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Preface

This book highlights the latest advances in stochastic processes, probability theory,
mathematical statistics, engineering mathematics and applications of algebraic
structures, with a focus on those mathematical models, structures, concepts, prob-
lems and computational methods and algorithms that are important for applications
in modern technology, engineering and the natural sciences. In particular, the book
features mathematical methods and models from probability theory, stochastic
processes, applied algebraic structures and computational modelling with various
applications.

The book gathers selected, high-quality contributed chapters from several large
research communities working on modern stochastic processes, algebraic structures
and their interplay and applications. The chapters cover both theory and applica-
tions, and are illustrated with a wealth of figures, schemes, algorithms, tables and
findings to help readers grasp the material, and to encourage them to develop new
mathematical methods and concepts in their future research. Presenting new
methods and results, reviews of cutting-edge research, and open problems and
directions for future research, they will serve as a source of inspiration for a broad
range of researchers and research students in, e.g. probability theory and mathe-
matical statistics, applied algebraic structures, and applied mathematics.

This work arose on the basis of contributions presented at the International
Conference “Stochastic Processes and Algebraic Structures — From Theory
Towards Applications” (SPAS2017), which was held in honour of Professor
Dmitrii Silvestrov’s 70th birthday and his 50 years of fruitful service to mathe-
matics, education and international cooperation. This international conference
brought together a selected group of mathematicians, researchers from related
subjects and practitioners from industry who actively contribute to the theory and
applications of stochastic processes and algebraic structures, methods and models.
It was co-organised by the Division of Applied Mathematics, Mälardalen
University, Västerås and the Department of Mathematics, Stockholm University,
Stockholm and held in Västerås and Stockholm, Sweden on 4–6 October 2017.
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Representing the first of two volumes, the book consists of 19 chapters (papers),
starting with a special chapter devoted to biographical notes about Professor Dmitrii
Silvestrov and written by Sergei Silvestrov, Ola Hössjer, Anatoliy Malyarenko and
Yuliya Mishura. The remaining 18 chapters are grouped into Part I — Stochastic
Processes, and Part II — Applications of Stochastic Processes.

Part I begins with Chap. 2 by Dmitrii Silvestrov, which presents a survey of
research results obtained by him and his colleagues in the areas of limit theorems
for Markov-type processes and randomly stopped stochastic processes, renewal
theory and ergodic theorems for perturbed stochastic processes, quasi-stationary
distributions for perturbed stochastic systems, methods of stochastic approximation
for price processes, asymptotic expansions for nonlinearly perturbed semi-Markov
processes, and applications of the above results to queuing systems, reliability
models, stochastic networks, bio-stochastic systems, perturbed risk processes and
American-type options.

Chapter 3 by Dmitrii Silvestrov presents results of the complete analysis and
classification of individual ergodic theorems for perturbed alternating regenerative
processes with semi-Markov modulation. New short, long and super-long time
ergodic theorems for regularly and singularly perturbed alternating regenerative
processes are provided.

Chapter 4 by Sergey Krasnitskiy and Oleksandr Kurchenko explores asymp-
totics for Baxter-type sums for generalised random Gaussian fields. The general
results are illustrated on examples related to generalised fields with independent
values and the field of fractional Brownian motion.

In Chap. 5 by Salwa Bajja, Khalifa Es-Sebaiy and Lauri Viitasaari, upper bounds
for rates of convergence in limit theorems for quadratic variations of the
Lei–Nualart process are presented.

Chapter 6 by Yuliya Mishura, Kostiantyn Ralchenko and Sergiy Shklyar focuses
on parameter estimation in the regression Gaussian model with discrete and con-
tinuous time observations. General results are applied to a number of models such
as fractional Brownian motion, mixed fractional Brownian motion and
sub-fractional Brownian motion, as well as a model with two independent fractional
Brownian motions.

In Chap. 7 by Gulnoza Rakhimova, new effective conditions of asymptotic
consistency for fixed-width confidence interval estimators and asymptotic efficiency
of stopping times are highlighted.

In Chap. 8 by José Igor Morlanes and Andriy Andreev, an effective algorithm for
the simulation of fractional Ornstein–Uhlenbeck process of the second kind is
developed.

Chapter 9 by Kristoffer Lindensjö focuses on an extension of the constructive
martingale representation theorem, from the space of square integrable martingales
to the space of local martingales.

In Chap. 10 by Anatoliy Malyarenko and Martin Ostoja-Starzewski, random
fields related to the symmetry classes of second-order symmetric tensors are
described.
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Part II begins with Chap. 11 by Dmitrii Silvestrov, Mikael Petersson and Ola
Hössjer, in which asymptotic expansions for stationary and conditional
quasi-stationary distributions of nonlinearly perturbed birth–death-type semi-
Markov models are presented, and their applications to models of population
growth, epidemic spread of disease and dynamics of the genetic composition of a
given population are discussed.

Chapter 12 by Ola Hössjer, Gu ̈nter Bechly and Ann Gauger addresses waiting
times for coordinated mutations in a population described by Markov process of
Moran type. The authors conduct a detailed analysis of the corresponding forms and
conditions for waiting time asymptotics.

Chapter 13 by Kristoffer Spricer and Pieter Trapman presents the results of
experimental studies of the initial phase of epidemic growth in large mostly sus-
ceptible populations. The authors demonstrate that the empirical networks tested in
their paper display exponential growth in the early stages of the epidemic, except in
cases where the networks are restricted by strong low-dimensional spatial
constraints.

Chapter 14 by Elena Boguslavskaya, Yuliya Mishura and Georgiy Shevchenko
studies Wiener-transformable markets, where the driving process is provided by an
adapted transformation of a Wiener process. The authors also investigate the
conditions of replication contingent claims on such markets.

Chapter 15 by Guglielmo D’Amico, Fulvio Gismondi and Filippo Petroni
investigates the high frequency dynamic of financial volumes of traded stocks using
a semi-Markov model. The authors show that this model can successfully reproduce
several empirical facts about volume evolution like time series dependence,
intra-daily periodicity and volume asymmetry.

In Chap. 16 by Benard Abola, Pitos Seleka Biganda, Christopher Engström,
John Magero Mango, Godwin Kakuba and Sergei Silvestrov, new recurrent algo-
rithms with linear time complexity for computing PageRanks for information net-
works with different graph structures are described.

In Chap. 17 by Pitos Seleka Biganda, Benard Abola, Christopher Engström,
John Magero Mango, Godwin Kakuba and Sergei Silvestrov, traditional PageRanks
based on an ordinary random walk approach and Lazy PageRanks based on a lazy
random walk on a graph interpretation are considered. Further, the paper describes
how the two variants change when complete graphs are connected to a line of
nodes, the links of which are all in one direction. Explicit formulas and numerical
results are obtained for both PageRank variants.

Chapter 18 by Hannes Malmberg and Ola Hössjer examines continuous
approximations of discrete choice models with a large number of options. The
authors use point process theory and extreme value theory to derive analytic
expressions for the continuous approximations under a wide range of distributional
assumptions.

Chapter 19 by Boris Faybishenko, Fred Molz and Deborah Agarwal presents the
results of sensitivity analysis for nonlinear dynamics simulation of ecological
processes based on models of deterministic chaos and their comprehensive time
series analysis in the time domain and phase space.
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University. We are grateful to both the Department of Mathematics, Stockholm
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2 S. Silvestrov et al.

Dmitrii S. Silvestrov was born in 1947. D. Silvestrov graduated with distinc-
tion from Kiev University (Faculty of Mechanics and Mathematics) in 1968 and
became a postgraduate student at the Department of Theory of Probability and
Mathematical Statistics, under supervision of Professor M. Yadrenko. In 1969, D.
Silvestrov defended the Candidate of Science (Ph.D. equivalent) dissertation [1],
devoted to limit theorems for semi-Markov processes. In 1973, D. Silvestrov has got
the Doctor of Science degree in the area of theory of probability and mathematical
statistics. In the second dissertation, [2], D. Silvestrov developed an advanced theory
of limit theorems for randomly stopped stochastic processes, which gives effective
general conditions for weak convergence and convergence in topologies U and J for
compositions of càdlàg processes. The above research directions were formed in the
frame of the internationally known Ukrainian school on stochastic processes led by
Academicians V. Korolyuk and A. Skorokhod.

The research results obtained by D. Silvestrov during this period are presented in
the book [3]. In 1973, D. Silvestrov was awarded the Prize of theMoscowMathemat-
ical Society on the recommendation of Academician A. Kolmogorov, whowas at that
time the President of this society, and, in 1977, the Ukrainian Ostrovsky Prize, for
works on stochastic processes. The extended variant of the theory of limit theorems
for randomly stopped stochastic processes is presented in the book [9].

In 1974, D. Silvestrov has got a Professor position at the Department of Theory
of Probability and Mathematical Statistics at Kiev University. In the end of 70th, the
research interests of D. Silvestrov shifted to the renewal theory and ergodic theorems
for perturbed stochastic processes. Themain results of this period are connected with
a generalisation of the classical renewal theorem to the model of perturbed renewal
equations and the exact coupling and ergodic theorems for perturbed regenerative and
semi-Markov type processes. Partly, the results in this area are presented in the book
[5]. Also, the book [4], co-authored with Professors A. Dorogovtsev, A. Skorokhod
and M. Yadrenko, and containing the extended collection of probability problems,
was published during these years.

In 80th, D. Silvestrov was also involved in an applied statistical research in coop-
eration with industry and development of statistical software. His interests in this
area are reflected in the two books [6, 7].

One of his projects in the area of applied statistics connected with the database
of statistical terminology attracted interest of Professor G. Kulldorff, who was at
that time the President of International Statistical Institute. In 1991, he invited
D. Silvestrov to continue this work at Umeå University. The comprehensive Else-
vier’s dictionary of statistical terminology [8], co-authored with Dr. E. Silvestrova,
was published in 1995. In this way, D. Silvestrov began and then continued his work
in Sweden, at Umeå University, Luleå Technical University, Mälardalen University,
and Stockholm University.

During this period, D. Silvestrov developed a wide international scientific
cooperation. Among his collaborators and co-authors are Professors M. Gyllen-
berg (University of Helsinki), J. Teugels (Catholic University of Leuven), R. Manca
(University of Rome “La Sapienza”), Yu. Mishura and A. Kukush (Kiev Univer-
sity), G. Kulldorff, B. Ranneby, and H. Wallin (Umeå University), O. Hössjer and
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A.Martin-Löf (StockholmUniversity), S. Silvestrov andA.Malyarenko (Mälardalen
University). D. Silvestrov also was a visiting Professor at the Hebrew University of
Jerusalem, the University of Turku, and the University of Rome “La Sapienza”;
took part in organisation of a number international conferences and delivered invited
lectures at these and many other conferences.

The cooperation with Ukrainian colleagues was continued in the frame of four
European Tempus projects, which have been coordinated by D. Silvestrov and pro-
moted creation and development of a specialty Statistics at Kiev and Uzhhorod
universities, creation of a training center for actuaries and financial analysts at Kiev
University and opening of a new specialty Educational Measurements at several
Ukrainian universities as well as co-organization of three Scandinavian-Ukrainian
conferences in mathematical statistics and 11 international summer schools in finan-
cial and insurance mathematics, educational measurements and related fields held
in Ukraine and Sweden. D. Silvestrov is also a long-term member in the Editorial
Boards of international journals Theory of Probability and Mathematical Statistics
and Theory of Stochastic Processes.

In the beginning of 90th, D. Silvestrov began research studies of quasi-stationary
phenomena in perturbed stochastic systems with random lifetimes. The results of
these research studies are presented in the comprehensive book [10], co-authored
with Professor M. Gyllenberg.

In 1999, D. Silvestrov has got a Professor position at the Mälardalen University
(Västerås). Here, D. Silvestrov initiated new advanced bachelor andmaster programs
in the area of financial engineering and began an intensive research in the area of
stochastic approximationmethods for modulated price processes and American-type
options. The recent two volumes comprehensive monograph [12, 13] represents the
main his results in this area.

In 2009, D. Silvestrov got a prestigious Cramér Professor position at the Depart-
ment ofMathematics, StockholmUniversity. In 2013, the International Cramér Sym-
posium on Insurance Mathematics was initiated by D. Silvestrov and held at Stock-
holm University. The collective book [11] includes a representative sample of papers
presented at this symposium.Thebook [14], co-authoredwithProfessor S. Silvestrov,
represents the current research interests of D. Silvestrov in the area of asymptotic
expansions for nonlinearly and singularly perturbed semi-Markov type processes
and their applications to stochastic networks.

A pedagogical work is an important part of academicwork. During his long carrier
D. Silvestrov delivered more than 40 different courses on the theory of probability,
stochastic processes, statistical software, financial and insurance mathematics, etc.
He supervised more than 60 diploma works; 22 postgraduate students (M. Petersson,
E. Ekheden (co-supervised with Professor O. Hössjer), Y. Ni, R. Lundgren, M. Droz-
denko, F. Stenberg, H. Jönsson, E. Englund, Ö. Stenflo (co-supervised with Professor
H. Wallin), Z. Abadov, G. Pezhinska-Pozdnjakova, D. Korolyuk, Yu. Khusambaev,
A. Motsa, D. Banakh, E. Kaplan, Yu. Mishura, N. Kartashov, V. Poleshchuk, G. Tur-
sunov, R.Mileshina, and V.Masol) were all supervised byD. Silvestrov and obtained
Ph.D. equivalent degrees. Three of them, N. Kartashov, V. Masol, and Yu. Mishura,
later became Professors.
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During the 50 years of intensive research works D. Silvestrov published 11 books,
more than 150 research papers, and co-edited 15 collective works in the area of
stochastic processes and their applications.

A more detailed account of Professor D. Silvestrov’s academic activities can be
found at his web-page: http://www.su.se/profiles/dsilv/.
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Chapter 2
A Journey in the World of Stochastic
Processes

Dmitrii Silvestrov

Abstract This paper presents a survey of research results obtained by the author
and his collaborators in the areas of limit theorems for Markov-type processes and
randomly stopped stochastic processes, renewal theory and ergodic theorems for
perturbed stochastic processes, quasi-stationary distributions for perturbed stochas-
tic systems, methods of stochastic approximation for price processes, asymptotic
expansions for nonlinearly perturbed semi-Markov processes and applications of
the above results to queuing systems, reliability models, stochastic networks, bio-
stochastic systems, perturbed risk processes, and American-type options.

Keywords Limit theorem · Markov-type process · Random stopping · Perturbed
renewal equation · Coupling · Quasi-stationary distribution · American type
option · Perturbed semi-Markov process

2.1 Introduction

This paper presents a survey of research results in the area of stochastic processes
obtained by me and my collaborators during a long period, which began about 50
years ago. My first results have been published in papers [1, 2]. The corresponding
complete bibliography of works on stochastic processes and related areas includes
11 books, more than 150 research papers and 15 editorial works. It can be found at
the webpage [68].

The main areas of research cover limit theorems for Markov-type processes and
randomly stopped stochastic processes, renewal theory and ergodic theorems for
perturbed stochastic processes, quasi-stationary distributions for perturbed stochas-
tic systems, methods of stochastic approximation for price processes, asymptotic
expansions for nonlinearly perturbed semi-Markov processes, and their applications
to queuing systems, reliability models, stochastic networks, bio-stochastic systems,

D. Silvestrov (B)
Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
e-mail: silvestrov@math.su.se

© Springer Nature Switzerland AG 2018
S. Silvestrov et al. (eds.), Stochastic Processes and Applications,
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8 D. Silvestrov

perturbed risk processes, andAmerican-type options. For convenience of readers, the
works pointed in the references are ordered by years of their publication. This makes
it possible to see all together works related to every research direction mentioned
above.

I would also like to mention paper [61] and books [44, 49, 57, 58, 65], which
contain comprehensive bibliographies of works in the above research areas, and
the corresponding bibliographical remarks with historical and methodological com-
ments.

About half of my works are written or co-edited together with more than 50
collaborators, including more than 20 of my former doctoral students. Their names
can be found in the references given in this paper and the complete bibliography
given at [68].

I would like to use this opportunity and to sincerely thank all my collaborators
for the fruitful cooperation.

This survey was presented at the International Conference “Stochastic Processes
andAlgebraic Structures – FromTheory TowardsApplications” (SPAS 2017, https://
spas2017blog.wordpress.com), which was organised on the occasion of my 70th
birthday and held at Västerås – Stockholm, on 4–6 October 2017.

I am very grateful to the Organising and Scientific Committees, keynote speakers
and other conference participants as well as to the Division of Applied Mathemat-
ics (School of Education, Culture and Communication, Mälardalen University) and
the Department of Mathematics (Stockholm University) who have supported this
conference.

2.2 Limit Theorems for Markov-Type Processes

The main objects of research studies in this area were limit theorems for sums and
stepwise sum-processes of random variables defined on asymptotically ergodic and
asymptotically recurrent randomwalks,Markov chains, and semi-Markov processes.

It is worth noting that limit theorems for sums of random variables defined on
Markov chains are a very natural generalisation of classical limit theorems for sums of
independent random variables. In the case of asymptotically ergodic Markov chains,
the corresponding conditions of convergence are similar to well-known classical
conditions of convergence for sums and sum-processes of i.i.d. random variables.
Also, as in the above classical case, Lévy processes appear as limiting ones.

In the case of asymptotically recurrent Markov chains, the corresponding condi-
tions of convergence and limiting processes take much more complex forms. Possi-
ble limiting processes have been described for the above sum-processes defined on
Markov chains and semi-Markov processes, first, with countable and, then with gen-
eral phase spaces. The corresponding limiting processes are generalised exceeding
processes. Such processes are constructed with the use of two-dimensional, càdlàg
Lévy processes with the second nonnegative component, in the following way. The
first component of the above Lévy process is randomly stopped at the moment of

https://spas2017blog.wordpress.com
https://spas2017blog.wordpress.com
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first exceeding a level t (which plays the role of time) by the second component.
In addition, this stopping process can possibly be truncated by some exponentially
distributed random variable (independent of the above two-dimensional Lévy pro-
cess) taking into account asymptotic recurrence effects for the above mentioned
Markov-type processes.

The corresponding asymptotic results have been obtained firstly in the form of
usual limit theorems about weak convergence of finite-dimensional distributions for
the corresponding sum-processes, and then in the more advanced form of functional
limit theorems about convergence of these processes in the uniformU and Skorokhod
J topologies.

Further, the above sum-processes, randomly stopped at differentMarkovmoments,
such as hitting times for the above asymptotically recurrent Markov-type processes,
have been thoroughly studied and analogous asymptotic results have been obtained
as well.

The results related to finite and countable Markov chains and semi-Markov-type
processes are well presented in paper [4], dissertation [3], based on 14 research
papers, and two books, [8, 14].

Later works in this area have been concentrated on limit theorems for Markov and
semi-Markov-type models with general phase spaces, [13, 20, 22, 28], finding not
only sufficient but also necessary conditions of convergence, [21, 24, 31], as well as
generalisation of the above limit theorems to non-Markov models, [11, 17–19, 26].

The latest results in this area concern necessary and sufficient conditions of con-
vergence for first-rare-event times and processes, [47, 60]. It is appropriate to note
that these results yield, in particular, necessary and sufficient conditions for diffusion
and stable approximations of ruin probabilities for classical risk processes.

2.3 Limit Theorems for Randomly Stopped Stochastic
Processes

A natural research area connected with limit theorems for Markov-type processes is
that of limit theorems for randomly stopped stochastic processes and for compositions
of stochastic processes.

This model can appear in a number of natural ways, for example: when studying
limit theorems for additive or extremal functionals of stochastic processes; in models
connected with a random change of time, change point problems and problems
related to optimal stopping of stochastic processes; and in different renewal models,
particularly those which appear in applications to risk processes, queuing systems,
etc.

This model also appears in statistical applications connected with studies of
samples with a random sample size. Such sample models play an important role
in sequential analysis. They also appear in sample survey models, or in statisti-
cal models, where sample variables are associated with stochastic flows. The latter



10 D. Silvestrov

models are typical for insurance, queuing and reliability applications, aswell asmany
others.

There exists a huge bibliography of works devoted to limit theorems for models
with independent or asymptotically independent external processes and stopping
moments.

The aim of the author was to build a general theory of limit theorems for compo-
sitions of dependent càdlàg external and internal non-negative and non-decreasing
stopping processes.

Pre-limiting joint distributions of external and stopping processes usually have a
complicated structure. The idea was to find conditions of convergence, where these
processes would be involved together only in the simplest and most natural way, via
the condition of their joint weak convergence. Also, conditions of compactness in
Skorokhod J-topology should be required for external processes and internal stop-
ping processes, in order to provide compactness in Skorokhod J-topology for their
compositions. These conditions are standard ones. They were thoroughly studied for
various classes of càdlàg stochastic processes.

However, it turns out that the above three conditions do not provide convergence
in J-topology for compositions. Some additional assumptions, which link disconti-
nuity moments and values of the corresponding limiting processes at these moments,
should bemade. First, the probability that the limiting internal stopping process takes
the same value at twomoments of time t ′ < t ′′ and this value hits the set of discontinu-
ity moments for the limiting external process should be 0, for any 0 ≤ t ′ < t ′′ < ∞.
Second, the probability that the intersection of the set of left and right limiting val-
ues for the limiting internal stopping process at its jump moments and the set of
discontinuity moments for the limiting external process is non-empty should be 0.

The limiting processes usually have simpler structure than the corresponding
pre-limiting processes. This permits one to check the above continuity conditions in
various practically important cases. For example, the first continuity condition holds,
if the limiting external process is a.s. continuous or the limiting internal stopping
process is a.s. strongly monotonic. The above second continuity condition holds, if
at least one of the limiting external or internal processes is a.s. continuous. Also,
both conditions hold if the limiting external and internal processes are independent
and the limiting external process is stochastically continuous. The above continuity
conditions can not be omitted. If the first continuity condition does not hold for
some t ′ < t ′′, the compositions may not weakly converge at interval [t ′, t ′′]. If the
second continuity condition does not hold, the compositions may not be compact in
J-topology.

One of the main theorems proven by the author states that the five conditions
listed above do imply J-convergence for compositions of càdlàg processes. These
conditions have a good balance that makes this theorem a flexible and effective tool
for obtaining limit theorems for randomly stopped stochastic processes.

The main new results found by the author include general limit theorems about
weak convergence of randomly stopped stochastic processes and compositions of
dependent càdlàg stochastic processes, functional limit theorems about convergence
of compositions of càdlàg stochastic processes in topologies U and J as well as



2 A Journey in the World of Stochastic Processes 11

applications of these theorems to random sums, extremes with random sample size,
generalised exceeding processes, sum-processes with renewal stopping, accumula-
tion processes, max-processes with renewal stopping, and shock processes.

Some of the most valuable works in this area are the following papers: [5, 6, 9,
36, 41–43], dissertation [7], based on 27 research papers, and book [8]. The final
extended version of the theory developed by the author is presented in the book [44].

2.4 Renewal Theory and Ergodic Theorems for Perturbed
Stochastic Processes

Another research area connected in a natural way with limit theorems for Markov-
type processes is renewal theory and ergodic theorems for perturbed stochastic pro-
cesses.

An important role is played in both limit and ergodic theorems by such random
functionals as hitting times and their moments. Necessary and sufficient conditions
of existence and the most general explicit recurrent upper bounds for power and
exponential moments of hitting-time type functionals for semi-Markov processes
have been given in book [14] and papers [34, 46].

Further, related recurrent computational algorithms based on various truncation
and phase space reduction procedures are given for semi-Markov-type processes and
networks in papers [16, 56, 64].

Ergodic theorems of the law of larger numbers type and related ergodic theorems
for mean averages for accumulation processes and iterated functions systems are
given in papers [15, 31, 37] and book [14].

Uniform asymptotic expansions for exponential moments of sums of random
variables defined on exponentially ergodicMarkov chains and distributions of hitting
times for such Markov chains are given in paper [29].

As is well known, the most effective tool for getting so-called individual ergodic
theorems for regenerative and Markov-type processes is the famous renewal theo-
rem. In the case of perturbed processes, an effective generalisation of this important
theorem to themodel of perturbed renewal equation is required. Such a generalisation
was given in paper [12].

These results and their applications to perturbed regenerative, semi-Markov
and risk processes, and ergodic theorems for perturbed queuing systems and bio-
stochastic systems are presented in papers [40, 55] and book [49]. Also, the recent
paper, [66], presents results of a detailed analysis and classification of ergodic theo-
rems for perturbed alternating regenerative processes.

In papers [23, 30], exact coupling algorithms have been composed for general
regenerative processes and stochastic processes with semi-Markov modulation, and
explicit estimates for the rate of convergence in related individual ergodic theo-
rems for such processes were given. It is worth noting that, in the continuous time
case, the algorithms of exact coupling do require construction of dependent coupling
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trajectories in the essentially more sophisticated way, if we are to compare themwith
the corresponding coupling algorithms for discrete time processes.

In addition, paper [53] can be mentioned, where the above coupling algorithms
are applied for obtaining explicit estimates for the rate of convergence in the classical
Cramér-Lundberg approximation for ruin probabilities.

2.5 Quasi-Stationary Phenomena for Perturbed Stochastic
Systems

Quasi-stationary phenomena in stochastic systems describe the behaviour of stochas-
tic systems with random lifetimes. The core of the quasi-stationary phenomenon is
that one can observe something that resembles a stationary behaviour of the system
before the lifetime goes to the end.

The objects of interest are the asymptotic behaviour of lifetimes in the forms
of weak convergence and large deviation theorems, conditional ergodic theorems
(describing the asymptotic behaviour, when t → ∞, for the conditional distribution
of the corresponding stochastic process at moment t , under the condition that the
lifetime takes a value larger than t), and the corresponding limiting, usually referred
to as quasi-stationary, distributions.

In the model of perturbed stochastic processes of Markov-type, their transition
characteristics depend on a small perturbation parameter ε and, moreover, they may
admit some asymptotic expansions with respect to this parameter. A problem arises
in constructing asymptotic expansions for distributions of lifetimes, conditional dis-
tributions for the underlying stochastic processes pointed out above, and the corre-
sponding quasi-stationary distributions.

It is relevant to note that quasi-stationary distributions are essentially nonlin-
ear functionals of transition characteristics for underlying Markov-type processes.
They depend on so-called characteristic roots for distributions of return times for
the above processes. This significantly complicates the problem of constriction of
asymptotic expansions for quasi-stationary distributions, if we are to compare it with
the analogous problem for ordinary stationary distributions of perturbedMarkov-type
processes.

It also turns out that the balance between the velocities with which ε tends to
zero and time t tends to infinity (expressed in the form of asymptotic relation,
tεr → λr ∈ [0,∞]) has a delicate influence on the quasi-stationary asymptotics.
The above-mentioned expansions make it possible to perform the corresponding
detailed asymptotic analysis.

New methods based on asymptotic expansions for solutions of perturbed renewal
equations have been proposed in paper [32] and used in papers [38, 39, 55] for
finding quasi-stationary asymptotics given in the form of asymptotic expansions,
for perturbed regenerative processes, Markov chains, semi-Markov processes, and
risk processes. Also, asymptotic expansions for discrete time nonlinearly perturbed
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renewal equations have been given in papers [35, 54] and for the renewal equation
with nonlinear non-polynomial perturbations in paper [48].

The comprehensive book [49] contains a detailed presentation of the above
mentioned methods for nonlinearly perturbed regenerative processes and finite
semi-Markovprocesseswith absorption. It also includes their applications to the anal-
ysis of quasi-stationary phenomena in nonlinearly perturbed highly reliable queuing
systems, M/G queuing systems with quick service, and stochastic systems of birth-
death type, including perturbed epidemic, population and meta-population models,
and perturbed risk processes.

Also, the paper [66] presents new ergodic theorems for perturbed alternating
regenerative processes obtained with the use of quasi-stationary ergodic theorems
for perturbed regenerative processes.

2.6 Stochastic Approximation Methods for Price Processes
and American-Type Options

American-type options are one of the most important financial instruments and, at
the same time, one of the most interesting and popular objects for research studies
in financial mathematics.

The main mathematical problems connected with such options relate to finding
of the optimal expected option rewards, in particular, fair prices of options, as well
as finding of optimal strategies for buyers of options that are optimal stopping times
for execution of options.

In this way, the theory of American-type options is connected with optimal stop-
ping problems for stochastic processes, which play an important role in the theory
of stochastic processes and its applications.

As is well known, analytical solutions for American-type options are available
only in some special cases and, even in such cases, the corresponding formulas are not
easily computable. These difficulties dramatically increase in the case of multivariate
log-price processes and non-standard pay-off functions.

Approximation methods are a reasonable alternative that can be used in cases
where analytical solutions are not available. The main classes of approximation
methods are: stochastic approximation methods based on approximation of the cor-
responding stochastic log-price processes by simpler processes, for which optimal
expected rewards can be effectively computed; integro-differential approximation
methods based on approximation of integro-differential equations that can be derived
for optimal expected rewards by their difference analogues; and Monte Carlo meth-
ods based on simulation of the corresponding log-price processes.

Stochastic approximation methods have important advantages in comparison
with the other two methods. They usually allow one to impose weaker smoothness
conditions on transition probabilities and pay-off functions, in comparison with
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integro-differential approximation methods, and they are also computationally more
effective, in comparison with Monte Carlo based methods.

Selected papers presenting the author and his collaborators’ results in the above
area are [45, 50–52, 59]. Some of these results, as well as many new results, are
presented in the author’s comprehensive two volume monograph, [57, 58].

This monograph gives a systematic presentation of stochastic approximation
methods for models of American-type options with general pay-off functions for
discrete (Volume 1) and continuous (Volume 2) time modulated Markov log-price
processes. Advanced methods, combining backward recurrence algorithms for com-
puting of option rewards for discrete time atomic Markov chains with transition
probabilities concentrated on finite sets, and general results on convergence of the
corresponding stochastic time-space skeleton and tree approximations for option
rewards, are applied to a variety of models of multivariate modulated Markov log-
price processes.

In the discrete time case, these are modulated autoregressive and autoregressive
stochastic volatility log-price processes, log-price processes represented by modu-
lated random walks, Markov Gaussian log-price processes with estimated parame-
ters, multivariatemodulatedMarkovGaussian log-price processes and their binomial
and trinomial approximations, and log-price processes represented by general mod-
ulated Markov chains.

In the continuous time case, these are multivariate Lévy log-price processes, mul-
tivariate diffusion log-price processes and their time-skeleton, martingale and trino-
mial approximations, and general continuous time multivariate modulated Markov
log-price processes.

Further, some more advanced models of American-type options are treated; in
particular, options with random pay-offs, reselling options and knockout options.

Theprincipal novelty of results presented in themonograph [57, 58] is basedon the
consideration ofmultivariatemodulatedMarkov log-price processes andgeneral pay-
off functions, which can depend not only on price but also on an additional stochastic
modulating index component, and the use of minimal conditions of smoothness for
transition probabilities and pay-off functions, compactness conditions for log-price
processes and rate of growth conditions for pay-off functions.

2.7 Nonlinearly Perturbed Semi-Markov Processes

The models of perturbed Markov chains and semi-Markov processes attracted the
attention of researchers in the middle of the twentieth century. Particular attention
was given to the most difficult cases of perturbed processes with absorption and the
so-called singularly perturbed processes. An interest in these models has been stimu-
lated by applications to control and queuing systems, reliability models, information
networks, and bio-stochastic systems.

Markov-type processes with singular perturbations appear as natural tools
for mathematical analysis of multicomponent systems with weakly interacting
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components. Asymptotics for moments of hitting-time type functionals and station-
ary distributions for corresponding perturbed processes play an important role in
studies of such systems.

The role of perturbation parameters can be played by small probabilities or failure
rates in queuing and reliability systems, or by small probabilities or intensities of
mutation, extinction, or migration in biological systems. Perturbation parameters
can also appear as artificial regularisation parameters for decomposed systems, for
example, as so-called damping parameters in information networks, etc.

In many cases, transition characteristics of the corresponding perturbed semi-
Markov processes, in particular transition probabilities (of embedded Markov cha-
ins) and power moments of transition times are nonlinear functions of a perturbation
parameter, which admit asymptotic expansions with respect to this parameter.

The main results obtained so far in these ongoing studies are presented in papers
[61–63] and the recent book [65].

These works present new methods of asymptotic analysis for nonlinearly per-
turbed semi-Markov processes with finite phase spaces. These methods are based on
special time-space screening procedures for sequential reduction of phase spaces for
semi-Markov processes combinedwith the systematic use of the operational calculus
for Laurent asymptotic expansions.

Models with non-singular and singular perturbations are considered to be those
where the phase space is one class of communicative states for the embeddedMarkov
chains of pre-limiting perturbed semi-Markov processes, while it can possess an
arbitrary communicative structure (i.e., can consist of one or several closed classes
of communicative states and, possibly, a class of transient states) for the limiting
embedded Markov chain.

Effective recurrent algorithms for the construction of Laurent asymptotic expan-
sions for power moments of hitting times for nonlinearly perturbed semi-Markov
processes are composed. These results are applied for obtaining asymptotic expan-
sions for stationary and conditional quasi-stationary distributions for nonlinearly
perturbed semi-Markov processes. Also, the detailed asymptotic analysis and the
corresponding asymptotic expansions are given for semi-Markov birth-death-type
processes, which play an important role in various applications.

Further, the recent paper [67], which presents applications of asymptotic expan-
sions for semi-Markov birth-death-type processes to perturbed models of population
dynamics, epidemicmodels andmodels of population genetics, should bementioned.

It is worth noting that asymptotic expansions are a very effective instrument for
studies of perturbed stochastic processes. The corresponding first terms in expansions
give limiting values for properly normalised functionals of interest. The second terms
let one estimate the sensitivity of models to small parameter perturbations. The
subsequent terms in the corresponding expansions are usually neglected in standard
linearisation procedures used in studies of perturbed models. This, however, cannot
be acceptable in cases where values of perturbation parameters are not small enough.
Asymptotic expansions let one take into account high-order terms in expansions, and
in thisway allowone to improve accuracyof the correspondingnumerical procedures.
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An important novelty of the results presented in works [61–63, 65] is that the
corresponding asymptotic expansions are obtained with remainders given not only
in the standard form of o(εk), but, also, in the more advanced form, with explicit
power-type upper bounds for remainders, |o(εk)| ≤ Gkε

k+δk , asymptotically uniform
with respect to the perturbation parameter. The latter asymptotic expansions for
nonlinearly perturbed semi-Markov processes were not known before.

The corresponding computational algorithms have a universal character. They
can be applied to perturbed semi-Markov processes with an arbitrary asymptotic
communicative structure of phase spaces and are computationally effective due to
the recurrent character of computational procedures.

2.8 Conclusion

There exist a number of prospective directions for continuation of research andmany
interesting unsolved problems in the research areas listed above.

In the area of limit theorems for Markov-type processes, the methods developed
so far, particularly general limit theorems for randomly stopped stochastic processes,
allow, I believe, to obtain new, more advanced versions of these limit theorems and,
moreover, to improve conditions of convergence for some of these theorems to the
final necessary and sufficient form, without gaps between necessary and sufficient
counterparts. One of the most recently published papers, [60], provides an example
of such results.

The theory of limit theorems for randomly stopped stochastic processes can also be
effectively used in such applied areas as asymptotic problems of statistical analysis.
The book [44] contains some results related to samples with random size. However,
this very prospective area of applications is still underdeveloped.

In the area of renewal theory and ergodic theorems for perturbed Markov-type
processes, applications of the exact coupling method presented in papers [23, 30]
can be essentially extended. For example, the results of the above-mentioned paper
[53] show how this method can be effectively applied to risk processes.

The book [49] contains a survey of new potential directions of studies related
to quasi-stationary phenomena for perturbed stochastic systems. I believe it will be
possible to combine asymptotic quasi-stationary and coupling methods for perturbed
renewal equations and to obtain explicit upper bounds for rates of convergence in
the corresponding limit, large deviation and ergodic theorems. In this book, results
on quasi-stationary asymptotics for perturbed regenerative processes are applied to
models of nonlinearly perturbed Markov chains and semi-Markov processes with
finite phase spaces. An analogous program of research studies can be realised for
Markov chains and semi-Markov type processes with countable and general phase
spaces, which also can be embedded in the class of regenerative processes using the
well known method of artificial regeneration. Another direction for advancing the
studies carried out in this book is connected with models of nonlinearly perturbed
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Markov chains and semi-Markov processes with asymptotically uncoupled phase
spaces. One of the latest my paper [66] presents new results in this research direction.

Stochastic approximation methods are, as was pointed out above, one of the
most effective instruments for studies of complex financial contracts. Time-space
skeleton approximation methods developed in the books [57, 58] can be applied to
American-type contracts of different types. In particular, the above-mentioned results
for American-type options with estimated parameters, options with random pay-offs,
reselling options and knockout options given in the above books can be essentially
extended. Also, these methods can be effectively applied to European and Asian
options, as well as Bermudian and other types of exotic options. Another prospec-
tive area is associated with the combination of the above stochastic approximation
methods with Monte Carlo type algorithms.

The latest actual direction of research of the author and some of his collaborators
are asymptotic expansions for nonlinearly and singularly perturbed semi-Markov
processes. The method of sequential phase space reduction proposed in the works
[61–63, 65] allows, as was mentioned above, for the attainment of asymptotic expan-
sions for different moment functionals for non-singularly and singularly perturbed
semi-Markov process in two forms, without and with explicit upper bounds for
remainders.

Both the class of semi-Markov type processes and the class ofmoment functionals
can be essentially extended. For example, asymptotic expansions for power and
power-exponentialmoments of hitting times and quasi-stationary distributions can be
obtained for singularly perturbed stochastic processeswith semi-Markovmodulation.

Prospective directions of research studies based on the above methods are asymp-
totic expansions for perturbed semi-Markov type processes with multivariate pertur-
bation parameters and asymptotic expansions based on non-polynomial systems of
infinitesimals.

Further, an unbounded area of applications is perturbed queuing and reliability
models, stochastic networks and bio-stochastic systems.

In conclusion, I would also like to mention some books which reflect my interests
in some other scientific areas thematically connected with stochastic processes and
their applications, [10, 25, 27, 33].

My journey in the world of stochastic processes continues.
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Chapter 3
Individual Ergodic Theorems for
Perturbed Alternating Regenerative
Processes

Dmitrii Silvestrov

Abstract The paper presents results of complete analysis and classification of
individual ergodic theorems for perturbed alternating regenerative processes with
semi-Markov modulation. New short, long and super-long time ergodic theorems
for regularly and singular type perturbed alternating regenerative processes are
presented.

Keywords Alternating regenerative process · Semi-Markov modulation · Regular
perturbation · Singular perturbation · Ergodic theorem

3.1 Introduction

The paper presents results of complete analysis and classification of individual
ergodic theorems for perturbed alternating regenerative processes with semi-Markov
modulation.

The alternating regenerative processes and related alternating renewal processes
are popular models of stochastic processes, which have diverse applications to queu-
ing, reliability, control and many other types of stochastic processes and systems.
We refer here to papers and books, which contain basic materials about regenerative
processes including their alternating variants and applications, [4, 7, 9, 15, 17, 23,
28–32, 46, 55, 59].

Standard alternating regenerative processes are constructed from sequences of
“random blocks” of two types, say, 1 and 2. Each block consists of a “piece” of
stochastic process of random duration. All blocks are independent. Blocks of each
type have the sameprobabilistic characteristics. The corresponding alternating regen-
erative process is constructed by sequential in time alternate connection of blocks of
types 1 and 2 taken from the above mentioned sequences.
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In the present paper, more general alternating regenerative processes are stud-
ied, where sequential alternate connection of the blocks is controlled by some
binary switching random variables. The piece of stochastic process creating every
block, its duration and the binary random variable, controlling the decision about
switching/non-switching of block type at the end of time interval corresponding to
this block, may be dependent. This let us speak about semi-Markov modulation for
the corresponding alternating regenerative process.

If the above alternating regeneration process ξε(t), t ≥ 0 describes functioning of
some stochastic system, it is naturally to interpret ξε(t) as the state of this system
at instant t and the corresponding modulating semi-Markov process ηε(t) as the
stochastic index, which shows that the system is in one of two possible regimes
(for example, “working” or “not working”) at instant t if, respectively, ηε(t) = 1 or
ηε(t) = 2.

It is assumed that joint probabilistic characteristics of the alternating regenerative
process ξε(t) and the corresponding semi-Markov process ηε(t) controlling switch-
ing of types depend on some perturbation parameter ε ∈ [0, 1] and converge to the
corresponding joint characteristics of the processes ξ0(t) and η0(t), as ε → 0. This
makes it possible to consider process (ξε(t), ηε(t)), for ε ∈ (0, 1], as a perturbed
version of the process (ξ0(t), η0(t)).

The object of our interest are individual ergodic theorems about asymptotic
behaviour of joint distributions Pε,i j (t, A) = Pi {ξε(t) ∈ A, ηε(t) = j} for perturbed
alternating regenerative process ξε(t) and modulating semi-Markov processes ηε(t),
as time t → ∞ and the perturbation parameter ε → 0.

Models with three different types of perturbation are considered. These types are
determined by the asymptotic behaviour of transition probabilities pε,i j , i, j = 1, 2
for the embedded Markov chain ηε,n of the semi-Markov process ηε(t). These tran-
sition probabilities converge, as ε → 0, to the corresponding transition probabilities
of the limiting Markov chain η0,n .

The first class constitutes regularly perturbed models, where the limiting embed-
ded Markov chain η0,n is ergodic that, in this case, is equivalent to the assumption,

max(p0,12, p0,21) > 0. (3.1)

In the case of regularly perturbed models, the corresponding individual ergodic
theorems take forms of asymptotic relations Pε,i j (tε, A) → π j (A) as ε → 0, which
holds for any 0 ≤ tε → ∞ as ε → 0. The corresponding limiting probabilitiesπ j (A)

do not depend on an initial state i of the modulating semi-Markov process.
Such theorems resemblewell known ergodic theorems for unperturbed alternating

regenerative processes and more general stochastic processes with semi-Markov
modulation.

Here,works [4, 7, 9, 12, 17, 23, 24, 29, 30, 35–37, 46–50, 55, 59] can be referred,
where one can find the corresponding ergodic theorems for unperturbed regenerative
and alternating regenerative processes (ξ0(t), η0(t)), andworks [1, 10, 11, 13, 14, 23,
25–27, 33, 34, 37, 43–45, 47–51, 53, 54, 60–62], where such theorems are given
for some classes of regularly perturbed regenerative and alternating regenerative
processes (ξε(t), ηε(t)).
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The second and third classes constitute singularly and super-singularly perturbed
models, where the limiting embedded Markov chain η0,n is not ergodic that is equiv-
alent to the assumption,

max(p0,12, p0,21) = 0. (3.2)

The individual ergodic theorems for suchmodels are themain objects of studies in
the present paper. They takemuchmore interesting and complex forms, if to compare
them with individual ergodic theorems for regularly perturbed alternating regenera-
tive processes. The individual ergodic theorems for singularly and super-singularly
perturbed models take forms of asymptotic relations Pε,i j (tε, A) → πi j (t, A) as
ε → 0, which hold for any 0 ≤ tε → ∞ as ε → 0, which satisfy some time scaling
relation, tε/vε → t ∈ [0,∞] or tε/wε → t ∈ [0,∞] as ε → 0, with time scaling fac-
tors vε = p−1

ε,12 + p−1
ε,21 > wε = (pε,12 + pε,21)

−1 → ∞ as ε → 0. The correspond-
ing limiting probabilities πi j (t, A)may depend on parameter t and an initial state i of
themodulating semi-Markov process. They take essentially different forms, for cases
t = 0, t ∈ (0,∞) and t = ∞. We classify the corresponding theorems, respectively,
as short, long and super-long time individual ergodic theorems.

Individual ergodic theorems for singularly and super-singularly perturbed alter-
nating regenerative processes presented in the paper were not known before.

The main analytic tool used for obtaining ergodic theorems is based on results
concerned generalisation of the renewal theorem to the model of perturbed renewal
equation given inworks [14, 43–45] and quasi-ergodic theorems for perturbed regen-
erative processes with regenerative lifetimes given in works [13, 14, 38, 53].

Here, works [2, 3, 5, 6, 8, 14, 16, 18–22, 39–42, 56–58, 61, 62] can also be
mentioned, where one can find results and bibliographies of works on limit and
ergodic type theorems and related problems for singularly perturbed Markov type
processes. The difference with some related results presented in these works, is that
we operate, in general, with non-Markov regenerative type processes and do not
exploit additive accumulation or phase merging phenomena.

We do prefer to use for getting individual ergodic type theorems, as we think,
the most effective methods based on generalisations of the classical renewal the-
orem to model of perturbed renewal equation developed in the above mentioned
works [13, 14, 38, 43–45, 53]. This let us get the corresponding ergodic theorems
under minimal conditions. In the case of unperturbed and non-alternating regener-
ative processes, these conditions reduce to the minimal conditions of the classical
individual ergodic theorem for unperturbed regenerative processes yielded by the
famous renewal theorem, which is given in its final form in [12].

The paper includes 7 sections. In Sect. 3.2, so-called quasi-ergodic theorems for
perturbed regenerative processes with regenerative lifetimes, which play the role of
basic analytical tool in our studies, and the model of perturbed alternating regen-
erative processes are presented, and comments concerning regularly, singularly and
super-singularly perturbed alternating regenerative processes are given. In Sects. 3.3–
3.6, short, long and super-long individual ergodic theorems for regularly, singu-
larly and super-singularly perturbed alternating regenerative processes are presented.
Section3.7, contains a short summary of the results and a list of some directions for
future development and improvement of results presented in the paper.
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3.2 Perturbed Regenerative and Alternating
Regenerative Processes

In this section, we present so-called quasi-ergodic theorems for perturbed regenera-
tive processes with regenerative lifetimes, which play the role of basic analytical tool
in our studies, introduce alternating regenerative processes, comment and compare
models of regularly, singularly and super-singularly perturbed alternating regener-
ative processes and forms of the corresponding ergodic theorems, and describe the
special procedure of aggregation for regeneration times, which play an important
role in ergodic theorems for perturbed alternating regenerative processes.

3.2.1 Quasi-Ergodic Theorems for Perturbed Regenerative
Processes with Regenerative Lifetimes

The main tool, which we are going to use are ergodic theorems for perturbed regen-
erative processes with regenerative lifetimes, given in book [14].

Let 〈Ωε,Fε,Pε〉 be, for every ε ∈ [0, 1], a probability space. We assume that all
stochastic processes and random variables introduced below and indexed by param-
eter ε are defined on the probability space 〈Ωε,Fε,Pε〉.

Let for every n = 1, 2, . . .: (a) ξ̄ε,n = 〈ξε,n(t), t ≥ 0〉 be a stochastic process with
a phase space X (with the corresponding σ -algebra of measurable subsets BX),
measurable in the sense that ξε,n(t, ω), (t, ω) ∈ [0,∞) × Ωε is measurable func-
tion of (t, ω) (this means that {(t;ω) ∈ A} ∈ B+ × Fε, A ∈ BX, where B+ × Fε is
the minimal σ -algebra containing all products B × C, B ∈ B+,C ∈ Fε, B+ is the
σ -algebra of Borel subsets of [0,∞)); (b) κε,n be a non-negative random variable;
(c) με,n is a non-negative random variable. Further, we assume that: (d) random
triplets 〈ξ̄ε,n = 〈ξε,n(t), t ≥ 0〉, κε,n, με,n〉, are mutually independent; (e) the joint
distributions of random variables ξε,n(tk), k = 1, . . . , r and κε,n, με,n do not depend
on n ≥ 1, for every tk ∈ [0,∞), k = 1, . . . , r, r ≥ 1.

Let us define regeneration times, τε,n = κε,1 + · · · + κε,n, n = 1, 2, . . . , τε,0 = 0,
a standard regenerative process,

ξε(t) = ξε,n(t − τε,n−1), for t ∈ [τε,n−1, τε,n), n = 1, 2, . . . , (3.3)

and a regenerative lifetime,

με =
νε−1∑

k=1

κε,k + με,νε
I(νε < ∞), where νε = min(n ≥ 1 : με,n < κε,n). (3.4)

We exclude instant regenerations and, thus, assume that the following condition
holds:

A: P{κε,1 > 0} = 1, for every ε ∈ [0, 1].
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Fig. 3.1 A regenerative process with regenerative lifetime

Condition A obviously implies that random variables τε,n
P−→ ∞ as n → ∞, for

every ε ∈ [0, 1], and, thus, process ξε(t) is well defined on the time interval [0,∞).
Figure3.1 presents an example of trajectory for a real-valued regenerative process

ξε(t) with a regenerative lifetime με. The role of the regenerative lifetime με plays,
in this case, the first time of exceeding a level L by the regenerative process ξε(t).

Let us introduce distribution functions F̄ε(t) = P{τε,1 ≤ t} = P{κε,1 ≤ t}, t ≥ 0
and Fε(t) = P{τε,1 ≤ t, με ≥ τε,1} = P{κε,1 ≤ t, με,1 ≥ κε,1}, t ≥ 0, and stopping
probabilities fε = 1 − Fε(∞) = P{με < τε,1} = P{με,1 < κε,1}. We assume that
the following condition holds:

B: (a) F̄ε(·) ⇒ F̄0(·) as ε → 0, where F̄0(t) is a non-arithmetic distribution func-
tion, (b) fε → f0 = 0 as ε → 0.

Here and henceforth symbol ε → 0 is used to show that 0 < ε → 0.
Condition B obviously implies that,

Fε(·) ⇒ F0(·) ≡ F̄0(·) as ε → 0. (3.5)

Let us introduce expectations ēε = ∫ ∞
0 s F̄ε(ds) and eε = ∫ ∞

0 sFε(ds). We also
assume that the following condition holds:

C: (a) ēε < ∞, for ε ∈ [0, 1], (b) ēε → ē0 as ε → 0.

Condition B and C obviously imply that eε < ∞, for ε ∈ [0, 1] and,

eε → e0 = ē0 as ε → 0. (3.6)

The object of our interest are probabilities Pε(t, A) = P{ξε(t) ∈ A, με > t}, A ∈
BX, t ≥ 0. These probabilities are, for every A ∈ BX, ameasurable function of t ≥ 0,
which is the unique bounded solution for the following renewal equation,
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Pε(t, A) = qε(t, A) +
∫ t

0
Pε(t − s, A)Fε(ds), t ≥ 0, (3.7)

where qε(t, A) = P{ξε(t) ∈ A, τε,1 ∧ με > t} = P{ξε,1(t) ∈ A, τε,1 ∧ με,1 > t},
A ∈ BX, t ≥ 0.

We also impose the following condition on the functions qε(t, A):

D: There exist a non-empty class of sets Γ ⊆ BX such that, for every A ∈ Γ, the
asymptotic relation, limu→0 lim0≤ε→0 sup−(u∧s)≤v≤u |qε(s+v, A) − q0(s, A)| =
0, holds almost everywhere with respect to the Lebesgue measure m(ds) on
[0,∞).

The class Γ appearing in condition D contains the phase space X and is closed
with respect to the operation of union for not intersecting sets, the operation of
difference for sets connected by relation of inclusion, and the complement operation.
The detailed comments are given in Sect. 3.2.5.

Conditions A–D imply that process ξ0(t), t ≥ 0 is ergodic and the following
asymptotic relation holds, for A ∈ Γ,

P0(t, A) → π0(A) as t → ∞, (3.8)

where π0(A) is the corresponding stationary distribution given by the following
relation,

π0(A) = 1

e0

∫ ∞

0
q0(s, A)m(ds), A ∈ BX. (3.9)

Now we are prepared to formulate a theorem, which is a variant of the quasi-
ergodic theorem, for the perturbed regenerative processes with regenerative lifetimes
given in book [14]. It is also worth to note that this theorem is the direct corollary of
the version renewal theorem for perturbed renewal equation given in papers [43–45].

Theorem 3.1 Let conditionsA–D hold. Then, for every A ∈ Γ, and any 0 ≤ tε → ∞
as ε → 0 such that fεtε → t ∈ [0,∞] as ε → 0,

Pε(tε, A) → e−t/e0π0(A) as ε → 0. (3.10)

Let us now assume that the model assumption (e) formulated above holds only
for n ≥ 2. In this case, the process ξε(t), t ≥ 0 is usually referred as a regenerative
process with transition period [0, τε,1).

We also shall use the extension of Theorem3.1 on the model of perturbed regen-
erative processes with transition period. In this case, the shifted process ξ (1)

ε (t) =
ξε(τε,1 + t), t ≥ 0 is a standard regenerative process, with regeneration times τ (1)

ε,n =
κε,2 + · · · + κε,n+1, n = 1, 2, . . . , τ (1)

ε,0 = 0 and the corresponding shifted regener-

ative lifetime μ(1)
ε = ∑ν(1)

ε −1
k=1 κε,1+k + μ

ε,1+ν
(1)
ε
I(ν(1)

ε < ∞), where ν(1)
ε = min(n ≥

1 : με,1+n < κε,1+n).
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All quantities appearing in conditions A–D, the renewal equation (3.7) and rela-
tion (3.9) should be defined using shifted sequence of triplets 〈ξ̄ε,2 = 〈ξε,2(t), t ≥
0〉, κε,2, με,2〉. It is also natural to index the above mentioned quantities by the upper
index (1), for example, to use notation P (1)

ε (t, A) = P{ξ (1)
ε (t) ∈ A, μ(1)

ε > t}, etc.
Probabilities P (1)

ε (t, A) satisfy the renewal equation (3.7). Theorem3.1 presents, in
this case, the corresponding ergodic relation for these probabilities.

Probabilities Pε(t, A) = P{ξε(t) ∈ A, με > t}, defined for the initial regenerative
process with transition period, are, for every A ∈ BX, connected with probabilities
P (1)

ε (tε, A) by the following renewal type transition relation,

Pε(t, A) = q̃ε(t, A) +
∫ t

0
P (1)

ε (t − s, A)F̃ε(ds), t ≥ 0, (3.11)

where q̃ε(t, A) = P{ξε(t) ∈ A, τε,1 ∧ με > t} = P{ξε,1(t) ∈ A, τε,1 ∧ με,1 > t},
A ∈ BX, t ≥ 0 and F̃ε(t) = P{τε,1 ≤ t, με,1 ≥ τε,1}, t ≥ 0 are the corresponding
characteristics related to the transition period.

We admit that the transition period can be of zero duration and, thus, the distri-
bution function F̃ε(t) can possess an atom in zero or even be concentrated at zero,
for ε ∈ [0, 1].

Let us additionally assume that the following condition holds:

E: F̃ε(·) ⇒ F̃0(·) as ε → 0, where F̃0(t) is a proper distribution function.

Let also f̃ε = P{με,1 < τε,1} = 1 − F̃ε(∞). Condition E obviously implies that
the stopping probabilities for transition period, f̃ε → f̃0 = 0 as ε → 0.

It is also useful to note that q̃ε(t, A) ≤ P{τε,1 ∧ με,1 > t} = P{τε,1 > t, με,1 ≥
τε,1} + P{τε,1 ∧ με,1 > t, με,1 < τε,1} ≤ P{με,1 ≥ τε,1} − P{τε,1 ≤ t, με,1 ≥ τε,1}+
P{με,1 < τε,1} = F̃ε(∞) − F̃ε(t) + f̃ε. This relation and condition E imply that
q̃ε(tε, A) → 0 as ε → 0, for any 0 ≤ tε → ∞ as ε → 0.

The following quasi-ergodic theorem for perturbed regenerative processes with
transition period, is also given in book [14].

Theorem 3.2 Let conditionsA–E hold. Then, for every A ∈ Γ, and any 0 ≤ tε → ∞
as ε → 0 such that fεtε → t ∈ [0,∞] as ε → 0,

Pε(tε, A) → e−t/e0π0(A) as ε → 0. (3.12)

In the case of standard regenerative processes, Theorem3.2 just reduces to
Theorem3.1. Indeed, condition E can be omitted since it is implied by condition
B. The ergodic relation (3.12) reduces to the ergodic relation (3.10).

Let us also introduce modified regenerative lifetimes με,− = ∑νε−1
k=1 κε,k , and

με,+ = ∑νε

k=1 κε,k and consider probabilities Pε,±(t, A) = P{ξε(t) ∈ A, με,± > t},
A ∈ BX, t ≥ 0.

Obviously, με,− ≤ με ≤ με,+ and, thus, Pε,−(t, A) ≤ Pε(t, A) ≤ Pε,+(t, A), for
any A ∈ BX, t ≥ 0.

The following theorem is a useful modification of Theorem3.2.
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Theorem 3.3 Let conditionsA–E hold. Then, for every A ∈ Γ, and any 0 ≤ tε → ∞
as ε → 0 such that fεtε → t ∈ [0,∞] as ε → 0,

Pε,±(tε, A) → e−t/e0π0(A) as ε → 0. (3.13)

Proof Conditions A–C imply that the asymptotic relation, fεκε,νε
I(νε < ∞)

P−→
0 as ε → 0, holds. The asymptotic relation (3.13) is an obvious corollary of this
asymptotic relation and the ergodic relation (3.12) given in Theorem3.2. �

3.2.2 One-Dimensional and Multi-dimensional Distributions
for Perturbed Regenerative Processes

Individual ergodic theorems formulated in Theorems3.1–3.3 present ergodic rela-
tions for one-dimensional distributions Pε(t, A) = P{ξε(t) ∈ A, με > t} for regen-
erative processes with regenerative lifetimes.

It possible to weaken the model assumption (e) formulated in Sect. 3.2.1. This
assumption concerns multi-dimensional joint distributions of random variables
ξε,n(tk), k = 1, . . . , r, κε,n and με,n .

It can be replaced by the weaker assumption that the joint distributions of random
variables ξε,n(t), κε,n and με,n do not depend on n ≥ 1, for every t ≥ 0.

The process ξε(t), t ≥ 0 will still process the corresponding weaken, say, one-
dimensional regenerative property, which, in fact, means that one-dimensional dis-
tributions Pε(t, A) = P{ξε(t) ∈ A, με > t}, t ≥ 0 satisfy the renewal equation (3.7).

Formulations of conditionsA–E as well as propositions of Theorems3.1–3.3 still
remain to be valid.

3.2.3 Ergodic Theorems for Standard Regenerative Processes

Wewould like tomention the important case, where stopping probability fε = 0, ε ∈
[0, 1]. In this case, the regenerative stopping time με = ∞ with probability 1. Also,
fεtε → 0 as ε → 0, for any 0 ≤ tε → ∞ as ε → 0.
Probability Pε(t, A) = P{ξε(t) ∈ A} is a one-dimensional distribution for process

ξε(t). Theorems3.1–3.3 present in this case usual individual ergodic theorems for
perturbed regenerative processes ξε(t).

It is also worth to mention the case of unperturbed regenerative process ξ0(t), t ≥
0. Conditions A–D reduce in this case to the minimal conditions of the individual
ergodic theorem for regenerative processes, which directly follows from the renewal
theorem given in its final form in [12]: (a) F0(·) is a non-arithmetic distribution func-
tionwithout an atom in zero; (b) e0 = ∫ ∞

0 sF0(ds) < ∞; (c) function q0(s, A), s ≥ 0
is, for A ∈ Γ, continuous almost everywhere with respect to the Lebesgue measure
m(ds) on [0,∞).
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Note that q0(s, A) ≤ 1 − F0(s), s ≥ 0 and, thus, under the above condition (b),
condition (c) is equivalent to the assumption of direct Riemann integrability of the
free term in the renewal equation (3.7), imposed on this term in the renewal theorem
given in [12].

Also, condition E just reduces to the assumption that (d) F̃0(·) is a proper distri-
bution function.

The corresponding individual ergodic theorem takes in this case the form of the
asymptotic relation (3.8), i.e., P0(t, A) → π0(A) as t → ∞, for A ∈ Γ.

3.2.4 Perturbed Alternating Regenerative Processes

Let, for every i = 1, 2 and n = 1, 2, . . .: (f) ξ̄ε,i,n = 〈ξε,i,n(t), t ≥ 0〉 be a measur-
able stochastic process with a phase space X; (g) κε,i,n be a non-negative random
variable; (h) ηε,i,n and ηε are binary random variables taking values in the spaceY =
{1, 2}. Further, we assume that: (i) triplets 〈ξ̄ε,i,n = 〈ξε,i,n(t), t ≥ 0〉, κε,i,n, ηε,i,n〉,
i = 1, 2, n = 1, 2, . . . and the random variable ηε are mutually independent; ( j) the
joint distributions of random variables ξε,i,n(tk), k = 1, . . . , r and κε,i,n, ηε,i,n do not
depend on n ≥ 1, for every i = 1, 2 and tk ∈ [0,∞), k = 1, . . . , r, r ≥ 1.

Here, the measurability assumption for processes ξ̄ε,i,n is absolutely analogous to
those formulated in the model assumption (a) for processes ξ̄ε,n .

Let us define recurrently stochastic sequences of switching binary random indices
ηε,n, n = 0, 1, . . . and regeneration times τε,n, n = 0, 1, . . . by the following recur-
rent relations, ηε,n = ηε,ηε,n−1,n, n = 1, 2, . . . , ηε,0 = ηε and τε,n = κε,ηε,0,1 + · · · +
κε,ηε,n−1,n, n = 1, 2, . . . , τε,0 = 0, and the modulated alternating regenerative process
(ξε(t), ηε(t)), t ≥ 0 by the following recurrent relations,

ξε(t) = ξε,ηε,n−1,n(t − τε,n−1) and ηε(t) = ηε,n−1,

for t ∈ [τε,n−1, τε,n), n = 1, 2, . . . . (3.14)

Figure3.2 given below presents an example of trajectory of an alternating regen-
erative process ξε(t) and the corresponding modulating semi-Markov index process
ηε(t).

We exclude instant regenerations and, thus, assume that the following condition
holds:

F: P{κε,i,1 > 0} = 1, i = 1, 2, for every ε ∈ [0, 1].

This condition obviously implies that τε,n
P−→ ∞ as n → ∞, for every ε ∈ [0, 1],

and thus, the above alternating regenerative process iswell definedon the time interval
[0,∞).

Now, let us formulate conditions, which make it possible to consider (ξ0(t),
η0(t)), t ≥ 0 as an unperturbed process and (ξε(t), ηε(t)), t ≥ 0 as its perturbed
version, for ε ∈ (0, 1].
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Fig. 3.2 A regenerative process with regenerative lifetime

The above model assumptions (f)–(j) imply that the modulating index sequence
ηε,n, n = 0, 1, . . . is a homogeneous Markov chain with the phase space Y = {1, 2},
the initial distribution p̄ε = 〈pε,i = P{ηε,0 = i}, i = 1, 2〉, and transition probabili-
ties, pε,i j = P{ηε,1 = j/ηε,0 = i} = P{ηε,i,1 = j}, i, j = 1, 2. We assume that the
following condition holds:

G: (a) pε,i j = 0, ε ∈ (0, 1] or pε,i j > 0, ε ∈ (0, 1], for i, j = 1, 2;
(b) pε,i j → p0,i j as ε → 0, for i, j = 1, 2.

The above model assumptions (f)–(j) also imply that the modulating index pro-
cess ηε(t), t ≥ 0 is a semi-Markov process with the phase space Y and transi-
tion probabilities, Qε,i j (t) = P{τε,1 ≤ t, ηε,1 = j/ηε,0 = i} = P{κε,i,1 ≤ t, ηε,i,1 =
j}, t ≥ 0, i, j = 1, 2. Also, let us introduce conditional distribution functions
Fε,i j (t) = Qε,i j (t)/pε,i j , t ≥ 0 defined for i, j ∈ Y such that pε,i j > 0, ε ∈ (0, 1].

We also assume that the following condition holds:

H: (a) Qε,i j (·) ⇒ Q0,i j (·) as ε → 0, for i, j = 1, 2,
(b) Q0,i j (t) = 0, t ≥ 0 if p0,i j = 0 or F0,i j (t) = Q0,i j (t)/p0,i j , t ≥ 0 is a non-
arithmetic distribution function if p0,i j > 0.

Remark 3.1 Conditions of convergence G (b) and H (a) can be reformulated in
terms of Laplace transforms φε,i j (s) = ∫ ∞

0 e−st Qε,i j (dt), s ≥ 0, i, j = 1, 2. These
conditions are equivalent to the assumption that φε,i j (s) → φ0,i j (s) as ε → 0, for
s ≥ 0 and i, j = 1, 2.
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Let us introduce expectations, eε,i j = Eiτε,1I(ηε,1 = j) = Eκε,i,1I(ηε,i,1 = j) =∫ ∞
0 sQε,i j (ds), i, j = 1, 2 and eε,i = Eiτε,1 = Eκε,i,1 = eε,i1 + eε,i2, i = 1, 2.
Here and henceforth, we use notations Pi and Ei for conditional probabilities and

expectations under condition ηε(0) = ηε = i .
We also impose the following condition of convergence for above expectations:

I: (a) eε,i j < ∞, for every ε ∈ [0, 1] and i = 1, 2;
(b) eε,i j → e0,i j as ε → 0, for i = 1, 2.

The object of our interest is the joint distributions,

Pε,i j (t, A) = Pi {ξε(t) ∈ A, ηε(t) = j}, A ∈ BX, i, j = 1, 2, t ≥ 0. (3.15)

Probabilities Pε,i j (t, A) are, for every A ∈ BX, j = 1, 2, measurable functions of
t ≥ 0, which are the unique bounded solution for the following system of renewal
type equations,

Pε,i j (t, A) = δ(i, j)qε,i (t, A)

+
2∑

k=1

∫ t

0
Pε,k j (t − s, A)Qε,ik(ds), t ≥ 0, i = 1, 2. (3.16)

where qε,i (t, A) = Pi {ξε(t) ∈ A, ηε(t) = i, τε,1 > t} = P{ξε,i,1(t) ∈ A, κε,i,1 > t},
A ∈ BX, t ≥ 0, i, j = 1, 2.

Finally, we also impose the following condition on functions qε,i (t, A):

J: There exists a non-empty class of sets Γ ⊆ BX such that, for every A ∈ Γ, asymp-
totic relations, limu→0 lim0≤ε→0 sup−(u∧s)≤v≤u |qε,i (s + v, A) − q0,i (s, A)| = 0,
i = 1, 2, hold almost everywhere with respect to the Lebesgue measure m(ds)
on [0,∞).

As for conditionD, the class Γ appearing in condition J contains the phase spaceX
and is closed with respect to the operation of union for not intersecting sets, the oper-
ation of difference for sets connected by relation of inclusion, and the complement
operation. The corresponding comments are given below, in Sect. 3.2.5.

Consider also, for i = 1, 2, the standard regenerative process ξε,i (t), t ≥ 0 with
regeneration times τε,i,n = κε,i,1 + · · · + κε,i,n, n = 1, 2, . . ., τε,i,0 = 0, defined by
the recurrent relations, ξε,i (t) = ξε,i,n(t − τε,i,n−1), for t ∈ [τε,i,n−1, τε,in),
n = 1, 2, . . ..

Conditions F–J imply that, for every i = 1, 2, all conditions of Theorem3.1 hold
for regenerative process ξε,i (t), with the corresponding stopping probabilities fε,i =
0, ε ∈ [0, 1].

Thus, for every i = 1, 2, the following ergodic relation holds, for A ∈ Γ and any
0 ≤ tε → ∞ as ε → 0,

P{ξε,i (tε) ∈ A} → π0,i (A) as ε → 0, (3.17)



34 D. Silvestrov

where the probabilities π0,i (A) are corresponding stationary probabilities for the
regenerative process ξ0,i (t) given by the following relation,

π0,i (A) = 1

e0,i

∫ ∞

0
q0,i (s, A)m(ds), A ∈ BX. (3.18)

3.2.5 Stricture of Class Γ

Note that functions qε(s, A) and qε,i (s, A) appearing, respectively, in conditions D
and J are finite measures as functions of A ∈ BX.

This, in obvious way, implies that the class Γ appearing in condition D or J is
closed with respect to the operation of union for non-intersecting sets, i.e., if the
convergence relation given in condition D or J holds for sets A′ and A′′ such that
A′ ∩ A′′ = ∅, then this relation also holds for set A = A′ ∪ A′′.

The classΓ appearing in conditionDorJ also is closedwith respect to the operation
of differences for sets connected by relation of inclusion, i.e., if the convergence
relation given in condition D or J holds for sets A′ and A′′ such that A′ ⊆ A′′, then
this relation also holds for set A = A′′ \ A′.

Also, the class of sets Γ appearing in condition D or J includes the phase space X
under assumption that, respectively, condition B holds or conditions G and H hold.

Let us check this, for example, for the case of condition D. Indeed,

qε(t,X) = P{τε,1 ∧ με,1 > t}
= P{τε,1 > t, με,1 ≥ τε,1} + P{τε,1 ∧ με,1 > t, με,1 < τε,1}. (3.19)

and

P{τε,1 > t, με,1 ≥ τε,1} = P{με,1 ≥ τε,1} − P{τε,1 ≤ t, με,1 ≥ τε,1}
= Fε(∞) − Fε(t). (3.20)

Condition B implies that Fε(∞) − Fε(tε) → 1 − F0(t) as ε → 0, for any tε → t
as ε → 0 and t ∈ C(F0), whereC(F0) is the set of continuity points for the distribu-
tion function F0(·). Also, P{τε,1 ∧ με,1 > tε, με,1 < τε,1} ≤ P{με,1 < τε,1} = fε →
0 as ε → 0. The above relations imply that qε(tε,X) → q0(t,X) = 1 − F0(t) as
ε → 0, for any tε → t ∈ C(F0) as ε → 0. SinceC(F0) = [0,∞) \ C(F0) is at most
a countable set, m(C(F0)) = 0. The above relations imply, by Lemma3.2 given in
Sect. 3.4.3, that the asymptotic relation appearing in condition D holds for Γ = X.

Finally, the above remarks imply that class Γ appearing in conditionD or J is also
closed with respect to the complement operation, i.e., if the convergence relation
given in condition D holds for set A, then it also holds for set A.

Let us, for example, consider the model, where the phase space X = {1, 2, . . .,
m} is a finite set andBX is the σ -algebra of all subsets of X. In this case, it is natural
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to assume that the corresponding locally uniform convergence relation appearing in
condition J holds for all one-point sets A = { j}, j ∈ X. This will obviously imply
that this convergence relation also holds for any subset A ⊆ X that means that, in
this case, class Γ = BX.

3.2.6 Regularly, Singularly and Super-Singularly Perturbed
Alternating Regenerative Processes

The aim of the present paper is to give a detailed analysis of individual ergodic
theorems for probabilities Pε,i j (t, A) that is to describe possible variants of their
asymptotic behaviour as t → ∞ and ε → 0.

We shall see that the asymptotic behaviour of transition probabilities pε,i j , i, j =
1, 2 for the Markov chains ηε,n plays an important role in these ergodic theorems.
Note that, according to condition G, these transition probabilities converge to the
corresponding transition probabilities p0,i j , i, j = 1, 2 for the Markov chain η0,n , as
ε → 0.

There are three classes of perturbed alternating regenerative processes,with essen-
tially different ergodic properties.

The first class includes so-called “regularly” perturbed alternating regenerative
processes, for which the limiting Markov chain η0,n is ergodic that, in this case, is
equivalent to the assumption that at least one of its transition probabilities p0,12 and
p0,21 is positive.

Here, parameter β = p0,12/p0,21 plays the key role. Obviously, (a) β ∈ (0,∞), if
p0,12, p0,21 > 0, (b) β = 0, if p0,12 = 0, p0,21 > 0, and (c)we should count β = ∞,
if p0,12 > 0, p0,21 = 0. In case (a), the phase space Y is one class of communicative
states and the corresponding stationary probabilities α1(β) = p0,21

p0,12+p0,21
= 1

1+β
and

α2(β) = p0,12
p0,12+p0,21

= 1
1+β−1 . In case (b), the phase space Y consists of the absorbing

state 1 and the transient state 2. In this case, α1(0) = 1 and α2(0) = 0. Analogously,
in case (c), the phase space Y consists of the absorbing state 2 and the transient state
1. In this case α1(∞) = 0 and α2(∞) = 1.

In ergodic theorems for perturbed alternating regenerative processes, the asymp-
totic stability of stationary probabilities for Markov chains ηε,n play the key role.
In the case of regularly perturbed models, condition G obviously implies that the
Markov chain ηε,n is ergodic, for every ε ∈ [0, 1]. Its stationary probabilities are
determined by parameter βε = pε,12/pε,21, namely, α1(βε) = pε,21

pε,12+pε,21
= 1

1+βε
and

α2(βε) = pε,12

pε,12+pε,21
= 1

1+β−1
ε
. Condition G implies that βε → β as ε → 0 and, in

sequel, α1(βε) → α1(β) and α2(βε) → α2(β) as ε → 0.
We shall see that individual ergodic theorems for regularly perturbed alternating

processes have a form of asymptotic relation, Pε,i j (tε, A) → π
(β)

0, j (A) as ε → 0,
which holds for A ∈ Γ, i, j = 1, 2 and any 0 ≤ tε → ∞ as ε → 0,
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The limiting probabilities π
(β)

0, j (A) depend on parameter β ∈ [0,∞], but they do
not depend on an initial state i ∈ Y. The forms of ergodic theorems are analogous to
those, which are known for unperturbed alternating regenerative processes.

The second and the third classes include so-called “singularly” and “super-
singularly” perturbed alternating regenerative processes, for which the limiting
Markov chain η0,n is not ergodic that is equivalent to the assumption that both tran-
sition probabilities p0,12 and p0,21 equal 0.

According conditionG, four cases are possible. The case (d) 0 < pε,12, pε,21 → 0
as ε → 0, corresponds to singularly perturbed alternating regenerative processes.
Three cases, where (e) pε,12 = 0, ε ∈ [0, 1] and 0 < pε,21 → 0 as ε → 0, or (f)
0 < pε,12 → 0 as ε → 0 and pε,21 = 0, ε ∈ [0, 1], or (g) pε,12, pε,21 = 0, ε ∈ [0, 1],
correspond to super-singularly perturbed alternating regenerative processes.

In case (d), the asymptotic stability for stationary probabilities α j (βε), j = 1, 2
is provided by the following additional balancing condition that should be assumed
to hold for some β ∈ [0,∞]:
Kβ : βε = pε,12/pε,21 → β as ε → 0.

Condition G implies that the Markov chain ηε,n is ergodic, for ε ∈ (0, 1].
Its stationary probabilities are determined by parameter βε = pε,12/pε,21, namely,
α1(βε) = pε,21

pε,12+pε,21
= 1

1+βε
and α2(βε) = pε,12

pε,12+pε,21
= 1

1+β−1
ε
. Conditions G and Kβ

imply that βε → β and, in sequel, α1(βε) → α1(β) = 1
1+β

and α2(βε) → α2(β) =
1

1+β−1 as ε → 0.
In case (e), βε = pε,12/pε,21 = 0, for ε ∈ [0, 1], and, thus, condition K0 holds.

Condition G implies that the Markov chain ηε,n is ergodic, for ε ∈ (0, 1] and its
stationary probabilities αε,1(0) = 1, αε,2(0) = 0, for ε ∈ (0, 1]. Obviously, relations
αε,1(0) → α1(0) = 1 and αε,2(0) → α2(0) = 0 as ε → 0 also hold. Analogously, in
the case (f), βε = pε,12/pε,21 = ∞, for ε ∈ [0, 1], and, thus, condition K∞ holds.
Condition G implies that the Markov chain ηε,n is ergodic, for ε ∈ (0, 1] and its sta-
tionary probabilities αε,1(∞) = 0, αε,2(∞) = 1, for ε ∈ (0, 1]. Obviously, relations
αε,1(∞) → α1(∞) = 0 and αε,2(∞) → α2(∞) = 1 as ε → 0 also hold.

Ergodic theorems for singularly and super-singularly perturbed alternating pro-
cesses have much more complex and interesting forms than for regularly perturbed
alternating regenerative processes.

Functions vε = p−1
ε,12 + p−1

ε,21, ε ∈ (0, 1] and wε = (pε,12 + pε,21)
−1, ε ∈ (0, 1]

play important roles of so-called “time scaling” factors, respectively, for singu-
larly and super-singularly perturbed models. In the case (d), 0 < wε < vε < ∞,
for ε ∈ (0, 1] andwε, vε → ∞ as ε → 0. In the cases (e) and (f), 0 < wε < vε = ∞,
for ε ∈ (0, 1] and wε → ∞ as ε → 0.

The main individual ergodic theorems for singularly perturbed alternating regen-
erative processes have forms of asymptotic relations, Pε,i j (tε, A) → π

(β)

0,i j (t, A) as
ε → 0, holding under assumption that condition Kβ holds for some β ∈ [0,∞], for
A ∈ Γ, i, j = 1, 2, and any 0 ≤ tε → ∞ as ε → 0 such that tε/vε → t ∈ [0,∞] as
ε → 0.
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The asymptotic behaviour of probabilities Pε,i j (tε, A) can differ for different
asymptotic time zones determined by the asymptotic relation tε/vε → t ∈ [0,∞].
The corresponding limiting probabilities π

(β)

0,i j (t, A) may depend on t ∈ [0,∞],
parameter β ∈ 0,∞], appearing in conditionKβ , and, also, on the initial state i ∈ Y,
if t ∈ [0,∞). It is natural to classify the corresponding theorems as super-long, long,
and short time ergodic theorem, respectively, for cases t = ∞, t ∈ (0,∞) and t = 0,
for which the corresponding limiting probabilities take different analytical forms.

The corresponding individual ergodic theorems for super-singularly perturbed
alternating regenerative processes have forms of analogous asymptotic relations,
Pε,i j (tε, A) → π̇

(β)

0,i j (t, A) as ε → 0, holding under assumption that condition K0 or
K∞ holds, for A ∈ Γ, i, j = 1, 2 and any 0 ≤ tε → ∞ as ε → 0 such that tε/wε →
t ∈ [0,∞] as ε → 0.

In this case, the asymptotic behaviour of probabilities Pε,i j (tε, A) also can differ
for different asymptotic time zones determined by the asymptotic relation tε/wε →
t ∈ [0,∞]. The corresponding limiting probabilities π̇

(β)

0,i j (t, A) may depend on
t ∈ [0,∞], parameter β, taking in this case one of two values 0 or ∞, and, also,
on the initial state i ∈ Y, if t ∈ [0,∞). As for singularly perturbed models, it is
natural to classify the corresponding theorems as super-long, long and short time
ergodic theorem, respectively, for cases t = ∞, t ∈ (0,∞) and t = 0, for which the
corresponding limiting probabilities take different analytical forms.

Ergodic theorems for singularly perturbed models for the cases, where condition
K0 or K∞ is assumed to hold, can be compared with ergodic theorems for super-
singularly perturbed models, respectively, for the cases (e) or (f). Indeed, as was
mentioned above, condition K0 or K∞ holds, respectively, in the case (e) or (f).

In cases (e) and (f), i.e., for super-singularly perturbed models, vε = ∞, while
0 < wε < ∞, for ε ∈ (0, 1]. The only factorwε can be used as a time scaling factor. In
the case (d), i.e., for singularly perturbed models, 0 < wε < vε < ∞, for ε ∈ (0, 1].
The question arises ifwε can be used as a time scaling factor instead of vε. The answer
is in some sense affirmative, if condition Kβ holds for some β ∈ (0,∞). Indeed,
in this case, wε/vε → β(1 + β)−2 ∈ (0,∞) as ε → 0. The asymptotic relations,
tε/vε → t as ε → 0, and, tε/wε → t as ε → 0, generate, in fact, in some sense
equivalent asymptotic time zones. However, the answer for the above question is
negative, if condition K0 or K∞ holds. Indeed, in this case, wε/vε → 0 as ε → 0.
The asymptotic relations, tε/vε → t as ε → 0, and, tε/wε → t as ε → 0, generate
essentially different asymptotic time zones, in the corresponding ergodic theorems.
This, actually, makes it possible to get, under the assumption that condition K0 or
K∞ holds, additional ergodic relations for singularly perturbed processes, similar
to those given above for super-singularly perturbed processes, for asymptotic time
zones generated by relation tε/wε → t as ε → 0,

The extremal case, (g) pε,12, pε,21 = 0, ε ∈ [0, 1], corresponds to absolutely sin-
gular perturbed alternating regenerative processes. This case is not covered by condi-
tionKβ . However, in this case the modulating process ηε(t) = ηε(0), t ≥ 0. Respec-
tively, the process ξε(t), t ≥ 0 coincides with the standard regenerative process
ξε,i (t), t ≥ 0, if ηε(0) = i . The corresponding ergodic theorem for process ξε,i (t)
is given by Theorem3.1 for its particular case described in Sect. 3.2.3.
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In conclusion, let usmake somecomments concerning ergodic theorems for proba-
bilities Pε, p̄ε, j (t, A) = P{ξε(t) ∈ A, ηε(t) = j} = pε,1Pε,1 j (t, A) + pε,2Pε,2 j (t, A).

In models, where the corresponding limits for probabilities Pε,i j (tε, A) do not
depend of the initial state i , for example, for regularly perturbed alternating regener-
ative processes, probabilities Pε, p̄ε, j (tε, A) converge to the same limits for any initial
distributions p̄ε = 〈pε,1, pε,2〉.

However, in models, where the corresponding limits for probabilities Pε,i j (tε, A)

may depend of the initial state i , for example, for some singularly or super-singularly
perturbed alternating regenerative processes, probabilities Pε, p̄ε, j (t, A) converge to
some limits under an additional condition of asymptotic stability for initial distribu-
tions:

L: pε,i → p0,i as ε → 0, for i = 1, 2.

If, for example, condition L holds and, Pε,i j (tε, A) → π
(β)

0,i j (t, A) as ε → 0, for
i = 1, 2, then,

Pε, p̄ε, j (tε, A) → π
(β)

0, p̄0, j (t, A)

= p0,1π
(β)

0,1 j (t, A) + p0,2π
(β)

0,2 j (t, A) as ε → 0. (3.21)

3.2.7 Aggregation of Regeneration Times

The alternating regenerative process (ξε(t), ηε(t)), t ≥ 0 is a standard regenerative
process with regeneration times τε,0, τε,1, τε,2, . . . if and only if the joint distributions
of random variables ξε,i,n(tk), k = 1, . . . , r and κε,i,n, ηε,i,n do not depend on n ≥ 1,
for every tk ∈ [0,∞), k = 1, . . . , r, r ≥, i = 1, 2.

However, it is possible to construct new aggregated regeneration times such that
the process (ξε(t), ηε(t)), t ≥ 0 becomes a standard regenerative process with these
new regeneration times.

Let us define stopping times for Markov chain ηε,n that are, θ̂ε[r ] = min(k > r :
ηε,k = ηε,r ), which is the first after r return time to the state ηε,r , θ̃ε[r ] = min(k >

r : ηε,k �= ηε,r ), which is the first after r time of change of state ηε,r , and θ̌ε[r ] =
min(k > θ̃ε[r ] : ηε,k = ηε,r ), which is the first after θ̃ε[r ] return time to the state ηε,r .
Obviously, the above return times are connected by the inequality r < θ̂ε[r ] < θ̌ε[r ],
for r = 0, 1, . . ..

Let us also ν̂ε,0 = 0, ν̂ε,n = θ̂ [ν̂ε,n−1], n = 1, 2, . . ., and ν̌ε,0 = 0, ν̌ε,n = θ̌ [ν̌ε,n−1],
n = 1, 2, . . . be the corresponding sequential return times to the state ηε,0 by the
Markov chain ηε,n .

Let also us consider sequential return times τ̂ε,n = τε,ν̂ε,n , n = 0, 1, . . . and τ̌ε,n =
τε,ν̌ε,n , n = 0, 1, . . . to the state ηε(0) by the semi-Markov process ηε(t).

Process (ξε(t), ηε(t)), t ≥ 0 is a regenerative process with regeneration times
τ̂ε,n, n = 0, 1, . . .. It also is a regenerative process with regeneration times τ̌ε,n , n =
0, 1, . . ..
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We can also consider shifted sequences of discrete time stopping times
ν̂ ′

ε,0 = 0, ν̂ ′
ε,1 = θ̃ε[0], ν̂ ′

ε,n = θ̂ [ν̂ ′
ε,n−1], n = 2, 3, . . . and ν̌ ′

ε,0 = 0, ν̌ ′
ε,1 = θ̃ε[0],

ν̌ ′
ε,n = θ̌ [ν̌ ′

ε,n−1], n = 2, 3, . . ., and the corresponding stopping times τ̂ ′
ε,n = τε,ν̂ ′

ε,n
,

n = 0, 1, . . . and τ̌ ′
ε,n = τε,ν̌ ′

ε,n
, n = 0, 1, . . ..

If ηε(0) = 1, then the stopping times τ̂ε,n, n = 1, 2, . . . and τ̌ε,n, n = 1, 2, . . . are
return times to the state 1 for the semi-Markov process ηε(t). As far as the shifted
stopping times τ̂ ′

ε,n and τ̌ ′
ε,n are concerned, τ̂

′
ε,1 = τ̌ ′

ε,1 is the first hitting time to state
2, while τ̂ε,n, n = 2, 3, . . . and τ̌ε,n, n = 2, 3, . . . are return times to the state 2 for
the semi-Markov process ηε(t).

If ηε(0) = 2, then the stopping times τ̂ε,n, n = 1, 2, . . . and τ̌ε,n, n = 1, 2, . . . are
return times to the state 2 for the semi-Markov process ηε(t). As far as the shifted
stopping times τ̂ ′

ε,n and τ̌ ′
ε,n are concerned, τ̂

′
ε,1 = τ̌ ′

ε,1 is the first hitting time to state
1, while τ̂ε,n, n = 2, 3, . . . and τ̌ε,n, n = 2, 3, . . . are return times to the state 1 for
the semi-Markov process ηε(t).

Process (ξε(t), ηε(t)), t ≥ 0 is a regenerative process with the transition period
[0, τ̂ ′

ε,1) and the regeneration times τ̂ ′
ε,n, n = 0, 1, . . .. It also is a regenerative process

with the transition period [0, τ̌ε,1) and the regeneration times τ̌ ′
ε,n, n = 0, 1, . . ..

We shall see that aggregated regeneration times τ̂ε,n and τ̂ ′
ε,n work well in ergodic

theorems for models with regular perturbations. However, these regeneration times
do not workwell for themodels with singular and super-singular perturbations. Here,
the regeneration times τ̌ε,n and τ̌ ′

ε,n should be used.

3.3 Ergodic Theorems for Regularly Perturbed Alternating
Regenerative Processes

In this section, we present individual ergodic theorems for regularly perturbed alter-
nating regenerative processes. These theorems are, in fact, rather simple examples
illustrating applications of results generalising the renewal theorem to the model of
perturbed renewal equation given in [43–45] and individual ergodic theorems for per-
turbed regenerative processes throughly presented in [14]. Other related references
are given in the introduction.

3.3.1 Perturbed Standard Alternating Regenerative Processes

Let us consider regularly perturbed standard alternating regenerative processes,
where, additionally to F–J, the following condition holds:

M1 : pε,12, pε,21 = 1, for ε ∈ [0, 1].
In this case, the Markov chain η0,n is ergodic. Obviously, parameter β = 1, and

its stationary probabilities are, α1(1) = α2(1) = 1
2 .
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Conditions F–I and M1 imply that the semi-Markov process η0(t) is ergodic. Its
stationary probabilities have the form,

ρ1(1) = e0,1/(e0,1 + e0,2), ρ2(1) = e0,2/(e0,1 + e0,2). (3.22)

The corresponding stationary probabilities for the alternating regenerative process
(ξ0(t), η0(t)) have the form,

π
(1)
0, j (A) = ρ j (1)π0, j (A), A ∈ BX, j = 1, 2. (3.23)

The ergodic theorem for perturbed standard alternating regenerative processes
takes the following form.

Theorem 3.4 Let conditions F–J and M1 hold. Then, for every A ∈ Γ, i, j = 1, 2,
and any 0 ≤ tε → ∞ as ε → 0,

Pε,i j (tε, A) → π
(1)
0, j (A) as ε → 0. (3.24)

Proof In the case, where condition M1 holds, the stopping times θ̃ [r ] = r + 1 and
θ̂ [r ] = θ̌ [r ] = r + 2, for r = 0, 1, . . ..

Thus, the regenerations times τ̂ε,n = τ̌ε,n = τε,2n, n = 0, 1, . . . and

τ̂ ′
ε,0 = τ̌ ′

ε,0 = 0, τ̂ ′
ε,1 = τ̌ ′

ε,1 = τε,1, τ̂
′
ε,n = τ̌ ′

ε,n = τε,2n−1, n = 2, 3, . . . .

Here and henceforth, we use the same symbol for equalities or inequalities which
hold for random variables, for all ω ∈ Ωε or almost sure, since this difference does
not affect the corresponding probabilities and expectations.

Therefore, the standard alternating regenerative process (ξε(t), ηε(t)), t ≥ 0 is a
standard regenerative processwith regeneration times τε,0, τε,2, τε,4, . . .. It also can be
considered as a regenerative process with transition period [0, τε,1) and regenerative
times τε,0, τε,1, τε,3, τε,5, . . ..

Regenerative lifetimes are not involved. We can use the Theorems3.1–3.3, for the
model with stopping probabilities fε = 0, ε ∈ [0, 1].

First, let us analyse the asymptotic behaviour of probabilities Pε,11(t, A). In this
case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard regenerative pro-
cess with regeneration times τε,0, τε,2, . . ..

The renewal type Eq. (3.7) takes for probabilities Pε,11(t, A) the following form,

Pε,11(t, A) = q(2)
ε,1(t, A) +

∫ t

0
Pε,11(t − s, A)Q(2)

ε,11(ds), t ≥ 0, (3.25)

where q(2)
ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τε,2 > t}, t ≥ 0 and

Q(2)
ε,11(t) = P1{τε,2 ≤ t}, t ≥ 0.
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In this case, ηε(t) = 1, for t ∈ [0, τε,1), and ηε(t) = 2, for t ∈ [τε,1, τε,2). Therefore,
for every A ∈ BX, t ≥ 0,

q(2)
ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τε,2 > t}

= P1{ξε(t) ∈ A, τε,1 > t} = qε,1(t, A),
(3.26)

Also, for t ≥ 0,

Q(2)
ε,11(t) = P1{τε,2 ≤ t} = Qε,12(t) ∗ Qε,21(t), (3.27)

and, thus,
e(2)
ε,11 = E1τε,2 = eε,12 + eε,21. (3.28)

Note that condition M1 implies that expectations eε,11, eε,22 = 0 and, therefore,
eε,12 + eε,21 = eε,1 + eε,2.

Condition F obviously implies that condition A holds. Relation (3.27) and condi-
tionsG,H, andM1 imply that conditionB (a) holds. Relation (3.27) and conditionH
(b) implies that conditionB (b) holds. Relation (3.28) and condition I imply that con-
ditionC holds. Relation (3.26) and condition J imply that conditionD holds. As was
mentioned above, in this case, fε ≡ 0. Thus, all conditions of Theorem3.1 holds, and
the ergodic relation given in this theorem takes place for probabilities Pε,11(tε, A).
In this case, it takes the form of relation (3.24), where one should choose i, j = 1.

Second, let us analyse the asymptotic behaviour of probabilities Pε,21(t, A). In
this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the regenerative process
with transition period [0, τε,1) and regenerative times τε,0, τε,1, τε,3, . . ..

The shifted process (ξε(τε,1 + t), ηε(τε,1 + t)), t ≥ 0 is a standard regenerative
process. If ηε(0) = 2, then ηε(τε,1) = 1. That is why, probabilities Pε,11(t, A) play
for the above shifted regenerative process the role of probabilities P (1)

ε (t, A) defined
in Sect. 3.2.1.

The distribution function for the duration of the transition period [0, τε,1) has, in
this case, the following form,

P2{τε,1 ≤ t} = Qε,21(t), t ≥ 0. (3.29)

Relation (3.29) and conditionsH,M1 imply that conditionE holds. Thus, all con-
ditions of Theorem3.2 hold, and the corresponding ergodic relation for probabilities
Pε,11(tε, A) also holds for probabilities Pε,21(tε, A).

Due to the symmetricity of conditions F–J and M1 with respect to the indices
i, j = 1, 2, the ergodic relations, analogous to the mentioned above ergodic rela-
tions for probabilities Pε,11(tε, A) and Pε,21(tε, A), also take place for proba-
bilities Pε,22(tε, A) and Pε,12(tε, A). The only, stationary probabilities π

(1)
0,1(A)

should be replaced by stationary probabilities π
(1)
0,2(A) in the corresponding ergodic

relations. �
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3.3.2 Regularly Perturbed Alternating Regenerative
Processes

Let us now consider alternating regenerative processes with a regular perturbation
model, where additionally to F–J, the following condition holds:

M2 : p0,12, p0,21 > 0.

Note that conditionM1 is a particular case of conditionM2, and, thus, any standard
alternating regenerative process also is a regularly alternating regenerative process.

In this case, the Markov chain η0,n is ergodic. Parameter β = p0,12/p0,21 ∈
(0,∞), and the stationary probabilities for the aboveMarkov chain are,α1(β) = 1

1+β

and α2(β) = 1
1+β−1 .

Conditions F–I and M2 imply that the semi-Markov process η0(t) is ergodic. Its
stationary probabilities have the form,

ρ1(β) = e0,1α1(β)

e0,1α1(β) + e0,2α2(β)
, ρ2(β) = e0,2α2(β)

e0,1α1(β) + e0,2α2(β)
. (3.30)

The corresponding stationary probabilities for the alternating regenerative process
ξ0(t) has the form, for β ∈ (0,∞),

π
(β)

0, j (A) = ρ j (β)π0, j (A), A ∈ BX, j = 1, 2. (3.31)

The ergodic theorem for perturbed alternating regenerative processes takes the
following form.

Theorem 3.5 Let conditions F–J hold and, also, conditionM2 holds and parameter
p0,12/p0,21 = β ∈ (0,∞). Then, for every A ∈ Γ, i, j = 1, 2, and any 0 ≤ tε → ∞
as ε → 0,

Pε,i j (tε, A) → π
(β)

0, j (A) as ε → 0. (3.32)

Proof As was pointed out in Sect. 3.3.1, process (ξε(t), ηε(t)) is a regenerative pro-
cess with regeneration times with regeneration times τ̂ε,n, n = 0, 1, . . .. It is also a
regenerative process with the transition period [0, τ̂ ′

ε,1) and the regeneration times
τ̂ ′
ε,n, n = 0, 1, . . ..
Again, regenerative lifetimes are not involved. We can use the Theorems3.1–3.3,

for the model with stopping probabilities fε = 0, ε ∈ [0, 1].
First, let us analyse the asymptotic behaviour of probabilities Pε,11(t, A). In this

case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard regenerative pro-
cess with regeneration times τ̂ε,n, n = 0, 1, . . ..

The renewal type Eq. (3.7) for probabilities Pε,11(t, A) takes, in this case, the
following form,

Pε,11(t, A) = q̂ε,1(t, A) +
∫ t

0
Pε,11(t − s, A)Q̂ε,11(ds), t ≥ 0, (3.33)
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where q̂ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̂ε,1 > t}, t ≥ 0 and Q̂ε,11(t) = P1

{τ̂ε,1 ≤ t}, t ≥ 0.
If ηε(0) = 1, then ηε(t) = 1 for t ∈ [0, τε,1). Also, τ̂ε,1 = τε,1, if ηε,1 = 1, and

ηε(t) = 2, for t ∈ [τε,1, τ̂ε,1), if ηε,1 = 2. Therefore, for every A ∈ BX, t ≥ 0,

q̂ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̂ε,1 > t}
= P1{ξε(t) ∈ A, τε,1 > t, ηε,1 = 1}

+ P1{ξε(t) ∈ A, τε,1 > t, ηε,1 = 2}
= P1{ξε(t) ∈ A, τε,1 > t} = qε,1(t, A). (3.34)

In this case, Q̂ε,11(t) is the distribution function of the first return time to state
1 for semi-Markov process ηε(t). It can be expressed in terms of convolutions of
transition probabilities for this semi-Markov process,

Q̂ε,11(t) = Qε,11(t) + Qε,12(t) ∗
∞∑

n=0

Q∗n
ε,22(t) ∗ Qε,21(t), t ≥ 0. (3.35)

Relation (3.35) takes the following equivalent form in termsofLaplace transforms,

φ̂ε,11(s) =
∫ ∞

0
e−st Q̂ε,11(dt)

= φε,11(s) + φε,12(s)
∞∑

n=0

φn
ε,22(s)φε,21(s)

= φε,11(s) + φε,12(s)
1

1 − φε,22(s)
φε,21(s), s ≥ 0. (3.36)

Relation (3.35) also implies that random variable ν̂ε,1 has a so-called burned
geometric distribution that is,

ν̂ε,1 =
{
1 with probability pε,11,

n with probability pε,12 p
n−2
ε,22 pε,21, for n ≥ 2.

This fact and conditionsG,H, andM2 imply, in an obvious way, that expectation
êε,11 = E1τ̂ε,1 < ∞. It can be easily computed, for example, using the derivative of
the Laplace transform φ̂ε,11(s) at zero,

êε,11 = E1τ̂ε,1 = −φ̂′
ε,11(0) = eε,11 + eε,12

1

1 − pε,22
pε,21

+ pε,12
eε,22

(1 − pε,22)2
pε,21 + pε,12

1

1 − pε,22
eε,21

= eε,1 pε,21 + eε,2 pε,12

pε,21

= eε,1α1(βε) + eε,2α2(βε)

α1(βε)
. (3.37)
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Obviously, τ̂ε,n ≥ τε,n , for n = 0, 1, . . .. Thus, condition F implies that condition
A holds. Relations (3.35), (3.36) and conditions G, H, and M2 imply that Laplace
transforms φ̂ε,11(s) → φ̂0,11(s) as ε → 0, for s ≥ 0. Thus, by Remark3.1, condition
B (a) holds. Also, relation (3.35) and condition H (b) implies that condition B (b)
holds. Relation (3.37) and conditionsH and I imply that conditionC holds. Relation
(3.34) and condition J imply that condition D holds. As was mentioned above, in
this case, fε ≡ 0. Thus, all conditions of Theorem3.1 hold, and the ergodic relation
given in this theorem takes place for probabilities Pε,11(tε, A). In this case, it takes
the form of relation (3.32), where one should choose i, j = 1, i.e., for every A ∈ Γ,
and any 0 ≤ tε → ∞ as ε → 0,

Pε,11(tε, A) → α1(β)

e0,1α1(β) + e0,2α2(β)

∫ ∞

0
q0,1(s, A)m(ds)

= e0,1α1(β)

e0,1α1(β) + e0,2α2(β)

1

e0,1

∫ ∞

0
q0,1(s, A)m(ds)

= ρ j (β)π0, j (A) = π
(β)

0, j (A) as ε → 0. (3.38)

Second, let us analyse the asymptotic behaviour of probabilities Pε,21(t, A). In
this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the regenerative process
with transition period [0, τ̂ ′

ε,1) and regenerative times τ̂ ′
ε,0, τ̂

′
ε,1 = τ̃ε,1, τ̂

′
ε,2, τ̂

′
ε,3, . . ..

The shifted process (ξε(τ̂
′
ε,1 + t), ηε(τ̂

′
ε,1 + t)), t ≥ 0 is a standard regenerative

process. If ηε(0) = 2, then ηε(τ̃ε,1) = 1. That is why, probabilities Pε,11(t, A) play
for this process the role of probabilities P (1)

ε (t, A) pointed out in Sect. 3.2.1.
The distribution function for the duration of the transition period [0, τ̃ε,1) has, in

this case, the following form,

P2{τ̃ε,1 ≤ t} = Q̃ε,21(t)

=
∞∑

n=0

Q∗n
ε,22(t) ∗ Qε,21(t), t ≥ 0. (3.39)

This relation takes the following equivalent form in terms of Laplace transforms,

φ̃ε,21(s) =
∫ ∞

0
e−st Q̃ε,21(dt)

=
∞∑

n=0

φn
ε,22(s)φε,21(s)

= φε,21(s)

1 − φε,22(s)
, s ≥ 0. (3.40)

Relations (3.39), (3.40) and conditions G, H, and M2 imply that Laplace trans-
forms φ̃ε,21(s) → φ̃0,21(s) as ε → 0, for s ≥ 0. Thus, by Remark3.1, condition E
holds. All conditions of Theorem3.2 hold, and the corresponding ergodic relation
for probabilities Pε,11(tε, A) also holds for probabilities Pε,21(tε, A).
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Due to the symmetricity of conditions F–J and M2 with respect to the indices
i, j = 1, 2, the ergodic relations, analogous to the mentioned above ergodic rela-
tions for probabilities Pε,11(tε, A) and Pε,21(tε, A), also take place for probabil-
ities Pε,22(tε, A) and Pε,12(tε, A). The only, the stationary probabilities π

(β)

0,1 (A)

should be replaced by stationary probabilities π
(β)

0,2 (A) in the corresponding ergodic
relations. �

Remark 3.2 Theorem3.4 is a particular case of Theorem3.5. In this case, the ergodic
relation (3.32) takes the form of ergodic relation (3.24).

3.3.3 Semi-regularly Perturbed Alternating Regenerative
Processes

Let us now consider alternating regenerative processes with the semi-regular pertur-
bation model, where additionally to F–J, the following condition holds:

M3 : (a) p0,12 = 0, p0,21 > 0 or (b) p0,12 > 0, p0,21 = 0.

In this case, theMarkov chain η0,n is ergodic. Parameter β = p0,12/p0,21 = 0, and
the stationary probabilities for the above Markov chain are, α1(0) = 1, α2(0) = 0, if
conditionM3 (a)holds.While,β = p0,12/p0,21 = ∞, and the stationary probabilities
for the above Markov chain are, α1(∞) = 0, α2(∞) = 1, if conditionM3 (b) holds.

Conditions F–J andM3 imply that the semi-Markov process η0(t) is ergodic. Its
stationary probabilities have the form,

ρ1(0) = e0,1α1(0)/(e0,1α1(0) + e0,2α2(0)) = 1,

ρ2(0) = ε0,2α2(0)/(e0,1α1(0) + e0,2α2(0)) = 0,

if condition M3 (a) holds. While, its stationary probabilities have the form,

ρ1(∞) = e0,1α1(∞)/(e0,1α1(∞) + e0,2α2(∞)) = 0,

ρ2(∞) = e0,2α2(∞)/(e0,1α1(∞) + e0,2α2(∞)) = 1,

if condition M3 (b) holds. The corresponding stationary probabilities for the alter-
nating regenerative process (ξ0(t), η0(t)) have the form,

π
(β)

0, j (A) = ρ j (β)π0, j (A), A ∈ BX, j = 1, 2, for β = 0 and β = ∞, , i.e.,

π
(0)
0, j (A) =

{
π0,1(A) for j = 1,

0 for j = 2,
(3.41)
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and

π
(∞)
0, j (A) =

{
0 for j = 1,

π0,2(A) for j = 2.
(3.42)

The ergodic theorems for perturbed alternating regenerative processes take the
following forms.

Theorem 3.6 Let conditions F–J and M3 (a) hold. Then, for every A ∈ Γ, i, j =
1, 2, and any 0 ≤ tε → ∞ as ε → 0,

Pε,i j (tε, A) → π
(0)
0, j (A) as ε → 0. (3.43)

Theorem 3.7 Let conditions F–J and M3 (b) hold. Then, for every A ∈ Γ, i, j =
1, 2, and any 0 ≤ tε → ∞ as ε → 0,

Pε,i j (tε, A) → π
(∞)
0, j (A) as ε → 0. (3.44)

Proof Process (ξε(t), ηε(t)) is a standard regenerative process with regeneration
times τ̂ε,n, n = 0, 1, . . .. It also is a regenerative process with transition period
[0, τ̂ ′

ε,1) and regenerative times τ̂ ′
ε,n, n = 0, 1, . . ..

Again, regenerative stopping is not involved. We can use the Theorems3.1–3.3,
for the model with stopping probabilities fε = 0, ε ∈ [0, 1].

Let us consider the case, where condition M3 (a) holds.
Let us analyse the asymptotic behaviour for probabilities Pε,1 j (t, A), j = 1, 2.

In this case, we prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard regenerative
process with regeneration times τ̂ε,0, τ̂ε,1, τ̂ε,2, . . ..

First, let us analyse the asymptotic behaviour of probabilities Pε,11(t, A).
The renewal type Eq. (3.7) takes for probabilities Pε,1 j (t, A) the following form,

for j = 1, 2,

Pε,1 j (t, A) = q̂ε,1 j (t, A) +
∫ t

0
Pε,1 j (t − s, A)Q̂ε,11(ds), t ≥ 0, (3.45)

where q̂ε,1 j (t, A) = P1{ξε(t) ∈ A, ηε(t) = j, τ̂ε,1 > t}, t ≥ 0, j = 1, 2 and
Q̂ε,11(t) = P1{τ̂ε,1 ≤ t}, t ≥ 0.

In the case of probabilities Pε,11(t, A), we can repeat all calculations made in
relations (3.33)–(3.37), given in the proof of Theorem3.5. These relations, in fact,
take simpler forms.

Analogously to relation (3.34), one can get, for every A ∈ BX, t ≥ 0,

q̂ε,11(t, A) = P1{ξε(t) ∈ A, τε,1 > t} = qε,1(t, A). (3.46)

Also, as was pointed out in comments related to relation (3.35), Q̂ε,11(t) is the
distribution function of the first return time to state 1 for semi-Markov process ηε(t),
and the following formula, analogous to (3.36), takes place for its Laplace transform,
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φ̂ε,11(s) =
∫ ∞

0
e−st Q̂ε,11(dt)

= φε,11(s) + φε,12(s)
1

1 − φε,22(s)
φε,21(s), s ≥ 0. (3.47)

Also, the following formula, analogous to (3.37), takes place for expectations,

êε,11 = E1τ̂ε,1 = −φ̂′
ε,11(0) = eε,1α1(βε) + eε,2α2(βε)

α1(βε)
. (3.48)

Conditions G, H, and M3 (a) imply that, in relation (3.47), either Laplace trans-
form φε,12(s) = 0, for s ≥ 0, if pε,12 = 0, for ε ∈ [0, 1], or φε,12(s) → 0 as ε → 0,
for s ≥ 0, if 0 < pε,12 → 0 as ε → 0. This implies that the Laplace transforms
φ̂ε,11(s) → φ̂0,11(s) = φ0,11(s) as ε → 0, for s ≥ 0. Thus, by Remark3.1, condition
B(a)holds,with the corresponding limiting distribution function Q0,11(t).According
to condition H, condition B (b) holds for the distribution function Q0,11(t). Anal-
ogously, in relation (3.48), either expectation eε,12 = 0, if pε,12 = 0, for ε ∈ [0, 1],
or eε,12 → 0 as ε → 0, if 0 < pε,12 → 0 as ε → 0. It follows from this remark and
conditions G–I that the expectations êε,11 → ê0,11 = e0,11 as ε → 0. Note also that
conditionM3 (a) implies that expectation e0,11 = e0,1. Thus, conditionC holds, with
the corresponding limiting expectation e0,11 = e0,1. Relation (3.46) and condition J
imply that condition D holds. As was mentioned above, in this case, fε ≡ 0. Thus,
all conditions all conditions of Theorem3.1 hold, and the ergodic relation given in
this theorem takes place for probabilities Pε,11(tε, A). In this case, it takes the form
of relation (3.43), where one should choose i, j = 1.

Second, let us analyse the asymptotic behaviour of probabilities Pε,12(t, A).
Holding of conditions A–C was pointed above.
If ηε(0) = 1, then ηε(t) = 1 for t ∈ [0, τε,1), and τ̂ε,1 = τε,1, if ηε,1 = 1. Also,

ηε(t) = 2, for t ∈ [τε,1, τ̂ε,1), if ηε,1 = 2. Therefore, for every A ∈ BX, t ≥ 0,

q̂ε,12(t, A) = P1{ξε(t) ∈ A, ηε(t) = 2, τ̂ε,1 > t}
≤ P1{ξε(t) ∈ A, ηε(t) = 2, τ̂ε,1 > t, τε,1 ≤ t, ηε,1 = 2}
≤ P1{τε,1 ≤ t, ηε,1 = 2} ≤ pε,12. (3.49)

Since, pε,12 = 0, for ε ∈ [0, 1] or pε,12 → 0 as ε → 0, condition D holds for
function q̂ε,12(t, A) with the corresponding limiting function q̂0,12(t, A) = 0, t ≥ 0,
for every A ∈ BX. Thus, all conditions of Theorem3.1 hold, and the ergodic relation
given in this theorem takes place for probabilities Pε,12(tε, A). In this case, it takes
the form of relation (3.43), where one should choose i = 1, j = 2.

Third, let us analyse asymptotic behaviour of probabilities Pε,2 j (t, A), j = 1, 2.
In this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the regenerative process
with transition period [0, τ̂ ′

ε,1) and regenerative times τ̂ ′
ε,0, τ̂

′
ε,1 = τ̃ε,1, τ̂

′
ε,2, τ̂

′
ε,3, . . ..



48 D. Silvestrov

The shifted process (ξε(τ̂
′
ε,1 + t), ηε(τ̂

′
ε,1 + t)), t ≥ 0 is a standard regenerative

process. If ηε(0) = 2, then ηε(τ̃ε,1) = 1. That is why, probabilities Pε,1 j (t, A) play
for this process the role of probabilities P (1)

ε (t, A) defined out in Sect. 3.2.
The distribution function P2{τ̃ε,1 ≤ t} = Q̃ε,21(t) and the Laplace transform

φ̃ε,12(s) = ∫ ∞
0 e−st Q̃ε,12(dt) for the duration of the transition period [0, τ̃ε,1) are

given, respectively in relations (3.39) and (3.40). These relations and conditions G,
H andM3 (a) imply that Laplace transforms φ̃ε,12(s) → φ̃0,12(s) as ε → 0, for s ≥ 0.
Thus, by Remark3.1, condition E holds. All conditions of Theorem3.2 hold, and the
corresponding ergodic relation for probabilities Pε,1 j (tε, A), j = 1, 2 also holds for
probabilities Pε,2 j (tε, A), j = 1, 2.

Due to symmetricity of conditions F–J with respect to the indices i, j = 1, 2 the
corresponding asymptotic analysis for probabilities Pε,i j (tε, A), i, j = 1, 2 (under
assumption of holding conditionM3(b)) is analogous to the above asymptotic anal-
ysis for probabilities Pε,i j (tε, A), i. j = 1, 2 (under assumption of holding condition
M3(a)). The corresponding ergodic relation (3.44) takes place for the above proba-
bilities, under assumption of holding condition M3(b). �

3.4 Super-Long and Long Time Ergodic Theorems for
Singularly Perturbed Alternating Regenerative
Processes

In this section, we present super-long and long time individual ergodic theorems
for singularly perturbed alternating regenerative processes. We also present in this
section the special procedure of time scaling for perturbed regenerative processes. It
is essentially used in the corresponding proofs.

3.4.1 Time Scaling for Perturbed Regenerative Processes

Let return back to the model of perturbed regenerative processes with regenera-
tive lifetimes introduced in Sect. 3.2.1. So, let ξε(t), t ≥ 0 be, for every ε ∈ [0, 1],
a regeneration process with regeneration times τε,n, n = 0, 1, . . . and a regenerative
lifetime με constructed using the triplets 〈ξ̄ε,n = 〈ξε,n(t), t ≥ 0〉, κε,n, με,n〉 intro-
duced in Sect. 3.2.1.

Let also vε, ε ∈ (0, 1] be a positive function. We also choose some v0 ∈ [0,∞].
In some cases, it can be useful to replace, for every ε ∈ (0, 1], the above triplet by

new one, 〈ξ̄ε,vε,n=〈ξε,vε,n(t)=ξε,n(tvε), t ≥ 0〉, κε,vε,n=v−1
ε κε,n, με,vε,n = v−1

ε με,n〉.
Respectively, the above regenerative process ξε(t), t ≥ 0 will be, for every

ε ∈ (0, 1], transformed in the new process ξε,vε
(t) = ξε(tvε), t ≥ 0. Obviously.

ξε,vε
(t), t ≥ 0 is also a regenerative process, with new regenerative times τε,vε,n =

v−1
ε τε,n, n = 0, 1, . . . and new lifetime με,vε

= v−1
ε με.
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We also should introduce a limiting triplet 〈ξ̄0,v0,n = 〈ξ0,v0,n(t), t ≥ 0〉, κ0,v0,n ,
μ0,v0,n〉, which possess the corresponding properties described in Sect. 3.2.1, and the
corresponding limiting regenerative process ξ0,v0(t) = ξ0,v0,n(t − τ0,v0,n−1) for t ∈
[τ0,v0,n−1, τ0,v0,n), n = 1, 2, . . ., regeneration times τ0,v0,n = κ0,v0,1 + · · · + κ0,v0,n,

n = 1, 2, . . . , τ0,v0,0 = 0, and a regenerative lifetime, μ0,v0 = κ0,v0,1 + · · · +
κ0,v0,ν0,v0−1 + μ0,v0,ν0,v0

, where ν0,v0 = min(n ≥ 1 : μ0,v0,n < κ0,v0,n).
In such model, we can assume the the corresponding conditions A–D hold

for the transformed regenerative processes ξε,vε
(t), t ≥ 0, their regeneration times

τε,vε,n, n = 0, 1, . . . and lifetimes με,vε
.

It worth to note that the probabilities Pε,vε
(t, A) = P{ξε,vε

(t) ∈ A, με,vε
> t} =

Pε(tvε, A) = P{ξε(tvε) ∈ A, με > tvε}, t ≥ 0, for ε ∈ (0, 1].
The basic renewal equation (3.7) for probabilities Pε,vε

(t, A) takes, for ε ∈ (0, 1],
the following form, for A ∈ BX,

Pε,vε
(t, A) = qε,vε

(t, A) +
∫ t

0
Pε,vε

(t − s, A)Fε,vε
(ds), t ≥ 0, (3.50)

where qε,vε
(t, A) = P{ξε,vε

(t) ∈ A, τε,vε,1 ∧ με,vε
> t} = qε(tvε, A) = P{ξε(tvε) ∈

A, τε,1 ∧ με > tvε} and Fε,vε
(t) = P{τε,vε,1 ≤ t, με,vε

≥ τε,vε,1}=P{τε,1 ≤ tvε, v−1
ε

με ≥ v−1
ε τε,1}.

We shall see in the next section that the above scaling of time transformation can be
effectively used in ergodic theorems for singularly perturbed alternating regenerative
processes, where aggregated regeneration times can be stochastically unbounded
as ε → 0. In such models, we shall use time scaling factors 0 < vε → v0 = ∞ as
ε → 0, and refer to vε as to time compression factors.

3.4.2 Singularly Perturbed Alternating Regenerative
Processes

Let us now consider the alternating regenerative processes with the singular pertur-
bation model, where additionally to F–J, the following condition holds:

N1 : 0 < pε,12 → p0,12 = 0 as ε → 0 and 0 < pε,21 → p0,21 = 0 as ε → 0.

The case, where condition N1 holds, is the most interesting. Here, we should also
assume that probabilities pε,12 and pε,21 are asymptotically comparable in the sense
that the condition Kβ holds for some β ∈ [0,∞].

Let us define function vε = p−1
ε,12 + p−1

ε,21. Obviously, 0 < vε → v0 = ∞ as ε →
0. Also, p−1

ε,12/vε → (1 + β)−1 and p−1
ε,21/vε → (1 + β−1)−1 as ε → 0.

As was pointed out in Sect. 3.4.1, process (ξε(t), ηε(t)) is a regenerative process
with regeneration times τ̂ε,n, n = 0, 1, . . .. It is also a regenerative process with the
transition period [0, τ̂ ′

ε,1) and regeneration times τ̂ ′
ε,n, n = 0, 1, . . ..
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Unfortunately, the model with aggregated regeneration times τ̂ε,n does not work
in this case. Indeed, conditions G, H and N1 implies that φε,12(s) → φ0,12(s) = 0
as ε → 0, for s ≥ 0 and, thus, using relation (3.36), we get φ̂ε,11(s) = φε,11(s) +
φε,12(s)

1
1−φε,22(s)

φε,21(s) → φ0,11(s) as ε → 0, for s ≥ 0. Thus, the distributions of

regeneration times Q̂ε,11(·) ⇒ Q̂0,11(·) = Q0,11(·) as ε → 0. At the same time, con-
ditionsG–I,N1 and relation (3.37) imply that, in this case, êε,11 = eε,1 pε,21+eε,2 pε,12

pε,21
→

e0,1 + e0,2β = e0,11 + e0,22β as ε → 0. This makes it impossible to use Theo-
rems3.1–3.3, which require convergence of expectations for regeneration times to
the first moment of the corresponding limiting distribution for regeneration times. In
the above case, ê0,11 = e0,11 �= e0,11 + e0,22β, if β > 0.

Fortunately, we can use an alternative model with aggregated regeneration times
τ̌ε,n introduced in Sect. 3.2.7. Process (ξε(t), ηε(t)) is a regenerative process with
regeneration times τ̌ε,n, n = 0, 1, . . .. It is also a regenerative process with the tran-
sition period [0, τ̌ ′

ε,1) and regeneration times τ̌ ′
ε,n, n = 0, 1, . . ..

Let us analyse the asymptotic behaviour for probabilities Pε,11(t, A). In this case,
we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard regenerative process
with regeneration times τ̌ε,n, n = 0, 1, . . ..

The renewal equation (3.7) for probabilities Pε,11(t, A) takes, in this case, the
following form,

Pε,11(t, A) = q̌ε,1(t, A) +
∫ t

0
Pε,11(t − s, A)Q̌ε,11(ds), t ≥ 0, (3.51)

where q̌ε,1(t, A) = P1

{ξε(t) ∈ A, ηε(t) = 1, τ̌ε,1 > t}, t ≥ 0 and Q̌ε,11(t) = P1{τ̌ε,1 ≤ t}, t ≥ 0.
If ηε(0) = 1, then ηε(t) = 1 for t ∈ [0, τ̃ε,1), and ηε(t) = 2, for t ∈ [τ̃ε,1, τ̌ε,1).

Therefore, for every A ∈ BX, t ≥ 0,

q̌ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̌ε,1 > t}
= P1{ξε(t) ∈ A, ηε(t) = 1, τ̃ε,1 > t} = q̃ε,1(t, A). (3.52)

In this case, Q̌ε,11(t) is the distribution function of the first return time to state 1
after first hitting to state 2, for the semi-Markov process ηε(t). It can be expressed
in terms of convolutions of transition probabilities for this semi-Markov process,

Q̌ε,11(t) = Q̃ε,12(t) ∗ Q̃ε,21(t), t ≥ 0. (3.53)

where, for i, j ∈ Y, i �= j ,

Q̃ε,i j (t) =
∞∑

n=0

Q∗n
ε,i i (t) ∗ Qε,i j (t), t ≥ 0, (3.54)

According relation (3.53), the distribution function Q̌ε,11(t) of return time τ̌ε,1 is
the convolution of two distribution functions, Q̃ε,12(t) and Q̃ε,21(t). This means that
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return time τ̌ε,1 is the sum of two independent random variables τ̃ε,1 and τ̌ε,1 − τ̃ε,1,
which have the distribution functions, respectively, Q̃ε,12(t) and Q̃ε,21(t). The former
one is the distribution of the first hitting time of state 2 from state 1, the latter one is
the distribution of the first hitting time of state 1 from state 2, for the semi-Markov
process ηε(t).

Remind that we assume, ηε(0) = ηε = 1. In this case, (a) the return time τ̃ε,1 is a
random sum, τ̃ε,1 = ∑θε[0]

n=1 κε,1,n , where (b) the random index, θε[0] = min(n ≥ 1 :
ηε,1,n = 1) has the geometric distribution with parameter pε,12, i.e., it takes value n
with probability pn−1

ε,11 pε,12, for n = 1, 2, . . ..
Relation (b) and condition N1 imply that random variables,

pε,12θε[0] d−→ ζ as ε → 0, (3.55)

where ζ is a random variable exponentially distributed, with parameter 1.
Random variables κε,1,n, n = 1, 2, . . . are i.i.d. random variables with the distri-

bution function Fε,1(t) = P1{κε,1,1 ≤ t} = Qε,11(t) + Qε,12(t), t ≥ 0. ConditionsH
and I imply that (c) distributions Fε,1(·) ⇒ F0,1(·) as ε → 0 and (d) expectations
eε,1 = E1κε,1,1 = ∫ ∞

0 sFε,1(ds) → e0,1 = ∫ ∞
0 sF0,1(ds) as ε → 0.

Relations (c) and (d) imply that, for any integer-valued function 0 ≤ nε → ∞ as
ε → 0,

n−1
ε

nε∑

k=1

κε,1,n
d−→ e0,1 as ε → 0. (3.56)

Indeed, let 0 < sk → ∞ as k → ∞ be a sequence of continuity points for the
distribution function F0,1(t). The above relations (c) and (d) obviously imply that,
for any t > 0,

lim
ε→0

∫ ∞

tnε

sFε,1(ds) ≤ lim
ε→0

∫ ∞

sk

sFε,1(ds) = lim
ε→0

(eε,1 −
∫ sk

0
sFε,1(ds))

= e0,1 −
∫ sk

0
sF0,1(ds) → 0 as k → ∞, (3.57)

and, thus, the following relation holds, for any t > 0,

lim
ε→0

∫ ∞

tnε

sFε,1(ds) = 0. (3.58)

Relation (3.58) implies that, for any t > 0,

nεP1{n−1
ε κε,1,1 > t} = nε(1 − Fε,1(tnε))

≤ t−1
∫ ∞

tnε

sFε,1(ds) → 0 as ε → 0. (3.59)
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Also, relations (d) and (3.58) implies that, for any t > 0,

nεE1n
−1
ε κε,1,1I(n

−1
ε κε,1,1 ≤ t) =

∫ tnε

0
sdFε,1(ds) → e0,1 as ε → 0. (3.60)

Relations (3.59) and (3.60) imply, by the criterion of central convergence, that
relation (3.56) holds.

The random index θε[0] and the random variables κε,1,n, n = 1, 2, . . . are depen-
dent. Nevertheless, since the limit in relation (3.56) is non-random, relations (3.55)
and (3.56) imply that stochastic processes,

(pε,12θε[0],
∑

n≤tp−1
ε,12

κε,1,n, t ≥ 0
d−→ (ζ, te0,1), t ≥ 0 as ε → 0. (3.61)

By well known results about convergence of randomly stopped stochastic pro-
cesses (for example, Theorem2.2.1 [52]), representation (a) and relation (3.61) imply
that random variables,

pε,12τ̃ε,1
d−→ e0,1ζ as ε → 0. (3.62)

Since, p−1
ε,12/vε → (1 + β)−1 as ε → 0, relation (k) implies the following relation,

Q̃ε,vε,12(·) ⇒ Q̃0,v0,12(·) as ε → 0, (3.63)

where Q̃0,v0,12(t) = P{e0,1 1
1+β

ζ ≤ t}, t ≥ 0 is the distribution function of an expo-

nentially distributed random variable, with parameter e−1
0,1(1 + β).

Since the random variable τ̌ε,1 − τ̃ε,1 has distribution function Q̃ε,21(t), one can,
in the way absolutely analogous with relation (3.62), prove the following relation,

pε,21(τ̌ε,1 − τ̃ε,1)
d−→ e0,2ζ as ε → 0, (3.64)

and, in sequel,
Q̃ε,vε,21(·) ⇒ Q̃0,v0,21(·) as ε → 0, (3.65)

where Q̃0,v0,21(t) = P{e0,2 1
1+β−1 ζ ≤ t}, t ≥ 0 is the distribution function of an expo-

nentially distributed random variable, with parameter e−1
0,2(1 + β−1).

Let Q̌ε,vε,11(t) = Q̌ε,11(tvε) = P1{τ̌ε,1/vε ≤ t}, t ≥ 0 be the distribution function
of the normalised return time v−1

ε τ̌ε,1.
Relations (3.53), (3.63) and (3.65) imply that,

Q̌ε,vε,11(·) ⇒ Q̌0,v0,11(·) as ε → 0, (3.66)
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where Q̌0,v0,11(t) = P{e0,1 1
1+β

ζ1 + e0,2
1

1+β−1 ζ2 ≤ t}, t ≥ 0 is the distribution func-
tion of the linear combination of two independent random variables ζ1 and ζ2, expo-
nentially distributed, with parameter 1.

Note that in that cases β = 0 or β = ∞, respectively, the second or the first
random variable in the above sum vanishes in zero. In this case, Q̌0,v0,11(t) is an
exponential distribution function with parameter, respectively, e−1

0,1 or e
−1
0,2.

Also, that above representation (a) for the random variable τ̃ε,1, as the random
sum, implies that,

ẽε,vε,12 =
∫ ∞

0
s Q̃ε,vε,12(ds) = v−1

ε E
θε[0]∑

n=1

κε,1,n

= v−1
ε E

∞∑

n=1

κε,1,nI(θε[0] > n − 1)

= v−1
ε E

∞∑

n=1

κε,1,nI(ηε,1,k = 1, 1 ≤ k ≤ n − 1)

= v−1
ε

∞∑

n=1

Eκε,1,nEI(ηε,1,k = 1, 1 ≤ k ≤ n − 1)

= v−1
ε

∞∑

n=1

eε,1 p
n−1
ε,11 = eε,1

vε pε,12
. (3.67)

Analogous formula also takes place,

ẽε,vε,21 = v−1
ε E(τ̌ε,1 − τ̃ε,1) = eε,2

vε pε,21
. (3.68)

Relations (3.67) and (3.68) imply the following relation,

ěε,vε,11 = ẽε,vε,12 + ẽε,vε,21 = eε,1
1

vε pε,12
+ eε,2

1

vε pε,21

→ e0,1
1

1 + β
+ e0,2

1

1 + β−1
= ě0,v0,11 =

∫ ∞

0
s Q̌0,v0,11(ds). (3.69)

The above remarks prompt us how to apply the scaling of time transformation
with compression function vε, described in Sect. 3.4.1, to the regenerative process
(ξε(t), ηε(t)), t ≥ 0 with regeneration times τ̌ε,n, n = 0, 1, . . ..

So, let us consider, for every ε ∈ (0, 1], the compressed in time version of the
regenerative process (ξε(t), ηε(t)), t ≥ 0 with regeneration times τ̌ε,n, n = 0, 1, . . ..
It is the regenerative process (ξε,vε

(t), ηε,vε
(t)), t ≥ 0 = (ξε(tvε), ηε(tvε)), t ≥ 0

with regeneration times τε,vε,n = v−1
ε τ̌ε,n, n = 0, 1, . . ..
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The renewal type Eq. (3.7) takes for probabilities Pε,vε,11(t, A) = Pε,11(tvε, A)

the following form,

Pε,vε,11(t, A) = q̌ε,vε,1(t, A) +
∫ t

0
Pε,vε,11(t − s, A)Q̌ε,vε,11(ds), t ≥ 0, (3.70)

where q̌ε,vε,1(t, A) = P1{ξε,vε,(t) ∈ A, ηε,vε
(t) = 1, τ̌ε,vε,1 > t} = q̌ε,1(tvε, A) =

P1{ξε(tvε) ∈ A, ηε(tvε) = 1, v−1
ε τ̌ε,1 > t}, t ≥ 0 and Q̌ε,vε,11(t) = P1{τ̌ε,vε,1 ≤ t}=

Q̌ε,11(tvε) = P1{v−1
ε τ̌ε,1 ≤ t}, t ≥ 0.

The corresponding limiting regenerative process (ξ0,v0(t), η0,v0(t)), t ≥ 0 and
the regeneration times τ̌0,v0,n, n = 0, 1, . . . will be defined in the next subsection,
after computing the corresponding limits for functions q̌ε,vε,1(t, A) and distribution
functions Q̌ε,vε,11(t).

3.4.3 Locally Uniform Convergence of Functions and
Convergence of Lebesgue Integrals in the Scheme of
Series

In this subsection, we formulate two useful propositions concerned locally uniform
convergence of functions and convergence of Lebesgue integrals in the scheme of
series. The proofs can be found, for example, in book [14]. We slightly modify
these propositions for the case, where the corresponding functions and measures are
defined on a half-line.

Let fε(s) be, for every ε ∈ [0, 1], a real-valued bounded Borel functions defined

on R+ = [0,∞). We use the symbol fε(s)
U−→ f0(s) as ε → 0 to indicate that

functions fε(·) converge to function f0(·) locally uniformly at a point s ∈ [0,∞) as
ε → 0. This means that,

lim
0<u→0

lim
ε→0

sup
−(u∧s)≤v≤u

| fε(s + v) − f0(s)| = 0. (3.71)

Lemma 3.1 Functions fε(s)
U−→ fε(s) as ε → 0 if and only if (α) fε(sε) → f0(s)

as ε → 0, for any 0 ≤ sε → s as ε → 0.

Let B+ denote the Borel σ -algebra on R+ and let με(A) be, for every ε ∈ [0, 1],
a finite measure on B+. We use the symbol με(·) ⇒ μ0(·) as ε → 0 to indicate that
the measuresμε(A)weakly converge to a measureμ0(A) as ε → 0. This means that,
for all 0 ≤ v < ∞ such that the limiting measure has not an atom in the point v,

με([0, v]) → μ0([0, v]) as ε → 0. (3.72)
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Lemma 3.2 Let the following conditions hold: (α) με(·) ⇒ μ0(·) as ε → 0; (β)

με(R+) → μ0(R+) as ε → 0; (γ ) limε→0 sups∈R+ | fε(s)| < ∞; (δ) fε(s)
U−→

f0(s) as ε → 0, for s ∈ S, where S is some subset of B+ such that μ0(S) = 0.
Then, ∫

R+
fε(s)με(ds) →

∫

R+
f0(s)μ0(ds) as ε → 0. (3.73)

3.4.4 Super-Long Time Ergodic Theorems for Singularly
Perturbed Alternating Regenerative Processes

In this subsection, we describe the asymptotic behaviour for probabilities Pε,i j (tε,
A) for so-called “super-long” times 0 ≤ tε → ∞ as ε → 0 satisfying the following
relation,

tε/vε → ∞ as ε → 0. (3.74)

The corresponding limits for stationary probabilities for perturbed semi-Markov
processes ηε,vε

(t) take, for β ∈ [0,∞], the following form,

ρ1(β) = e0,1α1(β)/e(β), ρ2(β) = e0,2α2(β)/e(β), (3.75)

where
α1(β) = (1 + β)−1, α2(β) = (1 + β−1)−1, (3.76)

and
e(β) = e0,1α1(β) + e0,2α2(β). (3.77)

Note that ρ1(β), ρ2(β) ∈ (0, 1), if β ∈ (0,∞), while ρ1(β) = 1, ρ2(β) = 0, if
β = 0, and ρ1(β) = 0, ρ2(β) = 1, if β = ∞.

The corresponding limiting probabilities for singularly perturbed alternating
regenerative processes take the following form,

π
(β)

0, j (A) = ρ j (β)π0, j (A), A ∈ BX, j = 1, 2. (3.78)

It is useful to note that the above limiting probabilities coincide with the corre-
sponding limiting probabilities for regularly perturbed alternating regenerative pro-
cesses with parameter β = p0,12/p0,21 given in relations (3.31), (3.41), and (3.42).

The following theorem takes place.

Theorem 3.8 Let conditions F–J, N1 hold and, also, condition Kβ holds for some
β ∈ [0,∞]. Then, for every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as ε → 0 such that
tε/vε → ∞ as ε → 0,

Pε,i j (tε, A) → π
(β)

0, j (A) as ε → 0. (3.79)



56 D. Silvestrov

Proof We are going to prove that all conditions of Theorem3.1 hold for the regenera-
tive processes (ξε,vε

(t), ηε,vε
(t)) = (ξε(tvε), ηε(tvε)), t ≥ 0 with regeneration times

τ̌ε,vε,n = v−1
ε τ̌ε,vε,n, n = 0, 1, . . . and, also, that all conditions of Theorem3.2 hold

for the regenerative processes (ξε,vε
(t), ηε,vε

(t)) = (ξε(tvε), ηε(tvε)), t ≥ 0 with the
transition period [0, τ̌ ′

ε,vε,1) and regeneration times τ̌ ′
ε,vε,n = v−1

ε τ̌ ′
ε,vε,n , n = 0, 1, . . ..

Note that, the regenerative lifetimes are not involved. The corresponding stopping
probabilities fε,vε

= 0, ε ∈ (0, 1].
First, let us analyse the asymptotic behaviour of probabilities q̌ε,vε,1(t, A). Here,

we can use the quasi-stationary ergodic relation given in Theorem3.3.
Let us introduce random variables με,1,n = κε,1,nI(ηε,1,n = 1), n = 1, 2, . . .. Let

now consider the sequence of random triplets 〈ξ̄ε,1,n = 〈ξε,1,n(t), t ≥ 0〉, κε,1,n ,
με,1,n〉, n = 1, 2, . . ., the regenerative process ξε,1(t) = ξε,1,n(t − τε,1,n−1), for t ∈
[τε,1,n−1, τε,1,n), n = 1, 2, . . ., with regeneration times τε,1,n = κε,1,1 + · · · + κε,1,n,

n = 1, 2, . . . , τε,1,0 = 0, and the regenerative lifetimeμε,1,+ = τε,1,νε,1 , where νε,1 =
min(n ≥ 1 : με,1,n < κε,1,n) = min(n ≥ 1 : ηε,1,n = 2).

Let us also denote Pε,1,+(t, A) = P1{ξε,1(t) ∈ A, με,1,+ > t}. In this case, the
distribution functions F̄ε,1(t) = P{κε,1,1 ≤ t} and Fε,1(t) = P{κε,1,1 ≤ t, με,1,1 ≥
κε,1,1} = P{κε,1,1 ≤ t, ηε,1,1 = 1}, the stopping probability fε,1 = P{με,1,1 < κε,1,1}
= P{ηε,1,1 = 2} = pε,12, and the expectations ēε,1 = Eκε,1,1 = eε,11 + eε,12 and eε,1

= Eκε,1,1I(με,1,1 ≥ κε,1,1) = Eκε,1,1I(ηε,1,1 = 1) = eε,11.
It is also readily seen that, for every A ∈ BX, t ≥ 0,

q̌ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̌ε,1 > t}
= P1{ξε,1(t) ∈ A, με,1,+ > t} = Pε,1,+(t, A). (3.80)

Conditions F–J and N1 imply that conditions A–D holds for the regenerative
processes ξε,1(t), t ≥ 0 with regenerative times τε,1,n, n = 1, 2, . . . and regenerative
lifetimes με,1,+.

Let s ∈ (0,∞). We choose an arbitrary 0 ≤ sε → s as ε → 0.
The above relation obviously implies that sεvε → ∞. Conditions N1 and Kβ

obviously imply that fε,1sεvε = pε,12sεvε = sε(1 + pε,12/pε,21) → ts,β = s(1 + β)

as ε → 0. Note that ts,β ∈ (0,∞), for β ∈ [0,∞), while ts,∞ = ∞.
Thus, all conditions of Theorem3.3 hold for the regenerative processes ξε,1(t),

t ≥ 0 with the regenerative times τε,1,n, n = 1, 2, . . . and the regenerative lifetimes
με,1,+. Therefore, the following relation holds, for any A ∈ Γ, and s ∈ (0,∞),

Pε,1,+(sεvε, A) = q̌ε,1(sεvε, A) = q̌ε,vε,1(sε, A)

→ q̌0,v0,1(s, A) = e−ts,β /e0,1π0,1(A) as ε → 0. (3.81)

If β ∈ [0,∞), then the limiting function q̌0,v0,1(s, A) = e−s(1+β)/e0,1π0,1(A), s ∈
(0,∞) is a non-trivial exponential function.However, ifβ = ∞, the limiting function
q̌0,v0,1(s, A) = 0, s ∈ (0,∞).

In both cases, we can define q̌0,v0,1(0, A) = lim0<s→0 q̌0,v0,1(s, A).
Obviously, q̌0,v0,1(0, A) = π0,1(A), ifβ ∈ [0,∞), and q̌0,v0,1(0, A) = 0, ifβ=∞.
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Recall the limiting distribution function Q̌0,v0,11(t) = P{e0,1 1
1+β

ζ1 + e0,2
1

1+β−1 ζ2
≤ t}, t ≥ 0 given by relation (3.66). Here, ζ1 and ζ2 are two independent random
variables, exponentially distributed, with parameter 1.

Now, we are prepared to define the corresponding limiting regenerative process
(ξ0,v0(t), η0,v0(t)), t ≥ 0 with regeneration times τ̌0,v0,n, n = 0, 1, . . ..

Let us ξi,n, κi,n, i = 1, 2, n = 1, 2, . . . be random variables, for which we assume
that: (a) they are mutually independent; (b) their distributions do not depend on
n ≥ 1; (c) ξi,n are random variables taking values in space X and such that, P{ξi,1 ∈
A} = πi (A), A ∈ BX, for i = 1, 2; (d) the random variables κi,n are non-negative
random variables and P{κ1,1 ≤ t} = P{e0,1 1

1+β
ζ1 ≤ t}, t ≥ 0 while P{κ2,1 ≤ t} =

P{e0,2 1
1+β−1 ζ2 ≤ t}, t ≥ 0.

Now, let us define the inter-regeneration times κ0,v0,n = κ1,n + κ2,n, n = 1, 2, . . .,
the regeneration times τ0,v0,n = κ0,v0,1 + · · · + κ0,v0,n, n = 1, 2, . . . , τ0,v0,0 = 0, and
the regeneration process ξ0,v0(t) = ξ1,n, η0,v0(t) = 1, for t ∈ [τ0,v0,n−1, τ0,v0,n−1 +
κ1,n) and ξ0,v0(t) = ξ2,n, η0,v0(t) = 2, for t ∈ [τ0,v0,n−1 + κ1,n, τ0,v0,n),
for n = 0, 1, . . ..

It is readily seen that P{ξ0,v0(t) ∈ A, τ0,v0,1 > t} = q̌0,v0,1(t, A), t ≥ 0 and
P{τ0,v0,1 ≤ t} = Q̌0,v0,11(t), t ≥ 0, where q̌0,v0,1(t, A) and Q̌0,v0,11(t) are given,
respectively, by relations (3.81) and (3.66).

Therefore, the renewal equation (3.7) for probabilities P0,v0,11(t, A) = P{ξ0,v0(t)
∈ A, η0,v0(t) = 1} takes the following form,

P0,v0,11(t, A) = q̌0,v0,1(t, A) +
∫ t

0
P0,v0,11(t − s, A)Q̌0,v0,11(t), t ≥ 0. (3.82)

Conditions of Theorem3.1 are satisfied for the regenerative process

(ξε,vε
(t), ηε,vε

(t)), t ≥ 0

with regeneration times τε,vε,n, n = 0, 1, . . ..
Indeed, condition F implies that condition A holds for the above regenerative

processes. Relation (3.66) and conditions G, H, I and N1 imply that condition B
holds. Relation (3.69) and conditions and conditions G, H, I and N1 also imply that
condition C holds.

Due to an arbitrary choice of 0 ≤ sε → s as ε → 0, convergence in relation (3.81)
is locally uniform in every point s ∈ (0,∞). Thus, by Lemma3.1 given Sect. 3.4.3,
the asymptotic relation in condition D holds for functions q̌ε,vε,1(s, A), s ∈ [0,∞)

for any s ∈ (0,∞).
Convergence at point 0 is not guarantied. However, m({0}) = 0. Thus, con-

dition D holds for functions q̌ε,vε,1(sε, A), s ∈ [0,∞), with the limiting function
q̌0,v0,1(s, A) = e−ts,β /e0,11π0,1(A), s ∈ [0,∞).

By the above remarks, all conditions of Theorem3.1 hold, and the ergodic relation
given in this theorem takes place for probabilities Pε,vε,11(t

′
ε, A) = Pε,11(t ′εvε, A) for

any 0 ≤ t ′ε → ∞ as ε → 0,
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Pε,vε,11(t
′
ε, A) = Pε,11(t

′
εvε, A) → π

(β)

0,v0,1(A)

= 1

ě0,v0,11

∫ ∞

0
e−ts,β /e0,1π0,1(A)m(ds) as ε → 0. (3.83)

Relation (3.69) and formula ts,β = s(1 + β) imply that probabilities π
(β)

0,v0,1(A)

coincide with probabilities π
(β)

0,1 (A) given in relation (3.78). Indeed,

π
(β)

0,v0,1(A) = 1

ě0,v0,11

∫ ∞

0
e−s(1+β)/e0,1π0,1(A)m(ds)

= e0,1(1 + β)−1

e0,1(1 + β)−1 + e0,2(1 + β−1)−1
π0,1(A) = π

(β)

0,1 (A). (3.84)

Thus, the following ergodic relation holds for any for A ∈ Γ and 0 ≤ t ′ε → ∞ as
ε → 0,

Pε,11(t
′
εvε, A) → π

(β)

0,1 (A) as ε → 0. (3.85)

Let us now consider the compressed version of the regenerative process (ξε(t),
ηε(t)), t ≥ 0 with the transition period [0, τ̌ ′

ε,1) with regeneration times τ̌ ′
ε,n, n =

0, 1, . . .. It is the regenerative process (ξε,vε
(t), ηε,vε

(t)), t ≥ 0 = (ξε(tvε), ηε(tvε)),
t ≥ 0 with regeneration times τ ′

ε,vε,n = v−1
ε τ̌ ′

ε,n, n = 0, 1, . . ..
The shifted process (ξε,vε

(τ̌ ′
ε,vε,1 + t), ηε,vε

(τ̌ ′
ε,vε,1 + t)), t ≥ 0 is a standard regen-

erative process. If ηε,vε
(0) = 2, then ηε,vε

(τ̃ε,vε,1) = 1. That is why, probabilities
Pε,vε,11(t, A) play for this process the role of probabilities P (1)

ε (t, A) pointed out
in Sect. 3.2.1.

Relation (3.65) and conditions G, H, I and N1 imply that condition E holds for
the distribution functions Q̃ε,vε,21(t) = P2{τ̃ε,vε,1 ≤ t}, t ≥ 0.

Thus, all conditions of Theorem3.2 hold, and the ergodic relation (3.85) for prob-
abilities Pε,vε,11(t

′
ε, A) = Pε,11(t ′εvε, A) also holds for probabilities Pε,vε,21(t

′
ε, A)

= Pε,21(t ′εvε, A).
Due to the symmetricity of conditionsG–J,Kβ , andN1 with respect to the indices

i, j = 1, 2, the ergodic relations, analogous to the mentioned above ergodic relations
for probabilities Pε,vε,11(t

′
ε, A) = Pε,11(t ′εvε, A), Pε,vε,21(t

′
ε, A) = Pε,21(t ′εvε, A) also

hold for probabilities

Pε,vε,22(t
′
ε, A) = Pε,22(t

′
εvε, A), Pε,vε,12(t

′
ε, A) = Pε,12(t

′
εvε, A).

They have the following forms, Pε,vε ,i2(t
′
ε, A) = Pε,i2(t ′εvε, A) → π

(β)

0,2 (A) as ε → 0,
for i = 1, 2.

The above analysis, in particular, relation (3.85), yields the description of asymp-
totic behaviour of probabilities Pε,i j (tε, A) for super-long times 0 ≤ tε → ∞ as
ε → 0 satisfying the asymptotic relation tε/vε → ∞ as ε → 0. To see this, one
should just represent such tε in the form, tε = t ′εvε. Obviously, t ′ε = tε/vε → ∞ as
ε → 0. �
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3.4.5 Long Time Ergodic Theorems for Singularly Perturbed
Alternating Regenerative Processes

In this subsection, we describe the asymptotic behaviour of probabilities Pε,i j (tε, A)

for so-called “long” times 0 ≤ tε → ∞ as ε → 0, which satisfy asymptotic relation,

tε/vε → t ∈ (0,∞) as ε → 0. (3.86)

Let β ∈ (0,∞), and η(β)(t), t ≥ 0 be a homogeneous continuous time Markov
chain with the phase space Y = {1, 2}, the transition probabilities of embedded
Markov chain pi j = I(i �= j), i, j = 1, 2, and the distribution functions of sojourn
times in states 1 and 2, respectively, F (β)

1 (t) = 1 − e−t (1+β)/e0,1 , t ≥ 0 and F (β)

2 (t) =
1 − e−t (1+β−1)/e0,2 , t ≥ 0.We also assume that thisMarkov chain has continuous from
the right trajectories.

Let us p(β)

i j (t) = Pi {η(β)(t) = j}, t ≥ 0, i, j = 1, 2 be transition probabilities for
the Markov chain η(β)(t).

The explicit expression for the transition probabilities p(β)

i j (t) are well known,
as the solutions of the corresponding forward Kolmogorov system of differential
equations for these probabilities. Namely, the corresponding matrix ‖p(β)

i j (t)‖ has
the following form, for t ≥ 0,

‖p(β)

i j (t)‖ =
∥∥∥∥∥

ρ1(β) + ρ2(β)e−λ(β)t ρ2(β) − ρ2(β)e−λ(β)t

ρ1(β) − ρ1(β)e−λ(β)t ρ2(β) + ρ1(β)e−λ(β)t

∥∥∥∥∥ , (3.87)

where

λ1(β) = 1 + β

e0,1
, λ2(β) = 1 + β−1

e0,2
, λ(β) = λ1(β) + λ2(β), (3.88)

and

ρ1(β) = λ2(β)

λ(β)
= e0,1(1 + β)−1

e(β)
, ρ2(β) = λ1(β)

λ(β)
= e0,2(1 + β−1)−1

e(β)
. (3.89)

Note that theMarkov chain η(β)(t) is ergodic and ρi (β), i = 1, 2 are its stationary
probabilities.

The corresponding limiting probabilities have in this case the following forms,
for A ∈ BX, i, j = 1, 2, t ∈ (0,∞),

π
(β)

0,i1(t, A) =

⎧
⎪⎨

⎪⎩

π0,1(A) for i = 1, 2, β = 0,

p(β)

i1 (t)π0,1(A) for i = 1, 2, β ∈ (0,∞),

0 for i = 1, 2, β = ∞,

(3.90)
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and

π
(β)

0,i2(t, A) =

⎧
⎪⎨

⎪⎩

0 for i = 1, 2, β = 0,

p(β)

i2 (t)π0,2(A) for i = 1, 2, β ∈ (0,∞),

π0,2(A) for i = 1, 2, β = ∞.

(3.91)

The following theorem takes place.

Theorem 3.9 Let conditions F–J, N1 hold and, also, condition Kβ holds for some
β ∈ [0,∞]. Then, for every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as ε → 0 such that
tε/vε → t ∈ (0,∞) as ε → 0,

Pε,i j (tε, A) → π
(β)

0,i j (t, A) as ε → 0. (3.92)

Proof Let us again us consider the renewal equation (3.82) for the compressed
regenerative process (ξε,vε

(t), ηε,vε
(t)), t ≥ 0 = (ξε(tvε), ηε(tvε)), t ≥ 0 with regen-

eration times τ̌ε,vε,n = v−1
ε τ̌ε,n, n = 0, 1, . . ..

As well known, the solution of this equation has the form,

Pε,vε,11(t, A) =
∫ t

0
q̌ε,vε,1(t − s, A)Ǔε,vε,11(ds), t ≥ 0, (3.93)

where

Ǔε,vε,11(t) =
∞∑

n=0

Q̌∗n
ε,vε,11(t), t ≥ 0, (3.94)

is the corresponding renewal function.
Inequality Q̌∗n

ε,vε,11(t) ≤ Q̌n
ε,vε,11(t) obviously holds for any t ≥ 0 and n ≥ 1.

These inequalities and relation (3.66) imply that, limε→0 Q̌∗n
ε,vε,11(t) ≤ limε→0

Q̌n
ε,vε,11(t) = Q̃n

0,v0,11(t) < 1, since Q̃0,v0,11(t) = P{e0,1 1
1+β

ζ1 + e0,2
1

1+β−1 ζ2 ≤ t} <

1. Thus, the series on the right hand side in (3.94) converge asymptotically uniformly,
as ε → 0.

Also, relation (3.66) implies that Q̌∗n
ε,vε,11(·) ⇒ Q̌∗n

0,v0,11(·) as ε → 0.
The above remarks imply that, for t > 0,

Ǔε,vε,11(t) → Ǔ0,v0,11(t) as ε → 0. (3.95)

The convergence relation in (3.95) holds for all t > 0, since Q̃∗n
0,v0,11(t), t ≥ 0

is a continuous distribution function and, in sequel, due to the above remarks,
Ǔ0,v0,11(t), t ≥ 0 is continuous function.

Relation (3.81) implies that, for every t > 0, functions q̌ε,vε,1(t − s, A)
U−→

q̌0,v0,1(t − s, A) as ε → 0, for s ∈ [0, t). At the same time, due to continuity function
Ǔ0,v0,11(t), for t > 0, measure Ǔ0,v0,11(ds) has no atom at any point t > 0.

By the above remarks and relations (3.81), (3.95), Lemma3.2 formulated in
Sect. 3.4.3 imply, that the following relation holds, for A ∈ Γ and t > 0,
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Pε,vε,11(t, A) =
∫ t

0
q̌ε,vε,1(t − s, A)Ǔε,vε,11(ds)

→ P0,v0,11(t, A) =
∫ t

0
q̌0,v0,1(t − s, A)Ǔ0,v0,11(ds)

= π1(A)

∫ t

0
e−(t−s)(1+β)/e0,1Ǔ0,v0,11(ds) as ε → 0. (3.96)

Next, we make an important remark that the scaling of time transformation with
the compression factors vε and all following asymptotic relations presented above can
be, in obvious way, repeated for any slightlymodified compression factors v̇ε = aεvε,
where 0 < aε → 1 as ε → 0.

In particular, the modified asymptotic relation (3.96) takes the following form,
for A ∈ Γ and t > 0,

Pε,v̇ε,11(t, A) = Pε,11(taεvε, A) → P0,v0,11(t, A) as ε → 0. (3.97)

Due to an arbitrary choice of 0 < aε → 1 as ε → 0, relation (3.97) is, for every
t > 0, equivalent to the following relation,which holds for any A ∈ Γ and 0 ≤ t ′′ε → t
as ε → 0,

Pε,11(t
′′
ε vε, A) = Pε,vε,11(t

′′
ε , A) → P0,v0,11(t, A) as ε → 0. (3.98)

The shifted process (ξε,vε
(τ̌ ′

ε,vε,1 + t), ηε,vε
(τ̌ ′

ε,vε,1 + t)), t ≥ 0 is a standard regen-
erative process. If ηε,vε

(0) = 2, then ηε,vε
(τ̃ε,vε,1) = 1. That is why, probabilities

Pε,vε,11(t, A) play for this process the role of probabilities P (1)
ε (t, A) pointed out

in Sect. 3.2.1. The distribution function for the duration of transition period is
Q̃ε,vε,21(t) = P2{τ̃ε,vε,1 ≤ t}, t ≥ 0.

According relation (3.65), the distribution functions Q̃ε,vε,21(t) weakly converge
as ε → 0 to the distribution function Q̃0,v0,21(t) = P{e0,2 1

1+β−1 ζ ≤ t} which is con-
tinuous function for t > 0. Ifβ ∈ (0,∞], then Q̃0,v0,21(t) = 1 − e−t (1+β−1)/e0,2 , t ≥ 0
is the exponential distribution function. If β = 0, then Q̃0,v0,21(t) = I(t ≥ 0), t ≥ 0.

The renewal type transition relation (3.11) takes the following form,

Pε,vε,21(t, A) =
∫ t

0
Pε,vε,11(t − s, A)Q̃ε,vε,21(ds), t ≥ 0. (3.99)

Relation (3.98) implies that, for every t > 0, functions Pε,vε,11(t − s, A)
U−→

P0,v0,11(t −s, A) as ε → 0, for s ∈ [0, t). At the same time, due to continuity the
distribution function Q̃0,v0,21(t) for t > 0 measure Q̃0,v0,21(ds) has no atom at any
point t > 0. By these remarks and relations (3.65), (3.98), Lemma3.2 formulated in
Sect. 3.4.3 implies that the following relation holds, for A ∈ Γ and t > 0,
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Pε,vε,21(t, A) =
∫ t

0
Pε,vε,11(t − s, A)Q̃ε,vε,21(ds)

→
∫ t

0
P0,v0,11(t − s, A)Q̃0,v0,21(ds) = P0,v0,21(t, A). (3.100)

By arguments similar with those used for relations (3.96)–(3.98), one can, for
every t > 0, improve relation (3.100) to the more advanced form of this relation,
which holds for A ∈ Γ and any 0 ≤ t ′′ε → t as ε → 0,

Pε,21(t
′′
ε vε, A) = Pε,vε,21(t

′′
ε , A) → P0,v0,21(t, A) as ε → 0. (3.101)

It is remains to give a more explicit expression for the limiting probabilities
P0,v0,11(t, A), t > 0 and P0,v0,21(t, A), t > 0.

First, let us consider the case, where β = 0.
In this case, Q̌0,v0,11(t) = P{e0,1ζ1 ≤ t} = 1 − e−t/e0,1 , t ≥ 0, i = 1, 2 is an expo-

nential distribution function. Thus, the renewal function Ǔ0,v0,11(t) = I(t ≥ 0) +
1
e0,1

t, t ≥ 0. Also, Q̃0,v0,21(t) = I(t ≥ 0), t ≥ 0. Finally, ts,0 = s, s ≥ 0. That is why,
for A ∈ BX and t > 0,

P0,v0,11(t, A) = π0,1(A)

∫ t

0
e−(t−s)/e0,1Ǔ0,v0,11(ds)

= π0,1(A)(e−t/e0,1 +
∫ t

0

e−(t−s)/e0,1

e0,1
ds)

= π0,1(A)(e−t/e0,1 + e−t/e0,1(et/e0,1 − 1)) = π0,1(A). (3.102)

and

P0,v0,21(t, A) =
∫ t

0
P0,v0,11(t − s, A)Q̃0,v0,21(ds) = π0,1(A). (3.103)

Second, let us consider the case, where β = ∞.
In this case, Q̃0,v0,11(t) = P{e0,2ζ2 ≤ t} = 1 − e−t/e0,2 , t ≥ 0 is an exponential

distribution function. Thus, the renewal function Ǔ0,v0,11(t) = I(t ≥ 0) + 1
e0,2

t, t ≥
0. Also, Q̃0,v0,21(t) = P{e0,2ζ2 ≤ t} = 1 − e−t/e0,2 , t ≥ 0. Finally, ts,∞ = ∞, s ≥ 0.
That is why, for t > 0,

P0,v0,11(t, A) = P0,v0,21(t, A) = 0. (3.104)

Third, let us consider the main case, where β ∈ (0,∞).
Let us η(β)(t), t ≥ 0 be a continuous time homogeneousMarkov chain introduced

in the beginning of this subsection.
Let τ

(β)
n = inf(t > τ

(β)

n−1, η
(β)(t) �= η(β)(τ

(β)

n−1)), n = 1, 2, . . . , τ (β)

0 = 0 be the
sequential moments of jumps for the Markov chain η(β)(t).
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The Markov chain η(β)(t) obviously is also an alternating regenerative process,
with regeneration times τ

(β)

2n , n = 0, 1, . . ..
Let us assume that η(β)(0) = 1. The transition probabilities p(β)

11 (t), t ≥ 0 satisfy
the following renewal equation,

p(β)

11 (t) = q(β)

1 (t) +
∫ t

0
p(β)

11 (t − s)F (β)

11 (ds), t ≥ 0, (3.105)

where q(β)

1 (t) = P1{η(β)(t) = 1, τ (β)

2 > t} and F (β)

11 (t) = P1{τ (β)

2 ≤ t}, fior t ≥ 0.
LetU (β)

11 (t) = ∑∞
n=0 F

(β)∗n
11 (t), t ≥ 0 be the corresponding renewal function gen-

erated by the distribution function F (β)

11 (t). The transition probabilities p(β)

11 (t) can
be expressed as the solution of the renewal equation (3.105) in the following form,

p(β)

11 (t) =
∫ t

0
q(β)

1 (t)U (β)

11 (ds), t ≥ 0. (3.106)

Obviously,
q(β)

1 (t) = P1{τ (β)

1 > t} = e−t (1+β)/e0,1 , t ≥ 0, (3.107)

and
F (β)

11 (t) = F (β)

1 (t) ∗ F (β)

2 (t) = Q̌0,v0,11(t), t ≥ 0. (3.108)

and, thus,
U (β)

11 (t) = Ǔ0,v0,11(t), t ≥ 0. (3.109)

Relations (3.106), (3.107), and (3.109) imply that,

p(β)

11 (t) =
∫ t

0
e−(t−s)(1+β)/e0,1Ǔ0,v0,11(ds), t ≥ 0. (3.110)

Finally, relations (3.96) and (3.110) imply that that the following equality takes
place, for t > 0,

P0,v0,11(t, A) = p(β)

11 (t)π0,1(A). (3.111)

The distribution function F (β)

2 (t) = Q̌0,v0,21(t) = 1 − e−t (1+β−1)/e0,2 , t ≥ 0. Thus,

p(β)

21 (t) =
∫ t

0
p(β)

11 (t − s)Q̌0,v0,21(ds), t ≥ 0, (3.112)

and, therefore, relation (3.100) implies that following equality takes place, for t > 0,

P0,v0,21(t, A) = p(β)

21 (t)π0,1(A). (3.113)
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Due to the symmetricity of conditions F–J,Kβ , andN1 with respect to the indices
i, j = 1, 2, the ergodic relations, analogous to the mentioned above ergodic relations
for probabilities Pε,vε,11(t

′′
ε , A) = Pε,11(t ′′ε vε, A) and Pε,vε,21(t

′′
ε , A) = Pε,21(t ′′ε vε, A),

also hold for probabilities

Pε,vε,22(t
′′
ε , A) = Pε,22(t

′′
ε vε, A), Pε,vε,12(t

′′
ε , A) = Pε,12(t

′′
ε vε, A).

The above analysis yields the description of asymptotic behaviour of probabilities
Pε,i j (tε, A) for long times 0 ≤ tε → ∞ as ε → 0 satisfying the asymptotic relation
tε/vε → t ∈ (0,∞) as ε → 0. To see this, one should just represent such tε in the
form, tε = t ′′ε vε. Obviously, t ′′ε = tε/vε → t as ε → 0. �

3.5 Short Time Ergodic Theorems for Singularly
Perturbed Alternating Regenerative Processes

In this section, we present short time individual ergodic theorems for singularly
perturbed alternating regenerative processes.

3.5.1 Short Time Ergodic Theorems for Singularly Perturbed
Alternating Regenerative Processes - I

In this subsection, we describe the asymptotic behaviour of probabilities Pε,i j (tε,
A) for so-called “short” times 0 ≤ tε → ∞ as ε → 0, which satisfy the following
asymptotic relation,

tε/vε → 0 as ε → 0. (3.114)

We also assume that, additionally to conditions N1, condition Kβ holds for some
β ∈ (0,∞).

The corresponding limiting probabilities are, in this case, the same for any β ∈
(0,∞) and take the following form, for A ∈ BX, i, j = 1, 2,

π0,i j (A) = I( j = i)π0,i (A) =
{

π0,i (A) for j = i,

0 for j �= i.
(3.115)

The following theorem takes place.

Theorem 3.10 Let conditions F–J, N1 hold and, also, conditionKβ holds for some
β ∈ (0,∞). Then, for every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as ε → 0 such that
tε/vε → 0 as ε → 0,
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Pε,i j (tε, A) → π0,i j (A) as ε → 0. (3.116)

Proof Let us start by analysing the asymptotic behaviour of probabilities Pε,11(tε, A)

and, thus, assume that ηε(0) = 1.
We return back to the initial alternating regenerative process (ξε(t), ηε(t)), t ≥ 0

with regeneration times τε,n, n = 0, 1, . . ..
Recall the stopping time τ̃ε,1, which is the time of first hitting sate 2 by process

ηε(t).
Let us again consider the regenerative process ξε,1(t), t ≥ 0 with regeneration

times τε,1,n, n = 0, 1, . . ., and the random lifetime με,1,+ introduced in Sect. 3.4.4.
It is readily seen that, for every t ≥ 0,

Q̃ε,12(t) = P1{τ̃ε,1 ≤ t} = P{με,1,+ ≤ t} (3.117)

and, for every A ∈ BX, t ≥ 0,

P1{ξε(t) ∈ A, ηε(t) = 1, τ̃ε,1 > t} = P{ξε,1(t) ∈ A, με,1,+ > t}. (3.118)

According relation (3.63), if ηε(0) = 1, random variables,

v−1
ε τ̃ε,1

d−→ e0,1
1

1 + β
ζ as ε → 0, (3.119)

where ζ is a random variable exponentially distributed, with parameter 1.
Since, we assumed that tε/vε → 0 as ε → 0, relations (3.117) and (3.119) imply

that,

P{με,1,+ > tε} = P1{τ̃ε,1 > tε}
= P1{v−1

ε τ̃ε,1 > tεv
−1
ε } → 1 as ε → 0. (3.120)

Relations (3.118) and (3.120) imply that

P1{ξε(tε) ∈ A, ηε(tε) = 1} − P1{ξε(tε) ∈ A, ηε(tε) = 1, τ̃ε,1 > tε}
≤ P1{τ̃ε,1 ≤ tε} → 0 as ε → 0. (3.121)

and, analogously,

P{ξε,1(tε) ∈ A} − P{ξε,1(tε) ∈ A, με,1,+ > tε}
≤ P{με,1,+ ≤ tε} → 0 as ε → 0, (3.122)

These relations and Theorem3.1, which can be applied to the regenerative pro-
cesses ξε,1(t), imply that, for every A ∈ Γ,
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lim
ε→0

P11(tε, A) = lim
ε→0

P1{ξε(tε) ∈ A, ηε(tε) = 1}
= lim

ε→0
P1{ξε(tε) ∈ A, ηε(tε) = 1, τ̃ε,1 > tε}

= lim
ε→0

P{ξε,1(tε) ∈ A, με,1,+ > tε}
= lim

ε→0
P{ξε,1(tε) ∈ A} = π0,1(A). (3.123)

Let us now analyse the asymptotic behaviour for probabilities Pε,21(t, A) and,
thus, assume that ηε(0) = 2.

In this case, relation (3.65) implies that random variables,

v−1
ε τ̃ε,1

d−→ e0,2
1

1 + β−1
ζ as ε → 0, (3.124)

where ζ is a random variable exponentially distributed, with parameter 1.
Since,we assumed that tε/vε → 0 as ε → 0, the above convergence in distribution

relation, obviously, implies that,

P2{τ̃ε,1 > tε} = P2{v−1
ε τ̃ε,1 > tεv

−1
ε } → 1 as ε → 0. (3.125)

If ηε(0) = 2, then, for every t > 0, event {ηε(t) = 1} ⊆ {τ̃ε,1 ≤ t}. Thus, for every
A ∈ Γ,

P21(tε, A) = P2{ξε(tε) ∈ A, ηε(tε) = 1}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε → 0. (3.126)

Due to the symmetricity of conditionsF–J andN1 with respect to the indices i, j =
1, 2, the ergodic relations, analogous to the mentioned above ergodic relations for
probabilities Pε,11(tε, A) and Pε,21(tε, A), also take place for probabilities Pε,22(tε, A)

and Pε,vε,12(tε, A). �

3.5.2 Time Compression Factors vε and wε

Let introduce function wε = (pε,12 + pε,21)
−1. This function possess useful asymp-

totic properties different of asymptotic properties of function vε = p−1
ε,12 + p−1

ε,21.
The following lemma present some useful relations between functions vε and wε.

Lemma 3.3 If conditions M1 holds and condition Kβ holds, for some β ∈ [0,∞].
Then, 0 < wε < vε < ∞, ε ∈ [01], and:

(i) If β ∈ (0,∞), then vε ∼ p−1
ε,12(1 + β) ∼ p−1

ε,21(1 + β−1) as ε → 0, while wε ∼
p−1

ε,12(1 + β−1)−1 ∼ p−1
ε,21(1 + β)−1 as ε → 0, and, thus, wε ∼ β

(1+β)2
vε as ε → 0.

(ii) If β = 0, then vε ∼ p−1
ε,12 as ε → 0, while wε ∼ p−1

ε,21 ≺ vε as ε → 0.
(iii) If β = ∞, then vε ∼ p−1

ε,21 as ε → 0, while wε ∼ p−1
ε,12 ≺ vε as ε → 0.
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Here and henceforth, symbols f ′
ε ∼ f ′′

ε as ε → 0 and f ′
ε ≺ f ′′

ε as ε → 0 are
used for two functions 0 < f ′

ε, f ′′
ε → ∞ as ε → 0 in the sense that, respectively,

f ′
ε/ f

′′
ε → 1 as ε → 0 and f ′

ε/ f
′′
ε → 0 as ε → 0.

Proposition (i) of Lemma3.3 implies that, in the case, where condition condi-
tion Kβ holds, for some β ∈ (0,∞), relations tε/vε → t and tε/wε → t as ε → 0
generate, for every t ∈ [0,∞], equivalent, in some sense, asymptotic time zones.

Propositions (ii) and (iii) of Lemma3.3 imply that, in the case, where condition
K0 or K∞ holds, relations tε/vε → t and tε/wε → t as ε → 0 generate, for every
t ∈ [0,∞], essentially different asymptotic time zones.

We should assume in this case that “short” times 0 ≤ tε → ∞ as ε → 0 satisfy,
additionally to the asymptotic relation (3.114), the following asymptotic relation,

tε/wε → t ∈ [0,∞] as ε → 0. (3.127)

3.5.3 Short Time Ergodic Theorems for Singularly Perturbed
Alternating Regenerative Processes - II

In this subsection, we consider the case, where parameter t = ∞ in relation (3.127).
In this case, relations (3.114) and (3.127) mean that,

wε ≺ tε ≺ vε as ε → 0. (3.128)

The corresponding limiting probabilities take the following forms, for A ∈
BX, i, j = 1, 2,

π
(0)
0, j (A) =

{
π0,1(A) for j = 1,

0 for j = 2.
(3.129)

and

π
(∞)
0, j (A) =

{
0 for j = 1,

π0,2(A) for j = 2.
(3.130)

It is useful to note that the above limiting probabilities π
(0)
0, j (A) and π

(∞)
0, j (A)

coincide with the corresponding limiting probabilities for semi-regularly perturbed
alternating regenerative processes, respectively, with parameter β = 0, given in rela-
tion (3.41), and β = ∞, given in relation (3.42).

The following theorems take place.

Theorem 3.11 Let conditions F–J, N1, and K0 hold. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → ∞ as ε → 0 and tε/vε → 0 as
ε → 0,

Pε,i j (tε, A) → π
(0)
0, j (A) as ε → 0. (3.131)
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Theorem 3.12 Let conditionsF–J,N1, andK∞ holds. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → ∞ as ε → 0 and tε/vε → 0 as
ε → 0,

Pε,i j (tε, A) → π
(∞)
0, j (A) as ε → 0. (3.132)

Proof First, let us prove Theorem3.11.
It can be noted that the analysis of asymptotic behaviour for probabilities Pε,11(tε,

A) can be performed in absolutely analogous way with those presented in relations
(3.117)–(3.123), in the proof of Theorem3.10. The only difference is that parameter
β = 0, and, thus, the limiting random variable in the analogue of asymptotic relation
(3.119) has the form, e0,1ζ , where ζ is a random variable exponentially distributed,
with parameter 1. This analysis yields that the following asymptotic relation takes
place, for every A ∈ Γ and any tε/vε → 0 as ε → 0,

Pε,11(tε, A) → π0,1(A) as ε → 0. (3.133)

The asymptotic behaviour for probabilities Pε,21(tε, A) differs in this case of those
presented in Theorem3.10. As a matter of fact, the asymptotic relation analogous to
(3.124) does not take place.

In this case, random variables v−1
ε τ̃ε,1

d−→ 0 as ε → 0. This asymptotic relation
does not imply relation analogous to (3.120). The right normalising function for
random variables τ̃ε,1 is, in this case, wε ∼ p−1

ε,21 as ε → 0. According this relation
and relation (3.64), if ηε(0) = 2, then,

w−1
ε τ̃ε,1

d−→ e0,2ζ as ε → 0, (3.134)

where ζ is a random variable exponentially distributed, with parameter 1.
Probabilities Pε,11(tε, A) and Pε,21(tε, A) are connected by the following renewal

type relation,

Pε,21(tε, A) =
∫ tε

0
Pε,11(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ tε/wε

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}, (3.135)

where function Pε,11(tε − swε, A) is defined as 0 for tε − swε < 0.
Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε − sεwε)/wε =

tε/wε − sε → ∞ and, thus, (tε − sεwε) → ∞ as ε → 0.
Also, (tε − sεwε)/vε = tε/vε − sεwε/vε → 0 as ε → 0.
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That is why, according relation (3.133), the following asymptotic relation take
place, for A ∈ Γ and s ∈ [0,∞),

Pε,11(tε − sεwε, A) → π0,1(A) as ε → 0. (3.136)

Relations (3.134) and (3.136) imply, by Lemma3.2 given in Sect. 3.4.3 that the
following relation takes place, for A ∈ Γ,

Pε,21(tε, A) →
∫ ∞

0
π0,1(A)P{e0,2ζ ∈ ds} = π0,1(A) as ε → 0. (3.137)

Aswas pointed out in Sect. 3.2.5, the phase spaceX ∈ Γ. Also,π0,1(X) = 1. Thus,
relations (3.133) and (3.137) imply that the following relation holds, for A ∈ Γ and
i = 1, 2,

Pε,i2(tε, A) ≤ Pε,i2(tε,X) = 1 − Pε,i1(tε,X)

→ 1 − π0,1(X) = 0 as ε → 0. (3.138)

The proof of Theorem3.11 is completed.
The proof of Theorem3.12 is absolutely analogous to the proof of Theorem3.11,

due to simmetrisity conditions F–J and N1 with respect to indices i, j = 1, 2. The
only formula (3.129) for the corresponding limiting probabilities should be replaced
by formula (3.130). �

3.5.4 Short Time Ergodic Theorems for Singularly Perturbed
Alternating Regenerative Processes - III

In this subsection, we consider the case, where parameter t ∈ (0,∞), in relation
(3.127). In this case, relation (3.127) means that,

tε ∼ twε as ε → 0, where t ∈ (0,∞). (3.139)

According propositions (ii) and (iii) of Lemma3.3, if condition K0 or K∞, then
wε ≺ vε as ε → 0, and, thus, relation (3.139) implies that a “short” time relation
(3.114) holds, i.e., tε/vε → 0 as ε → 0.

The corresponding limiting probabilities take the following forms, for A ∈
Γ, i, j = 1, 2 and t ∈ (0,∞),

π̇
(0)
0,i j (t, A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π0,1(A) for i = 1, j = 1,

0 for i = 1, j = 2,

(1 − e−t/e0,2)π0,1(A) for i = 2, j = 1,

e−t/e0,2π0,2(A) for i = 2, j = 2.

(3.140)
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and

π̇
(∞)
0,i j (t, A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−t/e0,1π0,1(A) for i = 1, j = 1,

(1 − e−t/e0,1)π0,2(A) for i = 1, j = 2,

0 for i = 2, j = 1,

π0,2(A) for i = 2, j = 2.

(3.141)

The following theorems take place.

Theorem 3.13 Let conditions F–J, N1 and K0 hold. Then, for every A ∈ Γ, i, j =
1, 2, and any 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,i j (tε, A) → π̇
(0)
i j (t, A) as ε → 0. (3.142)

Theorem 3.14 Let conditions F–J, N1 and K∞ hold. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,i j (tε, A) → π̇
(∞)
0,i j (t, A) as ε → 0. (3.143)

Proof First, let us prove Theorem3.13.
It can be noted, as in the proof of Theorem3.11, that the analysis of asymptotic

behaviour for probabilities Pε,11(tε, A) can be performed in absolutely analogous
way with those presented in relations (3.117)–(3.123), in the proof of Theorem3.10.
The only difference is that parameter β = 0, and, thus, the limiting random variable
in the analogue of asymptotic relation (3.119) has the form, e0,1ζ , where ζ is a
random variable exponentially distributed, with parameter 1.

This analysis yields that the asymptotic relation (3.133) takes place, i.e.,
Pε,11(tε, A) → π0,1(A) as ε → 0, for A ∈ Γ and any tε/vε → 0 as ε → 0.

Also, as in theproof ofTheorem3.11, the renewal type relation (3.135), connecting
probabilities Pε,11(tε, A) and Pε,21(tε, A), takes place.

Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε − sεwε)/wε =
tε/wε − sε → t − s as ε → 0.

Thus, for t > s, the following relations holds, (tε − sεwε) = (tε/wε − sε)wε →
∞ as ε → 0 and (tε − sεwε)/vε = (tε/wε − sε)wε/vε → 0 as ε → 0.

Also, for t < s function (tε − sεwε) = (tε/wε − sε)wε → −∞ for ε → 0.
That is why, according relation (3.133) and the definition of Pε,11(tε − swε, A) =

0, for tε − swε < 0, in relation (3.135), the following asymptotic relation holds, for
A ∈ Γ and s �= t ,

Pε,11(tε − sεwε, A) → π0,1(A)I(t > s) as ε → 0. (3.144)

Note that convergence of Pε,11(tε − sεwε, A) as ε → 0 is not guarantied for s = t .
However, the distribution of limiting ransom variable in relation (3.134) is exponen-
tial and, thus, it has not an atom at any point t > 0.

Therefore, relations (3.134) and (3.144) imply, by Lemma3.2 given in Sect. 3.4.3,
that the following relation takes place, for A ∈ Γ and any 0 ≤ tε → ∞ as ε → 0 such
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that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,21(tε, A) =
∫ ∞

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds},

→
∫ ∞

0
π0,1(A)I(t > s)e−1

0,2e
−s/e0,2ds

= (1 − e−t/e0,2)π0,1(A) as ε → 0. (3.145)

It remains to give the asymptotic analysis of asymptotic behaviour for probabilities
Pε,12(tε, A) and Pε,22(tε, A).

As was pointed out in Sect. 3.2.5, the phase space X ∈ Γ. Also, π0,1(X) = 1.
Thus, relation (3.133) implies that the following relation holds, for A ∈ Γ and any
0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,12(tε, A) ≤ Pε,12(tε,X) = 1 − Pε,11(tε,X)

→ 1 − π0,1(X) = 0 as ε → 0. (3.146)

Let us introduce random variables με,2,n = κε,2,nI(ηε,2,n = 2), n = 1, 2, . . .. Let
now consider the random sequence of triplets 〈ξ̄ε,2,n = 〈ξε,2,n(t), t ≥ 0〉, κε,2,n ,
με,2,n〉, n = 1, 2, . . ., the regenerative process ξε,2(t) = ξε,2,n(t − τε,2,n−1), for t ∈
[τε,2,n−1, τε,2,n), n = 1, 2, . . ., with regeneration times τε,2,n = κε,2,1 + · · · + κε,2,n,

n = 1, 2, . . . , τε,2,0 = 0, and the random lifetime με,2,+ = τε,2,νε,2 , where νε,2 =
min(n ≥ 1 : με,2,n < κε,2,n) = min(n ≥ 1 : ηε,2,n = 1).

Let us also denote Pε,2,+(t, A) = P2{ξε,2(t) ∈ A, με,2,+ > t}. In this case, the
distribution functions F̄ε,2(t) = P{κε,2,1 ≤ t} and Fε,2(t) = P{κε,2,1 ≤ t, με,2,1 ≥
κε,2,1} = P{κε,2,1 ≤ t, ηε,2,1 = 2}, the stopping probability

fε,2 = P{με,2,1 < κε,2,1} = P{ηε,2,1 = 1} = pε,21,

and the expectations ēε,2 = Eκε,2,1 = eε,21 + eε,22 and

eε,2 = Eκε,2,1I(με,2,1 ≥ κε,2,1) = Eκε,2,1I(ηε,2,1 = 2) = eε,22.

The following relation obviously takes place, for A ∈ BX, t ≥ 0,

Pε,2,+(t, A) = P{ξε,2(t) ∈ A, με,2,+ > t}
= P2{ξε(t) ∈ A, τ̃ε,1 > t}. (3.147)

Conditions F–J,N1 andK0 imply that conditionsA–D holds. Thus, conditions of
Theorem3.13 imply that all conditions of Theorem3.3 hold for the regenerative pro-
cesses ξε,2(t), t ≥ 0 with regenerative times τε,2,n, n = 1, 2, . . . and the regenerative
lifetime με,2,+.
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Therefore, the following relation holds, for any A ∈ Γ, and any 0 ≤ tε → ∞ as
ε → 0 such that pε,21tε = tε/wε → t ∈ (0,∞) as ε → 0,

P2{ξε(tε) ∈ A, τ̃ε,1 > tε} = Pε,2,+(tε, A)

→ e−t/e0,2π0,2(A) as ε → 0. (3.148)

Probabilities Pε,22(tε, A) and Pε,12(tε, A) are connected by the following renewal
type equation,

Pε,22(tε, A) = P2{ξε(tε) ∈ A, τ̃ε,1 > tε}
+

∫ tε

0
Pε,12(tε − s, A)P2{τ̃ε,1 ∈ ds} (3.149)

The integral at the right hand side of the above relation can be represented in the
following form,

∫ tε

0
Pε,12(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,12(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}, (3.150)

where function Pε,12(tε − swε, A) is defined as 0 for tε − swε < 0.
Analogously to relation (3.144), one can get using relation (3.146) and the defi-

nition of Pε,12(tε − swε, A) = 0, for tε − swε < 0, in relation (3.150), the following
asymptotic relation holds, for any sε → s ∈ [0,∞) as ε → 0, A ∈ Γ and s �= t ,

Pε,12(tε − sεwε, A) → 0 as ε → 0. (3.151)

Therefore, relations (3.134) and (3.151) imply, by Lemma3.2 given in Sect. 3.4.3,
that the following relation takes place, for A ∈ Γ and any 0 ≤ tε → ∞ as ε → 0 such
that tε/wε → t ∈ (0,∞) as ε → 0,

∫ ∞

0
Pε,12(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}

→
∫ ∞

0
0 · e−1

0,2e
−s/e0,2ds = 0 as ε → 0. (3.152)

Relations (3.148)–(3.150) and (3.152) imply that the following relation holds for
A ∈ Γ and any 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,22(tε, A) → e−t/e0,2π0,2(A) as ε → 0. (3.153)

The proof of Theorem3.13 is completed.
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The proof of Theorem3.14 is absolutely analogous to the proof of Theorem3.13,
due to simmetrisity conditions F–J and N1 with respect to indices i, j = 1, 2. The
only formula (3.140) for the corresponding limiting probabilities should be replaced
by formula (3.141). �

3.5.5 Short Time Ergodic Theorems for Singularly Perturbed
Alternating Regenerative Processes - IV

In this subsection, we consider the case, where parameter t = 0 in relation (3.127).
In this case, relation (3.127) means, for times tε → ∞ as ε → 0, that,

tε ≺ wε as ε → 0. (3.154)

The corresponding limiting probabilities are the same for both cases, where con-
dition K0 or K∞ holds, and take the following form, for A ∈ Γ, i, j = 1, 2,

π0,i j (A) =
{

π0,i (A) for j = i,

0 for j �= i.
(3.155)

The following theorem takes place.

Theorem 3.15 Let conditions F–J, N1 and K0 or K∞ hold. Then, for every A ∈
Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → 0 as ε → 0,

Pε,i j (tε, A) → π0,i j (A) as ε → 0. (3.156)

Proof Let us, first, assume that condition K0 holds.
Relation tε/wε → 0 as ε → 0 implies relation tε/vε → 0 as ε → 0. This makes it

possible to repeat the part of proof of Theorem3.10 given in relations (3.117)–(3.123)
and to get the asymptotic relation,

P11(tε, A) → π0,1(A) as ε → 0. (3.157)

In the case, where conditionK0 holds, wε ∼ p−1
ε,21 as ε → 0. According this rela-

tion and relation (3.64), if ηε(0) = 2, then,

w−1
ε τ̃ε,1

d−→ e0,2ζ as ε → 0, (3.158)

where ζ is a random variable exponentially distributed, with parameter 1.
Since, we assumed that tε/wε → 0 as ε → 0, the above convergence in distribu-

tion relation, obviously, implies that,
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P2{τ̃ε,1 > tε} = P2{w−1
ε τ̃ε,1 > tεw

−1
ε } → 1 as ε → 0. (3.159)

If ηε(0) = 2, then, for every t > 0, event {ηε(t) = 1} ⊆ {τ̃ε,1 ≤ t}. Thus, for every
A ∈ Γ,

P21(tε, A) = P2{ξε(tε) ∈ A, ηε(tε) = 1}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε → 0. (3.160)

As was pointed out in Sect. 3.2.5, the phase space X ∈ Γ. Also, π0,1(X) = 1.
Thus, relation (3.157) implies that the following relation holds, for A ∈ Γ and any
0 ≤ tε → ∞ as ε → 0 such that tε/wε → 0 as ε → 0,

Pε,12(tε, A) ≤ Pε,12(tε,X) = 1 − Pε,11(tε,X)

→ 1 − π0,1(X) = 0 as ε → 0. (3.161)

Finally, let us analyse the asymptotic behaviour of probabilities Pε,22(tε, A) and,
thus, assume that ηε(0) = 2.

We return back to the initial alternating regenerative process (ξε(t), ηε(t)), t ≥ 0
with regeneration times τε,n, n = 0, 1, . . ..

Recall the stopping time τ̃ε,1, which is the time of first hitting sate 1 by process
ηε(t).

Let us again consider the regenerative process ξε,2(t), t ≥ 0 with regeneration
times τε,2,n, n = 0, 1, . . ., and the random lifetime με,2,+ introduced in Sect. 3.4.4.

It is readily seen that, for every t ≥ 0,

Q̃ε,21(t) = P2{τ̃ε,1 ≤ t} = P{με,2,+ ≤ t} (3.162)

and, for every A ∈ BX, t ≥ 0,

P2{ξε(t) ∈ A, ηε(t) = 2, τ̃ε,1 > t} = P{ξε,2(t) ∈ A, με,2,+ > t}. (3.163)

Since, tε/wε → 0 as ε → 0, relations (3.158) and (3.162) imply that,

P{με,2,+ > tε} = P2{τ̃ε,1 > tε}
= P2{w−1

ε τ̃ε,1 > tεw
−1
ε } → 1 as ε → 0. (3.164)

Relations (3.118) and (3.164) imply that

P2{ξε(tε) ∈ A, ηε(tε) = 2}
− P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}

≤ P2{τ̃ε,1 ≤ tε} → 0 as ε → 0. (3.165)
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and, analogously,

P{ξε,2(tε) ∈ A}
− P{ξε,2(tε) ∈ A, με,2,+ > tε}

≤ P{με,2,+ ≤ tε} → 0 as ε → 0. (3.166)

These relations and Theorem3.1, which can be applied to the regenerative pro-
cesses ξε,2(t), imply that, for every A ∈ Γ,

lim
ε→0

P22(tε, A) = lim
ε→0

P2{ξε(tε) ∈ A, ηε(tε) = 2}
= lim

ε→0
P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}

= lim
ε→0

P{ξε,2(tε) ∈ A, με,2,+ > tε}
= lim

ε→0
P{ξε,2(tε) ∈ A} = π0,2(A). (3.167)

In the case of holding condition K∞, the proof is analogous. �

3.6 Ergodic Theorems for Super-Singularly Perturbed
Alternating Regenerative Processes

In this section, we present ergodic theorems for super-singularly perturbed alter-
nating regenerative processes. As for singularly perturbed alternating regenerative
processes, these theorems take different forms of super-long, long and short time
ergodic theorems for different asymptotic time zones.

3.6.1 Super-Singularly Perturbed Alternating Regenerative
Processes

Let us consider the alternating regenerative processes with the super-singular pertur-
bation model, where, additionally to conditions F–J, the following condition holds:

N2 : (a) pε,12 = 0, for ε ∈ [0, 1], and 0 < pε,21 → p0,21 = 0 as ε → 0, or (b) 0 <

pε,12 → p0,12 = 0 as ε → 0, and pε,21 = 0, for ε ∈ [0, 1].

In this case, vε = ∞, ε ∈ (0, 1].
The role of time scaling factor is played function wε, ε ∈ (0, 1].
Note that wε = p−1

ε,21, ε ∈ (0, 1], if condition N2 (a) holds, while wε = p−1
ε,12, ε ∈

(0, 1], if condition N2 (b) holds.
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We shall investigate asymptotic behaviour of probabilities Pε,i j (tε, A) under for
0 ≤ tε → ∞ as ε → 0 such that the following time scaling relation holds,

tε/wε → t ∈ [0,∞] as ε → 0. (3.168)

It is readily seen that that conditionsN2 (a) andN2 (b) are, in some sense, stronger
forms, respectively, of conditions K0 and K∞. That is why, it is expectable that the
corresponding individual ergodic theorems for super-singularly perturbed alternating
regenerative processes should take forms analogous to those presented for singularly
perturbed alternating regenerative processes in short time ergodic Theorems3.11–
3.15, for models with asymptotic time zones generated by the asymptotic relation
(3.168).

We also include in the class of super-singularly perturbed alternating regenerative
processes the extremal case of absolutely singular perturbed alternating regenerative
processes. This is the case, where, additionally toF–J, the following condition holds:

N3 : pε,12, pε,21 = 0, for ε ∈ [0, 1].

3.6.2 Super-Long Time Ergodic Theorems for
Super-Singularly Perturbed Alternating Regenerative
Processes

In this subsection, we investigate asymptotic behaviour for probabilities Pε,i j (tε, A)

for times 0 ≤ tε → ∞ as ε → 0 satisfying the following relation,

tε/wε → ∞ as ε → 0. (3.169)

The corresponding limitingprobabilities take the following form, for A ∈ Γ, i, j =
1, 2,

π
(0)
0, j (A) =

{
π0,1(A) for j = 1,

0 for j = 2.
(3.170)

and

π
(∞)
0, j (A) =

{
0 for j = 1,

π0,2(A) for j = 2.
(3.171)

The following theorems takes place.

Theorem 3.16 Let conditions F–J and N2 (a) hold. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → ∞ as ε → 0,
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Pε,i j (tε, A) → π
(0)
0, j (A) as ε → 0. (3.172)

Theorem 3.17 Let conditions F–J and N2 (b) hold. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → ∞ as ε → 0,

Pε,i j (tε, A) → π
(∞)
0, j (A) as ε → 0. (3.173)

Proof The asymptotic behaviour for probabilities Pε,11(tε, A) is obviously given by
Theorems3.1. Indeed, if ηε(0) = 1, then condition N2 (a) implies that the process
ξε(t), t ≥ 0 coincideswith the process ξε,1(t), t ≥ 0,while the processηε(t) = 1, t ≥
0. Thus, the following relation takes place, for any A ∈ Γ, and any 0 ≤ tε → ∞ as
ε → 0,

Pε,11(tε, A) → π0,1(A) as ε → 0. (3.174)

Also, for any A ∈ Γ and t ≥ 0,

Pε,12(t, A) = 0. (3.175)

According relation (3.64), if ηε(0) = 2, then,

w−1
ε τ̃ε,1

d−→ e0,2ζ as ε → 0, (3.176)

where ζ is a random variable exponentially distributed, with parameter 1.
Probabilities Pε,11(tε, A) and Pε,21(tε, A) are connected by the following renewal

type relation,

Pε,21(tε, A) =
∫ tε

0
Pε,11(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}, (3.177)

where function Pε,11(tε − swε, A) is defined as 0 for tε − swε < 0.
Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε − sεwε)/wε =

tε/wε − sε → ∞ as ε → 0. That is why, according relation (3.174), the following
asymptotic relation take place, for A ∈ Γ and s ∈ [0,∞),

Pε,11(tε − sεwε, A) → π0,1(A) as ε → 0. (3.178)

Relations (3.176) and (3.178) imply, by Lemma3.2 given in Sect. 3.4.3 that the
following relation takes place, for A ∈ Γ,

Pε,21(tε, A) →
∫ ∞

0
π0,1(A)P{e0,2ζ ∈ ds} = π0,1(A) as ε → 0. (3.179)
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Aswas pointed out in Sect. 3.2.5, the phase spaceX ∈ Γ. Also,π0,1(X) = 1. Thus,
relations (3.179) implies that the following relation holds, for A ∈ Γ,

Pε,22(tε, A) ≤ Pε,22(tε,X) = 1 − Pε,21(tε,X)

→ 1 − π0,1(X) = 0 as ε → 0. (3.180)

The proof of Theorem3.16 is completed.
The proof of Theorem3.17 is absolutely analogous. �

3.6.3 Long Time Ergodic Theorems for Super-Singularly
Perturbed Alternating Regenerative Processes

In this subsection, we investigate asymptotic behaviour for probabilities Pε,i j (tε, A)

for times 0 ≤ tε → ∞ as ε → 0 satisfying the following relation,

tε/wε → t ∈ (0,∞) as ε → 0. (3.181)

The corresponding limitingprobabilities take that following form for A ∈ Γ, i, j =
1, 2 and t ∈ (0,∞),

π̇
(0)
0,i j (t, A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π0,1(A) for i = 1, j = 1,

0 for i = 1, j = 2,

(1 − e−t/e0,2)π0,1(A) for i = 2, j = 1,

e−t/e0,2π0,2(A) for i = 2, j = 2.

(3.182)

and

π̇
(∞)
0,i j (t, A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−t/e0,1π0,1(A) for i = 1, j = 1,

(1 − e−t/e0,1)π0,2(A) for i = 1, j = 2,

0 for i = 2, j = 1,

π0,2(A) for i = 2, j = 2.

(3.183)

The following theorems take place.

Theorem 3.18 Let conditions F–J and N2 (a) hold. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,i j (tε, A) → π̇
(0)
i j (t, A) as ε → 0. (3.184)

Theorem 3.19 Let conditions F–J and N2 (b) hold. Then, for every A ∈ Γ, i, j =
1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as ε → 0,

Pε,i j (tε, A) → π̇
(∞)
0,i j (t, A) as ε → 0. (3.185)
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Proof The asymptotic behaviour of probabilities Pε,1 j (tε, A), j = 1, 2 is given,
under the assumption that condition N2 (a) holds, is given by relations (3.174) and
(3.175), in the proof of Theorem3.16.

Recall again relation (3.64). If ηε(0) = 2, then, for u ≥ 0,

P2{w−1
ε τ̃ε,1 ≤ u} → 1 − e−u/e0,2 as ε → 0. (3.186)

Also recall the renewal type relation connecting probabilities Pε,11(tε, A) and
Pε,21(tε, A),

Pε,21(tε, A) =
∫ tε

0
Pε,11(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,11(tε − swε, , A)P2{w−1

ε τ̃ε,1 ∈ ds}, (3.187)

where function Pε,11(tε − swε, A) is defined as 0 for tε − swε < 0.
Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε − sεwε)/wε =

tε/wε − sε → t − s as ε → 0. That is why, according relation (3.174) and the above
definition of Pε,11(tε − swε, A) = 0, for tε − swε < 0. the following asymptotic rela-
tion holds, for A ∈ Γ and s �= t ,

Pε,11(tε − sεwε, A) → π0,1(A)I(t > s) as ε → 0. (3.188)

Note that convergence of Pε,11(tε − sεwε, A) as ε → 0 is not guarantied for s = t .
However the limiting distribution in relation (3.186) is exponential and, thus, it has
not an atom at any point t > 0.

Therefore, relations (3.186) and (3.188) imply, by Lemma3.2 given Sect. 3.4.3,
that the following relation takes place, for A ∈ Γ and t ∈ (0,∞),

Pε,21(tε, A) →
∫ ∞

0
π0,1(A)I(t > s)e−1

0,2e
−s/e0,2ds

= (1 − e−t/e0,2)π0,1(A) as ε → 0. (3.189)

It remains to give the asymptotic analysis of asymptotic behaviour for probabilities
Pε,22(tε, A).

Let us introduce random variables με,2,n = κε,2,nI(ηε,2,n = 2), n = 1, 2, . . .. Let
now consider the random sequence of triplets 〈ξ̄ε,2,n = 〈ξε,2,n(t), t ≥ 0〉, κε,2,n ,
με,2,n〉, n = 1, 2, . . ., the regenerative process ξε,2(t) = ξε,2,n(t − τε,2,n−1), for t ∈
[τε,2,n−1, τε,2,n), n = 1, 2, . . ., with regeneration times τε,2,n = κε,2,1 + · · · + κε,2,n,

n = 1, 2, . . . , τε,2,0 = 0, and the random lifetime με,2,+ = τε,2,νε,2 , where νε,2 =
min(n ≥ 1 : με,2,n < κε,2,n) = min(n ≥ 1 : ηε,2,n = 1).

Let us also denote Pε,2,+(t, A) = P2{ξε,2(t) ∈ A, με,2,+ > t}. In this case, the
distribution functions F̄ε,2(t) = P{κε,2,1 ≤ t} and Fε,2(t) = P{κε,2,1 ≤ t, με,2,1 ≥
κε,2,1} = P{κε,2,1 ≤ t, ηε,2,1 = 2}, the stopping probability
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fε,2 = P{με,2,1 < κε,2,1} = P{ηε,2,1 = 1} = pε,21,

and the expectations ēε,2 = Eκε,2,1 = eε,21 + eε,22 and

eε,2 = Eκε,2,1I(με,2,1 ≥ κε,2,1) = Eκε,2,1I(ηε,2,1 = 2) = eε,22.

Condition N2 (a) implies that, for every A ∈ BX, t ≥ 0,

Pε,22(t, A) = P2{ξε(t) ∈ A, τ̃ε,1 > t}
= P{ξε,2(t) ∈ A, με,2,+ > t} = Pε,2,+(t, A). (3.190)

Conditions F–J and N2 (a) and imply that conditions A–D holds. Thus, condi-
tions of Theorem3.18 imply that all conditions of Theorem3.3 hold for the regen-
erative processes ξε,2(t), t ≥ 0 with regenerative times τε,2,n, n = 1, 2, . . . and ran-
dom lifetimes με,2,+. Therefore, the following relation holds, for any A ∈ Γ, and
tε → t ∈ (0,∞) as ε → 0,

Pε,22(tε, A) = Pε,2,+(tε, A) → e−t/e0,2π0,2(A) as ε → 0. (3.191)

The proof of Theorem3.18 is completed.
The proof of Theorem3.19 is absolutely analogous. �

3.6.4 Short Time Ergodic Theorems for Super-Singularly
Perturbed Alternating Regenerative Processes

In this subsection, we investigate asymptotic behaviour for probabilities Pε,i j (tε, A)

for times 0 ≤ tε → ∞ as ε → 0 satisfying the following relation,

tε/wε → 0 as ε → 0. (3.192)

The corresponding limiting probabilities are the same for both case, where con-
dition N2 (a) or N2 (b) holds. They take the following form, for A ∈ Γ, i, j = 1, 2,

π0,i j (A) =
{

π0,i (A) for j = i,

0 for j �= i.
(3.193)

The following theorem takes place.

Theorem 3.20 Let conditions F–J and N2 hold. Then, for every A ∈ Γ, i, j = 1, 2,
and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → 0 as ε → 0,

Pε,i j (tε, A) → π0,i j (A) as ε → 0. (3.194)

Proof Let us, first, assume that condition N2 (a) holds.
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The asymptotic behaviour of probabilities Pε,1 j (tε, A), j = 1, 2 is given, under
the assumption that condition N2 (a) holds, by relations (3.174) and (3.175), in the
proof of Theorem3.17.

It is readily seen that, for every t ≥ 0,

Q̃ε,21(t) = P2{τ̃ε,1 ≤ t} = P{με,2,+ ≤ t} (3.195)

and, for every A ∈ BX, t ≥ 0,

P2{ξε(t) ∈ A, ηε(t) = 2, τ̃ε,1 > t} = P{ξε,2(t) ∈ A, με,2,+ > t}. (3.196)

According relation (3.64), if ηε(0) = 2, random variables, w−1
ε τ̃ε,1

d−→ e0,2ζ as
ε → 0, where ζ is a random variable exponentially distributed with parameter 1.
Since, we assumed that tε/wε → 0 as ε → 0, the above convergence in distribution
relation and relation (3.195) imply that,

P{με,2,+ > tε} = P2{τ̃ε,1 > tε}
= P2{w−1

ε τ̃ε,1 > tεw
−1
ε } → 1 as ε → 0. (3.197)

Relations (3.196) and (3.197) imply that

P2{ξε(tε) ∈ A, ηε(tε) = 2} − P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε → 0, (3.198)

and, analogously,

P{ξε,2(tε) ∈ A} − P{ξε,2(tε) ∈ A, με,2,+ > tε}
≤ P{με,2,+ ≤ tε} → 0 as ε → 0, (3.199)

These relations and Theorem3.1, which can be applied to the regenerative pro-
cesses ξε,2(t), imply that, for every A ∈ Γ,

lim
ε→0

P22(tε, A) = lim
ε→0

P2{ξε(tε) ∈ A, ηε(tε) = 2}
= lim

ε→0
P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}

= lim
ε→0

P{ξε,2(tε) ∈ A, με,2,+ > tε}
= lim

ε→0
P{ξε,2(tε) ∈ A} = π0,2(A). (3.200)

If ηε(0) = 2, then, for every t > 0, event {ηε(t) = 1} ⊆ {τ̃ε,1 ≤ t}. Thus, for every
A ∈ Γ,

P21(tε, A) = P2{ξε(tε) ∈ A, ηε(tε) = 1}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε → 0. (3.201)
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The proof for the case, where condition N2 (b) holds, is absolutely analogous to
the above proof, due to the simmetrisity conditions F–J and N2 (a) and (b) with
respect to indices i, j = 1, 2. �

3.6.5 Ergodic Theorems for Absolutely Singular Perturbed
Alternating Regenerative Processes

This is the extremal and trivial case, where condition N3 holds.
In this case, the process ξε(t), t ≥ 0 coincides with the process ξε,i (t), t ≥ 0 and

the process ηε(t) = i, t ≥ 0, if ηε(0) = i , for i = 1, 2.
Thus, the asymptotic behaviour for probabilities Pε,i i (tε, A) is given by Theo-

rem3.1.
Also, probabilities Pε,12(t, A), Pε,21(t, A) = 0, for t ≥ 0.
The above remarks can be summarised in following theorem.

Theorem 3.21 Let conditions F–J and N3 hold. Then, for every A ∈ Γ, i, j = 1, 2,
and any 0 ≤ tε → ∞ as ε → 0,

Pε,i j (tε, A) → π0,i j (A) as ε → 0. (3.202)

3.6.6 One- and Multi-Dimensional Distributions for
Perturbed Alternating Regenerative Processes

Individual ergodic theorems presented in this paper give ergodic relations for
one-dimensional distributions Pε,i j (t, A) = Pi {ξε(t) ∈ A, ηε(t) = j} for alternating
regenerative processes with semi-Markov modulation (ξε(t), ηε(t)).

This makes it possible to weaken the model assumption (j) formulated in Sect.
3.2.4. This assumption concerns multi-dimensional joint distributions of random
variables ξε,i,n(tk), k = 1, . . . , r and κε,i,n, ηε,i,n . This assumption can be replaced
by the weaker assumption that the joint distributions of random variables ξε,i,n(t)
and κε,i,n, ηε,i,n do not depend on n ≥ 1, for every t ≥ 0 and i = 1, 2.

Process (ξε(t), ηε(t), t ≥ 0 still will process a weaken, say, one-dimensional
regenerative property, which, in fact, means that one-dimensional distributions
Pε,i j (t, A) = Pi {ξε(t) ∈ A, ηε(t) = j}, t ≥ 0, i = 1, 2 satisfy the system of renewal
type Eq. (3.16). Respectively, formulations of conditions, propositions and proofs of
Theorems3.4–3.21 still remain to be valid.

3.6.7 Alternating Regenerative Processes with Transition
Periods

Ergodic theorems for perturbed alternating regenerative processes can be generalised
to such processes with transition periods. In this case, the model assumption (j) for-
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mulated in Sect. 3.2.4. is assumed to hold only for n ≥ 2. The alternating regenerative
process (ξε(t), ηε(t)), t ≥ 0 has the transition period [0, τε,1), while the shifted pro-
cess (ξ (1)

ε (t), η(1)
ε (t)) = (ξε(τε,1 + t), ηε(τε,1 + t)) ≥ 0 is a usual alternating regen-

erative process.
All quantities appearing in conditions G–J the renewal type Eq. (3.16) and rela-

tions (3.15) and (3.18) should be, in this case, defined using shifted sequence of
triplets 〈ξ̄ε,i,2 = 〈ξε,i,2(t), t ≥ 0〉, κε,i,2, ηε,i,2〉, i = 1, 2. It is also natural to index
the above mentioned quantities by the upper index (1), for example, to use nota-
tion P (1)

ε,i, j (t, A) = Pi {ξ (1)
ε (t) ∈ A, η(1)

ε (t) = j}, etc. Probabilities P (1)
ε,i j (t, A) satisfy

the system of renewal type Eq. (3.16). Theorems3.4–3.21 present, in this case, the
corresponding ergodic relations for these probabilities.

Instead of condition E, condition G should be assumed to hold for proba-
bilities p̃ε,i j = P{ηε,i,1 = j}, i, j = 1, 2 and condition H (with omitted the non-
arithmetic assumption) for transition probabilities Q̃ε,i j (t) = P{κε,i,1 ≤ t, ηε,i,1 =
j}, t ≥ 0, i, j = 1, 2. The corresponding ergodic relations for probabilities
Pε,i j (tε, A) = Pi {ξε(t) ∈ A, ηε(t) = j} take the form similar with the asymptotic
relation (3.21). If, for example, P (1)

ε,i j (tε, A) → π
(β)

0,i j (t, A) as ε → 0, for i = 1, 2,
then,

Pε,i j (tε, A) → p̃0,i1π
(β)

0,1 j (t, A) + p̃0,i2π
(β)

0,2 j (t, A) as ε → 0.

3.7 Summary of Results

In this section, a summary of results obtained in the paper and a list of some open
directions for further extension of its results are given.

3.7.1 Summary of Results

As it was pointed in the introduction, the paper presents results of complete anal-
ysis and classification of ergodic theorems for perturbed alternating regenerative
processes modulated by two states semi-Markov processes.

It is shown that the forms of the corresponding ergodic relations and limiting
probabilities appearing in these relations are essentially determined by two parame-
ters.

The first one is parameter β ∈ [0,∞], which asymptotically balance switching
probabilities pε,12 and pε,21 between two alternative variants of regenerative pro-
cesses, in the form of asymptotic relation, pε,12/pε,21 → β as ε → 0.

The second one is a time scaling parameter t ∈ [0,∞], which determines the
asymptotic time zones for time tε → ∞ as ε → 0, in the form of one of two asymp-
totic relations, tε/vε → t or tε/wε → t as ε → 0, with time scaling factors, respec-
tively, vε = p−1

ε,12 + p−1
ε,21 or wε = (pε,12 + pε,21)

−1.
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The variants of ergodic relations are presented in Theorems3.4–3.21, which we
split in groups as ergodic theorems for regularly perturbed alternating regenerative
processes, and short, long, and super-long time ergodic theorems for singularly and
super-singularly perturbed alternating regenerative processes.

The classification of the corresponding individual ergodic theorems is summarised
in the given below Tables3.1, 3.2 and 3.3 (where numbers of theorems, their con-
ditions, the corresponding asymptotic time zones, and the limiting probabilities are
given, respectively, in columns 1, 2, 3 and 4).

It should be noted that the limiting probabilities appearing in Theorems3.4–
3.21 have the forms π

(β)

0, j (A) = ρ j (β)π0, j (A), π
(β)

0,i j (t, A) = p(β)

i j (t)π0, j (A) and

π̇
(0)
0,i j (t, A) = ṗ(0)

i j (t)π0, j (A), π̇ (∞)
0,i j (t, A) = ṗ(∞)

i j (t)π0, j (A). Coefficients ρ j (β) and

Table 3.1 Classification of ergodic theorems: regular perturbations

T Conditions Asymptotic time zones Limiting probabilities

4 F–J, M1, β = 1 tε → ∞ π
(1)
0, j (A)

5 F–J, M2, β ∈ (0,∞) tε → ∞ π
(β)
0, j (A)

6 F–J, M3, β = 0 tε → ∞ π
(0)
0, j (A)

7 F–J, M3, β = ∞ tε → ∞ π
(∞)
0, j (A)

Table 3.2 Classification of ergodic theorems: singular perturbations

T Conditions Asymptotic time zones Limiting probabilities

8 F–J, N1, Kβ, β ∈ [0,∞] vε ≺ tε π
(β)
0, j (A)

9 F–J, N1, Kβ , β ∈ [0,∞] tε ∼ tvε, t ∈ (0,∞) π
(β)
0,i j (t, A)

10 F–J, N1, Kβ , β ∈ (0,∞) tε ≺ vε, tε → ∞ π0,i j (A)

11 F–J, N1, K0 wε ≺ tε ≺ vε π
(0)
0, j (A)

12 F–J, N1, K∞ wε ≺ tε ≺ vε π
(∞)
0, j (A)

13 F–J, N1, K0 tε ∼ twε, t ∈ (0,∞) π̇
(0)
0,i j (t, A)

14 F–J, N1, K∞ tε ∼ twε, t ∈ (0,∞) π̇
(∞)
0,i j (t, A)

15 F–J, N1, K0 or K∞ tε ≺ wε, tε → ∞ π0,i j (A)

Table 3.3 Classification of ergodic theorems: super-singular perturbations

T Conditions Asymptotic time zones Limiting probabilities

16 F–J, N2 (a) wε ≺ tε π
(0)
0, j (A)

17 F–J, N2 (b) wε ≺ tε π
(∞)
0, j (A)

18 F–J, N2 (a) tε ∼ twε, t ∈ (0,∞) π̇
(0)
0,i j (t, A)

19 F–J, N2 (b) tε ∼ twε, t ∈ (0,∞) π̇
(∞)
0,i j (t, A)

20 F–J, N2 tε ≺ wε, tε → ∞ π0,i j (A)

21 F–J, N3 tε → ∞ π0,i j (A)
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p(β)

i j (t), ṗ(0)
i j (t), ṗ(∞)

i j (t) can be interpreted as, respectively, stationary probabilities
and transition probabilities for some semi-Markov processes or Markov chains con-
trolling switchingof regimes for the limiting alternating regenerative processes,while
π0, j (A) are the stationary probabilities for these limiting regenerative processes cor-
responding to different regimes.

It is worth noting that limiting probabilities π
(β)

0, j (A) and π
(β)

0,i j (t, A), π̇ (0)
0,i j (t, A),

π̇
(∞)
0,i j (t, A) possess some natural continuity properties as functions of parameters

β ∈ [0,∞] and t ∈ [0,∞].
In particular, the limiting probabilities π

(β)

0, j (A), which appear, for regularly per-
turbed alternating regenerative processes, in Theorems3.4–3.7, and, for singularly
and super-singularly perturbed alternating regenerative processes, in Theorems3.8,
3.9, 3.11, 3.12, 3.16, and 3.17, are continuous functions of parameter β ∈ [0,∞].

Analogously, the limiting probabilities π
(β)

0,i j (t, A), which appear, for singularly
perturbed alternating regenerative processes, in Theorem3.9, are continuous func-
tions of parameter (β, t) ∈ [0,∞] × [0,∞], except points (0, 0) and (∞, 0). Also,
the limiting probabilities π̇

(0)
0,i j (t, A) and π̇

(∞)
0,i j (t, A), which appear, for singularly

and super-singularly perturbed alternating regenerative processes, in Theorems3.13,
3.14, 3.18, and 3.19, are continuous functions of parameter t ∈ [0,∞].

Limits, π
(β)

0,i j (0, A) = limt→0 π
(β)

0,i j (t, A) = π0,i j (A), for β ∈ (0,∞), while

π
(0)
0,i j (0, A) = limt→0 π

(0)
0,i j (t, A) = π

(0)
0, j (A) and π

(∞)
0,i j (0, A) = limt→0 π

(∞)
0,i j (t, A) =

π
(∞)
0, j (A). Also, limit, π(β)

0,i j (∞, A) = limt→∞ π
(β)

0,i j (t, A) = π
(β)

0, j (A), for β ∈ [0,∞].
Here, π0,i j (A) are the limiting probabilities appearing in Theorems3.10, 3.15, 3.20,
and 3.21.

The latter asymptotic relations have a natural explanation.As amatter of fact, there
exists some kind of “competition” between the velocities with which the switch-
ing probabilities pε,12, pε,21 tends to zero and time tε tends to infinity, for singu-
larly and super-singularly perturbed alternating regenerative processes. Probabilities
pε,12, pε,21 determine the “grade of singularity” for perturbed alternating regenera-
tive processes. These processes become more singular if parameter βε = pε,12/pε,21

takes values close to 0 or ∞. The time parameter t controls the “grade of ergodicity”
for perturbed alternating regenerative processes. Values of βε closer to 0 or ∞ and
smaller values of parameter t promote convergence of probabilities Pε,i j (tε, A) to
limiting probabilities π0,i j (A) = I( j = i)π0,i (A), characteristic for absolutely sin-
gular alternating regenerative processes (for which, switching of regimes is impos-
sible). Moderate values of βε asymptotically separated of 0 and ∞ and larger values
of parameter t promote manifestation of ergodic phenomena and convergence of
probabilities Pε,i j (tε, A) to limiting probabilities π

(β)

0, j (A) = ρ j (β)π0, j (A), which
are characteristic for regular alternating regenerative processes.

3.7.2 Directions for Future Research

Let us list some directions for further continuation of research studies, which results
are presented in the paper.
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It is clear that analogous individual ergodic theorems can be obtained for perturbed
alternating regenerative processes with discrete time.

Individual ergodic theorems presented in this paper relate to one-dimensional
distributions of alternating regenerative processes. Itwould be useful to get analogous
ergodic theorems for multi-dimensional distributions.

A very interesting and prospective direction for future studies is individual ergodic
theorems for singularly and super-singularly perturbed multi-alternating regenera-
tive processes. These are models analogous to those studied in the present paper,
but with alternative regenerative processes choosing from some parametric finite or
more general sets, which serve as the phase space for the corresponding switching
(modulating) semi-Markov processes.

An important is model of alternating regenerative processes with terminating
regeneration times, where the regenerative processes ξε,i,n(t), t ≥ 0 and random vec-
tors (κε,i,n, ηε,i,n) are independent.

Another important model is where the processes ξε,i,n(t), t ≥ 0 are of Markov
processes, random variables κε,i,n are some Markov moments for these processes,
and the switching random variables ηε,i,n are determined by some events for random
trajectories ξε,i,n(t), t ∈ [0, κε,i,n).

An unbounded area of applications constitute queuing, reliability, control and
other types of stochastic systems with alternating regimes of function.

Results in the listed above directions shall be presented in future publications.
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Chapter 4
On Baxter Type Theorems for
Generalized Random Gaussian Fields

Sergey Krasnitskiy and Oleksandr Kurchenko

Abstract Some type of Baxter sums for generalized random Gaussian fields are
introduced in this work. Sufficient conditions of such a sum convergence to a non-
random constant are obtained. As the examples, the behavior of Baxter sums for
a class of generalized fields with independent values and for a field of fractional
Brownian motion is considered.

Keywords Levy–Baxter theorems · Generalized random field · Gaussian field

4.1 Introduction

Let ξ = ξ(t), t ∈ [0, 1]d ⊂ Rd be a randomfield,Un = {Un,1, . . . ,Un,K (n)} for every
n be a family of d–dimensional rectangles that forms a partition of [0, 1]d . Let
Δn,kξ be some weighted finite difference of ξ ’s values at the vertices of Un,k, k =
1, . . . , K (n), K (n) ∈ N ; K (n) → ∞. The sum

S(ξ,Un) =
K (n)∑

k=1

(Δn,kξ)2

is called a Baxter sum (or sum of Levy–Baxter).
Limit theorems, the content of which consists in obtaining the conditions of con-

vergence of the Baxter sums is a rather widespread research topic of probabilistic
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studies starting at least from the work of [1]. In this work the result of this type was
proved for the standard Brownian motion. The next step in this direction was made
in the work [2], where Levy’s result was generalized to a broader class of Gaussian
random processes. After the appearance of this work, the convergence of Baxter
sums for Gaussian random processes was investigated by many authors, see, for ex-
ample [3, 4]. Baxter sums for Gaussian random fields was the subject of research in
pioneer works on this topic [5–7]. The results of this type, which can be attributed to
the domain of stochastic analysis, at the same time, have serious applications in the
statistics of random processes and fields. For example the Baxter sum method was
applied to the estimation of fractional Brownian motion Hurst parameter in works
[8, 9]. This method was used for the estimation of covariation function parameters
for multyparameter fractional Brownian fields in the article [10]. The part of mono-
graph [11] is devoted to the application of Baxter sumsmethod to statistics of random
processes. The estimates received by the Baxter sum method have the property of
consistency. One of advantages of this method lies in the possibility to the construct
of non–asymptotic confidence intervals.

Proceeding from what has been said, it seems natural to extend the method of
Baxter sums to other classes of random functions, for example, to generalized ran-
dom processes and fields (random functions of several arguments; the theory of
generalized random functions is rather completely exposited in the third chapter of
monograph [12]). We note that since the values of such a field at a point are not
defined, then the Baxter sum S(ξ,U ) given above does not in this case make sense.
Therefore, in this case the Baxter sums must be defined differently. One version of
this definition was proposed and applied to the estimation of the spectral density
parameters of a homogeneous generalized random field in monograph [13] and also
in articles [14, 15]. In the work [16] some general variants of the Baxter sums defi-
nitions for generalized Gaussian random processes was proposed and the conditions
for convergence of such sums were received. The application of the obtained results
for conditions of orthogonality (singularity) of probability measures corresponding
to the given process was presented.

The proposed work contains generalizations of the results [16] to the case of
Gaussian generalized random functions of several real arguments (generalized ran-
dom fields).

4.2 Main Results

Let Kd be the space of infinitely differentiable on Rd functions with compact sup-
ports, ξ = ξ(ϕ), ϕ ∈ Kd be a generalized random field with zero mathematical
expectation. We introduce the following notations:

Rd
+ = (0,+∞)d; t = (t1, t2, . . . , td) ∈ Rd; h = (h1, h2, . . . , hd) ∈ Rd;
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{χt,h |t ∈ Rd , h ∈ Rd+} ⊂ Kd — a family of infinitely differentiable functions with
supports suppχt̄,h̄ in d–dimensional rectangles of the form [t, t + h] = [t1, t1 +
h1] × · · · × [td , td + hd ]; bi (n) ⊂ N , bi (n) ↑ +∞, n → ∞, 1 ≤ i ≤ d – sequences
of natural numbers;

χk,n := χt,h for ti = ki
bi (n)

, hi = 1

bi (n)
,

ki = 0, 1, . . . , bi (n) − 1, n ≥ 1, k = (k1, k2, . . . , kd);

A(n) = {ki ∈ (N ∪ {0})d |0 ≤ ki ≤ bi (n) − 1, 1 ≤ i ≤ d}, n ≥ 1.

We put also
Sn(ξ) =

∑

k∈A(n)

(ξ, χk,n)
2,

vn(ξ) =
∑

k, j∈A(n)

(
E

(
(ξ, χk,n)(ξ, χ j,n)

))2
. (4.1)

We say that the random variable Sn(ξ) is a Baxter sum of a generalized field for
the collection of functions {χk,n|0 ≤ ki ≤ bi (n) − 1, 1 ≤ i ≤ d}, n ≥ 1. It is useful
to note that quantity 2vn(ξ) is the variance of the Baxter sum Sn(ξ) for a Gaussian
generalized random field with zero mean, i. e. for n ≥ 1:

VarSn(ξ) = 2vn(ξ). (4.2)

Theorem 4.1 Let ξ(ϕ), ϕ ∈ Kd be a generalized Gaussian random field with zero
mathematical expectation. Then the condition

vn(ξ) → 0, n → ∞ (4.3)

is necessary and sufficient to have the convergence of the form

Sn(ξ) − ESn(ξ) → 0, n → ∞ (4.4)

in the mean square. If
∞∑

n=1

vn(ξ) < ∞,

then the convergence in (4.4) takes place almost surely.

Proof Relation (4.4) follows immediately from the equality (4.2) and the relation
(4.3). The convergence of series
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∞∑

n=1

vn(ξ) = 1

2

∑

n=1

VarSn(ξ)

implies (see, for example, [17]) that random variables Sn(ξ) − ESn(ξ) converge
a.s. to 0. The very equality (4.2) is obtained from the following considerations. For
mathematical expectation of the product of random variables η1, η2, η3, η4 having
a joint Gaussian distribution with zero mean, we have (see, for example, [18]) the
following equality

E(η1η2η3η4) = Eη1η2Eη3η4 + Eη1η3Eη2η4 + Eη1η4Eη2η3. (4.5)

Substituting in (4.5)

η1 = η2 = (ξ, χk,n), η3 = η4 = (ξ, χ j,n)

we obtain
E

(
(ξ, χk,n)

2(ξ, χ j,n)
2
) = 2

(
E

(
ξ, χk,n)(ξ, χ j,n)

))2 +

+E(ξ, χk,n)
2E(ξ, χ j,n)

2, k, j ∈ A(n).

On the other hand, obviously we have the equality

E(Sn(ξ))2 =
∑

k, j∈A(n)

E
(
(ξ, χk,n)

2(ξ, χ j,n)
2
)
.

The last two equations prove (4.2). �

Corollary 4.1 Let ξ(ϕ), ϕ ∈ Kd be a generalized Gaussian random field from the
Theorem4.1 and ESn(ξ) → c, n → ∞. Then condition (3) is necessary and suffi-
cient for convergence

Sn(ξ) → c, n → ∞ (4.6)

in the mean square. If
∑∞

n=1 vn(ξ) < ∞, hen the convergence in (4.6) takes place
almost surely.

Definition 4.1 The generalized random field is said to be a field with independent
values if the random variables (ξ, ϕ), (ξ, ψ), (ϕ, ψ ∈ Kd) are independent under the
condition (ϕ · ψ)(x) = 0 ∀x ∈ Rd .

Corollary 4.2 Let ξ be a generalized Gaussian random field with independent val-
ues, Eξ(ϕ) = 0, ϕ ∈ Kd. Denote v(0)

n (ξ) = ∑
k∈A(n)

(
E(ξ, χk,n)

2
)2
. Then the condi-

tion
v(0)
n (ξ) → 0, n → ∞

is necessary and sufficient for the convergence (4.4) in the square mean. If
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∞∑

n=1

v(0)
n (ξ) < ∞,

then the convergence in (4.4) takes place with probability 1 (almost sure).

Proof Since for k �= j χk,n(x)χ j,n(x) = 0, x ∈ Rd , then E
(
ξ, χk,n

)×
× (

ξ, χ j,n
) = 0 for k �= j . Therefore vn(ξ) = v(0)

n (ξ). �

Example 4.1 Let ξc = ξc(ϕ), ϕ ∈ Kd be a generalized Gaussian random field with
zero mean and covariance function

Eξc(ϕ)ξc(ψ) = c
∫

Rd

ϕ(x)ψ(x)dx, ϕ, ψ ∈ Kd , c = const > 0.

Hence, ξc is a generalized random field with independent values. We introduce the
functions χt,h ∈ Kd of the following form χt,h : Rd → [0, 1], suppχt,h ⊂ [t1, t1 +
h1] × · · · [td , td + hd ], χt,h(x) = 1 for xi ∈ [ti + h2i , ti + hi − h2i ], 1 ≤ i ≤ d.

Then we have

E
(
ξc, χt,h

)2 = c ·
∫

t,t+h
χ2
t,h(x)dx =

= ch1 · · · hd
(
1 +

d∑

i=1

O(hi )

)
, h1 → 0, . . . hd → 0.

Therefore

ESn(ξc) = c ·
∑

k∈A(n)

1

b1(n) · · · bd(n)

(
1 +

d∑

i=1

O

(
1

bi (n)

))
=

= c +
d∑

i=1

O

(
1

bi (n)

)
, n → ∞.

Thus, we see that ESn(ξc) → c when n → ∞. Further,

v(0)
n (ξc) = c2 ·

∑

k∈A(n)

(
1

b1(n) · · · bd(n)

)2
(
1 +

d∑

i=1

O

(
1

bi (n)

))2

=

= O

(
1

b1(n) · · · bd(n)

)
, n → ∞.

and, by virtue of the Corollaries 1, 2,

Sn(ξc) → c, n → ∞
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in square mean. If
∞∑

n=1

1

b1(n) · · · bd(n)
< ∞,

then we have the almost sure converges of Sn(ξc).

Remark 4.1 Let (Ω, σ, P1, P2) be a statistical structure, i.e. Ω be an elementary
events space, σ be a σ -algebra of events (subsets of Ω) P1, P2 be a probabilistic
measures on (Ω, σ). Let σ(ξ) ⊂ σ be a σ -algebra generated by generalized random
field ξ = ξ(ϕ), ϕ ∈ Kd . The field ξ is proposed to be Gaussian one in regard to both
measures P1, P2.

Definition 4.2 Further let E1, E2 be the symbols of mathematical expectations with
respect to measures P1, P2 respectively. Denote by vi,n(ξ), i = 1, 2 the result of sub-
stitution of the symbol Ei into the vn(ξ) expression instead of E, i = 1, 2. Further,
denote the restrictions of measures P1, P2 to the σ–algebra σ by P1,ξ , P2,ξ respec-
tively.

Corollary 4.3 Let random field ξ andmeasures P1, P2 satisfies the conditions of Re-
mark 1, E1ξ(ϕ) = E2ξ(ϕ) = 0, ϕ ∈ Kd. Also, assume that the following conditions
hold:

1.
∑∞

n=1 vi,n(ξ) < +∞, i = 1, 2;
2. Ei Sn(ξ) → ci , i = 1, 2, n → ∞;
3. c1 �= c2.

Then measures P1,ξ , P2,ξ are orthogonal (singular).

Proof Let Xi = {ω ∈ Ω : Sn(ξ) → ci , n → ∞} , i = 1, 2. Since Theorem4.1, it
follows that P1,ξ (X1) = P2,ξ (X2) = 1. But X1 ∩ X2 = ∅. �

Example 4.2 Let measures P1,ξ , P2,ξ correspond to the fields ξc1 , ξc2 of Example4.1
in the manner indicated above. If c1 �= c2, then P1,ξ , P2,ξ are orthogonal.

Theorem 4.2 Let a generalized Gaussian random field ξ with zero mean and func-
tion family χt,h ⊂ Kd satisfy the following conditions:

1. For sufficiently small positive h1, . . . , hd the function E(ξ, χt,h) is continuous
for t ∈ [0, 1]d and there exist continuous functions g : (0,∞)d → (0,∞), u :
[0, 1]d → (0,∞), such that

E(ξ, χt,h)
2

g(h)
→ u(t), h → 0

uniformly over t ∈ [0, 1]d ;
2. v(1)

n (ξ)
def= α2(n)

∑
(k, j)∈B(n)

(
E

(
ξ, χk,n

) (
ξ, χ j,n

))2 → 0, n → ∞,
where
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α(n) = 1

b1(n) · · · bd(n)g
(

1
b1(n)

, . . . , 1
bd (n)

) , n ≥ 1,

B(n) = {(k, j)|k, j ∈ A(n), |ki − ji | ≥ 2, 1 ≤ i ≤ d} .

Then

S̃n(ξ)
def= α(n)

∑

k∈A(n)

(
ξ, χk,n

)2 →
∫

[0,1]d
u(t)dt, n → ∞ (4.7)

in the square mean. If the series

∞∑

n=1

v(1)
n (ξ),

∞∑

n=1

1

bi (n)
, 1 ≤ i ≤ d (4.8)

are convergent, then convergence in (4.7) is almost sure.

Proof Condition 1 of Theorem4.1 implies that

S̃n(ξ) = 1
b1(n)···bd (n)

∑
k∈A(n)

E(ξ,χk,n)
2

g
(

1
b1(n)

,..., 1
bd (n)

)

→ ∫
[0,1]d u(t)dt, n → ∞.

(4.9)

Using equality (4.5), as in the proof of Theorem4.1, we obtain the expression for the
variance of a random variable S̃n(ξ):

VarS̃n(ξ) = 2α2(n)
∑

(k, j)∈A(n)

(
E

(
ξ, χk,n

) (
ξ, χ j,n

))2
.

We set C(n) = {(k, j)|k, j ∈ A(n), ∃i ∈ {1, 2, . . . , d} : |ki − ji | ≤ 1}. Then

VarS̃n(ξ) = 2α2(n)

⎛

⎝
∑

(k, j)∈C(n)

+
∑

(k, j)∈B(n)

⎞

⎠ (
E

(
ξ, χk,n

) (
ξ, χ j,n

))2
.

Condition 2 of Theorem4.2 implies that

2α2(n)
∑

(k, j)∈B(n)

(
E

(
ξ, χk,n

) (
ξ, χ j,n

))2 → 0, n → ∞.

In order to estimate
∑

(k, j)∈C(n), we use the Cauchy-Bunyakovskii inequality:

(
E

(
ξ, χk,n

) (
ξ, χ j,n

))2 ≤ E
(
ξ, χk,n

)2
E

(
ξ, χ j,n

)2
, k, j ∈ A(n).

We have
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2α2(n)
∑

(k, j)∈C(n)

(
E

(
ξ, χk,n

) (
ξ, χ j,n

))2 ≤

≤ 2α2(n)
∑

(k, j)∈C(n)

E
(
ξ, χk,n

)2
E

(
ξ, χ j,n

)2

= 2

b21(n) · · · b2d(n)

∑

(k, j)∈C(n)

(
u

(
k1

b1(n)
, . . . ,

kd
bd(n)

)
+ o(1)

)

×
(
u

(
j1

b1(n)
, . . . ,

jd
bd(n)

)
+ o(1)

)
def= Δn.

LetC = supt∈[0,1]d u(t) + 1. Since the number of summands of the last sum does not
exceed

d∑

i=1

3bi (n) − 2

b2i (n)
b21(n) · · · b2d(n),

then for all sufficiently large n we have the inequality

Δn ≤ 3C2
d∑

i=1

1

bi (n)
.

Consequently,

2α2(n)
∑

(k, j)∈C(n)

(
E

(
ξ, χk,n

) (
ξ, χ j,n

))2 → 0, n → ∞.

That in combination with condition 2 ensures convergence to zero VarS̃n(ξ) under
n → ∞. Taking (4.9) into account, we obtain the assertion of the theorem on conver-
gence S̃n(ξ) in the mean square. From the convergence of the series (4.8) it follows
that the series of variances

∑∞
n=1 VarS̃n(ξ) converges. Thus, the convergence relation

(4.7) also holds with probability 1. �

Example 4.3 Let ξH = ξH (t), t ∈ Rd be a Gaussian random field with zero mean
and covariance function

BH (s, t) = 1

2d

d∏

i=1

(|si |2Hi + |ti |2Hi − |ti − si |2Hi
)
, s, t ∈ Rd ,

where H = (H1, . . . , Hd) ∈ (0, 1)d . In the article [19] such a random field is called
an anisotropic fractional Wiener field. We consider the random field ξH as a gen-
eralized Gaussian random field on Kd . By ηH denote the generalized mixed partial
derivative of the generalized random field ηH :
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ηH = ∂d

∂t1 . . . ∂td
ξH .

The value of the field ηH attest function ϕ ∈ Kd is given by the following equality

(ηH , ϕ) = (−1)d
(

ξH ,
∂d

∂t1 . . . ∂td
ϕ

)
, ϕ ∈ Kd .

The generalized Gaussian random field ηH has zero expectation and the covariance
function

B̂(ϕ, ψ) =
∫

Rd

∫

Rd

BH (s, t)
∂dϕ(s)

∂s1 . . . ∂sd

∂dψ(t)

∂t1 . . . ∂td
dtds.

As in the paper [16], we denote an infinitely differentiable on R function μu,h =
μu,h(·) with parameters u ∈ R, h > 0. This function satisfies the following condi-
tions for sufficiently small values of the parameter h:

1. suppμu,h(·) ⊂ [
u, u + exp

(− 1
h

)] ∪ [
u + h − exp

(− 1
h

)
, u + h

]
;

2. 0 ≤ μu,h(s) ≤ exp
(
1
h

)
, s ∈ [

u, u + exp
(− 1

h

)]
;

3. μu,h(s) = exp
(
1
h

)
, s ∈ [

u + exp
(− 1

h2
)
, u + exp

(− 1
h

) − exp
(− 1

h2
)]
;

4. The graph of the function is centrally symmetric with respect to the point(
u + h

2 , 0
)
.

We set for t = (t1, . . . , td), h = (h1, . . . , hd), hi > 0, 1 ≤ i ≤ d

μt,h(s) =
d∏

i=1

μti ,hi (si ), s = (s1, . . . , sd) ∈ Rd .

The family of functions χt,h is defined as

χt,h(s) =
∫ x1

−∞
. . .

∫ xd

−∞
μt,h(s)ds, x = (x1, . . . , xd) ∈ Rd .

Due to the homogeneity of the generalized random Gaussian field ηH we have

E(ηH , χt,h)
2 = E(ηH , χ0,h)

2 = E(ξH , μ0,h)
2 =

= 1

2d

d∏

i=1

∫ hi

0
dsi

∫ hi

0

(
s2Hi
i + t2Hi

i − |si − ti |2Hi

)
μ0,hi (si )μ0,hi (ti )dti .

Using the direct integrating and passing hi → 0, 1 ≤ i ≤ d in the integral given
below, we get (see, also [16])

1

2

∫ hi

0
dsi

∫ hi

0

(
s2Hi
i + t2Hi

i − |si − ti |2Hi

)
μ0,hi (si )μ0,hi (ti )dti = h2Hi

i + o(h2Hi
i ).
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Consequently, E(ηH , χt,h)
2 = ∏d

i=1

(
h2Hi
i + o(h2Hi

i )
)

, hi → 0, 1 ≤ i ≤ d. Thus,

condition 2 of Theorem4.2 is satisfied for

u(t) = 1, g(h) = h2H1
1 · · · h2Hd

d , α(n) = (b1(n))2H1−1 · · · (bd(n))2Hd−1 .

We now turn to the verification of the second condition of the theorem. Due to the
homogeneity of the Gaussian random field ηH we obtain

v(1)
n (ηH ) = α2(n)

∑

(k, j)∈B(n)

(
E

(
ηH , χk,n

) (
ηH , χ j,n

))2 =

= 2dα2(n)

b1(n)−3∑

j1=0

b1(n)−1∑

k1= j1+2

. . .

bd (n)−3∑

jd=0

bd (n)−1∑

kd= jd+2

(
E

(
ηH , χk,n

) (
ηH , χ j,n

))2 =

= 2dα2(n)

b1(n)−1∑

l1=0

(b1(n) − l1) . . .

. . .

bd (n)−1∑

ld=2

(bd(n) − ld)
(
E

(
ηH , χ0,n

) (
ηH , χl,n

))2
,

where l = (l1, . . . , ld), χl,n = χl1h1,...,ld hd ,h, h = (h1, . . . , hd), hi = 1
bi (n)

, 1 ≤ i ≤ d.
Therefore,

E
(
ηH , χ0,n

) (
ηH , χl,n

) = E
(
ξH , μ0,n

) (
ξH , μl,n

) =

= 1

2d

d∏

i=1

(∫ hi

0
μ2
0,n(si )dsi

∫ (li+1)hi

li hi

(
t2Hi
i + s2Hi

i − (ti − si )
2Hi

)

μ2
li hi ,n(ti )dti

)
.

It is shown in [16] (Example2.2) that

∫ hi

0
μ2
0,n(si )dsi

∫ (li+1)hi

li hi

(
t2Hi
i + s2Hi

i − (ti − si )
2Hi

)
μ2
li hi ,n(ti )dti =

= O

(
h2Hi
i

(li − 1)2Hi

)
+ O

(
exp

(
1

hi
− 1

h2i

))
, hi → 0

uniformly with respect to li ∈ {2, 3, . . . , bi (n) − 1}.
Thus, for some C > 0 and sufficiently large n, we get
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v(1)
n (ηH ) ≤ C

d∏

i=1

⎛

⎝ 1

bi (n)

bi (n)−1∑

li=2

1

(li − 1)4Hi

⎞

⎠ .

Since for n → ∞
bi (n)−1∑

li=2

1

(li − 1)4Hi
=

⎧
⎨

⎩

O
(
(bi (n))−4Hi+1) , for 0 < Hi < 1

4 ,

O (ln bi (n)) , for Hi = 1
4 ,

O(1), for 1
4 < Hi < 1.

then

v(1)
n (ηH ) =

d∏

i=1

(
O

(
(bi (n))−4Hi

)
I(0, 14 )(Hi ) + O

(
ln bi (n)

bi (n)

)
I{ 1

4 }(Hi )+

+O

(
1

bi (n)

)
I( 1

4 ,1)(Hi )
)
,

where IX (x) is the indicator of the set X , i.e. IX (x) =
{
0, x ∈ X,

1, x /∈ X
. Consequently,

v(1)
n (ηH ) → 0, n → ∞,

and the condition 2 of Theorem4.2 is satisfied. According to this theorem,

(b1(n))2H1−1 · · · (bd(n))2Hd−1
∑

k∈A(n)

(
ηH , χk,n

)2 → 1, n → ∞ (4.10)

in square mean. If for any ε > 0

∞∑

n=1

(bi (n))−ε < ∞, 1 ≤ i ≤ d, (4.11)

then, the almost sure convergence takes place in (4.10).

For brevity, let us denote the field defined in Example4.3 ξH–field. The following
corollary gives a sufficient condition for the orthogonality of probability measures
corresponding to ξH–fields.

Corollary 4.4 Let the statistical structure (Ω, σ, P1, P2) be such that the random
field ξ on Kd is the ξH 1–field with respect to the measure P1 the and ξH 2–field with re-
spect to the measure P2, H i = (

Hi
1, . . . , H

i
d

)
, i = 1, 2. Denote by η the generalized

mixed partial derivative of ξ : η = ∂d

∂t1...∂td
ξ . Let σξ ⊂ σ, ση ⊂ σ be the σ–algebras

generated by random fields ξ, η respectively. Denote also by P1,ξ , P2,ξ , P1,η, P2,η
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the restrictions of measures P1, P2 on the σ -algebras σξ , ση respectively. Then if the
inequality

d∑

j=1

H 1
j �=

d∑

j=1

H 2
j (4.12)

holds, then we have P1,ξ ⊥ P2,ξ , P1,η ⊥ P2,η, where the sign of ⊥ denotes the or-
thogonality of the measures.

Proof Sinceση ⊂ σξ , it is sufficient to prove the secondof the indicated orthogonality
relations. To this end, we choose in (4.10) the sequences bi (n) coinciding with each
other b1(n) = . . . = bd(n) = b(n) and satisfying condition (4.11). Then we set

Xi =
⎧
⎨

⎩ω ∈ Ω : b(n)2
∑d

j=1 H
i
j−d

∑

k∈A(n)

(
η, χk,n

)2 → 1, n → ∞
⎫
⎬

⎭ , i = 1, 2.

According to relation (4.10) we have the equalities P1,η(X1) = P2,η(X2) = 1. But
according to inequality (4.12) X1 ∩ X2 = ∅. �
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Chapter 5
Limit Theorems for Quadratic Variations
of the Lei–Nualart Process

Salwa Bajja, Khalifa Es-Sebaiy and Lauri Viitasaari

Abstract Let X be a Lei–Nualart process with Hurst index H ∈ (0, 1), Z1 be an
Hermite random variable. For any n ≥ 1, set

Vn =
n−1∑

k=0

[
n2H (Δk X)2 − n2H IE(Δk X)2

]
.

The aim of the current paper is to derive, in the case when the Hurst index verifies
H > 3/4, an upper bound for the total variation distance between the laws L(Zn)

and L(Z1), where Zn stands for the correct renormalization of Vn which converges
in distribution towards Z1. We derive also the asymptotic behavior of quadratic
variations of process X in the critical case H = 3/4, i.e. an upper bound for the total
variation distance between the L(Zn) and the Normal law.

Keywords Hermite random variable · Gaussian analysis
Malliavin calculus · Convergence in law · Berry–Esseen bounds

5.1 Introduction

Quadratic variation of a stochastic process X plays an important role in different
applications. For example, the concept is important if one is interested in developing
stochastic calculuswith respect to X . Furthermore, quadratic variations can be used to
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build estimators for the model parameters such as self-similarity index or parameter
describing long range dependence which have important applications in all fields of
science such as hydrology, chemistry, physics, and finance to simply name a few.
For such applications, one is interested to study the convergence of the quadratic
variation. Furthermore, a wanted feature is to obtain a central limit theorem which
allows one to apply statistical tools developed for normal random variables.

For Gaussian processes the study of quadratic variation goes back to Lévy who
studied standard Brownian motion and showed the almost sure convergence

lim
n→∞

2n∑

k=1

[
W k

2n
− Wk−1

2n

]2 = 1.

Later this result was extended to cover more general Gaussian processes in Baxter [1]
and in Gladyshev [17] for uniformly divided partitions. General subdivisions were

studied in Dudley [15] and Klein and Gine [21] where the optimal condition o
(

1
log n

)

for the mesh of the partition was obtained in order to obtain almost sure convergence.

It is also known that for the standard Brownian motion the condition o
(

1
log n

)
is not

only sufficient but also necessary. For details on this topic see De La Vega [13] for
construction, and [25] for recent results. Functional central limit theorem for general
class of Gaussian processes were studied in Perrin [31]. More recently, Kubilius and
Melichov [22] defined a modified Gladyshev’s estimator and the authors also studied
the rate of convergence. Norvaiŝa [27] have extended Gladyshev’s theorem to a more
general class of Gaussian processes. Finally, we canmention a paper byMalukas [26]
who extended the results of Norvaiŝa to irregular partitions, and derived sufficient
conditions for the mesh in order to obtain almost sure convergence.

The case of fractional Brownian motion with Hurst index H ∈ (0, 1) were stud-
ied in details by Gyons and Leons [18] where the authors showed that appropri-
ately scaled first order quadratic variation (that is, the one based on differences
Xtk − Xtk−1 ) converges to a Gaussian limit only if H < 3

4 . To overcome this prob-
lem, a generalisations of quadratic variations were used in [6, 10, 12, 20]. The most
commonly used generalisation is second order quadratic variations based on differ-
ences Xtk+1 − 2Xtk + Xtk−1 whichwas studied in details in a series of papers byBegyn
[2–4] with applications to fractional Brownian sheet and time-space deformed frac-
tional Brownian motion. In particular, in [2] the sufficient condition for almost sure
convergence was studied with non-uniform partitions. The central limit theorem and
its functional versionwere studied in [3, 4] with respect to a standard uniform divided
partitions. Furthermore, the authors in papers [9, 33] have studied more general vari-
ations assuming that the underlying Gaussian process have stationary increments.
For another generalisation, the localised quadratic variations were introduced in [5]
in order to estimate the Hurst function of multifractional Gaussian process. These
results have been generalised in [11, 23].

In this paper we study quadratic variation of the Lei–Nualart process, defined
precisely in Sect. 5.2. The terminology stems from the fact that in [24] the authors
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proved a showed that fractional Brownian motion can be decomposed into a sum of
bifractional Brownian motion and another process X , which we call the Lei–Nualart
process to honor the authors who first introduced this process. The Lei–Nualart pro-
cess have some interesting features. Firstly, it is already known that many interesting
processes including bifractional Brownian motion, subfractional Brownian motion,
and a large class of selfsimilar Gaussian processes can be decomposed in terms
of fractional Brownian motion and the Lei–Nualart process with different choices
of parameters [19, 24, 32]. Secondly, the Lei–Nualart process has almost surely
infinitely differentiable paths. On the other hand, the quadratic variation behaves
similarly as the quadratic variation of fBm.

5.2 Preliminaries

In this section we briefly recall some basic facts on Gaussian analysis and Malliavin
calculus that are used in this paper. For more details on the topic we refer to [29].
We begin by giving precise definition of the Lei–Nualart process.

Definition 5.1 Let H ∈ (0, 1), H �= 1
2 . The Lei–Nualart process (XH

t )t∈[0,1] on
[0, 1] is defined as the Wiener integral

XH
t =

∫ ∞

0
(1 − e−θ t )θ−H−1/2dWθ .

Clearly, the process XH is centered and X0 = 0. The covariance function of XH

is given by

CXH (t, s) = −Γ (2 − 2H)

H(2H − 1)
K (s, t),

where

K (s, t) = 1

2

[
s2H + t2H − (s + t)2H

]
, s, t ∈ [0, 1]. (5.1)

Moreover, XH admits a representation

XH
t =

∫ t

0
Y H
s ds,

where

Y H
t =

∫ ∞

0
e−θ tθ H−1/2dWθ .
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In particular, this shows that XH has absolutely continuous paths, and even infinitely
differentiable paths on IR+. For more details on the process XH , we refer to [24, 32].

Define a Hilbert space H by closing the set of step functions of form f (s) =∑n
k=1 ak1(0,tk ](s) with respect to the inner product

〈
1(0,t], 1(0,s]

〉
H

= CXH (t, s).
Denote also by H1 the first chaos of X , i.e. the L2-closure of span{Xt : t ∈ [0, 1]}.
The elements ofH1 are centered and Gaussian. Then it is well-known that the map-
ping 1(0,t] �→ Xt extends to a linear isometry I between H andH1, and hence each
element Z ∈ H1 can be identified as a Wiener integral Z = I (h) for some h ∈ H.
The elements ofH may be not functions but distributions. However,H contains the
subset |H| of all measurable functions f : [0, 1] → IR such that

∫

[0,1]2
| f (u)|| f (v)|(u + v)2H+2dudv < ∞.

Moreover, for f, g ∈ |H|, we have

〈 f, g〉H = 2H(2H − 1)
∫

[0,1]2
f (u)g(v)(u + v)2H+2dudv.

Let now q ≥ 2 be fixed and denote by H⊗q (resp. H�q ) the qth tensor product
(resp. qth symmetric tensor product) of H. If we define the qth Wiener chaos Hq

of X as the L2-closed linear subspace of L2
X generated by the random variables

{Hq(Y (h)), h ∈ H, ||h||H = 1}, where Hq is the qth Hermite polynomial defined

as Hq(x) = (−1)qe
x2

2
dq

dxq (e
− x2

2 ), then the mapping Iq(h⊗q) = Hq(Y (h)) provides
a linear isometry between the symmetric tensor product H�q (equipped with the
modified norm ||.||H�q = √

q!||.||H⊗q ) andHq . In particular, for all f, g ∈ H�q and
q ≥ 1 one has

IE[Iq( f )Iq(g)] = q!〈 f, g〉H⊗q .

Let us next introduce the Hermite process of order 2. Let H > 1
2 and t ∈ [0, 1]

be fixed. The sequence (ξn(t))n≥1 defined as

ξn(t) = n

2

nt∑

j=1

1⊗2(
j
n ,

j+1
n

]

is a Cauchy sequence inH⊗2. Indeed, since H > 1
2 , we have

〈1(a,b], 1(u,v]〉H = IE((Xb − Xa)(Xv − Xu)) =
2H(2H − 1)

∫ b

a

∫ v

u
(x + y)2H+2dxdy

so that for any m ≥ n
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〈ξn(t), ξm(t)〉H⊗2 = H 2(2H − 1)2nm
mt∑

j=1

nt∑

k=1

(∫ ( j+1)/m

j/m

∫ (k+1)/n

k/n
(x + y)2H−2dxdy

)2

.

Using the mean value theorem we hence have

lim
n,m→∞〈ξn(t), ξm(t)〉H⊗2 = H 2(2H − 1)2

∫ t

0

∫ t

0
(x + y)4H−4dxdy = cH t

4H−2,

where cH = H 2(2H−1)2(24H−2−2)
(4H−2)(4H−3) . Let us denote by δt the limit of the sequence of

functions ξn(t) inH⊗2. For any f ∈ |H|⊗2, we have

〈ξn(t), f 〉H⊗2 = n

2

nt�∑

k=1

〈1⊗2
( k
n , k+1

n ], f 〉H⊗2

= 4H 2(2H − 1)2

2
n

nt�∑

k=1

∫ 1

0

∫ k+1
n

k
n

(x + y)2H−2dydx

×
∫ 1

0

∫ k+1
n

k
n

(u + v)2H−2 f (x, u)dvdu

−→
n→∞ 2H 2(2H − 1)2

∫ 1

0
t
∫

[0,1]2
(x + u)2H−2(x + v)2H−2 f (v, u)dudvdx

= 〈δt , f 〉H⊗2 .

The Hermite process is defined as follows.

Definition 5.2 The Hermite process Z = (Zt )t∈[0,1] is defined by Zt = I2(δt ) for
t ∈ [0, 1].

We next recall some preliminary results in order to obtain convergence in law
towards a normal random variable.

Theorem 5.1 ([30]) Let {Fn}n≥1 be a sequence of elements in the qth Wiener chaos
such that E(F2

n ) = 1 and let N denote a standard normal random variable. Then
there exists a constant Cq depending only on q such that

sup
x∈R

|P (Fn < x) − P(N < x)| ≤ Cq

√
EF4

n − 3.

Using previous result one can study quadratic variations of general Gaussian
process and obtain sufficient conditions to ensure the convergence in law towards a
normal random variable together with a Berry–Esseen bound. This was studied in
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[35] where general Gaussian vectors and general partitions were considered. For our
purposes the following result explains how Berry–Esseen bounds can be obtained
easily. The result is essentially taken as a combination of results derived in [35].
However, for convenience we present the main steps of the proof.

Theorem 5.2 Let Y be a continuous Gaussian process and denote by V Y
n its

quadratic variation defined by V Y
n = ∑n

k=1

[
(ΔkY )2 − IE (ΔkY )2

]
, where ΔkY =

Y k
n
− Y k−1

n
. Set H(n) = max1≤ j≤n

∑n
k=1

∣∣IE(ΔkYΔ j Y )
∣∣ . Then

sup
x∈IR

∣∣∣∣∣IP
(

V Y
n√

Var(V Y
n )

< x

)
− IP(N < x)

∣∣∣∣∣ ≤ C
H(n)√
Var(V Y

n )
.

Proof For fixed n, let Γn be the covariance matrix of the increments ΔkY , and let λk

be its eigenvalues. Then it is well-known that max1≤k≤n |λk | ≤ H(n). Furthermore,
by [35, Lemma 2.2] (see also proof of Theorem 2.7 of [35]) we have e

(
V Y
n

)2 =
2
∑n

k=1 λ2
k and e

(
V Y
n

)4 = 12
[∑n

k=1 λ2
k

]2 + 24
∑n

k=1 λ4
k . Hence

e

[
V Y
n√

Var(V Y
n )

]4

= 3 + 6

∑n
k=1 λ4

k[∑n
k=1 λ2

k

]2 ≤ 3 + 6
H(n)2∑n
k=1 λ2

k

.

The claim follows now from Theorem 5.1 together with the fact that Vn is a sequence
in the 2nd chaos. �

The following lemma gives easy way to compute the function H(n) and is essentially
taken from [35] (see [35, Theorem 3.3]).

Lemma 5.1 ([35]) Let Y be a continuous Gaussian process such that the func-
tion d(s, t) = E(Xt − Xs)

2 is in C1,1 outside diagonal. Furthermore, assume that
|∂st d(s, t)| = O

(|t − s|2H−2
)
for some H ∈ (0, 1), H �= 1

2 . Then

max
1≤ j≤n

n∑

k=1

∣∣IE(ΔkYΔ j Y )
∣∣ ≤ max

1≤ j≤n
d

(
j

n
,
j − 1

n

)
+

(
1

n

)1∧2H
.

5.3 Quadratic Variation of the Lei–Nualart Process

We study quadratic variations of the process XH defined as

Vn = C2
n−1∑

k=0

[
n2H (Δk X)2 − n2H IE(Δk X)2

]
, (5.2)
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where C =
√

H(2H−1)
Γ (2−2H)

and Δk X = X k+1
n

− X k
n
. By [35, Lemma 2.2], the variance of

Vn is given by

IEV 2
n = 2C4n4H

n−1∑

k,r=0

[IE(Δk XΔr X)]2 . (5.3)

Moreover, by applying (5.1) we have

2C2IE(Δk XΔr X) = n−2Hα(k, r), (5.4)

where
α(k, r) = (k + r + 2)2H − 2(k + r + 1)2H + (k + r)2H . (5.5)

Note also that α(k, r) has a representation

α(k, r) = 2H(2H − 1)
∫ k+1

k

∫ r+1

r
(x + y)2H−2dxdy =

2H(2H − 1)
∫ 1

0

∫ 1

0
(x + y + k + r)2H−2dxdy

which we will exploit several times. Our main result is the following.

Theorem 5.3 Let X be the Lei–Nualart process and Vn its quadratic variations
defined by (5.2). Then there exists a constant C > 0 such that:

Case 1 If H = 3
4 , then sup

x∈R

∣∣∣∣P
(

Vn√
var(Vn)

< x

)
− P(N < x)

∣∣∣∣ ≤ C
1√
n
, where

N is a standard normal random variable.
Case 2 If H > 3

4 , then ‖Vn − Z1‖2 ≤ Cn3−4H , where Zt is the Hermite process.

Toprove the following theoremwemayuse the decomposition of the subfractional
Brownianmotion in [32], the convergence ofVn in the case H ∈ (0, 3/4) is as follows.

Theorem 5.4 Let X be the Lei–Nualart process and Vn its quadratic variations
defined by (5.2). such that;

If H ∈ (0, 3
4 ), then limn→∞ Vn√

n
= 0.

Remark 5.1 In the case of the fBm, and thanks to the seminal works of Breuer and
Major [9], Dobrushin and Major [14], Giraitis and Surgailis [16] and Taqqu [34], it
is well-known that we have, as n → ∞:

Case 1 If H ∈ (
0, 3

4

)
, then Vn

σH
√
n

law−→ N(0, 1).

Case 2 If H = 3
4 , then

Vn

σH

√
n log(n)

law−→ N(0, 1).

Case 3 If H > 3
4 , then

Vn
n2H−1

law−→ Z̄ ∼ “Hermite random variable”.
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Here, σH > 0 denotes an (explicit) constant depending only on H . Moreover,
explicit bounds for the Kolmogorov distance between the law of Vn and the standard
normal law are obtained by [28, Theorem 4.1], [8, Theorem 1.2]. The following facts
happen: For some constant cH depending only on H , we have

dKol (Vn,N(0, 1)) ≤ cH ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
n

i f H ∈ (
0, 5

8

)

(log n)3/2√
n

i f H = 5
8

n4H−3 i f H ∈ (
5
8 ,

3
4

)

1√
log(n)

i f H = 3
4

,

where dKol(Y, Z) = sup−∞<z<∞ |P(Y ≤ z) − P(Z ≤ z)|. For almost sure central
limit theorems for Vn , see Bercu et al. [7].

Before proving our main result we provide some auxiliary lemmas whose proofs
are postponed into the appendix.

Lemma 5.2 Let α(x, y) be a function defined by (5.5). Then

(i) We have α(x, x) ∼ cH x2H−2 as x → ∞, where cH is a constant depending only
on H.

(ii) For every 0 ≤ x < y we have α(y, y) ≤ α(x, y) ≤ α(x, x).

The following lemma explains the asymptotic variance of the quadratic variation
Vn in different cases.

Lemma 5.3 Let Vn be defined by (5.2). Then there exist constants c andC depending
only on H such that:

(i) If H = 3
4 , then cn ≤ Var(Vn) ≤ Cn.

(ii) If 3
4 < H < 1, then cn4H−2 ≤ Var(Vn) ≤ Cn4H−2.

Proof (Proof of Theorem 5.3) The case H = 3
4 follows directly from Theorem 5.2.

Indeed, since |∂s,t K (s, t)| = C(s + t)2H−2 for some unimportant constant C and
(s + t)2H−2 ≤ |t − s|2H−2, we observe |∂s,t K (s, t)| ≤ C |t − s|2H−2.Hence by com-
bining Lemmas 5.1 and 5.3 together with the fact e(ΔXk)

2 ≤ Cn−2H the claim fol-
lows immediately from Theorem 5.2.

Let us next consider the case H > 3
4 . For any fixed n ≥ 1 we have

n1−2H
n−1∑

k=0

[
n2HC2

(
X k+1

n
− X k

n

)2 − n2HC2IE
(
X k+1

n
− X k

n

)2]

= nC2
n−1∑

k=0

[(
X k+1

n
− X k

n

)2 − IE
(
X k+1

n
− X k

n

)2]

= I2(hn),
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where hn = n

2

n−1∑

k=0

δ⊗2
k
n

∈ H�2 , δ k
n

= 1[ kn , k+1
n ]. On the other hand,

1

n4H−2
E[V 2

n ] = 1

2

1

n4H−2

n∑

k,l=1

α(k, l)2 = n2

2

n∑

k,l=1

α

(
k

n
,
l

n

)2

= n2

2

n∑

k,l=1

(
2H(2H − 1)

∫ k+1
n

k
n

∫ l+1
n

l
n

(x + y)2(H−1)dxdy

)2

= n2

2

n∑

k,l=1

〈
δ k

n
, δ l

n

〉2
H

= 2
n∑

k,l=1

〈n
2
δ k

n
,
n

2
δ l

n

〉2
H

= 2 ‖ hn ‖2H⊗2=‖ hn ‖2H�2 .

Since

α(l, k) = ((l + 1) + (k + 1))2H − (l + (k + 1))2H

− ((l + 1) + k)2H + (l + k)2H

= 2H(2H − 1)
∫ k+1

k

∫ l+1

l
(x + y)2(H−1)dxdy,

we observe

‖ hn ‖2H�2 = 1
2n4H−2

∑n
k,l=1

(
2H(2H − 1)

∫ k+1
k

∫ l+1
l (x + y)2(H−1)dxdy

)2

= 2H 2(2H−1)2

n4H−2

∑n
k,l=1

(∫ k+1
k

∫ l+1
l (x + y)2(H−1)dxdy

)2

= 2H 2(2H − 1)2n2
∑n−1

k,l=0

(∫ k+1
n

k
n

∫ l+1
n

l
n

(x + y)2(H−1)dxdy
)2

. (5.6)

Here, thanks to the mean value theorem, by letting n → ∞ we observe

‖ h ‖2H�2 = 2H 2(2H − 1)2
∫ 1

0

∫ 1

0
(x + y)4(H−1)dxdy. (5.7)

Let now ϕ ∈ |H|. We have

〈hn, ϕ⊗2〉H�2 =
n−1∑

l=0

〈n
2
δl/n, ϕ〉2H

= 4H 2(2H − 1)2
n

2

n−1∑

l=0

(∫ (l+1)/n

l/n

∫ 1

0
φ(u)(u + v)2H−2dudv

)2
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= 2H 2(2H − 1)2n
n−1∑

l=0

(∫ (l+1)/n

l/n

∫ 1

0
φ(u)(u + v)2H−2dudv

)2

.

Again by letting n → ∞, we get

〈h, ϕ⊗2〉H�2 = 2H 2(2H − 1)2
∫ 1

0

(∫ 1

0
φ(u)(u + v)2H−2du

)2

dv.

Hence

〈h, hn〉H�2 = 4H 2(2H − 1)2 n2
∑n−1

l=0

∫ 1
0

(∫ (k+1)/n
k/n (u + v)2H−2du

)2
dv

= 2H 2(2H − 1)2n
∑n−1

l=0

∫ 1
0

(∫ (k+1)/n
k/n (u + v)2H−2du

)2
dv. (5.8)

Combining (5.6)–(5.8) we get

‖ hn − h ‖2H�2 = E |I2(hn) − I2(h)|2
= E(I2(hn)

2) − 2E(I2(hn)I2(h)) + E(I2(h)2)

=‖ hn ‖2H�2 −2〈hn, h〉H�2+ ‖ h ‖2H�2

= 2H 2(2H − 1)2
n−1∑

k,l=0

n2
(∫ (k+1)/n

k/n

∫ (l+1)/n

l/n
(x + y)2(H−1)dxdy

)2

− 4H 2(2H − 1)2n
n−1∑

k,l=0

∫ (l+1)/n

l/n

(∫ (k+1)/n

k/n
(u + v)2H−2du

)2

dv

+ 2H 2(2H − 1)2
n−1∑

k,l=0

∫ (k+1)/n

k/n

∫ (l+1)/n

l/n
(x + y)4(H−1)dxdy

= 2H 2(2H − 1)2n2−4H
n−1∑

k,l=0

(∫ 1

0

∫ 1

0
(x + y + k + l)2(H−1)dxdy

)2

− 4H 2(2H − 1)2n2−4H
n−1∑

k,l=0

∫ 1

0

(∫ 1

0
(u + v + k + l)2H−2du

)2

dv

+ 2H 2(2H − 1)2n2−4H
n−1∑

k,l=0

∫ 1

0

∫ 1

0
(x + y + k + l)4(H−1)dxdy.

Let us next study different integrals. For the first integral we have
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∫ 1

0

∫ 1

0
(x + y + k + l)2(H−1)dxdy = 1

2H(2H − 1)
α(k, l)

= 1

2H(2H − 1)

[
(l + k + 2)2H − 2(l + k + 1)2H + (l + k)2H

]
.

Hence by using Taylor’s theorem repeatedly we obtain

∫ 1

0

∫ 1

0
(x + y + k + l)2(H−1)dxdy = (k + l)2H−2 + O((k + l)2H−3),

and thus

(∫ 1

0

∫ 1

0
(x + y + k + l)2(H−1)dxdy

)2

= (k + l)4H−4 + O((k + l)4H−5). (5.9)

For the second integral

∫ 1

0

(∫ 1

0
(u + v + k + l)2H−2du

)2

dv

we have, for all x ≥ 0,

|(1 + x)2H−1 − 1 − (2H − 1)x | = (2H − 1)(2 − 2H)

∫ x

0
du

∫ u

0

dv

(1 + v)3−2H

≤ (2H − 1)(2 − 2H)

∫ x

0
du

∫ u

0
dv.

Hence we can write

∫ 1

0

(∫ 1

0
(u + v + k + l)2H−2du

)2

dv

= 1

(2H − 1)2

∫ 1

0

(
(1 + v + k + l)2H−1 − (v + k + l)2H−1

)2
dv

= 1

(2H − 1)2

∫ 1

0
(v + k + l)4H−2

((
1

v + k + l
+ 1

)2H−1

− 1

)2

dv

=
∫ 1

0
(v + k + l)4H−2

(
1

v + k + l
+ R

(
1

v + k + l

))2

dv

=
∫ 1

0
(v + k + l)4H−4

(
1 + (v + k + l)R

(
1

v + k + l

))2

dv,

where the remainder term R satisfies |R(u)| ≤ (1 − H)u2. In particular, for any
v ∈ [0, 1], we have
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(v + k + l)

∣∣∣∣R
(

1

v + k + l

)∣∣∣∣ ≤ 1 − H

k + l − 1
.

Hence we deduce

∫ 1

0

(∫ 1

0
(u + v + k + l)2H−2du

)2

dv

=
∫ 1

0
(v + k + l)4H−4(1 + O(1/(k + l)))2dv

= (k + l + 1)4H−3 − (k + l)4H−3

4H − 3
(1 + O(1/(k + l)))

= (k + l)4H−3 ((1 + (1/(k + l)))4H−3 − 1)

4H − 3
(1 + O(1/(k + l)))

= (k + l)4H−3(1/(k + l) + O(1/(k + l)2)(1 + O(1/(k + l)))

= (k + l)4H−4 + O((k + l)4H−5). (5.10)

Finally, for the last integral we have

∫ 1

0

∫ 1

0
(x + y + k + l)4(H−1)dxdy = 1

(4H − 3)(4H − 2)
h(k, l),

whereh(k, l) = (k + l + 2)4H−2 − 2(k + l + 1)4H−2 + (k + l)4H−2.UsingTaylor’s
theorem again we deduce h(k, l) = (4H − 2)(4H − 3)(k + l)4H−4 +
O((k + l)4H−5) and thus

∫ 1

0

∫ 1

0
(x + y + k + l)4(H−1)dxdy = (k + l)4H−4 + O((k + l)4H−5). (5.11)

Hence, thanks to (5.9)–(5.11), we observe

‖ hn − h ‖2H�2=

= n2−4H
n−1∑

k,l=0

2H 2(2H − 1)2
(∫ 1

0

∫ 1

0
(x + y + k + l)2(H−1)dxdy

)2

− 4H 2(2H − 1)2n2−4H
n−1∑

k,l=0

∫ 1

0

(∫ 1

0
(u + v + k + l)2H−2du

)2

dv

+ 2H 2(2H − 1)2n2−4H
n−1∑

k,l=0

∫ 1

0

∫ 1

0
(x + y + k + l)4(H−1)dxdy

≤ Cn2−4H
n−1∑

k,l=1

(k + l)4H−5
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≤ Cn3−4H
n−1∑

k=1

k4H−5.

Here
∑n−1

k=1 k
4H−5 ≤ ∑∞

k=1 k
4H−5 < ∞ since 4H − 5 < −1. Thus we obtained ‖

hn − h ‖2H�2≤ Cn3−4H which concludes the proof. �

Proof (Proof of Theorem 5.4) We have

n2H√
n

n−1∑

i=0

(
X i+1

n
− X i

n

)2 ≤ n2H−3/2 sup
0≤i≤n−1

|X i+1
n

− X i
n
|

1/n

n−1∑

i=0

|X i+1
n

− X i
n
|.

from the properties of the process X

sup
0≤i≤n−1

|X i+1
n

− X i
n
|

1/n
< ∞

n−1∑

i=0

|X i+1
n

− X i
n
| < ∞.

Then

lim
n→∞

n2H√
n

n−1∑

i=0

(
X i+1

n
− X i

n

)2 = 0 ⇐⇒ H < 3/4.

In Addition for H ∈ (0, 3/4) we have as n → ∞:

1√
n

n−1∑

k=0

[
n2H

(
BH

k+1
n

− BH
k
n

)2 − 1

]
→ N(0, σ B

H )

and

1√
n

n−1∑

k=0

[
n2H

(
SH

k+1
n

− SH
k
n

)2 − 1 + αk(H)

]
→ N(0, σ S

H ),

where BH is fBm, SH is subfBm and αk(H) is a function defined as follows

αk(H) = H(2H − 1)
∫ 1

0

∫ 1

0
(2k + x + y)2(H−1)dxdy k ≥ 0,

such that σ S
H = σ B

H = 1
2

√∑
r∈Z ρ(r) < ∞. Thus the proof of Theorem 5.4

is done. �
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Appendix

Proof (Proof of Lemma 5.2) (i) We have

α(x, x) = (2x + 2)2H − 2(2x + 1)2H + (2x)2H .

Hence by applying Taylor’s theorem we observe

α(x, x) = 2H(2H − 1)(2x)2H−2 + O(x2H−3)

from which the claim follows.
(ii) We show that for any fixed x (resp. y), the function x �→ α(x, y) (resp. y �→
α(x, y)) is decreasing provided that H ∈ [

3
4 , 1

)
. For this, let y be fixed. Then

∂xα(x, y) = 2H
[
(x + y + 2)2H−1 − (x + y + 1)2H−1

−(x + y + 1)2H−1 + (x + y)2H−1
]

= 2H
[
zy(x + 1) − zy(x)

]
,

where zy(x) = (x + y + 1)2H−1 − (x + y)2H−1. Here

z′
y(x) = (2H − 1)

[
(x + y + 1)2H−2 − (x + y)2H−2

] ≤ 0,

and thus zy(x) is decreasing. This implies that α(x, y) is also decreasing as a function
of x . Furthermore, by changing the roles of x and y we observe that for each fixed
x , the function y �→ α(x, y) is also decreasing. Consequently, for every 0 ≤ x ≤ y
we have α(y, y) ≤ α(x, y) ≤ α(x, x). �

Proof (Proof of Lemma 5.3) Using (5.3) and (5.4) we have, for any H ∈ (0, 1) \ { 12 },

IE[V 2
n ] = 1

2

n−1∑

r,k=0

α(k, r)2 =
n−1∑

r<k

α(k, r)2 + 1

2

n−1∑

k=0

α(k, k)2 = I (n) + J (n).

The idea is to show that, depending on the value of H , the term I (n) behaves asymp-
totically correctly while the term J (n) is negligible.
(i) Case H = 3

4 : By Lemma 5.2 item (i) we have

J (n) ≤ C
n−1∑

k=1

k−1 ≤ C log n,

and hence, as n → ∞, J (n)

n → 0. For the term I (n)we have α(r, k)2 = (k + r)−1 +
O

(
(k + r)−2

)
. Here
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1

n

n−1∑

r<k

(k + r)−2 ≤ C

n

n−1∑

k=1

k−1 ≤ C log n

n
→ 0

and consequently the term O
(
(k + r)−2

)
does not affect the asymptotic variance.

For the term (k + r)−1 we substitute s = k + r to get

n−1∑

r<k

(k + r)−1 =
n−1∑

k=0

2k−1∑

s=k+1

s−1.

Changing the order of summation we get

n−1∑

k=0

2k−1∑

s=k+1

s−1 =
2n−3∑

s=1

∑

s+1
2 ≤k≤s−1

s−1.

Here
∑

s+1
2 ≤k≤s−1 1 = s

2 − 1
2 if s is odd and

∑
s+1
2 ≤k≤s−1 1 = s

2 if s is even. This

implies cn ≤ ∑n−1
r<k (k + r)−1 ≤ Cn.

(ii) Case 3
4 < H < 1: By Lemma 5.2 item (i) we have J (n) ≤ C

∑n−1
k=1 k

4H−4 ≤
Cn4H−3 since 4H − 4 > −1. Hence, as n → ∞, J (n)

n4H−2 → 0. For the term I (n) we
use Lemma 5.2 item (ii) to observe that

n−1∑

r<k

α(k, k)2 ≤
n−1∑

r<k

α(k, r)2 ≤
n−1∑

r<k

α(r, r)2.

Here
n−1∑

r<k

α(k, k)2 ≥ C
n−1∑

k=1

[
kk4H−4 + O(k4H−4)

]
.

Here 1
n4H−2

∑n−1
k=1 k

4H−4 ≤ Cn−1 → 0 from which it follows that
∑n−1

r<k α(k, k)2 ≥
cn4H−2. On the other hand, we have

n−1∑

r<k

α(r, r)2 ≤ C
n−1∑

r=1

(n − r)r4H−4 ≤ Cn4H−2

from which the claim follows. �
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Chapter 6
Parameter Estimation for Gaussian
Processes with Application to the Model
with Two Independent Fractional
Brownian Motions

Yuliya Mishura, Kostiantyn Ralchenko and Sergiy Shklyar

Abstract The purpose of the article is twofold. Firstly, we review some recent
results on the maximum likelihood estimation in the regression model of the form
Xt = θG(t) + Bt , where B is a Gaussian process, G(t) is a known function, and θ is
an unknown drift parameter. The estimation techniques for the cases of discrete-time
and continuous-time observations are presented.As examples,modelswith fractional
Brownian motion, mixed fractional Brownian motion, and sub-fractional Brownian
motion are considered. Secondly, we study in detail the model with two independent
fractional Brownian motions and apply the general results mentioned above to this
model.

Keywords Discrete observations · Continuous observations · Maximum
likelihood estimator · Strong consistency · Fractional Brownian motion · Fredholm
integral equation of the first kind

6.1 Introduction

Gaussian processes with drift arise in many applied areas, in particular, in telecom-
munication and on financial markets. An observed process often can be decomposed
as the sum of a useful signal and a random noise, where the last one mentioned is
usually modeled by a centered Gaussian process, see, e.g., [19, Ch.VII].
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The simplest example of such model is the process

Yt = θ t + Wt ,

where W is a Wiener process. In this case the MLE of the drift parameter θ by
observations of Y at points 0 = t0 ≤ t1 ≤ · · · ≤ tN = T is given by

θ̂ = 1

tN − t0

N−1∑

i=0

(
Yti+1 − Yti

) = YT − Y0
T

,

and depends on the observations at two points, see e.g. [5]. Models of such type are
widely used in finance. For example, Samuelson’s model [42] with constant drift
parameter μ and known volatility σ has the form

log St =
(

μ − σ 2

2

)
t + σWt ,

and the MLE of μ equals

μ̂ = log ST − log S0
T

+ σ 2

2
.

At the same time, themodelwithWiener process is not suitable formany processes
in natural sciences, computer networks, financial markets, etc., that have long- or
short-term dependencies, i.e., the correlations of random noise in these processes
decrease slowly with time (long-term dependence) or rapidly with time (short-term
dependence). In particular, themodels of financialmarkets demonstrate various kinds
of memory (short or long). However, a Wiener process has independent increments,
and, therefore, the random noise generated by it is “white”, i.e., uncorrelated. The
most simple way to overcome this limitation is to use fractional Brownian motion. In
some cases even more complicated models are needed. For example, the noise can be
modeled by mixed fractional Brownian motion [9], or by the sum of two fractional
Brownian motions [28]. Moreover, recently Gaussian processes with non-stationary
increments have become popular such as sub-fractional [6], bifractional [14] and
multifractional [2, 36, 40] Brownian motions.

In this paper we study rather general model where the noise is represented by a
centeredGaussian process B = {Bt , t ≥ 0}with known covariance function, B0 = 0.
We assume that all finite-dimensional distributions of the process {Bt , t > 0} are
multivariate normal distributions with nonsingular covariance matrices. We observe
the process Xt with a drift θG(t), that is,

Xt = θG(t) + Bt , (6.1)

where G(t) = ∫ t
0 g(s) ds, and g ∈ L1[0, t] for any t > 0.
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The paper is devoted to the estimation of the parameter θ by observations of the
process X . We consider the MLEs for discrete and continuous schemes of obser-
vations. The results presented are based on the recent papers [33, 34]. Note that in
[33] the model (6.1) with G(t) = t was considered, and the driving process B was a
process with stationary increments. Then in [34] these results were extended to the
case of non-linear drift and more general class of driving processes. In the present
paper we apply the theoretical results mentioned above to the models with fractional
Brownian motion, mixed fractional Brownian motion and sub-fractional Brownian
motion.

Similar problems for the model with linear drift driven by fractional Brownian
motion were studied in [5, 17, 26, 35]. The mixed Brownian—fractional Brownian
model was treated in [7]. In [4, 39] the nonparametric functional estimation of the
drift of a Gaussian processes was considered (such estimators for fractional and
subfractional Brownian motions were studied in [13, 43] respectively).

In the present paper special attention is given to the model of the form
Xt = θ t + BH1

t + BH2
t with two independent fractional Brownian motions BH1 and

BH2 . This model was first studied in [28], where a strongly consistent estimator
for the unknown drift parameter θ was constructed for 1/2 < H1 < H2 < 1 and
H2 − H1 > 1/4 by continuous-time observations of X . Later, in [30], the strong con-
sistency of this estimator was proved for arbitrary 1/2 < H1 < H2 < 1. The details
on this approach are given inRemark6.2 below.However, the problemof drift param-
eter estimation by discrete observations in this model was still open. Applying our
technique, we obtain the discrete-time estimator of θ and prove its strong consistency
for any H1, H2 ∈ (0, 1). Moreover, we also construct the continuous-time estimator
and prove the convergence of the discrete-time estimator to the continuous-time one
in the case where H1 ∈ (1/2, 3/4] and H2 ∈ (H1, 1).

It is worth mentioning that the drift parameter estimation is developed for more
general models involving fBm. In particular, the fractional Ornstein–Uhlenbeck pro-
cess is a popular andwell-studiedmodelwith fBm.TheMLEof the drift parameter for
this process was constructed in [20] and further investigated in [3, 44, 47]. Several
non-standard estimators for the drift parameter of an ergodic fractional Ornstein–
Uhlenbeck process were proposed in [15] and studied in [18]. The corresponding
non-ergodic case was treated in [1, 10, 45]. In the papers [8, 11, 12, 16, 48, 49]
drift parameter estimators were constructed via discrete observations. More general
fractional diffusion models were studied in [21, 27] for continuous-time estimators
and in [23, 29, 32] for the case of discrete observations. An estimator of the volatility
parameter was constructed in [25]. For Hurst index estimators see, e.g., [22] and ref-
erences cited therein. Mixed diffusion model including fractional Brownian motion
and Wiener process was investigated in [21]. We refer to the paper [31] for a survey
of the results on parameter estimation in fractional and mixed diffusion models and
to the books [24, 38] for a comprehensive study of this topic.

The paper is organized as follows. In Sect. 6.2 we construct the MLE by discrete-
time observations and formulate the conditions for its strong consistency. In Sect. 6.3
we consider the estimator constructed by continuous-time observations and the rela-
tions between discrete-time and continuous-time estimators. In Sect. 6.4 these results
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are applied to various models mentioned above. In particular, the new approach to
parameter estimation in themodelwith two independent fractionalBrownianmotions
is presented in Sect. 6.4.5. Auxiliary results are proved in Sects. 6.5 and 6.6.

6.2 Construction of Drift Parameter Estimator for
Discrete-Time Observations

Let the process X be observed at the points 0 < t1 < t2 < · · · < tN . Then the vector
of increments

ΔX (N ) = (Xt1 , Xt2 − Xt1 , . . . , XtN − XtN−1)
�

is a one-to-one function of the observations. We assume in this section that the
inequality G(tk) �= 0 holds at least for one k.

Evidently, vector ΔX (N ) has Gaussian distribution N(θΔG(N ), Γ (N )), where

ΔG(N ) = (
G(t1), G(t2) − G(t1), . . . , G(tN ) − G(tN−1)

)�
.

Let Γ (N ) be the covariance matrix of the vector

ΔB(N ) = (Bt1 , Bt2 − Bt1 , . . . , BtN − BtN−1)
�.

The density of the distribution of ΔX (N ) w. r. t. the Lebesgue measure is

pdfΔX (N ) (x) =
= (2π)−N/2

√
det Γ (N )

exp

{
−1

2

(
x − θΔG(N )

)� (
Γ (N )

)−1 (
x − θΔG(N )

)}
.

Then one can take the density of the distribution of the vector ΔX (N ) for a given θ

w. r. t. the density for θ = 0 as a likelihood function:

L(N )(θ) = (6.2)

= exp

{
θ(ΔG(N ))�(Γ (N ))−1ΔX (N ) − θ2

2
(ΔG(N ))�(Γ (N ))−1ΔG(N )

}
.

The corresponding MLE equals

θ̂ (N ) =
(
ΔG(N )

)� (
Γ (N )

)−1
ΔX (N )

(
ΔG(N )

)� (
Γ (N )

)−1
ΔG(N )

. (6.3)

Theorem 6.1 (Properties of the discrete-time MLE [34]) 1. The estimator θ̂ (N ) is
unbiased and normally distributed:
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θ̂ (N ) − θ � N

(
0,

1

(ΔG(N ))�(Γ (N ))−1ΔG(N )

)
.

2. Assume that
var Bt

G2(t)
→ 0, as t → ∞. (6.4)

If tN → ∞, as N → ∞, then the discrete-time MLE θ̂ (N ) converges to θ as N → ∞
almost surely and in L2(Ω).

6.3 Construction of Drift Parameter Estimator
for Continuous-Time Observations

In this section we suppose that the process Xt is observed on the whole interval
[0, T ]. We investigate MLE for the parameter θ based on these observations.

Let 〈 f, g〉 = ∫ T
0 f (t)g(t) dt .Assume that the functionG and the process B satisfy

the following conditions.

(A) There exists a linear self-adjoint operator Γ = ΓT : L2[0, T ] → L2[0, T ] such
that

cov(Xs, Xt ) = E Bs Bt =
∫ t

0
ΓT 1[0,s](u) du = 〈ΓT 1[0,s], 1[0,t]〉. (6.5)

(B) The drift function G is not identically zero, and in its representation G(t) =∫ t
0 g(s) ds the function g ∈ L2[0, T ].

(C) There exists a function hT ∈ L2[0, T ] such that g = Γ hT .

Note that under assumption (A) the covariance between integrals of deterministic
functions f ∈ L2[0, T ] and g ∈ L2[0, T ] w. r. t. the process B equals

E
∫ T

0
f (s) dBs

∫ T

0
g(t) dBt = 〈ΓT f, g〉.

Theorem 6.2 (Likelihood function and continuous-time MLE [34]) Let T be fixed,
assumptions (A)–(C) hold. Then one can choose

L(θ) = exp

{
θ

∫ T

0
hT (s) dXs − θ2

2

∫ T

0
g(s)hT (s) ds

}
(6.6)

as a likelihood function. The MLE equals

θ̂T =
∫ T
0 hT (s) dXs

∫ T
0 g(s)hT (s) ds

. (6.7)
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It is unbiased and normally distributed:

θ̂T − θ � N

(
0,

1
∫ T
0 g(s)hT (s) ds

)
.

Theorem 6.3 (Consistency of the continuous-timeMLE [34]) Assume that assump-
tions (A)–(C) hold for all T > 0. If, additionally,

lim inf
t→∞

var Bt

G(t)2
= 0, (6.8)

then the estimator θ̂T converges to θ as T → ∞ almost surely and in mean square.

Theorem 6.4 (Relations between discrete and continuous MLEs [34]) Let the
assumptions of Theorem6.2 hold. Construct the estimator θ̂ (N ) from (6.3) by obser-
vations XTk/N , k = 1, . . . , N. Then

1. the estimator θ̂ (N ) converges to θ̂T in mean square, as N → ∞,
2. the estimator θ̂ (2n) converges to θ̂T almost surely, as n → ∞.

6.4 Application of Estimators to Models with Various
Noises

6.4.1 The Model with Fractional Brownian Motion
and Linear Drift

Definition 6.1 The fractional Brownian motion BH = {
BH
t , t ≥ 0

}
with Hurst

index H ∈ (0, 1) is a centeredGaussian processwith B0 = 0 and covariance function

E BH
t BH

s = 1
2

(
t2H + s2H − |t − s|2H )

.

Let H ∈ (0, 1) be fixed. Consider the model

Xt = θ t + BH
t . (6.9)

where X is an observed stochastic process, BH is an unobserved fractional Brown-
ian motion with Hurst index H , and θ is a parameter of interest. Any finite slice of
the stochastic process {BH

t , t > 0} has a multivariate normal distribution with non-
singular covariance matrix. Since var

(
BH
t

) = t2H , the random process BH satisfies
Theorem6.1. Hence, we have the following result.

Corollary 6.1 Under condition tN → +∞ as N → ∞, the estimator θ̂ (N ) in the
model (6.9) is L2-consistent and strongly consistent.
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Remark 6.1 Bertin et al. [5] considered the MLE in the model (6.9) in the discrete
scheme of observations, where the trajectory of X was observed at the points tk = k

N ,
k = 1, 2, . . . , Nα , α > 1. Hu et al. [17] investigated the MLE by discrete observa-
tions at the points tk = kh, k = 1, 2, . . . , N . They considered even more general
model of the form Xt = θ t + σ BH

t with unknown σ . In both papers L2-consistency
and strongly consistency of the MLEs were proved. Note that in Corollary6.1 both
these schemes of observations are allowed, since the only condition tN → ∞ is
required.

Now we consider the case of continuous-time observations and apply the results
of Sect. 6.3 to the model (6.9). Let H ∈ ( 12 , 1). Denote by ΓH the corresponding
operator Γ for the model (6.9). Then

(ΓH f )(t) = H(2H − 1)
∫ T

0

f (s)

|t − s|2−2H ds. (6.10)

For the function
hT (s) = CHs

1/2−H (T − s)1/2−H ,

CH = (
H(2H − 1)B

(
H − 1

2 ,
3
2 − H

))−1
, we have that

ΓHhT = 1[0,T], (6.11)

see [35]. The MLE is given by

θ̂T = T 2H−2

B(3/2 − H, 3/2 − H)

∫ T

0
s1/2−H (T − s)1/2−H dXs .

This estimator was studied in [26, 35], see also [33, Example3.11].

Corollary 6.2 Let H ∈ ( 12 , 1). The conditions of Theorems6.2, 6.3 and 6.4, are

satisfied. The estimator θ̂T is L2-consistent and strongly consistent. For fixed T , it
can be approximated by discrete-sample estimator in mean-square sense.

6.4.2 Model with Fractional Brownian Motion
and Power Drift

Now we generalize the model (6.9) for the case of the non-linear drift function
G(t) = tα+1. Let 0 < H < 1 and α > −1. Consider the process

Xt = θ tα+1 + BH
t (6.12)

This is a particular case of model (6.1), with g(t) = (α + 1)tα .
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Now verify the conditions of the theorems. The condition (6.4) holds true if and
only if α > H − 1.

Corollary 6.3 If α > H − 1, the model (6.12) satisfies the conditions of
Theorem6.1. The estimator θ̂ (N ) in the model (6.12) is L2-consistent and strongly
consistent (provided that limN→∞ tN = +∞).

The condition (B): g ∈ L2[0, T ] holds true if and only if α > − 1
2 . The integral

equation Γ h = g is rewritten as

∫ T

0

h(s) ds

|t − s|2H−2
= α + 1

(2H − 1)H
tα.

If α > 2H − 2, then the solution is

h(t) = const ·
(

T α

t H− 1
2 (T − t)H− 1

2

− αtα+1−2HW
(
T
t , α, H − 1

2

))
, (6.13)

whereW
(
T
t , α, H − 1

2

) = ∫ T
t −1

0 (v + 1)α−1v
1
2 −H dv. The asymptotic behaviour of

the function W
(
T
t , α, H − 1

2

)
as t → 0+ is

W
(
T
t , α, H − 1

2

) ∼

⎧
⎪⎪⎨

⎪⎪⎩

B
(
3
2 − H, H − 1

2 − α
)

ifα < H − 1
2 ,

ln(T/t) ifα = H − 1
2 ,

2
2α+1−2H

T α−H+ 1
2

tα−H+ 1
2

ifα > H − 1
2 .

Therefore, the function h(t) defined in (6.13) is square integrable if α + 1 − 2H −
max

(
0, α − H + 1

2

)
> − 1

2 , which holds if α > 2H − 3
2 . Note that if α > 2H − 3

2 ,
then the following inequalities hold true: α > 2H − 2 (whence h defined in (6.13) is
indeed a solution to the integral equation Γ h = g), α > H − 1 (whence conditions
(6.4) and so (6.8) are satisfied), and α > − 1

2 (whence condition (B) is satisfied).

Corollary 6.4 If α > 2H − 3
2 , the conditions of Theorems6.2, 6.3 and 6.4, are sat-

isfied. The estimator θ̂T is L2-consistent and strongly consistent. For fixed T , it can
be approximated by discrete-sample estimator in mean-square sense.

6.4.3 The Model with Brownian and Fractional Brownian
Motion

Consider the following model:

Xt = θ t + Wt + BH
t , (6.14)
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whereW is a standardWiener process, BH is a fractionalBrownianmotionwithHurst
index H , and random processes W and BH are independent. The corresponding
operator Γ is Γ = I + ΓH , where ΓH is defined by (6.10). The operator ΓH is
self-adjoint and positive semi-definite. Hence, the operator Γ is invertible. Thus
Assumption (C) holds true.

In other words, the problem is reduced to the solving of the following Fredholm
integral equation of the second kind

hT (u) + H2(2H2 − 1)
∫ T

0
hT (s) |s − u|2H2−2 ds = 1, u ∈ [0, T ]. (6.15)

This approach to the drift parameter estimation in the model with mixed fractional
Brownian motion was first developed in [7].

Note also that the function hT = Γ −1
T 1[0,T] can be evaluated iteratively

hT =
∞∑

k=0

(
1
2

∥∥Γ H
T

∥∥ I − Γ H
T

)k
1[0,T]

(
1 + 1

2

∥∥Γ H
T

∥∥)k+1 . (6.16)

6.4.4 Model with Subfractional Brownian Motion

Definition 6.2 The subfractional Brownian motion B̃H = {
B̃H
t , t ≥ 0

}
with Hurst

parameter H ∈ (0, 1) is a centered Gaussian random process with covariance func-
tion

cov
(
B̃H
s , B̃H

t

) = 2 |t |2H + 2 |s|2H − |t − s|2H − |t + s|2H
2

. (6.17)

We refer to [6, 46] for properties of this process. Obviously, neither B̃H, nor its
increments are stationary. If {BH

t , t ∈ R} is a fractional Brownian motion, then

the random process BH
t +BH−t√

2
is a subfractional Brownian motion. Evidently, mixed

derivative of the covariance function (6.17) equals

KH (s, t) := ∂2 cov
(
B̃H
s , B̃H

t

)

∂t ∂s
= (6.18)

= H (2H − 1)
(|t − s|2H−2 − |t + s|2H−2

)
.

If H ∈ ( 12 , 1), then the operator Γ = Γ̃H that satisfies (6.5) for B̃H equals

Γ̃H f (t) =
∫ T

0
KH (s, t) f (s) ds. (6.19)

Consider the model (6.1) for G(t) = t and B = B̃H :
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Xt = θ t + B̃H
t . (6.20)

Let us construct the estimators θ̂ (N ) and θ̂T from (6.3) and (6.7) respectively and
establish their properties. In particular, Proposition6.1 allows to define finite-sample
estimator θ̂ (N ).

Proposition 6.1 The linear equation Γ̃H f = 0 has only trivial solution in L2[0, T ].
As a consequence, the finite slice

(
B̃H
t1 , . . . , B̃H

tN

)
with 0 < t1 < · · · < tN has a mul-

tivariate normal distribution with nonsingular covariance matrix.

Since var
(
B̃H
t

) = (
2 − 22H−1

)
t2H , the random process B̃H satisfies Theorem6.1.

Hence, we have the following result.

Corollary 6.5 Under condition tN → +∞ as N → ∞, the estimator θ̂ (N ) in the
model (6.20) is L2-consistent and strongly consistent.

In order to define the continuous-time MLE (6.7), we have to solve an integral
equation. The following statement guarantees the existence of a solution.

Proposition 6.2 If 1
2 < H < 3

4 , then the integral equation Γ̃Hh = 1[0,T ], that is

∫ T

0
KH (s, t)h(s) ds = 1 for almost all t ∈ (0, T ) (6.21)

has a unique solution h ∈ L2[0, T ].
Corollary 6.6 If 1

2 < H < 3
4 , then the random process B̃H satisfies Theorems6.2,

6.3, and 6.4. As the result, L(θ) defined in (6.6) is the likelihood function in the
model (6.20), and θ̂T defined in (6.7) is the MLE. The estimator is L2-consistent and
strongly consistent. For fixed T , it can be approximated by discrete-sample estimator
in mean-square sense.

6.4.5 The Model with Two Independent Fractional Brownian
Motions

Consider the following model:

Xt = θ t + BH1
t + BH2

t , (6.22)

where BH1 and BH2 are two independent fractional Brownian motion with Hurst
indices H1, H2 ∈ ( 12 , 1). Obviously, the condition (6.4) is satisfied:

var
(
BH1
t + BH2

t

)

t2
= t2H1 + t2H2

t2
→ 0, t → ∞.
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Theorem 6.5 Under condition tN → +∞ as N → ∞, the estimator θ̂ (N ) in the
model (6.22) is L2-consistent and strongly consistent.

Evidently, the corresponding operator Γ for the model (6.22) equals ΓH1 + ΓH2 ,
where ΓH is defined by (6.10). Therefore, in order to verify the assumptions of The-
orem6.2 we need to show that there exists a function hT such that

(
ΓH1 + ΓH2

)
hT =

1[0,T ]. This is equivalent to
(
I + Γ −1

H1
ΓH2

)
hT = Γ −1

H1
1[0,T ], since the operator ΓH1 is

injective and its range contains 1[0,T ], see (6.11) and Theorem6.7. Hence, it suffices
to prove that the operator I + Γ −1

H1
ΓH2 is invertible. This is done in Theorem6.8 in

Sect. 6.6 for H1 ∈ (1/2, 3/4], H2 ∈ (H1, 1). Thus, in this case the assumptions of
Theorem6.2 hold with

hT = (
I + Γ −1

H1
ΓH2

)−1
Γ −1
H1

1[0,T ] .

Therefore, we have the following result for the estimator

θ̂T =
∫ T
0 hT (s) dXs
∫ T
0 hT (s) ds

.

Theorem 6.6 If H1 ∈ (1/2, 3/4] and H2 ∈ (H1, 1), then the random process BH1 +
BH2 satisfies Theorems6.2, 6.3, and 6.4. As the result, L(θ) defined in (6.6) is the
likelihood function in the model (6.22), and θ̂T is the maximum likelihood estima-
tor. The estimator is L2-consistent and strongly consistent. For fixed T , it can be
approximated by discrete-sample estimator in mean-square sense.

Remark 6.2 Another approach to the drift parameter estimation in the model with
two fractional Brownian motions was proposed in [28] and developed in [30]. It is
based on the solving of the following Fredholm integral equation of the second kind

(2 − 2H1)h̃T (u)u1−2H1 +
∫ T

0
h̃T (s)k(s, u) ds = (6.23)

= (2 − 2H1)u
1−2H1 , u ∈ (0, T ],

where

k(s, u) =
∫ s∧u

0
∂s KH1,H2(s, v)∂uKH1,H2(u, v) dv,

KH1,H2(t, s) = cH1βH2s
1/2−H2

∫ t

s
(t − u)1/2−H1uH2−H1(u − s)H2−3/2du,

cH1 =
(

Γ (3 − 2H1)

2H1Γ ( 32 − H1)3Γ (H1 + 1
2 )

) 1
2

,
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βH2 =
(
2H2

(
H2 − 1

2

)2
Γ ( 32 − H2)

Γ (H2 + 1
2 )Γ (2 − 2H2)

) 1
2

.

Then for 1/2 ≤ H1 < H2 < 1 the estimator is defined as

θ̂ (T ) = N (T )

δH1〈N 〉(T )
,

where δH1 = cH1B
(
3
2 − H1,

3
2 − H1

)
, N (t) is a square integrable Gaussian martin-

gale,

N (T ) =
∫ T

0
h̃T (t) dX (t),

h̃T (t) is a unique solution to (6.23) and

〈N 〉(T ) = (2 − 2H1)

∫ T

0
h̃T (t)t1−2H1 dt.

This estimator is also unbiased, normal and strongly consistent. The details of this
method can be found also in [24, Sec. 5.5].

6.5 Integral Equation with Power Kernel

Theorem 6.7 Let 0 < p < 1 and b > 0.

1. If y ∈ L1[0, b] is a solution to integral equation

∫ b

0

y(s) ds

|t − s|p = f (t) for almost all t ∈ (0, b), (6.24)

then y(x) satisfies

y(x) = Γ (p) cos πp
2

πx (1−p)/2
D

(1−p)/2
b−

(
x1−pD

(1−p)/2
0+

(
f (x)

x (1−p)/2

))
(6.25)

almost everywhere on [0, b], where Dα
a+ and Dα

b− are the Riemann–Liouville
fractional derivatives, that is

Dα
a+ f (x) = 1

Γ (1 − α)

d

dx

(∫ x

a

f (t)

(x − t)α
dt

)
,

Dα
b− f (x) = −1

Γ (1 − α)

d

dx

(∫ b

x

f (t)

(t − x)α
dt

)
.
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2. If y1 ∈ L1[0, b] and y2 ∈ L1[0, b] are two solutions to integral equation (6.24),
then y1(x) = y2(x) almost everywhere on [0, b].

3. If y ∈ L1[0, b] satisfies (6.25) almost everywhere on [0, b] and the fractional
derivatives are solutions to respective Abel integral equations, that is

1

Γ
(
1−p
2

)
∫ t

0

D
(1−p)/2
0+ ( f (x)x (p−1)/2)

(t − x)(p+1)/2
dx = f (t)

t (1−p)/2
, (6.26)

for almost all t ∈ (0, b) and

1

Γ
(
1−p
2

)
∫ b

x

πy(s)s(1−p)/2

Γ (p) cos πp
2

ds

(s − x)(p+1)/2
= (6.27)

= x1−pD
(1−p)/2
0+

(
f (x)

x (1−p)/2

)

for almost all x ∈ (0, b), then y(s) is a solution to integral equation (6.24).

Proof Firstly, transform the left-hand side of (6.24). By [35, Lemma2.2(i)], for
0 < s < t

∫ s

0

dτ

(t − τ)(p+1)/2(s − τ)(p+1)/2τ 1−p
=

B
(
p, 1−p

2

)

s(1−p)/2t (1−p)/2(t − s)p
.

Hence, for s > 0, t > 0, s �= t

∫ min(s,t)

0

dτ

(t − τ)(p+1)/2(s − τ)(p+1)/2τ 1−p
=

B
(
p, 1−p

2

)

s(1−p)/2t (1−p)/2|t − s|p .

Hence

∫ b

0

y(s) ds

|t − s|p =

=
∫ b

0

s(1−p)/2t (1−p)/2y(s)

B
(
p, 1−p

2

)
∫ min(s,t)

0

dτ

(t − τ)(p+1)/2(s − τ)(p+1)/2τ 1−p
ds.

Change the order of integration, noting that {(s, τ ) : 0 < s < b, 0 < τ <

min(s, t)} = {(s, τ ) : 0 < τ < t, τ < s < b} for 0 < t < b:
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∫ b

0

y(s) ds

|t − s|p = (6.28)

= t (1−p)/2

B
(
p, 1−p

2

)
∫ t

0

1

(t − τ)(p+1)/2τ 1−p

∫ b

τ

s(1−p)/2y(s) ds

(s − τ)(p+1)/2
dτ.

The right-hand side of (6.28) can be rewritten with fractional integration:

∫ b

0

y(s) ds

|x − s|p =
Γ

(
1−p
2

)2

B
(
p, 1−p

2

) x (1−p)/2 I (1−p)/2
0+

(
1

x1−p
I (1−p)/2
b−

(
x (1−p)/2y(x)

))

for 0 < x < b, where I α
a+ and I α

b− are fractional integrals

I α
a+ f (x) = 1

Γ (α)

∫ x

a

f (t)

(x − t)(1−α)
dt

and

I α
b− f (x) = 1

Γ (α)

∫ b

x

f (t)

(t − x)(1−α)
dt.

The constant coefficient can be simplified:

Γ
(
1−p
2

)2

B
(
p, 1−p

2

) =
Γ

(
1−p
2

)
Γ

(
p+1
2

)

Γ (p)
= π

Γ (p) cos
(

πp
2

) .

Thus integral equation (6.24) can be rewritten with use of fractional integrals:

π

Γ (p) cos
(

πp
2

) x (1−p)/2 I (1−p)/2
0+

(
1

x1−p
I (1−p)/2
b−

(
x (1−p)/2y(x)

))
= f (x) (6.29)

for almost all x ∈ (0, b).

Whenever y ∈ L1[0, b], the function x (1−p)/2y(x) is obviously integrable on

[0, b]. Now prove that the function x p−1 I (1−p)/2
b−

(
x (1−p)/2y(x)

)
is also integrable

on [0, b]. Indeed,
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∣∣∣∣I
(1−p)/2
b−

(
x (1−p)/2y(x)

)∣∣∣∣ ≤ 1

Γ
(
1−p
2

)
∫ b

x

t (1−p)/2 |y(t)|
(t − x)(p+1)/2

dt,

∫ b

0

∣∣∣∣∣∣∣∣

I (1−p)/2
b−

(
x (1−p)/2y(x)

)

x1−p

∣∣∣∣∣∣∣∣
dx ≤ 1

Γ
(
1−p
2

)
∫ b

0

1

x1−p

∫ b

x

t (1−p)/2 |y(t)| dt
(t − x)(p+1)/2

dx

= 1

Γ
(
1−p
2

)
∫ b

0
t (1−p)/2 |y(t)|

∫ t

0

dx

x1−p(t − x)(p+1)/2
dt

=
B

(
p, 1−p

2

)

Γ
(
1−p
2

)
∫ b

0
|y(t)| dt < ∞,

and the integrability is proved.

Due to [41, Theorem2.1], the Abel integral equation f (x) = I α
a+φ(x), x ∈ (a, b),

may have not more that one solution φ(x) within L1[a, b]. If the equation has such
a solution, then the solution φ(x) is equal to Dα

a+ f (x). Similarly, the Abel integral
equation f (x) = I α

b−φ(x)may have not more that one solution φ(x) ∈ L1[a, b], and
if it exists, φ = Dα

b− f .

Therefore, if y ∈ L1[0, b] is a solution to integral equation, then is also satisfies
(6.29), so

I (1−p)/2
0+

(
1

x1−p
I (1−p)/2
b−

(
π

Γ (p) cos
(

πp
2

) x (1−p)/2y(x)

))
= f (x)

x (1−p)/2
, (6.30)

1

x1−p
I (1−p)/2
b−

(
πx (1−p)/2y(x)

Γ (p) cos
(

πp
2

)
)

= D
(1−p)/2
0+

(
f (x)

x (1−p)/2

)
,

πx (1−p)/2y(x)

Γ (p) cos
(

πp
2

) = D
(1−p)/2
b−

(
x1−pD

(1−p)/2
0+

(
f (x)

x (1−p)/2

))

for almost all x ∈ (0, b). Thus y(x) satisfies (6.25). Statement 1 of Theorem6.7 is
proved, and statement 2 follows from statement 1.

From Eqs. (6.26) and (6.27), which can be rewritten with fractional integration
operator,

I (1−p)/2
0+ D

(1−p)/2
0+

(
f (x)x (1−p)/2

)
= f (x)

t (1−p)/2
,

I (1−p)/2
b−

(
πy(x)x (1−p)/2

Γ (p) cos πp
2

)
= x1−pD

(1−p)/2
0+

(
f (x)

x (1−p)/2

)
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(6.30) follows, and (6.30) is equivalent to (6.24). Thus statement 3 of Theorem6.7
holds true. �

Remark 6.3 The integral equation (6.24) was solved explicitly in [26, Lemma3]
under the assumption f ∈ C([0, b]). Here we solve this equation in L1[0, b] and
prove the uniqueness of a solution in this space. Note also that the formula for
solution in the handbook [37, formula 3.1.30] is incorrect (it is derived from the
incorrect formula 3.1.32 of the same book, where an operator of differentiation is
missing; this error comes from the book [50]).

6.6 Boundedness and Invertibility of Operators

This section is devoted to the proof of the following result, which plays the key role
in the proof of the strong consistency of theMLE for themodel with two independent
fractional Brownian motions.

Theorem 6.8 Let H1 ∈ (
1
2 ,

3
4

]
, H2 ∈ (H1, 1), and ΓH be the operator defined by

(6.10). Then Γ −1
H1

ΓH2 : L2[0, T ] → L2[0, T ] is a compact linear operator defined

on the entire space L2[0, T ], and the operator I + Γ −1
H1

ΓH2 is invertible.

The proof consists of several steps.

6.6.1 Convolution Operator

If φ ∈ L1[−T, T ], then the following convolution operator

L f (x) =
∫ T

0
φ(t − s) f (s) ds (6.31)

is a linear continuous operator L2[0, T ] → L2[0, T ], and

‖L‖ ≤
∫ T

−T
|φ(t)| dt. (6.32)

Moreover, L is a compact operator.
The adjoint operator of the operator (6.31) is

L∗ f (x) =
∫ T

0
φ(s − t) f (s) ds.

If the function φ is even, then the linear operator L is self-adjoint.
Let us consider the following convolution operators.
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Definition 6.3 Forα > 0, the Riemann–Liouville operators of fractional integration
are defined as

I α
0+ f (t) = 1

Γ (α)

∫ t

0

f (s) ds

(t − s)1−α
,

I α
T− f (t) = 1

Γ (α)

∫ T

t

f (s) ds

(t − s)1−α
.

The operators I α
0+ and I α

T− are mutually adjoint. Their norm can be bounded as
follows

‖I α
T−‖ = ‖I α

0+‖ ≤ 1

Γ (α)

∫ T

0

ds

s1−α
= T α

Γ (α + 1)
. (6.33)

Let 1
2 < H < 1 and ΓH be the operator defined by (6.10). Then

ΓH = HΓ (2H)
(
I 2H−1
0+ + I 2H−1

T−
)
. (6.34)

The linear operators I α
0+, I

α
T− for α > 0, and ΓH for 1

2 < H < 1 are injective.

6.6.2 Semigroup Property of the Operator of Fractional
Integration

Theorem 6.9 For α > 0 and β > 0 the following equalities hold

I α
0+ I

β

0+ = I α+β

0+ ,

I α
T− I

β

T− = I α+β

T− .

This theorem is a particular case of [41, Theorem2.5].

Proposition 6.3 For 0 < α ≤ 1
2 and f ∈ L2[0, T ],

〈I α
0+ f, I α

T− f 〉 ≥ 0.

Equality is achieved if and only if

• f = 0 almost everywhere on [0, T ] for 0 < α < 1
2 ;

• ∫ T
0 f (t) dt = 0 for α = 1

2 .

Proof Since the operators I α
0+ and I α

T− are mutually adjoint, by semigroup property,
we have that

〈I α
0+ f, I α

T− f 〉 = 〈I α
0+ I

α
0+ f, f 〉 = 〈

I 2α0+ f, f
〉
,

〈I α
0+ f, I α

T− f 〉 = 〈 f, I α
T− I

α
T− f 〉 = 〈

f, I 2αT− f
〉
.
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Adding these equalities, we obtain

〈I α
0+ f, I α

T− f 〉 = 1

2

〈
I 2α0+ f + I 2αT− f, f

〉
. (6.35)

If 0 < α < 1
2 , then

〈I α
0+ f, I α

T− f 〉 = 1

2HΓ (2H)
〈ΓH f, f 〉 =

= 1

2HΓ (2H)
E

(∫ T

0
f (t) dBH

t

)2

≥ 0.

where H = α + 1
2 ,

1
2 < H < 1, and BH

t is a fractional Brownian motion.
Let us consider the case α = 1

2 . Since

I 10+ f (t) + I 1T− f (t) =
∫ t

0
f (s) ds +

∫ T

t
f (s) ds =

∫ T

0
f (s) ds,

I 10+ f + I 1T− f =
∫ T

0
f (s) ds 1[0,T ],

〈
I 10+ f + I 1T− f, f

〉 =
∫ T

0
f (s) ds 〈1[0,T ], f 〉 =

(∫ T

0
f (s) ds

)2

,

we see from (6.35) that

〈
I 1/20+ f, I 1/2T− f

〉
= 1

2

(∫ T

0
f (s) ds

)2

≥ 0. (6.36)

Conditions for the equality 〈I α
0+ f, I α

T− f 〉 = 0 can be easily found by analyzing
the proof. Indeed, if 0 < α < 1

2 and H=α+ 1
2 , then ΓH is a self-adjoint positive

compact operator whose eigenvalues are all positive. Then

2HΓ (2H)〈I α
0+ f, I α

T− f 〉 = 〈ΓH f, f 〉 = ‖Γ 1/2
H f ‖2.

In this case, the equality 〈I α
0+ f, I α

T− f 〉 = 0 holds true if and only if f = 0 almost
everywhere on [0, T ]. If α = 1

2 , then the condition for the equality follows from
(6.36). �

Proposition 6.4 For 0 < α ≤ 1
2 and f ∈ L2[0, T ],

‖I α
0+ f ‖ + ‖I α

T− f ‖ ≤ √
2 ‖I α

0+ f + I α
T− f ‖. (6.37)
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Consequently, for 1
2 < H ≤ 3

4

∥∥I 2H−1
0+ f

∥∥ + ∥∥I 2H−1
T− f

∥∥ ≤
√
2

HΓ (2H)
‖ΓH f ‖.

Proof Taking into account Proposition6.3, we get

(‖I α
0+ f ‖ + ‖I α

T− f ‖)2 ≤ 2 ‖I α
0+ f ‖2 + 2 ‖I α

T− f ‖2
≤ 2 ‖I α

0+ f ‖2 + 4 〈I α
0+ f, I α

T− f 〉 + 2 ‖I α
T− f ‖2

= 2 ‖I α
0+ f + I α

T− f ‖2,

whence the inequality (6.37) follows.
The second statement is obtained by the representation (6.34). �

6.6.3 Transposition of Operators

Lemma 6.1 Let A bea linear continuous operator on L2[0, T ], and B bean injective
self-adjoint compact linear operator on L2[0, T ]. If the linear operator A∗B−1 is
bounded, that is ‖A∗B−1‖ = K < ∞, then the linear operator B−1A is defined on
the entire space L2[0, T ], bounded, and ‖B−1A‖ = K.

Proof For the self-adjoint compact linear operator B one can find an orthonormal
eigenbasis {e1, e2, . . .} such that

B

( ∞∑

k=1

xkek

)
=

∞∑

k=1

λk xkek for
∞∑

k=1

x2k < +∞.

Then limk→∞ λk = 0 (by compactness), but for all k the inequality λk �= 0 holds (by
injectivity).

The inverse operator is a self-adjoint linear operator defined by the equation

B−1

( ∞∑

k=1

xkek

)
=

∞∑

k=1

xk
λk

ek for
∞∑

k=1

x2k
λ2
k

< +∞.

The domain of the operator B−1 is the subset

B(L2[0, T ]) =
{ ∞∑

k=1

xkek :
∞∑

k=1

x2k
λ2
k

< ∞
}

of the Hilbert space L2[0, T ].
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Let us prove that the operator B−1A is defined on L2[0, T ]. Assume the oppo-
site, i.e., B−1A is undefined at some point f ∈ L2[0, T ]. This means that A f /∈
B(L2[0, T ]).

Decompose A f into a series by the eigenfunctions of the operator B:

A f =
∞∑

k=1

xkek . (6.38)

Since A f /∈ B(L2[0, T ]), we see that
∞∑

k=1

x2k
λ2
k

= +∞,

and for

sn =
n∑

k=1

x2k
λ2
k

it holds that limn→∞ sn = +∞ and sn ≥ 0 for all n ∈ N. Therefore, there exists
N ∈ N such that

sN > K 2 ‖ f ‖2. (6.39)

Put

g =
N∑

k=1

xk
λk

ek .

Then

‖g‖2 =
N∑

k=1

x2k
λ2
k

= sN , ‖g‖ = √
sk, g ∈ B(L2[0, T ]),

B−1g =
N∑

k=1

xk
λ2
k

ek,
〈
A∗B−1g, f

〉 = 〈
B−1g, A f

〉 =
N∑

k=1

xk
λ2
k

xk = sN .

By the Cauchy–Schwarz inequality,

∣∣〈A∗B−1g, f
〉∣∣ ≤ ∥∥A∗B−1g

∥∥ ‖ f ‖ ≤ ‖A∗B−1‖ ‖g‖ ‖ f ‖ = K
√
sN ‖ f ‖.

Hence,
sN ≤ K

√
sN ‖ f ‖. (6.40)

The inequalities (6.39) and (6.40) contradict each other. Thus, the operator B−1A is
defined on the entire space L2[0, T ].
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Now let us prove boundedness of operator B−1A and the inequality
∥∥B−1A

∥∥ ≤ K .
Suppose that this is not so. Then there exists an element f of the space L2[0, T ] such
that ∥∥B−1A f

∥∥ > K‖ f ‖. (6.41)

We use the same decomposition of the vector A f into the eigenvectors of B as
above, see (6.38). Then

B−1A f =
∞∑

k=1

xk
λk

ek,
∥∥B−1A f

∥∥2 =
∞∑

k=1

x2k
λ2
k

,

lim
n→∞ sn = ∥∥B−1A f

∥∥2
> K 2‖ f ‖2,

by (6.41). Therefore, there exists N ∈ N such that the inequality (6.39) holds.Arguing
as above, we get a contradiction. Hence, ‖B−1A‖ ≤ K .

It remains to prove the opposite inequality ‖B−1A‖ ≥ K . The operator A∗B−1

is defined on the set B(L2[0, T ]). For all f ∈ B(L2[0, T ]) from the domain of the
operator A∗B−1, we have

‖A∗B−1 f ‖2 = 〈B−1AA∗B−1 f, f 〉 ≤
≤ ‖B−1AA∗B−1 f ‖ ‖ f ‖ ≤ ‖B−1A‖ ‖A∗B−1 f ‖ ‖ f ‖,

whence
‖A∗B−1 f ‖ ≤ ‖B−1A‖ ‖ f ‖.

Therefore K = ‖A∗B−1‖ ≤ ‖B−1A‖. �

6.6.4 The Proof of Boundedness and Compactness

Proposition 6.5 Let 1
2 < H1 < H2 < 1 and H1 ≤ 3

4 . Then Γ −1
H1

ΓH2
is a compact

linear operator defined on the entire space L2[0, T ].
Proof The operator ΓH1 is an injective self-adjoint compact operator L2[0, T ] →
L2[0, T ]. The inverse operator Γ −1

H1
is densely defined on L2[0, T ]. By Propo-

sition6.4, the operators I 2H1−1
0+ Γ −1

H1
and I 2H1−1

T− Γ −1
H1

are bounded. Therefore, by

Lemma6.1, the operators Γ −1
H1

I 2H1−1
T− and Γ −1

H1
I 2H1−1
0+ are also bounded and defined

on the entire space L2[0, T ]. By (6.34) and the semigroup property (Theorem6.9),

Γ −1
H1

ΓH2
= HΓ (2H)

(
Γ −1
H1

I 2H2−1
0+ + Γ −1

H1
I 2H2−1
T−

)
=

= HΓ (2H)
(
Γ −1
H1

I 2H1−1
0+ I 2(H2−H1)

0+ + Γ −1
H1

I 2H1−1
T− I 2(H2−H1)

T−
)

.
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Since I 2(H2−H1)
0+ and I 2(H2−H1)

T− are compact operators, the operator Γ −1
H1

ΓH2
is also

compact. �

6.6.5 The Proof of Invertibility

Now prove that −1 is not an eigenvalue of the linear operator Γ −1
H1

ΓH2
. Indeed, if

Γ −1
H1

ΓH2
f = − f for some function f ∈ L2[0, T ], then ΓH2 f + ΓH1 f = 0. Since

ΓH2 and ΓH1 are positive definite self-adjoint (and injective) operators, ΓH2 + ΓH1

is also a positive definite self-adjoint and injective operator. Hence f = 0 almost
everywhere on [0, T ].

Because −1 is not an eigenvalue of the compact linear operator Γ −1
H1

ΓH2
, −1

is a regular point, i.e., −1 /∈ σ(Γ −1
H1

ΓH2
), and the linear operator Γ −1

H1
ΓH2

+ I is
invertible.
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Chapter 7
Application of Limit Theorems
for Superposition of Random Functions
to Sequential Estimation

Gulnoza Rakhimova

Abstract The paper presents sequential fixed-width confidence interval estimators
for functionals of an unknown distribution function. Conditions of asymptotic con-
sistency for fixed-width confidence interval estimators and asymptotic efficiency of
stopping times are given.

Keywords Sequential estimation · Stopping time · Fixed-width confidence
interval · Asymptotic consistency · Asymptotic efficiency

7.1 Introduction

Beginning from the originating works [3, 4] many authors used the classical
Anskombe theorem presented in [2] for proofs of asymptotic consistency for confi-
dence intervals with fixed width for different concrete models. The above theorem
assume holding of so-called condition of uniform continuity in probability. The sur-
vey of related works is given in book [5].

An alternative approach to the proof of asymptotic consistency for confidence
intervals with fixedwidth, based on theweak invariance principle has been developed
in [11]. A number of concrete models, where the proof of asymptotic consistency for
confidence intervals with fixed width is based on the use of general functional limit
theorems for randomly stopped stochastic processes, were presented in [12, 13], and
in papers [1, 6–10].

In the present paper, we present this method and the corresponding results in the
more general form.
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7.2 Asymptotic Consistency and Efficiency of Confidence
Intervals with Fixed Width

Let ξ1, . . . , ξn be real-valued i.i.d. random variables with unknown distribution func-
tion F(x).

Let, also, Θ(F) be some real-valued functional of this distribution function.
In order to estimate this functional, we consider a statistical estimators Θn(F) =
Θn(ξ1, . . . , ξn), which have finite expectations and, therefore, can be represented in
the following form,

Θn(F) = Θ(F) + (Θn(F) − EΘn(F)) + (EΘn(F)) − Θ(F)). (7.1)

We assume that the random variables Θn(F) − EΘn(F) admit the following rep-
resentation, for every n ≥ 1,

Θn(F) − EΘn(F) = 1

n

n∑

k=1

bn(F)Y (F, ξk), (7.2)

where Y (F, ξk), k = 1, . . . , n are i.i.d. random variables (Y (F, ·) is a real-valued
Borel function defined onR1) and bn(F) are real-valued constants, which satisfy the
following condition:

A: (a) EY (F, ξ1) = 0, (b) bn(F) → 1 as n → ∞, (c) n−α
∑n

k=1 Y (F, ξk)
d−→

Y (F) as n → ∞, where (d) 1
2 ≤ α < 1, (e) c(F) is a positive constant, (f) Y (F)

is a symmetric stable random variable with characteristic function EeisY (F) =
e−|s| 1α c(F), s ∈ R1.

Symbol
d−→ denotes convergence in distribution of random variables.

It is appropriate to mention an important case of condition A, where α = 1
2 and

Y (F) is the standard normal random variable with mean 0 and variance c(F).
Let us denote, for n ≥ 1,

Bn(F) = EΘn(F) and Zn(F) = Bn(F) − Θ(F). (7.3)

The non-random quantity Zn(F) is the expected bias of estimator θn(F).
We also assume that the following condition holds:

B: n1−α Zn(F) → 0 as n → ∞.

An important example of the model described above is where the functional
Θ(F) = E f (ξ1) = ∫ ∞

−∞ f (x)F(dx), where f (x) is a real-valued function abso-
lutely integrable with respect to probability measure F(dx).

In this case, Θn(F) = 1
n

∑n
k=1 bn(F) f (ξk) is a natural choice for the estima-

tor Θn(F). Respectively, random variables Y (F, ξk) = f (ξk) − E f (ξk) = f (ξk) −
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Θ(F), k ≥ 1, and, thus, EΘn(F) = bn(F)Θ(F), and Zn(F) = (bn(F) − 1)Θ(F).
Constant bn(F) − 1 is, in this case, a multiplicative bias factor.

Let Φα(x) be the distribution function of the stable random variable with the

characteristic function e−|s| 1α . It is a strictly monotonic continuous function. Let also
0 < γ < 1 and aγ = Φ−1

α (
1+γ

2 ).
Let us define, for every ε > 0 and n ≥ 1, the random interval of the length 2ε,

I(n) = [Θn(F) − ε,Θn(F) + ε], (7.4)

and

nγ,ε = min

(
n ≥ 1 : n >

(
aγ c(F)α

ε

) 1
1−α

)
. (7.5)

Relation (7.5) permits obviously to write down for nγ,ε the alternative formula,

nγ,ε =
[(

aγ c(F)α

ε

) 1
1−α

]
+ 1 ≥

(
aγ c(F)α

ε

) 1
1−α

, (7.6)

where [x] denote the integer part of real number x .
Conditions A, B and Slutsky theorem (see, for example, [13]) imply that the

following relation holds for every 0 < γ < 1,

P{Θ(F) ∈ I(nγ,ε)} = P{|Θnγ,ε
(F) − Θ(F)| ≤ ε}

≥ P{|Θnγ,ε
(F) − Bnγ,ε

(F)| + |Znγ,ε
| ≤ ε}

= P

{
|c(F)−αn1−α

γ,ε (Θnγ,ε
(F) − Bnγ,ε

(F))|

+|c(F)−αn1−α
γ,ε Znγ,ε

| ≤ c(F)−αn1−α
γ,ε ε

aγ

aγ

}

≥ P{|bnγ,ε
(F)c(F)−αn−α

γ,ε

n∑

k=1

Y (F, ξk)|

+|c(F)−αn1−α
γ,ε Znγ,ε

| ≤ aγ }
→ 2Φα(aγ ) − 1 = γ as ε → 0. (7.7)

Relation (7.7) means that I(nγ,ε) is an asymptotic confidence interval of level γ

for the unknown functional Θ(F), for every 0 < γ < 1.
The sequential procedure described above has the serious shortage. It depends on

the unknown functional c(F).
In order to improve the above sequential procedure, we should replace c(F) by

some consistent estimator of this functional.
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Let Vn = Vn(ξ1, . . . , ξn), n ≥ 1 be a.s. positive consistent estimators of functional
c(F), i.e. this estimators satisfy the following condition:

C: (a) P{Vn > 0} = 1, n ≥ 1, (b) Vn
a.s.−→ c(F) as n → ∞.

Symbol
a.s.−→ denotes almost sure convergence of random variables.

Let us now introduce the random stopping moments,

Nγ,ε = min

(
n ≥ 1 : n >

(
aγ V α

n

ε

) 1
1−α

)
. (7.8)

and consider the system of confidence intervals I(Nγ,ε), 0 < γ < 1, ε > 0.
It should be noted that a relation analogous to (7.6) does not take place for ran-

dom stopping times Nγ,ε since variability of values Vn, n ≥ 1. Such, relation would,
however, take place for the case if all random variables Vn, n ≥ 1 would be replaced
by some random variable V in the defining relation (7.8).

Lemma 7.1 Let condition C holds. Then: (i) P{Nγ,ε) < ∞, for every 0 < γ <

1, ε > 0; (ii) Nγ,ε
a.s.−→ ∞ as ε → 0, for every 0 < γ < 1.

Proof Relation (7.8) implies that the following relation holds, for every 0 < γ <

1, ε > 0 and n ≥ 1,

P{Nγ,ε > n} = P

{
k ≤

(
aγ V α

k

ε

) 1
1−α

, k = 1, . . . , n

}

≤ P

{
n ≤

(
aγ V α

n

ε

) 1
1−α

}
. (7.9)

Let 〈Ω,F,P〉 be the probability space on which the sequence of random variables
ξn, n ≥ 1 is defined. A be the set of elementary events ω, for which Vn(ω) → c(F)

as n → ∞ and B the set of elementary events ω, for which Vn(ω) > 0, n ≥ 1. The
assumption of a.s. positivity of the random variables Vn, n ≥ 1 and condition C
implies that P(A ∩ B) = 1.

Let us define the random variable U+ = maxn≥1 Vn . Obviously, U+(ω) < ∞, for
ω ∈ A, and, thus, P{U+ < ∞} = 1. Therefore,

lim
n→∞P{Nγ,ε > n} ≤ lim

n→∞P

{
n <

(
aγ V α

n

ε

) 1
1−α

}

≤ lim
n→∞P

{
n <

(
aγ Uα+

ε

) 1
1−α

}
= 0. (7.10)

Relation (7.10) proves proposition (i) of Lemma7.1.
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Let us also define the randomvariableU− = minn≥1 Vn . Obviously, 0 < U−(ω) <

∞, for ω ∈ A ∩ B, and, thus, P{0 < U− < ∞} = 1. Therefore,

Nγ,ε ≥ min

(
n ≥ 1 : n >

(
aγ Uα−

ε

) 1
1−α

)
a.s.−→ ∞ as ε → 0. (7.11)

Relation (7.11) proves proposition (ii) of Lemma7.1. �

The system of confidence intervals I(Nγ,ε), 0 < γ < 1, ε > 0 for the functional
Θ(F) is asymptotically consistent, if the following relation holds, for every 0 <

γ < 1,
lim
ε→0

P{Θ(F) ∈ I(Nγ,ε)} ≥ γ. (7.12)

The system of asymptotically consistent confidence intervals I(Nγ,ε), 0 < γ <

1, ε > 0 is asymptotically a.s. efficient if, together with relation (7.12), the following
relation holds, for every 0 < γ < 1,

Nγ,ε

nγ,ε

a.s.−→ 1 as ε → 0. (7.13)

Theorem 7.1 Let conditions A–C hold. Then, I(Nγ,ε), 0 < γ < 1, ε > 0 is asymp-
totically consistent and a.s. efficient system of confidence intervals with fixed width,
for the the functional Θ(F).

Proof Let A and B be the random events defined in the proof of Lemma7.1. Let us
choose an arbitrary elementary event ω ∈ A ∩ B and 0 < δ < c(F).

Let us also define,

mδ(ω) = max(n ≥ 1 : |Vn(ω) − c(F)| ≥ δ), (7.14)

and

εδ(ω) = sup

(
ε > 0 : k ≤

(
aγ V α

k (ω)

ε

) 1
1−α

, 1 ≤ k ≤ mδ(ω)

)
. (7.15)

Relations (7.14) and (7.15) imply that, for 0 < ε < εδ(ω),

Nγ,ε(ω) = min

(
n ≥ 1 : n >

(
aγ V α

n (ω)

ε

) 1
1−α

)

= min

(
n ≥ mδ(ω) : n >

(
aγ V α

n (ω)

ε

) 1
1−α

)

≥ min

(
n ≥ mδ(ω) : n >

(
aγ (c(F) − δ)α

ε

) 1
1−α

)
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=
[(

aγ (c(F) − δ)α

ε

) 1
1−α

]
+ 1. (7.16)

Analogously, relations (7.14) and (7.15) imply that, for any 0 < ε < εδ(ω),

Nγ,ε(ω) ≤
[(

aγ (c(F) + δ)α

ε

) 1
1−α

]
+ 1. (7.17)

Relations (7.6), (7.16) and (7.17) imply that the following two-sided inequalities
hold, for 0 < ε < εδ(ω),

[(
aγ (c(F)−δ)α

ε

) 1
1−α

]
+ 1

[(
aγ c(F)α

ε

) 1
1−α

]
+ 1

≤ Nγ,ε(ω)

nγ,ε

≤

[(
aγ (c(F)+δ)α

ε

) 1
1−α

]
+ 1

[(
aγ c(F)α

ε2

) 1
1−α

]
+ 1

. (7.18)

Relation (7.18) implies in an obvious way that,

(
c(F) − δ

c(F)

) α
1−α

≤ lim
ε→0

Nγ,ε(ω)

nγ,ε

≤ lim
ε→0

Nγ,ε(ω)

nγ,ε

≤
(

c(F) + δ

c(F)

) α
1−α

. (7.19)

Since, an arbitrary choice of 0 < δ < c(F), relation (7.19) implies that,

Nγ,ε(ω)

nγ,ε

→ 1 as ε → 0. (7.20)

Since, an arbitrary choice ofω ∈ A ∩ B, relation (7.20) implies that relation (7.13)
holds.

Let us define, for every 1 < γ < 1, ε > 0, the sum-process,

Yγ,ε(t) = c(F)−αn−α
γ,ε

∑

k≤tnγ,ε

Y (F, ξk), t ≥ 0. (7.21)

As was shown in [14], condition A implies that,

Yγ,ε(t), t ≥ 0
J−→ Wα(t), t ≥ 0 as ε → 0, (7.22)

where Wα(t), t ≥ 0 is a càdlàg Lévy process with the characteristic functions

EeisWα(t) = e−|s| 1α t , s ∈ R1, t ≥ 0.

Here, symbol
J−→ denotes convergence in Skorokhod J-topology for càdlàg

stochastic processes.
Relations (7.13) and (7.22) imply, by Slutsky theorem, that for every 0 < γ < 1,
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(
Nγ,ε

nγ,ε

, Yγ,ε(t)

)
, t ≥ 0 =⇒ (1, Wα(t)), t ≥ 0 as ε → 0, (7.23)

Here, symbol =⇒ is used to denote weak convergence of finite-dimensional dis-
tributions for stochastic processes.

As it follows from results given in [13, Theorem 2.2.1], relations (7.22) and (7.23)
imply that the following relation holds,

Yγ,ε

(
Nγ,ε

nγ,ε

)
= c(F)−αn−α

γ,ε

∑

k≤Nγ,ε

Yn(F, ξk)
d−→ Wα(1) as ε → 0. (7.24)

Condition A (a) and proposition (ii) of Lemma7.1 imply the following relation,

bNγ,ε

a.s−→ 1 as ε → 0. (7.25)

Relations (7.13), (7.24) and (7.25) imply, by Slutsky theorem, that for every
0 < γ < 1,

c(F)−αn1−α
γ,ε (ΘNγ,ε

− BNγ,ε
)

=
(

Nγ,ε

nγ,ε

)−1

bNγ,ε
c(F)−αn−α

γ,ε

∑

k≤Nγ,ε

Yn(F, ξk)

d−→ 1 · 1 · Wα(1) = Wα(1) as ε → 0. (7.26)

Also, relation (7.13), condition B, and Lemma7.1 imply in obvious way that,

n1−α
γ,ε Z Nγ,ε

=
(

Nγ,ε

nγ,ε

)α−1

· N 1−α
γ,ε Z Nγ,ε

a.s−→ 1 · 0 = 0 as ε → 0. (7.27)

Using relations (7.26), (7.27), and Slutsky theorem, we get the following relation,
for every 0 < γ < 1,

P{Θ(F) ∈ I(Nγ,ε)} = P{|ΘNγ,ε
(F) − Θ(F)| ≤ ε}

≥ P{|ΘNγ,ε
(F) − BNγ,ε

(F)| + |Z Nγ,ε
| ≤ ε}

= P
{
|c(F)−αn1−α

γ,ε (ΘNγ,ε
(F) − BNγ,ε

(F))|

+|c(F)−αn1−α
γ,ε Z Nγ,ε

| ≤ c(F)−αn1−α
γ,ε ε

aγ

aγ

}

≥ P{|c(F)−αn1−α
γ,ε (ΘNγ,ε

(F) − BNγ,ε
(F))|

+ |c(F)−αn1−α
γ,ε Z Nγ,ε

| ≤ aγ }
→ 2Φα(aγ ) − 1 = γ as ε → 0. (7.28)

Thus, relation (7.12) holds. �
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Chapter 8
On Simulation of a Fractional
Ornstein–Uhlenbeck Process
of the Second Kind by the Circulant
Embedding Method

José Igor Morlanes and Andriy Andreev

Abstract We demonstrate how to utilize the Circulant Embedding Method (CEM)
for simulation of fractional Ornstein–Uhlenbeck process of the second kind (fOU2).
The algorithm contains two major steps. First, the relevant covariance matrix is
embedded into a circulant one. Second, a sample from the fOU2 is obtained by
means of fast Fourier transform applied on the circulant extended matrix. The main
goal of this paper is to explain both steps in detail. As a result, we obtain an accurate
and an efficient algorithm for generating fOU2 random vectors. We also indicate that
the above described procedure can be extended to applications with non-Gaussian
marginals.

Keywords Fractional Brownian motion · Fractional Ornstein–Uhlenbeck
process · Circulant embedding method · Simulation

8.1 Introduction

Fractional Ornstein–Uhlenbeck processes of the second kind (fOU2) comprises a
family of Gaussian processes constructed via Lamperti transform of fractional Brow-
nian motion. It was introduced by Kaarakka and Salminen [13] and further studied
by Azmoodeh and Morlanes [4] as well as by Azmoodeh and Viitari [5]. The main
appeal of the fOU2 is that it is a short range dependent process for all values of H.
Contrasted to the fact that fBM is long range dependent for H ∈ ( 12 , 1), the fOU2
becomes an interesting object for applications in e.g. physics and finance.

Among existing algorithms for simulation of stochastic processes with a given
covariance structure, Hosking’s method [12] and Cholesky decomposition [2] are
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the standard choices. These methods can be adapted to accurately simulate one-
dimensional fOU2, but all of them have a generic drawback of high computational
cost, when realised on a fine grid since the covariance matrix becomes too large
and causes computational problems. However, if the covariance matrix is circulant,
there is a more efficient and accurate way to progress with simulations. Circulant
embedding methods were introduced by Davies and Harte [8] and generalised by
Wood and Chan [6, 7, 18], Dietrich and Newsam [9], and Gneiting et al. [10].

The purpose of this paper is to describe how to adapt the circulant embedding
method for simulation of fOU2.Although the fOU2 covariancematrix is not circulant,
we can embed it into a circulant matrix. We demonstrate how to do so for one-
dimensional fOU2 random vectors on a discrete grid. Similar techniques can be
extended to themultidimensional case. Further, one can extend thesemethods to non-
Gaussian marginals, see Grigoriu [11]. We show that the algorithm works efficiently
and then demonstrate sub-steps of the simulation algorithm explicitly on simple
examples, employing fast Fourier transform to speed up computations.

This paper is organised as follows: Sect. 8.2 gives a brief summary of basic prop-
erties of fractional Brownian motion. Section8.3 introduces fOU2 and describes its
covariance function. Circulant embedding method and practicalities of the gener-
ation of fOU2 vector are given and then followed by an example in Sect. 8.4. We
conclude and provide some discussion of the findings in Sect. 8.5.

8.2 Fractional Brownian Motion

The fractional Brownian motion serves as a good benchmark and a starting point
in the construction of an Ornstein–Uhlenbeck process of the second kind. The term
“fractional” comes due to Mandelbrot and van Ness [14] and they were the first to
establish the integral representation of the process. Nualart [15] describes most of
the properties we are interested in. The following section reviews the most relevant
of them, that might later be contrasted with properties of fOU2.

8.2.1 Definition and Some Basic Properties of fBM

A fractional Brownian motion (fBM) is defined as a continuous Gaussian process
BH
t , t ≥ 0 with BH

0 = 0 with covariance function

Cov(BH
t , BH

s ) = 1

2
σ 2(t2H + s2H − (t − s)2H ) (8.1)

for all 0 ≤ s ≤ t and Hurst parameter (0 < H < 1). In particular, Var(BH
t ) =

σ 2t2H , and if H = 1
2 , the variance becomes σ 2t which corresponds to Brown-

ian motion. Self-similarity is another key property that immediately follows from
(8.1). Increments (BH

t − BH
s ) are Gaussian stationary with mean zero and variance

Var(BH
t − BH

s ) = σ 2|t − s|2H , the latter being the starting point for simulation of
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fBM on an equally spaced grid. Since increments are stationary, we can efficiently
simulate them using the circulant embedding method of Sect. 8.4.1. The next section
motivates the use of increments and explains the types of dependencies present.

8.2.2 Correlation and Long-Range Dependence
of Increments

To generate fBM on the equally spaced grid 0 = t0 < t1 < t2 < · · · < tn = 1, one
starts with the increment process Yn = (BH

n − BH
n−1), n ≥ 1. The time series Yn can

be characterized as a discrete stationary Gaussian sequence with zero mean and
covariance function

Cov(Yn+k,Yn) = 1

2
σ 2((k + 1)2H + (k − 1)2H − 2k2H ) (8.2)

This is called fractional Gaussian noise with Hurst parameter H. In particular, for
H = 1

2 , the increments are independent and BH becomes a Brownian motion.
The autocorrelation function for increments is obtained from (8.2) as

ρH (k) = 1

2
((k + 1)2H + (k − 1)2H − 2K 2H ) ≈ H(2H − 1)k2(H−1), (8.3)

where the approximation holds as k increases. The parameter H controls the reg-
ularity of trajectories. For 1

2 < H < 1, the autocorrelations ρH (k) > 0 are posi-
tive and decay slowly to zero though �∞

n=1ρH (n) = ∞, i.e. they exhibit long-range
dependence. For 0 < H < 1

2 , the autocorrelations ρH (k) < 0 are negative and decay
to zero with a rate faster than 1

n and hence, the increments demonstrate short-range
dependence, i.e. �∞

n=1ρH (n) < ∞.

8.3 Fractional Ornstein–Uhlenbeck Process
of the Second Kind

The fractional Ornstein–Uhlenbeck process of the second kind (fOU2) represents a
class of stationary processes and was first introduced by Kaarakka and Salminen [13]
as a way to extend Ornstein–Uhlenbeck diffusion. The new process is defined via
Lamperti transformation of a fractional Brownian motion. The stochastic integrals
below should be interpreted as Riemann–Stieltjes integrals, see a recent dissertation
by Azmoodeh [3] for the detailed account of the matter.

The initial point in the construction of fOU2 is an Ornstein–Uhlenbeck (OU )
process [16], also widely known as the Vasicek model [17]. It is a unique strong
solution of the stochastic differential equation
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dUt = θ(μ −Ut )dt + σdBt , (8.4)

where B = Bt≥0 is aBrownianmotion. The parameterμ is interpreted as the long-run
equilibrium value of the process, σ is the volatility, and θ is the speed of reversion,
i.e. the process oscillates around some equilibrium value.

The fractionalOrnstein–Uhlenbeck (fOU) process Xt can be obtained as a solution
of the following stochastic differential equation

dXt = θ(μ − Xt )dt + σdBH
t , (8.5)

where μ, σ, θ > 0 are parameters and BH = BH
t as t ≥ 0 is a fractional Brown-

ian motion with Hurst parameter 1
2 < H < 1. It was named fractional Ornstein–

Uhlenbeck process of the first kind (fOU1) by Kaarakka and Salminen [13].
By applying Lamperti transformation to fractional Brownian motion BH , let us

define the following process Yt = ∫ t
0 e

−sd BH
as , where as = He

s
H . Substituting Yt for

fBM in (8.5), the following stochastic differential equation

dXt = θ(μ − Xt )dt + σdYt , (8.6)

has a solution that can be obtained by applying I t ô′s lemma to eθ t Xt and can be
represented in the following integral form

Xt = e−θ t X0 + μ(1 − e−θ t ) + σ

∫ t

0
eθ(s−t)dYs, (8.7)

where the last term is understood as a path-wise Riemann–Stiltjes integral. Following
the terminology of Kaarakka and Salminen [13], we call this fractional Ornstein–
Uhlenbeck process of the second kind (fOU2).

It can be characterized by the following covariance function:

γU (H, θ, t) = H(2H − 1)e−θ t
∫ t

−∞

∫ 0

−∞
e(θ−1+ 1

H )(u+v)

|e u
H − e

v
H |2(1−H)

dudv, (8.8)

where θ is the drift parameter from Eq. (8.6), see Andreev and Morlanes [1]
for a detailed discussion on how to calculate the double integral. In particular,
Var(Xt ) = 1

θ
C(H, θ)e−θ t · B(H(θ − 1) + 1, 2H − 1). In contrast to fBM, fOU2

is short-range-dependent for all values of H , i.e.
∫ ∞
−∞ γU (H, θ, u)du = 0 for all

H and θ . Furthermore, for H = 1
2 , the covariance function is zero and the pro-

cess coincides with Ornstein–Uhlenbeck diffusion, see Kaarakka and Salminen [13].
Following the interpretation of the stochastic integral as a path-wiseRiemann–Stiltjes
integral, it can be shown that other properties of the fOU2 are similar to those of frac-
tional Brownian motion.
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Below is a short sketch on how to discretize the double integral in (8.8) and reduce
it to a single integral. For an extensive derivation and detailed discussion on the range
of parameters where the procedure is applicable, we refer to Andreev and Morlanes
[1]. We set t = tk = kΔt and s = 0 to show the step of the grid. This representation
is crucial in order to perform the suggested simulation scheme.

∫ t

−∞

∫ s

−∞
H 2(H−1) e(θ−1+ 1

H )(u+v)

|e u
H − e

v
H |2(1−H)

dudv

=
∫ at

0

∫ as

0
(mn)(θ−1)H |m − n|2(H−1)dmdn

=
∫ as

0

∫ as

0
(mn)(θ−1)H |m − n|2(H−1)dmdn+

+
∫ at

as

∫ as

0
(mn)(θ−1)H |m − n|2(H−1)dmdn

≈
∫ as

0
m2θH−1

∫ 1

0
ξ (θ−1)H |1 − ξ |2(H−1)dξdm+

+
∫ at

as

m2θH−1
∫ as/m

0
ξ (θ−1)H |1 − ξ |2(H−1)dξdm (8.9)

= a2θHs

θH
B((θ − 1)H + 1, 2H − 1))+

+
∫ at

as

m2θH−1B(as/m; (θ − 1)H + 1, 2H − 1)dm

= 1

θ
B((θ − 1)H + 1, 2H − 1))+

+
∫ He

k
H

H
n2θH−1B

(
H

n
; (θ − 1)H + 1, 2H − 1

)

dn

where B(·; ·, ·) and B(·, ·) denote the incomplete beta and the beta functions respec-
tively. We use this discrete representation in the next section in order to build an
efficient algorithm to simulate from fOU2 by capitalizing on circulant property that
allows to reduce complexity of simulations.

8.4 Simulation of fOU2 Using CEM

The Circulant Embedding Method (CEM) is one of the prime choices to simulate
from stationary Gaussian processes and we adapt it for simulation from fractional
Ornstein–Uhlenbeck process of the second kind. The major difficulty in application
to fOU2 is to build an equally spaced grid for the covariance function (8.8).
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We start with a standard equally spaced fine grid Δt = T/N of interval [0, T ],
where N is a large integer and t j = jΔt , Xt j = X j . Next, the covariance function
given by (8.8) needs to be presented as a function of the increment k = ti − t j =
|i − j | ∗ Δt

R(H, θ, k) = C(H, θ)e−θk

(
1

θ
B((θ − 1)H + 1, 2H − 1)+

+
∫ He

k
H

H
n2θH−1B

(
H

n
; (θ − 1)H + 1, 2H − 1

)

dn

⎞

⎠ ,

(8.10)

for k = 0, 1, . . . , N − 1. As a preparatory step, we modify fOU2 in order to be able
to normalize the discretized covariance function as follows

X̃ j = β(H, θ)−
1
2 X j , (8.11)

where β(H, θ) = H 2H(1−θ)H(2H − 1) · θ−1 · B(H(θ − 1) + 1, 2H − 1). The new
process has the following covariance function

R̃(H, θ, k) = β(H, θ)−1 · R(H, θ, k), k = 0, 1, . . . , N − 1 (8.12)

This is the setting that is suitable for utilization of CEM to generate from the nor-
malized fOU2 process X̃ . The step-by-step procedure is explained in the next section
and then summarized by Algorithm 1. Finally, one needs to apply the following
transformation

X j = √
β(H, θ) · X̃ j (8.13)

in order to recover the original fOU2.

8.4.1 Circulant Embedding Method in a Nutshell

Algorithm 1 summarizes the step-by-step procedure to simulate from the process
X̃ j , defined as the normalized fOU2 in Eq. (8.11). It becomes possible due to a fact
that the covariance matrix of a stationary discrete Gaussian process can be embedded
into a so-called circulant matrix. This latter matrix should be non-negative definite
for the algorithm to work. The implementation for the fOU2 is given below.

The advantage of CEM to other available methods is that the circulant matrix
can be diagonalized explicitly, and computations be performed efficiently using the
Fast Fourier Transform (FFT) algorithm. We embed the covariance matrix of X̃ j

into a circulant matrix and describe the procedure of embedding using an illustrative
example in the next section.
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The circulant matrix C ∈ RN×N with first column c1 allows for decomposition
C = WDW ∗, whereW is a Fourier matrix and D is a diagonal matrix with diagonal
λ = √

N · W · c1. The columns of W are the eigenvectors of C and D contains the
eigenvalues. If all the eigenvalues are non-negative, then by defining R := WD1/2,
C can be factorized as C = RR∗.

Next, one generates a complex value vector X̂=Rξ , where ξ is a complexGaussian
vector of length N and distribution ξ ∼ CN (0, 2IN )) so that X̂ ∼ CN (0, 2C). From
the real and the imaginary part of vector X̂ = X̂1 + i X̂2, we obtain two sequences
of length Nwith the covariance matrix equal to the circulant matrix C, i.e. X̂1, X̂2 ∼
N (0,C).

Wefinally extract two normalized fOU2 vectors X̃1 and X̃2 with covariancematrix
entries given by ˜R(H, θ, k) from X̂1 and X̂2.

Algorithm 1 Generation of two fOU2 vectors of length N using CEM
1: Consider the 0 < t0 < t1 < · · · < tN = T grid
2: Generate the initial value X0
3: Embed the covariance matrix in a circular matrix C
4: Factorize C = RR∗ by fast Fourier transform or using matrix properties
5: Generate a complex vector ξ = ξ1 + iξ2 where ξ1, ξ2 ∼ N (0, IN ), i id
6: Evaluate X = Rξ by fast Fourier transform
7: Get the real part R(X) and the imaginary part I (X)

8: Save the first N values of the R(X) and I (X)

8.4.2 Illustrative Example

We illustrate Algorithm 1 by providing a step-by-step procedure on how to simulate
fOU2 vector X = (X0, X1, X2, X3, X4)with parameters H = 0.8, θ = 3 on interval
[0, 1] with N=5. Straightforward calculations show that the normalized fOU2 vector
X̃ has scaling factor β(0.8, 3) = 0.2870 and the following covariance matrix, up to
rounding error in the second digit:

⎛

⎜
⎜
⎜
⎜
⎝

1 0.25 0.15 0.11 0.09
0.25 1 0.25 0.15 0.11
0.15 0.25 1 0.25 0.15
0.11 0.15 0.25 1 0.25
0.09 0.11 0.15 0.25 1

⎞

⎟
⎟
⎟
⎟
⎠

which is a symmetric Toeplitz matrix, not necessarily a circulant matrix. This matrix
can be embedded into a larger symmetric circulant matrix as follows
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.25 0.15 0.11 0.09| 0.11 0.15 0.25
0.25 1 0.25 0.15 0.11| 0.09 0.11 0.15
0.15 0.25 1 0.25 0.15| 0.11 0.09 0.11
0.11 0.15 0.25 1 0.25| 0.15 0.11 0.09
0.09 0.11 0.15 0.25 1 | 0.25 0.15 0.11
0.11 0.09 0.11 0.15 0.25 1 0.25 0.15
0.15 0.11 0.09 0.11 0.15 0.25 1 0.25
0.25 0.15 0.11 0.09 0.11 0.15 0.25 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the first column is c1 = (1, 0.25, 0.15, 0.11, 0.09, 0.11, 0.15, 0.25)T which
allows for a decomposition of the following form: 1√

8
WDW ∗, where

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1
1 ω −i −iω −1 −ω i iω
1 −i −1 i 1 −i −1 i
1 −iω i ω −1 iω −i −ω

1 −1 1 −1 1 −1 1 −1
1 −ω −i iω −1 ω i −iω
1 i −1 −i 1 i −1 −i
1 iω i −ω −1 −iω −i ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.12
1.11

1.11
0.66

0.79
0.79

0.72
0.72

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and W ∗ is the conjugate transpose of W . All eigenvalues of the minimal circulant
extension are non-negative, i.e. it defines a valid covariance matrix. We generate
X̂ = WD1/2ξ , where ξ ∼ CN (0, 2I8).

We finally consider the first five elements of the real part of X̂ and multiply them
by

√
β(0.8, 3), thus obtaining a fOU2 sample vector X of length 5, as shown in

Table8.1.

8.5 Conclusion

In this paper, we show how to simulate one-dimensional fOU2 by a circulant embed-
ding method. The two main steps are to embed the covariance matrix into a circulant
matrix and then to use a fast Fourier transform (EFT) algorithm. We exemplify the
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Table 8.1 First five samples
for fOU2 with H = 0.8 and
θ = 3

Time X̂ X̃1 X

0 0.45−i0.04 0.45 0.24

1 0.37+i0.50 0.37 0.20

2 0.04−i0.49 0.04 0.02

3 0.07−i0.27 0.07 0.04

4 −0.25−i0.20 −0.25 −0.13

5 −0.24+i0.44

6 −0.04+i0.44

7 −0.12−i0.09

method with simulation of a random vector fOU2 with parameters H = 0.8 and
θ = 3, and length N = 5.

The circulant embedding method allows to extend the method to generate two-
and three-dimensional fOU2 vectors. The fOU2 covariance matrix is then embedded
into a block circulant matrix with each block being circulant itself. Two- and three-
dimensional FFT techniques are then applied. Finally, if we wish to simulate a non-
Gaussian fOU2 vector, the circulant embedding method can be combined with e.g a
memoryless non-linear transformation, see Grigoriu [11].

Acknowledgements We thank Michael Carlson for assistance with final English check.
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Chapter 9
Constructive Martingale Representation
in Functional Itô Calculus: A Local
Martingale Extension

Kristoffer Lindensjö

Abstract The constructive martingale representation theorem of functional Itô cal-
culus is extended, from the space of square integrable martingales, to the space of
localmartingales. The setting is that of an augmented filtration generated by aWiener
process.

Keywords Functional Itô calculus · Martingale representation

9.1 Introduction

Consider a complete probability space (Ω,F, IP) on which lives an n-dimensional
Wiener process W . Let F = (Ft )0≤t≤T denote the augmentation under IP of the
filtration generated by W until the constant terminal time T < ∞. One of the main
results of Itô calculus is the martingale representation theorem which in the present
setting is as follows: Let M be a RCLL local martingale relative to (IP,F), then there
exists a progressively measurable n-dimensional process ϕ such that

M(t) = M(0) +
∫ t

0
ϕ(s)′dW (s), 0 ≤ t ≤ T, and

∫ T

0
|ϕ(t)|2dt < ∞ a.s.

In particular, M has continuous sample paths a.s.
Considerable effort has in the literature beenmade in order tofind explicit formulas

for the integrand ϕ, i.e. in order to find constructive representations of martingales,
mainly using Malliavin calculus, see e.g. [8, 15, 16, 20] and the references therein.
The recently developed functional Itô calculus includes a new type of constructive
representation of square integrable martingales due to Cont and Fournié see e.g.
[1, 3–5]. The main result of the present paper is an extension of this result to local
martingales.
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The organization of the paper is as follows. Section 9.2 is based on [1] and contains
a brief and heuristic account of the relevant parts of functional Itô calculus including
the constructivemartingale representation theorem for square integrablemartingales.
Section 9.3 contains the local martingale extension of this theorem and a simple
example.

9.2 Constructive Representation of Square Integrable
Martingales

Denote an n-dimensional sample path by ω. Denote a sample path stopped at t
by ωt , i.e. let ωt (s) = ω(t ∧ s), 0 ≤ s ≤ T . Consider a real-valued functional of
sample paths F(t, ω) which is non-anticipative (essentially meaning that F(t, ω) =
F(t, ωt )). The horizontal derivative at (t, ω) is defined by

DF(t, ω) = lim
h↘0

F(t + h, ωt ) − F(t, ωt )

h
.

The vertical derivative at (t, ω) is defined by

∇ω F(t, ω) = (∂i F(t, ω), i = 1, ..., n)′,

where

∂i F(t, ω) = lim
h→0

F(t, ωt + hei I[t,T ]) − F(t, ωt )

h
.

Higher order vertical derivatives are obtained by vertically differentiating vertical
derivatives.

One of the main results of functional Itô calculus is the functional Itô formula,
which is just the standard Itô formula with the usual time and space derivatives
replaced by the horizontal and vertical derivatives. If the functional F is sufficiently
regular (regarding e.g. continuity and boundedness of its derivatives), whichwewrite
as F ∈ C1,2

b , then the functional Itô formula holds, see [1, ch. 5,6]. We remark that
[12] contains another version of this result.

Using the functional Itô formula it easy to see that if Z is a martingale satisfying

Z(t) = F(t, Wt ) dt × dIP-a.e., with F ∈ C1,2
b , (9.1)

then, for every t ∈ [0, T ],

Z(t) = Z(0) +
∫ t

0
∇ω F(s, Ws)

′dW (s) a.s.
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We may therefore define the vertical derivative with respect to the process W of a
martingale Z satisfying (9.1) as the dt × dIP-a.e. unique process ∇W Z given by

∇W Z(t) = ∇ω F(t, Wt ), 0 ≤ t ≤ T . (9.2)

Let C1,2
b (W ) be the space of processes Z which allow the representation in (9.1). Let

L2(W ) be the space of progressively measurable processes ϕ satisfying the condition
E[∫ T

0 ϕ(s)′ϕ(s)ds] < ∞. LetM2(W ) be the space of square integrable martingales
with initial value 0. Let D(W ) = C

1,2
b (W ) ∩ M2(W ).

It can be shown that {∇W Z : Z ∈ D(W )} is dense in L2(W ) and that D(W ) is
dense inM2(W ) [1, ch. 7]. Using this it is possible to show that the vertical derivative
operator ∇W (·) admits a unique extension to M2(W ), in the following sense: For
Y ∈ M2(W ) the (weak) vertical derivative ∇W Y is the unique element in L2(W )

satisfying

E[Y (T )Z(T )] = E

[∫ T

0
∇W Y (t)′∇W Z(t)dt

]
(9.3)

for every Z ∈ D(W ), where ∇W Z is defined in (9.2). The constructive martingale
representation theorem ([1, ch. 7]) follows:

Theorem 9.1 (Cont and Fournié) For any square integrable martingale Y relative
to (IP,F) and every t ∈ [0, T ],

Y (t) = Y (0) +
∫ t

0
∇W Y (s)′dW (s) a.s.

9.3 Constructive Representation of Local Martingales

This section contains an extension of the vertical derivative ∇W (·) and the construc-
tive martingale representation in Theorem 9.1 to local martingales. Let Mloc(W )

denote the space of local martingales relative to (IP,F) with initial value zero and
RCLL sample paths. In Theorem 9.2 we extend the vertical derivative to Mloc(W ).
Using this extension we can formulate the constructive martingale representation
theorem also for local martingales, see Theorem 9.3.

Before extending the definition of the vertical derivative toMloc(W )we recall the
definition of a local martingale.

Definition 9.1 M is said to be a local martingale if there exists a sequence of non-
decreasing stopping times {θn} with limn→∞ θn = ∞ a.s. such that the stopped local
martingale M(· ∧ θn) is a martingale for each n ≥ 1.
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Theorem 9.2 (Definition of ∇W (·) on Mloc(W ) )

• There exists a progressively measurable dt × dIP-a.e. unique extension of the
vertical derivative ∇W (·) from M2(W ) to Mloc(W ), such that, for M ∈ Mloc(W ),

M(t) = ∫ t
0 ∇W M(s)′dW (s), 0 ≤ t ≤ T, and∫ T
0 |∇W M(t)|2dt < ∞a.s.

(9.4)

• Specifically, for M ∈ Mloc(W ) the vertical derivative ∇W M is defined as the pro-
gressively measurable dt × dIP-a.e. unique process satisfying

∇W M(t) = lim
n→∞ ∇W Mn(t) dt × dIP-a.e. (9.5)

where ∇W Mn is the vertical derivative of Mn := M(· ∧ τn) ∈ M2(W ) and τn is
given by

τn = θn ∧ inf{s ∈ [0, T ] : |M(s)| ≥ n} ∧ T (9.6)

where {θn} is an arbitrary sequence of stopping times of the kind described in
Definition 9.1.

Remark 9.1 Note that if M in Theorem 9.2 satisfies

M(t) =
∫ t

0
γ (s)′dW (s), 0 ≤ t ≤ T a.s.

for some process γ , then γ = ∇W M dt × dIP-a.e. It follows that the extended vertical
derivative∇W M defined in Theorem 9.2 does not depend (modulo possibly on a null
set dt × dIP) on the particulars of the chosen stopping times {θn}.
Proof The martingale representation theorem implies that, for M ∈ Mloc(W ), there
exists a progressively measurable process ϕ satisfying

M(t) =
∫ t

0
ϕ(s)′dW (s), 0 ≤ t ≤ T, and

∫ T

0
|ϕ(t)|2dt < ∞ a.s. (9.7)

Therefore, if we can prove that

lim
n→∞ ∇W Mn(t) = ϕ(t) dt × dIP-a.e., (9.8)

then it follows that there exists a progressively measurable process, denote it by
∇W M , which is dt × dIP-a.e. uniquely defined by (9.5) and satisfies

∇W M(t) = ϕ(t) dt × dIP-a.e.,
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which in turn implies that the integrals of ∇W M and ϕ coincide in the way that (9.7)
implies (9.4). All we have to do is therefore to prove that (9.8) holds.

Let us recall some results about stopping times andmartingales. The stopped local
martingale M(· ∧ θn) is a martingale for each n, by Definition 9.1. Stopped RCLL
martingales are martingales. The minimum of two stopping times is a stopping time
and the hitting time

inf{s ∈ [0, T ] : |M(s)| ≥ n}

is, for each n, in the present setting, a stopping time. Using these results we obtain that
M(· ∧ θn ∧ inf{s ∈ [0, T ] : |M(s)| ≥ n} ∧ T ) = M(· ∧ τn) is amartingale, for each
n. Moreover, M is by the standard martingale representation result a.s. continuous.
Hence, we may define a sequence of, a.s. continuous, martingales {Mn} by

Mn = M(· ∧ τn) =
∫ ·∧τn

0
ϕ(s)′dW (s) a.s. (9.9)

where the last equality follows from (9.7). Now, use the definition of τn in (9.6) to
see that

|Mn(t)| =
∣∣∣∣
∫ t∧τn

0
ϕ(s)′dW (s)

∣∣∣∣ ≤ n a.s.

for any t and n, and that in particular Mn is, for each n, a square integrablemartingale.
Moreover, (9.9) implies that Mn satisfies

Mn(t) =
∫ t

0
I{s≤τn}ϕ(s)′dW (s), 0 ≤ t ≤ T a.s. (9.10)

Since each Mn is a square integrable martingale we may use Theorem 9.1 on Mn ,
which together with (9.10) implies that

Mn(t) =
∫ t

0
∇W Mn(s)

′dW (s) (9.11)

=
∫ t

0
I{s≤τn}ϕ(s)′dW (s), 0 ≤ t ≤ T a.s.

where ∇W Mn is the vertical derivative of Mn with respect to W (defined in (9.3))
and where we also used the continuity of the Itô integrals. The equality of the two
Itô integrals in (9.11) implies that

∇W Mn(t) = I{t≤τn}ϕ(t) dt × dIP-a.e. (9.12)

The local martingale property of M implies that limn→∞ θn = ∞ a.s. Using this
and the definition of τn in (9.6) we conclude that for almost every ω ∈ Ω and each
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t ∈ [0, T ] there exists an N (ω, t) such that

n ≥ N (ω, t) ⇒ sup
0≤s≤t

|M(ω, s)| ≤ n and t ≤ θn(ω) ⇒ t ≤ τn(ω). (9.13)

It follows from (9.12) and (9.13) that there exists an N (ω, t) such that

n ≥ N (ω, t) ⇒ ∇W Mn(ω, t) = ϕ(ω, t) dt × dIP-a.e.

which means that (9.8) holds. �

If M is a RCLL local martingale then M − M(0) ∈ Mloc(W ), which implies that
∇W (M − M(0)) is defined in Theorem 9.2. This observation allows us to extend
the definition of the vertical derivative to RCLL local martingales not necessarily
starting at zero in the following obvious way.

Definition 9.2 The vertical derivative of a local martingale M relative to (IP,F)

with RCLL sample paths is defined as the progressively measurable dt × dIP-a.e.
unique process ∇W M satisfying

∇W M(t) = ∇W (M − M(0))(t), 0 ≤ t ≤ T, (9.14)

where ∇W (M − M(0))(t) is defined in Theorem 9.2.

The following result is an immediate consequence of Theorem 9.2 and
Definition 9.2.

Theorem 9.3 If M is a local martingale relative to (IP,F) with RCLL sample paths,
then

M(t) = M(0) +
∫ t

0
∇W M(s)′dW (s), 0 ≤ t ≤ T, and

∫ T

0
|∇W M(t)|2dt < ∞ a.s.,

where ∇W M(s) is defined in Definition 9.2.

Let us try to clarify the theory by studying a simple example. It is straightforward
to extend the results above to the case when the Wiener process W is replaced by an
adapted process X given by

X (t) = X (0) +
∫ t

0
σ(s)dW (s), (9.15)

where σ is a matrix-valued adapted process satisfying suitable assumptions, mainly
invertibility, see also [1, 4]. Thus, a local martingale M can be represented as
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M(t) − M(0) =
∫ t

0
∇W M(s)′dW (s) =

∫ t

0
∇X M(s)′d X (s),

and the relationship between the vertical derivatives with respect to W and X is
∇W M(t)′ = (∇X M(t)′)σ (t), cf. (9.15). As example consider the one-dimensional
case and let X with X (0) = 0 be given by (9.15) under the assumption that σ(s) is
a deterministic function of time and let M be given by M(t) = F(t, Xt ) where F
is the non-anticipative functional F(t, ω) = ω3(t) − 3

∫ t
0 ω(s)σ 2(s)ds, i.e. let M be

the local martingale defined by

M(t) = X3(t) − 3
∫ t

0
X (s)σ 2(s)ds.

In this case the vertical derivative simplifies to the standard derivative, that is,
∇Fω(t, ω) = 3ω2(t), see also [1, 4] (we remark that the horizontal derivative is
DF(t, ω) = −3ω(t)σ 2(t)). In this case, ∇X M(t) = 3X2(t) and

M(t) =
∫ t

0
3X2(s)d X (s) =

∫ t

0
3X2(s)σ (s)dW (s),

which we remark is easily found using the standard Itô formula. Note that this also
means that ∇W M(t) = 3X2(t)σ (t) = ∇X M(t)σ (t).

Concluding Remarks

Many of the applications that rely on martingale representation are within mathe-
matical finance. A particular application that may benefit from the local martingale
extension of the present paper is optimal investment theory, in which the discounted
(using the state price density) optimal wealth process is a (not necessarily square
integrable) martingale, see e.g. [9, ch. 3], see also [13]. In particular, using func-
tional Itô calculus it is possible to derive an explicit formula for the optimal portfolio
in terms of the vertical derivative of the discounted optimal wealth process, see
also [14]. Similar explicit formulas for optimal portfolios based on the Malliavin
calculus approach to constructive martingale representation have, under restrictive
assumptions, been studied extensively, see e.g. [2, 6, 7, 10, 11, 17–19]. The general
connection between Malliavin calculus and functional Itô calculus is studied in e.g.
[1, 4].

Acknowledgements The author is grateful to Mathias Lindholm for helpful discussions.
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Chapter 10
Random Fields Related to the Symmetry
Classes of Second-Order Symmetric
Tensors

Anatoliy Malyarenko and Martin Ostoja-Starzewski

Abstract Under the change of basis in the three-dimensional space by means of an
orthogonal matrix g, a matrix A of a linear operator is transformed as A �→ gAg−1.
Mathematically, the stationary subgroupof a symmetricmatrix under the above action
can be either D2 × Zc

2, when all three eigenvalues of A are different, or O(2) × Zc
2,

when two of them are equal, or O(3), when all three eigenvalues are equal. Physically,
one typical application relates to dependent quantities like a second-order symmet-
ric stress (or strain) tensor. Another physical setting is that of dependent fields, such
as conductivity with such three cases is the conductivity (or, similarly, permittivity,
or anti-plane elasticity) second-rank tensor, which can be either orthotropic, trans-
versely isotropic, or isotropic. For each of the above symmetry classes, we consider
a homogeneous random field taking values in the fixed point set of the class that
is invariant with respect to the natural representation of a certain closed subgroup
of the orthogonal group. Such fields may model stochastic heat conduction, electric
permittivity, etc. We find the spectral expansions of the introduced random fields.
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10.1 Introduction

10.1.1 Why Tensor Random Fields?

The starting point for deterministic theories of continuumphysics is the field equation

L�q = �f (10.1)

defined for a body B on some subset D of the d-dimensional Euclidean space Rd ,
where L is a linear differential operator, �f is a source or forcing function, and �q
is a solution field. This needs to be accompanied by appropriate boundary and/or
initial conditions. A field theory is stochastic if either the operator L is random, or
the forcing is random, or the boundary/initial conditions are random. In this paper
we focus on the first case, so that (10.1) becomes L(ω)�q = �f , where, in the vein of
random processes and fields, the randomness is indicated by the dependence ofL(ω)

on an elementary event ω. Since the operator L is linear, it is usually described by
a tensor-valued random field modelling, say, thermal conductivity, T , in a random
medium.

An example of such a stochastic boundary value problem is to find a random
field T : D × Ω → R such that

∇ · ( �C(�x, ω) · ∇T ) = f (�x, ω), �x ∈ D, T (�x, ω) = g(�x), �x ∈ ∂D.

Severalwell-known analogs of stochastic conductivity problems described by elliptic
equations of this type are given in Table 10.1.

Table 10.1 A collection of diverse physical problems governed by an elliptic-type equation with
a random field of second-rank property, such as thermal conductivity. The anti-plane elasticity and
torsion involve random fields on R

2 only

Physical
subject

T ∇T �C �q

Heat conduction Temperature Thermal gradient Thermal
conductivity

Heat flux

Anti-plane
elasticity

Displacement Strain Elastic moduli Stress

Torsion Stress function Strain Shear moduli Stress

Electrical
conduction

Potential Intensity Electrical
conductivity

Current density

Electrostatics Potential Intensity Permittivity Electric induction

Magnetostatics Potential Intensity Magnetic
permeability

Magnetic
induction

Fickian diffusion Concentration Gradient Diffusivity Flux
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Here f is the scalar field of a temperature source/sink, and �q is the boundary
value of T . While the above corresponds, in general, to property fields, another
physical application of tensor-valued random fields applies to dependent fields such
as stress, strain, etc. All the rank 2 tensor random fields in Table 10.1 have to be
positive-definite point-wise.

10.1.2 Basic Concepts of Random Fields

Let (Ω,F,P) be a probability space, let d ≥ 2 and r ≥ 0 be integers, and let V
be a subspace of the r th tensor power (Rd)⊗r with the convention (Rd)⊗0 = R

1. A
tensor-valued random field is a function T(�x, ω) : Rd × Ω → V such that for any
fixed �x0 ∈ R

d the function T(�x0, ω) is a V-valued random tensor. We are interested
in the case of d = 3 that corresponds to space problems of continuum physics.

Let (·, ·) be the restriction of the standard inner product in the space (Rd)⊗r to its
subspace V, and let ‖ · ‖ be the corresponding norm. A random field T(�x) is second-
order if for any �x ∈ R

d wehaveE[‖T(�x)‖2] < ∞. A second-order randomfieldT(�x)
is calledmean-square continuous if for any �x0 ∈ R

d we have lim‖�x−�x0‖→0 E[‖T(�x) −
T(�x0)‖2] = 0. In what follows we consider only mean-square continuous random
fields.

Let 〈T(�x)〉 = E[T(�x)] be the one-point correlation tensor of the random field
T(�x), and let 〈T(�x),T(�y)〉 = E[(T(�x) − 〈T(�x)〉) ⊗ (T(�y) − 〈T(�y)〉)] be its two-
point correlation tensor. A random field T(�x) is called wide-sense homogeneous
if the one-point correlation tensor is constant, while the two-point correlation tensor
depends only upon the difference �y − �x .

Let G be a symmetry group, i.e., a closed subgroup of the orthogonal group O(3).
Assume that V is an invariant subspace of the representation g �→ g⊗r of the group
G, and let U (g) be the restriction of the above representation to V. A random field
satisfying

〈T(g�x)〉 = U (g)〈T(�x)〉, 〈T( �gx),T(g�y)〉 = (U ⊗U )(g)〈T(�x),T(�y)〉

is called wide-sense (G,U )-isotropic. In what follows we consider only wide-sense
homogeneous and (G,U )-isotropic random fields and omit the words “wide-sense”.

PutV = S2(R3) ⊂ (R3)⊗2, the linear space of symmetric 3 × 3matrices with real
entries. Consider the orthogonal representation U (g) = S2(g) of the group O(3) as
a group action: g · �v = U (g)�v.

Mathematically, this action has 3 orbit types: orthotropic, transverse isotropic,
and isotropic, see [9]. The corresponding conjugacy classes are [H1] = [D2 × Zc

2],[H2] = [O(2) × Zc
2], and [H3] = [O(3)], where D2 is the dihedral group of order 4

generated by the rotation about the z-axis with angle π and that about the x-axis with
the same angle, and where Zc

2 = {I,−I } with I being the identity matrix.
Physically, there are three conductivity tensor classes and three stress or strain

classes: orthotropic, transverse isotropic, and isotropic.
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Let Vk = { �v ∈ V : h · �v = �v for all h ∈ Hk } be the fixed point set of Hk . The
space Vk does not depend upon the choice of a representative in the symmetry class.
According to [4, Lemma 10.2], the maximal subgroup of O(3) that leaves the space
Vk invariant, is the normaliser of H in O(3):

NO(3)(H) = { g ∈ O(3) : gHg−1 = H }.

Let G be a closed subgroup of O(3) lying between H and NO(3)(H). We will find the
general form of the one-point and two-point correlation tensors of a homogeneous
and (G,U )-isotropic random field, as well as the spectral expansion of the field in
terms of stochastic integrals with respect to orthogonal scattered random measures.

Note that we have NO(3)(D2 × Zc
2) = O × Zc

2, NO(3)(O(2) × Zc
2) = O(2) × Zc

2,
and NO(3)(O(3)) = O(3), whereO is the octahedral group of order 24 which fixes an
octahedron. The possible values for the groupG are as follows:G1 = D2 × Zc

2,G2 =
D4 × Zc

2, G3 = T × Zc
2, G4 = O × Zc

2, G5 = O(2) × Zc
2, and G6 = O(3), where T

is the tetrahedral group of order 12 that fixes a tetrahedron.

10.2 The Results

First, we describe the spaces Vk and the structure of the representationU of the group
G. We choose an orthonormal basis in each irreducible component of U .

The space V1 has dimension 3 and consists of 3 × 3 diagonal matrices. When
G is the smallest possible, G = G1 = D2 × Zc

2, then by definition of V1 we have
U (g) = 3Ag , the direct sum of three copies of the trivial irreducible representation
Ag , and we choose the basis as follows:

T Ag,1 =
⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ , T Ag,2 =

⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠ , T Ag,3 =

⎛
⎝
0 0 0
0 0 0
0 0 1

⎞
⎠ .

For finite groups, we use the notation of [1, Section 4] to denote their elements and
Mulliken’s notation [8] or [1, Section 14] to denote their irreducible representations.

Put G = G2 = D4 × Zc
2. Then we have U (g) = 2A1g ⊕ B1g , where A1g is the

trivial irreducible representation, while B1g has value 1 on the elements of the set

G+ = {E,C2,C
′
21,C

′
22, i, σh, σv1, σv2},

and value −1 on the remaining elements of G. The basis is as follows:

T A1g,1 = T 1 =
⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠ , T A1g,2 = T 2 = 1√

2

⎛
⎝
1 0 0
0 0 0
0 0 1

⎞
⎠ ,
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T B1g,1 = T 3 = 1√
2

⎛
⎝
1 0 0
0 0 0
0 0 −1

⎞
⎠ .

Put G = G3 = T × Zc
2. Then we have U (g) = Ag ⊕ Eg , where Ag is the trivial

irreducible representation of G. To describe Eg , let the group G3 be the union of the
following three nonintersecting subsets:

G0 = {E,C2x ,C2y,C2z, i, σx , σy, σz},
G+ = {C+

31,C
+
32,C

+
33,C

+
34, S

−
61, S

−
62, S

−
63, S

−
64},

G− = {C−
31,C

−
32,C

−
33,C

−
34, S

+
61, S

+
62, S

+
63, S

+
64}.

The representation Eg maps all elements of G0 to the identity matrix, all elements

of G+ to the matrix 1
2

( −1
√
3

−√
3 −1

)
, and all elements of G− to the matrix 1

2

( −1 −√
3√

3 −1

)
.

The basis is as follows:

T 1 = T Eg,1 = 1√
2

⎛
⎝
1 0 0
0 0 0
0 0 −1

⎞
⎠ , T 2 = T Ag = 1√

3
I,

T 3 = T Eg,2 = 1√
6

⎛
⎝

−1 0 0
0 2 0
0 0 −1

⎞
⎠ .

(10.2)

PutG = G4 = O × Zc
2. Then we haveU (g) = A1g ⊕ Eg , where A1g is the trivial

representation of G. To describe Eg , let the group G4 be the union of the following
six nonintersecting subsets:

G0 = {E,C2x ,C2y,C2z, i, σx , σy, σz},
G+ = {C+

31,C
+
32,C

+
33,C

+
34, S

−
61, S

−
62, S

−
63, S

−
64},

G− = {C−
31,C

−
32,C

−
33,C

−
34, S

+
61, S

+
62, S

+
63, S

+
64},

Gx = {C+
4x ,C

−
4x ,C

′
2d ,C

′
2 f , S

−
4x , S

+
4x , σd4, σd6},

Gy = {C+
4y,C

−
4y,C

′
2c,C

′
2e, S

−
4y, S

+
4y, σd3, σd5},

Gz = {C+
4z,C

−
4z,C

′
2a,C

′
2b, S

−
4z, S

+
4z, σd1, σd2}.

(10.3)

The representation Eg maps all elements of G0 to the identity matrix, all elements of

G+ to thematrix 1
2

( −1
√
3

−√
3 −1

)
, all elements ofG− to thematrix 1

2

( −1 −√
3√

3 −1

)
, all elements

of Gx to the matrix 1
2

( −1 −√
3

−√
3 1

)
, all elements of Gy to the matrix 1

2

( −1
√
3√

3 1

)
, and all

elements of Gz to the matrix
(
1 0
0 −1

)
. The basis is described by Eq. (10.2).

The space V2 has dimension 2. By definition of V2 we haveU (g) = 2A, the direct
sum of two copies of the trivial representation A of the group G4 = O(2) × Zc

2, and
we choose the basis as follows:
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T A,1 = 1√
2

⎛
⎝
1 0 0
0 0 0
0 0 1

⎞
⎠ , T A,2 =

⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠ .

Finally, the space V3 is one-dimensional and is generated by the basis tensor
T = 1√

3
I .

Second, we describe the orbit space R̂
3/Gk for the action of each group Gk

in the wavenumber domain R̂
3. It is stratified into a disjoint union of manifolds,

say (R̂3/Gk)m . For the subgroups of the group O(2) × Zc
2, it is convenient to use

cylindrical coordinates (ρ, ϕ, p3): When G = G1 = D2 × Zc
2, we have R̂

3/D2 ×
Zc
2 = { (ρ, ϕ, p3) : ρ ≥ 0, 0 ≤ ϕ ≤ π/2, p3 ≥ 0 } and

(R̂3/D2 × Zc
2)0 = { (ρ, ϕ, p3) : ρ = 0 },

(R̂3/D2 × Zc
2)1 = { (0, 0, p3) : p3 > 0 },

(R̂3/D2 × Zc
2)2 = { (ρ, 0, 0) : ρ > 0 },

(R̂3/D2 × Zc
2)3 = { (ρ, π/2, 0) : ρ > 0 },

(R̂3/D2 × Zc
2)4 = { (ρ, ϕ, 0) : ρ > 0, 0 < ϕ < π/2 },

(R̂3/D2 × Zc
2)5 = { (ρ, 0, p3) : ρ > 0, p3 > 0 },

(R̂3/D2 × Zc
2)6 = { (ρ, π/2, p3) : ρ > 0, p3 > 0 },

(R̂3/D2 × Zc
2)7 = { (ρ, ϕ, p3) : ρ > 0, 0 < ϕ < π/2, p3 > 0 }.

When G = G2 = D4 × Zc
2, we have R̂

3/D4 × Zc
2 = { (ρ, ϕ, p3) : ρ ≥ 0, 0 ≤

ϕ ≤ π/4, p3 ≥ 0 } and

(R̂3/D4 × Zc
2)0 = { (ρ, ϕ, p3) : ρ = 0 },

(R̂3/D4 × Zc
2)1 = { (0, 0, p3) : p3 > 0 },

(R̂3/D4 × Zc
2)2 = { (ρ, 0, 0) : ρ > 0 },

(R̂3/D4 × Zc
2)3 = { (ρ, π/4, 0) : ρ > 0 },

(R̂3/D4 × Zc
2)4 = { (ρ, ϕ, 0) : ρ > 0, 0 < ϕ < π/4 },

(R̂3/D4 × Zc
2)5 = { (ρ, 0, p3) : ρ > 0, p3 > 0 },

(R̂3/D4 × Zc
2)6 = { (ρ, π/4, p3) : ρ > 0, p3 > 0 },

(R̂3/D4 × Zc
2)7 = { (ρ, ϕ, p3) : ρ > 0, 0 < ϕ < π/4, p3 > 0 }.

In contrast to the previous cases, the orbit space R̂
3/T × Zc

2 is not closed. It is
stratified as
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(R̂3/T × Zc
2)0 = {�0},

(R̂3/T × Zc
2)1 = { (0, p3, 0) : p3 > 0 },

(R̂3/T × Zc
2)2 = { (p1, p2, p3) : 0 < p1 = p2 = p3 },

(R̂3/T × Zc
2)3 = { (p1, 0, p3) : p1 > 0, p3 > 0 },

(R̂3/T × Zc
2)4 = { (p1, p2, p3) : 0 < p1 = p2 < p3 },

(R̂3/T × Zc
2)5 = { (p1, p2, p3) : p1 > 0, 0 < p2 ≤ max{p1, p3}, p3 > 0 }.

The orbit space R̂3/O × Zc
2 is stratified as follows:

(R̂3/O × Zc
2)0 = {�0},

(R̂3/O × Zc
2)1 = { (0, 0, p3) : p3 > 0 },

(R̂3/O × Zc
2)2 = { (p1, p2, p3) : p1 = p2 = p3 > 0 },

(R̂3/O × Zc
2)3 = { (0, p2, p3) : 0 < p2 = p3 },

(R̂3/O × Zc
2)4 = { (0, p2, p3) : 0 < p2 < p3 },

(R̂3/O × Zc
2)5 = { (p1, p2, p3) : 0 < p1 = p2 < p3 },

(R̂3/O × Zc
2)6 = { (p1, p2, p3) : 0 < p1 < p2 = p3 },

(R̂3/O × Zc
2)7 = { (p1, p2, p3) : 0 < p1 < p2 < p3 }.

The orbit space R̂3/O(2) × Zc
2 is stratified as

(R̂3/O(2) × Zc
2)0 = {�0},

(R̂3/O(2) × Zc
2)1 = { (p1, 0, 0) : p1 > 0 },

(R̂3/O(2) × Zc
2)2 = { (0, 0, p3) : p3 > 0 },

(R̂3/O(2) × Zc
2)3 = { (p1, 0, p3) : p1 > 0, p3 > 0 }.

Finally, the orbit space R̂3/O(3) is stratified as

(R̂3/O(3))0 = {�0},
(R̂3/O(3))1 = { (0, 0, p3) : p3 > 0 }.

Theorem 10.1 The two-point correlation tensor of a homogeneous and (D2 ×
Zc
2, 3Ag)-isotropic random field has the form



180 A. Malyarenko and M. Ostoja-Starzewski

〈T (�x), T (�y)〉 =
∫
R̂3/D2×Zc

2

cos(p1(y1 − x1)) cos(p2(y2 − x2)) cos(p3(y3 − x3))

× f ( �p) dΦ( �p),

where f ( �p) is a Φ-equivalence class of measurable functions acting from R̂
3/D2 ×

Zc
2 to the set of nonnegative-definite symmetric linear operators on V1 with unit trace.

The field has the form

T (�x) =
3∑

k=1

CkE
A,k +

8∑
l=1

3∑
k=1

∫
R̂3/D2×Zc

2

vl( �p, �x) dZkl( �p)T A,k,

where Ck ∈ R, vl( �p, �x) are 8 different combinations of cosines and sines of p1x1,
p2x2, and p3x3, and �Zl( �p) = (Z1l( �p), . . . , Z3l( �p))� are 8 centred real-valued
uncorrelated random measures on R̂

3/D2 × Zc
2 with control measure f ( �p) dΦ( �p).

Put �z = �y − �x . Let f +( �p) be a Φ-equivalence class of measurable functions
acting from R̂

3/D4 × Zc
2 to the set of nonnegative-definite symmetric 3 × 3matrices

with unit trace. Let f −( �p) be the same class where all non-diagonal elements but
f +
12( �p) and f +

21( �p) are multiplied by −1. Let f0( �p) be the same class where all
non-diagonal elements but f +

12( �p) and f +
21( �p) are replaced by zeroes. Finally, let

(R̂3/D4 × Zc
2)i1,...,ik denote the union of the sets (R̂3/D4 × Zc

2)i j over 1 ≤ j ≤ k.

Theorem 10.2 The two-point correlation tensor of a homogeneous and isotropic
random field with G = D4 × Zc

2 and U = 2A1g ⊕ B1g has the form

〈T (�x), T (�y)〉 = 1

2

∫
(R̂3/D4×Zc

2)2,4,5,7

cos(p3z3)[cos(p1z1) cos(p2z2) f+( �p)

+ cos(p1z2) cos(p2z1) f−( �p)] dΦ( �p)
+ 1

2

∫
(R̂3/D4×Zc

2)0,1,3,6

cos(p3z3)[cos(p1z1) cos(p2z2)

+ cos(p1z2) cos(p2z1)] f0( �p) dΦ( �p).

The field has the form

T (�x) =
2∑

k=1

CkE
A1g,k + 1√

2

8∑
l=1

3∑
k=1

∫
(R̂3/D4×Zc

2)2,4,5,7

vl( �p, �x) dZkl
+ ( �p)T A,k

+ 1√
2

16∑
l=9

3∑
k=1

∫
(R̂3/D4×Zc

2)2,4,5,7

vl( �p, �x) dZkl
− ( �p)T A,k

+ 1√
2

16∑
l=1

3∑
k=1

∫
(R̂3/D4×Zc

2)0,1,3,6

vl( �p, �x) dZkl
0 ( �p)T A,k,
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where Ck ∈ R, vl( �p, �x), 1 ≤ l ≤ 8 are 8 different combinations of cosines and sines
of p1x1, p2x2, and p3x3, vl( �p, �x), 9 ≤ l ≤ 16 are 8 different combinations of cosines
and sines of p1x2, p2x1, and p3x3, �Zl+( �p) = (Z1l+ ( �p), . . . , Z3l+ ( �p))�, 1 ≤ l ≤ 8
(resp. �Zl−( �p) = (Z1l− ( �p), . . . , Z3l− ( �p))�, 9 ≤ l ≤ 16, resp. �Zl

0( �p) = (Z1l
0 ( �p), . . . ,

Z3l
0 ( �p))�, 1 ≤ l ≤ 16) are 8 centred real-valued uncorrelated random measures

on R̂
3/D4 × Zc

2 with control measure f+( �p) dΦ( �p) (resp. f−( �p) dΦ( �p), resp.
f0( �p) dΦ( �p)).
Let f ( �p) be a Φ-equivalence class of measurable functions acting from R̂

3/T ×
Zc
2 to the set of nonnegative-definite symmetric 3 × 3 matrices with unit trace of the

form

f ( �p) =
⎛
⎝

f A,2( �p) + fE,2,1( �p) fE,1,1( �p) fE,2,2( �p)
fE,1,1( �p) f A,1( �p) fE,1,2( �p)
fE,2,2( �p) fE,1,2( �p) f A,2( �p) − fE,2,1( �p)

⎞
⎠ . (10.4)

Let f 0( �p) be the same class where all non-diagonal elements are replaced by zeroes.
Let f +( �p) (resp. f −( �p)) be the same class with

( f ±
E,i,1( �p), f ±

E,i,2( �p))� = Eg(C
±
31)( fE,i,1( �p), fE,i,2( �p))�

and f ±
A,i ( �p) = f A,i ( �p). Denote

A0( �p, �z) = 8 cos(p1z1) cos(p2z2) cos(p3z3),

A+( �p, �z) = 8 cos(p1z2) cos(p2z3) cos(p3z1),

A−( �p, �z) = 8 cos(p1z3) cos(p2z1) cos(p3z2).

Theorem 10.3 The two-point correlation tensor of a homogeneous and isotropic
random field with G = T × Zc

2 and U = Ag ⊕ Eg has the form

〈T (�x), T (�y)〉 = 1

3

∫
(R̂3/T×Zc

2)1,3−5

∑
k∈{0,+,−}

Ak( �p, �z) f k( �p) dΦ( �p)

+ 1

3

∫
(R̂3/T×Zc

2)0,2

(A0( �p) + A+( �p) + A−( �p)) f 0( �p) dΦ( �p),

The field has the form

T (�x) = CT 2 + 1√
3

8∑
l=1

∑
k∈{0,+,−}

3∑
m=1

∫
(R̂3/T×Zc

2)1,3−5

vkl( �p, �x) dZklm
1 ( �p)Tm

+ 1√
3

8∑
l=1

∑
k∈{0,+,−}

3∑
m=1

∫
(R̂3/T×Zc

2)0,2

vkl( �p, �x) dZklm
2 ( �p)Tm,
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where C ∈ R, vkl( �p, �x), k ∈ {0,+,−} are 8 different combinations of cosines
and sines of the terms of Ak( �p, �z), and �Zkl

1 ( �p) = (Zkl1
1 ( �p), . . . , Zkl3

1 ( �p))� (resp.
�Zkl
2 ( �p) = (Zkl1

2 ( �p), . . . , Zkl3
2 ( �p))�) are 8 centred real-valued uncorrelated random

measures on (R̂3/T × Zc
2)1,3−5 (resp. on (R̂3/T × Zc

2)0,2) with control measure
f k( �p) dΦ( �p) (resp. f 0( �p) dΦ( �p)).
Let f 0( �p) be aΦ-equivalence class of measurable functions acting from R̂

3/O ×
Zc
2 to the convex compact set C0 of nonnegative-definite symmetric 3 × 3 matrices

with unit trace of the form (10.4). Choose an element in each of the sets (10.3) and
form a set G, for example G = {E,C+

31,C
−
31,C

+
4x ,C

+
4y,C

+
4z}. Denote by f 0h ( �p) the

matrix f 0( �p), where vector ( fE,1,1( �p), fE,1,2( �p))� (resp. ( fE,2,1( �p), fE,2,2( �p))�)
is replaced with Eg(h)( fE,1,1( �p), fE,1,2( �p))� (resp. Eg(h)( fE,2,1( �p), fE,2,2( �p))�),
h ∈ G.

Denote by C1 the convex compact set of all 3 × 3 symmetric nonnegative-definite
matrices (10.4) satisfying

(
√
3 − 2) fE,1,1( �p) + fE,1,2( �p) = 0,

(
√
3 − 2) fE,2,1( �p) + fE,2,2( �p) = 0.

Let the matrix f 1( �p) takes values in C1. Denote by f 1h ( �p) the matrix f 1( �p), where
the vector ( fE,1,1( �p), fE,1,2( �p))� (resp. ( fE,2,1( �p), fE,2,2( �p))�) is replaced with
Eg(h)( fE,1,1( �p), fE,1,2( �p))� (resp. Eg(h)( fE,2,1( �p), fE,2,2( �p))�), h ∈ G.

Denote by C2 the convex compact set of all 3 × 3 symmetric nonnegative-definite
matrices (10.4) satisfying

fE,1,1( �p) + fE,1,2( �p) = 0,

fE,2,1( �p) + fE,2,2( �p) = 0.

Let the matrix f 2( �p) takes values in C2. Denote by f 2h ( �p) the matrix f 2( �p), where
the vector ( fE,1,1( �p), fE,1,2( �p))� (resp. ( fE,2,1( �p), fE,2,2( �p))�) is replaced with
Eg(h)( fE,1,1( �p), fE,1,2( �p))� (resp. Eg(h)( fE,2,1( �p), fE,2,2( �p))�), h ∈ G.

Denote by C3 the convex compact set of all 3 × 3 symmetric nonnegative-definite
matrices (10.4) satisfying fE,i, j ( �p) = 0. Let the matrix f 3( �p) takes values in C3.

Denote

AE ( �p, �z) = 8 cos(p1z1) cos(p2z2) cos(p3z3),

AC+
31( �p, �z) = 8 cos(p1z2) cos(p2z3) cos(p3z1),

AC−
31( �p, �z) = 8 cos(p1z3) cos(p2z1) cos(p3z2),

AC+
4x ( �p, �z) = 8 cos(p1z1) cos(p2z3) cos(p3z2),

AC+
4y ( �p, �z) = 8 cos(p1z3) cos(p2z1) cos(p3z1),

AC+
4z ( �p, �z) = 8 cos(p1z2) cos(p2z1) cos(p3z3).
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Theorem 10.4 The two-point correlation tensor of a homogeneous and isotropic
random field with G = O × Zc

2 and U = A1g ⊕ Eg has the form

〈T (�x), T (�y)〉 = 1

6

∫
(R̂3/O×Zc

2)4,7

∑
h∈G

Ah( �p, �z) f 0h ( �p) dΦ( �p)

+ 1

6

∫
(R̂3/O×Zc

2)3,6

∑
h∈G

Ah( �p, �z) f 1h ( �p) dΦ( �p)

+ 1

6

∫
(R̂3/O×Zc

2)1,5

∑
h∈G

Ah( �p, �z) f 2h ( �p) dΦ( �p)

+ 1

6

∫
(R̂3/O×Zc

2)0,2

∑
h∈G

Ah( �p, �z) f 3( �p) dΦ( �p).

The field has the form

T (�x) = CT 2 + 1√
6

8∑
l=1

∑
h∈G

3∑
m=1

∫
(R̂3/O×Zc

2)4,7

vhl( �p, �x) dZ0
hlm( �p)

+ 1√
6

8∑
l=1

∑
h∈G

3∑
m=1

∫
(R̂3/O×Zc

2)3,6

vhl( �p, �x) dZ1
hlm( �p)

+ 1√
6

8∑
l=1

∑
h∈G

3∑
m=1

∫
(R̂3/O×Zc

2)1,5

vhl( �p, �x) dZ2
hlm( �p)

+ 1√
6

8∑
l=1

∑
h∈G

3∑
m=1

∫
(R̂3/O×Zc

2)0,2

vhl( �p, �x) dZ3
hlm( �p),

where �Zi
hl( �p) = (Zi

hl1( �p), . . . , Zi
hl3( �p))� are centred real-valued uncorrelated ran-

dom measures on the sets of integration with control measures f ih ( �p) dΦ( �p), and
vhl( �p, �x) are 8 different combinations of sines and cosines of the terms of Ah( �p, �z).
Theorem 10.5 The two-point correlation tensor of a homogeneous and (O(2) ×
Zc
2, 2A)-isotropic random field has the form

〈T (�x), T (�y)〉 = 2
∫ ∞

0

∫ ∞

0
J0

(
λ
√

(y1 − x1)2 + (y2 − x2)2
)
cos(p3(y3 − x3))

× f (λ, p3) dΦ(λ, p3),

whereΦ is a finite Borel measure on [0,∞)2, and f (λ, p3) is aΦ-equivalence class
of measurable functions on [0,∞)2 with values in the compact set of all nonnegative-
definite linear operators in the space V2 with unit trace. The field has the form
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T (r, ϕ, z) = C1T
A,1 + C2T

A,2+

+
2∑

m=1

∫ ∞

0

∫ ∞

0
J0(λr)[cos(p3z) dZ01m(λ, p3)T

A,1

+ sin(p3z) dZ
02m(λ, p3)T

A,2]

+ √
2

∞∑
�=1

2∑
m=1

∫ ∞

0

∫ ∞

0
J�(λr)[cos(p3z) cos(�ϕ) dZ �1m(λ, p3)T

A,m

+ cos(p3z) sin(�ϕ) dZ �2m(λ, p3)T
A,m

+ sin(p3z) cos(�ϕ) dZ �3m(λ, p3)T
A,m

+ sin(p3z) sin(�ϕ) dZ �4m(λ, p3)T
A,m],

where C1 and C2 are arbitrary real numbers, J� are the Bessel functions, and �Z �i =
(Z �i1, Z �i2)� are centred V2-valued uncorrelated random measures on [0,∞)2 with
control measure f (λ, p3) dΦ(λ, p3).

Theorem 10.6 The two-point correlation tensor of a homogeneous and (O(3), A)-
isotropic random field has the form

〈T (�x), T (�y)〉 =
∫ ∞

0

sin(λ‖�y − �x‖)
λ‖�y − �x‖ dΦ(λ).

The field has the form

T (�x) =
(
C + π

√
2

∞∑
�=0

�∑
m=−�

Sm� (θ, ϕ)

∫ ∞

0

J�+1/2(λρ)√
λρ

dZm
� (λ)

)
T .

10.3 A Sketch of Proofs

The general form of one- and two-point correlation tensors follow from [6, Theo-
rem 0]. The spectral expansion of the field is obtained by using Karhunen’s theorem,
see [5]. The details may be found in [6, p. 200] and in the forthcoming book [7].

If one replaces the space S2(R3) of the stress or strain tensors with the space
S2(S2(R3)) of elasticity tensors, then there are 8 elasticity classes, see [2]. The
spectral expansions of the corresponding random fields have been found by the
authors in [6].

In both cases the group G is of type II, that is, it contains −I . If we consider the
space S2(R3) ⊗ R

3 of piezoelectricity tensors, the situation becomes more sophis-
ticated. There are 16 piezoelectricity classes, see [3]. Moreover, some of the groups
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G are of types I or III, that is, they either are subgroups of the group SO(3) or do
not contain −I . For such groups, Theorem 0 of [6] is no longer valid and should be
replaced by another statement. The paper is under construction and will be published
elsewhere. See also the forthcoming book [7].
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Part II
Applications of Stochastic Processes



Chapter 11
Nonlinearly Perturbed Birth-Death-Type
Models

Dmitrii Silvestrov, Mikael Petersson and Ola Hössjer

Abstract Asymptotic expansions are presented for stationary and conditional quasi-
stationary distributions of nonlinearly perturbed birth-death-type semi-Markovmod-
els, as well as algorithms for computing the coefficients of these expansions. Three
types of applications are discussed in detail. The first is amodel of population growth,
where either an isolated population is perturbed by immigration, or a sink population
with immigration is perturbed by internal births. The second application is epidemic
spread of disease, in which a closed population is perturbed by infected individuals
from outside. The third model captures the time dynamics of the genetic composition
of a population with genetic drift and selection, that is perturbed by various mutation
scenarios.

Keywords Semi-Markov birth-death process · Quasi-stationary distribution
Nonlinear perturbation · Population dynamics model · Population genetics model
Epidemic model

11.1 Introduction

Models of perturbed Markov chains and semi-Markov processes attracted attention
of researchers in the mid of the 20th century, in particular the most difficult cases
of perturbed processes with absorption and so-called singularly perturbed processes.
An interest in these models has been stimulated by applications to control, queuing
systems, information networks, and various types of biological systems. As a rule,
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Markov-type processes with singular perturbations appear as natural tools for math-
ematical analysis of multi-component systems with weakly interacting components.

In this paper,we present newalgorithms for construction of asymptotic expansions
for stationary and conditional quasi-stationary distributions of nonlinearly perturbed
semi-Markovbirth-death processeswith afinite phase space.Weconsidermodels that
include a positive perturbation parameter that tends to zero as the unperturbed null
model is approached. It is assumed that the phase space is one class of communicative
states, for the embeddedMarkov chains of pre-limiting perturbed semi-Markov birth-
death processes, whereas the limiting unperturbedmodel either consists of one closed
class of communicative states, or of one class of communicative transient internal
states that has one or both end points as absorbing states.

These new algorithms are applied to several perturbed birth-death models of bio-
logical nature. The first application is population size dynamics in a constant envi-
ronment with a finite carrying capacity. It is assumed that one individual at a time is
born, immigrates or dies, see, for instance, Lande, Engen and Saether [26]. In order
to study the impact of immigration or births, it is possible to either view the immi-
gration rate as a perturbation parameter of an isolated population, or the birth rate
as a perturbation parameter of a sink population in which no individuals are born.
The first analysis depends heavily on the ratio between the birth and death rates for
the null model, whereas the second analysis involves the corresponding ratio of the
immigration and death rates.

The second application is epidemic spread of a disease, reviewed, for instance, in
Hethcote [14] andNåsell [34]. Here one individual at a time gets infected or recovers,
and recovered individuals become susceptible for new infections. We perturb an
isolated population with no immigration, by including the possibility of occasional
infected immigrants to arrive, and obtain a special case of the population dynamics
model with occasional immigration.

The third application is population genetic models, treated extensively in Crow
and Kimura [7] and Ewens [9]. We focus in particular on models with overlapping
generations, introduced by Moran [27]. These Moran type models describe the time
dynamics of the genetic composition of a population, represented as the frequency
distribution of two variants of a certain gene. It is assumed that one copy of the
gene is replaced for one individual at a time, and the model includes genetic drift,
mutation, and various types of selection. Themutation rates between the two variants
are perturbed, and the analysis depends heavily on the mutation rates and selection
scheme of the unperturbed model.

The general setting of perturbed semi-Markov birth-death processes used in the
paper can be motivated as follows: First, it makes it possible to consider models
where inter-event times have more general non-geometric/non-exponential distribu-
tions. Second, the semi-Markov setting is a necessary element of the proposedmethod
of sequential phase space reduction, which yields effective recurrent algorithms for
computing asymptotic expansions. Third, the proposed method has a universal char-
acter. We are quite sure that it can be applied to more general models, for example,
to meta-population models with several sub-populations possessing birth-death-type
dynamics.
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In this paper, we present asymptotic expansions of the second order and give
explicit formulas for the coefficients of these expansions. The coefficients of such
asymptotic expansions have a clear meaning. The first coefficients describe the
asymptotic behaviour of stationary and quasi-stationary probabilities and their con-
tinuity properties with respect to small perturbations of transition characteristics of
the corresponding semi-Markov birth-death processes. The second coefficients deter-
mine sensitivity of stationary and quasi-stationary probabilities with respect to small
perturbations of transition characteristics.

However, it is worth to note that the proposed method can also be used for con-
structions of asymptotic expansions of higher orders, which also can be useful and
improve accuracy of the numerical computations based on the corresponding asymp-
totic expansions, especially, for the models, where actual values of the perturbation
parameter are not small enough to neglect the high order terms in the corresponding
asymptotic expansions.

We refer here to the book by Gyllenberg and Silvestrov [13], where one can find
results on asymptotic expansions for stationary and quasi-stationary distributions for
perturbed semi-Markov processes, that created the background for our studies. Other
recent books containing results on asymptotic expansions for perturbed Markov
chains and semi-Markov processes are Korolyuk, V.S. and Korolyuk, V.V. [23],
Stewart [42, 43], Konstantinov, Gu, Mehrmann and Petkov [22], Bini, Latouche
and Meini [4], Koroliuk and Limnios [24], Yin and Zhang [48, 49], Avrachenkov,
Filar and Howlett [3], and Silvestrov, D. and Silvestrov, S. [41]. Readers can find
comprehensive bibliographies of this research area in the above books, the papers
by Silvestrov, D. and Silvestrov, S. [39], Petersson [36], the doctoral dissertation of
Petersson [37], and book Silvestrov, D. and Silvestrov, S. [41].

The paper includes 8 sections. In Sect. 11.2, we give examples of perturbed pop-
ulation dynamics, epidemic and population genetic models, which can be described
in the framework of birth-death-type Markov chains and semi-Markov processes. In
Sect. 11.3, we introduce a more general model of perturbed semi-Markov birth-death
processes, define stationary and conditional quasi-stationary distributions for such
processes and formulate basic perturbation conditions. In Sect. 11.4, we illustrate this
framework for the biological models of Sect. 11.2. In Sect. 11.5, we present time-
space screening procedures of phase space reduction for perturbed semi-Markov
processes and recurrent algorithms for computing expectations of hitting times and
stationary and conditional quasi-stationary distributions for semi-Markov birth-death
processes. In Sect. 11.6, we describe algorithms for construction of the second order
asymptotic expansions for stationary and conditional quasi-stationary distributions
of perturbed semi-Markov birth-death processes. In Sect. 11.7, we apply the above
asymptotic results to the perturbed birth-death models of biological nature defined
in Sect. 11.2, and present results of related numerical studies. In Sect. 11.8, we give
concluding remarks and comments.
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11.2 Examples of Perturbed Birth-Death Processes

In this section, we consider a number of examples of perturbed birth-death processes
that represent the time dynamics of a biological system, such as size variations of a
population with a finite carrying capacity, the spread of an epidemic, or changes of
the genetic composition of a population.

We let η(ε)(t) ∈ X = {0, . . . , N } denote the value of the process at time t ≥ 0,
with N a fixed (and typically large) positive integer that corresponds to the size or
maximal size of the population. The perturbation parameter ε ∈ (0, ε0] is typically
small. It either represents an immigration rate for an almost isolated population, or
the mutation rate of a population in which several genetic variants segregate.

We assume that η(ε)(t) is a piecewise constant and right-continuous semi-Markov
process, with discontinuities at time points

ζ (ε)
n = κ

(ε)
1 + · · · + κ(ε)

n , n = 0, 1, . . . . (11.1)

At inner points (0 < η(ε)(t) < N ) the process changes by one unit up or down. This
either corresponds to birth or death of one individual, recovery or infection of one
individual, or a change of the population’s genetic decomposition.At boundary points
(η(ε)(t) ∈ {0, N }), any jump out of the state space is projected back to X, so that, for
instance, a “jump” from 0 ends at 0 or 1.

The time κ(ε)
n between the n:th and (n + 1):th jumps of η(ε)(t) will be referred to

as the n:th transition time. Its distribution function

F (ε)
i (t) = P{κ(ε)

n ≤ t/η(ε)(ζ
(ε)
n−1) = i} (11.2)

only depends on the state i ∈ X from which a jump occurs.
In this section, we consider two examples of transition time distributions (11.2).

The first one is geometric,

F (ε)
i ∼ Ge [λi (ε)] =⇒ F (ε)

i (t) = 1 − [1 − λi (ε)]
[t] , (11.3)

where [t] is the integer part of t and 0 < λi (ε) ≤ 1 represents the probability that a
jump occurs in one time step. The second example corresponds to a continuous time
Markov process, with an exponential transition time distribution

F (ε)
i ∼ Exp [λi (ε)] =⇒ F (ε)

i (t) = 1 − e−λi (ε)t , (11.4)

with 0 < λi (ε) < ∞ the rate at which a jump occurs. It is convenient to decompose

λi (ε) = λi,−(ε) + λi,+(ε) (11.5)

as a sum of two terms, where λi,−(ε) represents the probability of death in one time
step in (11.3), or the rate at which a death occurs in (11.4) (i → i − 1 when i > 0,
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0 → 0 when i = 0). Similarly, λi,+(ε) is the probability or rate of a birth event
(i → i + 1 when i < N , N → N when i = N ). For both models (11.3) or (11.4),
η(ε)

n = η(ε)(ζ (ε)
n ), n = 0, 1, 2, . . . is an embedded discrete timeMarkov chain, with

transition probabilities

pi,+(ε) = 1 − pi,−(ε) = λi,+(ε)

λi (ε)
(11.6)

of jumping upwards or downwards.
It is assumed that X is one single class of communicative states for each ε > 0.

The behaviour of the limiting ε = 0 model will satisfy one of the following three
conditions:

H1 : The ε = 0model has one classX of communicative states,
H2 : The ε = 0model has one absorbing state 0 and one class

0X = X \ {0} of communicative transient states,
H3 : The ε = 0model has two absorbing states 0 and N , and one

class 0,NX = X \ {0, N } of communicative transient states.

(11.7)

These three perturbation scenarios can be rephrased in terms of the birth and death
rates (11.5) as follows:

H1 : λ0,+(0) > 0, λN ,−(0) > 0,
H2 : λ0,+(0) = 0, λN ,−(0) > 0,
H3 : λ0,+(0) = 0, λN ,−(0) = 0.

(11.8)

This will be utilised in Sects. 11.2.1–11.2.3 in order to characterise the various
perturbed models that we propose.

11.2.1 Perturbed Population Dynamics Models

Let N denote the maximal size of a population, and let η(ε)(t) be its size at time t .
In order to model the dynamics of the population, we introduce births, deaths, and
immigration from outside, according to a parametric model with

λi,+(ε) = λi

[
1 − α1

(
i

N

)θ1
]

+ ν

[
1 −

(
i

N

)θ2
]

(11.9)

and

λi,−(ε) = μi

[
1 + α2

(
i

N

)θ3
]

. (11.10)
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For a small population (i 	 N ), we interpret the three parameters λ > 0, μ > 0
and ν > 0 as a birth rate per individual, a death rate per individual, and an immi-
gration rate, whereas αk, θk are density regulation parameters that model decreased
birth/immigration and increased death for a population close to itsmaximal size. They
satisfy θk > 0, α1 ≤ 1, and α1, α2 ≥ 0, where the last inequality is strict for at least
one of α1 and α2. A more general model would allow birth, death, and immigration
rates to vary non-parametrically with i .

The expected growth rate of the population, when 0 < i < N , is

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

] = Δt
[
λi,+(ε) − λi,−(ε)

]
= Δt

{
λi

[
1 − α1

(
i
N

)θ1
]

+ ν
[
1 − (

i
N

)θ2
]

− μi
[
1 + α2

(
i
N

)θ3
]}

,

whereΔt = 1 in discrete time (11.3), andΔt > 0 is infinitesimal in continuous time
(11.4). When θ1 = θ2 = θ3 = θ , this expression simplifies to

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

]
= Δt

{
λi

[
1 − α1

(
i
N

)θ
]

− μi
[
1 + α2

(
i
N

)θ
]}

+ν
[
1 − (

i
N

)θ
]

= Δt ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(λ − μ)i
[
1 − α1λ+α2μ

λ−μ

(
i
N

)θ
]

+ν
[
1 − (

i
N

)θ
]
, if λ 
= μ

−μi(α1 + α2)
(

i
N

)θ + ν
[
1 − (

i
N

)θ
]
, if λ = μ.

(11.11)

We shall consider two perturbation scenarios. The first one has

H2 : ν = ν(ε) = ε, (11.12)

whereas all other parameters are kept fixed, not depending on ε. It is also possible to
consider more general nonlinear functions ν(ε), but this will hardly add more insight
to how immigration affects population dynamics.

The unperturbed ε = 0 model corresponds to an isolated population that only
increases through birth events. For small ε, we can think of a population that resides
on an island and faces subsequent extinction and recolonisation events. After the
population temporarily dies out, the island occasionally receives new immigrants at
rate or probability ε. We shall find in Sect. 11.4.1 that for small migration rates ε,
the properties of the model are highly dependent on whether the basic reproduction
number

R0 = λ

μ
(11.13)

exceeds 1 or not.
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A second perturbation scenario has a birth rate

H1 : λ = λ(ε) = ε (11.14)

that equals ε, whereas all other parameters are kept fixed, not depending on ε. Again,
more general nonlinear functions λ(ε) can be studied, but for simplicity assume that
(11.14) holds. The unperturbed ε = 0 model corresponds to a sink population that
only increases through immigration, and its properties depend heavily on ν/μ.

11.2.2 Perturbed Epidemic Models

In order to model an epidemic in a population of size N , we let η(ε)(t) refer to
the number of infected individuals at time t , whereas the remaining N − η(ε)(t) are
susceptible. We assume that

λi,+(ε) = λi

(
1 − i

N

)
+ ν(N − i), (11.15)

and
λi,−(ε) = μi, (11.16)

where the first parameter λ(N − 1)/N ≈ 〈 is the total contact rate between each
individual and the other members of the population. The first term on the right
hand side of (11.15) may be written as the product of the force of infection λi/N
caused by i infected individuals, and the number of susceptibles N − i . The second
parameter of the model, ν, is the contact rate between each individual and the group
of infected ones outside of the population. The third parameter μ is the recovery
rate per individual. It may also include a combined death and birth of an infected
and susceptible individual. The model in (11.15)–(11.16) is an SIS-epidemic, since
infected individuals become susceptible after recovery. It is essentially a special case
of (11.9)–(11.10), with θ1 = θ2 = θ3 = 1, α1 = 1 and α2 = 0, although immigration
is parameterised differently in (11.9) and (11.15).

Assume that the external contact rate

H2 : ν = ν(ε) = ε (11.17)

equals the perturbation parameter, whereas all other parameters are kept fixed, not
dependingon ε. The unperturbed ε = 0model refers to an isolated populationwithout
external contagion. The epidemic will then, sooner or later, die out and reach the only
absorbing state 0.

Weiss and Dishon [46] first formulated the SIS-model as a continuous time birth-
death Markov process (11.4) without immigration (ε = 0). It has since then been
extended in a number of directions, see, for instance, Cavender [5], Kryscio and



196 D. Silvestrov et al.

Lefévre [25], Jacquez and O’Neill [18], Jacquez and Simon [19], Nåsell [29, 30] and
Allen and Burgin [2]. The quasi-stationary distribution of η(ε)(t) is studied in several
of these papers. In this work, we generalise previously studied models of epidemic
spread by treating discrete and continuous time in a unified manner through semi-
Markov processes.

The expected growth rate of the null model ε = 0 satisfies

E
[
η(0)(t + Δt) − η(0)(t)|η(0)(t) = i

] = Δt · ri

(
1 − i

K (0)

)
, (11.18)

if 0 < i < N , when the basic reproduction ratio R0 = λ/μ exceeds 1. This implies
that the expected number of infected individuals follows Verhulst’s logistic growth
model (Verhulst [45]), with intrinsic growth rate r = μ(R0 − 1), and a carrying
capacity K (0) = N (1 − R−1

0 ) of the environment.

11.2.3 Perturbed Models of Population Genetics

Let N be a positive even integer, and consider a one-sex population with N/2 indi-
viduals, each one of which carries two copies of a certain gene. This gene exists in
two variants (or alleles); A1 and A2. Let η(ε)(t) be the number of gene copies with
allele A1 at time t . Consequently, the remaining N − η(ε)(t) gene copies have the
other allele A2 at time t . At each moment ζ (ε)

n of jump in (11.1), a new gene copy
replaces an existing one, so that

η(ε)(ζ (ε)
n ) =

⎧⎨
⎩

η(ε)(ζ (ε)
n −) + 1, if A1replaces A2,

η(ε)(ζ (ε)
n −), if Akreplaces Ak,

η(ε)(ζ (ε)
n −) − 1, if A2replaces A1.

(11.19)

In discrete time (11.3), we define λi j (ε) as the probability that the number of A1

alleles changes from i to j when a gene copy is replaced, at each time step. In
continuous time (11.4), we let λi j (ε) be the rate at which the number of A1 alleles
changes from i to j when a gene copy replacement occurs. Let x∗∗ refer to the
probability that the new gene copy has variant A1 when the fraction of A1-alleles
before replacement is x = i/N . We further assume that the removed gene copy is
chosen randomly among all N gene copies, with equal probabilities 1/N , so that

λi j (ε) =
⎧⎨
⎩

x∗∗(1 − x), j = i + 1,
(1 − x∗∗)x, j = i − 1,
1 − x∗∗(1 − x) − (1 − x∗∗)x, j = i.

(11.20)

Notice that in order to make η(ε)(t) a semi-Markov process of birth-death type that
satisfies (11.6), we do not regard instances when the new gene copy replaces a gene
copy with the same allele as a moment of jump, if the current number i of A1 alleles



11 Nonlinearly Perturbed Birth-Death-Type Models 197

satisfies 0 < i < N . That is, the second line on the right hand side of (11.19) is only
possible in a homogeneous population where all gene copies have the same allele
A1 or A2, and therefore λi i (ε) is not included in the probability or rate λi (ε) to leave
state i in (11.5), when 0 < i < N .

The choice of x∗∗ will determine the properties of the model. The new gene copy
is formed in two steps. In the first step, a pair of genes is drawn randomly with
replacement, so that its genotype is A1A1, A1A2 and A2 A2 with probabilities x2,
2x(1 − x) and (1 − x)2 respectively. Since the gene pair is drawn with replacement,
this corresponds to a probability 2/N that the two genes originate from the same
individual (self fertilisation). A gene pair survives with probabilities proportional
to 1 + s1, 1 and 1 + s2 for these three genotypes, where 1 + s1 ≥ 0 and 1 + s2 ≥ 0
determine the fitnesses of genotypes A1A1 and A2 A2 relative to that of genotype
A1A2. This is repeated until a surviving gene pair appears, from which a gene copy
is picked randomly. Consequently, the probability is

x∗ = 1 · (1 + s1)x2 + 1
2 · 2x(1 − x)

(1 + s1)x2 + 2x(1 − x) + (1 + s2)(1 − x)2
(11.21)

that the chosen allele is A1. In the second step, before the newly formed gene copy
is put into the population, an A1 allele mutates with probability u1 = P(A1 → A2),
and an A2 allele with probability u2 = P(A2 → A1). This implies that

x∗∗ = (1 − u1)x∗ + u2(1 − x∗). (11.22)

By inserting (11.22) into (11.20), and (11.20) into (11.6) we get a semi-Markov
process of Moran type that describes the time dynamics of two alleles in a one-sex
population in the presence of selection and mutation. A special case of it was origi-
nally introduced byMoran [27], and some of its properties can be found, for instance,
in Karlin and McGregor [20] and Durrett [8]. The model incorporates a number of
different selection scenarios. A selectively neutral model corresponds to all three
genotypes having the same fitness (s1 = s2 = 0), for directional selection, one of
the two alleles is more fit than the other (s1 < 0 < s2 or s1 > 0 > s2), an under-
dominant model has a heterozygous genotype A1A2 with smaller fitness than the
two homozygous genotypes A1A1 and A2 A2 (s1, s2 > 0), whereas overdominance
or balancing selection means that the heterozygous genotype is the one with highest
fitness (s1, s2 < 0).

In continuous time (11.4), the expected value of the Moran model satisfies a
differential equation
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E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = N x

] = Δt
[
λi,+(ε) − λi,−(ε)

]
= Δt [x∗∗(1 − x) − x(1 − x∗∗)]
= Δt (x∗∗ − x)

= Δt [(1 − u1 − u2)x∗ + u2 − x]

= Δt
[
(1 − u1 − u2)

x+s1x2

1+s1x2+s2(1−x)2
+ u2 − x

]
=: Δt

[
N−1m(x) + o(N−1)

]
,

(11.23)

whenever 0 < x < 1, with Δt > 0 infinitesimal. The discrete time Moran model
(11.3) also satisfies (11.23), interpreted as a difference equation, with Δt = 1. In
the last step of (11.23), we assumed that all mutation and selection parameters are
inversely proportional to population size;

u1 = U1/N ,

u2 = U2/N ,

s1 = S1/N ,

s2 = S2/N ,

(11.24)

and introduced an infinitesimal drift function

m(x) = U2(1 − x) − U1x + [(S1 + S2)x − S2] x(1 − x).

The corresponding infinitesimal variance function v(x) = 2x(1 − x) follows simi-
larly from (11.24), according to

V
[
η(ε)(t + Δt)|η(ε)(t) = N x

] = Δt
[
λi,+(ε) + λi,−(ε) + O(N−1)

]
= Δt

[
x∗∗(1 − x) + x(1 − x∗∗) + O(N−1)

]
= Δt

[
2x(1 − x) + O(u1 + u2 + |s1| + |s2|) + O(N−1)

]
=: Δt

[
v(x) + O(N−1)

]
.

(11.25)

Assume that N is fixed, whereas the perturbation parameter ε varies. We let the two
selection parameters s1 and s2, and hence also the rescaled selection parameters S1
and S2, be independent of ε, whereas the rescaled mutation parameters satisfy

U1 = U1(ε) = C1 + D1ε,

U2 = U2(ε) = C2 + D2ε,
(11.26)

for some non-negative constants C1, D1, C2, D2, where at least one of D1 and D2 is
strictly positive. It follows from (11.8) and (11.20) that the values of 0 ≤ C1, C2 < 1
will determine the properties of the unperturbed ε = 0 model, according to the three
distinct scenarios

H1 : C1 > 0, C2 > 0,
H2 : C1 > 0, C2 = 0,
H3 : C1 = 0, C2 = 0.

(11.27)
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The null model ε = 0 incorporates two-way mutations A1 → A2 and A2 → A1 for
Perturbation scenarioH1,with no absorbing state, it has one-waymutations A1 → A2

for Perturbation scenario H2, with i = 0 as absorbing state, and no mutations for
Perturbation scenario H3, with i = 0 and i = N as the two absorbing states.

11.3 Nonlinearly Perturbed Semi-Markov Birth-Death
Processes

In this section, we will generalise the framework of Sect. 11.2 and introduce a model
of perturbed semi-Markov birth-death processes, define stationary and conditional
quasi-stationary distributions for such processes and formulate basic perturbation
conditions.

11.3.1 Perturbed Semi-Markov Birth-Death Processes

Let (η(ε)
n , κ(ε)

n ), n = 0, 1, . . . be, for every value of a perturbation parameter ε ∈
(0, ε0], where 0 < ε0 ≤ 1, a Markov renewal process, i.e., a homogeneous Markov
chain with the phase space X × [0,∞), where X = {0, 1, . . . , N }, an initial dis-
tribution p̄(ε) = 〈p(ε)

i = P{η(ε)
0 = i, κ(ε)

0 = 0} = P{η(ε)
0 = i}, i ∈ X〉 and transition

probabilities, defined for (i, s), ( j, t) ∈ X × [0,∞),

Q(ε)
i j (t) = P{η(ε)

1 = j, κ(ε)
1 ≤ t/η(ε)

0 = i, κ(ε)
0 = s}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F (ε)
0,±(t)p0,±(ε) if j = 0 + 1±1

2 , for i = 0,

F (ε)
i,±(t)pi,±(ε) if j = i ± 1, for 0 < i < N ,

F (ε)
N ,±(t)pN ,±(ε) if j = N − 1∓1

2 , for i = N ,

0 otherwise,

(11.28)

where: (a) F (ε)
i,±(t), i ∈ X are distribution functions concentrated on [0,∞), for every

ε ∈ (0, ε0]; (b) pi,±(ε) ≥ 0, pi,−(ε) + pi,+(ε) = 1, i ∈ X, for every ε ∈ (0, ε0].
In this case, the random sequence η(ε)

n is also a homogeneous (embedded)Markov
chain with the phase space X and the transition probabilities, defined for i, j ∈ X,

pi j (ε) = P{η(ε)
1 = j/η(ε)

0 = i} = Q(ε)
i j (∞)

=

⎧⎪⎪⎨
⎪⎪⎩

p0,±(ε) if j = 0 + 1±1
2 , for i = 0,

pi,±(ε) if j = i ± 1, for 0 < i < N ,

pN ,±(ε) if j = N − 1∓1
2 , for i = N ,

0 otherwise.

(11.29)
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We assume that the following condition holds:

A: pi,±(ε) > 0, i ∈ X, for every ε ∈ (0, ε0].
Condition A obviously implies that the phase space X is a communicative class

of states for the embedded Markov chain η(ε)
n , for every ε ∈ (0, ε0].

We exclude instant transitions and assume that the following condition holds:

B: F (ε)
i,±(0) = 0, i ∈ X, for every ε ∈ (0, ε0].

Let us now introduce a semi-Markov process,

η(ε)(t) = η
(ε)

ν(ε)(t), t ≥ 0, (11.30)

where ν(ε)(t) = max(n ≥ 0 : ζ (ε)
n ≤ t) is the number of jumps in the time interval

[0, t], for t ≥ 0, and ζ (ε)
n are sequential moments of jumps for the semi-Markov

process η(ε)(t). This process has the phase space X, the initial distribution p̄ =
〈pi = P{η(ε)(0) = i}, i ∈ X〉 and transition probabilities Q(ε)

i j (t), t ≥ 0, i, j ∈ X.

Due to the specific assumptions imposed on the transition probabilities p(ε)
i j , i, j ∈

X in relation (11.29), one can refer to η(ε)(t) as a semi-Markov birth-death process.
If F (ε)

i,±(t) = I(t ≥ 1), t ≥ 0, i, j ∈ X, then η(ε)(t) = η
(ε)
[t] , t ≥ 0 is a discrete time

homogeneous Markov birth-death chain embedded in continuous time.
If F (ε)

i j (t) = (1 − e−λi (ε)t ), t ≥ 0, i, j ∈ X (here, 0 < λi (ε) < ∞, i ∈ X), then
η(ε)(t), t ≥ 0 is a continuous time homogeneous Markov birth-death process.

Let us define expectations of transition times, for i, j ∈ X,

ei j (ε) = Ei {κ(ε)
1 I (η

(ε)
1 = j)} =

∫ ∞

0
t Q(ε)

i j (dt) (11.31)

=

⎧⎪⎪⎨
⎪⎪⎩

e0,±(ε) if j = 0 + 1±1
2 , for i = 0,

ei,±(ε) if j = i ± 1, for 0 < i < N ,

eN ,±(ε) if j = N − 1∓1
2 , for i = N ,

0 otherwise,

(11.32)

and
ei (ε) = Eiκ

(ε)
1 = ei,−(ε) + ei,+(ε). (11.33)

Here and henceforth, the notationsPi andEi are used for conditional probabilities
and expectations under the condition η(ε)(0) = i .

We also assume that the following condition holds:

C: ei,±(ε) < ∞, i, j ∈ X, for ε ∈ (0, ε0].
It is useful to note that conditions B and C imply that all expectations ei (ε) ∈

(0,∞), i ∈ X.
In the case of discrete time Markov birth-death chain, ei (ε) = 1, i ∈ X, whereas

in the case of continuous time Markov birth-death process, ei (ε) = λ−1
i (ε), i ∈ X.
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Conditions A–C imply that the semi-Markov birth-death process η(ε)(t) is, for
every ε ∈ (0, ε0], ergodic in the sense that the following asymptotic relation holds,

μ
(ε)
i (t) = 1

t

∫ t

0
I (η(ε)(s) = i)ds

a.s.−→ πi (ε) as t → ∞, i ∈ X. (11.34)

The ergodic relation (11.34) holds for any initial distribution p̄(ε) and the stationary
probabilitiesπi (ε), i ∈ Xdonot depend on the initial distribution.Moreover,πi (ε) >

0, i ∈ X and these probabilities are the unique solution of the following system of
linear equations,

πi (ε)e
−1
i (ε) =

∑
j∈X

π j (ε)e
−1
j (ε)p ji (ε), i ∈ X,

∑
i∈X

πi (ε) = 1. (11.35)

11.3.2 Perturbation Conditions for Semi-Markov
Birth-Death Processes

Let us assume that that the following perturbation conditions hold:

D: pi,±(ε) = ∑1+li,±
l=0 ai,±[l]εl + oi,±(ε1+li,±), ε ∈ (0, ε0], for i ∈ X, where:

(a) |ai,±[l]| < ∞, for 0 ≤ l ≤ 1 + li,±, i ∈ X; (b) li,± = 0, ai,±[0] > 0, for 0 <

i < N ; (c) l0,± = 0, a0,±[0] > 0 or l0,+ = 1, a0,+[0] = 0, a0,+[1] > 0, l0,− = 0,
a0,−[0] > 0; (d) lN ,± = 0, aN ,±[0] ≥ 0 or lN ,+ = 0, aN ,+[0] > 0, lN ,− = 1,
aN ,−[0] = 0, aN ,−[1] > 0; (e) oi,±(ε1+li,±)/ε1+li,± → 0 as ε → 0, for i ∈ X.

and

E: ei,±(ε) = ∑1+li,±
l=0 bi,±[l]εl + ȯi,±(ε1+li,±), ε ∈ (0, ε0], for i ∈ X, where:

(a) |bi,±[l]| < ∞, for 0 ≤ l ≤ L + li,±, i ∈ X; (b) li,± = 0, bi,±[0] > 0, for
0 < i < N ; (c) l0,± = 0, b0,±[0] > 0 or l0,+ = 1, b0,+[0] = 0, b0,+[1] > 0,
l0,− = 0, b0,−[0] > 0; (d) lN ,± = 0, bN ,±[0] > 0 or lN ,+ = 0, bN ,+[0] > 0,
lN ,− = 1, bN ,−[0] = 0, bN ,−[1] > 0; (e) ȯi,±(ε1+li,±)/ε1+li,± → 0 as ε → 0, for
i ∈ X.

It is useful to explain the role played by the parameters li,± in conditionsD and E.
These parameters equalise the so-called length of asymptotic expansions penetrating
these conditions.

The length of an asymptotic expansion is defined as the number of coefficients
for powers of ε in this expansion, beginning from the first non-zero coefficient and
up to the coefficient for the largest power of ε in this expansion.

The asymptotic expansions penetrating conditionsD andE can be rewritten in the
following form, pi,±(ε) = ∑1+li,±

l=li,± ai,±[l]εl + oi,±(ε1+li,±), ε ∈ (0, ε0] and ei,±(ε) =∑1+li,±
l=li,± bi,±[l]εl + ȯi,±(ε1+li,±), ε ∈ (0, ε0], for i ∈ X. According to conditions D
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and E, these asymptotic expansions have non-zero first coefficients. Therefore, all
asymptotic expansions penetrating conditionsD andE have the length 2. As we shall
see, this makes it possible to represent the stationary and conditional quasi-stationary
probabilities in the form of asymptotic expansions of the length 2.

Note that conditionsD andE imply that there exists ε′
0 ∈ (0, ε0] such that the prob-

abilities pi,±(ε) > 0, i ∈ X and the expectations ei,±(ε) > 0, i ∈ X for ε ∈ (0, ε′
0].

Therefore, let us just assume that ε′
0 = ε0.

The model assumption, pi,−(ε) + pi,+(ε) = 1, ε ∈ (0, ε0], also implies that the
following condition should hold:

F: ai,−[0] + ai,+[0] = 1, ai,−[1] + ai,+[1] = 0, for i ∈ X.

We also assume that the following natural consistency condition for asymptotic
expansions penetrating perturbation conditions D and E holds:

G: bi,±[0] > 0 if and only if ai,±[0] > 0, for i = 0, N .

There are three basic variants of the model that correspond to (11.7) and (11.8).
For the more general setup of semi-Markov chains in this section, we formulate this
a bit differently and assume that one of the following conditions holds:

H1 : a0,+[0] > 0, aN ,−[0] > 0.

H2 : a0,+[0] = 0, aN ,−[0] > 0.

H3 : a0,+[0] = 0, aN ,−[0] = 0.

The case a0,+[0] > 0, aN ,−[0] = 0 is analogous to the case where condition H2

holds and we omit its consideration.
Condition D implies that there exist limε→0 pi,±(ε) = pi,±(0), i ∈ X and, thus,

there also exist limε→0 pi j (ε) = pi j (0), i, j ∈ X. Condition E implies that there
exist limε→0 ei,±(ε) = ei,±(0), i ∈ X and, thus, there also exist limε→0 ei j (ε) =
ei j (0), i, j ∈ X.

The limiting birth-death type Markov chain η(0)
n with the matrix of transition

probabilities ‖pi j (0)‖ has: (a) one class of communicative states X, if condition
H1 holds, (b) one communicative class of transient states 〈1,N 〉X = X \ {0} and an
absorbing state 0, if conditionH2 holds, and (c) one communicative class of transient
states 〈1,N−1〉X = X \ {0, N } and two absorbing states 0 and N , if conditionH3 holds.

In this paper, we get, under conditions A–G and Hi (for i = 1, 2, 3), asymptotic
expansions for stationary probabilities, as ε → 0,

πi (ε) =
1+l̇i∑
l=l̇i

ci [l]εl + oi (ε
1+l̇i ), i ∈ X, (11.36)

where: (a) l̇i = 0, i ∈ X and the limiting stationary probabilities πi (0) > 0, i ∈
X, if condition H1 holds, (b) l̇i = I (i 
= 0), i ∈ X and π0(0) = 1, πi (0) = 0, i ∈
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〈1,N 〉X, if condition H2 holds, and (c) l̇i = I (i 
= 0, N ), i ∈ X and π0(0), πN (0) >

0, π0(0) + πN (0) = 1, πi (0) = 0, i ∈ 〈1,N−1〉X, if condition H3 holds.
This implies that there is sense to consider so-called conditional quasi-stationary

probabilities, which are defined as,

π̃i (ε) = πi (ε)

1 − π0(ε)
= πi (ε)∑

j∈ 0X
π j (ε)

, i ∈ 〈1,N 〉X, (11.37)

in the case where condition H2 holds, or as,

π̂i (ε) = πi (ε)

1 − π0(ε) − πN (ε)
= πi (ε)∑

j∈ 0,NX
π j (ε)

, i ∈ 〈1,N−1〉X, (11.38)

in the case where condition H3 holds.
We also get, under conditionsA–G andH2, asymptotic expansions for conditional

quasi-stationary probabilities,

π̃i (ε) =
1∑

l=0

c̃i [l]εl + õi (ε), i ∈ 〈1,N 〉X, (11.39)

and, under conditions A–G and H3, asymptotic expansions for conditional quasi-
stationary probabilities,

π̂i (ε) =
1∑

l=0

ĉi [l]εl + ôi (ε), i ∈ 〈1,N−1〉X. (11.40)

The coefficients in the above asymptotic expansions are given by explicit formulas
via coefficients in asymptotic expansions given in initial perturbation conditions D
and E.

As it was mentioned in the introduction, the first coefficients πi (ε) = ci [0],
π̃i (0) = c̃i [0] and π̂i (0) = ĉi [0] describe the asymptotic behaviour of stationary and
quasi-stationary probabilities and their continuity properties with respect to small
perturbations of transition characteristics of the corresponding semi-Markov pro-
cesses. The second coefficients ci [1], c̃i [1] and ĉi [1] determine sensitivity of station-
ary and quasi-stationary probabilities with respect to small perturbations of transition
characteristics.

We also would like to comment the use of the term “conditional quasi-stationary
probability” for quantities defined in relations (11.37) and (11.38). As a matter of
fact, the term “quasi-stationary probability (distribution)” is traditionally used for
limits,

q j (ε) = lim
t→∞Pi {η(ε)(t) = j/η(ε)(s) /∈ A, 0 ≤ s ≤ t}, (11.41)

where A is some special subset of X.
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A detailed presentation of results concerning quasi-stationary distributions and
comprehensive bibliographies of works in this area can be found in the books by
Gyllenberg and Silvestrov [13], Nåsell [34] and Collet, Martínez and SanMartín [6].
We would also like to mention the paper by Allen and Tarnita [1], where one can
find a discussion concerning the above two forms of quasi-stationary distributions
for some bio-stochastic systems.

11.4 Examples of Stationary Distributions

In this section, we will revisit the examples of Sect. 11.2 and illustrate how to com-
pute, approximate and expand the various stationary and conditional quasi-stationary
distributions that were introduced in Sect. 11.3. Since all the models of Sect. 11.2
have a geometric or exponential transition time distribution (11.3)–(11.4), and since
the transition probabilities satisfy (11.28), it follows that the stationary distribution
(11.34)–(11.35) has a very explicit expression,

πi (ε) ∝
{
1, i = 0,
λ0,+(ε)·...·λi−1,+(ε)

λ1,−(ε)·...·λi,−(ε)
, i = 1, . . . , N ,

(11.42)

for 0 < ε ≤ ε0, with a proportionality constant chosen so that
∑N

i=0 πi (ε) = 1.
Our goal is to find a series representation of (11.42). Since themodels of Sect. 11.2

are formulated in terms of the death and birth rates in (11.5), we will assume that
these rates admit expansions

λi,±(ε) =
Li,±∑
l=0

gi,±[l]εl + oi,±(εL+li,±) (11.43)

for ε ∈ (0, ε0], and then check the regularity conditions of Sect. 11.3 that are needed
to hold. From Eqs. (11.3)–(11.4), (11.6), and (11.31), we deduce that

ei,±(ε) = 1

λi (ε)
· λi,±(ε)

λi (ε)
. (11.44)

Inserting (11.43) into (11.44), we find that

gi,−[0] + gi,+[0] > 0 (11.45)

must hold for all i ∈ X in order for the series expansion of ei,±(ε) to satisfy condition
EL . It therefore follows from (11.6) that pi,±(ε) will satisfy perturbation condition
DL , with L + li,+ = L + li,− = min(Li,−, Li,+), and
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ai,±[0] = gi,±[0]
gi,−[0] + gi,+[0] . (11.46)

Because of (11.45) and (11.46), we can rephrase the three perturbation scenariosH1

– H3 of Sect. 11.3.2 as

H1 : g0,+[0] > 0, gN ,−[0] > 0,
H2 : g0,+[0] = 0, gN ,−[0] > 0,
H3 : g0,+[0] = 0, gN ,−[0] = 0,

(11.47)

in agreement with (11.8). Under H2, the exact expression for the conditional quasi-
stationary distribution (11.37) is readily obtained from (11.42). It equals

π̃i (ε) ∝ λ1,+(ε) · . . . · λi−1,+(ε)

λ1,−(ε) · . . . · λi,−(ε)
(11.48)

for i ∈ 0X and 0 < ε ≤ ε0, with the numerator equal to 1 when i = 1, and a pro-
portionality constant chosen so that

∑N
i=1 π̃i (ε) = 1. As ε → 0, this expression con-

verges to

π̃i (0) ∝ λ1,+(0) · . . . · λi−1,+(0)

λ1,−(0) · . . . · λi,−(0)
. (11.49)

If scenario H3 holds, we find analogously that the conditional quasi-stationary dis-
tribution (11.38) is given by

π̂i (ε) ∝ λ1,+(ε) · . . . · λi−1,+(ε)

λ1,−(ε) · . . . · λi,−(ε)
(11.50)

for i ∈0,N X, with a limit

π̂i (0) ∝ λ1,+(0) · . . . · λi−1,+(0)

λ1,−(0) · . . . · λi,−(0)
. (11.51)

11.4.1 Stationary Distributions for Perturbed Population
Dynamics Models

For the population dynamics model (11.9) of Sect. 11.2.1, we considered two per-
turbation scenarios. Recall that the first one in (11.12) has a varying immigration
parameter ν(ε) = ε, whereas all other parameters are kept fixed. Since λ0,−(ε) = 0
andλ0,+(ε) = ε, it follows that g0,−[0] = g0,+[0] = 0, and therefore formula (11.45)
is violated for i = 0. But the properties of η(ε) remain the same if we put λ0,−(ε) = 1
instead. With this modification, formula (11.47) implies that condition H2 of
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Sect. 11.3.2 holds, and hence the ε → 0 limit of the stationary distribution in (11.34)
and (11.42) is concentrated at state 0 (π0(0) = 1).

Let τ (ε)
0 be the time it takes for the population to get temporarily extinct again, after

an immigrant has entered an empty island. It then follows from a slight modification
of Eq. (11.90) in Sect. 11.5.2 and the relation λ0,+(ε) = ε, that a first order expansion
of the probability that the island is empty at stationarity, is

π0(ε) = 1/λ0,+(ε)

1/λ0,+(ε) + E1(τ
(ε)
0 )

= 1/ε

1/ε + E10(ε)
= 1 − E10(ε)ε + o(ε). (11.52)

This expansion is accurate when the perturbation parameter is small (ε 	 1/E10(ε)),
otherwise higher order terms in (11.52) are needed. The value of E10(ε) will be
highly dependent on the value of the basic reproduction number R0 in (11.13). When
R0 > 1, the expected time to extinction will be very large, and π0(ε) will be close
to 0 for all but very small ε. On the other hand, (11.52) is accurate for a larger range
of ε when R0 < 1, since E10(ε) is then small.

In order to find useful approximations of the conditional quasi-stationary distri-
bution π̃i (ε) in (11.48), we will distinguish between whether R0 is larger than or
smaller than 1. When R0 > 1, or equivalently λ > μ, we can rewrite (11.11) as

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

] = Δt · Nm

(
i

N

)
, (11.53)

where
m(x) = r x + ε

N
−

[
r x(0)−θ · x + ε

N

]
xθ (11.54)

is a rescaled mean function of the drift, r = μ(R0 − 1) is the intrinsic growth rate,
or growth rate per capita, of a small population without immigration (ε = 0), and

x(0) =
(

R0 − 1

α1R0 + α2

)1/θ

.

We assume that α1 and α2 are large enough so that x(0) < 1. A sufficient condition
for this is α1 + α2 = 1. The carrying capacity K (ε) = N x(ε) of the environment
is the value of i such that the right hand side of (11.53) equals zero. We can write
x = x(ε) as the unique solution of m(x) = 0, or equivalently

xθ = r x + εN−1

r x(0)−θ x + εN−1
,

with x(ε) ↘ x(0) as ε → 0. The conditional quasi-stationary distribution (11.48)
will be centred around K (ε). In order tofind a good approximation of this distribution,
we look at the second moment
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E
{[

η(ε)(t + Δt) − η(ε)(t)
]2 |η(ε)(t) = i

}
= Δt

[
λi,+(ε) + λi,−(ε)

]
= Δt · Nv

(
i
N

)
,

of the drift of η(ε), with

v(x) = λx(1 − α1xθ ) + ε

N
(1 − xθ ) + μx(1 + α2xθ ). (11.55)

When N is large, we may approximate the conditional quasi-stationary distribution

π̃i (ε) ≈ ∫ i+
i− f (ε)(k)dk

= ∫ i+
i− f (0)(k)dk + ∫ i+

i−
d f (ε)(k)

dε

∣∣∣
ε=0

dk · ε + o(ε),
(11.56)

by integrating a density function f (ε) on [0, N ] between i− = max(0, i − 1/2) and
i+ = min(N , i + 1/2). This density function can be found through a diffusion argu-
ment as the stationary density

f (ε)(k) ∝ 1
Nv( k

N )
exp

(
2

∫ k
K (ε)

Nm(
y
N )

Nv( y
N )

dy
)

∝ 1
v( k

N )
exp

(
2

∫ k
K (ε)

m(
y
N )

v( y
N )

dy
) (11.57)

of Kolmogorov’s forward equation, with a proportionality constant chosen so that∫ N
0 f (ε)(k)dk = 1 (see, for instance, Chap. 9 of Crow andKimura [7]). A substitution
of variables x = y/N in (11.57), and a Taylor expansion ofm(x) around x(ε) reveals
that the diffusion density has approximately a normal distribution

f (ε) ∼ N

(
K (ε), N

v [x(ε)]

2|m ′ [x(ε)] |
)

. (11.58)

Expansion (11.56) is valid for small migration rates ε, and its linear term quantifies
how sensitive the conditional quasi-stationary distribution is to a small amount of
immigration.

It follows from (11.53) that the expected population size

E
[
η(0)(t + Δt) − η(0)(t)|η(0)(t) = i

] = Δt · ri

[
1 −

(
i

K (0)

)θ
]

(11.59)

of an isolated population varies according to a theta logistic model (Gilpin and Ayala
[12]), which is a special case of the generalised growth curve model in Tsoularis
and Wallace [44]. The theta logistic model has a carrying capacity K (0) of the
environment to accommodate new births. When θ = 1, we obtain the logistic growth
model of Verhulst [45]. Pearl [35] used such a curve to approximate population
growth in the United States, and Feller [10] introduced a stochastic version of the



208 D. Silvestrov et al.

logistic model in terms of a Markov birth-death process (11.4) in continuous time.
Feller’s approach has been extended for instance by Kendall [21], Whittle [47], and
Nåsell [31, 33]. In particular, Nåsell studied the quasi-stationary distribution (11.41)
of η(ε), with A = {1, . . . , N }. In this paper the previously studied population growth
models are generalised in two directions; we consider semi-Markov processes and
allow for theta logistic expected growth.

When 0 < R0 < 1, or equivalently 0 < λ < μ, we rewrite (11.11) as

E
[
η(ε)(t + Δt) − η(ε)(t)|η(ε)(t) = i

]
= Δt ·

[
ν − ri − (ν + ri x̃−θ )

(
i
N

)θ
]
,

(11.60)

where r = (1 − R0)μ quantifies per capita decrease for a small population with-
out immigration, and x̃ = [(1 − R0)/(α1R0 + α2)]

1/θ is the fraction of the maximal
population size at which the per capita decrease of an isolated ε = 0 population has
doubled to 2r . For large N , we can neglect all O(N−θ ) terms, and it follows from
(11.49) that

π̃i (ε) ≈ 1

log(1 − R0)
· Ri

0

i
+ c̃i [1]ε + o(ε),

for i = 1, . . . , N .
Recall that the second perturbation scenario (11.14) has a varying birth rate 〈(ε) =

ε, whereas all other parameters are kept fixed, not depending on ε. In view of (11.47),
it satisfies condition H1 of Sect. 11.3.2. Suppose N is large. If ν = o(N ), it follows
from (11.42) that the stationary distribution for small values of ε is well approximated
by

πi (ε) ≈ (ν/μ)i

i ! e−ν/μ + ci [1]ε + o(ε)

for i = 0, . . . , N , a Poisson distribution with mean ν/μ, corrupted by a sensitivity
term ci [1]ε due to births. If ν = V N , the carrying capacity of the environment is
K (ε) = N x(ε), where x = x(ε) is the value of i/N in (11.60) such that the right
hand side vanishes, i.e. the unique solution of the equation

r x + V xθ + r x̃−θ xθ+1 = V,

with r = r(ε) = μ − ε. The stationary distribution (11.42) is well approximated by a
discretised normal distribution (11.56)–(11.58), but with a mean drift function m(x)

obtained from (11.60), and a variance function v(x) derived similarly.
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11.4.2 Stationary Distributions for Perturbed Epidemic
Models

For the epidemic models of Sect. 11.2.2, we considered one perturbation scenario
(11.18), with a varying external contact rate ν(ε) = ε. When the basic reproduction
model R0 = μ/μ exceeds one, the expected growth rate follows a logistic model
(11.18) when ε = 0, which is a special case of the theta logistic mean growth curve
model (11.59), with θ = 1. When R0 < 1, we similarly write the expected popu-
lation decline as in (11.60), with θ = 1. Since the SIS model is a particular case
of the population dynamic models of Sect. 11.2.1 (Nåsell, [34]), the stationary and
conditional quasi-stationary distributions are approximated in the same way as in
Sect. 11.4.1.

11.4.3 Stationary Distributions for Perturbed Models of
Population Genetics

For the population genetics model of Sect. 11.2.3, we recall there were three different
perturbation scenarios (11.27). For all of them, the rescaled mutation rates U1(ε) =
NP(A1 → A2) and U2(ε) = NP(A2 → A1) between the two alleles A1 and A2 are
linear functions of ε.

The stationary distribution is either found by first inserting (11.20) into (11.5),
and then (11.5) into (11.42), or, for large N , it is often more convenient to use a
diffusion approximation,

πi (ε) ≈
∫ xi,+

xi,−
f (ε)(x)dx . (11.61)

It is obtained by integrating the density function

f (ε)(x) ∝ 1
v(x)

exp
(
2

∫ x
1/2

m(y)

v(y)
dy

)
∝ (1 − x)−1+U1 x−1+U2 exp

[
1
2 (S1 + S2)x2 − S2x

] (11.62)

between xi,− = max [0, (i − 1/2)/N ] and xi,+ = min [1, (i + 1/2)/N ]. This den-
sity is defined in terms of the infinitesimal drift and variance functions m(x) and
v(x) in (11.23)–(11.25), with a constant of proportionality chosen to ensure that∫

f (ε)(x)dx = 1. See, for instance, Chap. 9 of Crow and Kimura [7] and Chap.7 of
Durrett [8] for details.

For H1, we use this diffusion argument to find an approximate first order series
expansion

πi (ε) ≈
∫ xi,+

xi,−
f (0)(x)dx +

∫ xi,+

xi,−

d f (ε)(x)

dε

∣∣∣∣
ε=0

dx · ε + o(ε)
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of the stationary distribution by inserting (11.26) into (11.61)–(11.62). The null
density f (0)(x) is defined by (11.62), with C1 and C2 instead of U1 and U2. For a
neutral model (S1 = S2 = 0), the stationary null distribution is approximately beta
with parameters C1 and C2, and expected value C2/(C1 + C2). A model with S1 >

0 > S2 corresponds to directional selection, with higher fitness for A1 compared
to A2. It can be seen from (11.62) that the stationary null distribution is further
skewed to the right than for a neutral model. A model with balancing selection or
overdominance has negative S1 and S2, so that the heterozygous genotype A1A2 has
a selective advantage. The stationary null distribution will then have a peak around
S2/(S1 + S2). On the other hand, for an underdominant model where S1 and S2 are
both positive, the heterozygous genotype will have a selective disadvantage. Then
S2/(S1 + S2) functions as a repelling point of the stationary null distribution.

For scenarioH2, the null model has one absorbing state 0. In analogywith (11.52),
we find that the series expansion of the stationary probability of no A1 alleles in the
population is

π0(ε) = 1 − E1(τ
(ε)
0 ) · D2ε

N
+ o(ε)

when D2 > 0, for small values of the perturbation parameter. Here D2ε/N is the
probability that a mutation A2 → A1 occurs in a homogeneous A2 population, and
τ

(ε)
0 is the time it takes for the A1 allele to disappear again.
Because of the singularity at i = 0 for small ε, we avoid the diffusion argument

andfind the conditional quasi-stationary distribution (11.37) directly byfirst inserting
(11.20) into (11.5), and then (11.5) into (11.48)–(11.49). After some computations,
this leads to

π̃i (ε) ≈ c̃1[0]i−1
(
1 − i−1

N

)C1−1
exp

[
1
2 (S1 + S2)

i−1
N

i
N − S2

i−1
N

]
+ c̃1[1]ε + o(ε)

(11.63)

for i = 1, . . . , N , where c̃1[0] is chosen so that∑N
i=1 π̃i (0) = 1, and c̃1[1]will addi-

tionally involve D1 and D2. If D2 = 0, we have that π0(ε) = 1 for all 0 < ε ≤ ε0, so
that the conditional quasi-stationary distribution (11.37) is not well defined. How-
ever, the time to reach absorption is very large for small U1 > 0. It is shown in
Hössjer, Tyvand and Miloh [17] that η(ε) may be quasi-fixed for a long time at the
other boundary point i = N , before eventual absorption at i = 0 occurs.

For scenario H3, the null model is mutation free, and the asymptotic distribution

Pj (0; i) = lim
t→∞Pi (η

(0)(t) = j)

is supported on the two absorbing states ( j ∈ {0, N }), and it is dependent on the state
i at which the process starts. For a neutral model (s1 = s2 = 0), we have that

PN (0; i) = 1 − P0(0; i) = i

N
. (11.64)
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A particular case of directional selection is multiplicative fitness, with 1 + s1 =
(1 + s2)−1. It is mathematically simpler since selection operates directly on alleles,
not on genotypes, with selective advantages 1 and 1 + s2 for A1 and A2. It follows
for instance from Sect. 6.1 of Durrett [8] that

PN (0; i) = 1 − P0(0; i) = 1 − (1 + s2)i

1 − (1 + s2)N
(11.65)

for multiplicative fitness. Notice that P0(0; i) and PN (0; i) will differ from π j (0) =
limε→0 π0(ε) at the two boundaries. Indeed, by ergodicity (11.34) for each ε > 0,
the latter two probabilities are not functions of i = η(0)(0). From (11.61)–(11.62),
we find that

πN (0) = 1 − π0(0) ≈ D2

exp
[− 1

2 (S1 − S2)
]

D1 + D2
. (11.66)

Similarly as in (11.63), we find after some computations that the conditional quasi-
stationary distribution (11.38) admits an approximate expansion

π̂i (ε) ≈ ĉ1[0]i−1
(
1 − i−1

N

)−1
exp

[
1
2 (S1 + S2)

i−1
N

i
N − S2

i−1
N

]
+ ĉ1[1]ε + o(ε)

(11.67)

for i = 1, . . . , N − 1, where ĉ1[0] is chosen so that
∑N−1

i=1 π̂i (0) = 1, and ĉ1[1]
will additionally involve D1 and D2. Notice that the limiting fixation probabilities
in (11.66) are functions of the mutation probability ratio D1/(D1 + D2), but the
limiting conditional quasi-stationary distribution π̂i (0) in (11.67) does not involve
any of D1 or D2.

11.5 Reduced Semi-Markov Birth-Death Processes

In this section, we present a time-space screening procedure of phase space reduction
for perturbed semi-Markov birth-death processes and recurrent algorithms for com-
puting expectations of hitting times and stationary and conditional quasi-stationary
distributions for such processes.

11.5.1 Phase Space Reduction for Semi-Markov Birth-Death
Processes

Let us assume that N ≥ 1. Let 0 ≤ k ≤ i ≤ r ≤ N and define the reduced phase
space 〈k,r〉X = {k, . . . , r}. Note that, by the definition, 〈0,N 〉X = X. Let us also assume
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that the initial distribution p̄(ε) is concentrated on the phase space 〈k,r〉X, i.e. p(ε)
i =

0, i /∈ 〈k,r〉X.
Let us define the sequential moments of hitting the reduced space 〈k,r〉X, by the

embedded Markov chain η(ε)
n ,

〈k,r〉ξ (ε)
n = min(k > 〈k,r〉ξ (ε)

n−1, η
(ε)
k ∈ 〈k,r〉X), n ≥ 1, 〈k,r〉ξ (ε)

0 = 0. (11.68)

Now, let us define the random sequence,

(〈k,r〉η(ε)
n , 〈k,r〉κ(ε)

n ) =
⎧⎨
⎩

(η
(ε)
0 , 0) for n = 0,

(η
(ε)

〈k,r〉ξ (ε)
n

,
∑〈k,r〉ξ (ε)

n

l= 〈k,r〉ξ (ε)
n−1+1

κ
(ε)
l ) for n ≥ 1.

(11.69)

This sequence is a Markov renewal process with a phase space 〈k,r〉X × [0,∞),
the initial distribution p̄(ε), and transition probabilities defined for (i, s), ( j, t) ∈
X × [0,∞),

〈k,r〉 Q(ε)
i j (t) = P{ 〈k,r〉η(ε)

1 = j, 〈k,r〉κ(ε)
1 ≤ t/ 〈k,r〉η(ε)

0 = i, 〈k,r〉κ(ε)
0 = s}. (11.70)

We define a reduced semi-Markov process by

〈k,r〉η(ε)(t) = 〈k,r〉η(ε)

〈k,r〉ν(ε)(t), t ≥ 0, (11.71)

where 〈k,r〉ν(ε)(t) = max(n ≥ 0 : 〈k,r〉ζ (ε)
n ≤ t) is the number of jumps in the time

interval [0, t], for t ≥ 0, and 〈k,r〉ζ (ε)
n = 〈k,r〉κ(ε)

1 + · · · + 〈k,r〉κ(ε)
n , n = 0, 1, . . . are

sequential moments of jumps, for the semi-Markov process 〈k,r〉η(ε)(t).
In particular, the initial semi-Markov process η(ε)(t) = 〈0,N 〉η(ε)(t).
It is readily seen that 〈k,r〉η(ε)(t) is also a semi-Markov birth-death process, i.e. the

time-space screening procedure of phase space reduction described above preserves
the birth-death structure of the semi-Markov birth-death process η(ε)(t).

11.5.2 Expectations of Hitting Times for Reduced
Semi-Markov Birth-Death Processes

Let us now introduce hitting times for semi-Markov birth-death process η(ε)(t). We
define hitting times, which are random variables given by the following relation, for
j ∈ X,

τ
(ε)
j =

ν
(ε)
j∑

n=1

κ(ε)
n , (11.72)

where ν
(ε)
j = min(n ≥ 1 : η(ε)

n = j).
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Let us denote,
Ei j (ε) = Eiτ

(ε)
j , i, j ∈ X. (11.73)

As is known, conditions A–C imply that, for every ε ∈ (0, ε0], expectations of
hitting times are finite, i.e,

0 < Ei j (ε) < ∞, i, j ∈ X. (11.74)

We also denote by 〈k,r〉τ (ε)
j the hitting time to the state j ∈ 〈k,r〉X for the reduced

semi-Markov birth-death process 〈k,r〉η(ε)(t).
The following theorem, which proof can be found, for example, in Silvestrov and

Manca [38], plays the key role in what follows.

Theorem 11.1 Let conditions A–C hold for the semi-Markov birth-death process
η(ε)(t). Then, for any state j ∈ 〈k,r〉X, the first hitting times τ

(ε)
j and 〈k,r〉τ (ε)

j to the
state j , respectively, for semi-Markov processes η(ε)(t) and 〈k,r〉η(ε)(t), coincide,
and, thus, the expectations of hitting times Ei j (ε) = Eiτ

(ε)
j = Ei 〈k,r〉τ (ε)

j , for any
i, j ∈ 〈k,r〉X and ε ∈ (0, ε0].

11.5.3 Sequential Reduction of Phase Space for
Semi-Markov Birth-Death Processes

Let us consider the case, where the left end state 0 is excluded from the phase space
X. In this case, the reduced phase space 〈1,N 〉X = {1, . . . , N }.

We assume that the initial distribution of the semi-Markov process η(ε)(t) is con-
centrated on the reduced phase space 〈1,N 〉X.

The transition probabilities of the reduced semi-Markov process 〈1,N 〉η(ε)(t) have,
for every ε ∈ (0, ε0], the following form, for t ≥ 0,

〈1,N 〉 Q(ε)
i j (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (ε)
1,+(t)p1,+(ε) if j = 2, i = 1,

〈1,N 〉F (ε)
1,−(t)p1,−(ε) if j = 1, i = 1,

F (ε)
i,±(t)pi,±(ε) if j = i ± 1, 1 < i < N ,

F (ε)
N ,±(t)pN ,±(ε) if j = N − 1∓1

2 , i = N ,

0 otherwise,

(11.75)

where

〈1,N 〉F (ε)
1,−(t) =

∞∑
n=0

F (ε)
1,−(t) ∗ F (ε)∗n

0,− (t) ∗ F (ε)
0,+(t) · p0,−(ε)n p0,+(ε). (11.76)
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This relation implies, for every ε ∈ (0, ε0], the following relation for transition
probabilities of the reduced embedded Markov chain 〈1,N 〉η(ε)

n ,

〈1,N 〉 p(ε)
i j =

⎧⎪⎪⎨
⎪⎪⎩

〈1,N 〉 p1,±(ε) = p1,±(ε) if j = 1 + 1±1
2 , i = 1,

〈1,N 〉 pi,+(ε) = pi,±(ε) if j = i ± 1, 1 < i < N ,

〈1,N 〉 pN ,+(ε) = pN ,±(ε) if j = N − 1∓1
2 , i = N ,

0 otherwise,

(11.77)

and the following relation for transition expectations of the reduced embedded semi-
Markov process 〈1,N 〉η(ε)(t),

〈1,N 〉e(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈1,N 〉e1,+(ε) = e1,+(ε) if j = 2, i = 1,
〈1,N 〉e1,−(ε) = e1,−(ε)

+ e0(ε) · p1,−(ε)

p0,+(ε)
if j = 1, i = 1,

〈1,N 〉ei,±(ε) = ei,±(ε) if j = i ± 1, 1 < i < N ,

〈1,N 〉eN ,±(ε) = eN ,±(ε) if j = N − 1∓1
2 , i = N ,

0 otherwise.

(11.78)

Note that, by Theorem11.1, the following relation takes place, for i, j ∈ 〈1,N 〉X
and every ε ∈ (0, ε0],

Eiτ
(ε)
j = Ei 〈1,N 〉τ (ε)

j . (11.79)

Analogously, the right end state N can be excluded from the phase space X. In
this case, the reduced phase space 〈0,N−1〉X = {0, . . . , N − 1}.

As was mentioned above, the reduced semi-Markov processes 〈1,N 〉η(ε)(t) and
〈0,N−1〉η(ε)(t) also have a birth-death type.

Let 0 ≤ k ≤ i ≤ r ≤ N . The states 0, . . . , k − 1 and N , . . . , r + 1 can be sequen-
tially excluded from the phase space X of the semi-Markov process η(ε)(t).

Let us describe the corresponding recurrent procedure.
The reduced semi-Markov process 〈k,r〉η(ε)(t) can be obtained by excluding the

state k − 1 from the phase space 〈k−1, j〉X of the reduced semi-Markov process
〈k−1,r〉η(ε)(t) or by excluding state r + 1 from the phase space 〈k,r+1〉X of the reduced
semi-Markov process 〈k,r+1〉η(ε)(t).

The sequential exclusion of the states 0, . . . , k − 1 and N , . . . , r + 1 can be real-
ized in an arbitrary order of choice of one of these sequences and then by excluding
the corresponding next state from the chosen sequence.

The simplest variants for the sequences of excluded states are 0, . . . , k − 1, N , . . .,
r + 1 and N , . . . , r + 1, 0, . . . , k − 1.

The resulting reduced semi-Markov process 〈k,r〉η(ε)(t) will be the same and it
will have a birth-death type.

Here, we also accept the reduced semi-Markov process 〈i,i〉η(ε)(t) with one-state
phase space 〈i,i〉X = {i} as a semi-Markov birth-death process.
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This process has transition probability for the embedded Markov chain,

〈i,i〉 p(ε)
i i = 〈i,i〉 pi,+(ε) + 〈i,i〉 pi,−(ε) = 1, (11.80)

and the semi-Markov transition probabilities,

〈i,i〉 Q(ε)
i i (t) = 〈i,i〉F (ε)

i,+(t) 〈i,i〉 pi,+(ε) + 〈i,i〉F (ε)
i,−(t) 〈i,i〉 pi,−(ε).

= Pi {τ (ε)
i ≤ t}. (11.81)

The following relations, which are, in fact, variants of relations (11.77) and
(11.78), express the transition probabilities 〈k,r〉 p(ε)

i j and the expectations of tran-

sition times 〈k,r〉e(ε)
i j for the reduced semi-Markov process 〈k,r〉η(ε)(t), via the tran-

sition probabilities 〈k−1,r〉 p(ε)
i j and the expectations of transition times 〈k−1,r〉e(ε)

i j for
the reduced semi-Markov process 〈k−1,r〉η(ε)(t), for 1 ≤ k ≤ r ≤ N and, for every
ε ∈ (0, ε0],

〈k,r〉 p(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉 pk,±(ε) = 〈k−1,r〉 pk,±(ε)

if j = k + 1±1
2 , i = k,

〈k,r〉 pi,±(ε) = 〈k−1,r〉 pi,±(ε)

if j = i ± 1, k < i < r,
〈k,r〉 pr,±(ε) = 〈k−1,r〉 pr,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise,

(11.82)

and

〈k,r〉e(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉ek,+(ε) = 〈k−1,r〉ek,+(ε)

if j = k + 1, i = k,

〈k,r〉ek,−(ε) = 〈k−1,r〉ek,−(ε)

+ 〈k−1,r〉ek−1(ε) · 〈k−1,r〉 pk,−(ε)

〈k−1,r〉 pk−1,+(ε)

if j = k, i = k,

〈k,r〉ei,±(ε) = 〈k−1,r〉ei,±(ε)

if j = i ± 1, k < i < r,
〈k,r〉er,±(ε) = 〈k−1,r〉er,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise,

(11.83)

where
〈k,r〉ei (ε) = 〈k,r〉ei,+(ε) + 〈k,r〉ei,−(ε). (11.84)

The transition probabilities 〈k,r〉 p(ε)
i j and the expectations of transition times 〈k,r〉e(ε)

i j

for the reduced semi-Markov process 〈k,r〉η(ε)(t) can also be expressed via the transi-
tion probabilities 〈k,r+1〉 p(ε)

i j and the expectations of transition times 〈k,r+1〉e(ε)
i j for the

reduced semi-Markov process 〈k,r+1〉η(ε)(t), for 0 ≤ k ≤ r ≤ N − 1 in an analogous
way.
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11.5.4 Explicit Formulas for Expectations of Hitting Times
for Semi-Markov Birth-Death Processes

By iterating the recurrent formulas (11.82)–(11.83) and their right hand analogues,
we get the following explicit formulas for the transition probabilities 〈k,r〉 p(ε)

i j and

the expectations of transition times 〈k,r〉e(ε)
i j for the reduced semi-Markov process

〈k,r〉η(ε)(t) expressed in terms of the transition characteristics for the initial semi-
Markov process η(ε)(t), for 0 ≤ k ≤ r ≤ N and, for every ε ∈ (0, ε0],

〈k,r〉 p(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉 pk,±(ε) = pk,±(ε)

if j = k + 1±1
2 , i = k,

〈k,r〉 pi,±(ε) = pi,±(ε)

if j = i ± 1, k < i < r,
〈k,r〉 pr,+(ε) = pr,±(ε)

if j = r − 1∓1
2 , i = r,

0 otherwise.

(11.85)

and

〈k,r〉e(ε)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈k,r〉ek,+(ε) = ek,+(ε)

if j = k + 1, i = k,

〈k,r〉ek,−(ε) = ek,−(ε) + ek−1(ε) · pk,−(ε)

pk−1,+(ε)

+ · · · + e0(ε) · p1,−(ε)···pk,−(ε)

p0,+(ε)···pk−1,+(ε)

if j = k, i = k,

〈k,r〉ei,+(ε) = ei,±(ε)

if j = i ± 1, k < i < r,

〈k,r〉er,+(ε) = er,+(ε) + er+1(ε) · pr,+(ε)

pr+1,−(ε)

+ · · · + eN (ε) · pN−1,+(ε)···pr,+(ε)

pN ,−(ε)···pr+1,−(ε)

if j = r, i = r,
〈k,r〉er,−(ε) = er,−(ε)

if j = r − 1, i = r,
0 otherwise.

(11.86)

Recall that 〈k,r〉τ (ε)
j is the hitting time for the state j ∈ 〈k,r〉X for the reduced

semi-Markov process 〈k,r〉η(ε)(t).
By Theorem11.1, the following relation takes place, for i, j ∈ 〈k,r〉X and, for

every ε ∈ (0, ε0],
Eiτ

(ε)
j = Ei 〈k,r〉τ (ε)

j . (11.87)

Let us now choose k = r = i ∈ X. In this case, the reduced phase space 〈i,i〉X =
{i} is a one-state set. In this case, the process 〈i,i〉η(ε)(t) returns to the state i after
every jump. This implies that, in this case, for every ε ∈ (0, ε0],
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Eii (ε) = Eiτ
(ε)
i = Ei 〈i,i〉τ (ε)

i = 〈i,i〉ei (ε). (11.88)

Thus, the following formulas take place, for every i ∈ X and, for every ε ∈ (0, ε0],

Eii (ε) = ei (ε)

+ ei−1(ε)
pi,−(ε)

pi−1,+(ε)
+ ei−2(ε)

pi−1,−(ε)pi,−(ε)

pi−2,+(ε)pi−1,+(ε)

+ · · · + e0(ε)
p1,−(ε)p2,−(ε) · · · pi,−(ε)

p0,+(ε)p1,+(ε) · · · pi−1,+(ε)

+ ei+1(ε)
pi,+(ε)

pi+1,−(ε)
+ ei+2(ε)

pi+1,+(ε)pi,+(ε)

pi+2,−(ε)pi+1,−(ε)

+ · · · + eN (ε)
pN−1,+(ε)pN−2,+(ε) · · · pi,+(ε)

pN ,−(ε)pN−1,−(ε) · · · pi+1,−(ε)
. (11.89)

In what follows, we use the following well known formula for the stationary
probabilities πi (ε), i ∈ X, which takes place, for every ε ∈ (0, ε0],

πi (ε) = ei (ε)

Eii (ε)
, i ∈ X. (11.90)

It should be noted that such formulas for stationary distributions of Markov birth-
death chains are well known and can be found, for example, in Feller [11]. In context
of our studies, a special value has the presented above recurrent algorithm for getting
such formulas, based on sequential reduction of the phase space for semi-Markov
birth-death processes.

As far as explicit expressions for conditional quasi-stationary probabilities are
concerned, they can be obtained by substituting stationary probabilities πi (ε), i ∈ X

given by formula (11.90) into formulas (11.37) and (11.38).

11.6 First and Second Order Asymptotic Expansions

In this section, we give explicit the first and the second order asymptotic expan-
sions for stationary and conditional quasi-stationary distributions for perturbed semi-
Markov birth-death processes.

The results of the present section are based on the explicit formula (11.89) for
expected return times and the expressions which connect these quantities with sta-
tionary and conditional quasi-stationary distributions given respectively in formu-
las (11.90) and (11.37)–(11.38). We obtain the first and second order asymptotic
expansions from these formulas by using operational rules for Laurent asymptotic
expansions presented in Lemmas11.1 and 11.2 given below.
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It will be convenient to use the following notation,

�i, j,±(ε) = pi,±(ε)pi+1,±(ε) · · · p j,±(ε), 0 ≤ i ≤ j ≤ N . (11.91)

Using (11.91), we can write formula (11.89) as

Eii (ε) = ei (ε) +
i−1∑
k=0

ek(ε)
�k+1,i,−(ε)

�k,i−1,+(ε)
+

N∑
k=i+1

ek(ε)
�i,k−1,+(ε)

�i+1,k,−(ε)
, i ∈ X. (11.92)

In particular, we have

E00(ε) = e0(ε) +
∑
k∈ 0X

ek(ε)
�0,k−1,+(ε)

�1,k,−(ε)
, (11.93)

and

EN N (ε) = eN (ε) +
∑

k∈ NX

ek(ε)
�k+1,N ,−(ε)

�k,N−1,+(ε)
. (11.94)

We will compute the desired asymptotic expansions by applying operational rules
for Laurent asymptotic expansions in relations (11.92)–(11.94). In order for the
presentation to not be too repetitive, we will directly compute the second order
asymptotic expansions which contain the first order asymptotic expansions as special
cases. In particular, this gives us limits for stationary and conditional quasi-stationary
distributions.

The formulas for computing the asymptotic expansions are different depending on
whether conditionH1,H2 orH3 holds.We consider these three cases in Sects. 11.6.2,
11.6.3 and 11.6.4, respectively.

Each of these sections will have the same structure: First, we present a ma which
successively constructs asymptotic expansions for the quantities given in relations
(11.92)–(11.94). Then, using these expansions, we construct the first and the second
order asymptotic expansions for stationary (Sects. 11.6.2–11.6.4) and conditional
quasi-stationary distributions (Sects. 11.6.3–11.6.4).

11.6.1 Laurent Asymptotic Expansions

In this subsection, we present some operational rules for Laurent asymptotic expan-
sions given in Silvestrov, D. and Silvestrov, S. [39–41] which are used in the present
paper for constructions of asymptotic expansions for stationary and conditional quasi-
stationary distributions of perturbed semi-Markov birth-death processes.

A real-valued function A(ε), defined on an interval (0, ε0] for some 0 < ε0 ≤ 1,
is a Laurent asymptotic expansion if it can be represented in the following form,
A(ε) = ah Aε

h A + · · · + akAε
kA + oA(εkA), ε ∈ (0, ε0], where (a)−∞ < h A ≤ kA <
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∞ are integers, (b) coefficients ah A , . . . , akA are real numbers, (c) the function
oA(εkA)/εkA → 0 as ε → 0. Such an expansion is pivotal if it is known that ah A 
= 0.

The above paper presents operational rules for Laurent asymptotic expansions. Let
us shortly formulate some of these rules, in particular, for summation, multiplication
and division of Laurent asymptotic expansions.

Lemma 11.1 Let A(ε) = ah Aε
h A + · · · + akAε

kA + oA(εkA) and B(ε) = bhB ε
hB +

· · · + bkB ε
kB + oB(εkB ) be two pivotal Laurent asymptotic expansions. Then:

(i)C(ε) = cA(ε) = chC εhC + · · · + ckC εkC + oC(εkC ), where a constant c 
= 0, is
a pivotal Laurent asymptotic expansion and hC = h A, kC = kA, chC +r = cahC +r , r =
0, . . . , kC − hC ,

(ii) D(ε) = A(ε) + B(ε) = dhD εhD + · · · + dkD εkD + oD(εkD ) is a pivotal Lau-
rent asymptotic expansion and hD = h A ∧ hB, kD = kA ∧ kB, dhD+r = ahD+r +
bhD+r , r = 0, . . . , kD − hD, where ahD+r = 0, r < h A − hD, bhD+r = 0, r < hB −
hD,

(iii) E(ε) = A(ε) · B(ε) = ehE εhE + · · · + ekE εkE + oE (εkE ) is a pivotal Laurent
asymptotic expansion and hE = h A + hB, kE = (kA + hB) ∧ (kB + h A), ehE +r =∑r

l=0 ah A+l · bhB+r−l , r = 0, . . . , kE − hE ,
(iv) F(ε) = A(ε)/B(ε) = fhF εhF + · · · + fkF εkF + oF (εkF ) ia a pivotal Laurent

asymptotic expansion and hF = h A − hB, kF = (kA − hB) ∧ (kB − 2hB + h A),
fhF +r = 1

bh B
(ah A+r + ∑r

l=1 bhB+l · fhF +r−l), r = 0, . . . , kF − hF .

The following lemma presents useful multiple generalizations of summation and
multiplication rules given in Lemma11.1.

Lemma 11.2 Let Ai (ε) = ai,h Ai
εh A + · · · + ai,kAi

εkAi + oAi (ε
kAi ), i = 1, . . . , m be

pivotal Laurent asymptotic expansions. Then:
(i) D(ε) = ∑m

i=1 Ai (ε) = dhD εhD + · · · + dkD εkD + oD(εkD ) is a pivotal Lau-
rent asymptotic expansion and hD = min1≤l≤m h Al , kD = min1≤l≤m kAl , dhD+l =
a1,hD+l + · · · + am,hD+l , l = 0, . . . , kD − hD, where ai,hD+l = 0 for 0 ≤ l < h Ai −
hD, i = 1, . . . , m,

(ii) E(ε) = ∏m
i=1 Ai (ε) = ehE εhE + · · · + ekE εkE + oE (εkE ) is a pivotal Laurent

asymptotic expansion and
hE = ∑m

l=1 h Al , kE = min1≤l≤m(kAl + ∑
1≤r≤m,r 
=l h Ar ),

ehE +l = ∑
l1+···+lm=l,0≤li ≤kAi −h Ai ,i=1,...,m

∏
1≤i≤m ai,h Ai +li ,

l = 0, . . . , kE − hE .

11.6.2 First and Second Order Asymptotic Expansions for
Stationary Distributions Under Condition H1

In the casewhere conditionH1 holds, the semi-Markov process has no asymptotically
absorbing states. In this case, all quantities in relations (11.92)–(11.94) are of order
O(1) and the construction of asymptotic expansions are rather straightforward.
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In the following lemma we successively construct asymptotic expansions for the
quantities given in relations (11.92)–(11.94).

Lemma 11.3 Assume that conditions A–G and H1 hold. Then:

(i) For i ∈ X, we have,

ei (ε) = bi [0] + bi [1]ε + ȯi (ε), ε ∈ (0, ε0],

where ȯi (ε)/ε → 0 as ε → 0 and

bi [0] = bi,−[0] + bi,+[0] > 0, bi [1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N, we have,

�i, j,±(ε) = Ai, j,±[0] + Ai, j,±[1]ε + oi, j,±(ε), ε ∈ (0, ε0],

where oi, j,±(ε)/ε → 0 as ε → 0 and

Ai, j,±[0] = ai,±[0]ai+1,±[0] · · · a j,±[0] > 0,

Ai, j,±[1] =
∑

ni +ni+1+···+n j =1

ai,±[ni ]ai+1,±[ni+1] · · · a j,±[n j ].

(iii) For 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X, we have

�k+1,i,−(ε)

�k,i−1,+(ε)
= A∗

k,i [0] + A∗
k,i [1]ε + o∗

k,i (ε), ε ∈ (0, ε0],

where o∗
k,i (ε)/ε → 0 as ε → 0 and

A∗
k,i [0] = Ak+1,i,−[0]

Ak,i−1,+[0] > 0,

A∗
k,i [1] = Ak+1,i,−[1]Ak,i−1,+[0] − Ak+1,i,−[0]Ak,i−1,+[1]

Ak,i−1,+[0]2 .

(iv) For i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X, we have

�i,k−1,+(ε)

�i+1,k,−(ε)
= A∗

k,i [0] + A∗
k,i [1]ε + o∗

k,i (ε), ε ∈ (0, ε0],

where o∗
k,i (ε)/ε → 0 as ε → 0 and

A∗
k,i [0] = Ai,k−1,+[0]

Ai+1,k,−[0] > 0,
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A∗
k,i [1] = Ai,k−1,+[1]Ai+1,k,−[0] − Ai,k−1,+[0]Ai+1,k,−[1]

Ai+1,k,−[0]2 .

(v) For i ∈ X, we have

Eii (ε) = Bii [0] + Bii [1]ε + ȯi i (ε), ε ∈ (0, ε0],

where ȯii (ε)/ε → 0 as ε → 0 and

Bii [0] = bi [0] +
∑
k∈ iX

bk[0]A∗
k,i [0] > 0,

Bii [1] = bi [1] +
∑
k∈ iX

(bk[0]A∗
k,i [1] + bk[1]A∗

k,i [0]).

Proof Since ei (ε) = ei,−(ε) + ei,+(ε), i ∈ X, part (i) follows immediately from con-
dition E.

For the proof of part (ii) we notice that it follows from the definition (11.91) of
�i, j,±(ε) and condition D that

�i, j,±(ε) =
j∏

k=i

(ak,±[0] + ak,±[1]ε + ok,±(ε)), 0 ≤ i ≤ j ≤ N .

By applying the multiple product rule for asymptotic expansions, we obtain the
asymptotic relation given in part (ii)where the coefficients Ai, j,±[0], 0 ≤ i ≤ j ≤ n,
are positive since condition H1 holds.

In order to prove parts (iii) and (iv)weuse the result in part (ii). For 0 ≤ k ≤ i − 1,
i ∈ 0X, this gives us

�k+1,i,−(ε)

�k,i−1,+(ε)
= Ak+1,i,−[0] + Ak+1,i,−[1]ε + ok+1,i,−(ε)

Ak,i−1,+[0] + Ak,i−1,+[1]ε + ok,i−1,+(ε)
, (11.95)

and, for i + 1 ≤ k ≤ N , i ∈ NX, we get

�i,k−1,+(ε)

�i+1,k,−(ε)
= Ai,k−1,+[0] + Ai,k−1,+[1]ε + oi,k−1,+(ε)

Ai+1,k,−[0] + Ai+1,k,−[1]ε + oi+1,k,−(ε)
. (11.96)

Using the division rule for asymptotic expansions in relations (11.95) and (11.96)
we get the asymptotic expansions given in parts (iii) and (iv).

Finally, we can use relation (11.92) to prove part (v). This relation together with
the results in parts (i), (iii) and (iv) yield
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Eii (ε) = bi [0] + bi [1]ε + ȯi (ε)

+
∑

k∈X\{i}
(bk[0] + bk[1]ε + ȯk(ε))

× (A∗
k,i [0] + A∗

k,i [1]ε + o∗
k,i (ε)), i ∈ X.

A combination of the product rule and the multiple summation rule for asymptotic
expansions gives the asymptotic relation in part (v). �

The following theorem gives second order asymptotic expansions for stationary
probabilities. In particular, this theorem shows that there exist limits for stationary
probabilities,

πi (0) = lim
ε→0

πi (ε), i ∈ X,

where πi (0) > 0, i ∈ X.

Theorem 11.2 Assume that conditions A–G and H1 hold. Then, we have the fol-
lowing asymptotic relation for the stationary probabilities πi (ε), i ∈ X,

πi (ε) = ci [0] + ci [1]ε + oi (ε), ε ∈ (0, ε0],

where oi (ε)/ε → 0 as ε → 0 and

ci [0] = bi [0]
Bii [0] > 0, ci [1] = bi [1]Bii [0] − bi [0]Bii [1]

Bii [0]2 ,

where Bii [0], Bii [1], i ∈ X, can be computed from the formulas given in Lemma11.3.

Proof It follows from condition E and part (v) of Lemma11.3 that, for i ∈ X,

πi (ε) = ei (ε)

Eii (ε)
= bi [0] + bi [1]ε + ȯi (ε)

Bii [0] + Bii [1]ε + ȯi i (ε)
.

The result now follows from the division rule for asymptotic expansions (iv), given
in Lemma11.1. �

11.6.3 First and Second Order Asymptotic Expansions for
Stationary and Conditional Quasi-stationary
Distributions Under Condition H2

In the case where condition H2 holds, the semi-Markov process has one asymptot-
ically absorbing state, namely state 0. This means that p0,+(ε) ∼ O(ε) and since
this quantity is involved in relations (11.92)–(11.94), the pivotal properties of the
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expansions are less obvious. Furthermore, since some terms now tends to infinity,
we partly need to operate with Laurent asymptotic expansions.

In order to separate cases where i = 0 or i ∈ 〈1,N 〉X we will use the indicator
function γi = I (i = 0), that is, γ0 = 1 and γi = 0 for i ∈ 〈1,N 〉X.

The following lemma gives asymptotic expansions for quantities in relations
(11.92)–(11.94).

Lemma 11.4 Assume that conditions A–G and H2 hold. Then:

(i) For i ∈ X, we have, ei (ε) = bi [0] + bi [1]ε + ȯi (ε), ε ∈ (0, ε0], where
ȯi (ε)/ε → 0 as ε → 0 and

bi [0] = bi,−[0] + bi,+[0] > 0, bi [1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N, we have,

�i, j,+(ε) = Ai, j,+[γi ]εγi + Ai, j,+[γi + 1]εγi +1 + oi, j,+(εγi +1), ε ∈ (0, ε0],

where oi, j,+(εγi +1)/εγi +1 → 0 as ε → 0 and

Ai, j,+[γi ] = ai,+[γi ]ai+1,+[0] · · · a j,+[0] > 0,

Ai, j,+[γi + 1] =
∑

ni +ni+1+···+n j =1

ai,+[γi + ni ]ai+1,+[ni+1] · · · a j,+[n j ].

(iii) For 0 ≤ i ≤ j ≤ N, we have,

�i, j,−(ε) = Ai, j,−[0] + Ai, j,−[1]ε + oi, j,−(ε), ε ∈ (0, ε0],

where oi, j,−(ε)/ε → 0 as ε → 0 and

Ai, j,−[0] = ai,−[0]ai+1,−[0] · · · a j,−[0] > 0,

Ai, j,−[1] =
∑

ni +ni+1+···+n j =1

ai,−[ni ]ai+1,−[ni+1] · · · a j,−[n j ].

(iv) For 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X, we have,

�k+1,i,−(ε)

�k,i−1,+(ε)
= A∗

k,i [−γk]ε−γk + A∗
k,i [−γk + 1]ε−γk+1

+ o∗
k,i (ε

−γk+1), ε ∈ (0, ε0],

where o∗
k,i (ε

−γk+1)/ε−γk+1 → 0 as ε → 0 and
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A∗
k,i [−γk] = Ak+1,i,−[0]

Ak,i−1,+[γk] > 0,

A∗
k,i [−γk + 1] = Ak+1,i,−[1]Ak,i−1,+[γk] − Ak+1,i,−[0]Ak,i−1,+[γk + 1]

Ak,i−1,+[γk]2 .

(v) For i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X, we have,

�i,k−1,+(ε)

�i+1,k,−(ε)
= A∗

k,i [γi ]εγi + A∗
k,i [γi + 1]εγi +1

+ o∗
k,i (ε

γi +1), ε ∈ (0, ε0],

where o∗
k,i (ε

γi +1)/εγi +1 → 0 as ε → 0 and

A∗
k,i [γi ] = Ai,k−1,+[γi ]

Ai+1,k,−[0] > 0,

A∗
k,i [γi + 1] = Ai,k−1,+[γi + 1]Ai+1,k,−[0] − Ai,k−1,+[γi ]Ai+1,k,−[1]

Ai+1,k,−[0]2 .

(vi) For i ∈ X, we have,

Eii (ε) = Bii [γi − 1]εγi −1 + Bii [γi ]εγi + ȯi i (ε
γi ), ε ∈ (0, ε0],

where ȯii (ε
γi )/εγi → 0 as ε → 0 and

B00[0] = b0[0] > 0, B00[1] = b0[1] +
∑
k∈ 0X

bk[0]A∗
k,0[1],

Bii [−1] = b0[0]A∗
0,i [−1] > 0, i ∈ 〈1,N 〉X,

Bii [0] = b0[1]A∗
0,i [−1] + bi [0] +

∑
k∈ iX

bk[0]A∗
k,i [0], i ∈ 〈1,N 〉X.

Proof Let us first note that the quantities in parts (i) and (iii) do not depend on
p0,+(ε), so the proofs for these parts are the same as the proofs for parts (i) and (ii)
in Lemma11.3, respectively.

We now prove part (ii). Notice that it follows from conditions D and H2 that
pi,+(ε) = ai,+[γi ]εγi + ai,+[γi + 1]εγi +1 + oi,+(εγi +1), i ∈ X. Using this and the
definition (11.91) of �i, j,+(ε) gives
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�i, j,+(ε) = (ai,+[γi ]εγi + ai,+[γi + 1]εγi +1 + oi,+(εγi +1))

× (ai+1,+[0] + ai+1,+[1]ε + oi+1,+(ε))

× · · · ×
× (a j,+[0] + a j,+[1]ε + o j,+(ε)), 0 ≤ i ≤ j ≤ N .

An application of the multiple product rule for asymptotic expansions shows that
part (ii) holds.

Now, using the results in parts (ii) and (iii)we get, for 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X,

�k+1,i,−(ε)

�k,i−1,+(ε)
= Ak+1,i,−[0] + Ak+1,i,−[1]ε + ok+1,i,−(ε)

Ak,i−1,+[γk]εγk + Ak,i−1,+[γk + 1]εγk+1 + ok,i−1,+(εγk+1)
,

and, for i + 1 ≤ k ≤ N , i ∈ NX,

�i,k−1,+(ε)

�i+1,k,−(ε)
= Ai,k−1,+[γi ]εγi + Ai,k−1,+[γi + 1]εγi +1 + oi,k−1,+(εγi +1)

Ai+1,k,−[0] + Ai+1,k,−[1]ε + oi+1,k,−(ε)
.

Notice that it is possible that the quantity in the first of the above equations tends
to infinity as ε → 0. Applying the division rule for Laurent asymptotic expansions
in the above two relations yields the asymptotic relations given in parts (iv) and (v).

In order to prove part (vi), we consider the cases i = 0 and i ∈ 〈1,N 〉X separately.
First note that it follows from relation (11.93) and the results in parts (i) and (iv) that

E00(ε) = b0[0] + b0[1]ε + ȯ0(ε)

+
∑
k∈ 0X

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,0[1]ε + A∗

k,0[2]ε2 + o∗
k,0(ε

2)).

Using the product rule and themultiple summation rule for asymptotic expansions
we obtain the asymptotic relation in part (vi) for the case i = 0.

If i ∈ 〈1,N 〉X, relation (11.92) implies together with parts (i), (iv) and (v) that

Eii (ε) = bi [0] + bi [1]ε + ȯi (ε)

+ (b0[0] + b0[1]ε + ȯ0(ε))(A∗
0,i [−1]ε−1 + A∗

0,i [0] + o∗
0,i (1))

+
∑

k∈ 0,iX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,i [0] + A∗

k,i [1]ε + o∗
k,i (ε)).

Notice that the term corresponding to k = 0 is of order O(ε−1) while all other
terms in the sum are of order O(1). We can again apply the product rule and multiple
summation rule for Laurent asymptotic expansions and in this case, the asymptotic
relation in part (vi) is obtained for i ∈ 〈1,N 〉X. �

The following theorem gives second order asymptotic expansions for stationary
and conditional quasi-stationary probabilities. In particular, part (i) of this theorem
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shows that there exist limits for stationary probabilities,πi (0) = limε→0 πi (ε), i ∈ X,
where π0(0) = 1 and πi (0) = 0 for i ∈ 〈1,N 〉X.

Furthermore, part (ii) of the theorem shows, in particular, that there exist limits for
conditional quasi-stationary probabilities π̃i (0) = limε→0 π̃i (ε), i ∈ 〈1,N 〉X, where
π̃i (0) > 0, i ∈ 〈1,N 〉X.

Theorem 11.3 Assume that conditions A–G and H2 hold. Then:

(i) We have the following asymptotic relation for the stationary probabilities πi (ε),
i ∈ X,

πi (ε) = ci [l̃i ]εl̃i + ci [l̃i + 1]εl̃i +1 + oi (ε
l̃i +1), ε ∈ (0, ε0],

where l̃i = I (i 
= 0), oi (ε
l̃i +1)/εl̃i +1 → 0 as ε → 0, and

ci [l̃i ] = bi [0]
Bii [−l̃i ]

> 0, ci [l̃i + 1] = bi [1]Bii [−l̃i ] − bi [0]Bii [−l̃i + 1]
Bii [−l̃i ]2

,

where Bii [−1], i ∈ 〈1,N 〉X, Bii [0], i ∈ X, and B00[1], can be computed from
the formulas given in Lemma11.4.

(ii) We have the following asymptotic relation for the conditional quasi-stationary
probabilities π̃i (ε), i ∈ 〈1,N 〉X,

π̃i (ε) = c̃i [0] + c̃i [1]ε + õi (ε), ε ∈ (0, ε0],

where õi (ε)/ε → 0 as ε → 0 and

c̃i [0] = ci [1]
d[1] > 0, c̃i [1] = ci [2]d[1] − ci [1]d[2]

d[1]2 ,

where d[l] = ∑
j∈ 0X

ci [l], l = 1, 2.

Proof It follows from parts (i) and (vi) in Lemma11.4 that, for i ∈ X,

πi (ε) = ei (ε)

Eii (ε)
= bi [0] + bi [1]ε + ȯi (ε)

Bii [γi − 1]εγi −1 + Bii [γi ]εγi + ȯi i (εγi )
. (11.97)

We also have γi = I (i = 0) = 1 − I (i 
= 0) = 1 − l̃i . By changing the indicator
function and thenusing the division rule forLaurent asymptotic expansions in relation
(11.97), we obtain the asymptotic expansion given in part (i).

In order to prove part (ii) we first use part (i) for i ∈ 〈1,N 〉X to get

π̃i (ε) = πi (ε)∑
j∈ 0X

π j (ε)
= ci [1]ε + ci [2]ε2 + oi (ε

2)∑
j∈ 0X

(c j [1]ε + c j [2]ε2 + o j (ε2))
,
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and then we apply the multiple summation rule (i) for asymptotic expansions, given
in Lemma11.2, and the division rule for asymptotic expansions, given in
Lemma11.1. �

11.6.4 First and Second Order Asymptotic Expansions for
Stationary and Conditional Quasi-stationary
Distributions Under Condition H3

In the case where condition H3 holds, both state 0 and state N are asymptoti-
cally absorbing for the semi-Markov process. This means that p0,+(ε) ∼ O(ε) and
pN ,−(ε) ∼ O(ε) which makes the asymptotic analysis of relations (11.92)–(11.94)
even more involved.

In order to separate cases where i = 0, i ∈ 〈1,N−1〉X or i = N , we will use the
indicator functions γi = I (i = 0) and βi = I (i = N ).

The following lemmagives asymptotic expansions for quantities given in relations
(11.92)–(11.94).

Lemma 11.5 Assume that conditions A–G and H3 hold. Then:

(i) For i ∈ X, we have ei (ε) = bi [0] + bi [1]ε + ȯi (ε), ε ∈ (0, ε0], where
ȯi (ε)/ε → 0 as ε → 0 and

bi [0] = bi,−[0] + bi,+[0] > 0, bi [1] = bi,−[1] + bi,+[1].

(ii) For 0 ≤ i ≤ j ≤ N, we have

�i, j,+(ε) = Ai, j,+[γi ]εγi + Ai, j,+[γi + 1]εγi +1 + oi, j,+(εγi +1), ε ∈ (0, ε0],

where oi, j,+(εγi +1)/εγi +1 → 0 as ε → 0 and

Ai, j,+[γi ] = ai,+[γi ]ai+1,+[0] · · · a j,+[0] > 0,

Ai, j,+[γi + 1] =
∑

ni +ni+1+···+n j =1

ai,+[γi + ni ]ai+1,+[ni+1] · · · a j,+[n j ].

(iii) For 0 ≤ i ≤ j ≤ N, we have

�i, j,−(ε) = Ai, j,−[β j ]εβ j + Ai, j,−[β j + 1]εβ j +1 + oi, j,−(εβ j +1), ε ∈ (0, ε0],

where oi, j,−(εβ j +1)/εβ j +1 → 0 as ε → 0 and

Ai, j,−[β j ] = ai,−[0] · · · a j−1,−[0]a j,−[β j ] > 0,
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Ai, j,−[β j + 1] =
∑

ni +···+n j−1+n j =1

ai,−[ni ] · · · a j−1,−[n j−1]a j,−[β j + n j ].

(iv) For 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X, we have

�k+1,i,−(ε)

�k,i−1,+(ε)
= A∗

k,i [βi − γk]εβi −γk + A∗
k,i [βi − γk + 1]εβi −γk+1

+ o∗
k,i (ε

βi −γk+1), ε ∈ (0, ε0],

where o∗
k,i (ε

βi −γk+1)/εβi −γk+1 → 0 as ε → 0 and

A∗
k,i [βi − γk] = Ak+1,i,−[βi ]

Ak,i−1,+[γk] > 0,

A∗
k,i [βi − γk + 1]

= Ak+1,i,−[βi + 1]Ak,i−1,+[γk] − Ak+1,i,−[βi ]Ak,i−1,+[γk + 1]
Ak,i−1,+[γk]2 .

(v) For i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X, we have

�i,k−1,+(ε)

�i+1,k,−(ε)
= A∗

k,i [γi − βk]εγi −βk + A∗
k,i [γi − βk + 1]εγi −βk+1

+ o∗
k,i (ε

γi −βk+1), ε ∈ (0, ε0],

where o∗
k,i (ε

γi −βk+1)/εγi −βk+1 → 0 as ε → 0 and

A∗
k,i [γi − βk] = Ai,k−1,+[γi ]

Ai+1,k,−[βk] > 0,

A∗
k,i [γi − βk + 1]

= Ai,k−1,+[γi + 1]Ai+1,k,−[βk] − Ai,k−1,+[γi ]Ai+1,k,−[βk + 1]
Ai+1,k,−[βk]2 .

(vi) For i ∈ X, we have

Eii (ε) = Bii [γi + βi − 1]εγi +βi −1 + Bii [γi + βi ]εγi +βi + ȯi i (ε
γi +βi ), ε ∈ (0, ε0],

where ȯii (ε
γi +βi )/εγi +βi → 0 as ε → 0 and

Bii [0] = bi [0] + bN−i [0]A∗
N−i,i [0] > 0, i = 0, N ,
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Bii [1] = bN−i [1]A∗
N−i,i [0] + bi [1] +

∑
k∈ iX

bk[0]A∗
k,i [1], i = 0, N ,

Bii [−1] = b0[0]A∗
0,i [−1] + bN [0]A∗

N ,i [−1] > 0, i ∈ 〈1,N−1〉X,

Bii [0] = b0[1]A∗
0,i [−1] + bN [1]A∗

N ,i [−1] + bi [0]

+
∑
k∈ iX

bk[0]A∗
k,i [0], i ∈ 〈1,N−1〉X.

Proof We first note that the quantities in parts (i) and (ii) do not depend on pN ,−(ε),
so the proofs for these parts are the same as the proofs for parts (i) and (ii) in
Lemma11.4, respectively.

In order to prove part (iii) we notice that it follows from conditions D and H3

that pi,−(ε) = ai,−[βi ]εβi + ai,−[βi + 1]εβi +1 + oi,−(εβi +1), i ∈ X. From this and
the definition (11.91) of �i, j,−(ε) we get, for 0 ≤ i ≤ j ≤ N ,

�i, j,−(ε) = (ai,−[0] + ai,−[1]ε + oi,−(ε)) × · · · ×
× (a j−1,−[0] + a j−1,−[1]ε + o j−1,−(ε))

× (a j,−[β j ]εβ j + a j,−[β j + 1] + εβ j +1 + o j,−(εβ j +1)).

By applying the multiple product rule for asymptotic expansions we obtain the
asymptotic relation given in part (iii).

From parts (ii) and (iii) it follows that, for 0 ≤ k ≤ i − 1, i ∈ 〈1,N 〉X,

�k+1,i,−(ε)

�k,i−1,+(ε)
= Ak+1,i,−[βi ]εβi + Ak+1,i,−[βi + 1]εβi +1 + ok+1,i,−(εβi +1)

Ak,i−1,+[γk]εγk + Ak,i−1,+[γk + 1]εγk+1 + ok,i−1,+(εγk+1)
,

and, for i + 1 ≤ k ≤ N , i ∈ 〈0,N−1〉X,

�i,k−1,+(ε)

�i+1,k,−(ε)
= Ai,k−1,+[γi ]εγi + Ai,k−1,+[γi + 1]εγi +1 + oi,k−1,+(εγi +1)

Ai+1,k,−[βk]εβk + Ai+1,k,−[βk + 1]εβk+1 + oi+1,k,−(εβk+1)
.

Notice that in the above two relations it is possible that the corresponding quantity
tends to infinity as ε → 0.

The asymptotic relations given in parts (iv) and (v) are obtained by using the
division rule for Laurent asymptotic expansions in the above two relations.

We finally give the proof of part (vi). For the case i = 0, it follows from relation
(11.93) and parts (i) and (v) that
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E00(ε) = b0[0] + b0[1]ε + ȯ0(ε)

+ (bN [0] + bN [1]ε + ȯN (ε))(A∗
N ,0[0] + A∗

N ,0[1]ε + o∗
N ,0(ε))

+
∑

k∈ 0,NX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,0[1]ε + A∗

k,0[2]ε2 + o∗
k,0(ε

2)).

The product rule and multiple summation rule for asymptotic expansions now
proves part (vi) for the case i = 0.

If i = N , it follows from relation (11.94) and parts (i) and (iv) that

EN N (ε) = bN [0] + bN [1]ε + ȯN (ε)

+ (b0[0] + b0[1]ε + ȯ0(ε))(A∗
0,N [0] + A∗

0,N [1]ε + o∗
0,N (ε))

+
∑

k∈ 0,NX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,N [1]ε + A∗

k,N [2]ε2 + o∗
k,N (ε2)).

Again, we can use the product rule and multiple summation rule in order to prove
part (vi), in this case, for i = N .

For the case where i ∈ 〈1,N−1〉X, we use relation (11.92) and parts (i), (iv) and
(v) to get

Eii (ε) = bi [0] + bi [1]ε + ȯi (ε)

+
∑

k∈{0,N }
(bk[0] + bk[1]ε + ȯk(ε))(A∗

k,i [−1]ε−1 + A∗
k,i [0] + o∗

k,i (1))

+
∑

k∈ 0,i,NX

(bk[0] + bk[1]ε + ȯk(ε))(A∗
k,i [0] + A∗

k,i [1]ε + o∗
k,i (ε)).

Here we can note that the terms corresponding to k ∈ {0, N } are of order O(ε−1)

while all other terms are of order O(1). By using the product rule and multiple
summation rule for Laurent asymptotic expansions, we conclude that the asymptotic
relation given in part (vi) also holds for i ∈ 〈1,N−1〉X. �

The following theorem gives second order asymptotic expansions for stationary
and conditional quasi-stationary probabilities. In particular, part (i) of this theorem
shows that there exist limits for stationary probabilities,πi (0) = limε→0 πi (ε), i ∈ X,
where π0(0) > 0, πN (0) > 0, and πi (0) = 0 for i ∈ 〈1,N−1〉X. Furthermore, part (ii)
of the theorem shows, in particular, that there exist limits for conditional quasi-
stationary probabilities, π̂i (0) = limε→0 π̂i (ε), i ∈ 〈1,N−1〉X, where π̂i (0) > 0, i ∈
〈1,N−1〉X.

Theorem 11.4 Assume that conditions A–G and H3 hold. Then:

(i) We have the following asymptotic relation for the stationary probabilities πi (ε),
i ∈ X,

πi (ε) = ci [l̂i ]εl̂i + ci [l̂i + 1]εl̂i +1 + oi (ε
l̂i +1), ε ∈ (0, ε0],
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where l̂i = I (i 
= 0, N ), oi (ε
l̂i +1)/εl̂i +1 → 0 as ε → 0, and

ci [l̂i ] = bi [0]
Bii [−l̂i ]

> 0, ci [l̂i + 1] = bi [1]Bii [−l̂i ] − bi [0]Bii [−l̂i + 1]
Bii [−l̂i ]2

,

where Bii [−1], i ∈ 〈1,N−1〉X, Bii [0], i ∈ X, and Bii [1], i = 0, N, can be com-
puted from the formulas given in Lemma11.5.

(ii) We have the following asymptotic relation for the conditional quasi-stationary
probabilities, π̂i (ε), i ∈ 〈1,N−1〉X,

π̂i (ε) = ĉi [0] + ĉi [1]ε + ôi (ε), ε ∈ (0, ε0],

where ôi (ε)/ε → 0 as ε → 0 and

ĉi [0] = ci [1]
d[1] > 0, ĉi [1] = ci [2]d[1] − ci [1]d[2]

d[1]2 ,

where d[l] = ∑
j∈ 0,NX

ci [l], l = 1, 2.

Proof It follows from parts (i) and (vi) in Lemma11.5 that, for i ∈ X,

πi (ε) = bi [0] + bi [1]ε + ȯi (ε)

Bii [γi + βi − 1]εγi +βi −1 + Bii [γi + βi ]εγi +βi + ȯi i (εγi +βi )
. (11.98)

We also have γi + βi = I (i = 0) + I (i = N ) = 1 − I (i 
= 0, N ) = 1 − l̂i . Using
this relation for indicator functions and the division rule for Laurent asymptotic
expansions in relation (11.98) we obtain the asymptotic relation given in part (i).

For the proof of part (ii), we first use part (i) for i ∈ 〈1,N−1〉X to get

π̂i (ε) = πi (ε)∑
j∈ 0,NX

π j (ε)
= ci [1]ε + ci [2]ε2 + oi (ε

2)∑
j∈ 0,NX

(c j [1]ε + c j [2]ε2 + o j (ε2))
,

and then we apply the multiple summation rule (i) given in Lemma11.2 and the
division rule (iv) given in Lemma11.1. �

11.6.5 Asymptotic Expansions of Higher Orders for
Stationary and Conditional Quasi-stationary
Distributions

In Sects. 11.6.2–11.6.4, we give asymptotic expansions of the first and second orders
(with length, respectively, 1 and 2) for stationary and conditional quasi-stationary
distributions of perturbed semi-Markov birth-death processes, under the assumption
that conditions A–G and Hi (i = 1, 2, 3) hold.
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It is readily seen from the proofs of Lemmas11.3–11.5 and Theorems11.2–11.4
that the perturbation conditions D and E can be weaken in the case of first order
asymptotics. The asymptotic expansions of the length 2 appearing in these conditions
can be replaced by the analogous asymptotic expansions of the length 1. Namely,
the upper indices 1 + li,± in the sums representing these asymptotic expansions
and power indices in the corresponding remainders should be, just, replaced by
indices li,±.

Moreover, the method of construction of asymptotic expansions for stationary
distributions and conditional quasi-stationary distribution of perturbed semi-Markov
birth-death processes based on the use of operational rules for Laurent asymptotic
expansions presented in Lemmas11.1 and 11.2 let one also construct the correspond-
ing asymptotic expansions of higher orders, with the length larger than 2. In this case,
the asymptotic expansions of the length 2 appearing in the perturbation conditionsD
andE should be replaced by the analogous asymptotic expansions of the correspond-
ing length larger than 2. Namely, the upper indices 1 + li,± in the sums representing
these asymptotic expansions and power indices for the corresponding remainders
should be formally replaced by indices L + li,±, with parameter L > 1. In this case,
the length of the corresponding asymptotic expansions will be L + 1.

The algorithm for construction of the corresponding asymptotic expansions, with
length L + 1 > 2 is absolutely analogous to those used in Theorems11.2–11.4. The
difference is that at all steps the asymptotic expansions, with length L + 1, are
constructed for the corresponding intermediate quantities, �i, j,±(ε), etc., using oper-
ational rules for Laurent asymptotic expansions given in Lemmas11.1 and 11.2.

This program is realised in book by Silvestrov, D. and Silvestrov, S. [41].

11.7 Numerical Examples

In this section, the results of the present paper are illustrated by numerical examples
for some of the perturbed models of birth-death-type discussed in Sect. 11.2. Let us
first note that each model presented in Sect. 11.2 is defined in terms of intensities
for a continuous time Markov chain and the perturbation scenarios considered give
intensities which are linear functions of the perturbation parameter, that is,

λi,±(ε) = gi,±[0] + gi,±[1]ε, i ∈ X, (11.99)

where the coefficients gi,±[l] depend on the model under consideration. Conse-
quently, the higher order (l ≥ 2) terms in (11.43) all vanish.

In order to use the algorithm based on successive reduction of the phase space,
we first need to calculate the coefficients in perturbation conditions D and E. This
can be done from relations (11.5), (11.6) and (11.44) by applying the operational
rules for Laurent asymptotic expansions given in Lemmas11.1 and 11.2. By relation
(11.5), we have λi (ε) = λi,−(ε) + λi,+(ε), so it follows immediately from (11.99)
that
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λi (ε) = gi [0] + gi [1]ε, i ∈ X, (11.100)

where gi [l] = gi,−[l] + gi,+[l], l = 0, 1. From (11.6), (11.99), (11.100) and
Lemma11.1 we deduce the following asymptotic series expansions, for i ∈ X,

pi,±(ε) = λi,±(ε)

λi (ε)
= gi,±[0] + gi,±[1]ε

gi [0] + gi [1]ε

=
1+li,±∑
l=li,±

ai,±[l]εl + oi,±(ε1+li,±). (11.101)

The expansion (11.101) exists and its coefficients can be calculated from the divi-
sion rule for asymptotic expansions. Then, using (11.44), (11.100), (11.101) and
Lemma11.1, the following asymptotic series expansions can be constructed, for
i ∈ X,

ei,±(ε) = pi,±(ε)

λi (ε)
=

1+li,±∑
l=li,±

bi,±[l]εl + ȯi,±(ε1+li,±). (11.102)

Once the coefficients in the expansions (11.101) and (11.102) have been calculated,
we can use the algorithm described in Sect. 11.6, in order to construct asymptotic
expansions for stationary and conditional quasi-stationary probabilities.

The remainder of this section is organised as follows. In Sect. 11.7.1 we illus-
trate our results with numerical calculations for the perturbed models of population
genetics discussed in Sect. 11.2.3. We first consider an example where condition
H1 holds and then an example where condition H3 is satisfied. Numerical exam-
ples for the perturbed model of epidemics presented in Sect. 11.2.2 are discussed in
Sect. 11.7.2. This provides an example where conditionH2 holds. All illustrations for
the numerical examples are placed in a special subsection at the end of this section
for convenience.

11.7.1 Numerical Examples for Perturbed Models
of Population Genetics

Recall that the perturbation conditions for the model in Sect. 11.2.3 are formulated
in terms of the mutation parameters as

U1(ε) = C1 + D1ε, U2(ε) = C2 + D2ε. (11.103)

Additionally, the model depends on the size N/2 of the population and the selection
parameters S1 and S2 which are assumed to be independent of ε. Thus, there are in
total seven parameters to choose.
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In our first example, we choose the following values for the parameters: N =
100, C1 = C2 = 5, D1 = 0, D2 = N and S1 = S2 = 0. Recall that the mutation
probabilities are related to themutation parameters by u1(ε) = U1(ε)/N and u2(ε) =
U2(ε)/N . It follows from (11.103) that u1(ε) = 0.05 and u2(ε) = 0.05 + ε. Thus,
in the limiting model, a chosen allele mutates with probability 0.05 for both types
A1 and A2. In this case, we have no absorbing states which means that conditionH1

holds.
Since we have no selection, the stationary distribution for the limiting model will

be symmetric around state 50. The perturbation parameter ε can be interpreted as
an increase in the probability that a chosen allele of type A2 mutates to an allele of
type A1. Increasing the perturbation parameter will shift the mass of the stationary
distribution to the right.

With model parameters given above, we first used relations (11.20), (11.21),
(11.22), (11.24), and (11.26) to calculate the coefficients in (11.99) for the intensi-
ties. Then, these coefficients were used to compute the coefficients in the perturbation
conditions D and E as described above. After this, we used the algorithm outlined in
Sect. 11.6 to calculate the asymptotic expansions for the stationary distribution given
in Theorem11.2, with parameters L = 0, 1, i.e., lengths L + 1 = 1, 2.Moreover, we
also computed the analogous asymptotic expansions, with parameter L = 2, 3, i.e.,
lengths L + 1 = 3, 4, using the higher order variant of the corresponding algorithm
described in Sect. 11.6.5. Approximations for the stationary distribution based on
these expansions were obtained by approximating the corresponding remainders by
zero.

Let us first compare our approximations with the exact stationary distribution
for some particular values of the perturbation parameter. Figure11.1a shows the
stationary distribution for the limiting model (ε = 0) and, as already mentioned
above, we see that it is symmetric around state 50. The stationary distribution for the
model with ε = 0.01 and the approximation corresponding to L = 1 are shown in
Fig. 11.1b. Here, the approximation seems the match the exact distribution very well.
The approximation for L = 2 is not included here since it will not show any visible
difference from the exact stationary distribution. In Fig. 11.1c, d, corresponding to the
models where ε = 0.02 and ε = 0.03, respectively, we also include the approxima-
tions for L = 2. As expected, the approximations for the stationary distribution get
worse as the perturbation parameter increases. However, it seems that even for higher
values of the perturbation parameter, some parts of our approximations fit better to
the exact stationary distribution. In this example, it seems that the approximations
are in general better for states that belong to the right part of the distribution.

In order to illustrate that the quality of the approximations differs depending on
which states we consider, let us compare the stationary probabilities for the states
40 and 80. The stationary probabilities of these two states are approximately of the
same magnitude and we can compare them in plots with the same scale on both
the horizontal and the vertical axes. Figure11.2a shows the stationary probability
for state 40 as a function of the perturbation parameter and its approximations for
L = 1, 2, 3. The corresponding quantities for state 80 are shown in Fig. 11.2b where
we have omitted the approximation for L = 3 since the approximation is very good
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already for L = 2. When L = 2, the approximation for state 80 is clearly better
compared to the approximation for state 40.

Another point illustrated by Figs. 11.1 and 11.2 is that for a fixed value of the
perturbation parameter, the quality of an approximation based on a higher order
asymptotic expansion is not necessarily better. For instance, in Fig. 11.2a we see that
for ε ∈ [0.04, 0.05] the approximations for L = 1 is better compared to both L = 2
and L = 3. However, asymptotically as ε → 0, the higher order approximations are
better. For example, we see in Fig. 11.2a that when ε ∈ [0, 0.02] the approximations
for L = 3 are the best.

Let us now consider a second example for the perturbed model of popula-
tion genetics. We now choose the parameters as follows: N = 100, C1 = C2 = 0,
D1 = D2 = N and S1 = S2 = 0. In this case, both types of mutations have the same
probabilities and are equal to the perturbation parameter, that is, u1(ε) = u2(ε) = ε.
This means that both boundary states will be asymptotically absorbing, so condition
H3 holds. In this case, we calculated the asymptotic expansions for the stationary
and conditional quasi-stationary stationary distribution, given in Theorem11.4.

Let us illustrate the numerical results for conditional quasi-stationary distribu-
tions. Figure11.3a shows the conditional quasi-stationary distribution for ε = 0.005
and some of its approximations. Since it is quite hard to see the details near the
boundary states for this plot, we also show the same curves restricted to the states
1–20 in Fig. 11.3b. As in the previous example, it can be seen that the qualities of the
approximations differ between the states. In this case, we see that the approximations
for states close to the boundary are not as good as for interior states. Similar type of
behaviour also appears for different choices of the selection parameters S1 and S2.
We omit the plots showing this since they do not contribute with more understanding
of the model.

Let us instead study the limiting conditional quasi-stationary distributions (11.51)
for some different values of the selection parameters S1 and S2. These types of
distributions are interesting in their own right and are studied, for instance, by Allen
and Tarnita [1], where they are called rare-mutation dimorphic distributions. In our
example, if mutations are rare (i.e., ε is very small), the probabilities of such a
distribution can be interpreted as the likelihoods for different allele frequencies to
appear during periods of competition which are separated by long periods of fixation.

Figure11.4a shows the limiting conditional quasi-stationary distribution in the
case S1 = S2 = 0, that is, for a selectively neutral model. Now, let the selection
parameters be given by S1 = 10 and S2 = −10. In this case, the gene pairs with
genotypes A1A1, A2 A2 and A1A2 have survival probabilities approximately equal to
0.37, 0.30 and 0.33, respectively. Thus, allele A1 has a selective advantage and this is
reflected in Fig. 11.4b where the limiting conditional quasi-stationary distribution is
shown in this case. Themass of the distribution is now shifted to the right compared to
a selectively neutral model. Next, we take the selection parameters as S1 = S2 = 10
which implies that gene pairs with genotypes A1A1, A2 A2 and A1A2 have survival
probabilities approximately equal to 0.345, 0.345 and 0.31, respectively. This means
that we have a model with underdominance and we see in Fig. 11.4c that the limiting
conditional quasi-stationary distribution then has more of its mass near the boundary
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compared to a selectively neutral model. Finally, we set the selection parameters
as S1 = S2 = −10. Then, gene pairs with genotypes A1A1, A2 A2 and A1A2 have
survival probabilities approximately equal to 0.32, 0.32 and 0.36, respectively. This
gives us a model with overdominace or balancing selection and in this case we see in
Fig. 11.4d that the limiting conditional quasi-stationary distribution has more mass
concentrated to the interior states compared to a selectively neutral model.

11.7.2 Numerical Examples for Perturbed Epidemic Models

In our last numerical example, we consider the perturbed epidemic model described
in Sect. 11.2.2. Recall from the variant of condition H2 given in this subsection that
the contact rate ν for each individual and the group of infected individuals outside
the population is considered as a perturbation parameter, that is, ν = ν(ε) = ε. In
this case, state 0 is asymptotically absorbing which means that condition H2 holds.

It follows directly from (11.15) and (11.16) that the intensities of the Markov
chain describing the number of infected individuals are linear functions of ε given by
λi,+(ε) = λi(1 − i/N ) + (N − i)ε, λi,−(ε) = μi, i ∈ X. In this model, we only
have three parameters to choose: N , λ, and μ. As in the previous examples, let us
take N = 100 which here corresponds to the size of the population. Furthermore,
we let μ = 1 so that the expected time for an infected individual to be infectious
is equal to one time unit. Numerical illustrations will be given for the cases where
λ = 0.5 and λ = 1.5. For the limitingmodel, we have in the former case that the basic
reproduction ratio R0 = 0.5 and in the latter case R0 = 1.5. The properties of the
model are quite different depending on which of these two cases we consider. For the
two choices of model parameters given above, we calculated asymptotic expansions
for stationary and conditional quasi-stationary distributions given in Theorem11.3.

Let us first compare the limiting conditional quasi-stationary distributions in
(11.49). Figure11.5a shows this distribution for the case where λ = 0.5 and μ = 1
and in Fig. 11.5b it is shown for the case where λ = 1.5 and μ = 1. In the former
case, the limiting conditional quasi-stationary distribution has most of its mass con-
centrated near zero and in the latter case the distribution has a shape which resembles
a normal curve and most of its mass is distributed on the states between 0 and 60.

We can also study plots of the type given in Figs. 11.1, 11.2 and 11.3. Also in
this example, intervals for the perturbation parameter, where the approximations are
good, depend on which state is considered. In this case, states close to zero are more
sensitive to perturbations. Let us here just show two of the plots for illustration. For
the model with λ = 1.5 andμ = 1, Fig. 11.6a shows the conditional quasi-stationary
distribution for ε = 0.02 and the corresponding approximations for L = 1and L = 2.
For the samemodel parameters, the quasi-stationary probability for state 10 is shown
in Fig. 11.6b as a function of the perturbation parameter together with some of its
approximations.

Finally, let us compare the stationary probabilities for state 0. Note that, despite
that the limiting conditional quasi-stationary distribution is very different depending
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on whether R0 = 0.5 or R0 = 1.5 for the model with ε = 0, the limiting stationary
distribution is concentrated at state 0 in both these cases. Figure11.7a shows the
stationary probability of state 0 as a function of the perturbation parameter and
some of its approximations in the case where λ = 0.5 andμ = 1. The corresponding
quantities for the case where λ = 1.5 and μ = 1 are shown in Fig. 11.7b.

Qualitatively the plots show approximately the same behavior, but note that the
scales on the horizontal axes are very different. We see that the stationary probability
of state 0 for the limiting model is much more sensitive to perturbations in the case
where R0 = 1.5. It follows from (11.52) that this is due to fact that the expected time
E10(ε) for the infection to (temporarily) die out after one individual gets infected, is
much larger for the model with R0 = 1.5.

Illustrations for Numerical Examples

Fig. 11.1 Comparison of the stationary distribution πi (ε) and some of its approximations for the
population genetic example of Sect. 11.2.3. The plots are functions of the number of A1 alleles i , for
different values of the perturbation parameter ε, with N = 100, C1 = C2 = 5, D1 = 0, D2 = N
and S1 = S2 = 0
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Fig. 11.2 Comparison of stationary probabilities πi (ε) for states i = 40 and i = 80 and some of
its approximations considered as a function of the perturbation parameter ε. The model is based on
the population genetic example of Sect. 11.2.3, with the same parameter values as in Fig. 11.1

Fig. 11.3 The conditional quasi-stationary distribution π̂i (ε) and some of its approximations for
the population genetic example of Sect. 11.2.3. The plots are functions of the number of A1 alleles
i , with the perturbation parameter ε = 0.005 fixed. Plot a shows the distribution for all states while
plot b is restricted to states 1–20. The parameter values of the model are N = 100, C1, C2 = 0,
D1, D2 = N and S1, S2 = 0
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Fig. 11.4 Plots of the limiting conditional quasi-stationary distribution π̂i (0) for the population
genetic example of Sect. 11.2.3, as a function of the number of A1-alleles i , for different values of
the selection parameters. The model parameters N , C1, C2, D1 and D2 are the same as in Fig. 11.3.
Note that the scales of the vertical axes differ between the plots

Fig. 11.5 Comparison of the limiting conditional quasi-stationary distribution π̃i (0) for the epi-
demic model of Sect. 11.2.2, as a function of the number of infected individuals i , for a population
of size N = 100 with recovery rate μ = 1. The force of infection parameter is λ = 0.5 in a and
λ = 1.5 in b. Note that the scales of the vertical axes differ between the two plots
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Fig. 11.6 Conditional quasi-stationary probabilities π̃i (ε) and some approximations for the epi-
demic model of Sect. 11.2.2, with N = 100, λ = 1.5 andμ = 1. Note that the horizontal axes in the
two plots represent different quantities; the number of infected individuals i in a and the perturbation
parameter ε in b

Fig. 11.7 Comparison of the stationary probability πi (ε) of state i = 0 as a function of the pertur-
bation parameter ε for the epidemic model of Sect. 11.2.2 when N = 100, μ = 1, and the contact
rate parameter equals a λ = 0.5 and b λ = 1.5. Note that the scales of the horizontal axes differ
between the two plots

11.8 Discussion

The present paper is devoted to studies of asymptotic expansions for stationary and
conditional quasi-stationary distributions for perturbed semi-Markovbirth-death pro-
cesses. We employ the algorithms of sequential phase space reduction for perturbed
semi-Markov processes combined with techniques of Laurent asymptotic expan-
sions developed in the recent works by Silvestrov, D. and Silvestrov, S. [39–41],
and apply them to semi-Markov birth-death processes. In this model, the proposed
algorithms of phase space reduction preserve the birth-death structure for reduced
semi-Markov processes. This made it possible to get, in the present paper, explicit
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formulas for coefficients in the corresponding asymptotic expansions of the first and
the second orders, for stationary and conditional quasi-stationary distributions of
perturbed semi-Markov birth-death processes.

The above results are applied to three types of perturbed models from biology;
population dynamics, epidemic models and models of population genetics. We sup-
plement theoretical results by computations, illustrating numerical accuracy of the
corresponding asymptotic expansions for stationary and quasi-stationary distribu-
tions of varying form. Even though exact expressions for the (quasi-)stationary dis-
tributions of these biological models are available, the asymptotic expansions may
still be preferable when the state space is large and (quasi-)stationary distributions
are computed for several values of the perturbation parameter, since only the first
coefficients of the appropriate Laurent expansions are needed.

It should be mentioned that the semi-Markov setting is an adequate and necessary
element of the proposed method. Even in the case where the initial birth-death-type
process is a discrete or continuous time Markov chain, the time-space screening
procedure of phase space reduction results in a semi-Markov birth-death process,
since times between sequential hitting of the reduced space by the initial process
have distributions which can differ from geometrical or exponential ones.

Also, the use of Laurent asymptotic expansions for expectations of sojourn times
of perturbed semi-Markov processes is a necessary element of the proposed method.
Indeed, even when expectations of sojourn times for all states of the initial semi-
Markov birth-death process are asymptotically bounded and represented by Taylor
asymptotic expansions, the exclusion of an asymptotically absorbing state from the
initial phase space can generate states with asymptotically unbounded expectations
of sojourn times represented by Laurent asymptotic expansions, for the reduced
semi-Markov birth-death processes.

Several extensions of our work are possible. We have considered semi-Markov
processes defined on a finite and linearly ordered state space X, that is a subset of a
one-dimensional lattice. We also confined ourselves to processes of birth-death type,
where only jumps to neighboring states are possible.

For population dynamicsmodels, it is noted byLande, Engen and Saether [26] that
one needs to go beyond birth-death processes though and incorporate larger jumps in
order to account for a changing environment. State spaces that are subsets of higher-
dimensional lattices are of interest in a number of applications, for instance SIR-
models of epidemic spread where some recovered individuals get immune, Nåsell
[32], population genetic models with two sexes, Moran [28], Hössjer and Tyvand
[16], and population dynamics or population genetics models with several species or
subpopulations, see Lande, Engen and Saether [26], Hössjer et al. [15] and references
therein. It is an interesting topic of further research to apply the methodology of this
paper to such models.

The method of sequential phase space reduction proposed in this paper can
be applied to get asymptotic expansions for high order power and mixed power-
exponential moments of hitting times and, in sequel, for more complex
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quasi-stationary distributions (given by relation (11.41)) for nonlinearly perturbed
semi-Markov birth-death processes and, thus, for models of population dynamics,
epidemic spread and population genetics, which are the objects of interest in the
present paper. We hope to present such results in the future.
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Chapter 12
Phase-Type Distribution Approximations
of the Waiting Time Until Coordinated
Mutations Get Fixed in a Population

Ola Hössjer, Günter Bechly and Ann Gauger

Abstract In this paper we study the waiting time until a number of coordinated
mutations occur in a population that reproduces according to a continuous time
Markov process of Moran type. It is assumed that any individual can have one of
m + 1 different types, numbered as 0, 1, . . . , m, where initially all individuals have
the same type 0. The waiting time is the time until all individuals in the population
have acquired type m, under different scenarios for the rates at which forward muta-
tions i → i + 1 and backward mutations i → i − 1 occur, and the selective fitness
of the mutations. Although this waiting time is the time until the Markov process
reaches its absorbing state, the state space of this process is huge for all but very
small population sizes. The problem can be simplified though if all mutation rates
are smaller than the inverse population size. The population then switches abruptly
between different fixed states, where one type at a time dominates. Based on this,
we show that phase-type distributions can be used to find closed form approxima-
tions for the waiting time law. Our results generalize work by Schweinsberg [60] and
Durrett et al. [20], and they have numerous applications. This includes onset and
growth of cancer for a cell population within a tissue, with type representing the
severity of the cancer. Another application is temporal changes of gene expression
among the individuals in a species, with type representing different binding sites that
appear in regulatory sequences of DNA.
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12.1 Introduction

A central problem of population genetics is to calculate the probability that a new
germline point mutation survives and spreads from one individual to the rest of the
population. This fixation probability depends not only on the selective fitness of
the mutant compared to the wildtype variant, but also on the size of the popula-
tion. Fisher [22, 23], Haldane [30], and Wright [67, 69] derived formulas for the
fixation probability of a homogeneous one-sex or two-sex population without any
subdivision. Their results were generalized by Kimura [34, 35], who formulated the
fixation probability as a solution ofKolmogorov’s backward equation.More recently,
Lambert [41] gave a unified continuous branching process framework for calculating
fixation probabilities of different population models. However, in order to know how
fast genetic changes occur in a population, it is not only important to know the fixa-
tion probability, but also how long it takes for a surviving mutation to spread. This
can be quantified in terms of the expected time until fixation, and for a homogeneous
population this expected time was derived by Kimura and Ohta [38], Maruyama and
Kimura [47, 48], and Kimura [36].

The above mentioned results have been generalized in different directions. First,
a number of authors have analyzed fixation probabilities or the time to fixation of
one single point mutation for models with geographic subdivision (Maruyama [46],
Slatkin [61], Barton [3], Whitlock [65], Greven et al. [28]). Second, others have
studied the waiting time until a more general type of DNA target gets fixed in a
population, a process which involves several point mutations. This target could, for
instance, be a doublemutant at two loci with or without recombination (Bodmer [10],
Christiansen et al. [14]). Another target is a subset of all possible DNA sequences
at a number of tightly linked nucleotides. The evolutionary process then becomes a
random walk on a fitness landscape of DNA strings, until the target set is reached
(Gillespie [26], Chatterjee et al. [13]). This DNA string could, for instance, represent
a regulatory region of a gene, and the target may consist of all sequences that contain
a certain binding site of length 6–10 nucleotides, to which a transcription factor
attaches and affects the expression of the gene (Stone and Wray [63], MacArthur
and Brockfield [45], Yona et al. [70]). The waiting time until the new binding site
arrives and gets fixed not only depends on the mutation rate, its selective advantage,
and the size of the population, but also on the length of the regulatory region and the
binding site, see for instance Durrett and Schmidt [18], Behrens and Vingron [7],
Behrens et al. [8], Nicodéme [51], Tuğrul et el. [64], and Sanford et al. [56, 57].

Third, if several point mutations are required to reach a target that represents a
complex adaption, these mutations must be coordinated in some way. For instance,
it has been known for long that it is very difficult for several coordinated mutations
to spread and get fixed if the intermediate states convey a selective disadvantage.
In order for this to happen, the population has to be small or the mutations have to
arrive fairly close in time. Wright’s shifting balance theory (Wright [67, 68]) is an
early attempt to explain this through geographic subdivision, where the coordinated
mutations first occur and get fixed locally, before they spread to other subpopulations.
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Kimura [37] considered a diploid model, and used a diffusion approach in order
to find the expected waiting time until two coordinated mutations get fixed in the
population, when each mutation by itself is negatively selected for, and the two
loci are tightly linked or have a small recombination fraction between them. He
approximated the two-dimensional process for the frequencies of the two mutant
genes by a simpler, one-dimensional process. Stephan [62] generalized Kimura’s
model by allowing the two pathways towards the double mutation to have different
mutation rates and selective disadvantages. Phillips [53] studied waiting times for
two coordinated mutations to appear, using a somewhat similar model. He applied
the solution to the first local phase of Wright’s shifting-balance theory, and argued
that this phase dominates the total waiting time until global fixation occurs.

The waiting time problem for coordinated mutations has several applications.
It is widely believed, for instance, that many types of cancer occur when several
somatic mutations spread in a population of cells within a tissue (Knudson [39]).
This has been analyzed mathematically by Komarova et al. [40], Iwasa et al.
[32, 33], Nowak [52], and Schinazi [58, 59]. A second related application is immune
system response, where coordinated somatic mutations are triggered in reaction to
certain antigens (Radmacher et al. [54]). A third application is to analyze the waiting
time until multiple germline mutations arrive in duplicate genes in order to make
them functional (Behe and Snoke [5, 6], Lynch [43]). A fourth application is coor-
dinated germline mutations in regulatory regions, where changes at two different
binding sites have to occur in a given order (Carter and Wagner [11], Durrett and
Schmidt [19]). A fifth application is coordinated mutations in bacterial populations,
where each surviving mutant gives rise to a daughter population that grows at an
exponential rate (Axe [2]).

It is challenging to define a population genetic model that gives explicit formulas
for the waiting time until several coordinated mutations occur. The reason is that
such a model has to incorporate random gene frequency variation in terms of genetic
drift, apart from selection and mutation. It is therefore necessary to study the time
dynamics of the population’s genetic composition by means of a stochastic process,
and with at least two coordinated mutations, the state space of this process gets huge
for all but very small populations sizes. Under certain assumptions the problem can
be simplified though. For models with two coordinated mutations, this has been done
in the above mentioned papers by Komarova et al. [40], Iwasa et al. [32, 33], and
Durrett and Schmidt [19]. More recently, Schweinsberg [60] and Durrett et al. [20]
obtained the asymptotic distribution for the waiting time until an arbitrary number
m of coordinated mutations occur, when the intermediate alleles are neutral and no
backward mutations are allowed. Their models have been used and extended by
Lynch and Abegg [44], in order to study the waiting time until complex adaptive
mutations are fixed. This work has been criticized by Axe [2], who argued that
backward mutations should be included in models of complex adaptations.

The purpose of this paper is to generalize the framework of Schweinsberg [60]
and Durrett et al. [20]. We derive asymptotic properties of the waiting time distri-
bution until an arbitrary number m of coordinated mutations appear and the last
one of them gets fixed, in a large population without any type of subdivision.
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The mutations are allowed to have different selective fitness and mutation rates,
and backward mutations are possible. The mutation probabilities are assumed to be
smaller than the inverse population size, so that the genetic composition of the popu-
lation changes rapidly between fixation of different genetic variants. This fixed state
population model (Komarova et al. [40], Tuğrul et al. [64]) is conveniently modeled
by a continuous time Markov process with a finite state space; the wildtype genetic
variant and the m mutants. It is shown that asymptotically, the time until the mth
mutant gets fixed in the population, has a phase-type distribution, that is, the distribu-
tion of the time theMarkov process spends in non-absorbing states (or phases) before
the absorbing state is reached (Neuts [50], Asmussen et al. [1]). We also give explicit
approximations of the transition intensities of the Markov process. This includes
transitions between non-adjacent mutations through stochastic tunneling (Carter and
Wagner [11], Komarova et al. [40], Iwasa et al. [32]), where the intermediate genetic
variants (the tunnel) are kept at a low frequency.

The paper is organized as follows: In Sect. 12.2 we introduce the framework for
how the genetic composition of the population evolves over time bymeans of aMoran
model (Moran [49], Section3.4 ofEwens [21])with deaths, births, andmutationswith
different selective fitness. In Sect. 12.3 we introduce the Markov process for fixed
population stateswhen themutation rates are smaller than the inverse population size,
and define the phase-type distribution for the time until this Markov process reaches
its absorbing state. Then inSect. 12.4wegive conditions underwhich thewaiting time
until the last mutant gets fixed, converges weakly towards a phase-type distribution,
as the size of the population grows. After stating some results for the fixation of one
single mutant in Sect. 12.5, we then provide explicit approximations, in Sect. 12.6,
of the transition rates of the Markov process between different fixed states. Then
we illustrate the theory for a number of asymptotic scenarios in Sect. 12.7, provide
some adjustments of the asymptotic theory in Sect. 12.8, and give a summary with
further extensions in Sect. 12.9. In Appendix A we provide a simulation algorithm,
in Appendix B we derive an explicit approximation of the expected waiting time for
one single mutant to get fixed, and in Appendix C we sketch proofs of main results.

12.2 Moran Model with Mutations and Selection

Consider a homogeneous and haploid population of constant size that consists of N
individuals, all ofwhich have the same sex. Each individual has one ofm + 1 possible
types 0, 1, . . . , m. We can think of these types as different genetic variants or alleles,
where 0 is a wildtype allele that is modified by m successive mutations. The genetic
composition of the population is summarized by means of an (m + 1)-dimensional
vector

Zt = (Zt0, . . . , Ztm) ∈ Z, (12.1)

whose components represent the fraction of all alleles at time t ≥ 0. It is assumed
that t is a continuous parameter counted in units of generations. The allele frequency
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configuration (12.1) is a stochastic process whose state space Z is the intersection of
the m-simplex

Δ =
{

z = (z0, . . . , zm); zi ≥ 0,
m∑

i=0

zi = 1

}

spanned by the vectors

e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1),

and the setN(m+1)/N of vectors z whose coordinates are natural numbers divided by
N . More specifically, we will assume that (12.1) is a Moran model, where mutations
between neighboring types i → i + 1 and i → i − 1 are possible, andwhere individ-
uals with allele i have a selective fitness si , with s0 = 1 and si > 0 for i = 1, . . . , m.
In our model, these numbers correspond to negative selection, neutral selection, and
positive selection for allele i , depending on whether 0 < si < 1, si = 1, and si > 1
respectively. The population starts with all individuals having type 0, so that Z0 = e0.
It has overlapping generations, with a reproduction scheme defined as follows:

(i) Each individual dies independently according to a Poisson process with rate 1.
(ii) When an individuals dies, an offspring of some randomly chosen individual

(including the one that dies) replaces it. The parent is chosen among the N
individuals in the population, with probabilities proportional to their selection
coefficients si .

(iii) If the parent has type i < m, the offspring in step (ii) mutates to i + 1 with
probability ui+1 > 0 and to i − 1 with probability vi−1 ≥ 0 (with v−1 = 0).

It follows from these reproduction rules that {Zt ; t ≥ 0} is a continuous time
and time homogeneous Markov process on Z. Our primary objects of study are the
waiting time

Tm = inf{t ≥ 0; Zt = em} (12.2)

until allele m gets fixed in the population; and the waiting time

T̃m = inf{t ≥ 0; Ztm > 0} (12.3)

until this allele first appears. Notice that Tm is the time until Zt reaches the absorbing
state em . On the other hand, T̃m is the hitting time of Zm = {z = (z0, . . . , zm) ∈
Z; zm > 0}, which is not an absorbing set of states, since the descendants of a type
m individual may die out before this allele gets fixed in the population. However, if
we modify the dynamics of Zt and stop it as soon as it reaches Zm , we may treat this
set as one single absorbing state.

It is also possible to allow for backward mutations when offspring of type m
individuals are born, with probability vm−1. Although this will affect the distribution
of Tm , it will not impact the approximations of this distribution that we discuss in
the following sections.
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12.3 Phase-Type Distribution Approximation of Waiting
Time

12.3.1 Asymptotic Notation

We will analyze the waiting times Tm = Tm,N and T̃m = T̃m,N asymptotically as
the population size N tends to infinity. The various parameters of the model will
in general depend on N as well, such as ui = ui,N , vi = vi,N , and si = si,N . We
will use Bachmann–Landau asymptotic notation as N → ∞, for instance aN ∼ bN

if aN /bN → 1, bN = O(aN ) if bN /aN stays bounded, bN = Ω(aN ) if bN /aN is
bounded away from zero, bN = Θ(aN ) if aN and bN are of the same order (that
is, bN = O(aN ) and bN = Ω(aN )), and bN = o(aN ) if bN /aN → 0. We will also
make use of the analogous notation for sequences of random variables YN , with
YN = Op(aN ) if YN /aN stays bounded in probability and YN = op(aN ) if YN /aN

converges to zero in probability. Suppose Y is a random variable with distribution F .

We denote this as Y
L∈ F , and if YN is a sequence of random variables converging

weakly towards Y , we often use the shorthand notation YN
L−→ F . For simplicity of

notation, we will mostly omit index N for sequences of numbers or random variables
that are functions of N . Sometimes, we also write aN � bN or bN � aN instead of
aN = o(bN ).

12.3.2 Simplified Markov Process Between Fixed Population
States

For all but very small N , it is not possible to get explicit and easily computable
expressions for the distributions of Tm and T̃m , since the state spaceZ gets huge when
N grows. It is however possible to get accurate approximations of these distributions
under appropriate conditions. The most crucial assumption is that the forward and
backward mutation rates ui and vi tend to zero at a rate faster than the inverse
population size, i.e.

ui = o(N−1), (12.4)

and
vi = o(N−1) (12.5)

for all i as N → ∞. The implication of (12.4)–(12.5) is that most of the time,
all individuals of the population will have the same type, and changes of this type
occur rapidly when an individual with a new mutation gets many descendants that
eventually take over the population. For this reason it may appear that a certain
allele i < m has been fixed permanently. But this is only temporary, since forward
or backward mutations may later drive the population towards other fixed states.
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This phenomenon was referred to as quasi-fixation in Hössjer et al. [31] for certain
one-way mutation models with two possible alleles. Because of these rapid changes
of the genetic decomposition Zt of the population, it is well approximated by a
continuous time Markov process defined on the finite subset

Zhom = {e0, . . . , em} (12.6)

of Z that consists of all possible states of a type-homogeneous population. Here ei

refers to fixed state i of the population, so that all its individuals have the same type i .
The simplified process has intensity matrix Λ = (λi j )

m
i, j=0, where λi j > 0 is the rate

of jumping from ei to e j when j 	= i , and −λi i = ∑
j; j 	=i λi j is the rate of leaving

ei . Since em is an absorbing state, the intensity matrix can be decomposed as

Λ =
(

Λ0 λ

0 0

)
, (12.7)

where Λ0 = (λi, j )
m−1
i, j=0 contains the transition rates from and among the non-

absorbing states, 0 = (0, . . . , 0) is a row vector withm zeros, T denotes vector trans-
position, and λ = (λ0m, . . . , λm−1,m)T is a column vector containing the transition
rates from all non-absorbing states to em . A transition of Zt from ei to e j corresponds
to a stochastic tunneling event when | j − i | ≥ 2. For instance, when j ≥ i + 2, it
represents a scenario where some individual who lives in a homogeneous type i pop-
ulation, has descendants from the same line of descent that experience mutations to
i + 1, i + 2, . . . , j , and then type j spreads to the whole population before any of
the intermediate types do.

12.3.3 Defining Phase-Type Distribution Approximation

Since Tm is the time until the absorbing state em is reached, the simplified Markov
process assumption with state space (12.6) and intensity matrix (12.7) implies that
approximately

Tm
L∈ PD(ẽ0,Λ0) (12.8)

has a phase-type distribution, where ẽi is a unit vector of length m that contains the
first m components of ei . This phase-type distribution has two arguments, where
the first, ẽ0, refers to the starting distribution of the Markov process among the non-
absorbing states, and the second argument gives the intensity matrix among and from
the non-absorbing states. From (12.8) we get very explicit approximate expressions
for the density function

fTm (t) = ẽ0 exp(Λ0t)λ, t > 0, (12.9)
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the expected value
E(Tm) = −ẽ0Λ

−1
0 1 (12.10)

and the variance
Var(Tm) = 2ẽ0Λ

−2
0 1 − (

ẽ0Λ
−1
0 1

)2
(12.11)

of Tm , with 1 = (1, . . . , 1)T a column vector of m ones.
In order to approximate the law of the waiting time T̃m in (12.3), we approximate

{Zt } by a Markov process on

Z̃hom = {e0, . . . , em−1,Zm}. (12.12)

Then we may use (12.8) as a distributional approximation for T̃m rather than Tm , if
λim is interpreted as a transition rate from ei to Zm when i < m, rather than from ei

to em .

12.4 Waiting Time Asymptotics

12.4.1 Regularity Conditions

In order to formulate precise asymptotic distributional results for Tm and T̃m when
N → ∞, we need some additional definitions and assumptions. We will focus on
Tm , and then briefly point out the differences for T̃m .

As a first step, let {τk}M
k=0 be the time points when a new allele gets fixed in the

population. They are defined recursively as τ0 = 0 and

τk = inf{t > τk−1; Zt ∈ {e0, . . . , em} \ Zτk−1}, (12.13)

for k = 1, 2, . . . , M , with τM = Tm the time point when Zt reaches its absorbing
state em . Clearly, {Zτk ; k = 0, 1, . . .} is a Markov chain with state space Zhom and
transition probabilities

pi j = pi j,N =
⎧⎨
⎩

P(Zτk+1 = e j |Zτk = ei ), i = 0, . . . , m − 1,
j = 0, . . . , m,

0, i = m, j = 0, . . . , m − 1.
(12.14)

Since Zτk 	= Zτk+1 for k < M , the diagonal elements of the transition matrix
P = (pi j )

m
i, j=0 vanish for all non-absorbing states, i.e. pii = 0 for i < m.

Assume that Zτk = ei for some k < M and i < m. We will study what happens
between the time points τk and τk+1, and refer to a forward mutation i → i + 1
as successful if its descendants eventually take over the population. Let fi = fi,N

be the probability that a forward mutation that happens while all individuals of the
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population have the same type i , is successful. Likewise, if i > 0, a successful back-
ward mutation of type i → i − 1 is one whose descendants eventually take over the
population. Denote by bi = bi,N the probability that a backward mutation is success-
ful, given that it happens in a homogeneous type i population. For definiteness, we
also put b0 = 0. A successful mutation from type i is either forward or backward, and
due to (12.4)–(12.5), it will arrive when the population is homogeneous or almost
homogeneous of type i . Therefore, a successful mutation from type i arrives at a rate
close to

μi = μi,N = Nvi−1bi + Nui+1 fi , i = 0, . . . , m − 1, (12.15)

since new backward and forward mutations appear at rates Nvi−1 and Nui+1 among
N individualswith the same type i , but only a fractionbi and fi of themare successful,
and cause a change in the population to another fixed state. For the absorbing state
we put μm = 0.

There will be at least one successful mutation within (τk, τk+1), and let τ ′
k+1 be

the time point when the first of these mutations arrives. We will assume below that
τk+1 − τ ′

k+1 is asymptotically negligible in comparison to the total waiting time Tm ,
which reflects that fact that all transitions of Zt occur rapidly. This suggests that it
is asymptotically accurate to use transition rates

λi j =
{−μi , i = j,

μi pi j , i 	= j,
(12.16)

in (12.8). In order to verify this we need to make some additional assumptions on
how the rates in (12.16) behave as N → ∞. We will first of all assume that the
transition probabilities in (12.14) satisfy

pi j → πi j , i, j = 0, 1, . . . , m, (12.17)

as N → ∞, so that Π = (πi j )
m
i, j=0 is the asymptotic transition matrix of the embed-

ded Markov chain {Zτk ; k = 0, 1, . . .}. We will then postulate that

(I − Π0)
−1 is invertible, (12.18)

with I the identity matrix of order m andΠ0 a square matrix of order m that contains
the first m rows and first m columns of Π . Condition (12.18) guarantees that the
asymptotic Markov chain reaches its absorbing state em with probability 1, since it
implies P(M < ∞) = ẽ0(I − Π0)

−1π = 1, where π = (π0m, . . . , πm−1,m)T . Let

Ias = {i; 0 ≤ i ≤ m − 1, ẽ0(I − Π0)
−1ẽT

i > 0} (12.19)

refer to the asymptotic states. It consists of those non-absorbing states that are
visited with a positive probability asymptotically as N → ∞, since i ∈ Ias is
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equivalent to requiring that (Π k)0i > 0 for at least one k = 0, 1, . . .. The remaining
non-asymptotic states are denoted as

Inas = {1, . . . , m − 1} \ Ias. (12.20)

Among the asymptotic states, it is also important to know for how long time they are
visited. We therefore express the expected waiting time

E(Tm) = E0 + E1 + · · · + Em−1

until allele m gets fixed as a sum of m terms, with Ei = Ei,N = −ẽ0Λ
−1
0 ẽT

i the
expected time spent in state ei before absorption into state em takes place. Notice
that Λ0 is invertible for each finite N , and therefore each Ei is well defined with
0 < Ei < ∞. Indeed, since all ui > 0, it follows that any fixed population state e j

with j = i + 1, . . . , m can be reached from fixed population state ei in one step.
Therefore, all entries of Λ0 above the diagonal are strictly positive, whereas the
diagonal elements and row sums of Λ0 are strictly negative. From the Gershgorin
Circle Theorem we deduce that all eigenvalues of Λ0 have a strictly negative real
part, so that Λ0 is invertible. We will assume that the limits

Ei/E(Tm) → ci , 0, 1, . . . , m − 1, (12.21)

exist as N → ∞, and define

Ilong = {i; 0 ≤ i ≤ m − 1, ci > 0} (12.22)

as the set of asymptotic states ei that are visited for such a long time that they have
an asymptotic contribution to the expected waiting time (12.10). We also put

Ishort = Ias \ Ilong (12.23)

for those non-absorbing states that are asymptotic, but visits to them are too short
to have an asymptotic impact on the expected waiting time. It follows from (12.21)
that the transition rates from the states in Ilong have the same order

μmin = μmin,N = min{μi ; i ∈ Ilong}, (12.24)

and it is the inverse of (12.24) that determines the asymptotic size of the waiting
time (12.2). We will therefore rescale time in units of μmin and assume that

μi

μmin
→ κi , i = 0, . . . , m, (12.25)

as N → ∞, where the normalized rate κi of leaving state ei satisfies 1 ≤ κi < ∞
for i ∈ Ilong, κi = ∞ for i ∈ Ishort, 0 ≤ κi ≤ ∞ for i ∈ Inas, and κm = 0. In order to
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ensure that the time between the appearance of a successful mutation and fixation of
a new allele is asymptotically negligible, we assume that

P
(
τk+1 − τ ′

k+1 > εμ−1
min|Zτk = ei

) → 1 ∀ε > 0 and i ∈ Ias, (12.26)

as N → ∞. Notice that the probability on the left hand side of (12.26) does not
depend on k, because of the Markov property of {Zτk }.

12.4.2 Main Results on Waiting Time Asymptotics

The following theorem specifies the asymptotic phase-type distribution of thewaiting
time Tm until allele m gets fixed. A proof of it is sketched in Appendix C.

Theorem 12.1 Consider a Moran model for a population of size N with types (alle-
les) 0, . . . , m that starts with all its individuals in allelic state 0 and then repro-
duces according to (i)–(iii) of Sect. 12.2, so that forward (i → i + 1) and backward
(i → i − 1) mutations between nearby alleles are possible. Assume that the forward
and backward mutation rates satisfy (12.4)–(12.5), that the transition probabilities
between fixed population states where all individuals have the same allele, converge
as in (12.17)–(12.18), that the expected times spent in various fixed states converge
as in (12.21), that the rates of leaving the various fixed states satisfy (12.25), and
that the time between appearance of a new successful mutation and fixation of a new
allele is asymptotically negligible (12.26), as N → ∞. Then the waiting time Tm

until allele m gets fixed has a phase-type distribution

μminTm
L−→ PD(ẽ0,Σ0), (12.27)

asymptotically as N → ∞, when rescaled by μmin in (12.24), the minimal rate of
leaving a fixed state, among those that are visited for a positive fraction of time. The
second argument Σ0 on the right hand side of (12.27) contains the first m rows and
first m columns of the intensity matrix Σ = (Σi j )

m
i, j=0, with

Σi j =
{−κi , j = i,

κiπi j , j 	= i,
(12.28)

πi j is the asymptotic transition probability (12.17) between fixed states i and j , and
κi is the normalized rate (12.25) of leaving fixed state i .

We will make some comments on the asymptotic inverse size μmin of the waiting
time Tm , and the matrix Σ0 of the limit distribution in (12.27). In some applications,
it convenient to generalize (12.24) and let

μmin = C min{μi ; i ∈ Ilong} (12.29)
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for some constant C > 0, chosen in order to get a simple expression for μmin. It is
straightforward to see that Theorem12.1 remains unchanged with this minor mod-
ification. The matrix Σ0 contains asymptotic transition rates among and from all
non-absorbing states, after the change of time scale in (12.24). It will be degenerate
when either Ishort or Inas are non-empty. However, it turns out that (12.27) is still well
defined, if we disregard those rows and columns of Σ0 that correspond to Inas and
take the limit κi → ∞ for all i ∈ Ishort.

Consider the special case when either all vi = 0, or that backward mutations have
no asymptotic impact on the waiting time distribution. An important instance of
(12.27) occurs if, in addition, successful forward mutations in a homogeneous type
i environment always causes the same allele F(i) > i to get fixed in the population,
i.e.

πi,F(i) = 1, i ∈ Ias. (12.30)

With this extra regularity condition, we obtain the following corollary of
Theorem12.1:

Corollary 12.1 Consider the Moran model of Sect.12.2. Assume that the conditions
of Theorem12.1 hold, that only forward mutations have an asymptotic impact on the
population dynamics in such a way that the forward jumps between fixed population
states occur according to (12.30). Then the waiting time Tm until allele m gets fixed
has a hypoexponential limit distribution

μminTm
L−→

∑
i∈Ilong

κ−1
i Xi (12.31)

as N → ∞, where X0, . . . , Xm−1 are independent and exponentially distributed
random variables with expected value 1.

Remark 12.1 The asymptotic result for the waiting time distribution of T̃m is analo-
gous to (12.27), if we replace em by Zm in all definitions. In particular, we inter-
pret Σim as a normalized transition rates from ei to Zm (rather than to em) for
i = 0, . . . , m − 1.

12.5 Fixation in a Two Type Moran Model Without
Mutations

As a preparation for the next sections, we will state two well known result on the
fixation probability and expected time to fixation, for aMoranmodel with two alleles
(m = 1) and no mutations. If these two alleles start at frequencies N − 1 and 1, and
have selection coefficients 1 and s > 0 respectively,

β(s) = βN (s) =
{
1/N , s = 1,
(1 − s−1)/(1 − s−N ), s 	= 1

(12.32)
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is the probability that the second allele gets fixed, whereas 1 − β(s) is the probability
that the first allele does (Komarova et al. [40], Section 6.1 of Durrett [17]). We will
make frequent use of asymptotic expressions for the fixation probability of large
populations. It follows from (12.32) that

β(s) ∼
⎧⎨
⎩

(s−1 − 1) × s N , 1 − s � 1/N ,

x/
[
1 − exp(−x)

]× 1/N , s = 1 + x/N ,

1 − s−1, s − 1 � 1/N ,

(12.33)

as N → ∞, where x 	= 0 in the second line is a constant, not depending on N .
Given that the second alleles takes over, we let α(s) be the expected time it takes

for this to happen. Kimura and Ohta [38] derived a general diffusion approximation
of α(s) for a large class of models with two alleles, see also Section 8.9 of Crow and
Kimura [15], or Theorems1.32 and 6.3 of Durrett [17]. In Appendix B we calculate
this diffusion approximation α(s) for the Moran model of Sect. 12.2. In particular,
we show that this diffusion approximation is of the order

α(s) = αN (s) ∼
⎧⎨
⎩

(1 + s) log(N )/(1 − s), if s < 1,
N , if s = 1,
(1 + s) log(N )/(s − 1), if s > 1,

(12.34)

asymptotically as N → ∞, if s is kept fixed. The expected time to fixation in (12.34)
is much different for neutral and non-neutral alleles. This is also true for the more
accurate diffusion approximation of α(s) in Appendix B, although it has a somewhat
smoother transition between s = 1 and s 	= 1.

12.6 Explicit Approximate Transition Rates Between Fixed
Population States

Returning to the general model with m mutations, we recall that Theorem12.1 gives
quite general conditions under which the normalized waiting times μminTm and
μminT̃m have asymptotic phase-type distributions as the population size N → ∞.
Under these assumptions the unnormalized waiting times Tm (cf. (12.8)) and T̃m

are also well approximated by phase-type distributions. But in order to apply these
results we still need to find explicit approximations of the Markov transition rates
λi j in (12.8) and (12.15)–(12.16) between fixed population states. As in Sect. 12.4
we focus on Tm and then pinpoint the difference when T̃m is of interest.



258 O. Hössjer et al.

12.6.1 Defining Approximate Transition Rates

We introduce

λ̂i j =
{

Nui+1ri jβ(s j/si ), j > i,
Nvi−1ri jβ(s j/si ), j < i

(12.35)

as an approximation of λi j when i < m and j 	= i . The quantity ri j = q̂i j approxi-
mates a certain probability qi j . When | j − i | = 1 we put qi,i−1 = qi,i+1 = 1. When
j ≥ i + 2, qi j is a probability of tunneling from i + 1 to j . In more detail, qi j is
the probability that a forward mutation i → i + 1, that occurs in a homogeneous
type i population, gets a at least one descendant that mutates from j − 1 to j before
any other allele gets fixed. Analogously when j ≤ i − 2, qi j is the probability of
tunneling backwards from i − 1 to j . That is, qi j is the probability for a backward
mutation i → i − 1, that occurs in a homogeneous population of type i individuals,
to get at least one descendant that mutates to from j + 1 to j before any other allele
gets fixed. For definiteness, we also put λ̂mj = 0 for all j .

It follows from (12.32) that the β(s j/si ) term of (12.35) is the probability that
descendants of one single type j individual take over a populationwhere all the others
have type i , if further mutations do not occur. In our setting, it is an approximation
of the probability that the descendants of the individual that first mutated into j , take
over the population before any new mutations occur. In order for this approximation
to be accurate, it is required that no other allele than i attains a high frequency before
j gets fixed (recall that the type j mutation itself was a descendant of a successful
i → i ± 1 mutation, that appeared in homogeneous or almost homogeneous type i
population).

In order to finalize the definition of λ̂i j in (12.35) wemust specify how ri j approxi-
mates qi j . When | j − i | = 1 we put ri j = 1.When |i − j | ≥ 2, we introduce explicit
approximations

ri j =
⎧⎨
⎩
∏ j−1

l=i+1R(ρil j )
2−(l−i−1)

u2−(l−i)

l+1 , j > i,∏i−1
l= j+1R(ρil j )

2−(i−l−1)
v2

−(i−l)

l−1 , j < i
(12.36)

of the tunneling probabilities qi j that are accurate when no other allele reaches a high
frequency during a transition from i to j . The parameters ρil j in (12.36) quantify
the difference between selection coefficients si and sl , on a scale determined by a
tunneling probability from l to j . When i < j , they are defined through

sl

si
= 1 + ρil j

√
ul+1ril j (12.37)

for l = j − 1, . . . , i + 1. This involves some other quantities ril j , which are also
defined recursively, for l = j − 1, . . . , i , starting with ri, j−1, j = 1 and then using
the relation

ril j = R(ρi,l+1, j )
√

ri,l+1, j ul+2. (12.38)
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When this recursion has stopped at l = i weobtain the upper rowof (12.36) byputting
ri j = rii j . Here ril j approximates the probabilityqil j that amutation l → l + 1,which
occurs in a homogeneous type i population, gets a least one descendant that mutates
into j , before any other allele gets fixed. In particular, qii j = qi j . Similarly, when
i > j , we have that

sl

si
= 1 + ρil j

√
vl−1ril j (12.39)

for l = j + 1, . . . , i − 1. The probabilities ril j are defined recursively for l = j +
1, . . . , i , starting with ri, j+1, j = 1, then iterating

ril j = R(ρi,l−1, j )
√

ri,l−1, j vl−2, (12.40)

and finally getting the lower row of (12.36) from ri j = rii j . The function

R(ρ) =
√

ρ2 + 4 + ρ

2
(12.41)

specifies the way in which differences between the selection coefficients si , . . . , s j−1

affect the probability ri j in (12.36), see also equation (10) of Iwasa et al. [32] or
equation (5) of Durrett and Schmidt [19]. Intuitively, if type l is more fit than i , then
ρil j > 0, and the probability in (12.36) increases (since R(ρ) > 1 when ρ > 0, in
particular R(ρ) ∼ ρ when ρ → ∞), if sl = si then ρil j = 0 will have no impact on
ri j (since R(0) = 1), and finally, if l is less fit than i and therefore ρil j < 0, this
will decrease the probability in (12.36) (since R(ρ) < 1 when ρ < 0, in particular
R(ρ) ∼ −1/ρ as ρ → −∞).

It is possible to obtain a more accurate approximation of qi j than (12.36), without
using the quantities ρil j nor the function R (see the end of the proof of Lemma12.3
in Appendix C for details). Formula (12.36) is more explicit though, and therefore
it gives more insight into how the mutation rates and the selection coefficients affect
the approximate tunneling probabilities ri j .

12.6.2 Conditions Under Which Approximate Transition
Rates Are Accurate

It turns out that Eqs. (12.35) and (12.36) are good approximations of λi j for those
forward transition rates ( j > i) and backward transition rates ( j < i) that dominate
asymptotically, provided there is exactly one forward rate and at most one backward
rate from i that dominate. This can be formulated as follows. Define

μ̂i = −λ̂i i =
∑
j; j 	=i

λ̂i j for i = 0, . . . , m − 1, (12.42)
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as an approximation of the rate μi in (12.15) at which a successful mutation occurs
in a type i population, and suppose that

p̂i j = λ̂i j

μ̂i
→ π̂i j (12.43)

as N → ∞ for all 0 ≤ i ≤ m − 1 and j 	= i . For definiteness we also put π̂i i =
0 and π̂mj = 0 for j = 0, . . . , m − 1. We assume there is at most one index 0 ≤
B(i) < i for each i = 1, . . . , m − 1, and exactly one index i < F(i) ≤ m for each
i = 0, . . . , m − 1, such that fixation events from i will always be to B(i) for backward
mutations, and to F(i) for forward mutations. This can phrased as

π̂0,F(0) =1,

π̂i,B(i) + π̂i,F(i) =1, i = 0, . . . , m − 1,

π̂i,F(i) >0, i = 1, . . . , m − 1,

(12.44)

with π̂i,B(i) = 0 in themiddle equationwhen B(i) = ∅, i.e. when backwardmutations
froma type i population have no asymptotic impact. In particular, the forward fixation
from i involves stochastic tunneling if F(i) ≥ i + 2. In order for this to happen, λ̂i F(i)

must have a larger order asymptotically than all other λ̂i j with j > i . It follows from
(12.36) and someof the regularity conditions below, that a necessary condition for this
to happen is that type j is more beneficial for reproduction than all the intermediate
alleles. A similar condition applies for backward mutations, and we can summarize
these necessary tunneling conditions as follows:

F(i) ≥ i + 2 =⇒ sF(i) > max
(
si+1, . . . , sF(i)−1

)
,

B(i) ≤ i − 2 =⇒ sB(i) > max
(
sB(i)+1, . . . , si−1

)
,

(12.45)

where the lower equation only applies when B(i) 	= ∅. We will need some additional
regularity conditions. The first one consists of four relations

ui/ui+1 = O(1), i = 0, . . . , m − 1,
vi−1 = O(ui+1), i = 1, . . . , m − 1,

v j/v j−1 = O(1), if B(i) < j < i for some i = 2, . . . , m − 1,
u j+1 = O(v j−1), if B(i) < j < i for some i = 2, . . . , m − 1,

(12.46)

each of which imposes some restrictions on themutation rates. The second and fourth
relations of (12.46) guarantee that backward mutations will have no asymptotic
impact on forward fixations, and vice versa. The first equation of (12.46) requires
that mutation rates to higher types are at least of the same order as mutation rates
to lower types. Otherwise forward stochastic tunneling will be more difficult, and
the formulas for some of the tunneling probabilities in (12.36) will look different.
The third equation of (12.46) is the analogous requirement on backward mutations.
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Notice that neither the third nor the fourth relation of (12.46) apply when back
mutations do not exist or have no asymptotic impact, i.e. if B(i) = ∅ for all i .

In order to assure that condition (12.26) holds, i.e. that the time for successful
mutations to get fixed are asymptotically negligible, we will assume that

N mini∈Ilong u2−2−(F(i)−i−1)

F(i) β(sF(i)/si )

= o
(
mini∈Ias min

[
α−1

(
sB(i)

si

)
, α−1

(
sF(i)

si

)])
,

(12.47)

where β(s) and α(s) are the fixation probability (12.32) and expected fixation time
(12.34), respectively. If (12.47) does not hold, Tm will not only be affected by the
waiting times for successful mutations to occur, but their fixation time will also have
an impact.

The next regularity condition requires that the parameters of Eqs. (12.37)–(12.39)
are bounded, i.e.

|ρil j | = O(1), i < l < j or j < l < i (12.48)

when N → ∞. This means that the fitness s1, . . . , sm−1 of the first m − 1 mutant
alleles approach 1 as N grows, so that each one of them is either slightly deleterious,
neutral or slightly advantageous compared to the wildtype allele 0. The case of strong
negative or positive selection (ρil j → ±∞ respectively) is not included in (12.48),
but has been studied by Komarova et al. [40].

12.6.3 Asymptotic Distribution of Wating Time Based on
Approximate Transition Rates

Equipped with the definitions and regularity conditions of Sect. 12.6.2, we are ready
to formulate an asymptotic distributional result for thewaiting time Tm (seeAppendix
C for a sketch of proof), where its limiting phase-type distribution can be derived
from the explicit approximation (12.35) of the transition intensities between the fixed
population states of the simplified Markov process.

Theorem 12.2 Consider a Moran model for a population with N individuals and
alleles 0, . . . , m that starts with all its individuals in allelic state 0, and then repro-
duces according to (i)–(iii) of Sect. 12.2. Assume, as in Theorem12.1, that (12.4)–
(12.5), (12.17), (12.21), and (12.25) hold, and let λi j be the Markov transition rate
(12.16) between two fixed population states i and j where all individuals have the
same allele i and j respectively. Define λ̂i j in (12.35) as an approximation of λi j ,
with μ̂i the approximate rate (12.42) of leaving state i and π̂i j an approximation
(12.43) of the probability πi j in (12.17) of jumping from fixed state i to fixed state j ,
whereas μ̂min = mini∈Ilong μ̂i is an approximation of the minimal rate of leaving a
fixed state, among those that are visited for a positive fraction of time. Assume fur-
ther that (12.44)–(12.48) hold. Then πi j = π̂i j and μ̂i/μ̂min → κi for i = 0, . . . , m
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as N → ∞, where κi is the normalized rate (12.25) of leaving fixed state i . Moreover,
the waiting time Tm until allele m gets fixed has an asymptotic phase-type distribution

μ̂minTm
L−→ PD(ẽ0,Σ0) (12.49)

as N → ∞, where Σ0 contains the first m rows and m columns of the intensity matrix
Σ in (12.28).

Remark 12.2 The limit result for T̃m is analogous to Theorem12.2. One simply puts
sm = ∞ everywhere, which corresponds to immediate fixation of a type m mutation,
once it appears.

12.7 Illustrating the Theory

In this section we will illustrate Theorem12.2. Recall that it gives the asymptotic
waiting time distribution until the m:th mutant gets fixed in the population, based on
the transition rates λ̂i j in (12.35)–(12.36) that approximate λi j in (12.15)–(12.16). In
order to determine the approximate waiting time distribution, it suffices to specify
λ̂i j for i = 0, . . . , m − 1 and j 	= i , j = 0, . . . , m, and then look at the properties of
these rates as the population size grows. We will consider different scenarios, not all
of which satisfy the regularity conditions of Theorem12.2. But in these cases we will
argue why (12.49) still provides a fairly accurate asymptotic approximation of the
waiting distribution Tm . On the other hand, it is implicit that the mutation rates are
smaller than the inverse population size, according to (12.4)–(12.5), for all examples
of this section.

12.7.1 The Case of Two Coordinated Mutations

When there are m = 2 coordinated mutations, formula (12.35) simplifies to

λ̂01 = Nu1β(s1), λ̂02 = N R(ρ)u1u1/2
2 β(s2), λ̂10 = Nvβ(1/s1),

λ̂12 = Nu2β(s2/s1),
(12.50)

where v = v0, and ρ = ρ012 is a real-valued constant (not depending on N ) defined
in (12.37) that is either negative, zero or positive. Here, this equation simplifies to

s1 = 1 + ρu1/2
2 . (12.51)

We will investigate the limit distribution of the waiting time T2 for different asymp-
totic scenarios.
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12.7.1.1 No Backward Mutations, and Final Allele Has High Fitness

In this subsection we will make two favorable assumptions for the waiting time T2;
that there are no backward mutations (v = 0), and that allele 2 has a high fitness
(s2 = ∞). It turns out that the relative size of the two forward mutation rates, u1 and
u2, is crucial for the asymptotic properties of T2. We will look at four different cases.

Case 1: Second mutation rate very small. Assume that

u2 = o(u1N−1) (12.52)

as N → ∞. In this case, the three nonzero rates in (12.50) simplify to

λ̂01 ∼ u1, λ̂02 = N R(ρ)u1u1/2
2 , λ̂12 = Nu2. (12.53)

It follows from (12.4) to (12.52) that λ̂02 � λ̂01 and λ̂12 � λ̂01, so that μ̂0 ∼ λ̂01 �
μ̂1 = Nu2. The asymptotic states with short and long waiting times are Ishort = {0}
and Ilong = {1} respectively, the time rate to absorption is μ̂min = Nu2, the mutation
rates on the new time scale are κ0 = ∞ and κ1 = 1, and the nonzero asymptotic
transition probabilities from the non-asymptotic states, areπ01 = π12 = 1. This gives
a normalized intensity matrix

Σ =
⎛
⎝−∞ ∞ 0

0 −1 1
0 0 0

⎞
⎠

in (12.28). Because of the smallness of the second mutation rate u2, there is asymp-
totically no tunneling from 0 to 2, but allele 1 gets fixed at first. After that it takes
much longer time for the first allele 2 to arrive, in spite of the fact that this 1 → 2
mutation is successful with probability 1 (since s2 = ∞, and therefore β(s2) = 1).
Consequently, the asymptotic distribution of T2 will be dominated by the waiting
time for allele 2 to appear, after allele 1 has first been fixed in the population, i.e.

Nu2 × T2
L−→ Exp(1) (12.54)

as N → ∞. Notice that the exponential limit distribution in (12.54) is a special case
of Corollary12.1, although (12.52) violates regularity condition (12.46) of Theo-
rem12.2. However, this condition is only needed in order to get a good approximation
of the tunneling rate λ̂02. But since stochastic tunneling 0 → 2 has no asymptotic
impact (λ̂02 � λ̂01), we still believe (12.54) is accurate.

Case 2: Second mutation rate small. If

u1N−1 � u2 � N−2 (12.55)
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as N → ∞, we get slightly different asymptotics compared to Case 1. The transition
rates λ̂i j are the same as in (12.53), but their asymptotic ordering λ̂02 � λ̂01 �
λ̂12 is different. The states with short and long waiting time are therefore switched
compared toCase 1 (Ilong = {0}, Ishort = {1}), with a time rate μ̂min = μ̂1 ∼ λ̂01 ∼ u1

to absorption. The rescaledmutation rates from states 0 and 1 are κ0 = 1 and κ1 = ∞
respectively, whereas the nonzero asymptotic transition probabilities from the non-
asymptotic states are the same as for Case 1 (π01 = π12 = 1). This gives a normalized
intensity matrix

Σ =
⎛
⎝−1 1 0

0 −∞ ∞
0 0 0

⎞
⎠ .

The second mutation rate u2 in (12.55) is too small to allow for tunneling, but large
enough to make the waiting time for allele 2 much shorter than the waiting time
until allele 1 gets fixed at first. Notice that (12.55) allows for any of u1 or u2 to
dominate asymptotically. In either case, the waiting time for allele 2 to fix is shorter,
because of the selective advantage of this allele (s2 = ∞). Therefore, the asymptotic
distribution of T2 will be dominated by the waiting time for allele 1 to fix, i.e.

u1 × T2
L−→ Exp(1) (12.56)

as N → ∞. This limit result is also special case of Corollary12.1, and it agrees with
Theorem2 of Durrett and Schmidt [19].

Case 3: Second mutation rate of intermediate size. We assume that

u2 = γ

N 2
(12.57)

for some constant γ as N → ∞. The transition rates in (12.50) then simplify to

λ̂01 ∼ u1η(ργ 1/2), λ̂02 = R(ρ)γ 1/2u1, λ̂12 = γ /N , (12.58)

where η(x) is an asymptotic approximation of Nβ(1 + x/N ). From formula (12.33)
we deduce that

η(x) =
{
1, x = 0,
x/
[
1 − exp(−x)

]
, x 	= 0.

It follows from (12.4) and (12.58) that λ̂0i � λ̂12 for i = 1, 2, whereas λ̂01 and λ̂02

have the same asymptotic order. Therefore, Ilong = {0}, Ishort = {1}, μ̂min = μ̂0 =
λ̂01 + λ̂02 � μ̂1 = λ̂12, κ0 = 1, and κ1 = ∞. This gives an asymptotic rescaled
intensity matrix of the form

Σ =
⎛
⎝−1 π01 π02

0 −∞ ∞
0 0 0

⎞
⎠ , (12.59)
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where π02 = R(ρ)γ 1/2

R(ρ)γ 1/2+η(ργ 1/2)
is the asymptotic probability for tunneling to occur,

and π01 = 1 − π02 is the corresponding probability of no tunneling. Since the two
transition rates from allele 0 are of similar size asymptotically, allele 2 will either
get fixed directly through stochastic tunneling, or in two steps where allele 1 spreads
in the population at first, and then almost immediately after that, allele 2 takes over.
Formula (12.49) suggests that

[
η(ργ 1/2) + R(ρ)γ 1/2

]
u1 × T2

L−→ Exp(1) (12.60)

as N → ∞. However, (12.60) is not correct since (12.44) is violated, that is, there
is asymptotic competition between the two forward rates from allele 0, so that F(0)
does not exist. In order to see that (12.60) is wrong, consider the case when the
intermediate allele 1 has the same selective advantage as allele 0 (ρ = 0). Then
(12.60) simplifies to

(1 + γ 1/2)u1 × T2
L−→ Exp(1) (12.61)

as N → ∞, since η(0) = R(0) = 1. But this is different from Theorem 3 of Durrett
et al. [20], which states that

χ(γ )u1 × T2
L−→ Exp(1) (12.62)

as N → ∞, where

χ(γ ) =
∑∞

k=1
γ k

(k−1)!(k−1)!∑∞
k=1

γ k

k!(k−1)!
. (12.63)

In order to quantify the difference between (12.61) and (12.62), we have plotted the
ratio

ξ(γ ) = 1 + γ 1/2

χ(γ )
(12.64)

of the two intensities in Fig. 12.1. It can be seen that the approximate intensity is
always a bit larger than the exact one, with a maximum difference of 40%, although
for most values of γ the difference is less than 20%. This implies that the approx-
imate approach will underestimate the expected waiting time by up to 40%, since
competition between the two fixation rates 0 → 1 and 0 → 2 is ignored. In Sect. 12.8
we will discuss a method that to some extent corrects for this.

Case 4: Second mutation rate large. Suppose

u2 � N−2, (12.65)

so that the transition rates in (12.50) simplify to

λ̂01 ∼ Nu1ψ(ρu1/2
2 ), λ̂02 = N R(ρ)u1u1/2

2 , λ̂12 = Nu2, (12.66)
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Fig. 12.1 Plot of the ratio ξ(γ ) between the approximate and exact asymptotic rates of the expo-
nential limit distribution for the waiting time T2 until the second mutation gets fixed in model with
no backward mutations and neutral alleles (s1 = s2 = 1, i.e. ρ = 0 in (12.51)). The argument γ is
the normalized rate (12.57) at which the second mutation occurs. It can be shown that ξ(γ ) > 1
for all γ > 0, with ξ(γ ) → 1 as either γ → 0 or γ → ∞, and the maximum value ξ(γ ) = 1.40 is
attained for γ = 0.82

where

ψ(ρu1/2
2 ) =

⎧⎨
⎩
0, ρ < 0,
1/N , ρ = 0,
ρu1/2

2 , ρ > 0,

relies on the asymptotic approximation of β(s1) = β(1 + ρu1/2
2 ) defined in (12.33),

when s1, the selective fitness of allele 1, is given by (12.51). If follows from (12.4)
that max(λ̂01, λ̂02) � λ̂12 as N → ∞, so that Ilong = {0}. Regarding λ̂01 and λ̂02,
their asymptotic ordering will depend on s1. We have that λ̂01 � λ̂02 if ρ ≤ 0,
whereas λ̂01 and λ̂02 are of the same order when ρ > 0. This means that 1 is an
asymptotic state with a short waiting time when ρ > 0 (Ishort = {1}), whereas it is a
non-asymptotic state when ρ ≤ 0 (Inas = {1}).We follow the remark below Theorem
12.1 in (12.29), and let μ̂min = Nu1u1/2

2 be the asymptotic rate until allele m gets
fixed in the population, which differs fromμ0 by a conveniently chosen constant. The
normalized rates of leaving states 0 and 1, on the new time scale determined by μ̂min,
are κ0 = 1(ρ > 0)ρ + R(ρ), κ1 = ∞, where 1(A) is the indicator function for the
event A (that is, it equals 1 if A occurs and 0 it if does not). The asymptotic probabil-
ity of tunneling from 0 to 2, is π02 = R(ρ)

1(ρ>0)ρ+R(ρ)
, and the other nonzero asymptotic

transition probabilities from non-absorbing states, are π01 = 1 − π02 and π12 = 1.
This gives a rescaled intensity matrix Σ that equals (12.59). Therefore, when the
mutation rate of allele 2 is large, as in (12.65), it will always become fixed in the
population through tunneling 0 → 2 when allele 1 is selectively neutral or deleteri-
ous compared to allele 0 (ρ ≤ 0). On the other hand, when allele 1 has higher fitness
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than allele 0 (ρ > 0), it is possible to reach allele 2 either by tunneling, or by first
having allele 1 fixed. In the latter case, the subsequent waiting time for allele 2 to
spread is negligible. Formula (12.49) suggests a limit distribution

[1(ρ > 0)ρ + R(ρ)] Nu1u1/2
2 × T2

L−→ Exp(1) (12.67)

as N → ∞ for the total waiting time T2 until allele 2 takes over the population.
However, we only expect (12.67) to be correct when ρ ≤ 0, since (12.44) is violated
when ρ > 0, due to the competition between alleles 1 and 2 to take over the popu-
lation at first. When ρ ≤ 0, formula (12.67) agrees with Theorem 4 in Durrett and
Schmidt [19]. In particular, when ρ = 0 we find that

Nu1u1/2
2 × T2

L−→ Exp(1) (12.68)

as N → ∞, since R(0) = 1. This agrees with a result given on pp. 231–232 of
Nowak [52], and (12.68) is also a special case of Theorem 1 of Durrett et al. [20].

12.7.1.2 Backward Mutations, and Final Allele Is Neutral

In this subsection we will make three assumptions that increase the difficulty of hav-
ing allele 2 fixed in the population, so that the waiting time T2 gets longer compared
to Sect. 12.7.1.1. First, we allow for backward mutations (v > 0), second, we assume
that the fitness of the final allele 2 is the same as for allele 0 (s2 = 1), and third, the
intermediate allele 1 does not have a selective advantage in comparison to the other
two alleles, so that ρ ≤ 0 in (12.51). In order to avoid too many parameters of the
model, we will also assume that the two forward mutation rates are identical, i.e.,
u1 = u2 = u. We will not consider the case when the forward mutation rate is small
in comparison to the backward rate (u = o(v)), since (12.18) is violated then. For-
mally, the expected value of the limit distribution (12.27) is infinite when u = o(v),
since the asymptotic intensity matrixΣ0 of fixation rates is not invertible. This is due
to the fact that when backward mutations are frequent, they will effectively block
the opportunities for allele 2 to spread to the whole population. In order to handle
such a scenario we need to generalize Theorem12.1 and let μ−1

min be determined
by the asymptotic growth rate in (12.10). Here, we will therefore confine ourselves
to scenarios where the backward mutation rate satisfies v = Cu for some constant
C > 0.

The above mentioned assumptions imply that the intensities (12.50) at which new
alleles get fixed, simplify to

λ̂01 = Nuβ(1 + ρu1/2), λ̂02 = R(ρ)u3/2, λ̂10 = NCuβ(1 − ρu1/2),

λ̂12 = Nuβ(1 − ρu1/2).
(12.69)
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It turns out that the asymptotic properties of T2 depend on the size of the mutation
rates, and we will look at three different scenarios.

Case 1. Small mutation rate. If

u = o(N−2), (12.70)

as N → ∞, then (12.69) simplifies to

λ̂01 ∼ u, λ̂02 ∼ R(ρ)u3/2, λ̂10 ∼ Cu, λ̂12 ∼ u, (12.71)

so that the tunneling rate λ̂02 � min(λ̂01, λ̂10, λ̂12) can be ignored, whereas the other
three fixation rates λ̂01, λ̂10, and λ̂12 are of the same order. This implies that the two
non-absorbing states are asymptotic, and they both contribute to the total waiting
time (Ilong = {0, 1}), with μ̂0 ∼ λ̂01 = u and μ̂1 = λ̂10 + λ̂12 = (C + 1)u. Putting
μ̂min = u, we find that the normalized rates of leaving states 0 and 1 are κ0 = 1 and
κ1 = C + 1 respectively, whereas the nonzero asymptotic transition probabilities
from the non-absorbing states are π01 = 1, π10 = C/(C + 1), and π12 = 1/(C + 1).
This gives a matrix

Σ =
⎛
⎝−1 1 0

C −(C + 1) 1
0 0 0

⎞
⎠ (12.72)

of rescaled fixation rates. Formula (12.49) implies a limit distribution

u × T2
L−→ PD ((1, 0),Σ0) (12.73)

of the waiting time for allele 2 to take over the population as N → ∞. In particular,
without backward mutations (C = 0), we find that T2 has an asymptotic gamma
distribution

u × T2
L−→ Γ (2, 1), (12.74)

where 2 is the form parameter and 1 the intensity parameter. Since the form parameter
is integer valued, the limit is also referred to as an Erlang distribution. Notice that
(12.74) is a special case of Corollary12.1, with κ0 = κ1 = 1.

Case 2. Intermediate sized mutation rate. Suppose u = γ

N 2 for some positive con-
stant γ . The fixation intensities in (12.50) then simplify to

λ̂01 ∼ uργ 1/2/(1 − exp(−ργ 1/2)), λ̂02 = R(ρ)u3/2,

λ̂10 ∼ Cuργ 1/2/(exp(ργ 1/2) − 1), λ̂12 ∼ uργ 1/2/(exp(ργ 1/2) − 1),
(12.75)

as N → ∞. The distribution of the waiting time T2 turns out to be similar to
Case 1, with the difference that the selection parameter ρ will have an asymp-
totic impact. As in Case 1, the tunneling from allele 0 to 2 can be ignored
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(λ̂02 � min(λ̂01, λ̂10, λ̂12)), whereas the other three fixation rates λ̂01, λ̂10, and λ̂12

have the same order of magnitude. Therefore, both non-absorbing states are asymp-
totic, with a long waiting time (Ilong = {0, 1}). Following the remark below Theo-
rem12.1, we standardize the time scale with an appropriately chosen constant, so
that μ̂min = u has a simple form. On the new time scale, the intensities to leave states
0 and 1 are κ0 = ργ 1/2/(1 − exp(−ργ 1/2)), κ1 = (C + 1)ργ 1/2/(exp(ργ 1/2) − 1)
respectively. Since the nonzero transition probabilities πi j of jumping between var-
ious fixation states, are the same as in Case 1, the rates of fixation between all pairs
of states, after the time transformation, are

Σ =
⎛
⎝ −κ0 κ0 0

C
C+1κ1 −κ1

1
C+1κ1

0 0 0

⎞
⎠ . (12.76)

It follows from formula (12.49) that the asymptotic distribution for the total waiting
time to reach allele 2, is given by

u × T2
L−→ PD ((1, 0),Σ0) (12.77)

as N → ∞. In particular, when there are no backward mutations (C = 0), (12.77)
simplifies to

u × T2
L−→ κ−1

0 X0 + κ−1
1 X1. (12.78)

This is a special case of Corollary12.1, with X0 and X1 two independent and expo-
nentially distributed random variables with expected value 1. Notice also that Case
1 is essentially a ρ → 0 limit of Case 2.

The expected value of the limit distribution of u × T2, on the right hand side of
(12.77), has an explicit form. Using formula (12.10) for the expected value of a
phase-type distribution, and putting x = ργ 1/2, we find that

u × E(T2) ∼ −(1, 0)Σ−1
0 (1, 1)T

=
{
2 + C, ρ = 0,[
(ex − 1) + (1 − e−x )(1 + C)

]
/x, ρ < 0,

(12.79)

increases linearly with the backward rate C . In Fig. 12.2 we have plotted u × E(T2)

as a function of C for various values of the selection parameter ρ, and validated the
accuracy of (12.79) with simulations.

Further details for the neutral case (x = 0) are given in Fig. 12.3, where the density
function fT2 of T2 based on (12.9) is compared with simulation based histograms,
for different values of C . Whereas fT2 is gamma distributed for C = 0, it can be seen
that its form approaches an exponential density as C grows.

Case 3. Large mutation rate. Assume that the mutation rate and the selection
coefficient of allele 1 satisfy
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Fig. 12.2 Plot of the rescaled expected waiting time u × E(T2), for a model with m = 2, forward
mutation rates u1 = u2 = u = γ /N 2, and backward mutation rate v0 = Cu. The lines are based on
the approximate formula (12.79), and shown as functions of C . All lines have s2 = 1, but the value
of s1 = 1 + ρ

√
u varies. The intermediate allele is either neutral ρ = 0 (solid line), or has a selective

disadvantage with ρ = −1/γ 1/2 (dashed line), ρ = −2/γ 1/2 (dash-dotted line), and ρ = −3/γ 1/2

(dotted line). Result from 1000 simulations, for a population of size N = 100 with γ = 1, are
shown for ρ = 0 (squares), ρ = −1/γ 1/2 (circles), ρ = −2/γ 1/2 (diamonds), and ρ = −3/γ 1/2

(pentagrams). The parameters of the simulation algorithm are Nc = 10 and ε = 0.2 (see Appendix
A). The simulation based estimates are also compared with the more accurate analytical solution
(stars) based on (12.10) and (12.35)

u � N−2,

ρ < 0,
(12.80)

respectively. (If ρ = 0, it turns out that the asymptotics of T2 is identical to Case 1.)
The fixation rates in (12.50) then simplify to

λ̂01 = 0,
λ̂02 = R(ρ)u3/2,

λ̂10 ∼ −NCρu3/2,

λ̂12 ∼ −Nρu3/2

(12.81)

as N → ∞.We notice that λ̂01 � λ̂02 � min(λ̂10, λ̂12). This implies that there is one
asymptotic state Ilong = {0} with a long waiting time, and one non-asymptotic state
Inas = {1}. Time is therefore rescaled according to μ̂min = μ̂0 ∼ λ̂02 = R(ρ)u3/2, so
that κ0 = 1 and κ1 = ∞ are the rescaled rates of leaving states 0 and 1,whereasπ02 =
1, π10 = C/(C + 1), and π12 = 1/(C + 1) are values of the three nonzero transition
probabilities from non-absorbing states. The matrix of standardized fixation rates is
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Fig. 12.3 Density functions (12.9) of the waiting time T2 for a model with N = 100 individuals
and m = 2 selectively neutral coordinated mutations (s1 = s2 = 1). The forward mutation rates
are u1 = u2 = 1/N 2, whereas the backward mutation rates are v0 = C/N 2 and v1 = 0. The four
graphs have C = 0 (upper left), C = 1 (upper right), C = 2 (lower left), and C = 3 (lower right),
corresponding to the four simulations of Fig. 12.2 that are marked with squares. Shown in each plot
is also a histogram from 1000 simulations, with parameters Nc = 10 and ε = 0.2 (see Appendix
A). The estimated coefficients of variation

√
Var(T2)/E(T2) from these four simulations are 0.704,

0.882, 0.941, and 0.965. This agrees well with the coefficients of variation of the density functions,
which are 1/

√
2 = 0.707 for C = 0, and 1 in the limit as C → ∞

Σ =
⎛
⎝ −1 0 1

C × ∞ −(C + 1) × ∞ ∞
0 0 0

⎞
⎠ , (12.82)

where ∞ of the second row should be interpreted as a limit. However, since the
selective disadvantage of allele 1 is so large compared to alleles 0 and 2, allele 1 will
never be fixed in a large population, and the second row of Σ will have no impact.
Therefore, the only way of reaching allele 2 is through stochastic tunneling from
allele 0. Formula (12.49) gives the limit distribution
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R(ρ)u3/2 × T2
L−→ Exp(1) (12.83)

as N → ∞ for the waiting time of allele 2 to get fixed. This is also a special case of
Corollary12.1.

12.7.2 Arbitrary Number of Coordinated Mutations

In this subsection we look at models with an arbitrary number m of coordinated
mutations and number m + 1 of alleles. We will consider two different kinds of
models. The first one has no backward mutations, but the forward mutations have to
arrive in a pre-specified order. The second model incorporates backward mutations,
but the forward mutations may enter the population in any order.

12.7.2.1 Equal Forward Mutation Rates, No Backward Mutations

Assume there are no backward mutations (v0 = · · · = vm−1 = 0), and that forward
mutations have to appear in a pre-determined order with identical mutation rates, i.e.

u1 = · · · = um = u. (12.84)

We will also assume that all intermediate alleles are neutral or deleterious with the
same selective fitness

s1 = · · · = sm−1 = s ≤ 1, (12.85)

where
s = 1 + ρu1−2−(m−1)

(12.86)

for some fixed constant ρ ≤ 0, not depending on N , and that the final allele m has a
high fitness (sm = ∞).

With these assumptions, formulas (12.35)–(12.36) for the fixation rates between
different pairs of alleles simplify to λ̂i j = 0 when j < i , and to

λ̂i j ∼
{

N R(ρ)I ( j=m)u2−2−( j−1)
β(1 + ρu1−2−(m−1)

)I ( j<m), i = 0,
Nu2−2−( j−i−1)

(1/N )I ( j<m), i = 1, . . . , m − 1
(12.87)

when j > i , where I (·) is the indicator function. In (12.87) we simplified the expres-
sions for the terms R(ρil j ) on the right hand side of Eq. (12.36), for all i, l, j with
0 ≤ i < l < j ≤ m. More specifically, we utilized that
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ρ01m ∼ ρ,

ρ0l j = o(1), (l, j) 	= (1, m),

ρil j = 0, i = 1, . . . , m − 2,

(12.88)

which, in view of (12.41), implies R(ρ01m) ∼ R(ρ) and R(ρil j ) ∼ 1 for the other
terms of (12.36). In order to motivate (12.88), we use formulas (12.37) and (12.85)–
(12.86) to find that

1 + ρil j u1/2r1/2il j = sl
si

=
{
1 + ρu1−2−(m−1)

, i = 0, l = 1, . . . , j − 1,
1, i = 1, . . . , m − 2, l = i + 1, . . . , j − 1.

(12.89)

When i > 0, (12.88) follows immediately from (12.89). When i = 0, we find that

ρil j = ρu1/2−2−(m−1)
r−1/2

il j , (12.90)

and therefore we also need to find expressions for ril j . To this end, we use formula
(12.143) of Appendix C to deduce

r0l j = Θ(u1−2−( j−l−1)
),

r01m ∼ u1−2−(m−2)
.

(12.91)

Then we insert (12.91) into (12.90) and use formula (12.4) to notice that u → 0 as
N → ∞, in order to prove the upper two equations of (12.88).

Having established formula (12.87) for the transition rates between different fixed
states, we will next investigate which jumps from state i ≤ m − 2 that are possible
when N gets large. It follows from (12.87) that the transition rates from i to the
intermediate states i + 1, . . . , m − 1 are related as

λ̂i,i+1 � λ̂i,i+2 � · · · � λ̂i,m−1 (12.92)

when N → ∞, and therefore it is not possible to have a direct transition from state
i to any of j = i + 2, . . . , m − 1. This can also be deduced directly from formula
(12.45). A transition from i to i + 2 ≤ j < m is not possible asymptotically, since
s j is not larger than max(si+1, . . . , s j−1).

Consequently, it is only possible for a population with allele i , to transfer either
to a population with i + 1 alleles, or to one in which the final allele m has been fixed.
Therefore, the rate of leaving state i is of the order

μ̂i = ∑m
j=i+1 λ̂i j

= Θ
(
max(λ̂i,i+1, λ̂im)

) (12.93)
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Table 12.1 Some possible scenarios for m coordinated mutations when all mutation rates (12.84)
are identical, and the selective fitness (12.85) is the same for all alleles i < m. The dots indicate
successive transitions i → i + 1 between neighboring alleles

Case Scenario Transitions Mutation rate u

3 0 0 → m Large

2 1 ≤ n ≤ m − 2 0 → · · · → n → m Intermediate

1 m − 1 0 → · · · → m Small

as N → ∞. The asymptotic properties of thewaiting time Tm until allelem gets fixed,
will depend on which of the rates on the right hand side of (12.93) that dominate
as N → ∞ among the asymptotic states. We will consider m different scenarios,
numbered as n = 0, . . . , m − 1, where Scenario n is characterized by a set

Ias = {0, . . . , n} (12.94)

of asymptotic states. These scenarios can be divided into three groups, depending
on the size of the mutation rate u (see Table 12.1). As a general rule, the larger the
mutation rate is, the earlier stochastic tunneling will kick in and drive the population
towards its final state, where allele m has been fixed.

Case 1. Small mutation rate. Suppose

u = o(N−2) (12.95)

as N → ∞, so that the rates of fixation between different pairs of alleles in (12.87)
simplify to

λ̂i j ∼ N R(ρ)I (i=0, j=m)u2−2−( j−i−1)
(1/N )I ( j<m), (12.96)

for i = 0, . . . , m − 1 and i < j ≤ m. We used (12.33) to simplify the fixation prob-
ability in (12.87) to

β(1 + ρu1−2−(m−1)
) ∼ N−1, (12.97)

since (12.95) implies u1−2−(m−1) = o(N−1).
Recall from (12.93) that asymptotically, we only have to consider transitions

from i to i + 1 and m. We deduce from formula (12.96) that the rates of leaving
the non-absorbing states are μ̂i ∼ λ̂i,i+1 = u for i = 0, 1, . . . , m − 2, and μ̂m−1 =
λ̂m−1,m = Nu. This corresponds to Scenario m − 1 in (12.94), but only the first
m − 1 asymptotic states will contribute to the overall waiting time, so that Ilong =
{0, . . . , m − 2} and Ishort = {m − 1}. Rescaling time by a factor μ̂min = u, we find
that the normalized rates of leaving state i are κi = 1 for i ∈ Ilong and κm−1 = ∞.
Since the nonzero asymptotic transition probabilities for jumps from non-absorbing
allelic states are πi,i+1 = 1 for i = 0, . . . , m − 1, the conditions of Corollary12.1
are satisfied. It follows from formula (12.31) that
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u × Tm
L−→ Γ (m − 1, 1) (12.98)

as N → ∞, in agreement with Case 1 in Theorem 2 of Schweinsberg [60].

Case 2. Intermediate mutation rate. Let n ∈ {1, . . . , m − 2} be a fixed number,
and assume that the mutation rate has size

N−1/(1−2−(m−n−1)) � u � N−1/(1−2−(m−n)) (12.99)

as N → ∞. The transition rates λ̂i j and the fixation probability satisfy (12.96) and
(12.97), also forCase 2. It follows that the rate atwhich allele i is lost in a large popula-
tion is μ̂i ∼ λ̂i,i+1 = u for i = 0, . . . , n − 1, and μ̂n ∼ λ̂nm = Nu2−2−(m−n−1) � u for
i = n. The nonzero asymptotic transition probabilities from non-absorbing states are
thereforeπi,i+1 = 1 for i = 0, . . . , n − 1, andπnm = 1. This corresponds to Scenario
n in (12.94), where the first n asymptotic states contribute to the overall waiting time
(Ilong = {0, . . . , n − 1}), the remaining asymptotic state n does not (Ishort = {n}),
and the other non-absorbing states are non-asymptotic (Inas = {n + 1, . . . , m − 1}).
If time is standardized by μ̂min = u, the rescaled rates of leaving state i are κi = 1
for i ∈ Ilong, and κn = ∞. Since the conditions of Corollary12.1 are satisfied, we
apply formula (12.31) and deduce an asymptotic distribution

u × Tm
L−→ Γ (n, 1) (12.100)

as N → ∞ for the waiting time until allele m gets fixed in the population. This
corresponds to Case 2 of Theorem 2 in Schweinsberg [60].

Case 3. Large mutation rate. Assume that

N−1/(1−2−(m−1)) � u � N−1/(1−2−m)) (12.101)

as N → ∞. It can be seen that the fixation probability satisfies (12.97) when ρ = 0,
whereas β(1 + ρu1−2−(m−1)

) = o(N−1) when ρ < 0. In any case, it follows from
(12.87) that λ̂01 ≤ u � λ̂0m = N R(ρ)u2−2−(m−1)

. Transitions from 0 will therefore
be to state m when N is large, so that the rate of leaving state 0 is of the order
μ̂0 ∼ λ̂0m . This corresponds to Scenario 0 in (12.94), with one single state Ilong = {0}
that contributes to the waiting time Tm asymptotically, and since π0m = 1, all other
non-absorbing states are non-asymptotic (Inas = {1, . . . , m − 1}). With μ̂min = μ̂0,
the normalized rate of leaving state 0 is κ0 = 1. Since Corollary12.1 is satisfied, we
deduce from (12.31) that the waiting time for the m:th mutant to get fixed, has a
limiting distribution

N R(ρ)u2−2−(m−1) × Tm
L−→ Exp(1) (12.102)

as N → ∞. This results generalizes Case 3 of Theorem 2 in Schweinsberg [60] from
the neutral case ρ = 0 to ρ ≤ 0.
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Boundary scenarios. As in Schweinsberg [60], it is possible to consider m − 1
additional asymptotic scenarios for the mutation rate, which can be interpreted as
boundaries between the m scenarios of Table12.1. For simplicity, we confine our-
selves to the neutral caseρ = 0. Supposen ∈ {0, . . . , m − 2}.As a boundarybetween
scenarios n and n + 1 of Table12.1, we assume that the mutation rate satisfies

u = γ

N−1/(1−2−(m−n−1))
(12.103)

as N → ∞, for some constant γ > 0. In this case the population dynamics starts
with n fixation events 0 → 1 → · · · → n. Then in the next step there is competition
between fixation n → n + 1 and tunneling n → m. If n + 1 gets fixed, in the next
step there will be a much faster transition n + 1 → m that does not contribute to the
overall waiting time. Therefore, among the asymptotic states Ias = {0, . . . , n + 1},
only those in Ilong = {0, . . . , n} contribute asymptotically to Tm .

In more detail, combining the arguments for Cases 1–3 above, it can be seen
that the rates of leaving state i is μ̂i ∼ λ̂i,i+1 = u for i = 0, . . . , n − 1, whereas
μ̂n ∼ λ̂n,n+1 + λ̂nm = u + Nu2−2−(m−n−1) = (1 + γ 1−2−(m−n−1)

)u for state n. We then
transform the time scale by μ̂min = u, and find that the normalized rates are κi = 1
of leaving states i = 0, . . . , n − 1, κn = 1 + γ 1−2−(m−n−1)

to leave state n, and it is
κn+1 = ∞ to leave state n + 1. Therefore, Theorem12.2 suggests a limit distribution

u × Tm
L−→ X0 + · · · Xn−1 + 1

1 + γ 1−2−(m−n−1) Xn (12.104)

as N → ∞, for the waiting time until allele m gets fixed, where X0, . . . , Xn are
independent random variables with an identical distribution that is exponential with
expected value 1. However, the limit distribution in (12.104) is incorrect. The reason
is that regularity condition (12.44) is violated for transitions from state n. Asymp-
totically it is possible to either have a transition n → n + 1 or stochastic tunneling
n → m, and therefore πn,n+1 and πnm are both positive. The correct limit distribution
for Tm is given in Theorem 3 of Schweinsberg [60]. It states that

u × Tm
L−→ X0 + · · · Xn−1 + 1

χ(γ 2(1−2−(m−n−1)))
Xn (12.105)

as N → ∞, with χ(·) defined in (12.63). We notice that (12.104)–(12.105) gener-
alize (12.61)–(12.62), which corresponds to the special case n = 0 and m = 2. The
approximate limit distribution in (12.104) has a slightly lower expected value than
the correct one in (12.105), and their ratio will depend on n and γ ′ = γ 2(1−2−(m−n−1)).
In Table12.2 we have displayed the maximal possible ratio between expected values
of the correct and approximate limit distribution, as a function of n. It can be seen
that this ratio quickly approaches 1 as n grows. For most values of γ ′ (or γ ), the ratio
will be even closer to 1. See also Sect. 12.8, were we introduce a method that to some
extent corrects for the different expected waiting times of (12.104) and (12.105).
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Table 12.2 The table refers to a model with no backward mutations and m forward mutations
with equal rate (= u) that satisfies (12.103) for some γ > 0 and 0 ≤ n ≤ m − 2, so that a direct
transition n → n + 1 and tunneling n → m are both possible. Displayed is the maximal possible
ratio between the expected values of the correct and approximate limit distributions of the time
until allele m gets fixed, in (12.105) and (12.104) respectively, as a function of the number n of
transitions 0 → · · · → n without any tunneling. The maximum ratio in the table is attained for a
value of γ that depends on n. When n = 0, it equals the maximum of the function that is plotted in
Fig. 12.1

n Maximal ratio

0 1.398

1 1.143

2 1.088

3 1.064

4 1.050

12.7.2.2 Forward and Backward Mutations in Any Order

When forward and backward mutations are allowed to arrive in any given order, it
is reasonable to identify type i with the number of mutations that have appeared in
the population so far. Suppose that u and v = Cu are the rates at which each single
forward and backward mutation arrive. When i mutants have been fixed in the popu-
lation, there arem − i additional forwardmutations not present in the population, and
i possible types of back mutations. Consequently, ui+1 = (m − i)u, vi−1 = Ciu, for
i = 0, . . . , m − 1. We will also assume a neutral model, so that s1 = · · · = sm = 1.
Then formulas (12.35)–(12.36) simplify to

λ̂i j =
{∏ j−1

l=i [(m − l)u]2
−(l−i)

, j > i,∏i
l= j+1(Clu)2

−(i−l)
, j < i.

(12.106)

Since the model is neutral, the tunneling condition in (12.45) is violated for all pairs
i, j of states. Wemay therefore disregard the possibility of tunneling, asymptotically
as N → ∞, so that the rate of leaving state i is of the order

μ̂i ∼ λ̂i,i−1 + λ̂i,i+1 = [m + (C − 1)i] u,

for i = 0, . . . , m − 1. Since all μ̂i have the same asymptotic order, it follows that all
non-absorbing states are asymptotic with a long waiting time (Ilong = {0, . . . , m −
1}). It is convenient to transform the time scale by μ̂min = u, so that the asymptotic
rescaled intensity matrix in (12.28) has elements

Σi j =

⎧⎪⎪⎨
⎪⎪⎩

m − i, j = i + 1,
Ci, j = i − 1,
0, | j − i | ≥ 2,
− [m + (C − 1)i] , j = i,

(12.107)
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Fig. 12.4 Plot of standardized asymptotic expected waiting time u × E(Tm), according to formula
(12.108), as a function of the number of requiredmutationsm. The forward and backwardmutations
may appear in any order. The forward mutation rate per allele is u, and the symbols correspond to
different rates v = Cu of backward mutations per allele, with circles (C = 0), squares (C = 0.5),
diamonds (C = 1), and pentagrams (C = 2)

for the rows that correspond to non-absorbing states (i < m). Combining (12.10)
and (12.49), we find that the expected waiting time is given by

E(Tm) ∼ ẽ0Σ
−1
0 1 × u−1, (12.108)

asymptotically as N → ∞. In Fig. 12.4 we plotted the expected waiting time in
(12.108) as a function of m, for different values of C . While E(Tm) increases quite
slowly with m in absence of backward mutations, there is a dramatic increase of
E(Tm) for positive C as the number m of required mutations increases. In Appendix
Cwe derive an explicit formula for the asymptotic approximation (12.108) of E(Tm).
It follows from this derivation that (12.108) can be approximated by the simpler but
somewhat less accurate expression

u × E(Tm) ∼
{
log(m) + 0.577, C = 0,
(1 + C)m/(Cm), C > 0,

(12.109)

whenC is fixed andm gets large. Formula (12.109) underscores the staircase behavior
of the expected waiting time with increasing m when C > 0. This behavior would
be even more dramatic if the intermediate states had a selective disadvantage (si < 1
for i = 1, . . . , m − 1), cf. Figure 2 of Axe [2].

12.8 Some Improvements of the Asymptotic Waiting Time
Theory

The practical implication of Theorem12.2 is to approximate the distribution of the
waiting time Tm until the mth mutant gets fixed. We expect this distribution to be
accurate for large populations with mutation rates (12.4)–(12.5) smaller than the
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inverse population size. Second, according to (12.44) there should not be competition
between different alleles to get fixed. That is, for any allele i there should be at
most one forward rate of fixation from i , and at most one backward rate of fixation
from i , that dominate. Third, the time it takes for alleles to get fixed should be
asymptotically negligible because of (12.47). In this section we will highlight some
possible improvement of formula (12.10) for the expected waiting time E(Tm) based
on transition rates (12.35), when some of these conditions fail. Our discussion is not
at all complete, but we hope it will open up for further research.

We will first revisit Case 4 of Sect. 12.7.1.1, that is, a model with m = 2 mutants
and a large second forward mutation rate u2. We will see what happens when the first
forward mutation rate u1 is no longer of smaller order than the inverse population
size. The following result, which generalizes Theorem 1 of Durrett et al. [20], is
proved in Appendix C:

Theorem 12.3 Consider a Moran model with m = 2 and no backward mutations
(v0 = 0), where the sizes of the two forward mutation rates satisfy Nu1 → a for some
a ≥ 0 and N

√
u2 → ∞ as N → ∞. Assume that the first selection coefficient s1 = s

is given by (12.51) for some fixed ρ ≤ 0, and the second one is large (s2 = ∞). Let
also T ′′

2 be the time point when the first successful mutant 2 appears in the population.
Then

P(N R(ρ)u1
√

u2 × T ′′
2 ≥ t) ∼ exp

(
−
∫ t

0
h(x)dx

)
(12.110)

as N → ∞, where R(ρ) is defined in (12.41), h(x) = h(x; a, ρ) is a hazard function
that satisfies h(x) = 1 when a = 0, and

h(x) =
1 − exp

(
− 2

√
ρ2+4

ρ+
√

ρ2+4
× x

a

)

1 +
√

ρ2+4+ρ√
ρ2+4−ρ

exp

(
− 2

√
ρ2+4

ρ+
√

ρ2+4
× x

a

) (12.111)

when a > 0. In particular, the expected waiting time is approximated by

E(T ′′
2 ) ∼ [

N R(ρ)u1
√

u2
]−1

θ(a, ρ) = λ̂−1
02 θ(a, ρ), (12.112)

where λ̂02 is the transition rate defined in (12.66), and

θ(a, ρ) =
∫ ∞

0
exp

(
−
∫ t

0
h(x; a, ρ)dx

)
dt.

In Theorems12.1 and 12.2, we imposed conditions so that the time of tunneling
and fixation were asymptotically negligible. Theorem12.3 reveals that this is no
longer the case when u1 = Θ(N−1), since the waiting time T ′′

2 includes two parts
of comparable size; the time T ′

2 until the first successful 0 → 1 mutation appears,
and the time T ′′

2 − T ′
2 of tunneling, that is, the time between the arrival of the first
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successful 1 mutant and the first successful 2 mutant. It follows from the proof of
Theorem12.3 that the time T ′

2 until the first successful 1 mutant appears has an
asymptotic exponential distribution with expected value E(T ′

2) ∼ λ̂−1
02 . Therefore, in

view of (12.112), we find that tunneling multiplies the expected waiting time by a
factor θ(a, ρ). On the other hand, we recall from Sect. 12.5 that the time it takes for
allele 2 to become fixed after its first appearance, adds a term α(s2) ∼ E(T2 − T ′′

2 )

to the expected waiting time E(T2) = E(T ′′
2 ) + E(T2 − T ′′

2 ).
We will apply these findings as follows: Let λ̂i j be the approximate fixation rates

in (12.35). When j 	= i we modify these rates as

λ̃i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
λ̂−1

i j + α(s j/si )
]−1

, j 	= i, | j − i | 	= 2,[
λ̂−1

i j θ(ai,i+1, ρi,i+1) + α(si+2/si )
]−1

, j = i + 2,[
λ̂−1

i j θ(ai,i−1, ρi,i−1) + α(si−2/si )
]−1

, j = i − 2,

(12.113)

to take tunneling and fixation into account, where ai,i+1 = Nui+1β(si+2/si ) and
ai,i−1 = Nvi−1β(si−2/si ) are the size normalized rates at which new mutations
appear and get fixed, conditionally on that tunneling is successful, whereas si+1/si =
1 + ρi,i+1

√
ui+2 and si−1/si = 1 + ρi,i−1

√
vi−2 are special cases of (12.37) and

(12.39) for tunneling over one allele (| j − i | = 2). When i = j , we define λ̃i i so
that all row sums of the matrix with elements λ̃i j , are zero. The modified transition
rates in (12.113) only incorporate the impact of tunneling over one allele, because
it is more complicated to correct for tunneling over larger distances, and it is likely
that this has less impact in many applications.

As a next step, we will correct for competition between different states to become
fixed. We will confine ourselves to the case when all mutants except the last one
are selectively neutral (s1 = · · · = sm−1 = 1), and the last mutant has a selective
advantage (sm > 1). It follows from this and the discussion above (12.45) that it is
only possible to have competition between fixation events i → i + 1 and i → m for a
population whose current fixed state is i . We therefore compare these two transition

rates, as defined in (12.113), and denote their squared ratio by γi =
(

λ̃im

λ̃i,i+1

)2
. In

Appendix C we motivate that the forward transition rates in (12.113) should be
modified as

λ̄i j = χ
[
γi/β(sm)

]
1 + √

γi
× λ̃i j , j = i + 1, . . . , m, (12.114)

where χ(γ ) was introduced in (12.63). We put λ̄i j = λ̃i j when j < i , whereas the
diagonal terms λ̄i i are chosen so that all row sums of the matrix Λ̄ = (λ̄i j ), are zero.
When sm = ∞ (so thatβ(sm) = 1), we notice that themultiplicative correction factor
of (12.114) is ξ(γ )−1, where ξ(γ ) is the function defined in (12.64) and plotted in
Fig. 12.1. Therefore, when the last mutant has high fitness, this figure tells howmuch
the expectedwaiting time of a forward fixation from i will increasewhen competition
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between fixed states i + 1 and m is taken into account. This also agrees with formula
(12.105).

Putting everything together, we define the adjusted expected waiting time as

E(Tm)adj = ẽ0Λ̄
−1
0 1T , (12.115)

where Λ̄0 is a matrix containing the first m rows and the first m columns of Λ̄, and
adj is an acronym for adjusted. We regard (12.115) as the expected time until a semi-
Markov process of allele frequencies Zt with state space (12.6) reaches the absorbing
state em . By this we mean that jumps between fixed states follow a Markov chain
with a transition probability −λ̄i j/λ̄i i from ei to e j . But the holding time in each
state is no longer exponentially distributed, when tunneling and the time of fixation
of alleles is taken into account. Although the time until a semi-Markov processes
reaches an absorbing state does not have a phase-type distribution, if −λ̄−1

i i is the
expected holding time in fixed state i , formula (12.115) will still give the correct
expected waiting time until the m:th mutant gets fixed.

12.8.1 One Mutation

In this subsection we consider a model with only one mutant (m = 1). Formulas
(12.10) and (12.35) approximate the expected waiting time until fixation as

E(T1) = 1

Nu1β(s1)
. (12.116)

For a model with only two alleles, there is no tunneling and no competition between
different states to become fixed. It is therefore only the expected time of a successful
mutation to get fixed, that will influence the adjusted waiting time formula (12.115).
It can be seen that this equation simplifies to

E(T1)adj = 1

Nu1β(s1)
+ α(s1), (12.117)

for a model with one single mutant. In Table12.3, we have compared the accuracy of
(12.116) and (12.117) with simulation based estimates of the expected waiting time.
It can be seen that (12.117) is consistently amuchmore accurate approximation of the
simulation based values. We also notice from this table that the smaller the mutation
rate is, the smaller is the impact of the expected fixation time α(s1). The general
condition for asymptotic negligibility of the fixation time is (12.47). It simplifies to
α(s1) � [Nu1β(s1)]

−1 for a model with one mutant, that is, scenarios for which the
second term of (12.117) is small in comparison to the first term.
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Table 12.3 Comparison between the expected waiting time formulas E(T1) and E(T1)adj, defined
in (12.116) and (12.117) respectively, for a model with m = 1 mutant. The rightmost column are
sample averages from 10000 simulations, with ε = 0.04 and Nc = 10 in the algorithm of Appendix
A

N u1 s1 E(T1) E(T1)adj Ê(T1)

100 0.001 10/9 100.00 153.19 152.62

2 20.00 33.95 33.36

5 12.50 20.53 20.05

9 11.25 18.21 17.50

1000 10.01 15.89 15.34

1000 0.0001 10/9 100.00 198.78 197.76

2 20.00 40.90 40.12

5 12.50 23.99 23.52

9 11.25 21.10 20.33

1000 10.01 18.20 17.55

100 0.0005 10/9 200.00 253.19 250.33

2 40.00 53.95 53.11

5 25.00 33.03 32.72

9 22.50 29.46 28.74

1000 20.02 25.90 25.03

100 0.0001 10/9 1000.0 1053.2 1049.15

2 200.0 213.95 211.63

5 125.0 133.03 131.97

9 112.5 119.46 117.30

1000 100.1 105.98 105.64

12.8.2 Two Coordinated Mutations, and No Back Mutations

Here, we will revisit the model of Sect. 12.7.1.1, with two mutants (m = 2) and no
backmutations (v0 = 0).We assume that the first allele is selectively neutral (s1 = 1),
whereas the second one has high fitness (s2 = 105).

In Table12.4 we compare the accuracy of two analytical formulas for the expected
waiting time until the second mutant gets fixed, with simulation based estimates. We
follow the scenarios of Durrett and Schmidt [19], with different population sizes and
forward mutation rates u1 and u2. The first expected waiting time formula is based
on (12.10) and (12.35), whereas the second formula is the adjustment defined in
(12.115).

It can be seen from Table12.4 that the unadjusted expected waiting time is too
low, whereas the adjusted expected waiting time is consistently much closer to the
simulation based estimates. The reason for this discrepancy varies between scenarios.
For those scenarios where Nu1 is not small (Case 1–2 and Drosophila), an important
feature of the adjusted formula is to incorporate the time it takes for the first successful
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Table 12.4 Comparison between the expected waiting time formula E(T2) based on (12.10) and
(12.35), and the adjusted waiting time formula E(T2)adj, based on (12.115), for a model withm = 2
mutants with selective fitness s1 = 1 and s2 = 105. We use the same scenarios as in Table12.2 of
Durrett and Schmidt [17], with different values of the two forward mutation rates u1 and u2, and
no backward mutations. The quantity Ê(T2) refers to a sample average from B simulations based
on the algorithm of Appendix A, with the first simulation parameter ε reported in the rightmost
column, and the second simulation parameter Nc set to 10

Scenario N Nu1 N
√

u2 E(T2) E(T2)adj Ê(T2) B ε

Case 1 1000 1 10 92.6 163.2 166.9 10000 0.04

10000 919.0 1557.8 1588 10000 0.2

Case 2 1000 1/4 10 367.7 463.8 470.5 10000 0.04

10000 3649 4564 4644 2000 0.1

Case 3 1000 1/10 10 917.9 1051 1074 10000 0.1

10000 9108 10434 10143 1000 0.1

Case 4 1000 1/10 4 2018 2523 2484 5000 0.1

10000 20131 25150 26420 1000 0.2

Case 5 1000 1/10 1 5501 8053 8240 2000 0.1

10000 55002 80471 85288 1000 0.2

Drosophila 1000 1/2 10/
√
3 301.0 449.2 460.5 10000 0.04

10000 2998 4417 4440 2000 0.1

allele 1 to tunnel into allele 2. For those scenarios where λ02/λ01 = N
√

u2 is not
large (Case 4–5 and Drosophila), an important fact is rather that the adjusted formula
incorporates competition between alleles 1 and 2 to get fixed. On the other hand, it is
not crucial, for any of the scenarios of Table 12.4 to correct for the time it takes for
alleles to get fixed. This has two reasons. First, the expected fixation time of allele
2 is very short (α(105) ∼ log(N )). Although the expected fixation time of allele 1
is much larger (α(1) ∼ N ), for those scenarios where a transition 0 → 1 happens
fairly often (that is, when N

√
u2 is not too large, as for Case 5), the overall expected

waiting time is still much larger than α(1).

12.9 Discussion

In this paper we analyzed the waiting time until the last of m mutations appears
and gets fixed in a population of constant size without any substructure. We showed
that approximately, this waiting time has a phase-type distribution whenever a fixed
state model is applicable, where one genetic variant at a time dominates the popula-
tion. The rationale behind this result is to approximate the dynamics of the genetic
composition of the population by a continuous time Markov process with m + 1
states; the wildtype variant and the m mutants. We also provided a general scheme
for calculating the intensity matrix of this process, and thereby obtained an explicit
approximation of the waiting time distribution. Our model allows for forward and



284 O. Hössjer et al.

backwardmutations, with different selective fitness, to appear at different rates. Once
the intensity matrix of the Markov process is known, the phase-type distribution of
the waiting time automatically incorporates all the pathways towards them:th mutant
that the model allows for.

We believe the findings of this paper can be extended in several ways. First, we
have provided quite a detailed sketch of proofs of main results, derived previously
known results as special cases, and confirmed several others by simulations. While
it is outside the scope of this paper to provide full proofs; this is an important topic
for further research.

Second, we argued that our explicit approximation of the expected waiting time
has the correct order of magnitude, even when some of the assumptions behind the
intensity rate calculations are violated. In more detail, the transition rates between
pairs of fixed states will only be correct when competition between different forward
and backward transitions can be neglected asymptotically. We provided an adjust-
ment of the expected waiting time for neutral models when such competition is
present, using Theorem 3 of Schweinsberg [60] and Theorem 3 of Durrett et al. [20].
A challenging task is to generalize these results to scenarios where the mutants of
the model have different selective fitness.

Third, we have assumed a homogeneous population of haploid individuals with
constant size. We believe our main results can be extended to include varying popu-
lation size, diploidy, and recombination, as well as geographic subdivision and other
types of population structure.

Fourth, in some applications there are several possible orders in which the m
mutations may arrive. This can still be handled by a fixed state population model,
with a phase-type distribution for the waiting time, as in Sect. 12.7.2.2. But for some
scenarios of partially ordered mutations, the state space of the Markov process has
to be enlarged in order to keep track of the subset of mutations that has occurred
(Gerstung and Beerenwinkel [24]).

Fifth, a challenging generalization is to derive a phase-type distribution approx-
imation of the waiting time until m coordinated targets have been fixed in the pop-
ulation. For instance, each type i ∈ {1, . . . , m} could represent a sequence of DNA,
which, compared to previous targets j < i , requires one or several additional point
mutations. This would extend results in Durrett and Schmidt [18] from m = 1 to
higher values of m.

Sixth, the results of this paper could serve as a building block in order to understand
the genomewide rate of molecular evolution of m coordinated mutations. In order
to obtain such a rate, a selection model has to be specified, whereby the selection
coefficients of the m mutants at various loci are drawn from some multivariate dis-
tribution. This can viewed as an extension of the simulation studies in Gillespie [27]
and Rupe and Sanford [55] for single mutations (m = 1) to larger m.

Seventh, our phase-type distribution approximation of the waiting time relies
heavily on the assumption that all mutation rates are smaller than the inverse pop-
ulation size, in order to guarantee that successful mutations arrive so infrequently
and then spread so quickly that one genetic variant at a time dominates. While this is
a reasonable assumption for moderately-sized populations, it is not appropriate for
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large populations where different mutations will coexist, interfere, and overlap. This
includes virus, bacterial or simple eukaryotic populations, as well as large cell pop-
ulations of cancer progression with diverse mutational patterns. While we adjusted
for non-small mutation rates for some of these models in Sect. 12.8, it is still impor-
tant to derive more general results for the waiting time of coordinated mutations in
large populations. Several papers have addressed this issue, see for instance Iwasa
et al. [33], Desai and Fisher [16], Beerenwinkel et al. [4], Gerstung and Beeren-
winkel [24], Theorem 4 of Schweinsberg [60], and Theorem 1 of Durrett et al. [20].
It is an interesting topic of future research to generalize these results to our setting of
forward and backward mutations, where the mutants have a varying selective fitness.

Finally, we have developed analytical and simulation based tools in Matlab for
the waiting time of coordinated mutations, based on the results of this paper. They
are freely available from the first author upon request.

Acknowledgements The authors wish to thank an anonymous reviewer for several helpful sug-
gestions that improved the clarity and presentation of the paper.

Appendix A. A Simulation Algorithm

Recall from Sect. 12.2 that the allele frequency process Zt of the Moran model
is a continuous time and piecewise constant Markov process with exponentially
distributed holding times at each state z = (z0, . . . , zm) ∈ Z. For all but very small
population sizes, it is infeasible to simulate this process directly, since the distances
between subsequent jumps are very small, of size Op(N−1). The τ -leaping algorithm
was introduced (Gillespie [25], Li [42]) in order to speed up computations for a certain
class of continuous timeMarkov processes. It is an approximate simulation algorithm
with time increments of size τ . According to the leaping condition of Cao et al. [12],
one chooses τ = τ(ε) in such a way that

E
[|Zt+τ,i − Zti ||Zti = zi

] ≤ εzi (12.118)

for i = 0, . . . , m and some fixed, small number ε > 0, typically in a range between
0.01 and 0.1.

Zhu et al. [71] pointed out that it is not appropriate to use τ -leaping for the Moran
model when very small allele frequencies are updated. For this reason they defined a
hybrid algorithm that combines features of exact simulation and τ -leaping. Although
most time increments are of length τ , some critical ones are shorter. Then they showed
that (12.118) will be satisfied by the hybrid algorithm for a neutral model with small
mutation rates, when

τ ≤ ε/2. (12.119)

We will extend the method of Zhu et al. [71] to our setting, where forward and
backward mutations are possible. In order to describe the simulation algorithm, we
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first need to define the transition rates of the Moran model. From any state z ∈ Z,
there are at most (m + 1)m jumps z → z + δi j/N possible, where δi j = e j − ei ,
0 ≤ i, j ≤ m and i 	= j . Each such change corresponds to an event where a type
i individual dies and gets replaced by a another one of type j . Since the process
remains unchanged when i = j , we need not include these events in the simulation
algorithm. It follows from Sect. 12.2 that the transition rate from z to z + δi j/N is

ai j = ai j (z)

= zi × z j s j∑m
k=0 zk sk

(1 − u j+1 − v j−1) + zi × z j−1s j−1∑m
k=0 zk sk

u j + zi × z j+1s j+1∑m
k=0 zk sk

v j

= zi∑m
k=0 zk sk

[
z j s j (1 − u j+1 − v j−1) + z j−1s j−1u j + z j+1s j+1v j

]
,

(12.120)

with um+1 = v−1 = z−1 = zm+1 = 0. Let Nc be a threshold. For any given state z,
define the non-critical set Ω of events as those pairs (i, j) with i 	= j such that both
of zi and z j exceed Nc/N . The remaining events (i, j) are referred to as critical,
since at least one of zi and z j is Nc/N or smaller. The idea of the hybrid simulation
method is to simulate updates of critical events exactly, whereas non-critical events
are updated approximately. In more detail, the algorithm is defined as follows:

1. Set t = 0 and Zt = e0 = z.
2. Compute the m(m + 1) transition rates ai j = ai j (z) for 0 ≤ i, j ≤ m and i 	= j .
3. Compute the set Ω = Ω(z) of critical events for the current state z.

4. Determine the exponentially distributed waiting time e
L∈ Exp(a) until the next

critical event occurs, where a = ∑
(i, j)/∈Ω ai j is the rate of the exponential distri-

bution.
5. If e < τ , simulate a critical event (I, J ) /∈ Ω from the probability distribution

{ai j/a; (i, j) /∈ Ω}, and update the allele frequency vector as z ← z + δI J /N .
Otherwise, if e ≥ τ , simulate no critical event and leave z intact.

6. Let h = min(e, τ ). Then simulate non-critical events over a time interval of length
h, and increment the allele frequency vector as

z ← z + 1

N

∑
(i, j)∈Ω

ni jδi j ,

where ni j ∼ Po(ai j h) are independent and Poisson distributed random variables.
7. Update date time (t ← t + h) and the allele frequency process (Zt ← z).
8. If z = em , set Tm = t and stop. Otherwise go back to step 2.

We have implemented the hybrid algorithm, with Nc and ε as input parameters and
τ = ε/2. When the selection coefficients si are highly variable, a smaller value of τ

is needed though in order to guarantee that (12.118) holds.
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Appendix B. The Expected Waiting Time for One Mutation

In this appendix we will motivate formula (12.34). It approximates the expected
number of generationsα(s) until a singlemutantwith fitness s spreads and get fixed in
a population where the remaining N − 1 individuals have fitness 1, given that such a
fixationwill happen and that no further mutations occur. This corresponds to aMoran
model of Sect. 12.2withm = 1mutant, zeromutation rates (u1 = v0 = 0), and initial
allele frequency distribution Z0 = (1 − p, p), where p = 1/N . For simplicity of
notation we write Zt = Zt1 for the frequency of the mutant allele 1.

Kimura and Ohta [38] derived a diffusion approximation of α(s), for a general
class of models. It involves the infinitesimal mean and variance functions M(z) and
V (z) of the allele frequency process, defined through

E(Zt+h |Zt = z) = z + M(z)h + o(h),

Var(Zt+h |Zt = z) = V (z)h + o(h)

as h → 0. In order to apply their formula to a mutation-free Moran model, we first
need to find M(z) and V (z). To this end, suppose Zt = z. Then use formula (12.120)
with m = 1 to deduce that

z → z + 1/N at rate a01(z) = N (1 − z)
zs

1 − z + zs
, (12.121)

whereas

z → z − 1/N at rate a10(z) = N z
1 − z

1 − z + zs
. (12.122)

From this it follows that

M(z) = 1

N
[a01(z) − a10(z)] = (s − 1)

(1 − z)z

1 + z(s − 1)
(12.123)

and

V (z) = 1

N 2
[a01(z) + a10(z)] = 1

N
(1 + s)

(1 − z)z

1 + z(s − 1)
. (12.124)

We will also need the function

G(z) = exp

(
−
∫ z

0

2M(y)

V (y)
dy

)
= exp(−2Ns ′z),

with s ′ = (s − 1)/(s + 1). The formula of Kimura and Ohta [38] takes the form

α(s) =
∫ 1

p
ψ(z)β̂(z)

[
1 − β̂(z)

]
dz + 1 − β̂(p)

β̂(p)

∫ p

0
ψ(z)β̂2(z)dz, (12.125)
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where

β̂(z) = β̂(s; z) =
∫ z
0 G(y)dy∫ 1
0 G(y)dy

= 1 − e−2Ns ′z

1 − e−2Ns ′ (12.126)

approximates the fixation probability of a mutant allele that starts at frequency Z0 =
z. In particular, β̂(1/N ) approximates the exact probability (12.32) that one single
copy of an allele with fitness s takes over a population where all other individuals
have fitness 1. This diffusion approximation is increasingly accurate in the limit of
weak selection (s → 1).

The other function of the two integrands in (12.125), is

ψ(z) = 2
∫ 1
0 G(y)dy

V (z)G(z)
= 1 − e−2Ns ′

e−2Ns ′z × 1 + z(s − 1)

1 + s
× 1

s ′z(1 − z)
. (12.127)

In order to verify (12.34)wewill approximate (12.125) separately for neutral (s = 1),
advantageous (s > 1), and deleterious (s < 1) alleles. In the neutral case s = 1we let
s ′ → 0 and find that β̂(z) = z and ψ(z) = N/[z(1 − z)]. Inserting these functions
into (12.125), we obtain an expression

α(1) = − 1

p

[
N (1 − p) log(1 − p)

]
for the expected fixation time. This is essentially the middle part of (12.34) when
p = 1/N .

When s > 1, we similarly insert (12.126)–(12.127) into (12.125). After some
quite long calculations, it can be shown that

α(s) ∼ 1 + s

s − 1
log(N )

+ s

s − 1

[
log(2s ′) +

∫ 1

0

1 − e−y

y
dy −

∫ ∞

1

e−y

y
dy − 1

s

∫ ∞

2s ′

e−y

y
dy

]

+ e−2s ′

1 − e−2s ′ × 1

s − 1

∫ 2s ′

0

1

y
ey(1 − e−y)2dy

(12.128)
as N → ∞. The first term of this expression dominates for large N , and it agrees
with the lower part of (12.34).

When s < 1, a similar calculation yields
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Table 12.5 Approximations of the expected waiting time α(s) = αN (s) of fixation, in units of
generations, for a single mutant with selection coefficient s, in a population of size N . The columns
markedDiff are based on the diffusion approximation (12.125), whereas the columnsmarkedAsDiff
are asymptotic approximations of the diffusion solution, based on the middle part of (12.34) for
s = 1, Eq. (12.128) for s > 1 and Eq. (12.129) for s < 1. The latter two formulas only work well
when |s − 1| � 1/N . They have been omitted when they depart from the diffusion solution by
more than 10%

s N = 100 N = 1000 N = 10000

Diff AsDiff Diff AsDiff Diff AsDiff

1/5 7.38 7.39 10.84 10.85 14.30 14.30

1/2 13.62 13.67 20.57 20.58 27.48 27.48

1/1.5 20.60 20.73 32.23 32.24 43.76 43.76

1/1.1 56.42 58.92 107.06 107.27 155.61 155.63

1/1.01 98.15 – 554.51 577.34 1038.1 1040.2

1/1.001 99.48 – 985.94 – 5535.0 5710.7

1 99.50 100.00 999.50 1000.0 9999.5 10000.0

1.001 99.48 – 985.94 – 5535.0 5710.8

1.01 98.16 – 554.52 577.35 1038.1 1040.2

1.1 56.47 58.97 107.11 107.32 155.66 155.68

1.5 20.80 10.93 32.43 32.44 43.96 43.96

2 13.95 14.00 20.90 20.91 27.81 27.82

5 8.03 8.04 11.49 11.50 14.95 14.95

α(s) ∼ 1 + s

1 − s
log(N )

+ s

1 − s

[
log(2s ′′) +

∫ 1

0

1 − e−y

y
dy −

∫ ∞

1

e−y

y
dy − 1

s

∫ ∞

2s ′′

e−y

y
dy

]

+ e−2s ′′

1 − e−2s ′′ × 1

1 − s

∫ 2s ′′

0

1

y
ey(1 − e−y)2dy

(12.129)
as N → ∞, with s ′′ = (1 − s)/(s + 1). The first, leading term of this formula is
consistent with the upper part of (12.34). The various approximations of α(s) are
shown in Table12.5.

Appendix C. Sketch of Proofs of Main Results

Lemma 12.1 Let {τk}M
k=0 be the fixation times of the process Zt , defined in (12.13),

and τ ′
k+1 the time points when a successful mutation first occurs between two succes-

sive fixation events (τk < τ ′
k+1 < τk+1). Let also μi be the rate in (12.15) at which

successful mutations appear in a homogeneous type i population. Then
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P

(
τ ′

k+1 − τk >
ζ

μi
|Ztk = ei

)
→ exp(−ζ ) (12.130)

as N → ∞ for all ζ > 0 and i = 0, 1, . . . , m − 1.

Sketch of proof. Let fi (z) = fi,N (z) and bi (z) = bi,N (z) be the probabilities that
the offspring of a type i ∈ {0, . . . , m − 1} individual who mutates to i + 1 or i − 1
is a successful forward or backward mutation, given that the allele frequency config-
uration is z just before replacement occurs with the individual that dies (when i = 0
we put b0(z) = 0). Notice in particular that fi = fi (ei ) and bi = bi (ei ), since these
two quantities are defined as the probabilities of a successful forward or backward
mutation in an environmentwhere all individuals have type i just before themutation,
that is, when z = ei .

When an individual is born in a population with allele configuration z, with prob-
ability 1 − ui+1 fi (z) − vi−1bi (z) it is not the first successful mutation between two
fixation events τk and τk+1, given that no other successful has occurred between
these two time points. Let 0 ≤ t1 < t2 < · · · be the time points when a type i indi-
vidual gets an offspring, and if we choose {Zt } to be left-continuous, the prob-
ability of no successful mutation i → i ± 1 at time tl , where τk < tl < τk+1, is
1 − ui+1 fi (Ztl ) − vi−1bi (Ztl ), given that no other successful mutation has occurred
so far (τ ′

k+1 ≥ tl). Since the left hand side of (12.130) is the probability of no
mutation i → i ± 1 being successful among those that arrive at some time point
in Ti (ζ ) = {tl; τk < tl ≤ τk + ζ/μi }, we find that

P(τ ′
k+1 − τk > ζ/μi |Zτk = ei )

= E
[∏

tl∈Ti (ζ )

(
1 − ui+1 fi (Ztl ) − vi−1bi (Ztl )

)]
≈ E

[
exp

(
−ui+1

∑
tl∈Ti (ζ ) fi (Ztl ) − vi−1

∑
tl∈Ti (ζ ) bi (Ztl )

)]
,

(12.131)

where expectation is with respect to variations in the allele frequency process Zt for
t ∈ Ti (ζ ).

Because of (12.4)–(12.5), with a probability tending to 1 as N → ∞, Zt will stay
close to ei most of the time in (τk, τ

′
k+1), that is, all alleles l 	= i will most of the time

be kept at low frequencies. In order to motivate this, we notice that by definition,
all mutations that arrive in (τk, τ

′
k+1) are unsuccessful. It is known that the expected

lifetime of an unsuccessful mutations is bounded by C log(N ) for a fairly large class
of Moran models with selection, where C is a constant that depends on the model
parameters, but not on N (Crow and Kimura [15], Section 8.9). Since mutations
arrive at rate N (vi−1 + ui+1), this suggest that all alleles l 	= i are expected to have
low frequency before the first successful mutation arrives, if

C log(N ) × N (vi−1 + ui+1) = o(1)
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as N → ∞, i.e. if the convergence rate towards zero in (12.4)–(12.5) is faster than
logarithmic. This implies that it is possible to approximate the sums on the right hand
sides of (12.131) by

∑
tl∈Ti (ζ ) fi (Ztl ) ≈ fi |Ti (ζ )| ≈ fi N × ζ/μi ,∑
tl∈Ti (ζ )bi (Ztl ) ≈ bi |Ti (ζ )| ≈ bi N × ζ/μi ,

(12.132)

where |Ti (ζ )| refers to the number of elements in Ti (ζ ). In the first step of (12.132),
we used that fi (z) → fi and bi (z) → bi as z → ei respectively, and therefore
fi (Ztl ) ≈ fi and bi (Ztl ) ≈ bi for most of the terms in (12.132). In the second step of
(12.132) we used that |Ti (ζ )| counts the number of births of type i individuals within
a time interval of length ζ/μi , and that each tl+1 − tl is approximately exponentially
distributed. By the definition of the Moran model in Sect. 12.2, the intensity of this
exponential distribution is approximately

N × Ztl i si∑m
j=0 Ztl j s j

≈ N ,

for the majority of time points tl such that Ztl stays close to ei . Consequently, |Ti (ζ )|
is approximately Poisson distributed with expected value Nζ/μi . We know from
(12.4)–(12.5) and (12.15) that μi = o(1). Because this implies that Nζ/μi � 1 is
large, and since the coefficient of variation of a Poisson distribution tends to zero
when its expected value increases, |Ti (ζ )|/(Nζ/μi ) converges to 1 in probability as
N → ∞, and therefore we approximate |Ti (ζ )| by Nζ/μi . To conclude; (12.130)
follows from (12.15), (12.131), and (12.132). �
Proof of Theorem 12.1. Let Xζ = Zζ/μmin denote the allele frequency process after
changing time scale by a factor μmin. Let Sk = μminτk refer to time points of fixation
when {Xζ } visits new fixed states in Zhom, defined in (12.6), S′

k+1 = μminτ
′
k+1 the

time point when a successful mutation first appears after Sk , and S = μminTm = SM

the time when allele m gets fixed. We need to show that

S
L−→ PD(ẽ0,Σ0) as N → ∞. (12.133)

To this end, write

S =
M−1∑
k=0

(S′
k+1 − Sk) +

M∑
k=1

(Sk − S′
k) =: Sappear + Stunfix, (12.134)

where Sappear is the total waiting time for new successful mutations to appear, and
Stunfix is the total waiting time for tunneling and fixation, after successful mutations
have appeared. We will first show that

Sappear
L−→ PD(ẽ0,Σ0) as N → ∞. (12.135)
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It follows from (12.14) to (12.17) that {X Sk } is aMarkov chain that starts at X S0 = e0,
with transition probabilities

P(X Sk+1 = e j |X Sk = ei ) = pi j,N → πi j

for i = 0, . . . , m − 1, j 	= i.
(12.136)

Because of (12.25) and Lemma12.1, the waiting times for successful mutations
i → i ± 1 have exponential or degenerate limit distributions as N → ∞, since

P(S′
k+1 − Sk > ζ |X Sk = ei ) →

{
exp(−κiζ ), i ∈ Ilong,
0, i ∈ Ishort,

(12.137)

where Ilong and Ishort refer to those asymptotic states in (12.22) and (12.23) that are
visited for a long and short time, respectively. Since by definition, the non-asymptotic
states i ∈ Inas in (12.20) will have no contribution to the limit distribution of Sappear
as N → ∞, it follows from (12.136) to (12.137) that asymptotically, Sappear is the
total waiting time for a continuous time Markov chain with intensity matrix Σ , that
starts at e0, before it reaches its absorbing state em . This proves (12.135).

It remains to prove that Stunfix is asymptotically negligible. It follows from (12.26)
that

P(ε) = PN (ε) = max
i∈Ias

P
(
Sk − S′

k > ε|X Sk−1 = ei
) = o(1) (12.138)

as N → ∞ for any ε > 0. Write M = ∑m−1
i=0 Mi , where Mi is the number of visits

to ei by the Markov chain {X Sk ; k = 0, . . . , M}, before it is stopped at time M . Let
K be a large positive integer. We find that

P(Stunfix > ε) ≤ E
[∑min(K ,M)

k=1 P(Sk − S′
k > ε/K )

]
+ P(M > K )

≤ K P(ε/K ) +∑
i∈Inas P(Mi > 0) + E(M)/K

≤ 2E(M)/K

(12.139)

for all sufficiently large N . In the second step of (12.139) we used that

E(M) = ẽ0(I − P0)
−11T → ẽ0(I − Π0)

−11T < ∞, (12.140)

where P0 is a squarematrix of orderm that contains the firstm rows andm columns of
the transitionmatrix P of theMarkov chain X Sk , so that its elements are the transition
probabilities among and from the non-absorbing states. We used in (12.140) that M
is the number of jumps until this Markov chain reaches its absorbing state, and
therefore it has a discrete phase-type distribution (Bobbio et al. [9]). And because of
(12.17)–(12.18), the expected value of M must be finite. In the last step of (12.139)
we used (12.138) and the definition of non-asymptotic states, which implies P(Mi >

0) = o(1) for all i ∈ Inas.
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Since (12.139) holds for all K > 0 and ε > 0, we deduce Stunfix = o(1) by first
letting K → ∞ and then ε → 0. Together with (12.134)–(12.135) and Slutsky’s
Theorem (see for instance Gut [29]), this completes the proof of (12.133). �

In order to motivate Theorem12.2, we first give four lemmas. It is assumed for
all of them that the regularity conditions of Theorem12.2 hold.

Lemma 12.2 Let ril j be the probabilities defined in (12.37)–(12.40). Then

ril j = O(u1−2−( j−l−1)

j ),

ril j = Ω(u1−2−( j−l−1)

l+2 ),
i ≤ l ≤ j − 2, (12.141)

and
ril j = O(v1−2−(l− j−1)

j ),

ril j = Ω(v1−2−(l− j−1)

l−2 ),
j + 2 ≤ l ≤ i, (12.142)

as N → ∞. The corresponding formulas for ri j = rii j in (12.36) are obtained by
putting l = i in (12.141)–(12.142).

Proof. In order to prove (12.141), assume i ≤ l ≤ j − 2. Since ri, j−1, j = 1, repeated
application of the recursive formula ri,k−1, j = R(ρik j )

√
rik j uk+1 in (12.38), for k =

j − 1, . . . , l + 1, leads to

ril j =
j−1∏

k=l+1

R(ρik j )
2−(k−l−1)

u2−(k−l)

k+1 . (12.143)

We know from (12.48) that all ρil j = O(1) as N → ∞. From this and the definition
of the function R(ρ) in (12.41), it follows that R(ρil j ) = Θ(1) as N → ∞, so that

ril j = Θ

(
j−1∏

k=l+1

u2−(k−l)

k+1

)
. (12.144)

Then both parts of (12.141) follow by inserting the first equation of (12.46) into
(12.144). The proof of (12.142) when j + 2 ≤ l ≤ i is analogous. Since ri, j+1, j = 1,
we use a recursion for k = j + 1, . . . , l − 1 in order to arrive at the explicit formula

ril j =
l−1∏

k= j+1

R(ρik j )
2−(l−k−1)

v2
−(l−k)

k−1 .

Then use (12.48) and the third equation of (12.46) to verify that ril j satisfies
(12.142). �

Lemma 12.3 Let qi j , qil j , ri j , and ril j be the probabilities defined in connection with
(12.35)–(12.40). Consider a fixed i ∈ {0, 1, . . . , m − 1}, and let F(i) and B(i) be
the indices defined in (12.44). Then,
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qil F(i) ∼ ril F(i), l = i, i + 1, . . . , F(i) − 1,
qil B(i) ∼ ril B(i), l = B(i) + 1, . . . , i, if i > 0 and π̂i B(i) > 0

(12.145)

as N → ∞. In particular,

qi F(i) ∼ ri F(i),

qi B(i) ∼ ri B(i), if i > 0 and π̂i B(i) > 0.
(12.146)

Sketch of proof. Notice that (12.146) is a direct consequence of (12.145), since
qii j = qi j and rii j = ri j . We will only motivate the upper part of (12.145), since the
lower part is treated similarly. Consider a fixed i ∈ {0, . . . , m − 1}, and for simplicity
of notation we write j = F(i). We will argue that

qil j ∼ ril j (12.147)

for l = j − 1, . . . , i by means of induction. Formula (12.147) clearly holds when
l = j − 1, since, by definition, qi, j−1, j = ri, j−1, j = 1. As for the induction step,
let i + 1 ≤ l ≤ j − 1, and suppose (12.147) has been proved for l. Then recall the
recursive formula

ri,l−1, j = R(ρil j )
√

ul+1ril j (12.148)

from (12.38), with R defined in (12.41). If

qi,l−1, j ∼ R(ρil j )
√

ul+1qil j (12.149)

holds as well, then (12.147) has been shown for l − 1, and the induction proof is
completed.Without loss of generalitywemay assume that j ≥ i + 2, since otherwise
the induction proof of (12.147) stops after the first trivial step l = j − 1.

In order to motivate (12.149), we will look at what happens when the population
is in fixed state i . Suppose Zτk = ei , and recall that τ ′

k+1 is the time point when the
first successful mutation i → i + 1 in (τk, τk+1) arrives. Therefore, if Zτk+1 = e j ,
there is a non-empty set J = {i + 1, . . . , j − 1} of types that must be present among
some of the descendants of the successful mutation, before a mutation j − 1 → j
arrives at some time point τ ′′

k+1 ∈ (τ ′
k+1, τk+1). Put Zt J = maxl∈J Ztl . The regularity

condition
P( sup

τ ′
k+1<t<τ ′′

k+1

Zt J > ε|Zτk = ei ) → 0 (12.150)

for all ε > 0 as N → ∞, assures that with high probability, none of the alleles in
J reaches a high frequency after the successful i → i + 1 mutation occurred, and
before allele j first appears. We will need this condition below, for verifying the
induction step (12.149).

The rationale for (12.150) is that fixation events i → j will happen much more
frequently than other types of fixation events i → l with l ∈ J , because of (12.44).
We will motivate that
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P = P( sup
τk<t<τk+aμ−1

i

Zt J > ε|Zτk = ei ) → 0 (12.151)

for any a > 0 and ε > 0 as N → ∞, with μi the rate of leaving fixation state i . In
Lemma12.1 we motivated that τ ′

k+1 − τk = Op(μ
−1
i ), and in Lemma12.5 we will

argue that τ ′′
k+1 − τ ′

k+1 = op(μ
−1
i ). Since this implies τ ′′

k+1 − τk = Op(μ
−1
i ), formula

(12.150) will follow from (12.151).
In order to motivate (12.151), assume for simplicity there are no backward muta-

tions (the proof is analogous but more complicated if we include back mutations as
well). If allele l ∈ J exceeds frequency ε, we refer to this as a semi-fixation event.
Let λil(ε) be the rate at which this happens after time τk , and before the next fixed
state is reached. Then, the rate at which semi-fixation events happen among some
l ∈ J , is

λi J (ε) =
∑

l∈J
λil(ε)

∼Nui+1

∑
l∈J

qilβNε

(
sl

si

)

≤C(ε) × Nui+1

∑
l∈J

qilβ

(
sl

si

)

∼C(ε)
∑

l∈J
λil .

(12.152)

In the second step of (12.152) we introduced βNε(s), the probability that a single
mutant with fitness s reaches frequency ε, if all other individuals have fitness 1 and
there are no mutations. We made use of

λil(ε) ∼ Nui+1qilβNε

(
sl

si

)
. (12.153)

This is motivated as in the proof of Lemma12.4, in particular Eqs. (12.163), (12.164)
and variant of (12.167) for semi-fixation rather than fixation. In the third step of
(12.152) we utilized that βNε(s) is larger than the corresponding fixation probability
β(s) = βN (s) for a population of size N . In order to quantify how much larger the
fixation probability of the smaller population of size Nε is, we introduced C(ε),
an upper bound of βNε(sl/si )/β(sl/si ) that holds for all l ∈ J . An expression for
C(ε) can be derived from (12.32) if sl/si is sufficiently close to 1. Indeed, we know
from (12.48) that sl/si → 1 as N → ∞. However, we need to sharpen this condition
somewhat, to

s = sl

si
≥ 1 + x

N
(12.154)

for all l ∈ J and some fixed x < 0. Then it follows from (12.32) that

βNε(s)

βN (s)
= s−N − 1

s−Nε − 1
≤ (1 + x/N )−N − 1

(1 + x/N )−Nε − 1
→ e−x − 1

e−εx − 1
=: C(ε)
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is a constant not depending on N . Finally, in the last step of (12.152) we assumed

λil ∼ Nui+1qilβ

(
sl

si

)
, l ∈ J. (12.155)

This is motivated in the same way as Eq. (12.153), making use of (12.163)–(12.164)
and (12.167).

Assuming that semi-fixation events arrive according to a Poisson process with
intensity λi J (ε), formula (12.151) follows from (12.44) to (12.152), since

P ∼ 1 − exp

(
−λi J (ε) × a

μi

)

≤ 1 − exp

(
−C(ε)

∑
l∈J

λil × a

μi

)

= 1 − exp(−C(ε)a
∑

l∈J
pil)

→ 1 − exp(−C(ε)a
∑

l∈J
πil)

= 1 − exp(−C(ε)a
∑

l∈J
π̂il)

= 0

(12.156)

as N → ∞. In the third step of (12.156) we used (12.16) to conclude that pil =
λil/μi , and in the fourth step we utilized (12.17). In the fifth step of (12.156) we
claimed that πil = π̂il for l ∈ J , Although we have not given a strict proof of this,
it seems reasonable in view of the definitions of πil and π̂il in (12.17) and (12.43),
together with (12.35), (12.155), and the fact that qil ∼ ril for i < l < F(i) (which
can be proved by induction with respect to l). Finally, in the last step of (12.156) we
invoked (12.44), which implies π̂il = 0 for all l ∈ J = {i + 1, . . . , F(i) − 1}.

Equation (12.150) enables us to approximate the allele frequency Ztl by a branch-
ing process with mutations, in order to motivate (12.149). (A strict proof of this for
a neutral model s0 = · · · sm−1 = 1 can be found in Theorem 2 of Durrett et al. [20].)
We will look at the fate of the first l − 1 → l mutation at time τ ∈ (τ ′

k+1, τ
′′
k+1), that

is a descendant of the first successful i → i + 1 mutation at time τ ′
k+1, and arrives

before the first j − 1 → j mutation at time τ ′′
k+1. Recall that q = qi,l−1, j is the prob-

ability that this l mutation gets an offspring that mutates into type j , and q ′ = qil j

is the corresponding probability that one of its descendants, an l → l + 1 mutation,
gets a type j offspring. Let also r ′ = ril j be the approximation q ′, and write s = sl/si

for the ratio between the selection coefficients of alleles l and i . With this simplified
notation, according to (12.149), we need to show that

q ∼ R(ρ)
√

uq ′ (12.157)

as N → ∞, where u = ul+1, and ρ = ρil j is defined in (12.37), i.e.
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s = 1 + ρ
√

ur ′. (12.158)

We make the simplifying assumption that at time τ , the population has one single
type l individual, the one that mutated from type l − 1 at this time point, whereas all
other N − 1 individuals have type i . (Recall that we argued in Lemma12.1 that such
an assumption is asymptotically accurate.) In order to compute the probability q for
the event A that this individual gets a descendant of type j , we condition on the next
time point when one individual dies and is replaced by the offspring of an individual
that reproduces. Let D and R be independent indicator variables for the events that
the type l individual dies and reproduces respectively. Using the definition of the
Moran process in Sect. 12.2, this gives an approximate recursive relation

q = P(A)

= P(D = 0, R = 0)P(A|D = 0, R = 0)

+ P(D = 0, R = 1)P(A|D = 0, R = 1)

+ P(D = 1, R = 0)P(A|D = 1, R = 0)

+ P(D = 1, R = 1)P(A|D = 1, R = 1)

=
(
1 − 1

N

)
N − 1

N − 1 + s
× q

+
(
1 − 1

N

)
s

N − 1 + s

× [
u(q ′ + q − q ′q) + vq + (1 − u − v)(2q − q2)

]
+ 1

N

N − 1

N − 1 + s
× 0

+ 1

N

s

N − 1 + s
× [

uq ′ + v × 0 + (1 − u − v)q
]

(12.159)

for q, where v = vl−1 is the probability of a back mutation l → l − 1. In the last
step of (12.159) we retained the exact transition probabilities of the Moran process,
but we used a branching process approximation for the probability q that the type l
mutation at time τ gets a type j descendant. This approximation relies on (12.150),
and it means that descendants of the type l mutation that are alive at the same time
point, have independent lines of descent after this time point. For instance, in the
second term on the right hand side of (12.159), a type i individual dies and the type
l individual reproduces (D = 0, R = 1). Then there are three possibilities: First,
the offspring of the type l individual mutates to l + 1 with probability u. Since the
type l individual and its type l + 1 offspring have independent lines of descent, the
probability is 1 − (1 − q ′)(1 − q) = q ′ + q − q ′q that at least one of them gets a
type j descendant. Second, if the offspring mutates back to l − 1 (with probability
v), its type l parent has a probability q of getting a type j descendant. Third, if
the offspring does not mutate (with probability 1 − u − v), there are two type l
individuals, with a probability 1 − (1 − q)2 = 2q − q2 that at least one of them gets
a type j offspring.
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Equation (12.159) is quadratic in q. Dividing both sides of it by s/(N − 1 + s), it
can be seen, after some computations, that this equation simplifies to aq2 + bq + c =
0, with

a = (1 − u − v)

(
1 − 1

N

)
∼ 1,

b = N − 1

N
× 1 − s

s
+ u(1 + q ′ − q ′

N
) + v

∼ − ρ
√

ur ′

1 + ρ
√

ur ′ + (1 + q ′)u + v

∼ −ρ
√

uq ′,
c = −uq ′,

(12.160)

as N → ∞. When simplifying the formula for b, we used (12.158) in the second
step, the induction hypothesis (12.147) in the last step (since it implies q ′ ∼ r ′), and
additionally we assumed in the last step that (1 + q ′)u + v = o(

√
ur ′). In order to

justify this, from the second equation of (12.46) we know that v = O(u), and since
q ′ ≤ 1, it suffices to verify that u = o(

√
ur ′), or equivalently that r ′ = Ω(u). But

this follows from (12.46), (12.141), and the fact that u = ul+1, since

r ′ = ril j = Ω
(

u1−2−( j−l−1)

l+2

)
= Ω

(
u1−2−( j−l−1)

)
= Ω(u),

where in the last step we used that l ≤ j − 1. This verifies the asymptotic approxi-
mation of b in (12.160).

To conclude, in order to prove of (12.157), we notice that the only positive solution
to the quadratic equation in q, with coefficients as in (12.160), is

q ∼ ρ
√

uq ′

2
+
√

ρ2uq ′

4
+ uq ′

= ρ +√
ρ2 + 4

2

√
uq ′

= R(ρ)
√

uq ′,

where in the last step we invoked the definition of R(ρ) in (12.41). This finishes the
proof of the induction step (12.149) or (12.157), and thereby the proof of (12.147).

We end this proof by a remark: Recall that ri j in (12.36) is an approximation qi j ,
obtained from recursion (12.38) or (12.148) when j > i , and from (12.40) when
j < i . A more accurate (but less explicit) approximation of qi j is obtained, when
i < j , by recursively solving the quadratic equation ax2 + bx + c = 0, with respect
to x = ri,l−1, j for l = j − 1, . . . , i + 1, and finally putting ri j = rii j . The coefficients
of this equation are defined as in (12.160), with r ′ = ril j instead of q ′. When j < i ,
the improved approximation of qi j is defined analogously. �
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Lemma 12.4 Let μi be the rate (12.15) at which a successful forward or back-
ward mutation occurs in a homogeneous type i population, and let μ̂i in (12.42) be
its approximation. Define the asymptotic transition probabilities πi j between fixed
population states as in (12.17), and their approximations π̂i j as in (12.43). Then

μi ∼ μ̂i , i = 0, . . . , m − 1, (12.161)

as N → ∞, and
πi j = π̂i j , i, j = 0, 1, . . . , m. (12.162)

Sketch of proof. Consider a time point τk when the population becomes fixed with
type i , so that Zτk = ei . Denote by fi j the probability a forward mutation i → i + 1,
which appears at a time point later than τk , is the first successful mutation after τk ,
that its descendants have taken over the population by time τk+1, and that all of them
by that time have type j (so that Zτk+1 = e j ). Likewise, when j < i and i ≥ 1, we
let bi j refer to the probability that if a backward mutation i → i − 1 arrives, it is
successful, its descendants have taken over the population by time τk+1, and all of
them have type j . For definiteness we also put b0 j = 0. We argue that

λi j ∼
{

Nui+1 fi j , j > i,
Nvi−1bi j , j < i,

(12.163)

since the event that the population at time τk+1 have descended from more than one
i → i ± 1 mutation that occurred in the time interval (τk, τk+1), is asymptotically
negligible.

Let β j (z) be the probability that the descendants of a type j individual, who
lives in a population with a type configuration z, takes over the population so that
it becomes homogeneous of type j . Although β j (z) depends on the mutation rates
u1, . . . , um, v0, . . . , vm−1 as well as the selection coefficients s1, . . . , sm , this is not
made explicit in the notation. The probabilities fi j and bi j in (12.163) can be written
as a product

fi j = qi j E
[
β j (Zτ ′′

k+1
)|A j , Zτk = ei

]
, j > i,

bi j = qi j E
[
β j (Zτ ′′

k+1
)|A j , Zτk = ei

]
, j < i

(12.164)

of two terms. Recall that the first term, qi j , is the probability that the first successful
mutation i → i ± 1 at time τ ′

k+1 > τk has a descendant that mutates into type j at
some time τ ′′

k+1 ∈ (τ ′
k+1, τk+1). The second term is the probability that this mutation

has spread to the rest of the population by time τk+1. The conditional expectation of
this second term is with respect to variations in Zτ ′′

k+1
, and the conditioning is with

respect to A j , the event that the mutation at time τ ′′
k+1 is into type j .

In order to compare the transition rates in (12.163) with the approximate ones in
(12.35), we notice that the latter can be written as
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λ̂i j =
{

Nui+1 f̂i j , j > i,
Nvi−1b̂i j , j < i,

(12.165)

where

f̂i j =ri jβ(s j/si ), j > i,

b̂i j =ri jβ(s j/si ), j < i,
(12.166)

ri j is the approximation of qi j defined in (12.36), whereas β(s j/si ) is the probability
that a single type j individual gets fixed in a population without mutations, where
all other individuals have type i .

Wewill argue that the probabilities in (12.166) are asymptotically accurate approx-
imations of those in (12.164), for all pairs i, j of states that dominate asymptotically,
that is, those pairs for which j ∈ {B(i), F(i)}. In Lemma12.3 we motivated that
ri j is an asymptotically accurate approximation of qi j for all such pairs of states.
Likewise, we argue that β(s j/si ) is a good approximation of the conditional expec-
tation in (12.164). Indeed, following the reasoning of Lemma12.3, since none of the
intermediate alleles, between i and j , will reach a high frequency before the type j
mutant appears at time τ ′′

k+1, it follows that most of the other N − 1 individuals will
have type i at this time point. Consequently,

E
[
β j (Zτ ′′

k+1
)|A j , Zτk = ei

] ∼ β j

(
N − 1

N
ei + 1

N
e j

)
∼ β

(
s j

si

)
(12.167)

as N → ∞. In the last step of (12.167) we used that new mutations between time
points τ ′′

k+1 and τk+1 can be ignored, because of the smallness (12.4)–(12.5) of the
mutation rates. Sinceβ j

(
(N − 1)ei/N + e j/N

)
is the fixation probability of a single

type j mutant that has selection coefficient s j/si relative to the other N − 1 type
i individuals, it is approximately equal to the corresponding fixation probability
β(s j/si ) of a mutation free Moran model. It therefore follows from (12.164) and
(12.166) that

f̂i F(i) ∼ fi F(i), i = 0, . . . , m − 1,

b̂i B(i) ∼bi B(i), i = 1, . . . , m − 1 and B(i) 	= ∅ (12.168)

as N → ∞.
Next we consider pairs of types i, j such that j /∈ {B(i), F(i)}. We know from

(12.44), (12.165) and (12.166) that f̂il = o( f̂i F(i)) for all l > i such that l 	= F(i).
It is therefore reasonable to assume that fil = o( fi F(i)) as well for all l > i with
l 	= F(i), although f̂il need not necessarily be a good approximation of fil for all
these l. The same argument also applies to backward mutations when B(i) 	= ∅ and
π̂i B(i) > 0, that is, we should have fil = o( fi B(i)) for all l < i such that l 	= B(i).

Putting things together, it follows from (12.44), (12.163), (12.165), (12.168), and
the last paragraph that the approximate rate (12.42) at which a homogeneous type i
population is transferred into a new fixed state, satisfies
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μ̂i = Nvi−1

∑i−1

j=0
b̂i j + Nui+1

∑m

j=i+1
f̂i j

∼ 1
(
π̂i B(i) > 0

)
Nvi−1b̂i B(i) + Nui+1 f̂i F(i)

∼ 1
(
π̂i B(i) > 0

)
Nvi−1bi B(i) + Nui+1 fi F(i)

∼ Nvi−1

∑i−1

j=0
bi j + Nui+1

∑m

j=i+1
fi j

∼ μi ,

(12.169)

as N → ∞, in agreement with (12.161). Formulas (12.16)–(12.17), (12.43)–(12.44),
(12.163), (12.165), and (12.168)–(12.169) also motivate why πi j should equal π̂i j ,
in accordance with (12.162). �

Lemma 12.5 The regularity condition (12.47) of Theorem12.2 implies that (12.26)
holds.

Sketch of proof. Suppose Zτk = ei and Zτk+1 = e j for some i ∈ Ias and j 	= i . Write

τk+1 − τ ′
k+1 =

{∑ j−1
l=i+1 σl + σfix := σtunnel + σfix, j > i,∑i−1
l= j+1 σl + σfix := σtunnel + σfix, j < i.

(12.170)

If j > i , then the successful mutation at time τ ′
k+1 is from i to i + 1. This type i + 1

mutation has a line of descent with individuals that mutate to types i + 2, . . . , j ,
before the descendants of the type j mutation take over the population. The first
term σtunnel = τ ′′

k+1 − τ ′
k+1 on the right hand side of (12.170) is the time it takes for

the type i + 1mutation to tunnel into type j . It is the sumof σl , the time it takes for the
type l + 1 mutation to appear after the type l mutation, for all l = i + 1, . . . , j − 1.
The second term σfix = τk+1 − τ ′′

k+1 on the right hand side of (12.170) is the time it
takes for j to get fixed after the j mutation first appears. When j < i , we interpret
the terms of (12.170) analogously. It follows from (12.170) that in order to prove
(12.26), it suffices to show that

σtunnel = op(μ
−1
min),

σfix = op(μ
−1
min),

(12.171)

as N → ∞ for all asymptotic states i ∈ Ias. When j > i , we know from (12.44) to
(12.162) that with probability tending to 1, j = F(i). Following the argument from
the proof of Theorem 2 of Durrett et al. [20], we have that

σl = Op(q
−1
il j ). (12.172)

In the special case when l = i + 1 and j = i + 2, formula (12.172) can also be
deduced from the proof of Theorem12.3, by looking at G(x)/G(∞) in (12.191).
Using (12.172), we obtain the upper part of (12.171), since
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σtunnel =
∑ j−1

l=i+1
σl

=Op

(∑ j−1

l=i+1
q−1

il j

)
=op(q

−1
i i j )

=op(q
−1
i j )

=op(μ
−1
i )

=op(μ
−1
min).

(12.173)

In the second step of (12.173) we used that qii j ≤ qil j for i < l, which follows from
the definition of these quantities, in the third step we invoked qi j = qii j , and in the
fourth step we applied the relation

μi = Θ

(
Nui+1qi jβ

(
si

s j

))
= o(qi j ). (12.174)

The first step of (12.174) is motivated as in Lemma12.4, since j = F(i) and hence
πi j > 0, whereas the second step follows from (12.4) and the fact that β(si/s j ) is
bounded by 1. Finally, the fourth step of (12.173) follows from the definition of
μmin in (12.24), since (12.174) applies to any i ∈ Ias. When j < i , the first part of
(12.171) is shown analogously.

In order to verify the second part of (12.171), we know from the motivation of
Lemma12.4 that with high probability, σfix is the time it takes for descendants of the
type j mutation to take over the population, ignoring the probability that descendants
of other individuals first mutated into j and then some of them survived up to time
τk+1 aswell.We further recall fromLemma12.4 that because of the smallness (12.4)–
(12.5) of the mutation rates, right after the j mutation has arrived at time τ ′′

k+1, we
may assume that the remaining N − 1 individuals have type i , and after that no other
mutation occurs until the j allele gets fixed at time τk+1. With these assumptions, σfix

is the time for one single individual with selection coefficient s j/si to get fixed in a
two-typeMoran model without mutations, where all other individuals have selection
coefficient 1. From Sect. 12.5 it follows that E(σfix) ∼ α(s j/si ), and therefore the
second part of (12.171) will be proved if we can verify that

α

(
s j

si

)
= o(μ−1

min)

holds for all i ∈ Ias and j ∈ {B(i), F(i)} as N → ∞. This is equivalent to showing
that

μmin = o

(
min
i∈Ias

min

[
α−1

(
sB(i)

si

)
, α−1

(
sF(i)

si

)])
(12.175)

as N → ∞, where the α−1(sB(i)/si )-term is included only when B(i) 	= ∅ (or equiv-
alently, when πi B(i) > 0). Using (12.44), (12.46), (12.141), (12.161), (12.168), and
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(12.169), we find that

μi ∼μ̂i

=O
(
Nui+1ri F(i)β(sF(i)/s j )

)
=O

(
Nui+1u1−2−(F(i)−i−1)

F(i) β(sF(i)/s j )
)

=O
(

Nu2−2−(F(i)−i−1)

F(i) β(sF(i)/s j )
)

.

(12.176)

Inserting (12.176) into the definition of μmin in (12.24), we obtain

μmin = O

(
min

i∈Ilong
Nu2−2−(F(i)−i−1)

F(i) β(sF(i)/s j )

)
,

and formula (12.175) follows, because of (12.47). �
Proof of Theorem 12.2. We need to establish that the limit result (12.49) of Theo-
rem12.2 follows fromTheorem12.1. To this end, we first need to show that all λ̂i j are
good approximations ofλi j , in the sense specified byTheorem12.2, i.e.πi j = π̂i j and
μ̂i/μ̂min → κi as N → ∞. But this follows from Lemma12.4, and the definitions
of μmin and μ̂min in (12.24) and Theorem12.2. Then it remains to check those two
regularity conditions (12.18) and (12.26) of Theorem12.1 that are not present in The-
orem12.2. But (12.18) follows from (12.44) to (12.162), since these two equations
imply πi F(i) > 0 for all i = 0, . . . , m − 1, and (12.26) follows from Lemma12.5. �
Proof of (12.109). Let

θi = u × E(Tm |Z0 = ei ) (12.177)

be the standardized expected waiting time until all m mutations have appeared and
spread in the population, given that it starts in fixed state i . Our goal is to find an
explicit formula for θ0, and then show that (12.109) is an asymptotically accurate
approximation of this explicit formula as m → ∞.

Recall thatΣi j in (12.107) are the elements of the intensity matrix, for theMarkov
process that switches between fixed population states, when time has beenmultiplied
by μ̂min = u. When the population is in fixed state i , the standardized expected
waiting time until the next transition is 1/(−Σi i ). By conditioning on what happens
at this transition, it can be seen that the standardized expected waiting times in
(12.177), satisfy a recursive relation

θi = 1

−Σi i
+ Σi,i−1

−Σi i
× θi−1 + Σi,i+1

−Σi i
× θi+1, (12.178)

for i = 0, 1, . . . , m − 1, assuming θ−1 = 0 on the right hand side of (12.178) when
i = 0, and similarly θm = 0 when i = m − 1. Inserting the values of Σi j from
(12.107) into (12.178), we can rewrite the latter equation as



304 O. Hössjer et al.

θ0 − θ1 = 1

m
=: b0 (12.179)

and

θi − θi+1 = Ci

m − i
(θi−1 − θi ) + 1

m − i
=: ai (θi−1 − θi ) + bi , (12.180)

for i = 1, . . . , m − 1, respectively. We obtain an explicit formula for θ0 by first
solving the linear recursion for θi − θi+1 in (12.179)–(12.180), and then summing
over i . This yields

θ0 =
m−1∑
i=0

(θi − θi+1) =
m−1∑
i=0

i∑
k=0

θik, (12.181)

where

θik = bk

i∏
j=k+1

a j =
(m−1

k

)
(m − k)

(m−1
i

) × Ci−k . (12.182)

Formulas (12.181)–(12.182) provide thedesired explicit formula for θ0.WhenC = 0,
it is clear that

θ0 =
∑m−1

i=0
θi i

=
∑m−1

i=0
1/(m − i)

∼ log(m) + γ,

where γ ≈ 0.5772 is the Euler–Mascheroni constant. This proves the upper half
of (12.109). For C > 0, we will show that when m gets large, the (standardized)
expected waiting time until the last mutant gets fixed, θm−1 − θm = θm−1, dominates
the first sum in (12.181). To this end, we first look at θm−1, and rewrite this quantity
as

θm−1 =
∑m−1

k=0
θm−1,k

= 1
(m−1

m−1)

∑m−1

k=0

1
m−k

(
m − 1

k

)
Cm−1−k

=(1 + C)m−1
∑m−1

k=0

1
m−k

(
m − 1

k

) (
1

1+C

)k ( C
1+C

)m−1−k

=(1 + C)m−1E
(

1
m−Xm−1

)
=(1 + C)m−1E

(
1

1+Ym−1

)
,

(12.183)

where

Xm−1
L∈Bin (m − 1, 1

1+C

)
,

Ym−1 = m − 1 − Xm−1
L∈Bin (m − 1, C

1+C

)
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are two binomially distributed random variables. For large m, we apply the Law of
Large Numbers to Ym−1 and find that

θm−1 ≈(1 + C)m−1 1
1+E(Ym−1)

≈(1 + C)m−1 1
mC/(1+C)

=(1 + C)m/(Cm),

(12.184)

in agreement with the lower half of (12.109). In view of (12.181), in order to finalize
the proof of (12.109), we need to show that the sum of θm− j − θm− j+1 for j =
2, 3, . . . , m, is of a smaller order than (12.184). A similar argument as in (12.183)
leads to

θm− j − θm− j+1 =
∑m− j

k=0
θm− j,k

=( j − 1)!(1 + C)m− j E
[

1∏ j
n=1(n+Ym− j )

]
≤ 2

j (1 + C)m− j E
[

1
(1+Ym− j )(2+Ym− j )

]
,

(12.185)

where

Ym− j
L∈ Bin

(
m − j,

C

1 + C

)
.

For large m we have, by the Law of Large Numbers, that

θm− j − θm− j+1 ≤ 2
j (1 + C)m− j 1

[1+(m− j)C/(1+C)]2

≤
{
4(1 + C)m/2/m, j > m/2,

(1 + C)m− j/ [m/2 × C/(1 + C)]2 , 2 ≤ j ≤ m/2.

(12.186)

By summing (12.186) over j , it is easy to see that

m∑
j=2

(θm− j − θm− j+1) � (1 + C)m/(Cm) ∼ θm

as m → ∞. Together with (12.184), this completes the derivation of the lower part
of (12.109). �
Sketchofproof ofTheorem12.3.Our proofwill parallel that ofTheorem1 inDurrett
el al. [20], see alsoWodarz and Komarova [66]. We first use formula (12.66) in order
to deduce that the ratio between the two rates of fixation from a type 0 population,
satisfies λ̂02/λ̂01 → ∞ as N → ∞. When ρ = 0 in (12.51), this is a consequence of
λ̂02/λ̂01 ∼ N

√
u2 and the assumption N

√
u2 → ∞ on the second mutation rate u2.

When ρ < 0, λ̂02/λ̂01 tends to infinity at an even faster rate, due to theψ(ρu1/2
2 )-term
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of λ̂01 in (12.66). In any case, it follows that condition (12.44) is satisfied,with F(0) =
2 and π̂02 = 1. That is, tunneling from 0 to 2 will occur with probability tending to
1 as N → ∞ whether ρ = 0 or ρ < 0. As in the proof of Lemma12.3 we conclude
from this that the fraction Zt = Zt1 of allele 1 will stay close to 0, and we may use
a branching process approximation for Zt . A consequence of this approximation is
that type 1 mutations arrive according to a Poisson process with intensity Nu1, and
the descendants of different type 1 mutations evolve independently. Let 0 < σ ≤ ∞
be the time it takes for the first type 2 descendant of a type 1 mutation to appear.
In particular, if σ = ∞, this type 1 mutation has no type 2 descendants. Letting
G(x) = P(σ ≤ x) be the distribution function of σ , it follows by a Poisson process
thinning argument that

P(T ′′
2 ≥ t) ∼ exp(−Nu1

∫ t

0
G(x)dx). (12.187)

WeuseKolmogorov’s backward equation in order to determineG. To this end,wewill
first compute G(x + h) for a small number h > 0, by conditioning on what happens
during the time interval (0, h). As in formulas (12.121)–(12.122) of Appendix B,
we let ai j (z) refer to the rate at which a type i individual dies and gets replaced by
the offspring of a type j individual, when the number of type 1 individuals before
the replacement is N z. Since we look at the descendants of one type 1 individual,
we have that z = Z0 = 1/N . Using a similar argument as in Eq. (12.159), it follows
from this that

G(x + h) = a00(1/N )h × G(x)

+a01(1/N )h
[
u2 × 1 + (1 − u2)(2G(x) − G(x)2)

]
+a10(1/N )h × 0 + a11(1/N )h × [u2 × 1 + (1 − u2)G(x)]

+
[
1 −

∑
i j

ai j (1/N )h
]

G(x) + o(h)

(12.188)

for small h > 0. Notice that the two a00(1/N ) terms cancel out in (12.188), whereas
a11(1/N )(1 − G(x))u2 × h = O(N−2u2 × h) is too small to have an asymptotic
impact. Using formulas (12.121)–(12.122) for a01(1/N ) and a10(1/N ), it follows
that (12.188) simplifies to

G(x + h) = s × h
[
u2 + 2G(x) − G(x)2

]
+ 1 × h × 0 + [1 − (s + 1)h]G(x) + o(h),

when all asymptotically negligible terms are put into the remainder term. Letting
h → 0, we find that G(x) satisfies the differential equation

G ′(x) = − sG(x)2 + (s − 1)G(x) + su2

= − s(G(x) − r1)(G(x) − r2),
(12.189)
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where

r1 =(s − 1)/(2s) +
√
[(s − 1)/(2s)]2 + u2,

r2 =(s − 1)/(2s) −
√
[(s − 1)/(2s)]2 + u2

are the two roots of the quadratic equation −sy2 + (s − 1)y + su2 = 0. Recall from
(12.51) that s = 1 + ρ

√
u2. We may therefore express these two roots as

r1 =√
u2

(
ρ +

√
ρ2 + 4s2

)
/(2s) ∼ √

u2

(
ρ +

√
ρ2 + 4

)
/(2s)

=√
u2R(ρ)/s,

r2 =√
u2

(
ρ −

√
ρ2 + 4s2

)
/(2s) ∼ √

u2

(
ρ −

√
ρ2 + 4

)
/(2s),

(12.190)

where in the second step we used that u2 → 0 and s → 1 as N → ∞, and in the last
step we invoked (12.41), the definition of R(ρ). Since r2 < 0 < r1, and G ′(x) → 0
as x → ∞, it follows from (12.189) that we must have G(∞) = r1. Together with
the other boundary condition G(0) = 0, this gives as solution

G(x) = r1
1 − e−(r1−r2)sx

1 − r1
r2

e−(r1−r2)sx
(12.191)

to the differential equation (12.189), with

r1 − r2 ∼
√

u2 ×√
ρ2 + 4

s

and

− r1
r2

∼
√

ρ2 + 4 + ρ√
ρ2 + 4 − ρ

. (12.192)

Putting things together, we find that

P
(
N R(ρ)u1

√
u2 × T ′′

2 ≥ t
) ∼P

(
Nu1r1s × T ′′

2 ≥ t
)
)

∼ exp

(
−Nu1

∫ t/(Nu1r1s)

0
G(x)dx

)

∼ exp

(
−
∫ t

0
h(y)dy

)
,

(12.193)

where formula (12.190) was used in the first step, (12.187) in the second step, in the
third step we changed variables y = Nu1r1s × x and introduced the hazard func-
tion h(x) = G (x/(Nu1r1s)) /(sr1). If Nu1 → a > 0 as N → ∞, it follows from
(12.191) and the fact that s → 1 that we can rewrite the hazard function as
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h(x) ∼ 1
sr1

G
(

x
sar1

)
= 1

s × 1−exp
(
− r1−r2

r1
× x

a

)
1− r1

r2
exp

(
− r1−r2

r1
× x

a

) ∼ 1−exp
(
− r1−r2

r1
× x

a

)
1− r1

r2
exp

(
− r1−r2

r1
× x

a

) .
(12.194)

We finally obtain the limit result (12.110)–(12.111) when a > 0 from (12.193) to
(12.194), using (12.192) and the fact that

r1 − r2
r1

∼ 2
√

ρ2 + 4

ρ +√
ρ2 + 4

.

When Nu1 → 0, one similarly shows that (12.193) holds, with h(x) = 1. Finally,
formula (12.112) follows by integrating (12.193) with respect to t . �
Motivation of formula (12.114). We will motivate formula (12.114) in terms of
the transition rates λ̂i j in (12.35), rather than those in (12.113) that are adjusted for
tunneling and fixation of alleles.

Since we assume s1 = · · · = sm−1 = 1 < sm in (12.114), it follows from (12.35)
that it is increasingly difficult to have backward and forward transitions over larger
distances, except that it is possible for some models to have a direct forward transi-
tion to the target allele m. By this we mean that the backward and forward transition
rates from any state i satisfy λ̂i,i−1 � · · · � λ̂i0, and λ̂i,i+1 � · · · � λ̂i,m−1 respec-
tively, as N → ∞. For this reason, from any fixed state i , it is only possible to
have competition between the two forward transitions i → i + 1 and i → m when
0 ≤ i ≤ m − 2. Since γi = (λ̂im/λ̂i,i+1)

2, and since the transition rates to the inter-
mediate alleles i + 1, . . . , m − 1 are of a smaller order than the transition rate to
i + 1, it follows that (12.35) predicts a total forward rate of fixation from fixed state
i of the order

Nui+1 fi ∼λ̂i,i+1 + λ̂i,i+m

=λ̂i,i+1(1 + √
γi )

=Nui+1β
(

si+1

si

)
(1 + √

γi )

=ui+1(1 + √
γi ),

(12.195)

where in the last step we used that si = si+1 and β(1) = 1/N . We will extend the
argument in the proof of Theorem 3 in Durrett et al. [20], and indicate that the total
forward rate of fixation from i should rather be

Nui+1 fi ∼ λ̂i,i+1χ

(
γi

β(sm)

)
= ui+1χ

(
γi

β(sm)

)
, (12.196)

where χ(·) is the function defined in (12.63). This will also motivate (12.114), since
this formula serves the purpose of modifying the incorrect forward rate of fixation
(12.195), so that it equals the adjusted one in (12.196), keeping the relative sizes of
the different forward rates i → j of fixation intact for j = i + 1, . . . , m.
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The rationale for (12.196) is that type i + 1mutations arrive according to aPoisson
process at rate Nui+1, and χ/N is the probability that any such type i + 1 mutation
has descendants of type i + 1 or m that spread to the whole population. We need to
show that

χ = χ

(
γi

β(sm)

)
. (12.197)

To this end, let Xt be the fraction of descendants of a i → i + 1 mutation, Nt time
units after this mutation appeared. We stop this process at a time point τ when Xt

reaches any of the two boundary points 0 or 1 (Xτ = 0 or 1), or when a successful
mutation i + 1 → i + 2 appears before that, which is a descendant of the type i + 1
mutation that itself will have typem descendants who spread to thewhole population,
before any other type gets fixed (0 < Xτ < 1). We have that x = X0 = 1/N , but
define

β̄(sm; x) = β̄(x) = P(Xτ = 0|X0 = x)

for any value of x . This is a non-fixation probability, i.e. the probability that the
descendants of N x individuals of type i + 1 at time t = 0 neither have a successful
type i + 2 descendant, nor take over the population before that. Since the descendants
of a single type i + 1mutation take over the populationwith probability 1 − β̄(1/N ),
it is clear that

χ = N

[
1 − β̄

(
1

N

)]
∼ lim

x→0

1 − β̄(x)

x
= −β̄ ′(0). (12.198)

Durrett et al. [20] prove that it is possible to neglect the impact of further i → i + 1
mutations after time t = 0. It follows that Xt will be a version of theMoran process of
Appendix Bwith s = si+1/si = 1, during the time interval (0, τ ), when time speeded
up by a factor of N . Using (12.123)–(12.124), we find that the infinitesimal mean
and variance functions of Xt are

M(x) =N × 0 = 0,

V (x) =N × 2x(1 − x)/N = 2x(1 − x),
(12.199)

respectively. At time t , a successful type i + 2 mutation arrives at rate

N × N Xt × ui+2qi+1,mβ
(

sm
si

)
∼N 2Xt × ui+2ri+1,mβ(sm)

=N 2Xt × r2imβ(sm)

=Xt × (λ̂im/λ̂i,i+1)
2β(sm)−1

=Xt × γiβ(sm)−1

=:Xt × γ ′,

(12.200)
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where in the second step we used r2im = ui+2ri+1,m , which follows from (12.36),
since all R(ρil j ) = 1 when s1 = · · · = sm−1 = 1. Then in the third step we used
λ̂im/λ̂i,i+1 = Nrimβ(sm), which follows from (12.35), and in the last step we intro-
duced the short notation γ ′ = γiβ(sm)−1. (One instance of γ ′ is presented for the
boundary scenarios of Sect. 12.7.2.1, below formula (12.105).)

We will use (12.199)–(12.200) and Kolmogorov’s backward equation in order to
derive a differential equation for β̄(x). Consider a fixed 0 < x < 1, and let h > 0
be a small number. Then condition on what happens during time interval (0, h).
When h is small, it is unlikely that the process Xt will stop because it hits any of the
boundaries 0 or 1, i.e.

P(τ < h, 0 < Xτ < 1) =xγ ′h + o(h),

P(τ < h, Xτ ∈ {0, 1}) =o(h)

as h → 0. The non-fixation probability can therefore be expressed as

β̄(x) =xγ ′h × 0 + (1 − xγ ′h)

∫ t

0
β̄(y)d P(Xh = y|X0 = x) + o(h)

=(1 − xγ ′h)
[
β̄(x) + 1

2 V (x)β̄ ′′(x)h
]+ o(h).

Letting h → 0, we find from (12.199) that β̄(x) satisfies the differential equation

x(1 − x)β̄ ′′(x) − xγ ′β̄(x) = 0. (12.201)

Durrett et al. [20] use a power series argument to prove that the solution of (12.201),
with boundary conditions β̄(0) = 1 and β̄(1) = 0, is

β̄(x) =
∑∞

k=1
(γ ′)k

k!(k−1)! (1 − x)k∑∞
k=1

(γ ′)k

k!(k−1)!
. (12.202)

Recalling (12.63) and thatγ ′ = γi/β(sm), we deduce formula (12.197) from (12.198)
and differentiation of (12.202) with respect to x . �
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Chapter 13
Characterizing the Initial Phase
of Epidemic Growth on Some Empirical
Networks

Kristoffer Spricer and Pieter Trapman

Abstract A key parameter in models for the spread of infectious diseases is the
basic reproduction number R0, which is the expected number of secondary cases a
typical infected primary case infects during its infectious period in a large mostly
susceptible population. In order for this quantity to bemeaningful, the initial expected
growth of the number of infectious individuals in the large-population limit should
be exponential. We investigate to what extent this assumption is valid by simulating
epidemics on empirical networks and by fitting the initial phase of each epidemic
to a generalised growth model, allowing for estimating the shape of the growth. For
reference, this is repeated on some elementary graphs, for which the early epidemic
behaviour is known. We find that for the empirical networks tested in this paper,
exponential growth characterizes the early stages of the epidemic, except when the
network is restricted by a strong low-dimensional spacial constraint.

Keywords Epidemics · Exponential growth · Generalized growth model
Reproduction number · Stochastic processes

13.1 Introduction

A key parameter in many mathematical models that describe the spread of infec-
tious diseases is the basic reproduction number R0. It may be understood as the
expected number of other individuals a typical infected individual infects during
his/her infectious period in a large mostly susceptible population (see [4, p. 4]).
The basic reproduction number serves as a threshold parameter, in the sense that in
most standard models, if R0 ≤ 1 a large outbreak is impossible, while if R0 > 1, a
large outbreak occurs with positive probability. In those models, preventing a frac-
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tion 1 − 1/R0 of the infections (e.g. through vaccination) is enough to stop a major
outbreak (see [4, p. 209]).

The above properties of R0 are strongly connected to the correspondence of R0

with the offspring mean of a branching process approximation of the epidemic. So
for R0 to be meaningful, the initial expected growth of the number of infectious indi-
viduals in the large-population limit should be exponential. This exponential growth
is present in SIR epidemics (Susceptible → Infectious → Recovered; a definition is
given in Sect. 13.2.3) in large homogeneously mixing populations, in which all indi-
viduals have the same characteristics and all pairs of individuals independently make
contacts with the same rate. It is also present in many well-studied generalizations of
this SIR model in large homogeneously mixing populations. Generalizations are e.g.
possible through SIS (Susceptible → Infectious → Susceptible) or SIRS (Suscepti-
ble→ Infectious→Recovered→Susceptible)models, ormodelswith demographic
turnover through births, deaths and migration. Other generalizations are allowing for
heterogeneity among the individuals and contact rates between pairs, e.g. through
allowing for household structures, multi-type structures and some network struc-
tures in the population (see e.g. [4] for descriptions of these models and population
structures). Even with these generalizations, major outbreaks of epidemics still show
exponential growth in the initial phase of the epidemic and therefore R0 is a mean-
ingful parameter (see [23] and references therein).

A trade-off between realism and analytical tractability is often necessary in devel-
oping a mathematical model. Because of the reasons stated above, in many instances
this tractability requires the possibility of exponential growth in the model, either
directly or as a byproduct of other assumptions. It is not a-priori clear in which cases
real-life spread of infectious diseases allows for a meaningful definition of R0 and
in which cases the use of R0 may be misleading and other key parameters should
be estimated. For example, it is well known that SIR-epidemics on essentially 2-
dimensional networks grow linearly whenever contacts between vertices are mostly
local, i.e. if the probability of long range contacts decays sufficiently fast. The epi-
demic then spreads in the form of travelling waves on the plane (see e.g. [15, 25],
but also [7, 22] for models where long-range contacts change the behaviour of the
spread). Human physical activity is mostly restricted to the 2-dimensional nature of
the earth’s surface and a natural assumption is that graphs based on human interac-
tions (e.g. in social networks) may also show this restriction. Although, in this paper,
we focus on SIR epidemics, we expect that our discussion also applies to rumours,
evolution or games on the networks. Furthermore, quantities of interest such as the
diameter and typical distances in networks (see [10, Chapter 1]) are related to the
possibility of exponential growth of an epidemic on the network, and in this con-
text the typical distances are also strongly related to the so-called “six degrees of
separation” and “small-world” phenomena (see [26]).

In the present paper we study (simulated) SIR epidemics on several theoretical
and empirical networks and investigate to what extent they exhibit exponential and
subexponential growth. All, but one, of the empirical networks are taken from [13]
and we are aware that those networks are at best a proxy for networks relevant for the
spread of infectious diseases. Throughout the analysis, our key assumption is that
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if the number of vertices in such random graphs goes to infinity and if exponential
growth is possible, then at some level (see [2]) a branching process approximation
is possible and R0 is well defined. This R0 should then be estimated from the initial
phase of a (simulated) epidemic on the finite empirical network. Thus, we analyze
the development of the epidemic during the first generations (with exception of the
first generation) by fitting the development of the epidemic to a generalized growth
model (see Sect. 13.2.5). The process is repeated for many simulated epidemics on
each graph and the collective information from the analysis of these epidemics is
used to compare the initial growth of epidemics on different graphs (see Sect. 13.3).

In most of the analyzed empirical networks the unrestricted epidemic, where an
infected vertex infects all susceptible neighbours, grows so fast that the initial phase
of the epidemic is over in as few as 3–4 generations. To be able to study the epidemic
formore generations, we restrict it by two differentmethods described in Sect. 13.2.4.
These restrictions reduce the reproduction number so that it takes longer before a
substantial portion of the population has been infected. Since such restrictions could
affect the way in which the epidemic spreads in addition to just slowing it down, a
secondary objective is to study such effects. A discussion can be found in Sect. 13.4.

13.2 Model

In this section we present the models for epidemic growth on graphs that we explore
in the paper, expanding on some of the concepts introduced in Sect. 13.1. We start
with definitions and results concerning graphs in Sect. 13.2.1. An overview of the
specific graphs that we analyze in this paper is given in Sect. 13.2.2. In Sect. 13.2.3we
give a brief account of the SIR-model on graphs in discrete time (i.e. in a generation
perspective) and discuss what we mean by the growth of the epidemic, specifically
by exponential growth. We describe the two methods we use to “slow the epidemic
down” in Sect. 13.2.4. The method used to analyze the growth of the simulated
epidemics is presented in Sect. 13.2.5.

13.2.1 Graphs

A finite graph is a set of n vertices together with a set of edges that join vertices
pairwise. We consider simple and undirected graphs, i.e. there are no self-loops (an
edge connecting a vertex to itself) and no parallel edges (several edges join the same
pair of vertices) and all edges are undirected (see [10]). When considering epidemics
on graphs, we let vertices represent people and edges represent relationships between
people through which the infectious disease may spread, and the infection can spread
in both directions via the undirected edges. For any given vertex the vertices that can
be reached directly through an edge are called the neighbours of the vertex. The
degree of vertex v is the number of neighbours of v. We denote this degree by dv. For
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a given graph we talk about the degree sequence d = (d1, d2, . . . , dn). Without loss
of generality we restrict the analysis to graphs where di ≥ 1 for all i = 1, 2, . . . , n,
since verticeswith degree 0 cannot interact in an epidemic and are therefore not really
part of the network. Let Z be the degree of a vertex selected uniformly at random from
the graph and define pk = Pr(Z=k). The distribution of Z is the degree distribution
of the graph and we define μ = E[Z ] and σ 2 = Var(Z).

Some graphs are deterministic, e.g. the graph on the Euclidean integer lattice
Z

η, where η is the dimension of the lattice. Here the integer points in Z
η are the

vertices and edges exist between all pairs of vertices with Euclidean distance 1. We
consider finite subsets (tori) of the infinite graph Z

η in order to make comparisons
with other finite graphs.Other graphs are random in the sense that they are constructed
probabilistically, e.g. the Erdős–Rényi graph (see [5, 6]) and configuration model
graphs (see [5, 16]). In both cases the number of vertices is given and finite. For an
extensive overview of results on both Erdős–Rényi and configuration model graphs
see [5, 10].

In the Erdős–Rényi graph there exists an edge between any two vertices with
probability λ

n−1 , where λ is a given constant equal to the expected degree of a vertex
selected uniformly at random, and the presence or absence of possible edges are
independent. This construction results in the degree distribution of a vertex selected
uniformly at random being the binomial distribution with parameters n − 1 and

λ
n−1 . For n → ∞, the degree distribution converges to a Poisson distribution with
parameter λ.

In the configuration model graph, we either start with a given degree sequence
d (which may be taken from an empirical network) for the vertices, or the degree
sequence is independent and identically distributed (i.i.d.), with given distribution
D (which may also be taken from an empirical network). We then create the graph
as follows: To each (for the moment unconnected) vertex we assign a number of
“stubs” corresponding to its degree. The stubs are paired uniformly at random to
create edges. A possible left over stub is deleted and so are any self-loops, while
parallel edges are merged to one edge. So, the created graph is simple. If the degree
sequence is an i.i.d. sequence with distribution D, and if D has finite mean, then in
the limit n → ∞ the degree distribution of the obtained configuration model graph
converges in probability to the distribution D (see [3]).

Empirical graphs are created from real world data, e.g. from observed social
interactions within a group of people. These networks have a given finite size, while
we are interested in asymptotic results when the population size n → ∞. Therefore,
as pointed out in Sect. 13.1, we analyze (processes on) the empirical graph as if the
empirical graph is a realization of a randomgraph,which can be analyzed forn → ∞.
The exact mechanism of constructing the random graph is typically unknown. The
empirical graphs we have analyzed in this paper are described in Sect. 13.2.2, below.

In our analysis, we treat the empirical networks as if they are realizations of some
unspecified random graph model, which can be defined for an arbitrary large number
of nodes in the network. By studying epidemics on these realizations we try to answer
whether, in the large population limit of the random graph, exponential growth is
possible. However, we only have access to a limited number of such realizations
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and we cannot freely control the number of nodes in them. Also the real dynamics
through which an empirical network is created are probably too hard to describe and
analyze and possibly not even random. Therefore mathematical models and results
based on such empirical realizations should be interpreted with care.

13.2.2 The Studied Networks

In this subsection we present the networks we use to generate the graphs that are
analyzed in this paper and we discuss some of their properties.

A summary of properties of the networks used in this paper can be found in
Table13.1. The first three networks in the table are from the Stanford Large Dataset
Collection (see [13]).

The graphs are discussed below.

• soc-LiveJournal1 is a large online social network that allows for the formation of
communities. On the network people state who their “friends” are and although
this does not have to be mutual, it often is. In our model we only consider the
mutual statements of friendship and let these be represented by undirected edges,
while people are represented by vertices. In figures the graph is referred to as “LJ”.

• ca-CondMat is based on the arXiv condensed matter collaboration network
(COND-MAT). Authors are represented as vertices and undirected edges are
present between all authors that are listed as co-authors of the same paper. In
figures the graph is referred to as “CM”.

• roadNet-PA is based on the road network of Pennsylvania. Intersections between
roads are represented by vertices and roads are represented by edges. Because of
the spatial nature of a road network we expect to see spatial restrictions in this
network and this is why it was included in the analysis. In figures the graph is
referred to as “Rd”.

Table 13.1 An overview of networks that are investigated in this paper. The number of undirected
edges and the number of vertices with at least one edge are indicated

Data set # vertices # edges Type of graph

soc-LiveJournal1 3823816 25624154 Online social network

ca-CondMat 23133 93439 Scientific
collaboration network

roadNet-PA 1088092 1541898 Road network in
Pennsylvania

Swedish population 7616569 18139894 Workplace and family

D2 1000000 2000000 2-dimensional lattice

D6 1000000 6000000 6-dimensional lattice
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• Swedish population1 is a large network that is based on data containing only the
workplace and family affiliation of people in Sweden (see also [11]). Although the
used dataset does not contain geographic information, it may still be assumed that
family location and workplace location can be spatially correlated, thus imposing
a spatial structure on the entire graph.
Because some of the workplaces are large, we have assumed that people interact
with colleagues only in smaller working groups. We model this by (randomly)
dividing the workplaces into groups of 7 people (with at most one group in each
company having a size between 1 and 6 when the company size is not divisible by
7).
A reference version of this dataset was also tested where company affiliation was
assigned at random to each vertex, while keeping the distribution of workplace
sizes fixed. If epidemics on this reference graph differ from the original graph, this
could be an indication of spatial restrictions on the original graph. In figures the
graphs are referred to as “Sw” and “SR”, respectively.

• D2 is a finite regular square lattice (on Z2) in the shape of a torus with sides of 103

vertices, thus in total 106 vertices. Because of the torus shape there is no center in
the graph and the development of the epidemic does thus not depend on where the
epidemic starts. In figures the graph is referred to as “D2”.

• D6 is a finite regular lattice on Z6 in the shape of a torus with sides of 10 vertices,
thus in total 106 vertices. As for the D2-graph there is no center in the graph. In
figures the graph is referred to as “D6”.

13.2.3 Epidemics on Graphs

In this paper we consider SIR-epidemics, where each vertex is either susceptible,
infected (and infectious) or recovered. A vertex that is recovered is immune and can
never be infected again. We restrict the analysis to epidemics in discrete time and
also assume that each infected vertex stays infected for only one time unit before
it recovers and cannot spread the infection further. This model corresponds to the
so-called Reed–Frost model on graphs (see [4, p. 48]). The above implies that, for
any finite graph, the epidemic must eventually end when there are no more infected
vertices left. The total number of vertices that have been infected during the course
of the epidemic is called the final size of the epidemic.

The first vertex to be infected is called the index case. We assume that the index
case was infected at time i = 0, where time represents the generation number. The
index case then spreads the infection to (a subset of) its neighbours and they in turn
spread it to (a subset of) their neighbours. For each generation i , we keep track of Ii ,
the number of infected vertices in generation i , and of Ji = ∑i

k=0 Ik , the total number
of infected vertices up to and including generation i . Note that, if the infection always

1Data kindly supplied by Fredrik Liljeros, Department of Sociology, Stockholm University.
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spreads to all neighbours, Ji is equal to the number of vertices within graph distance
i from the index case.

A measure of the rate at which the epidemic is growing is the instantaneous
reproduction number at time (generation) i , which we define as the average number
of offspring of a vertex in generation i−1

mi = Ii
Ii−1

, (13.1)

for i≥1 and conditioned on Ii−1>0. The instantaneous reproduction number depends
on howmany neighbours an infected vertex has, on howmany of the neighbours that
are still susceptible and on the mechanism by which the vertex infects its neighbours.
In the initial phase of an epidemic mi may be approximately constant as a function
of i , but for a finite graph it must eventually decrease as there are fewer and fewer
susceptible vertices left. If vertices have different degrees or if vertices have different
local environments, then the development of the epidemic also depends on which
vertex is the index case.

On the square lattice, Z2, the growth of an unrestricted epidemic (i.e. when an
infected vertex infects all susceptible friends) is initially linear with Ii = 4i and
mi = i

i−1 , i ≥ 1 (conditioned on I0 = 1).
On a configuration model graph the initial phase of the epidemic (if the first gen-

eration is ignored) is well approximated by a Galton–Watson branching process in
discrete time, where all individuals reproduce independently with offspring distri-
bution X , with m = E[X ]. For a Galton–Watson process

Ii =
Ii−1∑

j=1

Xi, j , (13.2)

where Xi, j are all independent and distributed as X . We see that

E
[
Ii | Ii−1

] = Ii−1E[X ] (13.3)

and that
Var

[
Ii | Ii−1

] = Ii−1Var[X ] (13.4)

so that both the (conditional) expectation and the (conditional) variance of Ii are
proportional to the size of the previous generation. We use these relationships in the
analysis of the data, see Sect. 13.2.5.

In the large population limit the expected reproduction number

E[mi | Ii−1>0] = m (13.5)

does not depend on the epidemic generation. The expected size of the i th generation
of the epidemic is E[Ii ] = mi (given a single index case and assuming the branching
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Fig. 13.1 The number of infected vertices (left) and the instantaneous reproduction number (right)
as a function of the epidemic generation for three network models—the square lattice (solid black
line), the Erdős–Rényi model (dotted red line) and the configuration model with a geometric degree
distribution with weight on 0 (dashed blue line)—all with mean degree 4. For each plot the size
of the population is 106 vertices. In each generation infected vertices infect all of their susceptible
neighbours. With the chosen axes scaling in the left plot, the data points fall on a straight line if
the growth is exponential, corresponding to an approximately constant instantaneous reproduction
number in the right plot

process is valid from the first generation) and we see that the growth of the epidemic
is exponential if m > 1.

As shown in [9, p. 36]

m̂i = Ji − 1

Ji−1
, (13.6)

(assuming that I0 = 1) is a better estimator for m than mi . If the branching process
approximation is valid first from generation 2 then we can modify Eq. (13.6) slightly
to obtain

m̂i = Ji − J1
Ji−1 − J0

. (13.7)

This latter expression is most relevant in this paper, since we select the index case
uniformly at random among all vertices, while subsequent vertices are infected by
following edges from an infected vertex. This causes the degree distribution of the
index case to differ from that of vertices that are infected later, as we explain now
(see also [17]).

The development of epidemics on graphs depends both on local (such as the
degree of a vertex) and global structural properties. As an example of the relevance
of those structural properties, in Fig. 13.1 we have plotted a few SIR-epidemics
that were simulated on three different network types that all have the same mean
degree 4. These networks are described in more detail in Sect. 13.2.1. Here we have
assumed that infected vertices infect all of their susceptible neighbours. We observe,
that although the three graphs have the same mean degree, epidemics on the three
graphs develop differently. For the Erdős–Rényi model and the configuration model
early in the epidemic the growth is approximately exponential, while the square
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lattice exhibits essentially linear growth. In the right figure for the first two graphs
this is illustrated by approximately constant instantaneous reproduction numbers
(the average number of new infections caused per infected vertex in the current
infection generation), well above 1 in the initial phase of the epidemic, after which
the instantaneous reproduction number drops to a value below1. For the square lattice
model the instantaneous reproduction number drops rapidly from the very start of
the epidemic, asymptotically approaching 1. In the latter case the subexponential
development is an effect of the spatial structure of the network.

Before continuing, we remind the reader thatμ = E[Z ] and σ 2 = Var(Z), where
Z is the degree of a vertex that is chosen uniformly at random among all vertices
in the graph (see also Sect. 13.2.1). Let Z̃ be the degree of a vertex that is selected
by first selecting an edge uniformly at random and then selecting one of the two
connected vertices at random. On the configuration model graph, again ignoring the
first generation, initially and for as long as the branching process approximation is
valid, the epidemic growth is governed by X ∼ Z̃−1, where

p̃k = Pr
(
Z̃=k

) = kpk
μ

. (13.8)

The “−1” is because the infection cannot spread back to “the infector” since it is by
definition not susceptible any more. The expected reproduction number in the initial
phase of the epidemic is thus m = μ̃−1, where

μ̃ = E
[
Z̃
] = E

[
Z2

]

E[Z ] = μ + σ 2

μ
. (13.9)

Thus μ̃ can be much larger than μ if σ 2 is much larger than μ.

13.2.4 Restricting the Reproduction Number

Similar to the configuration model, some of the empirical graphs analyzed in this
paper have instantaneous reproduction numbers, in the initial phase of the epidemic,
that are much larger than the mean degree of the graph. An unrestricted epidemic
on such a graph grows very fast, infecting most of the population in just a few
generations. This makes it difficult to assess if the growth is exponential or not. To
work around this problem, we restrict the epidemic so that it develops slower, giving
more generations to analyze. This is reasonable, since in real world epidemics we
do not expect that each infected vertex infects all of its neighbours.

We use two methods to restrict the instantaneous reproduction number:

1. Maximum bound, with replacement: Every infected vertex distributes c infection
attempts uniformly at randomwith replacement among all neighbours (including
the onewho infected him). Here c is a constant. Thus an infected vertex can infect
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0 (if all attempts are with non-susceptible neighbours) up to c of its neighbours
(if all attempts are with susceptible ones). If c is sufficiently large (often c = 2
is enough), this method (typically) allows for large epidemics to develop since
both infected vertices with few and infected vertices with many neighbours have
a good chance of infecting other vertices. The method is similar to, but not
identical with the method used in [14].
Note that this method creates an asymmetry between vertices, in effect turning
the undirected graph into a directed graph: it may be that if vertices v1 and v2 are
neighbours then it is more likely that v1 infects v2 (should v1 become infected
before v2), than that v2 infects v1 (should v2 become infected first).

2. Bernoulli thinning: Each susceptible neighbour is infected with probability p.
This method is equivalent to the discrete-time version of the Reed–Frost model,
where it is assumed that each infected vertex infects each neighbour with prob-
ability p (see [4, p. 48]). This is closely related to bond percolation on the graph
(see [8]).
A disadvantage of Bernoulli thinning is that, for the datasets that we analyze, in
order to significantly slow down the epidemic p has to be so low that vertices
with few neighbours have a high probability of not infecting any other vertex.
The epidemic is spread mainly through high degree vertices, resulting in fewer
infected vertices and a smaller final size of the epidemic. Eventually this has a
negative effect on the number of generations that can be used to estimate the
instantaneous reproduction number, counteracting the intention of the Bernoulli
thinning.

When one of the above mentioned restrictions is applied, an infected vertex typ-
ically infects only a subset of its neighbours and the epidemic develops differently
on each realization, even if it starts with the same index case. This introduces ran-
domness even for epidemics on non-random graphs.

In this paper we have chosen to slow the epidemic down in such a way that we
obtain a sufficient number of generations to analyze, while still leaving the possibility
of having a large epidemic. For this purpose the maximum bound restriction c = 3
worked on all graphs. We used this throughout the analysis, unless explicitly stated
otherwise.On each graph, for theBernoulli thinningwe then select a value p such that
the average reproduction number, over many simulations, early on in the epidemic
is close to that of epidemics restricted using maximum bound.

We also restrict the epidemics on the reference graphs. For the configuration
model graphs we obtain exact expected reproduction numbers that are valid for as
long as the branching process approximation holds. For calculating these expected
reproduction numbers using the two restriction methods, we start with the offspring
distribution X and derive the expectation of the restricted distribution L .

We remind the reader that Z̃ is the degree distribution of vertices reached early on
in an epidemic on a configuration model graph, excluding the index case itself (see
Sect. 13.2.3). For Bernoulli thinning, remembering that X ∼ Z̃−1 in the configura-
tion model, we then have that
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L | Z̃ = k ∼ Bin(k − 1, p)

so that
E

[
L | Z̃ = k

] = (k − 1)p

and
E

[
L | Z̃] = (

Z̃ − 1
)
p.

Thus

E [L] = E
[
E

[
L | Z̃]] = E

[(
Z̃ − 1

)
p
] = (μ̃ − 1) p =

(

μ + σ 2

μ
− 1

)

p.

For maximum bound consider the event Ai = “edge i carries the infection on”
(with i = 1, 2, . . . , k − 1) and define the indicator variable

1{Ai } =
{
1 if Ai ,

0 otherwise.

Then the number of offspring L conditioned on Z̃ = k becomes

L | Z̃=k =
k−1∑

i=1

1{Ai }

There are c attempts at carrying the infection on and for each one a neighbour
is selected uniformly at random, with replacement. Thus Pr(Ai ) = 1 − Pr(Ai

�) =
1 − (

k−1
k

)c
, since for each of c attempts the probability is k−1

k that vertex i is not
selected to carry the infection on (remembering to deduct the edge on which the
infection arrived). Here Ai

� indicates the complement of Ai . Thus

E[L | Z̃ = k] = E

[
k−1∑

i=1

1{Ai }

]

=
k−1∑

i=1

E
[
1{Ai }

] =
k−1∑

i=1

Pr(Ai )

=
k−1∑

i=1

(

1 −
(
k − 1

k

)c)

= (k − 1)

(

1 −
(

1 − 1

k

)c)

and so

E
[
L | Z̃] = (

Z̃ − 1
)
(

1 −
(

1 − 1

Z̃

)c)

,

finally

E[L] = E
[
E

[
L | Z̃]] = E

[
(
Z̃ − 1

)
(

1 −
(

1 − 1

Z̃

)c)]

. (13.10)
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This expression can be simplified for the specific values of c that we focus on in
this paper:

E[L] =

⎧
⎪⎨

⎪⎩

2 − 3E
[
1
Z̃

]
+ E

[
1
Z̃2

]
when c = 2,

3 − 6E
[
1
Z̃

]
+ 4E

[
1
Z̃2

]
− E

[
1
Z̃3

]
when c = 3.

(13.11)

Using

E

[
1

Z̃ n

]

= 1

μ
E

[
1

Zn−1

]

this can also be expressed as

E[L] =
{
2 − 3

μ
+ 1

μ
E

[
1
Z

]
when c = 2,

3 − 6
μ

+ 4
μ
E

[
1
Z

] − 1
μ
E

[
1
Z2

]
when c = 3.

(13.12)

The branching process approximation of an epidemic on a configuration model
graph together with the expected reproduction number of the restricted epidemic can
be used as a reference for the empirical graphs.

13.2.5 Estimating the Shape of Growth

Much of the theory on epidemics on graphs is about obtaining results for epidemics
on infinite graphs, such as Euclidean lattices (see [8]), or obtaining asymptotic results
for a sequence of related epidemics on finite graphs, when the graph size grows to
infinity (see e.g. [1]). For example, for a configuration model graph (discussed more
in Sect. 13.2.1) with n vertices, the initial growth of an epidemic can be analyzed
using a branching process approximation (see [1, 2, 12]), which can be shown to be
exact (under some extra conditions) until roughly

√
n vertices have been infected,

with probability tending to 1 if n → ∞. This follows from a birthday problem type
argument (see e.g. [4, p. 54]).

For branching processes it is known that, if the branching process survives, the
growth is almost surely asymptotically exponential (see [12]), and the instantaneous
reproduction number converges to its expectation, which is the basic reproduction
number R0. If a substantial fraction of the vertices have been infected in an SIR
epidemic on a finite graph, with high probability, some neighbours of newly infected
vertices have already been infected before, thus reducing the instantaneous repro-
duction number. Exponential growth, if it exists, is thus only visible in the initial
phase of the epidemic, when only a small portion of the graph has been infected. We
thus restrict our analysis to the initial phase of the epidemic.

A direct method of analyzing the epidemic growth is to look at how Ii develops
over the epidemic generations i . From the discussion of the expected growth shape
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for some graph types in Sect. 13.2.3 we conclude that we need a method that is able
to handle shapes from linear to exponential. One way to do this is to use a function
that models the highest polynomial degree of the growth curve

Ii = α(i + β)γ , (13.13)

where α, β and γ are parameters that we determine by fitting the function to our
data. In this paper γ is the parameter of interest. We expect it to be close to 1 if the
growth is linear (as for the square lattice) and it should be substantially higher than
1 if the growth is exponential (as for the configuration model). The parameter β is
introduced since we do not expect the first generation to show the same expected
growth as subsequent generations (as discussed in Sect. 13.2.3). We thus ignore the
first generation and allow for some offset for the time i . Unfortunately, because the
parameters are highly dependent, the chosen parametrization in Eq. (13.13) does not
give good convergence when using standard methods of fitting the equation to data.

An alternative parametrization was originally suggested in [21] in the context
of superexponential growth and was used to study the impact of superexponential
population growth on genetic variations in [18]. The same method was used for
subexponential growth in [24]. The parametrization was developed for continuous
time applications, but can be adapted to our discrete time data.

The basic idea in [21] is to start with a differential equation with two parameters

d f (t)

dt
= r f (t)a, (13.14)

where f (t) can be viewed as modelling the total population size or the number of
infected (depending on application) at time t and r and a are parameters. f (t) in
continuous time corresponds to Ii in discrete time simply by setting Ii = f (i). a
defines the shape of the growth curve, while r is a proportionality constant which we
may interpret as a measure of the rate of growth. The solution to Eq. (13.14) depends
on the value of a:

f (t) =
{

bert if a=1 (13.15a)
(
r(1 − a)t + b1−a

) 1
1−a otherwise, (13.15b)

where b = f (0) is given by the starting condition, the size of the population at time
0. We note that Eq. (13.15a) is the limit of Eq. (13.15b) as a → 1. When a = 1 we
recognize that r is the Malthusian parameter (see e.g. [4, p. 10]). We also note that
Eq. (13.15b) is essentially a reparametrization of Eq. (13.13).

Taking Ii = f (i) in Eq. (13.15b) we obtain

Ii = (
r(1 − a)i + b1−a

) 1
1−a . (13.16)
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When performing the fit we take into account that the variance of Ii is not con-
stant. Rather, we can expect it to increase if the generation size is larger and in
our model we go further and assume that it is approximately proportional to the
generation size. This is reasonable considering that the conditional variance and the
conditional expectation of the generation size are proportional to each other (as noted
in Sect. 13.2.3). This lends itself well to a log-transformation to obtain

log(Ii ) = 1

1 − a
log

(
r(1 − a)i + b1−a

)
. (13.17)

Although this model has a singular point when the growth is exactly exponential
(a = 1), this case is unlikely with empirical data andwe choose to ignore the singular
point and use Eq. (13.16) as it is.

In themodel, Ii is the data that is obtained fromeach individual simulated epidemic
and a, r and b are treated as unknown parameters. By fitting Eq. (13.17) to the data
we obtain estimates of the parameter triple (a, r, b). The fit is performed using least
squares regression by supplying Eq. (13.17) as a custom function to the fit-function
inMatlab (see [20]). The fit-function is supplied with starting points (0.5, 0.5, 0.5),
minimum allowed values (−10, 0, 0) and maximum allowed values (5, 105, 100) for
the parameter triple. In addition, R2

ad j (the adjusted coefficient of determination, see
e.g. [19, p. 433]), produced by the fit-function, was inspected, but the value was not
used to discard any results. R2

ad j were in general high, except for epidemics on the
road network. These depart most from the shape assumed by the generalized growth
model and this is also reflected in the large variation in parameter estimates that can
be seen in Fig. 13.2.

Conditionedonhaving agoodfit, we can then interpreta as ameasure of how linear
or how exponential the epidemic growth is. Values of a close to 1 can be interpreted
as having exponential growth, while values close to 0 correspond to linear growth,
such as we expect for the square lattice. Negative values correspond to sub-linear
growth.

How good the fit needs to be to draw conclusions about a single epidemic depends
on the application. However, through simulation we have access to many epidemics
from each graph. Thus we can assess how similar or how different graphs are by
comparing the parameter estimates from a large number of simulated epidemics for
each graph. As already stated in [24] this is a phenomenological approach and as
such it does not properly justify why this specific model and parametrization of the
growth curve should be used. We justify the method by also simulating epidemics
on known (reference) graphs and by using parameter estimates from those. Our
reference graphs are regular lattices and configuration model graphs. We interpret
the parameter estimates from the empirical graphs with respect to those obtained on
the reference graphs.

The branching process approximation discussed in Sect. 13.2.3 works well until
there is a substantial probability that an infected vertex tries to infect an already
immune vertex. Given that J is the total number of vertices that has been infected
in the epidemic, this probability would in a configuration model be approximately
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Fig. 13.2 Eachdot in thefigure corresponds to an individual epidemic that has beenfit toEq. (13.17).
For each graph 104 epidemics were simulated. The overall “cloud” of point estimates of the param-
eters characterizes each graph in terms of what type of epidemics it produces. For the left figure
maximum bound c = 3 was used and for the right figure Bernoulli thinning was used. Graph names
in parenthesis indicate that the configuration model was used. Note the logarithmic scale on the
horizontal axis

J μ̃

nμ
, i.e. the proportion of already infected stubs divided by the total number of

stubs. For the datasets we analyze this probability grows fastest for the LiveJournal
dataset. This is because of the high quotient of μ̃

μ
≈ 5. If we, arbitrarily, allow this

probability to be atmost 5%, thus reducing the instantaneous reproduction number by
approximately the same amount, we cannot allow J

n to be more than approximately
1% for the LiveJournal dataset and slightly higher for the other datasets. Setting this
limit too low gives too few generations for the statistical analysis, thus increasing
the confidence intervals for the parameters, and setting it too high means that the
branching process approximation is no longer good and we should expect biased
parameter estimates (generally too low values of a), indicating that the growth is
not exponential), even when working with configuration model graphs. In this paper
we set the limit to 1% for all datasets. We have tried (but not shown in this report)
limits that are both lower and higher, and the chosen limit appeared to result in an
acceptable compromise between imprecision and bias for the parameter estimates.

Finally, we make a couple of notes regarding the chosen model. First, we note
that it is not a predictive model, but rather a way to characterize the initial phase of
simulated epidemics on graphs. If we wanted to make predictions forward in time,
then it is not certain that this model is the best method. We should then also validate
the predictive properties of the model. Secondly, we are aware that data points are
correlated, but we chose not to take this into account when fitting the data. We justify
this by also including reference graphs in the same type of analysis that is used for
the empirical graphs.
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13.3 Results

In this section we present results of the statistical analysis for epidemics on the
empirical graphs and compare the result with epidemics on some reference networks.

We have used 104 epidemics (with I0 = 1) from each of the graphs in Table13.1
and performed a least square fit to Eq. (13.17). Data used are from i = 1 until approx-
imately a total of 1% of all vertices in the graph have been infected (see Sect. 13.2.5).
For the maximum bound restriction of epidemics, we set c = 3 in the simulations.
This is because some of the graphs do not allow for large epidemic outbreaks with
c = 2, while c = 3 results in large epidemic on all graphs. For the corresponding
simulation using Bernoulli thinning to restrict the epidemic, p was selected to give
a similar growth rate early in the epidemic.

The results are summarized inFig. 13.2wherewehave plotted the estimated values
of parameters a versus r . We remind the reader that a corresponds to the shape of
growth where values close to 1 indicate exponential growth and values close to 0
indicate linear growth, while r is a measure of the growth rate, corresponding to the
Malthusian parameter when we have exponential growth. In this paper the estimates
of a are of most interest. For reference, we have included some configuration model
and square lattice graphs together with the empirical graphs.

We note that most of the graphs produce epidemics with estimated parameter
values in the vicinity of a = 1, while the road network and the square lattice data are
spread out around a = 0. This indicates that most of the graphs produce epidemics
that grow exponentially early on, while the road network and the square lattice show
an essentially linear growth. Note the similarity between the configuration model
simulation of D2 (the square lattice) and some of the empirical graphs. Somewhat
surprising to the authors is that D6 (the six dimensional lattice) seems to produce
restricted epidemics that grow exponentially, while we would have expected poly-
nomial growth for these (in this case with a = 4/5, while the median estimated
a-value is approximately 0.95). The explanation is that because of the relatively high
dimension of the graph and the strong restriction on the spread of the epidemic, in
the initial phase of the epidemic vertices still have many available neighbours that
are not yet infected and the epidemic can be approximated by a branching process.
While this would eventually change to polynomial growth if allowed to continue
long enough, there is no space for this in a finite graph. Note that low r may also be
a sign of non-exponential growth, since exponential growth with base close to 1 is
hardly distinguishable from polynomial growth.

To better be able to observe differences in the estimated values of a, box plots of
the a-estimates are shown in Fig. 13.3. In the plot outliers have been ignored to make
the central part of the data more visible.

In order to see the effect of the restrictionweplace on the epidemicwe showD2and
D6 using the maximum bound restriction, with different values of c, in Fig. 13.4. We
note that lower values of c (more restricted epidemic) move the parameter estimates
towards higher a-estimate for both lattices. For the D2 graph event when we use
the highest possible restriction c = 3 the growth is still clearly polynomial, but for
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Fig. 13.3 The figure shows a box plot of the estimates of a for each graph from Fig. 13.2. Graph
names in parenthesis indicate that the configuration model was used

-1

-0.5

0

0.5

1

1.5

  C
M

  L
J

  (
D

2)

  S
R

  S
w

  D
6

  R
d

  D
2

0

0.2

0.4

0.6

0.8

1

  D
6 

c=
2

  D
6 

c=
3

  D
6 

c=
4

  D
6 

c=
5

  D
6 

c=
10

  D
6 

c=
20

  D
2 

c=
3

  D
2 

c=
4

  D
2 

c=
5

  D
2 

c=
10

  D
2 

c=
20

Fig. 13.4 The figure to the left shows a box plot for unrestricted epidemics. Graph names in
parenthesis indicate that the configuration model was used. The figure to the right shows epidemics
restricted with different values of c

the D6 graph we can shift the a-estimates so close to 1 that epidemics on the graph
appear exponential. We conclude that if the epidemic spreads through only some
smaller fraction of the available edges we can see exponential growth early on in the
epidemic. One underlying assumption for this conclusion is that large epidemics are
possible in the first place, i.e. that the graph is sufficiently well connected.

From the plots we also see that epidemics on the road network show much more
variation than on the square lattice. The road network seems to be a mixture of
strongly connected portions and long stretches of vertices in long lines connected
only by single edges along the way. This is what we may expect from a road network
for a large geographical area consisting both of densely connected cities and loosely
connected countryside.
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13.4 Discussion

The main purpose of this paper is to find a method to distinguish between empirical
graphs which allow for initial exponential growth of an SIR epidemic and graphs
which do not. If we know that exponential growth or close to exponential growth is
possible, we can use statistical machinery already created for analyzing the growth
potential of epidemics. Tomake this distinction we use the generalized growthmodel
of [24] as presented in Sect. 13.2.5 above. This model has three parameters, but only
a (which describes the shape—polynomial or exponential—of the initial growth)
and r (which is a measure of the rate of growth) are relevant in this paper. We
are mainly interested in a, but we cannot ignore r because the estimates of the
two parameters are strongly dependent. Indeed, we see in Fig. 13.2 that although
different epidemic simulations can produce very different parameter estimates, in
the (r, a) plot estimates of epidemics on different underlying networks can still be
distinguished.

Ideally, when a is close to 1 (how close depends on the application) we may
conclude that the graph allows for epidemics that exhibit exponential growth. In
(Fig. 13.3) we visualize the distribution of the estimates for parameter a for the
individual graphs. This graph gives an indication of how close the growth of the
epidemic is to exponential growth, but the figure must be interpreted with care. If
the growth of the epidemic exactly follows the model with parameter a = 1 and
r close to 0, then the growth is indeed exponential, but still very slow and it is
very hard to distinguish this exponential growth from polynomial growth, with a
larger r . Because the empirical networks are finite and we only observe a limited
number of generations, we often do not have enough data to reliably distinguish
between exponential growth with a small growth rate and polynomial growth. This
observation is articulated in Fig. 13.2, where we see that some simulated epidemics
on the road network (which is clearly two dimensional) produce estimates of a that
are close to 1. However, for those simulations also the obtained estimates of r are
low (typically 0.1 or lower).

For the Swedish population dataset comparing the original dataset with a ran-
domized version indicates that there are some effects that may be attributed to spatial
constraints, but the difference is mainly seen on the rate of growth through the param-
eter r and no so much on the parameter a. A possible conclusion is that the spatial
constraints slow down the epidemic, but that the growth is still close to exponential
(see e.g. [22] for a purely spatial model which allows for exponential growth of the
epidemic).

The analysis of epidemics on the six dimensional lattice indicate that when the
epidemic is restricted as in this report (Sect. 13.2.4) the resulting initial epidemic
growth is essentially exponential. This can be explained as follows. Because ver-
tices infect only a few of its neighbours, most neighbours of infected vertices will
still be susceptible, so the local depletion of susceptibles is only felt after several
generations, when probably already a considerable fraction of all the vertices are no
longer susceptible. In addition, on an infinite six dimensional lattice In will grow as
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a five dimensional polynomial, which corresponds with an a-value of 4/5 in (13.16),
which is relatively close to 1.

In the present work we only considered point estimates for the (r, a) parameter
pair, in future work it is worth studying confidence regions for those parameters,
based on one single observed epidemic on a network. In addition to summarizing
data by fitting it to a model, the strength of models is to be able to make predictions.
There are two classes of predictions we might desire. We may want to predict the
continued development of a single epidemic in the future based on how it developed
up until some point in time. We may also want to predict the development of future
(new) epidemics on the same graph based on knowledge of a (limited) number of
previous epidemics. For these predictions it is essential that we know whether we
may expect exponential growth or not. We have not attempted to investigate the
possibility of making such predictions in this paper, but it is certainly worth studying
in future work.
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Chapter 14
Replication of Wiener-Transformable
Stochastic Processes with Application to
Financial Markets with Memory

Elena Boguslavskaya, Yuliya Mishura and Georgiy Shevchenko

Abstract We investigate Wiener-transformable markets, where the driving process
is given by an adapted transformation of a Wiener process. This includes processes
with long memory, like fractional Brownian motion and related processes, and, in
general, Gaussian processes satisfying certain regularity conditions on their covari-
ance functions. Our choice of markets is motivated by the well-known phenomena
of the so-called “constant” and “variable depth” memory observed in real world
price processes, for which fractional and multifractional models are the most ade-
quate descriptions. Motivated by integral representation results in general Gaussian
setting, we study the conditions under which random variables can be represented
as pathwise integrals with respect to the driving process. From financial point of
view, it means that we give the conditions of replication of contingent claims on
such markets. As an application of our results, we consider the utility maximization
problem in our specific setting. Note that the markets under consideration can be
both arbitrage and arbitrage-free, and moreover, we give the representation results
in terms of bounded strategies.
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14.1 Introduction

Consider a general continuous timemarketmodelwith one risky asset. For simplicity,
we will work with discounted values. Let the stochastic process {Xt , t ∈ [0, T ]}
model the discounted price of risky asset. Then the discounted final value of a self-
financing portfolio is given by a stochastic integral

V ψ(T ) = V ψ(0) +
∫ T

0
ψ(t)d X (t), (14.1)

where an adapted process ψ is the quantity of risky asset in the portfolio. Loosely
speaking, the self-financing assumption means that no capital is withdrawn or added
to theportfolio; for precise definition andgeneral overviewoffinancialmarketmodels
with continuous time we refer a reader to [4, 12].

Formula (14.1) raises several important questions of financial modeling, we will
focus here on the following two.

• Replication:
identifying random variables (i.e. discounted contingent claims), which can be
represented as final capitals of some self-financing portfolios. In other words, one
looks at integral representations

ξ =
∫ T

0
ψ(t)d X (t) (14.2)

with adapted integrand ψ ; the initial value may be subtracted from ξ , so we can
assume that it is zero.

• Utility maximization:
maximizing the expected utility of final capital over some set of admissible self-
financing portfolios.

An important issue is the meaning of stochastic integral in (14.1) or (14.2). When
the process X is a semimartingale, it can be understood as Itô integral. In this case
(14.1) is a kind of Itô representation, see e.g. [11] for an extensive coverage of this
topic. When the Itô integral is understood in some extended sense, then the integral
representation may exist under very mild assumptions and may be non-unique. For
example, if X = W , a Wiener process, and ψ satisfies

∫ T
0 ψ2

s ds < ∞ a.s., then, as it
was shown by [7], any random variable can be represented as a final value of some
self-financing portfolio for any value of initial capital.

However, empirical studies suggest that financialmarkets often exhibit long-range
dependence (in contrast to stochastic volatility that can be both smooth and rough,
i.e., can demonstrate both long-and short-range dependence). The standard model
for the phenomenon of long-range dependence is the fractional Brownian motion
with Hurst index H > 1/2. It is not a semimartingale, so the usual Itô integration
theory is not available. The standard approach now is to define the stochastic integral
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in such models as a pathwise integral, namely, one usually considers the fractional
integral, see [2, 23].

The models based on the fractional Brownian motion usually admit arbitrage
possibilities, i.e. there are self-financing portfoliosψ such that Vψ(0) ≤ 0, Vψ(T ) ≥
0 almost surely, and Vψ(T ) > 0 with positive probability. In the fractional Black–
Scholes model, where Xt = X0 exp{at + bB H

t }, and B H is a fractional Brownian
motion with H > 1/2, the existence of arbitrage was shown in [19]. Specifically, the
strategy constructed there was of a “doubling” type, blowing the portfolio in the case
of negative values; thus the potential intermediate losses could be arbitrarily large.
It is worth to mention that such arbitrage exists even in the classical Black–Scholes
model: the aforementioned result by Dudley allows gaining any positive final value
of capital from initial zero by using a similar “doubling” strategy. For this reason,
one usually restricts the class of admissible strategies by imposing a lower bound on
the running value:

V ψ(t) ≥ −a, t ∈ (0, T ), (14.3)

which in particular disallows the “doubling” strategies. However, in the fractional
Black–Scholes model, the arbitrage exists even in the class of strategies satisfying
(14.3), as was shown in [6].

There are several ways to exclude arbitrage in the fractional Brownian model.
One possibility is to restrict the class of admissible strategies. For example, in [6]
the absence of arbitrage is proved under further restriction that interval between
subsequent trades is bounded from below (i.e. high frequency trading is prohib-
ited). Another possibility is to add to the fractional Brownian motion an indepen-
dent Wiener process, thus getting the so-called mixed fractional Brownian motion
M H = B H + W . The absence in such mixed models was addressed in [1, 5]. In
[1], it was shown that there is no arbitrage in the class of self-financing strategies
γt = f (t, M H , t) of Markov type, depending only on the current value of the stock.
In [5], it was shown that for H ∈ (3/4, 1) the distribution of mixed fractional Brow-
nian motion on a finite interval is equivalent to that of Wiener process. As a result, in
such models there is no arbitrage strategies satisfying the non-doubling assumption
(14.3). Amore detailed exposition concerning arbitrage inmodels based on fractional
Brownian motion is given in [3].

The replication question, i.e. the question when a random variable can be rep-
resented as a pathwise (fractional) integral in the models with long memory was
studied in many articles, even in the case where arbitrage opportunities are present.
The first results were established in [16], where it was shown that a random variable
ξ has representation (14.2) with respect to fractional Brownian motion if it is a final
value of some Hölder continuous adapted process. The assumption of Hölder con-
tinuity might seem too restrictive at the first glance. However, the article [16] gives
numerous examples of random variables satisfying this assumption.

The results of [16] were extended in [22], where similar results were shown for
a wide class of Gaussian integrators. The article [15] extended them even further
and studied when a combination of Hölder continuity of integrator and small ball
estimates lead to existence of representation (14.2).
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For the mixed fractional Brownian motion, the question of replication was
considered in [22]. The authors defined the integral with respect to fractional Brown-
ian motion in pathwise sense and that with respect to Wiener process in the extended
Itô sense and shown, similarly to the result of [7], that any random variable has
representation (14.2).

It is worth to mention that the representations constructed in [15, 16, 22] involve
integrands of “doubling” type, so in particular they do not satisfy the admissibility
assumption (14.3).

Our starting point for this article was to see what contingent claims are repre-
sentable as final values of some Hölder continuous adapted processes. It turned out
that the situation is quite transparent whenever the Gaussian integrator generates the
same flow of sigma-fields as the Wiener process. As a result, we came up with the
concept of Wiener-transformable financial market, which turned out to be a fruitful
idea, as a lot of models of financial markets are Wiener-transformable. We consider
many examples of such models in our paper. Moreover, the novelty of the present
results is that we prove representation theorems that, in financial interpretation, are
equivalent to the possibility of hedging of contingent claims, in the class of bounded
strategies. While even with such strategies the non-doubling assumption (14.3) may
fail, the boundedness seems a feasible admissibility assumption.

More specifically, in the present paper we study a replication and the utility max-
imization problems for a broad class of asset prices processes, which are obtained
by certain adapted transformation of a Wiener process; we call such processes
Wiener-transformable and provide several examples.We concentrate mainly on non-
semimartingale markets because the semimartingale markets have been studied thor-
oughly in the literature. Moreover, the novelty of the present results is that we prove
representation theorems that, in financial interpretation, are equivalent to the possi-
bility of hedging of contingent claims, in the class of bounded strategies. We would
like to draw the attention of the reader once again to the fact that the possibility of
representation means that we have arbitrage possibility in the considered class of
strategies and they may be limited, although in a narrower and more familiar class of
strategies the market can be arbitrage-free. Therefore, our results demonstrate rather
subtle differences in the properties of markets in different classes of strategies.

The article is organized as follows. In Sect. 14.2, we recall basics of pathwise
integrations in the fractional sense. In Sect. 14.3,weprove a new representation result,
establishing an existence of integral representation with bounded integrand, which is
of particular importance in financial applications. We also define the main object of
study, Wiener-transformable markets, and provide several examples. Section 14.4 is
devoted to application of representation results to the utility maximization problems.

14.2 Elements of Fractional Calculus

As announced in the introduction, the integral with respect to Wiener-transformable
processeswill be defined in pathwise sense, as fractional integral. Herewe present the
basic facts on fractional integration; for more details see [20, 23]. Consider functions
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f, g : [0, T ] → R, and let [a, b] ⊂ [0, T ]. For α ∈ (0, 1) define Riemann-Liouville
fractional derivatives

(
Dα

a+ f
)
(x) = 1

Γ (1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (u)

(x − u)1+α
du

)
1(a,T )(x),

(
Dα

b−g
)
(x) = 1

Γ (1 − α)

(
g(x)

(b − x)α
+ α

∫ b

x

g(x) − g(u)

(u − x)1+α
du

)
1(0,b)(x). (14.4)

Assuming that Dα
a+ f ∈ L1[a, b], D1−α

b− gb− ∈ L∞[a, b], where gb−(x) = g(x) −
g(b), the generalized Lebesgue–Stieltjes integral is defined as

∫ b

a
f (x)dg(x) =

∫ b

a

(
Dα

a+ f
)
(x)

(
D1−α

b− gb−
)
(x)dx .

Let function g be θ -Hölder continuous, g ∈ Cθ [a, b] with θ ∈ ( 12 , 1), i.e.

sup
t,s∈[0,T ],t �=s

|g(t) − g(s)|
|t − s|θ < ∞.

In order to integrate w.r.t. function g and to find an upper bound of the integral, fix
some α ∈ (1 − θ, 1/2) and introduce the following norm:

‖ f ‖α,[a,b] =
∫ b

a

( | f (s)|
(s − a)α

+
∫ s

a

| f (s) − f (z)|
(s − z)1+α

dz

)
ds.

For simplicity we abbreviate ‖ · ‖α,t = ‖ · ‖α,[0,t]. Denote

�α(g) := sup
0≤s<t≤T

|D1−α
t− gt−(s)|.

In view of Hölder continuity, �α(g) < ∞.
Then for any t ∈ (0, T ] and for any f with ‖ f ‖α,t < ∞, the integral

∫ t
0 f (s)dg(s)

is well defined as a generalized Lebesgue–Stieltjes integral, and the following bound
is evident: ∣∣∣

∫ t

0
f (s)dg(s)

∣∣∣ ≤ �α(g)‖ f ‖α,t . (14.5)

It is well known that in the case if f is β-Hölder continuous, f ∈ Cβ[a, b], with
β + θ > 1, the generalized Lebesgue–Stieltjes integral

∫ b
a f (x)dg(x) exists, equals

to the limit of Riemann sums and admits bound (14.5) for any α ∈ (1 − θ, β ∧ 1/2).
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14.3 Representation Results for Gaussian and
Wiener-Transformable Processes

Let throughout the paper (Ω,F,P) be a complete probability space supporting all
stochastic processes mentioned below. Let also F = {Ft , t ∈ [0, T ]} be a filtration
satisfying standard assumptions. In what follows, the adaptedness of a process X =
{X (t), t ∈ [0, T ]} will be understood with respect to F, i.e. X will be called adapted
if for any t ∈ [0, T ], X (t) is Ft -measurable.

We start with representation results, which supplement those of [15].
Consider a continuous centered Gaussian process G with incremental variance of

G satisfying the following two-sided power bounds for some H ∈ (1/2, 1).

(A) There exist C1, C2 > 0 such that for any s, t ∈ [0, T ]

C1 |t − s|2H ≤ E |G(t) − G(s)|2 ≤ C2 |t − s|2H . (14.6)

Assume additionally that the increments of G are positively correlated.More exactly,
let the following condition hold

(B) For any 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ T

E (G(t1) − G(s1)) (G(t2) − G(s2)) ≥ 0.

A process satisfying (14.6) is often referred to as a quasi-helix.
Note that the right inequality in (14.6) implies that

sup
t,s∈[0,T ]

|G(t) − G(s)|
|t − s|H | log(t − s)|1/2 < ∞ (14.7)

almost surely (see e.g. p. 220 in [14]).
Wewill need the following small deviation estimate for sumof squares ofGaussian

random variables, see e.g. [13].

Lemma 14.1 Let {ξi }i=1,...,n be jointly Gaussian centered random variables. For all
x such that 0 < x <

∑n
i=1 Eξ 2

i , it holds

P

(
n∑

i=1

ξ 2
i ≤ x

)
≤ exp

{
−

(∑n
i=1 Eξ 2

i − x
)2

∑n
i, j=1(Eξiξ j )2

}
.

Theorem 14.1 Let a centered Gaussian process G satisfy (A) and (B) and ξ be a
random variable such that there exists an adapted r-Hölder continuous process Z
with Z(T ) = ξ . There exists a bounded adapted process ψ , such that ‖ψ‖α,T < ∞
for some α ∈ (1 − H, 1) and ξ admits the representation
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ξ =
∫ T

0
ψ(s)dG(s), (14.8)

almost surely.

Remark 14.1 A similar result was proved in [15], Theorem 4.1, which assumed
(14.6) with different exponents in the right-hand side and in the left-hand side of the
inequality. Having equal exponents allowed us to establish existence of a bounded
integrand ψ , thus extending previous results.

Proof To construct an integrand, we modify ideas of [15] and [21]. Throughout the
proof, C will denote a generic constant, while C(ω), a random constant; their values
may change between lines.

Choose some α ∈ (
1 − H, (r + 1 − H) ∧ 1

2

)
.

We start with the construction of ψ . First take some θ ∈ (0, 1), put tn = T − θn ,
n ≥ 1, and let Δn = tn+1 − tn . It is easy to see that

T − tn ≤ CΔn. (14.9)

Denote for brevity ξn = Z(tn). Then by Assumption 1, |ξn − ξn+1| ≤ C(ω)θ rn .
Therefore, there exists some N0 = N0(ω) such that

|ξn − ξn+1| ≤ nθ rn (14.10)

for all n ≥ N0(ω).
We construct the integrand ψ inductively between the points {tn, n ≥ 1}. First let

ψ(t) = 0, t ∈ [0, t1]. Assuming that we have already constructed ψ(t) on [0, tn),
define V (t) = ∫ t

0 ψ(s)dG(s), t ∈ [0, tn].
Consider some cases.
Case I. V (tn) �= ξn−1. By Lemma 4.1 in [15], there exists an adapted pro-

cess {φn(t), t ∈ [tn, tn+1]}, bounded on [tn, t] for any t ∈ (tn, tn+1) and such that∫ t
tn

φn(s)dG(s) → +∞ as t → tn+1−. Define a stopping time

τn = inf

{
t ≥ tn :

∫ t

tn

φn(s)dG(s) ≥ |ξn − V (tn)|
}

,

and set
ψ(t) = φn(t) sign

(
ξn − V (tn)

)
1[tn ,τn ](t), t ∈ [tn, tn+1).

It is obvious that
∫ tn+1

tn
ψ(s)dG(s) = ξn − V (tn) and V (tn+1) = ξn .

Case II. V (tn) = ξn−1. We consider a uniform partition sn,k = tn + kδn , k =
1, . . . , n of [tn, tn+1] with a mesh δn = Δn/n and an auxiliary function
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φn(t) = an

n−1∑
k=0

(
G(t) − G(sn,k)

)
1[sn,k ,sn,k+1)(t),

where an = n−2θ(α−H−1)n . Since φn is piecewise Hölder continuous of order up to
H , by the change of variables formula (Theorem 4.3.1 in [23])

∫ tn+1

tn

φn(t)dG(t) = an

n−1∑
k=0

(
G(sn,k+1) − G(sn,k)

)2
.

Define a stopping time

σn = inf
{

t ≥ tn :
∫ t

tn

φn(s)dG(s) ≥ |ξn − ξn−1|
}

∧ tn+1,

and set
ψ(t) = sign(ξn − ξn−1)φn(t)1[tn ,σn ](t), t ∈ [tn, tn+1).

Now we want to ensure that, almost surely, V (tn) = ξn−1 for all n large enough.
By construction, Case I is always succeeded by Case II. So we need to ensure that
σn < tn+1 for all n large enough, equivalently, that

an

n−1∑
k=0

(
G(sn,k+1) − G(sn,k)

)2
> |ξn − ξn−1| .

Thanks to (14.10), it is enough to ensure that

n−1∑
k=0

(
G(sn,k+1) − G(sn,k)

)2
> a−1

n nθ rn = n2θ(r+H+1−α)n

for all n large enough. Define ξk = G(sn,k+1) − G(sn,k), k = 0, . . . , n − 1. Thanks
to our choice of α, r + H + 1 − α > 2H , so n2θ(r+H+1−α)n < C1n1−2H θ2Hn for all
n large enough. Therefore, in view of (14.6),

n−1∑
k=0

Eξ 2
k ≥ C1nδ2H

n = C1n1−2Hθ2Hn > n2θ(r+H+1−α)n,

so we can use Lemma 14.1. Using (A) and (B), estimate
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n−1∑
i, j=0

(
Eξiξ j

)2 ≤ max
0≤i, j≤n−1

Eξiξ j

n−1∑
i, j=0

Eξiξ j

≤ C1δ
2H
n E

( n−1∑
i=0

ξi

)2 = C1δ
2H
n E

(
G(tn+1) − G(tn)

)2

≤ C2
1δ

2H
n Δ2H

n ≤ C2
1n−2HΔ4H = C2

1n−2Hθ4Hn.

Hence, by Lemma 14.1,

P

(
n−1∑
k=0

(
G(sn,k+1) − G(sn,k)

)2 ≤ n2θ(r+H+1−α)n

)

≤ exp

{
−

(
C1n1−2H θ2Hn − n2θ(r+H+1−α)n

)2
C2
1n−2Hθ4Hn

}
≤ exp

{−Cn2−2H
}
.

Therefore, by the Borel–Cantelli lemma, almost surely there exists some N1(ω) ≥
N0(ω) such that for all n ≥ N1(ω)

n−1∑
k=0

(
G(sn,k+1) − G(sn,k)

)2
> n2θ(r+H+1−α)n,

so, as it was explained above, we have V (tn) = ξn−1, n ≥ N1(ω).
Since all functions φn are bounded, we have that ψ is bounded on [0, tN ] for any

N ≥ 1. Further, thanks to (14.7), for t ∈ [tn, tn+1] with n ≥ N1(ω),

|ψ(s)| ≤ C(ω)anδ
H
n |log δn|1/2 ≤ C(ω)n−2θ(α−H−1)nn−Hθ Hnn1/2

= C(ω)nα−H−3/2θ(α−1)n .
(14.11)

Therefore, ψ is bounded (moreover, ψ(t) → 0, t → T −).
Further, by construction,‖ψ‖α,tN

< ∞ for any N ≥ 1.Moreover, |V (t) − ξN−1| ≤
|ξN − ξN−1|, t ∈ [tN , tN+1]. Thus, it remains to to verify that ‖ψ‖α,[tN ,1] < ∞ and∫ 1

tN
ψ(s)dG(s) → 0, N → ∞, which would follow from ‖ψ‖α,[tN ,1] → 0, N → ∞.
Let N ≥ N1(ω). Write

‖ψ‖α,[tN ,T ] =
∞∑

n=N

∫ tn+1

tn

( |ψ(s)|
(s − tN )α

+
∫ s

tN

|ψ(s) − ψ(u)|
|s − u|1+α

du

)
ds.

Thanks to (14.11),

∫ tn+1

tn

|ψ(s)|
(s − tN )α

ds ≤ C(ω)Δ1−α
n nα−H−3/2θ(α−1)n = C(ω)nα−H−3/2.
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Further,

∫ tn+1

tN

∫ s

tn

|ψ(s) − ψ(u)|
|s − u|1+α

du ds

=
n∑

k=1

∫ sn,k

sn,k−1

(∫ tn

tN

+
∫ sn,k−1

tn

+
∫ s

sn,k−1

) |ψ(s) − ψ(u)|
|s − u|1+α

du ds =: I1 + I2 + I3.

Start with I1, observing that ψ vanishes on (σn, tn+1]:

I1 ≤
∫ tn+1

tn

n∑
j=N

∫ t j

t j−1

|ψ(s)| + |ψ(u)|
|s − u|1+α

du ds

≤ C(ω)nα−H−3/2θ(α−1)n
∫ tn+1

tn

(s − tn)
−αds

+C(ω)

n−1∑
j=N

jα−H−3/2θ(α−1) j
∫ tn+1

tn

(s − t j+1)
−αds

≤ C(ω)nα−H−3/2θ(α−1)nΔ1−α
n + C(ω)

n−1∑
j=N

jα−H−3/2θ(α−1) jΔ1−α
n

= C(ω)nα−H−3/2 + C(ω)

n−1∑
j=N

jα−H−3/2θ(α−1)( j−n).

Similarly,

I2 ≤ C(ω)nα−H−3/2θ(α−1)n
n∑

k=1

∫ sn,k

sn,k−1

∫ sn,k−1

tn

|s − u|−1−αdu ds

≤ C(ω)nα−H−3/2θ(α−1)n
n∑

k=1

∫ sn,k

sn,k−1

(s − sn,k−1)
−αds

≤ C(ω)nα−H−3/2θ(α−1)nnδ1−α
n = C(ω)n2α−H−3/2.

Finally, assuming that σn ∈ [sn,l−1, sn,l),
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I3 ≤ C(ω)

l−1∑
k=1

∫ sn,k

sn,k−1

∫ s

sn,k−1

an
(s − u)H | log(s − u)|1/2

(s − u)1+α
du ds

+
∫ σn

sn,l−1

∫ s

sn,l−1

|ψ(s) − ψ(u)|
|s − u|1+α

du ds +
∫ sn,l

σn

∫ σn

sn,l−1

|ψ(s) − ψ(u)|
|s − u|1+α

du ds

≤ C(ω)an

n∑
k=1

∫ sn,k

sn,k−1

(s − sn,k−1)
H−α| log(s − sn,k−1)|1/2ds

+C(ω)nα−H−3/2θ(α−1)n
∫ sn,l

σn

∫ σn

sn,l−1

1

|s − u|1+α
du ds

≤ C(ω)annδH+1−α
n | log δn|1/2 + C(ω)nα−H−3/2θ(α−1)nδ−α

n

= C(ω)nα−H−3/2 + C(ω)n2α−H−3/2 ≤ C(ω)n2α−H−3/2.

Gathering all estimates we get

∫ 1

tN

|Dα
tN +(ψ)(s)|ds ≤ C(ω)

∞∑
n=N

(
n2α−H−3/2 +

n−1∑
j=N

jα−H−3/2θ(α−1)( j−n)
)

≤ C(ω)
(

N 2α−H−1/2 +
∞∑

j=N

jα−H−3/2
∞∑

n= j+1

θ(1−α)(n− j)
)

≤ C(ω)N 2α−H−1/2,

which implies that ‖ψ‖α,[tN ,T ] → 0, N → ∞, finishing the proof. �

Now we turn to the main object of this article.

Definition 14.1 AGaussian process G = {G(t), t ∈ R
+} is called m-Wiener-trans-

formable if there exists m-dimensional Wiener process W = {W (t), t ∈ R
+} such

that G and W generate the same filtration, i.e. for any t ∈ R
+

FG
t = FW

t .

We say that G is m-Wiener-transformable to W (evidently, process W can be non-
unique.)

Remark 14.2 (i) In the case whenm = 1we say that the process G isWiener-trans-
formable.

(ii) Being Gaussian so having moments of any order, m-Wiener-transformable
process admits at each time t ∈ R

+ the martingale representation G(t) =
E(G(0)) + ∑m

i=1

∫ t
0 Ki (t, s)dWi (s), where Ki (t, s) is FW

s -measurable for any
0 ≤ s ≤ t and

∫ t
0 E(Ki (t, s))2ds < ∞ for any t ∈ R

+.

Now let the random variable ξ be FW
T -measurable, Eξ 2 < ∞. Then in view of

martingale representation theorem, ξ can be represented as
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ξ = Eξ +
∫ T

0
ϑ(t)dW (t), (14.12)

where ϑ is an adapted process with
∫ T
0 Eϑ(t)2dt < ∞.

As it was explained in introduction, we are interested when ξ can be represented
in the form

ξ =
∫ T

0
ψ(s)dG(s),

where the integrand is adapted, and the integral is understood in the pathwise sense.

Theorem 14.2 Let the following conditions hold.

(i) Gaussian process G satisfies condition (A) and (B).
(ii) Stochastic process ϑ in representation (14.12) satisfies

∫ T

0
|ϑ(s)|2pds < ∞ (14.13)

a.s. with some p > 1.

Then there exists a bounded adapted process ψ such that ‖ψ‖α,T < ∞ for some
α ∈ (

1 − H, 1
2

)
and ξ admits the representation

ξ =
∫ T

0
ψ(s)dG(s),

almost surely.

Remark 14.3 As it was mentioned in [15], it is sufficient to require the properties
(A) and (B) to hold on some subinterval [T − δ, T ]. Similarly, it is enough to require
in (i i) that

∫ T
T −δ

|ϑ(t)|2pdt < ∞ almost surely.

First we prove a simple result establishing Hölder continuity of Itô integral.

Lemma 14.2 Let ϑ = {ϑ(t), t ∈ [0, T ]} be a real-valued progressively measurable
process such that for some p ∈ (1,+∞]

∫ T

0
|ϑ(s)|2pds < ∞

a.s. Then the stochastic integral
∫ t
0 ϑ(s)dW (s) is Hölder continuous of any order up

to 1
2 − 1

2p .

Proof First note that if there exist non-random positive constants a, C such that for
any s, t ∈ [0, T ] with s < t
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∫ t

s
ϑ2(u)du ≤ C(t − s)a,

then
∫ t
0 ϑ(s)dW (s) is Hölder continuous of any order up to a/2. Indeed, in this case

by the Burkholder inequality, for any r > 1 and s, t ∈ [0, T ] with s < t

E

∣∣∣∣
∫ t

s
ϑ(u)dW (u)

∣∣∣∣
r

≤ CrE
(∫ t

s
ϑ2(u)du

)r/2

≤ C(t − s)ar/2,

so by the Kolmogorov–Chentsov theorem,
∫ t
0 ϑ(s)dW (s) is Hölder continuous of

order 1
r ( ar

2 − 1) = a
2 − 1

2r . Since r can be arbitrarily large, we deduce the claim.
Now let for n ≥ 1, ϑn(t) = ϑ(t)1∫ t

0 |ϑ(s)|2pds≤n , t ∈ [0, T ]. By the Hölder inequal-
ity, for any s, t ∈ [0, T ] with s < t

∫ t

s
ϑ2

n (u)du ≤ (t − s)1−1/p

(∫ t

s
|ϑ(u)|2pdu

)1/p

≤ n1/p(t − s)1−1/p.

Therefore, by the above claim,
∫ t
0 ϑn(s)dW (s) is a.s. Hölder continuous of any order

up to 1
2 − 1

2p . However, ϑn coincides with ϑ on Ωn = {∫ T
0 |ϑ(t)|2pdt ≤ n}. Conse-

quently,
∫ t
0 ϑn(s)dW (s) is a.s. Hölder continuous of any order up to 1

2 − 1
2p on Ωn .

Since P(
⋃

n≥1 Ωn) = 1, we arrive at the statement of the lemma. �

Proof of Theorem 14.2. Define

Z(t) = Eξ +
∫ t

0
ϑ(s)dW (s).

This is an adapted process with Z(T ) = ξ , moreover, it follows from Lemma 14.2
that Z is Hölder continuous of any order up to 1

2 − 1
2p . Thus, the statement follows

from Theorem 14.1.
In the case where one looks at improper representation, no assumptions on ξ are

needed.

Theorem 14.3 (Improper representation theorem) Assume that an adapted Gaus-
sian process G = {G(t), t ∈ [0, T ]} satisfies conditions (A), (B). Then for any
random variable ξ there exists an adapted process ψ that ‖ψ‖α,t < ∞ for some
α ∈ (

1 − H, 1
2

)
and any t ∈ [0, T ) and ξ admits the representation

ξ = lim
t→T −

∫ t

0
ψ(s)dG(s),

almost surely.

Proof The proof is exactly the same as for Theorem 4.2 in [22], so we just sketch
the main idea.
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Consider an increasing sequence of points {tn, n ≥ 1} in [0, T ) such that tn → T ,
n → ∞, and let {ξn, n ≥ 1} be a sequence of random variables such that ξn is Ftn -
measurable for each n ≥ 1, and ξn → ξ , n → ∞, a.s. Set for convenience ξ0 = 0.
Similarly to Case I in Theorem 14.1, for each n ≥ 1, there exists an adapted process
{φn(t), t ∈ [tn, tn+1]}, such that

∫ t
tn

φn(s)dG(s) → +∞ as t → tn+1−. For n ≥ 1,
define a stopping time

τn = inf

{
t ≥ tn :

∫ t

tn

φn(s)dG(s) ≥ |ξn − ξn−1|
}

and set
ψ(t) = φn(t) sign

(
ξn − ξn−1

)
1[tn ,τn ](t), t ∈ [tn, tn+1).

Then for any n ≥ 1, we have
∫ tn+1

0 ψ(s)dG(s) = ξn and
∫ t
0 ψ(s)dG(s) lies between

ξn−1 and ξn for t ∈ [tn−1, tn]. Consequently,
∫ t
0 ψ(s)dG(s) → ξ , t → T −, a.s., as

required. �

Further we give several examples of Wiener-transformable Gaussian processes
satisfying conditions (A) and (B) (for more detail and proofs see, e.g. [15]) and
formulate the corresponding representation results.

14.3.1 Fractional Brownian Motion

Fractional Brownianmotion B H withHurst parameter H ∈ (0, 1) is a centeredGaus-
sian process with the covariance

EB H (t)B H (s) = 1

2

(
t2H + s2H − |t − s|2H

) ;

an extensive treatment of fractional Brownian motion is given in [17]. For H =
1
2 , fractional Brownian motion is a Wiener process; for H �= 1

2 it is Wiener-
transformable to the Wiener process W via relations

B H (t) =
∫ t

0
K H (t, s)dW (s) (14.14)

and

W (t) =
∫ t

0
k H (t, s)d B H (s), (14.15)

see e.g. [18].
Fractional Brownian motion with index H ∈ (0, 1) satisfies condition (A) and

satisfies condition (B) if H ∈ ( 12 , 1).
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Therefore, a random variable satisfying (14.13) with any p > 1 admits the repre-
sentation (14.8).

14.3.2 Fractional Ornstein–Uhlenbeck Process

Let H ∈ ( 12 , 1). Then the fractional Ornstein–Uhlenbeck process Y = {Y (t), t ≥ 0},
involving fractional Brownian component and satisfying the equation

Y (t) = Y0 +
∫ t

0
(b − aY (s))ds + σ B H (t),

where a, b ∈ R and σ > 0, is Wiener-transformable to the same Wiener process as
the underlying fBm B H .

Consider a fractional Ornstein–Uhlenbeck process of the simplified form

Y (t) = Y0 + a
∫ t

0
Y (s)ds + B H (t), t ≥ 0.

It satisfies condition (A); if a > 0, it satisfies condition (B) as well.
As it was mentioned in [15], the representation theorem is valid for a fractional

Ornstein-Uhlenbeck process with a negative drift coefficient too. Indeed, we can
annihilate the drift of the fractional Ornstein-Uhlenbeck process with the help of
Girsanov theorem, transforming a fractional Ornstein-Uhlenbeck process with nega-
tive drift to a fractional Brownian motion B̃ H . Then, assuming (14.13), we represent
the random variable ξ as ξ = ∫ T

0 ψ(s)d B̃ H (s) on the new probability space. Finally,
we return to the original probability space. Due to the pathwise nature of integral,
its value is not changed upon changes of measure.

14.3.3 Subfractional Brownian Motion

Subfractional Brownian motion with index H , that is a centered Gaussian process
G H = {

G H (t), t ≥ 0
}
with covariance function

EG H (t)G H (s) = t2H + s2H − 1

2

(|t + s|2H + |t − s|2H
)
,

satisfies condition (A) and condition (B) for H ∈ ( 12 , 1).
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14.3.4 Bifractional Brownian Motion

Bifractional Brownian motion with indices A ∈ (0, 1) and K ∈ (0, 1), that is a cen-
tered Gaussian process with covariance function

EG A,K (t)G A,K (s) = 1

2K

((
t2A + s2A

)K − |t − s|2AK
)

,

satisfies condition (A) with H = AK and satisfies condition (B) for AK > 1
2 .

14.3.5 Geometric Brownian Motion

Geometric Brownian motion involving the Wiener component and having the form

S = {S(t) = S(0) exp {μt + σ W (t)} , t ≥ 0} ,

with S(0) > 0, μ ∈ R, σ > 0, is Wiener-transformable to the underlying Wiener
processW . However, it does not satisfy the assumptions of Theorem14.2.One should
appeal here to the standard semimartingale tools, like the martingale representation
theorem.

14.3.6 Linear Combination of Fractional Brownian Motions

Consider a collection of Hurst indices 1
2 ≤ H1 < H2 < . . . < Hm < 1 and indepen-

dent fractional Brownian motions with corresponding Hurst indices Hi , 1 ≤ i ≤ m.
Then the linear combination

∑m
i=1 ai B Hi is m-Wiener-transformable to the Wiener

process W = (W1, . . . , Wm), where Wi is such Wiener process to which fractional
Brownian motion B Hi is Wiener-transformable. In particular, the mixed fractional
Brownian motion M H = W + B H , introduced in [5], is 2-Wiener-transformable.

The linear combination
∑m

i=1 ai B Hi satisfies condition (A) with H = H1, and
condition (B) whenever H1 > 1/2.

We note that in the case of mixed fractional Brownian motion, the existence of
representation (14.8) cannot be derived from Theorem 14.2, as we have H = 1

2 in
this case. By slightly different methods, it was established in [22] that arbitrary
FT -measurable random variable ξ admits the representation

ξ =
∫ T

0
ψ(s)d

(
B H (s) + W (s)

)
,

where the integral with respect to B H is understood, as here, in the pathwise sense,
the integral with respect to W , in the extended Itô sense. In contrast to Theorem 14.1,
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we can not for the moment establish this result for the bounded strategies. Therefore,
it would be interesting to study which random variables have representations with
bounded ψ in the mixed model.

14.3.7 Volterra Process

Consider Volterra integral transform ofWiener process, that is the process of the form
G(t) = ∫ t

0 K (t, s)dW (s) with non-random kernel K (t, ·) ∈ L2[0, t] for t ∈ [0, T ].
Let the constant r ∈ [0, 1/2) be fixed. Let the following conditions hold.

(B1) The kernel K is non-negative on [0, T ]2 and for any s ∈ [0, T ] K (·, s) is non-
decreasing in the first argument;

(B2) There exist constants Di > 0, i = 2, 3 and H ∈ (1/2, 1) such that

|K (t2, s) − K (t1, s)| ≤ D2|t2 − t1|H s−r , s, t1, t2 ∈ [0, T ]

and
K (t, s) ≤ D3(t − s)H−1/2s−r ;

and at least one of the following conditions

(B3,a) There exist constant D1 > 0 such that

D1|t2 − t1|H s−r ≤ |K (t2, s) − K (t1, s)|, s, t1, t2 ∈ [0, T ];

(B3,b) There exist constant D1 > 0 such that

K (t, s) ≥ D1(t − s)H−1/2s−r , s, t ∈ [0, T ].

Then the Gaussian process G(t) = ∫ t
0 K (t, s)dW (s), satisfies condition (A), (B) on

any subinterval [T − δ, T ] with δ ∈ (0, 1).

14.4 Expected Utility Maximization in
Wiener-Transformable Markets

14.4.1 Expected Utility Maximization for Unrestricted
Capital Profiles

Consider the problem of maximizing the expected utility. Our goal is to characterize
the optimal asset profiles in the framework of the markets with risky assets involving
Gaussian processes satisfying conditions of Theorem 14.2. We follow the general
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approach described in [9, 12], but apply its interpretation from [10].Wefix T > 0 and
from now on consider FW

T -measurable random variables. Let the utility function u :
R → R be strictly increasing and strictly concave, L0(Ω,FW

T ,P) be the set of allFW
T -

measurable random variables, and let the set of admissible capital profiles coincide
with L0(Ω,FW

T ,P). LetP∗ be a probabilitymeasure on (Ω,FW
T ), which is equivalent

to P, and denote ϕ(T ) = dP∗
dP . The budget constraint is given by EP∗(X) = w, where

w > 0 is some number that can be in some cases, but not obligatory, interpreted as
the initial wealth. Thus the budget set is defined as

B = {
X ∈ L0

(
Ω,FW

T ,P
) ∩ L1

(
Ω,FW

T ,P∗) |EP∗(X) = w
}
.

The problem is to find such X∗ ∈ B, for whichE(u(X∗)) = maxX∈B E(u(X)). Con-
sider the inverse function I (x) = (u′(x))−1.

Theorem 14.4 ([10], Theorem 3.34) Let the following condition hold: Strictly
increasing and strictly concave utility function u : R → R is continuously differ-
entiable, bounded from above and

lim
x↓−∞ u′(x) = +∞.

Then the solution of this maximization problem has a form

X∗ = I (cϕ(T )),

under additional assumption that EP∗(X∗) = w.

To connect the solution of maximization problem with specific W -transformable
Gaussian process describing the price process, we consider the following items.

1. Consider random variable ϕ(T ), ϕ(T ) > 0 a.s. and let E(ϕ(T )) = 1. Being the
terminal value of a positive martingale ϕ = {ϕt = E(ϕ(T )|FW

t ), t ∈ [0, T ]}, ϕ(T )

admits the following representation

ϕ(T ) = exp

{∫ T

0
ϑ(s)dWs − 1

2

∫ T

0
ϑ2(s)ds

}
, (14.16)

where ϑ is a real-valued progressively measurable process for which

P
{∫ T

0
ϑ2(s)ds < ∞

}
= 1.

Assume thatϑ satisfies (14.13). Then ϕ(T ) is a terminal value of aHölder continuous
process of order 1

2 − 1
2p .

2. Consider W -transformable Gaussian process G = {G(t), t ∈ [0, T ]} satisfying
conditions (A) and (B), and introduce the set
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BG
w =

{
ψ : [0, T ] × Ω → R

∣∣∣ ψ is bounded FW
t − adapted,

there exists a generalized Lebesgue- Stieltjes integral
∫ T

0
ψ(s)dG(s) and

E
(

ϕ(T )

∫ T

0
ψ(s)dG(s)

)
= w

}
.

Theorem 14.5 Let the following conditions hold

(i) Gaussian process G satisfies condition (A) and (B).
(ii) Function I (x), x ∈ R is Hölder continuous.

(iii) Stochastic process ϑ in representation (14.16) satisfies (14.13) with some
p > 1.

(iv) There exists c ∈ R such that E(ϕ(T )I (cϕ(T ))) = w.

Then the random variable X∗ = I (cϕ(T )) admits the representation

X∗ =
∫ T

0
ψ(s)dG(s), (14.17)

with some ψ ∈ BG
w , and

E(u(X∗)) = max
ψ∈BG

w

E
(

u

(∫ T

0
ψ(s)dG(s)

))
. (14.18)

Proof From Lemma 14.2 we have that for any c ∈ R the random variable ξ =
I (cϕ(T )) is the final value of a Hölder continuous process

U (t) = I (cϕ(t)) = I

(
c exp

{∫ t

0
ϑ(s)dW (s) − 1

2

∫ t

0
ϑ2(s)ds

})
,

and the Hölder exponent exceeds ρ. Together with (i)–(i i i) this allows to apply
Theorem 14.2 to obtain the existence of representation (14.17). Assume now that

(14.18) is not valid, and there existsψ0 ∈ BG
w such thatE

(
ϕ(T )

∫ T
0 ψ0(s)dG(s)

)
=

w, and Eu
(∫ T

0 ψ0(s)dG(s)
)

> Eu(X∗). But in this case
∫ T
0 ψ0(s)dG(s) belongs to

B, and we get a contradiction with Theorem 14.4. �

Remark 14.4 Assuming only (i) and (iv), one can show in a similar way, but using
Theorem 14.3 instead of Theorem 14.2, that

E(u(X∗)) = sup
ψ∈BG

w

E
(

u

(∫ T

0
ψ(s)dG(s)

))
.
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However, the existence of a maximizer is not guaranteed in this case.

Example 14.1 Let u(x) = 1 − e−βx be an exponential utility function with constant
absolute risk aversion β > 0. In this case I (x) = − 1

β
log( x

β
). Assume that

ϕ(T ) = exp

{∫ T

0
ϑ(s)dW (s) − 1

2

∫ T

0
ϑ2(s)ds

}

is chosen in such a way that

E (ϕ(T )| logϕ(T )|)
= E

(
exp

{∫ T

0
ϑ(s)dW (s) − 1

2

∫ T

0
ϑ2(s)ds

}

×
∣∣∣∣
∫ T

0
ϑ(s)dW (s) − 1

2

∫ T

0
ϑ2(s)ds

∣∣∣∣
)

< ∞.

(14.19)

Then, according to Example 3.35 from [10], the optimal profile can be written as

X∗ = − 1

β

(∫ T

0
ϑ(s)dW (s) − 1

2

∫ T

0
ϑ2(s)ds

)
+ w + 1

β
H(P∗|P), (14.20)

where H(P∗|P) = E (ϕ(T ) logϕ(T )), the condition (14.19) supplies the existence
of H(P∗|P), and the maximal value of the expected utility is

E(u(X∗)) = 1 − exp
{−βw − H(P∗|P)

}
.

Let ϕ(T ) be chosen in such a way that the corresponding process ϑ satisfies the
assumption of Lemma 14.2. Also, let W -transformable process G satisfy conditions
(A) and (B) of Theorem 14.4, and ϑ satisfy (14.13) with p > 1. Then we can
conclude directly from representation (14.20) that conditions of Theorem 14.4 hold.
Therefore, the optimal profile X∗ admits the representation X∗ = ∫ T

0 ψ(s)dG(s).

Remark 14.5 Similarly, under the same conditions as above,we can conclude that for
any constant d ∈ R there exists ψd such that X∗ = d + ∫ T

0 ψd(s)dG(s). Therefore,
we can start from any initial value of the capital and achieve the desirable wealth.
In this sense, w is not necessarily the initial wealth as it is often assumed in the
semimartingale framework, but is rather a budget constraint in the generalized sense.

Remark 14.6 In the case when W -transformable Gaussian process G is a semi-
martingale, we can use Girsanov’s theorem in order to get the representation, similar
to (14.17). Indeed, let, for example, G be a Gaussian process of the form G(t) =∫ t
0 μ(s)ds + ∫ t

0 a(s)dW (s), |μ(s)| ≤ μ, a(s) > a > 0 are non-random measurable
functions, and ξ isFW

T -measurable random variable,E(ξ 2) < ∞. Then we transform
G into G̃ = ∫ ·

0 a(s)dW̃ (s), with the help of equivalent probability measure P̃ having
Radon–Nikodym derivative
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dP̃
dP

= exp

{
−

∫ T

0

μ(s)

a(s)
dW (s) − 1

2

∫ T

0

(
μ(s)

a(s)

)2

ds

}
.

With respect to this measure EP̃|X∗| < ∞, and we get the following representation

X∗ =EP̃(X∗) +
∫ T

0
ψ(s)dW̃s = EP̃(X∗) +

∫ T

0

ψ(s)

a(s)
dG̃(s)

= EP̃(X∗) +
∫ T

0

ψ(s)

a(s)
dG(s) = EP̃(X∗) +

∫ T

0
ψ(s)μ(s)ds +

∫ T

0
ψ(s)dW (s).

(14.21)
Representations (14.17) and (14.21) have the following distinction: (14.17) “starts”
from 0 (but can start from any other constant) while (14.21) “starts” exactly from
EP̃(X∗).

As we can see, the solution of the utility maximization problem for W–trans-
formable process depends on the process in indirect way, through the randomvariable
ϕ(T ) such that Eϕ(T ) = 1, ϕ(T ) > 0 a.s. Also, this solution depends on whether
or not we can choose the appropriate value of c, but this is more or less a technical
issue. Let us return to the choice of ϕ(T ). In the case of the semimartingale market,
ϕ(T ) can be reasonably chosen as the likelihood ratio of some martingale measure,
and the choice is unique in the case of the complete market. The non-semimartingale
market can contain some hidden semimartingale structure. To illustrate this, consider
two examples.

Example 14.2 Let the market consist of bond B and stock S,

B(t) = ert , S(t) = exp
{
μt + σ B H

t

}
,

r ≥ 0, μ ∈ R, σ > 0, H > 1
2 . The discounted price process has a form Y (t) =

exp
{
(μ − r)t + σ B H

t

}
. It is well-known that such market admits an arbitrage, but

even in these circumstances the utility maximization problem makes sense. Well,
how to choose ϕ(T )? There are at least two natural approaches.

1. Note that for H > 1
2 the kernel K H from (14.14) has a form

K H (t, s) = C(H)s
1
2 −H

∫ t

s
uH− 1

2 (u − s)H− 3
2 du,

and representation (14.15) has a form

W (t) = (C(H))−1
∫ t

0
s

1
2 −H K ∗(t, s)d B H

s ,
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where
K ∗(t, s) =

(
t H− 1

2 (t − s)
1
2 −H

−
(

H − 1

2

) ∫ t

s
uH− 3

2 (u − s)
1
2 −H du

) 1

Γ
(
3
2 − H

) .

Therefore,

(C(H))−1
∫ t

0
s

1
2 −H K ∗(t, s)d

(
(μ − r)s + σ B H

s

)

= σ W (t) + μ − r

C(H)

∫ t

0
s

1
2 −H K ∗(t, s)ds

= σ W (t) + μ − r

C(H)Γ
(
3
2 − H

)
∫ t

0

(
s

1
2 −H t H− 1

2 (t − s)
1
2 −H

−
(

H − 1

2

)
s

1
2 −H

∫ t

s
uH− 3

2 (u − s)
1
2 −H du

)
ds

= σ Wt + μ − r

C(H)Γ ( 32 − H)

Γ 2( 32 − H)

( 32 − H)Γ (2 − 2H)
t
3
2 −H

= σ Wt + (μ − r)C1(H)t
3
2 −H ,

where

C1(H) =
(
3

2
− H

)−1
(

Γ ( 32 − H)

2HΓ (2 − 2H)Γ (H + 1
2 )

) 1
2

.

In this sense we say that the model involves a hidden semimartingale structure.
Consider a virtual semimartingale asset

Ŷ (t) = exp

{
(C(H))−1

∫ t

0
s

1
2 −H K ∗(t, s)d log Y (s)

}

= exp
{
σ Wt + (μ − r)C(H)t

3
2 −H

}
.

We see that measure P∗ such that

dP∗

dP
= exp

{
−

∫ T

0

(
(μ − r)C2(H)

σ
s

1
2 −H + σ

2

)
dWs

−1

2

∫ T

0

(
(μ − r)C2(H)

σ
s

1
2 −H + σ

2

)2

ds

}
,

(14.22)

where C2(H) = C1(H)
(
3
2 − H

)
, reduces Ŷ (t) to the martingale of the form

exp
{
σ Wt − σ 2

2 t
}
. Therefore, we can put ϕ(T ) = dP∗

dP from (14.22). Regarding the
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Hölder property, ϑ(s) = s
1
2 −H satisfies (14.13) with some p > 1 for any H ∈ ( 12 , 1).

Therefore, for the utility function u(x) = 1 − e−αx we have

X∗ = 1

α

(∫ T

0
ς(s)dWs − 1

2

∫ T

0
ς2

s ds

)
+ W + 1

2
H(P∗|P),

where ς(s) = (μ−r)C2(H)

σ
s

1
2 −H + σ

2 , and |H(P∗|P)| < ∞.

2. It was proved in [8] that the fractional Brownian motion B H is the limit in
L p(Ω,F,P) for any p > 0 of the process

B H,ε(t) =
∫ t

0
K (s + ε, s)dW (s) +

∫ t

0
ψε(s)ds,

where W is he underlying Wiener process, i.e. B H (t) = ∫ t
0 K (t, s)dW (s), where

K (t, s) = CH s
1
2 −H

∫ t

s
uH− 1

2 (u − s)H− 3
2 du,

ψε(s) =
∫ s

0
∂1K (s + ε, u)dWu,

∂1K (t, s) = ∂K (t, s)

∂t
= CH s

1
2 −H t H− 1

2 (t − s)H− 3
2 .

Consider prelimit market with discounted risky asset price Y ε of the form

Y ε(t) = exp

{
(μ − r)t + σ

∫ t

0
ψε(s)ds + σ

∫ t

0
K (s + ε, s)dWs

}
.

This financial market is arbitrage-free and complete, and the unique martingale mea-
sure has the Radon-Nikodym derivative

ϕε(T ) = exp

{
−

∫ T

0
ζε(t)dWt − 1

2

∫ T

0
ζ 2
ε (t)dt

}
,

where

ζε(t) = μ − r + σψε(t)

σ K (t + ε, t)
+ 1

2
σ K (t + ε, t).

Note that K (t + ε, t) → 0 as ε → 0. Furthermore, ρt = μ−r+σψε(t)
σ K (t+ε,t) is a Gaussian

process with Eρt = 0 and
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varζε(t) = ∫ t
0

(
∂1K (t+ε,u)

K (t+ε,t)

)2
du

= ∫ t
0

(
u1/2−H (t+ε)H−1/2(t+ε−u)H−3/2

t1/2−H
∫ t+ε

t vH−1/2(v−t)H−3/2

)2
du

≥ ε1−2H
∫ t
0 (t + ε − u)2H−3du = ε1−2H t

2−2H

(
ε2H−2 − (t + ε)2H−2

) → ∞.

Therefore, we can not get a reasonable limit of ϕε(T ) as ε → 0. Thus one should
use this approach with great caution.

14.4.2 Expected Utility Maximization for Restricted Capital
Profiles

Consider now the case when the utility function u is defined on some interval (a,∞).
Assume for technical simplicity that a = 0. Therefore, in this case the set B0 of
admissible capital profiles has a form

B0 = {
X ∈ L0(Ω,F,P) : X ≥ 0 a.s. and E(ϕ(T )X) = w

}
.

Assume that the utility function u is continuously differentiable on (0,∞), introduce
π1 = lim

x↑∞ u′(x) ≥ 0,π2 = u′(0+) = lim
x↓0 u′(x) ≤ +∞, anddefine I + : (π1, π2) −→

(0,∞) as the continuous, bijective function, inverse to u′ on (π1, π2).
Extend I + to the whole half-axis [0,∞] by setting

I +(y) =
{+∞, y ≤ π1

0, y ≥ π2.

Theorem 14.6 ([10], Theorem 3.39) Let the random variable X∗ ∈ B0 have a form
X∗ = I +(cϕ(T )) for a constant c > 0 such that

E(ϕ(T )I +(cϕ(T ))) = w.

If Eu(X∗) < ∞, then
E(u(X∗)) = max

X∈B0

E(u(X)),

and this maximizer is unique.

From here we deduce the corresponding result on the solution of utility maxi-
mization problem similarly to Theorem 14.5. Define, as before,
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BG
w =

{
ψ : [0, T ] × Ω → R

∣∣∣ ψ is boundedFW
t -adapted, there exists

a generalized Lebesgue-Stieltjes integral
∫ T
0 ψ(s)dG(s) ≥ 0, and

E
(

ϕ(T )
∫ T
0 ψ(s)dG(s)

)
= w

}
.

Theorem 14.7 Let the following conditions hold

(i) Gaussian process G satisfies conditions (A) and (B).
(ii) Function I +(x), x ∈ R is Hölder continuous.

(iii) Stochastic process ϑ in representation (14.16) satisfies (14.13) with some
p > 1.

(iv) There exists c ∈ R such that E(ϕ(T )I +(cϕ(T ))) = w.

Then the random variable X∗ = I +(cϕ(T )) admits the representation

X∗ =
∫ T

0
ψ(s)dG(s)

with some ψ ∈ B̃G
w . If Eu(X∗) < ∞, X∗ is the solution to expected utility maximiza-

tion problem:

E(u(X∗)) = max
ψ∈B̃G

w

E
(

u

(∫ T

0
ψ(s)dG(s)

))
.

Example 14.3 Consider the case of CARA utility function u. Let first u(x) = xγ

γ
,

x > 0, γ ∈ (0, 1). Then, according to [10, Example 3.43],

I +(cϕ(T )) = c− 1
1−γ (ϕ(T ))

− 1
1−γ .

If d := E(ϕ(T ))
− γ

1−γ < ∞, then the unique optimal profile is given by X∗ =
w
d (ϕ(T ))

− 1
1−γ , and the maximal value of the expected utility is equal to

E(u(X∗)) = 1

γ
wγ d1−γ .

As it was mentioned,

ϕ = ϕ(T ) = exp

⎧⎨
⎩

T∫

0

ϑ(s)dW (s) − 1

2

T∫

0

ϑ2(s)ds

⎫⎬
⎭ , (14.23)
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thus

(ϕ(T ))
− 1

1−γ = exp

⎧⎨
⎩− 1

1 − γ

T∫

0

ϑ(s)dW (s) + 1

2(1 − γ )

T∫

0

ϑ2(s)ds

⎫⎬
⎭ .

Therefore, we get the following result.

Theorem 14.8 Let the process ϑ in the representation (14.23) satisfy (14.13), and

E exp

⎧⎨
⎩− γ

1 − γ

T∫

0

ϑ(s)dWs + γ

2(1 − γ )

T∫

0

ϑ2
s ds

⎫⎬
⎭ < ∞.

Let the process G satisfy the same conditions as in Theorem 14.5. Then X∗ =
T∫
0

ψ(s)dG(s).

In the case where u(x) = log x , we have γ = 0 and X∗ = w
ϕ(T )

. Assuming that the

relative entropy H (P|P∗) = E( 1
ϕ(T )

logϕ(T )) is finite, we get that

E(log X∗) = logw + H
(
P|P∗) .

14.5 Conclusion

Wehave studied a broad class of non-semimartingale financial market models, where
the random drivers are Wiener-transformable Gaussian random processes, i.e. some
adapted transformations of a Wiener process. Under assumptions that the incremen-
tal variance of the process satisfies two-sided power bounds, we have given suffi-
cient conditions for random variables to admit integral representations with bounded
adapted integrand; these representations are models for bounded replicating strate-
gies. It turned out that these representation results can be applied to solve utility
maximization problems in non-semimartingale market models.
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Chapter 15
A New Approach to the Modeling
of Financial Volumes

Guglielmo D’Amico, Fulvio Gismondi and Filippo Petroni

Abstract In this paper we study the high frequency dynamic of financial volumes
of traded stocks by using a semi-Markov approach. More precisely we assume that
the intraday logarithmic change of volume is described by a weighted-indexed semi-
Markov chain model. Based on this assumptions we show that this model is able
to reproduce several empirical facts about volume evolution like time series depen-
dence, intra-daily periodicity and volume asymmetry. Results have been obtained
from a real data application to high frequency data from the Italian stock market
from first of January 2007 until end of December 2010.

Keywords Semi-Markov process · High frequency data · Financial volume

15.1 Introduction

Studies on market microstructure have acquired a crucial importance in order to
explain the price formation process, see e.g. De Jong and Rindi [8]. The main vari-
ables are (logarithmic) price returns, volumes and duration. Sometimes they are
modeled jointly and the main approach is the so-called econometric analysis, see
e.g. Manganelli [14] and Podobnik et al. [16] and the bibliography therein.

G. D’Amico (B)
Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, via dei vestini 31,
66013 Chieti, Italy
e-mail: g.damico@unich.it

F. Gismondi
Department of Economic and Business Science, University “Guglielmo Marconi”,
Via Plinio 44, 00193 Rome, Italy
e-mail: f.gismondi@unimarconi.it

F. Petroni
Department of Economy and Business, University of Cagliari,
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The volume variable is very important not only because it interacts directly with
duration and returns but also because a correct specification of forecasted volumes
can be used for VolumeWeighted Average Price trading, see e.g. Brownlees et al. [1].
This variable has been investigated for long time and several statistical regularities
have been highlighted, see e.g. Jain and Joh [11], Gopikrishnan et al. [10], Lobato
and Velasco [12] and more recently Plerou and Stanley [15].

In this paper we propose an alternative approach to the modeling of financial vol-
umes which is based on a generalization of semi-Markov processes calledWeighted-
Indexed Semi-Markov Chain (WISMC) model. This choice is motivated by recent
results in the modeling of price returns in high-frequency financial data where the
WISMC approach was demonstrated to be particular efficient in reproducing the sta-
tistical properties of financial returns, see D’Amico and Petroni [2–6]. The WISMC
model is very flexible and for this reason we decided to test its appropriateness also
for financial volumes.

It should be remarked that WISMC models generalize semi-Markov processes
and also non-Markovian models based on continuous time random walks that were
used extensively in the econophysics community, see e.g. Mainardi et al. [13] and
Raberto et al. [17] as well as in actuarial sciences, see e.g. Stenberg et al. [19],
D’Amico et al. [7], and Silvestrov et al. [18].

The model is applied to a database of high frequency volume data from all the
stocks in the Italian Stock Market from first of January 2007 until end of Decem-
ber 2010. In the empirical analysis we find that WISMC model is a good choice
for modeling financial volumes which is able to correctly reproduce stylized facts
documented in literature of volumes such as the autocorrelation function.

The paper is divided as follows: First,Weighted-Indexed-Semi-Markov chains are
shortly described in Sect. 15.2. Next, we introduce our model of financial volumes
and an application to real high frequency data illustrates the results. Section15.4
concludes and suggests new directions for future developments.

15.2 Weighted-Indexed Semi-Markov Chains

The general formulation of the WISMC as developed in D’Amico and Petroni [3–5]
is here only discussed informally.

WISMC models share similar ideas as those that generate Markov processes and
semi-Markov processes. These processes are all described by a set of finite states E
and a sequence of random variables {Jn}n∈IN denoting the successive states visited
by the system whose transitions are ruled by a transition probability matrix. The
semi-Markov process differs from the Markov process because the transition times
Tn where the states change values, are generated according to random variables.
Indeed, the time between transitions Tn+1 − Tn is random and may be modeled by
means of any type of distribution functions. In order to better represent the statistical
characteristics of high-frequency financial data, in a recent article, the idea of a
WISMCmodel was introduced in the field of price returns, see D’Amico and Petroni
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[3, 4]. The novelty, with respect to the semi-Markov case, consists in the introduction
of a third random variable defined as follows:

In(λ) =
n−1∑

k=0

Tn−k−1∑

a=Tn−1−k

f λ(Jn−1−k, Tn, a), (15.1)

where f is any real value bounded function and I λ
0 is known and non-random.

The variable I λ
n is designated to summarize the information contained in the past

trajectory of the {Jn} process that is relevant for future predictions. Indeed, at each
past state Jn−1−k occurred at time a ∈ IN is associated the value f λ(Jn−1−k, Tn, a),
which depends also on the current time Tn . The quantity λ denotes a parameter that
represents a weight and should be calibrated to data. In the applicative section we
will describe the calibration of λ as well as the choice of the function f .

TheWISMCmodel is specified once a dependence structure between the variables
is considered. Toward this end, the following assumption is formulated:

P[Jn+1 = j, Tn+1 − Tn ≤ t |Jn, Tn, I λ
n , Jn−1, Tn−1, I

λ
n−1, . . .] (15.2)

= P[Jn+1 = j, Tn+1 − Tn ≤ t |Jn, I λ
n ] := Qλ

Jn j (I
λ
n ; t).

Relation (15.2) asserts that the knowledge of the values of the variables Jn, I λ
n is

sufficient to give the conditional distribution of the couple Jn+1, Tn+1 − Tn whatever
the values of the past variables might be. Therefore to make probabilistic forecasting
we need the knowledge of the last state of the system and the last value of the
index process. IfQλ(x; t) is constant in x then the WISMC kernel degenerates in an
ordinary semi-Markov kernel and theWISMCmodel becomes equivalent to classical
semi-Markov chain models, see e.g. D’Amico and Petroni [3] and Fodra and Pham
[9].

The probabilities Qλ
i j (x; t))i, j∈E can be estimated directly using real data. In

D’Amico and Petroni [6] it is shown that the estimator Q̂λ
i, j (x; t) := Ni j (x;t)

Ni (x)
, is the

approached maximum likelihood estimator of the corresponding transition probabil-
ities. The quantity Ni j (x; t) expresses the number of transitions from state i , with an
index value x , to state j with a sojourn time in state i less or equal to t . The quantity
Ni (x) is the number of visits to state i with an index value x .

Once the WISMC kernel Qλ(x; t) is known, it is possible to compute the state
probabilities of the system at any time t ∈ IN. To show how to compute transition
probability functions we define by

N (t) = sup{n ∈ N : Tn ≤ t}; Z(t) = JN (t);

I (λ; t) =
N (t)−1+θ∑

k=0

(t∧TN (t)+θ−k )−1∑

a=TN (t)+θ−1−k

f λ(JN (t)+θ−1−k, t, a),
(15.3)

where θ = 1{t>TN (t)}.
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The stochastic processes defined in (15.3) represent the number of transitions up
to time t , the state of the system at time t and the value of the index process up to t ,
respectively. We refer to Z(t) as a weighted indexed semi-Markov process.

As it is well known, it is possible to give an alternative description of the semi-
Markov process by introducing the backward recurrence time process B(t) := t −
TN (t) and to describe the probabilistic behavior of the Markov process (Z(t), B(t))
on the extended state space E × IN where IN = {0, 1, ..., N } and N is the maximum
length of stay of the states of the process. This technique was first proposed in
Vassiliou andPapadopoulou [20] and proved useful is studying certain aspects of non-
homogeneous semi-Markov process. Also in our more general setting it is possible
to describe the system behavior by using the backward recurrence time process, this
choice is adopted here to have a description of the one-step transition probabilities of
the WISMC model and result to be very useful in the next section for the definition
of the bivariate model. Let denote by

p((i,u)( j,d))(v) := P[Z(n + 1) = j, B(n + 1) = d |
Z(n) = i, B(n) = u, I (λ; n) = v]. (15.4)

It should be noted that d ∈ {0, u + 1} because if a transition from state i to an
arbitrary state j , j �= i is executed, then B(n + 1) = n + 1 − TN (n+1) = n + 1 −
(n + 1) = 0. On the contrary, if the system will stay in state i next period, then,
being TN (n+1) = TN (n), we have B(n + 1) = n + 1 − TN (n+1) = 1 + (n − TN (n)) =
1 − B(n) = 1 + u.

The probabilities (15.4) can be obtained from the indexed semi-Markov kernel,
to proove this, we first need to give the following

Lemma 15.1 (see D’Amico and Petroni [5]) Let suppose that I (λ; n) = v, TN (n) =
n − u with n ≥ u ≥ 0 and TN (n)+1 > n, then

IN (n)(λ) = v −
n−1∑

a=TN (n)

f λ(JN (n), n, a)

+
N (n)−1∑

k=0

TN (n)−k−1∑

a=TN (n)−1−k

Δ f λ(JN (n)−k, TN (n), n, a),

(15.5)

where Δ f λ(i, TN (n), n, a) := f λ(i, TN (n), a) − f λ(i, n, a).

Theorem 15.1 (seeD’Amico andPetroni [5]) For all i, j ∈ E, u, d ∈ IN and v ∈ R,
the one step transition probabilities p((i,u)( j,d))(v) are given by

p((i,u)( j,d))(v) =

⎧
⎪⎪⎨

⎪⎪⎩

H̄λ
i (v+ΔI (N (n),n);1+u)

H̄λ
i (v+ΔI (N (n),n);u)

if j = i, d = 1 + u
qλ
i j (v+ΔI (N (n),n);1+u)

H̄λ
i (v+ΔI (N (n),n);u)

if j �= i, d = 0,

0 otherwise,

(15.6)
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where H̄λ
i (v; t) = 1 − Hλ

i (v; t) is the survival function of sojourn time in state
i , qλ

i j (x, t) = Qλ
i j (x, t) − Qλ

i j (x, t − 1) and ΔI (N (n), n) = IN (n)(λ) − In(λ) is the
opposit of the increment of the index process on the waiting time n − N (n).

It should be remarked that the computation of the probabilities (15.4) can be done
through formula (15.6) where it is necessary to evaluate the quantity ΔI (N (n), n).
This last quantity is obtained thanks to Lemma15.1 and has to be recalculated step
by step.

15.3 The Volume Model

Let us assume that the trading volume of the asset under study is described by the
time varying process V (t), t ∈ IN.

The (logarithmic) change of volume at time t over the unitary time interval is
defined by

ZV (t) = log
V (t + 1)

V (t)
. (15.7)

On a short time scale, ZV (t) changes value in correspondence of an increasing
sequence of random times, {T V

n }n∈IN. According to the notation adopted in the previ-
ous section, we denote the values assumed at time T V

n by J V
n and the corresponding

values of the index process by

I Vn (λ) =
n−1∑

k=0

T V
n−k−1∑

a=T V
n−1−k

f λ(J V
n−1−k, T

V
n , a). (15.8)

If we assume that the variables (J V
n , T V

n , I Vn (λ)) satisfy relationship (15.2) then
the volume process can be described by a WISMC model and if NV (t) = sup{n ∈
IN : T V

n ≤ t} is the number of transition of the volume process, then ZV (t) = J V
NV (t)

is the WISMC process that describes the volume values at any time t .
We assume also that the set E is finite and is obtained by an opportune dis-

cretization of the values of the financial volumes. A description of the adopted
discretization and of the state space model is described in next section. The
choice of a finite state space can be formalized by defining the state space by
E = {−zminΔ, . . . ,−2Δ,−Δ, 0,Δ, 2Δ, . . . , zmaxΔ}.

Our objective is to demonstrate that a WISMCmodel for financial volume is able
to reproduce some important facts of volume dynamics. One of the most important
feature is the persistence of the volume process. As found in Manganelli [14], the
volume process is strongly persistent for frequently traded stocks. A possible expla-
nations is that the volume is pushed up by the arrival of new information to the
market participants and some times is necessary in order to delete the effects of the
information arrival. In order to investigate the goodness of the WISMC model we
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define the autocorrelation of the modulus of volumes as

Σ(t, t + τ) = Cov(| ZV (t + τ) |, | ZV (t) |). (15.9)

Another important statistic is the first passage time distribution of the volume
process. First we need to define the accumulation factor of the volume process from
the generic time t to time t + τ : MV

t (τ ) = V (t+τ)

V (t) = e
∑τ−1

r=0 ZV (t+r). We will denote
the fpt by

Γσ = min{τ ≥ 0; MV
0 (τ ) ≥ σ }, (15.10)

where σ is a given threshold. We are interested in finding the distributional proper-
ties of the fpt, that is to compute P[Γσ > t |(J V , T V , I V (λ))0−m = (i, t)0−m], where
(JV)0−m = (J V−m, J V

−m+1, . . . , J
V
0 ), (TV)0−m = (T V−m, T V

−m+1, . . . , T
V
0 ),

(IV(λ))0−m = (I V−m(λ), I V−m+1(λ), . . . , I V0 (λ)).

15.4 Application to Real High Frequency Data

The data used in this work are tick-by-tick quotes of indexes and stocks downloaded
fromwww.borsaitaliana.it for the period January 2007–December 2010 (4 full years).
The data have been re-sampled to have 1min frequency. Every minutes the last price
and the cumulated volume (number of transaction) is recorded. For each stock the
database is composed of about 5 ∗ 105 volumes and prices. The list of stocks analyzed
and their symbols are reported in Table15.1.

In Figs. 15.1 and 15.2 are shown the trading volume and the logarithmic change
of the trading volume for the 4 stocks in the analysed period. From both figures it is
possible to notice that there are period of high volume, essentially when the trading
frequency is higher, followed by periods of low volumes showing a certain degree
of clustering and autocorrelation.

To model ZV (t) as a WISMC model the first step is to discretize the variable. We
choose 5 states of discretization with the following edges: {−∞,−4,−1, 1, 4,∞}.
The number of times that ZV (t) fall in each state is shown in Fig. 15.3. For all stocks
the frequency of each state ie symmetric with respect to state 3.

Table 15.1 Stocks used in
the application and their
symbols

F Fiat

ISP Intesa San Paolo

TIT Telecom

TEN Tenaris

www.borsaitaliana.it
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Fig. 15.1 Trading volume of the analyzed stocks
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Fig. 15.2 The (logarithmic) change of trading volume of the analyzed stocks
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Fig. 15.3 Number of occupancy of each discretized state of the logarithm of volume change

Following D’Amico and Petroni [4] we use as definition of the function f λ in
(15.1) an exponentially weighted moving average (EWMA) of the squares of ZV (t)
which has the following expression:

f λ(Jn−1−k, Tn, a) = λTn−a J 2
n−1−k∑n−1

k=0

∑Tn−k−1
a=Tn−1−k

λTn−a
= λTn−a J 2

n−1−k∑Tn
a=1 λa

. (15.11)

Consequently the index process becomes I Vn (λ) = ∑n−1
k=0

∑Tn−k−1
a=Tn−1−k

(
λTn−a J 2n−1−k∑Tn

a=1 λa

)
.

The index I Vn (λ) was also discretized into 5 states of low, medium low, medium,
medium high and high volume variation. Using these definitions and discretizations
we estimated, for each stock, the probabilities defined in the previous section by
using their estimators directly from real data. By means of Monte Carlo simulations
we were able to produce, for each of the 4 stocks, a synthetic time series.

Each time series is a realization of the stochastic process described in the previous
section with the same time length as real data. Statistical features of these synthetic
time series are then compared with the statistical features of real data. In particular,
we tested our model for the ability to reproduce the autocorrelation functions of the
absolute value of ZV (t) and the first passage time distribution.

We estimated Σ(τ) (see Eq. (15.9)) for real data and for synthetic data and show
in Fig. 15.4 a comparison between them for all stocks. The figures show two main
results: first of all, as already noticed in Figs. 15.1 and 15.2, the volume process is
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Fig. 15.4 Autocorrelation functions of the absolute value of ZV (t) for real data (solid line) and
synthetic (dashed line) time series

Table 15.2 Percentage
square root mean error
between real and synthetic
autocorrelation function
reported in Fig. 15.4

Stock Error (%)

F 3.6

ISP 3.2

TIT 3.0

TEN 3.9

autocorrelated for a long time, the second results is that the WISMC process is able
to capture completely the autocorrelation structures. For each stock we estimated the
percentage root mean square error (PRMSE) the results are reported in Table15.2.

The PRMSE demonstrates what seen in Fig. 15.4, i.e. that our model is able to
reproduce almost perfectly the autocorrelation of the absolute value of the logarithmic
volume change for each stock. For each of stock in our database we estimate also the
first passage time distribution (fpt) as defined in Eq. (15.10) directly from the data
(real data) and from the synthetic time series generated as described above.

From Fig. 15.5 it is obvious that the fpt estimated from a WISMC model show
exactly the same behaviour of the pft estimated from real data.
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Fig. 15.5 First passage time distribution for σ = 1000

15.5 Conclusions

In this paper we advanced the use of Weigthed-Indexed Semi-Markov Chain mod-
els for modeling high frequency financial volumes. We applied the model on real
financial data and we shown that the model is able to reproduce important statisti-
cal fact of financial volumes as the autocorrelation function of the absolute values
of volumes and the first passage time distribution. Further developments will be a
more extensive application to other financial stocks and indexes and the proposal of
a complete model where returns, volumes and durations are jointly described.
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Chapter 16
PageRank in Evolving Tree Graphs

Benard Abola, Pitos Seleka Biganda, Christopher Engström, John Magero
Mango, Godwin Kakuba and Sergei Silvestrov

Abstract In this article, we study how PageRank can be updated in an evolving
tree graph. We are interested in finding how ranks of the graph can be updated
simultaneously and effectively using previous ranks without resorting to iterative
methods such as the Jacobi or Power method. We demonstrate and discuss how
PageRank can be updated when a leaf is added to a tree, at least one leaf is added
to a vertex with at least one outgoing edge, an edge added to vertices at the same
level and forward edge is added in a tree graph. The results of this paper provide
new insights and applications of standard partitioning of vertices of the graph into
levels using breadth-first search algorithm. Then, one determines PageRanks as the
expected numbers of random walk starting from any vertex in the graph. We noted
that time complexity of the proposed method is linear, which is quite good. Also, it
is important to point out that the types of vertex play essential role in updating of
PageRank.
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16.1 Introduction

PageRank is a measure of Web page quality according to their relative importance
while taking into account a hyperlink graph [4]. Since the original work of Brin and
Page, ranking web pages in network structure has received considerable attention in
the scientific community as pointed out in [1, 8, 9, 14]. The growing number of web
pages or vertices in complex networks is one of well known challenge. It is desirable
to improve PageRank algorithm to put up with the increasing size of networks while
maintaining the requirement for ranks quality as suggested by Brin and Page [4].

Recently, PageRank is used in applications far beyond its origins inGoogle’s web-
search. In fact, applications of PageRank has turned out to be much more general
and can be applied to numerous types of graph or network. For instance, it has been
adopted in bibliometrics, social, road, biological and information network analysis
[8].

Methods and ideas similar to PageRank are available, for instance, EigenTrust
algorithm [13], applied to reputation management in peer-to-peer networks, cita-
tion ranking [18], DeptRank algorithm, which is used to evaluate risk in financial
networks [3], and GeneRank, used in microarray data analysis where one measures
whether or not a gene’s expression is promoted or repressed [17]. Also, in chemistry
PageRank algorithm can be applied to study molecules as for example in [16], where
in particular, the authors used the algorithm to investigate changes in network of
molecules linked to hydrogen bonds among water molecules. From these few usage
of PageRank, it is vividly clear that applications and ideas of PageRank has turned
out to be stimulating and created new direction in Mathematics and development
of algorithms in static or evolving networks as suggested by Engström and Silve-
strov [6].

Numerous attempts have been made to speed up PageRank algorithm. For
instance, Ishii et al. [12] have aggregated webpages that are close and are expected to
have similar PageRank. Engström and Silvestrov [6] have proposed an algorithm that
partition the graph into components, that is, strongly connected components (SCC)
or connected acyclic component (CAC) and re-calculate PageRank as the network
changes. Another method is to remove dangling pages (pages with no links to other
pages), and then calculate their ranks at the end [2, 15].

The method proposed here have some similarities with the method proposed by
Engström and Silvestrov [7]. The main difference is that we emphasized updating
or re-calculating PageRanks of evolving tree graphs without resorting to iterative
methods such as Power Method and Jacobi method. Therefore, this article can be
considered as a contribution towards PageRank computation in a specific network
system (tree graphs), avoiding numerical iterative methods for linear systems.

This article is organized as follows. In Sect. 16.2 we set up definitions, notations
and essential concepts. In Sect. 16.3, we present the different types of changes and
how to re-calculate PageRanks associated to the changes. Section16.4 is devoted to
analysis of time complexity of the proposed method and finally Sect. 16.5 present
conclusions of the study.
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16.2 Preliminaries

This section describes important notations and definitions that are used throughout
the article.

• TG : The tree graph consisting of nodes and links for which we want to calculate
PageRank. It contains both the system matrix AG and a weight vector �vG . A
subindex G can be either a capital letter or a number in the case of multiple
systems.

• c: A parameter 0 < c < 1 for calculating PageRank, usually c = 0.85.
• T : Global tree graph made up of multiple disjoint subsystems T = T1 ∪ T2 · · · ∪
TN , where N is the number of forests.

• P→ j = wj + ∑
vi∈V,vi �=v j

wi Pi j , where wj is the weight of vertex v j and Pi j is the
hitting probability from vi to v j in a random walk on the graph containing the
vertices V . The type of random walk we will work with is described in Definition
16.1.

• Pab(c) is the probability to reach vb starting in va after passing through vc at least
once.

• Pab(c̄) is the probability to reach vb starting in va without ever passing via vc.
• PageRank can also be written as: Ra = P→a

1−Paa

PageRank can be defined in various versions, but we consider non-normalised tradi-
tional algorithm which views rank using a random walk on link structure of a graph.

Definition 16.1 Consider a random walk on a graph described by AG , which is the
adjacencymatrix weighted such that the sum over every non-zero row is equal to one.
In each step with probability c ∈ (0, 1), move to a new vertex from the current vertex
by traversing a random outgoing edge with probability equal to the corresponding
edge weight. With probability 1 − c or if the current vertex have no outgoing edges,
we stop the random walk. The PageRank �R for a single vertex v j can be written as

R j =
⎛

⎝
∑

vi∈V,vi �=v j

wi Pi j + wj

⎞

⎠

( ∞∑

k=0

(Pj j )
k

)

, (16.1)

where Pi j is the probability to hit node v j in the random walk starting in node vi ,
before stopping of this random walk. This can be seen as the expected number of
visits to v j if we domultiple randomwalks, starting in every node once andweighting
each of these random walks by the vector of vertex weights �w, [7]. Note that we have
both vertex and edge weights and that both the initial and final vertex are counted as
being visited in such a random walk (but not counted extra).

Another common approach to obtain PageRank is to rewrite it as an eigenvector
problem.Thisway, one resorts to solving a linear systemof the form (I − cA�

G)
�R = �̄v,

Hence, the PageRank of vertex v j can be expressed as R j = [(I − cA�
G)

−1�̄v] j .



378 B. Abola et al.

16.2.1 Tree Graphs and Partitioning

Definition 16.2 A tree T (V, E) is a connected and acyclic graph, where V and E
are sets of vertices and edges respectively. A root of T is the only node without a
parent, denoted as r . If two or more nodes have the same parent, then they are called
siblings. A node with no children is a leaf. A non-leaf node is termed as internal node
or simply called a node.

Definition 16.3 A level in a tree T , is collection of all vertices at a fixed distance to
the root. Thus, if a root is at level L , then the children of the root will be at a lower
level, say L − 1, [10].

Next, we present partitioning of tree graph into levels. Consider a graph T (V, E),
with a path length l, that is, a sequence of l edges

{(vl , vl−1), (vl−1, vl−2), . . . , (v1, v0)}

where all the vertices vl , vl−1, . . . , v1, v0 are distinct. Abbreviate the level of vertex
vl as l, vl−1 as l − 1 and so on.

If one performs breadth-first search (BFS), the algorithm finds the neighbor of a
vertex vL before finding the neighbor of vL−1, this way a breath-first tree is generated.
In general, suppose Lk is the level of vertex vk ∈ V, then a partition of T by level
is understood as the collection of subsets of vertices vk ∈ V , denoted by Lk such
that L j ∩ Lk = ∅ for j �= k and V = Ll ∪ Ll−1∪, . . . ,∪L1 ∪ L0. Here we adopt a
monotone ordering l for a breadth-first tree, where a vertex is numbered before its
father as in [6].

16.2.2 PageRank After Addition or Removal of Edges
Between Vertices

By decomposing PageRank for a vertex vi into two parts depending on if a random
walk visited the source vertex va (the vertex to which we add or remove edges)
before the first visit to vi or not, we can decompose PageRank as in Lemma 16.1.
The result is helpful in determining ranks when edges are added or removed between
two vertices. In particular, adding or removing edges has one main effect of outgoing
edges from a source vertex, that is, update of the edge weights and levels of target
vertices.

We look at this changes in term of weights change on all old outgoing edges of
source vertex in the next section.

Lemma 16.1 PageRank of a single vertex vb after removing all outgoing edges from
vertex va or adding new outgoing edges from va which previously had no outgoing
edges can be written as:
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Rb = P→b(ā)

1 − Pbb(ā)
± Ra Pab(ā)

1 − Pbb(ā)
, (16.2)

where positive + and negative − signs are associated to changes due to addition of
new edges and removal of all edges out of source vertex, respectively.

The proof can be found in [7].

16.2.3 PageRank After Rank-One Perturbation of Weighted
Adjacency Matrix

Some related results concerning perturbed Markov chains can be found in [11].
A recent application in PageRank computation for the Google web search engine
was studied by Xiong and Zheng [19]. They observed that Google matrix is special
rank-1 updated (perturbed) matrix whose eigenvector (PageRank) corresponds to the
maximal eigenvalue 1. Thus, perturbation of a matrix is in tandem with addition or
removal of edges from a source vertex as in Sect. 16.2.2.

This subsection is devoted to determining PageRank vector of the new weighted
matrix, P(2) obtained after perturbation. We claim that by using Sherman–Morrison
formula one can obtain explicit formula of evolving network. To ensure that let P(1)

denote unperturbed weighted matrix such that

P(2)� = P(1)� + �u�v�, (16.3)

where �u�v� ∈ R
n×n are column rank-one matrices. The PageRank vector �R(2), of

P(2)� can be obtained by solving the classical PageRank linear equation of the form
(I − cA�

G)�x = �b, and we get

�R(2) = [(I − cP(1)�) − c�u�v�]−1�b, (16.4)

where �b is a column vector of ones. Applying Sherman–Morrison formula as cited
in Deng [5] to [(I − cP(1)�) − c�u�v�]−1, an explicit estimate of �R(2) can be found.

Lemma 16.2 Let G ∈ R
n×n be a linear operator, matrix B ∈ R

n×n and vectors
�u, �v ∈ R

n×1. Suppose G = B − �u�v�, then the inverse G−1 of G can be expressed as

G−1 = B−1 + B−1�u�v�B−1

1 − �v�B−1�u , (16.5)

where det (B) �= 0 and det (B − �u�v�) �= 0.

Proof Let �x, �b ∈ R
n be such that G �x = �b. Then from G = B − �u�v� we get
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(B − �u�v�)�x = �b,
B�x − �u�v��x = �b,

B�x = �b + �u�v��x,
�x = B−1�b + B−1�u�v��x . (16.6)

Pre-multiplying �x by �v� and collecting the term containing �v��x yields

(I − �v�B−1�u)�v��x = �v�B−1 �b

From here we obtain �v��x = �v�B−1 �b
I−�v�B−1 �u and substituting in (16.6) we get

�x =
(

B−1 + B−1�u�v�B−1

1 − �v�B−1�u
)

�b.

Hence, G−1 = B−1 + B−1 �u�v�B−1

1−�v�B−1 �u as required. �

Remark 16.1 Wewish to emphasize thatmatrix perturbation approachonly addresses
change due to addition or removal of edges but not for vertices.

16.3 PageRank of Evolving Tree Graphs

The effect of changes involving only few vertices in large sparse chains such as
in Google’s PageRank application is primarily local and most PageRanks are not
affected significantly [7, 14]. Thus, it is important to focus on some parts of the
graph that have changed. Obviously, some changes may not require update of the
previous ranks while other do. For instance, adding a new leaf to a vertex without
outgoing edge(s) does not require updating the previous ranks. One needs to calculate
the PageRank of the new vertices only. Since there are many changes that occur, we
restrict ourselves to four categories which are presented in the sub-sections that
follows.

16.3.1 Adding a Leaf to a Tree

Consider a directed tree T with four vertices n1, n2, n3 and n4, suppose a new vertex
e1 is linked to n4 as shown in Fig. 16.1. If we assume that n4 has no outgoing edge
before adding node e1, then the PageRank of vertices remain the same after the
addition. Whereas, the PageRank Re1 of e1, becomes we1 + cn4→e1Rn4 , where we1 is
the weight of e1 and cn4→e1 is 1-step probability to go from n4 to e1. Alternatively,
one needs to generate breadth first tree of the new tree graph T ∪ e1 using BFS
algorithm. Hence, vertex e1 will be at the lowest level (level 0) and its PageRank can
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Fig. 16.1 Adding a vertex
e1 to a tree originally having
V = {n1, n2, n3, n4}

n4

n1

n2

n3

e1

n8

n7

n5

n6

e1

easily be calculated when the PageRank of level 1 and above are known. Precisely,
the PageRank of parents or ancestors influence those of the children. In summary,
any change on a vertex at the lower can be considered as localised perturbation
which requires updating PageRank of smaller subgraph. We state a corollary that
will generalized this kind of re-calculating PageRank after adding a leaf to a tree.

Proposition 16.1 Given PageRank Ra of vertex va, where va has no outgoing edge,
and adding a leaf at the vertex va such that there is 1-step transition probability from
va to vb denoted by cab, the PageRank of the leaf vb can be expressed as

Rb = wb + cabRa, (16.7)

where wb is the weight of vb.

Proof Using Definition 16.1 and rewriting the PageRank of vertex vb as P→b =
wb + ∑

vi∈V,vi �=vb
wi Pib, the term

∑
vi∈V,vi �=vb

wi Pib = wa Pab since there is no other
path from va to vb. It can be seen that wa = Ra and Pab = cab, hence P→b = wb +
cabRa . �

Proof Alternatively, consider PageRank of vertex vb as rank-one perturbation of
weighted adjacency matrix, where an edge is added between va and vb. Assume
that the PageRank �R(1) of unperturbed matrix P(1) is known. We use of Lemma
16.2. First, fix �x = �R(2), B−1 = (I − cP(1)�)−1, �p = �u, �q = �v and �b = �w. Secondly,
suppose that �u and �v� are the bth column vector of identity matrix with the size as
P(1) orP(2) and row vector ofP(2) respectively. Recall that �R(1) = [(I − cP(1)�]−1 �w.
Then �R(2) becomes

�R(2) = [(I − cP(1)�]−1 �w + c
[I − cP(1)�]−1�u�v�[I − cP(1)�]−1

1 − �v�[I − cP(1)�]−1�u �w,

= �R(1) + [I − cP(1)�]−1[c�u�v�] �R(1)

1 − �v�[I − cP(1)�]−1�u , (16.8)
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where [I − cP(1)�]−1[c�u�v�] can be seen as a transition matrix from source to target
vertex that has zeros everywhere except at entry (vb, va) and also

�v�
[
I − cP(1)�

]−1 �u = Pbb(ā)

is the probability from vb to vb without going through va . Now, let �R(2)
b and �R(1)

b be
PageRank of the target vertex vb before and after the change respectively, then (16.8)
becomes

�R(2)
b = �R(1)

b + c �R(1)
a

1 − Pbb(ā)
.

Since there is no link to reach vb except from va then Pbb(ā) = 0, R(1)
b = wb and

R(2)
b = Rb hence we get Rb = wb + cR(1)

a . �

Example 16.1 Consider a graph in Fig. 16.1 with matricesP(1) and �u�v� correspond-
ing to the weighted adjacency matrices before addition of new edge vn4 → ve1 and
evolving term respectively. For the purpose of consistency, let the source vertex
va = vn4 and target vertex vb = ve1 .

Define

cP1� =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
c
2 0 0 0 0
0 0 0 0 0
c
2 c 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
, �u =

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎠
, �v� = (

0 0 0 1 0
)

and assume that the PageRank of P(1) is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

R(1)
n2

R(1)
n3

R(1)
n1

R(1)
a

R(1)
b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1
1 + c

2
1

1 + 3c
2 + c(1 + c

2 )

1

⎞

⎟
⎟
⎟
⎟
⎠
.

Using (16.8), we get

[I − cP(1)�]−1[c�u�v�] =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 c 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

R(1)
n2

R(1)
n3

R(1)
n1

R(1)
a

R(1)
b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0

c �Ra
(1)

⎞

⎟
⎟
⎟
⎟
⎠
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By Proposition 16.1, we get

R(2)
b = 1 + c

[

1 + 3c

2
+ c

(
1 + c

2

)]

︸ ︷︷ ︸
R(1)
a

.

This result is rather interesting. It is apparent that if the previous PageRank is known
and a leaf is added to a vertex with no outgoing edge previously, then the PageRank
of the graph after the change can be obtained in at most constant time. If we look the
updating procedure in term of time complexity then the proposed method save users
from computing the new PageRank from scratch.

Following Fig. 16.1 on the right, where a leaf is added to a tree, we explain
PageRank update without giving explicit formula for such changes. The PageRank
can be addressed as follows:

(i) If the target vertex has no outgoing edge then target vertex is update according
to proposition one.

(ii) If the target vertex has at least one outgoing edge then update the target vertex
according to proposition one and it corresponding children sequentially.

Extending this idea to a vertex with at least one outgoing edge in the next subsection.
Let us begin by presenting without proof a lemma for changes in personalization
vector [6].

Lemma 16.3 Consider a graph with PageRank �R(1) and weight vector �w(1). The
new PageRank �R(2) with a new personalization vector �w(2) = �w(1) + ��w(1), after
adding a set of new outgoing edges from va can be written as:

R(2)
j = R(1)

j +
⎛

⎝�w(1)
j +

∑

vi∈S,vi �=v j

�w(1)
i Pi j

⎞

⎠
∞∑

j=0

Pj j . (16.9)

16.3.2 Adding k-Leaf to a Vertex with at Least One Outgoing
Edge

Let T1 = G(V, E) be a tree graph such that V = {n1, n2, n3, n4, e1} and T2 = T1 ∪
e2, where e2 is a new leaf as shown in the Fig. 16.2. Take n4 as a source vertex.
Then we observe the following: (1) the PageRank of n4 and those vertices at level
greater are unchanged (2) The weight of e1 needs to be updated and the level
unchanged. We know that n1 and n2 have outgoing edges only, then applying Def-
inition 16.1, R(1)

n1 = R(1)
n2 = 1. Subsequently, R(1)

3 = 1 + c
2 R

(1)
2 , R(1)

n4 = 1 + cR(1)
n1 +

c
2 R

(1)
n2 + cR(1)

n3 and R(1)
e1 = 1 + cR(1)

n4 . Clearly, we note that R
(1)
4 dependent the PageR-

ank of n1, n2 and n3 which are at higher levels compared to the level of n4. Similarity,
R(1)
e1 is influence by PageRank of vertex n4 and above.
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n4

n1

n2

n3

e1

e2

Fig. 16.2 Adding a leaf e2 to a tree with V = {n1, n2, n3, n4, e1}

Next, let us add a leaf to n4 to give T2 and suppose R(2) denotes PageRank after
addition of the leaf, then R(2)

ni = R(1)
ni , for i = 1, . . . , 4. The rank of e1, R(2)

e1 becomes

1 + c
2 R

(1)
4 . Rewriting it in term of old PageRank plus update value gives

R(2)
e1 = R(1)

e1 +
(
1

2
− 1

)

︸ ︷︷ ︸
�wn4

cR(1)
4 = R(1)

e1 +
(−c

2

)
�R(2)
4 = 1 + c

2
R(1)
4 . (16.10)

In overall PageRank vector �R(2) of T2 is expressed as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R(2)
1

R(2)
2

R(2)
3

R(2)
4

R(2)
e1

R(2)
e2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

1 + c
2

1 + 5c
2 + c2

2

1 + c
2 + 5c2

4 + c3

4

1 + c
2 + 5c2

4 + c3

4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We can see that R(2)
e1 = R(2)

e2 since they are at the same level and having only a single
parent n4. To explore this case further, we state a theorem that encompass calculating
PageRank after addition of outgoing edges to a vertexwith outgoing edges previously.
Under this consideration, we assume the following:

1. Only outgoing edges are added to a source vertex with at least one such edge
before.

2. The addition of edges does not create any cycle in new graph.
3. The level and PageRank of the source vertex and greater are known.
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Lemma 16.4 Consider a tree graph, T (V, E) with PageRank vector �R(1). Suppose
va ∈ V is a source vertex with m(≥ 1) outgoing edges. By adding a set of k(≥ 1) new
leaves (outgoing edges) to va, the new PageRank �R(2) of va or vb can be expressed as:

R(2)
a = R(1)

a , R(2)
b = R(1)

b +
(m

n
− 1

)
P (1)
ab R(2)

a , (16.11)

where n = m + k and P (1)
ab is the 1-step transition probability from va → vb.

Proof We start by calculating the PageRank of the nodes va on T (V, E), since we
had assumed that the PageRank of the source vertex remains the same after adding
outgoing edges, then R(2)

a = R(1)
a .

To proof the second part, we apply Lemma 16.3. Let �wj = 0, �w(1)
a = w(2)

a −
w(1)
a = ( 1n − 1

k )R
(2)
a and

∑∞
l=0(Pbb)

l = 1.Also, there is only a 1-step transition proba-

bility from va → vb, then
∑

vi∈S,vi �=v j
�w(1)

i Pi j = �w(1)
a P (1)

ab . Substituting the known
terms in the formula (16.9)

R(2)
j = R(1)

j +
⎛

⎝�w(1)
j +

∑

vi∈S,vi �=v j

�w(1)
i Pi j

⎞

⎠
∞∑

l=0

(Pbb)
l .

we get R(2)
b = R(1)

b + (mn − 1)P (1)
ab R(2)

a . �

16.3.3 Adding or Removing Edges from Vertices at the Same
Level

In all cases considered previously we first perform BFS algorithm to obtain breadth-
first tree before determining rank of vertices. Also, the vertices of the tree are labelled
according to their discovery and each vertex is assigned a label with corresponding
level. We noticed that vertex at higher level influence the PageRank of those at the
lower level. Thus, any change of internal edge influence the breadth-first tree structure
which depend on edge classification as mentioned by Yan and Han [20]. Here we
focus on one classification, forward edge. This refers to those edges that describes
ancestor-to-descendant relation, that is, high to low level set of vertices. Another
form of edge class examined in this article is an edge linked to vertices at the same
level. We explored the influence of the two classes in PageRanks re-calculation.

Further, vertex classification contributes to the way we compute PageRank in a
graph [6]. Here, we define four distinct classes or groups and it should be emphasized
that every vertex in a tree graph belong to single group.

Definition 16.4 For the vertices of a simple directed graph without cycle, we can
define four distinct groups of vertices.

1. G1: vertices with no outgoing or incoming edges.
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Fig. 16.3 Addition of edges
between vertices in tree
graphs
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n3

n4 n5
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2. G2: vertices with no outgoing edges and at least incoming edges (also dangling
vertices /leaves. )

3. G3: vertices with at least one outgoing edge but no incoming edges (also called
root vertices)

4. G4: vertices with at least one out going and incoming edges.

We briefly describe how changes based on edge classification influence Pagerank
calculation.

• Edge added to vertices at the same level: In reference to Fig. 16.3 (left), it can be
seen that n2 ∈ G4 and n4 ∈ G2 are at the same level. Suppose an edge (n2, n4) is
added to give middle figure, then update the level and PageRank of n4. Also, the
level and PageRank of vertices below n3 and n4 need to be updated.

The following lemma encompasses the re-calculation of PageRank associated to this
form of change. For proof see Proposition 16.1 and Lemma 16.4.

Lemma 16.5 Let R(1)
a and R(1)

b be the PageRanks of vertices va and vb respectively.
Suppose that the vertices are previously at the same level L. Then the PageRank
R(2)
b after adding an edge (va, vb) can be expressed as R

(2)
b = R(1)

b + cabR(2)
a , where

cab is 1-step probability of a random work from vertex va to vb. Also, the Pagerank
of vertices linked to va only can be updated as R(2)

a− = R(1)
a− + ( 1n − 1)R(1)

a , where
n = m + 1, and a− denotes the vertices at level L − 1 linked to va before change.

• Forward edge (indicted in red in Fig. 16.3 (right)): Update all the levels and PageR-
anks of T − n1 sequentially.

Fig. 16.4 Adding a tree to a
tree when the vertices va and
vb in G4 and G2 groups
respectively

n1

va

n3

n4

v1

vb

v3

v4
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16.3.4 Adding Tree to Tree

We now present the influence of adding an edge between trees. The focus has been
on whether levels and Pageranks should be updated or not when two-tree graphs are
added. We based our description on vertex grouping as pointed in earlier. Consider
Fig. 16.4, where va ∈ T1 and vb ∈ T2 belong toG4 andG2 respectively. It can be seen
that PageRank of n1, va, v1, v3, v4 remain but their need to be updated. On the other
hand PageRanks and levels of n3, n4, vb require update. Some change in networks
may not require overall calculation of PageRank of a system from the scratch but
updating few vertices only. Such benefit should be exploited if we are to speed up
computation of Pagerank in large sparse graph. Table16.1 describes a strategy to
update to handle PageRank computation based on vertex classification.

Table 16.1 Updating levels and PageRank after adding an edge between two and tree. NB: va and
vb are source and target vertices respectively

From T1 vertex To T2 vertex Description

G4 G1 • The PageRank of vertices in T1 not affected except the
outgoing vertex at va to be updated

• Update the Pagerank of vertex vb only in T2
• Update the level of the new tree graph

G2 • The PageRank of vertices in T1 not affected except the
linked vertex va to be updated

• Update the vertex vb ∈ T2 and all siblings or
descendants

• Update the level of the new tree graph

G3 • Update the PageRank of vertices in T1
• Update the vertices with incoming edges from vb ∈ T2
• Update the level of the new tree graph

G4 • Update the PageRank of vertices in T1 which are linked
by outgoing edges of va including the descendants

• Update the vertex vb ∈ T2 and all siblings or
descendants

• Update the level of the new tree graph

G3 G1 • Update all the PageRank of vertices in T1 except va or
the root

• Update the Pagerank of vertex vb only in T2
• Update the level of the new tree graph or forest

G2 • Update all the PageRank of vertices in T1 except the root

• Update the Pagerank of vertex vb only in T2
• Update the level of the new tree graph

G3 • Update the PageRank of vertices in T1 except va
• Update all the vertices T2
• Update the level of the new tree graph
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16.4 Analysis of Time Complexity of the Changes

This section presents time complexity that arise due to the four changes encountered
in Sect. 16.3. We evaluate on computational complexity of each change to determine
if there is any advantage of updating PageRank. For a directed graph if we are to
determine whether a vertex u is connected to v amounts to traversing the vertices and
edges using breadth first search or depth first search algorithm. Also, it is known that
the complexity of both algorithms are the same, that is.,O(|V | + |E |), where |V | and
|E | is the number of vertices and edges respectively. Recall that one of the purpose of
using BFS algorithm is to partition the vertices into levels. This reordering strategy
fits evolving graph because one could explore scenario where addition or removal of
edges(s)/vertices is localised change or the whole graph perturbation.

Fig. 16.5 The following figures show some of the main changes considered, labelled as I, II, III,
IV, V. The black and hollow nodes represent a tree and a leaf respectively

Table 16.2 Analysis of time complexity of types of change

Case Description of change Complexity of the algorithm

I, II Adding a leaf to a tree Since we are dealing with directed graph, accessing the
target vertex requires one operation only. Hence, time
complexity is O(1). Also, if the target vertex in a tree has
no outgoing edge then the complexity equal to that in case
I. However, if the vertex has at least one outgoing edge
then the time complexity is at most
O(|V1| + |E1|) ≈ O(E1) if |E1| ≥ |V1|

III A leaf is added to a tree
with outgoing edges

Obviously, the level of the leaf and a tree below are lower.
Hence, we need to update only Pagerank at the lower
level. The complexity is equal to
O(|V1 + 1| + |E1 + 1|) ≤ O(|V1| + |E1|). In fact the
computational complexity is this change almost the same
as in the previous cases

IV Adding a tree to a tree Using the same argument as in case II and III. Under a
worse case, the complexity is at most O(|V1| + |E1|). In
practice it will be much faster to compute PageRank
using the proposed method compared to iterative methods
which dependent on convergence or error tolerance

V Adding an edge from
internal vertex to a leaf

In this case, we need to loop through the vertices of a
subgraph to ensure that all vertices are appropriately
re-labelled. This is done in linear time and discovery of
new edge takes O(1). Hence, we get linear time
complexity
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As we show earlier, some changes do not require overall re-calculation of PageR-
ank of the graph from the scratch but only updating small component of a graph.
Hence, the complexity is less than O(|V | + |E |). We emphasize that, in comparison
to power method of computing PageRank, the cost of overall iteration is aboutO|V |3
plus indexing overhead due to storage scheme. Although, BFS algorithm is space
bound in many practice, the space complexity is also linear. Thus, it is reasonable to
suggest that partition scheme has high advantage in calculating PageRank of graphs.
Moreover, the update tackle in this article allows for addition or removal of vertices
or edges at will.

To this end, we present analysis of time complexity associated to the specific
changes as summarised in Fig. 16.5. The description is highlighted in Table16.2. We
can not exhaust all kind of changes in tree graph because they are practically many.

16.5 Conclusions

In this article, we have shown how it is feasible to update PageRank in evolving tree
graph without resorting to iterative methods such as LU decomposition, Jacobi and
the like. We began by showing how PageRank can be updated when a leaf is added
to a tree. We extended the concept to multiple addition of leaves on a source vertex
with at least one outgoing edge. Further, we investigated change in DAG when an
edge is added between vertices at the same level.

The main importance of this technique is that it allows us to do changes in both
edges and vertices at will. Moreover, some changes require only localised update
of PageRank of a network which can be done in linear time as compared to the
convention methods of PageRank calculation. In fact, most of iterative methods have
computational complexity of O|V |3 plus overhead due to storage scheme which is
quite higher than the proposed method.
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Chapter 17
Traditional and Lazy PageRanks for a
Line of Nodes Connected with Complete
Graphs

Pitos Seleka Biganda, Benard Abola, Christopher Engström, John Magero
Mango, Godwin Kakuba and Sergei Silvestrov

Abstract PageRank was initially defined by S. Brin and L. Page for the purpose
of measuring the importance of web pages (nodes) based on the structure of links
between them. Due to existence of diverse methods of random walk on the graph,
variants of PageRank now exists. They include traditional (or normal) PageRank due
to normal random walk and Lazy PageRank due to lazy random walk on a graph. In
this article, we establish how the two variants of PageRank changes when complete
graphs are connected to a line of nodes whose links between the nodes are in one
direction. Explicit formulae for the two variants of PageRank are presented. We have
noted that the ranks on a line graph are the same except their numerical values which
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differ. Further, we have observed that both normal random walk and lazy random
walk on complete graphs spend almost the same time at each node.

Keywords Graph · Random walk · PageRank · Lazy PageRank

17.1 Introduction

PageRank was first introduced by Brin and Page [6] to rank homepages (nodes) on
the Internet, based on the structure of links. When a person is interested in getting a
certain information from the internet, one is most likely going to use a search engine
(eg. Google search engine) to look for such information. Moreover, the person will
be interested in getting the most relevant ones. What PageRank aims to do, is to sort
out and place the most relevant pages first in the list of all information displayed
after the search.

It is known that the number of pages on the internet is very large and keeps on
increasing over time. For this reason, the PageRank algorithm need to be very fast
to accommodate the increasing number of pages and at the same time retaining the
requirement for quality of the ranking results as one carries out an internet search
[6].

Algorithms similar to PageRank are available, for instance, EigenTrust algorithm,
by Kamvar et al. [16], applied to reputation management in peer-to-peer networks,
and DeptRank algorithm, which is used to evaluate risk in financial networks [2].
These imply that PageRank concept can be adopted to various networks problems.

Usually PageRank is calculated using the power method. The method has been
found to be efficient for both small and large systems. The convergence speed of
the method on a webpage structure depends on the parameter c, where c is a real
number such that 0 < c < 1 [12], and the problem is well conditioned unless c is
very close to 1 [14]. However, many methods have been developed for speeding up
the calculations of PageRank in order to meet the increasing number of pages on the
internet. Some of these methods include aggregating webpages that are close and are
expected to have similar PageRank [13], partitioning the graph into components as
in [11], removing the dangling nodes before computing PageRank and then calculate
their ranks at the end or use a power series formulation of PageRank [1], and not
computing the PageRank of pages that have already converged in every iteration as
suggested by Sepander et al. [15].

There are also studies on a large scale using PageRank and other measure in
order to learn more about the Web. One of them is looking at the theoretical and
experimental perspective of the distribution of PageRank as by Dhyani et al. [8].

The theory behind PageRank is built from Perron-Frobenius theory [4] and the
study ofMarkov chains [18]. But how PageRank changes with changes in the system
or parameters is not well known. Engström and Silvestrov[9, 10] investigated the
changes of PageRank of the nodes in the system consisting of a line of nodes and
an outside node, a complete graph connected to the line of nodes and connecting a
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simple line with a complete graph where one node in the line is part of the complete
graph. In [5],we extended theirwork by looking at a simple line connected tomultiple
outside nodes and a simple line connected to two complete graphs. In all the cases
studied in this article, we considered traditional (or normal) PageRank as the solution
to a linear system of equations and also as probabilities of a random walk through a
graph. We develop explicit formulas for the lazy PageRank and compare with those
of traditional PageRank developed in our previous work to determine the ranking
behaviour as the system changes.

A structure of this article is as follows. In Sect. 17.2, we give some preliminaries
which include notations, definitions and some initial results that are essential in
this work. The main results are presented in Sects. 17.3 and 17.4. Finally, Sect. 17.5
contains concluding remarks of the work.

17.2 Preliminaries

This section describes important notations and definitions. We start by giving some
notations and thereafter essential definitions that are used throughout the article.

• SG : The system of nodes and links for which we want to calculate PageRank. It
contains both the system matrix AG and a weight vector �vG . A subindex G can be
either a capital letter or a number in the case of multiple systems.

• nG : The number of nodes in system SG .
• AG : A system matrix of size nG × nG where an element ai j = 0 means there is no
link from node i to node j . Non-zero elements are equal to 1/ri where ri is the
number of links from node i .

• �uG : Non-negative weight vector, not necessary with sum one. Its size is nG × 1.
• c: A parameter 0 < c < 1 for calculating PageRank, usually c = 0.85.
• �gG : A vector with elements equal to one for dangling nodes and zero otherwise in
SG . Its size is nG × 1.

• MG : Modified systemmatrix,MG = c(AG + �gG �u�
G)� + (1 − c)�uG �e� used to cal-

culate PageRank �RG ,where �e is the vectorwhose all entries are ones. SizenG × nG .
• S: Global system made up of multiple disjoint subsystems S = S1 ∪ S2 . . . ∪ SN ,
where N is the number of subsystems.

In the cases where there is only one possible system the subindex G is omitted. For
systems making up S we define disjoint systems in the following way.

Definition 17.1 Two systems S1, S2 are disjoint if there are no paths from any nodes
in S1 to S2 or from any nodes in S2 to S1.

PageRank can be defined in various versions, for instance in [9] two versions
were presented. However, in this paper we adopt the non-normalized PageRank,
denoted as R j for node j which are denoted as R(t)

j and R(l)
j for the non-normalized

traditional PageRank and lazy PageRank respectively. It should be noted that where
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the superscripts are omitted in the notation it means that either of the two types of
PageRanks is true.

Traditional (or normal) PageRank can be interpreted as the probability that a
knowledgeable but mindless random walk hits a given Web page (node). This is
because the randomwalk is aware of the addresses of all theWeb pages but he chooses
a next page to visit without considering any information that the page contains [17].
In other words, being at a particular node, the random walk jumps to any node
with uniform probability if the node has no outgoing links, otherwise he chooses
with uniform probability one of the outgoing links and goes to the selected node.
Generally, the non-normalized traditional PageRank vector is defined below.

Definition 17.2 �R(t)
G for system SG is defined as �R(t)

G = (I − cA�
G)−1nG �uG , where I

is an identity matrix of same size as AG .

The PageRank �R(t)
G defined above is obtained from solving the system of linear

equations arising from the eigenvalue problem �R(1) = MG �R(1) with eigenvalue 1,
where �R(1) is the normalized PageRank whose sum of all elements is 1 and MG is
the modified system matrix defined previously.

On the other hand, lazy PageRank is described by Lazy-randomwalk [7]. It differs
from the traditional PageRank in that the walk on a graph has a 50% probability of
staying or leaving each node. In other words, before choosing the next node to visit,
the random walk first tosses a coin. If the head shows up he visits the next node,
otherwise he stays in the very same node of the graph. The following proposition
gives how the lazy PageRank is related to traditional PageRank.

Proposition 17.1 Let �R(t) be a vector of the traditional PageRank of a graph G,
then the lazy PageRank vector �R(l) is related to �R(t) by

�R(t)(ε, �v,AG) = �R(l)

(
2ε

1 + ε
, �v,AG

)
, (17.1)

where ε = 1 − c and �v is a non-negative column vector whose elements sum up to
1.

Proof For traditional PageRank, the principal eigen-equation is given by

�R(t) = (1 − ε)A�
G

�R(t) + ε�v.

In terms of lazy random walks, the equation is given by

�R(l) = (1 − ε)
(I + A�

G)

2
�R(l) + ε�v.

Multiplying both sides by 2 and simplifying we get

(1 + ε) �R(l) = (1 − ε)A�
G

�R(l) + 2ε�v.
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Divide both sides by (1 + ε) to get

�R(l) = 1 − ε

1 + ε
A�
G

�R(l) + 2ε

1 + ε
�v.

Hence (17.1) is proved. �

Proposition 17.1 reveals that the traditional PageRank �R(t) for ε, where ε is a fixed
probability for the normal randomwalk to jump to any node in the graph, is the same
as the lazy PageRank �R(l) for 2ε

1+ε
using lazy random walk in the same graph.

The lazy PageRank of a graph is computed as follows.

Lemma 17.1 The lazy PageRank �R(l) for a system SG is given by

�R(l) = (
I − βAT

G

)−1
αnG �uG, (17.2)

where α = 2/(2 − c), β = c/(2 − c) and I is an identity matrix of same size as AG.

Proof By Proposition 17.1, we get

�R(l) = c

2 − c
A�
G

�R(l) + 2(1 − c)

2 − c
�v ⇔

(
I − c

2 − c
A�
G

)
�R(l) = 2(1 − c)

2 − c
�v

or

�R(l) =
(
I − c

2 − c
A�
G

)−1 2

2 − c
(1 − c)�v

Letting (1 − c)�v = nG �uG , we obtain the required result (17.2). �

It follows from Lemma 17.1 that in lazy-random walks, a random walk moves
with probability β ∈ (0, 1) to a new vertex from the current vertex by traversing
a random outgoing edge from the current vertex and stop the random walk with
probability 1 − β if the current vertex have no outgoing edge.

The non-normalized PageRank �RG also can be computed from a probabilistic
viewpoint using random walks on a graph and the hitting probabilities of the said
random walks. This is stated in the next definition.

Definition 17.3 Consider a random walk on a graph described by AG, which is the
adjacency matrix weighted such that the sum over every non-zero row is equal to
one. In each step with probability c ∈ (0, 1), move to a new vertex from the current
vertex by traversing a random outgoing edge from the current vertex with probability
equal to the weight on the corresponding edge weight. With probability 1 − c or if
the current vertex have no outgoing edges, we stop the random walk. The PageRank
�R for a single vertex v j can be written as

R j =
⎛
⎝ ∑

vi∈V,vi �=v j

wi Pi j + w j

⎞
⎠

( ∞∑
k=0

(Pj j )
k

)
, (17.3)
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where Pi j is the probability to hit node v j in a randomwalk starting in node vi , before
stopping of this random walk. This can be seen as the expected number of visits to
v j if we do multiple random walks, starting in every node once and weighting each
of these random walks by �w [9]. Note that we have both vertex and edge weights and
that both the initial and final vertex are counted as being visited in such a random
walk (but not counted extra).

Next, let us define graph-structures we will encounter in the section that follows.

Definition 17.4 A simple line is a graph with nL nodes where node nL links to node
nL−1 which in turn links to node nL−2 all the way until node n2 link to node n1.

Definition 17.5 A complete graph is a group of nodes in which all nodes in the
group links to all other nodes in the group.

The following well known lemma for blockwise inversion will be used in this article.
A proof can be found, for example in Bernstein [3].

Lemma 17.2

[
B C
D E

]−1

=
[

(B − CE−1D)−1 −(B − CE−1D)−1CE−1

−E−1D(B − CE−1D)−1 E−1 + E−1D(B − CE−1D)−1CE−1

]

where B,E are square and E, (B − CE−1D) are nonsingular.

17.3 Changes in Traditional and Lazy PageRanks When
Connecting the Simple Line with Multiple Outside
Nodes

In this section, we present four graph-structures and associated PageRanks descrip-
tions for both traditional PageRank and lazy PageRank. But first we present the
following two results that are important in this section and in the paper as a whole.

Proposition 17.2 The lazy PageRank of a node v j with only outgoing edge(s) on a
simple line is given by

R(l)
j = 2

2 − c
,

where 0 < c < 1.

Proof Using Definition 17.3, the PageRank �R(l) for a single vertex v j is given by

R(l)
j =

⎛
⎝ ∑

vi∈V,vi �=v j

wi Pi j + w j

⎞
⎠ ∞∑

k=0

(
Pj j

)k
,
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where Pi j is the probability to hit node v j in a random walk starting from node vi .
Since v j has no incoming edge, the weights wi = 0 and w j = 1. The probability of
a random walk to stay at v j in lazy random walk is c/2. Thus we have

R(l)
j =

∞∑
k=0

(
2

c

)k

= 1

1 − c/2
= 2

2 − c
.

�
Next we describe the lazy PageRank of any vertex v j on the simple line as follows.

Lemma 17.3 The lazy PageRank of a vertex v j on the simple line can be expressed
as

R(l)
j = α

nL∑
i= j

β i− j = α

[
1 − βnL− j+1

1 − β

]
,

where α = 2/(2 − c) and β = c/(2 − c).

Proof We prove this by induction. Letting j = nL , the lazy PageRank of the last
node vL in the simple line follows directly from Proposition 17.2,

RnL = α

nL∑
i=nL

β i−nL = α = 2

2 − c
.

Assume it is true for any node vk , that is

R(l)
k = α

nL∑
i=k

β i−k, (17.4)

we show that it’s true for node vk−1 as well, which by induction, proves that it is
generally true for all vertices in the simple line. Now, by Definition 17.3,

R(l)
k−1 =

⎛
⎝ ∑

alli,vi �=vk−1

wi Pi,k−1 + wk−1

⎞
⎠ ∞∑

l=0

(
Pk−1,k−1

)l

=
(
1

2
cR(l)

k + 1

)
α = α + βR(l)

k .

Substituting (17.4) we obtain

R(l)
k−1 = α + αβ

nL∑
i=k

β i−k
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Fig. 17.1 A simple line with
m outside vertices linked to
one node on the line

n1 n2 n3 nj .. nk .. nL

ν1

ν2

νm

= α + α

nL∑
i=k

β i−k+1

= α

nL∑
i=k−1

β i−(k−1).

�

17.3.1 Connecting the Simple Line with Multiple Links from
Outside Nodes to One Node in the Line

Consider a simple line graph that has L vertices. Suppose vertex n j , j ∈ [1, L] is
linked to m outside vertices as shown in Fig. 17.1. It can be seen that if j = 1, then
the node is said to be an authority node.

Lemma 17.4 The traditional PageRank of a node ei belonging to the line in a system
containing a simple line with m outside nodes linking to one node j in the line when
using uniform weight vector �u can be expressed as

R(t)
i =

nL−i∑
k=0

ck + bi j = 1 − cnL−i+1

1 − c
+ bi j

bi j =
{
mc j−i+1, if i ≤ j

0, if i > j

(17.5)

where m ≥ 1 and nL is the number of nodes in the line. The new nodes each have
rank 1.

A proof of this lemma can be referred to our previous work in [5]. For the lazy
PageRank, below is the theorem which describes similar behaviours for nodes in
Fig. 17.1.

Theorem 17.1 The lazy PageRank of a node ei belonging to the line in a system
containing a simple line with m outside nodes linking to one node j in the line when
uniform weight vector �uG can be expressed as
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R(l)
i = α

nL∑
k=i

βk−i + bi j = α

[
1 − βnL−i+1

1 − β

]
+ bi j

bi j =
{
mαβ j−i+1, if i ≤ j

0, if i > j

(17.6)

where α = 2/(2 − c), m ≥ 1 and nL is the number of nodes in the line. The new
nodes each has rank α.

Proof The proof of the lazy PageRank of the nodes on the line follows directly from
Lemma 17.3. We only need to show that the m outside nodes linking to node e j on
the line add bi j = mαβ j−i+1 for i ≤ j .

Proving by induction, let m = 1. Then bi j = αβ j−i+1, and this is true for one
outside node linking to e j . Now assume that it holds for arbitrary number of nodes
m = k,

bi j (k) = αβ j−i+1 + · · · + αβ j−i+1︸ ︷︷ ︸
k times

= kαβ j−i+1.

For m = k + 1,

bi j (k + 1) = bi j (k) + αβ j−i+1 = kαβ j−i+1 + αβ j−i+1

= (k + 1)αβ j−i+1.

Lastly, the PageRank of them outside nodes follows from Proposition 17.2. Thus
each has PageRank α = 2/(2 − c). �

17.3.2 Connecting a Simple Line with Multiple Links from
Multiple Outside Nodes to the Line

Assume that the nodes n1, n2, · · · , nL−1, nL on the line are linked to outside nodes
m1,m2, · · · ,mL−1,mL respectively, where m j ≥ 0 (the number of outside nodes
linked to node j on the simple line) as shown in the Fig. 17.2. The traditional PageR-
ank for such general network for m j ≥ 0 is given in the next theorem. The proof can
also be obtained in [5].

Fig. 17.2 A simple line with
outside vertices linked to
each vertex on the line

n1 n2 n3 n4 n5 .. .. nL

m1 m2 m3 m4 m5 .. .. mL
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Theorem 17.2 The PageRank of a node ei belonging to the line in a system contain-
ing a simple line with multiple outside nodes, m1,m2, · · · ,mi , . . . ,mL linking to
every nodes n1, n2, · · · , ni , . . . , nL in that order respectively in the line when using
uniform weight vector �u can be written as

R(t)
i = 1 − cnL−i+1

1 − c
+

nL∑
j=i

m j c
j−i+1. (17.7)

The outside nodes each have rank 1.

The corresponding theorem for lazy PageRank for the same graph-structure is
given below.

Theorem 17.3 The lazy PageRank �R(l) of a node ei belonging to the line in a system
containing a simple line with multiple outside nodes m1,m2, . . . ,mL linking to every
nodes n1, n2, . . . , nL in that order respectively can be expressed as

R(l)
i = α

nL∑
j=i

β j−i +
nL∑
j=i

m jαβ j−i+1 (17.8)

where α = 2/(2 − c). The outside nodes each has rank α.

Proof By induction, let’s take only one node, say nL . It is true to write

R(l)
L = α

L∑
j=L

β j−L +
L∑

j=L

m jαβ j−L+1 = α + mLαβ.

Suppose that it holds for any node k in the line, then

R(l)
k = α

nL∑
j=k

β j−k +
nL∑
j=k

m jαβ j−k+1.

We need to show that it holds for node k − 1. That is

R(l)
k−1 = α + βR(l)

k + mk−1αβ.

Substituting for R(l)
k we obtain

R(l)
k−1 = α + β

⎡
⎣α

nL∑
j=k

β j−k +
nL∑
j=k

m jαβ j−k+1

⎤
⎦ + mk−1αβ
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Fig. 17.3 A simple line with
two links from the line to
two outside nodes

n1 n2 n3 nj .. nk .. nL

e1 e2

= α + αβ

nL∑
j=k

β j−k + β

nL∑
j=k

m jαβ j−k+1 + mk−1αβ

= α + α

nL∑
j=k

β j−(k−1) +
nL∑
j=k

m jαβ j−(k−1)+1 + mk−1αβ

= α

nL∑
j=k−1

β j−(k−1) +
nL∑

j=k−1

m jβ
j−(k−1)+1.

Finally, using Proposition 17.2, the outside nodes each has rank α. �

17.3.3 Connecting the Simple Line with Two Links from the
Line to Two Outside Nodes

Suppose we consider a graph where two nodes in the line link to two outside nodes
as in Fig. 17.3. A formulation (see [5] for the proof) below describes the traditional
PageRank for the nodes.

Theorem 17.4 The traditional PageRank R(t)
i of a node ei belonging to the line in

a system containing a simple line with two outside nodes, e1 and e2, whose links are
from node j and k, j < k, respectively in the line when using uniform weight vector
�u can be expressed as

R(t)
i =

nL∑
m=i

cm−i = 1 − cnL−i+1

1 − c
, for i ≥ k, (17.9)

R(t)
i =

k∑
m=i+1

cm−i−1 + 1

2

nL∑
m=k

cm−i

= 2 − ck−i
(
1 + cnL−k+1

)
2(1 − c)

, for j ≤ i < k, (17.10)



402 P. S. Biganda et al.

R(t)
i =

j∑
m=i+1

cm−i−1 + 1

2

k−1∑
m= j

cm−i + 1

4

nL∑
m=k

cm−i , for i < j

= 4 − ck−i − c j−i
(
2 + cnL− j+1

)
4(1 − c)

, (17.11)

where nL is the number of nodes in the line. The PageRank of the new nodes e1 and
e2 are respectively,

R(t)
e1 = 1 + 1

2
c

(
1 − ck− j

1 − c

)
+ 1

4
ck− j+1

(
1 − cnL−k+1

1 − c

)
(17.12)

and

R(t)
e2 = 1 + 1

2
c

(
1 − cnL−k+1

1 − c

)
. (17.13)

On the other hand, the following describes the lazy PageRank for the same graph-
structure.

Theorem 17.5 The lazy PageRank R(l)
i of a node ei belonging to the line in a system

containing a simple line with two outside nodes, e1 and e2, whose links are from node
j and k, j < k, respectively in the line when using uniform weight vector �u can be
expressed as

R(l)
i = α

nL∑
m=i

βm−i = α

[
1 − βnL−i+1

1 − β

]
, for i ≥ k, (17.14)

R(l)
i = α

k∑
m=i+1

βm−i−1 + α

2

nL∑
m=k

βm−i , for j ≤ i < k, (17.15)

R(l)
i = α

j∑
m=i+1

βm−i−1 + α

2

k−1∑
m= j

βm−i + α

4

nL∑
m=k

βm−i , for i < j, (17.16)

where nL is the number of nodes in the line. The lazy PageRank of the new nodes e1
and e2 are respectively,

R(l)
e1 = α + α

2

k∑
m= j+1

βm− j + α

4

nL∑
m=k

βm− j+1 (17.17)

and

R(l)
e2 = α + α

2

nL∑
m=k

βm−k+1. (17.18)
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Proof The lazy PageRank of a node ei , for i ≥ k follows from Lemma 17.3. Hence,
(17.14) is proved similarly to the said lemma.

For j ≤ i < k, the expected number of hits to node ei in a lazy random walk
starting from all nodes between j and k on the simple line is given by the first term
of (17.15), i.e

α

k∑
m=i+1

βm−i−1.

The second term of the (17.15) represents the expected number of hits to node ei
starting from all nodes k, k + 1, . . . , nL−1, nL , i.e

α

2

nL∑
m=k

βm−i ,

where the 1/2 before the summation symbol accounts for the number of outgoing
edges at node k. Hence, by Definition 17.3, the PageRank R(l)

i of node ei is the
expected number of hits to ei if we do multiple lazy random walks starting in every
node on the line for which j ≤ i < k is true. This is then given by adding the two
terms above which gives (17.15).

Similarly, the lazy PageRank of node ei , for i < j in the simple line is the sum
of all the expected number of hits to ei in lazy random walk starting from all nodes
i + 1, i + 2, . . . , nL . That is

R(l)
i = α

j∑
m=i+1

βm−i−1 + α

2

k−1∑
m= j

βm−i + α

4

nL∑
m=k

βm−i , for i < j,

where the first term is the expected number of hits to ei starting from all nodes
between i and j , the second is the expected number of hits to ei starting from nodes
j to k − 1 and the third term is the expected number of hits to ei starting from node
k to nL in the line. The quarter multiplied to the third term caters for the number of
outgoing edges at j and k positions in the line.

Finally, to get the PageRanks R(l)
e1 and R(l)

e2 we consider all lazy randomwalks to hit

e1 and e2, respectively. UsingDefinition 17.3, we have R(l)
e1 =

(
1 + 1

4cR
(l)
j

)
α,where

R(l)
j = α

∑k
m= j+1 βm− j−1 + α

2

∑nL
m=k βm− j .Upon substitution and simplificationwe

get the desired result

R(l)
e1 = α + α

2

k∑
m= j+1

βm− j + α

4

nL∑
m=k

βm− j+1.

Similarly, the PageRank R(l)
e2 is given by R(l)

e2 =
(
1 + 1

4cR
(l)
k

)
α, where

R(l)
k = α

∑nL
m=k βm−k . If we substitute and simplify we get R(l)

e2 = α +
α
2

∑nL
m=k βm−k+1. �
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17.4 Changes in Traditional and Lazy PageRanks When
Connecting the Simple Line with Two Links from the
Line to Two Complete Graphs

Consider a network S in which a simple line SL is connected to two complete graphs
SG1 and SG2 such that S = SL ∪ SG1 ∪ SG2 . We assume that the subgraphs SG1 and
SG2 each is linked to nodes j and k respectively as shown in Fig. 17.4. Then we will
describe the two variants of PageRank for the nodes in the given network. But first we
give two necessary previous results regarding traditional PageRank for a complete
graph by Engström and Silvestrov [9].

Lemma 17.5 The diagonal element ad of the inverse (I − cA�
G)−1 of the complete

graph with n nodes is

ad = (n − 1) − c(n − 2)

(n − 1) − c(n − 2) − c2
. (17.19)

The non diagonal elements ai j can be written as

ai j = c

(n − 1) − c(n − 2) − c2
. (17.20)

A proof of this result can be referred to [9]. Similarly, for a lazy PageRank, the
diagonal element ad of the inverse (I − βA�

G)−1 of the complete graph with n nodes
is

ad = (n − 1) − β(n − 2)

(n − 1) − β(n − 2) − β2
(17.21)

and

ai j = β

(n − 1) − β(n − 2) − β2
(17.22)

for non diagonal elements ai j , where β = c/(2 − c).

Theorem 17.6 Given a complete graph with n > 1 nodes, PageRank �R(t) before
normalization can be written as

R(t)
i = 1

1 − c
. (17.23)

The proof of this result can also be referred to [9]. The following theorem describes
the relationship between traditional and lazy PageRanks for a complete graph.

Theorem 17.7 Given a complete graph with n > 1 nodes, the PageRanks �R(t) and
�R(l) before normalization are the same and equals to

R(t)
i = R(l)

i = 1

1 − c
. (17.24)
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n1 n2 n3 nj .. nk .. nL

ng11 ng21

ng12 nG1

ng13 ..

ng22 nG2

ng23 ..

Fig. 17.4 A simple line with two links from the line to two complete graphs

Proof Using Definition 17.2 where the system SG is the complete graph, the tradi-
tional PageRank �R(t) = (I − cA�

G)−1n�uG is a vector whose elements are identical.
From Theorem 17.6, the i th element is expressed as R(t)

i = 1
1−c .

Similarly, using Lemma 17.1, the lazy PageRank of a complete graph with n > 1
nodes is given by �R(l) = α

(
I − βA�

G

)−1
n�uG . Analogously,

(
I − βA�

G

)−1
n�uG is the

vector whose elements are equal to 1/(1 − β). Hence R(l)
i = α

1−β
= 1

1−c since α =
2/(2 − c) and β = c/(2 − c). �

Now, we describe the PageRanks of the system given in Fig. 17.4 as follows.

Theorem 17.8 Let S be a system made up of three systems: a simple line SL with
nL nodes, two complete graphs, SG1 and SG2 , with nG1 and nG2 nodes, respectively.
We add two links from nodes j and k, j < k in the line to nodes g j and gk in the first
and second complete graph, respectively. Assuming uniform weight vector �u, we get
the PageRank R(t)

L ,i , where SG = SG1 ∪ SG2 , for the nodes in the line after the new

links, R(t)
G1,i

for the nodes in the first complete graph SG1 and R(t)
G2,i

for the nodes in
the second complete graph SG2 as:

R(t)
L ,i =

nL∑
m=i

cm−i = 1 − cnL−i+1

1 − c
, for i ≥ k, (17.25)

R(t)
L ,i =

k∑
m=i+1

cm−i−1 + 1

2

nL∑
m=k

cm−i , for j ≤ i < k

= 2 − ck−i
(
1 + cnL−k+1

)
2(1 − c)

, for j ≤ i < k, (17.26)

R(t)
L ,i =

j∑
m=i+1

cm−i−1 + 1

2

k−1∑
m= j

cm−i + 1

4

nL∑
m=k

cm−i , for i < j

= 4 − ck−i − c j−i
(
2 + cnL− j+1

)
4(1 − c)

, (17.27)
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where nL is the number of nodes in the line. The traditional PageRank of the nodes
in the complete graphs are given by

R(t)
G2,gk

= c
2

(
1−cnL−k+1

1−c

) (
(nG2−1)−c(nG2−2)

(nG2−1)−c(nG2−2)−c2

)
+ 1

1−c

(17.28)

R(t)
G2,i

=
(
c2(1−cnL−k+1)

2(1−c)

) (
1

(nG2−1)−c(nG2−2)−c2

)
+ 1

1−c

(17.29)

R(t)
G1,g j

=
[
2c−ck− j+1−cnL− j+2

4(1−c)

] [
(nG1−1)−c(nG1−2)

(nG1−1)−c(nG1−2)−c2

]
+ 1

1−c

(17.30)

R(t)
G1,i

=
[
2c2−ck− j+2−cnL− j+3

4(1−c)

] [
1

(nG1−1)−c(nG1−2)−c2

]
+ 1

1−c

(17.31)

where R(t)
G1,g j

is the traditional PageRank for the node in the complete graph SG1

linked by the line and R(t)
G1,i

is the traditional PageRank of the other nodes in SG1 .

Similarly, R(t)
G2,gk

is the traditional PageRank for the node in the complete graph SG2

linked by the line and R(t)
G2,i

is the traditional PageRank of the other nodes in SG2 .

For the proof of this theorem, one is advised to refer to our previous work [5].
Correspondingly, the next theorem describes the lazy PageRank for the same network
structure.

Theorem 17.9 Let S be a system made up of three systems: a simple line SL with
nL nodes, two complete graphs, SG1 and SG2 , with nG1 and nG2 nodes, respectively.
We add two links from nodes j and k, j < k in the line, to nodes g j and gk in SG1

and SG2 , respectively. Assuming uniform weight vector �u, we get the following lazy
PageRanks: R(l)

L ,i for the nodes in the line after the new links, R(l)
G1,i

for the nodes in

the first complete graph SG1 and R(l)
G2,i

for the nodes in the second complete graph
SG2 as:

R(l)
L ,i = α

nL∑
m=i

βm−i = α

[
1 − βnL−i+1

1 − β

]
, for i ≥ k, (17.32)

R(l)
L ,i = α

k∑
m=i+1

βm−i−1 + α

2

nL∑
m=k

βm−i , for j ≤ i < k, (17.33)

R(l)
L ,i = α

j∑
m=i+1

βm−i−1 + α

2

k−1∑
m= j

βm−i + α

4

nL∑
m=k

βm−i , for i < j, (17.34)
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where nL is the number of nodes in the line. The lazy PageRank of the nodes in the
complete graphs are given by

R(l)
G2,gk

= αβ

2

[
1 − βnL−k+1

1 − β

]
(17.35)

·
[

(nG2 − 1) − β(nG2 − 2)

(nG2 − 1) − β(nG2 − 2) − β2

]
+ 1

1 − c

R(l)
G2,i

= αβ2

2

[
(1 − βnL−k+1)

(1 − β)

]
(17.36)

·
[

1

(nG2 − 1) − β(nG2 − 2) − β2

]
+ 1

1 − c

R(l)
G1,g j

= αβ

2

⎡
⎣ k∑

m= j+1

βm− j−1 + 1

2

nL∑
m=k

βm− j

⎤
⎦ (17.37)

·
[

(nG1 − 1) − β(nG1 − 2)

(nG1 − 1) − β(nG1 − 2) − β2

]
+ 1

1 − c

R(l)
G1,i

= αβ2

2

⎡
⎣ k∑

m= j+1

βm− j−1 + 1

2

nL∑
m=k

βm− j

⎤
⎦ (17.38)

·
[

1

(nG1 − 1) − β(nG1 − 2) − β2

]
+ 1

1 − c

where R(l)
G1,g j

is the lazy PageRank for the node in the complete graph SG1 linked by

the line and R(l)
G1,i

is the lazy PageRank of the other nodes in SG1 . Similarly, R
(l)
G2,gk

is the lazy PageRank for the node in the complete graph SG2 linked by the line and
R(l)
G2,i

is the lazy PageRank of the other nodes in SG2 . Note that α = 2/(2 − c) and
β = αc/2.

Proof Let use the blockwise inversion Lemma 17.2 to find the inverse of (I − βA�
G),

expressed as (I − βA�
G) =

[
B C
D E

]
, where the sizes of the matrices are given as

B : nL × nL , C : nL × nG , D : nG × nL and B : nG × nG , for nG = nG1 + nG2 . We

write the inverse as (I − βA�
G)−1 =

[
Binv Cinv

Dinv Einv

]
, where by Lemma 17.2, Binv =

(B − CE−1D)−1 = B−1, Cinv = −B−1CE−1 = O, since C consists of zero entries,
Dinv = −E−1DB−1 and Einv = E−1.

We know that matrices B and E are invertible. Therefore
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B−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β β2 · · · β j−1

2 · · · βk−2

2
βk−1

4 · · · βnL−1

4

0 1 β · · · β j−2

2 · · · βk−3

2
βk−2

4 · · · βnL−2

4
...

. . .
...

...
...

...
...

1 β · · · βk− j

2 · · · βnL− j

2
. . .

...
...

1 · · · βnL−k

...
...

. . . β

0 0 · · · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and E−1 =
[
Einv
1 O
O Einv

2

]
, where E1 and E2 are weighted adjacency matrices corre-

sponding to complete graphs SG1 and SG2 , respectively. SupposeE1 of size nG1 × nG1

takes the form

E1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 a1 a1 · · · a1
a1 1 a1 · · · a1
a1 a1

. . .
...

...
...

. . . a1
a1 a1 · · · a1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where a1 = −β/(nG1 − 1). Then from (17.21) and (17.22),

Einv
1 = E−1

1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ad k1 k1 · · · k1
k1 ad k1 · · · k1
k1 k1

. . .
...

...
...

. . . k1
k1 k1 · · · a1 ad

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where ad = 1 − (nG1 − 1)a1k1 and k1 = β

(nG1−1)−β(nG1−2)−β2 . Substituting for a1 and
k1 in ad , we get

ad = (nG1 − 1) − (nG1 − 2)β

(nG1 − 1) − β(nG1 − 2) − β2
.

In a similar way, we obtain E−1
2 as a square matrix of size nG2 × nG2 whose diagonal

element is bd and off diagonal element is k2, where bd = (nG2−1)−(nG2−2)β
(nG2−1)−β(nG2−2)−β2 and

k2 = β

(nG2−1)−β(nG2−2)−β2 .

Now, we compute Dinv as Dinv = −E−1DB−1. Since DB−1 can be expressed
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DB−1 = −1

2
β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1 β/2 · · · · · βnL− j

0 · · · 0 · · · · · 0
...

...
...

0 0 1 β · · · βnL−k

...
... 0 · · · 0
...

...

0 · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then, the inverse of D is given by

D−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1
2k1β

1
4adβ

2 · · · 1
4adβ

nL−k · · · 1
4adβ

nL− j

0 · · · 0 1
2k1β

1
4k1β

2 · · · 1
4k1β

nL− j · · · 1
4k1β

nL− j

...
...

...
...

0 · · · 0 1
2k1β

1
4k1β

2 · · · 1
4k1β

nL−k · · · 1
4k1β

nL− j

0 · · · 0 0 0 · · · 1
2bdβ · · · 1

2bdβ
nL−k

0 · · · 0 0 0 · · · 1
2k2β · · · 1

2k2β
nL−k

...
...

...

0 · · · 0 0 0 · · · 1
2k2β · · · 1

2k2β
nL−k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where k1, k2, ad and bd are as defined above. Since

E−1 =
[
E−1
1 O
O E−1

2

]
,

then (I − βA�
G)−1 is known. One need only to sum across the rows and multiply by

α to obtain the lazy PageRank of each node. This ends the proof. �

17.4.1 A Comparison of Traditional PageRank and Lazy
PageRank for the Line Connected with Complete
Graphs

In this subsection, we present the ranking behaviour of both non-normalized tradi-
tional PageRank and lazy PageRank for the simple line connected with two complete
graphs as in Fig. 17.4. We do this by looking at the ranks as a function of c. We con-
sider arbitrary characteristic of the graph, i.e., a graph with nG1 = nG2 = 5, nL = 7,
j = 3 and k = 5.
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Fig. 17.5 �R of the node on
the line linking to one of the
complete graphs as a
function of c

Fig. 17.6 �R of a node in the
complete graph linked from
the line as a function of c

Specifically, we are interested in the PageRank on the node nk on the simple line,
ng21 and any other node in the complete graph, see Fig. 17.4 for further details. In
such cases we wish to provide a comparison for the two types of PageRank.

Figure17.5 indicates the variation of the two variants of PageRank for node nk .
Results reveals that as c approaches 0.99, a lazy random walk has higher expected
number of visits than traditional random walk if multiple random walks are per-
formed, starting in every node once. Figure17.6 presents a plot of Rng21

against c.
The findings show that at about c = 0.80, both traditional and lazy PageRanks seem
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Fig. 17.7 �R of the other
nodes in the complete graph
not linked directly from the
line as a function of c

to be the same rank. This suggests that if one takes into account the lazy random
walk of surfers in a complete graph, such consideration might not yield any differ-
ence as compared to traditional random walk, particularly when c is small (≤ 0.25)
and higher (≥ 0.80), whereas, in Fig. 17.7, no substantial difference is observed for
c ≤ 0.5. In general, for complete graphs traditional and lazy PageRanks have quite
slight difference in numerical rank values (Figs. 17.6 and 17.7).

17.5 Conclusions

In this article, we have derived explicit formulae and compare the two variants of
PageRank. We started with the derivation of the formulae using non-normalized
PageRank technique for both traditional and lazy PageRanks for a line of nodes
connected to complete graphs. Thereafter, we tackled how the variants of PageRank
differ as a function of damping factor, c. To achieve this, we compared ranks at three
locations on the graph, that is, a node located on a line, a node on a complete graph
linked to a line and anode solely contained in a complete graph.Wehaveobserved that
a lazy random walk spend longer time on a node in a line than traditional random
walk. Whereas, for any node which is part of the complete graph, the difference
between the two random walks is insignificant.
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Chapter 18
Continuous Approximations of Discrete
Choice Models Using Point Process
Theory

Hannes Malmberg and Ola Hössjer

Abstract We analyze continuous approximations of discrete choice models with a
large number of options. We start with a discrete choice model where agents choose
between different options, and where each option is defined by a characteristic vector
and a utility level. For each option, the characteristic vector and the utility level are
random and jointly dependent. We analyze the optimal choice, which we define as
the characteristic vector of the option with the highest utility level. This optimal
choice is a random variable. The continuous approximation of the discrete choice
model is the distributional limit of this random variable as the number of offers
tends to infinity. We use point process theory and extreme value theory to derive an
analytic expression for the continuous approximation, and show that this can be done
for a range of distributional assumptions. We illustrate the theory by applying it to
commuting data. We also extend the initial results by showing how the theory works
when characteristics belong to an infinite-dimensional space, and by proposing a
setup which allows us to further relax our distributional assumptions.
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18.1 Introduction

There is a long tradition in economics to use random utility theory to study discrete
choices such as the choice of mode of transportation. Early contributions are Luce
[12] and Mcfadden [15]. Over time, random utility theory has been extended to
encompassmore functional forms, distributional assumptions, and applications (Ben-
Akiva and Lerman [2], Anderson et al. [1], Train [20]). The theory posits that agents
maximize utility, but that utility is random from the econometrician’s point of view.
Utility is expressed as a random variable

Ui = f (Xi ) + εi i = 1, . . . , n,

where Ui is the utility of option i , Xi are random variables that describe the char-
acteristics of option i , f (Xi ) is the deterministic component of utility, and εi are
independently and identically distributed random variables. The agent chooses the
option with the highest utility.

Insofar each option has distinct characteristics, we can equivalently view this as
a choice over the characteristics Xi . We write X [n:n] for the Xi corresponding to the
largest Ui . This is a random variable taking values in the set {X1, . . . , Xn} ⊆ Ω ,
where Ω is a general characteristics space.

We are interested in a continuous approximation to the discrete choice problem
when the number of options is large, and we define the approximation as the distribu-
tional limit of the law of X [n:n] as n → ∞. A continuous approximation takes an offer
distribution densityΛ, a deterministic utility component f (·), and the distribution of
the random utility component εi , as inputs. The output is a probability distribution
of choices over Ω .

The theory is relevant in situations where agents face discrete choices and a
large number of options. For example, the choice of residential location in a city
is a discrete choice as agents only buy one residence. This makes a random utility
approach natural. On the other hand, the number of potential residential locations is
large. In this case, it can be useful to approximate the discrete choice process with a
continuous probability distribution over space.

We approach the problem by interpreting the collection of characteristics-utility
pairs (X1,U1), . . . , (Xn,Un) as the realizations of a point process ξn on the Cartesian
product Ω × R of the characteristics space and the utility space. With this interpre-
tation, the best choice X [n:n] is a function of ξn . More details on point process theory
can be found, for instance, in Cox and Isham [4] and Jacobsen [9]. More specifi-
cally, we can build on the results in point process theory presented in Resnick [17]
to derive sharp results on the limiting behavior of X [n:n]. In particular, we show
that a monotone transformation of the underlying point process ξn converges to a
Poisson process on Ω × R and we derive the limiting behavior of X [n:n] using con-
tinuity properties of the mapping from ξn to X [n:n]. We show that there is a tractable
continuous approximation for a range of distributional assumptions.
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After our theoretical result, we illustrate our theory with an empirical example
taken fromBurke and Brown [3] who analyze commuter walking distances.We show
that our theory predicts that walking distances are gamma-distributed and verify that
this prediction is confirmed by the data. In the discussion section, we also propose an
extension which would allow us to analyze the asymptotic behavior under an even
wider range of distributional assumptions.

In Sect. 18.2 we outline the model environment. In Sect. 18.3, we provide the
necessary theoretical background on point processes. Section18.4 derives the lim-
iting behavior of our point processes and use this to derive the limiting behavior of
choice probabilities. Section18.5 outlines the empirical application and other appli-
cations, whereas Sect. 18.6 proposes an extension to encompass a wider range of
distributional assumptions. Section18.7 concludes.

The paper is similar in aim to Malmberg and Hössjer [14]. However, they used
asymptotic properties of deterministic point processes in order to analyze random
utilities bymethods developed in the literature on random supmeasures (see O’Brien
et al. [16], Resnick and Roy [18], and Stoev and Taqqu [19]). The novel approach
in this paper is to analyze the problem using random point process theory instead,
and this method allows for a mathematically simpler formulation than the one used
in Malmberg and Hössjer [14]. Since we analyze the values X associated with the
maximumU , the paper also connects to the theory of concomitants of extremes (see
Ledford and Tawn [11]). The theory proposed in the extension section also relates
to conditional extreme value theory, which is discussed in Heffernan and Tawn [8].

In this paper, we illustrate our theory using commuting patterns. Earlier work
on random choice models with an infinite number of options has also been used to
model distance dependence in international trade (Kapiarz et al. [10]). Even though
the motivation for our setup comes from random choice theory, the theory has also
been used inmachine learning byMaddison et al. [13],who usemethods inMalmberg
and Hössjer [14] to derive a new way of sampling from a posterior distribution in
problems of Bayesian statistics.

18.2 Model Environment

18.2.1 Model Setup and Assumptions

Consider a sequence of independent and identically distributed pairs of random
variables {(Xi ,Ui )}∞i=1, where Xi ∈ Ω and Ui ∈ R, and where Ω is a complete,
separable, metric space.

Here Xi gives the characteristics of the choice i and Ω is the characteristic space.
In case of residential choice, we might have Ω ⊆ R

2, where Xi gives the location
of choice i . In industrial organization, Ω ⊂ R

n might denote a multidimensional
product characteristics vector, and Xi is the characteristics of a particular good. It
aids intuition to think of Ω as a subset of Euclidean space, but the analysis is done
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for the general case of a complete, separable, metric space. This means that the setup
can be used to analyze cases where choice options are functions, for example choices
of continuous consumption paths over finite intervals when the valuation is random
from the econometrician’s perspective.

We defineUn:i as the i th order statistic increasing order of {U1, . . . ,Un}. For each
n, we define the characteristic X [n:i] to be the X -value (the concomitant) associated
with Un:i for a sample of size n.

We are interested in the limiting probability distribution of the characteristics of
the optimal choice X [n:n], and to this end, we study the asymptotic behavior of the
sequence of probability measures

Cn(·) = P
(
X [n:n] ∈ ·) . (18.1)

The distribution of (X,U ) is

P((X,U ) ∈ A × B) =
∫

A
μ(x; B)dΛ(x),

where FX = Λ is the marginal distribution of X over Ω , and μ(x; ·) is the regular
conditional probability measure of Ui given Xi = x .1 The interpretation here is that
the characteristics of offers are distributed according to Λ. For example, Λ gives the
distribution of potential dwellings over space in the case of residential choice, or the
distribution of products over the characteristic space in case of industrial organization
applications. For each offer, there is a distribution of utility μ(x; ·) depending on the
characteristics x . We make the following assumption on μ:

Assumption 1 For the collection μ = {μ(x; ·); x ∈ Ω}, there exists a function

p : Ω → (0,∞), (18.2)

and sequences an > 0, bn , independent of x , and a distribution function Gα with
α ∈ R, such that

μ(x; (−∞, anu + bn])n → Gα(u)p(x) (18.3)

as n → ∞, where Gα is a distribution function of one of the following three forms:

Gα(u) =
⎧
⎨

⎩

exp(−(−u)−α I (u < 0)), α < 0,
exp(− exp(−u)), α = 0,
I (u > 0) exp(−u−α), α > 0,

and I (·) is the indicator function.
The assumption above essentially asserts that all μ(x; ·) belong to the domain of at-
traction of the same extreme value distribution, indexed by α, and that their limiting

1In terms of the example in the introduction, Λ corresponds to the law of the random variables Xi ,
and μ(x; ·) corresponds to the law of the random variable f (Xi ) + εi |Xi = x .
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relative sizes can be described by the one dimensional parameter p(x). The function
p(x) captures the deterministic “quality” inherent in characteristics x , which deter-
mines the limiting behavior of offer quality. The following example makes it clear
in what sense p(x) captures a deterministic component of utility.

Example 18.1 Assume there is a function h(x) such that μ(x; ·) is given by an
exponential distribution shifted h(x) to the right. Formally, let μ(x; ·) be the law of
a random variable h(x) + ε where ε ∼ Exp(1).

This collection of distributions satisfiesAssumption 1when p(x) = eh(x), an = 1,
bn = log(n), and α = 0. Equation (18.3) follows from

μ(x; (−∞, bn + anu])n = (1 − exp(−u − h(x) − log n))n

→ exp(− exp(−u)p(x)),
= G0(u)p(x).

(18.4)

The distributional assumption is not vacuous. Below is a class of distributions which
does not satisfy Assumption 1.

Example 18.2 Suppose there exists a non-constant function h(x) such that μ(x; ·)
is the law of a normal distribution with mean h(x) and variance 1.

Let F ∼ N (0, 1) and assumewithout loss of generality that there exists an x0 ∈ Ω

such that h(x0) = 0, and find an, bn such that Fn (an y + bn) converges to a non-
degenerate distribution function G(y). Extreme value theory means that the normal-
ization constants for a normal distribution satisfies an → 0 and bn → ∞, and we
know that the limiting distribution function G(·) is of Gumbel type α = 0 (Resnick
[17]).

But this means that Fn(an y + bn − h(x)) converges to 0 if h(x) > 0, as

lim
n→∞ Fn(an y + bn − h(x)) = lim

n→∞ Fn

[
an

(
y − h(x)

an

)
+ bn)

]

≤ lim
n→∞ Fn

[
an

(
y − h(x)

aN

)
+ bn)

]

= G

(
y − h(x)

aN

)

for any sufficiently large N . Let N → ∞ and we obtain the conclusion. As the limit
is 0, we need p(x) = ∞ which violates that p(x) < ∞. On the other hand, we can
use an analogous reasoning to conclude that Fn(an y + bn − h(x)) converges to 1 if
h(x) < 0, so that p(x) = 0. This violates p(x) > 0.

We conclude that a non-constant function h(x) is not consistent with Assump-
tion 1.

It limits the theory that the traditional normal regression structure does not satisfy
Assumption 1. The reason is that the normal distribution is too thin-tailed. Formally,
the condition for when the linear regression formulation works is whether the limit
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lim
u→∞

P(U + h(x1) > u)

P(U + h(x2) > u)

exists and is not 0 or ∞ when h(x1) 	= h(x2). This condition holds when U is
exponentially distributed but notwhenU is normally distributed.WhenU is normally
distributed, the limit is∞ forh(x1) > h(x2) and0 forh(x1) < h(x2). InSect. 18.6,we
propose an extension which would allow us to analyze normal regression functions.

18.2.2 Point Process Formulation and Strategy

The sequence {(Xi ,Ui )}ni=1 can be viewed as a random collection of points inΩ × R,
and can be described as a sequence of point processes ξn . We will show that after a
suitable transformation, this sequence of point processes ξn converges to a Poisson
point process ξ in a sense which will be formalized later. As

Cn(A) = P(X [n:n] ∈ A) = P

(

sup
i :Xi∈A

Ui > sup
i :Xi /∈A

Ui

)

is a functional on our point process ξn , the problem of finding limn→∞ Cn reduces to
determine whether this functional is continuous. In this case, we can use the limiting
point process ξ to calculate our results.

We will start with an introduction to point processes – in particular sufficient
conditions for convergence. After this, we will apply the point process machinery
to our setup, and characterize the limit of our point process. Once this is done, we
will define random fields taking point processes as inputs, and derive the asymptotic
behavior of Cn from continuity properties of these random fields.

18.3 Background on Point Processes and Convergence
Results

This section contains background results and a notational machinery for point pro-
cesses. See Chapter 3 of Resnick [17] for a more detailed treatment.

Throughout this discussion, the generic point process will take values in a locally
compact set E , with an associated σ -algebra E. For the purpose of our discussion,
E will be a subset of Ω × R, and we assume that E = B(E) is the Borel σ -algebra.
A point mass is a set function, defined by

δz(F) =
{
1, if z ∈ F ,
0, if z /∈ F,
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where F ⊆ E , F ∈ E. A point measure is a measurem(·) on E such that there exists
a countable collections of points {zk} ⊆ E and numbers {wk} ≥ 0, such that

m(·) =
∑

zk

wkδzk (·).

We will confine our attention to the case wk ≡ 1. Let MP(E) be the set of point
measures on E , and let it have the minimal σ -algebra which makes

{m ∈ MP(E) : m(F) ∈ B}

measurable for all F ∈ E, B ∈ B(R) where m(F) is the point measure m evaluated
at the set F and B(R) is the Borel σ -algebra on R. We define a point process to be
a random element ofMP(E).

If N is an arbitrary point process, we define the Laplace transform ψ associated
with N as

ψN ( f ) = E
(
exp

{− ∫
E f (x)N (dx)

})

= ∫
MP (E)

exp
{− ∫

E f (x)m(dx)
}
PN (dm).

(18.5)

Here PN is a probability measure over the set MP(E) which corresponds to the
distribution of N . Moreover, the class of functions f for which we are interested in
ψN is usually the continuous non-negative functions on E with a compact support.
We write C+

K (E) to denote this set.

Definition 18.1 A sequence of point processes Nn , n ≥ 0, converges in a point
process sense to N0, written Nn ⇒p N0, if

ψNn ( f ) → ψN0( f )

for all f ∈ C+
K (E).

We use the notation=⇒ for weak convergence of vector valued random variables
in Euclidean space or on Ω , in contrast to ⇒p for point process convergence.

Definition 18.2 Let E be a metric space. We call F ⊆ E relatively compact if its
closure F̄ in E is compact.

Definition 18.3 Let μ be a measure on a metric space X. We say that a sequence of
measures μn converges vaguely to μ, written

μn ⇒v μ,

if
μn(F) → μ(F)

for all relatively compact F withμ(∂F) = 0, where ∂F is the boundary of the set F .
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Definition 18.4 For a point process N , the Laplace functional associated with N is
defined by

ΨN ( f ) = E
[
exp(−N ( f ))

]

where N ( f ) = ∑
x∈N f (x).

It is known from point process theory that the Laplace functional uniquely defines
a point process. Thus, the Laplace functional can be used to define a Poisson process
and derive its properties (see, for example, Resnick [17], p. 130).

Definition 18.5 A Poisson process with intensity measure μ is a point process de-
fined by the Laplace functional

ΨN ( f ) = e− ∫
E (1−e− f (x))dμ(x).

Proposition 18.1 For any F ∈ E, and any non-negative integer k, a Poisson process
satisfies

P(N (F) = k) =
{
e−μ(F)(μ(F))k/k!, if μ(F) < ∞,

0, if μ(F) = ∞,

and that for any k ≥ 1, if F1, . . . , Fk are mutually disjoint sets in E, then {N (Fi )}
are independent random variables.

Our main theorem will also depend on the following proposition which is a mod-
ification of a result presented in the proof of a more extensive Proposition 3.21 in
Resnick [17].

Proposition 18.2 For each n, suppose {Zn, j : 1 ≤ j ≤ n} are independent and iden-
tically distributed (i.i.d.) random variables on E and that

nP(Zn,1 ∈ ·) ⇒v μ.

where μ is a measure on E. Then

Nn =
n∑

j=1

δZn, j ⇒p N

where N is a Poisson random measure on E with intensity μ.

Proof This proof is essentially equivalent to the first half of the proof of Proposition
3.21 in Resnick [17]. We use that convergence in point measures is equivalent to
convergence in Laplace functionals. Indeed, pick an arbitrary f ∈ C+

K (E), with a
compact support F ⊆ E . Then:
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ψNn ( f ) = E exp {−Nn( f )}
= E exp

{
−∑n

j=1 f (Zn, j )
}

= (
E exp{− f (Zn,1)}

)n

=
(
1 −

∫
E(1−e− f (z))nP[Zn,1∈dz]

n

)n

=
(
1 −

∫
F(1−e− f (z))nP[Zn,1∈dz]

n

)n

→ e− ∫
F (1−e− f (z))dμ(z)

= e− ∫
E (1−e− f (z))dμ(z)

= ψN ( f ),

(18.6)

where the convergence step is obtained from the vague convergence of nP[Zn,1 ∈ ·].
Indeed, vague convergence is equivalent to weak convergence on every compact
subspace. As 1 − e− f (z) continuous and bounded, and weak convergence means that
the integral of every continuous and bounded function converges, we get the desired
result. Thus,

Nn ⇒p N

as required. �
Before giving the full proof of Theorem 18.1, we state and prove the following

lemma:

Lemma 18.1 If (X × U,Λ × ν) is a product measure space, where X and U are
two complete, separable metric spaces, and if F ⊆ X × U satisfies

(Λ × ν)(∂F) = 0,

then
ν(∂Fx ) = 0 Λ − a.e.

where Fx = {u ∈ U : (x, u) ∈ F} is the cross-section of F at the point x, and a.e.
refers to convergence almost everywhere (or almost surely).

Proof We note that if we write

B = {(x, u) ∈ X × U : u ∈ ∂Fx },

we have
B ⊆ ∂F

(as each ball around a point (x, u) ∈ B contains both a point within and outside F).
Thus, as

(Λ × ν)(B) =
∫

X

ν(∂Fx )dΛ(x) ≤ (Λ × ν)(∂F) = 0,

we get that ν(∂Fx ) = 0 Λ-almost everywhere. �
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18.4 Limiting Behavior of Choice Probabilities

In this section, we use point process theory to derive the limit of the choice proba-
bilities Cn(·) = P(X [n:n] ∈ ·). We first show that the point process generated by the
collection {(Xi ,Ui )} converges to a Poisson process after a suitable transformation.
We then use this fact to calculate the limit of Cn .

18.4.1 Convergence of Point Process

We consider a sequence of transformations

gn(u) = (u − bn)/an

where an, bn are chosen to ensure extreme value convergence for all x ∈ Ω as in
(18.3) of Assumption 1.

Let δ(x,u) denote a one point distribution at (x, u) and define the extremal marked
point process (cf. Resnick [17])

ξn =
n∑

i=1

δ(Xi ,gn(Ui )) (18.7)

for a sample of size n. This is a point process on (Ω × R,B(Ω × R)).
We are now ready to formulate our first main result. It states that ξn converges to a

Poisson processwith a product intensitymeasurewhichmultiplies the initialmeasure
Λ on Ω with p(x). Before stating this result, we first introduce a few concepts.

Definition 18.6 A random variable X stochastically dominates a random variable
Y if

P(X ≥ x) ≥ P(Y ≥ x) ∀x ∈ R.

We also say that a measure μX on the real numbers dominates μY if they are laws
of random variables X and Y and X stochastically dominates Y .

Theorem 18.1 Let Gα and p be as in Assumption 1. Suppose that for each compact
subset A ⊆ Ω , the function p : Ω → (0,∞) is bounded on that subset, and that
μ(x0, ·), for some x0 ∈ Ω is an upper bound for all {μ(x; ·); x ∈ A} in the sense of
stochastic dominance. Then

ξn ⇒p ξ,

as n → ∞ where ξn is given by (18.7), and ξ is a Poisson random measure on
(Ω × R,B(Ω × R)) with mean intensity Λp × να , where
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Λp(A) =
∫

A
p(x)Λ(dx)

for all relatively compact A ∈ B(Ω) and

να([u,∞)) = − log(Gα(u)) =
⎧
⎨

⎩

I (u < 0)(−u)−α, if α < 0 and u < 0 ,

exp(−u), if α = 0,
u−α, if α > 0 and u > 0.

Proof Note that we have Gα(u) = 0 for α > 0 and u ≤ 0. Whenever α > 0, it is
therefore implicit in the proof that u > 0. Using the proof of Proposition 18.2, it
suffices to show that

nP((X1, gn(U1)) ∈ ·) ⇒v Λp × να,

i.e. that
nP((X1, gn(U1)) ∈ F) → (Λp × να)(F),

for all F ⊆ Ω × R which are relatively compact sets with respect toB(Ω × R) and
satisfy

(Λp × να)(∂F) = 0.

Henceforth, let F be an arbitrary set with these properties. Now, we note that

nP((X1, gn(U1)) ∈ F) =
∫

Ω

nP(gn(U1) ∈ Fx |X1 = x)dΛ(x),

where Fx is the x-cross section of F . Thus, our task is to show that

∫

Ω

nP(gn(U1) ∈ Fx |X1 = x)dΛ(x) →
∫

Ω

p(x)να(Fx)dΛ(x).

We do this first by showing that the integrand converges almost everywhere to the
desired quantity, and then we show that the sequence of integrands satisfy regularity
conditions allowing us to infer convergence of integrals from pointwise convergence.

We observe that for every x ,

nP(gn(U1) ∈ ·|X1 = x) ⇒v p(x)να(·). (18.8)

Indeed, it is true that for any sequence xn such that

(xn)
n → a, (18.9)

we have
n(1 − xn) → − log(a). (18.10)
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Thus, letting xn = P(gn(U1) < u|X1 = x) and using Assumption 1, we obtain

nP(gn(U1) ≥ u|X1 = x) → −p(x) log(Gα(u)) = p(x)να ([u,∞)) . (18.11)

In order to deduce (18.8) from (18.11), we can note that if we have a measure γ

with
γ ([u,∞)) < +∞

for some u, then vague convergence of γn to γ is equivalent to

γn([u,∞)) → γ ([u,∞)), (18.12)

for all u such that γ ({u}) = 0. This can be seen by noting that if (18.12) is true, then
the sequence Pnu(·) = γn(· ∩ [u,∞))/γn([u,∞))of probabilitymeasures converges
weakly for all continuity points u of γ ([u,∞)) to Pu(·) = γ (· ∩ [u,∞))/γ [u,∞)),
and hence Pnu(F) → Pu(F) for all such u, from which (18.8) follows.

Now, using the previous lemma, we know that

να(∂Fx) = 0 Λp − a.e.,

which means that
p(x)να(∂Fx) = 0 Λp − a.e.

as p(x) > 0 implies that p(x)να and να are equivalent for all x ∈ Ω . Thus, we can
use (18.8) to conclude that

nP(gn(U1) ∈ Fx |X1 = x) → p(x)να(Fx) Λp − a.e.

Therefore, we have established pointwise convergence of the integrand almost ev-
erywhere.

Now,we seek to show that nP(gn(U1) ∈ Fx |X1 = x) is uniformly bounded over n
andΩ to ensure that pointwise convergence almost everywhere implies convergence
in integrals. To do so, we want to define a maximal random variable which dominates
nP(gn(U1) ∈ Fx |X1 = x) for all n and x .

We write
πΩ : (x, u) �→ x

and
πR : (x, u) �→ u

for the projection on Ω and R respectively. In this case, we know that πΩ(F) and
πR(F) are relatively compact sets of Ω and R respectively. By the assumptions in
the theorem, there is an x0(F) ∈ Ω that maximizes p on πΩ(F). This means that
a random variable Ū (F) with measure μ(x0(F); ·) dominates U1|X1 = x stochas-
tically for all x ∈ πΩ(F). Write p̄(F) = p(x0(F)) for the corresponding p-value
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of p. Furthermore, we can define u as the smallest u-value attained on the whole
set πR(F), which again is finite by the assumption of F being relatively compact.
Combining these two definitions gives us

nP(gn(U1) ∈ Fx |X1 = x) ≤ nP(gn(U1) ≥ u|X1 = x)
≤ nP(gn(Ū (F)) ≥ u|X1 = x)
= nP(gn(Ū (F)) ≥ u)
→ p̄(F)να([u,∞))

< +∞,

which means that nP(gn(U1) ∈ Fx |X1 = x) is uniformly bounded. Using the
bounded convergence theorem, we get

nP((X1, gn(U1)) ∈ F) = ∫
Ω
nP(gn(U1) ∈ Fx |X1 = x)dΛ(x)

→ ∫
Ω

να(Fx )p(x)dΛ(x)
= (Λp × να)(F),

which completes the proof. �

This theorem is similar to Proposition 3.21 in Resnick [17]. There are two dif-
ferences. First, in [17], the author considers ξn = ∑

j=1 δ( jn−1,gn(Uj )) where {Uj } is
a sequence of independent and identically distributed random variables. Thus, the
difference is that we model the first coordinate as a random variable, and let the
distribution of the second coordinate depend on this first coordinate. Furthermore,
we let X take values in a general separable metric space. The differences add some
technicalities to the proof, but they turn out not to affect the main result.

We can also note that the distributional assumptions ensure that the optimal choice
and the maximum value are independent in the limit, which means that we can write
the product measure as a direct product of measures on the two spaces. See Fosgerau
et al. [6] for a general discussion of probability distributions having this invariance
property.

The assumption that p is bounded on compact sets is for example satisfied when-
ever p is continuous. The assumption that we can construct a stochastically dominat-
ing random variable for each compact set is a technical assumption required to apply
the bounded convergence theorem.As a counterexamplewhen the theorem fails, con-
sider themodel of Example 18.1,withΛ having a uniformdistribution onΩ = [0, 1),
h(x) = − log(x) and p(x) = x−1 for x 	= 0, whereas h(0) = 0 and p(0) = 1. In or-
der to have convergence ξn(F) =⇒ ξ(F) for relatively compact sets F ∈ E with
μ(∂F) = 0, for which the closure of the projection of F onto Ω does not contain 0,
we take an = 1 and bn = log(n). On the other hand, if F = [0, δ] × [−K , K ], it can
be seen that ξn(F) tends to infinity with probability 1 as n → ∞, for any values of
0 < δ < 1 and K > 0.
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18.4.2 Convergence of Choice Probability Distribution

Recall that our task is to study the limiting behavior of Cn as defined in (18.1). The
key to connect this limit to point processes is the observation that because gn is strictly
increasing for all n: Cn(A) = P(X [n:n] ∈ A) = P(Mξn (A) > Mξn (A

c)) for all A ∈
B(Ω), withMξn a randomfield defined asMξn (A) = max

Xi∈A
1≤i≤n

gn(Ui ), A ∈ B(Ω),where

B(Ω) is the Borel sigma algebra over Ω , and ξn is the point process from (18.7).
This formulation of the argmax-measure Cn in terms of random fields defined over
point processes allows us to generalize the notion of argmax to the limiting case
where the number of offers goes to infinity. We will study the limiting behavior of
finite-dimensional distributions of Mξn . This will allow us to calculate the limit of
Cn .

The mean intensityΛp × να in Theorem 18.1 is a non-finite measure defined over
Ω × R. However, if Λ(Ω) < ∞, it is possible to write Ω × R as a countable union
of sets with finite measures Λp × να . Hence, the realization of the point process ξ

has countably infinite many points almost surely. If we write {X∞
i ,U∞

i }∞i=1 for the
sequence of random variables giving the locations of these points, we can define,
Mξ (A) = max

i;X∞
i ∈A

U∞
i as a random field giving the highest variable attained for a

given set A ⊆ Ω , and C(A) = P(Mξ (A) > Mξ (Ac)) for the probability that A will
contain the largest U -element.

Proposition 18.3 If Λp(Ω) < ∞, we have C(A) = Λp(A)/Λp(Ω).

Proof Suppose first that Λp(Ac) = 0 or Λp(A) = 0. In this case, it is clear that we
have C(A) = 1 or C(A) = 0 respectively as required by the formula for A ∈ B(Ω).
Indeed, using the convention that the supremum of an empty set is minus infinity,
if Λp(A) = 0, then Mξ (A) = −∞ almost surely. As Mξ (Ac) > −∞ almost surely,
we will get C(A) = 0. A similar reasoning applies to Ac.

Furthermore, since ξ is a Poisson random measure with mean measure Λp × να ,
we note that if Λp(Ω) < ∞ we have that Mξ (A) and Mξ (Ac) are two independent,
proper random variables with

P(Mξ (A) ≤ y) = P(ξ(A × (y,∞)) = 0) = e−Λp(A)να((y,∞)) (18.13)

P(Mξ (A
c) ≤ y) = P(ξ(Ac × (y,∞)) = 0) = e−Λp(Ac)να((y,∞)). (18.14)

Standard calculations yield

P(Mξ (A) > Mξ (A
c)) = Λp(A)

Λp(A) + Λp(Ac)
= Λp(A)/Λp(Ω)

and the proof is complete. �

From this result, we automatically get that C is a probability measure as it is a
normalized version of Λp which is a finite measure.



18 Continuous Approximations of Discrete Choice Models … 427

In order to prove that Cn converges weakly, we need some additional results. We
use that

ν1 � μ1 and ν2 � μ2 ⇒ ν1 × ν2 � μ1 × μ2, (18.15)

where � means “absolutely continuous with respect to”.
We will also use that if ξn are point processes, ξ is a Poisson process, and

ξn ⇒p ξ,

then
P(ξn(F) = 0) → P(ξ(F) = 0) (18.16)

for all F ∈ E with μ(∂F) = 0, where μ is the intensity measure of ξ .
After these preliminaries, we are ready to state our second main result:

Theorem 18.2 If Λp(Ω) < ∞, we have

Cn(·) ⇒ C(·) = Λp(·)
Λp(Ω)

. (18.17)

Proof Assume we have A with C(∂A) = 0. We aim to prove that Cn(A) → C(A).
By Proposition 18.3,C andΛp are equivalent, andwe haveΛp(∂A) = 0. Noting that
the result is clearly true whenever Λp(A) = 0 or Λp(Ac) = 0, we can assume that
both are different from 0. By (18.13) and (18.14), this means that (Mξ (A), Mξ (Ac))

is a proper random variable on R2, and we will show that (Mξn (A), Mξn (A
c)) jointly

converge weakly to this random variable. Indeed, consider

P(Mξn (A) ≤ x1, Mξn (A
c) ≤ x2) = P (ξn(A × (x1,∞) ∪ Ac × (x2,∞)) = 0)

→ P (ξ(A × (x1,∞) ∪ Ac × (x2,∞)) = 0)
= P(Mξ (A) ≤ x1, Mξ (Ac) ≤ x2)
= FMξ (A),Mξ (Ac)(x1, x2).

The convergence step uses (18.16) and that

∂
(
A × (x1,∞) ∪ Ac × (x2,∞)

) ⊂ ∂A × (min(x1, x2),∞) ∪ A × ({x1} ∪ {x2})

and we have (Λp × να)(∂A × (min(x1, x2),∞) ∪ A × ({x1} ∪ {x2})) = 0 since
Λp(∂A) = 0 and να({x1} ∪ {x2}) = 0, where Λp × να is the intensity measure of
ξ . Hence

(Mξn (A), Mξn (A
c)) ⇒ (Mξ (A), Mξ (A

c)).

Defining
D = {(a, b) ∈ R

2 : a > b}
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and using (18.15), with ν1 ∼ Mξ (A), ν2 ∼ Mξ (Ac), and μ1, μ2 Lebesgue measure
in R, to conclude that

P((Mξ (A), Mξ (A
c)) ∈ ∂D) = 0

we get
Cn(A) = P(Mξn (A) > Mξn (A

c))

= P((Mξn (A), Mξn (A
c)) ∈ D)

→ P((Mξ (A), Mξ (Ac)) ∈ D)

= C(A)

and the proof is complete. �

18.5 Examples

Here we provide a few examples to illustrate our theory.

Example 18.3 (Exponential and mixture models) This example extends Example
18.1, and calculates the argmax distribution associated with that example. Consider
a family of models where the regular conditional probability measure μ(x; ·) is
indexed by α, and where for each A ∈ B(R) we have

μα(x; A) =

⎧
⎪⎪⎨

⎪⎪⎩

P
(
(2 × 1{V1<p(x)} − 1)(1 − V−1/α

2 ) ∈ A
)

, α < 0,

P (log(p(x)/V1) ∈ A) , α = 0,

P
(
(2 × 1{V1<p(x)} − 1)V−1/α

2 ∈ A
)

, α > 0,

where V1, V2 ∼ U (0, 1) are two independent and uniformly distributed random vari-
ables on (0, 1). A bit less formal, we may write

μα(x) ∼
⎧
⎨

⎩

−(1 − p(x))Beta(1,−α) + p(x)Beta(1,−α), α < 0,
Exp(log(p(x)), 1), α = 0,
−(1 − p(x))Pareto(α, 1) + p(x)Pareto(α, 1), α > 0,

whereBeta(a, b) refers to a beta distributionwith densityCxa−1(1 − x)b−1 on (0, 1),
Exp(a, b) is a shifted exponential distribution with location parameter a and scale
parameter b, having distribution function 1 − e−(x−a)/b for x ≥ a, Pareto(α, b) is a
Pareto distribution with shape parameter α and scale parameter b, corresponding to
a distribution function 1 − (x/b)−α for x ≥ b. We let x0 ∈ Ω be an arbitrary point
for which p(x0) = 1.

We have chosen the parameter α for μα(x, ·) in a way so that (18.3) holds, with
an = n1/α , bn = 1 when α < 0, an = 1, bn = log(n) when α = 0, and an = n1/α ,
bn = 0 when α > 0.When α = 0, this follows from tail properties of the exponential
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distribution, as shown in Example 18.1. For α 	= 0, we have that

μα(x; (−∞, bn + anu])n = {1 − p(x)(1 − μα(x0; (−∞, bn + anu]))}n
→ Gα(u)p(x).

In the last step we used that μα(x0, (−∞, bn + anu])n → Gα(u). This is a well
known fact of univariate extreme value theory (see for instance Fisher and Tippett
[5], Gnedenko [7], and Chapter 1 in Resnick [17]), and it follows from tail properties
of the beta and Pareto distributions.

This means that for all these three families of distribution, the choice probabilities
will give us a tilted distribution p × Λwhich modifies the underlyingΛ-distribution
with p. This effect captures that areas with a high deterministic utility component p
are relatively more likely to get chosen. For the case α = 0 this effect means that if
utility is given byUi = h(xi ) + εi , where εi ∼ Exp(1), then the choice distribution
is an exponential tilt eh(x)Λ(dx) of the original distribution.

Example 18.4 (An example from the commuting literature) If we focus on α = 0 in
the previous example, we have an interesting special case. Suppose that a person has
received a new job, and potential residencies are distributed uniformly on B(0, R),
a disk in R

2. There is a linear cost c||x || associated with travelling to a location
x ∈ B(0, R), and there is an exponentially distributed random component associated
with each residence. This means that utility is given byU |X = x ∼ Exp(−c||x ||, 1),
where ||x || is the Euclidean distance from the origin. This gives a very simple model
to think about commuting choices. In this case, Λ has a uniform distribution on

B(0, R), and p(x) = Exp(−c||x ||). Thus, we get C(A) =
∫
A e

−c||x ||dx
∫
B(0,R)

e−c||x ||dx
. The

particular direction of commuting is often not as interesting as the distribution of
distances. The probability that we commute less than r is given by

C({x : ||x || ≤ r}) =
∫ r
0 se−csds

∫ R
0 se−csds

,

which we recognize as a truncated Gamma(2, 1/c)-distribution.

There is suggestive evidence that travel patterns follow a gamma distribution over
short distances. One good source is Burke and Brown [3], which documents the
distances people walk for transport purposes to different destinations. The data was
collected from a survey in Brisbane. Even though the investigators not onlymeasured
the time walked to work, the situation is somewhat analogous to the example above
in that walking is a roughly linear cost. They found that the distance walked for
one-leg trips is very close to a gamma distribution with shape parameter α and scale
parameter β, and the same for the total distance walked from train stations to end
destinations (see Figs. 18.1 and 18.2).

We see that the estimated parameters (α̂, β̂) are (1.42, 0.66) and (2.13, 0.37)
respectively. The estimated shape parameter is close to but not exactly 2 as would be
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Fig. 18.1 Histogram over walking distances to final destination and fitted Gamma(α, β)-dis-
tribution (Burke and Brown [3])

Fig. 18.2 Histogram over walking distances from train station to final destination and fitted
Gamma(α, β)-distribution (Burke and Brown, [3])

predicted by the theory. The focus in the paper is to test the distributional assumption
rather than to find the exact parameters, and the authors report an Anderson-Darling
test but no standard errors on the parameter estimates. Hence, we do not know if α

is significantly different from 2.
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Example 18.5 (The logit model: a special case) Let Λ be a uniform distribution on
the finite support {x1, . . . , xn0}. As in Example 18.1, let utilities be given by

Uj |X j = x ∼ Exp(h(x), 1). (18.18)

This corresponds to p(xi ) = eh(xi ) and we get

C({xi }) = eh(xi )

∑n0
j=1 e

h(x j )
.

This corresponds to the famous logit model from the random choice literature (Mc-
Fadden [15]).

The following is an example where we let Ω be a functional space. This shows
that themethodology can be applied tomore general spaces than subsets of Euclidean
space, and motivates the more general space definition we introduced in Sect. 18.2.

Example 18.6 Let Ω be the space of bounded functions on [0, 1], metrized by the
sup-norm. A function x ∈ Ω describes a continuum of choice characteristics. An
agent values a function x ∈ Ω by sampling k points of [0, 1] according to a density
function g, and valuing them according to their sum and an exponentially distributed
noise term on each observation. In this case X is a random variable taking values in
Ω with law Λ. Algebraically,

U |X = x =
∑k

j=1 x(Tj )

k
+

∑k
j=1 ε j

k
= hk(x) + ε

where Tj are i.i.d. distributed on [0, 1] with density function g, and ε j ∼ Exp(1)
independently.Wewant to find the argmax distribution onΩ .Wewill treat a sequence
of approximations as equalities, and verify ex post that such a treatment is justified.

The random variable ε has a Gamma(k, 1/k) distribution, which means that

F̄ε(z) ≡ 1 − Fε(z) =
k−1∑

m=0

e−kz (kz)
m

m! ∼ e−kz(kz)k−1

(k − 1)! ,

where the ratio of the last two expressions tends to 1 when z gets large. Now, we
use that x is bounded to get y(x) ≤ inf t∈[0,1] x(t) ≤ supt∈[0,1] x(t) ≤ ȳ(x). We write
μ(x; ·) for the law of U |X = x , and approximate the upper tail when u is large:
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1 − μ (x; (−∞, u]) = 1 −
∫ ȳ(x)

y(x)
Fε(u − y)dFhk (x)(y)

=
∫ ȳ(x)

y(x)
F̄ε(u − y)dFhk (x)(y) ∼

∫ ȳ(x)

y(x)

(k(u − y))k−1

(k − 1)! e−k(u−y)dFhk (x)(y)

∼ (ku)k−1

(k − 1)!
∫ ȳ(x)

y(x)
e−k(u−y)dFhk (x)(y) ∼ F̄ε(u)pk(x),

where pk(x) is the moment generating function of Fhk (x) with argument k. We write
ηk(u) = F̄ε(u)pk(x) − (1 − μ (x; (−∞, u])) for the approximation error. Now de-
fine an = 1/k and bn = F̄−1

ε (1/n), which gives us

μ(x; (−∞, anu + bn])n = (
1 − F̄ε

(
u
k + bn

)
pk(x) + ηk

(
u
k + bn

))n

∼ (
1 − F̄ε

(
u
k + bn

)
pk(x)

)n

∼
(
1 − e

−k( u
k +bn)kk−1( u

k +bn)
k−1

(k−1)! pk(x)

)n

∼ (
1 − pk(x)e−u F̄ε(bn)

)n

=
(
1 − pk (x)e−u

n

)n

→ (e−e−u
)pk (x) = G0(u)pk (x)

as n → ∞. It follows that (18.3) holds with α = 0 and p(x) replaced by pk(x),
provided our approximations are justified. In particular, we need lim

n→∞nF̄ε(u/k +
bn) = e−u and lim

n→∞n × ηk
(
u
k + bn

) = 0. The first of these two equations follows

from

limn→∞ nF̄ε(u/k + bn) = limn→∞ nF̄ε(bn)
∑k−1

m=0 e
−kbn km (u/k+bn)m/m!

∑k−1
m=0 e

−kbn kmbmn /m! e−u

= e−u

as F̄ε(bn) = 1/n, bn → ∞ and u/k is bounded, and for the second equation we use
that

lim
n→∞ nηk (u/k + bn) = lim

n→∞
∣∣n

{
F̄ε(u/k + bn)pk (x) − (1 − μ (x; (−∞, u/k + bn ]))}∣∣

= lim
n→∞

∣
∣n(F̄ε(u/k + bn)

∣
∣

∣
∣∣∣
∣
F̄ε(u/k+bn )pk (x)−

∫ ȳ
y F̄ε(u/k+bn−y)dFhk (x)(y)

F̄ε(u/k+bn )

∣
∣∣∣
∣

= 0.

The first term on the second line is bounded and it can be checked that the second
term converges to zero, and our result follows.

Given that Assumption 1 holds with p(x) replaced by pk(x), we get the argmax
measure

C(A; k) =
∫
A pk(x)dΛ(x)

∫
Ω
pk(x)dΛ(x)

.
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This measure has a nice consistency property when k → ∞. Indeed, by the Law of
Large Numbers, as k → ∞ the probability distribution of hk(x) converges to a point
mass at h(x) = Eg(x) = ∫ 1

0 g(s)x(s)ds, so pk(x) ∼ ekh(x). We define the maximum
value that h attains as

h̄ = sup
h′

{
h′ : Λ(x : h(x) ≤ h′) < 1

}
.

This definition ensures that Aδ = {x ∈ Ω : h(x) > h̄ − δ} has non-zero Λ-measure
for every δ.

Now, this means that lim
k→∞

C(Aδ; k)
C(Ω − A2δ; k) ≥ lim

k→∞
ek(h̄−δ)Λ(Aδ)

ek(h̄−2δ)Λ(Ω − A2δ)
= ∞,

Hence limk→∞ C(Aδ; k) = 1 for all δ > 0.We can interpret this as when k grows, the
choice becomes less random from the point of view of the statistician and the agent
will choose the option x with the highest expected value h(x) with probability 1.

18.6 Extension

We have derived a way to calculate the asymptotic behavior of the best choice Cn =
X [n:n], and have done so for a number of assumptions on the joint distribution of
(Xi ,Ui ) of characteristics and values. However, in order to extend our results to a
wider range of distributional assumptions, we must relax the requirement that X [n:n]
should converge to a non-degenerate distribution. For example, when X and U are
distributed bivariate normally with positive correlation, |X [n:n]| → ∞ almost surely,
whereas for other models, X [n:n] converges to a one-point distribution.

In these cases, it can nevertheless be possible to find a sequence of functions
hn such that hn(X [n:n]) ⇒ C for a non-degenerate random variable C . In this case,

we would have X [n:n]
d≈ h−1

n (C) for large n, where
d≈ means that the two random

variables have approximately the same distribution.
We have done some exploratory studies on this extension, and there are indications

that for a much larger class of distributions than studied in the present paper, it is

possible to find sequences hn and gn such that
n∑

i=1

δ(hn(Xi ),gn(Ui )) ⇒p ξ for some

non-degenerate Poisson process ξ with intensity measure μ on E = Ω × R. The

asymptotic argmax distribution of hn(X [n:n]) is then C(A) =
∫

R

μ(A, dx)

μ(Ω, dx)
FU (dx),

for all A ∈ B(Ω), where U = Mξ (Ω) is the maximum utility of ξ . In particular,
if μ = Λp × ν, this argmax distribution coincides with the one in Theorem 18.2.
We also conjecture that this extension can be connected to the theory of conditional
extreme values, as discussed in Heffernan and Tawn [8].
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18.7 Conclusion

Wehave shown that point process theory can be used to derive continuous approxima-
tions of discrete choice problems with a large number of options. When the random
component of utility is exponentially distributed, or a convex linear combination
of beta or Pareto distributions, we have derived analytical solutions to the approx-
imation problem. Potential applications involve commuting choices, and we have
provided suggestive evidence that some observed commuting flows distributions can
be justified within our framework.

However, there is still a need to generalize the theory to allow for more flexible
distributional assumptions. Essentially, functional formsoutside our assumeddomain
might lead to all choices asymptotically diverging, or asymptotically collapsing on
one point. For example, if the tail of utility is too thin, the distribution of choices
will converge to the set of values with the highest deterministic utility value. In
other cases, Cn(A) → 0 for any compact A, and the choice probabilities will drift
to infinity. In Sect. 18.6, we have outlined a potential extension of that would allow
for a more flexible set of assumptions on the distribution of utilities. The idea is to
renormalize the characteristics space to analyze the rate at which choice probabilities
converge or diverge as the number of points n → ∞.
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Chapter 19
Nonlinear Dynamics Simulations
of Microbial Ecological Processes: Model,
Diagnostic Parameters of Deterministic
Chaos, and Sensitivity Analysis

Boris Faybishenko, Fred Molz and Deborah Agarwal

Abstract Modeling of ecological processes is demonstrated using a newly devel-
oped nonlinear dynamics model of microbial populations, consisting of a 4-variable
system of coupled ordinary differential equations. The system also includes a mod-
ified version of the Monod kinetics equation. The model is designed to simulate the
temporal behavior of a microbiological system containing a nutrient, two feeding
microbes and a microbe predator. Three types of modeling scenarios were numeri-
cally simulated to assess the instability caused by (a) variations of the nutrient flux
into the system, with fixed initial microbial concentrations and parameters, (b) vari-
ations in initial conditions, with fixed other parameters, and (c) variations in selected
parameters. A modeling framework, using the high-level statistical computing lan-
guagesMATLABandR,was developed to conduct the time series analysis in the time
domain and phase space. In the time domain, the Hurst exponent, the information
measure–Shannon’s entropy, and the time delay of temporal oscillations of nutrient
and microbe concentrations were calculated. In the phase domain, we calculated a
set of diagnostic criteria of deterministic chaos: global and local embedding dimen-
sions, correlation dimension, information dimension, and a spectrum of Lyapunov
exponents. The time series data are used to plot the phase space attractors to express
the dependence between the system’s state parameters, i.e., microbe concentrations,
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and pseudo-phase space attractors, in which the attractor axes are used to compare
the observations from a single time series, which are separated by the time delay.
Like classical Lorenz or Rossler systems of equations, which generate a deterministic
chaotic behavior for a certain range of input parameters, the developed mathemat-
ical model generates a deterministic chaotic behavior for a particular set of input
parameters. Even a slight variation of the system’s input data might result in vastly
different predictions of the temporal oscillations of the system. As the nutrient influx
increases, the system exhibits a sharp transition from a steady state to determinis-
tic chaotic to quasi-periodic and again to steady state behavior. For small changes
in initial conditions, resulting attractors are bounded (contrary to that of a random
system), i.e., may represent a ‘sustainable state’ (i.e., resilience) of the ecological
system.

Keywords Nonlinear dynamics · Deterministic chaos · Microbial systems
modeling · Criteria of chaos · Attractor

19.1 Introduction

Although ecological and environmental systems are often considered as either deter-
ministic or stochastic, understanding of their complexity and high-dimensionality
requires an application of a combination of physical, mathematical and computa-
tional techniques, including methods of nonlinear dynamics and deterministic chaos.
It is well known from studies of nonlinear dynamical systems and chaos that even
deterministic systems can appear graphically to be random. For such systems, which
are called deterministic chaotic, the time series is predictable on short time scales,
which then diverge over longer time scales, while the system’s attractor may remain
bounded and predictable. The deterministic chaotic systems are characterized by
high sensitivity to initial conditions and parameters, which is a typical feature of
ecological processes. These ecological processes often exhibit abrupt changes and
oscillations in ecosystem quality and properties, so that the ecological drivers may
generate large responses or thresholds in ecosystem behavior (e.g., [10, 28]). Analy-
sis and predictions of terrestrial and aquatic ecological processes, vitally needed for
environmental management, are complicated due to the simultaneous and competing
effects of multiple factors and processes controlling nonlinear dynamics taking place
at multiple spatial and temporal scales. Sources of complexity affecting predictions
of ecological systems are arising in resource competition theory, epidemiological
theory, environmentally driven population dynamics, climatic predictions, flow and
mass transport through heterogeneousmedia, andmanyothers.Other sources of com-
plexity are associated with uncertainty of monitoring/observations due to insufficient
resolution of measurements, size of monitoring sensors, which are often inconsistent
with the scale of processes and the scale of interest, etc.

For the last∼50 years, progress in investigations of physical phenomena known as
nonlinear dynamics or simply as chaos theory drastically improved our understanding
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of complex systems dynamics in many fields such as chemistry, physics, biology,
geology, hydrology, economics, medicine, neurosciences, psychology, military, and
many others. The study of ecological processes is ultimately related to the concept of
ecological resilience, which has been around for some 30–50 years (e.g., [19–21]).
Some authors define resilience as the time it takes for a system to recover from a
disturbance, which Holling [25] defines as engineering resilience. In contrast, the
amount of disturbance necessary to change the state of an ecosystem is known as
ecological resilience [25]. Consequently, the ecological resilience of a system can be
changed by shifts in the areas surrounding that ecosystem. Sharp transitions between
ecological regimes have been observed in many systems, which are important for
the development of alert systems of ecological systems, and to evaluate the impact
of environmental changes on ecological dynamics [9]).

Many models describing the interactions of ecological populations have been
derived and used for simulations of ecological processes, mostly based on modi-
fications of Lotka–Volterra equations (e.g., [16, 29]). These equations are mainly
based on the assumption of the unlimited nutrient supply into the system and linear
parameters of the competitive Lotka–Volterra equations. The well-known system
of Lotka–Volterra equations, initially developed in the 1920s, was further extended
to include the dynamics of natural populations of predators and prey and a func-
tional response, i.e., the Rosenzweig–McArthur model [34]. An alternative to the
Lotka–Volterra predator-prey model is the Arditi–Ginzburg model to express the
common prey dependent generalization [4], and the validity of prey or ratio depen-
dent models has been further discussed in [3]. It was shown in [23] that population
transitions can take place due to variations in population density, i.e., endogenous
effects, or in the environmental parameters, i.e., exogenous effects, or the effects
of model parameters. The Lotka–Volterra model can be generalized to any number
of species competing against each other. For example, Smale [35] showed that the
Lotka–Volterra system with five or more species (N ≥ 5) can exhibit any asymptotic
behavior, including a fixed point, a limit cycle, a torus or attractors, and Hirsch [24]
showed that competitive Lotka–Volterra systems could not exhibit a limit cycle for
the total number of interacting species N < 3. The competing interaction of micro-
biological components (fluxes, plants, microbes, etc.) and their synergistic and/or
antagonistic feedbacks lead to nonlinearity of microbial systems, and the effects of
nonlinearity are hallmarks of deterministic chaos.

However, research of deterministic chaotic dynamics in biological systems has not
received as much attention as that in electronic, chemical, fluid-mechanical systems,
meteorological studies [37] and hydrological systems [12, 32], and mathematical
models are at an early stage of development [15]. However, this has recently started to
change. For example, in their reviews of the current state of the problem, Faybishenko
and Molz [13] and Molz and Faybishenko [31] concluded that the papers by Becks
et al. [5], Graham et al. [17], and Beninca et al. [8], using experimental studies
and relevant mathematics, provided breakthrough demonstrations that deterministic
chaos is present in relatively simple biochemical systems of an ecological nature.

The objectives of this chapter are: (1) to develop a coupled, nonlinear dynamics
mathematical model, including trophic interactions, to describe microbial processes;
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(2) to carry out simulations to assess the effects of (a) endogenous factors (i.e., the
nutrient flux into the system), (b) exogenous factors (i.e., variations in initial condi-
tions), and (c) model parameters, and (3) to conduct nonlinear dynamics analysis of
simulated time series to assess transitions between steady state, deterministic chaotic
and quasi-periodic modulations of the nutrient and microbial concentrations. As a
motivation for model development, we used the results of experimental investiga-
tions of a nutrient and 3-microbe system performed in a chemostat [5]. The basis
for the development of our mathematical analysis was a model of the nutrient and
2-microbe system formulated in [26].

The rest of the paper is structured as follows: Sect. 19.2 presents a summary of the
model development motivating experiments; Sect. 19.3 includes the development of
the new mathematical model; Sect. 19.4 includes a general description of simulation
methods and time series data analysis in time domain and phase space; Sect. 19.5
presents the results of simulations and data analysis; and Sect. 19.6 gives conclusions
and several directions for future research.

19.2 Model-Motivating Experiments

Graham et al. [17] reported experimental results demonstrating the phenomenon of
chaotic instability in biological nitrification in a controlled laboratory environment.
In this study, the aerobic bioreactors (aerated containers of nutrient solution and
microbes) were filled initially with a mixture of wastewater from a treatment plant
and simulatedwastewater, involving amixture ofmanymicrobes. Themain variables
recorded as a time series were total bacteria, ammonia-oxidizing bacteria (AOB),
nitrite-oxidizing bacteria (NOB), and protozoa, along with effluent concentrations
of nitrate, nitrite and total ammonia. The method of Rosenstein et al. [33] was used
to calculate maximum Lyapunov exponents, which fell roughly in a range from 0.05
to 0.2 d−1. Graham et al. [17] concluded that nitrification is prone to chaotic behavior
because of a fragile AOB-NOB mutualism, i.e., interaction.

Beninca et al. [8] conducted a laboratory experiment over a period of 6.3 years,
which demonstrated chaotic dynamics in a plankton community in a water sample
obtained from the Baltic Sea. This experiment was housed in a cylindrical container
that was 45 cm in diameter, 74 cm high and filled with 90 l of water with a 10 cm
sediment layer at the bottom.Thepredictability of eachdata setwas shown todecrease
with time (essentially lost after 15–30 days), consistent with positive Lyapunov
exponents averaging about 0.058 per day. They were calculated based on 2 methods:
attractor reconstruction using time-delay plots, anddirect calculation of theLyapunov
exponents [22]. It is apparent that when dealing with exponential divergence of
trajectories in phase-space, the dominant and positive Lyapunov exponent does not
have to be large for the phenomenon of chaotic dynamics to occur over time scales
of interest.
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Fig. 19.1 Schematic of
Becks et al. experiments
(modified from [5])

In their particularly detailed experiments, Becks et al. [5–7] studied a microbial
food web in a chemostat. A conceptual model of these experiments is shown in
Fig. 19.1.

The food web was composed of a nutrient source, two bacteria that consumed
nutrient (a rod and a coccus), and a ciliate predator that consumed both bacteria.
The variable driving the system was the food supply that was varied by changing the
dilution rate. The four coupled dependent variables were concentrations of nutrient
(mg/cc) and each of the three microbes (cells/cc). For a fixed set of dilution rates, the
three microbe concentrations were measured at a selected set of approximately daily
time intervals. (Although Becks et al. [5] expressed the time units of days, in this
chapter, we provided time units in both days and hours). Each set of data constituted a
time series of concentrations at discrete times, and deterministic chaos was identified
by using a computerized version of the analytical procedure developed byRosenstein
et al. [33] for calculating the largest Lyapunov exponent. In the chaotic data range,
which averaged a dilution rate of about 0.5 d−1, the dominating Lyapunov exponents
had statistically significant values of about 0.18 d−1. The authors concluded that
classical steady states were observed at D = 0.75 d−1 and D = 0.9 d−1, chaotic
dynamics were observed at D = 0.5 d−1, and periodic dynamics were observed at a
slightly lowerD= 0.45 d−1. The chaotic dynamics observed by Becks et al. [5] took
place under conditions of a constant feeding rate. Therefore, the observed chaotic
dynamics were internal to the system, which may be a type of emergence in phase
space.

19.3 Mathematical Model Development

The model used in the development of our new mathematical model is a 3-equation
model (nutrient plus 2 microbes) developed by Kot et al. [26]. This model is gener-
alized to a 4-variable coupled system of equations to describe nutrient concentration
n(t), rod population r(t), cocci population c(t) and predator population p(t). The
units of the nutrient concentration were mg/cc, while those of the microbe popula-
tions were cell numbers/cc (cells/cc). Thus in order to conserve mass in the resulting
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model, an average microbial mass had to be selected for each microbe type. This
was done based on measured microbe volume averages published by Becks et al. [5],
alongwith an assumed density of 1 g/cc: rmassmr = 1.6E-9mg; cmassmc = 8.2E-9
mg, and p mass mp = 3.2E-6 mg. With these minor differences, the Kot et al. [26]
Eq. (19.1) for a nutrient (mg/cc), a rod (cells/cc), and a predator (cells/cc) would be
written as:

dn

dt
= Dno − μrn

Yrn

[
n(rmr )

Krn + n

]
− Dn

d(rmr )

dt
= μrn

[
n(rmr )

Krn + n

]
− μpr

Ypr

[
(rmr )(pmp)

Kpr + (rmr )

]
− D(rmr )

d(pmp)

dt
= μpr

[
(rmr )(pmp)

Kpr + rmr

]
− D(pmp)

(19.1)

These three equations are identical to those used by Kot et al. [26]. (The Kot
et al. notations S, H, and P are being changed in Eqs. (19.1) to n, rmr and pmp,
respectively.) All the mx terms are mean mass per respective microbe, so r and p
are dimensionless numbers of rods and predators per cc, the microbe concentration
units recorded by Becks et al. [5]. All the other constant terms are maximum specific
growth rates μxx , half saturation constants Kxx and yield coefficients Yxx .

The system of Equations (19.1) for 3 microbes can be extended to include a
2nd nutrient-consuming microbe, a cocci, by adding an equation similar to the 2nd
equation of this system, along with the analogous coupling terms, resulting in the
following system of 4 ordinary differential equations:

dn

dt
= Dno − μrn

Yrn

[
n(rmr )

Krn + n

]
− μcn

Ycn

[
n(cmc)

Kcn + n

]
− Dn

d(rmr )

dt
= μrn

[
n(rmr )

Krn + n

]
− μpr

Ypr

[
(rmr )(pmp)

Kpr + (rmr )

]
− D(rmr )

(19.2)

d(cmc)

dt
= μcn

[
n(cmc)

Kcn + n

]
− μpc

Ypc

[
(cmc)(pmp)

Kpc + (cmc)

]
− D(cmc)

d(pmp)

dt
= μpr

[
(rmr )(pmp)

Kpr + rmr

]
+ μpc

[
(cmc)(pmp)

Kpc + cmc

]
− D(pmp)

Theparameters involved are:maximumspecific growth rates (μxx ), half saturation
constants (Kxx ) and yield coefficients (Yxx ), a total of twelve. Equations (19.2) are
direct generalization of the Kot et al. model [26], and their mathematical validity was
checked by showing that a mass balance was maintained, and when the Kot et al.
[26] initial conditions and parameter values were used, with one microbe dying out,
the results of Kot et al. ([26] Figs. 3 and 6) were reproduced.
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However, the system of Equations (19.2) do not include a term describing the
process of nutrient recycling, which could have occurred in the Becks et al. [5]
experiments. The specific death rate of predators and their biomass recycling to
nutrient are expected to be important, because their unit mass is about 1000 times
greater than that of each feedingmicrobe.Moreover, populations of feedingmicrobes
decrease mainly due to consumption by predators. When predators die, their bodies
simply break down with remains consumed or flushed out of the system. Natural
death and biomass recycling of the feeding microbes is assumed to be negligible
relative to predators, and this was supported by numerical experiments. The specific
death rate for predators and the nutrient recycling terms will be identified in the final
set of Equations (19.10).

As observed in supplemental experiments by Becks et al. [5], in the absence of
predators, r was able to out-compete c for nutrient, and at an identical population
of r and c (4E6 cells/cc), p consumed r over c in the ratio of 4:1. In the absence
of further guidance from the experiments, we decided to incorporate this additional
information into Eq. (19.2) as follows: (a) When r and c are low, p chooses them on
an equal basis even though in general r is preferred over c (assuming that starving
organisms are not choosy), (b) at high r and c, as observed in the supplemental
experiments, p chooses r four times more than c, and (c) in competition for nutrient
with no predators, the cocci would die out first.

A simple way to impose the condition (c) is to set the value of μrn , the maximum
specific growth rate of r on n, equal to kμcn , with k > 1. Then for k sufficiently large,
r will always outcompete c. Incorporating conditions (a) and (b) is more involved,
but it is still straightforward as described below.

Based on the Becks et al. ([5], Fig.1) data, the r and c concentrations are ranging
from about 1E5 cells/cc to 2E6 cells/cc. According to the 2nd and 3rd equations of
the system of Equations (19.2), the respective uptake rates of p on r, expressed as
drp/dt, and p on c, expressed as dcp/dt, are given by

drp
dt

= pmpμprr

Ypr (Kpr + mrr)
dcp
dt

= pmpμpcc

Ypc(Kpc + mcc)

(19.3)

For the minimum values of r and c (∼1E5 cells/cc), assuming drp/dt = dcp/dt,
the system (19.3) yields

pmpμpr (1E5)

Ypr (Kpr + 1E5mr )
= pmpμpc(1E5)

Ypc(Kpc + 1E5mc)
(19.4)
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Assuming that for maximum values of r and c (∼2E6 cells/cc), drp/dt =
4dcp/dt, we obtain:

pmpμpr (2E6)

Ypr (Kpr + 2E6mr )
= 4pmpμpc(2E6)

Ypc(Kpc + 2E6mc)
(19.5)

To achieve the equalities specified in Eqs. (19.4) and (19.5), the numerator and
denominator of drp/dt will need to bemodified, so that the maximum specific growth
rate of p on r will become μpr (m1r + i1), and the denominator will become (Kpr +
m2r + mrr), with parameters m1, i1 and m2. Thus, Eq. (19.3) for drp/dt yields

drp
dt

= pmpμpr (m1r + i1)r

Ypr (Kpr + m2r + mrr)
(19.6)

In Eq. (19.6), m1 is in units of (cells/cc)−1, m2 is in units of mg, and i1 is dimen-
sionless. Equation (19.6) is a new semi-empirical relationship expressing a modified
form of the Monod kinetics equation, partly motivated by experiment, to take into
account a p preference change for r relative to c. Then to satisfy Equations (19.4)
and (19.5), the following conditions must be met:

μpr (1E5m1 + i1)

Ypr (Kpr + 1E5m2 + 1E5mr )
= μpc

Ypc(Kpc + 1E5mc)

μpr (2E6m1 + i1)

Ypr (Kpr + 2E6m2 + 2E6mr )
= 4μpc

Ypc(Kpc + 2E6mc)

(19.7)

The introduced parameters m1 and i1 must satisfy the conditions:
1E5m1 + i1 = 1, and 2E6m1 + i1 = 4, also settingμpr = μpc. These conditions yield
m1 = 1.579E − 6(cells/cc)−1, i1 = 0.8421. The corresponding conditions on m2

are:
Ypr (Kpr + 1E5m2 + 1E5mr ) = Ypc(Kpc + 1E5mc)

Ypr (Kpr + 2E6m2 + 2E6mr ) = Ypc(Kpc + 2E6mc)
(19.8)

If we set Ypr = Ypc and Kpr = Kpc, Eq. (19.8) become:

1E5m2 + 1E5mr = 1E5mc, 2E6m2 + 2E6mr = 2E6mc (19.9)

It can be seen from both relationships that m2 = mc–mr = 8.2E-9 – 1.6E-9 =
6.6E-9 mg. So, Eq. (19.2) adapted to the Becks et al. supplemental experiments after
dividing through by the microbial masses may be written as follows:
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dn

dt
= Dno − μrn

Yrn

[
n(rmr )

Krn + n

]
− μcn

Ycn

[
n(cmc)

Kcn + n

]
− Dn + pmpδp(EF)

dr

dt
= μrn

[
nr

Krn + n

]
− μpr (1.58E-6r + 0.842)

Ypr

[
r(pmp)

Kpr + 6.6E-9r + rmr

]
− Dr

dc

dt
= μcn

[
nc

Kcn + n

]
− μpc

Ypc

[
c(pmp)

Kpc + (cmc)

]
− Dc

dp

dt
= μpr (1.58E-6r + 0.842)

[
p(rmr )

Kpr + 6.6E-9r + rmr

]

+ μpc

[
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(19.10)

In these equations, δp is the specific death rate for predators, which is recycled
to nutrient at the efficiency EF ≤ 1 in the 1st equation of the set (19.10). Equations
(19.10) are also subject to the parameter restraints, resulting from conditions (19.7),
given by:

μrn = kμcn, μpr = μpc

K pr = Kpc, Ypr = Ypc
(19.11)

Because the predators have been made to prefer rods over cocci, the rods are
disadvantaged and would tend to die out. Based on numerical experiments, this is
prevented by setting the k factor in the first of Equations (19.11) to 1.5.

19.4 Model Parameters Used for Simulations

Three types ofmodeling scenarioswere developed and applied to assess the transition
from steady state to quasi-periodic and to deterministic chaotic behavior, with (a)
varying nutrient flux (i.e., endogenous scenarios), (b) varying initial concentrations
(i.e., exogenous scenarios), and (c) varying input model parameters, while other
parameters were fixed.

19.4.1 Scenarios A: Varying Nutrient Flux, with Fixed Initial
Concentrations and Model Parameters

The system of Equations (19.10) was solved subject to a range of initial conditions
and parameters, which were selected in the range of values observed in Becks et al.
experiments [5], as well as with some deviations to assess the performance of the
system of Equations (19.10). In these scenarios, the dilution rateD ranged from 0.35
d−1 to 5 d−1, with the following initial concentrations at t = 0: n = 0.085 mg/cc,
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Table 19.1 Model parameters used for simulations. (Note in Table 19.1: Left column indicates
subscripts used in Eqs. (19.1)–(19.11), and the upper row indicates the variables used in these
formulae.)

Variables μ(h−1/d−1) K (mg/cc) Y m

rn 0.1873/4.4952 0.009 0.4

cn 0.1248/2.9952 0.009 0.4

pr 0.05117/1.228 0.009 0.6

pc 0.05117/1.228 0.009 0.6

r 1.6E-9

c 8.2E-9

p 3.2E-6

r = 4.2E6 cells/cc, c = 1E6 cells/cc, and p = 3E3 cells/cc, with n0 held constant at
0.15 mg/cc, EF = 0.5, δp = 0.09981/d. The other model parameters are listed in Table
19.1.

19.4.2 Scenarios B: Varying Initial Microbial
Concentrations, with Fixed Nutrient Flux and Model
Parameters

The initial concentrations were assigned in the following ranges: r from 2.1E5 to
4.263E6 cells/cc, c from 5E5 to 1.015E6 cells/cc. Simulations were conducted for
the fixed dilution rate of D = 0.4995 d−1, and a slightly increased (compared to
Scenarios A) fixed initial nutrient concentration of n = 0.103 mg/cc.

19.4.3 Scenarios C: Fixed Nutrient Flux and Initial
Conditions, with Varying Model Parameters

In these simulation runs, we changed the values of model parameters of the modified
Monod kinetics equation (Eq. (19.6)) m1 and m2. Note that Eq. (19.6) is a new semi-
empirical relationship expressing a modified form of the Monod kinetics equation,
which takes into account a preference change for r relative to c. In simulations, m1

changed from 1.6E-06 to 2.24E-06 (cells/cc)−1, and m2 changed from 3.96E-09 to
5.94E-09 mg. The other parameters used in Scenarios C remained as those given in
Scenarios A.
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19.5 Methods of Simulations and Data Analysis

19.5.1 Method of Simulations

The system of 4-coupled ordinary differential equations, Eq. (19.10), was solved
using MATLAB software with the application of the solver ODE45. The ODE45
solver implements a Runge–Kutta (RK) algorithm [11]. This algorithm uses a com-
bination of 4th order and 5th order RK formulae to solve the ODE system and make
time-step adjustments to control truncation error. Total accumulated error is of order
Δt4. The length of run times was 8,000h (333 d), and the time steps varied from
0.28 to 8.1h, with the average value of 2.72h. In order to apply the methods of the
time series analysis described in Sect. 19.5.2, the simulated irregular time series was
converted to a regular time series with time steps of 0.5h using the spline function
of MATLAB.

19.5.2 Methods of Time Series Analysis

19.5.2.1 Time Series Analysis in the Time Domain

The detrended fluctuation analysis (DFA) is applied to determine the statistical self-
affinity of a time series signal by means of calculating the scaling exponent or Hurst
exponent. This type of analysis is used to characterize the long memory dependence
of the time series. A system is self-affine if the following relation holds [36, 37]:

Δx(λΔt) = λHΔx(Δt)

where H is the Hurst exponent, i.e., the scaling exponent, 0 < H < 1. For H →
0, the position at any time is independent of the position at any previous time,
and the process may correspond to white noise. As H increases, the dependence
of the position at a given moment of time on the position in the past increases,
implying better predictability of the system behavior. For a quasi-periodic system,
when fluctuations display long-range correlations of a dynamical system far from
equilibrium, the Hurst exponent is approaching 1, and for a time series with severe
instabilities, the DFA shows a breakdown of the long-range correlation behavior,
and the Hurst exponent is decreasing. The Hurst exponent is a characteristic of the
“fractality,” or scaling, in time series.

Correlation (delay) time, τ , is the time between discrete time-series points, when
the relationship between the points practically vanishes. It was determined using the
average mutual information function. This function provides the information learned
about one observation from another one on the average over all measurements [1].
The mutual information function is always I (τ ) ≥ 0. This function determines
the amount of information, in bits, learned about the point P(t + nτ), at the time
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(t + nτ), from the measurements of P(t + (n − 1)τ ), at the time (t + (n − 1)τ ).
The first minimum of the average mutual information function versus τ is used to
determine an optimum correlation time. The selection of τ within a small range
around the first minimum of the mutual information function will not affect the
results of calculations for diagnostic parameters of chaos described below [1].

19.5.3 Time Series Analysis in the Phase Space Domain

Global embedding dimension, DGED , is the dimension of the phase space needed
to unfold the attractor of a nonlinear system from the observed scalar signals in such
a way that the trajectories of the DGED-dimensional attractor no longer cross each
other. The global embedding dimension is determined using a method called false
nearest neighbors (FNN) [1], which is used to determine whether a nearest neighbor
of a certain point in phase space is a true neighbor characterizing a dynamic system
or a false projection caused by a too low dimensional phase space [1, 2]. For a purely
deterministic chaotic system, such as the Lorenz model, the percentage of false
nearest points drops to zero at DGED = 3, and remains zero for higher dimensions,
implying that the attractor is fully unfolded and remains unfolded as the embedding
dimension increases. The value of DGED corresponds to the minimum value of FNN.
In the presence of a random component (noise), the FNN curves do not drop to zero,
and the minimum value of the FNN corresponds to the embedding dimension that is
slightly higher than that for a clean (not noisy) data set.

The local embedding dimension, DL , characterizes how the dynamic system
evolves on a local scale. The DL indicates the number of degrees of freedom govern-
ing the system dynamics, i.e., how many dimensions should be used to predict the
system dynamics [1, 2]. The local embedding dimension, DL , is less than or equal
to the global embedding dimension, DGED .

The correlation dimension, Dcor (also called D2) is a scaling exponent character-
izing a cloud of points in an n-dimensional phase space, and is calculated from [18]
as C(r) ∼ r Dcor or as the slope of log(C(r)) versus log r : Dcor = dlogC(r)/dlogr.

Lyapunov exponents are the most valuable diagnostic parameters of a determin-
istic chaotic system. The Lyapunov exponents are used to assess the sensitivity of a
nonlinear dynamical system to small changes in initial conditions as well as trunca-
tion error and round-off error at the end of each time step in a numerical solution.
All of this affects the stability and asymptotic behavior of nonstationary solutions of
ODEs. The spectrum of Lyapunov exponents is determined by measuring the mean
exponential growth or shrinking of perturbations with respect to a nominal trajec-
tory. Chaotic systems have at least one positive Lyapunov exponent, and the sum of
the spectrum of Lyapunov exponents is negative. Generally, a Lyapunov exponent
indicates how two nearby points in a phase space of a dissipative chaotic system
move exponentially apart in time. The exponentially rapid separation of initially
close points leads to sensitivity of the system to initial conditions. The number of
Lyapunov exponents is equal to the local embedding dimension DL . Each Lyapunov
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exponent gives the rate of expansion or contraction along the coordinates of the phase
space. For a chaotic system, the largest Lyapunov exponent must be positive, which
implies that a line segment in the phase space grows as exp(λi t), while a negative sum
of the spectrum of Lyapunov exponents (

∑
λi < 0) indicates that the phase-space

attractor does not expand indefinitely, but occupies a limited phase-space volume.
Information dimension (Din f ), which is a measure of how the average Shannon

information scales, was computed for different embedding dimensions. As with cal-
culations of Dcor , this approach was used for checking how Din f saturates with
the increase in the embedding dimension: if the slopes converge at the embedding
dimension DGED , then DGED is the correct value, and the convergent value of the
slope is taken as a Din f estimate.

19.6 Modeling Results

19.6.1 Scenarios A

19.6.1.1 Time Domain Analysis

Based on a visual examination of the simulated time series and the following phase
space analysis, we divided the time series patterns into 5 groups (a complete set
of time series graphs is included in SI Appendix A). In plotting these series, the
concentrations were normalized using the following normalization coefficients – for
r: 4.2E6, for c: 5E6, and p: 1E3):

• Group 1: D ranges from 0.35 d−1 to 0.4879 d−1, exhibiting initial oscillations,
which then converge to a stable equilibrium (steady state),

• Group 2: D ranges from 0.488 d−1 to 0.489 d−1, exhibiting deterministic chaotic
oscillations,

• Group 3: D ranges from 0.490 d−1 to 0.510 d−1, with quasi-periodic oscillations
of the nutrients, preys, and the predator,

• Group 4: D ranges from 0.515 d−1 to 0.675 d−1, exhibiting quasi-periodic oscil-
lations of n, p, with dying r and growing c, and

• Group 5: D ≥ 0.7 d−1, exhibiting various forms of converging to the equilibrium.
(A complete set of time series plots is included in SI Appendix A.1)

TheDFAanalysis showed that the temporal patterns and ranges of theHurst exponent
varied differently for time series of n, r, c, and p as a function of D (Fig. 19.2). For
example, the Hurst exponent dropped from 1 to 0.95 for n and c, and from 1 to 0.98
for p, indicating a small amount of a random component in simulated time series, but
H dropped much more significantly–to 0.6–for the r time series. The phase space
analysis described below is consistent with these results.

1Supplementary Information containing 4 Appendices can be found at URL https://goo.gl/xdCtHK

https://goo.gl/xdCtHK
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Fig. 19.2 Hurst exponent versus dilution rate: Black points – Group 1, Red points – Group 2, Green
points – Group 3, Blue points – Group 4, and Light blue points – Group 5

The calculated patterns of Shannon’s entropy are generally similar to those of the
function H vs D, and the correlation between H and the Shannon’s entropy is shown
in Fig. 19.3. Note also from Fig. 19.3 that the entropy fluctuated only slightly for n
(from 9.24 to 9.68) and p (from 9.54 to 9.68), and much more significantly for r
(from 4.68 to 9.68) and c (from 4.56 to 9.68). Table A-1 in SI Appendix A includes
statistical parameters of the calculated Shannon’s entropy.

Figure 19.4 depicts the time series of concentrations of n, r, c, and p for different
nutrient inflow rates, demonstrating that for D from 0.35 d−1 to 0.4879 d−1, after
the initial period of oscillations, the system approaches a stable equilibrium (steady
state). For this range of D, all concentrations are converging to stable values, with
the cocci dying and rods increasing, as it was observed in Becks et al. [5] experi-
ments. When the value of D increased slightly (only 0.02%) to 0.488, the pattern of
concentrations became oscillating, as shown in Fig. 19.4 by a black line.



19 Nonlinear Dynamics Simulations of Microbial Ecological Processes … 451

Fig. 19.3 Relationship between the Hurst exponent and Shannon’s entropy

Figure 19.5 illustrates an initial period of time series oscillations, showing that
the initial oscillations are practically the same for all nutrient inflow rates, indicating
that for the initial period the temporal oscillations of concentrations are not sensitive
to variations of D ranging from 0.35 d−1 to 0.488 d−1.

Table 19.2 presents the results of time lag calculations, which were then used for
calculations of other phase domain parameters. Note the lower values of the time lags
for n and p, which is consistent with lower Global Embedding Dimensions for these
variables (see below a discussion and figures on the Global Embedding Dimension).

19.6.1.2 Phase Space Time Series Analysis

Figure 19.6 illustrates two different types of 3-D phase space attractors: the left
figures demonstrate the attractors converging to a single point for D = 0.4879 d−1,
representing Group 1; and the right figures demonstrates so called strange attractors,
which are typical for a deterministic chaotic system, forD = 0.488 d−1, representing
Group 2. The figure shows the attractors in coordinates (n, p, r), (n, p, c), (n, r, c),
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Fig. 19.4 Time series for different dilution rates, demonstrating that when D changed slightly from
0.4879 d−1 (color lines) to 0.488 d−1 (black line) concentrations began oscillating. (Nutrient inflow
rates are proportional to D, i.e., Dno.)

Fig. 19.5 Time series graphs showing that the initial oscillations are quite similar for all dilution
rates

and (p, r, c). The phase-space strange chaotic 3-D attractors for Group 2 are shown
in Fig. 19.7.
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Fig. 19.6 Comparison of 3–D phase-space attractors for D = 0.4879 d−1 (Group 1)
and D = 0.488 d−1 (Group 2)

Fig. 19.7 3-D phase-space attractors for Group 2 demonstrating strange deterministic chaotic
attractors



454 B. Faybishenko et al.

Table 19.2 Calculated time lags for different values of the dilution rate for Group 2 time series
exhibiting deterministic chaotic behavior. Note: the time lags are given in units of 1

2 h. The graphs
of the mutual information used for calculations of time lags are given in SI Appendix A

D(d−1) N R C P

0.488 71 90 91 59

0.4885 65 87 76 59

0.489 71 95 87 59

0.4895 70 97 80 59

0.49 52 82 80 64

0.495 71 95 86 73

Fig. 19.8 3-D phase-space attractors forGroup 3 demonstrating a quasi-periodic structure of attrac-
tors for D = 0.550.

As the dilution rate increased, the time series became quasi-periodic (see SI
Appendix A), and the shape of the 3D attractors changed, which is demonstrated
in Figure 19.8 for D = 0.55 d−1 (Group 3). Further increase in the nutrient influx
lead to a series of converging attractors shown in Fig. 19.9 – from a simple line for
D = 0.7 d−1 to more complex for D = 2d−1 and D = 3 d−1.
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Fig. 19.9 3-D phase-space attractors for Group 4 demonstrating a converging structure of attractors

Table 19.3 Calculated correlation dimensions for Group 2

D(d−1) n r c p

0.488 2.19 2.04 2.02 2.18

0.4885 2.28 2.29 1.75 2.31

0.489 1.98 1.91 2.02 1.99

0.4895 2.12 2.13 2.13 2.15

Table 19.4 Calculated information dimension (Din f ) for the time series of Group 2, which are
typical for deterministic chaotic behavior

D(d−1) n r c p

0.488 2.876 2.763 2.541 3.011

0.4885 2.781 2.797 2.563 2.859

0.489 2.738 2.693 2.566 2.792

0.4895 2.696 2.617 2.642 2.710

0.49 2.676 2.484 2.535 2.780

0.495 2.565 2.696 2.520 2.571

The time lags calculations were used for the evaluation of the Global Embedding
Dimension (DGED). The resulting plots of the FNN for n and p, which are shown
in SI Appendix B, indicate that the FNN function dropped to 0 at the embedding
dimension of 3, and remained 0 as the embedding dimension increased. However,
for r and c the FNN functions drop significantly at DGED = 3, but did not reach 0,
followed by a gradual drop until DGED = 7 for r and DGED = 4–5 for c.

The values of the embedding dimension and time lags were used for calculation
of the correlation dimension (Dcor ) and information dimension (Din f ). Figure A-6
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Fig. 19.10 Maximum Lyapunov exponents remain positive as the scale increases

in SI Appendix A shows the plots of the correlation dimension versus embedding
dimension, and Table 19.3 provides a summary of calculated correlation dimensions.

Table 19.4 includes the results of calculations of the information dimension (Din f ).
The values for Dcor and Din f are typical for a deterministic chaotic behavior.

Calculations of the spectrum of Lyapunov exponents for all time series of Group 2
were conducted for the local embedding dimension of 3, i.e., 3 Lyapunov exponents
were calculated for each time series. The results of calculations are plotted in SI
Appendix C. All graphs in SI Appendix C show that there is one Lyapunov exponent
equal to 0. Figure 19.10 shows that for all time series the largest Lyapunov exponent
vs scale remained positive, and Fig. 19.11 shows that the sum of Lyapunov exponents
remained negative versus scale, and that for each time series there is one Lyapunov
exponent equal to 0, which are all typical features of deterministic chaos.

The Poincare maps plotted using the extrema of time series are shown in SI
AppendixD.Thesemaps showadefinite structure,which is typical for a deterministic
chaotic system.

Finally, using the time lags for each of the variables n, r, c, and p, given in Table
19.2, we plotted 3D pseudo-phase space attractors shown in Figs. 19.12, 19.13 for
one of the dilution rates D = 0.488 d−1. The resulting strange attractors are well-
defined and bounded, representing phenomena of forced oscillations simulated using
a system of four ODEs.
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Fig. 19.11 The sum of Lyapunov exponents is negative as the scale increases, indicating the strange
attractors are converging

19.6.2 Scenarios B

These calculations were conducted to assess the effects of endogenous factors, i.e.,
small changes in initial conditions of the system of Equations (19.10), by varying
initial values of r(t = 0) and c(t = 0) concentrations, on the time series oscillations.
Figure 19.14 shows that after an initial period of 250h, even minute changes of the
initial concentration of c lead to significant divergence of time series oscillations of
all other variables – n, r, and p, and then to the system stabilization. Figure 19.15
demonstrates that minute changes in the initial concentration of r lead to changes
of the time series pattern from oscillating to converging to stable conditions. Note
that the reference (baseline) time series curves on Figs. 19.14 and 19.15 are shown
in black color.
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Fig. 19.12 2-D and 3-D pseudo-phase space attractors for n (left) and p (right)

19.6.3 Scenarios C

Calculations were carried out to demonstrate the effects of small changes in model
parameters of m1 and m2 of Equations (19.10) on the results of predictions. Figure
19.16 shows that the increase in the value ofm1 by only 5% leads to the transition of
oscillating behavior to the system equilibrium, with the decrease of c and increase
of r.

Figure 19.17 also demonstrates an inverse relation between the concentrations of
n and p, as the value of m1 increases from 5 to 40%. Contrary to the effect of m1,
Fig. 19.17 demonstrates no sensitivity of predictions of n, r, and p during the initial
period of 250 d (6,000h), and a very short period of no sensitivity for c concentration.
Afterward, the temporal patterns of all variables change significantly, with different
ranges of concentrations for rods r and cocci c. As in Figs. 19.14 and 19.15, the
reference (baseline) time series curves are shown in black color.
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Fig. 19.13 2-D and 3-D pseudo-phase space attractors for n (left) and p (right)

19.7 Summary and Conclusions

We developed a mathematical model of microbial population dynamics, involving
the trophic pathways of three microbes (two feeders and one predator) and a nutrient
source, to attempt to simulate the results of the experiments conducted in a chemostat
and reported by Becks et al. [5–7]. To derive a new model, we used as a baseline a
3-variable (2 microbes and nutrient) equation of Kot et al. [26], and converted it to
a 4-variable equation model. The 4 dependent variables of the new model are: n(t),
r(t), c(t) and p(t) – nutrient, rods, cocci and predators, respectively, which are the
functions of time t . The parameters thatweremeasured in theBecks et al. experiments
[5], such as the dilution rates and average mass of the microbes, were utilized in the
new model. One of the important features of the model is taking into account a
possible preference of p for r versus c, and to make r more competitive for nutrient
than c, as well as to recycle some dying p biomass, which was also consistent with
the experimental details. Incorporation of these details led to a system of equations
including a modified version of Monod kinetics. For further details relating the new
model to the biological details of the Becks et al. [5] experiments and the possible
application of Shannon’s information theory see Molz et al. [30].
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Fig. 19.14 Time series calculations demonstrating the sensitivity of predictions to minor changes
in the initial values of C

Numerical simulations were carried out to assess the effects of (a) endogenous
factors, i.e., the nutrient flux, D · no, into the system, (b) exogenous factors, i.e., vari-
ations in initial microbial conditions, and (c) model parameters. Nonlinear dynamics
analysis of simulated time series was conducted to assess transitions between steady
state, deterministic chaotic and quasi-periodicmodulations of the nutrient andmicro-
bial concentrations. A modeling machine learning framework (modified from [12])
was developed to conduct simulations and the time series analysis in the time domain
and phase space based on the application of the high-level statistical computing lan-
guages MATLAB [38] and R [39–45]. Calculations in the time domain included the
DMA analysis to assess the variations of the Hurst exponent versus the nutrient flux
into the system, calculations of the information measure–Shannon’s entropy, and the
time delay of temporal oscillations of nutrient andmicrobe concentrations. The phase
space analysis of the simulated time series of concentrations was conducted using the
methods of nonlinear dynamics and deterministic chaos, in particular, calculations
of the global and local embedding dimensions, correlation dimension, information
dimension, and the spectrum of Lyapunov exponents. The time series data were used
to plot the phase space attractors to express the dependence between the system’s
state parameters, i.e., microbe concentrations, and pseudo-phase space attractors, in
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Fig. 19.15 Time series calculations demonstrating the sensitivity of predictions to minor changes
in the initial values of r

which the attractor axes are used to compare the observations from a single time
series, which are separated by the time delay.

Like classical Lorenz or Rossler systems of equations, which generate a deter-
ministic chaotic behavior for a certain range of input parameters, the developed
mathematical model generates a deterministic chaotic behavior for a particular set
of nutrient fluxes, initial conditions, and model parameters. The simulation results
confirmed that even a slight variation of the system’s input data might result in vastly
different predictions of the temporal oscillations of the system. The simulation results
demonstrate a sharp transition from a steady state to deterministic chaotic to quasi-
periodic and again to steady state behavior, as the nutrient influx increases. However,
as discussed further inMolz et al. [30] it may be possible to furthermodify theMonod
kinetic expressions so that the chaotic domain is enhanced.

Small changes in initial microbial concentrations and input parameters generate
extreme changes of temporal chaotic microbial concentrations, although the system
behaves within the same attractor. Several types of phase space and pseudo-phase
attractors to which a system tends to evolve with time can characterize the simulated
system. For small changes in initial conditions, resulting attractors are bounded
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Fig. 19.16 Time series calculations demonstrating the sensitivity of predictions to minor changes
in the values of parameter m1

(contrary to that of a random system), i.e., may represent a ‘sustainable state’ (i.e.,
resilience) of the ecological system [27].

This study forms a theoretical basis and reasoning for conducting further exper-
imental studies of nonlinear dynamical processes of microbial systems. Directions
of future research may include the application of machine learning algorithms based
on both deterministic and stochastic reduced order (surrogate) approximate meth-
ods, which can be several orders of magnitude faster than the exact methods for
simulations of large spatial-temporal scale ecological processes, while generating
practically the same results. We also underline that an integration of experimental
results and a mathematical model, both producing classical and deterministic chaotic
dynamics, is a useful step in better understanding complex phenomenon in microbial
systems. This research is also providing motivation for further study involving spa-
tial variables (i.e., biofilms [14]), and further involvement of Shannon’s information
theory in biological systems [30].
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Fig. 19.17 Time series calculations demonstrating the sensitivity of predictions to minor changes
in the values of parameter m2
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