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Abstract. We consider the following fundamental sweep coverage prob-
lem that arises in mobile wireless sensor networks: Given a set of k mobile
sensors and a set of m points of interests (POIs) in the Euclidean plane,
how to schedule the mobile sensors such that the maximum delay between
two subsequent visits to a POI by any sensor is minimized. We study two
scenarios of this problem: (i) start positions of the sensors are fixed such
that they must return to their start positions between subsequent traver-
sals to POIs that fall in their trajectories, and (ii) sensor positions are not
fixed and they are not required to return to their start positions between
subsequent traversals. Scenario (i) models battery-constrained sensors
which need to be recharged frequently, whereas scenario (ii) models sen-
sors that have no constraint on battery and hence frequent recharging
is not necessary. We present two constant factor approximation algo-
rithms for each scenario. The problem we consider is NP-hard and, to
the best of our knowledge, these are the first algorithms with guaranteed
approximation bounds for this problem.

1 Introduction

Tremendous work in the literature of wireless sensor networks (WSNs) has estab-
lished that one of the major applications of sensor networks is on surveillance
problems [1,3,4,12,15,16,20,21,23–29,31]. These surveillance problems require
specific coverage requirements for different proposes. The vast majority of work
on surveillance problems using static and mobile WNSs focused on providing
two kinds of coverage: full coverage and barrier coverage. In full coverage, sen-
sors deployed over the given field continuously monitor the entire area. Any point
within the area is ensured to be covered by at least one sensor. A full coverage
is usually required when users need to fully monitor the entire environment. In
barrier coverage, sensors are deployed to form a barrier for detecting any intrud-
ers crossing the given barrier area, which is generally a line segment or a strip.
The sensors then guard the barrier by guarding the crossing paths. The κ-full
coverage and κ-barrier coverage variations of these problems were also studied
[1,12,16,20,26,28,29,31].

Both the full and barrier coverage problems can be classified as the static
coverage problems since the given area (or barrier) needs to be covered at all
times by the sensors. In contrast, some applications may require that coverage
be provided for the specific given points periodically, i.e., the points do not need
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to be covered at all times and they only need to be visited within a specific
period. One immediate application of such setting is in patrolling where certain
points of interests (POIs) are visited within a specific time period. This problem
is called sweep coverage and it differs from the static coverage problems as POIs
do not need to be covered at all times and only the specific time requirement for
inspecting the POI needs to be satisfied. Li et al. [18] were the first to study this
problem from the objective of minimizing the number of sensors given the sweep
period. We denote this problem as MinSensorSweep – given a set of m POIs
and the (global) sweep period t, the goal is to schedule sensors such that the
sweep coverage requirement is satisfied with the minimum number of sensors.

Contributions. In this paper, we consider the sweep coverage problem with
the objective of minimizing the coverage delay. That is, given a set of m POIs
and a set of k mobile sensors, the goal is to schedule the given sensors such that
the sweep period t is minimized. We denote this problem as MinDelaySweep.
MinDelaySweep is different than MinSensorSweep since we deal with the
problem of minimizing the time period between two subsequent visits of the
POIs. The only previous work that studies this problem is due to Chen et al. [5]
where they provided several algorithms to minimize the coverage delay. However,
their algorithms were evaluated only through experimentally and no approxima-
tion bounds were given. Therefore, we focus on designing algorithms and proving
achievable approximation bounds for MinDelaySweep.

We consider two different scenarios of MinDelaySweep. The first scenario,
called Predefined-Start, covers the case in which start positions of sensors are fixed
and after every traversal of the POIs in their trajectories, the sensors go back
to their start positions. This scenario is useful when sweep coverage is provided
by the battery-constrained mobile sensors which need to be recharged quite
frequently at their base stations. The second scenario, called Not-Predefined-
Start, covers the case in which sensor positions are not fixed and they do not
need to go back to their base stations after every traversal of the POIs as they
are assumed of having sufficient energy (i.e., they are not battery-constrained)
to provide the sweep coverage for a very long time.

Someone may say that existing techniques and algorithms for MinSensor-
Sweep can be used to solve MinDelaySweep. The idea is to take a solution of
MinSensorSweep and see which value of t minimizes the sweeping period for
all the POIs. However, this process needs to be repeated at least O(log t) times
to figure out the right value of t (since the values starting from 1 upto the right
value t need to be checked and at least a binary search is needed). Moreover, the
solution depends on the solution of MinSensorSweep used. Furthermore, it is
worth to note that MinDelaySweep is a NP-Hard problem. Therefore, we focus
on the algorithms that provide good approximation of the exact solution and
run in polynomial time. We give two algorithms each for Not-Predefined-Start
and Predefined-Start scenarios of MinDelaySweep.

– We provide a 2δ-approximation algorithm for the Not-Predefined-Start sce-
nario of MinDelaySweep and a (δ + 2 − 1

k )-approximation algorithm for
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the Predefined-Start scenario of MinDelaySweep, where δ is the approxi-
mation ratio of an algorithm for the traveling salesman problem (TSP).

– We provide a 2γ-approximation algorithm each for both the Not-Predefined-
Start and Predefined-Start scenarios of MinDelaySweep, where γ is the
approximation ratio of an algorithm for the tree cover problem (TC).

Using Christofides’s algorithm [6] to compute the solution for TSP tour,
we obtain 3-approximation for the Not-Predefined-Start scenario of MinDe-
laySweep and (72 − 1

k )-approximation for the Predefined-Start scenario of Min-
DelaySweep (Christofides’s algorithm has the approximation ratio of 1.5 for
the TSP tour). Using the algorithms of Even et al. [8] to compute the solu-
tion for TC tours in both Not-Predefined-Start and Predefined-Start scenarios of
MinDelaySweep, we obtain 8-approximation for both of our algorithms (Even
et al.’s algorithm has the approximation ratio of 4 for both the rooted and
unrooted versions of TC tours). These bounds can be improved if we have bet-
ter approximation factors for both δ and γ. From recent work on tree and cycle
cover problems [14,19], we can obtain 6-approximations for our algorithms based
on TC tours. To our best knowledge, these bounds are the first approximation
bounds for the NP-hard MinDelaySweep.

Although our solutions look like direct extensions of the existing results on
TSP and TC, no such approximation bounds were known in the literature for
MinDelaySweep (except experimental study with no approximation bounds
in [5]). Our study is interesting since it shows that MinDelaySweep is related
to the problem of finding k TSP and TC tours of equal lengths in graphs. Given
a solution with k equal length tours, a solution for MinDelaySweep is no more
than the factor of 2 times more than the k equal length tour solution used to
solve MinDelaySweep.

For the TSP based solution for Not-Predefined-Start scenario, we take a TSP
tour and divide that tour into k-subtours in such a way that the approximation
obtained from the division is no more than 2 times the approximation of the
one single tour. For the Predefined-Start scenario, we use the k-splitour concept
of Frederickson et al. [9] (details later) and obtain k trajectories such that the
claimed approximation bound is still satisfied after the trajectories are modified
to include the start positions of sensors. For the TC based solution for both
Not-Predefined-Start and Predefined-Start scenarios, we use the concept of Even
et al. [8] to build k trees such that the approximation obtained is no more than
2 times the approximation of each tree.

Related Work. There is a vast literature on coverage problems in mobile
WSNs, which can be divided into three main categories: full coverage, barrier
coverage, and sweep coverage. The full and barrier coverage problems are static
coverage problems, whereas the sweep coverage problem is a dynamic coverage
problem. The full coverage problem is heavily studied under area and point
coverage [3,25,27,28]. Several papers studied how mobile sensors can be used to
assist static coverage under a hybrid setting of mobile and static sensors. The
k-coverage problem through mobile sensors is also studied in both mobile WSNs
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and in hybrid setting in [1,12,16,20,26,28,29,31]. Howard et al. [13] proposed
a potential-field based algorithm and ensured that the initial configuration of
the nodes quickly spreads out to maximize coverage area. A virtual-force-based
sensor movement strategy to enhance network coverage is considered in [32].

Kumar et al. [15,16] studied barrier coverage where the sensors need to form
a barrier to prevent intruders from crossing the barrier. They contributed signifi-
cantly on theoretical foundations and provided several local algorithms that work
based on limited neighborhood information. They also studied density require-
ments for achieving barrier coverage preserving connectivity requirements. These
papers [4,21,23,24] studied several different aspects of barrier coverage. Target
coverage problem is considered in [3,7,17] for tracking both static and moving
targets.

As we mentioned above, most of the existing works focus on static coverage
(full and barrier) with stationary configurations of sensors. Even with mobile
sensors, they focus mostly on achieving an optimized deployment through their
mobility without exploring dynamic coverage [18]. The concept of this kind of
coverage was originally studied in the context of robotics, e.g. [2], focusing mainly
on the coverage frequency. Li et al. [18] were the first to study sweep coverage
which necessitates the dynamic coverage in the context of mobile WSNs. They
studied sweep coverage with the objective of minimizing the number of mobile
sensors (i.e., MinSensorSweep) for required sweep coverage time period. The
sweep time period is given for any POI and the objective was to fulfill that
timing requirement minimizing the number of sensors. MinSensorSweep is
further studied by [10,11,18,22,30].

Roadmap. We discuss model and preliminaries in Sect. 2. We then present
and analyze two approximation algorithms for Not-Predefined-Start scenario of
MinDelaySweep in Sect. 3. We repeat this process for Predefined-Start scenario
in Sect. 4. We conclude in Sect. 5 with a short discussion.

2 Model and Preliminaries

We consider a set M = {s1, s2, . . . , sk} of k mobile sensors and a set P =
{p1, p2, . . . , pm} of m static POIs in the Euclidean plane R

2. We denote by ci

the position of the POI pi ∈ P in R
2, which is fixed. Each POI pi ∈ P has a

unique identifier (UID). We denote by dist(pi, pj) the Euclidean distance between
two POIs pi and pj . We assume that mobile sensors si ∈ M move at a constant
speed v in R

2. If speed is not the same, then the speed can be taken as a ratio
to compute the length of the trajectory that the mobile sensor should traverse.
Each sensor si has the limited sensing range and the POIs are said to be covered
(i.e., visited or scanned) only when the mobile sensors pass through the positions
of the POIs. We assume that the time is divided into time units and the unit
distance corresponds to one time unit.

We consider two scenarios of the problem. In the first scenario, called
Predefined-Start, all the mobile sensors si ∈ M start from the predefined posi-
tions to scan specific POIs along their trajectories and they go back to their
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predefined start positions after one complete traversal of their trajectories. They
then recharge their battery and start their next traversal. We ignore the time
to recharge mobile sensors assuming that it is negligible; if it is not the case
then, the recharging delay can also be taken into account while computing tra-
jectories. This represents a large class of mobile WSN applications where sensors
are highly power-constrained. In the second scenario, called Not-Predefined-Start,
the mobile sensors si ∈ M have no constraint on (battery) power and can scan
POIs in their trajectories for a quite long time without recharging. Therefore,
the mobile sensors do not need to go back to the predefined positions.

We study the sweep coverage problem with the objective of minimizing the
coverage delay, which we denote by MinDelaySweep. More precisely, we aim
to schedule k mobile sensors in M to scan the m POIs in P such that they
delay between subsequent visits to POIs by sensors is minimized and each POI
is scanned at least once in one traversal of any sensor. We have the following
definitions for MinDelaySweep.

Definition 1 ([18]). A POI is said to be t-sweep covered by a sweep algorithm
F if and only if it is covered at least once every t time units by the sensors
scheduled by F .

Definition 2 ([18]). A set of POIs are said to be globally sweep covered by a
sweep algorithm F if and only if every POI pi is ti-sweep covered under F .

Definition 3. The sweep coverage delay is the maximum ti among POIs under
F .

Definition 4. Given a set of k mobile sensors and a set of m POIs, the sweep
coverage delay minimization problem, MinDelaySweep, is to schedule k mobile
sensors to globally sweep cover the POIs such that the sweep coverage delay is
minimized.

Given M and P in the Euclidean plane R
2 and Not-Predefined-Start scenario,

the deployment of the POIs in P can be represented by an undirected weighted
complete graph G = (V,E,w), where V is the set of all POIs in P and, for any
two POIs pi and pj , there is an edge between them, i.e., (pi, pj) ∈ E. Moreover,
there is a weight function w : E → R

+ such that w(e) = dist(pi, pj) for an edge
e = (pi, pj) ∈ E. We denote by cmax := maxe∈E w(e), the maximum weight edge
in E.

In Predefined-Start scenario, the deployment of the POIs in P and the sensors
in M can be represented by an undirected weighed graph G′ = (V, V ′, E′,w),
where V is the set of all POIs in P, V ′ is the set of predefined start positions
of the mobile sensors in M, for any two POIs pi and pj , there is an edge e =
(pi, pj) ∈ E′, and w(e) = dist(pi, pj). Furthermore, for any start position si and
any POI pj , there is an edge (si, pj) between them such that e′ = (si, pj) ∈ E
and w(e′) = dist(si, pj).

Given G or G′ and k mobile sensors in M, the goal in MinDelaySweep is to
find a set of k trajectories to scan all m POIs in P such that the maximum length
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among k trajectories in minimized. MinDelaySweep is NP-hard. Take the Not-
Predefined-Start scenario and |M| = 1 (there is only one sensor in M such that
k = 1). This setting is equivalent to finding the minimum length Hamiltonian
path that passes through all POIs in P which is a well-known NP-hard problem.
Therefore,

Theorem 1. MinDelaySweep problem is NP-hard.

Since MinDelaySweep is NP-Hard, we look for approximation algorithms.
We use the existing literature on traveling salesman problem (TSP) and tree
cover problem (TC) and derive four approximation algorithms. Two approxi-
mation algorithms are for Not-Predefined-Start scenario and the rest two are for
Predefined-Start scenario.

We now provide several definitions which are useful later in the algorithms. A
tour is a path that visits all the POIs starting from some initial vertex (POI) v1
and ends at the same vertex v1 in G after visiting all the nodes of G exactly once,
i.e., R = {v1, v2, . . . , vm, v1}. Note that two subsequent nodes in R are connected
by an edge. A subtour is a tour that is obtained by dividing the tour R into more
than one segments such that a segment contains all the vertexes in the tour R
in the same order starting from some initial vertex of the subtour to the ending
vertex of that subtour. For example, if R is divided into two tours R1 and R2

starting from v1, then R1 = {v1, . . . , vt, v1} and R2 = {vt+1, . . . , vm, vt+1}.
A tree cover of a graph G is a set of trees T = {T1, . . . , Tk} such that

V =
⋃k

i=1 V (Ti). The cost of the tree Ti is defined by Cost(Ti) =
∑

e∈Ti
w(e).

The cost of a tree cover T is maxTi∈T Cost(Ti). An r-rooted tree cover of a graph
G is a tree cover T , where each tree Ti ∈ T has a distinct root r ∈ Z, where
Z ⊂ V denotes a set of root nodes. Note that the roots of Ti and Tj for i �= j
must be distinct. However, trees may share some nodes and edges to other trees.

3 TSP Tour Based MINDELAYSWEEP Algorithms

We present two algorithms, Not-Predefined-Start-TSP and Predefined-Start-TSP.
Not-Predefined-Start-TSP is suitable for Not-Predefined-Start scenario of Min-
DelaySweep and Predefined-Start-TSP is suitable for Predefined-Start scenario.

Not-Predefined-Start-TSP Algorithm. The pseudocode of Not-Predefined-
Start-TSP is given in Algorithm 1. The basic idea behind Not-Predefined-Start-
TSP is to find a trajectory for each sensor and ask that sensor to cover (scan)
the POIs that are in that trajectory. To find the trajectories, we use the the
well-known ideas on constructing a TSP tour and dividing the tour to obtain
k trajectories. For the TSP tour construction in G, Not-Predefined-Start-TSP
selects a node, say v1, among the POIs as a starting vertex and uses a known
algorithm for TSP (say Christofides [6]).

Denote the TSP tour obtained through this construction by R :=
{v1, v2, . . . , vm, v1} and let Cost(R) = L. R is then divided into k-subtours (or
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Algorithm 1. Not-Predefined-Start-TSP
1 Pick a POI v1;
2 Use an algorithm for TSP and find a TSP tour R = (v1, v2, v3, . . . , vn, v1) with

Cost(R) = L;
3 Let cmax be the longest edge in R. Remove cmax from R such that L = L− cmax;
4 For j ≤ 1 to j < k do
5 Find the last POI vl(j) such that the cost of the path from v1 to vl(j) along

R is not greater than j
k
L;

6 Obtain k subtours as
7 R1 = (v1, . . . , vl(1)), R2 = (vl(1)+1, . . . , vl(2)), . . . , Rk = (vl(k−1)+1, . . . , vn),
8 Add an edge from the last node in each subtour to its first node such that
9 R1 = (v1, . . . , vl(1), v1), R2 = (vl(1)+1, . . . , vl(2), vl(1)+1), . . . ,

Rk = (vl(k−1)+1, . . . , vn, vl(k−1)+1),
10 Assign one sensor to each Rj , 1 ≤ j ≤ k;

trajectories), say Rj , 1 ≤ j ≤ k, of almost equal length starting from v1. The
division process works as follows. Let cmax be the longest edge in R. Then, cmax

is removed from R such that L = L − cmax. Now, starting from v1, the POIs
that fall in R upto length L/k are assigned to R1 such that R1 = {v1, . . . , vl(1)},
where vl(1) the last vertex in R1. Similarly, starting from v1, the POIs that fall
in R upto length 2L/k except the POIs that are already in R1 are assigned
to R2 such that R2 = {vl(1)+1, . . . , vl(2)}, where vl(2) is the last vertex in R2.
According to this division, Rk = {vl(k−1)+1, . . . , vn} and we have k sub-tours.
Moreover, we have that Cost(Ri) and Cost(Rj), 1 ≤ i, j ≤ k, i �= j are at most
the factor of 2 from each other. The reasoning is that R is divided in to equal
fragments and the length of the edge between the last POI of one sub-tour
and the first POI of next subtour changes the length of each fragment only
by the factor of 2. These k subtours are updated by adding the starting ver-
tex of each subtour at the end of that tour to obtain one trajectory such that
R1 = {v1, . . . , vl(1), v1}, R2 = {vl(1)+1, . . . , vl(2), vl(1)+1}, and so on. As sensors
do not have predefined start positions and there are k sensors, these sensors are
randomly assigned to traverse k trajectories computed. We prove the following
theorem for the approximation ratio of Not-Predefined-Start-TSP.

Theorem 2. The approximation ratio of Not-Predefined-Start-TSP is at most
2δ, where δ is the approximation ratio of an algorithm for TSP.

Proof. Let LOPT be the length of the optimal tour for TSP in G. Moreover, let
L be the length of the TSP tour obtained using an algorithm for TSP. We have
that L = δ · LOPT , where δ be the approximation ratio of an algorithm used to
compute the TSP tour. Since the tour R is divided into k subtours, we have that
the time tTSP required to sweep each subtour Rj is such that tTSP ≤ 2δ·LOPT

v .
This is because the lengths of the subtours are within the factor of 2 from each
other. Let tOPT be the time period in the optimal solution. In other words, there
is a sweep algorithm A in which if we use k sensors moving at constant speed
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Algorithm 2. Predefined-Start-TSP
1 Pick a POI v1;
2 Use an algorithm for TSP and find a TSP tour R = (v1, v2, v3, . . . , vn, v1) with

Cost(R) = L;
3 For j ≤ 1 to j < k do
4 Find the last POI vl(j) such that the cost of the path from v1 to vl(j) along

R is not greater than j
k
(L − 2cmax) + cmax;

5 Obtain k-tour by forming k subtours as
6 R′

1 = (v1, . . . , vl(1)), R
′
2 = (vl(1)+1, . . . , vl(2)), . . . . R

′
k = (vl(k−1)+1, . . . , vn),

7 Assign each subtour R′
j to mobile sensors si ∈ M such that

c(si, R
′
j) ≤ c(sm, R′

j), si �= sm;
8 For j = 1 to j = k do
9 Update the subtour R′

j by adding sensor sj assigned to it in its beginning
and end and denote it by Rj ;

v each sensor will be visited in minimum time units. As LOPT is the length
of the shortest route for the corresponding TSP, we get tOPT ≥ LOPT

v for one
mobile sensor. Therefore, the approximation ratio of Not-Predefined-Start-TSP

is bounded by tT SP

tOPT
≤

2δ·LOPT
v
L
v

≤ 2δ. �	

Since Christofides’s algorithm [6] has approximation 1.5, we obtain:

Corollary 1. Using Christofides’s algorithm [6] for TSP tour, Not-Predefined-
Start-TSP achieves the approximation ratio of at most 3 for MinDelaySweep.

Predefined-Start-TSP Algorithm. The pseudocode of Predefined-Start-TSP
algorithm is given in Algorithm 2. The main idea of this algorithm is to find a
TSP tour R similar to Not-Predefined-Start-TSP. However, due to the predefined
start positions of the sensors, R need to be carefully split into k subtours and also
the sensors needs to be carefully assigned to cover the POIs in those subtours.
We use the approach of Frederickson et al. [9] to divide the tour R into k-
subtours. Moreover, after the tour is divided into k-subtours, the mobile sensors
that minimizes the cost Cost(si, Rj) is assigned to Rj to provide the coverage for
the POIs in Rj , where Cost(si, Rj) is the minimum distance from the position
of any sensor si ∈ M to any node in subtour Rj .

The k-SPLITOUR algorithm of Frederickson et al. [9] starts from some ver-
tex, say v1, and finds the last POI vl(j) in R such that the cost of the path from
v1 to vl(j) is not greater than j

k (L − 2cmax) + cmax, where cmax is the maximum
weight of an edge in E. Then it forms k subtours as R′

1 = {v1, . . . , vl(1)}, R′
2 =

{vl(1)+1, . . . , vl(2)}, . . . , R′
k = {vl(k−1)+1, . . . , vn}. Each subtour R′

j is assigned to
a sensor si ∈ M which minimizes the cost Cost(si, R

′
j). Finally, each subtour

R′
j is updated by adding the sensor that assigned to cover it in the beginning

and end to get Rj , i.e., if a sensor si is assigned to R′
j , then we have that

Rj = {si, vl(j−1)+1, . . . , vl(j), si}. That is, Rj is the trajectory for sensor si. We
prove the following results for the approximation ratio achieved by Predefined-
Start-TSP.
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Lemma 1. Let Ck be the cost of the largest of the k-subtours generated by Algo-
rithm 2. Algorithm 2 guarantees that Ck ≤ L

k + 2cmax(2 − 1
k ).

Proof. We have that Cost(R′
1) ≤ 1

k (L − 2cmax) + cmax. Similarly, Cost(R′
k) ≤

1
k (L − 2cmax) + cmax. For each j, 1 ≤ j ≤ k − 2, Cost(R′

j) ≤ 1
k (L − 2cmax).

Now, while updating the tours by adding the sensors that are assigned to
the subtour, we have that Cost(R1) ≤ Cost(R′

1) + Cost(v1, s1) + Cost(vl(1), s1).
We have that Cost(s1, v1) + Cost(vl(1), s1) ≤ 3cmax due to triangle equality,
since Cost(v1, vl(1)) ≤ cmax. Therefore, Cost(R1) ≤ 1

k (L − 2cmax) + 4cmax.

Similarly, Cost(Rk) ≤ 1
k (L − 2cmax) + 4cmax. For each j, 1 ≤ j ≤ k − 2,

Cost(Rj) ≤ Cost(R′
j) + Cost(sj , vl(j)+1) + Cost(vl(j+1), sj). Moreover, we have

that Cost(sj , vl(j)+1) + Cost(vl(j+1), sj) ≤ 4cmax.

Thus, Ck = maxj Cost(Rj) ≤ 1
k (L − 2cmax) + 4cmax ≤ L

k + 2cmax(2 − 1
k ). �	

We immediately have the following lemma for the optimal cost.

Lemma 2 ([9]). Let C∗
k be the cost of the largest subtour in an optimal solution

for the k-subtours. We have that C∗
k ≥ 1

kC∗, where C∗ is the cost of an optimal
TSP tour.

Theorem 3. Predefined-Start-TSP achieves the approximation ratio of at most
δ + 2 − 1

k , where δ is the approximation ratio of an algorithm for TSP.

Proof. We have that L ≤ δC∗, where C∗ is the cost of the optimal solution
for TSP. Moreover, we have that C∗

k ≥ 1
kC∗, and due to traingle inequality,

cmax ≤ 1
2C∗

k [9]. Therefore, combining Lemmas 1 and 2, and substituting L,
cmax, and C∗

k by their values, the theorem follows. �	

Corollary 2. Using Christofides’s algorithm [6] for TSP tour, Predefined-Start-
TSP achieves the approximation ratio of at most 7

2 − 1
k for MinDelaySweep.

4 Tree Cover Based MINDELAYSWEEP Algorithms

We present two algorithms, Not-Predefined-Start-TC and Predefined-Start-TC.
Not-Predefined-Start-TC is suitable for Not-Predefined-Start scenario of MinDe-
laySweep and Predefined-Start-TC is suitable for Predefined-Start scenario of
MinDelaySweep.

Not-Predefined-Start-TC Algorithm. The pseudocode of Not-Predefined-
Start-TC is given in Algorithm 3. Not-Predefined-Start-TC uses an unrooted tree
cover construction algorithm Unrooted-TC(G, k,B) to compute a set of k trees
T = {T1, . . . , Tk}. These k trees are then converted to k tours and assign one
sensor in each tree to scan the POIs that belong to those trees.

We discuss here the Unrooted-TC(G, k,B) algorithm of Even et al. [8] to
compute a set T of k trees given as input these three parameters: the graph G,
the number of trees k (which is equal to the number of mobile sensors in M),
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Algorithm 3. Not-Predefined-Start-TC
1 Use an algorithm Unrooted-TC(G, k,B) for the unrooted version of TC problem

and find a set of k trees T = {T1, . . . , Tk};
2 Transform each tree Ti ∈ T into a tour Pi using an appropriate tour

construction algorithm given a tree;
3 Assign a mobile sensor to each tour Pi to cover the POIs that are in that tour;

and a bound on the cost of each tree B. Unrooted-TC(G, k,B) then either returns
that the bound B chosen for the cost of the tree is too small or finds a tree cover
T = {T1, T2, . . . , Tk} of cost at most 4B for each Ti, 1 ≤ i ≤ k.

Unrooted-TC(G, k,B) of Even et al. [8] works as follows. It first removes the
edges of G with weight larger than B. This may divide G into a set of connected
components which are denoted by {Gi}. Then a minimum spanning tree MSTi

is computed for each Gi. After that Cost(MSTi) is computed and this cost is
divided by 2B to determine the number of trees ki required to cover the vertices
in Gi. If

∑
i(ki + 1) > k for ki determined for every Gi, then it gives more than

k trees which means that the estimate of B is small and Unrooted-TC(G, k,B)
has to repeat this process with larger B such that

∑
i(ki + 1) is equal to k. We

need exactly k trees since we have k sensors in M. When
∑

i(ki + 1) = k, then
each MSTi is decomposed to ki + 1 trees T j

i such that Cost(T j
i ) ∈ [2B, 4B),

where 1 ≤ j ≤ ki. The leftover of MSTi after constructing ki trees is assigned
to Li which is called the leftover tree. Therefore, Unrooted-TC(G, k,B) returns
in total k trees and Even et al. [8] showed that the cost of each tree is at most
4B.

Not-Predefined-Start-TC then transforms the k trees obtained using Unrooted-
TC(G, k,B) into k tours as follows. For each edge (i, j) ∈ T , we ask Not-
Predefined-Start-TC to add another edge between i and j with the same weight
w(ij). Note that the subgraph consisting only of the edges in T and these new
duplicate edges provides an Euler cycle. Note also that the total cost of the Euler
cycle is 2 times Cost(T ). Let P be that cycle. Then the tour is obtained as fol-
lows. If P has a sequence like i, j, l, . . . , o, i, p, then we replace it by i, j, l, . . . , o, p
(removing the second i in the sequence). The difference here in the total cost of
P is only due to the deletion of the second i. As the edge weights in G satisfy
triangle inequality, we have that w(op) ≤ w(oi)+w(ip). Therefore, this shortcut
process does not increase the cost of P and it is within 2 times the cost of T .

Even et al. [8] proved the correctness of Unrooted-TC(G, k,B) in the sense
that it returns a set of k trees with desired properties if proper cost bound B is
provided as an input. Our discussion of the Unrooted-TC(G, k,B) algorithm of [8]
for T construction is for an illustration purpose and other available algorithms
for the unrooted tree cover problem can also be used in Line 1 of Algorithm 3
to compute T . Therefore, we focus here on the general approximation ratio
achieved by Not-Predefined-Start-TC.

Theorem 4. The approximation ratio of Not-Predefined-Start-TC is at most 2γ,
where γ is the approximation ratio of an algorithm for the unrooted version of
TC.
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Proof. Let γ be the approximation ratio of the algorithm used to compute the
solution for the unrooted version of TC. In the tour construction process, we
increased the cost of each tree by a factor of at most 2. Therefore, the approxi-
mation of Not-Predefined-Start-TC is at most 2γ. �	

Since Even et al.’s algorithm [8] has the approximation ratio of 4 for the
unrooted version of TC, we obtain the following corollary.

Corollary 3. Using the Even et al.’s algorithm [8] Unrooted-TC(G, k,B), Not-
Predefined-Start-TC achieves the approximation ratio of 8 for MinDelaySweep.

Predefined-Start-TC Algorithm. The pseudocode of Predefined-Start-TC is
given in Algorithm 4. Predefined-Start-TC uses a rooted tree cover construction
algorithm Rooted-TC(G, k,B) to compute a set of k trees T = {T1, T2, . . . , Tk}
such that each tree Ti is rooted at a start position of a sensor. These k trees are
then converted to k tours using an appropriate tour construction algorithm and
the sensor that is in the start position (i.e., the root of the tree) is asked to to
scan the POIs that fall in those trees.

We discuss here the Rooted-TC(G, k,B) algorithm of [8] which takes as input
the same three parameters as in Unrooted-TC(G, k,B). Rooted-TC(G, k,B) then
either returns that the bound B chosen for the cost of the tree is too small or
finds a tree cover T = {T1, T2, . . . , Tk} of cost at most 4B for each Ti, 1 ≤ i ≤ k.

Rooted-TC(G, k,B) removes edges with weights greater than B and compute
k different minimum spanning trees Ti with k different roots as the starting
positions of the sensors. Some of the trees in Ti can be empty in the sense
that they may contain only the root node. Rooted-TC(G, k,B) then decomposes
each tree Ti into j trees such that Cost(T j

i ) ∈ [B, 2B), for every j, and assign
the leftover of the tree Ti after dividing it into j trees to the leftover tree Li.
According to the construction Cost(Li) < B. Each tree Cost(T j

i ) is then matched
to the roots that are at distance at most B from it. If not all tree are matched,
then it is the case that the bound B chosen is too small and Rooted-TC(G, k,B)
repeats this k tree construction and matching by choosing a larger value of B.
If all trees are matched then Rooted-TC(G, k,B) returns k trees rooted at the
start positions of k sensors.

The Predefined-Start-TC algorithm then transforms the k trees obtained using
Rooted-TC(G, k,B) into k tours similar to the technique we discussed in Not-
Predefined-Start-TC. Each tour Pi constructed for the tree Ti has the cost that
is at most 2 times the cost of Ti.

Even et al. [8] proved the correctness of Rooted-TC(G, k,B) in the sense that
it returns a set of k tree with desired properties of proper cost B is provided
as an input. Similar to Not-Predefined-Start-TC, our discussion of the Rooted-
TC(G, k,B) algorithm of [8] for T construction is for an illustration purpose and
other available algorithms for the rooted tree cover problem can also be used in
Line 1 of Algorithm 3 to compute T . Therefore, we prove the following theorem.
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Algorithm 4. Predefined-Start-TC
1 Use an algorithm Rooted-TC(G, k,B) for the rooted version of TC problem and

find a set of k trees T = {T1, . . . , Tk} rooted at the start positions of k sensors
(the roots are different for each tree);

2 Transform each tree Ti ∈ T into a tour Pi using an appropriate tour
construction algorithm given a tree;

3 Ask the mobile sensor in the start position that is in that tour Pi to cover the
POIs that are in Pi;

Theorem 5. The approximation ratio of Predefined-Start-TC is at most 2γ,
where γ is the approximation ratio of an algorithm for the rooted version of
TC.

Proof. Let γ be the approximation ratio of the algorithm used to compute the
solution for the rooted version of TC. Predefined-Start-TC modifies the tree cover
that is obtained by Rooted-TC(G, k,B) to form a tour in the expense of factor
2 increase in the cost of each tree. Therefore, the approximation of Predefined-
Start-TC is 2γ. �	

Since Even et al.’s algorithm [8] has the approximation ratio of 4 for the
rooted version of TC, we obtain the following corollary.

Corollary 4. Using the Even et al.’s algorithm [8] Rooted-TC(G, k,B)
Predefined-Start-TC achieves the approximation ratio of 8 for MinDelaySweep.

5 Concluding Remarks

We considered the fundamental problem of sweep coverage in mobile WSNs. We
studied this problem with the objective of minimizing the coverage delay given
the limited set of k sensors to cover a set of m POIs in the Euclidean plane.
For the future work, it is interesting to improve the approximation ratios of our
algorithms. For the practical aspect, it is interesting to experimentally evaluate
our algorithms, especially the tree cover based algorithms, on the performance
they achieve in real world scenarios.
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