
Comparative Analysis of MOGBHS with Other
State-of-the-Art Algorithms for Multi-objective

Optimization Problems

Cristian Ordoñez1,2, Edgar Ruano1, Carlos Cobos1(&),
Hugo Ordoñez3, and Armando Ordoñez2

1 Information Technology Research Group (GTI), Universidad del Cauca,
Popayán, Colombia

{cordonezq,eruano,ccobos}@unicauca.edu.co
2 Intelligent Management Systems, University Foundation of Popayán,

Popayán, Colombia
jaordonez@unicauca.edu.co

3 Research Laboratory in Development of Software Engineering,
Universidad San Buenaventura, Cali, Colombia

haordonez@usbcali.edu.co

Abstract. A multi-objective problem must simultaneously satisfy some con-
ditions that may conflict with each other. Some examples of this problem are the
design of machines with low power consumption and high power, or the
development of software products in a short time and with high quality. Several
algorithms have been proposed to solve this type of problems, such as NSGA-II,
MOEA/D, SPEA2, and MSOPS. Each of these algorithms is based on different
techniques such as the combination of objectives, Pareto efficiency, and prior-
itization. The selection of the best algorithm for a problem may become a
cumbersome task. By its part, MOGBHS is a multi-objective algorithm based on
the Global-Best Harmony Search, non-dominated sorting, and crowding dis-
tance that has shown great efficiency. This paper presents a comparative analysis
of MOGBHS against other state-of-the-art algorithms. The analysis was per-
formed over 21 multi-objective optimization problems from the IEEE CEC
competition, 12 without restrictions and 9 with restrictions. The evaluation was
performed using several evaluations of the objective function (2000, 5000,
10000 and 20000) and different metrics: Hypervolume, Epsilon, Generational
Distance, Inverse Generational Distance, and Spacing. Finally, the analysis of
the results was performed using non-parametric statistical tests (Wilcoxon and
Friedman). MOGBHS obtained the best results according to the Inverse Gen-
erational Distance for 10000 and 20000 evaluations of the objective functions.
Likewise, MOGBHS achieved competitive results for 2000 and 5000 evalua-
tions. On the other hand, SPEA2 algorithm reached the best average results in all
metrics.
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1 Introduction

Multi-objective optimization research area is responsible for studying and solving
problems with multiple conflicting objectives. Problems of this kind are widespread
nowadays in the different areas. For example, the design of machines with low energy
consumption and high power, or high-quality software built in short time.

The multi-objective algorithms have been proposed to solve this type of problems.
These algorithms are used when there is no evidence of an optimal solution, and
obtaining this solution or a close one with deterministic algorithms can be time-
consuming [1]. The result of these methods is not a single solution (as in the case of
mono-objective optimization), but a set of the best possible solutions found [2].

Some existing approaches to the design of multi-objective algorithms have been
gathered in Frameworks, such as paradisEO-MOEO and MOEA. These frameworks
have emerged to make these algorithms accessible to the community so they can solve
real problems. Among these frameworks, MOEA is one of the most outstanding.
MOEA is a free, open-source, Java-based library that allows implementing new
algorithms and experimenting with the problems from the IEEE CEC multi-objective
optimization competition, and with other real problems documented in the framework.
For the present research work, the Multi-Objective Global-Best Harmony Search
(MOGBHS) was implemented [3] in MOEA Framework.

MOGBHS is a multi-objective algorithm based on Global-Best Harmony Search,
non-dominated ordering, and crowding distance. MOGBHS has been used to solve
routes and schedules problem in a massive transport system (Bus rapid system). In this
problem, MOGBHS has been used to minimize the costs of the system and maximize
the satisfaction of the users [3]. The implementation of MOGBHS in MOEA frame-
work has allowed to carry out a comparative analysis of this algorithm with other
widely used algorithms: SPEA2, MOEA/D, NSGA-II and MSOPS [4]. These algo-
rithms are implemented in the MOEA framework.

The present analysis used twelve (12) multi-objective continuous problems without
constraints and nine (9) with constraints. These problems were taken from the multi-
purpose optimization competency repository of the IEEE Evolutionary Computing
Congress [5, 6]. The study sought to determine the impact of the number (2000, 5000,
10000 and 20000) of evaluations of the objective function (EOF) on the algorithms
with different types of problems (with and without constraints).

The comparative analysis used the following metrics commonly used in the mul-
tiobjective optimization field: Hypervolume, Epsilon, Generational Distance, Inverted
Generational Distance, and Spacing [2]. Nonparametric statistical tests (Wilcoxon and
Friedman) were also performed. The MOGHBS algorithm ranked fourth out of five
compared algorithms when all the metrics were considered. Also, MOGHBS ranked
first when only the inverted generational distance metric was considered (this algorithm
generates very good solutions according to the accuracy and diversity). Finally,
MOGHBS always ranked first on the CF7 problem for all the EOFs.

The rest of this paper is structured as follows. In Sect. 2, the related works are
exposed. Then in Sect. 3 the characterization of the multi-objective algorithms to be
compared is presented. Then, Sect. 4 the metrics used in the comparison are explained.
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The results and their analysis are shown in Sect. 5. Finally, conclusions and future
work are presented in Sect. 6.

2 Related Works

Algorithms that implement techniques based on stochastic optimization (meta-
heuristics) are used to solve problems with n objectives. These algorithms use ran-
domness to obtain optimal solutions to NP-hard problems (with a high degree of
complexity). A detailed and updated survey of multi objective evolutionary algorithms
is presented by Zhang and Xing in [7]. Likewise, another review of the related
approaches in this field is presented by Vachhani et al. in [8]. A brief description of
some approaches for multi-objective optimization is given below, as well as a dis-
cussion of the main differences of these approaches with the present work.

In 2017 [1] e- MOABC was presented. e- MOABC is an algorithm based on
performance indicators to solve multi-objective and many objectives optimization
problems. This algorithm creates an external file with non-dominated solutions pro-
duced in each generation based on the Pareto preference and dominance indicators.
This algorithm has demonstrated to be competitive in multi-objective and many-
objective optimization problems compared to other state-of-the-art algorithms such as
NSGA-II SPEA2 and MOEA/D. The algorithm was analyzed in problems with con-
straints and more than one objective function like CEC09, LZ09, and DTLZ.

Trivedi et al. presented an exhaustive study of the MOEAs proposed over the last
ten years [9]. This study is focused on the decomposition-based and hybrid (based on
decomposition and dominance, etc.) MOEAs. This work includes the efforts made so
far to expand the framework based on the decomposition of constrained multi-objective
optimization and the many-objectives optimization. Authors conclude that there have
been many attempts to create and apply decomposition-based MOEAs to solve com-
plex real-world optimization problems.

In [10] multi-objective evolutionary algorithms are classified into set approximation
methods and decomposition methods. In this work, a set approximation MOEA is
combined with a sequential decomposition mechanism. Using this combination, a
better running time is achieved on synthetic problems compared to the corresponding
set approximation MOEAs by a factor n (problem size). Also, in recently (2017)
published works, distributed parallel approaches [11, 12] are proposed for solving
multi-objective problems of large-scale optimization.

In 2016 [13] a new selection scheme for multi-objective evolutionary algorithms
based on the Δq indicator was proposed. To solve the problem of the definition of the
reference set in Δq based approaches, a reference set is created at each generation using
e-dominance. Besides, a set of non-dominated solutions is also created. The proposal
outperforms MOEA/D using Penalty Boundary Intersection (decomposition approach),
and SMS-EMOA-HYPE (a SMS-EMOA version that uses the hypervolume indicator)
on standard test functions with 3–6 objective functions.

In 2014, a new approach that combines dominance and decomposition for multi-
objective and many objectives optimization was presented in [14]. This approach takes
advantage of both approaches (dominance and decomposition) to balance the
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convergence and diversity of the evolutionary process. The performance of the pro-
posed algorithm was validated and compared with four state-of-the-art algorithms
(unconstrained problems with up to fifteen objectives). The empirical results demon-
strate the superiority of the proposed algorithm in the tests. Also, the proposed algo-
rithm showed a highly competitive performance in all constrained optimization
problems.

An improved version of the TAA algorithm (ITAA) was proposed in [15]. This
algorithm incorporates a classification mechanism for updating the convergence file.
The efficiency of ITAA was demonstrated with experimental studies on problems with
up to 20 objectives. ITAA performance was assessed in 16 DTLZ test cases with 5–20
targets. The experimental results showed that ITAA exceeded TAA regarding the IGD
convergence metric and the GSpread diversity metric.

A knee point-driven evolutionary algorithm for many-objective optimization KnEA
is presented in [2]. KnEA significantly reduces computational complexity compared to
other multi-objective algorithms. The experimental results show that KnEA is signif-
icantly superior to MOEA/D and hypo, and is comparable with GreA and NSGA-III in
the optimization with more than three objectives. KnEA is computationally much more
efficient compared to other Pareto-based MOEAs such as GREAT. Therefore, the
overall performance of KnEA is highly competitive compared to the state-of-the-art
MOEAs to solve problems with more than three objectives.

A new algorithm (MD-MOEA) was proposed in [16]. This algorithm is based on
crossover and mutation operators of the NSGA-II algorithm. This algorithm includes a
new selection mechanism based on the maximum fitness function, and a technique
based on Euclidean distances between solutions to improve the diversity of the pop-
ulation in objective function space. This approach obtains good results in both low
dimensionality and high dimensionality in objective function space when compared
with MOEA/D using Penalty Boundary Intersection, and SMS-EMOA-HYPE.

Also in this year (2014), it was developed the algorithm proposed for the present
analysis called multi-objective Global-Best Harmony Search (MOGBHS) [3]. This
algorithm generates a set of harmonies and stores them in the harmonic memory (HM).
Also, the algorithm evaluates all targets for each element of the HM and then orders
them using the Pareto front. This algorithm was used to improve the definition of routes
and schedules in a mass transit system (MEGABUS system in the city of Pereira,
Colombia) using simulation based on discrete events. MOGBHS was compared to an
NSGA-II implementation in the test case and showed better performance.

Finally, in 2009 [17], a comparative analysis of several multi-objective evolu-
tionary algorithms was presented. The behavior of these algorithms with different
complexities and problems (NP-hard) was observed. The compared algorithms were
based on the Pareto front approach: NSGA-II, SPEA2, MOEA/D, GDE3, and POSDE.
The results showed that GDE3 produces the best performances in these problems with
the lowest time complexity.

Unlike the works mentioned in state of the art, the present work conducted four
evaluations of the objective function per algorithm with different values (2000, 5000,
10000, and 20000 EOFs). Also, the non-parametric Friedman test was performed to
observe the position or ranking of the evaluated algorithms. Then the Wilcoxon test
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was applied to observe the dominance relation between algorithms. Finally, a general
performance analysis was done for each of the metrics mentioned above.

3 Compared Algorithms

NSGA-II: this genetic algorithm was proposed by Deb et al. in 2002 [18]. This
algorithm generates an additional population from an original population by using the
genetic operators of selection (binary tournament), crossover (SBX) and mutation
(Polimonial). From here, the most promising individuals from both populations are
selected for the next generation according to their rank (Pareto front number) and
crowding distance. NSGA-II is used to solve continuous problems.

SPEA2: Is a genetic algorithm proposed by Zitler et al. 2001 in [19]. In this
algorithm, a fitness value is assigned to each individual. This fitness is the sum of the
strength raw fitness and a density estimation. SPEA2 applies selection, crossover and
mutation operators to fill in a solution file (environmental selection, SBX, and poly-
nomial mutation). Non-dominated solutions from the original population and the
solution file are copied into a new population. If the number of solutions exceeds the
maximum size of the population, a truncation operator is used based on the distance to
the nearest kth neighbor.

MOEA/D: is a multi-objective optimization algorithm based on the decomposition
of a problem. MOEA/D uses evolutionary operators to combine optimal solutions thus
allowing high convergence. MOEA/D uses the differential evolution operator followed
by a mutation of polynomials to create descendants, and the weighted Tchebycheff or
boundary intersection as the decomposition method. Equally, a mechanism of diversity
preservation, as proposed in the work of Zhang and Li [17].

MSOPS is a proposed multi-objective optimization algorithm proposed by He and
Yen in 2014 [20]. MSOPS works in parallel to generate convergent systems of solu-
tions. This algorithm is based on aggregate optimization that is driven by its weight or
target vector. Thus, the algorithm uses an array of target vectors to find the best
solutions in parallel. This algorithm does not rely on Pareto classification and provides
better high-dimensional objective space pressure.

MOGBHS is the Multi-Objective Global-Best Harmony Search algorithm and was
proposed in 2016 [3]. This algorithm randomly generates a set of harmonies and stores
them in Harmonic Memory (HM). Then all objectives for each element in the HM are
evaluated. From here, the ordering is carried out using the Pareto front based on non-
dominated ordering and crowding distance. Afterward, a certain number of improvi-
sations (evolutionary iterations) are performed. In each iteration: (A) a new harmony is
generated applying the logic of the GBHS algorithm. (B) The new harmony is eval-
uated against all the objectives to optimize. (C) The new harmony is added to the
existing HM. (D) The HM is ordered by Pareto front and crowding distance. (E) All
elements that cause that the HM exceed the maximum size (defined by the Harmony
Memory Size parameter of the algorithm) are removed (these are the worst elements in
the HM).
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4 Comparison Metrics

The following metrics were used to measure of performance and competitiveness of the
algorithms: Hypervolume, Generational Distance, Inverted Generational Distance,
Epsilon, and Spacing. These metrics are the most used to evaluate MOEAs [21]
(Table 1).

These metrics make it possible to compare different algorithms. This comparison is
based on the accuracy, diversity and separability of the solutions found by each
algorithm. A description of these metrics is presented below [21]:

Hypervolume (HV) This metric calculates the volume (in objective space) covered
by members of a given set, Q, of non-dominated solutions to problems where all
objectives are to be minimized. Mathematically, for each i 2 Q an hypercube vi is built
with a reference point W an the solution i that represents the diagonal of the hypercube.
The point W can be obtained with the worst values of the objective functions. The
hypervolume HVð Þ is defined by the union of all the hypercubes [22] as is shown in
Eq. 1.

HV ¼ volume
[ Qj j

i¼1
vi

� �
ð1Þ

The algorithms that reach higher values of HV are better (Maximize). Since HV
depends on the values of the objective function it is necessary to normalize the non-
dominated solutions.

Epsilon (EP) is a measure of the smallest distance required to translate each
solution in A so that it dominates in the Optimal Pareto Front of the evaluated problem.
More formally, given~z1 ¼ Z1

1 ; . . .:; Z
1
n

� �
and~z2 ¼ Z2

1 ; . . .:; Z
2
n

� �
, where n is the number

of objectives [23] (Minimize).

I1�þ Að Þ ¼ inf
�2R

8~z2 2 PF�9~z1 2 A :~z1 4�~z
2� �

Where~z1 4� ~z2 if and only if 81� i� n : Z1
i \� þ Z2

i :

Table 1. Metrics for evaluation of multi-objective algorithms

Ranking Metrics Classification
Aspects Sets

1 Hypervolume (HV) - Accuracy
- Diversity

Unary

2 Epsilon family (EP) - All Binary
3 Generational distance (GD) - Accuracy Unary
4 Inverted generational distance (IGD) - Accuracy

- Diversity
Unary

5 Spacing (SP) - Separability Unary
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Generational distance (GD) and inverted generational distance (IGD) were
proposed by Van Veldhuizen in 1999 [21]. GD calculates the average distance of a set
of candidate solutions Z, with respect to a reference set p� representing the Pareto front
(PF). Formally, DG is defined by Eq. 2 (Minimize):

GD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx2Zd xð Þ2

q
zj j ð2Þ

Where d Xð Þ is the Euclidean distance between the solution X and the closest point
p� expressed by Eq. 3.

ð3Þ

Although GD is a metric for evaluating convergence, if we reverse the roles of Z
and p� in Eqs. 5 and 6, The generalized inverted distance (IGD) is obtained. It is also
possible to consider the diversity of the whole set Z. Thus, A low value for IGD will
indicate both good convergence and good distribution of the solutions (Minimize).
Formally, the IGD metric is defined by Eq. 4.

IGD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rx�2p�d X�ð Þ2

q
P�j j ð4Þ

Where dðX�Þ Is the Euclidean distance between the reference point X� and the
closest solution Z (Maximize) expressed by Eq. 5.

ð5Þ

Spacing (SP) Is a separation metric (SP) suggested by Schott [21]. Sp is calculated
by measuring the relative distance between consecutive solutions in the non-dominated
set obtained, as Eq. 6.

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Qj j

X Qj j
i¼1

ð
s

di � �dÞ2 ð6Þ

Where di ¼ min min
KeQ^K 6¼i

fPM
m¼1 jf im � f kmgand �d is the medium value of the above

measures �d ¼ P Qj j
i¼1 di= Qj j: The distance measure is the minimum value of the absolute

sum in the values of the objective function between the ith solution and any other
solution of the non-dominated set. This distance is different from the minimum
Euclidean distance between the two solutions. Therefore, a search algorithm for a set of
non-dominated solutions that have smaller spacing (SP) is better (Minimize).
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5 Results and Analysis

Here, the analysis of the metrics mentioned above for a different number of EOFs is
presented. Also, the analysis of the nonparametric tests of Friedman and Wilcoxon is
also included.

5.1 Analysis with 2000 EOFs

Regarding Hypervolume the Friedman Test was conducted according to a chi square
distribution with 4 degrees of freedom: 7.12 and p = 0.12968. Results show that
SPEA2 achieved better performance, followed by MOGBHS, Then NSGA-II sharing
second place with MOEA/D and finally MSOPS. The result of the Wilcoxon showed
that SPEA2 algorithm dominates NSGA-II, MOEA/D y MSOPS and MOGBHS
algorithms with a significance level (SL) of 95%.

Regarding Epsilon Friedman test was conducted according to a chi square distri-
bution with 4 degrees of freedom: 18.8 and p = 0.00119. Results indicate that SPEA2
achieved the best performance, followed by MOGBHS, NSGA-II in third place, fol-
lowed by MOEA/D and MSOPS in the last place. Wilcoxon test shows that SPEA2
dominates NSGA-II, MOEA/D, and MSOPS with SL = 95%. Finally, MOGBHS
dominates NSGA-II and MSOPS also with SL of 95%.

With regard to Generational Distance, the Friedman test was run according to a
chi-square distribution with 4 degrees of freedom: 30.4 and p = 4.05733E−6, results
show that SPEA2 achieved the best performance, followed by MOEA/D, MOGBHS,
NSGA-II and finally MSOPS. Wilcoxon test showed that SPEA2, MOEA/D and,
MOGBHS dominates MSOPS with an SL of 95%, besides MOEA/D, MOGBHS and
SPEA2 dominate NSGA-II with the same SL.

With regard to Inverted Generational Distance, the Friedman test was run
according to a chi-square distribution with 4 degrees of freedom: 24.28 and
p = 7.01876E−5. Results show that MSOPS achieved the best performance, followed
by MOEA/D, NSGA-II, MOGBHS and finally SPEA2. Wilcoxon test showed that
MSOPS dominates NSGA-II, MOEA/D, MOGBHS and SPEA2 with an SL of 95%
and that NSGA-II and MOEA/D dominate MOGBHS and SPEA2 with the same SL.

Regarding Spacing, the Friedman test was run according to a chi-square distri-
bution with 4 degrees of freedom: 47.08 and p = 1.50153E−9. Results show that
MOEA/D achieved the best performance, followed by SPEA2, MOGBHS, NSGA-II
and finally MSOPS. Wilcoxon test showed that MOEA/D dominate NSGA-II, MSOPS
y MOGBHS with an SL of 95%, Besides SPEA2 dominates NSGA-II and MSOPS
with the same SL. Finally, MOGBHS dominates MSOPS y NSGA-II with SL of 90%.

In the present analysis, the ranking of 1 to 5 is created to determine the place
occupied by each algorithm (see Table 2). The result is shown on the right side of the
value obtained by each algorithm. Results indicate that the proposed algorithm
MOGBHS is highly competitive with 2000 EOFs as it occupied the second place in the
general ranking. Also, MOGBHS achieved the best solutions to problems such as CF4,
CF5, CF6, CF7, UF1, UF6, UF8, and UF11 occupying the first place (according to the
metrics HV, GD, IGD, EP, and SP) for each problem as observed in Table 2.
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Table 2. MOGBHS with 2000 EOFs. Best results in bold.

Problem Metric NSGA-II MOEA/D MOGBHS SPEA2 MSOPS

CF4 HV 0.0711 (4) 0.1767 (1) 0.1164 (3) 0.1527 (2) 0.0318 (5)
GD 0.3709 (5) 0.1727 (2) 0.1624 (1) 0.2504 (3) 0.5963 (4)
IGD 0.3762 (2) 0.3122 (3) 0.3076 (4) 0.2935 (5) 0.4599 (1)
EP 0.5035 (3) 0.5586 (5) 0.4468 (1) 0.4479 (2) 0.5574 (4)
SP 0.3227(4) 0.1992 (1) 0.2494 (3) 0.2430 (2) 0.5781 (5)

CF5 HV 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1)
GD 1.7486 (4) 1.2218 (3) 0.9964 (1) 1.1524 (2) 1.9755 (5)
IGD 2.3312 (2) 1.8575 (3) 1.5526 (5) 1.6862 (4) 3.1259 (1)
EP 2.2584 (4) 1.8425 (3) 1.7386 (1) 1.7547 (2) 2.8188 (5)
SP 0.7376 (4) 0.6826 (2) 0.3916 (1) 0.7155 (3) 1.2206 (5)

CF6 HV 0.3823 (2) 0.3664 (4) 0.3717 (3) 0.3905 (1) 0.3134 (5)
GD 0.0961 (3) 0.0952 (4) 0.0416 (1) 0.0666 (2) 0.1714 (5)
IGD 0.2230 (4) 0.2489 (2) 0.2307 (3) 0.2012 (5) 0.2608 (1)
EP 0.3589 (2) 0.4107 (5) 0.4045 (4) 0.3419 (1) 0.3731 (3)
SP 0.1730 (4) 0.1062 (2) 0.0776 (1) 0.1330 (3) 0.2529 (5)

CF7 HV 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1)
GD 1.6733 (4) 1.0617 (1) 1.2454 (2) 1.5465 (3) 2.3646 (5)
IGD 2.4812 (2) 1.7947 (5) 1.8725 (4) 1.9792 (3) 3.3947 (1)
EP 2.3261 (4) 1.7130 (1) 1.8656 (2) 1.9484 (1) 2.9569 (5)
SP 1.0644 (4) 0.6761 (2) 0.6203 (1) 0.9794 (3) 1.4939 (5)

UF1 HV 0.1504 (3) 0.0653 (5) 0.1904 (1) 0.1885 (2) 0.0695 (4)
GD 0.1351 (3) 0.1398 (4) 0.1118 (2) 0.1091 (1) 0.1685 (5)
IGD 0.4060 (3) 0.5691 (1) 0.3626 (4) 0.3464 (5) 0.5295 (2)
EP 0.4611 (3) 0.6191 (5) 0.4051 (1) 0.4248 (2) 0.5383 (4)
SP 0.0980 (3) 0.0585 (1) 0.1161 (4) 0.0655 (2) 0.1207 (5)

UF6 HV 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1)
GD 0.7761 (3) 0.8008 (4) 0.6537 (1) 0.6765 (2) 1.0286 (5)
IGD 1.6501 (5) 2.5656 (1) 1.3081 (4) 1.3738 (3) 2.3684 (2)
EP 1.5788 (3) 2.2508 (5) 1.3317 (1) 1.3844 (2) 2.0640 (4)
SP 0.3763 (4) 0.1759 (1) 0.2863 (2) 0.3319 (3) 0.4203 (5)

UF8 HV 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1)
GD 0.2248 (4) 0.1826 (3) 0.0986 (1) 0.1126 (2) 0.3856 (5)
IGD 0.8922 (2) 0.7733 (3) 0.4295 (5) 0.5364 (4) 1.3364 (1)
EP 1.1697 (4) 1.0762 (3) 1.0173 (1) 1.0640 (2) 1.3802 (5)
SP 0.2551 (4) 0.2183 (3) 0.2146 (2) 0.1633 (1) 0.4648 (5)

UF11 HV 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1) 0.0000 (1)
GD 0.4074 (3) 0.5385 (4) 0.2997 (1) 0.3208 (2) 0.7757 (5)
IGD 2.3042 (2) 1.8704 (3) 1.7243 (5) 1.7980 (4) 2.7540 (1)
EP 2.0415 (4) 1.9562 (3) 1.5253 (1) 1.6883 (2) 2.5490 (5)
SP 0.7446 (3) 0.7714 (4) 0.5340 (2) 0.3504 (1) 1.2797 (5)
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5.2 Analysis with 5000 EOFs

Regarding Hypervolume: The Friedman test was run according to a chi-square dis-
tribution with 4 degrees of freedom: 6.84 and p = 0.14459. Results showed a ranking
where SPEA2 achieved the best performance, followed by MOGBHS, MSOPS,
MOEA/D y Finally NSGA-II. Wilcoxon test showed that SPEA2 dominates NSGA-II,
MOEA/D with an SL of 95%.

With regard to Epsilon: The Friedman test was run according to a chi-square
distribution with 4 degrees of freedom: 10.84 and p = 0.02842. Results showed a
ranking where SPEA2 achieved the best performance, followed by MSOPS y NSGA-
II, MOGBHS and finally MOEA/D. Wilcoxon test showed that SPEA2 dominates
MOEA/D, MOGBHS, and NSGA-II with an SL of 95%.

With regard to Generational Distance: The Friedman test was run according to a
chi-square distribution with 4 degrees of freedom: 29.2 and p = 7.11914E−6. Results
showed a ranking where SPEA2 achieved the best performance, followed by MOEA/D
MOGBHS, NSGA-II, and finally MSOPS. Wilcoxon test showed that SPEA2
MOEA/D and MOGBHS dominate NSGA-II and MSOPS with an SL of 95%, besides
SPEA2 dominates MOGBHS with the same SL.

With regard to Inverted Generational Distance: The Friedman test was run
according to a chi-square distribution with 4 degrees of freedom 5.96 and p = 0.20216.
Results showed a ranking where NSGA-II achieved the best performance, followed by
MOGBHS, MOEA/D, MSOPS, and finally SPEA2. Wilcoxon test showed that NSGA-
II and MOGBHS dominate SPEA2 with an SL of 95%.

With respect to Spacing: The Friedman test was run according to a chi-square
distribution with 4 degrees of freedom: 38.6 and p = 8.42835E−8. Results showed a
ranking where SPEA2 achieved the best performance, followed by MOEA/D, NSGA-II
and finally MOGBHS and MSOPS. Wilcoxon Test showed that SPEA2 dominate
NSGA-II, MOEA/D, MOGBHS, and MSOPS with an SL of 95%, Besides MOGBHS
dominates MOEA/D with the same SL. Finally, MOGBHS, MOEA/D, and NSGA-II
dominate MSOPS with SL of 90%.

Results showed that MOGBHS is competitive with 5000 EOFs as it occupied the
second place in the general ranking. Besides MOGBHS found the best solutions to
problems with constraints such as CF4, CF5, CF7 and occupied the first place
according to the metrics HV, SP, GD, and EP as can be seen in Table 3.

5.3 Analysis of the Algorithms with 10000 EOFs

Regarding Hypervolume: The Friedman test was run according to a chi-square dis-
tribution with 4 degrees of freedom: 11.47 and p = 0.02176. Results showed a ranking
where MSOPS achieved the best performance, followed by SPEA2, MOEA/D, NSGA-
II and finally MOGBHS. Wilcoxon test showed that MSOPS and SPEA2 dominate
NSGA-II with an SL of 95%, besides MSOPS, SPEA2 and MOEA/D dominate
MOHBGS with the same SL.

With respect to Epsilon: The Friedman test was run according to a chi-square
distribution with 4 degrees of freedom: 23.36 and p = 1.07290E−4. Results showed a
ranking where MSOPS achieved the best performance, followed by SPEA2, NSGA-II
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and MOEA/D in the fourth place, and finally MOGBHS. Wilcoxon test showed that
MSOPS and SPEA2 dominate NSGA-II and MOGBHS with SL of 95%.

With regard to Generational Distance: The Friedman test was run according to a
chi-square distribution with 4 degrees of freedom: 24.8 and p = 5.51891E−5. Results
showed a ranking where SPEA2 achieved the best performance, followed by
MOEA/D, NSGA-II, MOGBHS, and finally MSOPS. Wilcoxon test showed that
SPEA2 and MOEA/D dominate NSGA-II, MSOPS, and MOGBHS with an SL of
95%.

With regard to Inverted Generational Distance: The Friedman test was run
according to a chi-square distribution with 4 degrees of freedom 20.32 and
p = 4.31750E−4. Results showed a ranking where MOGBHS achieved the best per-
formance, followed by NSGA-II, MOEA/D, and finally SPEA2 and MSOPS sharing
the third place. Wilcoxon test showed that MOGBHS and NSGA-II dominate SPEA2
and MSOPS with an SL of 95%.

Regarding Spacing: The Friedman test was run according to a chi-square distri-
bution with 4 degrees of freedom: 37.16 and p = 1.66982E−7. Results showed a
ranking where SPEA2 achieved the best performance, followed by NSGA-II,
MOEA/D, MOGBHS and finally MSOPS. Wilcoxon test showed that SPEA2 domi-
nates NSGA-II, MOEA/D, MOGBHS, and MSOPS with an SL of 95%.
Besides MOGBHS dominates MSOPS with the same SL.

Results evidence that MOGBHS is competitive with 10000 EOFs in some problems
achieving the best performance with constrained problems such as CF5, CF7. With
these problems, MOGBHS occupied the first place according to the metrics GD, IGD
and SP as can be seen in Table 4.

Table 3. MOGBHS in 5000 EOFs. Best results in bold.

Problem Metric NSGA-II MOEA/D MOGBHS SPEA2 MSOPS

CF4 HV 0.2538 (5) 0.2548 (4) 0.3245 (1) 0.2662 (3) 0.3190 (2)
GD 0.0511 (5) 0.0302 (2) 0.0296 (1) 0.0345 (3) 0.0485 (4)
IGD 0.1701 (2) 0.2213 (1) 0.1347 (4) 0.1623 (3) 0.1209 (5)
EP 0.3400 (3) 0.4705 (5) 0.2513 (2) 0.3545 (4) 0.2163 (1)
SP 0.0795 (5) 0.0547 (1) 0.0760 (4) 0.0683 (2) 0.0704 (3)

CF5 HV 0.0300 (3) 0.0123 (4) 0.0358 (1) 0.0347 (2) 0.0000 (5)
GD 0.4589 (4) 0.3759 (3) 0.1566 (1) 0.3026 (2) 0.6135 (5)
IGD 0.5141 (5) 0.5291 (4) 0.5807 (2) 0.5419 (3) 0.7424 (1)
EP 0.8460 (1) 0.9060 (3) 0.9247 (4) 0.8532 (2) 0.9268 (5)
SP 0.3153 (2) 0.5502 (5) 0.0000 (1) 0.3273 (3) 0.4278 (4)

CF7 HV 0.1035 (4) 0.1554 (3) 0.2122 (1) 0.1787 (2) 0.0000 (5)
GD 0.4325 (4) 0.2581 (2) 0.1348 (1) 0.3558 (3) 0.5790 (5)
IGD 0.4981 (2) 0.4765 (3) 0.3877 (5) 0.4082 (4) 0.5386 (1)
EP 0.6907 (3) 0.7109 (4) 0.5952 (1) 0.6123 (2) 0.7498 (5)
SP 0.1894 (2) 0.2043 (3) 0.2712 (4) 0.1284 (1) 0.3813 (5)
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5.4 Analysis of Algorithms with 20000 EOFs

Regarding Hypervolume: The Friedman test was run according to a chi-square dis-
tribution with 4 degrees of freedom: 16.39 and p = 0.00254. Results showed a ranking
where MSOPS achieved the best performance, followed by SPEA2, MOEA/D, NSGA-
II, and finally MOGBHS. Wilcoxon test showed that MSOPS, MOEA/D, and SPEA2,
dominate NSGA-II and MOGBHS with an SL of 95%.

With regard to Epsilon: The Friedman test was run according to a chi-square
distribution with 4 degrees of freedom: 26.08 and p = 3.04907E−5. Results showed a
ranking where MSOPS achieved the best performance, followed by SPEA2, NSGA-II,
MOEA/D, and finally MOGBHS. The Wilcoxon test showed that MSOPS, and SPEA2
dominate MOEA/D, NSGA-II, and MOGBHS with an SL of 95%.

With regard to Generational Distance: The Friedman test was run according to a
chi-square distribution with 4 degrees of freedom: 24.96 and p = 5.12501E−5. Results
showed a ranking where SPEA2 achieved the best performance, followed by
MOEA/D, NSGA-II, MSOPS and finally MOGBHS. Wilcoxon test showed that
SPEA2 and MOEA/D dominate NSGA-II, MSOPS, and MOGBHS with an SL of
95%.

With regard to Inverted Generational Distance: The Friedman test was run
according to a chi-square distribution with 4 degrees of freedom 17.48 and
p = 0.00156. Results showed a ranking where MOGBHS achieved the best perfor-
mance, followed by NSGA-II and MOEA/D with the same average value, the third
place is occupied by SPEA2 and finally MSOPS. Wilcoxon test showed that MOGBHS
and NSGA-II dominate SPEA2 y MSOPS with an SL of 95%.

Concerning Spacing: The Friedman test was run according to a chi-square distri-
bution with 4 degrees of freedom: 38.2 and p = 1.01950E−7. Results showed a ranking
where SPEA2 achieved the best performance, followed by NSGA-II, MOEA/D,
MOGBHS, and finally MSOPS. Wilcoxon test showed that SPEA2 dominates
MOEA/D, NSGA-II, MOGBHS, and MSOPS with an SL of 95%, besides MOEA/D
dominates MOGBHS and MSOPS with the same SL.

Table 4. MOGBHS with 10000 EOFs. Best results in bold.

Problem Metric NSGA-II MOEA/D MOGBHS SPEA2 MSOPS

CF5 HV 0.1584 (4) 0.1954 (1) 0.1263 (5) 0.1774 (3) 0.1841 (2)
GD 0.1741 (4) 0.1362 (3) 0.0392 (1) 0.0897 (2) 0.2517 (5)
IGD 0.3331 (3) 0.3856 (2) 0.5094 (1) 0.3316 (4) 0.3216 (5)
EP 0.6089 (2) 0.6809 (4) 0.8454 (5) 0.6458 (3) 0.5758 (1)
SP 0.31470 (3) 0.3870 (5) 0.0000 (1) 0.2198 (2) 0.3373 (4)

CF7 HV 0.2872 (5) 0.3128 (3) 0.2962 (4) 0.3505 (2) 0.3561 (1)
GD 0.1678 (5) 0.0770 (2) 0.0528 (1) 0.1488 (4) 0.1311 (3)
IGD 0.3263 (3) 0.3522 (2) 0.3977 (1) 0.3028 (4) 0.2891 (5)
EP 0.5366 (3) 0.6053 (5) 0.56520 (4) 0.4614 (2) 0.4435 (1)
SP 0.3686 (5) 0.2227 (3) 0.0000 (1) 0.3008 (4) 0.1596 (2)
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Results evidence that MOGBHS achieved the best solutions over constrained
problems such as CF7, occupying the first place according to 3 metrics (HV, EP, and
SP) as can be seen in Table 5.

5.5 Analysis of the Results Per Metric

The present analysis is based on the average of the best solutions found during the
evaluations in the MOEA-Framework. The performance was measured according to the
metrics. General results are shown in Table 6.

The overall ranking for hypervolume showed that SPEA2 is the most competitive
algorithm as its average ranking is 2.4, followed by MSOPS in the second place. The
third position is occupied by MOEA/D followed by MOGBHS and NSGA-II in the last
place. SPEA2 is better with 1000 and 2000 EOFs, and MSOPS is better with 10000
and 20000 EOFs. These results show that SPEA2 achieved the maximum value of
hypervolume (accuracy and diversity of solutions) in the final set of solutions when
EOFs is less than or equal to 20000.

The overall ranking for Epsilon showed that SPEA2 is the most competitive
algorithm as its average is 2.3, followed by MSOPS with 2.4. In the third place NSGA-
II and finally MOGBHS and MOEA/D. SPEA2 is better with 2000 and 5000 EOFs and
MSOPS is better with 10000 and 20000 EOFs. These results evidence that SPEA2 and
MSOPS generated solutions closer to the optimal Pareto front (high level of accuracy,
diversity, and separability). In other words, these solutions have a high level of simi-
larity with the Pareto front solutions when EOFs is less than (or equal to) 20000.

The overall ranking for Generational distance showed that SPEA2 is the most
competitive algorithm with an average ranking of 1.9, followed by MOEA/D in the
second place, MOBGHS in the third position followed by NSGA-II and MSOPS in the
last place. SPEA2 is better with all EOFS values tested. SPEA2 achieved better per-
formance (accuracy) as its solutions have short average distance from the Pareto front
when EOFs is less than or equal to 20000.

The overall ranking for Inverted Generational distance showed thatMOGBHS is
the most competitive algorithm with an average ranking of 2.6 like NSGA-II, MOEA/D
in the third place followed by MSOPS and SPEA2 in the last place. MSOPS is better
with 2000 EOFs, and NSGA-II is better with 5000 EOFs. Finally, MOGBHS is better
with 10000 and 20000 EOFs. These results allow evidence that solutions obtained with
MOGBHS have a high level of convergence (accuracy and diversity) with respect to
the distribution of solutions in the Pareto front. It is important to note the difference in

Table 5. MOGBHS en 20000 EOFs. Best results in bold.

Problem Metric NSGA-II MOEA/D MOGBHS SPEA2 MSOPS

CF7 HV 0.3565 (4) 0.3250 (5) 0.4353 (1) 0.3691 (3) 0.3843 (2)
GD 0.0443 (5) 0.0052 (1) 0.0183 (3) 0.0152 (2) 0.0277 (4)
IGD 0.3003 (3) 0.3570 (1) 0.2131 (4) 0.3244 (2) 0.2020 (5)
EP 0.4864 (4) 0.5593 (5) 0.2863 (1) 0.4801 (3) 0.3824 (2)
SP 0.2425 (5) 0.0137 (2) 0.0082 (1) 0.1075 (4) 0.0643 (3)
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the results of this metric compared to the results of the Hypervolume metric. Although
both metrics evaluate accuracy and diversity, the results are opposite.

The overall ranking for Spacing showed that SPEA2 is the most competitive
algorithm with an average ranking of 1.7 followed by MOEA/D in the second place,
NSGA-II in the third place and MOGBHS in the fourth place, finally MSOPS in the
last place. MOEA/D is better with 2000 EOFs, and SPEA2 is better with 5000, 10000,
and 20000 EOFs.

By analyzing all the metrics, it can be said that SPEA2 is the most competitive with
different EOFs. MOGBHS is closer to the best solutions with few EOFs (2000 and
5000) but does not get good results when the number of EOFs grows. However, when

Table 6. Overall ranking of Friedman test by metrics. Best results in bold.

EOFs MOGBHS SPEA2 MSOPS NSGA-II MOEA/D Chi2 p-value

Hypervolume
2000 2.95 2.20 3.35 3.25 3.25 7.12 0.1297
5000 3.00 2.25 3.05 3.50 3.20 6.84 0.1446
10000 3.75 2.55 2.53 3.55 2.63 11.47 0.0218
20000 3.78 2.60 2.08 3.65 2.90 16.39 0.0025
Avg. 3.4 (4) 2.4 (1) 2.8 (2) 3.5 (5) 3.0 (3)
Epsilon
2000 2.65 1.85 3.55 3.30 3.65 18.08 0.0012
5000 3.25 2.30 2.60 3.05 3.80 10.84 0.0284
10000 3.95 2.35 1.95 3.05 3.70 23.36 0.0001
20000 3.85 2.75 1.55 3.35 3.50 26.08 3.0491
Avg. 3.4 (4) 2.3 (1) 2.4 (2) 3.2 (3) 3.7 (5)
Generational distance
2000 2.55 1.95 4.35 3.65 2.50 30.40 4.E+00
5000 2.85 1.75 4.20 3.65 2.55 29.20 7.1191
10000 3.55 1.95 3.85 3.50 2.15 24.80 5.5189
20000 3.85 1.90 3.75 3.25 2.25 24.96 0.0001
Avg. 3.2 (3) 1.9 (1) 4.0 (5) 3.5 (4) 2.4 (2)
Inverted generational distance
2000 3.60 4.20 2.10 2.45 2.65 24.28 7.E+00
5000 2.80 3.75 2.90 2.65 2.90 5.96 0.2022
10000 2.00 3.80 3.80 2.50 2.90 20.32 4.3175
20000 2.00 3.45 3.95 2.80 2.80 17.48 0.0016
Avg. 2.6 (1) 3.8 (5) 3.2 (4) 2.6 (1) 2.8 (3)
Spacing
2000 3.10 1.95 4.65 3.60 1.70 47.08 2.E+06
5000 3.55 1.60 4.50 2.90 2.45 38.60 0.0000
10000 3.80 1.55 4.30 2.65 2.70 37.16 1.6698
20000 3.90 1.70 4.30 2.25 2.85 38.20 1.0195
Avg. 3.6 (4) 1.7 (1) 4.4 (5) 2.9 (3) 2.4 (2)
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considering the metric of inverted generational distance, MOGBHS gets the best results
with 10000 and 20000 EOFs. A detailed review of the MOEA Framework and the
metrics of hypervolume and inverted generational distance is necessary to find the
explanation of these opposite results.

5.6 Overall Analysis

After observing the overall rankings, it can be stated that SPEA2 is the most com-
petitive algorithm according to all the metrics (HV, EP, GD, IGD, and SP) with 2000,
5000, 10000, and 20000 EOFs. The second place is occupied by MOEA/D, NSGA-II
in the third place, MOGBHS in the fourth and MSOPS in the last place (see Table 7).

In Table 7, SPEA2 showed a consistent performance in the test carried out.
Equally, it can be observed that MOGBHS is competitive with 2000 and 5000 EOFs
occupying the first place according to the metrics IGD and EP which are commonly
used for testing MOEAs [17].

6 Conclusions and Future Work

In this paper, a comparative analysis of the MOGBHS algorithm with other four state-
of-the-art algorithms is presented. Results showed that the most competitive algorithm
for the families of problems UF1–UF12 and CF1–CF9 is SPEA2. The analysis used the
metrics Hypervolume, Epsilon, generational distance, Inverted generational distance,
and Spacing. SPEA2 remained constant in the best rankings positions generated during
the tests (with 2000, 5000, 10000 and 20000 EOFs).

It was observed that the MOGBHS algorithm obtained the best solutions according
to the metric inverted generational distance. Equally, the results of the overall analysis
showed that as the number of evaluations of EOFs increased the performance of
MOGBHS decreased. The opposite happens with the MSOPS algorithm, which
obtained better performance as the number of EOFs increased. Therefore, MOGBHS
should be used to solve problems when there exist time restrictions or the number of
EOFs is established.

It was observed that MOGBHS is very competitive in constrained problems,
because this algorithm was designed to solve transportation problems with several

Table 7. Average results using all metrics

Metric Average
Algorithm MOGBHS SPEA2 MSOPS NSGA-II MOEA/D

2000 3.0 (3) 2.4 (1) 3.6 (5) 3.3 (4) 2.8 (2)
5000 3.0 (2) 2.3 (1) 3.6 (5) 3.1 (3) 3.1 (3)
10000 3.4 (5) 2.4 (1) 3.3 (4) 3.1 (3) 2.8 (2)
20000 3.5 (5) 2.5 (1) 3.1 (3) 3.1 (3) 2.9 (2)
Avg. 3.2 (4) 2.4 (1) 3.4 (5) 3.1 (3) 2.9 (2)
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constrains. Also, MOGBHS was designed to solve problems in which the fitness
calculation is time-consuming (the simulation of buses was done in a tool based on
discrete events) and some restrictions in the number of EOFs were defined. For all the
EOFs MOGBHS obtained the best solutions for the CF7 problem.

As future work, it is expected to incorporate covering arrays and tournament
objectives to MOGBHS in order to tackle many-objectives optimization problems.
Likewise, it is planned to experiment with problems of much more than two goals
(objectives) such as the DTLZ and WFG family of problems.
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