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Abstract. Virtual Machine Placement (VMP) is one of the challenging
problem arising in cloud computing data centers. VMP is the process of
selecting the most suitable Physical Machine (PM) to host the Virtual
Machines (VMs). The placement goal can be either maximizing the usage
of existing available resources or it can be saving power by being able to
shut down some servers (PMs). In this paper, we propose a new Two-
Objective Integer Linear Programming (TOILP) model to solve the VMP
problem aiming, for the first time as far as we know, at maximizing simul-
taneously the usage of PM resources while ensuring power efficiency. We
also assume heterogeneous configuration for the data center which has
been proven, through recent research work and industrial experience, to
be more cost-effective for some applications especially those with inten-
sive I/O operations. Two heterogeneous data center configurations are
studied in order to ascertain the impact of each configuration on the per-
formance of the proposed model. Simulation results point out the benefits
brought by the TOILP model with an average number of used PMs gain
of 32.45% and an average total potential cost of resource wastage gain of
60.62%. It was also reported that the cloud provider should not choose
the PMs’ configuration independently of the offered virtual machines.
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1 Introduction

Cloud Computing is defined as a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction [1]. Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
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and Software as a Service (SaaS) are the common categories of cloud comput-
ing service models. For IaaS model, cloud provider offers different kinds and
amounts of virtualized computing resources (e.g., storage, processing, networks,
etc.) gathered into a virtual machine (VM) over the Internet [1]. This provi-
sioned VM allows customers to deploy and run the appropriate application in a
personalized and isolated runtime environment.

The decision to place a VM into a particular host is known as the VM
placement (VMP) problem [2]. The key challenge here is to maximize the number
of cohosted VMs while optimizing a given placement goal. The VMP algorithms
can be broadly classified into two categories with respect to their placement
goal which fall under one of the following assumptions: maximizing the usage of
existing resources or minimizing the power consumption in the data center by
shutting down some of the physical machines (servers).

This paper proposes a Two-Objective Integer Linear Programming (TOILP)
model that simultaneously optimizes the usage of PMs and power consumption.
The TOILP model attempts, given a set of VMs to be set up, to place the VMs
in the more suitable server without any VM migration. As the VMP problem has
become a particularly challenging task in non homogeneous hardware infrastruc-
tures due to the resource variability of PMs, the performances of the proposed
TOILP model are evaluated in two different heterogeneous data centers config-
urations. Two data center configurations are considered in order to study the
impact of each PM combination over the different performance metrics (potential
cost of resource wastage, number of used PMs, VM rejection ratio). The former
configuration has an almost even distribution number of the PMs’ configuration
whereas the latter is characterised by a different distribution number.

The rest of the paper is organized as follows. Section 2 describes the problem
tackled in this paper, Related works is given in Sect. 3. In Sect. 4, we define
the notations used to present the proposed model described in Sect. 5. Section 6
shows the experiments evaluating our proposed model and their results. Section 7
concludes the paper.

Fig. 1. The VM placement problem in a heterogeneous data center
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2 Description of the Problem

The VMP problem can be stated as follows: for a set of PMs and the resource
requirements of VMs, the VMs should be hosted on the PMs with respect to
a given placement goal. Figure 1 shows an example of VMP with 4 VMs and
3 PMs in a heterogeneous data center with an end-goal of maximizing the PM
usage. As it can be seen, after deploying the VMP process, V M1 is hosted in
PM1, V M2 is hosted in PM2 due to the insufficient resource capacity in PM1

and V M3 and V M4 are hosted in PM3 as a result of limited resources in both
PM1 and PM2.

Actually, the VMP process usually produces a large amount of wasted
resources due to the underutilization of the PMs. As a consequence, an increase
in the number of active PMs is noticed leading to a high power consumption in
the data center. In this paper, we look for the optimal VM-PM mapping so that
the PMs can be used to their maximum efficiency while the energy consumption
is minimized by hibernating or shutting down some of the PMs depending on
the load conditions.

3 Related Work

The VM placement (VMP) problem has been well explored in cloud computing
literature and mostly has been considered similar to the vector bin packing
problem which is NP-hard [3,4]. The individual PMs can be considered as bins
having different dimensions, corresponding to the resource capacities of the PMs.
Similarly, the VMs can be considered as objects to be packed into these bins.
For each VM, the amount of required resources (dimensional requirements of
objects) is specified. The vector bin packing problem aims at allocating a given
set of objects of known sizes into a minimum number of needed bins in order not
to exceed each bin’s capacity. Therefore, the VMP problem is strongly NP-hard.

Many existing algorithms have been proposed to solve the VMP problem.
These algorithms include deterministic (eg. integer programming, constrained
programming) [5–7], meta-heuristics (eg. randomized greedy, simulated anneal-
ing, genetics and evolution) [8–10] and heuristics.

In this paper, we review works which have focused only on the objectives of
this paper (maximization of both PM usage and power consumption efficiency)
and which have used deterministic algorithms to solve the offline VMP prob-
lem. In [11,12], Shi et al., have considered maximizing the cloud provider rev-
enues, under the placement constraints such as full deployment, anti-colocation
and security and also resource capacities constraints such as VM requirements
and PM capacities. An Integer Linear Programming formulation is proposed to
compute the exact solution. The authors have demonstrated that the proposed
VMP approach was practical for the offline VM placement in both small and/or
medium data centers. Both works [11,12], have evaluated the proposed VMP
approach with the VMs of commercial pattern (i.e, predefined VMs resource
capacities) in a homogeneous data center. In [4], Ribas et al., have consid-
ered minimizing the active physical machines number, under the PMs resource
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capacity constraints. A Pseudo-Boolean Constraint is proposed to obtain the
exact solution. In [13], Sun et al., have considered minimizing power consump-
tion, under the PM resource reservation constraints. A matrix transformation
algorithm is proposed to obtain the exact solution. The proposed solution is
evaluated with VMs of customized pattern, i.e., the Cloud user defines the
VM resource requirements and in a heterogeneous data center. Most of the
above-mentioned works use a VM placement approach with a single-objective to
achieve resource utilization maximization or power consumption minimization.
This paper addresses two challenges. Firstly, it proposes a new two-objective ILP
model to address the offline VMP problem that simultaneously maximizes the
usage of PM resources and power consumption efficiency. Finally, the solution
is performed in two heterogeneous data centers with different configurations to
ascertain the impact of each configuration.

4 Notations

We use the following notations and typographical conventions:

Index conventions

– i and j as subscript denote a virtual machine request and a physical machine
index respectively.

The parameters

– N corresponds to the number of virtual machines arriving at the Data Center
to be hosted. The VM request numbered i, denoted vi, ∀ 1 ≤ i ≤ N , is
defined by the tri-tuple (ci, ri, si) where ci, ri and si are the CPU, memory
and storage requirements of VM vi.

– M corresponds to the number of physical machines in the Data Center. The
PM numbered j, denoted Pj , ∀ 1 ≤ j ≤ M is characterized by the tri-tuple
(Cj , Rj , Sj) where Cj , Rj and Sj are the CPU, memory and storage capacities
of PM Pj .

The variables

– The binary variable λij . λij = 1 if the VM vi is hosted by the physical machine
Pj . λij = 0, otherwise.

– The binary variable φj . φj = 1, if there is at least one virtual machine hosted
by physical machine Pj . φj = 0, otherwise.

5 The Model

The Two-Objective ILP model relies on two separate steps to compute the opti-
mal VM-PM mapping, as shown in Fig. 2. Using the previous notations, Step 1
and Step 2 are given in Table 1.
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Fig. 2. The two-objective ILP model

Table 1. The two-objective ILP model

Step 1 computes the VM-PM mapping with the objective of maximizing
ψmax, the number of hosted VM requests. Equations 2 ensures that each VM
request vi is hosted by at most one physical machine Pj . Equations 3 ensures
that the total amount of CPU consumed by the VMs hosted at a PM Pj is at
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most equal to the total amount of CPU available at PM Pj , Cj . Equations 4
and 5 are roughly similar to 3 in that, the CPU resource is replaced by both
the memory and storage resources respectively. Equations 6 ensures that λij

variables are binary. It may happen that multiple VM-PM mapping solutions
exist for the same number of rejected VM requests. Step 2 selects a solution that
additionally minimizes the number of used PMs, θ. Equations 8 ensures that the
number of accepted VM requests must be at least ψmax, computed by Step 1.
Equations 9 and 10 define φj variables. Finally, Eqs. 11 ensures that φj variables
are binary.

6 Simulation Results

In this section, we experimentally evaluate and compare the performance of the
TOILP model in two heterogeneous data center configurations with 20 PMs
each. The PMs’ characteristics for both configurations, called C1 and C2, are
given in Table 2(a) and (b) respectively. One may notice that both configurations
have almost the same total amount over the CPU, RAM and disk resources. C2
exceeds C1 with 2.5% and 2% over the total usages of CPU and disk respectively.

Table 2. Hetrogeneous data center configurations

We generated 50 test-scenarios, that is, 50 different VM requests instances
each of which consists of N VM requests generated randomly from a predefined
set of VM types (Small (S), Medium (M), Large (L) and XLarge (XL) accord-
ing to the details given in Table 3. Figure 3 gives a detailed information on the
average number of generated VMs of type S, M, L and XL for each value of N.
The reason why the TOILP model cannot solve the VMP problem with over
290 VM requests is due to the NP-hardness of the problem. We used Optimiza-
tion Programming language (OPL) [14] with CPLEX 12.6.3 [15], to solve both
steps. The CPLEX solver is run on a windows 10 machine with an Intel Core
i7, 2.6 GHz processor and 16 GB RAM. In the following, each couple of figure
shows the same simulation results obtained by the TOILP model, considering
both data center configurations respectively.

Figure 4 plots the average number of hosted VMs on each PM for both DC
configurations for N= 130. Each bar in the plot shows the total number of VMs
of type S, M, L, and XL hosted by each of the PMs. Subfigures (a) and (b) show
the VM placement computed by Step 1 whereas subfigures (c) and (d) show the
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Table 3. The VM configuration.

VM Vcore Memory (GB) Disk (GB)

S 3 4 50

M 4 8 100

L 5 12 150

XL 6 24 250

Fig. 3. The average number of generated S,
M, L and XL w.r.t. N

VM placement computed by Step 2. One may notice that the number of used
PMs computed by Step 2 is lower than the one computed by Step 1.

Figure 5 shows the CPU, RAM and disk usages on each PM for both DC
configurations. Subfigures (a) and (d) show the CPU usage. Subfigures (b) and
(e) plot the RAM usage. Subfigures (c) and (f) show the disk usage. The top-
subfigures from (a) to (f) plot the resource usage computed by Step 1. The
subfigures below plot the resource usage computed by Step 2. The height of the
white bar shows the amount of available resource at the PM when no VM are
hosted. The height of the black bar shows the amount of the consumed resource
after hosting some VMs. One may observe that the PM resources are efficiently
used in C1 compared to C2. The resource usage is almost equal in each of the
PM’s dimension. We also notice that the number of used PMs computed by C1
is lower than the one computed by C2. This last result will be investigated in
the following.

Figure 6 plots the average number of used PMs w.r.t. N, the total number of
VMs to be hosted. We report that Step 2 performs efficiently in both DC con-
figurations with average gains (Step 2 achievement against Step 1 achievement)
of 32.45% and 27.53% in C1 and C2 respectively. We notice that the average
number of used PMs in C1 is lower than the number of used PMs consider-
ing configuration C2. Consequently, configuration C1 should hopefully lead to a
better power consumption efficiency compared to C2.

Figure 7 shows the average VM rejection ratio w.r.t. N. The average VM
rejection ratio is computed as the ratio of the total number of rejected VMs to
the total number of VMs arriving at the DC. We used errorbar plots to show the
main VM rejection ratio information for each N. In this plot, the top and bottom
bars are the highest and the lowest VM rejection ratio among the fifty generated
test-scenarios, while the mid-points denote the average. We notice that in both
DC configurations, the number of rejected VMs increases with N as the capacity
of available resources per PM is decreasing. We also notice that the average
VM rejection ratio computed for configuration C1 is lower than C2, as shown
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Fig. 4. The average number of hosted VMs per PM, N = 130

Fig. 5. The averages CPU, RAM and DISK usage on each physical machine, N = 130
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Fig. 6. The average number of used PMs w.r.t. N

in Fig. 7(b). The above results will be explained in details in the subsequent
section. Table 4 shows the average rejection ratios for VMs of type S, L, M and
XL w.r.t. N. The average rejection rate for each VM type (T, T = S/M/L/XL)
is computed as the number of VM rejected of type (T) to the total number of
VM requests of type (T). We notice that in both configurations, the VM requests
of type L and XL are the most rejected ones. This is mainly related to one of
the TOILP’s objectives which aims at maximizing the number of hosted VMs.
Since, VM of type L and XL are more resource consuming.

Fig. 7. The average VM rejection ratio w.r.t. N

Figure 8 plots the average total potential cost of resource wastage w.r.t. N.
The total potential cost of resource wastage is computed as the sum of all the
resource wastage amounts of PMs in the data center. The potential cost of
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Table 4. The average rejection rates of S, M, L and XL VM requests

N C1 C2

Step 1 Step 2 Step 1 Step 2

S M L XL S M L XL S M L XL S M L XL

230 0 0 0.00008 0.00042 0 0 0 0.00052 0 0 0.00008 0.00668 0 0 0 0.00678

250 0 0.00008 0.00008 0.0116 0 0 0 0.01176 0 0.00008 0.00008 0.03528 0 0 0 0.03544

270 0 0 0 0.04036 0 0 0 0.04036 0 0.00006 0.00014 0.06844 0 0 0.00006 0.06858

290 0 0 0.00006 0.07792 0 0 0 0.078 0 0.00006 0.00012 0.10516 0 0 0 0.10536

resource wastage of the jth PM, RWj is given by [16]:

RWj =
∑

l!=k

(Rl − Rk), ∀1 ≤ j ≤ M,∀1 ≤ l, k ≤ 3

where, Rl denotes the normalized residual capacity of the lth resource dimension
(CPU, RAM, disk), i.e., the ratio of residual resource to total resource. Rk

denotes the smallest residual resource rate of all dimensions. We notice that the
average total potential cost of resource wastage gain in C1 (60.62%) is higher
than in C2 (50.21%) (Step 2 achievement against Step 1 achievement). We also
observe that in both DC configurations, the benefit gain of the total potential
cost of resource wastage decreases sharply when a set of VMs starts to be rejected
(N ≥ 230). This is due to Step 2’s difficulty of balancing the resource usage of
each PM as one or more may be exhausted, and others remain unused. This
preceding result explains the performance superiority of C1 over C2 in light of
the PM resource utilization efficiency, the number of used PMs and the VM
rejection ratio.

From Fig. 8(b), we notice that the TOILP model produces a lower average
amount of resource wastage in C1 than C2. This can be explained by the fact that
the VMs are more compatible with the PM combinations of C1 than C2 based on
their resource configurations. This, thereby, explains the above-mentioned fact
of the efficiency of PM resource utilization in C1. As a result, more VMs can be
hosted using a less number of PMs in C1.

From the obtained simulation results, we point out the following conclusions:

– We report that the TOILP model performs efficiently in both DC configu-
rations, in maximizing the PM usage while minimizing the number of used
PMs. In average, the number of used PMs and the total potential cost of
resource wastage are reduced by 32.35% and 60.62% respectively.

– The cloud provider should not choose the PM configurations independently
of the offered virtual machines. This is due to the degree of compatibility
between the VM-PM resource configurations as it has an impact on the
amount of resource wastage in the DC.

– We realized that as the amount of the resource wastage is reduced in the DC,
the VM rejection is lowered and the number of used PMs is also minimized.
This should hopefully lead to lower power consumption in the DC.
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Fig. 8. The average potential cost of resource wastage w.r.t. N

7 Conclusion and Future Work

In this paper, we proposed a new two objective ILP model to address the VM
placement problem in cloud service provider (CSP) data centers with hetero-
geneous PM configurations. The objectives are to improve the resources usage
of physical machines while reducing energy consumption in a data center. We
evaluated and compared the performances of the proposed solution in two het-
erogeneous data centers configurations to ascertain the impact of each configura-
tion. Through extensive simulation scenarios, we reported the benefits brought
by the TOILP model in both average gains of total potential cost of resource
wastage and number of used PMs. We also reported that the cloud provider
should not choose the PM configurations independently of the offered Virtual
machines. In the future work, we will compare the performances of the TOILP
model in both data center architectures (homogeneous and heterogeneous) in
order to assess which of the architectures produces a better trade-off between
the resource utilization and power consumption efficiency.
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