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Abstract. Unmanned aerial vehicles (UAV) deployment and emerging
air-to-ground wireless services have been a topic of great interest in the
last few years. The main virtue of UAV networks is that they provide on
demand connectivity. However, the design of such networks is intrinsi-
cally dependent on the air-to-ground propagation conditions. In order to
construct a reliable air-to-ground channel model that takes into account
the nature of the surrounding environment, we propose to exploit the
information provided by building footprints. The obtained results are
compared with existing statistical air-to-ground channel models. It is
shown that both the the path loss exponent and the variance of the
shadow fading are dependent on the distance on the ground between the
UAV and the user and the drone’s altitude. The proposed channel mod-
eling method is then used to estimate the coverage probability over the
studied area.
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1 Introduction

In the last few years, unmanned aerial vehicles (UAV) have gained interest among
industrial and research communities as a rapidly deployable network that pro-
vides on-demand connectivity. By contrast to terrestrial infrastructures, both
expensive and time-consuming in terms of deployment, UAV can be seen as a
rapid and efficient support for a short-fall in network capacity after a natural
disaster or during a temporary mass event. Additionally, in the wide Internet of
things (IoT) ecosystem, UAV can also be used as mobile base stations that move
towards IoT devices, provide connectivity, collect and relay data to terrestrial
gateways or out-of-range receivers.

While UAV networks use cases are numerous [14], their deployment, how-
ever, is associated with several technical challenges that need to be addressed.
Many issues related to network architecture [7], energy consumption [16], inter-
ference management [18,19], coverage and movement optimization [12,15], and
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air-to-ground channel modeling [2] have been presented in the literature. These
challenges, commonly discussed for ground-to-ground communications, need to
be addressed from an air-to-ground communication perspective. This is because
the air-to ground propagation conditions are different from the terrestrial ones.
For example, a drone’s coverage is tightly related to its position, in particular its
altitude. Indeed, improving a drone’s altitude has a double-edged sword effect: it
provides a stronger link with a higher probability of line-of-sight, but at the same
time, it results in an important path loss. This tradeoff has been the subject of
many research papers that aim to optimize the drone’s altitude while maximiz-
ing its coverage. In [15], authors show the concavity of the coverage probability
with respect to a single drone’s altitude. In [10], authors investigate the optimal
altitude by taking into account different antenna’s gain patterns and a multi-
path fading channel. Interference is considered in [18] where the authors derive
the probability of coverage using a dominant interferer approach. Additional
interferences, resulting from coexistence with device-to-device communications
(D2D), are characterized in [17] which provides a closed-form expression of the
coverage probability.

Despite the large amount of existing works that address UAV coverage from
a theoretical perspective, the experimental validation of these results is still in
its infancy. In general, the air-to-ground channel is represented by an average
path loss model obtained by assuming both LOS and non-LOS links [4,5,11].
Although this statistical model provides a good baseline for the network perfor-
mance on average, it may not predict accurately the coverage for a specific urban
area. Alternatively, the radio channel can be estimated with high precision using
ray-tracing softwares. However, the problem with ray-tracing is that it involves
expensive softwares requiring very high load and execution time as well as very
accurate 3D map of the urban area including type of building materials. The
idea behind our work is to propose a hybrid approach that uses the 3D build-
ings footprints to estimate the shadowing component, and employs statistical
models for the small-scale fading. The proposed channel modeling is then used
to estimate the coverage probability as a function of the UAV’s position. In this
paper, the 3D building footprints from Paris city is used as a use case.

The contributions and organization of the paper are as follows.

1. A comprehensive description of the system model, the studied area, and the
realistic channel model that takes into account buildings blockages is provided
(see Sect. 2).

2. A simplified method to determine the channel models in terms of LOS prob-
ability, and shadowing mean and variance, by using real building footprints
is proposed. Our results show that the path loss exponent and the shadowing
variance are dependent on both the UAV altitude and the distance on the
ground between the UAV and the user (see Sect. 3).

3. To evaluate the coverage, two performance metrics are considered: cover-
age probability and the meta-distribution of signal-to-noise-ratio (SNR) (see
Sect. 4).
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4. Simulation results that estimate the coverage probability are discussed (see
Sect. 5), and concluding remarks are provided (see Sect. 6).

2 System Model

In this section, we present the studied area and explain the data extraction
process. We also provide a comprehensive description of the adopted air-to-
ground channel model.

2.1 Area Under Study

In order to capture the effect of buildings obstructions, we consider an urban
area from the 16ème arrondissement of Paris. Specifically, we are interested in an
area A of 1055 × 990 m2 located at the eastern part of the district as described
in Fig. 1. In addition of being a prestigious residential neighborhood, the area
of study hosts a large number of companies (PSA Peugeot Citroen, Lafarge ..)
and includes a concentration of museums and touristic sites (Guimet museum,
Trocadéro place ..) which makes it an interesting case of study (as a dense
and diverse area). Data related to area A is available in [1]. It mainly contains
buildings footprints that describe the buildings shapes in 2D (in a shape file)
and the number of levels per building (in an excel file) of all Paris city. Since
the exact heights of the buildings are not provided, we use, instead, the number
of levels per building times the average height per level (2.9 m for Paris). Even
though this approximation is not perfectly accurate, it provides good insights on
the impact of buildings elevation on coverage. A summary of the characteristics
of the studied area is given in Table 1.
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Fig. 1. A Google map view of the 16ème arrondissement with a highlight on the studied
area, (b) The entire area under analysis with base stations locations, x and y axis
express distances in meters
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Table 1. A summary of the region under analysis

Location Area (m×m) Center location

(longitude, latitude)

Density of

Buildings

Average number of levels

Paris (16ème) 1055 × 990 (2.27978, 48.86185) 47% 4.13

To extract desirable data from raw data provided by [1], we proceed as fol-
lows.

1. A master file that contains all the building footprints of Paris city is down-
loaded from [1].

2. Data related to the studied area are extracted using Quantum Geographic
Information System software (QGIS) [13]. The resulted file is uploaded to
Matlab using the mapping toolbox.

3. Users positions are generated in the 2D plane according to a circular grid.
The choice of the circular grid provides an easy way for probability of line of
sight computation (more details are provided in Sect. 3.1).

4. For the sake of comparison with existing statistical models that assume out-
door users, we remove all points inside building polygons.

5. The UAV is located at the center of the area with fixed x0 and y0 coordinates,
and a variable altitude h.

2.2 Blockage Model

In an urban type environment, the distortion of the signal due to shadowing is
intrinsically dependent on the number of buildings between the UAV and the
ground user. In order to capture the effect of obstructions caused by buildings,
we adopt the shadowing model proposed in [6].

Assume that Ni is the number of intersected buildings between user i and
the UAV. To reach the user, the transmitted signal has to penetrate Ni buildings
that cause, for each, a propagation loss of Kb, where Kb ∈ [0, 1] is the penetration
loss related to building b. For the sake of simplicity, we assume that Kb = K
is the same for all buildings. As a consequence, the shadowing attenuation hi

between user i and the UAV is given by

ζi = KNi . (1)

Note that, when no shadowing is considered, i.e. there is a line-of-sight between
the UAV and the ground user, Ni = 0 and thus ζi = 1.

2.3 Free Space Path Loss Model

We use the standard power-law path loss model where the path loss attenuation
between user i and the UAV separated by distance (r2i + h2)2 is given by (r2i +
h2)

−α1
2 , with α1 being the path loss exponent, and ri is the distance between

user i and the projection of the UAV on the 2D plane.
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2.4 Small-Scale Fading

We adopt the commonly used Rayleigh fading. We also assume that the Rayleigh
channel gains are independent and identically distributed (i.i.d). Hence, the chan-
nel power gain gi between user i and the UAV is a random variable that follows
a standard exponential distribution.

3 Simplified Air-To-Ground Channel Model

In this section, we provide a general method to evaluate LOS probability and
shadowing mean and variance by using real 3D building footprints.

3.1 Line of Sight Probability

The probability of LOS is a key element when modeling the air-to-ground chan-
nel. It is particularly useful to identify straight paths between the UAV and the
ground user. In order to compute such probability, we generate outdoor users
according to a circular grid centered on the projected position of the UAV on the
ground (x0, y0). For each circle Cj(x0, y0, rj) of radius rj , we identify the number
of outdoor users that have a LOS with the UAV. The probability of LOS at a
radius r = rj and an altitude h is estimated as the percentage of outdoor users
on the circle that have a LOS with UAV.

Fig. 2. (a) Average LOS probability, (b) Cumulative distribution function of shadow-
ing, K = −20 dB

In Fig. 2(a), we compare the actual LOS probability with the following exist-
ing statistical model [15]
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pLOS(r, h) =
1

1 + a exp
(−b( 180π arctan r

h − a)
) (2)

where the environmental-dependent variables a and b are obtained by performing
a non-linear least square data fitting.

Figure 2(a) plots the probability of LOS as a function of the UAV’s altitude.
These results are obtained by averaging over 100 distances. We observe a good
agreement between the fit of the statistical model and actual data (R2 = 0.88).
This fit can be slightly improved by using a polynomial function of degree 4
(R2 = 0.9). As intuitively expected, the probability of LOS is improved when
the drone increases its altitude. This is justified by a significant reduction of
intersected buildings as the UAV moves up.

3.2 Shadowing

The shadowing accounts for random losses caused by obstructions along the
propagation link. In general, the random behavior of shadow fading is modeled
by a log-normal variable, with constant mean and variance, that reflects the
multiplicative penetration loss caused by buildings [8].

Shadowing CDF. In Fig. 2(a), the cumulative distribution function (CDF) of
the adopted shadowing model is plotted. As depicted in the figure, the actual
model is compatible with the log-normal shadowing widely adopted in the liter-
ature. However, these observations show that the parameters of the log-normal
fading are both distance and altitude-dependent. This is corroborated by the
next findings regarding the mean and variance of the adopted shadowing model.

Shadowing Mean. To study the shadowing distribution caused by buildings,
a good understanding of the mean and variance structure is required. In fact,
the shadowing mean with respect to the distance r and height h, μ(r, h), can be
written

μ(r, h) =
+∞∑

n=0

P(Ni(r, h) = n)Kn, (3)

where Ni(r, h) denotes the number of intersected buildings for a given distance
r and altitude h, and P(Ni(r, h) = n) is the probability that n buildings are
intersected at distance r and altitude h.

The shadowing mean for r = 311.85 is plotted in Fig. 3(a). As shown in the
figure, the mean value increases with altitude. Moreover, it can be noticed from
the same figure that the shadowing mean can be approximated, with a good fit,
by a power law function. The shadowing mean is therefore estimated as follows

μ(r, h) ≈ (r2 + h2)−α2(r,h)/2. (4)
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In Fig. 3(b), we plot an approximation of α2(r, h) for the same distance (r =
311.85 m) versus the UAV’s height. α2 is then estimated as follows

α2(r, h) = a0r
b0h−c0 − d0h + e0, (5)

where a0, b0, c0, d0 are a non negative parameters to be determined, with the
parameter e0, through curve-fitting.

The proposed fit provides a good estimation of real data, the resulted R2 =
0.93, 0.9, 0.88 for K = −3 dB, −10 dB, −20 dB respectively. Moreover, it can
be noticed from Eq. (5) and Fig. 3(b) that the shadowing mean exponent, α2,
decays with the drone’s height. This is attributed to the fact that the number of
intersected buildings decreases as the UAV moves up. These findings are in line
with conclusions of works in [20] and [3] where authors show that the path loss
exponent decreases with altitude. On the other side, α2 increases with distance
as additional penetration loss will be accumulated for an increasing distance
(and fixed height).

Another more intuitive finding is that the shadowing mean estimation is
tightly related to buildings penetration loss. In particular the shadow mean
increases as the penetration loss increases. This is intuitively expected as addi-
tional penetration loss will result in higher shadowing values.
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Fig. 3. (a) The mean of the shadowing for distance r = 361.35 m, (b) Exponent of the
shadowing mean r = 311.85 m

Shadowing Variance. The results in Fig. 4(a) show the height-dependency
of the shadowing variations for r = 311.85 m. In fact, the estimated variance
increases as the UAV improves its altitude until a maximal value before it
decreases with height. The existence of a height that maximizes the variance
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depends on the penetration loss. Indeed, when the penetration loss is low, the
shadowing variance monotonically decreases with height. Furthermore, the figure
shows that the shadowing variance is reduced when the penetration loss is lower.
This is attributed to the fact that a building with a lower penetration loss will
cause a lower signal distortion. The figure proposes also a simplified expression
to estimate the variance by using the following polynomial fit

σ2(r, h) ≈
i=4∑

i=0

j=4∑

j=0

aijr
ihj , (6)

where aij are determined through curve-fitting. The proposed variance fit results
in R2 = 0.86, 0.75, 0.75 for K = −3 dB, −10 dB, −20 dB respectively.

200 300 400 500 600 700
Height (m)

0

0.05

0.1

0.15

0.2

0.25

S
ha

do
w

in
g 

va
ria

nc
e

r=311.85m

Real data, K=-3dB
Polynomial fit,  K=-3dB
Real data, K=-10dB
Polynomial fit, K=-10dB
Real data, K=-20dB
Polynomial fit, K=-20dB

Fig. 4. Variance of the shadowing for distance r = 311.85 m

It is worth mentioning that the proposed simplified shadowing model does
not include correlation. An accurate model should capture spatial correlation
between neighboring users. This has been left as part of future work.

4 Performance Metrics

In order to evaluate the effects of shadowing on coverage, we consider two perfor-
mance metrics: average coverage probability and the meta-distribution of SNR.
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4.1 Average Coverage Probability

We consider downlink communication. Hence, when a frame is transmitted by
the UAV with power P , it is received at the ground user t with the power
PgtK

N
t (r2t + h2)−α1 . The quality of the wireless link is measured in terms of

SNR γt, which is defined as

γt =
PgtK

N
t (r2t + h2)−α1

σ2
, (7)

where σ2 represents the power of an additive Gaussian noise.
We are interested in coverage probability for a given user t, which is the

probability that the SNR of that user is above a given threshold θ. This prob-
ability can also be seen as the complementary cumulative distribution function
(CCDF) of the user’s SNR and can be written as

Pc(t; θ) = P(γt > θ), (8)

Note that this probability is calculated over small-scale fading.
In order to evaluate the general behavior of coverage, we average the coverage

probability over the user’s positions. The resulting average coverage probability
is defined as

P̃c(θ) =
1

|A|
∫

A
P(γ(t) > θ)dt, (9)

with |A| the surface of the studied area A, and γ(t) is the SNR of a ground user
at position t. For simulations, the integral in Eq. (9) is computed numerically by
considering a finite number of user’s positions (2890 positions in our case).

4.2 Meta-Distribution of SNR

The meta-distribution of SNR provides a better information about the perfor-
mance of the coverage probability. It answers the question ‘to what extend the
coverage is good?’ [9]. For a given threshold θ, and a fixed position of UAV, the
meta-distribution is given by the percentage of users that achieve a coverage
performance higher than a threshold x. This can be formulated as follows

Pm(x, θ) = P(Pc(t; θ) > x), (10)

with x ∈ [0, 1].

5 Coverage Experiments

In this section, we present simulation experiments for coverage performance.
Details about simulation settings are provided in Table 2.

Figure 5(a) shows the average coverage probability versus the UAV altitude.
Here, it can be seen that for a given desired coverage, there exists an optimal
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Table 2. Simulation settings

Parameter Value

Number of user positions 2890

Monte Carlo simulations 1000

Path loss exponent {2, 3.4}
Noise power −100 dBm

BS power 1 mW

Penetration loss {−20,−10,−3} dB

Small-scale fading Rayleigh with parameter 1

altitude at which the average coverage is at its maximum. This optimal altitude
is achieved at 700 m when the path loss exponent α1 = 2, and is equal to 448 m
for α1 = 3.4. Furthermore, the results show that the average coverage probability
can be predicted approximately using statistical fits (provided in Sect. 3). The
accuracy of such approximation could be improved when spatial correlation is
included in the shadowing modeling. In Fig. 5(b), the average meta-distribution
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Fig. 5. (a) Average coverage probability, (b) Average of the meta-distribution of
coverage. K = −20 dB, θ = −20 dB.

of SNR (average on θ and x) is plotted versus the drone’s altitude. Once again,
we observe the same trend as for the coverage probability. Moreover, it can
be noticed from Fig. 6 that the meta-distribution of SNR decreases when the
thresholds θ and x increase as intuitively expected.
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Fig. 6. A 3D illustration of the meta-distribution, h = 322 m, K = −20 dB

6 Conclusion

In this paper, we presented a general framework to model the air-to-ground
channel model using 3D building footprints. More specifically, we proposed to
use 3D building maps to estimate the line-of-sight probability, the CDF of the
shadowing and its mean and variance. Our findings show that it is important to
include distance and altitude-dependent parameters for the air-to-ground chan-
nel modeling. Particularly, we showed that the path loss exponent decreases
with UAV’s altitude and increases with the distance on the ground between the
UAV and the user. We also showed that the shadow fading variance is reduced for
higher altitudes. Furthermore, our proposed method allows for a tractable way of
estimating the wireless coverage of urban areas. Indeed, instead of using sophis-
ticated ray-tracing techniques that are both expensive and time-consuming, only
3D maps are needed in order to provide a reliable channel modeling. In ongo-
ing work, we are investigating the effect of the spatial shadow correlation, and
interfering UAVs on coverage performance.
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