid El Bachari
Mohammed El Adnani

Jihad Zahir

MEDI4SG 2018 Workshop Chairs

Essaid El Bachari Cadi Ayyad University, Morocco
Mohammed El Adnani Cadi Ayyad University, Morocco
Jihad Zahir Cadi Ayyad University, Morocco

MEDI4SG 2018 Program Committee

Witold Kinsner University of Manitoba, Canada
Esteban Vázquez Cano National University of Distance Education, Spain
Abdelaziz Khadraoui University of Geneva, Switzerland
Abdelila Maach University Mohammed V, Morocco
Lahcen Oubahssi Université du Maine, France
Rachid LATIF University Ibn Zohr, Morocco
Eric Leclercq University of Burgundy, France
Agouti tarik Cadi Ayyad University, Morocco
Sebastián Ventura University of Cordoba, Spain
Richard Chbeir Université UPPA, France
Chraibi Souad Cadi Ayyad University, Morocco
Bubacarr Bah African Institute for Mathematical Sciences,

South Africa
Jelmam Yassine National Engineering School of Tunis, Tunisia
Issam Qaffou Cadi Ayyad University, Morocco
Martin Gordon Mubangizi Pulse Lab Kampala, Uganda
My Ahmed El Kiram Cadi Ayyad University, Morocco
Sana Nouzri Cadi Ayyad University, Morocco

Introduction to the International Workshop 77

Gamification and Serious Games Based
Learning for Early Childhood in Rural Areas

Rachid Lamrani(&), El Hassan Abdelwahed, Souad Chraibi,
Sara Qassimi, and Meriem Hafidi

Computer Systems Engineering Laboratory (LISI), Cadi Ayyad University,
Marrakech, Morocco

rachid.lamrani@ced.uca.ac.ma,

{abdelwahed,chraibi}@uca.ac.ma,

{sara.qassimi,meriem.hafidi}@ced.uca.ma

Abstract. Early childhood education has a high impact on the success of higher
education. Besides, it allows a sustainable social and economic development of
the country. It enables a relevant upbringing and education of future generations
by providing the necessary skills and competencies. This is especially regarding
African developing countries and rural areas in particular. Therefore, it is nec-
essary to support the development of the early childhood education in terms of
apprehending the knowledge and improving the children’s skills. Actually,
recent pedagogical and neuroscience researches show that the best way to teach
children is through playing, getting their attention, their engagement, receiving
feedback and consolidating their skills. In fact, playing represents a natural and
privileged method for children’s learning. Correspondingly, our approach
integrates all aspects mentioned above to develop a playful and creative learn-
ing. The proposed approach is a play-based learning using the Montessori
pedagogical principal as a core of the method that is implanted in several types
of serious games. This paper proposes a Montessori’s Method based on serious
games solution. We developed several serious games according to an agile
method. Future works will focus on deploying and validating this solution in a
real context, precisely in rural preschools near Marrakech. Our aim is to evaluate
the user’s experience and assess the children’s acceptance and usefulness of our
system.

Keywords: Preschool learning � Serious games � Gamification
Montessori � The play power � Early childhood education

1 Introduction

Education is an essential right that must be accessible to all people without any dis-
crimination and it has an essential effect on promoting gender equality and empowering
women. It is one of the basic pillars of economic and national development [1, 2]. Poor
education practices are among the main factors affecting the social and cultural
development of the society. Education is crucial to give people capabilities such as
literacy, confidence, and attitudes [3]. Furthermore, education is crucial to foster tol-
erance between people and it contributes to forming more peaceful societies.

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 79–90, 2018.
https://doi.org/10.1007/978-3-030-02852-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_7&domain=pdf

However, it remains a challenge in some parts of the world, particularly in
developing countries that have a significant number of dropping out of school. This is
due to several reasons, such as poverty, tuition fees, or associated costs (uniforms,
supplies) as well as the lack of security. All those causes might create barriers pushing
some parents to keep their children away from school. An example of the inequality in
the matter of education is the lack of opportunities affording education for girls in rural
areas. As a solution, it is essential for gathering all efforts to find innovative approaches
to deliver an accessible education allowing a gapless learning. So we should assess
individuals’ needs and elaborate strategies defining targeted objectives of the educa-
tional system that meet their specific expectations. The usage of the emergent digital
technologies offers promising solutions and efficient approaches to achieve good
education goals.

Besides, the family is the first source of learning and supportive relationships to
children, especially the parents who are considered as the first and the most important
teachers and who have the biggest part of the education responsibility [7]. For the good
upbringing of their children, the parents have to set up intellectual and emotional life
bases, to give suitable and valuable attitudes in order to ensure an active participation
for a good preschool departure [8, 9]. Children are curious from the moment they are
born and they want to learn about their world and understand it. Learning starts at birth,
and the first six years are for discovering and exploring. So, a strong beginning in the
early years provides them with the best and fairest chance to reach their fullest potential
[10]. Children’s early learning is the main factor for school success and helps their
brains develop well.

Playing is the natural way for children to improve their future skills from the
moment they are born [4, 5]. When they play, they use plenty of their senses to capture
and acquire diverse information and extend their knowledge about their environment.
Moreover, through the fun playthings, children will develop new skills and their ability
to talk, think, act, feel and learn about themselves. Otherwise, playing provides chil-
dren with the opportunity to boost their attention span, learn to get along with others,
cultivate their creativity and address their social, emotional and cognitive needs. It also
develops children’s main academic skills (language, mathematics, etc.) that are the base
for later learning, without forgetting that it is an innate human behavior, which goes
with us along our lives. It also has a vital role in the healthy development of the
children enabling them an open and ludic way of developing, learning, and socializing
[11–13]. In fact, whether it is a toddler, teenager, or even a retired person, playing is a
fantastic way of learning and development [14]. Allowing children to choose their
activities and establish their own ways of doing things, give them the feeling of
controlling their learning and the opportunity to make new challenges. Furthermore,
providing an adapted solution gives children the opportunity to reach their goals which
increase their confidence and motivations.

The rapid widespread of Information and communications technologies
(ICT) reached and involved in children’s daily life provides learners with better
learning opportunities. It has also changed teaching methods and makes access to high-
quality educational content easier, such as textbooks, videos, and distance education
with a lower price. ICT have paved the way for personalized learning, adapted to the
pace of each learner. Serious games, IoT, Virtual reality, cloud computing and many

80 R. Lamrani et al.

other emerging technologies offer the possibility to develop innovative learning solu-
tions like the mobile and pervasive learning systems. Those new technologies can be
considered as promising ways to perform the objectives and needs cited above and used
to improve the existing educational methods in order to reduce the gap between
technologies, gamification, and learning approaches.

This paper presents a methodological approach that underlines serious games and
the cognitive of playing based on new technologies in order to offer a research-based
solution that makes playtime more stimulating and educational for children.

2 The Benefits of Early Childhood Education

The preschool prepares young children for the elementary education and it’s considered
as an instructive period in the formation of concepts and constant ideas [35]. The
preschool is an important step in life that ensures children, from birth to age six, the
best possible departure in life. It helps the children starting strong and being prepared
for lifelong learning and success. The inequalities begin in the first six years and on the
other side the early childhood education promotes the better intellectual development
of individuals. So, the role of pre-school education is vital in preventing school failure.
In fact, a child is not a vase that needs to be filled in, but a source that we leave
unleashing, based on good education practices.

The preschool must be a linguistic gateway allowing the children to develop their
mother tongue strengthening their emotional and social development, promoting the
early acquisition of behaviors and attitudes, while imbuing the new languages. Also, it
allows children to live in the community preparing for the social relationships which
make them aware that there are rules to respect and constraints to accept.

Most of the time, the child is asked to do activities that are neither a decision nor a
personal motivation on his part but just imposed by the teacher whatever the activity is.
Therefore, the child does not pay close attention and is not really engaged. Also, the
child has often the difficulty to consolidate what he learned because he does not have
the possibility to repeat the same activity when it’s necessary. While making mistakes
during his activities, the signal of error that the child could detect is insufficient, that is
because the teacher doesn’t have the possibility to give individual and immediate
feedback to each child. Thereby, we should reconsider the preschool’s teaching
methods in order to fit the real needs of the children improving their motivation and
confidence.

3 Pillars of Learning: When Neuroscience Explore
the Enigma of Education

Neuroscience synergizes with other disciplines, have broadened our understanding of
the brain in a way that is highly relevant to educational practices [37]. Cognitive
science has identified at least four key factors as pillars of learning processes and
pedagogical strategies [15]. Actually, good learning involves attention, active
engagement, feedback and consolidation (see Fig. 1).

Gamification and Serious Games Based Learning for Early Childhood 81

Indeed, mobilizing children’s attention is a priority goal. The teacher must create
attractive materials that do not distract the child from his primary task. Therefore, given
the sensitivity of their brain to social cues, the educational counseling attitude is
essential: he must focus the child’s attention through visual and verbal contact.

Moreover, the active engagement role underscores how important it is for the child
to be maximally attentive, active, and predictive, and in this respect, to maximize
curiosity in order to have a total engagement. Thus, a care must be taken in order to
introduce to the child learning situations that are neither easy nor difficult, adequate to
his context. As a matter of fact, preserving commitment means that the teacher must
avoid giving a long lecture, but involve the children, test them frequently, guide them
while allowing them to discover certain aspects by themselves, and reward systemat-
ically their curiosity rather than discourage it.

Withal, the importance of the feedback underlines the educational status of the
error. The educational accompanist should realize that from the point of view of
cognitive neuroscience, far from being a fault or a weakness, the error is normal,
inevitable even, and in any case indispensable for learning. Better an active child who
is wrong and learns from his mistakes, than a passive child.

Further, the consolidation considered as the knowledge automation. Automation is
the act of passing from conscious treatment with an effort, to an automated unconscious
treatment.

Correspondingly, the child learns by his emotional intelligence [16, 17], then
develops a link with his mistress, which makes him learn more words and operations.

A
tt
en
ti
on

E
ng

ag
em

en
t

F
ee
db

ac
k

Co
ns
ol
id
at
io
n

The Montessori Method and Early Childhood

Playing and Learning Through Play

ICT, Gamification and Serious Games

Children achievement and outcomes

Fig. 1. Foundations of the proposed approach

82 R. Lamrani et al.

As soon as it grew, he should be initiated at the intelligence logic, which must be
implemented by single organizations and visual methods.

4 Learning Through Play

Outdoor Games and playing are very important for every child, considered as a
legitimate right of the child; it represents a crucial aspect of the physical, intellectual
and social child development. It’s fundamental to their well-being.

While playing, the children develop their skills on several aspects: reflection,
problem solving, expression, moves, cooperation, and exercise of moral conscience
[19, 20, 24]. That’s how their development unconsciously improves [21]. When
tackling the brain development, scientists have proved that many of the fundamental
tasks children must achieve can be most effectively learned through play. They also
confirm that play is essential to healthy and even exceptional to the brain development
[22, 23].

Moreover, all kinds of play and games can be specified by means of different
components. The first component is the rule or gameplay, which creates the pattern
defined through the game rules that connect the player and the game. The second is the
challenge, which determines the bonuses to reward the good actions or the obstruction
and barriers that avoid the player reaching the game goal easily. Challenges are used to
create the different difficulty levels of the game in order to encourage enjoyment and
motivate the player to spend more time with the game. The third component is the
interaction which represents the way the player communicates with the game. Inter-
action refers to any action that is done by to start some activity, it can be visual,
listening, physical (typing, mouse, touchpad, button pressing), dialogue exchange, etc.
And the last component is the objective which is defined as something that one’s efforts
or actions are intended to attain or accomplish.

Nowadays, the children have the ability to manipulate brilliantly different tech-
nological devices (computers, console games, smartphones, etc.) which play a signif-
icant formative role in their personal development [18]. Moreover, the usage of
technologies contributes to reducing the distance and offering access to pedagogical
resources, especially when it comes to the rural areas. Furthermore, that enables access
to other ways to learn and offers innovative methods to develop our skills. So, it will be
fascinating to conceive ludic and funny products and services based on the new
technologies and the concept of the four learning pillars by making the child in the
center of the educational act. Wrapping up the learning activities by games is what
makes learning through playing more fun and consequently more motivating for
students.

5 Gamification in Learning and Serious Games

Gamification is generally considered as the application of game elements in conven-
tional contexts aiming to change and enhance individuals’ behaviors and attitudes.
Gamification techniques are benefiting from advances in ICT. Applications of

Gamification and Serious Games Based Learning for Early Childhood 83

gamification span a wide range including healthcare, marketing, management and
recruitment, as well as learning and teaching. The relation between gamification and
education is on the rise and learning activities are an important context that can be
subject to gamification.

A serious game is a computer application that combines with consistency, both
serious aspects such as learning, or communication intent, with playful springs from the
video game like collaboration, competition and strategy [25, 26]. Actually, their main
use aims to improve users’ skills, engagements and performances [27, 33].

Relevant serious games applications, have recently been developed in different
domains, including education, training, well-being, advertisement, cultural heritage,
interpersonal communication, and healthcare [28]. Advances in gaming technologies
allow the real-time interactive visualization and simulation of realistic virtual heritage
scenarios, such as reconstructions of ancient sites and virtual museums [29]. Many
research contributions are directed towards taking advantage of the success of video
games and using them to benefit the educational domain, such as [30].

Also, there are a few research and project using serious games in the context of
preschool to develop the children’s abilities and academic skills in mathematics and
languages [31, 32].

6 Proposed Approach: Gamification and Serious Games
Based Learning for Early Childhood

As it was mentioned above, one of the motivating challenges is to elaborate pertinent
solutions addressing the problem of the growth of the number of dropping out of school
in early childhood especially. In this context, we have initialized a project aiming to
develop innovative solutions to deliver an accessible early childhood education. Our
goal is to eliminate the inequality in the matter of education and create real opportu-
nities for children, in particular young girls, in rural areas to have access to education.

The pedagogical method we adopted within our project is based on Montessori
approach [6, 36, 38]. It stated that the purpose of the early childhood education wasn’t
to fill the child by predetermined studies, but rather, to cultivate her own desire to learn.
This approach proposes to organize the main learning activities around children playing
activities. It distinguishes five categories of activities and skills to develop (see Fig. 2).
Also, it assumes that during learning activities, the individual should be autonomous
and be mainly motivated by its natural curiosity and its love of knowledge. Two
fundamental principles of this approach are, first, allows each child to learn by doing
according to its own choice and rhythm without no obligation, and secondly, to help
him to refine its natural learning tools when it’s needed.

All the serious games that we have developed within our project are aligned to the
Montessori approach and with respect to the pillars of learning reflecting the educa-
tional cognitive science point of view (see Fig. 1). Indeed, errors are considered as
phases of the game and do not prevent children’s to continue. Also, immediate feed-
back ensures the checking of the quality of what we have learned, that is a very
important factor for effective learning. We aim to deliver and to introduce some games
and apps with purpose (serious games), allowing a gamification integration, to manage

84 R. Lamrani et al.

behaviors or learning, such, mathematics improving and science skills, languages
progression (see Fig. 2).

7 Realization and Deployment

All the serious games we have developed could be used within group of children in the
context of an online learning or a blended learning that combines them with traditional
classroom methods. They are accessible using a mobile device like a smartphone or a
desktop (see Fig. 3).

Montessori Method’s materials, physical or digital (serious games), would enrich
the universe surrounds children to enhance and promote a playfully and creative
learning. An adult can supervise and assess the children’s learning activities reminding

Montessori
Main activities

Numeracy
Skills

Life
Skills

Science
Skills

Developing
the Senses

Language
Development

Fig. 2. The montessori approach main activities and skills

Desktop

Client
Presentation Layer

Server
Back-Office

M
id

dl
ew

ar
e

La
ye

r

C
on

tr
ol

le
r l

ay
er

M
od

el
s L

ay
er

D
at

ab
as

eHTTP Request

Generated View

Mobile

RESTful

JSON

HTTP Request

Fig. 3. System architecture

Gamification and Serious Games Based Learning for Early Childhood 85

them with benevolence the dangers, prohibitions, respect and without too much
intervention or leadership.

Presently, we have implemented more than twelve serious games spread between
different Montessori Approach main activities and skills (see Fig. 3). While continuing
agile development of other games, we project to deploy, as quickly as possible, and
conduct tests of our approach in a real context in rural preschools near Marrakech. Our
aim is to get feedback as earlier as possible relative to user experience and assess the
children’s acceptance and usefulness of our system. The goal is to evaluate each step in
the chain of the learning process including its technical aspects according to an agile
method.

Below, we present some examples of serious games that we have already developed
(Tables 1, 2 and 3).

Table 1. Some serious games developed concerning the language and the numeracy skills
development

Act
develo

Ga
game
numbe
phonic
knowl
has the
aligne
phonet
alphab

ivities and sk
pment

me goal and
help kids re
rs shapes, as
sounds, and

edge to use i
 same pedag

d with the e
ic alphabet”
ets” in [38].

ills : Langua

Guidelines:
cognizing a
sociate them
put their al

n fun exerci
ogical goal an
ntitled games

and “Ident

ge A
skill

This
letter,

with
phabet
ses. It
d it is
“The

ifying

G
gam
the
math
(usi
peda
the
num

ctivities and
s

ame goal an
e is about num

m and a
ematical ope

ng fruits). Thi
gogical goal
entitled ga

erals” in [38]

skills : Num

d Guideline
bers and how

pply some
rations with q
s game has t
and it is alig

me “Additio

eracy

s: This
 to use

basic
uantities
he same
ned with
n using

86 R. Lamrani et al.

Table 2. Some serious games developed concerning the senses and the life skills improvement

Activities and skills : Developing the
senses

Activities and skills : Life skills

Game goal and Guidelines: This
game teaches the kid the colors, their
spelling and their phonetic sound. This
game has the same pedagogical goal
and it is aligned with the entitled game
“Discovering colors” in [38]

Game goal and Guidelines: This
game shows the child the importance
of brushing teeth. This game has the
same pedagogical goal and it is aligned
with the entitled game “Cleaning teeth”
in [38]

Table 3. Some serious games developed concerning the science skills development

Act
skills

Ga
game
the c
makin
geogra
possibl
pedag
the ent
and m

ivities and

me goal and
teaches the c
ountries and
g his firs
phy as conc
e. This ga

ogical goal an
itled game “I

ap “ in [38]

skills : S

Guidelines:
hild the conti
their locati

t experienc
rete & as f

me has the
d it is aligne
ntroducing a

cience A

This
nents,

on by
e of
un as
same

d with
globe

G
activ
the
puzz
the
This
goal
gam

ctivities and

ame goal a
ity serves do

child is maki
le of a flowe

parts of a flo
game has t
and it is alig

e “Make a flo

skills : Scien

nd Guidelin
uble purpose
ng and constr
r, he is learni
wer and their
he same ped
ned with the
wer puzzle “ i

ce skills

es: This
s. While
ucting a
ng about
 names.
agogical
entitled
n [38]

Gamification and Serious Games Based Learning for Early Childhood 87

8 Conclusion and Perspectives

Playing is the main children’s source of pleasure whether on its emotional, social,
physical, language or cognitive development. Covering up learning activities with
games is what makes learning through playing more fun and consequently more
motivating for students. Through play, the child would feel more confident, autono-
mous and have more pleasure to acquire new academic skills (mathematics, language,
etc.) and social aptitudes (confidence, communication, etc.). While playing and doing
fun actions, he would be more motivated and curious to discover the world around him
while adopting a positive attitude towards action.

Gamification is generally considered as the application of game elements in con-
ventional contexts aiming to enhance individuals’ behaviors and to improve their skills.
A serious game is a computer application that combines with consistency, both serious
aspects such as learning, or communication intent, with fun and ludic video game’s
features.

Nowadays, African countries present a significant number of dropping out of
school, in particular in preschool. This is due to several reasons, such as poverty,
growth tuition fees as well as the lack of security. Learning starts at birth, and the first
six years are for discovering and exploring. Indeed, a strong beginning in the early
years provides individuals with the best and fairest chance to reach their fullest
potential. Therefore, it would be essential for gathering all efforts to find innovative
solutions to deliver an accessible education allowing a gapless learning.

A part of our actual research studies deals with the above problems and challenges.
In this paper, we have presented our propositions and contributions to assure the
development of the children’s early learning, in particular in rural areas. In fact, access
to preschool is the main factor for individuals’ school success and thus social and
economic development of the countries. For early childhood, we propose a Montes-
sori’s Method based serious games solution. We developed several serious games
according to an agile method. We project to deploy this solution in a real context,
precisely in rural preschools near Marrakech. Our aim is to evaluate the user’s expe-
rience and assess the children’s acceptance and usefulness of our system.

It’s a beginning of a long way and a rewarding challenge. Many questions remain
open and there are many motivating perspectives to address. For example, one of them
is how to enable the teachers to track and analyze students’ activities and progress
during the educational games session. Another challenge that we try to face is about the
youth unemployment problem in Northern Africa. To treat the scourge of youth
unemployment, we project to capitalize on the outcomes of the actual project to
develop a pervasive collaborative system to enhance Northern African youth
entrepreneurship through gamification [34].

Acknowledgment. The development of some serious games reported here was conducted in
fulfillment of the requirements of the degree of Bachelor in Computing Sciences in Cadi Ayyad
University. The authors would like to kindly thank the students Outhmane Lagnaoui, Ilyass
Moummad, Yousra El Messoussi and Imane Messak.

88 R. Lamrani et al.

References

1. Every child has the right to an education. https://www.unicef.org/crc/index_73893.html.
Accessed 18 June 2018

2. Monteiro, A.: The right of the child to education: what right to what education? Procedia -
Soc. Behav. Sci. 9, 1988–1992 (2010)

3. Sen, A.: Development as Freedom. Anchor Books, New York (2013)
4. Sheridan, M., Howard, J., Alderson, D.: Play in Early Childhood. Routledge, London (2011)
5. Cutter-Mackenzie, A., Edwards, S., Moore, D., Boyd, W.: Young Children’s Play and

Environmental Education in Early Childhood Education. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-319-03740-0

6. Lillard, A.: Preschool children’s development in classic montessori, supplemented
montessori, and conventional programs. J. Sch. Psychol. 50, 379–401 (2012)

7. Landry, S.H.: The role of parents in early childhood learning. In: Tremblay, R.E. (ed.)
Encyclopedia on Early Childhood Development (2014)

8. Erola, J., Jalonen, S., Lehti, H.: Parental education, class and income over early life course
and children’s achievement. Res. Soc. Strat. Mobil. 44, 33–43 (2016)

9. Grindal, T., et al.: The added impact of parenting education in early childhood education
programs: a meta-analysis. Child Youth Serv. Rev. 70, 238–249 (2016)

10. Alexander, K., Entwisle, D., Olson, L.: Lasting consequences of the summer learning
gap. Am. Sociol. Rev. 72, 167–180 (2007)

11. Yilmaz, R.: Educational magic toys developed with augmented reality technology for early
childhood education. Comput. Hum. Behav. 54, 240–248 (2016)

12. Moreno, M.: Supporting child play. JAMA Pediatr. 170, 184 (2016)
13. Milteer, R., Ginsburg, K., Mulligan, D.: The importance of play in promoting healthy child

development and maintaining strong parent-child bond: focus on children in poverty.
Pediatrics 129, e204–e213 (2011)

14. Miller, J., Kocurek, C.: Principles for educational game development for young children.
J. Child. Media 11, 314–329 (2017)

15. Dehaene, S.: Cognitive foundations of learning in school-aged children. Collège de France.
https://www.college-de-france.fr/site/en-stanislas-dehaene/course-2014-2015.htm. Accessed
19 June 2018

16. Raver, C., Garner, P., Smith, D.: The roles of emotion regulation and emotion knowledge for
children’s academic readiness: are the links causal? In: Planta, B., Snow, K., Cox, M. (eds.)
School Readiness and the Transition to Kindergarten in the Era of Accountability, pp. 121–
147. Paul H Brookes Publishing, Baltimore (2007)

17. Eggum, N., et al.: Emotion understanding, theory of mind, and prosocial orientation:
relations over time in early childhood. J. Posit. Psychol. 6, 4–16 (2011)

18. Plowman, L.: Researching young children’s everyday uses of technology in the family
home. Interact. Comput. 27, 36–46 (2014)

19. Hughes, F.: Children, Play, and Development. Sage Publications, Los Angeles (2010)
20. Berk, L.: Child Development. Pearson, Boston (2013)
21. Catron, C.: Early Childhood Curriculum: A Creative Play Model. Pearson, Boston (2008)
22. Diamond, M.: Response of the brain to enrichment. An. Acad. Bras. Ciênc. 73, 211–220

(2001)
23. Diamond, M., Krech, D., Rosenzweig, M.: The effects of an enriched environment on the

histology of the rat cerebral cortex. J. Comp. Neurol. 123, 111–119 (1964)
24. Vaughan, C., Brown, S.: Play. Avery, New York (2014)

Gamification and Serious Games Based Learning for Early Childhood 89

https://www.unicef.org/crc/index_73893.html
http://dx.doi.org/10.1007/978-3-319-03740-0
https://www.college-de-france.fr/site/en-stanislas-dehaene/course-2014-2015.htm

25. Djaouti, D.: Serious Games pour l’éducation: utiliser, créer, faire créer? Tréma 44, 51–64
(2016)

26. Wattanasoontorn, V., Boada, I., García, R., Sbert, M.: Serious games for health. Entertain.
Comput. 4, 231–247 (2013)

27. Giessen, H.: Serious games effects: an overview. Procedia - Soc. Behav. Sci. 174, 2240–
2244 (2015)

28. Davis, S., Moar, M., Jacobs, R., Watkins, M., Riddoch, C., Cooke, K.: ‘Ere Be Dragons:
heartfelt gaming. Digit. Creat. 17, 157–162 (2006)

29. Neto, J., Silva, R., Neto, J., Pereira, J., Fernandes, J.: Solis’Curse - a cultural heritage game
using voice interaction with a virtual agent. In: 2011 Third International Conference on
Games and Virtual Worlds for Serious Applications (2011)

30. Muratet, M., Torguet, P., Jessel, J., Viallet, F.: Towards a serious game to help students learn
computer programming. Int. J. Comput. Games Technol. 2009, 1–12 (2009)

31. Nikiforidou, Z., Pange, J.: Shoes and squares: a computer-based probabilistic game for
preschoolers. In: Procedia - Social and Behavioral Sciences, vol. 2, pp. 3150–3154 (2010)

32. Schuurs, U.: Serious gaming and vocabulary growth. In: De Wannemacker, S., Vander-
cruysse, S., Clarebout, G. (eds.) ITEC/CIP/T 2011. CCIS, vol. 280, pp. 40–46. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33814-4_5

33. Lamrani, R., Abdelwahed, E.H.: Learning through play in pervasive context: a survey. In:
IEEE/ACS 12th International Conference of Computer Systems and Applications
(AICCSA), Marrakech, pp. 1–8 (2015)

34. Lamrani, R., Abdelwahed, E.H., Chraibi, S., Qassimi, S., Hafidi, M., El Amrani, A.: Serious
game to enhance and promote youth entrepreneurship. In: Rocha, Á., Serrhini, M.,
Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and
Communication Technologies. Advances in Intelligent Systems and Computing, vol. 520,
pp. 77–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46568-5_8

35. Arbianingsih, Rustina, Y., Krianto, T., Ayubi, D.: Developing a health education game for
preschoolers: what should we consider? Enfermería Clínica, 28, 1–4 (2018)

36. Alvarez, C.: Les lois naturelles de l’enfant. Les Arènes (2016)
37. Sigman, M., Peña, M., Goldin, A., Ribeiro, S.: Neuroscience and education: prime time to

build the bridge. Nat. Neurosci. 17, 497–502 (2014)
38. Pitamic, M.: Teach Me to Do it Myself: Montessori Activities for You and Your Child.

Barron’s Educational Series (2004)

90 R. Lamrani et al.

http://dx.doi.org/10.1007/978-3-642-33814-4_5
http://dx.doi.org/10.1007/978-3-319-46568-5_8

Context-Based Sentiment Analysis: A Survey

Oumayma El Ansari(&), Jihad Zahir, and Hajar Mousannif

LISI Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University,
Marrakech, Morocco

ansari.oumaima@gmail.com,

{j.zahir,mousannif}@uca.ac.ma

Abstract. Social Networks became the most important source of information.
User-generated content is constantly increasing which provides unprecedented
opportunities to support decision-making processes and advocacy efforts. This
paper is a short survey on context based sentiment analysis for English content;
we present different approaches from the literature and interpretations of the
notion of context. Moreover, we explain the challenges posed by Arabic content
and discuss an approach that could be implemented for context based sentiment
analysis for Arab language.

Keywords: Sentiment analysis � Context-based sentiment analysis
Arabic language

1 Introduction

Nowadays, people are more connected to internet and especially social networks (e.g.
330 million of Twitter users are monthly active [1]). This huge amount of the generated
data triggered the desire of exploring the useful information in order to determine how
the crowds think and feel. Tracking perception of social phenomena on social media
and monitoring the online discussions on controversial issues, especially those related
to sustainable development, would lead to a new set of evidence and knowledge.
Hence, it’s not surprising that the analysis of opinions and feelings expressed in social
networks became one of the most vital fields in NLP, presented as Sentiment Analysis
(SA) [2, 3]. As opposed to traditional surveys and data collection and analysis methods,
the main advantage of SA lies in the fact that it’s both a low-cost and a quick approach
to picture public opinion in a given timeframe.

The main task in SA is subjectivity and polarity classification, it consists of
identifying whether the text is subjective or objective and determining the degree of
subjectivity: Positive (e.g. COP 23 recommendations rock), negative (e.g. It’s a big
failure!), neutral (e.g. I will watch it tomorrow), mixed (e.g. I loved the scenario but the
actors sucks) [4].

Many Sentiment Analysis techniques were described in the literature, generally
these could be divided into two types [5]: Dictionary based techniques [2, 4, 6], where
a lexicon is used to label the words with the polarity, and Machine Learning based
methods [2, 3] that consist of using training data and classification features to classify
the text.

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 91–97, 2018.
https://doi.org/10.1007/978-3-030-02852-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_8&domain=pdf

In a text, the global representation of a sentence could influence the meaning of
each lexical item. As a result, the same word could change its polarity in different
contexts. This particularity represents one of the main challenges in sentiment analysis
[5].

Generally, SA systems that handle polarity presented by one single word give
ambiguous results, in order to improve their approaches, researchers try to focus more
on Context Based Sentiment Analysis.

In this paper we present a short survey on CBSA for English language and expose
the challenges that stand against the development of CBSA for Arabic content. The
remainder of this paper is organized as follow: We start by providing a background in
Sect. 2, then, a general process flow of a typical CBSA system is presented in Sect. 3.
We introduce, in Sect. 4, different types of context modeling for English content.
Finally, before we conclude, we present different challenges in CBSA for Arabic
content in the last section.

2 Background

Context in Sentiment Analysis is defined as the set of lexical items that precede or
follow a word or a passage that could influence its valence.

It’s important to assimilate the difference between the polarity and valence. The
polarity of a word could be one of three: positive, negative or neutral, generally it’s
given by a lexicon. While the valence represent the attitude that is communicated by
the word in a particular context, it’s called also the contextual polarity [9]. This con-
textual polarity is influenced by different valence shifters: a lexical phenomena that can
shift the valence of a lexical item from one pole to the other or, influence it’s per-
locutionary force to increase or decrease, e.g.: ‘not’ ‘strongly’ ‘possibly’… . These
influencers exist in the sentence level such as negation or topic level.

3 General Process Flow of a CBSA System

In general, a context based sentiment analysis process starts first with the pre-
processing of the dataset in order to eliminate all the ambiguities that could influence
the treatment. The second step is the most vital, it consists of defining the context’s
level and collecting all the related terms or features. Finally the classification phase
which combines and analyses the influence of the context and the key words in order to
detect the polarity (Fig. 1).

92 O. E. Ansari et al.

4 Modeling Context

Several research paths have emerged in context based sentiment analysis, the difference
between the works done in this field is the interpretation of the ‘context’. In [7] and [13]
the authors presented the sentence-based context while the work in [10] presents the
valence shifters that are the relevant influencers in sentence-based context, the papers
[8] and [12] focus on defining the context in twitter and [11] focused on developing a
context-based lexicon.

4.1 Sentence-Based Context

In [7] the authors presented a method that takes into account the context embeddded by
neighboring words on each word of the sentence, it’s the sentence-based context.

This method suggests that a word doesn’t always carry the same annotation in a
specific domain, e.g.: in the same camera’s description the word ‘long’ could be
positive (long battery life) and negative (long time to focus).

The described algorithm applied to 500 hotel reviews uses the Influence Function,
which calculates the score of each word in the basis of its relevance and also with
taking in consideration the features of the text that surrounds it. Thus, the scores of the
neighboring lexical items could increase or decrease the positivity/negativity of each
word.

Authors of [13] present an effective new approach for sentiment analysis for both
regular long text and noisy long text. This method takes into consideration the sentence
based-context, it consists of two phases. (a) The learning phase: identification of key
terms that indicate the presence of a sentiment and context terms for each key term in
order to generate features for supervised learning.

(b) The detection phase: the goal of this phase is to use a classifier in order to give a
score that indicates the probability of the existence of a given sentiment and generate
the polarity.

[10] describes how the context could affect, strengthen, weaken or switch the
individual valence of each lexical item.

• Noise elimination
• Removal of stop words
and punctuation

Pre-processing

• Key words or detection
• Context terms or features

detection

Contextualization
• Analyzing context
influence

• Polarity detection

Classification

Fig. 1. General context based sentiment analysis process

Context-Based Sentiment Analysis: A Survey 93

All the different shifters that could improve the interactions between lexical items in
a text are represented in the two types of context.

In sentence-based context many valence shifters are represented: First, the nega-
tives such as ‘not’, ‘none’, ‘never’ could change the annotation from positive to
negative or the opposite. Second, the intensifiers e.g. ‘Deeply’, ‘strongly’ strengthen or
weaken the valence. Third, modal operators e.g. ‘possibly’, ‘if’, ‘could’ generally
neutralize the valence because they represent unreal situations.

For the domain-based context many shifters are introduced e.g. connectors such as
‘althought’, reported speech, the existence of subtopics.

4.2 Topical Context

In [8] the concept of ‘context’ is interpreted under another angle. The authors introduce
a rich context-sensitive model for tweets.

This work addresses the ambiguity in the process of analyzing one single tweet at a
time, and gives a new approach of determining the polarity of a tweet according to the
conversation where it belongs.

This method treated two types of contexts: a. Conversations: sequences of tweets
that reply each one to the previous. b. Topic: based on hashtags. The work is based on a
learning machine approach that implements the Markovian formulation of Support
Vector Machine (learning algorithm that labels collectively the tweets in a sequence).

In the same orientation, [12] sheds lights on target dependent twitter sentiment
classification. In addition to taking into consideration the related tweets to a single
tweet, authors incorporate target dependent features.

This method consists of three steps: The first and the second are subjectivity and
polarity classification depending on the target, these steps include the pre-processing,
determining target-dependency features and target extensions (synonyms and aspects
that are related to the target), and finally the classification which is based on a binary
SVM classifier. The third step is the graph-based optimization that relies on repre-
senting the related tweets of each tweet in a tree in order to evaluate the context and
boost the performance of the classification.

4.3 Conversional Context

The work in [11], authors developed a context dependent lexicon that’s defined as:
A dictionary of opinion words conditioned on different aspects of the given

domain. The purpose of this lexicon is to assign a score to each pair of aspect and
opinion word e.g. score (bad, battery). Many useful sources are combined to create the
context dependent lexicon: a. General-purpose lexicon that is context-independent. b.
Thesaurus: Wordnet. c. Linguistic heuristics (‘and’, ‘but’ and negation rules).

Using two data sets from two different domains; hotel reviews and printers feed-
back, the candidate lexicon entries were first generated, then the author presented the
method as an optimization problem to solve based on an objective function, for this
purpose many constraints are proposed to form the function. The final step is to
transform the problem into a linear programming problem (Table 1).

94 O. E. Ansari et al.

The different methods and approaches presented above show that the context could
be interpreted in different ways, this could depend on the nature of the data source
(tweets, comments, reviews…), the objective of the sentiment analysis work and also
the specification level of the context (domain, sentence …).

5 CBSA in Arabic: Challenges and Opportunities

5.1 Challenges

The main challenges in Arabic Sentiment Analysis are the language itself. In the top of
the list comes the diversity of Arabic dialects used in social media; each Arab country
speak at least one dialect. Second, one of the main characteristics of Arabic is that a
word with the same spelling could have different meaning due to the Arabic punctu-
ation. e.g. ‘ ملع ’ could mean ‘science’ or’ a flag’. Moreover, the Arabic punctuation is
usually absent in the social media content. These properties constitute the major dif-
ficulties when analyzing an Arabic text, especially dealing with the context in the
sentiment analysis process.

Table 1. Summary of the methods done in context-based sentiment analysis

Reference Context
interpretation

Description Source of data Technique

[7] Sentence-
based

The influence of
neighboring lexical
items on a word

Hotel reviews from
TripAdvisor

Genetic
algorithm

[8] Conversional The influence of
related tweets on a
single tweet

SemEval-2013
tweets corpus

Machine
learning

[10] Sentence
based

Describes the valence
shifters that could
influence a word

– Describing
the valence
shifters

[11] Aspect-based
context

Develop a context-
based lexicon

TripAdvisor
reviews, printers
feedbacks

Machine
learning,

[12] Conversional
target
dependent
context

The influence of
related tweet on a
single tweet and the
influence of target

Created a target-
dependent dataset
of tweets

Machine
learning

[13] Sentence
based

This method is more
effective on noisy
texts and takes in
consideration the
context in the
sentence level

Hotel reviews from
TripAdvisor,
twitter,
automatically
transcribed phone
calls

Supervised
learning

Context-Based Sentiment Analysis: A Survey 95

5.2 Opportunities

As presented in the works focusing on English context based sentiment analysis,
several approaches were introduced in this regard. Therefore, these approaches could
be developed and extended in order to deal with all the properties of the Arabic
language. As exposed in reference [14], the best methods that could deal with context
treatment are the lexicon based methods because they take into consideration the
influence of the domain and the valence-shifters. This method is represented in [11].

6 Conclusion and Perspectives

Social media offers a lot of valuable information in decision-making, and its content is
constantly increasing. As far as we know there’s no work done in context based
sentiment analysis in Arabic, which offers important opportunities in this field. This
paper surveys the works done in CBSA in English and exposed the challenges that
limit researches for Arabic content. Taking into account the very limited number of
corpuses that are available in Arabic language, the next step in our research is to
develop an adapted CBSA system for Arabic content using a lexicon based approach.

References

1. https://www.omnicoreagency.com/twitter-statistics/. Accessed 14 May 2018
2. Birjali, M., Beni-Hssane, A., Erritali, M.: Machine learning and semantic sentiment analysis

based algorithms for suicide sentiment prediction in social networks. Procedia Comput. Sci.
113, 65–72 (2017)

3. Al-Twairesh, N., Al-Khalifa, H., Al-Salman, A., Al-Ohali, Y.: AraSenTi-Tweet: a corpus for
Arabic sentiment analysis of Saudi tweets. Procedia Comput. Sci. 117, 63–72 (2017)

4. Abdul-Mageed, M., Diab, M. T.: AWATIF: a multi-genre corpus for modern standard
Arabic subjectivity and sentiment analysis. In: LREC, pp. 3907–3914, May 2012

5. Context Assisted Sentiment Analysis Paper Identification Number: IAR-168
6. Tartir, S., Abdul-Nabi, I.: Semantic sentiment analysis in Arabic social media. J. King Saud

Univ.-Comput. Inf. Sci. 29(2), 229–233 (2017)
7. Sharma, S., Chakraverty, S., Sharma, A., Kaur, J.: A context-based algorithm for sentiment

analysis. Int. J. Comput. Vis. Robot. 7(5), 558–573 (2017)
8. Vanzo, A., Croce, D., Basili, R.: A context-based model for sentiment analysis in twitter. In:

Proceedings of COLING 2014, The 25th International Conference on Computational
Linguistics: Technical Papers, pp. 2345–2354 (2014)

9. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an exploration of
features for phrase-level sentiment analysis. Comput. Linguist. 35(3), 399–433 (2009)

10. Polanyi, L., Zaenen, A.: Contextual valence shifters. In: Shanahan, J.G., Qu, Y., Wiebe,
J. (eds.) Computing attitude and affect in text: Theory and applications, pp. 1–10. Springer,
Dordrecht (2006). https://doi.org/10.1007/1-4020-4102-0_1

11. Lu, Y., Castellanos, M., Dayal, U., Zhai, C.: Automatic construction of a context-aware
sentiment lexicon: an optimization approach. In: Proceedings of the 20th International
Conference on World Wide Web, pp. 347–356. ACM, March 2011

96 O. E. Ansari et al.

https://www.omnicoreagency.com/twitter-statistics/
http://dx.doi.org/10.1007/1-4020-4102-0_1

12. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment
classification. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1, pp. 151–160.
Association for Computational Linguistics, June 2011

13. Katz, G., Ofek, N., Shapira, B.: ConSent: context-based sentiment analysis. Knowl. -Based
Syst. 84, 162–178 (2015)

14. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for
sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

Context-Based Sentiment Analysis: A Survey 97

A Multi-agent System-Based Distributed
Intrusion Detection System
for a Cloud Computing

Omar Achbarou(&), My Ahmed El Kiram, Outmane Bourkoukou,
and Salim Elbouanani

Computer Science Department, Laboratory ISI, Cadi Ayyad University,
Marrakech, Morocco

omar.achbarou@gmail.com

Abstract. The Cloud security is one of the major obstacles to the adoption of
cloud computing services. It requires some solutions such as Intrusion Detection
Systems (IDSs) for protecting each user against all malicious. Existing IDS
because of lower detection rate and higher false positive rate couldn’t be suitable
for a distributed environment such as the cloud. To tackle this problem, we
propose a new distributed intrusion detection system based on a multi-agent
system to identify and prevent known and unknown attacks in this environment.
Carried out experiments demonstrated the performance and efficiency of our
proposed system integrated with multi-agent technology.

Keywords: Cloud computing � Intrusion detection system � Distributed system
Multi-agent systems

1 Introduction

Cloud computing is based on the logic of consumption of service, implying that
responsibility for the deployment, control, management and maintenance of the
infrastructure, platform or software is the responsibility of the cloud service provider
(CSP) [1]. Despite the enormous technical and commercial benefits of the cloud
environment, security and privacy concerns are the main obstacles to its widespread
adoption around the world, and particular attention should be paid to security when
choosing a cloud service. In view of these security concerns, the integration of an IDS
can be important for detecting attacks or other activity that can be considered suspi-
cious or illegal.

Existing IDS solutions have been developed for conventional networks and sys-
tems, but are not easily adaptable to a dynamic environment such as cloud computing.
Thus, it is necessary to develop a flexible, secure solution that is adapted to the
changing and complex evolution of the cloud environment. Although IDS models have
been proposed in the research literature, IDS components alone are not able to parse all
of the large reports generated. Thus, these proposed solutions remain limited due to
their insulation; in other words, they are not able to collaborate or cooperate with each
other. Their detection results are therefore isolated, and cannot be collected and

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 98–107, 2018.
https://doi.org/10.1007/978-3-030-02852-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_9&domain=pdf

analyzed systematically. Thus, there is a need for IDS solutions based on the concepts
of collaboration, cooperation, autonomy and dynamism; these concepts are needed to
detect attacks effectively and to respond to intrusions by reducing response time.

In this work, we propose a solution that meets these requirements in the form of a
multi-agent system-based distributed IDS (MAS-DIDS) that can identify and prevent
all anomalies in a cloud environment. This system is based on a distributed architecture
of IDSs that work in collaboration and communicate with each other, in order to adapt
to the complexity of cloud networks. Each IDS is composed of a group of dynamic,
responsive, and cooperating agents which work together to make the IDS more
autonomous and flexible. The main objective of our research work is to implement a
MAS-DIDS that combines the two techniques of signature-based and anomaly-based
intrusion detection, in order to block both known and unknown attacks within a
complex, dynamic and changing environment. Finally, the efficiency and performance
of the proposed model are studied in terms of different metrics: detection rate (DR),
false positive rate (FPR), and response time.

The rest of the paper is organized as follows. The next section presents a theoretical
background, in which we describe the main concepts of cloud computing, IDS and our
types, and multi-agent systems (MAS). We discuss several related works in the area of
multi-agent IDSs in Sect. 3. Section 4 forms the core of this paper, and explains and
describes our proposed model in detail. Section 5 presents the details of a performance
evaluation and the effectiveness of our proposed model based on an experimental
study. The final section summarizes the main contributions of this work.

2 Theoretical Background

2.1 Cloud Computing

Cloud Computing is a flexible, reliable and cost-effective environment that offers a set
of services in the form of on-demand services, accessible from anywhere, anytime and
by anyone. Cloud computing builds on established trends to reduce the cost of
delivering services while increasing the speed and agility with which services are
deployed regardless of the location of users or equipment [2].

Beyond the proposed definitions, NIST has defined a cloud computing model with
five essential characteristics, three service models and three deployment models [2], as
shown in Fig. 1.

In general, the architecture of a cloud computing can be divided into three layers:
the infrastructure layer (IaaS: Infrastructure as a Service) application layer (SaaS:
Software as a Service) and Platform layer (PaaS: Platform as a Service). Each layer
represents a different part of the cloud computing stack [3].

• IaaS: The most basic cloud-service model is that of providers offering computing
infrastructure, machines and other resources. In the case of IaaS, resources and
hardware are virtualized.

• PaaS: To provide a platform allowing customers to run, develop, and manage
applications without the complexity of building and maintaining the infrastructure
typically associated with developing and launching an application.

A MAS-DIDS for a Cloud Computing 99

• SaaS: To use provider software running on a cloud infrastructure and accessed from
various client devices via a client interface.

There are three common deployment models to consider [4, 5]:

• The private cloud is designed for exclusive use by a single organization;
• In a public cloud, the cloud provider offers their resources as a service to the general

public;
• A hybrid cloud is a combination of cloud deployment models (public and private)

that attempts to address the limitations of each approach.

2.2 Intrusion Detection Systems

As detailed in previous section, there are different types of attacks in cloud environ-
ment. Intrusion Detection System is effective solution to detect and resist these attacks.
IDSs are software or hardware systems that realize intrusion detection, log detected
information, alert or perform predefined procedures [6]. They can be either hardware or
software that includes whole observed computing entities.

An HIDS is an agent that monitors and analyzes any action, internal or external,
that bypasses the system security policy, while an NIDS attempts to detect unautho-
rized access to a network by analyzing the network traffic for signs of malicious activity
and anomalous events [7]. A distributed IDS consists of a several IDSs in the cloud
network communicating with each other, or with a central point that manages that
system. By distributing these cooperative IDSs on this environment to process and to
analyze the collected events [8].

Fig. 1. Cloud computing architecture

100 O. Achbarou et al.

An IDS increases the security level of a cloud by using two main intrusion
detection techniques [9]; the first is based on signatures (signature-based detection or
misuse detection) and the second on behaviors (anomaly detection).

• A signature-based detection technique detects attacks by verifying that observations
match known attacks. This technique therefore uses a knowledge base for the
different existing attacks [10]. This principle of intrusion detection is reactive and
meets several constraints; the IDS only detects attacks that have been defined.

• An anomaly detection technique is based on research on abnormal behavior, and
anything that deviates from normal conditions triggers an alarm [8]. This type of
detection is effective on unknown attacks but can generate a large number of false
positives.

Some IDSs combine both techniques to achieve better results. This is approach
used in our proposal, which incorporates both techniques.

2.3 Multi-agent Systems

A Multi-Agent system has a group of intelligent agents interacting with the environ-
ment and with themselves [11]. An agent is a computer system located in an envi-
ronment that acts autonomously and flexibly to achieve the objectives for which it was
designed [12]. Agents can be described with different characteristics:

• Flexibility: The agent is able to carry out actions in an autonomous and reflexive
way in order to achieve the objectives set for it. Flexibility in this case means
reactivity and pro-activity;

• Autonomous: The agent is able to act without any intervention, that is to say, the
agent decides himself which action to undertake among those that are possible;

• Social: The agent must be able to interact with other agents when the situation so
requires to complete his tasks or to help these agents perform their tasks.

3 Related Works

In the literature, there are many works that use an IDS with the agent approach to
secure systems against attacks. However, most of these studies have developed solu-
tions for well-defined networks and systems, and are not suitable for dynamic and
complex environments such as the cloud environment. Agent-based IDS implemen-
tation is one of the new paradigms for intrusion detection in this environment, and this
approach has been examined by several researchers.

In their article, Venkataramana and Padmavathamma [13] introduced a multi-agent
intrusion detection and prevention system using agents for the detection of attacks in
the cloud. In [14, 15], the authors proposed a trust model that used mobile agent
technology. In this work, mobile agents can dynamically move across the cloud net-
work to perform certain tasks, such as accounting and monitoring the integrity and
authenticity of virtual machines. Depren et al. [16] have proposed an intelligent
intrusion detection system using both anomaly and misuse detection techniques, to

A MAS-DIDS for a Cloud Computing 101

enable a computer networks to handle attacks. Wang and Zhou [17] presented the
concept of a cloud alliance, involving communication between agents and the exchange
of mutual alerts, primarily to resist DoS and DDoS attacks. In [18], an IDS based on
mobile agent technology and cryptographic mechanisms has proposed by Idrissi et al.
This proposal consists on elaborating detection mechanisms, based on cryptographic
traces generated by mobile agent to secure CC architecture against insider threats.
Authors Seresht and Azmi [19] proposed a hybrid IDS that analyzes the network traffic
in the system environment, this analysis is performed by using virtual machines.
Indeed, each instance is composed by intelligent agents to perform a defined selection
algorithm. These agents communicate and cooperate with others to detect anomalies.
A thorough study of security solutions based on agent technology reveals IDS solutions
that use the different properties of intelligent agents to detect attacks and respond to
intrusions. Existing solutions are poorly suited to the growing complexity of cloud
networks; they use centralized and non-collaborative IDSs and are not suitable for
dynamic environments. Thus, they are not able to cooperate and communicate with
each other to detect complex attacks. For example, if an IDS detects a new attack, it
does not share this result with other IDSs in its environment.

In the next section, we therefore propose a secure solution that meets all these
requirements in the form of a DIDS based on a multi-agent approach, which can
identify and prevent all attacks in a cloud environment.

4 Proposed MAS-DIDS System

We propose a Multi-Agent System-Based Distributed Intrusion Detection System, as
shown in Fig. 2, with a distribution and cooperation mode, which detects known or
unknown attacks in a distributed environment. This system is composed of a group of
intelligent agents with mobility and responsiveness, which can communicate and
cooperate with each other in order to effectively detect coordinated and distributed
attacks in this environment.

First, as the network administrator, the cloud service provider (CSP) receives the
packets from different users. The CSP transfers these packets to the Management Agent
(MA), which also checks and analyzes the packets before sending them to the available
IDSs (IDS-1, IDS-2,…, IDS-n) in the system. The IDSs use Sniffing Agent (SA) as a
network capture and analysis tool, allowing the capture results to be saved in a file
entitled “ResultsFile.cap” for analysis by the Filter Agent (FA). The FA also com-
municates with the SA to parse and filter the list of packets using signatures (fingerprint
attack). Then, the FA routes the hashed packets to a Misuse Detection Agent (MDA).
This node is responsible for checking each signature in the local database, coordinating
with the Basic Agent (BA). Two results are possible after checking a signature with
BA: either the signature exists or it does not. When a signature exists in the local
database, the MDA concludes that this is proof of an ongoing known attack, and an
alert is generated to initiate a response. However, when a signature does not exist in a
local database that is currently synchronized with the global database, the current
packet is transmitted to the anomaly intelligent agent (AIA). The goal of the AIA is to
detect anomalies through an analysis of possible abnormal behaviors; on this basis, it

102 O. Achbarou et al.

can classify a current packet as an unknown attack or a false positive. In order to avoid
false positives, the AIA communicates the alert triggered to the MA, which classifies
the alert by applying the following formula:

#number of IDSs sending the same alert=#number of IDSs in the system[0:5 ð1Þ

If the result is greater than 0.5, the packet is classified as a new type of attack to
block. On this basis, the MA allows the rules obtained to be automatically added to the
global database, and communicates the alert to the CSP via the central console, in order
to block the source of the detected attack.

5 Experimental Results

In this paper, several experiments have been made to verify the performance of our
approach. This Proposed model has been implemented using some tools and libraries
such as the Java language, the JADE framework, the JPCAP platform and the Aglets
platform that has been configured on an Eclipse IDE.

JADE (Java Agent DEvelopment Framework) is a software Framework, which
simplifies the implementation of multi-agent systems [20]. The Aglets platform can be

Fig. 2. Proposed MAS-DIDS architecture

A MAS-DIDS for a Cloud Computing 103

distributed by moving agents from one machine to another one [21]. In addition,
JPCAP is an open source framework for capturing and sending network packets [22]. It
provides facilities to capture raw packets live from the wire and save captured packets
to an off-line file [23].

Indeed, the Sniffer Agent based on the JPCAP library collects the network events
using the “CaptureTool” class and saves them into a sniffing file.

As a matter of fact, two interesting measures were used to validate the performance
of our Proposed system: false positive rate (FR) and detection rate (DR).

• DR refers to the amount of attacks detected among all detections (2);
• FR refers to the number of instances falsely detected as attacks among all detections

(3).

DR ¼ TP
TPþFN

ð2Þ

FR ¼ FP
TNþFP

ð3Þ

TP: true positive
FP: false positive
FN: false negative.

Fig. 3. Performance of MAS-DIDS.

104 O. Achbarou et al.

Based on these concepts, Fig. 3 shows the detection performance of our model
based on the results given in Table 1, which proves the increase in DR and the decrease
in FPR in our simulated cloud environment.

The experiment results of our proposed model prove that it has a detection rate
higher than 80% and a false alarm rate lower than 8% are reached. So R2L attacks have
the best performance. Consequently, we can conclude that the results indicate that our
proposed system provides many favorable characteristics, such as high detection rate
and low false positive rate and good response time for detection.

The proposed system was compared with similar systems where there was IDS
model which was not based on multi-agent systems. The results of this comparison are
proved in Fig. 4 based on the data given in Table 2. It demonstrates that our propo-
sition worked not only better in term of efficiency but also in term of response time.

Table 1. Experimental results

Attack type DR FR

Probing 82% 16%
DoS 75.5% 8%
R2L 68% 2.3%

Fig. 4. Comparison between IDS model without agent and our proposed system.

A MAS-DIDS for a Cloud Computing 105

6 Conclusions

Distributed IDS based on multi-agent system has been the important of research
direction in the field of intrusion detection, and has the advantages of detecting dis-
trusted attacks and balancing the load in a cloud environment. On the basis of ana-
lyzing the existing IDS models based on multi-agent system, this paper presented a new
distributed IDS based on intelligent agent technology. Experiments proved that our
proposal is efficient and valuable for detecting all intrusions in cloud computing. In
future, we plan to experiment our proposed system in real cloud environment.

References

1. Ramachandran, M., Chang, V.: Towards performance evaluation of cloud service providers
for cloud data security. Int. J. Inf. Manag. 36(4), 618–625 (2016)

2. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Recommendations of the
National Institute of Standards and Technology, vol. 145, p. 7. NIST Special Publication
(2011)

3. Achbarou, O., El kiram, M.A., El Bouanani, S.: Securing cloud computing from different
attacks using intrusion detection systems. Int. J. Interact. Multimed. Artif. Intell. 4(3), 61
(2017)

4. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud
computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

5. Singh, S., Jeong, Y.S., Park, J.H.: A survey on cloud computing security: issues, threats, and
solutions. J. Netw. Comput. Appl. 75, 200–222 (2016)

6. Achbarou, O., El Kiram, M.A., Elbouanani, S.: Cloud security: a multi agent approach based
intrusion detection system. Ind. J. Sci. Technol. 10(18) (2017)

7. Patel, A., Taghavi, M., Bakhtiyari, K., Júnior, J.C.: An intrusion detection and prevention
system in cloud computing: a systematic review. J. Netw. Comput. Appl. 36(1), 25–41
(2013)

8. Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey of intrusion
detection techniques in Cloud. J. Netw. Comput. Appl. 36(1), 42–57 (2013)

9. Liao, H.-J., Lin, C.-H.R., Lin, Y.-C., Tung, K.-Y.: Intrusion detection system: a
comprehensive review. J. Netw. Comput. Appl. 36, 16–24 (2012)

10. Keegan, N., Ji, S.-Y., Chaudhary, A., Concolato, C., Yu, B., Jeong, D.H.: A survey of cloud-
based network intrusion detection analysis. Hum.-Cent. Comput. Inf. Sci. 6(1), 19 (2016)

11. Cavalcante, R.C., Bittencourt, I.I., Da Silva, A.P., Silva, M., Costa, E., Santos, R.: A survey
of security in multi-agent systems. Expert Syst. Appl. 39(5), 4835–4846 (2012)

12. Baig, Z.A.: Multi-agent systems for protecting critical infrastructures: a survey. J. Netw.
Comput. Appl. 35(3), 1151–1161 (2012)

Table 2. Experimental data

Simulation system DR FR

IDS model 62% 12%
Proposed model 84% 3.2%

106 O. Achbarou et al.

13. Venkataramana, K., Padmavathamma, M.: Multi-agent intrusion detection and prevention
system for cloud environment. Int. J. Comput. Appl. 49(20), 24–29 (2012)

14. Hada, P.S., Singh, R., Manmohan Meghwal, M.: Security agents: a mobile agent-based trust
model for cloud computing. Int. J. Comput. Appl. 36(12), 975–8887 (2011)

15. Saadi, C., Chaoui, H.: Cloud computing security using IDS-AM-Clust, Honeyd, Honeywall
and Honeycomb. Proc. Comput. Sci. 85, 433–442 (2016)

16. Depren, O., Topallar, M., Anarim, E., Ciliz, M.K.: An intelligent intrusion detection system
(IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl. 29(4),
713–722 (2005)

17. Wang, H., Zhou, H., Wang, C.: Virtual machine-based intrusion detection system framework
in cloud computing environment. J. Comput. 7(10), 2397–2403 (2012)

18. Idrissi, H., Ennahbaoui, M., Souidi, E.M., El Hajji, S.: Mobile agents with cryptographic
traces for intrusion detection in the cloud computing. Proc. Comput. Sci. 73, 179–186 (2015)

19. Seresht, N.A., Azmi, R.: MAIS-IDS: a distributed intrusion detection system using multi-
agent AIS approach. Eng. Appl. Artif. Intell. 35, 286–298 (2014)

20. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: a software framework for
developing multi-agent applications. Lessons learned. Inf. Softw. Technol. 50(1–2), 10–21
(2008)

21. Shinde, P., Parvat, T.J.: DDoS attack analyzer: using JPCAP and WinCap. Proc. Comput.
Sci. 79, 781–784 (2016)

22. Su, C.J.: Mobile multi-agent based, distributed information platform (MADIP) for wide-area
e-health monitoring. Comput. Ind. 59(1), 55–68 (2008)

23. Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322–341 (2008)

A MAS-DIDS for a Cloud Computing 107

IWCFS 2018 Workshop

Introduction to the Second International
Workshop on Cybersecurity and Functional

Safety in Cyber-Physical Systems
(IWCFS 2018)

This section contains invited and contributed papers presented at the Second Interna-
tional Workshop on Cybersecurity and Functional Safety (IWCFS 2018), held on
October 24, 2018, in Marrakesh, Morocco.

In response to the call for papers, IWCFS 2018 received ten submissions by 30
authors from eight different countries. After a detailed reviewing process, with about
three reviews per paper, a careful selection procedure was carried out using EasyChair
for the electronic discussion. Following strict criteria of quality and originality, six
papers were selected for presentation. Additionally, Prof. Alexander Egyed from
Johannes Kepler University Linz was invited for an exclusive talk on the subject, “A
Roadmap for Engineering Safe and Secure Cyber-Physical Systems.”

We are greatly indebted to many colleagues who contributed to the scientific
program of the workshop, especially the invited speaker and all authors of the sub-
mitted papers. We also thank the authors of the accepted papers for their prompt
responses to our editorial requests. We would like to express our special thanks to the
members of the IWCFS 2018 Program Committee and all external reviewers for their
precise, detailed, and timely reviewing of the submissions. We want to thank the
Organizing Committee of the 8th International Conference on Model and Data Engi-
neering (MEDI 2018) – where IWCFS 2018 was a collocated workshop – for their
support and guidance. Finally, we would like to express our gratitude to our institutes,
i.e., Software Competence Center Hagenberg GmbH, Johannes Kepler University Linz,
and Tecnalia, for their cooperation.

October 2018 Atif Mashkoor
Johannes Sametinger

Xabier Larrucea

IWCFS 2018 Workshop Chairs

Atif Mashkoor Software Competence Center Hagenberg GmbH
Johannes Sametinger Johannes Kepler University Linz, Austria
Xabier Larrucea Tecnalia Research & Innovation, Spain

IWCFS 2018 Program Committee

Yamine Ait Ameur IRIT, France
Paolo Arcaini National Institute of Informatics, Japan
Richard Banach University of Manchester, UK
Ladjel Bellatreche ENSMA, France
Miklos Biro Software Competence Center Hagenberg GmbH,

Austria
Jorge Cuellar Siemens, Germany
Angelo Gargantini University of Bergamo, Italy
Osman Hasan National University of Science and Technology,

Pakistan
Jean-Pierre Jacquot University of Lorraine, France
Muhammad Taimoor Khan Alpen-Adria-Universität, Austria
Bernhard Moser Software Competence Center Hagenberg GmbH,

Austria
Muhammad Muaaz Johannes Kepler University, Austria
Elvinia Riccobene University of Milan, Italy
Martin Ochoa Ronderos Universidad del Rosario, Colombia
Jerzy W. Rozenblit University of Arizona, USA
Neeraj Kumar Singh IRIT, France
Edgar Weippl SBA Research, Austria

Introduction to the Second International Workshop 111

Invited Talk: A Roadmap for Engineering
Safe and Secure Cyber-Physical Systems

Alexander Egyed(B)

Institute for Software Systems Engineering, Johannes Kepler University, Linz, Austria
alexander.egyed@jku.at

http://www.alexander-egyed.com/

Extended Abstract. Safety and Security cannot simply be added to systems.
Neither does an architectural choice or design pattern inherently guarantee safety
and security. Nor does a safe and secure part of a system make the whole system
safe and secure. Ensuring safety and security is an engineering process. This
is especially true for Cyber-Physical Systems (CPS) where safety and security
concerns transcend hardware and software across different disciplines and across
hardware/software subsystems [1].

From an engineering perspective, safety and security reflect functionalities
that a given CPS must satisfy. Unfortunately, CPS requirements merely reflect
goals that engineers must satisfy without revealing how to satisfy them. The
implementation of safety and security concerns is thus a discovery process dur-
ing engineering – much like how engineering unfolds in general. As engineers
define and refine the structure and behavior of CPS – the design – they contin-
uously validate this design structure and behavior against security and safety
concerns [6]. For the most part, this implies that:

– Safety and security concerns are discovered incrementally during the engi-
neering process as engineers make design decisions (i.e., changing/augmenting
the structure and behavior). This discovery process is reactive and it is not
obvious to engineers when they fail to discover a safety or security concern.

– Safety and security concerns are resolved by adapting the design of the CPS.
Safety and security concerns thus cause design changes that need to be prop-
agated to all affected engineering disciplines and system/subsystems bound-
aries [5]. Often, this resolution process is ad hoc and it is not obvious to
engineers if they propagated the changes completely and correctly.

In CPS, the discovery and resolution process of safety and security concerns
tends to be done separately by every engineering discipline. While not all res-
olutions affect all these engineering disciplines, many do. Resolving safety and
security concerns thus tends to be a multi-disciplinary problem that requires
coordinated changes and augmentations to the existing design [2]. This poses a
range of challenges to the engineering process.

– Focus on collaboration: for CPS, safety and security concerns may be
detectable by individual engineers but their resolution tends to require a coor-
dinated set of changes across different engineering disciplines (co-evolution).

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 113–114, 2018.
https://doi.org/10.1007/978-3-030-02852-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_10&domain=pdf
http://orcid.org/0000-0003-3128-5427

114 A. Egyed

This not only crosses engineering discipline boundaries but also tool bound-
aries as different disciplines tend to use different kinds of engineering tools [4].
Today, it is not understood how, say, a software change affects the electrical
circuitry of a CPS [3].

– Focus on variability: CPS are inherently configurable system – often customiz-
able to specific customer requirements. Here, safety and security concerns
transcend variations of CPS. Changes to one variant may affect others [7].
More significantly, we must distinguish how safety and security affect the
engineering of a single CPS variant vs. how they restrict a customer from
reconfiguring a CPS during runtime – the latter being increasingly vital for
self-adaptable, self-healing or self-optimizing systems where customers want
increasing control over CPS with unknown effects onto safety and security.

– Focus on modularization: While a safe and secure subsystem of a CPS does
not guarantee a safe and secure CPS, a safe and secure CPS cannot be built on
unsafe or insecure subsystems. Most companies see modularization as the key
to combine software and hardware in smaller, more manageable parts – rather
than developing large, monolithic software systems. The safety and security
of the system is then the cumulative safety and security of its parts [8]. This
relationship is not yet fully understood.

References

1. Biró, M., Mashkoor, A., Sametinger, J., Seker, R.: Software safety and security risk
mitigation in cyber-physical systems. IEEE Softw. 35(1), 24–29 (2018)

2. Clerc, V., Lago, P., van Vliet, H.: The usefulness of architectural knowledge manage-
ment practices in GSD. In: 2009 Fourth IEEE International Conference on Global
Software Engineering, pp. 73–82, July 2009

3. Demuth, A., Kretschmer, R., Egyed, A., Maes, D.: Introducing traceability and con-
sistency checking for change impact analysis across engineering tools in an automa-
tion solution company: an experience report. In: 2016 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, 2–7
October 2016, pp. 529–538 (2016)

4. Demuth, A., Riedl-Ehrenleitner, M., Kretschmer, R., Hehenberger, P., Zeman, K.,
Egyed, A.: Towards flexible and efficient process and workflow support in enterprise
modeling. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 270–
281. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19243-7 26

5. Demuth, A., Riedl-Ehrenleitner, M., Lopez-Herrejon, R.E., Egyed, A.: Co-evolution
of metamodels and models through consistent change propagation. J. Syst. Softw.
111, 281–297 (2016)

6. Egyed, A., Zeman, K., Hehenberger, P., Demuth, A.: Maintaining consistency across
engineering artifacts. IEEE Comput. 51(2), 28–35 (2018)

7. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and modeling
for product variants. Softw. Syst. Model. 16(4), 1179–1199 (2017)

8. Trubiani, C., Ghabi, A., Egyed, A.: Exploiting traceability uncertainty between
software architectural models and extra-functional results. J. Syst. Softw. 125, 15–
34 (2017)

https://doi.org/10.1007/978-3-319-19243-7_26

Towards a Requirements Engineering
Approach for Capturing Uncertainty in
Cyber-Physical Systems Environment

Manzoor Ahmad1(&), Christophe Gnaho2, Jean-Michel Bruel3,
and Régine Laleau4

1 Univ Pau and Pays Adour/E2S UPPA, LIUPPA, EA3000, 64000 Pau, France
manzoor.ahmad@univ-pau.fr

2 LACL University Paris Descartes, Paris, France
christophe.gnaho@parisdescartes.fr
3 University of Toulouse, 31000 Toulouse, France

bruel@irit.fr
4 LACL University Paris-Est Créteil, 94000 Créteil, France

laleau@u-pec.fr

Abstract. By nature, Cyber-physical systems are very often subjected to
uncertainty events that can occur in their environment. This paper presents the
first results of our work on how to deal with environment uncertainty in goal-
based requirements engineering. This work is motivated by the fact that current
goal-based approaches do not natively allow for unanticipated adaptations. To
do so, we explore the introduction of RELAX concepts into SysMLKaos.
RELAX is a Requirements Engineering language for Dynamically Adaptive
Systems that includes explicit constructs to handle the inherent uncertainty in
these systems. On the other hand, SysMLKaos is a Goal Based Requirements
Engineering approach that takes into account Non-Functional Requirements at
the same level of abstraction as Functional Requirements and models the impact
of Non-Functional Requirements on Functional Requirements. We use an
extract of a Landing Gear System case study to illustrate the proposed approach.

Keywords: Critical systems � Cyber-physical systems
Goal oriented requirements modeling � Unanticipated adaptations

1 Introduction

Cyber-physical systems are very often subjected to uncertainty events that can occur in
their environment [17, 18]. For these systems, the software may need to be reconfig-
ured at run-time in order to handle new environmental conditions. We believe that the
success of their implementation depends, to a large extent, on Requirements Engi-
neering (RE) approaches that are able to explicitly capture, from the early RE phase,
the adaptability in requirements and to take into account the environmental uncertainty.
However, there has been little work on Cyber-physical systems in the field of RE
languages, but many works have been done on design and architecture issues [8].

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 115–129, 2018.
https://doi.org/10.1007/978-3-030-02852-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_11&domain=pdf

One potential way to address this issue consists of using Goal Oriented Require-
ment Engineering (GORE) [9] approaches because they are well suited to explore
alternative requirements and can then be used to represent possible alternative
behaviors when the system environment changes. However, GORE approaches would
not natively allow for unanticipated adaptations because possible behaviors are only
those predefined by the set of enumerations. Thus, the question is how can we extend
GORE with unanticipated adaptations and environmental uncertainty modeling
capability?

On the other side, RELAX language [11] is a textual RE language that deals
explicitly with uncertainty. In contrast to GORE approaches, RELAX supports the
explicit expression of environmental uncertainty in requirements. However, it lacks
some interesting features that are found in GORE approaches, such as:

• To provide support for reasoning about alternative system configurations where
different solutions can be explored and compared

• To handle the way of operationalizing/realizing the (RELAX-ed1) requirements.

Consequently, we think that it would be interesting to benefit from both GORE and
RELAX approaches by integrating them.

We have proposed in a previous work SysMLKaos [5], a GORE approach to
manage Functional Requirements (FRs) and Non-Functional Requirements (NFRs) in
critical systems. The objective of this paper is to present the current results of the
investigation on how to incorporate RELAX [11] concepts into SysMLKaos [5] and
how to ensure that the RELAX-ed requirements will be realized and later on verified
(out of the scope of this paper). In a previous work [1], we have defined a general
framework in which the present work fits. It completes the previous work with new
contributions such as the improvement and extension of the mapping rules and taking
into account both FRs and NFRs. The blue color part in Fig. 2 shows those
contributions.

This work resides at the early RE phase. It focuses on requirements elicitation and
modeling and does not deal with the development of the underlying adaptation
mechanisms. We illustrate the proposed approach by applying it on the requirements of
the Landing Gear System (LGS) [2] of an aircraft.

The remainder of the paper is organized as follows. Section 2 presents the back-
ground of the proposed work, Sect. 3 describes the proposed approach, Sect. 4 illus-
trates the proposed approach, Sect. 5 surveys the related work and Sect. 6 concludes
the paper and provides directions for future work.

2 Background

This section briefly introduces the background of the proposed work. It respectively
presents an overview of RELAX and SysMLKaos approach.

1 We use the RELAX name as a verb to indicate the insertion of RELAX operators into a requirement.

116 M. Ahmad et al.

2.1 Relax

RELAX is an RE language which provides explicit constructs to handle uncertainty
[11]. This uncertainty can be due to changing environmental conditions, such as sensor
failures, noisy networks, malicious threats, and unexpected (human) input.

Table 1 shows the vocabulary provided by RELAX to enable the analysts to
identify the requirements that may be RELAX-ed, when the environment changes. It
includes a set of operators organized into modal, temporal, ordinal and uncertainty
factors. Each of the RELAX-ation operators defines constraints on how a requirement
may be RELAX-ed at run-time. In addition, it is important to indicate what uncertainty
factors warrant a RELAX-ation of these requirements, thereby requiring adaptive
behavior. This information is specified using the MON (monitor), ENV (environment),
REL (relationship), and DEP (dependency) keywords. The ENV properties capture the
“state of the world” – i.e., they are characteristics of the operating context of the
system. Often, however, environmental properties cannot be monitored directly
because they are not observable. The MON keyword is used to identify properties that
are directly observable and contribute information towards determining the state of the
environment. RELAX is intended to be used at the software requirements phase once
hardware constraints have already been defined. In particular, physical sensors (de-
noted by MON) are assumed to be known. The REL keyword is used to specify in what
way the observables (given by MON) can be used to derive information about the
environment (given by ENV). The distinction between ENV and MON comes from the
field of control theory wherein parameters to be estimated cannot necessarily be
directly observed [11]. For example, an aircraft equipped only with direction finding
equipment cannot directly estimate its position. Rather, it can observe its distance from
a set of known waypoints and must compute its position from these measurements. In
our parlance, the aircraft position is a property of the environment, whereas the dis-
tances from waypoints are monitorable. REL would be used to define how to compute
the position from the distance measurements. Finally, requirements dependencies are
delimited by DEP, as it is important to assess the impact on dependent requirements
after RELAX-ing a given requirement.

In RELAX, the conventional modal verb SHALL is retained for expressing a
requirement while RELAX operators provide more flexibility in how and when that
functionality may be delivered. Once the requirements engineer determines that indeed
a certain level of flexibility can be tolerated, then the downstream developers, including
the designers and programmers, have the flexibility to incorporate the most suitable
adaptive mechanisms to support the desired functionality. These decisions may be
made at design time and/or run-time [4, 16]. RELAX expressions are defined by a
grammar and the semantics of RELAX expressions is defined in terms of Fuzzy
Branching Temporal Logic (FBTL) [15]. FBTL can describe a branching temporal
model with uncertain temporal and logical information. It is the representation of
uncertainty in FBTL that makes it suitable as a formalism for RELAX. RELAX also
outlines a process to transform traditional requirements in the form of SHALL state-
ments into invariant (those that cannot be changed) and RELAX-ed requirements
(those that are adaptable).

Towards a RE Approach for Capturing Uncertainty 117

2.2 SysMLKaos

SysMLKaos [5] approach is based on KAOS [9] and the NFR Framework [3]. It is
founded on two main ideas: To integrate NFRs from the early requirements engineering
phase i.e., at the same level of abstraction as FRs and to emphasize the impact of NFRs
on FRs. Figure 1 shows an extract of the SysMLKaos meta-model. Functional and non-
functional requirements are modelled as abstract goals, which are recursively refined
into sub-goals, thanks to the AND/OR refinement mechanism.

A Functional Goal (FG) that cannot be further refined into sub-goals is called
Elementary Functional Goal (EFG). A Non-Functional Goal (NFG) that cannot be
further refined is called an Elementary Non-Functional Goal (ENFG). When all the
abstract NFGs are refined into a set of ENFGs, we need to find and express solutions
that satisfied them. To do so, we use the concept of contribution. Thus, a contribution
(meta-class Contribution) captures a possible solution to satisfy an ENFG. It expresses
the way by which an ENFG could be achieved.

Table 1. RELAX vocabulary

RELAX operators Description

Modal operators
SHALL A requirement must hold
MAY…OR A requirement specifies one or more alternatives
Temporal operators
EVENTUALLY A requirement must hold eventually
UNTIL A requirement must hold until a future position
BEFORE, AFTER A requirement must hold before or after a particular event
IN A requirement must hold during a particular time interval
AS EARLY, LATE AS
POSSIBLE

A requirement specifies something that should hold as soon
as possible or should be delayed as long as possible

AS CLOSE AS POSSIBLE
TO [frequency]

A requirement specifies something that happens repeatedly
but the frequency may be relaxed

Ordinal operators
AS CLOSE AS POSSIBLE
TO [quantity]

A requirement specifies a countable quantity but the exact
count may be relaxed

AS MANY, FEW AS
POSSIBLE

A requirement specifies a countable quantity but the exact
count may be relaxed

Uncertainty factors
ENV Defines a set of properties that define the system’s

environment
MON Defines a set of properties that can be monitored by the

system
REL Defines the relationship between the ENV and MON

properties
DEP Identifies the dependency between the (relaxed and invariant)

requirements

118 M. Ahmad et al.

The characteristics of contribution are captured in Fig. 1 by the association class
ContributionFeature which provides three properties: ContributionNature, Contribu-
tionType, and ContributionLevel. The first one specifies whether the contribution is
positive or negative, the second one specifies whether the contribution is direct or
indirect and the third allows us to associate to the type of contribution (positive or
negative), a level that can range from very high to low. A positive (resp. negative)
contribution helps positively (resp. negatively) to the satisfaction of an ENFG. A direct
contribution describes an explicit contribution to the ENFG. An indirect contribution
describes a kind of contribution that is a direct contribution to a given goal but induces
an unexpected contribution to another goal. Finally, the concept of Impact is used to
express the impact of NFGs on FGs, it captures the fact that a contribution has an effect
on FGs. Indeed, the specificity of the SysMLKaos approach is the analysis and
modelling of the impact of NFGs on FGs, which can be expressed in different manners.
We have shown that NFGs may have an impact on the choices and decisions that are
taken when refining FGs and when transforming them into target systems. In addition,
analysing NFGs can lead to the identification of new FGs, which must be integrated
with the existing FG hierarchy. The analysis and modelling of the impact of NFGs on
FGs lead to a new goal model that we call integrated goal model as shown in Sect. 4.

3 The Proposed Approach

As shown in Fig. 2, the proposed approach consists of three main steps that are
respectively supported by three processes. The parts in blue color show the new
contributions.

• Identifying and expressing RELAX-ed requirements
• Mapping RELAX-ed requirements to SysMLKaos concepts
• Applying the SysMLKaos process.

Goal

+Formal description

Functional Goal Non Functional Goal

+NFGType
+Topic

Abstract NFG
Elementary NFG

+NatureNFR

1..*

1
Impact

+ImpactType
+ImpactArgument

ContributionFeature

+ContributionType
+ContributionLevel
+ContributionNatureContribution

1..*

1..*

0..*

0..*

Relationship type

And Relationship

Or Relationship

Fig. 1. SysMLKaos meta-model [5]

Towards a RE Approach for Capturing Uncertainty 119

3.1 Identifying and Expressing RELAX-ed Requirements

During this step, we take requirements (FRs or NFRs) as input in the form of SHALL
statements and apply RELAX process [11] to get those that are associated with the
adaptability features called RELAX-ed requirements and those that are fixed called
invariant requirements. Then we validate the RELAX-ed requirements with the help of
an expert. If the RELAX-ed expression is acceptable then we proceed with the next
step, if it is not acceptable, we propose two options: cancel the RELAX-ation (i.e.,

Fig. 2. The proposed approach (Color figure online)

120 M. Ahmad et al.

declare the requirements as invariant) or complement the RELAX-ed property with an
additional invariant (e.g., a max or min boundary that constraint the RELAX-ed
expression).

The resulting RELAX-ed requirements are then formalized using an editor that we
developed called RELAX COOL editor [1] that takes into account the uncertainty
factors associated with each RELAX-ed requirement. We have used Xtext2 for the
development of the RELAX COOL editor. We then use a process based on the
mapping rules explained in the next section for the conversion of RELAX requirements
(RELAX-ed and invariant) into SysMLKaos goal concepts.

3.2 Mapping RELAX-ed Requirements to SysMLKaos Concepts

To support the mapping process, we have developed a tool called RELAX2-
SysMLKaos editor [1], which is based on Atlas Transformation Language
(ATL) transformations. The implemented mapping rules are briefly explained in this
section (see Table 2).

In SysMLKaos, requirements are in the form of Abstract Goals while RELAX
requirements are in the form of RELAX-ed (or invariant) requirements. In SysMLKaos
the concept of EFG refers to a goal that cannot be further refined into sub-goals. For the
purpose of defining the mapping rules, we propose to express an EFG thanks to the
following format: Verb + Object where Object is related to properties that define the
system’s environment and Verb represents an action over this environment. For
example: EFG1: Push (the verb) command (the object) to up, EFG2: Close (the verb)
the doors (the object). In RELAX, the concept of ENV (environment) refers to prop-
erties that capture the operating context of the system. Therefore, the ENV concept of
RELAX can be mapped to the Object concept of SysMLKaos.

In SysMLKaos, an EFG is placed under the responsibility of an agent, a human
being or automated component that are responsible for achieving the goal. An agent
can be a part of the system or a part of the system environment. For example: EFG1 is
placed under the responsibility of the Pilot, EFG2 is placed under the responsibility of
electro-valves. In RELAX, the concept of MON (monitor) is used to identify properties
that are directly observable and contribute information towards determining the state of
the environment. For example: sensors, calculator, pilot etc. Therefore, we argue that
the MON concept of RELAX can be mapped to the Agent concept of SysMLKaos.

In RELAX, the concept of REL (relationship) is used to specify in what way the
observables (given by MON) can be used to derive information about the environment
(given by ENV). For example: Pilot push command up, Calculator treat the order.
Therefore, this concept can be mapped to the Agent + EFG (verb + object) concept of
SysMLKaos.

For Dependency/Impact, SysMLKaos describes it as an impact of an NFG on an
FG; it captures the fact that a Contribution has an impact on an FG, which in turn
shows the Impact of an NFG on an FG. RELAX has positive and negative dependency
which shows the dependency of a RELAX-ed requirement on another requirement.

2 https://www.eclipse.org/Xtext/.

Towards a RE Approach for Capturing Uncertainty 121

https://www.eclipse.org/Xtext/

As we said, ATL is used to support the mapping process; it provides a model
transformation language together with a toolkit. An ATL transformation program is
composed of rules that define how source model elements are matched and navigated to
create and initialize the elements of the target models. The generation of target model
elements is achieved through the specification of transformation rules. The RELAX
abstract syntax is defined in the RELAX meta-model (source) and the SysMLKaos
abstract syntax is defined in the SysMLKaos meta-model (target). An example of an
ATL transformation rule is shown in Fig. 3. It describes the mapping of RELAX-ed
requirement to SysMLKaos Abstract Goal.

3.3 Applying the SysMLKaos Process

Thanks to the SysMLKaos process, the resulting goals (from the second step) are
recursively refined into sub-goals and the impact of NFGs on FGs are analyzed and
modeled and finally integrated. This step is illustrated in the next section. For more
details on SysMLKaos process, see [5].

4 Illustration of the Approach

This section illustrates with an excerpt of the LGS case study [2], the proposed
approach.

Table 2. Mapping between RELAX and SysMLKaos

Concept RELAX SysMLKaos

Requirements description RELAX requirements Abstract goal
Environment ENV Object
Monitoring MON Agent
Relationship REL Agent + Elementary functional goal
Dependency Positive/negative Impact/Conflict (from KAOS)

Fig. 3. An example of the ATL transformation rule

122 M. Ahmad et al.

4.1 Landing Gear System Overview

The LGS of an aircraft is in charge of maneuvering landing gears and associated doors.
It is composed of 3 landing sets: front, left and right. Each landing set contains a door, a
landing gear and associated hydraulic cylinders. The action to be done at each time
depends on the state of all the physical devices and on their temporal behavior. It is
composed of three main parts: a mechanical part which contains all the mechanical
devices and the three landing sets, a digital part including the control software, and a
pilot interface.

The only human input to the system is the pilot handle: when pulled up it orders the
gears to retract, and when pulled down it orders the gears to extend. The signal from the
pilot handle is fed both to the replicated computer system and to the analogical switch.
The purpose of the analogical switch is to protect the system against abnormal behavior
of the digital part. In order to prevent inadvertent order to the electro-valves, the
general electro-valve can be stimulated only if this switch is closed. A set of discrete
sensors informs the digital part about the state of the equipment. In order to prevent
sensor failures, each of them is triplicated (i.e. each sensor is divided into three
independent micro-sensors). The architecture and the requirements of the LGS are
presented in [2].

4.2 An Illustrative Example

Step 1: Identifying and expressing RELAX-ed requirements

Let us consider one of the main FRs of the LGS: “Retract Landing Gear”.
According to the LGS document [2], the retraction of the landing gear is subject to
time-relative requirements, which can risk lives if violated. Therefore, we also consider
the NFR “timed response”. These two requirements are expressed as follows (the italic
part of the sentence corresponds to the NFR).

FR “Retract Landing Gear” and NFR “Timed Response of the Landing
Gear”: When the command line is working (normal mode), if the landing gear
command handle has been pushed UP and stays UP then the gears shall be locked UP
before a maximum delay of 5 s after the handle position has been pushed up and the
doors shall be seen closed before a maximum delay of 10 s after the gears locked up.

Once the requirements have been formulated, the requirements engineer must
examine them to determine the sources of environmental uncertainty that may com-
promise their satisfaction. For example, one of the electro-valves may fail, but since
retracting the landing gear is a critical requirement, the LGS should be able to achieve
this requirement in some other way. The identified environmental uncertainty is then
documented using the RELAX uncertainty factors. They are summarized in Table 3.

Based on the documented environmental uncertainty factors, the requirements
engineer must identify requirements (or the part of the requirements) that may be
RELAX-ed at run-time when the environment changes. For example, it may be
acceptable to temporarily RELAX the closing of doors that can be considered as a non-
critical requirement in an emergency situation in order to ensure that the retraction of
the gears, which is considered as critical for the flight safety, can still be met. For that,

Towards a RE Approach for Capturing Uncertainty 123

the RELAX-ed requirements are augmented with RELAX vocabulary in order to
declaratively specify where flexibility in the behavior is tolerated. The RELAX-ed
version of the above requirement is given below:

Relax-ed version of FR “Retract Landing Gear” and NFR “Timed Response of
the Landing Gear”:When the command line is working (normal mode), if the landing
gear command handle has been pushed UP and stays UP then the gears shall be locked
UP before a maximum delay of 5 s after the handle position has been pushed up and
the doors shall be seen closed AS SOON AS POSSIBLE after the gears locked up.

Step 2 and Step 3: Mapping RELAX requirements to SysMLKaos concepts and
applying the SysMLKaos process

The next step consists of applying the RELAXToSysMLKaos mapping rules in
order to convert the RELAX requirements into SysMLKaos goal concepts. Thus, the
above requirement is first transformed to the following two abstract goals:

• Functional Goal [Retract Landing Gear]: InformalDef: When the command line is
working (normal mode), if the landing gear command handle has been pushed UP
and stays UP then the gears will be locked UP and the doors will be seen closed

• Non-Functional Goal [TimedResponse (Landing Gear)] InformalDef: The gears
shall be locked up BEFORE a maximum delay of 5 s after the handle position has
been pushed up and the doors shall be closed AS SOON AS POSSIBLE after the
gears locked up.

Thanks to the SysMLKaos process, the two abstracts goals are then refined in
parallel, in two distinct goal models. It is important to note that the refinement of these
goals is partly guided by the documented environmental uncertainty information and
by the RELAX-ed expressions. For example, thanks to the correspondence rules, the
MON and REL are particularly useful to identify SysMLKaos elementary FGs along
with their related agents. The RELAX-ed expressions are useful to identify temporal
constraints on some sub-goals. Figure 4 presents an overview of the two goal models.
The FG “Retract landing gear” is refined using the “AND refinement” into five sub-
goals: Push command to Up, Treat the order, Open the doors, Lock up the gears and
Close the doors. The NFG “TimedResponse [Landing Gear]” is “AND refined” into the
following two sub-goals: TimedResponse [Gears]: “Globally the gears must occur

Table 3. Retract landing gear

Uncertainty factors Description

ENV Command, order, doors, gears
MON Pilot, Calculator, Electro-valves, Cylinder
REL Pilot pushes the command to up

Calculator treat the order
Electro-valves handle the command of the gears retraction
Cylinder do the gears retraction
Cylinder do the doors closing
Cylinder do the doors opening

124 M. Ahmad et al.

(locked up) before a maximum delay of 5 s after the handle position has been pushed
up” and TimedResponse [Doors]: “Globally, the doors must occur (close) as soon as
possible after the gears locked up”.

As shown in Fig. 4, the contribution “Ensure timed order control” represents an
alternative way to contribute positively to the satisfaction of the two sub-goals. In
addition, this contribution has an impact on the FGs “Lock up the gears” and “Close the
doors”. This impact should be reflected in the FG model that thereby needs some
changes that result in a new FG.

Figure 5 shows the new FG goal model where the two goals “Lock up the gears”
and “Close the doors” are associated to timed constraints, meaning that their
achievement is constrained by some delay. For instance, “the landing gears must be
locked down within a maximum delay of 5 s”. Timed constrained goals are graphically
represented by rectangles with pictograms. Moreover, the fulfillment of the three goals
(Push command to up, lock up the gears and close the doors) is ordered, which is
graphically represented by the annotated links. Finally, the And-refinement is replaced
by a milestone refinement, which consists of identifying the sub-goals as successive
steps in time to satisfy the parent goal.

Fig. 4. An excerpt of the SysMLKaos model of the FG and NFG

Towards a RE Approach for Capturing Uncertainty 125

5 Related Work

Numerous works on Cyber-physical systems have been focused on design and archi-
tectural concerns [8, 12–14]. They tried to cover many challenges of modeling aspects
that arise from the intrinsic heterogeneity, concurrency and sensitivity to timing of such
systems. Unfortunately, there have been few proposals that explicitly capture, from the
early requirements phase, unanticipated adaptations inherent in such systems. In the
following, we summarize the most popular and discuss their differences with respect to
our approach.

Thanks to the concept of alternative requirements, Goal-based modeling approa-
ches such as i* [7] and KAOS [9], have been applied to the modeling of requirements
of Cyber-physical Systems. While these approaches are useful for eliciting and spec-
ifying requirements from the early requirements phase, the modeler must explicitly
identify and express all possible alternative behaviors. However, it is impossible to
know at the RE phase all of the possible combinations of environmental conditions that
will be encountered. In addition, these approaches do not explicitly provide process
models to help this modeling activity. In this paper, we go beyond by allowing
unanticipated adaptations and by providing a specific process model.

AutoRELAX [10] is an approach that addresses the environmental uncertainty by
identifying which goals to RELAX, which RELAX operators to apply and the shape of
the fuzzy logic function that defines the goal satisfaction criteria. AutoRELAX needs a
prototype of the system to be, in order to be able to generate goal models of only the
FRs that the system must satisfy; it does not address NFRs. In [6], the authors propose a
process model based on i* [7] to describe uncertainty in the requirements goal models.
This approach considers a system as a composition of numerous target systems, each of
which supports behavior for a different set of environmental conditions. At run-time,

Fig. 5. An excerpt of the integrated goal model

126 M. Ahmad et al.

the system transitions from one target system to another, depending on the environ-
mental conditions. Like traditional GORE approaches, this approach needs to know at
requirements phase all the possible target systems. In [4], the authors use RELAX
specification language to specify more flexible requirements within a goal model to
handle uncertainty. This work is in some aspect close to our work as they try to
integrate RELAX with goal model. The main difference is that we consider both FRs
and NFRs and we explicitly analyze and describe the impact of NFRs on FRs.

6 Conclusion and Future Work

In this paper, we have investigated on how to incorporate RELAX [11] concepts into
SysMLKaos [5] in order to deal with environmental uncertainty at goal level, in both
FRs and NFRs. For that, we have introduced an approach that takes RELAX-ed
requirements as input and then transform it into SysMLKaos goal concepts. We have
illustrated the approach by applying it to the LGS of an aircraft [2].

The need to integrate RELAX with SysMLKaos arose from the fact that GORE
approaches suppose that all possible alternative behaviors must explicitly be enumer-
ated. This approach would not allow for unanticipated adaptations because possible
behaviors are only those predefined by the set of enumerations. However, changing
environment factors makes it difficult to anticipate all the explicit states in which the
system will be during its lifetime. GORE approaches are not thus sufficient to handle
the uncertainty; in particular, we must some time add flexibility to the goal in order to
take into account the uncertainty. By using RELAX, the environmental uncertainty
associated with RELAX-ed/adaptable requirements are captured and thus represented
in the SysMLKaos models. The SysMLKaos models present different alternative
solutions (thanks to the contribution goal concept) to satisfy NFGs and the impact
(thanks to the impact concept) of these solutions on FGs. The use of RELAX helped us
in eliciting the uncertainty factors associated with requirements and eventually the
contribution goals of SysMLKaos which were not possible by using the traditional
process of requirements engineering.

This is an ongoing work as till now, we treat only requirements modeling. We plan
to formally verify some of these properties in the early phase of software development,
using for example Event-B, as we did for SysMLKaos [19]; in this way, we can bridge
the gap between the requirements phase and the initial formal specification phase. We
are also interested in integrating MAPE [12] feedback loop in our proposed approach
that operationalizes the system’s adaptability mechanisms. We also plan to look for the
requirements dependencies; once we decide to RELAX some requirements; what
impact it induces on invariant requirements as for the time being, we only treat the
dependency/impact between RELAX-ed requirements.

Towards a RE Approach for Capturing Uncertainty 127

References

1. Ahmad, M., Belloir, N., Bruel, J.-M.: Modeling and verification of functional and non-
functional requirements of ambient self-adaptive systems. J. Syst. Softw. 107, 50–70 (2015).
https://doi.org/10.1016/j.jss.2015.05.028

2. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07512-9_1

3. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

4. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach to
develop requirements of an adaptive system with environmental uncertainty. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04425-0_36

5. Gnaho, C., Semmak, F., Laleau, R.: Modeling the impact of non-functional requirements on
functional requirements. In: Parsons, J., Chiu, D. (eds.) ER 2013. LNCS, vol. 8697, pp. 59–
67. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14139-8_8

6. Goldsby, H.-J., Sawyer, P., Bencomo, N., Cheng, B.-H.-C., Hughes, D.: Goal-based
modeling of dynamically adaptive system requirements. In: Proceedings of the 15th IEEE
International Conference on Engineering of Computer-Based Systems, Belfast, Northern
Ireland, March 2008

7. i* Homepage. http://www.cs.toronto.edu/km/istar/
8. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Briand, L.C.,

Wolf, A.L. (eds.) FOSE, pp. 259–268 (2007)
9. Lamsweerde, A.-V.: Requirements Engineering: From System Goals to UML Models to

Software Specifications, 1st edn. Wiley, Hoboken (2009). ISBN 978EUDTE00270
10. Ramirez, A.J., Fredericks, E.M., Jensen, A.C., Cheng, B.H.C.: Automatically RELAXing a

goal model to cope with uncertainty. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012.
LNCS, vol. 7515, pp. 198–212. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33119-0_15

11. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.-H.-C., Bruel, J.-M.: RELAX: incorporating
uncertainty into the specification of self-adaptive systems. In: Proceedings of the 2009 17th
IEEE International Requirements Engineering Conference, RE, RE 2009, Washington, DC,
USA, pp. 79–88. IEEE Computer Society (2009)

12. Derler, P., Lee, E.A., Sangiovanni, A.: Modeling cyber-physical systems. Proc. IEEE 100
(1), 13–28 (2012)

13. Lee, E.A., et al.: Classes and inheritance in actor oriented design. ACM Trans. Embed.
Comput. Syst. 8(4), 29:1–29:26 (2009)

14. Mosterman, P.J., Vangheluwe, H.: Computer automated multi-paradigm modeling: an
introduction. Simul. Trans. Soc. Model. Simul./Int. J. High Perform. Comput. Appl. 80(9),
433–450 (2004)

15. Seong-ick, M., Lee, K.H., Lee, D.: Fuzzy branching temporal logic. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 34, 1045–1055 (2004)

16. Blair, G.-S., Bencomo, N., France, R.-B.: Models@run.time. Computer 42(10), 22–27
(2009). Run.Time@

17. Chipman, W., Grimm, C., Radojicic, C.: Coverage of uncertainties in cyber-physical
systems. In: GMM/ITG/GI-Symposium Reliability by Design, ZuE 2015; 8, Siegen,
Germany, pp. 1–8 (2015)

128 M. Ahmad et al.

http://dx.doi.org/10.1016/j.jss.2015.05.028
http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://dx.doi.org/10.1007/978-3-642-04425-0_36
http://dx.doi.org/10.1007/978-3-319-14139-8_8
http://www.cs.toronto.edu/km/istar/
http://dx.doi.org/10.1007/978-3-642-33119-0_15
http://dx.doi.org/10.1007/978-3-642-33119-0_15

18. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in
cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn, H. (eds.) ECMFA
2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-42061-5_16

19. Tueno Fotso, S.J., Mammar, A., Laleau, R., Frappier, M.: Event-B expression and verification
of translation rules between SysML/KAOS domain models and B system specifications. In:
Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817,
pp. 55–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_5

Towards a RE Approach for Capturing Uncertainty 129

http://dx.doi.org/10.1007/978-3-319-42061-5_16
http://dx.doi.org/10.1007/978-3-319-42061-5_16
http://dx.doi.org/10.1007/978-3-319-91271-4_5

Assessment of Emerging Standards
for Safety and Security Co-Design

on a Railway Case Study

Christophe Ponsard1(B), Jeremy Grandclaudon1, Philippe Massonet1,2,
and Mounir Touzani2

1 CETIC Research Centre, Gosselies, Belgium
{christophe.ponsard,jeremy.grandclaudon,philippe.massonet}@cetic.be

2 PhD Researcher, Toulouse, France
mtouzani64@gmail.com

Abstract. Design for safety-critical software intended for domains like
transportation or medical systems is known to be difficult but is required
to give a sufficient level of assurance that the system will not harm or
kill people. To add to the difficulty, systems have now become highly
connected and are turning into cyber-physical systems. This results in the
need to address intentional cyber security threats on top of risks related
to unintentional software defects. Different approaches are being defined
to co-engineer both software security and safety in a consistent way. This
paper aims at providing a deeper understanding of those approaches and
the evolution of related standards by analysing them using a sound goal-
oriented framework that can model both kind of properties and also
reason on them in a risk-oriented way. In the process interesting co-
design patterns are also identified and discussed. The approach is driven
by a real world open specification from the railways.

Keywords: Cyber security · Safety · Goals · Threats · Co-design
Standards

1 Introduction

The engineering of critical system for safety and the protection of computer
systems against cyber security threats have for long been two disconnected dis-
ciplines taking place in different contexts. Both disciplines are actually risk man-
agement disciplines including quite similar identification, evaluation and reduc-
tion phases [14]. However, they are considering different kinds impacts also with
different mode of occurrence of events leading to the materialisation of risks (i.e.
random risks impacting human health/live or environment state vs deliberate
attack resulting in loss of integrity, confidentiality or availability in the infor-
mation system). More globally safety is part of dependability which shares a
number of attributes with security such as integrity and availability [1].

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 130–145, 2018.
https://doi.org/10.1007/978-3-030-02852-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_12&domain=pdf

Safety and Security Co-Design Assessment 131

As systems are becoming increasingly software-based and connected, there is
a current evolution trend towards cyber-physical systems (CPS) tightly combin-
ing physical monitoring/control actions with an elaborated digital model inside
a computation and a communication core [24]. Safety critical systems especially
concerned with this evolution into CPS. CPS require to rethink about the way to
design for safety and security [2]. Both dimensions have to be considered together
as they can impact each other: a security vulnerability in a connected car could
be used to disable braking while on a highway resulting in potential loss of con-
trol and crash [7]. Reinforcing security also impacts system usage resources that
could threaten the ability to delivery safety functions. Conversely, the increased
complexity required by a safety architecture can also increase the attack surface
from the security point of view. The fact that many CPS and critical systems
are designed to have a long service life also increases the problem of exposure,
this is especially the case in aeronautics and railways [30].

Although the field is not new [22], trying to combine safety and security has
gained a lot of attention over the past few years given the current evolution
towards CPS. A number of methods have been proposed, some more generic [20,
23,29] while others target specific domains like automotive [19,26,27], nuclear
industry [6,21], railways [5,9,10]. Most approaches use some form of analysis
based on improved and/or combined version tree-based analysis that have been
defined in each field (e.g. fault tree, attack tree, HAZOP, FMEA, etc).

Fig. 1. Overview of risk management frameworks down to safety and security levels.

Standardisation has also started to tackle this specific area based on existing
standards in both areas. Figure 1 shows the emergence of specific area for the
cyber security of industrial system (with standards like CEI62443 [13]). Those
are in strong intersections with the IT security domain (typically based ISO27K
standards) and functional safety (typically based on IEC61508 [12] and domain-
specific derivatives). The whole field is also following a standard risk assessment
approach as described by the ISO31000 series [14].

The purpose of this paper and our related contribution is twofold. First, we
want to explore the currently emerging approaches, especially from a standardis-
ation point of view because safety and security critical systems are quite system-
atically subject to compliance with standards of those fields and the evolution

132 C. Ponsard et al.

towards combined standards has to be integrated and also provides interesting
opportunities of improving processes while keeping the overhead under control.

Second, after having identified emerging approaches, we perform a case-
based assessment based on a subset of the real-world case study from the railway
domain: the automated train operation (ATO) over the European Train Con-
trol System (ETCS) which is openly available [28]. To drive this assessment, we
rely on a goal-based requirements engineering framework [16]. Our aim is not to
propose yet another notation to solve the problem but just use it as reference
because of its proven ability to capture and reason about requirements especially
for safety through the concept of obstacle [17] and for security through the con-
cept of anti-goal [18]. We have also already proposed a combined approach [23].

This paper is structured as follows. Section 2 will give some background about
specific approaches in safety and security only standards. It will also highlight our
goal-oriented framework. Section 3 will describe possible emerging approaches
and how standards are evolving to deal with them. Section 4 will present our
case study and Sect. 5 will discuss some lessons learned. Finally Sect. 6 will draw
some conclusions and identify further areas of research.

2 Background

2.1 Safety Standards

Safety standards have been defined in many different industrial sectors as
depicted in Fig. 2.

Fig. 2. Overview of safety standards across domains

A number of sectors rely on the same generic standard: the IEC 61508 [12]
which is intended to be a basic functional safety standard applicable to all kinds
of industry. It defines functional safety as: “part of the overall safety relating
to the EUC (Equipment Under Control) and the EUC control system which
depends on the correct functioning of the E/E/PE safety-related systems, other

Safety and Security Co-Design Assessment 133

technology safety-related systems and external risk reduction facilities”. It cov-
ers the complete safety life cycle and may need interpretation to develop sec-
tor specific standards. For railways, EN50126/8/9 provide such domain specific
interpretations respectively for the system, software and hardware levels [4].

Standards are actually quite similar in principles and structure. This is of
course quite understandable for those deriving from IEC61508. However, even
other non IEC 61508 related standards have strong commonalities summarised
here and fully discussed in [3].

– all domains share the same fundamental basis where the categories repre-
sent the risks associated to the end effects of the potential failures of the
considered system. Risks are classically measured by a combination of their
severity and occurrence probability or likelihood with different codification
(SIL, ASIL, DAL, ...). These notions can be considered as equivalent provided
an acceptability frontier is well defined.

– Railway systems take the same approach than aeronautics, nuclear and space:
it starts from a system (top level) function, which inherits its category from
the category of the risk induced by its potential failures. Then categories are
derived following the functional decomposition and finally allocated to the
elements implementing the functions. The situation is different for automotive
where safety goals are defined for the identified risks, then further refined into
safety requirements, and finally into architectural components. Categories are
allocated first to the safety goals and derived to safety requirements and
finally components. This provides a different perspective and an interesting
way of reasoning. However, in practice the result is similar given it also relies
on the propagation and end effects of failures.

– About guidance: for railways and space, there is no provided guidance: One
must follow the generic allocation rule. In contrast, aeronautics and automo-
tive standards provide detailed guidance and specific rules.

2.2 Cyber Security Standards

The landscape of security standards is very large and less structured than for
safety standards. An inventory based on 25 existing overview studies identified
more than 180 standards. Some of them have however emerged and are being
largely adopted. Table 1 shows a widely acknowledged top ten [11].

The above standards will be described in more details with other less popular
yet relevant standards for the transportation domain. The following dimensions
can be used to understand the respective position of all those standards:

– Identifying attributes like: generic vs domain specific, national vs interna-
tional, draft/released/revision, implicit or explicit link with another standard

– Coverage level of the workflow for the management of security including iden-
tification of threats, protecting against them, detecting an attack, responding
to it and recovering from potential damage. Those 5 steps are actually the
main functions defined by the NIST SP-800 in its Cyber Security Framework

134 C. Ponsard et al.

Table 1. Top 10 cyber security frameworks.

Title Source Origin Language Type Vital sector

ISO/IEC 27002 ISO/IEC International English Standard General

ISO/IEC 27001 ISO/IEC International English Standard General

NERC CIP 002 - 009 NERC USA English Standard Energy

NIST SP-800 series NIST USA English Guideline General

ISA/IEC 62443 ISA USA English Framework Industry

AGA No. 12 AGA USA English Best practices Telecommunications

COBIT 5 ISACA International Multiple Method General

ISO/IEC 15408 ISO/IEC International English Standard General

API 1164 API USA English Standard Energy

PCI-DSS PCI International Multiple Standard Finance

(CSF) but this kind of classification is present in the vast majority of stan-
dards. As one of the most popular, the CSF tends also to become a reference
comparison point. As a further refinement step a whole hierarchy of security
controls is usually associated to those high-level functions and the CSF helps
in identifying adequate controls provided by various standards, each having
a specific focus and coverage.

– The organisation depth of the standards which can be strategic (governance
level), tactical or operational (about people, processes and technology).

2.3 The KAOS Goal-Oriented Framework

In KAOS, different abstraction levels to express goals can range from high-level
strategic goals like “Maintain [SafeTrainOperation]” down to operational goals
such as “Achieve [Train Stopped if ATO automatic disengagement not acknowl-
edged]”. High-level goals can be progressively refined into more concrete and
operational ones through relationships, linking a parent goal to several sub-
goals, with different fulfilment conditions using either “AND-refinement” (all
sub-goals need to be satisfied) or “OR-refinement” (a single sub-goal is enough,
i.e. possible alternatives). The “WHY” and “HOW” questions can be used to
conveniently navigate to parent and sub-goals, respectively. This results in a
goal tree structure. The goal decomposition stops when reaching a goal con-
trollable by an agent, i.e. answering the “WHO” question about responsibility
assignment. These goals are either requirements on the software or expectations
on the behaviour of agents in the environment. Domain properties can also be
considered to justify a refinement. Such properties are intrinsically valid like the
law of physics relating car deceleration with its mass.

A KAOS model is structured in four sub-models: the goal, agent, operation
and object models which are depicted in Fig. 3. This paper will only focus on a
subset of concepts represented in grey and located in the goal and agent models:

– The goal model structures functional and non-functional goals of the consid-
ered system. It also helps identify potential conflicts and obstacles related
to goals and reason about their resolution. It is graphically represented as

Safety and Security Co-Design Assessment 135

a goal tree. Obstacles can be used to reason about safety and the method
supports a number of techniques to identify hazards and help in addressing
them through avoidance, mitigation, repair or tolerance techniques [17]. On
the security side, a more specialised concept of anti-goal is also available as
well as dedicated techniques for dealing with attacks on system goals [18].

– The agent model is used to identify the agents of both the system and the
environment as well as their interface and responsibilities. Attacker agents
trying to intentionally disturb or disrupt the system will also be captured
along with the corresponding anti-goal.

Fig. 3. Extended KAOS meta-model with obstacles and anti-goals

In order to support the above approach, we have extended the Objectiver
GORE tool [25] mainly with the ability to tag goals and obstacles with their
safety or security nature. This nature is modelled as an extra meta-model
attribute and is graphically displayed as decorator on goal diagrams. It can
be used as filter in reports and diagrams. The notion of attacker which was not
yet supported was also added. Our extension takes the form of a tool plug-in
[23]. It is illustrated in Fig. 4. Similar extensions can also be developed for other
requirements or system engineering tools (e.g. CAPELLA).

3 Standards Addressing Safety and Security Co-Design

3.1 Overview of Possible Approaches

Considering how to cope with safety and/or security when designing system, a
whole spectrum of combination can be considered, ranging from pure security to
pure safety approaches as depicted in Fig. 5. A quite exhaustive literature review
has been consolidated by the MERGE project [20] and more precisely identifies
four possible approaches:

136 C. Ponsard et al.

Fig. 4. Goal-based modelling notations for safety and security co-engineering

– Security and safety (especially the processes) are considered totally sepa-
rately. In this case, only interactions between processes are needed.

– Security is considered at the service of safety. In this case the Safety engi-
neering processes, methods and tools are updated with concepts and consid-
erations from the security field. Conventional techniques for analysing Safety
risks (HAZOP, FMEA, fault tree, ...) are modified to consider security giving
rise to specialized versions of these methods (e.g. FMVEA, CHASSIS).

– Safety is considered to improve security practices benefiting from the maturity
of safety practices. This leads security to provide a system view.

– Security and safety are addressed together by co-engineering. This approach
also leads to a unification of processes, methods and tools.

Fig. 5. Spectrum of methods to address security and safety [15]

The above approaches are not all equally suitable:

– The separate approach to security and safety leads to important costs for
companies due to the duplication of processes, methods, tools and the need
to iterate between approaches. While temporary acceptable, it cannot remain
appropriate for interconnected systems with increasing complexity.

Safety and Security Co-Design Assessment 137

– Dealing with security before safety does not make a lot of sense given that
vulnerability connected with safety threats cannot be addressed.

– Considering security at the service of safety might also result in wrong pri-
orities to shield the system. Some components may also have security needs
disconnected from safety that are not correctly addressed.

The rest of this section will report four emerging trends with the following
characteristics:

– a safety first approach based on existing standards that are combined through
a combined risk assessment approach

– a safety first approach through the IEC TR 63074 “gapping” standard
– a parallel approach through the IEC TR 63069 “gapping” standard where

evolving safety requirements can be managed from a security point of view
– another mixed approach proposed by International Society of Automation

where a safety lifecycle is increased with security threats.

3.2 Combining Existing Safety and Security Standards

Without considering any new standards, many safety and security standards are
actually risk based with many potential synergies. It is thus quite natural to
consider how to combine ISO27K derivatives such as IEC62443 with standard
process safety management systems (e.g. IEC 61508) in order to reach more
robust safety and security outcomes but also to lower cost compared with running
both management processes independently.

Starting from the risks, information security and functional safety have quite
different risks and impact different kind of assets. Information security is con-
cerned with the protection of information (computerised or paper based), the
generic risks to which are confidentiality, integrity and availability (CIA). On the
other hand, process and functional safety exist to protect a system by addressing
its associated generic risks – people (safety), environment, asset and reputation
(PEAR). A combined PEARS (‘S’ denoting security) approach puts safety in
the forefront of security decisions while accurately identifying all relevant con-
trol system components, and addressing the impact of security on SIL (Safety
Integrity Level) determination.

Experiences report several benefits to build a cyber security case on the
foundations laid by a PEAR risk assessment when compared to purely security
oriented approach considering its impact on PEAR later:

– it triggers early dialogue between safety engineers and security analysts
– security decisions are based on real risk opposed to just cyber risk
– the risk assessment process is simplified by chaining safety and security

matrixes as shown in Fig. 6
– implementation and administration costs are reduced
– if provides a better evaluation of the impact of security on SIL.

138 C. Ponsard et al.

Fig. 6. Simplified risk assessment through a two-stage process [8]

3.3 IEC TR 63074 - Security Aspects Related to Functional Safety
of Safety-Related Control Systems

This standard is also in elaboration phase by group TC44/WG15 of the ISO
(International Standard Organisation) addressing security aspects related to
functional safety of safety-related control systems. It takes the other approach
advocating for performing safety analysis first to have a complete list of safety
functions and assets which are passed to the security analysis. Measures pro-
duced for safety and security are also cross-checked in a realization phase. An
example is the protection of a program or parameter in a PLC. The security
team must know the architecture produced by the safety team (e.g. corruption
against memory failure) to protect against deliberate corruption by attacker.

3.4 IEC TR 63069 - Framework to Bridge the Requirements
for Safety and Security

TR 63069 is not an independent standard but aims to identify and clarify sev-
eral gaps between both standards regarding concepts, terms, lifecycles, etc. It
also proposes some recommendations to be able to manage the processes of each
standard together. It is elaborated by group TC65/WG20 which advocate for a
strong (parallel) co-engineering approach. Safety and security teams can carry
work independently starting from the same design and performing risk assess-
ment and producing counter-measures. However, if in this process additional
safety functions are introduced, they need to be input to the security team for
analysis. Counter-measures can be conflicting (e.g. security impacting safety)
and this is detected and resolved at the common realisation phase.

3.5 ISA-TR 84.00.09-2017 - Cyber Security Related
to the Functional Safety Lifecycle

This standard is intended to address and provide guidance on integrating the
cyber security lifecycle with the safety lifecycle as they relate to Safety Con-
trols, Alarms, and Interlocks (SCAI), inclusive of Safety Instrumented Systems
(SIS). Its scope includes the work processes and countermeasures used to reduce

Safety and Security Co-Design Assessment 139

the risk involved due to cyber security threats to the Industrial Automation
and Control System (IACS) network. It provides recommendations to ensure
SCAI are adequately secured due to the potential for cyber-attacks that can
act like common mode failures that initiate a hazardous demand and prevent
instrumented protection functions from performing their intended purpose. The
intent is to address cyber security from both external and internal threats but
not the physical plant protection. It issues a number of recommendations about
secondary requirements on counter-measures, such as impact on performance,
response time, interoperability, reliability and communication speed.

4 Assessment on a Railway Case Study

4.1 Case Study Presentation

Although quite a conservative industry, railways are now quickly going digital
both on the trackside and the rolling stock. For example, railways signalling
systems have reached such a level of interconnection and automation that they
cannot be considered in isolation any more and thus require to consider a whole
set of new threats. At the same time, the increasing level of automation in train
operation is also introducing challenging new safety requirements.

The context is the European Rail Traffic Management System (ERTMS)
composed of ETCS and GSM-R wireless communication systems for railways.
It is further decomposed into a number of subsystems on the trackside (like
Interlocking, Separation) and onboard (like European Vital Computer, Radio
Transmission Unit, Driver Machine Interface), connected through GSM-R.

Our case study is based on the openly available specification of Automated
Train Operation (ATO) over the European Train Control System (ETCS) [28].
The main goal of the ATO over ETCS is to efficiently manage varied service
patterns including mixed-traffic, increase transport capacity, save energy, reduce
mechanical wear and increase passenger comfort. As its name suggest, ATO
provides automated train operation but it can only drive the train automati-
cally in areas where ETCS is guaranteeing the safe train movement. Actually
ETCS is providing the safety critical train protection while ATO itself is non-
critical. While reasoning on the ATO system, safety requirements must eventu-
ally be assigned to safety system like the ETCS. It is composed of more than 200
requirements divided into 10 main categories (or principles) including safe move-
ment, operation, supervision and emergency situations. Each requirement can
be supported by one or several of the four Grade of Automation (GoA) modes,
ie. non-automated, semi-automated, driverless and unattended train operation.
Note the specification does not explicit any security requirements: those need to
be discovered using the process described below.

4.2 Process Followed

In order to assess the approaches described in the previous section, we will build
a goal-oriented model using a more generic approach based on obstacle and
anti-goals identification and resolution techniques using the following process:

140 C. Ponsard et al.

1. initial structuring of goals from the specification
2. safety-related sub-process (decorated using “SAFE”) [17]

– generate and refine obstacles using techniques such as domain regression,
obstacle completion, patterns.

– address obstacles using anticipation/resolution goals, by deidealising
obstructed goals, introducing agent with extra monitor/control capabili-
ties.

3. security-related sub-processs (decorated using “SEC”)[18].
– generate anti-goals by negating CIA goals and identify potential attackers

benefiting from them
– refine anti-goals until realizable by an attacker in terms of information

that can be captured/altered, considering known vulnerabilities
– address leaf anti-goals by reducing attacker monitor/control capabilities,

using defence patterns for stronger CIA goals, detecting attackers, ...
4. perform risk/cost analysis and iterate using 2 and/or 3 over the whole goal

model until residual risk acceptable.

4.3 High Level Goals

Figure 7 shows the key high level goals for implementing ATO over ETCS system.
It is composed of goals covering functional safety, efficiency, interoperability
and evolution. This diagram does however not claim to fully cover the source
document [28]. Among the identified goals, for space reasons, only two will be
detailed to show how security and safety potentially impact each other: point to
point operation and management of GoA transition.

Fig. 7. High level goals of the ATO over ETCS

Safety and Security Co-Design Assessment 141

4.4 Analysis of Point to Point Operation

Figure 8 shows the point to point operation which follows a milestone pattern,
i.e. going through successive states of departure, transportation and arrival [16].
Only the two later are detailed using the notations introduced in Sect. 2.3.

Fig. 8. Partial analysis of point to point operation

– Safe transportation can be compromised due to profile that does not match
reality, the analysis can reveal it could result from corrupted profile (possibly
due to communication failure or an attacker). As those are loaded prior to
departure, an integrity check should avoid this. The other reason is that
the train is “lost” in the profile: i.e. the experienced reality does not match
the profile with enough accuracy. This could be caused by different reasons:
sensor problem, change in the line or error (intentional or not) introduced in
the profile. This case should be monitored and when detected, the automated
system should disengage as lack of reliability can result in safety issues.

– Safe automated stopping can be inaccurate. Inaccuracy can to some extent
be detected and corrected automatically but if the overshot or undershot is
too high then the trains will stop safely (doors closed) until the human driver
corrects the problem.

Next to each requirement, a mixed view of the result of the hazard/threat
analysis is shown (those are usually presented in separate diagrams). Specific
obstacles are tagged as SAFE or SEC depending on the process that identified
them. Specific attacker profiles can also be captured (unique here). Some reso-
lution techniques proposed in [18] can then be applied, e.g. to make the attack
unfeasible or to reduce its impact. Some resolutions can also address mixed
threats and reduce the global cost to make the whole system dependable.

142 C. Ponsard et al.

4.5 Managing GoA Transitions

Another critical aspect is the management of transitions between different GoA
modes. Different scenarios can result in the disengagement of the automated
mode and their impact is explored in Fig. 9. In this case the driver should be
warned and asked to acknowledge. The trackside can also decide to increase the
GoA level which can conflict with the driver’s wish to take back control, so the
priority should be carefully analysed. The driver needs priority as (s)he is closer
to the reality. However, on the other side if a driver is not able to ensure its
duty, the system must be able to take over. On the security side, this could be
exploited to take control of a train. So the link with the driver should be secured
as the movement authority in charge. Of course, more sophisticated attack can
be considered and can be refined at the second or even third level of residual
risks if necessary (i.e. considering impact vs cost to cover the risk).

Fig. 9. Partial analysis of transitions among GoA levels

5 A Few Lessons Learned

In our partial case study, safety goal were challenged first while refining the
hazard security related issues popped at some level. In some case attacks tree
where introduced while improving some safety design meaning it is important
to be able to have a communication channel with the security team as stressed
in the 63069 standard. There was no real evidence of impact of security back

Safety and Security Co-Design Assessment 143

to safety although competing for computation resource can result in conflicts
(as stressed by ISA-TR 84.00.09). However, those can be solved using adequate
architecture, typically by ensuring separation of safety and security processing.

From an engineering point of view, our work highlights scenarios involving
different roles working together on the design model: the system engineer for the
global system behaviour and architecture, the safety engineer to identify failure
modes and their propagation, and security engineers to analyse possible attacks.
Regular reviews can also take place to perform a global validation gathering all
analysts. Actually rather than having a rather static view as proposed by the
standards, more dynamic and tightly integrated engineering practices are also
possible when considering a model-based approach because many modelling tool
(including ours) are now web-based and collaborative.

Based on our current practice in railways but also on an automotive case and
our review of similar work, we also believe that an interesting body of knowl-
edge can be gathered to provide a guide into the challenging process of achieving
safety and security co-design. Even if separate specialists would be required for
large systems, it would give a common culture consisting of integrated analy-
sis notation, check-lists and techniques to trigger the discovery of hazards and
threats and a library of patterns capturing the interplay between security and
safety (e.g. securing critical commands/sensor data, managing communication
channels, performing configuration/software updates).

6 Conclusion and Future Work

In this paper, we surveyed the landscape of standards addressing the need to
co-design safety and security. We identified different ways to manage both dimen-
sions, highlighting a few realistic approaches and how standards are evolving.
We used the KAOS framework to drive our decision process about a good way
to perform co-engineering of safety and security in the spectrum of proposed
methods and standards. We illustrated our assessment on a public railway case.
Although limited in scope, our model highlights interesting knowledge we gained
about how different kind of requirements and roles can interact. We also believe
this can apply to other CPS where safety is crucial and challenged by security
threats in constant evolution.

We plan to further refine our approach in an industrial context. We are
currently recording the process on a 3 year railway development project in order
to report in more details about the complexity and effort required in different
phases. We will also consider runtime updates and emergent properties. We could
also use formal modelling and reasoning in a targeted way.

Acknowledgements. This work was partly funded by the DIGITRANS project of
the Walloon Region (grant nr. 7618). We also thanks the reviewer for their detailed
comments.

144 C. Ponsard et al.

References

1. Avizienis, A.: Basic concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

2. Biro, M., Mashkoor, A., Sametinger, J., Seker, R.: Software safety and security
risk mitigation in cyber-physical systems. IEEE Softw. 35(1), 24–29 (2018)

3. Blanquart, J.P., et al.: Criticality categories across safety standards in different
domains. In: ERTS-2012, Toulouse (2012)

4. CENELEC: EN 50128 - Railway applications - Communications, signalling and
processing systems - Software for railway control and protection systems (2011)

5. Chen, B., et al.: Security analysis of urban railway systems: the need for a cyber-
physical perspective. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015.
LNCS, vol. 9338, pp. 277–290. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24249-1 24

6. Chen, Y.R., et al.: Unified security and safety risk assessment - a case study on
nuclear power plant. In: 2014 International Conference on Trustworthy Systems
and Their Applications, June 2014

7. Greenberg, A.: Hackers remotely kill a jeep on the highway-with me in it (2015).
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway

8. Hazell, P.M.: Integrating iec 62443 cyber security with existing industrial process
and functional safety management systems (2017). http://bit.do/cyber-combined

9. Hessami, A.: A systems view of railway safety and security. In: Zboinski, K. (ed.)
Railway Research, chap. 2. InTech, Rijeka (2015)

10. Howe, N.: Cybersecurity in railway signalling systems. Institution of Railways Sig-
nal Engineers News (2017)

11. Hulsebosch, B., van Velzen, A.: Inventory and Classification of Cybersecurity Stan-
dards. Ministry of Security and Justice of the Kingdom of the Netherlands (2015)

12. IEC: Iec 61508 - functional safety of electrical/electronic/programmable electronic
safety-related systems (2010). http://www.iec.ch/functionalsafety

13. IEC: Iec 62443-4-1 security for industrial automation and control systems - part
4–1: Secure product development lifecycle requirements (2018)

14. ISO: Iso 31000:2018, risk management - guidelines, provides principles, framework
(2018). https://www.iso.org/iso-31000-risk-management.html

15. Kanamaru, H.: Bridging functional safety and cyber security of SIS/SCS. In: 56th
Annual Conference of the Society of Instrument and Control Engineers of Japan
(2017)

16. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, Hoboken (2009)

17. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)

18. Lamsweerde, A.V., Brohez, S., Landtsheer, R.D., Janssens, D.: From system goals
to intruder anti-goals: attack generation and resolution for security requirements
engineering. In: In Proceedings of RHAS 2003, pp. 49–56 (2003)

19. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-
hazards and security-threat analysis method for automotive systems. In: Koorn-
neef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1 21

20. MERGE Project: Recommandations for Security and Safety Co-engineering. Deliv-
rable (2016)

https://doi.org/10.1007/978-3-319-24249-1_24
https://doi.org/10.1007/978-3-319-24249-1_24
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
http://bit.do/cyber-combined
http://www.iec.ch/functionalsafety
https://www.iso.org/iso-31000-risk-management.html
https://doi.org/10.1007/978-3-319-24249-1_21

Safety and Security Co-Design Assessment 145

21. Park, J., Suh, Y., Park, C.: Implementation of cyber security for safety
systems of nuclear facilities. Prog. Nuclear Energy 88, 88–94 (2016).
http://www.sciencedirect.com/science/article/pii/S014919701530127X

22. Paul, S., Rioux, L.: Over 20 years of research in cybersecurity and safety engineer-
ing: a short bibliography. In: Conference: 6th International Conference on Safety
and Security Engineering (SAFE), May 2015

23. Ponsard, C., Dallons, G., Massonet, P.: Goal-oriented co-engineering of security
and safety requirements in cyber-physical systems. In: Skavhaug, A., Guiochet, J.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 334–345.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45480-1 27

24. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: 2010 47th ACM/IEEE Design Automation Conference
(DAC), pp. 731–736, June 2010

25. Respect-IT: Objectiver. http://www.objectiver.com
26. Schmittner, C., Ma, Z.: Towards a framework for alignment between automotive

safety and security standards. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP
2015. LNCS, vol. 9338, pp. 133–143. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24249-1 12

27. Schoitsch, E., Schmittner, C., Ma, Z., Gruber, T.: The need for safety and cyber-
security co-engineering and standardization for highly automated automotive vehi-
cles. In: Schulze, T., Müller, B., Meyer, G. (eds.) Advanced Microsystems for Auto-
motive Applications 2015. LNM, pp. 251–261. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-20855-8 20

28. Scott, G., et al.: ATO Over ETCS Operational Requirements - Version 1.7. ERTMS
User Group (2016)

29. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system. In: Dependable Embedded
and Cyber-physical Systems (SAFECOMP Workshop), France (2013)

30. Wolf, M., Serpanos, D.: Safety and security of cyber-physical and internet of things
systems [point of view]. Proc. IEEE 105(6), 983–984 (2017)

http://www.sciencedirect.com/science/article/pii/S014919701530127X
https://doi.org/10.1007/978-3-319-45480-1_27
http://www.objectiver.com
https://doi.org/10.1007/978-3-319-24249-1_12
https://doi.org/10.1007/978-3-319-24249-1_12
https://doi.org/10.1007/978-3-319-20855-8_20
https://doi.org/10.1007/978-3-319-20855-8_20

Generation of Behavior-Driven
Development C++ Tests from Abstract

State Machine Scenarios

Silvia Bonfanti1, Angelo Gargantini1(B), and Atif Mashkoor2,3

1 Università degli Studi di Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it

2 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
atif.mashkoor@scch.at

3 Johannes Kepler University, Linz, Austria
atif.mashkoor@jku.at

Abstract. In this paper, we present the AsmetaVBDD tool that auto-
matically translates the scenarios written in the AValLa language (used
by the asmeta validator (AsmetaV)) into Behavior-Driven Develop-
ment scenarios for C++.

1 Introduction

The Behavior-Driven Development (BDD) is considered as the evolution and
extension of the Test-Driven Development (TDD) [12]. It is increasingly being
used to improve the code quality and reducing error rates in software. It aims
at writing automated acceptance tests that represent complex system stories
or scenarios. BDD builds upon TDD by requiring testers to write acceptance
tests describing the behavior of the system from customers’ point of view. While
classical unit tests focus more on checking internal functionalities of classes, BDD
testers take care to write tests as examples that anyone from the development
team can read and understand [13]. BDD is currently supported at the level of
code by several tools like Cucumber [13] for Java, PHP and C#, or Catch2 for
C++1.

The use of scenarios is common not only at the code level but also at the
level of (abstract) models. The scenario-based techniques have been applied in
different research areas and a variety of definitions, modes of use, and interaction
mechanisms with users are given. In particular, scenarios have been used in the
area of software engineering [1,10], business process reengineering [2], and user
interface design [9]. The author in [8] classifies scenarios according to their use
in the systems development ranging from requirements analysis, user-designer

The writing of this article is supported by the Austrian Ministry for Transport,
Innovation and Technology, the Federal Ministry of Science, Research and Economy,
and the Province of Upper Austria in the frame of the COMET center SCCH.

1 https://github.com/catchorg/Catch2.

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 146–152, 2018.
https://doi.org/10.1007/978-3-030-02852-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_13&domain=pdf
https://github.com/catchorg/Catch2

Generation of Behavior-Driven Development C++ Tests 147

communication, examples to motivate design rationale, envisioning (imagined
use of a future design), software design (examples of behavior thereof), to imple-
mentation, training, and documentation.

In the past, we have introduced the idea of using scenarios for validating
Abstract State Machines [6] and developed a language AValLa (and a corre-
sponding tool) [7] for writing scenarios, which is integrated into the asmeta
framework [3]. With AValLa, the designer can describe a scenario, which is
briefly a sequence of external actor actions and expected reactions of the sys-
tem. Scenarios can be executed in order to check whether the actual behavior of
the system conforms to the requirements.

Although most asmeta tools work at the abstract specification level, asmeta
also supports the automatic generation of C++ code [4] and of unit tests [5]. In a
classical model-driven engineering approach [11], the designer writes the abstract
specification and then through a process of systematic transformation, s/he can
obtain the source code together with unit tests. In this way, the generated code
comes with a set of unit tests that can also be used later for regression testing.

In this paper, we extend the asmeta framework with a translator, called
AsmetaVBDD, which translates an abstract scenario written in the AValLa
language to the BDD code. The paper is organized as follows. Section 2 presents
some background about BDD, AValLa, and the translation process form ASM
specifications to C++. The translation from AValLa to BDD code is presented
in Sect. 3. The paper is concluded in Sect. 4 with the proposed future work.

2 Background

In this section, we present the framework we use for BDD at the level of code
along with the AValLa language and its use. However, we first introduce a
simple example to show the output obtained by translating the AValLa scenario
to BDD.

The Lift Example. As a case study, we take part of a simple example of lift
from [7]. The lift has for each floor one button, which, if pressed, causes the
lift to visit (i.e., move to and stop at) that floor. A lift without requests should
remain at its final destination and await further requests. The call of the lift is
modeled in the ASM specification as a monitored function calledAtFloor: Integer
-> Boolean, while the state of the lift is modeled by three controlled functions:
floor that contains the floor number where the lift cabin is, state that represent
whether the cabin is moving, and direction that shows the direction of a moving
cabin.

2.1 BDD for C++

The are several frameworks for BDD in C++. One of the most powerful is
Catch2. Catch2 is a testing framework for C++ that supports unit testing by

148 S. Bonfanti et al.

Fig. 1. A simple Catch2 BDD test Fig. 2. A simple AValLa scenario

means of macros. Moreover, it allows to write tests as a nested series of Given-
When-Then statements in the style of BDD. In addition to the classic style for
writing test cases, Catch2 supports an alternative syntax that allows to write
tests as executable specifications in a classical BDD style. This set of macros
include:

SCENARIO(scenario name)

that signals the start of a scenario/test case. Other macros include:

GIVEN(something)
WHEN(something)
THEN(something)

Figure 1 shows an example of a scenario written in Catch: when the lift is
called to the fourth floor from the ground floor, then it starts moving upwards.

2.2 AVALLA

In [7], we have introduced a domain specific language, called AValLa, to be
used by the designer to manually describe scenarios (see Table 1). A Scenario
represents a scenario of a provided ASM specification. Basically, a scenario has
a name, a spec denoting the ASM specification to validate, and a list of target
commands of type Command. A Command and its concrete sub-classes provide
a classification of scenario commands. The Set command updates monitored or
shared function values that are supplied by the user actor as input signals to the
system. Command Step represents the reaction of the system, which executes
one single ASM step. The Check class represents commands supplied by the
user actor to inspect external property values and/or by the observer actor to

Generation of Behavior-Driven Development C++ Tests 149

Table 1. The AValLa concepts and their textual notation

further inspect internal property values in the current state of the underlying
ASM. Finally, an Exec command executes an ASM transition rule when required
by the observer actor. AValLa supports also invariants of scenarios and the
semantics of the language is given in terms of an ASM itself, so to execute a
scenario asmeta uses the ASM simulator. An example of an AValLa scenario
representing the same behavior of the C++ code is reported in Fig. 2.

2.3 ASMETA to C++

The translation from ASMs to C++, performed by the tool Asm2C++, has been
presented in [4]. We recollect here some notions that will be used in the next
section. Every ASM X is translated to a class CX in which the monitored and
controlled functions are translated to C++ fields of CX . A step in the ASM is
translated to C++ as a call of two functions: one representing the main rule, and
the other one, called updateState(), applies the update set to the controlled
part of the state.

3 Generation of BDD Tests from AVALLA

The Catch2 testing framework and AValLa share several concepts that can be
found in every BDD approach, so the translation from AValLa to Catch2 is
rather straightforward. Such translation complements the generation of C++
code [4] and the generation of C++ tests [5] already supported by asmeta.
Our translator is defined as a Model-To-Text transformation (we use Xtend2 to
define it). It takes an AValLa scenario and produces the C++ code. Table 2
summarizes the transformation rules we have defined, which are briefly described
here:
2 https://www.eclipse.org/Xtext/.

https://www.eclipse.org/Xtext/

150 S. Bonfanti et al.

Table 2. Translation of AValLa constructs to Catch2 macros

scenario is simply translated to a SCENARIO macro. The name is taken from the
AValLa scenario.

load is translated to a declaration of an instance of the class that is obtained
by translating the ASM to C++. Let’s call that instance X.

set all the set commands before a step command are grouped together and
translated to a WHEN macro. Inside WHEN, every set is translated to a simple
assignment to the field representing the monitored function.

check is translated to a REQUIRE macro. The argument of the check is translated
to a C++ term, by reusing the translation already defined in Asm2C++.

step represents an abstract step of ASM. In C++, it is translated to a call of the
function r main() that computes the update set, and a call of the function
updateState() that applies the update set to the current state in order to
apply the new values of controlled location computed by the main rule.

exec allows the user to execute an arbitrary asmeta rule. The tool translates
the rule to a C++ function that is called whenever exec rule is invoked.

By following the rules above, the AsmetaVBDD tool generates a C++ file
that can be compiled and executed. If the scenario is validated for the ASM,
and translations to C++ of the ASM and of the AValLa scenario are correct,
then the BDD scenario in C++ will be correct and, when executed, no REQUIRE
check will fail. However, there are two possible uses of the obtained BDD code.
First, the user can manually inspect the BDD test and check whether the C++
code actually has the intended behavior. In this way, we can produce the C++
code with its tests also given in the BDD style. The use of the BDD style
should increase the comprehension of the test by nontechnical stakeholders like
customers or business experts. Second, the scenarios can be used for regression
testing. Indeed, sometimes the C++ code is modified in order to add further

Generation of Behavior-Driven Development C++ Tests 151

details after its automatic generation. If one wants to check that the expected
behaviors are still preserved after the modification, one can run the BDD tests
again for confirmation.

4 Conclusions and Future Work

In this paper, we have presented an approach in which BDD tests are auto-
matically built from AValLa scenarios. The approach is also augmented by a
prototype tool AsmetaVBDD. However, not all of the AValLa constructs are
currently supported by the tool. For instance, we do not currently take into
account blocks. In the future, we plan to extend our tool in order to be able to
translate any AValLa scenario. Moreover, most of the textual information in
the BDD scenario is generated automatically from the corresponding AValLa
scenario but it may not be very informative. To add specific information, we plan
to extend the translator such that it can also read the comments in the AValLa
scenario, understand the commands they refer to, and translate them into BDD
scenario. Currently, the comments are simply skipped since the AValLa parser
just ignores them. In this way, we loose some valuable information we already
have in the abstract scenario. Furthermore, we plan to develop a feature that
automatically translates a BDD scenario to an AValLa scenario. This is use-
ful for stakeholders involved in the validation process who do not know the
AValLa language. They can write scenarios using their preferred BDD tool and
AsmetaVBDD automatically translates them into AValLa scenarios.

Acknowledgments. We would like to thank Andrea Spalluzzi who has developed the
first version of the translator during his master thesis.

References

1. Anderson, J.S., Durney, B.: Using scenarios in deficiency-driven requirements engi-
neering. In: Proceedings of the International Symposium on Requirements Engi-
neering, pp. 134–141. IEEE (1993)

2. Antón, A.I., McCracken, W.M., Potts, C.: Goal decomposition and scenario analy-
sis in business process reengineering. In: Wijers, G., Brinkkemper, S., Wasserman,
T. (eds.) CAiSE 1994. LNCS, vol. 811, pp. 94–104. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58113-8 164

3. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41, 155–166
(2011)

4. Bonfanti, S., Carissoni, M., Gargantini, A., Mashkoor, A.: Asm2C++: a tool for
code generation from abstract state machines to Arduino. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 295–301. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8 21

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ unit tests from
abstract state machines specifications. In: 14th Workshop on Advances in Model
Based Testing (A-MOST) @ICST 2018, Väster̊as, Sweden (2018)

https://doi.org/10.1007/3-540-58113-8_164
https://doi.org/10.1007/978-3-319-57288-8_21

152 S. Bonfanti et al.

6. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, New York (2003). https://doi.org/10.1007/978-3-
642-18216-7

7. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 7

8. Carroll, J.M.: Five reasons for scenario-based design. Interact. Comput. 13(1),
43–60 (2000)

9. Carroll, J.M., Rosson, M.B.: Getting around the task-artifact cycle: how to make
claims and design by scenario. ACM Trans. Inf. Syst. 10(2), 181–212 (1992)

10. Potts, C., Takahashi, K., Antón, A.I.: Inquiry-based requirements analysis. IEEE
Softw. 11(2), 21–32 (1994)

11. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25–31 (2006). https://
doi.org/10.1109/MC.2006.58

12. Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 383–387. IEEE, August 2011

13. Wynne, M., Hellesøy, A.: The Cucumber Book Behaviour-Driven Development for
Testers and Developers. The Pragmatic Programmers, LLC, Raleigh (2012)

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58

Hybrid Systems and Event-B: A Formal
Approach to Signalised Left-Turn Assist

Guillaume Dupont(B), Yamine Aı̈t-Ameur, Marc Pantel, and Neeraj K. Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{guillaume.dupont,yamine,nsingh}@enseeiht.fr

1 Introduction

Hybrid systems represent a major part of nowadays’s technology. They are
present under many forms and in many safety-critical applications. Hence, the
question of guaranteeing such systems’ behaviour is a key issue that must be
addressed.

Several approaches to this question have been proposed. Among them, we can
cite hybrid automata [2], hybrid model checking [8,9], proof-based approaches
[5,10], and refinement-based approaches [4,6,11].

In the context of refinement and proof based approaches, the work presented
in this paper pursues the one initiated in [7]. It sets up our approach on a new1

validation case using a case study borrowed from [3].

2 Case Study

A permissive left turn at an intersection is when a car can turn left without a
dedicated traffic light phase; the car crosses the lane of opposite direction, which
can result in a collision.

We target the design of a device capable of assisting the car driver in initiating
her turn (thus avoiding the set up of a whole traffic light system on the road).
Such a device is called a Signalised Left-Turn Assist (or SLTA for short).

2.1 System’s Physics

Fig. 1. Typical SLTA scenario

The situation is depicted on Fig. 1.
Let us consider k as the intersection’s width.

Initially, the subject vehicle (SV) is stopped at
coordinate pSV = 0 with speed and accelera-
tion (resp.) vSV = 0 and aSV = 0. The primary
object vehicle (POV), on the lane of opposite
direction, is at position pPOV > k with velocity
vPOV ∈ [−Vmax, 0], where Vmax is the maximum
velocity reachable by the car.

1 Already orally presented during the ABZ 2018 conference for [7].

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 153–158, 2018.
https://doi.org/10.1007/978-3-030-02852-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_14&domain=pdf

154 G. Dupont et al.

When attempting its left turn, the subject vehicle is given an acceleration
aSV ∈ [Amin, Amax], where Amin is a minimum positive acceleration (to ensure it
actually reaches the end of its turn) and Amax is the car’s maximum acceleration.
The turn is complete when the SV’s position exceeds q.

The system behaviour is modelled by the following differential equation:
⎧
⎨

⎩

v̇SV = aSV

ṗSV = vSV

ṗPOV = vPOV

(1)

where ẋ is the x’s first time derivative, vPOV is a variable that changes discretely,
and aSV is a given step function that ensures correct physical behaviour for the
SV.

Equation 1 can be rewritten under the form of an ODE (Ordinary Dif-
ferential Equation), η̇(t) = f(t, η(t)) with η =

(
vSV pSV pPOV

)T and

f
(
t,

(
x1 x2 x3

)T
)

=
(
aSV x1 vPOV

)T .

2.2 Safety

The whole goal of an SLTA is to avoid collision (and in particular collision with
the POV). This safety property can be expressed as follows:

safe ≡ pPOV < k ⇒ (pSV ≥ q ∨ pSV ≤ 0) (2)

This assertion states that when the POV is crossing the intersection (pPOV <
k), the SV either finished its turn (pSV ≥ q) or dit not began it (pSV ≤ 0).

Observe that it is possible to derive, from Eq. 1, TSV , the time needed for
the SV to complete its turn as well as TPOV , the time needed for the POV to
reach the intersection (generally considering the POV is at maximum speed).
The safety property is thus equivalently expressed as TPOV > TSV .

2.3 System’s Control

The controller acts on the SV only. It will however simulate the POV, from
which it can retrieve (thanks to sensing) the position, used to determine when
it is safe for SV to turn.

Fig. 2. System mode automaton

As shown by the automaton of Fig. 2,
three states are associated with the SV’s
behaviour.

Initially, the SV is waiting on the
lane (waiting). Then, when conditions hold
(TPOV > TSV) it may decide to turn (:turn)
or to remain still. If the :turn transition is
triggered, the SV enters the state turning.
Once the turn is completed (pSV > q), the
SV leaves this state to reach the final one,
passed.

Hybrid Systems and Event-B 155

3 Formal Modelling with Event-B

Event-B [1] is a correct-by-construction method based on proof and refinement
to design and certify systems.

The method relies on the definition of contexts to describe the system’s static
part (constants, sets, axioms, theorems) and machines to model the system’s
dynamic parts through a set of state variables modified by a set of events. Invari-
ants defining safety properties on state variables can be defined as well.

It is possible to enrich a machine using refinement, by refining existing events
and/or by introducing new state variables and new events.

3.1 Generic Approach

The global approach to address this case study relies on a generic machine
sketched in [7]. In this machine, we define an abstract hybrid system that inte-
grates both discrete and continuous behaviour (closed-loop modelling). This
effectively factorises the core of any hybrid system. It describes:

– the state of the controller (modes of the automaton): xs ∈ STATES
– the set of possible values for modelling the concrete system (speed, position,

temperature, etc.): xp ∈ R
+ → S (usually S = R

n)
– modelling of time t together with a Progress event to represent the passing

of time
– a set of events categorised as:

– sensing events to model changes in the controller induced by the sensing
of a value

– transition events to record changes in the controller induced by the con-
troller itself (including its user)

– actuation events to trigger changes in the plant caused by the controller
– behaviour events to model changes in the plant caused by the external

environment of the system (close loop modelling).

The actuation and behaviour events, as well as the initialisation event
(present in any Event-B machine) change the plant’s behaviour by enforcing
its values, which are functions of time, to bind to a differential equation. A
before-after predicate is used for this purpose. It guarantees preservation of the
past behaviour. Equation 3 defines such a binding:

xp :| x′
p ∈ R

+ → S∧
[0, t[�x′

p = [0, t[�x′
p∧

[t,+∞[�x′
p solution of the equation on [t,+∞[

(3)

where � denotes the domain restriction operator (A�f is defined on A and has
the same value as f on this set).

156 G. Dupont et al.

3.2 Application to the Case Study

First of all, let us define the sets in which the system evolves as well as the
needed constants (with associated constraints). In particular, we transcribe the
mode automaton as three states (axm2) and set up the set for values to R

3 as we
will be using SV’s position and speed and POV’s position in the system model.

CONTEXT LeftTurnAssistCtx EXTENDS
SystemCtx

CONSTANTS
S , STATES, wait ing , turning , passed ,
Amax ,Amin , . . .
fd ,fa ,fam ,fs

AXIOMS
axm1 : S = R × R × R

axm2 : p a r t i t i o n (STATES,{ wait ing } ,
{ turn ing } ,{ passed })

axm3−6 : Amax,Amin, ... ∈ R
+∗∧

Amax > Amin
axm7 : fd = ...
. . .
axm11 :[

0, − v0
A

[
× S � fd ∈ C0

([
0, − v0

A

[
× S, S

)
∧[

− v0
A

,+∞
[

× S � fd ∈ C0
([

− v0
A

,+∞
[

× S, S
)

. . .
END

We also define the ordinary dif-
ferential equations (ODEs) describing
the system’s behaviour. These ODEs
describe how the plant behaves. We
have identified four functions: sta-
ble behaviour (aSV = 0), deceler-
ation (aSV ∈ [−B, 0[), acceleration
(aSV ∈]0, Amax]) and acceleration with
a minimum when turning (aSV ∈
[Amin, Amax]).

Additionally, we also assert that
these functions are piecewise continuous as per the first variable (time). This
assertion is required to address later on the problem of solution existence.

MACHINE LeftTurnAss i s t REFINES System
SEES LeftTurnAssistCtx
VARIABLES t ,xs ,pPOV ,vPOV ,pSV ,vSV ,aSV
INVARIANTS

inv1−3 : pPOV ∈ R
+ → R , . . .

inv4−5 : vPOV ∈ [−Vmax, 0] , . . .
inv6 : ∀t · t ∈ R

+ ∧ pPOV (t) < k ⇒
(pSV (t) ≤ 0 ∨ pSV (t) ≥ q)

At this stage, we are able to define
the Event-B machine modelling the
SLTA. This machine refines our generic
machine. It first sets up the definition
of the required state variables together
with their respective constraints (note
that constraints on t and xs are already handled in the abstract machine System).
The safety invariant is also stated in inv6.

INITIALISATION REFINES INITIALISATION

WITH x′
p : x′

p =
(
v′
SV p′

SV p′
POV

)T
THEN

act1−4 : t := 0 , xs := waiting , vPOV := ...
act5 : vSV , pSV , pPOV :|

v′
SV ∈ R

+ → R ∧ p′
SV ∈ R

+ → R ∧ ...

solutionOf(
R
+, [v′

SV p′
SV p′

POV]T ,

ODE(fs, [0 0 p0POV]T , 0)
)

END

The system initialisation is quite
straightforward. It starts by assigning
an initial value to every discrete vari-
able (xs, vPOV , etc.) and then it binds
the (continuous) system’s values to an
ODE, similarly to the substitution of
Eq. 3 except that it does not require to
preserve past values as there is no past

yet (t = 0 at initialisation).

c t r l t r a n s i t i o n a t t emp t t u r n REFINES
Trans i t i on

WHERE
grd1 : xs = waiting
grd2 : TSV < TPOV

WITH s : s = {turning}
THEN

act1 : xs := turning
END

We consider the first type of events
which models arrows in the mode
automaton like :turn. This is typ-
ically a guarded transition event in
our approach. When waiting, the con-
troller/user decides to turn provided the
conditions to do so are safe (modelled by
guard grd2).

Hybrid Systems and Event-B 157

c t r l s e n s e t u r n e nd REFINES Sense
WHERE

grd1 : pSV (t) ≥ q
WITH

s : s = {passed}
p : p = STATES × R × {vS, pS, pP | pSV ≥ q}

THEN
act1 : xs := passed

END

The second type of events represent
arrows on the mode automaton of Fig. 2
(e.g., transition between states turning
and passed). This is a case of sens-
ing event that shall occur whenever its
guard, referring to the plant’s state, is

enabled. In this case, the event models the sensing of the turn’s end (pSV ≥ q)
and changes the controller’s mode accordingly.

c t r l a c t u a t e t u r n i n g REFINES Actuate
ANY a
WHERE

grd1 : xs = turning
grd2 : a ∈ [

Amin,Amax
]

WITH

e : e = ODE(fam,
(
vSV (t) pSV (t) pPOV (t)

)T , t)
s : s = {turning}
x′
p : x′

p =
(
v′
SV p′

SV p′
POV

)T
THEN

act1 : aSV := a
act2 :

vSV , pSV , pPOV :|
vSV ∈ R

+ → S ∧ ...

[0, t[�v′
SV = [0, t[�vSV ∧ ...

solutionOf(

R
+, [t,+∞[�

(
v′
SV p′

SV p′
POV

)T
,

ODE(fam,
(
vSV (t) pSV (t) pPOV (t)

)T , t
)

END

The third type of event to
be considered relates to the
continuous transitions that hap-
pens within a state in a hybrid
automaton. Such events model
the plant’s continuous evolution
through functions representing
its state. In this case, those func-
tions bind to a differential equa-
tion, using the before-after pred-
icate given in Eq. 3.

4 Assessment

The resulting model consists of 10 events (1 for transition, 1 for sense, 5 for
actuation, the initialisation, Progress and Behave). Rodin generated 87 proof
obligations (POs) for the machine and 20 for the context. Well-definedness (on
both machine and context) accounts for 38% of them. Such obligations are gen-
erally easy to prove, although they can be cumbersome and repetitive.

Feasibility and simulation proofs account for 15% of POs in total. Those
proofs are a bit more technical and often rely on high-level properties and theo-
rems (solution existence with the Cauchy-Lipschitz theorem, smoothness, deriva-
tive, etc.).

Last, invariant proofs represent 26% of PO. Typing invariants are trivial;
but other invariants like safety (i.e.: inv6) can be a lot more difficult and their
proofs require an extensive use of theorems.

Most proofs are achieved after 10 steps; but some of them require up to
60 steps and more. The actual problem with the method right now is that the
extensive use of the theory plug-in hinders proof automation, meaning that a
substantial part of most proofs is fully manual.

5 Conclusion and Future Work

The work presented in this paper consolidates the relevance of our approach to
formally model hybrid systems. It shows that the same method can be applied
to systems with different states, values and invariants. Indeed, compared to the
other developed case study, this one describes the plant using a different number

158 G. Dupont et al.

of variables (three instead of two in the other one). Moreover, this case study
considers two dynamic objects (vehicles) instead of one.

However, a lot of work remains. The method still needs to be extended to
other types of differential equations (and not only linear autonomous ODEs).
Besides, the current framework (i.e.: theories) for handling multi-valued variables
is not really ergonomic; a way to properly express vectors shall thus be addressed
as well.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

3. Aréchiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guar-
antee closed-loop system properties. In: 2012 American Control Conference (ACC),
pp. 3573–3580, June 2012

4. Banach, R., Zhu, H., Su, W., Wu, X.: ASM, controller synthesis, and complete
refinement. Sci. Comput. Program. 94, 109–129 (2014)

5. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Comput. Math. Appl. 68(3), 325–352 (2014)

6. Butler, M., Abrial, J.R., Banach, R.: Modelling and refining hybrid systems in
Event-B and Rodin. In: From Action Systems to Distributed Systems: The Refine-
ment Approach. Computer and Information Science Series, pp. 29–42. Chapman
and Hall/CRC (2016)

7. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-Based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

8. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 48

9. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

10. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

11. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with event-b and the
Rodin platform. Sci. Comput. Programm. 94(Part 2), 164–202 (2014). Abstract
State Machines, Alloy, B, VDM, and Z

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15

Handling Reparation in Incremental
Construction of Realizable Conversation

Protocols

Sarah Benyagoub1,2, Yamine Aı̈t-Ameur2(B), Meriem Ouederni2(B),
and Atif Mashkoor3,4(B)

1 University of Mostaganem, Mostaganem, Algeria
2 IRIT-INP of Toulouse, Toulouse, France

{sarah.benyagoub,yamine,meriem.ouederni}@enseeiht.fr
3 Software Competence Center Hagenberg GmbH, Hagenberg, Austria

atif.mashkoor@scch.at
4 Johannes Kepler University Linz, Linz, Austria

atif.mashkoor@jku.at

A main concern, already addressed by the research community, relates to the
verification of Conversation Protocol (CP) realizability, which means the exis-
tence of a set of peers whose communication behavior is equivalent to a given
conversation protocol. In this paper, we consider the incremental repairability
of CPs identified as un-realizable using the set of composition operators, defined
in [2] that satisfy sufficient conditions for realizability preservation. Reparation
consists in identifying a set of changes completing intermediate un-realizable CPs
so that the resulting CP becomes realizable. Our proposal is validated through a
successful application of the presented approach on un-realizable CPs borrowed
from the literature.

1 Introduction

In a previous work [2], we presented a correct-by-construction approach of dis-
tributed systems. There, the interaction between systems is described as a con-
versation protocol (CP). A set of operators allow a developer to incrementally
build the distributed systems while preserving (by construction) their realizabil-
ity at each application of these operators.

1.1 Basic Definitions

In the following, we summarize our correct-by-construction approach for realiz-
able choreographies. We recall the main definitions for CP realizability as well
as the set of composition operators together with their corresponding sufficient
conditions.

The research reported in this paper has been partly supported by the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of the
COMET center SCCH.

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 159–166, 2018.
https://doi.org/10.1007/978-3-030-02852-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_15&domain=pdf

160 S. Benyagoub et al.

Definition 1 (CP). A conversation protocol CP (Fig. 1) associated with a set
of peers {P1, . . . ,Pn} (Fig. 2) is a LTS CP = (SCP , s0CP , LCP , TCP) where SCP

is a finite set of states and s0CP ∈ SCP is the initial state; LCP is a set of labels
and TCP is the finite set of transitions.

Definition 2 (CPb). A basic CPb is a CP with a single transition defined

as CPb = <SCPb
, s0CPb

, LCPb
, TCPb

> and TCPb
= {s0CPb

mPi→Pj−−−−−→ s′
CPb

} with
s0CPb

�= s′
CPb

.

Definition 3 (Peer). A peer is a LTS P = (S, s0, Σ, T) where S is a finite
set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S × Σ × S is a transition relation.

Fig. 1. Un-realizable CP. Fig. 2. Projected peers.

Definition 4 (Projection). Let the projection function ↓ CP which returns
the set of peers LTSs Pi = <Si, s

0
i , Σi, Ti>. The set is obtained by replacing in

CP = <SCP , s0CP , LCP , TCP> each label (Pj ,m,Pk) ∈ LCP with m! if j = i with
m? if k = i and with τ (internal action). And finally removing the τ -transitions
by applying standard minimization algorithms [6].

Figures 1 and 2 show an example of a CP and its projection respectively.

Definition 5 (Realizability). The definition of Realizability we use in this
paper is borrowed from [1]. It is decomposed as the conjunction of three properties
as Realizability = Equivalence ∧ Synchronizability ∧ Well-formedness.

– Equivalence (≡). CP ≡ Syssync(↓ CP) iff CP and Syssync(↓ CP) have
equal message exchanges sequences, i.e., trace equivalence.

– Synchronizability. The synchronous system Syssync(↓ CP) and the asyn-
chronous system Sysasync(↓ CP) are synchronizable iff the system behavior is
still the same in both synchronous and asynchronous communications.

Handling Reparation in Incremental Construction of CPs 161

– Well-Formedness (WF). Sysasync(↓ CP) is well formed, i.e., Sysasync(↓
CP) ∈ WF iff all the queues of the asynchronous system become empty at
the end of system composition.

A correctness proof of global system realizability using Event-B is available
in [4]. This approach is a posteriori, it is based on the whole CP and is not
incremental.

1.2 Correct-by-Construction Realizable CP’s Operators

To avoid a posteriori global verification of realizablity, we have set up an incre-
mental verification of realizability using a correct-by-construction approach to
build CPs. This approach is based on the application of composition operators
on basic realizable CPs. All these operators satisfy sufficient conditions which
guarantee realizability. These operators are briefly described below.

Definition 6 (Sequential Composition ⊗(�,sfCP)
). Given a CP, a state

sCP ∈ Sf
CP , and a CPb where TCPb

= {sCPb

lCPb−−−→ s′
CPb

}, the sequential compo-
sition CP� = ⊗(�,sCP)(CP ,CPb) means that CPb must be executed after CP
starting from sCP , and:

– SCP� = SCP ∪ {s′
CPb

|
sCPb

lCPb−−−→ s′
CPb

∈ TCPb}
– LCP� = LCP ∪ {lCPb}

– TCP� = TCP ∪ {sCP

lCPb−−−→ s′
CPb

}

– Sf
CP� = (Sf

CP \ {sCP}) ∪ {s′
CPb

}

Definition 7 (Choice Composition ⊗(+,sfCP)
). Given a CP, a state sCP ∈

Sf
CP , a set {CPbi | i = [1..n], n ∈ N} such that ∀ TCPbi

, TCPbi
= {sCPbi

lCPbi−−−→
s′
CPbi

}, the branching composition CP+ = ⊗(+,sCP)(CP , {CPbi}) means that CP
must be executed before {CPbi} and there is a choice between all {CPbi} at sCP ,
and

– SCP+ = SCP ∪ {s′
CPb1

, . . . , sCP′
bn

|
sCPbi

lCPbi−−−−→ s′
CPbi

∈ TCPbi}

– LCP+ = LCP ∪ {lCPbi , . . . , lCPbn}

– TCP+ = TCP ∪ {sCP

lCPb1−−−→
s′
CPb1

, . . . , sCP

lCPbn−−−−→ s′
CPbn

}
– Sf

CP+
= (Sf

CP \
{sCP}) ∪ {s′

CPb1
, . . . , s′

CPbn
}

Definition 8 (Loop Composition ⊗(�,sfCP)
). Given a CP, a state sCP ∈ Sf

CP

and a basic CP noted CPb, with TCPb
= {sCPb

lCPb−−→ s′
CPb

} and s′
CPb

∈ SCP ,
then the loop composition CP� = ⊗(�,sCP)(CP ,CPb) is defined as follows.

– SCP� = SCP

– LCP� = LCP ∪ {lCPb}
– TCP� = TCP ∪ {sCP

lCPb−−−→ s′
CPb

}
– Sf

CP� = Sf
CP

162 S. Benyagoub et al.

The condition s′
CPb

∈ SCP means that the target state of CPb is a state of
CP. It defines a cycle in the built CP�, thus a loop and an iteration. The final
states remain unchanged.

According to [2], we have identified a set of sufficient conditions which entail
realizability when the CPs are built using the previously defined operators. Let
us first formally define these conditions.

Condition 1 (Deterministic Choice (DC)). Given a CP, deterministic

choice property, denoted DC(CP), holds iff ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→ s′

CP ,

sCP
mPi,Pj−−−−→ s′′

CP } ⊆ TCP , such that s′
CP �= s′′

CP .

Condition 2 (Parallel-Choice Freeness (PCF)). Let PCF be the set of
CPs. The parallel choice freeness property (PCF), denoted as CP ∈ PCF, holds

iff ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→ s′

CP , sCP
m′Pk,Pq−−−−−→ s′′

CP } ⊆ TCP such that Pi �=
Pk and s′

CP �= s′′
CP .

Condition 3 (Independent Sequences Freeness (ISeqF)). Let ISeqF be
the set of CPs free of independent sequences. The independent sequence freeness

property, denoted as CP ∈ ISeqF holds iff ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→ s′

CP ,

s′
CP

m′Pk,Pq−−−−−→ s′′
CP } ⊆ TCP such that Pi �= Pk and Pj �= Pk.

The sufficient conditions associated with each composition operators can be
defined. Table 1 recalls all the theorems that ensure the realizability of a CP
built incrementally using each composition operator. Each theorem relies on the
previously introduced sufficient conditions. More details on the definitions and
proofs of these theorems are available in [2].

Table 1. Theorems for realizable by construction CPs

Theorem 1 CPb ∈ R

Theorem 2 CP ∈ R ∧ CPb ∈ R ∧ CP� = ⊗
(�,s

f
CP

)
(CP,CPb) ∈ ISeqF ⇒ CP� ∈ R

Theorem 3
CP ∈ R ∧ {CPbi} ⊆ R ∧ CP+ = ⊗

(+,s
f
CP

)
(CP, {CPbi}) ∈ DC

∧ CP+ ∈ ISeqF ∧ CP+ ∈ PCF ⇒ CP+ ∈ R

Theorem 4 CP ∈ R ∧ CPb ∈ R ∧ CP� = ⊗
(�,s

f
CP

)
(CP,CPb) ∈ ISeqF ⇒ CP� ∈ R

1.3 Related work

The choreography repair technique presented in [3] depends on examining and
analyzing the cause of violation of the realizablity condition [1]. In other words,
the approach propose a realizability verification and reparation on the whole CP,
to check the equivalence, the synchronizability and the well-formedness proper-
ties. Both verification and reparation techniques require building of synchronous

Handling Reparation in Incremental Construction of CPs 163

and asynchronous traces that increase the complexity of verification and
reparation.

The verification and reparation approach of [5] proposes an automated and
non-intrusive solution for enforcing realizability when a choreography is not real-
izable. Their idea is to generate distributed controllers that are in charge of
correcting ordering issues to make the corresponding distributed peers respect
the choreography requirements. To do this, both synchronous and asynchronous
communications are needed to check the realizability condition given in [1].
Notice that, the reparation proposed in [5] is not a generic repair method. Such
that, a choreography is not repairable when at some point in its behavior there
is a choice between interactions involving different sending peers. In that case,
realizability cannot be enforced.

To avoid the aforementioned situations, the idea is, instead of checking and
repairing the realizability on the whole system, we propose to check and repair
the CP incrementally starting from an empty CP. To achieve this objective, our
reparation strategy is based on the sufficient conditions satisfied by the set of
composition operators [2]. Each operator can build a realizable CP from another
realizable CP and a basic one without needing the projected peers or the syn-
chronous and asynchronous traces. Notice that, there is no general repair method
for un-realizable CP. Each violated sufficient condition gives rules for reparation,
by adding a synchronization transition which reestablishes the sufficient condi-
tions that restore the CP realizability.

1.4 Case study

In order to illustrate our approach, we use a case study borrowed from [3].
The choreography describes a simple file transfer protocol where P1 is a client
asking for the file transfer, P2 is a file server and P3 initializes the communication
between a client and a server. This CP is depicted in Fig. 1. First, the client sends
a message (init) to the server to request the server to start the transfer (ms).
When the transfer is finished, the server sends the “Transfer Finished” (mf)
message and the protocol terminates. However, the client may decide to cancel
the transfer before hearing back from the server by sending a “Cancel Finished”
message (mc) in which case the server responds with “Transfer Finished” (mf)
message, which, again, terminates the protocol.

In order to check the realizability condition given in Definition 5, we rely on a
stepwise correct-by-construction approach to build incrementally a realizable CP.
The approach consists in applying the different operators on a set of basic CPs
by checking the sufficient conditions associated with each composition operator.
A sequence of steps is set up to build the conversation protocol of Fig. 1 as
follows.

1. Identification of the set of basic CPs involved in the CP of Fig. 1.

164 S. Benyagoub et al.

– CP = ∅

– CPb0 = s0
InitP3→P2−−−−−−−→ s1

– CPb1 = s1
msP1→P2−−−−−−−→ s2

– CPb2 = s2
mcP1→P2−−−−−−−→ s3

– CPb3 = s3
mfP2→P1

−−−−−−−→ s4

– CPb4 = s2
mfP2→P1

−−−−−−−→ s5

2. Application of the composition operators.
(a) CP1 = ⊗(�,s1CP)(CP, cpb0),� CP1 ∈ ISeqF

(b) CP2 = ⊗(�,s1CP)(CP1, cpb1),× CP2 /∈ ISeqF.

The sequence of composition starts from an empty CP. The sufficient condition
ISeqF holds for the first composition CP1. So, by Theorem 1 of Table 1, CP1

(a) is realizable. However, realizability does not hold for CP2 (b) where the
ISeqF property is violated.

In the following section, we show how such un-realizable CPs can be repaired.

2 Incremental Reparation

2.1 General Idea

The sufficient conditions are not satisfied by the CP in Fig. 1. In this example,
both sequences and branches violate the associated sufficient conditions.

Therefore, the CP must be transformed in order to restore ISeqF and PCF
properties while preserving the initial communication purpose. To address this
issue, we propose to introduce synchronization transitions with synchronization
messages. These messages are not relevant for the communication purpose, but
they are added for synchronization and realizability purposes.

Two reparation cases can be distinguished for both sequence and branch
operators as follows.

– Sequence property repair. Following the ISeqF definition, the reparation of
the sequence transitions (ISeqF violation) requires the introduction of a novel
transition with message Sync0 (bold-dotted in Figs. 3 and 4) between the two
independent sequences. This transition exchanges a synchronization message
between the sender or the receiver peers of the first transition and the sender
of the second transition.

– Branch properties repair. Following the PCF definition, the reparation of
the branch transitions, (PCF violation) requires the introduction of a novel
transition with message Sync1 (bold-dotted in Figs. 5 and 6) before one of
the branches transitions. This transition exchanges a synchronization message
between the same sender peer as the other branches and the receiver one.

Handling Reparation in Incremental Construction of CPs 165

Fig. 3. ISeqF repair proposition 1. Fig. 4. ISeqF repair proposition 2.

Fig. 5. PCF repair proposition 1. Fig. 6. PCF repair proposition 2.

2.2 Application to the Case Study

According to the previous reparation possibilities, four reparation scenarios are
possible. One of the possible CP reparation is obtained by combination one
reparation from the two sequence reparations and one from the two branches
reparations. The CP of Fig. 1 is depicted in Fig. 7. The realizable projection is
presented in Fig. 8.

Fig. 7. Un-realizable CP repair. Fig. 8. Projected peers repair.

In the sequel, we show that there exists a sequence of compositions of oper-
ators that lead the CP depicted in Fig. 7. This sequence is defined as follows.

– Identification of the set of basic CPs and initialization of CP

• CP = ∅

• CPb0 = s0
InitP3→P2−−−−−−−→ s1

• CPb1 = s1
Sync0P3→P1

−−−−−−−−−→ s(0)

• CPb2 = s(0)
msP1→P2−−−−−−−→ s2

• CPb3 = s2
mcP1→P2−−−−−−−→ s3

• CPb4 = s3
mfP2→P1

−−−−−−−→ s4

• CPb5 = s2
Sync1P1→P2

−−−−−−−−−→ s(1)

• CPb6 = s(1)
mfP2→P1

−−−−−−−→ s5

166 S. Benyagoub et al.

– Application of the composition operators.
1. CP1 = ⊗(�,s1CP)(CP,CPb0),� CP1 ∈ ISeqF

2. CP2 = ⊗(�,s(0)CP)(CP1, CPb1),� CP2 ∈ ISeqF
3. CP3 = ⊗(+,s2CP)(CP1, {CPb3, CPb5}),� CP3 ∈ ISeqF ∧ CP3 ∈

DC ∧ CP3 ∈ PCF
4. CP4 = ⊗(�,s3CP)(CP3, CPb4),� CP2 ∈ ISeqF

5. CP5 = ⊗(�,s(1)CP)(CP4, CPb6),� CP5 ∈ ISeqF.

The previous composition operators are successfully applied. So, the obtained
CP is realizable.

3 Conclusion

In this paper, we present a top down approach to repair an un-realizable dis-
tributed systems. The proposal is based on the application of composition oper-
ators to check the realizability of systems. In case where the sufficient condi-
tions associated with each operator are not satisfied, intermediate CPs, behav-
ing as synchronization transitions, are introduced for adaptation purposes. In
the future, we aim at implementing the reparation strategy we have introduced
in this paper using the correct-by-construction Event-B method. The idea con-
sists in introducing reparation events corresponding to the different situations
of sufficient conditions violations.

References

1. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of POPL 2012, pp. 191–202. ACM (2012)

2. Basu, S., Bultan, T.: Automatic choreography repair (2015)
3. Basu, S., Bultan, T.: Automatic choreography repair. Theor. Comput. Sci. (2015)
4. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model

for asynchronously communicating systems. Int. J. STTT 1–21 (2016)
5. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: Verchor: a framework for the design

and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–660 (2016)
6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison Wesley, Boston (1979)

Analyzing a ROS Based Architecture for Its
Cross Reuse in ISO26262 Settings

Xabier Larrucea1(&), Pablo González-Nalda2,
Ismael Etxeberria-Agiriano2, Mari Carmen Otero2, and Isidro Calvo2

1 Tecnalia. Parque Tecnológico de Bizkaia, Calle Geldo, Edificio 700, 48160
Derio, Spain

xabier.larrucea@tecnalia.com
2 University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006

Vitoria-Gasteiz, Spain
{pablo.gonzalez,ismael.etxeberria,mariacarmen.otero,

isidro.calvo}@ehu.eus

Abstract. The automotive industry is applying the latest technological
advances in order to provide safety and security to drivers and pedestrians. In
this sense, Robot Operating System (ROS) is used as a middleware to be
adapted and deployed in cars. However, ROS has not been tested enough to be
used in safety environments. Therefore, this paper reports an analysis of a ROS
based architecture running in a prototype. We define a safety case based on the
ISO 26262 Safety Element out of Context (SEooC) for its cross reuse, and we
generate the required evidences related to the identified characteristics and
thresholds. Goal Structuring Notation (GSN) is the notation used for the safety
case definition and to argue conformance with respect to ISO 26262.

Keywords: ROS � ISO 26262 � SEooC � Safety case

1 Introduction

Recently, Robot Operating System (ROS) is used as a middleware to be adapted and
deployed in cars [1]. Car manufacturers, such as BMW1 [2], are using ROS2 as a
standard collection of open source software libraries to implement a middleware for
message passing communications among modules within robot applications. Several
experiences such as [3, 4], are applying ROS in automotive scenarios. ROS allows
simplifying the construction of architectures, and this aspect can be extrapolated to the
automotive domain. In our prototype, we embed ROS to build a modular component to
be reused in several systems. In the automotive domain, this component is called a
Safety Element out of Context (SEooC) as defined by the ISO 26262 [5]. This standard
is becoming the reference certification model for the automotive industry covering the
whole development life cycle.

1 http://www.bmw-carit.com/.
2 http://www.ros.org.

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 167–180, 2018.
https://doi.org/10.1007/978-3-030-02852-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_16&domain=pdf
http://www.bmw-carit.com/
http://www.ros.org

However, ROS has not been sufficiently tested to be used in safety environments
[6]. In this sense, this paper reports an industrial experience where we analyze a
running ROS based prototype, and we identify the ROS characteristics and threshold
values in order to reuse this ROS component in several cars/prototypes. Some expe-
riences analyzing the ISO26262 SEooC [6] have been carried out by some of the
authors [7, 8] including safety cases [9]. Therefore, we identify requirements and
design assumptions to be conformant to ISO26262 SEooC [6]. These assumptions,
such as timing constraints [10], impact on the SEooC requirements and design, and
they must be reflected in the safety cases/assurance cases [9].

In addition, it is not clear enough how these aspects are included during the safety
certification [11] especially in safety critical software systems [12]. Certification of
electronic components in cars, and in particular their embedded software, is a major
goal for the automotive industry [13]. Some tools have been developed for supporting
this life cycle such as OASIS [14] where authors present a part of a tool chain sup-
porting properties checking, model correction, fault tree generation and FMEA (Failure
Modes and Effects Analysis) table generation. In this sense, OpenCert [15] provides a
complimentary approach for defining assurance cases. Safety certification relies on the
demonstration that a software system is acceptably safe when it satisfies a set of
objectives that the safety standards require for compliance [9]. Some European pro-
jects, such as CESAR [16], SafeCer [17], OPENCOSS [18] and CertWare [19], have
been dealing with this topic. It is also aligned with the certification of safety critical
domains, and it proposes the use of safety cases [10].

This paper deals with the following research questions (RQ):

• RQ1: What are the required characteristics and thresholds for a ROS based
architecture? Our running architecture includes sensor, controller and actuator. The
relationships among them are essential to understand how these elements interact.
At the end we identify what thresholds are acceptable.

• RQ2: What safety assumptions are defined during the safety case definition? This
industrial experience assumes that this ROS based component is going to be reused
in several prototypes (cars), and it must be conformant to the ISO26262 SEooC
definition. At the end, we need to provide a set evidences supporting our
assumptions and arguments in order to declare that the component is acceptably
safe.

• RQ3: What ROS aspects are relevant for cross reuse and for its certification? We
need to understand and clarify the expected behaviour of a ROS based component.

• The remainder of the paper is structured as follows. A background analysis in ISO
26262 certification and SEooC, Software Reliability Certification, ROS and Safety
Cases is first provided. Afterwards we define our ROS based architecture, including
what aspects are measured, and the main results are provided. Finally, a discussion
section argues the research questions and a conclusions section ends this paper.

168 X. Larrucea et al.

2 Background

In this section we analyse the background of various important topics in this context:
SEooC within an ISO 26262 certification, Robot Operating System and Safety Cases.

2.1 ISO 26262 Certification and SEooC

The ISO 26262 international standard [20] was released in 2011 and modified3 in 2012.
This standard includes a specific part entitled “Guideline on ISO 26262” for dealing
with the Safety Element out of Context (SEooC) [5]. The automotive industry does not
require to certify all their components based on ISO 26262. However, it is becoming a
reference model for the automotive industry [16, 17]. In addition, the emergence of
autonomous vehicles will increase the relevance of this certification. For the sake of
simplicity, we are considering the certification process as a compliance process or as an
assessment process such as [21], and as a process where product characteristics are
assessed [22]. Concerning the software aspect, ISO 26262 states on its Part 6: Product
development at the software level, Clause 6.4.2:

“The specification of the software safety requirements shall be derived from the technical safety
concept and the system design in accordance with ISO 26262-4:2011, 7.4.1 and 7.4.5, and
shall consider:[..]
e) the timing constraints;
`….”4.

Our work is, therefore, aligned with the evaluation of timing constrains of the
proposed architecture. All these requirements impact on a wide set of ISO 26262
clauses such as specification of software safety requirements, software unit design and
implementation, and software unit testing.

Voas defined a certification process for off-the-shelf components [23] which is
based on the analysis of quality characteristics, considering components as black boxes.
A component is considered to be certifiable if its quality characteristics are met. Voas’
approach does not define what high quality [23] means, and our approach extends his
approach with our ROS based architecture. He also considers wrappers to limit its
component’s behaviour, and the analysis of its operational system which can also affect
the component behaviour. Other certification approaches based on standards [37]
define basic steps for carrying out a certification process.

2.2 Software Reliability Certification

The Software Reliability [24] basic steps are: list related systems, implement opera-
tional profiles, define necessary reliability, prepare for test, execute test and guide test.
A similar approach is the Software Reliability Engineering Process [25], where once
the reliability objective is determined and the operational profile is developed, we
proceed with the software testing, collection of failure data, and so on. Concerning

3 https://www.iso.org/obp/ui/#iso:std:iso:26262:-10:ed-1:v1:en.
4 The bold typeface is ours.

Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings 169

https://www.iso.org/obp/ui/#iso:std:iso:26262:-10:ed-1:v1:en

certification, certifying the reliability of software [26] is not an easy task, and all these
approaches agree on the fact that we need to set up the operational profiles. In fact, a
certification process will take into account these operational profiles as a basis. In this
context safety evidences [27] are used to support certification processes, and they are
also a cornerstone in software component certification [22]. There are techniques used
in the certification process such as Software Fault Injection (SFI) which can be used for
software certification in order to analyse a component behaviour and response in faulty
conditions. Wholin and Regnell defined a reliability certification of software compo-
nents for different usage profiles [28]. In our context we identify and characterize a
usage profile for a SEooC component as well as its reliability. This is needed because
during the certification process the auditor/evaluator checks these characteristics in the
resulting product by means of measurable attributes.

2.3 Robotic Operating System (ROS)

According to Bruyninckx [56] robotics software has several chronic problems in
several industrial domains due to the lack of standardization, interoperability and reuse
of software libraries, both proprietary and open source. In order to produce a healthy
software ecosystem the following relevant problems must be prevented: (1) lack of
code reuse; (2) higher needs of integration of components and (3) finding the appro-
priate trade-off between efficiency and robustness. As a solution, Free and Open Source
Software (FOSS) initiatives such as the Robot Operating System (ROS) were
promoted.

ROS [29] is a message-passing middleware providing operating system-like and
package tools. It defines different entities including nodes, message topics and services.
Nodes are processes or software modules that can communicate with other nodes
through simple messages (or data structures) by means of publisher/subscriber mech-
anisms on top of TCP or UDP standard network protocols. In ROS a service is
modelled as a pair of messages, one for request and another for reply. ROS has several
client libraries implemented in different languages such as C++, Python, Octave or Java
in order to create ROS applications. Its major advantage is code reuse and sharing [30].
ROS has been successfully used in different kinds of robots such as autonomous guided
vehicles [31–33].

2.4 Safety Cases

There is an existing debate on whether safety cases are enough to provide confidence in
order to consider a system safe [34]. However, we consider safety cases as a useful way
to provide enough confidence using structured arguments and evidences [8] in safety
critical applications [6]. Our approach uses Safety Cases for gathering primary assets
during certification process, and we are using Goal Structuring Notation5 (GSN) [35] as
a notation for representing arguments and evidences. Another representation for the

5 http://www.goalstructuringnotation.info/.

170 X. Larrucea et al.

http://www.goalstructuringnotation.info/

same purpose is Claims, Arguments and Evidence6 (CAE) from Adelard. Both ini-
tiatives are focused on providing confidence to safety critical scenarios.

The OMG is devoting efforts with a special task force7 and a dependability
assurance framework8. They have released a metamodel for representing assurance
cases, the so-called Structured Assurance Case Metamodel9 (SACM). In this paper we
use safety cases and GSN notation for arguing conformance with respect to ISO 26262.

3 The ROS Based Architecture

In this section we briefly introduce the ROS architecture used and describe the
experimentation carried out.

3.1 ROS Description: Operational Profile

We define our SEooC as a generic architecture containing two processing devices
which communicate between them using a ROS wrapper. The two processing devices
are specialized as follows:

1. Advanced Level Processing (ALP), implemented on a higher processing device
with higher computation and connectivity capabilities

2. Low Level Processing (LLP), implemented on a device with limited processing and
memory capabilities, directly connected with sensors and actuators.

So, while ALP nodes typically communicate to similar nodes by means of standard
interfaces, such as AUTomotive Open System ARchitecture (AUTOSAR) interfaces,
communication between APL and LLP nodes can use proprietary mechanisms. ROS is
adopted in order to avoid low level communication programming details. For the sake
of testing this architecture it has been implemented with two different and easily
available devices: A Raspberry Pi board as ALP node, which processes the data
acquired from an Arduino Board as LLP node, both linked via an USB serial con-
nection. Figure 1(a) provides a detailed representation of the proposed implementation
of this architecture, which is deployed in a vehicle as shown in Fig. 1(b). The use of the
SEooC within this vehicle is out of the scope of this paper.

3.2 Architecture Used in the Experiments

Since this architecture is aimed at building components that could be connected into a
broader system, typically for measuring or actuation purposes, they must be repre-
sented externally by a limited set of chosen parameters. In order to ease the integration
of the component it is of key importance that these parameters represent only the most

6 http://www.adelard.com/asce/choosing-asce/cae.html.
7 http://sysa.omg.org/.
8 http://www.omg.org/hot-topics/cdss.htm.
9 http://www.omg.org/spec/SACM/1.1/.

Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings 171

http://www.adelard.com/asce/choosing-asce/cae.html
http://sysa.omg.org/
http://www.omg.org/hot-topics/cdss.htm
http://www.omg.org/spec/SACM/1.1/

relevant aspects of the component behaviour, while wrapping to a maximum the
characteristics of the internal off-the-shelf components involved, i.e. ROS framework
and devices at ALP and LLP layers. For this set of experiments, we have fixed the size
of the exchanged messages to a 32 bits word. This will be the typical message size
associated with the limited processing and memory storage capacity of the ALP (e.g.
our Arduino UNO has 2 KB of RAM). More specifically, the message payload used in
the experiments is a message number generated consecutively by the ALP (Raspberry
Pi). Messages are sent with a fixed frequency, the period. This information is asyn-
chronously echoed by the LLP (Arduino) and then used to calculate the time required
for the communication by the LLP upon reception, if received.

The selected parameters are:

1. Period: It describes the time interval, in milliseconds, of messages published by the
ALP (Raspberry Pi) to be received by the LLP (Arduino) nodes.

2. Granularity: Parameter related to the ROS message-passing mechanism repre-
senting the message delivery frequency. While some invocations will result in no
information exchange other may result in one or more messages delivered. It is
expressed in kHz.

3. Queue size: ROS stores messages in fixed length queues following the
Publisher/Subscriber paradigm. This parameter is the internal size of these queues.

3.3 Safety Case and Evidence

We have identified which assumptions and arguments are required for defining an
ISO26262 SEooC component. As result we have defined a safety case (Fig. 2) which
require some evidences: “ROS characteristics are under control”. These characteristics
are the parameters defined in previous section: period, granularity and queue size.

According to [28] we need to identify different profiles for the usage of our SEooC
component. At least we need to identify the reliability communications behaviour for
the ROS based architecture. A quantitative technique for profiling the runtime beha-
viour is based on testing workloads [37]. We test our ROS based architecture by
sending messages. In this sense stress testing [38] has been used in the past, and it is an
essential activity in safety-critical software [39]. Therefore, we define fault as an

Fig. 1. (a) Implementation of our SEooC with Raspberry Pi (ALP) & Arduino (LLP);
(b) Raspberry Pi & Arduino SEooC integrated in our car prototype

172 X. Larrucea et al.

abnormal condition that can cause an element (clause 1.32) or an item (clause 1.69) to
fail [20]. An error is a discrepancy between a computed, observed or measured value or
condition, and the true, specified or theoretically correct value or condition. Finally, a
failure is a termination of the ability of an element (clause 1.32) to perform a function
as required.

In our definition, we are just considering lost messages as faults. Underlying
protocols provided by ROS guarantee message integrity. A lost message means, for
example, that the information sent to an actuator is not received, and therefore not
processed. These faults can also be considered as relative errors in this context. In this
sense, we are going to measure the following aspects for each experiment:

• Faults: number of undelivered messages or messages arrived after a certain latency
threshold.

• Mean: mean latency of all arrived messages.
• Median: central latency of all arrived messages.
• Standard Deviation: variation of arrived messages.
• Minimum: minimum latency value of all arrived messages.
• Maximum: maximum latency value of all arrived messages.
• Confidence Interval (CI) 95% (lower and upper): thresholds delimiting outliers. We

only consider outliers latencies higher than Upper CI 95%.
• Undelivered Density: number of undelivered messages per total number of mes-

sages sent.
• Outlier Density: number of outliers per total number of arrived messages.
• Reference Interval (RI) 99% (lower and upper): thresholds delimiting 99% of the

arrived messages.

The ROS based
architecture is free
from reasonable risk.

All hazards have been iden fied and
all hazardous events have been

classified and addressed in system
concept, design and implementa on.

All hazards have been iden fied and all
hazardous events have been classified and

addressed at system level

A complete set of safety
requirements has been derived
for all the hazardous events

with an ASIL value

System design has
taken into account all
safety requirements

Evalua on measures have been
taken into account to show the
correct implementa on of

safety requirements.

Defini on of system func onal
and non func onal

requirements, with proper
opera ng modes

Defini on of Assump ons
related to SEooC development.

Defini on of typical opera ng
scenarios in scope.

Quality characteris cs: Period,
Granularity, Queue Size. They
follow a normal distribu on

Defini ons of behaviors and
interac ons with other systems.

Complete descrip on of the hazardous events
achievement through the analysis of all hazards related
to the malfunc oning behaviors in combina on with the

safety relevant opera onal situa ons

Quality characteris cs are defined as
Period, Granularity and Queue Size
for the ROS based architecture.

System boundary, interfaces and
interac ons specifica on

System func onal and non-func onal
requirements specifica on and its
dependencies with respect to the

environment

ROS characteris cs
are under control

(period,
granularity, queue

size)

Reference to ISO26262: 2011

ISO2626:2011 Hazard Analysis and Risk
Assessment is used for hazards

iden fica on, risk assessment and
hazardous events classifica on

ISO2626:2011 Part 10:
SEooC

Asserted
Context

Asserted
Context

Asserted
Context

Asserted
EvidenceAsserted

Evidence

Asserted
Evidence

Asserted
Evidence

Asserted
Evidence

Fig. 2. A fragment of our safety case (GSN notation)

Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings 173

3.4 Results

We need to assess software operational quality based on stressing our SEooC. So, we
identified 40 different configurations (5 � 2 � 4 = 40) for our SEooC component,
being their input variables and values:

• Period values: 2, 3, 4, 5 and 8 ms.
• Granularity values: 5 and 10 kHz.
• Queue size values: 1, 2, 10 and 100.

Each experiment combination was executed 24 times during 10 min, therefore
resulting altogether in 960 executions (see Annexes-URL). These empirical cases
provided an overview of the SEooC component behaviour under stress conditions.

In a preliminary data analysis we determine which experiments were meaningful.
Figure 3 depicts the latency of two executions of out SEooC component. X axis rep-
resents the execution time in seconds (10 min altogether). Y axis represents the latency
of each message over time in milliseconds. Undelivered messages are shown as having
null latency. Figure 3 (a) shows a high density of messages delivered within the range
from 6 to 12 ms latency. Four spots close to the X axis (zero latency value) correspond
to undelivered messages. On the upper zone of the thick stripe, loose dots represent
messages with a high-out of common latency. Figure 3(b) depicts a completely dif-
ferent scenario. At the beginning, some messages are delivered with an extremely high
latency (more than 150 s). Further to a given point (around 300 s execution time)
messages no longer arrive, so that they all remain null (representing undelivered
messages). Clearly, in this case the component cannot be considered reliable as mes-
sages mostly remain undelivered. The whole experiment set with a period of 2 ms
behaves similarly. Furthermore, they are not comparable and we shall exclude them
from the remaining of our study. This reduces our data set to 768 (24 executions of
4 � 2 � 4 = 32 experiments). Similar figures to those provided in Fig. 3 are obtained
for the whole set of 768 valid executions and in general terms they all look like Fig. 3
(a). We have visually compared the figures of the 24 executions under the same
experimental conditions and they are consistent. All summarised information has been
collected and compared in spread sheets with two different sorting views: (1) blocks of
the 24 executions under each experimental condition and (2) blocks of all experiments
under the same execution number. All this information can be consulted in the
Annexes.

Figure 4 provides a different representation of the execution illustrated in Fig. 3(a)
3 ms, 5 kHz, queue size 2. A similar representation of Fig. 3(b) is also show in the
Annexes. However, as these data sets corresponding to Period 2 ms do not follow a
Gaussian distribution they do not make much sense. They have therefore been
eliminated.

174 X. Larrucea et al.

Another visual representation utilised in our analysis has been the density plot.
Figure 4(b) shows an execution instance of our SEooC. In order to formally analyse the
experimental results we need to check if they follow a normal distribution to apply the
Central Limit Theorem. When sample size is 8 to 29 (in our case, 24), we need to verify
whether the Shapiro-Wilk and Kolmogorov-Smirnov normality test is fulfilled. Since
the mean latency values do not violate the normal assumption, the Confidence Intervals
(CI) 95% can be calculated as in Eq. (1).

Confidence Interval 95% ¼ l � 2r ð1Þ

Having carried out this verification we can state that they follow the normal dis-
tribution. The R script utilised to verify this fact can be found in the provided Web site.
All our executions and data are available. Figure 5 represents graphically all periods by
means of boxplots.

Fig. 3. Data plots of two executions of the SEooC component, (a) 3 ms, 5 kHz, queue size 2;
(b) 2 ms, 5 kHz, queue size 2

Fig. 4. (a) Density plot vs boxplot of execution in Fig. 2 (a); (b) density plot of execution 19,
period 3 ms, granularity 5 kHz, queue size 1

Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings 175

4 Discussions

Our ROS based architecture is characterised in terms of timing. We have identified
which characteristics and thresholds are available for this ROS based architecture.
Therefore RQ1 (RQ1: What are the required characteristics and thresholds for a ROS
based architecture?) is answered. Note that a different architecture (sensor, controller
and actuator configuration) can generate other values. However, this research provides
an overview of the acceptable thresholds when using a ROS based architecture.

When defining our safety case, we identify a set of assumptions and arguments
required for supporting ISO 26262 SEooC concept, especially for reusing this com-
ponent across different domains/systems. All these assumptions, safety aspects and
asserted evidences supporting goals argue that a specific instantiation of a ROS based
architecture is acceptably safe and compliant to the ISO 26262 clauses related to
SEooC. So, our second research question (RQ2: What safety assumptions are defined
during the safety case definition?) is accomplished.

Our approach for certification is straightforward. We have used existing approaches
for assessing that we are fulfilling with the requirements. In fact, we are just focused on
providing the evidences that are summarizing the behaviour of a ROS based compo-
nent. All these parameters (Characterisitics) are the main elements to be used for
reusing this component in a different system/domain. Therefore, RQ3 (RQ3:
What ROS aspects are relevant for cross reuse and for its certification?) is reached.
However, these arguments and evidences can vary depending on each situation. If this
ROS component is going to be integrated in a more complex scenario, additional
arguments and evidence should be defined and analysed.

Our ROS based architecture is tested on a basic platform which is not a complex
system where several components (some of them ROS based) are interacting among
them. Deeper studies are required on complex infrastructures and mechanisms. For
example, the current bus communicator is a Universal Serial Bus (USB), and tradi-
tionally communications in automotive domain use the so called CAN bus [40].
However it can be used with USB for connecting other automotive components. In

Fig. 5. Boxplots for all period (ms), granularity (Hz) and queue size

176 X. Larrucea et al.

addition, further research should be devoted to security/safety? issues which are not
covered in CAN bus systems representing a main weakness.

The presented approach helps to identify what use of a ROS component can be
defined by the designer. In fact, it is under the designer’s responsibility to accept or to
decline a specific configuration according to one specific application requirements.
Our ROS characterization provides an overview of the acceptable values considering
Confidence Intervals (95%) and Reference Intervals (99%). During a certification
process these values are taken as reference values. These aspects are used during ISO
26262 SEooC component definition.

So, according to our study we can identify the ideal set of parameters for an
application, which would be a period of 8 ms, granularity of 5 kHz, and queue size of
100 in order to minimise the number of undelivered messages. In our example the
percentage of undelivered messages is 0.01%. We consider that each message can be
an instruction (order) for our autonomous car, and it cannot be lost. For example, if an
autonomous car identifies an obstacle in the way it should be avoided immediately,
otherwise the car might crash against it. A message redirecting its path is sent, it cannot
be lost and it should be processed as soon as possible.

5 Conclusions and Future Work

The automotive industry is applying the latest technological advances such as Robot
Operating System (ROS) for providing safety and security to drivers and pedestrians.
Despite some initial ROS based experiences, it has not been tested enough to be used in
safe environments. Therefore, this paper reports an assessment of a running ROS based
prototype in order to identify the main characteristics to be used as a ISO 26262 Safety
Element out of Context (SEooC). In fact, we have identified a safety case to argue
conformance to the ISO 26262. We have used Goal Structuring Notation (GSN) as the
notation language. As the timing is a relevant factor in our context, we analyse the
following ROS messaging parameters: period, granularity and queue size. Based on a
specific configuration we have generated the evidences related to the identified char-
acteristics and thresholds. All these parameters can be used as reference values when a
ROS component is reused in another system.

As future work, we have identified behavioural improvements modifying the Linux
kernel. In this sense there are some interesting initiatives such as Linux for automo-
tive10, and how ROS can be smoothly integrated with this operating system. Another
set of experiments could be carried out using as a parameter the message size since
much variability is not possible due to the limited capabilities of the LLP (Arduino).

Acknowledgments. This work has been partially supported by the Basque Government Project
CPS4PSS Etortek14/10.

10 https://www.automotivelinux.org/.

Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings 177

https://www.automotivelinux.org/

Annexes

A more detailed description of the experimental environment and the individual exe-
cution results are available in data and graphical modes at the following annexes web
address:

http://lsi.vc.ehu.eus/CPS-annexes.

References

1. Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An open
approach to autonomous vehicles. IEEE Micro 35(6), 60–68 (2015). https://doi.org/10.1109/
MM.2015.133

2. Aeberhard, M.: Automated Driving with ROS at BMW, Open Source Robotics Foundation
(2016). https://www.osrfoundation.org/michael-aeberhard-bmw-automated-driving-with-
ros-at-bmw/. Accessed 13 Sep 2017

3. Ainhauser, C., et al.: Autonomous driving needs ROS. ROS as a platform for autonomous
driving functions, BMW Group, BMW Car IT GmbH (2013)

4. Noh, S., Park, B., An, K., Koo, Y., Han, W.: Co-pilot agent for vehicle/driver cooperative
and autonomous driving. ETRI J. 37, 1032–1043 (2015). https://doi.org/10.4218/etrij.15.
0114.0095

5. International Standard Organisation. Road vehicles – Functional safety; ISO 26262- part 10
(2012)

6. Larrucea, X., Combelles, A., Favaro, J.: Safety-critical software [Guest editors’ introduc-
tion]. IEEE Softw. 30, 25–27 (2013). https://doi.org/10.1109/MS.2013.55

7. Larrucea, X., Mergen, S., Walker, A.: A GSN approach to SEooC for an automotive hall
sensor. In: Kreiner, C., O’Connor, R.V., Poth, A., Messnarz, R. (eds.) EuroSPI 2016. CCIS,
vol. 633, pp. 269–280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44817-6_
23

8. Larrucea, X., Walker, A., Colomo-Palacios, R.: Supporting the management of reusable
automotive software. IEEE Softw. 34(3), 40–47 (2017). https://doi.org/10.1109/MS.2017.68

9. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance cases and prescriptive software
safety certification: a comparative study. Saf. Sci. 59, 55–71 (2013). https://doi.org/10.1016/
j.ssci.2013.04.007

10. Hernandez, C., Abella, J.: Timely error detection for effective recovery in light-lockstep
automotive systems. IEEE Trans. Comput.-Aided Integr. Circuits Syst. 34, 1718–1729
(2015). https://doi.org/10.1109/TCAD.2015.2434958

11. Gallina, B.: A model-driven safety certification method for process compliance. In: IEEE
International Symposium Soft Reliability Engineering Workshops, pp. 204–209 (2014).
https://doi.org/10.1109/ISSREW.2014.30

12. Areias, C., Cunha, J.C., Iacono, D., Rossi, F.: Towards certification of automotive software.
In: IEEE International Symposium Software Reliability Engineering, pp. 491–496 (2014).
https://doi.org/10.1109/ISSREW.2014.54

13. Adedjouma, M., Hu, H.: Process model tailoring and assessment for automotive certification
objectives, pp. 503–508. IEEE (2014). https://doi.org/10.1109/ISSREW.2014.23

14. Mader, R., Armengaud, E., Grießnig, G., Kreiner, C., Steger, C., Weiß, R.: OASIS: an
automotive analysis and safety engineering instrument. Reliab. Eng. Syst. Saf. 120, 150–162
(2013). https://doi.org/10.1016/j.ress.2013.06.045

178 X. Larrucea et al.

http://lsi.vc.ehu.eus/CPS-annexes
http://dx.doi.org/10.1109/MM.2015.133
http://dx.doi.org/10.1109/MM.2015.133
https://www.osrfoundation.org/michael-aeberhard-bmw-automated-driving-with-ros-at-bmw/
https://www.osrfoundation.org/michael-aeberhard-bmw-automated-driving-with-ros-at-bmw/
http://dx.doi.org/10.4218/etrij.15.0114.0095
http://dx.doi.org/10.4218/etrij.15.0114.0095
http://dx.doi.org/10.1109/MS.2013.55
http://dx.doi.org/10.1007/978-3-319-44817-6_23
http://dx.doi.org/10.1007/978-3-319-44817-6_23
http://dx.doi.org/10.1109/MS.2017.68
http://dx.doi.org/10.1016/j.ssci.2013.04.007
http://dx.doi.org/10.1016/j.ssci.2013.04.007
http://dx.doi.org/10.1109/TCAD.2015.2434958
http://dx.doi.org/10.1109/ISSREW.2014.30
http://dx.doi.org/10.1109/ISSREW.2014.54
http://dx.doi.org/10.1109/ISSREW.2014.23
http://dx.doi.org/10.1016/j.ress.2013.06.045

15. OpenCert: Evolutionary Assurance and Certification for Safety-Critical Systems n.d. https://
www.polarsys.org/introducing-opencert-evolutionary-assurance-and-certification-safety-
critical-systems. Accessed 13 Mar 2018

16. Rajan, A., Wahl, T. (eds.): EU Project CESAR - Cost-Efficient Methods and Processes for
Safety-Relevant Embedded Systems. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-7091-1387-5_1

17. EU project SafeCer - Safety Certification of Software-Intensive Systems with Reusable
Components. http://safecer.eu/. Accessed 20 Apr 2017

18. EU project OPENCOSS - Open Platform for EvolutioNary Certification of Safety-critical
Systems. http://opencoss-project.eu. Accessed 20 Apr 2017

19. Barry, M.R.: CertWare: a workbench for safety case production and analysis, pp. 1–10.
IEEE (2011). https://doi.org/10.1109/AERO.2011.5747648

20. International Standard Organisation. Road vehicles – Functional safety; ISO 26262 (2011)
21. Taylor, W., Krithivasan, G., Nelson, J.J.: System safety and ISO 26262 compliance for

automotive lithium-ion batteries, pp. 1–6. IEEE (2012). https://doi.org/10.1109/ISPCE.2012.
6398297

22. Morris, J., Lee, G., Parker, K., Bundell, G.A., Lam, C.P.: Software component certification.
Computer 34, 30–36 (2001). https://doi.org/10.1109/2.947086

23. Voas, J.M.: Certifying off-the-shelf software components. Computer 31, 53–59 (1998).
https://doi.org/10.1109/2.683008

24. Verma, A.K., Ajit, S., Karanki, D.R. (eds.): Software Reliability. Reliability Safety
Engineering, pp. 193–228. Springer, London (2010). https://doi.org/10.1007/978-1-84996-
232-2

25. Lyu, M.R.: Software reliability engineering: a roadmap, pp. 153–170. IEEE (2007). https://
doi.org/10.1109/FOSE.2007.24

26. Currit, P.A., Dyer, M., Mills, H.D.: Certifying the reliability of software. IEEE Trans. Softw.
Eng. SE-12, 3–11 (1986). https://doi.org/10.1109/TSE.1986.6312914

27. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using model-driven engineering for
managing safety evidence: challenges, vision and experience, pp. 7–12. IEEE (2011). https://
doi.org/10.1109/WoSoCER.2011.8

28. Wohlin, C., Regnell, B.: Reliability certification of software components. IEEE Comput.
Soc. 56–65 (1998). https://doi.org/10.1109/ICSR.1998.685730

29. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al.: ROS: an open-
source robot operating system. In: ICRA Workshop Open Source Software, vol. 3, p. 5
(2009)

30. Staranowicz, A., Mariottini, G.L.: A survey and comparison of commercial and open-source
robotic simulator software, p. 1. ACM Press (2011). https://doi.org/10.1145/2141622.
2141689

31. Noh, S., Han, W.-Y.: Collision avoidance in on-road environment for autonomous driving,
pp. 884–889. IEEE (2014). https://doi.org/10.1109/ICCAS.2014.6987906

32. Silva, M., Garrote, L., Moita, F., Martins, M., Nunes, U.: Autonomous electric vehicle:
steering and path-following control systems. In: IEEE Mediterranean Electrotechnical
Conference, pp. 442–445. (2012). https://doi.org/10.1109/MELCON.2012.6196468

33. Pérez, J., et al.: Robotic manipulation within the underwater mission planning context. In:
Carbone, G., Gomez-Bravo, F. (eds.) Motion and Operation Planning of Robotic Systems.
MMS, vol. 29, pp. 495–522. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
14705-5_17

Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings 179

https://www.polarsys.org/introducing-opencert-evolutionary-assurance-and-certification-safety-critical-systems
https://www.polarsys.org/introducing-opencert-evolutionary-assurance-and-certification-safety-critical-systems
https://www.polarsys.org/introducing-opencert-evolutionary-assurance-and-certification-safety-critical-systems
http://dx.doi.org/10.1007/978-3-7091-1387-5_1
http://dx.doi.org/10.1007/978-3-7091-1387-5_1
http://safecer.eu/
http://opencoss-project.eu
http://dx.doi.org/10.1109/AERO.2011.5747648
http://dx.doi.org/10.1109/ISPCE.2012.6398297
http://dx.doi.org/10.1109/ISPCE.2012.6398297
http://dx.doi.org/10.1109/2.947086
http://dx.doi.org/10.1109/2.683008
http://dx.doi.org/10.1007/978-1-84996-232-2
http://dx.doi.org/10.1007/978-1-84996-232-2
http://dx.doi.org/10.1109/FOSE.2007.24
http://dx.doi.org/10.1109/FOSE.2007.24
http://dx.doi.org/10.1109/TSE.1986.6312914
http://dx.doi.org/10.1109/WoSoCER.2011.8
http://dx.doi.org/10.1109/WoSoCER.2011.8
http://dx.doi.org/10.1109/ICSR.1998.685730
http://dx.doi.org/10.1145/2141622.2141689
http://dx.doi.org/10.1145/2141622.2141689
http://dx.doi.org/10.1109/ICCAS.2014.6987906
http://dx.doi.org/10.1109/MELCON.2012.6196468
http://dx.doi.org/10.1007/978-3-319-14705-5_17
http://dx.doi.org/10.1007/978-3-319-14705-5_17

34. Wassyng, A., Maibaum, T., Lawford, M., Bherer, H.: Software certification: is there a case
against safety cases? In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS,
vol. 6662, pp. 206–227. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21292-5_12

35. Spriggs, J.: GSN - The Goal Structuring Notation. A Structured Approach to Presenting
Arguments. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2312-5

36. Fachet, R.: Re-use of software components in the IEC-61508 certification process, vol. 2004,
p. 8. IEEE (2004). https://doi.org/10.1049/ic:20040532

37. Sârbu, C., Johansson, A., Suri, N., Nagappan, N.: Profiling the operational behavior of OS
device drivers. Empir. Softw. Eng. 15, 380–422 (2010). https://doi.org/10.1007/s10664-009-
9122-z

38. Jiang, B., Chen, P., Chan, W.K., Zhang, X.: To what extent is stress testing of android TV
applications automated in industrial environments? IEEE Trans. Reliab. 1–17 (2015). https://
doi.org/10.1109/TR.2015.2481601

39. Baker, R., Habli, I.: An empirical evaluation of mutation testing for improving the test
quality of safety-critical software. IEEE Trans. Softw. Eng. 39, 787–805 (2013). https://doi.
org/10.1109/TSE.2012.56

40. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (CAN) schedulability
analysis: refuted, revisited and revised. R.-Time Syst. 35, 239–272 (2007). https://doi.org/10.
1007/s11241-007-9012-7

180 X. Larrucea et al.

http://dx.doi.org/10.1007/978-3-642-21292-5_12
http://dx.doi.org/10.1007/978-3-642-21292-5_12
http://dx.doi.org/10.1007/978-1-4471-2312-5
http://dx.doi.org/10.1049/ic:20040532
http://dx.doi.org/10.1007/s10664-009-9122-z
http://dx.doi.org/10.1007/s10664-009-9122-z
http://dx.doi.org/10.1109/TR.2015.2481601
http://dx.doi.org/10.1109/TR.2015.2481601
http://dx.doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1007/s11241-007-9012-7

REMEDY 2018 Workshop

Introduction to the International Workshop
on Formal Models for Mastering Multifaceted

Systems (REMEDY 2018)

Welcome to the Workshop on ‘Formal Models for Mastering Multifaceted Systems’
which was held in Marrakech on October 24, 2018.

My colleague and friend Yamine Ait Ameur suggested to organize this satellite
event at the MEDI conference. Patricia Derler (National Instruments, Berkeley, USA)
and Martin Törngren (KTH Royal Institute of Technology, Stockholm, Sweden)
accepted despite their numerous engagements to contribute to organizing and managing
the scientific aspects of the workshop as co-chairs. Their encouragement and dedication
contributed to the success of this workshop.

We focused the topics of the workshop on “Formal Models for Mastering Multi-
faceted Systems.” The emphasis was on not only the main topics in models and
engineering of MEDI, but also our daily concerns in teaching and research activities.

Indeed, numerous software-based systems are distinguished by their needs to
handle simultaneously multiple facets: complex behaviors, intensive data, continuous
reactions with their environment, evolving physical environments, time properties,
robustness to failure, etc.

Modeling, analyzing, and building such multifaceted systems are still challenging
research concerns. The purpose of the workshop is to connect researchers and praction
working on various aspects of such systems that involve heterogeneous components,
distributed and embedded systems, reactive systems, etc.

We thank the colleagues and students who contributed, despite the short submis-
sion deadlines, by proposing their work to the workshop and also the authors who
actively participated at the conference.

We believe that the meeting in Marrakech gave attendees the opportunity to initiate
relationships and stimulate fruitful discussions and collaborations for the future.

We want to express our deep gratitude to the Program Committee members who
reviewed and evaluated within a tight schedule all the submitted papers.

We also thank all the MEDI Conference organizers and the satellite workshop
organizers for their hard works.

October 2018 Patricia Derler
Christian Attiogbé
Martin Törngren

REMEDY 2018 Workshop Chairs

Patricia Derler National Instruments, USA
Christian Attiogbé University of Nantes, France
Martin Törngren KTH, Sweden

REMEDY 2018 Program Committee

Christian Attiogbé University of Nantes, France
Yamine Ait Ameur ENSEEIHT, France
Luis Barbosa University of Minho, Portugal
Mohamed Tahar Bhiri University of Sfax, Tunisia
Maurice ter Beek ISTI-CNR Pisa, Italie
Imen Ben Hafaiedh University of Tunis El Manar, Tunisia
DeJiu Chen KTH, Sweden
Patricia Derler National Instruments, USA
Mamoun Filali IRIT, France
Stephan Hallerstade Aarhus University, Denmark
Eric Madelaine Inria Sophia Antipolis, France
Dominique Mery University of Nancy, France
Mohamed Messabihi University of Tlemcen, Algeria
Hassan Mountassir University of Besançon, France
Manuel Núñez Universidad Complutense of Madrid, Spain
Jérôme Rocheteau ICAM/LS2N, France
Martin Torngren KTH, Sweden
Stavros Tripakis University of Aalto, Finland
Marina Walden Abo Akademi University, Finland
Virginie Wiels ONERA, France

Introduction to the International Workshop on Formal Models for Mastering 183

Reliability in Fully Probabilistic Event-B:
How to Bound the Enabling of Events

Syrine Aouadi and Arnaud Lanoix(B)

University of Nantes/LS2N UMR CNRS 6004, Nantes, France
syrine.aouadi@eleves.ec-nantes.fr

arnaud.lanoix@univ-nantes.fr

Abstract. In previous work, we have proposed a fully probabilistic ver-
sion of Event-B where all the non-deterministic choices are replaced by
probabilistic ones and, particularly, the events are equipped with weights
that allow us to consider their enabling probability. In this work, we focus
on the reliability of the system by proposing to constraint the probability
of enabling an event (or a set of events) to control its importance with
regard to the intended system behaviour. We add a specific upper bound
which must limit the enabling probabilities of the chosen events and we
consider the necessary proof obligations to check that the considered
events respect the bound. At the end, we illustrate our work by present-
ing a case study specified in probabilistic Event-B and where bounding
the enabling of some events is mandatory.

Keywords: Event-B · Probabilistic Event-B
Probabilistic properties · Reliability · Weight · Proof obligations

1 Introduction

Systems using randomized algorithms [1], probabilistic protocols [2] or failing
components become more and more complex. It is then necessary to add new
modeling features in order to take into account the inherent complexity of the
system properties such as reliability [3], responsiveness [4,5], continuous evolu-
tion, energy consumption etc. One of these features is probabilistic reasoning,
which can be used in order to introduce uncertainty in a model or to mimic ran-
domized behavior. Probabilistic modeling formalisms have therefore been devel-
oped in the past, mainly extending automata-based formalisms [6,7]. Abstrac-
tion [8,9], refinement [10] and model-checking algorithms [11,12] have been suc-
cessfully studied in this context. However, the introduction of probabilistic rea-
soning in proof-based modeling formalisms has been, to the best of our knowl-
edge, quite limited [13–20]. Although translations from proof-based models to
automata-based models are always possible, the use of automata-based verifica-
tion techniques in the context of proof-based models is most of the time inconve-
nient because of possible state-space explosion introduced in the translation.

Event-B [21] is a proof-based formal method used for modeling discrete sys-
tems. It is equipped with Rodin [22], an open toolset for modeling and proving
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 185–199, 2018.
https://doi.org/10.1007/978-3-030-02852-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_17&domain=pdf

186 S. Aouadi and A. Lanoix

systems. This toolset can easily be extended, which makes Event-B a good candi-
date for introducing probabilistic reasoning in a proof-based modeling formalism.

So far, several research works have focused on the extension of Event-B to
allow the expression of probabilistic information in Event-B models. In [23],
Abrial et al. have summarized the difficulties of embedding probabilities into
Event-B. This paper suggests that probabilities need to be introduced as a refine-
ment of non-determinism. In Event-B, non-determinism occurs in several places
such as the choice between enabled events in a given state, the choice of the
parameter values in a given event, and the choice of the value given to a vari-
able through some non-deterministic assignments. To the best of our knowledge,
the existing works on extending Event-B with probabilities have mostly focused
on refining non-deterministic assignments into probabilistic assignments. Other
sources of non-determinism have been left untouched. In [24], Hallerstede et
al. propose to focus on a qualitative aspect of probability. They refine non-
deterministic assignments into qualitative probabilistic assignments where the
actual probability values are not specified, and adapt the Event-B semantics
and proof obligations to this new setting. In [25], the same authors study the
refinement of qualitative probabilistic Event-B models and propose tool sup-
port inside Rodin. Other works [26–28] have extended this approach by refining
non-deterministic assignments into quantitative probabilistic assignments where,
unlike in [24], the actual probability values are specified. This new proposition
is then exploited in order to assess several system properties such as reliability
and responsiveness.

Unfortunately, sources of non-determinism other than assignments have been
left untouched, although the authors argue that probabilistic choice between
events or parameter values can be achieved by transformations of the models that
embed these choices inside probabilistic assignments. While this is unarguably
true, such transformations are not trivial and greatly impede the understanding
of Event-B models. Moreover, these transformations would need to be included
in the refinement chain when designers need it, which would certainly be counter-
intuitive to engineers.

In previous works [29,30] we pursued these works by proposing a probabilis-
tic extension of Event-B and presenting some ways of introducing probabilistic
reasoning within Event-B. We have proposed some new syntactic elements for
writing fully probabilistic Event-B models in the Event-B framework. The con-
sistency of such models has been expressed, as in standard Event-B, in terms
of proof obligations. In the standard Event-B setting, convergence is a required
property for proving a refinement step as soon as new events are introduced
in the model. The counterpart property in the probabilistic setting is almost-
certain convergence, which has already been studied in [24], in the context of
non-deterministic models with only probabilistic assignments. We therefore have
exhibited new sufficient conditions, expressed in terms of proof obligations, for
the almost-certain convergence of a set of fully probabilistic events. While the
conditions we exhibit are more constrained than those from [24] concerning
events and parameters, they are also less restrictive concerning probabilistic

Reliability in Fully Probabilistic Event-B 187

assignments. Finally, some of the previously mentioned results have been imple-
mented in a prototype plugin for Rodin.

In the probabilistic Event-B context, the probabilistic events are equipped
with weights, in order to easily consider the enabling probability of each event
in any configuration. In this paper, we extend the previous work by considering
a kind of probabilistic invariant that allows us to model and verify properties
concerning reliability: we add a specific upper bound to constraint the enabled
probability of an event (or a set of events) in order to limit their importance
with regards to the system behavior. As in the previous work, we check that
the considered events respect the bound by means of new proof obligations.
These new proof obligations ensure that in any configurations where the consid-
ered event can be enabled, this enabled probability is lower than the considered
bound. Finally, we illustrate our work on an industrial simplified case study:
the PCB manufacturing and control system [31,32]. Particularly, we show the
requirements for applying the enabled bound property on a realistic used system.

Outline. The paper is structured as follows. Section 2 presents the scientific back-
ground of this paper in terms of Probabilistic Event-B. In Sect. 3, we focus on
how to constraint the enabling of events, and the necessary proof obligations on
such models. Section 4 introduces our case study: a simple PCB manufacturing
and control system which illustrate the use of the previously mentioned property.
Finally, Sect. 5 concludes the paper.

2 Preliminaries: Probabilistic Event-B

Event-B [21] is a formal method used for the development of complex discrete
systems. Systems are described in Event-B by means of models. We have previ-
ously extended standard Event-B models to introduce probabilistic reasoning. In
Event-B, non-determinism can appear in three places: the choice of the enabled
event to be executed, the choice of the parameter value to be taken and the
choice of the value to be assigned to a given variable in a non-deterministic
assignment. To obtain a fully probabilistic Event-B model, we have proposed to
replace all these non-deterministic choices with probabilistic ones.
MODEL

M
VARIABLES
v̄

INVARIANTS
I (v̄)

VARIANT
V(v̄)

EVENTS
Init =̂ . . .
e1 =̂ . . .
. . .
en =̂ . . .

END

For the sake of simplicity, we assume in the rest of
the paper that a fully probabilistic Event-B model is
expressed by a tuple M = (v̄, I(v̄), V(v̄), PEvts, Init) where
v̄ = {v1 . . . vn} is a set of variables, I (v̄) is an invariant, V(v̄)
is an (optional) variant used for proving the (almost-certain)
convergence of the model, PEvts is a set of probabilistic events
and Init ∈ PEvts is the initialization event. The invariant I (v̄)
is a conjunction of predicates over the variables of the system
specifying properties that must always hold.

Probabilistic Events. A probabilistic event has the following
structure where ei is the name of the event, Wi(v̄) is the

188 S. Aouadi and A. Lanoix

weight of the event, t̄ = {t1 . . . tn} represents the (optional) set of parameters
of the event, Gi(t̄ , v̄) is the (optional) guard of the event and Si(t̄ , v̄) is the
action of the event. A probabilistic event is enabled in a given valuation of the
variables (also called a configuration) if and only if (i) there exists a parameter
valuation such that its guard Gi(t̄ , v̄) is fulfilled in this context and (ii) its
weight Wi(v̄) is strictly positive.

event ei =̂
weight
Wi(v̄)

any t̄ where
Gi(t̄ , v̄)

then
SPi(t̄,v̄)

end

In standard Event-B, when several events are enabled,
the event to be executed is chosen non-deterministically. The
weight Wi(v̄) of the event resolves this non-deterministic
choice: in configurations where several probabilistic events are
enabled, the probability of enabling one of them will therefore
be computed as the ratio of its weight against the total value
of the weights of all enabled events in this state. Moreover,
for the sake of expressibility, we propose to express the weight
Wi(v̄) of a probabilistic event ei as an expression over the vari-
ables v̄ of the fully probabilistic Event-B model. The probability of enabling a
given event can therefore evolve as the system progresses.

For the events equipped with parameters t̄, a valuation of the parameters is
chosen such that the guard Gi(t̄ , v̄) of the event is satisfied. In standard Event-B,
when there are several such parameter valuations, one of them is selected non-
deterministically. We therefore have proposed to replace this non-deterministic
choice by a uniform choice over all parameter valuations ensuring that the guard
of the event is satisfied.

Probabilistic Assignments. The action SPi(t̄, v̄) of a probabilistic event may
contain several assignments that are executed in parallel. An assignment can be
expressed in one of the following forms:

– Deterministic assignment: x := E(t̄, v̄) means that the expression E(t̄ , v̄)
is assigned to the variable x.

– Predicate probabilistic assignment: x:⊕Q(t̄, v̄, x, x ’) means that the
variable x is assigned a new value x’ such that the predicate Q(t̄, v̄ , x, x ’)
is satisfied. Instead of choosing non-deterministically among the values of
x’ such that the predicate Q(t̄, v̄ , x, x ’) is true as in standard predicate
non-deterministic assignments, we propose to choose this new value using an
uniform distribution.

– Enumerated probabilistic assignment: x := E1(t̄, v̄) @ p1 ⊕ . . . ⊕
En(t̄, v̄) @ pn means that the variable x is assigned the expression Ei with
probability pi. In order to define a correct probability distribution, each pi
must be strictly positive and smaller or equal to 1, and they must sum up
to 1. Although rational numbers are not natively handled in Event-B, we
assume that an adequate context is present. That can be done by defining
a “Rational” theory in Rodin using the theory plug-in providing capabilities
to define and use mathematical extensions to the Event-B language and the
proving infrastructure [33].

Reliability in Fully Probabilistic Event-B 189

Before-After Predicate and Semantics. The formal semantics of an assignment
is described by means of a before-after predicate (BA) Q(t̄, v̄ , x, x ’) , which
describes the relationship between the values of the variable before (x) and after
(x’) the execution of an assignment.

– The BA of a deterministic assignment is x’= E(t̄,v̄).
– The BA of a predicate probabilistic assignment is Q(t̄, v̄ , x, x ’) .
– The BA of an enumerated probabilistic assignment is x’∈ {E1(t̄, v̄) . . .En(t̄, v̄)}.

Recall that the action Si(t̄ , v̄) of a given event ei may contain several
assignments that are executed in parallel. Assume that v1 . . . vi are the vari-
ables assigned in Si(t̄ , v̄) – variables vi+1 . . .vn are thus not modified – and
let Q(t̄, v̄ , v1 , v’1) . . .Q(t̄,v̄ ,vi ,v’ i) be their corresponding BA. Then the BA
Si(t̄ , v̄ , v̄ ’) of the event action Si(t̄ , v̄) is:

Si(t̄ , v̄ ,v̄ ’) =̂ Q(t̄,v̄,v1 ,v’1) ∧ . . . ∧ Q(t̄,v̄,vi,v’i) ∧ (v’i+1=vi+1) ∧ . . . (v’n=vn)

Proof Obligations. The consistency of a standard Event-B model is characterized
by means of proof obligations (POs) formally defined in [21] which must be
discharged. Discharging all the necessary POs allows to prove that the model is
sound with respect to some underlaying behavioral semantics. The consistency
of a fully probabilistic Event-B model is also characterized by means of POs to
be discharged. Among all of them, the first ones are adaptation of the standard
POs and the second ones are POs specific to fully probabilistic Event-B.

In the following, we recall the adaptation of the most important of the stan-
dard POs: (event/pINV) for invariant preservation, which states that the invari-
ant still holds after the execution of each probabilistic event in the Event-B
model M. Given an event ei with a guard Gi(t̄ , v̄) and an action Si(t̄ , v̄), this
PO is expressed as follows:

I (v̄) ∧ Gi(t̄,v̄) ∧ Wi(v̄) > 0 ∧ SPi(t̄,v̄,v̄’) � I (v̄ ’) (event/INV)

Then, we give some of the new POs specific to fully probabilistic Event-B:

– we impose that the expression Wi(v̄) representing the weight of a given prob-
abilistic event must evaluate to natural numbers.
I (v̄) ∧ Gi(t̄,v̄) � Wi(v̄) ∈ NAT (event/WGHT/NAT)

– In order to be able to use a discrete uniform distribution over the set of param-
eter valuations ensuring that the guard of a probabilistic event is satisfied,
we impose that this set must be finite.
I (v̄) � finite ({t̄ | Gi(t̄ , v̄)}) (event/param/pWD)

190 S. Aouadi and A. Lanoix

– Probability values pi in enumerated probabilistic assignments are strictly pos-
itive and smaller or equal to 1.

� 0 < pi ≤ 1 (event/assign/pWD1)

– The sum of the probability values p1 . . . pn in enumerated probabilistic assign-
ments must be equal to 1.

� p1 + . . .+ pn = 1 (event/assign/pWD2)

Feasibility of enumerated probabilistic assignments is trivial: as soon as at
least one expression Ei(t̄ , v̄) is present and well-defined, it always returns a
value.

– In order to define a discrete uniform distribution over the set of values of a
variable x making the predicate Qx(t̄, v̄ , x ’) of the corresponding assignment
satisfied, we impose that this set must be finite.
I (v̄) ∧ Gi(t̄,v̄) ∧ Wi(v̄)>0 � finite ({x’ | Qx(t̄,v̄,x ’)})
(event/assign/pWD3)

Feasibility of predicate probabilistic assignments is ensured by the stan-
dard feasibility PO [21] inherited from Event-B. It ensures that the set
{x ’|Qx(t̄, v̄ , x ’)} is not empty.

3 Contribution: Limiting the Enabling of Probabilistic
Events

We recall that, in standard Event-B, when several events are enabled in a given
configuration, the event to be executed is chosen non-deterministically. In order
to resolve this non-deterministic choice, we have proposed to equip each event
with a weight Wi(v̄) that is an expression over the variables v̄ of the fully prob-
abilistic Event-B model. Note that using weights instead of actual probability
values is convenient as the set of enabled events evolves with the configurations
of the system. Using probability values instead would require to normalize them
in all configurations.

Enabling Probability. A probabilistic event is enabled in a given configuration
if and only if there exists a parameter valuation such that its guard Gi(t̄ , v̄)
is fulfilled and its weight Wi(v̄) is strictly positive. In configurations where sev-
eral probabilistic events are enabled, the probability of choosing one of them
will therefore be computed as the ratio of its weight against the total value of
the weights of all enabled events in this configuration. Formally, this enabling
probability is defined as follows.

Let M = (v̄, I(v̄), V(v̄), PEvts, Init) be a fully probabilistic Event-B model.
Given an event ei in PEvts and a valuation σ of the variables v̄ of the model,
the enabling probability of ei in σ is formally defined by

Reliability in Fully Probabilistic Event-B 191

P (ei, σ) =
[σ]Wi(v̄)

∑

ej∈PEvts ([σ]Wj(v̄ | [σ]Wj(v̄) > 0 ∧ ∃ θ′.[σ, θ′]Gj(v̄, t̄) = �)
(1)

if ∃ θ.[σ, θ]Gi(v̄, t̄) = � and [σ]Wi(v̄) > 0 (2)
= 0 otherwise (3)

where θ and θ′ are possible valuations of the parameters t̄.
The probability of enabling a given event can therefore evolve as the system

progresses. Equation (1) represents the ratio of the weight of the considered event
ei against the total value of the weights of all the enabled events (including the
weight of ei), when Eq. (2) is verified i.e. the event ei is enabled. Otherwise as
Eq. (3) the enabling probability of ei is equal to 0.

Enabled Bound Property. In standard and probabilistic Event-B, the events for
which we want to study their termination are annotated as convergent. We
adopt the same principle and we annotate by bounded the events for which we
want to limit their enabling probabilities. We also introduce a specific upper
bound EB(v̄) (notice ENABLED BOUND into the B model) as an expression
over the variables v̄ of the fully probabilistic Event-B model to limit the enabling
probability of the bounded events. Note that this upper bound can evolve as
the system progresses.

Considering a bounded event ei , it must verify the enabled bound property,
i.e. in all configurations in which ei could be enabled, then its enabling probabil-
ity must be lower than or equal to the value of the enabled upper bound EB(v̄)
in that configuration. Formally

∀σ. ∃ θ.[σ, θ]Gi(v̄, t̄) = � ∧ [σ]Wi(v̄) > 0 ⇒ P (ei, σ) ≤ [σ]EB(v̄) (4)

Proof Obligations. Checking standard or probabilistic Event-B models consists
of discharging proof obligations. We then propose necessary POs to check the
above mentioned enabled bound property on a fully probabilistic Event-B model.

Let M = (v̄, I(v̄), V(v̄), PEvts, Init) be a fully probabilistic Event-B model.
Let ei be a bounded event from PEvts = {e1 . . . ei . . . en}. Let EB(v̄) be the
enabled upper bound. Then, the necessary POs are defined as follows.

1. The enabled upper bound EB(v̄) must always be a rational number i.e. a
positive non-zero value strictly lower than 1:

I (v̄) � 0 < EB(v̄)< 1 (eBOUND/WD)

2. Each bounded event ei satisfies the enabled bound property (see Eq. (4)), i.e.
its enabling probability is always lower than or equal to the enabled upper
bound.

I (v̄) ∧ Gi(t̄,v̄) ∧ Wi(v̄) > 0 � (event/WGHT/eBOUND)

Wi(v̄)
∑

(ej).(Wj(v̄) | Gj(t̄,v̄) ∧ Wj(v̄) > 0)
≤ EB(v̄)

192 S. Aouadi and A. Lanoix

4 Case Study: The PCB Manufacturing and Control
System

In this section, our purpose is to highlight on a concrete case study the interest
of the enabled bound property. We then propose a fully probabilistic Event-B
model of a simplified industrial case study: the Printed Circuit Boards (PCB)
manufacturing and control system [31,32]. This case study interests electronic
cards manufacturers that face the ever increasing requirement of reducing their
cost and improving products quality. That requires having a fine control strategy
through which we evaluate the produced electronic cards by detecting possible
errors from the tests performed.

In the considered case study, we will focus on two kinds of tests: the ICT
(“In Circuit Testing”) tests check the presence of all the attempted components
and the FCT (“Functional Testing”) tests verify the functional behavior of each
PCB.

Our proposed model simply abstracts the manufacturing and control process.
We only identify each manufactured card by a unique identifier and we introduce
two events, one representing the fair cards manufacturing, the other modeling
the deficient cards manufacturing. The PCB manufacturing and control system
must provide a history about the produced PCB and the error reporting.

Informal description of this system imposes two probabilistic requirements

(i) the risk of having a deficient card must decrease with the increasing number
of reported errors;

(ii) having fair cards increases with correct cards production rise.

In fact, the manufacturing and control system must be a self-corrective maneuver
on the PCB production line.

Event-B Context. To model the static aspects of the system, we propose the
Event-B context as depicted by Fig. 1. Precisely,

– the constant Max Cards models the maximum number of cards that can be
produced whereas the constant Max Errors models the maximum number of
errors that can be reported;

– the set Error State represents the tree kind of errors that can be reported
during the test phase:

• the constant ICT error designs an “In Circuit” error;
• the constant FCT error Designs a “Functional” error;
• the constant ICT FCT error designs a double error, i.e. “In Circuit” and

“Functional” errors simultaneously.

Note that Error State is syntactically expressed as a partition between
ICT error, FCT error and ICT FCT error, i.e. Error State = {ICT error , FCT error, ICT FCT error}.

The maximum number of reported errors must be lower than or equal to the
maximum number of produced cards. Only one kind of error is reported for a
specific card.

Reliability in Fully Probabilistic Event-B 193

Fig. 1. PCB manufacturing system context

Event-B Model. We propose to model the system’s state by means of three state
variables, as depicted by Fig. 2:

– the set Cards represents all the produced cards;
– the partial function Errors models the history of all the cards which have

reporting errors, i.e. it associates to each necessary card, the corresponding
reported error;

– the variable Next ID identifies the nextly produced card.

We then model the dynamic of the system using three (probabilistic) events.

– the event init initializes the model: regarding Cards and Errors , they are
initialized to empty sets and Next ID is initialized to any chosen integer value
(10 on the illustrated specification);

– the event Manufacturing OK models the fair cards production. Cards could
be produced when the maximum number of produced cards is not reached
and the maximum number of errors is also not reached; The number of the
newly produced card is added to Cards, and the Next ID is incremented;

– the event Manufacturing Error represents the production of deficient cards:
The event’s parameter error chooses a kind of errors among the Error State ,
i.e. a “In Circuit” error, a “Functional” error or the both simultaneously. The
newly produced card is also registered, the Next ID is incremented and the
reported error is added to Errors : Next ID �→ error.

194 S. Aouadi and A. Lanoix

Fig. 2. PCB manufacturing system model

Reliability in Fully Probabilistic Event-B 195

We note that the system stops running when the allowed numbers of reported
errors or total cards produced are reached.

Probabilities appear in weights associated to each events and in the uniform
choice between the kind of errors in the event Manufacturing Error. We recall
that informal description of this system imposes two probabilistic requirements:
the risk of having a deficient card must decrease with the increasing number of
reported errors and having fair cards increases with cards production rising, due
to the manufacturing and control system must be a self-corrective maneuver on
the PCB production line. In other words, the more errors are reported, the less
errors will be reported, whereas the more cards are produced, the more fair care
will be produced. As the events Manufacturing OK and Manufacturing Error will
be enabled simultaneously, their respective probabilities computed from their
weights translate the requirements:

– the weight of the event Manufacturing OK increases with the number of pro-
duced cards, that corresponds to the requirement “the more cards are pro-
duced, the more fair care will be produced”;

– the weight of the event Manufacturing Error decreases with the number of
reported errors, that correspond to the requirement “the more errors are
reported, the less errors will be reported”.

To illustrate the attempted behavior of the specified system, we give in Fig. 3
a sub-part of the corresponding probabilistic transition system, with Max Errors
fixed to 2 and Max Cards fixed to 3.

Verification. We consider that the consistency of the Event-B model PCBsystem
presented above is verified by discharging all the necessary consistency proof obli-
gations. We only focus on the verification of the enabled bound property depicted
in Sect. 3. we annotate by bounded the event Manufacturing Error and we add
an ENABLED BOUND: the enabling probability of Manufacturing Error must
be always limited by the value of the ENABLED BOUND. We have chosen as
ENABLED BOUND an expression which corresponds to the enabling probabil-
ity of the event Manufacturing OK to ensure that always errors are reported less
than fair cards are produced; it is a specific case: in a more general case, any
expression could be chosen with respect to the case study.

To prove that the enabled bound property is verified, we must discharge
the POs (eBOUND/WD) and (event/WGHT/eBOUND). The PO (eBOUND/WD) is
instantiated as follows on the Event-B model PCBsystem:

196 S. Aouadi and A. Lanoix

Fig. 3. Extract of the transition system of PCBsystem with Max Errors = 2 and
Max Cards = 3

1 Max Cards ∈ N1

2 Max Errors ∈N1

3 Max Errors ≤ Max Cards
4 Cards ⊆ N1

5 Errors ∈ Cards �→Error State
6 finite (Cards)
7 finite (Errors)
8 card(Cards) ≤ Max Cards
9 card(Errors) ≤ Max Errors

10 |− − − − − − − − − − − − − − − − − − − −
11 0 <
12 (Max Cards + card(Cards) +1)
13 / (Max Cards + card(Cards) + Max Errors − card(Errors) +2)
14 < 1

We have to show that the goal (lines 11–14) could be established using the
hypotheses (lines 1–9). It is obvious since the sum given line 12 is strictly positive
when taking account of the hypotheses lines 1 and 8. The hypotheses lines 5 and 9
imply that the difference (Max Errors + 1 − Max Cards) is also strictly positive.
Thus, numerator given line 12 is strictly lower than denominator given line 13.

Reliability in Fully Probabilistic Event-B 197

So, the considered fraction is strictly lower than 1 and the PO (eBOUND/WD) is
discharged.

Secondly, we instantiate the PO (event/WGHT/eBOUND) in the context of the
bounded event Manufacturing Error. Note that the event Manufacturing Ok could
always be triggered with Manufacturing Error so the PO becomes as follows:

1 Max Cards ∈ N1

2 Max Errors ∈N1

3 Max Errors ≤ Max Cards
4 Cards ⊆ N1

5 Errors ∈ Cards �→Error State
6 Next ID ∈ N1

7 finite (Cards)
8 finite (Errors)
9 card(Cards) < Max Cards

10 card(Errors) < Max Errors
11 |− − − − − − − − − − − − − − − − − − − −
12 (Max Errors − card(Errors) +1)
13 / (Max Cards + card(Cards) + Max Errors − card(Errors) +2)
14 <
15 (Max Cards + card(Cards) +1)
16 / (Max Cards + card(Cards) + Max Errors − card(Errors) +2)

Clearly, when we take account the hypothesis given line 3, the goal is obvi-
ously discharged.

In this example, we showed how demonstrate the necessary POs by hand,
but in an industrial context, the Rodin toolset will be used and their embedded
automatic provers will be in charge of discharging the POs. Discharging the
POs (eBOUND/WD) and (event/WGHT/eBOUND) ensures that the enabled bound
property is proved on the PCBsystem, i.e. always errors on cards are less reported
than fair cards are produced.

5 Conclusion

Some properties as invariance, deadlock-freeness or convergence are natively
managed in Event-B. In our probabilistic extension of Event-B, we have studied
the almost certain convergence of a set of events. Moreover, a variety of research
works treated the expression and verification of other probabilistic properties
such as reliability or reactivity. In this paper we pursue our investigation of
probabilistic properties and how to verify them using proof-based techniques.
We proposed to express and check an enabled bound property where an event’s
probability is bounded by a fixed limit described during the requirements spec-
ification phase. This property can be used in a wide class of industrial sys-
tems, especially those where errors execution have a limit that must not be
crossed. Hence, we illustrated a simplified use case of control and manufacturing
of printed circuit boards where the enabled bound property was imperative to
check if the likelihood of manufacturing an erroneous card can be at most equal
to that of producing a correct card.

198 S. Aouadi and A. Lanoix

References

1. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, Boca
Raton (2010)

2. Abrial, J.R., Cansell, D., Méry, D.: A mechanically proved and incremental devel-
opment of IEEE 1394 tree identify protocol. Form. Asp. Comput. 14(3), 215–227
(2003)

3. Villemeur, A.: Reliability, Availability, Maintainability and Safety Assessment:
Assessment, Hardware, Software and Human Factors, vol. 2. Wiley, Hoboken (1992)

4. Chu, W.W., Sit, C.M.: Estimating task response time with contentions for real-
time distributed systems. In: Proceedings of the Real-Time Systems Symposium,
pp. 272–281. IEEE (1988)

5. Trivedi, K.S., Ramani, S., Fricks, R.: Recent advances in modeling response-time
distributions in real-time systems. Proc. IEEE 91(7), 1023–1037 (2003)

6. Stoelinga, M.: An introduction to probabilistic automata. Bull. EATCS 78(176–
198), 2 (2002)

7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

8. Katoen, J.-P.: Abstraction of probabilistic systems. In: Raskin, J.-F., Thiagarajan,
P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 1–3. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75454-1 1

9. Dehnert, C., Gebler, D., Volpato, M., Jansen, D.N.: On abstraction of probabilistic
systems. In: Remke, A., Stoelinga, M. (eds.) Stochastic Model Checking. Rigorous
Dependability Analysis Using Model Checking Techniques for Stochastic Systems.
LNCS, vol. 8453, pp. 87–116. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45489-3 4

10. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Logic in Computer Science. LICS 1991, pp. 266–277. IEEE (1991)

11. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

12. Baier, C., Katoen, J.P., et al.: Principles of Model Checking. MIT Press, Cambridge
(2008)

13. Haghighi, H., Afshar, M.: A Z-based formalism to specify Markov chains. Comput.
Sci. Eng. 2(3), 24–31 (2012)

14. Sere, K., Troubitsyna, E.: Probabilities in action systems. In: Proceedings of the
8th Nordic Workshop on Programming Theory, pp. 373–387 (1996)

15. Hoang, T.S.: The development of a probabilistic B-method and a supporting
toolkit. Ph.D. thesis. The University of New South Wales (2005)

16. Goldreich, O.: Probabilistic proof systems. In: Modern Cryptography, Probabilistic
Proofs and Pseudorandomness. AC, vol. 17, pp. 39–72. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-662-12521-2 2

17. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-Béguelin,
S.: Probabilistic relational verification for cryptographic implementations. In: ACM
SIGPLAN Notices, vol. 49, pp. 193–205. ACM (2014)

18. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Electron. Not. Theoret. Comput. Sci. 112, 95–111 (2005)

19. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

https://doi.org/10.1007/978-3-540-75454-1_1
https://doi.org/10.1007/978-3-662-45489-3_4
https://doi.org/10.1007/978-3-662-45489-3_4
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-662-12521-2_2

Reliability in Fully Probabilistic Event-B 199

20. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis. University
of Cambridge, Computer Laboratory (2003)

21. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

22. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

23. Morgan, C., Hoang, T.S., Abrial, J.-R.: The challenge of probabilistic Event B—
extended abstract—. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.)
ZB 2005. LNCS, vol. 3455, pp. 162–171. Springer, Heidelberg (2005). https://doi.
org/10.1007/11415787 10

24. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in Event-B. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5 16

25. Yilmaz, E.: Tool support for qualitative reasoning in Event-B. Ph.D. thesis, Master
thesis. ETH Zürich (2010)

26. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Reliability assessment in Event-B
development. In: NODES 2009 (2009)

27. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into
Event-B development. Form. Asp. Comput. 27(1), 53–77 (2015)

28. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Towards probabilistic modelling in
Event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 275–289.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7 20

29. Aouadhi, M.A., Delahaye, B., Lanoix, A.: Moving from Event-B to probabilistic
Event-B. In: Proceedings of the 32nd Annual ACM Symposium on Applied Com-
puting. ACM (2017)

30. Aouadhi, M.A., Delahaye, B., Lanoix, A.: Introducing probabilistic reasoning
within Event-B. Softw. Syst. Model. (2017)

31. Gaiero, D., Zola, U.: ICT Vs FCT Test: case studies, June 2014
32. Electronics notes: PCP Inspection Techniques and Technologies. https://www.

electronics-notes.com/articles/test-methods/automatic-automated-test-ate/pcb-
inspection.php

33. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

https://doi.org/10.1007/11415787_10
https://doi.org/10.1007/11415787_10
https://doi.org/10.1007/978-3-540-73210-5_16
https://doi.org/10.1007/978-3-642-16265-7_20
https://www.electronics-notes.com/articles/test-methods/automatic-automated-test-ate/pcb-inspection.php
https://www.electronics-notes.com/articles/test-methods/automatic-automated-test-ate/pcb-inspection.php
https://www.electronics-notes.com/articles/test-methods/automatic-automated-test-ate/pcb-inspection.php
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5

Systematic Construction of Critical
Embedded Systems Using Event-B

Pascal André(B), Christian Attiogbé, and Arnaud Lanoix

LS2N CNRS UMR 6004 - University of Nantes, Nantes, France
{pascal.andre,christian.attiogbe,arnaud.lanoix}@univ-nantes.fr

Abstract. We propose a method to build critical embedded control sys-
tems in a systematic way. The method covers the modelling of both the
digital part and the physical environment of a considered system, and
their refinement until more concrete levels. It is based on Event-B in
order to benefit from its materials, stepwise refinements and tools. Two
main processes are distinguished: one to capture the global model, the
other to detail the global model; they are made of several refinement
steps which are accompanied with guidelines. The precise description of
the interface between the digital and physical parts is used to start the
modelling process. The recurrent categories of variables and events in
control systems are described and used as guidelines to conduct a sys-
tematic construction. We illustrate the method with the landing gear
system case study.

Keywords: Embedded control systems · Specification method
Event-B patterns

1 Introduction

Modelling and analysis of complex systems without dedicated methods is painful,
inefficient and time-consuming. Methods and tools are required for efficient sys-
tem engineering; this is particularly true for formal software engineering.

Unlike many other types of software, embedded systems are often developed
for specific target environments (processors, vehicles, medical devices, etc.) and
very often they should run for long times (even years), once they have been
implemented in their so called critical environments. Therefore, embedded sys-
tems and their construction have stringent robustness requirements; one have
to develop them accordingly to get them reliable at runtime. The target envi-
ronments for the development of each embedded system do not help the advent
or the expansion of tools and methods dedicated to this type of software. But,
there are numerous models for embedded real-time systems [15].

Considering that (i) the requirements for reliability and correct construction
of the models and the derived embedded systems are of great importance, and
that (ii) the development of these systems lacks of methods to guide the devel-
opers, we are motivated to contribute to fill the gap between these needs and
the state of the art.
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 200–216, 2018.
https://doi.org/10.1007/978-3-030-02852-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_18&domain=pdf

Systematic Construction of Critical Embedded Systems Using Event-B 201

In this work we propose a correct-by-construction method dedicated to crit-
ical embedded control systems. This method, based on Event-B, is intended to
guide step by step the specifier or the engineer to drive its development from
requirements to concrete software, defining abstract models, and refining them
in a systematic way.

In Sect. 2 we introduce the proposed method with the details of each step.
Section 3 illustrates the application of the method on a common case study, called
the landing gear system. In Sect. 4 we evaluate the application of the method
and the case study and comment related studies. Section 5 concludes this work.

2 A Method to Construct Correct Embedded Systems

We present a stepwise and systematic method (named Heñcher) to construct
critical embedded control systems using Event-B. We reuse the approach already
established and demonstrated in several case studies [1,9,10], following which
complex systems can be constructed by combining (1) horizontal refinement
with feature augmentation where we have to build a global abstract model of a
the whole system (a controller and its physical environment) (Sect. 2.1) and (2)
structural refinement (making the abstract structures more and more concrete
(Sect. 2.2). But we extend it and provide dedicated guidelines at different steps,

Feature augmentation

machine
 System_0
variables
 input
 state
 output
end

machine
 System_i
variables
 input
 state
 output
 physical

events
sense

 monitor
 stimulate
 react
end

decomposes

machine
 Environment_j
external variables
 input
 output
variables
 physical

external events
 sense
events
 react
end

machine
 Controller_j
external variables
 input
 output
variables
 state

external events
 react
events
 sense
 monitor
 stimulate
end

machine
 Controller_m
external variables
 input
 output
variables
 state
k_output

external events
 react
events
sense

 monitor
 spawn
 k_stimulate
 merge
end

...
machine
 System_1
variables
 input
 state
 output

...

events
sense

 monitor
 stimulate
end

...

Fig. 1. Synoptic structure of the Event-B models of the construction

202 P. André et al.

which help the developers to reach quickly a correct control system. Figure 1
illustrates the Event-B patterns from the most abstract model which describes
only the interface of the controller, to the systematic decomposition into two
parts: the Controller and the physical Environment.

2.1 Horizontal Process: Building an Abstract Global Model
of the System

The high level state space of any control system can be described by the elic-
itation of the interface variables between the digital part (the controller)
and the physical part (the controlled environment) of the considered system.

Step 1: Characterise the abstract model of a considered system
in

put

Controller

Controlled
environment

physical
state

output

aact

sense

aact

react

state

aact

stimulate

aact

monitor

Fig. 2. A generic shape for event-based model of a
control system

Figure 2 depicts a general
principle that may govern
the organisation of event-based
models of control systems. The
dashed ovals are representative
of the parametric events fam-
ilies; They should be replaced
by the effective events related
to the logic of a specific
case study. Besides, the iden-
tified physical devices to be
controlled should be precisely
listed. The behaviour of each one will be specified later.

Step 1.1: Elicit the interface. We distinguish in our method, a first step which
consists in the description of the interface variables of the controller. There are
three categories of variables at the interface of a controller with the controlled
environment.

– the input variables: they give the sensed state of the environment (the value
given by sensors); they are read by the controller;

– the state variables: they are set and modified by the controller; they are used
for monitoring the whole system;

– the order output variables: they are those used to send the orders that stim-
ulate the physical environment; their values will be used by actuators.

These categories of variables will be used at different levels of the modelling
and refinement of the system at hand: to introduce the events of the first abstract
model and, for refining gradually the first model. Additionally, we have the
category of internal variables, which are only used inside the controller.

Step 1.2: Elicit the global properties of the system. The required system proper-
ties, including safety, liveness and non-functional properties should be explicitly
named and listed in their informal form. These properties will be formalised
and gradually introduced with their formal form during the various construction
steps of our method.

Systematic Construction of Critical Embedded Systems Using Event-B 203

Step 1.3: Start with a first abstract model. Use the interface variables resulting
from Step 1.1 to build a first Event-B abstract model. This abstract model com-
prises in the related B machine clauses, the interface variables together with the
appropriate abstract sets and properties which characterise them. This Event-B
model will be enriched to obtain a global abstract model of the system including
its control part, its physical part and their related properties. Global properties
of the system (among those already listed in Step 1.2) should be formalised and
introduced according to the available variables. Notice that the enrichment incor-
porates gradually the details of the physical environment (sensors and actuators)
and the corresponding properties.

Step 1.4: List the events of the abstract model. The Event-B abstract model
resulting from the previous step will be enriched with a series of events built by
defining a family of events related to each category of the interface variables:
sense events, monitor events and stimulate events.

– Sense events family. This family gathers the events used to set and to
modify the values of the input variables. For each variable of this category,
define an event named after the variable, with the prefix sense . The link with
the physical (state variables of the) environment is done later by refining these
events in Step 2.2.

– Monitor events family. These events modify the appropriate state vari-
ables. For each variable of this category, define an event named after the
variable with the prefix monitor , to set the variable according to the current
state of the controller and the input data.

– Stimulate events family. The events of this family modify the order output
variables; each variable of this category is set with an event named after
the variable with the prefix stmlt . These events use the internal variables,
the input variables and the output variables. Associated with these events
to stimulate the physical devices, we may have as many events to stop the
stimulation of the devices; accordingly these events have their name prefixed
with stop .

These three families of events, together with the reaction events family
introduced later, are compliant with the standard sense-decision-control of the
control cycle.

Step 2: Extend the abstract global model
Use feature augmentation [1,9,10] to integrate the controlled environment. This
is precisely achieved on the basis of the sense events family, which in turn need the
description of the controlled environment. The global properties listed before are
also gradually formalised in the model, as invariants, as soon as the appropriate
variables are available. Two sub-steps are distinguished but no matter their order
during the development.

Step 2.1: Introduce the physical environment and the reaction events family. It
consists in adding successively to the model, events to propagate the values of

204 P. André et al.

interface output variables inside the physical environment. These events simulate
or stop the behaviours of physical devices via the actuators. The feature augmen-
tation is used to introduce the physical state variables, invariants and appropriate
behaviours. Depending on the cases, either one simulates the behaviour of the
physical devices with an abstract model, or the values of the output variables
(from the interface) result in signals sent to the environment. In this last case we
do not have dedicated events in the abstract model. Accordingly, the behaviours
of the physical devices should be formally described. These behaviours, system-
atically guarded by the values of the output variables, may impact the state
of the environment and finally they may impact the sensors. State automata
can often be used to capture the behaviour of a physical device; describing the
automata with B events is then straightforward. The description of the physical
part behaviour results in the family of reaction events. These events should
be named using as prefix the identifier of the physical part that they describe.

Step 2.2: Detail the sense events family. Each event of the sense family, updates
an input variable according to the state of the sensors; for this purpose the
event needs the model and the behaviour of its related sensor. Therefore the
feature augmentation consists in introducing the model of the sensors and their
related behaviour, as variables, invariants and related events. The behaviour
of the sensors should consider the possible failures (anomalies, malfunctioning
or physical defects); specific events should be described for each such possible
failure.

Practically during all the refinement steps, it is recommended to proceed
incrementally with several small refinement steps dedicated to variables and
events. This is necessary to master the proof complexity.

Step 3: Introduce the specific properties
According to the system one has to build, besides the global properties gradually
introduced with the variables, additional specific properties should be integrated
at the abstract level to constrain the functioning of the system.

1. Reachability property with partial ordering: specific events (not at the same
granularity with the Event-B events) with timestamps may be systematically
used to order and to reason on reachability properties.

2. Non functional properties: specific properties related to nonfunctional require-
ments should be gradually introduced here. No matter the way they are
described, provided that the mathematical support of Event-B is very large,
and that external modules may be used to analyse them.

2.2 Vertical Process: Building the Concrete Parts of the System

The aim of this second process is to build the digital part and possibly the
physical part of the system. The global Event-B abstract model resulting from
the horizontal process should then be decomposed into various parts leading to
specific components. At least we have a decomposition into a control software

Systematic Construction of Critical Embedded Systems Using Event-B 205

and a physical part. The decomposition can be performed as soon as one want
to go into the details of one of the specific part by considering that the other
part will stay as it is; that means no modification of the other part cannot be
considered when we are refining a given one. Typically, from a decomposition
step, the digital part will be refined until code by considering the events and
variables of the physical part as they was at the decomposition step.

Step 4: Refine the global abstract model
We recommend to perform structural refinements as needed by the specific model
to be refined. New internal B events may be added to refine the events of each
family of events (sense, monitor, or stimulate). The state space variables of the
global abstract model may be refined with more details in the invariant. At the
end of this step, be sure that, the events of both parts are all in place, that
the global required properties of the system are all in place (they cannot be
introduced later after the decomposition).

Like with other formal models, an Event-B model can be animated, i.e. when
appropriate values are provided for the variables in the model, its behaviour can
be observed step by step according to the semantics of the model. Animation
capabilities are helpful during all the refinement steps where we still have all the
events of the global system together; it will not be possible to animate the whole
system after its decomposition.

Step 5: Decompose into software and physical parts
A decomposition paradigm is already supported by the Event-B method. It
consists in splitting a given machine into several ones which will be refined inde-
pendently. The decomposition splits the variables of the state space and/or the
behaviour of the machine; however resulting machines cannot contradict each
other by modifying the variables and their related properties once they have
been separated. Two approaches exist for this purpose: the Abrial’style decom-
position (called the A-style decomposition) [2] based on shared variables, and
the Butler’style decomposition (called the B-style decomposition) [7,19] based
on shared events. In the A-style decomposition, events are first split between
Event-B sub-components and then shared variables of the sub-components are
used to introduce external events in the sub-components; these external events
should be refined in the same way. In the B-style decomposition, variables are
first partitioned between the sub-components and then shared events (which use
the variables of both sub-components) are split between the sub-components
according to the used variables.

We adopt the A-style decomposition which is more relevant when considering
a list of specific events to be split relatively to a control part and a physical part.
The methodological guide to achieve the decomposition is as follows: the digital
part is made with all the events defined in the sense events, the monitor events
and the stimulate events families whereas the physical environment gathers all
the events defined in the reaction events families. Moreover, each part must have
an abstract view of the other through external variables and events.

206 P. André et al.

Step 6: Refine the control software and the physical environment sep-
arately

Step 6.1: Refining the control software. Use Structural refinements based on
the stimulate events family to refine the controller. The involved categories of
variables are the input variables, the state variables and the output variables.
Typically, the values of the output variables are synthesised from the other ones.
This can be done through simple control functions or through sub-modules.

aact

k_stimulate

Module 1

in
put

Controller

. . .

output

aact

spawn

aact

merge
k_
output[1]

k_input
[1]

k_
output[n]

k_input
[n]

aact

k_stimulate

Module n

Fig. 3. Modules redundancy

When there are sub-modules, the input vari-
ables may be spawned inside the sub-modules; in
the same way output variables may be updated
by promotion from the sub-modules if any.
Therefore one have to incorporate successively
in the Event-B model the events to set and
modify the output variables; they describe the
result of the behaviour of the control part. State
automata help to catch these behaviours; then
the events of the B models encode the automata.
We give now some recurrent patterns to help in
modelling control part.

(i) Composition of several redundant sub-modules: when a controller is made of
several redundant modules, it is straightforward to describe a generic module
and use an indexing function to compose several instances of such modules
(see Fig. 3).
– Encasing variables inside modules: the values coming from outside one or

several modules can be systematically encased inside the modules with a
dedicated event that spawn the events.

– Promoting variables outside a module: in a symmetric way, the values
going outside a module or several modules can be systematically described
using a promotion pattern (with a dedicated event) for merging the
output variables of the internal computing modules.

(ii) When the modules are not redundant, each one should be refined separately,
but the treatment we have described for the inputs and outputs variables is
the same.

Step 6.2: Refining the controlled (physical) environment. Many cases can be
considered depending on the system to be studied; either the physical devices
are already available, or one has to build the physical devices from the formal
models, or one has to build a part of the physical devices. Nevertheless, the
exchange of signal with actuators is the standard way to act on physical devices.

(i) In the case where the physical devices are available, with the related actu-
ators, the refinement is straightforward; it consists for the events of the
physical part to output the correct signal values (for example on/off values
are encoded as voltage) as input of the actuators. But the physical devices
may be emulated in preliminary studies before implementing the control part

Systematic Construction of Critical Embedded Systems Using Event-B 207

on the real devices. Mathematical models and dedicated system engineering
tools are available as explained hereafter.

(ii) When the output variables of the controller cannot be immediately encoded
as signal values, transformation can be achieved via appropriate mathemat-
ical functions and models. This should be done, starting from the require-
ments and the properties of the previous model, for example by external
modules or functions written with tools like Matlab or Simulink1 or SciLab2;
related works can be found in [21]. These tools generate executable codes
dedicated to the target devices. They are also equipped with specific func-
tions to handle time requirements.

3 A Running Case Study

The proposed method is applied on the Landing Gear (LG) case study, a bench-
marking example proposed at the ABZ’2014 conference to compare different
formal methods in terms of expressivity, performance, and ease of use. A prereq-
uisite for reading this section is the detailed specification of this critical embed-
ded system given in [5]. A summary of the LG system is depicted in Fig. 4.

Mechanical and hydraulic parts

doors
gears

up/down

Pilot interface

actuators

sensors

Digital Part

sensors

actuators
front gear box

right gear box

left gear box

Fig. 4. Global architecture of the LG system

The LG system is in
charge of manoeuvring 3
landing boxes: front, left and
right. Each landing box con-
tains a landing gear, an asso-
ciated door and the corre-
sponding hydraulic cylinders
in charge to move gears and
doors. The system is made of
a controller (the digital part)
and the controlled physical
environment (i.e. the 3 land-

ing gear boxes and a pilot interface) which interact via sensors and actuators;
the sensors provide to the digital part the information on the state of its physical
part; the actuators engage the orders of the controller on the physical part. The
physical devices already exist, we will not build them; the challenge deals with
the digital control part only (see p. 2 of [5]).

3.1 Horizontal Process: Building an Abstract Global Model
of the System

We give the main elements resulting from the successive application of the steps
proposed in the method (Sect. 2).

1 http://uk.mathworks.com/products/control/.
2 http://www.scilab.org.

http://uk.mathworks.com/products/control/
http://www.scilab.org

208 P. André et al.

Step 1.1: Elicitation and modelling of the interface variables. The requirement
document listed several triplicated input variables: handle, analogical switch,
gear states, doors, · · · . We model (Step 1.3) them with a type TRIPLE =
{1, 2, 3} used as an index of the function variables:

GEAR = {FG,LG,RG} analogical switch ∈ TRIPLE → AnalSWSTATE
DOOR = {FD,RD,LD} handle ∈ TRIPLE → HSTATE
HSTATE = {hDown, hUp} gear extended ∈ (TRIPLE × GEAR) → BOOL
AnalSWSTATE = {openSW, closedSW} door closed ∈ (TRIPLE × DOOR) → BOOL
· · · · · ·

The function variable handle ∈ TRIPLE → HSTATE captures precisely
the requirement handlei ∈ {hDown, hUp} with i ∈ {1, 2, 3}. The state variables
are the states of the gears, doors, anomalies, etc. They are modelled as follows:

gears locked down ∈ BOOL ∧ gears maneuvering ∈ BOOL ∧ anomaly ∈ BOOL ∧ · · ·

The output variables hold the values computed for various electro-valves:

general EV ∈ BOOL ∧ close EV ∈ BOOL ∧ open EV ∈ BOOL ∧ · · ·

The lights which indicate the position of the gears and doors to the pilot
are described as internal variables: greenLight, orangeLight, redLight. These
variables are bound to the output state variable gears locked down with an
invariant predicate. Another internal variable order is used to record the action
of the pilot on the handle.

The LG system is controlled digitally in the normal mode until an anomaly
is detected. A permanent failure leads to an emergency mode where the system
is controlled analogically. Accordingly the internal boolean variable anomaly is
used to denote that an anomaly has been detected or not.

Step 1.2: Elicitation of the global properties of the LG system. Most of the normal
mode requirements are safety properties. Some identified ones are the following:

R21 We can not observe a retraction sequence (consequence of the order hUp) if
the handle is down. Using the enumerated set HSTATE which permits only
one value from two for the variable order.

R31 The gears outgoing event occurs if doors are open locked.

R41 Opening and closing doors electro-valve are not stimulated simultaneously.

R51 It is not possible to stimulate the manoeuvring EV (opening, closure, outgoing
or retraction) without stimulating the general EV.

The first Event-B abstract model resulting from Step 1.3, gathers all the
variables of the interface, their related invariants and initialisations. Event-B
contexts are used to model the static part with the various sets and definitions
that we have introduced.

Systematic Construction of Critical Embedded Systems Using Event-B 209

Step 1.4: The families of events of the abstract model. A thorough analysis of
the two action sequences (outgoing sequence and retraction sequence) described
in the LG system helps us to capture the behaviour of the digital part and to
derive the events. We use here state automata to make it clear the interaction
between the different components (actions of the pilot, the controller, the orders
received by the environment).

In the sense event family we have listed for example the event sense gear
to modify the input variable gear extended listed above. In the same way we
have listed the other events sense door, etc. Examples of events we have iden-
tified for the control events family are: stmlt general EV to stimulate the gen-
eral electro valve, stmlt door opening, stmlt gear outgoing, stop stmlt general EV,
stop stmlt gear outgoing, etc.

Each one modifies its related variable, for instance the event stop stmlt
gear outgoing sets the variable extend EV to FALSE. Examples of event
we have classified in the monitor events family are: monitor anomaly, moni-
tor gears locked Down, monitor gears maneuvering.

Step 2: Extension of the abstract global model with the event families. We achieve
many refinement steps, by feature augmentation, to integrate gradually the vari-
ables and events related to the physical devices: the sensors, the doors and the
gears.

Following Step 2.1, we define the behaviours of physical devices. For
instance, the door behaviour is first captured with a state automata; the tran-
sitions of the automata are then described as events. For this purpose we use
a transition function doorState ∈ DOOR → DSTATE where DSTATE =
{ClosedLocked, ClosedUnlocked,OpenUnlocked} is the enumerated set of the
identified door states. The set DOOR contains the three door identifiers. The
function doorState is a total function; this captures the requirement that all the
three doors are controlled via the state transition.

The starting transition of the door behaviour is enabled by the open EV
order given by the digital part. Therefore there is a synchronisation between the
digital part and the motion of the doors. We only give below the description of
the starting event Door openDoor cl2cu; the other necessary events are similar.

event Door openDoor cl2cu
/* Door’s Behaviour (for the three doors). The first transition of the Door Automata */
where

@g1 open EV = TRUE // all the doors Electro Valves are on
@g2 ran(doorState) = {notOpenLocked}

then
@a1 doorState := DOOR × {notOpenNotLocked} // door is being opened

end

The following event describes an event of the control event family.

210 P. André et al.

event stmlt gear outgoing
/* stimulate gear outgoing electro valve once the three doors are in the open position */
where

@g0 general EV = TRUE
@g1 order = hDown
@g2 ran(handle) = {hDown}
@g3 ran(door closed) = {FALSE} // the three doors are in the open position

@g4 ran(door open) = {TRUE}
@next nextOGseq = 3
@gano anomaly = FALSE // no anomaly detected
@notretract retract EV = FALSE

then
@a1 extend EV := TRUE
@a2 nextOGseq := nextOGseq + sequenceStep

end

The variable nextOGseq controls the evolution of the outgoing sequence; it
indicates in the event guards, the next step in the outgoing sequence. We note
that the events in the sense event family anticipate their real future specifica-
tions, which are related to the physical part introduced later. When we have
introduced the various events families and the related variables, it becomes clear
for us that we have the complete control loop. Following Step 2 the properties
(listed in Step 1.2 above) are formalised as first order predicates, integrated into
the invariant of the abstract model and, proved along the horizontal refinement.
As an example, the requirement R51 is described as follows.

((open EV = TRUE ∨ close EV = TRUE ∨ extend EV = TRUE ∨ retract EV = TRUE)
⇒ general EV = TRUE)

To sum up, the global Event-B abstract model results from a series of refine-
ment of contexts and machines.

Step 3: Dealing with specific properties. In this case study, reachability is one
of the specific properties. Based on the idea of Lamport’s logical clocks [16],
we implement a technique that captures the reachability requirement R1 given
in page 13 of [5]. For that purpose, we introduce the notion of control cycle, a
period of time during which one can observe several events, especially a chain of
events denoting an outgoing sequence or a retraction sequence; a typical control
cycle is one starting with an event (downH) which denotes the hDown order and
terminating by an event (dcge) which denotes the fact that “the gears are locked
down and the doors are seen closed”; similarly, another control cycle is started
when the handle triggers an order hUp. A dedicated variable endCycle is used
to control the start and the end of each control cycle.

Given a set obsEvents of events (for instance the starting of an outgoing
sequence, a door closed, a gear locked in a position, etc.) and a logical clock
modelled as a natural number, the occurrences of the events can be ordered by
the timestamps given by the clock. In our case two events cannot happen at
the same time. We use a partial function ldate ∈ obsEvents �→ N to record the
timestamps of the events. We can compare and reason on the timestamps of any
events happening during a sequence and specifically within the specific event
sequence called control cycle. An example is as follows.

Systematic Construction of Critical Embedded Systems Using Event-B 211

∀dj.(((dj ∈ N) ∧ (dcge ∈ dom(ldate)) ∧ (dj = ldate(dcge))
∧ (endCycle = TRUE) ∧ dj < llc) ⇒

∃di.((di ∈ N) ∧ (downH ∈ dom(ldate)) ∧ (di = ldate(downH)) ∧ (di < dj)∧
∀ii.(ii ∈ N ∧ di = ii ∧ ii < dj ⇒ ldate ∼ [{ii}] �= {upH})))

To put into practice in Event-B with Rodin, we defined the set obsEvents in
the context of our machines, and the above property is included in the invariants
of the abstract model.

3.2 Vertical Process: Building the Concrete Parts of the LG System

The vertical process includes several refinements (in Step 4) described below
following the proposed method. We end our process with the Step 5. The Step 6
was not performed for the LG case study because only the digital part will be
refined with the objective to build the software part. The variables and events
which are specific to the behaviour of the physical part are not refined but we
keep them in the model in order to preserve animation capabilities. This approach
is very pragmatic.

Step 4: Structural refinements of the global abstract model. The requirement
document details the inner structure of the digital part; it is made of two redun-
dant computing modules. We achieve structural refinement steps to overcome
the details of the behaviour of the digital part.

(a) Introducing the two computing modules with refinements. Both modules have
the same interface (input and output variables) inherited from the abstract model
of the digital part. Each interface variable of a module k (where k ∈ {1, 2}) is
inherited from a variable (for instance gear extended) of the digital part of the
abstract model and it is denoted by k gear extended(k) where k is an index.
An enumerated set CompModule = {1, 2} is used for the indexes. Therefore
each interface variable of the computing modules is specified with the following
shape:

k gear extended ∈ CompModule → ((TRIPLE × GEAR) → BOOL)

The binding between the two modules interface variables and those of the
abstract module is achieved via refinements where new variables and related
events are introduced.

(b) Spawning the inputs inside the computing modules with refinements. We
introduced new events (prefixed with spawn) to push the value of each input
variable (for example handle) at the abstract level, in the corresponding variable
(for example k handle) of each computing module. As the inputs of the modules
should be the same, an invariant is defined in each case of variable spawning in
order to guarantee the correctness of the binding between the input variable of
the digital part and the same input of the computing modules. The following
event pattern spawns the variables at the interfaces of the computing modules.

212 P. André et al.

event spawn handleDown // spawn handleDown within the k CompModules
where @g1 ran(handle) = {hDown}
then

@a1 k handle := {1 �→ (TRIPLE × (ran(handle))), 2 �→ (TRIPLE × (ran(handle)))}
end

We have identified a reusable specification rule: a new event is introduced
along with each new k-indexed variable. This event should copy the variable at
high level (the digital part) into the indexed variables at the low level. Further-
more, the existing events, whose guards or actions involve the spawned vari-
ables, should be refined by extending their guards and actions in order to satisfy
the binding between the variables and the associated k-indexed variables. One
noticeable feature in this case is that when we have a non-deterministic event of
abstract level (as for the value of the sensors), then in the refinement the event
should be refined (not extended). This is another reusable specification rule
we have identified.

(c) Merging the outputs of the computing modules with refinements. As depicted
in Fig. 3, the k-indexed output variables (for example k extend EV (1) and
k extend EV (2)) are merged using a logical OR to set the corresponding variable
(for example extend EV) at the output of the digital part. Therefore the event
that sets the variable should be guarded by the availability of the merged value.
As explained before, a binding invariant should be provided for each variable
and the related k-indexed variable. Several refinements are used to introduce
the appropriate events.

(d) Specifying the behaviour of the computing modules. The two computing mod-
ules have the same behaviour. It is made of the events that monitor the system
and set accordingly the state output variables and the input variables of the
digital part, the events that give orders (control decision) to the physical part
through the order output variables. It results in the k-indexed form of the events
related to the three categories of the interface variables and the internal vari-
ables.

We stopped our construction at this stage. However following the guidelines
provided in the method, it remains to perform the decomposition step in the
basis of the sense, monitor, control events families (Step 6). Fortunately, the
decomposition modules of Rodin provide assistance for this purpose. In our case
the Abrial’s style of decompostion which is based on share variables [2] is the
most appropriate. Indeed, the decompostion is precisely based on the families of
events: the sense family should be used for a (physical) machine while monitor
and control families should be used for another (software) machine.

4 Assessment and Discussion

Coverage. Applying the proposed method helped us a lot in mastering the case
study. The resulting Event-B model presented in this article covers the main
aspects of the landing system: the digital part with modules redundancy, its

Systematic Construction of Critical Embedded Systems Using Event-B 213

physical part and their interactions. The model covers mainly the safety prop-
erties of the LG system; liveness properties are treated by adapting Lamport’s
logical clocks [16]; but we have not deal with time constraints. Code generation
was out of the scope of the current work. Nevertheless the management of huge
B models is still tedious, since modifying the models already equipped with a
lot of variables an events, at more abstract level requires redoing several steps
of modelling, refinements and proving.

Experimentation with Rodin and Statistics. The Rodin tool is very efficient for
proving the Event-B models; a very high percentage (∼90%) of proof obliga-
tions was automatically discharged. The specifications are available online3. The
current version is partial as we focus on representative events instead of being
exhaustive. Statistics on Proof Obligations are given in Table 1. From a total of
619 POs, 547 of them were automatically discharged by Rodin and 6 of them
were interactively discharged. Most of the POs at the abstract levels were proved.
The undischarged POs are related to the structural refinement and specifically
they are related to the binding invariants.

Table 1. Statistics of PO generated and proved with Rodin
TotalAutoManualReview.Undis.

LandingSys5 619 547 6 0 66

Abstract model

Landing DP Ctx 0 0 0 0 0

LandingSysDP A 115 114 1 0 0

LandingSysDP SWITCH A 5 3 0 0 2

LandingSysDP DOOR A 42 42 0 0 0

LandingSysDP DOOR GEAR A 79 79 0 0 0

LandingSysDP DOOR GEAR TIME A 2 2 0 0 0

Models of the vertical refinement

LandingSysDP DGT R1 In 52 50 0 0 2

LandingSysDP DGT R2 INOUT 56 56 0 0 0

LandingSysDP DGT R3 INOUTDOOR 128 81 5 0 42

LandingSysDP DGT R3INOUTDOORGEAR140 120 0 0 20

Managing very
large models requires
a rigorous slicing
and several small
steps of refinements.
This is the rea-
son why we have
introduced many
refinements, but it
is still not enough,
the slicing should
be of finer grain.
Moreover a good
naming discipline
is necessary at each
level of the mod-
elling. As far as the ProB animation tool (integrated in Rodin) is concerned,
it is very helpful to tune the Event-B models.

Related Works. The state of the art lacks of assistance methods. The four-
variable model of software-controlled embedded systems originally proposed by
Parnas and Madey has been used successfully in the development of safety-
critical applications in various industries. But as mentioned by [18], the model
does not explicitly specify the software requirements, but rather bounds them
by specifying the system requirements and the input and output hardware inter-
faces of the system. We share the same the motivations with [13]. However the
authors propose a method to synthesise the controller from the environment.
3 http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS/index en.php.

http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS/index_en.php

214 P. André et al.

They introduced the controller and its interface as a solution to the problem of
maintaining a desired behaviour of an autonomous system. In our approach the
controller is not synthesised to maintain a specific behaviour; it is built simulta-
neously with the environment according to the given control requirements, but
the environment behaviour is less constrained by the controller. As far as method
is concerned in the treatment of the LG system benchmark, all the related B
specifications of the LG System are based on refinements. They do not describe a
precise methodological process. Often, the authors need about ten refinements to
include properties and requirements. The distinction between them is rather the
way the refinements are organised rather than on methodological assumptions.

Su and Abrial [20] mentioned that there is no definitive answer for applying
some recipe since the question varies from one project to another. They propose
a light methodology with three steps: informal requirements, refinement strat-
egy and formal model. They excluded features like redundancy and simplified
time constraints. The systematic refinement strategy integrates progressively the
devices, which is specific to the case study. Accordingly, our method focuses on
a more general refinement strategy.

Mammar and Laleau adopted the four-variable model of software-controlled
embedded systems originally proposed by Parnas and Madey. They used a series
of refinements [17] first according to a variable classification first (monitor, con-
trol, output) then including timing aspects, failure cases and last properties.
Mammar and Laleau focused on the control part only. Since it appears to be
a logical organisation, a separation of concerns, this ordering delays most of
the proof work to the last refinements. It lost modularity and extensibility. R.
Banach used Hybrid Event-B to lead his study [4]; this extension enables one to
carry continuous varying behaviours. R. Banach proposed a proof of concept of
the language extension rather than a method or a full answer to the case study.
However, hybrid-B seems adequate to refine the physical part of our current
specification and especially to model time requirements.

Hansen et al. focused on the validation of the case using ProB rather than
on the methodology of specifying with B [12]. As a matter of fact, the temporal
properties are naturally introduced using LTL expressions. Another interesting
feature is the ability to visualise the system execution. The counterpart is a
simplified specification (no redundancy, no physical part, no failure). The refine-
ments start with physical devices (door, gears, electro-valves), then the output,
sensor and controllers are introduced as refinements and finally the general con-
trol (switch, valves, lights).

In [8] the authors present a technique for feature interactions for telecom-
munication services; it is a very close approach but our method is more general
than the feature interactions. We plan to investigate more the connection of our
approach with works on system engineering approaches [14], and cyber-physical
systems where interconnected entities are interacting with the physical world
[11].

Systematic Construction of Critical Embedded Systems Using Event-B 215

5 Conclusion

We proposed a method (named Heñcher) to guide step by step the construction
of embedded control systems with Event-B. We build on the well-known struc-
ture of control systems and on the experiments of several case studies where the
Event-B was used and where some methodological guidelines was provided [9,10].
We provide a systematic use of the interface of the controller to build the com-
ponents of the abstract model of the control system and, also how the features
of the control system should be used to guide the successive refinements of the
abstract model. A non trivial case study served as illustration and assessment
of the proposal.

One flaw of the Event-B top-down approach is the constraint imposed by
the evolution of the global abstract model defined before its refinement to the
concrete models. This constraint prevents for an incremental model evolution.
Indeed, if we miss some features in the abstract state, we will have to reconsider
completely the structural refinements. It would be interesting to be able to mix
both horizontal and vertical refinements in an incremental view of the design
method. In [3] Back, have proposed guidelines for this purpose; an adaptation
of this work to Event-B is likely to be interesting.

The reuse of existing independent models, with a bottom-up approach, would
be interesting for managing large Event-B models. A typical example is the
composition of existing models to build a given abstract model where each part
can be modified and refined separately.

We plan to develop an assistance tool to help the user with various patterns,
in the form of Event-B machines derived from the interface variables which will
be extracted from a sketched graphical view of its control system (as in Fig. 2).

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fundam. Inform. 77(1–2), 1–28 (2007)

3. Back, R.-J.: Software construction by stepwise feature introduction. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp.
162–183. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 9

4. Banach, R.: The landing gear case study in hybrid Event-B. In: Boniol et al. [6],
pp. 126–141 (2014). https://doi.org/10.1007/978-3-319-07512-9 9

5. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol et al. [6], pp.
1–18 (2014). https://doi.org/10.1007/978-3-319-07512-9 1

6. Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.): ABZ 2014. CCIS, vol.
433. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07512-9

7. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00255-7 2

https://doi.org/10.1007/3-540-45648-1_9
https://doi.org/10.1007/978-3-319-07512-9_9
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-319-07512-9
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-00255-7_2

216 P. André et al.

8. Cansell, D., Méry, D.: Playing with abstraction and refinement for managing fea-
tures interactions. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) ZB
2000. LNCS, vol. 1878, pp. 148–167. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44525-0 10

9. Damchoom, K., Butler, M.: Applying event and machine decomposition to a flash-
based filestore in Event-B. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 134–152. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10452-7 10

10. Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-structured
file system in Event-B and rodin. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM
2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88194-0 5

11. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. MIT Press, Cambridge (2017)

12. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using prob. In: Boniol et al. [6], pp. 66–79
(2014)

13. Hudon, S., Hoang, T.S.: Development of control systems guided by models of their
environment. Electron. Notes Theor. Comput. Sci. 280, 57–68 (2011)

14. Dragomir, I., Ober, I., Lesens, D.: A case study in formal system engineering with
SysML. In: 2012 IEEE 17th International Conference on Engineering of Complex
Computer Systems, pp. 189–198 (2012)

15. Jard, C., Roux, O.H. (eds.): Communicating Embedded Systems: Software and
Design. Wiley-ISTE (2009)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

17. Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In: Boniol
et al. [6], pp. 80–94 (2014). https://doi.org/10.1007/978-3-319-07512-9 6

18. Patcas, L.M., Lawford, M., Maibaum, T.: From system requirements to software
requirements in the four-variable model. ECEASST 66 (2013). http://journal.ub.
tu-berlin.de/eceasst/article/view/887

19. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25271-6 7

20. Su, W., Abrial, J.R.: Aircraft landing gear system: approaches with Event-B to the
modeling of an industrial system. In: Boniol et al. [6], pp. 19–35 (2014). https://
doi.org/10.1007/978-3-319-07512-9 2

21. Su, W., Abrial, J.-R., Zhu, H.: Complementary methodologies for developing
hybrid systems with Event-B. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 230–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34281-3 18

https://doi.org/10.1007/3-540-44525-0_10
https://doi.org/10.1007/3-540-44525-0_10
https://doi.org/10.1007/978-3-642-10452-7_10
https://doi.org/10.1007/978-3-642-10452-7_10
https://doi.org/10.1007/978-3-540-88194-0_5
https://doi.org/10.1007/978-3-540-88194-0_5
https://doi.org/10.1007/978-3-319-07512-9_6
http://journal.ub.tu-berlin.de/eceasst/article/view/887
http://journal.ub.tu-berlin.de/eceasst/article/view/887
https://doi.org/10.1007/978-3-642-25271-6_7
https://doi.org/10.1007/978-3-642-25271-6_7
https://doi.org/10.1007/978-3-319-07512-9_2
https://doi.org/10.1007/978-3-319-07512-9_2
https://doi.org/10.1007/978-3-642-34281-3_18
https://doi.org/10.1007/978-3-642-34281-3_18

Component Design and Adaptation Based
on Behavioral Contracts

Samir Chouali1(B), Sebti Mouelhi2, and Hassan Mountassir1

1 Univ. Bourgogne Franche-Comté, FEMTO-ST Institute/CNRS, Besançon, France
{schouali,hmountas}@femto-st.fr

2 ECE Paris - Graduate School of Engineering, Paris, France
sebti.mouelhi@ece.fr

Abstract. In this paper, our objective is to propose an adaptation app-
roach to generate a component adaptor that ensures a correct interaction
between mismatched components. Compared to the related works on
component adaptation, the originality of our proposition relies on two
main contributions. In the first, we design component behavioral con-
tracts in order to generate component adaptor. So, we propose to spec-
ify component interfaces as behavioral contracts, to enrich the exhibited
informations in component interfaces. Our behavioral contracts express
all component facets: their action signatures, their actions semantics, and
their protocol. We consider that these informations are important when
generating component adaptors. In the second contribution, we propose
to specify component behavioral contracts with the formalism based on
interface automata that we enrich to specify the semantics of component
actions. So, our adaptation approach is also an extension of the interface
automata approach to handle the problem of component adaptation.

Keywords: Components · Behavioral contracts · Adaptation

1 Introduction

The development of component-based systems is principally based on component
reusability which allows the use of components in diverse environments without
affecting their codes. However, in many cases, reusability is constrained with
mismatches that may occur between components and their new environments
during their interaction. The mismatches are caused by components that do not
match perfectly the requirements of their environment. In this case, component
adaptation should be performed in order to generate software entities, called
adaptors, capable of enabling a correct interaction between components when
mismatches occur.

In this paper, we focus on adapting components whose interfaces are
described with behavioral contracts, which exhibit all component facets at the
levels of action signatures (signatures of component operations), component pro-
tocols (scheduling of operation calls), and action semantics (semantic of com-
ponent operations). We believe that consideration of all these informations in
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 217–230, 2018.
https://doi.org/10.1007/978-3-030-02852-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_19&domain=pdf

218 S. Chouali et al.

component interfaces lead to generate suitable and reliable adaptors. To spec-
ify formally component contracts, we propose to exploit the interface automata
formalism [1] that we enrich by the semantic of component actions, because
interface automata express only the scheduling of components actions without
their semantics. So, we annotate the actions in interface automata by pre and
post-conditions expressed on their parameters. This new formalism led us to
adapt the compatibility verification approach, based on interface automata, to
handle with the semantic of actions, because the adaptor generation relies on
the verification of component compatibility.

Previously, we treated only adaptation at the protocol level [6]. Our purpose
was to generate automatically an adaptor (interface automaton in-the-middle)
for exactly two component interface automata according to a mapping that
establishes a number of rules relating their mismatched input and output actions.
In this paper, the main contribution relies on proposing a methodological app-
roach to treat the problem of component adaptation at signature, semantic, and
protocol levels, by exploiting component behavioral contracts. We show how to
cooperate between the adaptation at the protocol level, and the semantic adap-
tation to generate a suitable adaptor for components specified with enriched
interface automata that specify component contracts.

The paper is organized as follows. In Sect. 2, we present the formalization of
component behavioral contracts with the interface automata, enriched with the
semantics of component actions. In Sect. 3, we show how to verify the compatibil-
ity between components specified with behavioral contracts. When the compat-
ibility does not hold between components, we present in Sect. 4 the specification
of the mapping rules between the mismatched components that we exploit to
generate adaptors. Section 5, is dedicated to present our proposition to adapt
components at signature, semantic, and protocol levels. Finally, we discuss the
related work to our approach in Sect. 6 and conclude the paper in Sect. 7.

2 Component Behavioral Contracts

Interface automata (IAs) have been defined by Alfaro and Henzinger [1], to model
the behavior of software component. Every component is described with an inter-
face, which is specified with one interface automaton. This latter describes the
scheduling of input, output, and hidden component actions, such that, input
actions are used to model methods that can be called, and the end of receiving
messages from communication channels, as well as the return values from such
calls. Output actions are used to model method calls, message transmissions via
communication channels, and exceptions that occur during the methods execu-
tions. Local operations are called hidden actions. The alphabet of an interface
automaton consists of the names of actions annotated by “?” for input actions,
by “!” for output actions, and by “;” for hidden actions. In the interface automata
approach, the verification of the compatibility between two component is based
on the composition of their interface automata, which is achieved by synchroniz-
ing their shared input and output actions. The compatibility holds between two

Component Design and Adaptation Based on Behavioral Contracts 219

interface automata where there is an environment (third component) which pre-
vents the reachability of illegal states (states where the synchronization between
the shared actions is not achieved) in their composition. This approach is con-
sidered optimistic because the existence of illegal states in the composition is
not sufficient to decide on the incompatibility between components. The compo-
sition approach of the other automata-based formalisms describing the interface
protocols of components are considered pessimistic.

In this paper, we propose to specify component behavioral contracts with
interface automata formalism, enriched with the explicit description of the
semantics of each action. These contracts specify component behaviors by show-
ing the scheduling of the actions calls, and the interface automata formalism
is suitable to specify component behaviors. However our behavioral contracts
should express also the semantics of component actions, with pre and post con-
ditions that should be satisfied by the environment in order to call or to provide
component actions. And interface automata are not enough expressive to specify
the semantics of component actions, therefore we propose to enrich this formal-
ism to cope with action semantics.

In our proposal, we consider that the signature of an input (resp. output)
component action a is of the form a(i1, . . . , in) → (o). The set P i

a = {i1, . . . , in}
represents the set of input parameters of a. The set of output parameters P o

a is
defined by the singleton {o} (we assume that an action has at most a unique
return value). The set of all parameters of an action a is denoted by Pa. The
absence of input or output parameters is denoted by (). For a parameter p, we
define a domain Dp which is a set of values that p can take. The semantics of
actions is represented by the pre and post-conditions defined on action param-
eters. We express these conditions as formulas of the first-order logic. Given a
set of variables V, we denote by Preds(V), the set of first-order logic predicates
whose free variables belong to V.

Definition 1 (Interface Automaton for a behavioral contract). Let B be
a behavioral contract associated to a component interface. An interface automa-
ton to specify B is a tuple A = 〈SA, iA, ΣI

A, ΣO
A , ΣH

A , δA, ΨA〉 such that:

– SA is a finite set of states. A is called empty iff SA = ∅;
– iA ∈ SA is the initial state;
– ΣI

A, ΣO
A , and ΣH

A are respectively the sets of names of input, output, and
hidden actions. Let ΣA = ΣI

A ∪ ΣO
A ∪ ΣH

A ;
– δA ⊆ SA × ΣA × SA is the set of transitions betweens states;
– ΨA is a function, ΨA : ΣA 	→ Preds(P i

a) ×Preds(P i
a ∪ P o

a), that associates, for
each action a ∈ ΣA, a tuple 〈PreΨA(a), PostΨA(a)〉 that represents the pre and
post conditions of component actions.

We require that interface automata are deterministic, i.e. for all (s, a, s1) ∈ δA

and (s, a, s2) ∈ δA, we have s1 = s2.
The set Σext

A of external actions of interface automaton A is defined by the
union ΣI

A ∪ ΣO
A . The set Σloc

A of locally controlled actions of A is defined by
the union ΣO

A ∪ ΣH
A . We define by ΣI

A(s), ΣO
A (s), ΣH

A(s), Σext
A (s), and Σloc

A (s)

220 S. Chouali et al.

1 2 3

456

login!

error?
ok?

re
q
!

arg!finish!
te
rm

in
a
te
?

Client

login

ok

terminate

req

arg

error finish

1 2 3 4

56

7 8

usr? pass?

Server

connected!

open?

close?

terminate!

admin-md?
usr?

error!

usr

pass

value

close

terminate

admin-md connected error

Fig. 1. A variant of a client/server system

respectively the input, output, hidden, external and locally controlled actions
enabled from s. The set ΣA(s) includes all the enabled actions from s.

Example 1. Let us consider the two composable interface automata Client and
Server, that specify component behavioral contracts, shown in Fig. 1. After
authentication, Client sends a request req ! to open a file in read-only or write
mode. After that, it sends an action arg ! containing the name of a file to be
open. Server receives the two actions by executing an action open? that open
the file in readonly or write mode. After using the file, Client sends a signal
finish! indicating to Server that the file is ready to be closed (action close?).
Finally, Server sends a signal terminate! to terminate the session. The action
admin-md? is a super signal received from the administrator of the system to
open a super user session. When a client username is received by the server after
receiving the admin-md ! signal from an administrator, then an error is detected.
For example, the signatures and the semantics of the action login in Client and
usr in Server are defined as follows.

Signatures: login(uname, passwd, lu, lp) → (exist),
usr(username, lengthu) → ().

The semantics of the action login is defined as:
PreΨClient(login) ≡ 1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10,
PostΨClient(login) ≡ exist = 1 ∨ exist = 0
The semantics of the action usr is defined as:
PreΨServer(usr) ≡ 1 < lengthu ≤ 30, PostΨServer(usr) ≡ true

3 Component Compatibility Based on Behavioral
Contracts

In this section we show how to verify the compatibility between two components
specified with their behavioral contracts. Our proposition relies on the extension
of the interface automata approach to cope with the semantics of component
actions expressed with their pre and post condition on their parameters. To
verify the compatibility between two components that are specified with two

Component Design and Adaptation Based on Behavioral Contracts 221

interface automata A1 and A2, we have first to verify their composability and
then compute their composition by their synchronized product.

Before defining the composition between, A1 and A2, we present in the fol-
lowing the conditions that should be respected by both automata, that specify
component behavioral contracts, in order to authorize their composition.

The Composability Conditions: Two interface automata A1 and A2 associ-
ated to two behavioral contracts are composable if:

– The condition on the non shared input and output actions is satisfied:

ΣI
A1

∩ ΣI
A2

= ΣO
A1

∩ ΣO
A2

= ΣH
A1

∩ ΣA2 = ΣH
A2

∩ ΣA1 = ∅.

– The condition on the shared actions is satisfied:
Shared(A1, A2) = (ΣI

A1
∩ ΣO

A2
) ∪ (ΣI

A2
∩ ΣO

A1
) is the set of shared input and

output actions of A1 and A2. For each action a ∈ Shared(A1, A2) such that
its signature is given by a(i1, . . . , in) → (o) in A1 and by a(i′1, . . . , i

′
n) → (o′)

in A2 then, Dik
⊆ Di′

k
for 1 ≤ k ≤ n and Do ⊆ Do′ in the case where

a(i1, . . . , in) → (o) ∈ ΣO
A1

and a(i′1, . . . , i
′
n) → (o′) ∈ ΣI

A2
. Otherwise, Dik

⊇
Di′

k
for 1 ≤ k ≤ n and Do ⊇ Do′ . This property is called the domain inclusion

of the parameters of shared actions. The intuition behind this condition comes
from the fact that the output actions specify the method calls and the input
ones specify the methods that can be called.

If the above conditions are satisfied between two interface automata A1 and
A2, then we have to perform the renaming of parameter names in their pre and
post-conditions in order to realize their composition.

Definition 2 (Parameter renaming). Given an action a in Shared (A1, A2),
the signature of a is defined by a(i1, . . . , in) → (o) in A1 and by a(i′1, . . . , i

′
n) →

(o′) in A2. The renaming of parameters in the semantics ΨA1(a) and ΨA2(a) is
the substitution of i′1 by i1, . . . , i

′
n by in, and o′ by o in PreΨA2 (a)

and PostΨA2 (a)

or the opposite in PreΨA1 (a)
and PostΨA1 (a)

.

We denote by ΨA1/A2(a) and ΨA2/A1(a), the semantics of a after the param-
eter renaming respectively in A1 and A2. We can now define properly the notion
of the semantic compatibility of shared external actions.

Definition 3 (Semantic compatibility). Given an action a ∈ Shared(A1,
A2), if one of the following conditions is true, then the action a in A1 is seman-
tically compatible with the same action a in A2 i.e. SemCompa(A1, A2) is true
(otherwise ¬SemCompa(A1, A2) is true):

– if a ∈ ΣO
A1

∧ PreΨA1/A2 (a)
⇒ PreΨA2/A1 (a)

∧ PostΨA2/A1 (a)
⇒ PostΨA1/A2 (a)

,
– if a ∈ ΣI

A1
∧ PreΨA2/A1 (a)

⇒ PreΨA1/A2 (a)
∧ PostΨA1/A2 (a)

⇒ PostΨA2/A1 (a)
.

Definition 4 (Synchronized product ⊗). Given two composable interface
automata A1 and A2, the synchronized product A1 ⊗A2 of A1 and A2 is defined
by:

222 S. Chouali et al.

– SA1⊗A2 = SA1 × SA2 and iA1⊗A2 = (iA1 , iA2); ΣI
A1⊗A2

= (ΣI
A1

∪ ΣI
A2

) \
Shared (A1, A2);

– ΣO
A1⊗A2

= (ΣO
A1

∪ ΣO
A2

) \ Shared(A1, A2); ΣH
A1⊗A2

= ΣH
A1

∪ ΣH
A2

∪ {a ∈
Shared(A1, A2) | SemCompa(A1, A2)};

– ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 iff

• a /∈ Shared (A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2 or a /∈ Shared(A1, A2) ∧
(s2, a, s′2) ∈ δA2 ∧ s1 = s′1 or a ∈ Shared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧
(s2, a, s′2) ∈ δA2 ∧ SemCompa(A1, A2);

– ΨA1⊗A1 is defined by:
• ΨA1 for a ∈ ΣA2 \ Shared(A1, A2);
• ΨA2 for a ∈ ΣA2 \ Shared(A1, A2);
• 〈PreΨA1 (a)

,PostΨA2 (a)
〉 for a ∈ Shared(A1, A2) ∩ ΣO

A1
such that

SemCompa(A1, A2);
• 〈PreΨA2 (a)

,PostΨA1 (a)
〉 for a ∈ Shared(A1, A2) ∩ ΣI

A1
such that

SemCompa(A1, A2);

The incompatibility between two interface automata A1 and A2 could happen
due to (i) the existence of states (s1, s2) in the product A1 ⊗ A2 such that
there exists at least one action a in Shared(A1, A2) enabled from s1 and it
is not from s2 or inversely, or (ii) the action a is enabled from s1 and s2 but
¬SemCompa(A1, A2) is valid. These states are therefore illegal in the product
A1 ⊗ A2.

Definition 5 (Illegal states). The set of illegal states, denoted by Illegal(A1,
A2) ⊆ SA1 × SA2 , in A1 ⊗ A2 is defined by {(s1, s2) ∈ SA1 × SA2 | (∃ a ∈
Shared(A1, A2) | the condition C1 ⊕ C2 is true1)}.

C1 =
(

(a ∈ ΣO
A1

(s1) ∧ a /∈ ΣI
A2

(s2)) ∨ (a ∈ ΣO
A1

(s1) ∧ a ∈ ΣI
A2

(s2)
∧¬SemCompa(A1, A2))

)

C2 =
(

(a ∈ ΣO
A2

(s2) ∧ a /∈ ΣI
A1

(s1)) ∨ (a ∈ ΣO
A2

(s2) ∧ a ∈ ΣI
A1

(s1)
∧¬SemCompa(A1, A2))

)

Reaching states in Illegal(A1, A2) is not sufficient to decide that A1 and A2

are incompatible (according to optimistic approach). Indeed, in this approach, if
there is at least one environment that requests the appropriate input actions in
A1 ⊗ A2, and allows the no reachability of illegal states, then A1 and A2 can be
assembled without producing deadlocks. The composition of A1 and A2, denoted
by A1||A2, is the restriction of their product to the set of states called compatible,
denoted by Comp(A1, A2). They are the states through which the interaction
between the two components of A1 and A2 passes without having the risk of
reaching illegal states by enabling only the locally controllable actions (input
and hidden actions). The verification steps in this approach are similar to those
described in [1], except that we consider the semantics of actions during the
compatibility check by verifying the condition of semantic compatibility between
the shared actions.
1 ⊕ is XOR.

Component Design and Adaptation Based on Behavioral Contracts 223

4 Component Behavioral Contracts and Mismatches

The definitions of component interface mismatches [2,4,5] are essentially due to
the reuse of components in a system design which is often harmed by mismatch
cases such as: (i) names of exchanged messages between components do not
correspond which may lead to deadlock situations, components regularly interact
on the same action names; (ii) the orderings of messages or actions in both
component protocols do not correspond; (iii) an action in a component that has
no counterpart in the other one, or correspond to more than one action.

For component behavioral contracts specified with interface automata, the
behavioral mismatch cannot be detected by applying the synchronized product
between two composable interface automata as it was defined in Definition 4,
because the case where there is no correspondence between the action names
leads to them being absent from the set of shared actions. Thus, all of mis-
matched actions are interleaved asynchronously in the product. To avoid this
constraint, our adaptation specification starts by establishing an abstract way
to denote the composition requirements. We corroborate the explicit descrip-
tion of interactions between components thanks to rules. They relate the mis-
matched actions used in different components which are supposed to implement
some interactions. Rules relate actions even if they do not really label some
transitions in the automaton as required by the optimistic approach of interface
automata.

The minimal adaptor specification of two interface automata A1 and A2 is the
set of rules called a mapping. The mapping does not represent any behavioural
detail about the adaptor.

Definition 6 (Rules and Mappings). A rule α for two composable interface
automata A1 and A2, is a pair 〈L1, L2〉 ∈ (2ΣO

A1 × 2ΣI
A2) ∪ (2ΣI

A1 × 2ΣO
A2)2 such

that (L1 ∪ L2) ∩Shared(A1, A2) = ∅ and if |L1| > 1 (or |L2 | > 1) then |L2| =
1 (or |L1| = 1);

A mapping Φ(A1, A2) for two composable interface automata A1 and A2 is
a set of rules αi, for 1 ≤ i ≤ |Φ(A1, A2)|.

According to the above definition, a rule in our approach deals with one-
to-one, many-to-one, and one-to-many correspondences between actions. More
clearly, the adaptation may in general relate either an action or a group of
actions of one automaton with one action in the other. For instance, a client
authenticates itself by sending first its user name and then a password while
the server accepts both data in a single login shot. We denote the set of the
mismatched actions by MismatchΦ(A1, A2) = {a ∈ Σext

A1
∪Σext

A2
| ∃ α ∈ Φ(A1, A2).

a ∈ Π1(α) ∨ a ∈ Π2(α)}3.

2 For some set S, 2S is its power set.
3 Π1(〈a, b〉) = a and Π2(〈a, b〉) = b are respectively the projection on the first element

and the second element of the couple 〈a, b〉.

224 S. Chouali et al.

Example 2. To illustrate the mapping relation, we define this latter between
the actions of the interface automata Client and server as described in Fig. 1
by: Φ(Client,Server) = {〈 {login}, {usr, pass}〉, 〈{finish}, {close}〉, 〈{ok},
{connected}〉 〈{req,arg}, {open}〉 }. The set Shared(A1, A2) = {error,terminate}.

Given two composable interface automata A1 and A2 and a mapping Φ(A1,
A2), if Φ(A1, A2) = ∅, the adaptation of A1 and A2 has no sense and their
synchronization is defined by their product A1 ⊗ A2 as it was defined in Sect. 3.
Otherwise, we proceed on two steps: (i) we check first the semantic adaptability
between the mismatched actions in the mapping Φ(A1, A2). (ii)if the semantic
adaptability check was successfully made without giving rise to incompatibilities,
we generate the adaptor of A1 and A2 according to the mapping Φ(A1, A2). If
the generated adaptor is non-empty and it is compatible with both of A1 and
A2, we say that A1 and A2 are adaptable.

5 Component Adaptation

In this section we present our approach to adapt components specified with
behavioral contracts.

5.1 Semantic Adaptability

The semantic adaptability between the mismatched actions of two composable
interface automata has to be made before generating the adaptor. The mis-
matched actions have to respect some constraints at the level of their seman-
tics. Let us consider two interface automata A1 and A2 and a given mapping
Φ(A1, A2). To perform the semantic adaptability check between A1 and A2

according to Φ(A1, A2), it is required that for each rule α = 〈L1, L2〉 ∈ Φ(A1, A2)
the following conditions hold:

1.
∑

a∈L1
| P i

a | =
∑

b∈L2
| P i

b |;
2.

∑
a∈L1

| P o
a | =

∑
b∈L2

| P o
b |;

3. if |L1| = 1 and | L2| ≥ 1 where L1 = {a}, L2 = {b1, . . . , b|L2|}, and P o
a = {oa}

then there exists exactly one action bk ∈ L2 (1≤k≤ | L2 |) such that P o
bk

=
{obk

}, P o
bl

= ∅ for 1≤l≤ | L2 | and l �=k, and the two output parameters oa

and obk
have to satisfy the domain inclusion condition:

– if L1 ⊆ ΣO
A1

, then Doa
⊆ Dobk

;
– else Doa

⊇ Dobk
;

θα denotes the tuple (a,bk). If P o
a = {}, (a,bk) is not defined;

4. the condition is analogous to the previous one with |L1 |≥ 1 and |L2 | = 1
where L1 = {a1, . . . , a|L1|} and L2 = {b};

5. there exists a function ϕi
α:

⋃
a∈L1

P i
a → ⋃

b∈L2
P i

b that associates each input
parameter p of actions in L1 with an input parameter q of actions in L2. The
function ϕi

α have to satisfy the domain inclusion condition:
– if L1 ⊆ ΣO

A1
, then Dp ⊆ Dϕi

α(p) where p ∈ ⋃
a∈L1

P i
a;

– else Dϕi
α(p) ⊆ Dp where p ∈ ⋃

a∈L1
P i

a.

Component Design and Adaptation Based on Behavioral Contracts 225

The first and the second conditions state that the number of input (respec-
tively output) parameters of actions in L1 is equal to the number of input
(respectively output) parameters of actions in L2. The third condition states
the relations between the output parameter of the action a ∈ L1 and the one
of the action bk ∈ L2. We assume that the other actions in L2 \ {bk} have no
output parameters. The intuition behind these conditions is to avoid conflicts
between the pre and post-conditions during the semantic adaptability check by
ensuring the equality between the number of input and output parameters.

The renaming of the input and output parameter in the semantics of actions
in MismatchΦ(A1, A2) is defined as follows. For all a ∈ L1 and b ∈ L2, the
parameter renaming is defined by the substitution of each input parameter i of a
in PreΨA1 (a)

and PostΨA1 (a)
by ϕi

α(i) or the substitution of each input parameter

i′ of b in PreΨA2 (b)
and PostΨA2 (b)

by ϕi
α

−1(i′)4. If the couple θα = (a, b) exists,
the parameter renaming is defined by the substitution of the output parameter oa

in PostΨA1 (a)
by ob or the substitution of the output parameter ob in PostΨA2 (b)

by oa.
We denote by ΨA1/α(a) and ΨA2/α(b) respectively the semantics of actions in

Π1(α) and actions in Π2(α) after the parameter renaming.

Definition 7 (Semantic Adaptability). Given two composable interface
automata A1 and A2 and an adaptation mapping Φ(A1, A2) such that the con-
ditions 1, 2, 3, 4, and 5 introduced in Sect. 5.1 are satisfied, the semantic adapt-
ability SemAdapα(A1, A2) of a rule α in Φ(A1, A2) is satisfied iff the following
conditions are fulfilled:

1. If Π1(α) ⊆ ΣO
A1

, then
⎛
⎜⎜⎜⎝

∧
a∈Π1(α)

PreΨA1/α(a) ⇒ ∧
b∈Π2(α)

PreΨA2/α(b)

∧∧
a∈Π1(α)

PostΨA1/α(a) ⇐ ∧
b∈Π2(α)

PostΨA2/α(b)

⎞
⎟⎟⎟⎠

2. If Π1(α) ⊆ ΣI
A1

, then the condition is analogous to the previous one by
inversing the implications.

We say that A1 and A2 are semantically adaptable according to the mapping
Φ(A1, A2) if the semantic adaptability of each rule α ∈ Φ(A1, A2) holds.

The semantic adaptability conditions are stated in a similar way as the
semantic compatibility of the shared actions defined in Definition 3 except that
for adaptation, we treat sets of mismatched actions associated by the rules of
the mapping.

Example 3. To illustrate mismatches between actions belonging to two behav-
ioral contracts, we consider the two composable interface automata Client and
Server, that specify component behavioral contracts, shown in Fig. 1 and a map-
ping Φ(Client,Server) as defined in Example 2.

226 S. Chouali et al.

Table 1. The signatures of actions in MismatchΦ(Client,Server)

Client Server

α1 login(uname,passwd,lu,lp)→(exist) usr(username,lengthu)→()

pass(password,lengthp)→(exist)

α2 ok(msg)→() connected(logmsg)→()

α3 req(read)→() open(readonly,filename)→(open)

arg(file)→(status)

α4 finish()→(status) close()→(closed)

Table 2. The semantics of actions in MismatchΦ(Client,Server)

Client Server

PreΨClient(login) ≡ 1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10

PostΨClient(login) ≡ exist = 1 ∨ exist = 0

PreΨServer(usr) ≡ 1 < lengthu ≤ 30

PostΨServer(usr) ≡ true

PreΨServer(pass) ≡ 6 ≤ lengthp ≤ 10

PostΨServer(pass) ≡ exist = 1 ∨ exist = 0

PreΨClient(ok) ≡ true

PostΨClient(ok) ≡ true

PreΨServer(connected) ≡ true

PostΨServer(connected) ≡ true

PreΨClient(req) ≡ read = 0 ∨ read = 1

PostΨClient(req) ≡ true

PreΨServer(open) ≡ readonly = 0 ∨ readonly = 1

PostΨServer(open) ≡ open = 0 ∨ open = 1

PreΨClient(arg) ≡ true

PostΨClient(arg) ≡ status = 0 ∨ status = 1

PreΨClient(finish) ≡ true

PostΨClient(finish) ≡ status = 0 ∨ status = 1

PreΨServer(close) ≡ true

PostΨServer(close) ≡ closed = 0 ∨ closed = 1

The mismatched actions are described and classified by the rules in
Table 1. The function ϕi

α2
is defined by {msg 	→logmsg}. The function ϕi

α4

is not defined. The function ϕi
α1

is defined by and {uname 	→username,
lu 	→lengthu, passwd 	→password, lp 	→lengthp}. The function ϕi

α3
is defined by

{read 	→readonly, file 	→filename}. The function ϕi
α4

is empty. θα1 = (login,pass),
θα2 is not defined, θα3 = (arg,open), and θα4 = (finish,close). The parameters
uname, passwd, username, password, msg, logmsg, file, and filename are strings.
The parameters lu, lp, lengthu, lengthp, read, readonly, status, open, and closed
are integers. As the reader can conclude, the conditions to perform the semantic
adaptability check hold for all α in Φ(A1, A2):

– for all α ∈ Φ(A1, A2),
∑

a∈Π1(α) |P i
a| =

∑
b∈Π2(α) |P i

b| and
∑

a∈Π1(α) |P o
a | =∑

b∈Π2(α) |P o
b |;

– the domain inclusion conditions are satisfied for θ∗ and ϕi
∗ where * ∈ Φ(Client,

Server).

The semantics of the mismatched actions respectively for Client and Server
are listed in Table 2. After unifying the mismatched actions in MismatchΦ(Client,

4 f −1 is the inverse function of f.

Component Design and Adaptation Based on Behavioral Contracts 227

Server), the reader can easily verify the semantic adaptability for all α in
Φ(Client, Server) holds. For example, for the rule α1,

PreΨClient/α1 (login) ⇒ (PreΨServer/α1 (usr) ∧ PreΨServer/α1 (pass)) is satisfiable
((1 < lu ≤ 20 ∧ 8 ≤ lp ≤ 10) ⇒ (1 < lu ≤ 30 ∧ 6 ≤ lp ≤ 10)). Also,
PostΨClient/α1 (login) ⇐ (PostΨServer/α1 (usr) ∧ PostΨServer/α1 (pass)) is satisfiable
((exist = 1 ∨ exist = 0) ⇐ (true ∧ (exist = 1 ∨ exist = 0))). We can deduce that
Client and Server are semantically adaptable according to Φ(Client,Server).

5.2 Adaptor Specification and Construction

After verifying the semantic adaptability between two composable interface
automata A1 and A2 according to a mapping Φ(A1, A2), we treat in this section
the interface automaton specification and construction of their adaptor. The
adaptor must be composable with A1 and A2, and must also satisfy the map-
ping rules and respect the component protocols specified by A1 and A2.

Definition 8 (Adaptor). Given two composable interface automata A1, A2,
and a mapping Φ(A1, A2), an adaptor for A1 and A2 according to the mapping
Φ(A1, A2) is an interface automaton Ad = 〈 SAd, IAd, ΣI

Ad, ΣO
Ad, ΣH

Ad, δAd 〉
such that

– ΣI
Ad = {a | a ∈ MismatchΦ(A1, A2) ∩ (ΣO

A1
∪ ΣO

A2
)};

• For all a ∈ ΣI
Ad, ΨAd(a) = ΨA1(a) if a ∈ ΣO

A1
. Otherwise, ΨAd(a) = ΨA2(a);

– ΣO
Ad = {a | a ∈ MismatchΦ(A1, A2) ∩(ΣI

A1
∪ ΣI

A2
)};

• For all a ∈ ΣO
Ad, ΨAd(a) = ΨA1(a) if a ∈ ΣI

A1
. Otherwise, ΨAd(a) = ΨA2(a);

– ΣH
Ad ⊆ {ε}; in the adaptor this set represents the internal actions that do noth-

ing, which are associated to input/output actions in mismatched components
which are not concerned with the mapping (the adaptation);

– δAd ⊆ SAd × ΣI
Ad ∪ ΣO

Ad ∪ {ε} × SAd;
– Shared(Ad,A1) =

⋃
α∈Φ(A1,A2)

Π1(α); Shared(Ad,A2) =
⋃

α∈Φ(A1,A2)
Π2(α);

The adaptor must satisfy the following condition in order to ensure that
the mapping rules are respected, therefore the mismatch between components is
resolved.

The Condition on the Adaptor Paths: For all execution path σ =
s1a1s2a2 . . . siai . . . sn in the adaptor Ad, such that si ∈ SAd and ai ∈ ΣO

Ad∪ΣI
Ad,

if ∃α ∈ Φ(A1, A2) such that the output actions (enabled as input in Ad) of α are
present in σ then they are succeed, in σ, by there correspondent input actions
(enabled as output in Ad).

Property 1. An adaptor Ad for two interface automata A1 and A2 according
to a mapping Φ(A1, A2) is composable with A1 and A2.

The property can be easily verified according to Definition 8. Indeed, by consid-
ering the set of actions of Ad, ΣI

Ad and ΣO
Ad, the condition of composability, as

defined in Sect. 4, can be easily verified with the set of actions of A1 and A2.

228 S. Chouali et al.

α β γ ε

ζηθϑι

login? usr! pass! connected?

ok!

req?arg?open!finish?

close!

login

usr

pass

req

arg

open

finish

close

connectedok

Fig. 2. The adaptor Adaptor for Client and Server

The composition of A1 and A2 is performed by synchronizing first Ad with
either A1 or A2, computing their composition according to our extended app-
roach, and then by composing the resulting composition with the remaining
automaton. We suppose that the actions of the adaptor have the same signa-
tures and semantics as actions in MismatchΦ(A1, A2). If the composite interface
automaton A1 ‖ Ad ‖ A2 is non empty then A1 and A2 are compatible after
their adaptation at the protocol and the semantic levels.

To generate the adaptor Ad from A1, A2, and the mapping Φ(A1, A2), we have
to explore in parallel the states and the transitions of both automata A1 and A2.
For the lack of space, the details of the algorithm to perform adaptor generation
is not described in this paper, however this algorithm is the same as our algorithm
in [6] that constructs an adaptor for two composable interface automata A1, A2,
and a given non empty mapping Φ(A1, A2). In fact the contribution of this paper
compared to the approach in [6] is the handling of action semantics in component
adaptability thanks to the design of components with behavioral contracts. The
step for generating the interface automaton of the adaptor comes after verifying
the semantic compatibility between A1 and A2. However in [6] we considered
only the protocol level in the adaptation. So, the algorithm is basically a loop
which reads in parallel A1 and A2 and constructs as one goes along the set of
states and the set of transitions of the adaptor. The algorithm is executed by
respecting the reordering of events of both interfaces A1 and A2. The algorithm
marks and removes from the generated graph all the fragments of paths that do
not respect the condition on the adaptor paths.

The part of the algorithm that constructs the set of states and transitions
has the time complexity O(|SA1 × SA2 |.(|δA1 | + |δA2 |)). The time complexity of
the part that removes the undesired path fragments is linear in the number of
the generated states.

Example 4. As the reader can conclude, Adaptor is composable with both Client
and Server presented in Example 1 and it satisfies all the items of Definition 8.
Our proposed algorithm in [6] generates exactly the same interface automaton
shown in Fig. 2. Suppose that the semantic compatibility between the shared
actions error and terminate holds, then Adaptor is compatible with both Client
and Server. The composite interface automaton (Client ‖ Adaptor) ‖ Server is
non empty which makes Client and Server compatible after their adaptation.

Component Design and Adaptation Based on Behavioral Contracts 229

6 Related Work

Several techniques of adaptation show how to automatically derive adaptors in
order to eliminate mismatches between components during their interactions. In
[13], the authors propose an interesting approach based on finite state machines
to adapt components specified by interfaces describing component protocol and
action signatures. This approach deals with one-to-one relations between actions.
In [8], the authors propose the Smart Connectors approach which allows the con-
struction of adaptors using the provided and required interfaces of the components
in order to resolve partial matching problems in COTS component acquisition.
In [2], the authors have proposed a formal approach based on calculus to gener-
ate automatically adaptors using the Prolog language. The authors in [3] present
an approach based on session types, exploited to specify component behaviors,
to adapt heterogeneous components that may present mismatching interaction
behaviors. In [7], Hemer has proposed, using template from the CARE language,
to define adaptation strategies for modifying and combing components. In [9], the
authors have proposed a model of adaptors expressed in the B formal method,
allowing to define the interoperability between components. In [11] the authors
introduce the concept of parameterized contracts and a model for component
interfaces, they also present algorithms and tools for specifying and analyzing
component interfaces in order to check interoperability and to generate adapted
component interfaces. In [12], the authors propose to generate semi-automatically
adaptors, at the protocol level, for concurrent components that are specified with
finite state machines. Another approach that deals with the adaptation of compo-
nent at the protocol level is presented in [10]. The authors proposed an algorith-
mic approach for checking whether incompatible interaction protocols of compo-
nent interfaces can be made compatible by inserting a protocol converter between
them. The approaches described above propose solutions for the component adap-
tation based on different specification formalisms of component interfaces. Our
approach is different from the others, because we propose a solution to adapt
particular components that are specified by interface automata. This formalism
allows to exploit optimistic approach [1] to check to component interoperability.
This adaptation approach deals with the signature, the semantic, and the proto-
col levels, and deals also with possibly complex adaptation scenarios: one-to-one
and one-to-many correspondences between actions.

7 Conclusion

In this paper, we proposed a formal approach for the automatic development of
component adaptors, allowing the elimination of mismatches between interacting
components. Our component interfaces are described with behavioral contracts,
which allow to handle all component facets for their adaptation, by consider-
ing component informations at levels of action signatures, their semantics, and
their protocols. So, we proposed a formal framework for component adapta-
tion, based on the following concepts: behavioral contracts, their composability,
their synchronization, and their semantic compatibility. Therefore we specified

230 S. Chouali et al.

these contracts with interface automata enriched by the action semantics. We
exploited the obtained formalism to adapt the interface automata approach to
verify compatibility between components specified with behavioral contracts.
When components are incompatible due to mismatches, we proposed to specify
a correspondence mapping between the mismatched actions of two components
as a first abstract specification of the adaptor. This mapping deals with one-to-
one and one-to-many correspondences between the actions. Finally, we proposed
an approach that generates the adaptor for two composable interface automata
according to a fixed mapping. The generated adaptor allows to eliminate mis-
matches at signature, semantic, and protocol levels.

References

1. Alfaro, L., Henzinger, T.A.: Interface automata. In: 9th Annual Symposium of FSE
(Foundations of Software Engineering), pp. 109–120. ACM Press (2001)

2. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
J. Syst. Softw. 74, 45–54 (2005)

3. Brogi, A., Canal, C., Pimentel, E.: Behavioural types and component adaptation.
In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 42–56. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27815-
3 8

4. Canal, C., Murillo, J., Poizat, P.: Software adaptation. Spec. Issue Softw. Adapt.
12(1), 9–31 (2006)

5. Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in software
composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol.
4037, pp. 63–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11768869 7

6. Chouali, S., Mouelhi, S., Mountassir, H.: Adapting component behaviours using
interface automata. In: Euromicro SEAA 2010 Conference. IEEE Computer Society
Proceedings, September 2010

7. Hemer, D.: A formal approach to component adaptation and composition. In:
Proceedings of the Twenty-Eighth Australasian Conference on Computer Science,
ACSC 2005, Newcastle, Australia, pp. 259–266 (2005)

8. Min, H.G., Choi, S.W., Kim, S.D.: Using smart connectors to resolve partial
matching problems in COTS component acquisition. In: Crnkovic, I., Stafford,
J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 40–47.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24774-6 5

9. Mouakher, I., Lanoix, A., Souquières, J.: Component adaptation: specification and
verification. In: 11th International Workshop on Component Oriented Program-
ming (WCOP 2006), ECOOP 2006, Nantes, France, p. 8, July 2006

10. Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin [IP block
interfaces]. In: IEEE/ACM ICCAD 2002, pp. 132–139 (2002). https://doi.org/10.
1109/ICCAD.2002.1167525

11. Reussner, R.: Automatic component protocol adaptation with the CoConut/J tool
suite. Future Gener. Comput. Syst. 19(5), 627–639 (2003)

12. Schmidt, H.W., Reussner, R.H.: Generating adapters for concurrent component
protocol synchronisation. In: Jacobs, B., Rensink, A. (eds.) FMOODS 2002. ITI-
FIP, vol. 81, pp. 213–229. Springer, Boston, MA (2002). https://doi.org/10.1007/
978-0-387-35496-5 15

13. Yellin, D., Strom, R.: Protocol specifications and components adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

https://doi.org/10.1007/978-3-540-27815-3_8
https://doi.org/10.1007/978-3-540-27815-3_8
https://doi.org/10.1007/11768869_7
https://doi.org/10.1007/978-3-540-24774-6_5
https://doi.org/10.1109/ICCAD.2002.1167525
https://doi.org/10.1109/ICCAD.2002.1167525
https://doi.org/10.1007/978-0-387-35496-5_15
https://doi.org/10.1007/978-0-387-35496-5_15

Towards Real-Time Semantics for a
Distributed Event-Based MOP Language

Mateo Sanabria , Wilmer Garzón Alfonso ,
and Luis Daniel Benavides Navarro(B)

Escuela Colombiana de Ingenierá Julio Garavito, Bogotá, Colombia
mateo.sanabria@mail.escuelaing.edu.co,

{wilmer.garzon,luis.benavides}@escuelaing.edu.co

Abstract. This paper investigates rewriting logic as a suitable means
to model the semantics of distributed and concurrent systems imple-
mented using Monitoring Oriented Programming (MOP) frameworks.
MOP tools close the gap between specification and implementation,
allowing several formal specifications and concrete implementations to be
combined into a single executing system. To address real-time monitor-
ing of modern distributed applications, we recently proposed REAL-T,
a reactive event-based distributed programming language with explicit
support for distributions and time manipulation. REAL-T allows pro-
grammers to instrument distributed applications to monitor and enforce
specific behavior. It also supports requirements of modern reactive appli-
cations (responsiveness, resiliency, elasticity and asynchronous commu-
nication). The REAL-T programming model is very flexible, making the
semantic specifications very challenging.

Keywords: Rewriting logic · Semantics · Distributed programming
Event oriented programming · Explicit time management

1 Introduction

Designing, implementing, and debugging distributed and concurrent applications
is a complex task. Several approaches have been proposed to address such com-
plexity. Objects [16], actors [1], functional programming [23], and other strategies
have been investigated as suitable means to model concurrent and distributed
systems. However, despite of the programming paradigm, modern reactive appli-
cations are full of bugs related to concurrency and distribution. Formal speci-
fications and verification [21,22] have been proposed as techniques to address
algorithm accuracy in distributed and concurrent software. Although, correct-
ness may be proved formally, there is no guarantee that the implementation will
comply with the specification. Monitoring Oriented Programming (MOP) [9,20]
has been proposed to close the gap between formal specifications and implemen-
tation, allowing them to create a system together. MOP proposes building a
software framework on top of a base application in order to monitor and enforce
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 231–243, 2018.
https://doi.org/10.1007/978-3-030-02852-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_20&domain=pdf
http://orcid.org/0000-0003-3407-9792
http://orcid.org/0000-0002-5920-2278
http://orcid.org/0000-0002-6166-325X

232 M. Sanabria et al.

desired behavior that has been specified in some formalism, e.g., finite state
machines or Linear Temporal Logic.

As mentioned, a MOP framework may enforce specific behavior in the base
application, thus altering the original semantics. We argue that such a modifi-
cation needs to be investigated formally. In this paper, we use rewriting logic to
investigate the semantics of systems created by distributed MOP frameworks.
Concretely, our investigation examines the semantics of REAL-T [5], a Moni-
toring Oriented Language designed for distribution and concurrency. REAL-T
is a reactive, event-based, distributed programming language with explicit sup-
port for distribution and time manipulation. REAL-T allows programmers to
instrument distributed applications to monitor and enforce specific behavior.

This paper is organized as follows: Sect. 2 presents the programming model of
REAL-T; Sect. 3 presents semantics for a restricted set of the language; Sect. 4
presents related work; and Sect. 5 presents concluding remarks and discusses
future work.

2 The Programming Model of REAL-T

REAL-T’s programming model has three main components: a distributed base
application, a distributed event model, and a time model (a detailed description
of the programming model is found in [5]). The distributed base application is
where specific behaviors want to be detected or reinforced. The event model
describes what events are detected and how messages with event information
are exchanged. Time model describes different time management strategies con-
sidered in the programming model.

2.1 The Base Application

The base application exchanges messages through the network to achieve its
purpose. This application is where specific behaviors want to be detected or
reinforced. The base application may possess any or all of the characteristics
of modern reactive applications: responsiveness, resiliency, elasticity, and asyn-
chronous communication. REAL-T adapts itself to the topology and architecture
of the application, for example, growing and shrinking with it, following its elas-
tic behavior. The programming model does not impose any restrictions on the
base application (apart from being a java application). Specific events and pat-
terns of events are detected on the execution trace of the base application at
run-time.

2.2 Distributed Event Model

REAL-T detects two types of events: atomic events and complex events. For
simplicity, we restrict our study to only one type of atomic event: method calls.
Atomic events are defined using a pointcut-like language with explicit support
for distribution [4]. Complex events are sequences of atomic events defined using

Towards Real-Time Semantics 233

finite deterministic automata (as in [4]), causal predicates [19], or Linear Tem-
poral Logic [14,20].

Atomic events, complex events, and reactions are defined using Event Classes.
Instances of those classes are called event monitors, and they are instantiated
using a singleton policy, i.e., each event class creates one monitor object on each
running node. Monitors consume messages with event information, and they
react to those events. The reaction may be a simple notification, e.g., register-
ing the event in a log file, or it may modify the original behavior of the base
application.

Atomic event definitions cause the base application to be instrumented by
REAL-T’s framework. Once instrumented, before executing a method call, a
message containing the meta-information of that call is broadcast to the par-
ticipating nodes in the distributed application. Those messages are consumed
by distributed monitors which detect complex patterns of events and react to
those patterns. The message containing the meta information does not inter-
fere with the distributed messages of the base application. Furthermore, there is
no restriction regarding synchronization among messages with meta information
and messages from the base application.

Figure 1 depicts the main concepts explained above. The figure shows five
nodes where the distributed application is deployed. In the application, the
nodes communicate with each other (solid line). Each node has deployed an
event monitor. The monitor detects the events in the application, e.g., sees the
instrumented method call represented as a black line in node 3 and broadcasts
the event information to other monitors. Those monitors use their constructs
to detect complex event patterns. The construct may be a simple predicate, an
automaton definition, the automaton augmented with causal guards or a pred-
icate defined using LTL. Note that a node represents a running component of
the distributed application; this is a software artifact, not a hardware device.
Additionally, the monitor is an instance of an event class definition and there
could be more monitors per node, for example, if there are more event-class
definitions.

Note that there are two types of messages in the application: regular mes-
sages generated by the base distributed application; and messages representing
the meta-data of events. Messages containing event meta-data are exchanged
over the REAL-T framework, while regular messages are exchanged over the
mechanisms defined by the distributed base application.

2.3 Time Model

REAL-T considers three kinds of time models. The first is operational time,
where time is modeled defining the order of messages explicitly. The second is
logical time [15,19] to address partial orders of events, predicating, for example,
over causal relations. Finally, we have declarative time using LTL, where the
programmers of event classes define custom models of time and time predicates.

234 M. Sanabria et al.

Fig. 1. Event model

Operational Time: Operational time formalisms [13] explicitly describe
the evolution of software systems. In our model, we use Deterministic State
Automata to describe complex sequences of events. The automaton is concerned
only with the next possible transition, thus enforcing specific sequences of events.
Each transition on the automaton may be guarded with a boolean guard. Each
monitor may have an automaton definition and, depending on the arrival order
of messages, each automaton will detect different histories of the distributed
computation.

Logical Time: REAL-T allows programmers to write predicates on the causal-
ity relationship among events, i.e., when an event has causal influence over
another. The causal relation among events is defined (following ideas from
[15,19]) considering three concrete cases of distributed events. First, two events
a and b are causally related if they are in the same process and a takes place
before b. Second, if a represents the event of sending message m while b repre-
sents the event of receiving message m, a and b are causally related. Finally, by
transitivity, if a is causally related to b and b is causally related to c, hence, a
is causally related to c. In any other case, events are considered concurrent [19].

Towards Real-Time Semantics 235

Declarative Time Model (Linear Logical Time): REAL-T incorporates
a time model based on Propositional Temporal Logic (PTL) [11]. Using PTL
predicates, programmers write temporal predicates asserting temporal relations
among events in a sequence of distributed events. Concretely, REAL-T supports
the operators described below, where φ and ψ are PTL formulas:

– ©φ := “Next: In the next moment φ is true”.
– ♦φ := “Eventually: In some future or present moment φ is true”.
– �φ := “Always: φ is true in all future moments”.
– φ U ψ := “Until: φ continues being true up until some future moment when

ψ is true”.
– φ W ψ := “Unless: φ continues being true unless ψ becomes true (weak

until)”.

3 Formal Semantics for REAL-T

Figure 2 depicts the main elements of REAL-T’s programming model, which is
formalized using rewriting logic written in Maude [10]. The first element is the
base application. In the figure, node1, node2, and node3 represent devices execut-
ing concurrent components of the base application, and white messages represent
regular messages that are exchanged in the base application. The second element
is the distributed monitoring framework created with REAL-T. This framework
has one monitor attached to each component (e.g., a monitor attached to each
Java virtual machine), such monitor may be defined using an LTL formula, a
finite state automaton, or a simple boolean predicate. The monitor receives mes-
sages containing information of the events occurring in other nodes. Monitors
consume messages and react when a specific predicate holds, or when a specific
state is reached.

Black messages in the figure are the messages exchanged over REAL-T’s
framework (not all messages are shown). Note that the network is an unreliable
component, messages may be lost, and message order may be altered. Thus, each
monitor sees a different history of the computation; at the bottom of the figure,
the timeline represents messages as seen by monitor3. Finally, at the top of the
figure, property P is represented as a meta property, i.e., a property that holds
in the entire system. Note that in REAL-T we do not have any guarantee that P
holds, programmers may use Deterministic Finite Automata or LTL formulas to
define event classes, but as a real-time framework, it does not have access to the
full trace of the computation. One of the best features of having the semantics
defined in rewriting logic is that we can now analyze what kind of properties
may be granted at real-time using REAL-T.

To present the semantics of REAL-T we are going to introduce incrementally
some of the features described above. In particular, we are going to specify the
base application by means of producers and consumers exchanging messages.
First, using a unicast model, then introducing a global clock, and finally creating
an asynchronous broadcast model (no global clock). To formalize the event model
and the time model we are going to introduce global LTL formulas. Finally, we
discuss how to extend the specification to include event classes.

236 M. Sanabria et al.

Does property P hold in the system?

Node 1 Node 2 Node 3

Monitor 1
LTL formula

Monitor 2
LTL formula

Monitor 3
LTL formula

Multithreaded application

Events occurring in the base application

Regular messages in the base application

Events as seen by monitor 3

Fig. 2. Main elements of REAL-T’s programming model

3.1 The Semantics of the Base Application

Unicast with No Global Time. The state of the computation is modeled with
the sort Sys, which is a set of objects in a particular state. This configuration may
contain instances of producers and consumers, as well as instances of messages
that are in transit between them. The specification of the configuration is shown
bellow:

sort Sys .
op { } : Configuration > Sys .

Figure 3 shows the specification of the producer. The producer generates mes-
sages in the distributed application. A producer has associated five attributes:
frequency is a natural number representing the speed of message production,
the number represents the number of clock ticks before sending a new message.
In this example, each object has its own clock. Attribute count is used as a
clock. The producer can issue a message, the attribute cnt-prod will keep track
of how many messages the producer has sent. Each producer has a maximum
quota of messages, attribute end. Attribute times stores a list of times, those
times are the times associated with message sending.

Likewise, consumers were defined as objects as shown in the Fig. 4. A con-
sumer has five attributes. Like the producers, each consumer has a frequency
indicating how fast a consumer can consume messages (freq-C). Attribute,
countC is updated with each clock tick. Attribute logs stores the records of
messages consumed. Finally, attribute current-mesg stores the message being
consumed.

Towards Real-Time Semantics 237

Fig. 3. Producer specification no global time

Fig. 4. Consumer specification no global time

Furthermore, system transitions are modeled by seven rewriting rules. Dur-
ing transitions, the producers and consumers update their internal clocks and
messages may be consumed by any consumer. We show some of the rules in
Fig. 5. Rule [update-frequency-Consumer] updates internal clock of a con-
sumer. While rule [send-msg] makes producer PR to send a message to the
system when frequency is matched.

Unicast with Global Time. We now add a global clock to the model, intro-
ducing a rule which updates the internal clock of each object in the system at
the same time. For this, rule [update-frequency] replaces the aforementioned
[update-frequency-Consumer] and [update-frequency-Producer]. Figure 6
shows the definition of the new rule. Rule uses a new operation tick to indicate
to the objects of the configuration when to update its internal clock. Figure 7,
shows equations and conditional equations defining the behavior of clocks. Con-
trary to the previous specification this one is not terminating, because the rule
[update-frequency] continues to execute indefinitely.

238 M. Sanabria et al.

Fig. 5. Some rules for the system

Fig. 6. Rule to update frequency

Fig. 7. Tick operation definition

Towards Real-Time Semantics 239

Broadcast with No Global Time. A more realistic model of the base dis-
tributed application will use broadcasting and asynchronous clocks. To model
such behavior, messages of the system are defined as shown in Fig. 8. First,
line number 1 defines a message sent from a specific producer to one particular
consumer. Line number 2 defines a multicast message, sent from a particular
producer to a list of consumers. Line number 3 defines broadcast as a message
sent from a specific producer, the message is then transformed by a rewriting
rule (not shown) into a multicast message to the constant list defined in line 10
(Namesconsumers). The generated multicast message is processed recursively by
the equations specified in lines 5 to 8, creating individual messages to each one
of the receivers list members. We have shown only a small part of the specifi-
cation. The interested reader could find the full specification in https://gitlab.
com/MaSanaAR/Middleware.

Fig. 8. Broadcats message definition

3.2 The Event and Message Models

The most simple specification of the event and message models of REAL-T is to
represent the framework as a set of properties. Thus, the semantics is the same
as that of a verification tool with full access to the global computation trace. We
have implemented this specification using the MODEL-CHECKER of Maude and the
specification of linear temporal logic. Note that due to the differences in frequen-
cies between producers and consumers it is possible that a message transmitted
by a producer is not immediately consumed. As shown in Fig. 10, the property
No-msg states that a message has not been consumed. Having this, it is easily
verified that the formula ♦No − msg (eventually a message will not be con-
sumed) is fulfilled when the system starts with a producer with frequency 4 and
two consumers with frequencies 3 and 7 (see Fig. 9).

https://gitlab.com/MaSanaAR/Middleware
https://gitlab.com/MaSanaAR/Middleware

240 M. Sanabria et al.

Fig. 9. Model checker

Fig. 10. Proposition definition

3.3 Discussion: Implementing the Full Semantics of REAL-T

This research is still a preliminary work, where we have investigated the use of
rewriting logic to specify the semantics of REAL-T. The examples above have
already addressed complex concepts found in distributed applications, namely,
unicasting, multicasting, broadcasting, synchronous and asynchronous clocks,
and LTL formulas. However, we still need to explore the implementation of
event classes, especially allowing them to be defined using one of the formalisms
found in REAL-T (e.g., LT formulas or DFAs). Note that this is very different
to the scenario presented above, what REAL-T does is to have an LTL for-
mula or a DFA instantiated on each monitor, watching a different version of the
computation history. We also need, to implement logical clocks and localization
predicates. Once we have a full representation of the framework, we will explore
the kind of properties that may be granted using REAL-T at runtime.

4 State of the Art

Rewriting logic [21,22] is proposed as a semantics framework in which many pro-
gramming languages, models of concurrency, and distributed algorithms can be
represented, executed, and analyzed. Rewriting logic is flexible enough to allow
the specification to be conceptually very close to the application’s implementa-
tion model. It also has a well-developed foundation with very mature tools. This
makes this formalism ideal to represent real-time features offered by REAL-T.

Towards Real-Time Semantics 241

Even though several researchers have investigated semantics of distributed sys-
tems and it has been used to model MOP [9], to the best of our knowledge no
MOP framework for real-time distributions exists. The research presented here
is a work in progress and we expect to develop more sophisticated contributions
in the future. One of the most important points that our approach allows is the
investigation of real-time capabilities of distributed MOP frameworks for reac-
tive applications, addressing the needs of modern cloud and mobile applications.

Other formalisms have been investigated as suitable means for modeling con-
current real-time systems [3,7,12,17], including models for distributed and con-
current computations. Those models have been accompanied with verification
tools that simulate and verify the behavior of the specified model. For exam-
ple, In [3], authors used process algebras to define the semantics of an Aspect-
Oriented Language for distribution [4] similar to REAL-T. However, as shown
in the paper, this approach presents big gap with the implementation. Simi-
larly, Tabareau [24] proposed a calculus based on join calculus as a semantic
framework for distributed aspects. This proposal serves as a specification frame-
work to prove properties of the weaved application, however to the best of our
knowledge, no verification tool is available.

Note that we have studied a narrow set of semantics for the base applica-
tion and for the full distributed MOP system, however, the aim of this research
is to explore several possible semantics. Once the complete formal model is in
place we will be able to explore different semantics for the language. For exam-
ple, we are interested in studying characteristic properties of synchronous and
asynchronous message communications in distributed systems, exploring vari-
ants as those proposed in the hierarchy of distributed computations presented
by Charron-Bost, Mattern, and Tel in [8]. Such variants may incorporate distinct
models for time management (see for example [13,18]), creating several possible
complex semantic scenarios. Finally, once the complete toolset is in place we will
study methodological approaches using formal models and concrete implemen-
tations of REAL-T, to address a full development cycle for distributed systems
(similar to those proposed in [2,6]).

5 Conclusions

In this paper, using rewriting logic, we investigate semantics of a real-time,
distributed MOP framework. We present the programming model of REAL-T,
an event-based programming language with explicit support for distribution,
concurrency, and time manipulation. Then we build incrementally, the seman-
tics specification of a reduced set of REAL-T. The specification includes three
models for the base application, asynchronous unicast messaging, synchronous
(global time) unicast messaging, and asynchronous broadcast messaging. We
then present a simplified specification of the event and messaging models intro-
duced in REAL-T. Concretely, we use LTL to represent global properties of the
distributed software, and then we discuss the implementation of concrete seman-
tics for the complete model. All the specifications have been implemented in the
Maude language.

242 M. Sanabria et al.

This work is in its initial steps. We have modeled several of the distributed
requirements for a real-time MOP framework. However, we still need to model
the full flexibility and non-determinism of the REAL-T language. Particularly,
we need to model event classes supporting deterministic finite automata, and
LTL formula definitions. We also need to introduce logical clocks allowing the
base application to have a different clock from the one used in the base appli-
cation. We need to support messaging of the base application and messaging of
the MOP framework. Once we have modeled all the elements we can analyze to
what extent REAL-T can grant a complex distributed and concurrent property
in real-time.

References

1. Agha, G.: Concurrent object-oriented programming. Commun. ACM 33(9), 125–
141 (1990)

2. Basu, A., Bensalem, S., Bozga, M., Bourgos, P., Sifakis, J.: Rigorous system design:
the BIP approach. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T.,
Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 1–19. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-25929-6 1

3. Benavides Navarro, L.D., Douence, R., Núñez, A., Südholt, M.: LTS-based seman-
tics and property analysis of distributed aspects and invasive patterns. In: Leuven,
K.U. (ed.) Workshop on Aspects, Dependencies and Interactions. Technical Report,
Belgium, vol. CW 517, pp. 36–45, July 2008. https://doi.org/10.1007/978-3-642-
02047-6, https://hal.archives-ouvertes.fr/hal-00469648

4. Benavides Navarro, L.D., Douence, R., Südholt, M.: Debugging and testing middle-
ware with aspect-based control-flow and causal patterns. In: Issarny, V., Schantz,
R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 183–202. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89856-6 10

5. Benavides Navarro, L.D., et al.: REAL-T: time modularization in reactive dis-
tributed applications. In: Serrano, C.J., Mart́ınez-Santos, J. (eds.) CCC 2018.
CCIS, vol. 885, pp. 113–127. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-98998-3 9

6. Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A., Nouri, A.: Statisti-
cal model checking QoS properties of systems with SBIP. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 327–341. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34026-0 25

7. Bhat, G., Cleaveland, R., Lüttgen, G.: A practical approach to implementing real-
time semantics. Ann. Softw. Eng. 7(1), 127–155 (1999)

8. Charron-Bost, B., Mattern, F., Tel, G.: Synchronous, asynchronous, and causally
ordered communication. Distrib. Comput. 9(4), 173–191 (1996). https://doi.org/
10.1007/s004460050018

9. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
In: ACM SIGPLAN Notices, vol. 42, pp. 569–588. ACM (2007)

10. Clavel, M., et al.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003.
LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-44881-0 7

11. Fisher, M.: An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley, Hoboken (2011)

https://doi.org/10.1007/978-3-642-25929-6_1
https://doi.org/10.1007/978-3-642-02047-6
https://doi.org/10.1007/978-3-642-02047-6
https://hal.archives-ouvertes.fr/hal-00469648
https://doi.org/10.1007/978-3-540-89856-6_10
https://doi.org/10.1007/978-3-319-98998-3_9
https://doi.org/10.1007/978-3-319-98998-3_9
https://doi.org/10.1007/978-3-642-34026-0_25
https://doi.org/10.1007/s004460050018
https://doi.org/10.1007/s004460050018
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7

Towards Real-Time Semantics 243

12. Fontana, P., Cleaveland, R.: A menagerie of timed automata. ACM Comput. Surv.
46(3), 40:1–40:56 (2014). https://doi.org/10.1145/2518102

13. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing: a
taxonomy and a comparative survey. ACM Comput. Surv. 42(2), 6:1–6:59 (2010)

14. Haydar, M., Boroday, S., Petrenko, A., Sahraoui, H.: Propositional scopes in linear
temporal logic. In: Proceedings of the 5th International Conference on Novelles
Technologies de la Repartition (NOTERE 2005) (2005)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

16. Le Lann, G.: Distributed systems-towards a formal approach. In: IFIP Congress,
Toronto, vol. 7, pp. 155–160 (1977)

17. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs, 2nd edn.
Wiley, Hoboken (2006)

18. Mallet, F.: Clock constraint specification language: specifying clock constraints
with UML/MARTE. Innov. Syst. Softw. Eng. 4(3), 309–314 (2008). https://doi.
org/10.1007/s11334-008-0055-2

19. Mattern, F., et al.: Virtual time and global states of distributed systems. Parallel
Distrib. Algorithms 1(23), 215–226 (1989)

20. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the mop
runtime verification framework. Int. J. Softw. Tools Technol. Transfer 14(3), 249–
289 (2012)

21. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7), 721–
781 (2012). https://doi.org/10.1016/j.jlap.2012.06.003, http://www.sciencedirect.
com/science/article/pii/S1567832612000707, Rewriting Logic and its Applications

22. Roşu, G.: From rewriting logic, to programming language semantics, to program
verification. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting,
and Concurrency. LNCS, vol. 9200, pp. 598–616. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23165-5 28

23. Spiliopoulou, E.: Concurrent and distributed functional systems. Ph.D. thesis, Uni-
versity of Bristol (2000)

24. Tabareau, N.: A theory of distributed aspects. In: Proceedings of the 9th Inter-
national Conference on Aspect-Oriented Software Development, AOSD 2010, pp.
133–144. ACM, New York (2010). https://doi.org/10.1145/1739230.1739246

https://doi.org/10.1145/2518102
https://doi.org/10.1007/s11334-008-0055-2
https://doi.org/10.1007/s11334-008-0055-2
https://doi.org/10.1016/j.jlap.2012.06.003
http://www.sciencedirect.com/science/article/pii/S1567832612000707
http://www.sciencedirect.com/science/article/pii/S1567832612000707
https://doi.org/10.1007/978-3-319-23165-5_28
https://doi.org/10.1007/978-3-319-23165-5_28
https://doi.org/10.1145/1739230.1739246

Short Paper

Automatic Planning: From Event-B to PDDL

Sabrine Ammar(&) and Mohamed Tahar Bhiri

Faculty of Sciences Sfax, Sfax University, Sfax, Tunisia
ammar.sabrine@hotmail.fr, tahar_bhiri@yahoo.fr

Abstract. Automatic planning is a separate discipline of Artificial Intelligence
(AI). It aims to formalize the planning problems described by the concept of
state space. The Planning Domain Definition Language (PDDL) is a de facto
standard language in the field of automatic planning. PDDL-related dynamic
analysis tools, namely planners and validators, are insufficient for verifying and
validating PDDL descriptions. Such tools make it possible to detect errors a
posteriori by means of a test activity. In this article, we recommend a rigorous
approach coupling Event-B and PDDL for automatic planning. Event-B is used
for formal modeling by stepwise refinement with mathematical proofs of
planning problems. A refinement strategy appropriate to planning problems is,
then, proposed. The ultimate Event-B model, correct by construction, supposed
to be translatable into PDDL, is automatically translated into PDDL using our
MDE Event-B2PDDL tool. The obtained PDDL description is submitted to
efficient planners for generation of solution plans.

Keywords: Automatic planning � PDDL � Event-B � Correct by construction
Planner � State space � State change operator � MDE

1 Introduction

Automatic planning can describe and solve planning problems. It is applied in various
fields such as robotics, management projects, Internet browsing, managing crisis sit-
uations, logistics and games. In an informal way, a planning problem can be described
by a state space. A state models a stable situation of the processed planning problem. It
can be an initial state, final state (also called goal) or intermediate state. Moving from
one state to another is governed by transitions. Each transition is labeled by an action. It
has a specification showing two parts: its condition of applicability and its effect.
A planning problem can accept zero or many solutions. A solution called plan-solution
is a sequence of actions that leads from the initial state to the goal state.

The automatic planning community has developed a formal de facto standard
Planning Domain Definition Language (PDDL) [1, 2] to formally describe planning
problems. In addition, this community has developed solvers (so-called planners) able
to calculate solutions to PDDL-formalized planning problems. In addition, it has
developed validation tools for verifying whether a given plan-solution can be derived
from a PDDL description. In general, PDDL descriptions are difficult to write, read,
and evolve. Moreover, the tools associated with the PDDL language, namely the
planners and validators, do not allow a rigorous a priori analysis of the PDDL

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018 Workshops, CCIS 929, pp. 247–254, 2018.
https://doi.org/10.1007/978-3-030-02852-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02852-7_21&domain=pdf

descriptions. Indeed, these tools are used a posteriori after establishing PDDL
descriptions.

In this work, we advocate the opening of the automatic planning community on the
formal methods community through Event-B [3]. To achieve this, we suggest a
transformation from Event-B to PDDL. This promotes the development correct by
construction [3] of planning problems. The ultimate Event-B model, derived from a
chain of refinements with mathematical proofs, is translated into PDDL in order to
generate quality plans through various planners supporting PDDL.

This article has five sections and one conclusion. The second section presents and
evaluates the PDDL language and verification and validation tools associated with this
language. The third section proposes an Event-B and PDDL coupling approach. The
fourth section provides a refinement strategy for formal modeling of Event-B planning
problems. The ultimate Event-B model stemming from this strategy is supposed to be
translatable into PDDL. Finally, the fifth section describes our MDE Event-B2PDDL
tool. The conclusion draws up the balance sheet of this article and proposes the pos-
sible extensions of this work.

2 Planning in Artificial Intelligence

Planning is a separate discipline of AI: planning community with dedicated confer-
ences such as ICAPS (International Conference on Planning and Scheduling). It aims to
formalize the planning problems described by the concept of state space. Thus, formal
languages based on the logic of first-order predicates are proposed and enriched within
the framework of the IPC-International Planning Competitions. In the following, we
present the fundamental aspects of PDDL considered as de facto standard language in
the field of AI planning.

2.1 The PDDL Language

A planning problem formalized using PDDL has two separate parts: domain and
problem. The domain construction offered by PDDL makes it possible to describe all
the aspects common to a class of problems known as generic domain. The AI planning
community, in the IPC framework, has identified more than 50 domains grouped into
four broad categories: logistics, robotics, gaming, and business applications. A domain
described in PDDL includes types, constants, predicates, numeric functions and
actions.

As an example, Listing 1 from [4] describes in PDDL the domain of the sliding
puzzle game. The domain of the sliding puzzle game has two types: position and tile.
In PDDL, a type does not have a structure and is designated by a name. The predicates
at (having two parameters ?tile type tile and ?position type position), neighbor and
empty allowing to formalize the concept of state of a sliding puzzle game problem.

248 S. Ammar and M. T. Bhiri

Listing 1. State of the application

(define (domain n-sliding-puzzle)
 (:types position tile)
 (:predicates (at ?tile –tile ?position –position)
 (neighbor ?p1 –position ?p2 –position)
 (empty ?position –position))
 (:action move
 :parameters (?tile –tile ?from ?to –position)
 :precondition (and (neighbor ?from ?to)
 (at ?tile ?from) (empty ?to))
 :effect (and (at ?tile ?to) (empty ?from)
 (not (at ?tile ?from)) (not(empty ?to)))
)

Listing 2. Sliding puzzle game with 8 tiles

(define (problem n-sliding-puzzle-bootstrap-33-01)
 (:domain n-sliding-puzzle)
 (:objects p_1_1 p_1_2 p_1_3 p_2_1 p_2_2 p_2_3 p_3_1
 p_3_2 p_3_3 –position t_1 t_2 t_3 t_4 t_5 t_6
 t_7 t_8 –tile)
 (:init
 ;; initial position of the tiles
 (at t_4 p_1_1) (empty p_1_2) (at t_8 p_1_3)
 (at t_6 p_2_1) (at t_3 p_2_2) (at t_2 p_2_3)
 (at t_1 p_3_1) (at t_5 p_3_2) (at t_7 p_3_3)
 ;;framework definition
 (neighbor p_1_1 p_1_2) (neighbor p_1_2 p_1_1)
 (neighbor p_1_2 p_1_3) (neighbor p_1_3 p_1_2)
 (neighbor p_2_1 p_2_2) (neighbor p_2_2 p_2_1)
 (neighbor p_2_2 p_2_3) (neighbor p_2_3 p_2_2)
 (neighbor p_3_1 p_3_2) (neighbor p_3_2 p_3_1)
 (neighbor p_3_2 p_3_3) (neighbor p_3_3 p_3_2)
 (neighbor p_1_1 p_2_1) (neighbor p_2_1 p_1_1)
 (neighbor p_1_2 p_2_2) (neighbor p_2_2 p_1_2)
 (neighbor p_1_3 p_2_3) (neighbor p_2_3 p_1_3)
 (neighbor p_2_1 p_3_1) (neighbor p_3_1 p_2_1)
 (neighbor p_2_2 p_3_2) (neighbor p_3_2 p_2_2)
 (neighbor p_2_3 p_3_3) (neighbor p_3_3 p_2_3))
 (:goal (and
 ;; final position of the tiles
 (at t_1 p_1_1) (at t_2 p_1_2) (at t_3 p_1_3)
 (at t_4 p_2_1) (at t_5 p_2_2) (at t_6 p_2_3)
 (at t_7 p_3_1) (at t_8 p_3_2))))

Automatic Planning: From Event-B to PDDL 249

In PDDL, an action can have parameters typed (parameters clause) and defined by
a Pre/Post specification: the two precondition and effect clauses. An operator (action
in PDDL) can be applied in a state if and only if all pre-conditions are satisfied in this
state. The effect of a PDDL action is defined by the additions and withdrawals of atoms
in the current state.

The construction problem shown in PDDL makes it possible to formalize a
problem belonging to the domain described by the construction domain. A problem
formalized in PDDL includes the domain of this problem, typed objects (objects), an
initial state (init) and a goal state (goal). For example, the Sliding Puzzle game con-
taining 8 tiles from [4] is shown in Listing 2.

A planning problem described using PDDL is solved by a software item called
planner. The AI planning community has developed several planners such as FF, LPG
[5] and FD. A planner combines exploration and logic. Indeed, it can be seen either as a
program that calculates a solution called plan-solution or as a program that demon-
strates the existence of a solution. For example, the Sliding Puzzle game planning
problem described by the two Listings 1 and 2 submitted to the LPG planner provides a
plan-solution comprising 52 actions, an extract of which is shown in Listing 3.

Listing 3. Plan-solution extract associated with the 8-tile problem of the Sliding Puzzle
game

0: (MOVE T_8 P_1_3 P_1_2)
1: (MOVE T_2 P_2_3 P_1_3)
2: (MOVE T_3 P_2_2 P_2_3)
3: (MOVE T_8 P_1_2 P_2_2)
4: (MOVE T_2 P_1_3 P_1_2)
5: (MOVE T_3 P_2_3 P_1_3)
6: (MOVE T_8 P_2_2 P_2_3)
7: (MOVE T_6 P_2_1 P_2_2)
8: (MOVE T_4 P_1_1 P_2_1)
9: (MOVE T_2 P_1_2 P_1_1)

2.2 Evaluation

PDDL offers interesting ways to represent planning problems. Indeed, PDDL supports
various representations such as propositional representations, first order logic, both
numeric and temporal. This makes it possible to describe the states and actions of a
planning problem. The tools associated with the PDDL language are: planners and
validators. Unlike a planner who performs a plan-solutions production activity, a
validator [6] performs a verification activity. From the functional point of view, a
validator accepts as input: a PDDL description (domain and problem file) and one or
more plan-solutions files and outputs a verdict. A ‘YES’ means that plan-solutions can
be obtained from the subject PDDL description. A ‘NO’ means a failure. Validators can
be used with profit to appreciate PDDL domains by adopting the functional test. In
addition, the validators allow verification by checking the plan-solutions generated by

250 S. Ammar and M. T. Bhiri

various planners. Finally, a validator can be used as a tool to objectively compare the
abilities of various planners. The dynamic analysis tools associated with PDDL,
namely planners and validators, are insufficient for the verification and validation of
PDDL descriptions. Indeed, complex PDDL descriptions involving actions with
elaborated preconditions and postconditions are prone to errors that are hard to detect a
priori. In fact, the dynamic analysis tools associated with PDDL makes it possible to
detect errors a posteriori by means of a test activity.

3 From Event-B to PDDL

The formal Event-B method supports both horizontal and vertical refinement tech-
niques. It allows the modeling of various domains: sequential programs, concurrent
programs, distributed programs, reactive systems and recently hybrid systems. It has a
platform called Rodin [7] based on Eclipse, including tools for verification (mathe-
matical provers), validation (model-checker, animators and simulators) and code
generation. Introduced by Jean-Raymond Abrial, the Event-B method is an evolution
of B method [8]. Event-B is used to formally describe systems and reason mathe-
matically about their properties. Event-B supports modeling, correction (or proof) and
validation activities. These complementary activities characterize the development of
Event-B systems. An Event-B model can only contain contexts (construction CON-
TEXT), only machines (construction MACHINE) or both. In the first case, the model
represents a purely mathematical structure. In the third case, the model is parameterized
by the contexts. Finally, the second case represents a model that is not parameterized.
Contexts are modeling static properties of the model. Machines (construction
MACHINE) are modeling the dynamic behavior of the system. A machine may refine
(REFINES relation) and see another one or more contexts (SEES). The state of the
machine is defined by variables introduced by the VARIABLES clause. The invariance
properties related to these variables are grouped together in the INVARIANT clause.
An Event-B machine groups events that affect its state. An event consists of two parts:
a “guard” that defines the condition according to it the event may or may not be
triggered, and an “action” called body for evolving state variables.

We advocate a rigorous approach combining Event-B and PDDL for automatic
planning. Event-B is used for formal modeling by successive refinements with math-
ematical proofs of planning problems. The refinement of data supported by Event-B
can be used profitably to refine the notion of state of a planning problem step-by-step.
In addition, the one-to-many refinement shown in Event-B is very useful for deter-
mining the state change operators of a planning problem. Finally, the possibility of
reinforcing the guard of an Event supported by Event-B during a refinement step is
very useful for incrementally identifying the conditions of applicability of a state
change operator of a planning problem.

Proof tools associated with Event-B (generator of proof obligations and provers)
guarantee in particular the verification of the consistency of a planning problem
described by Event-B. The ProB [9] tool that accepts Event-B offers the possibility of
checking the dynamics of a planning problem by using the LTLe language to specify
temporal properties.

Automatic Planning: From Event-B to PDDL 251

The use of Event-B coupled to ProB allows to obtain Event-B model correct by
construction (thanks to the Event-B theory: proof obligations) and valid (thanks to
ProB) describing a planning problem. Then we have to translate this Event-B model
into a PDDL. To achieve this, several refinement steps are required in order to have a
model described by a subset of Event-B: the data are described by the language of the
first-order predicates of Event-B (the theory of sets is discarded because it is not
translatable to PDDL) and the processing are described only through deterministic
action (:=).

4 Proposed Refinement Strategy

Following numerous Event-B modeling of various planning problems, we have
established a refinement strategy that could be reused to model in Event-B various
planning problems in several areas [10]. Indeed, all planning problems can be for-
malized by the concept of state space: initial state, goal states, intermediate states and
state change operators. Based on all of its common aspects of planning problems, we
propose the refinement strategy that includes the steps outlined and justified below.

Step 1: Initial abstract model
The initial abstract model of a planning problem includes elements related to the notion
of state, the initial state, and the goal states. These elements are formalized respectively
in Event-B by typed variables and having invariant properties, INITIALISATION
event and an event called goal having a guard to see if the current state is a goal state.
The goal event does nothing (skip action). In addition, the initial abstract model of a
planning problem must involve an overly abstract and non-deterministic modeling of
the notion of state change operator. This is made possible by the ANTICIPATED status
of an Event-B event.
Step 2: Determination of actions by successive refinements
This step includes several successive refinements allowing, ultimately, obtaining an
Event-B model with state change operators having deterministic behaviors: The actions
(:2 and :|) are concretised. Each operator contains a guard modeling the condition of
applicability of the operator and its action. Refinement techniques supported by Event-
B as an event decomposition (one to many) and the strengthening guards are very
useful for implementing this step. The state change operators are modeled by events in
Event-B whose guards indicate the conditions of application of these operators and the
actions that are modeling the changes of state: transition from one state to another in
state spaces. To list all of the state change operators related to application, we rec-
ommend using parameterized non-deterministic events.
Step 3: Determination of parameters by successive refinements
This step aims to remove the non-determinism related to the parameters introduced in
the clause ANY of each operator of states changes. Eventually, we obtain events
without parameters. Technically, in this step, the one to many refinement technique and
the WITH clause are used with advantage.
Step 4: Reinforcing the conditions of applicability

252 S. Ammar and M. T. Bhiri

This step consists in reinforcing the conditions of applicability of the state change
operators (WHERE clause) introduced in the previous step. The ultimate model from
this step must have state change operators with rigorous semantics. Technically, this
step introduces new invariant properties (reinforcement of the invariant) and guards
(reinforcement of guards).
Step 5: Realization of data by successive refinements
The purpose of this step is to eventually provide an Event-B model translatable into
PDDL. All Event-B set constructions must be realized using the Event-B predicative
constructions. To achieve this, data refinement is used via Event-B gluing invariant.
Step 6: Conveying a reduced Event-B into PDDL
The reduced Event-B model from Step 5 is translated using our Event-B2PDDL tool
introduced in Sect. 5.

This refinement strategy has been successfully applied to the problem of three
cannibals and three missionaries.1

5 The Event-B2PDDL Tool

Our Event-B2PDDL tool takes as input a reduced Event-B model that is translatable
into PDDL and outputs a PDDL description acceptable to planners. Event-B2PDDL is
based on simple intuitive rules allowing the systematic translation of Event-B elements
to PDDL elements. Event-B2PDDL is made according to MDE technology.

5.1 Event-B to PDDL Transformation Rules

The PDDL description from the Event-B2PDDL tool has two domain and problem
constructions (see Sect. 2.1). Thus, in [10], we have respectively established rules
allowing the translation of Event-B elements related to the planning domain and the
planning problem.

The translation rules for Event-B elements related to the planning domain concern:
the translation of abstract sets, constants, Boolean constants or variables, Boolean
functions, events and formulas.

The rules for conveying Event-B elements related to the planning problem concern
the translation of the constants linked to the sets defined by enumeration and the
translation of two INITIALISATION and GOAL events.

5.2 Translation Automation from Event-B to PDDL

Using both MDE Xtext and Xtend tools, we developed the Event-B2PDDL tool based
on the transformation rules presented in 5.1. The Xtext tool allowed us to design a DSL
for our input language: A reduced Event-B with only those constructions that are taken
into account by the transformation. Transformation and generation of PDDL code is
programmed in Xtend.

1 https://crocodeal.tn/startbootstrap-resume-gh-pages/.

Automatic Planning: From Event-B to PDDL 253

https://crocodeal.tn/startbootstrap-resume-gh-pages/

6 Conclusion

In this work, we proposed an Event-B to PDDL coupling approach. The transition from
Event-B to PDDL makes it possible to model correct by construction and efficient
planning problems. Event-B ensures the correct by construction of the states change
operators. Whereas PDDL ensures the effectiveness of the plan-solutions obtained
thanks to the planners associated with PDDL. We proposed, in addition, a refinement
strategy which may be appropriate for any planning problem that favors Event-
B/PDDL coupling. The transformation of Event-B to PDDL gave rise to an MDE
Event-B2PDDL tool. Currently, we are working in two directions: experimentation of
the refinement strategy proposed in Sect. 4 on various more or less complex planning
problems and development of refinement schemes allowing the realization of Event-B
data in PDDL (from set representations to predictive representations). Eventually, such
schemes could be automated by adopting the technique of automatic refinement like the
BART tool [11] associated with the formal method B.

References

1. McDermott, D., et al.: PDDL-the planning domain definition language. Technical
Report CVC TR- 98-003/DCS TR-1165, Yale Center for Computational Vision and
Control, New Haven, CI, USA (1998)

2. International Conference on Automated Planning and Scheduling. www.icaps-conference.
org

3. Abrial, J.-R.: Modeling in Event-B: Systems and Software Engineering. Cambridge
University Press, New York (2010)

4. Bibai, J.: Segmentation et évolution pour la planification: le système Divide-And-Evolve.
Université Paris Sud, Paris XI (2010)

5. Gerevini, A., Saetti, A., Serina, I.: User Instructions for LPG-td. http://burglar-game.
googlecode.com/svn/branches/burglargameant/planner/lpg/README-LPGTD

6. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In: Tools with Artificial Intelligence, ICTAI (2004)

7. Voisin, L., Abrial, J.R.: The rodin platform has turned ten. In: Ait Ameur, Y., Schewe, K.D.
(eds.) ABZ 2014. LNCS, pp. 1–8. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43652-3_1

8. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

9. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45236-2_46

10. Fourati, F.: Contributions à l’analyse statique et dynamique d’architectures logicielles.
Faculty of Science of Sfax, Tunisia (2017)

11. Requet, A., BART: a tool for automatic refinement. In: ABZ, p. 345 (2008)

254 S. Ammar and M. T. Bhiri

http://www.icaps-conference.org
http://www.icaps-conference.org
http://burglar-game.googlecode.com/svn/branches/burglargameant/planner/lpg/README-LPGTD
http://burglar-game.googlecode.com/svn/branches/burglargameant/planner/lpg/README-LPGTD
http://dx.doi.org/10.1007/978-3-662-43652-3_1
http://dx.doi.org/10.1007/978-3-662-43652-3_1
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-540-45236-2_46

Author Index

Abdelwahed, El Hassan 79
Achbarou, Omar 98
Ahmad, Manzoor 115
Ait Wakrime, Abderrahim 50
Aït-Ameur, Yamine 153, 159
Alfonso, Wilmer Garzón 231
Ammar, Sabrine 247
André, Pascal 200
Ansari, Oumayma El 91
Aouadi, Syrine 185
Attiogbé, Christian 200

Benavides Navarro, Luis Daniel 231
Bentahar, Jamal 63
Benyagoub, Sarah 159
Bhiri, Mohamed Tahar 247
Bon, Philippe 17
Bonfanti, Silvia 146
Boudi, Zakaryae 50
Bourkoukou, Outmane 98
Bruel, Jean-Michel 115

Calvo, Isidro 167
Chabouh, Nesrine 40
Cheikhrouhou, Saoussen 40
Chouali, Samir 217
Chraibi, Souad 79
Collart-Dutilleul, Simon 17, 50

de Almeida Pereira, Dalay Israel 17
Dhaussy, Philippe 30
Dssouli, Rachida 63
Dupont, Guillaume 153

Egyed, Alexander 113
El Kiram, My Ahmed 98
Elbouanani, Salim 98
El-Khouly, Warda 63
Elqortobi, Mounia 63
Etxeberria-Agiriano, Ismael 167

Gargantini, Angelo 146
Gnaho, Christophe 115

González-Nalda, Pablo 167
Grandclaudon, Jeremy 130

Hafidi, Meriem 79
Haloua, Mohamed 50

Idi, Maroua 5

Kallel, Slim 40

Laleau, Régine 115
Lamrani, Rachid 79
Lanoix, Arnaud 185, 200
Larrucea, Xabier 167
Leildé, Vincent 30

Maamar, Zakaria 40
Malki, Ouahmed 17
Mashkoor, Atif 146, 159
Massonet, Philippe 130
Mouelhi, Sebti 217
Mountassir, Hassan 217
Mousannif, Hajar 91

Otero, Mari Carmen 167
Ouederni, Meriem 159

Pantel, Marc 153
Perin, Matthieu 17
Ponsard, Christophe 130

Qassimi, Sara 79

Rahj, Amine 63
Ribaud, Vincent 30

Sanabria, Mateo 231
Singh, Neeraj K. 153

Teodorov, Ciprian 30
Touzani, Mounir 130

Younes, Sana 5

Zahir, Jihad 91

	Preface
	Contents
	DETECT 2018 Workshop
	En
	DETECT 2018 Workshop Chairs
	DETECT 2018 Program Committee

	Steady-State Performability Analysis of Call Admission Control in Cellular Mobile Networks
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Labelled Continuous Time Markov Chains
	3.2 Temporal Logic CSL

	4 Performability Model
	4.1 System Description
	4.2 Failure and Recovery Strategy
	4.3 Composite CTMC
	4.4 Formal Specification of Steady-State QoS Requirements

	5 Numerical Results
	6 Conclusion
	References

	An MDA Approach for the Specification of Relay-Based Diagrams
	1 Introduction
	2 Related Works and Formalism Used
	2.1 MDA
	2.2 Meta-modelling Formalism
	2.3 Model-To-Text Transformation
	2.4 Relay-Based Specification

	3 Meta-modelling
	4 XML Generation Using Model to Text (M2T) Principles
	5 Discussion
	6 Conclusion
	References

	A Problem-Oriented Approach to Critical System Design and Diagnosis Support
	1 Introduction
	2 A Problem-Oriented Approach
	2.1 Overview of the Method
	2.2 Problem Cases for System Design

	3 Application
	3.1 Domain Description
	3.2 Problem Formalization
	3.3 Problem Decomposition
	3.4 Solution Design
	3.5 Solution Verification and Diagnosis
	3.6 Causes
	3.7 Iterating Through Problem and Solution Spaces

	4 Conclusion
	References

	Formal Specification and Verification of Cloud Resource Allocation Using Timed Petri-Nets
	1 Introduction
	2 Background
	3 Motivating Example
	4 Our Approach for Formal Specification and Verification of Cloud Resource Allocation
	4.1 Transformation Rules
	4.2 Formal Verification of BPs Using UPPAL

	5 Implementation
	6 Related Work
	7 Conclusion
	References

	Petri Nets to Event-B: Handling Mathematical Sequences Through an ERTMS L3 Case
	1 Introduction
	2 Focus and Related Works
	3 The Essentials of Sequences
	3.1 Defining Finite Mathematical Sequences
	3.2 From Subsequences to Substrings

	4 Capturing Sequences with Petri Nets
	4.1 Petri Nets at a Glance
	4.2 CPN-tools: Lists in Focus

	5 Transforming Petri Nets to Event-B
	5.1 Event-B in Brief
	5.2 CPN to Event-B Formal Transformation

	6 Moving to Sequences: The ERTMS L3 Movement Authority Case Study
	6.1 Description and CPN Modeling
	6.2 Computing the MA Using the CPN Model
	6.3 Transforming List Manipulations into B Language
	6.4 Verifying Properties Using Event-B Tools

	7 Conclusion and Perspectives
	References

	Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems
	Abstract
	1 Introduction
	2 The Proposed Framework and Case Study
	2.1 Case Study: Landing Gear System
	2.2 Modeling the Landing Gear System
	2.3 Model Checking

	3 Model-Based Test Generation Approach
	3.1 Test Generation Process for the Case Study
	3.2 Witness Properties Verification
	3.3 Properties Verification

	4 Conclusion and Future Work
	References

	MEDI4SG 2018 Workshop
	En
	MEDI4SG 2018 Workshop Chairs
	MEDI4SG 2018 Program Committee

	Gamification and Serious Games Based Learning for Early Childhood in Rural Areas
	Abstract
	1 Introduction
	2 The Benefits of Early Childhood Education
	3 Pillars of Learning: When Neuroscience Explore the Enigma of Education
	4 Learning Through Play
	5 Gamification in Learning and Serious Games
	6 Proposed Approach: Gamification and Serious Games Based Learning for Early Childhood
	7 Realization and Deployment
	8 Conclusion and Perspectives
	Acknowledgment
	References

	Context-Based Sentiment Analysis: A Survey
	Abstract
	1 Introduction
	2 Background
	3 General Process Flow of a CBSA System
	4 Modeling Context
	4.1 Sentence-Based Context
	4.2 Topical Context
	4.3 Conversional Context

	5 CBSA in Arabic: Challenges and Opportunities
	5.1 Challenges
	5.2 Opportunities

	6 Conclusion and Perspectives
	References

	A Multi-agent System-Based Distributed Intrusion Detection System for a Cloud Computing
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Cloud Computing
	2.2 Intrusion Detection Systems
	2.3 Multi-agent Systems

	3 Related Works
	4 Proposed MAS-DIDS System
	5 Experimental Results
	6 Conclusions
	References

	IWCFS 2018 Workshop
	En
	IWCFS 2018 Workshop Chairs
	IWCFS 2018 Program Committee

	Invited Talk: A Roadmap for Engineering Safe and Secure Cyber-Physical Systems
	References

	Towards a Requirements Engineering Approach for Capturing Uncertainty in Cyber-Physical Systems Environment
	Abstract
	1 Introduction
	2 Background
	2.1 Relax
	2.2 SysMLKaos

	3 The Proposed Approach
	3.1 Identifying and Expressing RELAX-ed Requirements
	3.2 Mapping RELAX-ed Requirements to SysMLKaos Concepts
	3.3 Applying the SysMLKaos Process

	4 Illustration of the Approach
	4.1 Landing Gear System Overview
	4.2 An Illustrative Example

	5 Related Work
	6 Conclusion and Future Work
	References

	Assessment of Emerging Standards for Safety and Security Co-Design on a Railway Case Study
	1 Introduction
	2 Background
	2.1 Safety Standards
	2.2 Cyber Security Standards
	2.3 The KAOS Goal-Oriented Framework

	3 Standards Addressing Safety and Security Co-Design
	3.1 Overview of Possible Approaches
	3.2 Combining Existing Safety and Security Standards
	3.3 IEC TR 63074 - Security Aspects Related to Functional Safety of Safety-Related Control Systems
	3.4 IEC TR 63069 - Framework to Bridge the Requirements for Safety and Security
	3.5 ISA-TR 84.00.09-2017 - Cyber Security Related to the Functional Safety Lifecycle

	4 Assessment on a Railway Case Study
	4.1 Case Study Presentation
	4.2 Process Followed
	4.3 High Level Goals
	4.4 Analysis of Point to Point Operation
	4.5 Managing GoA Transitions

	5 A Few Lessons Learned
	6 Conclusion and Future Work
	References

	Generation of Behavior-Driven Development C++ Tests from Abstract State Machine Scenarios
	1 Introduction
	2 Background
	2.1 BDD for C++
	2.2 AVALLA
	2.3 ASMETA to C++

	3 Generation of BDD Tests from AVALLA
	4 Conclusions and Future Work
	References

	Hybrid Systems and Event-B: A Formal Approach to Signalised Left-Turn Assist
	1 Introduction
	2 Case Study
	2.1 System's Physics
	2.2 Safety
	2.3 System's Control

	3 Formal Modelling with Event-B
	3.1 Generic Approach
	3.2 Application to the Case Study

	4 Assessment
	5 Conclusion and Future Work
	References

	Handling Reparation in Incremental Construction of Realizable Conversation Protocols
	1 Introduction
	1.1 Basic Definitions
	1.2 Correct-by-Construction Realizable CP's Operators
	1.3 Related work
	1.4 Case study

	2 Incremental Reparation
	2.1 General Idea
	2.2 Application to the Case Study

	3 Conclusion
	References

	Analyzing a ROS Based Architecture for Its Cross Reuse in ISO26262 Settings
	Abstract
	1 Introduction
	2 Background
	2.1 ISO 26262 Certification and SEooC
	2.2 Software Reliability Certification
	2.3 Robotic Operating System (ROS)
	2.4 Safety Cases

	3 The ROS Based Architecture
	3.1 ROS Description: Operational Profile
	3.2 Architecture Used in the Experiments
	3.3 Safety Case and Evidence
	3.4 Results

	4 Discussions
	5 Conclusions and Future Work
	Acknowledgments
	Annexes
	References

	REMEDY 2018 Workshop
	En
	REMEDY 2018 Workshop Chairs
	REMEDY 2018 Program Committee

	Reliability in Fully Probabilistic Event-B: How to Bound the Enabling of Events
	1 Introduction
	2 Preliminaries: Probabilistic Event-B
	3 Contribution: Limiting the Enabling of Probabilistic Events
	4 Case Study: The PCB Manufacturing and Control System
	5 Conclusion
	References

	Systematic Construction of Critical Embedded Systems Using Event-B
	1 Introduction
	2 A Method to Construct Correct Embedded Systems
	2.1 Horizontal Process: Building an Abstract Global Model of the System
	2.2 Vertical Process: Building the Concrete Parts of the System

	3 A Running Case Study
	3.1 Horizontal Process: Building an Abstract Global Model of the System
	3.2 Vertical Process: Building the Concrete Parts of the LG System

	4 Assessment and Discussion
	5 Conclusion
	References

	Component Design and Adaptation Based on Behavioral Contracts
	1 Introduction
	2 Component Behavioral Contracts
	3 Component Compatibility Based on Behavioral Contracts
	4 Component Behavioral Contracts and Mismatches
	5 Component Adaptation
	5.1 Semantic Adaptability
	5.2 Adaptor Specification and Construction

	6 Related Work
	7 Conclusion
	References

	Towards Real-Time Semantics for a Distributed Event-Based MOP Language
	1 Introduction
	2 The Programming Model of REAL-T
	2.1 The Base Application
	2.2 Distributed Event Model
	2.3 Time Model

	3 Formal Semantics for REAL-T
	3.1 The Semantics of the Base Application
	3.2 The Event and Message Models
	3.3 Discussion: Implementing the Full Semantics of REAL-T

	4 State of the Art
	5 Conclusions
	References

	Short Paper
	Automatic Planning: From Event-B to PDDL
	Abstract
	1 Introduction
	2 Planning in Artificial Intelligence
	2.1 The PDDL Language
	2.2 Evaluation

	3 From Event-B to PDDL
	4 Proposed Refinement Strategy
	5 The Event-B2PDDL Tool
	5.1 Event-B to PDDL Transformation Rules
	5.2 Translation Automation from Event-B to PDDL

	6 Conclusion
	References

	Author Index

