
Chapter 9
Constructive Martingale Representation
in Functional Itô Calculus: A Local
Martingale Extension

Kristoffer Lindensjö

Abstract The constructive martingale representation theorem of functional Itô cal-
culus is extended, from the space of square integrable martingales, to the space of
localmartingales. The setting is that of an augmented filtration generated by aWiener
process.
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9.1 Introduction

Consider a complete probability space (Ω,F, IP) on which lives an n-dimensional
Wiener process W . Let F = (Ft )0≤t≤T denote the augmentation under IP of the
filtration generated by W until the constant terminal time T < ∞. One of the main
results of Itô calculus is the martingale representation theorem which in the present
setting is as follows: Let M be a RCLL local martingale relative to (IP,F), then there
exists a progressively measurable n-dimensional process ϕ such that

M(t) = M(0) +
∫ t

0
ϕ(s)′dW (s), 0 ≤ t ≤ T, and

∫ T

0
|ϕ(t)|2dt < ∞ a.s.

In particular, M has continuous sample paths a.s.
Considerable effort has in the literature beenmade in order tofind explicit formulas

for the integrand ϕ, i.e. in order to find constructive representations of martingales,
mainly using Malliavin calculus, see e.g. [8, 15, 16, 20] and the references therein.
The recently developed functional Itô calculus includes a new type of constructive
representation of square integrable martingales due to Cont and Fournié see e.g.
[1, 3–5]. The main result of the present paper is an extension of this result to local
martingales.
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The organization of the paper is as follows. Section 9.2 is based on [1] and contains
a brief and heuristic account of the relevant parts of functional Itô calculus including
the constructivemartingale representation theorem for square integrablemartingales.
Section 9.3 contains the local martingale extension of this theorem and a simple
example.

9.2 Constructive Representation of Square Integrable
Martingales

Denote an n-dimensional sample path by ω. Denote a sample path stopped at t
by ωt , i.e. let ωt (s) = ω(t ∧ s), 0 ≤ s ≤ T . Consider a real-valued functional of
sample paths F(t, ω) which is non-anticipative (essentially meaning that F(t, ω) =
F(t, ωt )). The horizontal derivative at (t, ω) is defined by

DF(t, ω) = lim
h↘0

F(t + h, ωt ) − F(t, ωt )

h
.

The vertical derivative at (t, ω) is defined by

∇ω F(t, ω) = (∂i F(t, ω), i = 1, ..., n)′,

where

∂i F(t, ω) = lim
h→0

F(t, ωt + hei I[t,T ]) − F(t, ωt )

h
.

Higher order vertical derivatives are obtained by vertically differentiating vertical
derivatives.

One of the main results of functional Itô calculus is the functional Itô formula,
which is just the standard Itô formula with the usual time and space derivatives
replaced by the horizontal and vertical derivatives. If the functional F is sufficiently
regular (regarding e.g. continuity and boundedness of its derivatives), whichwewrite
as F ∈ C1,2

b , then the functional Itô formula holds, see [1, ch. 5,6]. We remark that
[12] contains another version of this result.

Using the functional Itô formula it easy to see that if Z is a martingale satisfying

Z(t) = F(t, Wt ) dt × dIP-a.e., with F ∈ C1,2
b , (9.1)

then, for every t ∈ [0, T ],

Z(t) = Z(0) +
∫ t

0
∇ω F(s, Ws)

′dW (s) a.s.
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We may therefore define the vertical derivative with respect to the process W of a
martingale Z satisfying (9.1) as the dt × dIP-a.e. unique process ∇W Z given by

∇W Z(t) = ∇ω F(t, Wt ), 0 ≤ t ≤ T . (9.2)

Let C1,2
b (W ) be the space of processes Z which allow the representation in (9.1). Let

L2(W ) be the space of progressively measurable processes ϕ satisfying the condition
E[∫ T

0 ϕ(s)′ϕ(s)ds] < ∞. LetM2(W ) be the space of square integrable martingales
with initial value 0. Let D(W ) = C

1,2
b (W ) ∩ M2(W ).

It can be shown that {∇W Z : Z ∈ D(W )} is dense in L2(W ) and that D(W ) is
dense inM2(W ) [1, ch. 7]. Using this it is possible to show that the vertical derivative
operator ∇W (·) admits a unique extension to M2(W ), in the following sense: For
Y ∈ M2(W ) the (weak) vertical derivative ∇W Y is the unique element in L2(W )

satisfying

E[Y (T )Z(T )] = E

[∫ T

0
∇W Y (t)′∇W Z(t)dt

]
(9.3)

for every Z ∈ D(W ), where ∇W Z is defined in (9.2). The constructive martingale
representation theorem ([1, ch. 7]) follows:

Theorem 9.1 (Cont and Fournié) For any square integrable martingale Y relative
to (IP,F) and every t ∈ [0, T ],

Y (t) = Y (0) +
∫ t

0
∇W Y (s)′dW (s) a.s.

9.3 Constructive Representation of Local Martingales

This section contains an extension of the vertical derivative ∇W (·) and the construc-
tive martingale representation in Theorem 9.1 to local martingales. Let Mloc(W )

denote the space of local martingales relative to (IP,F) with initial value zero and
RCLL sample paths. In Theorem 9.2 we extend the vertical derivative to Mloc(W ).
Using this extension we can formulate the constructive martingale representation
theorem also for local martingales, see Theorem 9.3.

Before extending the definition of the vertical derivative toMloc(W )we recall the
definition of a local martingale.

Definition 9.1 M is said to be a local martingale if there exists a sequence of non-
decreasing stopping times {θn} with limn→∞ θn = ∞ a.s. such that the stopped local
martingale M(· ∧ θn) is a martingale for each n ≥ 1.
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Theorem 9.2 (Definition of ∇W (·) on Mloc(W ) )

• There exists a progressively measurable dt × dIP-a.e. unique extension of the
vertical derivative ∇W (·) from M2(W ) to Mloc(W ), such that, for M ∈ Mloc(W ),

M(t) = ∫ t
0 ∇W M(s)′dW (s), 0 ≤ t ≤ T, and∫ T
0 |∇W M(t)|2dt < ∞a.s.

(9.4)

• Specifically, for M ∈ Mloc(W ) the vertical derivative ∇W M is defined as the pro-
gressively measurable dt × dIP-a.e. unique process satisfying

∇W M(t) = lim
n→∞ ∇W Mn(t) dt × dIP-a.e. (9.5)

where ∇W Mn is the vertical derivative of Mn := M(· ∧ τn) ∈ M2(W ) and τn is
given by

τn = θn ∧ inf{s ∈ [0, T ] : |M(s)| ≥ n} ∧ T (9.6)

where {θn} is an arbitrary sequence of stopping times of the kind described in
Definition 9.1.

Remark 9.1 Note that if M in Theorem 9.2 satisfies

M(t) =
∫ t

0
γ (s)′dW (s), 0 ≤ t ≤ T a.s.

for some process γ , then γ = ∇W M dt × dIP-a.e. It follows that the extended vertical
derivative∇W M defined in Theorem 9.2 does not depend (modulo possibly on a null
set dt × dIP) on the particulars of the chosen stopping times {θn}.
Proof The martingale representation theorem implies that, for M ∈ Mloc(W ), there
exists a progressively measurable process ϕ satisfying

M(t) =
∫ t

0
ϕ(s)′dW (s), 0 ≤ t ≤ T, and

∫ T

0
|ϕ(t)|2dt < ∞ a.s. (9.7)

Therefore, if we can prove that

lim
n→∞ ∇W Mn(t) = ϕ(t) dt × dIP-a.e., (9.8)

then it follows that there exists a progressively measurable process, denote it by
∇W M , which is dt × dIP-a.e. uniquely defined by (9.5) and satisfies

∇W M(t) = ϕ(t) dt × dIP-a.e.,
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which in turn implies that the integrals of ∇W M and ϕ coincide in the way that (9.7)
implies (9.4). All we have to do is therefore to prove that (9.8) holds.

Let us recall some results about stopping times andmartingales. The stopped local
martingale M(· ∧ θn) is a martingale for each n, by Definition 9.1. Stopped RCLL
martingales are martingales. The minimum of two stopping times is a stopping time
and the hitting time

inf{s ∈ [0, T ] : |M(s)| ≥ n}

is, for each n, in the present setting, a stopping time. Using these results we obtain that
M(· ∧ θn ∧ inf{s ∈ [0, T ] : |M(s)| ≥ n} ∧ T ) = M(· ∧ τn) is amartingale, for each
n. Moreover, M is by the standard martingale representation result a.s. continuous.
Hence, we may define a sequence of, a.s. continuous, martingales {Mn} by

Mn = M(· ∧ τn) =
∫ ·∧τn

0
ϕ(s)′dW (s) a.s. (9.9)

where the last equality follows from (9.7). Now, use the definition of τn in (9.6) to
see that

|Mn(t)| =
∣∣∣∣
∫ t∧τn

0
ϕ(s)′dW (s)

∣∣∣∣ ≤ n a.s.

for any t and n, and that in particular Mn is, for each n, a square integrablemartingale.
Moreover, (9.9) implies that Mn satisfies

Mn(t) =
∫ t

0
I{s≤τn}ϕ(s)′dW (s), 0 ≤ t ≤ T a.s. (9.10)

Since each Mn is a square integrable martingale we may use Theorem 9.1 on Mn ,
which together with (9.10) implies that

Mn(t) =
∫ t

0
∇W Mn(s)

′dW (s) (9.11)

=
∫ t

0
I{s≤τn}ϕ(s)′dW (s), 0 ≤ t ≤ T a.s.

where ∇W Mn is the vertical derivative of Mn with respect to W (defined in (9.3))
and where we also used the continuity of the Itô integrals. The equality of the two
Itô integrals in (9.11) implies that

∇W Mn(t) = I{t≤τn}ϕ(t) dt × dIP-a.e. (9.12)

The local martingale property of M implies that limn→∞ θn = ∞ a.s. Using this
and the definition of τn in (9.6) we conclude that for almost every ω ∈ Ω and each
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t ∈ [0, T ] there exists an N (ω, t) such that

n ≥ N (ω, t) ⇒ sup
0≤s≤t

|M(ω, s)| ≤ n and t ≤ θn(ω) ⇒ t ≤ τn(ω). (9.13)

It follows from (9.12) and (9.13) that there exists an N (ω, t) such that

n ≥ N (ω, t) ⇒ ∇W Mn(ω, t) = ϕ(ω, t) dt × dIP-a.e.

which means that (9.8) holds. �

If M is a RCLL local martingale then M − M(0) ∈ Mloc(W ), which implies that
∇W (M − M(0)) is defined in Theorem 9.2. This observation allows us to extend
the definition of the vertical derivative to RCLL local martingales not necessarily
starting at zero in the following obvious way.

Definition 9.2 The vertical derivative of a local martingale M relative to (IP,F)

with RCLL sample paths is defined as the progressively measurable dt × dIP-a.e.
unique process ∇W M satisfying

∇W M(t) = ∇W (M − M(0))(t), 0 ≤ t ≤ T, (9.14)

where ∇W (M − M(0))(t) is defined in Theorem 9.2.

The following result is an immediate consequence of Theorem 9.2 and
Definition 9.2.

Theorem 9.3 If M is a local martingale relative to (IP,F) with RCLL sample paths,
then

M(t) = M(0) +
∫ t

0
∇W M(s)′dW (s), 0 ≤ t ≤ T, and

∫ T

0
|∇W M(t)|2dt < ∞ a.s.,

where ∇W M(s) is defined in Definition 9.2.

Let us try to clarify the theory by studying a simple example. It is straightforward
to extend the results above to the case when the Wiener process W is replaced by an
adapted process X given by

X (t) = X (0) +
∫ t

0
σ(s)dW (s), (9.15)

where σ is a matrix-valued adapted process satisfying suitable assumptions, mainly
invertibility, see also [1, 4]. Thus, a local martingale M can be represented as
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M(t) − M(0) =
∫ t

0
∇W M(s)′dW (s) =

∫ t

0
∇X M(s)′d X (s),

and the relationship between the vertical derivatives with respect to W and X is
∇W M(t)′ = (∇X M(t)′)σ (t), cf. (9.15). As example consider the one-dimensional
case and let X with X (0) = 0 be given by (9.15) under the assumption that σ(s) is
a deterministic function of time and let M be given by M(t) = F(t, Xt ) where F
is the non-anticipative functional F(t, ω) = ω3(t) − 3

∫ t
0 ω(s)σ 2(s)ds, i.e. let M be

the local martingale defined by

M(t) = X3(t) − 3
∫ t

0
X (s)σ 2(s)ds.

In this case the vertical derivative simplifies to the standard derivative, that is,
∇Fω(t, ω) = 3ω2(t), see also [1, 4] (we remark that the horizontal derivative is
DF(t, ω) = −3ω(t)σ 2(t)). In this case, ∇X M(t) = 3X2(t) and

M(t) =
∫ t

0
3X2(s)d X (s) =

∫ t

0
3X2(s)σ (s)dW (s),

which we remark is easily found using the standard Itô formula. Note that this also
means that ∇W M(t) = 3X2(t)σ (t) = ∇X M(t)σ (t).

Concluding Remarks

Many of the applications that rely on martingale representation are within mathe-
matical finance. A particular application that may benefit from the local martingale
extension of the present paper is optimal investment theory, in which the discounted
(using the state price density) optimal wealth process is a (not necessarily square
integrable) martingale, see e.g. [9, ch. 3], see also [13]. In particular, using func-
tional Itô calculus it is possible to derive an explicit formula for the optimal portfolio
in terms of the vertical derivative of the discounted optimal wealth process, see
also [14]. Similar explicit formulas for optimal portfolios based on the Malliavin
calculus approach to constructive martingale representation have, under restrictive
assumptions, been studied extensively, see e.g. [2, 6, 7, 10, 11, 17–19]. The general
connection between Malliavin calculus and functional Itô calculus is studied in e.g.
[1, 4].
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