
Internet of Things

Rajat Subhra Chakraborty
Jimson Mathew
Athanasios V. Vasilakos Editors

Security and
Fault Tolerance
in Internet of
Things

Internet of Things

Technology, Communications and Computing

Series editors

Giancarlo Fortino, Rende (CS), Italy
Antonio Liotta, Eindhoven, The Netherlands

More information about this series at http://www.springer.com/series/11636

http://www.springer.com/series/11636

Rajat Subhra Chakraborty
Jimson Mathew • Athanasios V. Vasilakos
Editors

Security and Fault Tolerance
in Internet of Things

123

Editors
Rajat Subhra Chakraborty
Department of Computer Science
and Engineering

Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India

Jimson Mathew
Department of Computer Science
and Engineering

Indian Institute of Technology Patna
Patna, Bihar, India

Athanasios V. Vasilakos
Department of Computer Science, Electrical
and Space Engineering

Luleå University of Technology
Skellefteå, Sweden

ISSN 2199-1073 ISSN 2199-1081 (electronic)
Internet of Things
ISBN 978-3-030-02806-0 ISBN 978-3-030-02807-7 (eBook)
https://doi.org/10.1007/978-3-030-02807-7

Library of Congress Control Number: 2018958936

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-02807-7

Preface

The aim of this book is to cover various aspects of security, privacy and reliability
in Internet of things (IoT) and cyber-physical system design, analysis and testing.
Security is a prime design objective in current computing system design, including
embedded systems, cyber-physical systems and the IoT devices. Over the years,
various techniques have been proposed highlighting security and fault-tolerant
system design, analysis and testing. Since cyber-physical systems are typically
resource-constrained, these techniques are usually developed keeping the low
energy and/or low-power availability into perspective. However, due to continued
device miniaturization and technology scaling, reliability in the presence of
ever-increasing number of faults is emerging as a design challenge, and more
importantly, new security threats have emerged. This is because incorporating
security, fault tolerance for reliability with low-energy or low-power consumption
are conflicting design objectives. From IoT security to design robustness and big
data processing, this monograph offers a potpourri of different methodologies on
this rapidly expanding frontier of the new technology, with chapters written by
leading international industry practitioners and academic researchers. It is intended
that the readers receive both these perspectives, which is important for such
cutting-edge technical topics of discourse.

Chapter “Security and Trust Verification of IoT SoCs” looks at the trustwor-
thiness of System-on-Chips (SoCs). In order to ensure the security of IoT devices, it
is crucial to guarantee the trustworthiness of SoCs, because advances in modern
VLSI miniaturization technologies imply more and more functionality are being
packed into complex SoCs than ever before. Verifying the trust in SoCs is a major
challenge due to their long and globally distributed supply chain. Malicious com-
ponents can be inserted in different stages of the design cycle. These malicious
functionalities work as a backdoor to severely affect the security of the design by
giving control of the system to adversaries. The threat creates a critical need for
designing new validation approaches that are capable of identifying hidden
Hardware Trojan Horses (HTHs). Existing validation techniques cannot efficiently
activate and detect HTHs since Trojans are designed to be passive most of the time
and usually triggered using very rare events. For example, if an adversary wants to

v

hide a HTH in register-transfer level (RTL) designs, rare branches in the control
flow would be an ideal choice to host Trojans. To tackle this issue, the authors
introduce a Trojan activation technique that utilizes an effective combination of
symbolic simulation as well as concrete execution to identify Trojans that are
hidden under rare branches and assignments. The technique is scalable as it con-
siders one path at a time instead of considering the whole design. It uses
Satisfiability Modulo Theories (SMT) solvers to satisfactorily solve the path con-
straints in order to generate a valid test to explore a new path in the design. The
exploration continues until all of the rare branches in the design are activated in the
search for hidden Trojans.

Chapter “Low Cost Dual-Phase Watermark for Protecting CE Devices in IoT
Framework” presents a novel low-cost dual-phase watermarking methodology
during high-level synthesis (HLS) for hardware intellectual property (IP) protection.
Robust vendor signature is embedded in two subsequent phases of high-level
synthesis to form an integrated watermark. A dual-phase watermarking method-
ology that embeds a multivariable double-phase watermarking during high-level
synthesis for application-specific IPs, while incurring zero delay and register
overhead as well as minimal hardware overhead, is presented. The dual-phase
watermarking approach yields average reduction of embedding cost of 6% (which
includes average area reduction of 7% and average latency reduction of 4%) when
compared to two recent HLS-based watermarking approaches for application-
specific IPs. Additionally, the approach also achieves stronger proof of authorship
compared to two recent HLS-based watermarking approaches.

Chapter “Secure Multicast Communication Techniques for IoT” discusses
multicast security approaches mainly based on extending the DTLS protocol and its
drawbacks. Also included are the major requirements of secure group communi-
cation and different secure multicast communication techniques emphasizing an
interesting and effective approach called S-CPABE, based on attribute-based
encryption (ABE).

Chapter “An Adaptable System-on-Chip Security Architecture for Internet of
Things Applications” addresses emerging threats and security design constraints of
architectures catering to IoT and automotive applications and their subsequent
limitations. Then, it presents a novel, flexible and adaptable SoC security archi-
tecture that efficiently implements diverse security policies. The architecture and
associated CAD flow enable “hardware patching”, i.e., hardware security policy
engines that can be seamlessly and securely upgraded infield to address unantici-
pated attacks or new security requirements. The chapter describes the implemen-
tation of (1) a centralized Reconfigurable Security Policy Engine (RSPE); (2) smart
security wrappers and (3) Design-for-Debug (DfD) infrastructure interface as the
building blocks of the architecture. The proposed framework provides a systematic
approach to represent and synthesize diverse security policies. Through extensive
analysis using representative SoC model, it is demonstrated that the proposed
framework provides a high level of adaptability with minimal energy and perfor-
mance overhead. Consequently, the architecture is highly suitable for devices
operating under a tight boundary of energy and performance.

vi Preface

Homomorphic encryption constitutes a powerful cryptographic method that
enables data aggregation in distributed applications over large datasets, such as
storage of data on cloud, electronic voting, electronic wallets, secure auctions,
lotteries and secret sharing. At the same time, as attack trends move towards the
lower levels of the computation stack and new threats continue to emerge, the lack
of trust in contemporary computing paradigms keeps increasing. Since homomor-
phic encryption helps preserve the confidentiality of sensitive information, it offers
a powerful countermeasure against contemporary and future privacy threats, while
allowing meaningful processing even though the data remains unreadable.
Nevertheless, when homomorphic primitives are mapped to hardware circuits to
improve performance, they become vulnerable to random faults and soft errors,
since homomorphic operations are malleable by construction and do not provide
any explicit assurance towards data integrity. Chapter “Lightweight Fault Tolerance
for Secure Aggregation of Homomorphic Data” presents a fault tolerance
methodology that protects homomorphic aggregation circuits through concurrent
detection of random errors in homomorphic ALUs and encrypted values stored in
the memory. The proposed approach establishes the theoretical foundations to
extend residue numbering to additive homomorphic operations, which enables
lightweight fault detection with detection rates of more than 99.98% for ALU
operations and 100% for single bit-flips and clustered faults in memory values.
Using an efficient modular reduction algorithm, the method incurs a runtime
overhead between 3.6 and 8% and a small area cost.

In Chapter “An Approach to Integrating Security and Fault Tolerance
Mechanisms into the Military IoT” the authors look at security and dependability
of IoT implementation in military applications. This is an approach for integrating
security techniques on the access layer and the fault-tolerant techniques at sensor
nodes. Presented solutions for securing the military IoT network ensure strong node
authentication within network clusters and securing data transmissions between
sensor nodes (SN) and gateways with the use of COTS IoT platforms equipped with
TPM modules. Fault diagnosis is based on the comparison method within network
clusters. An experimental network called SFTN is also explored to demonstrate the
approach.

Physically unclonable function (PUF) circuits are very promising lightweight
hardware security primitives, which depend on manufacturing process variations,
act as fingerprint generators of electronic devices such as integrated circuits (ICs).
PUF circuits can be used as alternatives to computationally expensive cryptographic
algorithms and protocols and are extremely suitable for application domains such as
IoTs. However, they are vulnerable to injected faults that can help an adversary to
launch sophisticated computational attacks on them, revealing secret information
that can impact system security. Chapter “Fault-Tolerant Implementations of
Physically Unclonable Functions on FPGA” describes fault-tolerant implementa-
tions of PUF circuits on FPGAs, through fault detection and fault recovery.

Chapter “Fault Tolerance in 3D-ICs” discusses fault tolerance in three-
dimensional IC (3D ICs). Systems based on emerging technologies like Internet
of things and beyond von Neumann architectures can be produced in large scale

Preface vii

only if they are resilient-aware, cost-effective and secure. The resilient and
cost-effective solutions can be achieved by incorporating fault tolerance techniques
at the architectural level of the system design is one of the plausible solutions. The
choice of various fault tolerance techniques gives the designers a freedom to
incorporate these in the early stage of the design and in turn leading to high yield
and reliable architectures. Three-dimensional ICs with through-silicon via (TSV) is
one of the emerging technologies consisting of vertical interlayer communication
instead of long horizontal wires, results in the reduction of interconnect length and
thus can improve the system performance. However, reliability and yield are major
concerns that hinder resilient and cost-effective solutions for 3D-IC design. These
can be addressed by incorporation of fault tolerance techniques.

Online detection of cyber-attacks on IoT devices is usually extremely chal-
lenging due to limited battery and computational resources available in these
devices. An alternate approach is to shrink the attack surface in order to reduce the
threat of attack. This would require that the device undergo more stringent security
tests before deployment. Formal verification is a promising tool that can be used to
not only detect potential vulnerabilities but also provide guarantees of security.
Chapter “Formal Verification for Security in IoT Devices” reviews several security
issues that plague IoT devices such as functional correctness of implementations,
programming bugs, side-channel analysis and HTHs. In each of these cases, the
chapter discusses state-of-the-art techniques that use formal verification tools to
detect the vulnerability much before the device is deployed.

In Chapter “SENSE: Sketching Framework for Big Data Acceleration on Low
Power Embedded Cores”, the authors address the ever-growing IoT-based big data
processing and cognitive computing on mobile and battery-operated devices. Big
data processing on low-power embedded cores is challenging due to their limited
communication bandwidth and on-chip storage. Additionally, IoT and cloud-based
computing demand low overhead security kernel to avoid data breaches. In this
chapter, authors present, “LESS”, lightweight encryption using scalable sketching
techniques for data reduction and encryption. LESS is a heterogeneous framework
which consists of three important kernels: (1) a sketching module for data reduc-
tion; (2) an accelerator for efficient sketch recovery using scalable and parallel
reconstruction architecture and (3) a host processor to perform postprocessing.
LESS framework can reduce data up to 67% with 3.81 dB signal-to-reconstruction
error rate (SRER). One of the critical challenges in big data processing on
embedded hardware platforms is to reconstruct the sketched data in real-time with
stringent constraints on error bounds and hardware resources. The authors also
explore orthogonal matching pursuit (OMP) algorithm for sketch data recovery and
demonstrate performance of LESS framework on face identification application.

We hope this monograph would be valuable to researchers and practitioners
alike, not only as a collection of pointers to cutting-edge research in this exciting
field, but also as a resource that would encourage the readers to explore newer
techniques on their own. Cyber-physical systems and IoTs promise to revolutionize

viii Preface

our lives, but before their promise is fulfilled, many open problems in the context
of their security and reliability need satisfactory solutions. It is our sincere wish that
this book acts a small step towards that goal.

Kharagpur, India Rajat Subhra Chakraborty
Patna, India Jimson Mathew
Skellefteå, Sweden Athanasios V. Vasilakos
August 2018

Preface ix

Contents

Security and Trust Verification of IoT SoCs . 1
Alif Ahmed, Farimah Farahmandi, Yousef Iskander and Prabhat Mishra

Low Cost Dual-Phase Watermark for Protecting CE Devices
in IoT Framework . 21
Anirban Sengupta and Dipanjan Roy

Secure Multicast Communication Techniques for IoT 43
Subho Shankar Basu and Somanath Tripathy

An Adaptable System-on-Chip Security Architecture for Internet
of Things Applications . 61
Atul Prasad Deb Nath, Tamzidul Hoque, Sandip Ray and Swarup Bhunia

Lightweight Fault Tolerance for Secure Aggregation
of Homomorphic Data . 87
Nektarios Georgios Tsoutsos and Michail Maniatakos

An Approach to Integrating Security and Fault Tolerance
Mechanisms into the Military IoT . 111
Zbigniew Zieliski, Jan Chudzikiewicz and Janusz Furtak

Fault-Tolerant Implementations of Physically Unclonable
Functions on FPGA . 129
Durga Prasad Sahoo, Arnab Bag, Sikhar Patranabis,
Debdeep Mukhopadhyay and Rajat Subhra Chakraborty

Fault Tolerance in 3D-ICs . 155
Raviteja P. Reddy, Amit Acharyya and Saqib Khursheed

xi

Formal Verification for Security in IoT Devices 179
K. Keerthi, Indrani Roy, Aritra Hazra and Chester Rebeiro

SENSE: Sketching Framework for Big Data Acceleration
on Low Power Embedded Cores . 201
Amey Kulkarni and Tinoosh Mohsenin

xii Contents

Security and Trust Verification
of IoT SoCs

Alif Ahmed, Farimah Farahmandi, Yousef Iskander
and Prabhat Mishra

Abstract System-on-Chips (SoCs) are widely used in designing Internet-of-Things
(IoT) devices. In order to ensure the security of IoT devices, it is crucial to guarantee
the trustworthiness of SoCs. Verifying the trust in SoCs is a major challenge due
to their long and globally distributed supply chain. Malicious components can be
inserted in different stages of the design cycle. These malicious functionalities work
as a backdoor to severely affect the security of the design by giving control of the
system to adversaries. The threat creates a critical need for designing new valida-
tion approaches that are capable of identifying hidden Trojans. Existing validation
techniques cannot efficiently activate and detect Trojans since Trojans are designed
to be inactive most of the time and triggered using very rare events. For example,
if an adversary wants to hide a Trojan in register-transfer level (RTL) designs, rare
branches would be an ideal choice to host Trojans. In this chapter, we introduce a
Trojan activation technique that utilizes an effective combination of symbolic sim-
ulation as well as concrete execution to identify Trojans that are hidden under rare
branches and assignments. The technique is scalable as it considers one path at a
time instead of considering the whole design. It uses satisfiability modulo theories
(SMT) solvers to solve the path constraints in order to generate a valid test to explore
a new path in the design. The exploration continues until all of the rare branches in
the design are activated in the search for hidden Trojans.

1 Introduction

Designingmodern System-on-Chips (SoCs) is a very complex process since a diverse
set of computational-, storage- and communication-related Intellectual Properties
(IPs) are integrated. Due to the time-to-market constraints, designing and verifying

A. Ahmed (B) · F. Farahmandi · P. Mishra
Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, USA
e-mail: alifahmed@ufl.edu

Y. Iskander
Advanced Security Research Group, Cisco Systems, San Jose, USA

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_1&domain=pdf
mailto:alifahmed@ufl.edu
https://doi.org/10.1007/978-3-030-02807-7_1

2 A. Ahmed et al.

all of these IPs cannot happen in-house. Companies and countries across the world
are involved in designing and fabricating an SoC. These SoCs are widely used to-
day in designing Internet-of-Things (IoT) devices. In order to ensure the security
and reliability of IoT devices, it is crucial to guarantee the trustworthiness of SoCs.
Unfortunately, the long and globally distributed supply chain of SoCs makes it very
difficult to ensure that an adversary has not threatened the security and trustwor-
thiness of the design. An adversary can introduce a wide variety of security threats
including IP piracy, reverse engineering (which can cause cloning, re-marketing,
and counterfeiting), and inserting malicious modifications (hardware Trojans) in the
design.

Hardware Trojans are extra components that modify the original functionality
of the design by opening a backdoor for an adversary to take control of the whole
system or cause unintentional effects. Hardware Trojans create a serious concern
since an active Trojan can severely affect the trustworthiness of a design by leaking
secret information, granting access to the critical functionality of the design aswell as
causing a denial of service. A typical Trojan has twomain parts: (i) triggering logic to
activate the Trojan and (ii) a payload for propagating the effect of a triggered Trojan
to the attack target. To escape detection from conventional validation techniques,
hardware Trojans are designed as small circuitry that is triggered using very rare
internal events. Therefore, Trojans are dormant most of the time and this stealthy
nature makes it extremely difficult to activate and detect them [46].

Hardware Trojans can be classified based on their trigger and payload mech-
anisms. The trigger condition of a Trojan can be designed as a combinational or a
sequential circuit [8]. Combinational triggers are dependent on a rare event of trigger
nodes. For example, a set of rare nodes (gates) can be used as a trigger by utilizing
an ‘and’ gate. On the other hand, sequential triggers depend on the occurrence of a
specific sequence of unusual events on the internal nodes. For example, counters can
be used as Trojans when they trigger a malfunction by reaching a particular value.
Sequential Trojans are more challenging to activate and detect.

Hardware Trojans can also be categorized based on their payload mechanisms
which can be either digital or analog. Digital payloads can affect a memory location
or change the logic values of internal nodes at a specific time. On the other hand,
analog payloads modify physical characteristics of a design by changing its power,
current, noise margin, and performance. Examples of such payloads are the insertion
of bridging faults as well as insertion of cascaded buffers or extra circuitry that does
not change the functionality of the design.

Researchers have proposed a wide variety of techniques based on simulation-
based validation to activate and detect hardware Trojans. These techniques can be
broadly divided into three categories: (i) logic testing approaches, (ii) formal meth-
ods, and (iii) hybrid approaches that combine both of these approaches as shown in
Fig. 1. In the rest of this section, we discuss existing Trojan activation and detection
techniques using these methods.

Security and Trust Verification of IoT SoCs 3

Fig. 1 Simulation-based validation approaches for Trojan detection and activation

1.1 Logic Testing

Logic testing is responsible for applying stimuli on primary inputs and observing the
effect at the primary outputs or other observable points. To check whether a Trojan is
hidden in the design, the Design-under-Test (DUT) is simulated using the generated
tests and the values of the observable signals are compared with the expected values.

Hicks et al. [26] proposed an approach based on logic testing to detect unused
circuits. The authors have shown that unused redundant components can be utilized
by attackers to insert a malicious component in the design. The proposed approach
tries to identify signal pairs that have the same sources and sinks by applying the
verification tests to the design and simulate it. The algorithm deactivates the detected
unused pairs to prevent hardware Trojans. However, the authors have shown in their
subsequent work [45] that the algorithm may not be able to detect malicious circuits
of other types.

FANCI approach is proposed by Waksman et al. [47] to identify rarely used logic
circuits based on their boolean functionality and their control vales. The assumption
is that hard-to-detect Trojans will be inserted into the nodes that rarely impacts
the output functionality of the design. Therefore, they proposed an algorithm that
constructs an approximate truth table for each of the internal signals to identify the
effect of a particular signal on primary outputs. If a signal hardly affects primary
output, that signal will be marked as a suspicious node. However, this method may
mark even some safe nodes as suspicious since it may report 1–8% of the total signals
in the design as potential malicious nodes. Therefore, using this method makes it
hard to distinguish a Trojan-inserted design from a Trojan-free one. VeriTrust [49]
is proposed to find uncovered circuits using conventional verification tests, and then
it sets uncovered circuits as don’t cares to identify redundant circuits as suspicious
functions. Zhang et al. [50] (DeTrust) have introduced a type of Trojanwhose triggers
happen across different clock domains and FANCI cannot detect them and marks
them as safe nodes. Another type of Trojan is introduced by DeTrust which VeriTrust
cannot detect.

Automated Test Pattern Generation (ATPG) approaches are also employed to
detect hidden Trojans. Full (100%) code coverage is targeted to detect hardware
Trojans [51]. However, hardware Trojans may reside in the circuits that are tested
for 100% code coverage. N-detect full scan ATPG is used to identify the nodes

4 A. Ahmed et al.

whose functionality is hard to excite/propagate to observable points [5]. A guided
equivalence checking as well as region isolation approaches are applied on hard-
to-detect signals to localize the potential malfunctions. However, the strength of
this approach is dependent on the capability of SAT solvers. SAT solvers may fail
when encountering large and complex designs. A statistical test generation approach
(MERO) has been proposed by Chakraborty et al. [9] to activate each of the rare
nodes for at least N times in hoping for Trojan activation. The goal of this approach
is to increase the probability of Hardware Trojans’ trigger activation.

1.2 Formal Methods

There are several Trojan detection and localization techniques that rely on formal
methods such as satisfiability solvers, symbolic algebra, and model checking to gen-
erate efficient tests to activate Trojans. Model checkers are used to check a design
against its specification. Specification properties are primarily the expected behav-
iors of the design. These properties can be modeled as a collection of Linear Time
Temporal Logics (LTL) [37]. The design is modeled as a set of states. To formally
verify the safe behavior of the design, each property is checked through all possible
states of the design implementation using model checkers. A counter-example is
generated if the design fails to hold a property [6]. Since model checkers consider all
of the design states, it is prone to state space explosion issue, especially when large
designs and complex properties are involved. A Bounded Model Checking (BMC)
is used to limit the design unfolding to a limited number of clock cycles. Since BMC
does not check for all of the possible design states, it cannot formally prove the given
property. However, BMC assumes that the designer knows the required number of
clock cycles that a particular property should hold.

Rajendran et al. [40] haveproposed a test generation technique forTrojandetection
using BMC approach. They generate a set of security properties based on access
privileges to critical data registers, address tables, or stack pointer of processors.
The properties are then checked against the design using BMC to find unauthorized
accesses. The BMC generates a test to activate the hidden Trojan when the given
property does not hold in the design. However, the strength of this approach is
dependent on the completeness of the security properties as well as the capability
of the SAT solver used during BMC. GLIFT looks for confidentiality and integrity
property violations [27]. The confidentiality property requires that any secure data
may not enter the unsecured domain. Conversely, the integrity property requires that
anything from unsecured domain may not enter the secured domain.

Equivalence checking is used to formally prove that different representations
of a design display the same functionality—nothing more, nothing less. However,
traditional equivalence checkingmethods may face state-space explosion issue when
applied on large design. Using Gröbner basis theory enables formulation of the
equivalence checking problem in the algebraic domain [25]. The design specification
is first converted to a specification polynomial fspec. The gate-level implementation is
then converted to a set of implementation polynomial F , where each gate is modeled

Security and Trust Verification of IoT SoCs 5

as a polynomial. Polynomial division is then applied to reduce the specification
polynomial fspec over implementation polynomials F . The remainder should be
zero for functionally equivalent designs. A non-zero remainder indicates that the
specification differs from the implementation, and the design is not trustworthy.

The remainder not only expresses the outcome of the equivalence checking but
also is beneficial in removing the Trojan. Any assignment which makes the total
value of the remainder non-zero is a directed test (counter-example) that activates
the Trojan. The directed test can be used to localize the source of error. Moreover,
patterns and existing terms of the remainder provides valuable information to detect
and correct the bug (gate-misplacement, as well as signal inversion are considered
as fault models) [20–23].

1.3 Hybrid Approaches

Generating directed tests that could activate hidden hardwareTrojans is exceptionally
challenging since adversaries tend to implant hardware Trojans such that they are
triggered under extremely rare input sequences. Model checking-based formal test
generation approaches are effective for small designs. It is prone to state-explosion
issue which limits its effectiveness on large or complex designs. Cruz et al. have
proposed a test generation technique that combines the N-detect testing with ATPG
as well as usingmodel checkers [17]. Security properties are generated such that they
target activation of rare nodes in the gate-level designs. The design is partitioned into
two parts based on the location of the scan-chains. A set of constraints are generated
using a model checker for the non-scan portion of the design, and then given to
the ATPG tool. ATPG combines these constraints with the scan portion constraints
for directed test generation. The proposed approach overcomes the limitation of
both ATPG and model checking in gate-level partial-scan designs. However, such
approach is not applicable to higher level of abstractions such as RTL.

In the rest of this chapter, we will discuss a promising hybrid test generation
technique for Trojan activation. This technique is called concolic testing which in-
terleaves concrete simulation with symbolic execution for test generation. Section2
provides an overview of the concolic testing method. Section3 surveys different con-
colic testing methods. Section4 describes an automated concolic testing framework
for generation of directed tests to detect hardware Trojans. Section5 compares this
test generationmethodwith the related approaches outlined in Sect. 3. Finally, Sect. 6
concludes the chapter.

2 Background: Concolic Testing

The idea of concolic testing was introduced in the software domain [24, 43]. Liu
et al. first applied this on hardware designs [30]. Typical flow of a concolic testing
framework is shown in Fig. 2 [4]. In concolic testing, the source code is first instru-

6 A. Ahmed et al.

Fig. 2 Typical flow for a concolic testing engine [4]

mented with monitoring statements. This enables us to trace the execution path of
the simulation. Initially, the design is simulated with a random set of input. In the
subsequent iterations, the input is systematically generated to guide the simulation
towards uncovered portions of the design. To do so, the logical expressions in an
execution path is converted to constraints (C in Fig. 2). An uncovered branch from
the execution path is then selected to be explored next by negating the constraint rep-
resenting that (¬ck). This modified constraint along with the rest (C ′ in Fig. 2) is then
solved by a constraint solver. If it is solvable, then we get an input set for which the
execution path will go through that uncovered branch—improving coverage. Other-
wise, a different branch is selected. The process continues until there is no selectable
branch. Other criteria, such as time-limit or coverage target can also be used to end
the concolic testing. This is a semi-formal method which interleaves concrete and
symbolic execution. Unlike formal methods like bounded model checking, concolic
testing is not susceptible to state explosion issue. The main reason is—concolic test-
ing explores a single execution path at a time instead of trying to explore all possible
paths at the same time. Concolic testing is applicable on larger designs because of
this advantage.

3 Prior Works on Concolic Testing

Godefroid et al. introduced concolic testing as a tool called “DART” [24]. DARTwas
capable of generating tests for bug localization in software. Sen et al. proposed jCUTE
and CUTE which added support for multi-threading and few more programming
languages [42, 43]. The concept of concolic testing is later applied to hardware
designs by Liu et al. [30]. Above mentioned methods employ depth-first search
(DFS) for selecting an alternate branch for exploring different paths of the design.
Exhaustive search strategies like depth-first and breadth-first are thorough, but can

Security and Trust Verification of IoT SoCs 7

only cover a small portion of the overall search space within a limited time budget.
This is known as path explosion problem.

Many search strategies have been proposed to avoid the path explosion issue. Liu
et al. recently proposed an enhanced version of the DFS based technique [32]. In
their approach, they have used the concept of state caching. During concolic testing,
previously explored states are cached using compressed bitmap encoding. If such
state is encountered again, then all the branches from that particular path are skipped.
A random branch selection strategy is proposed in [7]. Because of the random nature
of the selection, it displayed inconsistent performance across benchmarks. A control-
flow graph (CFG) directed strategy is proposed in the same article. CFG is used here
to assign distance values to each of the nodes which represent the distances from
the target branch. During the branch selection procedure, an uncovered branch with
the minimum distance is selected. Liu et al. proposed another CFG based technique
named “HYBRO” [31]. HYBRO statically determines the control dependency of all
branches. A branch is only selected during concolic testing if one of its dependent
branches is still uncovered. Qin et al. proposed an improvement which supports
arrays with dynamic references [39]. Ahmed et al. recently proposed a technique to
control the thoroughness of search [4]. Using this strategy, if searching in an area
does not improve branch coverage after a certain number of iterations, the search is
moved to a different region and the procedure is repeated. Researchers have proposed
several other coverage guided strategies such as CarFast [36]. CarFast selects branch
depending on the number of uncovered branches that will be covered by the selection.
Li et al. proposed a technique where the least frequently traversed branch is selected
[29]. Context-Guided Search (CGS) proposed by Seo et al. keeps a cache of recently
traversed sub-paths [44]. Branches that are the part of the cached sub-paths are
skipped during the selection procedure.

So far, we discussed the methods which try to maximize the branch coverage.
However, sometimes the goal is not to cover all branches but to cover a specific
branch. This type of scenario occurs during debugging an error or while trying to
generate tests for hard to reach corner cases. While previous methods may still work
for such directed test generation, they usually takemuch longer to finish [3]. Directed
test generation is covered extensively in existing literatures [12–15, 28, 33, 34, 38].
Researchers in [10, 11, 18] have utilized Symbolic Backward Execution (SBE) tech-
nique. In SBE, the design is symbolically unrolled starting from the target. Unrolling
is continued until an entry point (usually primary inputs) is reached. However, SBE
is difficult to apply on designs with data-dependent loops or non-linearity, and does
not scale well with design size. Zamfir et al. reduced the search-space complexity by
evaluating which edges in the CFG are essential to reach the target node. Unfortu-
nately, these techniques are only suitable for software designs and do not consider the
concurrent execution model of hardware designs. Ahmed et al. recently proposed a
directed concolic testingmethodwhich is applicable to hardware designs [3]. As Tro-
jan triggers usually reside in rare branches, this directed test generation technique is
suitable for Trojan activation. Given a list of suspicious rare branches, the proposed
method can quickly generate tests to cover these branches. The list of suspicious

8 A. Ahmed et al.

Fig. 3 Overview of the directed test generation framework [3]

branches can be obtained by running statistical probability analysis software such as
TPC [2], or by simple random simulations. The remainder of this chapter describes
this test generation technique in detail.

4 Directed Test Generation Using Concolic Testing

Figure3 presents the overview of the directed test generation method proposed by
Ahmed et al. [3]. Here, the input is an RTL design and a target branch or statement.
The objective is to generate a test vector for covering that target. Rest of the section
will describe the major steps of this test generation method.

4.1 CFG Generation

Hardware designs require concurrent computation model. For example, all of the
always blocks in Verilog and process in VHDL are executed concurrently. For
the ease of explanation, ‘process’ will be used from now on to describe concurrent
blocks. Although these processes are executed concurrently, execution is sequential
within a single process. Thus, the standard procedure for finding CFG in a sequential
program can be applied to extract CFGs of individual processes. CFGs are consist of
multiple basic blocks connected together. Basic blocks do not contain any branching,
so if the first statement of the block is executed, then the rest will also be executed. A
basic block can be connected to multiple other basic blocks, known as the successor
and predecessor blocks. Suppose after finishing the execution of block P , the
control is transferred to block Q. Then P is the predecessor of Q, and conversely, Q
is the successor of P . Figure4 shows an example Verilog code. As it contains two
processes, two CFGs are produced. For the sake of simplicity, suppose that line lx is
contained within basic block bbx . According to the definition, successor of bb6 are
bb9 and bb7. Predecessor of bb6 is bb4. Exit block is represented by the gray circle.

Security and Trust Verification of IoT SoCs 9

(a) (b)

(c) (d)

Fig. 4 Example Verilog code with two processes [3]. a Process 1 code, b process 1 CFG, c process
2 code, d process 2 CFG. The left path is taken if the condition is true

When the target statement is only reachable with inputs spanning multiple clocks,
the designmust be unrolled for at least those many cycles. This unrolling can be done
by cascading several single-cycle CFGs. Making the exit block predecessor of the
entry block produces the same result.

4.2 Edge Realignment

In the CFG generation phase, an independent CFG is generated for each process.
As there are no edges between the CFGs, dependencies among processes are not
correctly reflected. Consider an examplewhere l15 is the target (Fig. 4). The condition
i f (state == C)must be true in process 2 to reach l15. However, the only assignment
that can make this condition true is l7 in process 1. This relationship information is
not available in the independent CFG scheme. An edge realignment procedure is
applied to resolve this issue. This realignment procedure modifies the edges of the

10 A. Ahmed et al.

CFGs to correctly reflect the flow of the program across multiple clock cycles and
multiple processes. For a better explanation, related terms are defined first:

Strict variable: Strict variables are the variables to which only concrete values are
assigned [3]. out is a strict variable in the example of Fig. 4. Here, l13, l16, l18 and
l20 are the assignments to variable out . Concrete values are assigned to out in all of
these variables. Variable state is another strict one.

Dominator: In a CFG, node d is a dominator of node p as all the paths from entry
block to p go through d. l12 and l14 are dominators of l15 in the example of Fig. 4.

Immediate dominator: Suppose D is the set of all dominators of node p. Then the
immediate dominator of p is defined as the node in D which does not dominate any
other nodes in D. It can also be seen as the closest dominator of p. As an example,
immediate dominator of l9 is l6.

Whether the execution path will go through a basic block or not will depend on its
guard condition. Edge realignment procedure re-connects basic blocks to the blocks
that can satisfy this condition. This procedure is shown inAlgorithm 1.Major portion
of the work is done by the function update_edge(bbt). This function recursively
aligns the edges, starting from bbt , and going backward. Initially bbt contains the
target statement given by the user (main procedure, line 4). Guard condition of bbt
is first expanded (lg) inside update_edge() function (line 3). We explain how the
expansion works later. Two scenarios can occur at this point: (i) lg contains no strict
variable, or (ii) it contains at least one. If it does contain a strict variable, then
the current predecessor of bbt is replaced by the blocks that can satisfy the guard
condition lg (line 5–15). The update_edge() is called recursively on the satisfying
blocks in this case. On the other hand, if lg does not contain any strict variables, then
we try to realign its immediate dominator (line 16–18). To prevent the unnecessary
assessment of previously traversed block, a visi ted flag is used. This algorithm does
not modify the successor edges, because these edges are not used in the subsequent
phases.

As an example, consider the CFGs of Fig. 4. Edge realignment procedure will be
carried out on these CFGs. Here, l16 is the target statement. Thus, update_edge()
function will be applied on b16 first. l15 : in = 13 is the guard condition of l16. This
condition falls into the second category as it does not contain any strict variables.
According to Algorithm 1, l15 becomes the new target because it is the immediate
dominator of l16. l14 : state = C is the guard condition of l15.

Unlike the first guard condition, this condition contains the strict variable state.
Among the assignments to state, only (l14 ∧ l7) can be satisfied by the constraint
solver. Therefore, the current predecessor of l15 is removed, and the satisfying basic
block bb7 becomes the new predecessor. The whole procedure is then repeated with
l7 being the new target and continues until realignment can be done. Figure5 shows
the final CFG after the edge realignment is finished.

Security and Trust Verification of IoT SoCs 11

Algorithm 1 Edge Realignment [3]
Input: CFG, Target Statement lt
Output: Realigned CFG
1: for all basic block, bb ∈ CFG do
2: bb.visi ted ← f alse // initialization
3: end for
4: Target basic block, bbt ← basic_block(lt)
5: update_edge(bbt)
6: return

update_edge(bbt)
1: if bbt is valid and bbt .visi ted is f alse then
2: bbt .visi ted = true
3: lg ← expanded guard condition of bbt
4: Vs ← set of strict variables in lg
5: if Vs is not empty then
6: bbt .predecessors ← ∅
7: for all variables v ∈ Vs do
8: for all assignments la to v do
9: if satis f iable(lg ∧ la) then
10: bba ← basic_block(la)
11: add bba to bbt .predecessors
12: update_edge(bba)
13: end if
14: end for
15: end for
16: else if bbi ← idom(bbt) then
17: update_edge(bbi)
18: end if
19: end if

4.3 Distance Evaluation

After the edge realignment step, the modified CFG reflects the dependencies among
processes. This CFG is utilized to assign a distance value to each of the basic blocks.
Basic blocks that are closer to the target have a lower distance value. Distance assign-
ment is done using the Breadth First Search (BFS) strategy, as shown in Algorithm
2. Initially, the target block’s distance is 0, and all the other blocks have a distance of
∞ (line 1–4). Then, BFS is applied to the CFG (line 5–14). The search starts from
the target node and goes backward (from target to root) using the predecessor edges.
Distance is increased by one for each level of BFS (line 10). A simple queue is used
to realize the BFS strategy. Figure5 illustrates the final distance values for the target
l16.

12 A. Ahmed et al.

Fig. 5 CFG of the example shown in Fig. 4 after edge realignment and weight assignment. Here
target is l16. Omitted edges are shown using light solid arrows. New edges are depicted as blue
dashed arrow [3]

Algorithm 2 Distance Evaluation
Input: CFG, Target Statement lt
Output: CFG with distance values
1: for all basic block, bb ∈ CFG do
2: bb.distance ← ∞
3: end for
4: bbt .distance ← 0
5: Queue for distance evaluation, Q ← {bbt }
6: while Q not empty do
7: bbt ← Q.pop()
8: for all bbp ∈ bbt .predecessors do
9: if bbp .distance > (bbt .distance + 1) then
10: bbp .distance ← (bbt .distance + 1)
11: Q.push(bbp)
12: end if
13: end for
14: end while
15: return

4.4 Test Generation

Concolic testing is used in this phase for test generation. In the first iteration of
concolic testing, the design is simulatedwith a random input vector. In the subsequent
iterations, distance values are used to guide the execution towards the target.

The concolic testing procedure is given in Algorithm 3. At the beginning of
each iteration, the algorithm checks if the target is covered by the current execution
path τ (line 2–5). The procedure simply returns the input vector if the target is
covered. Otherwise, an alternate branch adjacent to τ is selected for exploration. In
the case of multiple alternate branches, the branch with the lowest distance value
will be selected first. If more than one branch has the same lowest distance, then the

Security and Trust Verification of IoT SoCs 13

Algorithm 3 Concolic Testing
Input: CFG with distance values
Output: Test vector
1: Input vector, I ← random()

2: Execution path, τ ← simulate(I)
3: if target statement covered in τ then
4: return I
5: end if
6: B ← list of branches adjacent to τ

7: sort_by_distance(B)

8: for all branch b ∈ B and is_selectable(b) do
9: C ← path constraints upto b
10: I ← constraint_solver(C)

11: if I is valid then
12: decrease priority of b
13: goto 2
14: end if
15: end for
16: return invalid

branch with the lower clock cycle will be prioritized. This sorting is abstracted by the
function sort_by_distance() (line 7). Validity of the selected branch is checked by
the function is_selectable() (line 8). This function ensures that selecting the branch
will not repeat a previously traversed execution path. Next, constraints leading to the
newly selected branch is given to the constraint solver (line 9–10). If the constraints
are satisfiable, then the solution input vector is used for the next iteration (11–14).
Otherwise, the next branch from the sorted list is evaluated. The process continues
until no satisfiable branch remains or the target is covered. The algorithm discussed
so far greedily selects branch with the lowest distance. To avoid repeated selection
of the same branch, the distance value is increased each time a branch is selected
(line 12).

Table1 shows the iterations for the example of Fig. 5. Here, clock 0 contains the
reset sequence, which is omitted to increase clarity. The first column in the table
shows the iteration. Next three columns show the execution path at different clock
cycles. The fifth column shows the candidate branches sorted by their priority. The
final column shows the selected branch. As we can see in the example, a lower
priority branch can be selected if the other candidates fail the validity check of
is_selectable() function. In this specific example, the concolic testing reaches the
target after three iterations.

14 A. Ahmed et al.

Table 1 Execution path and selected branches during concolic testing iterations

Iteration Execution path at Sorted branch Selected
branch

Clock 1 Clock 2 Clock 3

0 l2, l4, l6, l9 l2, l4, l6, l9 l2, l4, l6, l9 l15, l7, l5 l5
l12, l14, l20 l12, l14, l20 l12, l14, l20 . . .

1 l2, l4, l5 l2, l4, l6, l9 l2, l4, l6, l9 l15, l7, l5 l7
l12, l14, l20 l12, l14, l20 l12, l14, l20 . . .

2 l2, l4, l5 l2, l4, l6, l7 l2, l4, l6, l9 l16, l15, l7 l16
l12, l14, l20 l12, l14, l20 l12, l14, l15, l18 . . .

3 l2, l4, l5 l2, l4, l6, l7 l2, l4, l6, l7 – –

l12, l14, l20 l12, l14, l20 l12, l14, l15, l16

5 Experiments

Following experiments are ran on a four-core Intel Core-i7 4.0GHz processor and
16GB of RAM [3]. OpenCores, ITC99, and TrustHub benchmarks are used for
evaluation [1, 2, 16, 41]. Benchmarks from different sources ensured varying char-
acteristics. Most of these benchmarks have rare branches, especially the TrustHub
benchmarks contain Trojans with extremely difficult to activate branches. The Icarus
Verilog Target API [48] is used as aVerilog parser for the concolic testing framework.
Yices is used as the constraint solver [19].

5.1 Evaluation of Scalability

The main advantage of concolic testing approach is its scalability compared to the
formal methods. It is demonstrated in this section by comparing the concolic testing
framework against a bounded model checking tool named EBMC [35]. A custom
version of AES cipher is used as the base design. The number of rounds in the cipher
is slowly incremented to increase the design complexity. The benchmarks for this
experiments are named as cb__aes__xx, with xx referring to the number of rounds in
the benchmark. The rounds are sequentially cascaded, and the activation condition is
made to depend on all the rounds. This ensures that increasing the number of rounds
will increase the trigger activation difficulty.

Table2 presents the comparison results. Here, the first eight rows are used to
demonstrate the test generation time and memory consumption with the increas-
ingly complex design. As we can see, memory consumption grows exponentially
for EBMC. It exceeds the available 16 GB memory after 20 rounds. On the other
hand, the memory requirement increases linearly for [3]. Runtime is similar for both
approaches.

Security and Trust Verification of IoT SoCs 15

Table 2 Scalability comparison with model checking tool EBMC [3]

Benchmark Unroll
cycles

Lines of
codea (k)

EBMC [35] Directed [3]

Time (s) Mem (MB) Time (s) Mem (MB)

cb__aes__01 5 33 1.27 179.4 0.51 55.3

cb__aes__05 10 167 11.47 1450.3 4.03 244.3

cb__aes__10 15 334 33.17 4130.6 14.47 502.4

cb__aes__15 20 501 70.78 8041.2 32.14 778.2

cb__aes__20 25 668 110.13 13202.8 86.03 1085.5

cb__aes__25 30 886 – – 150.54 1405.3

cb__aes__30 35 1003 – – 243.02 1780.3

cb__aes__35 40 1169 – – 371.23 2112.7

cb__aes__10 15 334 33.17 4130.6 14.47 502.4

cb__aes__10 20 334 42.72 5361.8 15.33 520.2

cb__aes__10 25 334 53.78 6628.8 16.25 542.6

cb__aes__10 30 334 64.12 7871.5 17.22 563.7

cb__aes__10 35 334 74.32 9119.5 18.47 582.5

cb__aes__10 40 334 84.57 10361.3 19.36 608.0
aCounted after hierarchy flattening

In the last six rows of the table, design complexity is kept constant while the
unroll cycles are slowly increased from 15 to 40. For EBMC, memory consumption
and time requirement are increased by 150.8% and 155% respectively. For concolic
testing, on the other hand, memory consumption and time requirement are increased
by 21 and 33.8% only. These results indicate that the concolic testing scales better
than the bounded model checking based approaches.

5.2 Evaluation of Coverage

Coverage is compared against two concolic testing methods—one with uniform
coverage goal (QUEBS [4]) and the other being directed concolic testing method
(CFG-Directed, which is a naive extension of [7] to apply on RTL designs). For
ITC99 and OpenCore benchmarks, target branches are selected in two ways—rare
and random. For random type, five reachable branches are chosen at random, and
then average results are given. For rare target selection, benchmarks are simulated
with random inputs for one million cycles, and the branch which is covered the least
number of times is selected. TrustHub benchmarks contain Trojans with very hard
to activate trigger conditions. Triggers are used as targets for these benchmarks.

Table3 presents the comparison results. If a test vector is not generated within two
thousand iterations, it is considered as a failure.Aswe can see, bothCFG-directed and

16 A. Ahmed et al.

Table 3 Performance and coverage comparison [3]

Benchmark Unroll
cycles

Target QUEBS [4] CFG-Directeda Directed [3]

Time
(s)

Iter Time Iter Time
(s)

Iter

b06 10 Rand 0.02 13.6 0.02 9.4 0.01 3

Rare 0.02 20 0.01 7 0.01 5

b10 30 Rand 0.11 245.4 0.01 4.4 0.01 1.4

Rare 0.13 301 0.01 5 0.01 1

b14 30 Rand 0.61 564 0.01 8.4 0.01 3.6

Rare 0.90 814 0.01 21 0.01 1

i2c 10 Rand – – 1.62 356.4 0.57 21.2

Rare – – 4.09 1123 0.98 40

OR1200 ICache 50 Rand 0.23 155 0.13 27.2 0.02 5.4

Rare 0.34 224 0.20 34 0.02 9

AES_T1000 10 Trojan – – 4.67 1 3.88 1

AES_T1100 10 Trojan – – 19.62 7 11.80 4

wb__conmax T200 10 Trojan – – – – 13.36 1

wb__conmax T300 10 Trojan – – – – 11.06 1
aExtension of [7] for RTL designs

QUEBS failed for some targets with the given iteration limit. This result is expected
from QUEBS, because it is designed with overall coverage in mind. Compared to
CFG-directed [3] improved the number of iterations by 16.8x on average (without
considering the failed cases of wb__conmax). Overall, the proposed method in [3]
managed to cover targets with varying characteristics within a smaller number of
iterations and was able to quickly activate rare Trojan triggers.

6 Conclusion

It is crucial to detect hardware Trojans in SoCs in order to design secure IoT devices.
However, it is difficult to generate tests to activate stealthy Trojans. Logic testing and
formal methods are not often suitable for such activation, with design size and rarity
of trigger condition being the limiting factor. This chapter discussed a hybrid test
generation by combining concrete simulation with symbolic execution to activate
hardware Trojans. The presented method avoids the state explosion faced by formal
methods by exploring one execution path at a time. Overall, this method managed
to quickly generate tests to activate rare Trojans, whereas traditional test generation
approaches failed.

Security and Trust Verification of IoT SoCs 17

References

1. Opencores website (2017). https://www.opencores.org
2. TrustHub website (2017). https://www.trust-hub.org
3. Ahmed, A., Farahmandi, F., Mishra, P.: Directed test generation using concolic testing on RTL

models. In: 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE),
pp. 1538–1543. IEEE (2018)

4. Ahmed,A.,Mishra, P.: QUEBS:Qualifying event based search in concolic testing for validation
of RTL models. In: 2017 IEEE 35th International Conference on Computer Design (ICCD),
pp. 185–192. IEEE (2017)

5. Banga, M., Hsiao, M.S.: Trusted RTL: trojan detection methodology in pre-silicon designs. In:
2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
56–59. IEEE (2010)

6. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: Proceedings of the 36th Annual ACM/IEEE Design
Automation Conference, pp. 317–320. ACM (1999)

7. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE, pp. 443–446
(2008)

8. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware trojan: threats and emerging solu-
tions. In: 2009 IEEE International High Level Design Validation and Test Workshop, HLDVT
2009, pp. 166–171. IEEE (2009)

9. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: Mero: a statistical approach
for hardware trojan detection. In: Cryptographic Hardware and Embedded Systems-CHES
2009, pp. 396–410. Springer (2009)

10. Chandra, S., et al.: Snugglebug: a powerful approach to weakest preconditions. In: SIGPLAN,
vol. 44, pp. 363–374 (2009)

11. Charreteur, F., Gotlieb, A.: Constraint-based test input generation for java bytecode. In: ISSRE,
pp. 131–140 (2010)

12. Chen,M.,Mishra, P.: Functional test generation using efficient property clustering and learning
techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(3), 396–404 (2010)

13. Chen, M., Mishra, P.: Property learning techniques for efficient generation of directed tests.
IEEE Trans. Comput. 60(6), 852–864 (2011)

14. Chen, M., Qin, X., Koo, H.-M., Mishra, P.: System-Level Validation: High-Level Modeling
and Directed Test Generation Techniques. Springer Science & Business Media (2012)

15. Chen, M., et al.: Automatic RTL test generation from systemC TLM specifications. TECS 11,
38 (2012)

16. Corno, F., et al.: RT-level ITC’99 benchmarks and first ATPG results. IEEE Des. Test Comput.
17(3), 44–53 (2000)

17. Cruz, J., Farahmandi, F., Ahmed, A., Mishra, P.: Hardware trojan detection using ATPG and
model checking. In: International Conference on VLSI Design (2018)

18. Dinges, P., Agha, G.: Targeted test input generation using symbolic-concrete backward execu-
tion. In: ASE, pp. 31–36 (2014)

19. Dutertre, B., De Moura, L.: The Yices SMT solver. 2:1–2 (2006). Tool paper. http://yices.csl.
sri.com/tool-paper.pdf

20. Farahmandi, F., Huang, Y., Mishra, P.: Trojan localization using symbolic algebra. In: 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 591–597. IEEE
(2017)

21. Farahmandi, F., Mishra, P.: Automated test generation for debugging arithmetic circuits. In:
DATE, pp. 1351–1356 (2016)

22. Farahmandi, F., Mishra, P.: Automated debugging of arithmetic circuits using incremental
gröbner basis reduction. In: 2017 IEEE 35th International Conference on Computer Design
(ICCD), pp. 193–200. IEEE (2017)

23. Farahmandi, F., Mishra, P.: FSM anomaly detection using formal analysis. In: 2017 IEEE 35th
International Conference on Computer Design (ICCD), pp. 313–320. IEEE (2017)

https://www.opencores.org
https://www.trust-hub.org
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

18 A. Ahmed et al.

24. Godefroid, P., et al.: DART: directed automated random testing. In: ACM SIGPLAN Notices,
vol. 40, pp. 213–223 (2005)

25. Guo, X., Dutta, R.G., Jin, Y., Farahmandi, F., Mishra, P.: Pre-silicon security verification and
validation: a formal perspective. In: Proceedings of the 52nd Annual Design Automation Con-
ference, p. 145. ACM (2015)

26. Hicks, M., Finnicum, M., King, S.T., Martin, M.M., Smith, J.M.: Overcoming an untrusted
computing base: detecting and removing malicious hardware automatically. In: 2010 IEEE
Symposium on Security and Privacy (SP), pp. 159–172. IEEE (2010)

27. Hu, W., et al.: Detecting hardware trojans with gate-level information-flow tracking. Computer
44–52 (2016)

28. Koo, H.-M., Mishra, P.: Functional test generation using design and property decomposition
techniques. ACM Trans. Embed. Comput. Syst. (TECS) 8(4), 32 (2009)

29. Li, Y., et al.: Steering symbolic execution to less traveled paths. In: ACM SIGPLAN Notices,
vol. 48, pp. 19–32 (2013)

30. Liu, L., Vasudevan, S.: STAR: generating input vectors for design validation by static analysis
of RTL. In: HLDVT, pp. 32–37 (2009)

31. Liu, L., Vasudevan, S.: Efficient validation input generation in RTL by hybridized source code
analysis. In: DATE, pp. 1–6 (2011)

32. Liu, L., et al.: Scaling input stimulus generation through hybrid static and dynamic analysis of
RTL. TODAES 20, 4 (2014)

33. Lyu,Y.,Qin,X., Chen,M.,Mishra, P.:Directed test generation for validation of cache coherence
protocols. IEEE Trans. Comput. Aided Des. Integr, Circuits Syst (2018)

34. Mishra, P., Dutt, N.: Specification-driven directed test generation for validation of pipelined
processors. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 13(3), 42 (2008)

35. Mukherjee, R., et al.: Hardware verification using software analyzers. In: ISVLSI, pp. 7–12
(2015)

36. Park, S., et al.: Carfast: achieving higher statement coverage faster. In: FSE, p. 35 (2012)
37. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci. 13(1), 45–60

(1981)
38. Qin, X., Mishra, P.: Directed test generation for validation of multicore architectures. ACM

Trans. Des. Autom. Electron. Syst. (TODAES) 17(3), 24 (2012)
39. Qin, X., Mishra, P.: Scalable test generation by interleaving concrete and symbolic execution.

In: VLSID, pp. 104–109 (2014)
40. Rajendran, J., Vedula, V., Karri, R.: Detecting malicious modifications of data in third-party

intellectual property cores. In: Proceedings of the 52ndAnnualDesignAutomationConference,
p. 112. ACM (2015)

41. Salmani, H., et al.: On design vulnerability analysis and trust benchmarks development. In:
ICCD, pp. 471–474 (2013)

42. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path model-checking
tools. In: CAV, pp. 419–423 (2006)

43. Sen, K., et al.: CUTE: a concolic unit testing engine for C. In: ACM SIGSOFT Software
Engineering Notes, vol. 30, pp. 263–272 (2005)

44. Seo, H., Kim, S.: How we get there: a context-guided search strategy in concolic testing. In:
FSE, pp. 413–424 (2014)

45. Sturton, C., Hicks, M., Wagner, D., King, S.T.: Defeating UCI: building stealthy and malicious
hardware. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 64–77. IEEE (2011)

46. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1) (2010)

47. Waksman, A., Suozzo, M., Sethumadhavan, S.: Fanci: identification of stealthy malicious logic
using boolean functional analysis. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, pp. 697–708. ACM (2013)

48. Williams, S.: Icarus Verilog (2006). http://iverilog.icarus.com/
49. Zhang, J., Yuan, F., Wei, L., Liu, Y., Xu, Q.: Veritrust: verification for hardware trust. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 34(7), 1148–1161 (2015)

http://iverilog.icarus.com/

Security and Trust Verification of IoT SoCs 19

50. Zhang, J., Yuan, F., Xu, Q.: Detrust: defeating hardware trust verification with stealthy
implicitly-triggered hardware trojans. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 153–166. ACM (2014)

51. Zhang, X., Tehranipoor, M.: Case study: detecting hardware trojans in third-party digital IP
cores. In: 2011 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 67–70. IEEE (2011)

Low Cost Dual-Phase Watermark
for Protecting CE Devices
in IoT Framework

Anirban Sengupta and Dipanjan Roy

Abstract Intellectual property (IP) core providers are increasingly aware of the
need to protect their investment from either counterfeit/forgery or illegal owner-
ship. This chapter presents a novel low cost dual phase watermarking methodology
during high level synthesis (HLS) for IP core protection of vendor. Robust vendor
signature is embedded in two subsequent phases of high level synthesis to form
an integrated watermark. We present a dual-phase watermarking methodology that
embeds a multi-variable double phase watermarking during high level synthesis
for application specific IPs (application specific integrated circuits) that incurs zero
delay and register overhead as well as minimal hardware overhead. The dual-phase
watermarking approach yields average reduction of embedding cost of 6% (which
includes average area reduction of 7% and average latency reduction of 4%) when
compared to two recent HLS basedwatermarking approaches for application specific
IPs. Additionally, the approach also achieves stronger proof of authorship compared
to two recent HLS based watermarking approaches.

1 Introduction

Internet-of-Things (IoT) represents interconnection (communication system) of
smart devices, sensors, computing devices etc (including consumer electronics)
through modern network technologies. IoT is playing an essential role in home elec-
tronics, from entertainment to smart home control. In the domain of IoT, driven by
consumer electronics (CE) hardware, the importance of Electronics Design Automa-
tion (EDA) is pivotal. In themodern era of EDA for CE device, surging complexity of
design is out-pacing the design productivity. The significance of reusable Intellectual
Property (IP) [1–3] core for CE hardware is to cope up with these complex design

A. Sengupta (B) · D. Roy
Discipline of Computer Science and Engineering, Indian Institute of Technology Indore,
Indore, India
e-mail: asengupt@iiti.ac.in

D. Roy
e-mail: phd1501201007@iiti.ac.in

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_2&domain=pdf
mailto:asengupt@iiti.ac.in
mailto:phd1501201007@iiti.ac.in
https://doi.org/10.1007/978-3-030-02807-7_2

22 A. Sengupta and D. Roy

Seller1 Seller2

IP 1 IP 2

Seller watermark embedded in IP cores to
protect against threats

Hardware (SoC) integrated third party IPs
Threats

Fig. 1 Overview of IP core threats and its protection mechanism

requirements by reducing design time and enhancing design productivity. Thismakes
IP core a promising and popular solution in the industry. However, with the increase
in globalization and competition between the IP sellers/vendors, typical attacks such
as IP counterfeiting/cloning, ownership abuse are escalating. Protection of IP core is
essential to advance the benefits of reusable IP core [2–12]. However, while protect-
ing an IP core correct functionality and accuracy must be retained. Ownership of IP
ownership may be achieved by activating and deactivating each IP core by the sys-
tem designer [13], through a reversible data hiding approach [14] or by information
hiding techniques through steganography [15, 16]. Implanting a invisible owner’s
signature (known as watermark) is also one of the effective and promising option
to protect a reusable IP core against ownership abuse and IP infringements (refer
Fig. 1).

2 Overview of IP Core Protection Through Watermark

In this sub-section, we discuss some of the well-known powerful watermarking
methodologies along with their differences with the presented dual-phase water-
marking approach. Several watermarking techniques as discussed in [1, 11, 17–19]
are embedded at lower design abstraction level. For example side channel based
watermarking technique is discussed in [17], where, the vendor watermark is inserted
into the netlist and bitstream of an IP design. An in-synthesis IP core watermarking

Low Cost Dual-Phase Watermark for Protecting CE Devices … 23

process is proposed in [11]. Though these approaches are useful however they do not
protect designs at higher abstraction levels and incur more implementation complex-
ity. Further [1, 18] is only applicable for Field-programmable Gate Arrays (FPGAs),
not for Application Specific Integrated Circuits (ASICs). Additionally, both [18, 19]
do not embed multi-phase watermarking during High-level synthesis (HLS) of IP
design. Watermarking has been applied at higher design abstraction level also, for
example, authors in [2, 3] insert watermarking in register assignment phase of HLS.
Specifically, in [2] a dual variable encoding scheme (sequence of ‘0’ and ‘1’) is pro-
posed for watermarking whereas in [3] a multi variable encoding scheme (sequence
of ‘i’, ‘I’, ‘T’ and ‘!’) is proposed for watermarking. Both of these approaches add
additional edges in colored interval graph to achieve single-phase watermark (i.e.
during register assignment). Thus both, robustness and tamper resistance of [1–3,
11, 18, 19], are significantly less than a multi-phase HLS based watermark [20].

Several multi-level hierarchical watermarking techniques are also discussed in
[21–23]. These techniques embed watermark in multiple design abstraction levels
which offer strong proof of ownership and high degree of tamper resistance, but does
not explicitly implant dual-phasewatermarking constraints at architectural level (dur-
ing high level synthesis steps). Further, aforesaid approaches may also incur higher
implementation complexity and design overhead as the watermarks are embedded
in multiple independent levels.

2.1 Motivation of Embedding Dual Phase Watermark for IP
Protection at Behavioral Level

This discussion in this chapter is motivated by the fact that embedding watermark
at higher design abstraction (e.g. behavioral level) may be more advantageous than
embedding watermark at lower design abstraction (e.g. gate level or layout level).
This is because embedding watermark at higher design abstraction enables design
protection in subsequent lower levels (as watermark constraints embedded at higher
level propagate with design synthesis). Moreover, the embedding process incurs
lesser implementation complexity. In addition to that, embedding watermark in dual
phase within same abstraction level not only ensures more robustness, lower over-
head and higher tamper resistance watermark but also increases difficulty of reverse
engineering, compared to only single phase watermark ormultiple design level based
watermark designs [20].

The main focus of this chapter is to present a multi-variable dual phase (register
assignment and scheduling) watermarking methodology embedded at architectural
level for protecting against abuse of IP vendor’s ownership. The additional design
constraints due to watermark is embedded at architectural level in two different
phases of high level synthesis i.e. functional unit assignment and scheduling. It must
be noted that the presented dual-phase watermark embedding process embeds the
watermark in same abstraction level but in multiple phases, however without incur-

24 A. Sengupta and D. Roy

ring much overhead and complexity [20]. Moreover, it is capable to achieve strong
proof of ownership and high degree stronger robustness as it distributes watermark-
ing constraints across two independent design phases compared to single phase.
Though it is a well known fact that insertion of watermark may result in design
overhead with respect to hardware area, execution delay, power etc., nevertheless,
the design overhead obtained by other HLS-based watermark [2, 3] is larger than the
presented dual-phase watermark due to encoding rules devised. Experimental results
validate the reduction in overhead and increase in robustness compared to [2, 3], as
highlighted in [20].

The remaining parts of this chapter is structured as: Sect. 2 explains the related
work. Section 3 illustrate the dual-phase watermarking methodology while Sect. 4
demonstrate a motivational example. Section 5 reports the results and analysis, and
conclusion in Sect. 6.

3 Dual-Phase Watermarking Methodology

3.1 Problem Formulation

From a given application in the form of data flow graph (DFG) and user specified
hardware configuration (Xi) = N (R1), N (R2), . . . , N (RD), design a watermarked
IP core solution where N (RD) is the number of hardware of type RD .

Threat Model: The methodology presented in this chapter protects a reusable
IP core from following threats: ownership abuse and IP counterfeit/forgery. Thus,
possible attacks of a watermarked IP are: illegal claim of an IP and partial/complete
removal of an IP watermark.

Target Platform/Technology: The dual-phase watermarking technique is easily
adaptable to anymodern EDA tool. Any hardware description language (HDL) based
EDA tool can be merged with the aforesaid approach.

3.2 Dual-Phase Watermark Encoding

This sub-section discusses the presented dual-phase watermark encoding process.
Figure 2 presents a overview of the dual-phase watermarking approach. In the
approach we assume that the IPs are imported from two different third party IP
vendors because multi-vendor based IPs during system on chip (SoC) integration
is a common practice in the industry. In several published literatures [24–26], the
concept of two IP vendors for SoC design have been used. The dual-phase water-
mark is embedded during scheduling and hardware assignment phases of HLS [20].
The IP design in terms of assignment and scheduling phases are depicted through
two different tables (a) “non-critical operations (μm > 0)” table and (b) “hardware

Low Cost Dual-Phase Watermark for Protecting CE Devices … 25

Fig. 2 IP core protection at behavioral level using dual-phase watermark [20]

assignment” timing table, whereμm indicates themobility of an operation. This dual-
phase watermarking approach is comprises of three different digits viz. ‘α’, ‘β’, ‘γ ’
where each digit indicates a specific encoding. A vendor’s signature as a combination
of ‘α’, ‘β’ and ‘γ ’ is converted into its respective watermarking constraints based on
the encoding rule of each digit, which is then subsequently embedded as additional
constraints in the design. For example, ‘α’ and ‘β’ digit will embed a watermark by
modifying the hardware assignment table and ‘γ ’ will embed the vendor watermark
by changing the “non-critical operations (μm > 0)” table. The detailed encoding
rule of each digit is defined as follows [20]:

• ‘α’ = Even operation and odd operation of odd control step will be assigned to
hardware of vendor 2 (V2) and vendor 1 (V1) respectively.

• ‘β’ = Even operation and odd operation of even control step will be assigned to
hardware of vendor 1 (V1) and vendor 2 (V2) respectively for.

• ‘γ ’ = Shift an operation into its immediate next control step (cs) if the operation
is in non-critical path with highest mobility.

In the dual-phase watermark encoding rule, no portion of the existing IP design
requires to be hidden. Instead, the existing scheduling and hardware assignment of
the IP design is locally altered to accommodate the signature encoded digits in the
form of watermark. More specifically, in the scheduling phase, the operations of the
non-critical path are locally shifted based on the encoding rule of γ as explained
later in Tables 2 and 4. Next, in the hardware assignment phase the existing ven-
dor assignment (allocation) is modified based on the encoding rule of α and β. As
explained later Tables 1 and 3, due to signature digits of α and β, the existing hard-

26 A. Sengupta and D. Roy

Table 1 Hardware assignment table (before implanting watermark)

ODD
C.S.

Operation no. 1 2 7 8 9 12 13

Assigned
hardware

M2 M1 A1 M1 M2 M2 A2

EVEN
C.S.

Operation no. 3 4 5 6 10 11 14

Assigned
hardware

M1 M2 A1 A2 M2 A2 A1

Table 2 Timing table for non-critical operations (before implanting watermark)

Operation no. 2 3 4 6 8 7 10 13

Control step no. 1 2 3 4 5

Table 3 Modified hardware assignment table (after implanting watermark)

ODD C.S. Operation no. 1 2 7 8 9 12 13

Allocated
hardware

M1 M2 A1 M1 M2 M2 A2

EVEN C.S. Operation no. 3 4 5 6 10 11 14

Allocated
hardware

M2 M1 A1 A2 M2 A2 A1

Table 4 Modified timing table for non-critical operations (after implanting watermark)

Operation no. 2 3 4 6 7 10 13 8

Control step no. 1 2 3 4 5

ware assignment before watermark (opn 1 to M2 and opn 2 to M1) is modified to a
different hardware assignment (opn 1 to M1 and opn 2 to M2).

In the approach, watermark length can be controlled by varying the vendor sig-
nature strength i.e. the number of digits in the watermark embedded in an IP design
depends on the size of the signature provided by the vendor. Moreover, the size of the
design is also important to ensure all the watermarking constraints corresponding to
the chosen signature are embedded. For example, a small size design can not accom-
modate a large size signature (watermark length). However, a large size design can
accommodate various signature strengths. Thus to ensure that successive synthesis
do not result in same watermark, signature strength should be accordingly chosen,
e.g. for a small size design a very large size signature is undesirable.

The above encoding process is very useful as it enables to covertly insert water-
mark signature into an IP core during its design process [20]. Since the utility of
multi-vendor hardware assignment model during IP core design is obvious, hence it
provides a vehicle for the dual-phase watermarking approach to hiddenly embed the
watermarking constraints into it. The watermarking constraints based on encoding

Low Cost Dual-Phase Watermark for Protecting CE Devices … 27

thus can be conveniently implemented in a hidden form. Thus an attacker (without
the knowledge of encoding rules) will not have any hint where/how the watermark
is embedded. The dual-phase watermarking approach does not aim to obscure an IP
design to provide security, it only embeds vendor’s signature secretly into the design
(without disturbing IP functionality and obfuscating any IP design information) to
protect the owner, in case of ownership conflict. Thus even if an attacker knows
the complete design, its embedded watermark remains invisible. This is because our
watermark embedded does not add any extra design component, logic or feature, but
only performs local alteration of existing scheduling and hardware assignment, such
that it does not hamper IP functionality or appearance. Further, since we employ
local hardware re-assignment by exploiting multi-vendor assignment concept and
local movement of non-critical path operation with mobility, to embed watermark,
thus the dual-phase watermarking approach incurs low design overhead with respect
to execution delay and design area. Additionally, the watermark generated through
multi-variable encoding satisfies desirable properties such as minimal embedding
cost, fault tolerance (as constraints are exclusive and distributed in nature), resiliency
against threats (as specified in threat model) and low creation and detection time.

3.3 Process for Embedding Dual-Phase Watermark
in IP Design

The following steps are used to embed dual-phase watermark [20]:

1. Schedule theDFGbased on list scheduling algorithmand user provided hardware
configuration.

2. Perform hardware assignment on the schedule DFG.
3. Create the “hardware assignment” table for all operation and timing table of

“non-critical operations (μm > 0)” to represent the IP design before embedding
watermark.

4. Based on the operation number in each cs. sort the operations in increasing order.
5. Take the signature of the vendor as a combination of ‘α’, ‘β’, ‘γ ’ digit’s only.
6. For each occurrence of ‘γ ’ digit shift/move an operation of non-critical path by

scanning from cs 1 onward (without repeating) such that:

a. In the immediate next cs. the operation should not has a child.
b. Shifting/moving of the operation should not violate the user provided

resource configuration constraints.
c. The operation has the maximum mobility value will get priority to resolve

conflict (if conflict arises between two or more operations).

7. For each occurrence of ‘α’ and/or ‘β’ hardware reassignment is performed in
sorted order as per the encoding rules.

8. To represent a dual-phase watermarked IP core design, modify the “hardware
assignment” table and “non-critical operations (μm > 0)” table generated in
step 3 based on steps 6 and 7.

28 A. Sengupta and D. Roy

In the dual-phase watermarking approach we have used classical resource con-
straint list scheduling algorithm published in traditional HLS papers such as [27–30]
where priority function (e.g. mobility based, number of successor operations based)
is used to resolve resource contention or conflict among operations. Similar tech-
niques have been used in GAUT tool [31] where authors have used a modified list
scheduling using bit width in addition to mobility. Further, contemporary algorithms
as soon as possible (ASAP) scheduling has also been used in LegUp tool [32]. Thus
the dual-phase watermarking approach uses the realistic list scheduling algorithm
adopted fromclassical sources.Moreover, inwatermark embedding process (in [20]),
the 1st three steps are pre-watermark stage of the approach, where first step uses
list scheduling to generate a schedule (refer to Sect. 5.1 that shows a motivational
example of a valid schedule generated using list algorithm). Subsequently step 4
onward watermark embedding process begins where operations are sorted according
to their sequence numbers (i.e. name ordering). This sorting is necessary to accom-
modate the watermark constraints by local alteration of scheduling (only non critical
path) and hardware assignment. Therefore, operations are sorted only for inserting
signature, not for generating a regular valid scheduling. For the sake of brevity,
all the features of authors HLS tools have not been included while demonstrating
dual-phase watermarking. However, our HLS methodology/tools (published in [26,
33–36]) combines many features (used in other HLS tools) such as data pipelining,
loop pipelining, initiation interval, loop unrolling, loop folding, tree height transfor-
mation, logic transformation, redundant operation elimination, loop invariant code
motion etc. Thus for preserving succinctness, the dual-phase watermarking method
has not been demonstrated using above features.

3.4 Signature Detection

The signature detection for original owner of dual-phase watermarking approach can
be achieved in two steps:

1. Inspection: The objective of inspection is to collect the relevant information from
an IP design (hardware description language (HDL) files) such that the presence
of watermark can be identified by only a knowledgeable user (of encoding rules).
For instance in the dual-phase watermarking approach inspection can be per-
formed to collect the information of “non-critical operations (μm > 0)” timing
and “hardware assignment” details from the source code of hardware description
language.

2. Verification: The verification of signature is required to validate the presence of
vendor signature in the reverse engineered IP design. In order to perform this,
vendor’s signature needs to be decoded (converted to constraints) using signature
encoding rules (mentioned in Sect. 3.2). Finally, the presence of decoded con-
straints are verified in the reverse engineered design. The design flow of devised
signature detection process is presented in Fig. 3.

Low Cost Dual-Phase Watermark for Protecting CE Devices … 29

Fig. 3 Signature detection process of dual-phase watermarking approach

4 Motivational Example for Dual-Phase Watermarking
Approach

4.1 Motivational Example for Dual-Phase Watermarking
Scheme

Figure 4 shows a list scheduled DFG of MESA benchmark based on 2 adders and 2
multipliers which is provided as user input. In control step 1 the number of ready to
schedule multiplication operations are 4 however, the number of multipliers avail-
able are 2 (according to user resource constraints). In the dual-phase watermark-
ing approach this type of resource conflict is resolved using mobility based list
scheduling. As operation 1 and operation 2 has lesser mobility than operation 3 and
operation 4 they are scheduled in control step 1. Similarly, for other resource conflicts
the operation having lesser mobility gets higher priority to schedule in a control step.
Two instances are obtained for each hardware type, by importing one from vendor 1
(V1) other from vendor 2 (V2). The initial (before embedding watermark) IP sched-
ule performs random hardware assignment. The corresponding operation numbers
(1–14) of each functional unit appears in the left and the assigned hardware type of

30 A. Sengupta and D. Roy

(11)

(12)

(14)

(7)

(10)

(13)

(8)

(2)(1)
M2 M1

A2

M1A1 A2

A1

M1M2

M2

M2

M2A2

A1

+

* *

* *

* *

*

*

+

+

+

+

+

1

2

3

4

5

6

(3)(5) (6) (4)

(9)

Fig. 4 ScheduledDFGofMESAusing2 adders and2multiplierswith randomhardware assignment
before implanting any constraints

each functional unit appears in the right (Fig. 4). For instance, the first operation of
cs 1 is marked as operation number (1). ‘M2’ indicates the multiplier assigned to
this operation is imported from vendor type 2. The operations and its corresponding
assigned hardware is presented in Table 1. The first and third row of the table repre-
sent the operation # of odd cs and even cs respectively and the second and fourth row
shows the corresponding assigned hardware. Next step is to create a table containing
details of timing information for IP design (before embedding watermark). Note: We
do not include timing info of critical path operations as watermark is not inserted
there. The table consists of list of all non-critical path operations and their respective
cs number. The first and second row of the table indicate the operation number and the
corresponding cs number respectively. In the table, based on mobility, operations of
same cs are reported in sorted order. Next step is selecting a unique vendor signature
provided as watermark. Assuming: “γ γαββαα”.

The dual-phase watermarkingmethodology inserts watermarking constraints dur-
ing scheduling and hardware assignment phases of HLS respectively. According to
the encoding rule, a single encoded digit ‘γ ’ shall move an operation of non-critical
path with higher mobility (refer Fig. 4) to its immediate next cs. Now as per the
rule 6 in Sect. 3.3 operation number 8 is the first eligible operation to move in cs
4 and then subsequently to cs 5 due to occurrence of two consecutive ‘γ ’ digits.
The reason is that, other operations of non critical path viz. 2, 3, 4, 6, 7 and 10
does not satisfy the rule 6, while operation number 13 is not eligible because lack of

Low Cost Dual-Phase Watermark for Protecting CE Devices … 31

M1

(8) M1

(11)

(12)

(14)

(7)

(10)

(13)(8)

(2)(1)
M2 M1

A2

M1A1 A2

A1

M1

M2

M2

M2

M2A2

A1

+

* *

* *

*

*

*

*

+

+

+

+

+

1

2

3

4

5

6

(3)(5) (6) (4)

(9) *

(8) *

Fig. 5 Scheduled DFG after implanting first-phase of watermark (‘γ ’ digits)

another ‘γ ’ digit in signature chosen. After inserting two ‘γ ’ digits (according to the
sample vendor signature) the modified scheduled DFG with first phase watermark-
ing constraints embedded is shown in Fig. 5. The aforesaid scheduled DFG after
embedding ‘γ ’ is further used to embeds watermark in the hardware assignment
phase to insert ‘α’ and/or ‘β’. Now according to the chosen signature, the 3rd digit
of the watermark is α. Therefore, due to this α re-assignment of hardware M1 to
operation 1 is performed. Similarly, the 4th digit i.e. β e-assignment of hardware M2
to operation 3 is performed. This process continues for other signature digits. The
modified “hardware assignment” table and “non-critical operations (μm > 0)” table
after implanting watermark are present in Table 3 and Table 4 respectively. The final
dual-phase watermark implanted schedule is presented in Fig. 6. The overhead due
to scheduling phase is nil, while hardware assignment phase in minimum. Further,
register overhead is nil.

4.2 Properties of Generated Watermark

A watermark embedded in an IP core design must comprise of several desirable
properties. The watermarking methodology discussed in this chapter is capable to
generate those desirable properties. We discuss these properties achieved below:

32 A. Sengupta and D. Roy

(11)

(12)

(14)

(7)

(10)

(13)(8)

(2)(1)
M1 M2

A2

M2A1 A2

A1

M1

M2

M1

M2

M2A2

A1

+

* *

* *

*

*

*

*

+

+

+

+

+

1

2

3

4

5

6

(3)(5) (6) (4)

(9)

Fig. 6 Scheduled DFG after embedding dual-phase watermark (‘α’,‘β’,‘γ ’ digits)

1. Lowembedding cost: Thewatermark generated through dual-phasewatermarking
scheme incurs low area and latency overhead. Additionally zero register overhead
is imposed.

2. Resiliency against threats: The watermark is embedded in two different phases
using multi-variable encoding scheme. This makes the watermark strong and
robust against typical threats such as false claim of ownership, IP counter-
feit/forgery and watermark tampering.

3. Tamper Tolerance: As the watermark is embedded in two phases and distributed
over the complete design, the ownership remains intact even after any tampering
or partial removal of watermark (i.e. if thewatermarking constraints of phase 1 are
removed by an attacker, the ownership can be still proven by the watermarking
constraints of phase 2 or vice versa). Additionally, partial removal could also
occur if some watermarking constraints of a specific phase is only removed. In
such a scenario, the dual-phase watermarking approach is also capable to detect
watermark as the remaining watermark constraints are still distributed in the
design.

4. Watermark creation and detection time: The dual-phase watermarking is fast such
that the creation time is very less i.e. in the order of few milli-seconds. Besides,
it is simple for a genuine entity (with complete knowledge of encoding rules) to
detect the watermark while tough for an outsider.

Low Cost Dual-Phase Watermark for Protecting CE Devices … 33

5 Results and Analysis

In subsequent discussion of this chapter, we term a pre-watermark design (before
embedding any watermark constraints) as baseline design. The dual-phase water-
marking solution, related approaches [2, 3] and baseline design, all have been imple-
mented in Java and run on AMD processor. Subsequent subsections present the com-
parative results with [2, 3]. Following are the major reasons for choosing [2, 3] for
comparison:

1. Both [2, 3] have integrated watermark in one of the three major phases (i.e.
scheduling, hardware and register assignment, binding) of HLS prior to data-
path and control unit generation. However, [11] has not integrated watermark in
one of these phases, but has embedded in IP control unit. Since the dual-phase
watermarking approach has also embeds watermark in two of thesemajor phases
of HLS [20] it is more closer to [2, 3] from comparison perspective.

2. Additionally, [2, 3] targets HLS for application specification integration circuits
(ASICs), however, [11] targets HLS for field programmable gate array (FPGA).
Since the approach also targets HLS for ASICs, it includes similar platform as
[2, 3], compared to [11].

3. Finally, the approach in [11] suffers from a limitation that lack of sufficient “tem-
porally free” output slots result into erroneous watermarking process. Whereas,
[2, 3] do not suffer from any such type of limitation like the dual-phase water-
marking approach.

A 15 nm technology based on NanGate library [37] is used to calculate the design
area and execution latency of each design. HLS benchmarks are adopted from [38,
39] has been used in the dual-phase watermarking approach in this chapter.

5.1 Typical Attack Scenarios

In this section of the chapter, we discuss various type of attack scenarios. Assuming,
entity ‘X’ is the owner of a watermarked design (Dw) which entity ‘Y’ has brought
from ‘X’. In such a case the following threats may arises [2, 20]:

5.1.1 Unintended Signature Extraction

Entity ‘Y’may try to identify an existing information in thewatermarked design (Dw)
through inspection or reverse engineering and claims as his watermarking constraint.
Subsequently, ‘Y’ can then demand his ownership claiming design contains his sig-
nature. In such a case when the design contains both ‘X’s signature (original) and
‘Y’s signature (unauthorized) then, the entity having stronger and more meaningful
watermark will be considered as the real owner.

34 A. Sengupta and D. Roy

5.1.2 Unauthorized Signature Insertion

Entity ‘Y’may try to insert his own signature into Dw and claim for ownership. In that
scenario, the newly generated watermarked design will contain ‘Y’s signature on the
top of the ‘X’s signature. In such contradiction, ‘X’ can establish his authorship easily
as ‘X’s design only contains his signature, whereas, ‘Y’s design contains signatures
of both ‘X’ and ‘Y’.

5.1.3 Tampering Original Signature

Entity ‘Y’ may try to remove the watermark (partially or fully) from Dw by per-
forming some alterations to create an unauthorized design. However, as dual-phase
watermarking methodology distributes additional constraints throughout the com-
plete design in two different phases of HLS, therefore it is extremely difficult to
tamper all the watermarking constraints in the design.

5.2 Strength of Protection and Tamper Tolerance Ability

Table 5 presents the probability of coincidence (Pc) of the dual-phase watermarking
technique [2, 3]. Probability of coincidence [20] is defined as the possibility of
generating the same hardware assignment and scheduling as the one obtained after
embedding watermark. The metric for the approach is defined below:

Pc =
(1∏D

i=1 N (Ri)

)w ∗
(1∏G

j=1 Mob(Oj)

)
(1)

where w is the total count of α/β digit available in the signature, N (Ri) is number
of hardwares of hardware type Ri and D is total types of hardwares. Mob(Oj)

indicates the mobility of the non-critical operation j (Oj) and G is the total count of
γ digits available in the signature. Probability of coincidence (Pc) for related work
[2, 3] is based on information provided in their paper. Table 5 shows the dual-phase
watermarking approach have stronger credibility of authorship as lower Pc value is
achieved compared to [2, 3]. Further,higher the signature size, stronger the proof of
ownership (as Pc decreases).

Table 6 indicates the resilience of the dual-phase watermarking approach, [2, 3]
against tampering i.e. tamper tolerance ability. More the watermarking constraints
embedded throughout the design, more the difficulty for an attacker to tamper and
remove it completely. In [2, 3],watermarking constraints are embedded as extra edges
in the colored interval graph.However, inmany cases all thewatermarking constraints
corresponding to the signature strength does not get added as extra edges due to
presence of default edges in the design. In other words, number of actual (effective)
watermarking constraints added to the design is much lesser than signature strength

Low Cost Dual-Phase Watermark for Protecting CE Devices … 35

Table 5 Comparison of (Pc) as proof of ownership for dual-phase watermarking approach [2, 3]
for signature strength: 80 digits

Benchmarks Probability of coincidence (Pc)

Dual-phase [2] [3]

2D-ARF 5.8 ∗ 10−76 5.7 ∗ 10−73 5.7 ∗ 10−73

DCT (8-tap) 1.4 ∗ 10−79 5.7 ∗ 10−73 5.7 ∗ 10−73

2D-DWT 8.9 ∗ 10−60 1.2 ∗ 10−56 1.2 ∗ 10−56

EWF 3.2 ∗ 10−60 6.8 ∗ 10−49 6.8 ∗ 10−49

IDCT (8-tap) 3.3 ∗ 10−76 5.7 ∗ 10−73 5.7 ∗ 10−73

MPEG-2 motion vector 6.2 ∗ 10−95 2.0 ∗ 10−92 2.0 ∗ 10−92

1D-JPEG-IDCT (8-tap) 2.9 ∗ 10−89 4.6 ∗ 10−87 4.6 ∗ 10−87

MESA feedback points 7.3 ∗ 10−96 4.6 ∗ 10−80 4.6 ∗ 10−80

MESA interpolate aux 2.1 ∗ 10−116 1.3 ∗ 10−101 1.3 ∗ 10−101

MESA matrix multiplication (4 × 4) 1.2 ∗ 10−83 1.5 ∗ 10−83 1.5 ∗ 10−83

Table 6 Comparison of tamper tolerance as proof of resilience for dual-phase watermarking
approach [2, 3] for signature strength: 80 digits
Benchmark Actually embedded watermarking constraints % of actually embedded watermarking constraints

Dual-phase [2] [3] Dual-phase [2] [3]

2D-ARF 56 40 48 70 50 60

DCT (8-tap) 80 56 64 100 70 80

2D-DWT 51 41 48 64 51 60

EWF 48 27 29 60 34 36

IDCT (8-tap) 80 54 64 100 68 80

MPEG-2 motion
vector

80 56 56 100 70 70

1D-JPEG-IDCT
(8-tap)

80 55 58 100 69 73

MESA feedback
points

80 56 58 100 70 73

MESA interpo-
late aux

80 50 57 100 63 71

MESA matrix
multiplication
(4 × 4)

80 62 66 100 78 83

applied. Thus an attacker has to put much less effort in identifying the signature. On
the contrary, for dual-phase watermarking approach, watermarking constraints are
embedded in scheduling and assignment phases of the design as local alterations.
This technique reduces chances of default constraints being present in the design,
thus enabling more watermarking constraints to be effectively added to the design.
Thus an attacker has to put much higher effort in identifying the signature by reverse
engineering. Therefore, the tamper tolerance ability of the dual-phase watermarking
approach is higher than [2, 3].

36 A. Sengupta and D. Roy

Table 7 Comparison of dual-phase watermarking approach with baseline with respect to area,
latency, embedding cost and cost overhead percentage (%)
Benchmarks Resource

configuration
Area (µm2) Latency (ns) Cost Cost overhead %

Baseline Dual-
phase

Baseline Dual-
phase

Baseline Dual-
phase

Dual-
phase

ARF 5(+), 3(*) 191.10 209.19 2.67 3.11 0.77 0.87 12.98

DCT 6(+), 3(*) 250.87 263.45 3.95 4.19 0.80 0.84 5

DWT 2(+), 4(*) 162.79 165.94 1.98 2.08 0.78 0.81 3.85

EWF 3(+), 2(*) 184.81 197.39 3.24 3.82 0.85 0.95 11.76

IDCT 5(+), 3(*) 246.15 253.23 3.77 4.16 0.78 0.83 6.41

MPEG 3(+), 8(*) 280.76 287.05 2.44 2.59 0.73 0.76 4.11

JPEG 5(+), 5(*) 747.90 756.55 14.90 15.92 0.72 0.76 5.56

MESA-FP 4(+), 7(*) 370.41 380.63 4.88 4.94 0.71 0.74 4.23

MESA-IA 8(+), 8(*) 644.87 667.68 9.24 9.62 0.65 0.68 4.62

MESA-MM 4(+), 4(*) 526.12 534.77 9.52 9.96 0.71 0.73 2.82

5.3 Embedding Cost Comparison and Design Overhead
Analysis

This sub-section discusses the embedding cost evaluation and design overhead anal-
ysis. Embedding cost is calculated in terms of area and latency of a watermarked
design. Design overhead analysis is performed in terms of design area, design latency
and embedding cost.The embedding cost is evaluated based on the following func-
tion [3]:

C f (Xi) = w1LT /Lmax + w2AT /Amax (2)

where, C f (Xi) is the embedding cost of the solution for hardware configuration Xi ,
LT and AT indicates total execution latency and total hardware area of the water-
marked design. Lmax and Amax indicates maximum execution latency and hardware
area, w1 and w2 are user specified weight factor,both of them is set as 0.5 to provide
equal weightage.

The comparison of dual-phase watermarking approach with the baseline design in
terms of area, latency and embedding cost is reported in Table 7. Further embedding
cost overhead percentage (%) of the dual-phase watermarking approach compared
to baseline design is reflected in the last column of the aforesaid table. As evident
from aforesaid table the dual-phase watermarking approach incursminimal overhead
compare to a baseline design (no watermark).

Table 8 reports the comparative analysis between [2, 3] and the dual-phase water-
marking approach in terms of design latency, design area and embedding cost of
a watermarked design. For most of the benchmarks reductions in design parame-
ters such as area, latency and embedding cost is achieved with respect to [2, 3].
Table 8 also reports the reduction % achieved by the dual-phase watermarking

Low Cost Dual-Phase Watermark for Protecting CE Devices … 37

Ta
bl
e
8

C
om

pa
ri
so
n
of

du
al
-p
ha
se

w
at
er
m
ar
ki
ng

ap
pr
oa
ch

w
ith

[2
,
3]

w
ith

re
sp
ec
tt
o
(w
.r.
t)
ar
ea
,l
at
en
cy
,e
m
be
dd

in
g
co
st
an
d
re
du

ct
io
n
pe
rc
en
ta
ge

(%
)

B
en
ch
m
ar
ks

A
re
a
(µ
m
2
)

A
re
a
re
du
ct
io
n
(%

)
L
at
en
cy

(n
s)

L
at
en
cy

re
du
ct
io
n
(%

)
C
os
t

C
os
tr
ed
uc
tio

n
(%

)

[2
]

[3
]

D
ua
l-

ph
as
e

W
.r.
t[
2]

W
.r.
t.
[3
]

[2
]

[3
]

D
ua
l-

ph
as
e

W
.r.
t.
[2
]

W
.r.
t.
[3
]

[2
]

[3
]

D
ua
l-

ph
as
e

W
.r.
t.
[2
]

W
.r.
t.
[3
]

A
R
F

22
5.
71

22
3.
35

20
9.
19

7.
32

6.
34

3.
11

3.
11

3.
11

0
0

0.
92

0.
90

0.
87

5.
44

3.
33

D
C
T

29
0.
98

28
8.
62

26
3.
45

9.
46

8.
72

4.
51

4.
51

4.
19

7.
09

7.
09

0.
94

0.
92

0.
84

10
.6
4

8.
70

D
W
T

18
2.
37

18
0.
01

16
5.
94

9.
01

7.
82

2.
43

2.
43

2.
08

14
.4
0

14
.4
0

0.
93

0.
92

0.
81

12
.9
0

11
.9
6

E
W
F

20
9.
19

20
4.
47

19
7.
39

5.
64

3.
85

3.
89

3.
89

3.
82

1.
80

1.
80

0.
99

0.
98

0.
95

4.
04

3.
06

ID
C
T

28
0.
96

27
8.
40

25
3.
23

9.
87

9.
04

4.
34

4.
34

4.
16

4.
14

4.
14

0.
91

0.
89

0.
83

8.
79

6.
74

M
PE

G
30
9.
85

30
9.
85

28
7.
05

7.
36

7.
36

2.
77

2.
77

2.
59

6.
50

6.
50

0.
81

0.
81

0.
76

6.
17

6.
17

JP
E
G

78
3.
29

78
3.
29

75
6.
55

3.
41

3.
41

16
.5
2

16
.5
2

15
.9
2

3.
63

3.
63

0.
79

0.
79

0.
76

3.
80

3.
80

M
E
SA

-F
P

40
3.
44

40
3.
44

38
0.
63

5.
65

5.
65

4.
95

4.
95

4.
94

0.
20

0.
20

0.
77

0.
77

0.
74

3.
90

3.
90

M
E
SA

-I
A

70
1.
50

70
1.
50

66
7.
68

4.
82

4.
82

9.
74

9.
74

9.
62

1.
23

1.
23

0.
70

0.
70

0.
68

2.
86

2.
86

M
E
SA

-M
M

55
4.
44

55
4.
44

53
4.
77

3.
55

3.
55

10
.1
3

10
.1
3

9.
96

1.
68

1.
68

0.
75

0.
75

0.
73

2.
67

2.
67

38 A. Sengupta and D. Roy

Table 9 Comparison of storage hardware between baseline, dual-phase watermarking approach
[2, 3] (for 80 digits watermark size)

Benchmarks Resource
configuration

of storage hardware

Baseline Dual-phase [2] [3]

ARF 5(+), 3(*) 8 8 9 8

DCT 6(+), 3(*) 8 8 9 8

DWT 2(+), 4(*) 5 5 7 6

EWF 3(+), 2(*) 4 4 6 5

IDCT 5(+), 3(*) 8 8 10 9

MPEG 3(+), 8(*) 14 14 14 14

JPEG 5(+), 5(*) 12 12 12 12

MESA-FP 4(+), 7(*) 21 21 21 21

MESA-IA 8(+), 8(*) 48 48 48 48

MESA-MM 4(+), 4(*) 24 24 24 24

approach compared to [2, 3] with respect to latency, area and implementation cost.
Firstly, reductions compared to [2, 3] have been achieved because both approaches
embed the complete signature sequence during register assignment phase of HLS
(resulting into higher chances of register overhead incurring more area/latency).
Secondly, both aforesaid approaches do not leverage upon the promising concept
of multi-vendor model (with different area/delay values) for hardware assignment.
Using a single vendor for hardware assignment throughout the design may result in
higher design area/delay.

Table 9 reports the number of register required for baseline, dual-phase water-
marking approach [2, 3]. It is observed that register overhead of the dual-phase
watermarking approach is zero for all the tested benchmarks compared to [2, 3],
thus demonstrating that the dual-phase watermarking approach requires lower reg-
isters than [2, 3].

6 Conclusion

A dual-phase (embedded in same design abstraction level) watermarking method-
ology during high level synthesis has been presented in this chapter. The aforesaid
approach is based on a new embedding scheme (that implants watermark during
scheduling and assignment without change in functionality) and signature encoding
mechanism. The dual-phase watermarking approach does not add/reduce any new
design componentwhile insertingwatermark. The dual-phasewatermarkingmethod-
ology achieved an average reduction of design area, design latency and embedding
cost of 7% (min = 3.41% and max = 9.87%), 4% (min = 0% and max = 14.40%) and

Low Cost Dual-Phase Watermark for Protecting CE Devices … 39

6% (min = 2.67% and max = 12.90%) respectively compared to two similar [2, 3]
HLS based watermarking approaches. Further, stronger proof of authorship is also
achieved compared to [2, 3]. In addition, the dual-phase watermarking approach is
more robust, scalable, tamper tolerant and easily adaptable to any modern CAD tool.

One of the important aspects of future research could be geared towards devel-
opment of stronger encoding mechanisms that would encompass more variables to
increase tamper tolerance capability. Moreover, development of multi-phase water-
mark could be an important problem to investigate for the future that could increase
the robustness of author credibility further. Additionally, another aspect of improve-
ment could be refining the signature strength such that an optimal balance between
strong tamper tolerance and lowembedding time couldbe achieved. Finally, impact of
watermark creation time on different type of applications such loop based, non-loop
based and nested loop based data flow graphs could be analyzed in future research.

Acknowledgements Under grant no. 22/730/17/EMR-II CSIR has supported this work financially.
The authors would like to thank CSIR for the same.

References

1. Castillo, E., Meyer-Baese, U., Garca, A., et. al.: IPP@HDL: efficient intellectual property
protection scheme for IP cores. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(5),
578–591 (2007)

2. Koushanfar, F., Hong, I., Potkonjak, M.: Behavioral synthesis techniques for intellectual prop-
erty protection. ACM Trans. Des. Autom. Electron. Syst. 10(3), 523–545 (2005)

3. Sengupta, A., Bhadauria, S.: Exploring low cost optimalwatermark for reusable IP cores during
high level synthesis. IEEE Access J. 4(99), 2198–2215 (2016)

4. Fernandez,M., Soriano,M., Cotrina, J.: Tracing illegal redistribution using errors-and-erasures
and side information decoding algorithms. IET Inf. Secur. 1(2), 83–90 (2007)

5. Yuan, L., Qu, G., Ghouti, L., et. al.: VLSI design IP protection: solutions, new challenges, and
opportunities. In: Proceedings of the 1st NASA/ESA Conference on Adaptive Hardware and
System (AHS), pp. 469–476 (2006)

6. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A public-key watermarking technique for
IP designs. In: Proceedings of the Conference on Design, Automation and Test in Europe, vol.
1, pp. 330–335 (2005)

7. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits. In: Pro-
ceedings of the Design, Automation and Test in Europe (DATE), pp. 1069–1074 (2008)

8. Yu, T., Zhu, Y.: A new watermarking method for soft IP protection. In: Proceedings of the
International Conference onConsumer Electronics, Communications andNetworks (CECNet),
pp. 3839–3842 (2011)

9. Nie, T., Zhou, L., Li, Y.: Hierarchical watermarking method for FPGA IP protection. IETE
Tech. Rev. 30(5), 367–374 (2013)

10. Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. J. Signal Process.
Syst. 51(1), 123–136 (2008)

11. Le Gal, B., Bossuet, L.: Automatic low-cost IP watermarking technique based on output mark
insertions. Des. Autom. Embed. Syst. 16(2), 71–92 (2012)

12. Wu,Y.-T., Shih, F.Y.: Digital watermarking based on chaoticmap and reference register. Pattern
Recognit. 40(12), 3753–3763 (2007)

40 A. Sengupta and D. Roy

13. Alkabani, Y., Koushanfar, F., Potkonjak, M.: Remote activation of ICs for piracy prevention
and digital right management. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 674–677 (2007)

14. Ni, Z., Shi, Y.-Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video
Technol. 16(3), 354–362 (2006)

15. Marvel, L.M.: Information hiding: steganography andwatermarking. In: Javidi, B. (ed.) Optical
and digital techniques for information security.Advanced sciences and technologies for security
applications, vol. 1, pp. 113–133. Springer, New York, NY, USA (2005)

16. Cox, I.J.,Miller,M.L.,Bloom, J.A., Fridrich, J.,Kalker, T.:DigitalWatermarking andSteganog-
raphy. Morgan Kaufmann, San Mateo, CA, USA (2007)

17. Kufel, J., Wilson, P.R., Hill, S., et. al.: Sequence-aware watermark design for soft IP embedded
processors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(1), 276–289 (2016)

18. Jain, A.K., Yuan, L., Qu, G., et. al.: Zero overhead watermarking technique for FPGA designs.
In: Proceedings of the 13th ACM Great Lakes Symposium on VLSI, pp. 147–152 (2003)

19. Cui, A., Qu, G., Zhang, Y.: Ultra-low overhead dynamic watermarking on scan design for hard
IP protection. IEEE Trans. Inf. Forensics Secur. 10(11), 2298–2313 (2015)

20. Sengupta,A.,Roy,D.,Mohanty, S.P.: Triple-phasewatermarking for reusable IP core protection
during architecture synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. pp. 1–1
(2017). https://doi.org/10.1109/TCAD.2017.2729341

21. Rashid, A., Asher, J., Mangione-Smith, W. H., et. al.: Hierarchical watermarking for protection
of DSP filter cores. In: Proceedings of the IEEE 1999 Custom Integrated Circuits Conference
(Cat. No. 99CH36327), San Diego, CA, pp. 39–42 (1999)

22. Charbon, E.:Hierarchicalwatermarking in IC design. In: Proceedings of the IEEE1998Custom
Integrated Circuits Conference (Cat. No. 98CH36143), Santa Clara, CA, pp. 295–298 (1998)

23. Cui, A., Chang, C. H., Zhang, L.: A hybrid watermarking scheme for sequential functions. In:
IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, pp. 2333–
2336 (2011)

24. Rajendran, J., Zhang, H., Sinanoglu, O., et. al.: High-level synthesis for security and trust. In:
Proceedings of the IEEE 19th International On-Line Testing Symposium (IOLTS), pp. 232–233
(2013)

25. Karri, R.,Rajendran, J., Rosenfeld,K., et. al.: Trustworthy hardware: identifying and classifying
hardware trojans. Computer 43(10), 39–46 (2010)

26. Sengupta,A., Bhadauria, S.,Mohanty, S.P.: TL-HLS:methodology for low cost hardware trojan
security aware scheduling with optimal loop unrolling factor during high level synthesis. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 655–668 (2017)

27. Thomas, D.E., Lahnese, E.D., Walker, R.A., et. al.: Algorithmic and Register-Transfer Level
Synthesis: The System Architects? Workbench. Kluwer Academic Publisher (1990)

28. Heijligers,M.J.M., Cluitmans, L.J.M., Jess, J.A.G.: High-level synthesis scheduling and alloca-
tion using genetic algorithms. In: Proceedings of theAsia and South PacificDesignAutomation
Conference (ASP-DAC ’95). ACM, New York, NY, USA (1995)

29. Zoltan, B.: Scheduling algorithms for high-level synthesis. ACAMSci. J. 5(1–2), 48–57 (1996)
30. Hwang, C.T., Lee, J.H., Hsu, Y.C.: A formal approach to the scheduling problem in high level

synthesis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 10(42), 464–475 (1991)
31. Coussy, P., Chavet, C., Bomel, P., et. al.: ‘GAUT: a high-level synthesis tool for DSP applica-

tions’ in High-Level Synthesis: From Algorithm to Digital Circuit. Springer, Germany, Hei-
delberg (2008)

32. Canis, A., Choi, J., Aldham, M., et. al.: LegUp: an open-source high-level synthesis tool for
FPGA-based processor/accelerator systems. ACM Trans. Embed. Comput. Syst. 13(2), 1–27
(2013)

33. Sengupta, A.: Exploration of kc-cycle transient fault secured datapath and loop unrolling factor
for control data flow graphs during high level synthesis. IET Electron. Lett. 51(7), 562–564
(2015)

34. Sengupta, A., Roy, D.: Protecting an intellectual property core during architectural synthesis
using high-level transformation based obfuscation. IET Electron. Lett. (2017). https://doi.org/
10.1049/el.2017.1329

https://doi.org/10.1109/TCAD.2017.2729341
https://doi.org/10.1049/el.2017.1329
https://doi.org/10.1049/el.2017.1329

Low Cost Dual-Phase Watermark for Protecting CE Devices … 41

35. Mishra, V.K., Sengupta, A.: Swarm inspired exploration of architecture and unrolling factors
for nested loop based application in architectural synthesis. IET Electron. Lett. 51(2), 157–159
(2015)

36. Sengupta, A., Mohanty, S.P.: High-level synthesis of digital circuits in the nanoscale, mobile
electronics era. In: IET Book: Nano-CMOS and Post-CMOS Electronics: Circuits and Design,
pp: 219–261 (2016). e-ISBN: 9781785610004

37. NanGate 15 nm open library (2016). http://www.nangate.com/?page_id=2328
38. Express Benchmarks (2016). http://www.ece.ucsb.edu/EXPRESS/benchmark/
39. Mohanty, S.P., et. al.: Low-Power High-Level Synthesis for Nanoscale CMOS

Circuits. Springer Science+Business Media, LLC (2008). https://doi.org/10.1007/978-0-387-
76474-0

http://www.nangate.com/?page_id=2328
http://www.ece.ucsb.edu/EXPRESS/benchmark/
https://doi.org/10.1007/978-0-387-76474-0
https://doi.org/10.1007/978-0-387-76474-0

Secure Multicast Communication
Techniques for IoT

Subho Shankar Basu and Somanath Tripathy

Abstract With the advent of Internet of Things (IoT) and the wide number of appli-
cations that it is being applied on, eventually it will surpass the present size of the
Internet. But with these number of devices serving so many applications and being
reachable remotely over the Internet, they become equally prone towards attacks and
vulnerabilities. Hence, efficient and secure mechanisms tailored to such portable
devices are to be designed. Most importantly the protocols running on these devices
need to satisfy the basic security requirements while consuming minimum resources
in terms of memory, bandwidth and power. Also as these devices will be in mil-
lions there is an increasing need to design multicast security mechanisms as many
of the applications require it. Till date there has been limited contribution towards
multicast security with approaches made mainly based on extending the DTLS pro-
tocol, which certainly has a number of drawbacks. In this chapter, we discuss major
requirements of secure group communication and present different secure multicast
communication techniques emphasizing an interesting and effective approach called
S-CPABE.

1 Introduction

Internet of Things (IoT) is being talked about across all corners of the world. It has
the real potential to dynamically transform the future in a way we live our everyday
life. Devices of daily use will have the ability to compute and communicate with its
surroundings and integrate with the Internet. This will lead to these objects to sense
the environment, take decisions on their own and communicate with the rest of the

S. S. Basu (B) · S. Tripathy
IIT Patna, Patna, India
e-mail: subho.basu@gmail.com

S. Tripathy
e-mail: som@iitp.ac.in

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_3&domain=pdf
mailto:subho.basu@gmail.com
mailto:som@iitp.ac.in
https://doi.org/10.1007/978-3-030-02807-7_3

44 S. S. Basu and S. Tripathy

world. In a sense all these devices will be independent of one another and have the
sufficient intelligence to co-exist in the same world. As a result they will assist in all
possible ways in different applications that we come across and help in an efficient
and economic lifestyle. As for example cars will become driver-less and have the real
time knowledge of which route to take depending on the traffic conditions. They will
have the ability to communicate with each other and literally will never meet with
any accidents. They will also know the best parking options available to them on a
dynamic basis and know when to re-fuel or recharge at the optimal time and station.
In a word, with the introduction of computation, memory and communication in all
such devices, they will begin to behave optimally in all scenarios which would never
be possible by normal human beings. As a result humans will have the possibility to
obtain absolute optimality with a greater precision at a much reduced cost.

But, with so many possibilities, there are also other parameters which need to be
thought of and security is one of them. These devices bridge all types of distance
and transparencies as they can sense and gather information, compute on the data
and also send the information to the other parts of network. So there could be equal
number of vulnerabilities that could spring up in this environment. Say for example
a medical wearable device sends a critical heart beat sensor data to a central system.
If somehow this device gets maliciously affected and sends wrong information of
the heart beats or introduces an intentional delay in sending the data, the concerned
patient would be at a life risk. There could be tons of security issues rising from
these contexts and hence securing the devices and the network as a whole is of
utmost importance in the IoT scenario.

Today’s Internet is reasonably secure with the use of security mechanisms and
protocols, across systems. Starting from application level security across transport
level and down to layer 2 security principles, there is the possibility to provide multi
level security mechanisms for the traditional Internet devices. But the significant
difference among the traditional Internet and the IoT devices lies in the amount of
resources they have. Normal Internet devices like PCs, tablets and smart-phones
can make use of reasonable amount of computation, memory and communication
because they have no critical constraints on power consumption and can be power
plugged or recharged frequently as they are within human reach. On the contrary, IoT
devices will be in billions scattered everywhere and it would not be possible for them
to have human maintenance and sometimes even reach (remote mountains, forests
for example.) So essentially their lifetime is limited to a single non-rechargeable
battery. Another constraint comes with their requirement to have low manufacturing
costs which requires them to have small form factors leading to smaller processors,
memory and radio chipsets. So due to these two basic constraints of power consump-
tion and form factor, the IoT devices are incapable of running heavy algorithms and
protocols, whether be it for a normal network stack or for security purposes. Hence
the protocols running on them has to be lightweight. The challenge boils down to
designing efficient lightweight network and security protocols for these IoT devices
so that as far as possible they canmaintain the same level of communication and secu-
rity requirements with the traditional Internet but with the constraints of power and

Secure Multicast Communication Techniques for IoT 45

Fig. 1 Firmware upgrade in
a batch of cars through
secure multicast

form factor. And particularly this is a challenging task in security as in general there
are lots of computations and communications happening in traditional protocols.

The requirements of security are also different in different contexts, and many
applications require multicast or broadcast security mechanism. Particularly in the
context of IoT as there will be cheap sensor devices scattered everywhere with fetch-
ing environmental data from time to time, addressing them individually might not
make too much sense. Thus there should be efficient multicast security protocols to
be able to run on these devices. Consider a simple example as in Fig. 1 for the case
of a firmware upgrade in a batch of cars from a certain company manufactured in a
certain year. In this case the mechanism has to be secure so that the update happens
correctly. The upgrade requirement is targeted for a set of cars with some particular
attributes in terms of the manufacturing year, the generation, engine model, etc. This
can of course be done one at a time in a unicast fashion but will require a lot of
time and energy. An efficient way would be to transmit a multicast message for the
destined cars. So we see the necessity of multicast security as an increased need in
the IoT scenario which facilitates secure communication among the members in a
group.

2 Secure Group Communication

In a typical group communication system there are five different operations namely
Initiate, Join, Leave, Partition and Merge [1]. First of all it is required to form a
group with a group initiation with the Initiate operation. Then this group is visible
to different members who might show interest in joining the group through the Join
operation. This joining procedure might also require some authentication process
with a group controller. A member might also want to leave a group at any instant
of time through the Leave operation. Thus the joining and leaving of a member
into or from a group is highly dynamic. With each change in the group dynamics

46 S. S. Basu and S. Tripathy

the group members have to have a fresh re-keying mechanism to preserve forward
and backward secrecy. It might also happen that a group is partitioned into multiple
subgroups and each subgrouphas their own set of keys. The subgrouping is performed
through the Partition operation. Subgrouping increases efficiency in the sense that
sometimes there may be limited communication among some members of the group
so that they do not need to get involved in the bigger group. Members forming a
very stable sub-group are thus not affected by members from unstable groups with
frequent join and leave. But eventually different groups may be combined back to a
bigger group through the Merge operation. Different types of network have different
necessities for group communication. It is thus important to choose the appropriate
group communicationmechanism for better efficiencies in terms of re-keying factors,
computations and power consumption due to communications. The major security
requirements and services in group communication are as follows.

• Group Key Management
The central importance in a group communication system is the Group KeyManage-
ment (GKM). The security of the entire group depends on the strength of the group
key management, based on the cryptographic principles and the protocols used in the
design. There can be various protocols for the design. Themost common architecture
is to have a group controller which generates the group key and distributes that to
the individual members securely. This process has to be repeated for each re-keying
when a member joins or leaves the group. It could be better for systems where there
are not too many members joining or leaving the system frequently. The other way
of designing the group key is where all the members contribute together to generate
the group key, which is rather more complex. But whatever the process might be
GKM is required to meet the following needs.

– The key generation should be robust and secure.
– The key should be distributed to only the valid members in the group and in a
secure way.

– Each time a member joins or leaves the group, re-keying of the group key is
necessary. Those keys which are dependent on the group key should also be
re-computed.

– The re-keying should be equally secure.
– It should be computationally hard for an intruder to generate the current group
key.

In addition to that, the group key should also have a lifetime of its own so that even if
there has not been a necessity for a re-keying due to group dynamics, the re-keying
should be done if the time exceeds the lifetime of the group key.

• Group authentication
In a group communication system, authentication of both the members participating
in the group as well as the messages sent are necessary. This leads to the prevention
of identity related attacks like spoofing. Normally a certificate from a certifying
authority is used to prove the identity of a user and a message in the system. Expired

Secure Multicast Communication Techniques for IoT 47

certificates are also compiled into a revocation list which is then distributed to notify
all the members.

• Group authorization and access control
In a unicast communication system with access control, the recipient having the
decryption key has full control normally referred to as a single access privilege. But
in a group communication system different members of the groupmay have different
access privileges referred to as themultiple access privilege. Thusmemberswho have
the correct access privileges for a flow can only access the content.

• Group accounting and non-repudiation
All group transactions need to have an accounting measure so that there could not be
the possibility of non-repudiation problems. An entity within the group is normally
assigned the task of maintaining this accountability, so that in case of a dispute it
can derive the corresponding proofs of a sender or a message. In general the group
signature and the member certificate are used to authenticate the sender and the
message.

• Group privacy and anonymity
Messages sent within a group need to have the information about the sender and the
message be possibly anonymous, so that no extra information could be derived from
a message by an intruder. Different encryption techniques can be used to achieve the
same.

• Group message integrity and confidentiality
Message integrity within a group confirms that a message has not been modified
in the transit from the sender to the receiver. In a group communication this is
highly important since multiple members in the group have the decryption key. In
the event that one of the members are compromised, it can modify the original
message and transmit a fresh version. Message integrity can be achieved by hashing
techniques. Confidentiality is also important and signifies that only the authorized
members within the group have the possibility to make out meaningful data from a
message. Different encryption mechanisms can be used to ensure the confidentiality
of a message within a group.

• Group survivability and availability
It is important for a group to sustain its survivability against DoS and flooding attacks
from an attacker. An attacker may target the group controller with flooding messages
so as to limit the legitimate members to reach the controller. Group availability
ensures that an authorized member of the group can always communicate within the
group by using restricted group resources. Any violation of the principles should be
promptly detected and appropriate actions are to be taken. For example the impact of
a flooding attack can be mitigated by authenticating sources that generate flooding
packets with an early detection of massive number of packets from a single source.
Once such an attack has been detected further communication with that source can
be immediately dropped.

48 S. S. Basu and S. Tripathy

3 Secure Group Communication Approaches

A number of approaches for secure group communication have been proposed by
various authors. But the requirement and themotivation of these protocols andmech-
anisms revolves around the basic concepts of the group key formation, re-keying
mechanisms and trying to optimize the performance as per the network and com-
munication patterns. A few of them are discussed here. Also we discuss later how
the Attribute Based Encryption mechanism is used in our approach S-CPABE [2].
S-CPABE is so versatile in terms of flexibility and maintaining knowledge informa-
tion from past on the nodes that it can perform in a highly optimized fashion, since
the target for IoT applications is minimizing power consumption on the end nodes.

Some key hierarchy based principles have been proposed to optimize keying
requirements. DeCleene et al. [3] proposed an algorithm where the operational area
has been partitioned into multiple sub-areas. Each of the sub-areas has their own area
key, but the whole operational area has a network wide common group key. The area
key is used to encrypt the group key. This is useful in a mobile network scenario so
that nodes that are less mobile in a particular area can make use of the same area
key for a longer period compared to the nodes that are frequently moving between
areas with the requirement to change the area key most often. The concept has been
further extended to keep a history of the area keys, so that when a node re-enters a
previously visited area, the corresponding area key is re-used instead of generating
a fresh one to reduce time and computation. A topology matching key management
technique has been proposed by Sun et al. [4] where a tree structure of the keys are
managed according to the cells in a wireless network. The re-keying happens when
a node moves from one cell to another and managed by a key distribution centre
(KDC). The communication overheads are low and shows a reduction of as much
as 80% as compared to topology independent key management (TIKM) schemes.
Gupta and Cherukuri proposed three schemes namely single session key (SSK),
different session key (DSK), and a combination (HYBRID) [5]. In the SSK scheme
the members are given the same session key, while in the DSK scheme the members
hold different session keys based on their locations. The HYBRID scheme is a mix
of the SSK and the DSK so that members that are within the same location for a
sufficient long time hold the same session key whereas members that change their
location more frequently hold different session keys. Westerhoff et al. [6] proposed
a decentralized scheme called MOMBASA, which is a multicast based approach
to achieve low latency for member handoffs with minimum packet loss and secure
protocol operations. Each of the member nodes registers themselves with aMobility-
Enabling Proxy (MEP) and communicates with the MEP in a unicast manner. The
MEP is in charge of communicating in amulticast manner with the group. This proxy
mechanism ofMOMBASA shows that it is protected against various attacks by using
three security components namely packet filtering at the access network boundaries,
deployment of a AAA infrastructure and limiting DoS attacks.

Secure Multicast Communication Techniques for IoT 49

We present two Secure group communication mechanisms in the subsequent sec-
tions. Both the approaches use the secret sharing mechanism of Shamir, due to its
flexibility in a multicast environment.

3.1 ECC-Based Secure Group Communication

The scheme proposed by Porambage et al. [7] is a group security scheme based on
an Elliptic Curve Cryptography (ECC) variant. Here the initiator is a member of
the group and starts the communication, and assumes that it has all the identities of
the members in the group for whom the message is destined. This scheme operates
through the following steps.

• Step 1 The initiator I selects the sensors with their ids which will together form the
multicast group, by defining N the group size, and U = {U1,U2,…,U(n−1)}, the set
of receivers. It then generates a random number ri ∈ Z∗

p and calculates Ri = ri .G
where G is the base point generator with prime order p. The broadcast message
is then created using the initiator’s public key Qi = di .G, Ri and U, where di is
its private key and U is the set of receivers. The message {Qi , Ri ,U} is signed
and broadcast to the entire network, announcing the initiation of the multicast
communication.

• Step 2 When a receiver receives the broadcast message, it verifies from the set
U whether it is one of the recipients. If it is then starts processing the message
further otherwise drops it. The signed message also determines the integrity of
the message. Each of the receivers j then generate a random number r j ∈ Z∗

p and
along with Ri calculates Ri j = r j .Ri and R j = r j .G. Then Ri j , the private key
of j d j , and the initiator’s public key Qi are jointly used to generate the secret
EC point Sj = d j .Qi + Ri j .Uj then computes Auth j = h(Sj ||Ri j ||Uj) and sends
{R j , Q j , Auth j ,Uj} to I.

• Step 3 The receivers respond to the initiator in a unicast fashion. If there is a loss
of response from any of the receivers after a retransmission timeout, the initiator
re-sends the message again. After the initiator receives the message from the
responderUj , it calculates theECpoint S∗

j from R∗
i j = r∗

i jG (here, r∗
i j = rir jmodp),

S∗
j = di .Q j + R∗

i j . The initiator I then also checks for Auth j = h(S∗
j ||R∗

i j ||Uj).

If the verification is successful it proceeds to the next step, otherwise it discards
the message and re-sends the same multicast initiation message to the particular
nodes. In the event that the request fails again, the particular node is removed from
the multicast group.

• Step 4 The EC point Sj = (x j , y j) as calculated by I for all the group members
is encoded as the point (u j , v j), where u j = h(x j) and v j = h(y j). A random
value k is then generated as the multicast group key. Then the initiator interpolates
the polynomial f(u) of degree (n − 1) by using Lagrangian interpolation method.
The polynomial f(u) passes through n points (0, k), (u1, V1), . . . , (un−1, vn−1) and
generates (n − 1) additional points P1, P2, . . . , P(n−1). The new auth code is then

50 S. S. Basu and S. Tripathy

calculated as Auth = h(k||ri ||P1|| . . . ||P(n−1)). The initiator then broadcasts the
message Auth, P1, . . . , P(n−1) with the digital signature.

• Step 5 On receiving the second broadcast message, the responder verifies the
signature and finds (n − 1) points. The responderUj uses Sj to compute (u j , v j),
and having those n points enables it to reconstruct the polynomial f(u) and derive
the group key k by Lagrangian interpolation method with k = f(0).Uj also verifies
whether Auth = h(k||ri ||P1||P2|| . . . ||P(n−1)), and if correctly verified the key is
authenticated.

• Step 6 Each node then sends an acknowledgement with h(k, Q j) to the initiator
and this confirms that the nodes have the authenticated multicast group key k.

According to the description of the problem, a multicast communication can be
replicated by using multiple unicast communications, but that is not very effective.
The approach of S-CPABE uses the basics of IP multicast for multicast communica-
tion, but for security it uses CPABE encryption to encrypt packets. So essentially all
the receivers which indeed satisfy the access structure as defined at the source will
only be able to decrypt the packet. In raw CPABE, each individual receiver decrypts
the packet by using the decryption functionality, which for constrained devices is not
practical. In some way there should be a way to refrain these devices from perform-
ing heavy cryptographic operations like in CPABE. Moreover in an IoT environment
there will be lots of nodes which will satisfy the access structure in the same manner
due to similar device characteristics and attributes. This will lead to the decryption
phase of the CPABE for these devices to be exactly similar and hence wastes power
due to redundant scenario. And since the decryption phase is quite cryptographic
heavy, the cumulative power requirements due to redundancy will be quite huge
in a relative aspect. This additive power consumption in an IoT environment with
hundreds and thousands of nodes is a huge figure and needs to be considered seri-
ously. Next we describe in details a related approach of using Shamir’s secret sharing
using Attribute Based Encryption (ABE) technique that we have used to design the
mechanism of S-CPABE.

3.2 S-CPABE for Secure Multicast Communication

In this section we present S-CPABE (Segregated CPABE) which segregates CPABE
to push the intensive computations to the gateway for reducing the computational
burden from low-power end devices. S-CPABE uses ABE cryptographic mecha-
nisms, particularly Ciphertext Policy Attribute Based Encryption (CPABE), so for
better readability Attribute Based Encryption is precisely described next.

Secure Multicast Communication Techniques for IoT 51

3.2.1 Background of ABE Mechanisms

This section briefly touches the basics of Attribute Based Encryption (ABE) mech-
anism for better understanding of the underlying concepts of S-CPABE. ABE cryp-
tographic algorithms are a generalized form of Identity Based Encryption (IBE) [8]
where they have an identity associated to each and every member taking part in the
secure message transfer. As for example an email-id or a unique personal identi-
fication number, etc. can be utilized as the unique identity. The public key of the
recipient is derived from the public parameters publicized globally along with the
individual identity. Hence essentially it is not required to transfer the public key of
the receiver before the actual encrypted message is transmitted. An ABEmechanism
requires each receiver to have a set of attributes which defines the characteristics or
the identity of it. In essence there exists two types of ABE, named CPABE [9] and
KPABE [10]. CPABE has been chosen in this work according to which the sender
encrypts the packet using the public parameters and an access structure which needs
to be satisfied by the receiver for the decryption. Every recipient possesses a private
key generated by the Private Key Generator (PKG) and this key is utilized to decrypt
the message, with the condition that it indeed satisfies the access structure which the
sender has sent. The entire concept is rooted on Shamir’s secret sharing mechanism
[11]. The key at the root in the access structure is broken down recursively down to
the leaves at the sender’s side. Conversely at the receiver’s side the mechanism is
reversed and the root secret is re-generated bottom-up from the leaves recursively
by the usage of Lagrange’s polynomial interpolation. The entire process consists of
four main phases namely Setup, Keygen, Encrypt and Decrypt as discussed in [9].

Setup(k)—(P,MSK): In this phase, the PKG takes the security parameter k as input
and outputs a public parameter P and a master secret keyMSK. The public parameter
P is multicasted to all nodes taking part in the group communication, while the MSK
is preserved as a secret at the PKG only.

Keygen(MSK, S)—D: This phase enables the PKG to authenticate the individual
members of the group. After that it takes as input the MSK and the set of attributes
S possessed by the member, and outputs a private key D. PKG then sends this D to
the corresponding member over a secure channel.

Encrypt(P, T, Msg)—CT : In this phase, the sender outputs the ciphertext CT, using
the public parameter P, the access structure T which should be satisfied by the target
receiving nodes, and the message Msg.

Decrypt(P, CT, D)—Msg: In this phase, first of all a member needs to satisfy the
access structure T. If satisfied it takes as input the public parameter P, the ciphertext
CT and its private key D to retrieve the original message Msg back.

An end-to-end security is achieved in CPABE where the end nodes are solely
responsible for the decryption and none of the intermediate nodes in the pathway are
responsible or capable to decrypt correctly. Hence trivially it makes good sense if
these decryptions are pushed off to the gateway, as the gateway is much powerful to
perform computation intensive operations. But it does not satisfy the requirement for
end-to-end security unless the protocol has been modified correctly. So in essence
what has been proposed is a partial decryption approach in the gateway by segregating

52 S. S. Basu and S. Tripathy

the CPABE decryption mechanism. The gateway gets the responsibility to handle
major part of the decryptions but should fail to perform the end-to-end decryption.
The data obtained from partial decryption is passed on to the end nodes, which are
then required to complete the remaining part of the decryption. In this way it prevents
the gateway from retrieving the plain text (message or key) to maintain end-to-end
security, and at the same time takes off the burden from the end nodes to perform the
major redundant computations thus saving energy.

S-CPABE uses all the operations including Setup, Keygen, Encrypt of CPABE
[9]. Only the Decryption phase has been divided into two phases to be carried out (a)
partly by the proxy or gateway and (b) completed by the end nodes in the last step.
The operations and calculations has been discussed as follows.

Setup: This phase is carried out by taking as input the security parameter and
it outputs the public parameter PK and the master secret key MK. Typically PK =
G0, g, h = gβ, f = g1/β, e(g, g)α and MK is (β, gα). e is the Bilinear mapping and
G0 is a bilinear group of prime order p with generator g. α and β are two random
numbers in Z p, the set of positive integers.

Keygen(MK,S): The Keygen phase enables the PKG to generate the private key
for every group member by the usage of the master key MK and the set of attributes
S. The key is computed as

SK = (D = g(α+r)/β,

∀ jεS : Dj = gr .H(j)r j ,

D′
j = gr j). (1)

Here r and r j are random numbers in Z p and H is a function which maps an attribute
to an element in the group.

Encrypt(PK,M,T): The sender then encrypts the message M by using the public
parameter PK and the access structure T, as follows

CT = (T, ˜C = Me(g, g)αs,C = hs,

∀yεY : Cy = gqy(0),

C ′
y = H(att (y))qy(0)). (2)

Here s is the root secret of the access tree, qy(0) is the secret at node y, and Y is
the set of leaves in T. All the other symbols including ˜C , Cy , C ′

y etc. are various
representations for mathematical expressions used in the entire process.

Decryption Phase I—Partial decryption at the gateway:
The same mathematical construct as that of CPABE [9] is followed in S-CPABE

for the decryption. The function is defined as:

Decrypt Node(CT, SK , x) = e(Di ,Cx)

e(D′
i ,C

′
x)

= e(g, g)rqx (0). (3)

Secure Multicast Communication Techniques for IoT 53

Fig. 2 Segregation in
S-CPABE

Fig. 3 Access tree for CT 1

The DecryptNode function only operates successfully if it satisfies the node
attributes in the access structure, otherwise returns ⊥. It is to be noted that for this
function, the outcome for each node is the same expression value Fx = e(g, g)rqx (0).
In phase I, we continue performing this on the gateway, until we reach one level away
from the root, namely the node A on the left hand side of the access tree as shown in
Fig. 2. Thus the gateway can recursively compute FA as

FA =
∏

ZεSx

F
Δi ,S′

x (0)
z , i = index(z),

S′
x = {index(Z) : ZεSx }

= e(g, g)rqA(0). (4)

As this phase ends, FA is transferred securely to the end nodes as γ = (CT,CT 1)

by another CPABE level (CPABE-2). The ciphertext CT 1 is as in Eq. 2 with corre-
sponding access structure τ ′ as shown in Fig. 3 which would be the logical OR of the
node-ids of all the authorised nodes. This is to prevent decryption by the unauthorized
end nodes.

Decryption Phase II—Completion of the last decryption at the end nodes:
The targeted end nodes satisfying the access tree τ ′ then decrypt CT 1 to obtain

FA. Moreover, each of the destined end nodes satisfy the attribute “node” in Fig.
2 so that they satisfy the access structure after having obtained FA. This attribute
called “node” just acts as a marker for the last end node to do the final decryption.

54 S. S. Basu and S. Tripathy

It just separates this node from other intermediary nodes. Hence every end node
has the attribute “node”, but it is absent in all of the intermediary devices whether
gateways, proxies, routers, etc. This ensures preserving the requirement for end-to-
end security just like CPABE. The nodes can therefore perform the only final step
of the decryption computation of CPABE at the root node R resulting in significant
reduction in computation.

FR = ∏

Zε(A,node) F
Δi ,S′

x (0)
z

= ∏

(e(g, g)rqparent (z)index(z))Δi ,S′
x (0)

= (e(g, g)rqR(1))Δ1S1(0) · (e(g, g)rqR(2))Δ2S2(0)

= e(g, g)r [qR(1)Δ1S1(0)+qR(2)Δ2S2(0)]
= e(g, g)rqR(0)

= e(g, g)rs .

(5)

The final group key or message M is computed as

˜C/(e(C, D)/FR)

= ˜C/(e(hs, g(α+r)/β)/e(g, g)rs) = M.
(6)

It is to be noted that each end node executed this process, earlier once more to obtain
FA from CT 1. Thus, two one-step CPABE decryptions are necessary for each end
node to obtain the plaintext (group key).

3.2.2 Operation Principle of S-CPABE

The proposed S-CPABE operations for secure multicast in IoT are as shown in
Fig. 4 and briefly explained as follows:

• In the deployment phase before providing any service, the nodeswith their attribute
set, gets registered to the gateway (proxy).

• For the security in the group, the user generates a random key and encrypts it
using S-CPABE. The server can then use this key for further encrypted messages
destined for the user. Similarly, for sending sensitive data server group, the user
sends the key encrypted by CPABE. The messages are then encrypted using this
random key and a symmetric encryption algorithm. The access structure needs to
be formed as A AND node, where “node” is the attribute that is present only in the
end nodes for the last step decryption, but not in the gateway. So the gateway can
only partially satisfy the access structure till node A, which can be further nested
recursively down the access tree.

• The gateway does the partial decryption to one level until the root and sends it to
the group of authorised servers/nodes for the last step decryption.

• The end nodes then perform the last step decryption to get the key. This key is then
the same key used by the sender and receiver for further encryption and decryption
purposes.

Secure Multicast Communication Techniques for IoT 55

Fig. 4 Flow diagram of S-CPABE

3.2.3 Cost of Key Management in S-CPABE

Tomanage keys for S-CPABE is rather simple. InABEbased systems, nodes just need
to contact the PKG once to get their private key. So the PKG can be entirely removed
from the system if there are nonewnodes joining the group.This first initialization can
be done during the network bootstrapping phase using any protocol, or a pre-shared
key (PSK) approach can be considered without the loss in security or generality. The
actual encryption and decryption phase is evenmore lightweight as compared to other
asymmetric protocols, as in S-CPABE the receivers need not distribute their public
keys to the senders at the start of the process. The sender can derive the public key of
the receiver from the public parameter PK and the access structure, thereby reducing
the number of messages for the public key distribution. Also the sender does not
need a detailed knowledge apriori of the number of destined receivers, their specific
identities, certificates, etc. No states are required to be maintained unlike DTLS
based systems. The sender can generalize a target group with their attribute set and
the access structure, making it very much suited for multicast IoT environments.

3.2.4 Security of S-CPABE

The proposed architecture is based on the idea of segregating CPABE, and hence the
security goes in hand with that of original CPABE [9].

• Curious Gateway: The architecture considers that the gateway is a trusted one
and performs all the methodologies as described, but also curious to decipher the
plaintext (original group key or message). It fails to do so just from the CT as

56 S. S. Basu and S. Tripathy

essentially it does not satisfy the access structure shown in Fig. 2 because it lacks
the attribute “node”.

• Curious Revoked node: It is simple to deny access to a subgroup of nodes that are
not targeted for a particular message. As shown in Fig. 3, the gateway generates
the access tree using the authenticated targeted nodes but not including the revoked
ones which can also have the “node” attribute, but ensuring that they do not satisfy
the sender’s access structure. Thus the revoked nodes fail to obtain FA since they
cannot satisfy the access structure τ ′. Therefore, the revoked nodes are unable to
retrieve the plaintext.

• Curious New node: S-CPABE also manages easily new nodes joining the group.
A new attribute (att) is assigned to this new node. The sender creates the access
tree like the one in Fig. 2 except that the sub tree to the right hand side of the root
node would be modified to (node OR att). This enables the new node to retrieve
the plain text further. But since this new node neither satisfies the access structure
in Fig. 2 nor Fig. 3, it is thus unable to decrypt the previous messages.

• Authentication: S-CPABE inherently supports authentication as the PKG takes the
sole responsibility to authenticate the node and delivering its private key. The only
difference with respect to CPABE is that the gateways also need to authenticate
themselves so as to ensure that the forwarded messages from the gateway are also
genuine ones.

3.2.5 Computational Analysis

A platform has been formed to study the performance of S-CPABE and compare it
with traditional CPABE. The end nodes have been considered as individual Linux
machines with identical hardware and software capabilities and different implemen-
tations have been compared on the same setup. Hencewithout loss of generality it can
be assumed that if the proposed model performs better in comparison to others in the
PC environment, then it is also expected to hold true in constrained environments. As
the primary concern is the overhead for decryption for the end nodes, the experiment
focuses on the segregated decryption mechanism of S-CPABE as compared to other
protocols. As expected from the theoretical overview, S-CPABE shows better results
as compared to CPABE. The results show that the approach of S-CPABE is indeed
an indication that ABEmechanisms can indeed be run on constrained devices if dealt
with properly.

The hardware setup consists of a PC with Intel Core i3 1.7 GHz CPU and 4 GB
RAM running Ubuntu 14.04 LTS. For the softwares, cpabe and libbswabe toolkit [9]
have been used, running on top of the pbc and gmp libraries. Valgrind utility of Linux
[12] has been used for measuring performance aspects. The main optimizations for
S-CPABEwas done in the bswabe_dec function in the file core.c. The main intention
was to see the efficiency gain in the decryption strategy in the end nodes.

Table 1 displays the results from valgrind on the test setup for CPABE operations
for Setup, Keygen and Encrypt. The latency is represented in (Million) instructions
and the memory in (Kilo) bytes. PKG performs the setup and keygen phases only

Secure Multicast Communication Techniques for IoT 57

Table 1 Valgrind test results for CPABE

Phases Latency (in instructions) Memory (in bytes)

Setup(PKG) 105.5 Mi 8.336 KB

Keygen(PKG) 2 attrs = 220.3 Mi 12.9 KB

4 attrs = 440.4 Mi 14.73 KB

6 attrs = 661.3 Mi 16.68 KB

Encrypt(Sender) 3 nodes (a and b) = 160.8 Mi 13.30 KB

7 nodes (a and b)

v (c and d) = 267.9 Mi 15.34 KB

Table 2 Valgrind comparative results

Protocols Latency (in Instructions) Memory (in Bytes)

DTLS 200 Mi
(Server) || (Client)
180 Mi || 20 Mi

223 KB (almost the same for
server and client)

CPABE ormid50̂ node dec = 158.4 Mi
5 node dec = 255.8 Mi

54.45 KB
18.12 KB

S-CPABE Std. 3 node dec = 155.7 Mi 16.97 KB

tinydtls Server = 156 Ki
Client = 201.9 Mi

360 Bytes<10 KB
2.859 KB<10 KB

once. The PKG is considered to be unconstrained, so the memory and latencies for
these two phases are not of importance to the constrained devices. The main focus
of this paper has been on the decryption phase as this is the major drive for IoT use
cases where multicast messages are pushed from a non-constrained device to a bunch
of constrained devices.

Table 2 shows the metrics for decryption times and memory requirements for
S-CPABE and CPABE. The tunnel setup times and memory requirements for DTLS
and tinydtls have also been shown here. The comparison needs to be done carefully
as DTLS is a symmetric key mechanism whereas ABE is an asymmetric one. DTLS
has the notion of creating and maintaining tunnels between the source and desti-
nation to exchange key parameters. DTLS handshake is time taking and requires
heavy bandwidth until the formation of the tunnel and establishment of DH key, but
afterwards the mechanism is lightweight as it is symmetric. So DTLS protocol is
handshake-heavy but computation-light. On the contrary, ABEmechanisms follow a
reverse approach. They are based on public key encryption mechanisms and are thus
computation-heavy but requires no handshake as in DTLS and thus communication-
light. The focus was to keep both the approaches on the same plate as far as possible
in order to get a good comparison.

58 S. S. Basu and S. Tripathy

3.3 Discussion

S-CPABE provides a very flexible and efficient model as compared to multicast
DTLS. First of all for DTLS needs as many tunnels as the number of members
in the group, and these tunnels need to be maintained till the very end until the
member leaves the group. This apparently heavy task is totally absent in S-CPABE.
A change in the group members results in transmission of the new group secret
key individually through the tunnels to each end devices, and for frequent changes
in group members this is a huge task. In S-CPABE the single multicast message
with a new access structure is sufficient to meet the need. Next for the TGK (TEK
Generation Key) distribution DTLS requires a handshake, but for S-CPABE a one
time tunnel is sufficient or even a pre-shared key approach should be fine. This
reveals the flexibility of S-CPABE over DTLS. In a multicast IoT environment it
is difficult to address each and every node individually in the network. Rather, it
is much easier to classify nodes in the network and send a message destined for
them. ABE mechanisms give the intuitive sense to this approach rather than DTLS.
DTLS being a stateful protocol is not scalable but ABE mechanisms being stateless,
S-CPABE is highly scalable. Mobility handling is also difficult in DTLS due to the
overhead of the maintenance of the tunnels from the group controller. But S-CPABE
has not any of those requirements and thus suits perfectly to IoT mobility use cases.
In DTLS the group controller also becomes highly vulnerable as it contains all the
session keys of the individual members. But in ABE mechanisms although the PKG
generates the private keys for the individual members, it can vanish entirely once no
more members intend to join the network, making the system much more secure.
The latency and memory requirements discussed previously also verifies the fact that
in overall S-CPABE performs better than multicast DTLS.

4 Conclusion

Multicast security is a basic necessity for IoT devices and applications, assuming the
big figures for the number of IoT devices in the future. But it has always been a chal-
lenge to design efficient multicast security protocols for IoT. Traditional multicast
security mechanisms are quite complex and they do not have the resource constraints
like in IoT devices. Existing solutions try to make use of the DTLS protocol in a
multicast fashion, but retains the same drawbacks of DTLS. Different requirements
for secure multicast communication are highlighted in this chapter. Two different
approaches for achieving multicast security have been discussed. Both the schemes
use the concept of Shamir’s threshold secret sharing. The merging of the flexibilities
of ABE security mechanisms for multicast on one hand and reducing the computa-
tions on the end nodes on the other hand gives a perfect notion of achieving a multi-
cast secure environment for the resource constrained IoT devices. The idea has been
implemented in S-CPABE and compared with DTLS. The results indeed show that

Secure Multicast Communication Techniques for IoT 59

the constraint parameters are well within the memory and computation constraints
required by a typical IoT node. The approach is also independent of any physical
layer technology used and fits perfectly for upcoming LPWAN technologies for IoT.
ABE mechanisms are a perfect fit for multicast scenarios and opens the opportunity
for future works to optimize the mechanisms to suite for IoT environments.

References

1. Sakarindr, P., Ansari, N.: Security services in group communications over wireless infrastruc-
ture, mobile ad hoc, and wireless sensor networks. IEEE Wirel. Commun. 14(5) (2007)

2. Basu, S.S., Tripathy, S.: Securing multicast group communication in IoT enabled systems.
IETE Tech. Rev. (2018) (accepted)

3. DeCleene, B., Dondeti, L., Griffin, S., Hardjono, T., Kiwior, D., Kurose, J., Towsley, D.,
Vasudevan, S., Zhang, C.: Secure group communications for wireless networks. In: Military
Communications Conference, MILCOM 2001. Communications for Network-Centric Opera-
tions: Creating the Information Force, vol. 1, pp. 113–117. IEEE (2001)

4. Sun, Y., Trappe,W., Liu, K.R.: A scalablemulticast keymanagement scheme for heterogeneous
wireless networks. IEEE/ACM Trans. Netw. 12(4), 653–666 (2004)

5. Gupta, S.K., Cherukuri, S.: An adaptive protocol for efficient and secure multicasting in IEEE
802.11 based wireless lans. In: Wireless Communications and Networking, WCNC 2003, vol.
3, pp. 2021–2026. IEEE (2003)

6. Westerhoff, L., Reinhardt, S., Schafer, G., Wolisz, A.: Security analysis and concept for the
multicast-based handover support architectureMombasa. In: Global TelecommunicationsCon-
ference, GLOBECOM’04, vol. 4, pp. 2201–2207. IEEE (2004)

7. Porambage, P., Braeken, A., Schmitt, C., Gurtov, A., Ylianttila,M., Stiller, B.: Group key estab-
lishment for enabling secure multicast communication in wireless sensor networks deployed
for IoT applications. IEEE Access 3, 1503–1511 (2015)

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Advances in
CryptologyCRYPTO 2001, pp. 213–229. Springer (2001)

9. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy, SP’07, California, USA, pp. 321–334. IEEE (2007)

10. Wang, C.-J., Luo, J.-F.: A key-policy attribute-based encryption scheme with constant size
ciphertext. In: 2012 Eighth International Conference on Computational Intelligence and Secu-
rity (CIS), Guangzhou, China, pp. 447–451. IEEE (2012)

11. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
12. Seward, J., Nethercote, N., Fitzhardinge, J.: Valgrind, an open-source memory debugger for

x86-gnu/linux (2004). http://www.ukuug.org/events/linux2002/papers/html/valgrind

http://www.ukuug.org/events/linux2002/papers/html/valgrind

An Adaptable System-on-Chip Security
Architecture for Internet of Things
Applications

Atul Prasad Deb Nath, Tamzidul Hoque, Sandip Ray
and Swarup Bhunia

Abstract Modern-day System-on-Chip (SoC) security architectures designed for
smart connected devices, such as Internet of Things (IoT) and automotive applica-
tions, are often confined by two crucial design aspects: in-field configuration and
low overhead. Due to the restrictions posed by these design aspects, it is extremely
difficult to develop a robust and adaptable architecture for SoC security policies in
IoT and automotive platforms. Security policies, on the other hand, are of critical
significance as they implement the confidentiality, integrity, and availability require-
ments of diverse on-chip security assets. During the complex and often a long life of
a system, security requirements evolve, giving rise to the need of adapting security
policies. Existing SoC architecture and design flow do not provide the flexibility
for easy adaptation of SoC security policies based on emerging threats or security
requirements. To address these design constraints and subsequent limitations, a novel
security architecture and CAD flow is proposed in this work for efficient implemen-
tation of diverse security policies. The adaptable architecture and associated CAD
flow enable hardware patching through a reconfigurable security policy engine that
can be seamlessly and securely upgraded in-field to address unanticipated attacks
and update new security requirements. The infrastructure of the proposed security
framework is build with three primary building blocks. First, a centralized Recon-
figurable Security Policy Engine (RSPE) is introduced to implement and upgrade
policies in-field without comprehensive changes in the architecture. Second, a set
of smart security wrappers are developed for efficient extraction of security critical
event information and avoidance of communication bottleneck. Third, the on-chip
debug instrumentation i.e. the Design-for-Debug (DfD) infrastructure is employed
with minimal modification for extensive access to an arbitrary number of signals of

A. P. Deb Nath (B) · T. Hoque · S. Ray · S. Bhunia
Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
e-mail: atulprasad@ufl.edu

T. Hoque
e-mail: thoque@ufl.edu

S. Ray
e-mail: sandip@ece.ufl.edu

S. Bhunia
e-mail: swarup@ece.ufl.edu

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_4&domain=pdf
mailto:atulprasad@ufl.edu
mailto:thoque@ufl.edu
mailto:sandip@ece.ufl.edu
mailto:swarup@ece.ufl.edu
https://doi.org/10.1007/978-3-030-02807-7_4

62 A. P. Deb Nath et al.

the SoC. A suitable CAD framework is also proposed along with the architecture to
systematically implement diverse security policies. The result analysis shows that
the architecture provides a high level of adaptability with minimal overhead in terms
of power, area, energy, and performance. Hence, the security architecture is highly
suited for SoC in IoTs and automotive systems operating in a rigid boundary of
performance and energy profiles.

1 Introduction

The era of Internet-of-Things (IoT) is characterized by an unprecedented growth
of smart devices and connected systems. The growth is expected to continue at an
even faster rate, with estimates of 50–75 billion connected devices by 2020. The
estimations show that the number might run into trillions within the next decade [1].
Such rapid growth surpasses any other sector in the history of human civilization.
Security is clearly a critical component of computing devices targeted towards IoT
applications. In particular, IoT devices are provided access to a tremendous amount
of sensitive assets. These assets mandate protection against any kind of illegal access
and modification. The nature of these assets can vary from confidential personalized
information of the consumers to critical design collateral. For instance, contacts,
health information, location, records of financial transactions, etc. can be categorized
as sensitive end-user assets residing in the SoC. Similarly, firmware information,
fuses, cryptographic artifacts, digital rights management (DRM) keys, defeature bits,
design-for-debug, etc. are crucial architectural assets of the SoC.

A system-on-chip (SoC) lies at the heart of most IoT devices. The SoC is built
upon numerous pre-defined hardware modules known as Intellectual Property (IP)
blocks. The IPs are placed on an interconnect fabric that supports standardized com-
munication and coordination. Each IP come with a specific functionality and aids the
overall system functions of the SoC. The security assets of the SoC are distributed
over different IPs during the process. Consequently, the process of protecting the
assets is challenging and often requires implementation of complex and ambiguous
system level security policies [2–5]. In most of the cases, the security policies are
implemented as an amalgamation of the requirements imposed by SoC designers
and IP vendors. These policies go through multiple phases of refinement during the
design cycle in an ad-hoc manner. Due to the lack of systematic approach and conti-
nuity of the process toward the final phases of the design cycle, it is quite challenging
for the designers to develop well-defined security architectures before the final prod-
uct launch. Consequently, the products fail to address emerging threats and cannot
be updated for novel security vulnerabilities.

On the contrary, SoC security architectures i.e. the mechanisms to ensure pro-
tection of sensitive assets from malicious, unauthorized access, constitute a crucial
component of modern System-on-Chip (SoC) designs. There has been significant
work on robust SoC security architectures, both in academic research and in indus-
trial arena [2, 3, 6, 7]. However, they are difficult to apply to IoT applications. From

An Adaptable System-on-Chip Security Architecture … 63

an architectural perspective, the IoT and automotive devices mainly come with two
critical design and security constraints: (1) in-field configuration and update of secu-
rity requirements; and (2) operation within the periphery of minimal energy and high
performance. In-field security configuration is crucial because of the long in-field
device life, (e.g., an automotive systemmay have a lifetime of over a decade), which
invariably implies the need to modify security requirements when the device is in
operation.

Traditional system design approaches have relied on software or firmware imple-
mentation for functionality that is anticipated to require significant in-field updates.
For instance, most automotive microcontroller units (MCU) include an over-the-air
update architecture. Unfortunately, software implementations of diverse critical sys-
tem functionality may incur significant overhead in terms of energy and area cost,
making them unsuitable for many IoT applications such as wearables, implants,
and infrastructure devices. Even for high-end systems such as automotive electronic
control units, software implementations are often not viable: these systems must
enforce aggressive real-time requirements for detecting in-field security violations
and performingmitigatory actions, which are difficult to enforce with software. Con-
sequently, there is a strong need to develop a hardware-based security architecture
that can provide in-field configuration while permitting enforcement of performance,
energy, and real-time constraints.

The security architecture presented in this chapter is developed from rudimentary
building blocks to mitigate the major challenges posed by IoT design constraints.
The CADflow of the architecture is highly compatible with existing hardware imple-
mentation tools. The overall framework allows the mapping of an arbitrary number
of policies and facilitates a seamless update of security policies in post-silicon stages
as well as in field operations. Simultaneously, it facilitates the policy implementation
process while keeping the energy and performance overheads within satisfactory lev-
els. The framework introduces a novel approach of hardware “patchability” to alter
and update SoC requirements via system and IP level security policies.

The security architecture is primarily composed of three building blocks. The first
building block is a plug-and-play, adaptable infrastructure IP named Reconfigurable
Security Policy Engine (RSPE). The purpose of RSPE is to implement and enforce
the System-on-chip security policies. It works as the security brain of the architecture
and contains some or parts of the system level policies. The second building block is a
set of standardized smart security wrappers that extracts security critical information
from various IPs and delivers the information to the policy engine. The third and
final building block of the architecture is an interface between the security wrappers
and the local debug modules of the IPs. The integration of the debug infrastructure
allows increased access to the required signals of the SoC in terms of observability
and controllability. The role of each of the components in policy implementation is
discussed in detail in the subsequent sections of the chapter. The chapter illustrates
how the security architecture is developed from bottom up using the building blocks
to facilitate policy implementation. More importantly, the work demonstrates how
security policies can be adapted, modified, and upgraded or patched based on the
emerging threats during in-field operation of IoT devices and automotive systems.

64 A. P. Deb Nath et al.

The CAD flow associated with the architecture demonstrates a streamlined method
for compiling SoC level security policies by exploiting the commercial off the shelf
EDA mapping tools. The results obtained from illustrative policies are presented
in this work to show that the proposed framework delivers superior performance
compared to software-based or micro-controlled implementation of security policies
in terms of energy, power, and area overhead.

Experimental results show that this approach is viable as a foundation for patch-
able hardware. The implementation improves over a traditional micro-controller-
based implementation of security policies by almost an order of magnitude in per-
formance and energy costs.

The remainder of the chapter is organized as follows. An essential background on
SoC security policies is outlined in Sect. 2. The motivation for proposing the novel
approach is highlighted in Sect. 3. The proposed security architecture is elaborately
discussed in Sect. 4. Section 5 discusses the CAD flow used to automatically map
and update security policies in the RSPE. The experimental results are illustrated and
analyzed in Sect. 6. The conclusion and relevant future work is discussed in Sect. 7.

2 Security Assurance in SoC

2.1 Security Policies

Modern-day system-on-chips (SoCs) contain a significant number of security critical
assets. The assets must be protected from illegal access and malicious alteration.
The security requirements for these assets can be defined in terms of confidentiality,
availability, and integrity. SoC Security policies are primarily implemented to protect
these assets bymapping the security requirements into actionable design constraints.
The design constraints are implemented by SoC integrators or IP providers to realize
the protection mechanisms in the architecture. The examples of typical SoC security
policies are as following:

• Example 1: Any data transmitted by the crypto engine during boot time should not
be controllable and observable by any unsolicited IP other than the target IP.

• Example 2: A on-chip storage unit with secret keys can be accessed for silicon
validation. However, the storage accessibility should be restricted after chip pro-
duction.

Example 1 illustrates the confidentiality requirement of the SoC assets. On the
other hand, example 2 shows an instance where the integrity constraint is enforced.

These security requirements are enforced into actionable design constraints by
the security policies. The policies provide secure means of accessing the SoC assets.
The criticality of accessing the assets can vary based on the time of access (e.g.
boot time or normal mode of execution) and different the stages of SoC life cycle
(e.g. design, manufacturing, production, supply-chain, etc.).

An Adaptable System-on-Chip Security Architecture … 65

A short introduction to the various classes of SoC security policies is given in the
subsequent sections. A detailed elaboration of security policies is beyond the scope
of this article.

Further details on the policies can be obtained by going through the cited bibli-
ography provide at the end of this article.

AccessControl:Access control policies employ the security requirements for access-
ing the assets of the SoCs into design attributes. In particular, these policies control
how the assets stored in different IPs for the SoC are accessed by other requesting
agents. An agent in the system can be hardware or software components of the IP
blocks. The aforementioned examples show how these policies define the access
control. Access control policies are vital for any SoC as they form the basis for other
relevant policies involving integrity, information flow, secure boot, etc. [8–10].

Information Flow: It is possible to infer the value of secure assets by accessing
the information indirectly. Such inference can be done by indirectly observing the
information or snooping the active computation or ongoing communication between
the IPs. The primary purpose of information flow policies is to prevent such violation
of the security in the SoC. Examples of typical information flow policies are as
following:

• Key Obliviousness: The low-security IPs connected in a standard network-on-
chip (NoC) should not be able to extract the cryptographic keys by snooping the
information flow of the crypto engine.

Due to the complexity of modern SoC, it is difficult to analyze the information
flow tracking of secure assets across multiple IPs. Also, it is equally challenging
to implement information flow policies. These policies often require sophisticated
protection mechanisms and advanced mathematical arguments for correctness. The
policies might involve complexity results from information security. Information
flow policies are typically employed for critical assets that demand very high confi-
dentiality [11–13].

Liveness: Liveness policies are implemented to ensure ceaseless system operation
throughout the execution time without any stagnation. Common examples of live-
ness policies involve the timely generation of ACK (acknowledgment) or NACK
(negative-acknowledgment) signals in response to REQ (request) signals. Any devi-
ation from such handshaking protocol might lead to deadlock or livelock situation
and consequent violation of system availability requirements [14].

Time-of-Check versus Time of Use (TOCTOU): The goal of implementing Time-
of-Check versus Time of Use (TOCTOU) policies is to verify the identity of the
agent, e.g. an IP, accessing an asset based on the prior access privilege given to the
entity. As the name implies, the policy cross-checks the identity of the IP at the time
of use with the information stored during the time of check. Firmware upgrade can
be a critical example of TOCTOU as it is of utmost importance to verify that the
update installed on the chip is actually the update which has been permitted earlier
via secure authentication mechanism [3, 15].

66 A. P. Deb Nath et al.

The primary focus of the aforementioned security policies is to ensure a secure
integration of third-party IPs procured from individual vendors. Hence, the scope of
the policies fallswithin the periphery of SoC integration and its design characteristics.
The underlying assumption, however, is that the IPs themselves are trustworthy and
do not contain any malicious entity. The threat model of these policies considers
external attacks originating from software or the SoC interface. Malicious alterations
introduced inside the IPs like hardware Trojans or back-doors are beyond the scope
of the threat model. Therefore, the proposed framework is highly applicable for SoC
designs based on in-house IPs rather than untrusted third-party IPs.

2.2 Security Architecture: The Current State of the Practice

Security architectures are designed with the primary purpose of implementing secu-
rity requirements into actionable design constraints. Unfortunately, the present state
of the practice is highly reliant on human insights and creativity. The current approach
of designing SoC security architecture usually includes developing a baseline archi-
tecture definition and refining it repeatedly through the following steps:

• Development of threat models to identify potential threats to the existing architec-
ture definition.

• Refinement of the architecture with preventive and mitigation strategies to ensure
invulnerability against identified threats.

The baseline is usually developed from legacy architectures available for exist-
ing products and gradually adapted for policies defined through the SoC design
exploration. For every asset located inside the SoC, the architect must identify the
following:

• Who can access the asset?
• What kind of access is permitted by the policies?
• What points in the system execution or product development life-cycle such access
requests can be granted or denied?

The process of answering the aforementioned questions can be highly complex
and tedious for many reasons. As many assets are defined in the IP blocks of the SoC
during system execution, the process of ensuring integrity, confidentiality, and avail-
ability of these assets becomes challenging. The current industrial practice lacks any
disciplined mechanism for implementing these policies: the SoC designers exploit
different features of the architecture and artifacts of the system (e.g., fuses, firmware,
etc.) to apply the policies as design constraints. In recent times, the architects are
utilizing Trusted Execution Environments (TEE) to facilitate the implementation of
access control requirements inmodernSoCs. TEEs are comprised of a combination of
hardware support (e.g., secure operating modes, virtualization), and software mech-
anisms (e.g., context switch agents, integrity check) which can be used to enforce
isolation of sensitive data when necessary for access control [16].

An Adaptable System-on-Chip Security Architecture … 67

3 Motivation for Adaptable Architecture

3.1 Case Study: An Attack on Confidentiality

To demonstrate the vulnerability of current practices to confidentiality attacks, we
consider a violation scenario involving a trusted IP and a third-party rogue IP. We
assume that the trusted hardware block is a crypto engine, namely IP A, and the
untrustedmodule is a third party IP, namely IPB, with generic functionalities. Ideally,
in a typical SoCdesign cycle, the rules defining how the assets of IPAwill be accessed
by IPB are supposed to be set in the risk assessment phase. However, it is challenging
for SoC engineers to finalize the security requirements in a single phase of the design
process. Due to the incessant flow of new information and knowledge across various
stages of the design flow, the designers keep reservations for changes towards the
later stages of SoC design. Consequently, the policy implementation process gets
extended to multiple phases and goes through numerous changes and refinements
until the product reaches the final stage. As a result, it becomes very challenging
for the design engineers to come up with definitive policies with specific constraints
for every asset and their corresponding information flow policies for critical IPs like
crypto core IP A and untrusted third party IPs like IP B at launch time of the product
i.e. time 0. Moreover, the resource boundaries compel the architects to integrate
numerous IPs in the network-on-chip (NoC)with the cryptographic core. The process
also involves eventual marking of the IPs as safe which permits them to observe the
crypto keys being transmitted in the communication fabric. Being located on the
same network-on-chip (NoC) with the cryptographic engine, the untrusted or rogue
IP B can be exploited by attackers at a later time of operation i.e. time t of product
lifecycle to violate the information flow policy and snoop on the crypto keys. For
example, it might be possible for the attacker to revoke Key Obliviousness property
by exploiting themalicious IPB to infer the keys of the crypto core. Thus, the attacker
can snoop data from the cryptographic engine through the low security interconnect
fabric and obtain access to the security assets. Unfortunately, remedial actions for
the aforementioned scenario depicting a confidentiality breach of the design is not
accommodated by the current security measures. The current security architectures
offer no in-field or adaptive solution to mitigate such attack on confidentiality and
usually include the rigorous task of upgrading the firmware or OS kernel of the SoC.

3.2 Case Study: An Attack on Integrity

In this section, a scenario is outlined to depict an attack on the integrity of security
assets. Similar to the prior case study, this attack scenario includes a malicious/rogue
third-party IP. In this case, the adversary attempts to launch a code injection attack
through the rogue IP. A common example of such attack would be the exploitation of
direct memory access (DMA) to overwrite code segments via code injection. Unfor-

68 A. P. Deb Nath et al.

tunately, there are many instances where the DMA-protected regions can be accessed
through the loopholes of poorly developed policies. For instance, the System Man-
agement Interrupt (SMI) handlers can be exploited by the attacker to write to an
internal address of System Management RAM (SMRAM). SMRAM is the reserved
part of DRAM and usually utilized by SMI handlers of BIOS. The attacker can
execute a code injection attack instance by exploiting the malicious IP and exploit
SMI handlers to corrupt secure memory. Such instance can lead to severe conse-
quences like malicious control over the address range of secure memory contents
[17]. The existing mitigation techniques fail to provide an adaptive remedy for the
aforementioned attack. The current practice includes extensive testing of SMI han-
dlers for pointer validation vulnerabilities. Also, the preventive measures to thwart
similar attacks via DMA include overhauling every memory access points in the
system execution, identifying memory access requests to DMA-protected regions,
and setting up mechanisms to bar DMA requests to all protected accesses.

3.3 Current Challenges with Adaptable Architecture

Modern SoCs are designed with a multitude of IPs. Consequently, the security
requirements of these IPs are pretty diverse. The current norm of security policy
implementation includes distributing the policies across the entire SoC. Moreover,
the lack of standardization in policy implementation often leads to adoption of ad hoc
approaches and reliance on manual and creative insights of SoC designers. Hence,
the present practice poses major obstacles in developing systematic ways of in-
field policy update backed by full-fledged security architecture. Although limited
reservations are made for in-field update of few security aspects, the identification
process of these security critical artifacts requires an early start and usually extend
through several phases of the SoC life cycle. Existing methodologies of implement-
ing security policies cannot accommodate mitigation measures in response to novel
and emerging threats. Usually, the process of updating security policies tomeet novel
security requirements mandates comprehensive changes in architecture and imple-
mentation. When unanticipated modifications are required in practice today, they are
handled primarily through designer ingenuity, typically making use of a combina-
tion of firmware updates, complex defeaturing, etc. Given the complexity of these
approaches, it is unsurprising that the process itself can introduce security loopholes
leading to untrustworthy, vulnerable, and even functionally fragile products.

Inspired by the limitations of the current practice in developing security require-
ments and architectures, we advocate an adaptable security architecture for SoCs.
An adaptable/patchable architecture is capable of overcoming these limitations by
securely upgrading, and adapting rectified security requirements in a seamless man-
ner in field operations. Through a flexible and centralized security policy engine, it
is possible to provide in-field patch of security requirements for emergent threats
with minimal architectural changes and without incurring significant area, energy,
or performance overhead.

An Adaptable System-on-Chip Security Architecture … 69

4 A Generic Adaptable Infrastructure

In order to develop a generic hardware patchable security architecture, a key obser-
vation is that the security policies can be represented by a standard sequence of
commands. These commands can be employed to analyze the behavior pattern of the
IPs in the SoC and designed to respond accordingly to enforce the security policies.
It is also important to implement these commands in a separate, centralized IP that
can communicate with the different IPs in the SoC design through a standardized
interface protocol. Figure 1 shows a high-level overview of a centralized security
architecture where an infrastructure IP communicates with other IPs to ensure sys-
tem security. The objective of the communication is to identify the security state of
the system, determine if a requested access for a sensitive asset at the current state
violates a security requirement and if so, take mitigation measurements. Given the
above observation, the following three critical architectural components have been
identified that can together implement SoC security policies in post-silicon phases
and during field operations [18].

4.1 Design Choices

The centralized architecture of the policy engine is one of the key design aspects
of the Reconfigurable Security Policy Engine (RSPE). It facilitates the process of
implementing and reusing RSPE as a single infrastructure IP block. The fundamental
motivation for a centralized security architecture is driven by the need for a cen-
tral infrastructure for comprehending, analyzing, upgrading, and validating intricate
system level security policies. The contemporary practice of SoC security assurance
involves implementing security policies sprinkled across multiple IPs in a distributed
manner. Such nature of policy implementation gives rise to enormous complexity

Fig. 1 A high-level illustration of the SoC architecture is presented in the figure with the proposed
RSPE (reconfigurable security policy engine)

70 A. P. Deb Nath et al.

in analyzing, modifying, and upgrading the policies, especially, based on emerging
threats and vulnerabilities. Hence, a centralized architecture e.g. RSPE for security
policy update can be an efficient solution to the existing limitations. One caveat in a
central policy engine based security architecture, however, is the bottleneck in sys-
tem performance caused by all the IPs communicating with the RSPE. To address
the issue, a distinct design feature, namely smart security wrappers, is employed in
the proposed security architecture. The purpose of the smart security wrapper is to
extract security critical information from the ongoing transaction of the SoC and
forward the information to the centralized RSPE. Another crucial design choice is
the selection of a reconfigurable fabric to implement the policy engine stemmed from
the need to configure and update security policies in-field to meet customer security
requirements as well as to protect the design and assets from novel emerging threats.
There are possibilities that the process of updating the bitstream of the FPGA-based
RSPE itself can fall victim to malicious attacks. Such attacks can be prevented by
deploying proper security measures for remote patch installation on the RSPE.
Figure 2 demonstrates how it is possible to patch security policies in-field through an
FPGA based implementation. The countermeasure adopted for RSPE is discussed
in a later section of the chapter.

4.2 Centralized Reconfigurable Security Policy Engine

The Reconfigurable Security Policy Engine (RSPE) can be deemed as a security
brain in the architecture. It provides an interface to program security policies for
the SoC. The key functionalities of the policy engine are to analyze various security
critical events obtained from the security wrappers, determine the security status of
the system based on the analyzed information, and initiate (request) and (disable)
signals for the corresponding IPs of the SoC.The detailed architecture of the proposed

Fig. 2 The figure depicts how the software flow of the proposed framework accommodates the
manual detection of security threats and automates the process of the policy implementation

An Adaptable System-on-Chip Security Architecture … 71

Fig. 3 The figure shows an elaborate illustration of the security architecture: it contains all the
building blocks of the architecture, namely, RSPE (the centralize security brain that implements the
policies), the smart security wrappers (an extension for existing security wrappers to detect security
critical signals), and the design-for-debug instrumentation (local debug modules customized to get
access to an extended number of critical signals)

RSPE is illustrated in Fig. 3. The primary components of the policy engine include
a security buffer and policy engine module. The purpose of the security buffer is
to deliver the IP-specific events obtained from the smart security wrappers to the
policy engine. The policy engine modules is designed to serve the analytical and
computational purposes of the RSPE and enforces the security policies.

4.2.1 Security Buffer

The security buffer is interfaced with the RSPE through a buffer controller. The
controller helps the policy engine to analyze the buffer frames. The buffer storage is
implemented through a standardized scheme of static segmentation. The length of
the variable vary depending on the volume of the meta-data. The event logs are made
accessible to the policy engine by the buffer ports. A buffer controller is employed

72 A. P. Deb Nath et al.

to control these ports. The buffer controller maintains the congruency in different
speeds of read and write operations, sizes of segments, and frequency of events
among security wrappers and the policy engine.

4.2.2 Policy Engine

We implement the policy engine on an embedded FPGA. The key to mapping poli-
cies to FPGA-based policy engine is the observation that a security policy engine
can be represented as a specialized finite state machine that interacts with the IPs of
the system through a highly standardized protocol. The state machine for a specific
policy enforcement can be explained by the following steps: (1) receipt of events
from the various security wrappers; (2) computation of the system security state;
and (3) asserting/de-asserting various output control signals. In the policy engine
micro-architecture, the data buffer stores the corresponding event frames from dif-
ferent IP blocks, the corresponding buffer control logic flags the appearance of “new
events” to the policy execution engine. Consequently, a new input event frame read
from the buffer memory coupled with the consequent computations would signify
the definition, requirement, and implementation of a security policy. This permits
a systematic extraction of the state machines of security policies from the soft-
ware/firmware implementation, which can then be converted to a typical hard-logic
state machine for the chosen embedded FPGA architecture.

4.3 Smart Security Wrappers

4.3.1 IP Security Wrappers

The primary purpose of the smart security wrappers is to extract security critical
events occurring at the time of inter-IP communication and forward the information
to the RSPE. Any naive attempt to obtain information pertaining to all the events
and transactions taking place in the SoC through data, control, and status signals
would result in a communication bottleneck with prohibitive routing overhead. An
efficient way of overcoming the limitation is identifying the security critical events
and exploiting the selected events to extract the information for the policy engine.
Such smartness is incorporated in the security wrappers implemented in the frame-
work while delivering a standard frame-based communication interface between the
IPs and the RSPE. As the proposed changes are template-based, these can be easily
integrated to the current practice of IP implementation.

One challenge about the extraction of security critical events is the effective seg-
regation of signals of interest from the non-critical signals. In this framework, the
challenge is addressed by meticulous classification of IPs and signals according to
their security aspects. For examples,Memory IPs such as memory controllers, flash
control logic, cache controllers, Direct Memory Access (DMA) modules, etc. are

An Adaptable System-on-Chip Security Architecture … 73

engaged in operations that involve access to various memory hierarchies. Similarly,
processor cores usually include general purpose CPUs, GPUs, and other cores con-
trolled by microcode or firmware e.g., UART controller, Ethernet, audio cards, video
cards, etc. Based on the functionality of each of the IP classes, the security critical
IPs can be categorized and prioritized accordingly. The security critical events can
also be classified in a similar fashion. For instance, some events in the processor
core signify the beginning and end of system critical applications or processes like
computations for generating exceptions, interrupts generated by system controllers
etc. The metadata for each of these events contains adequate information for the pol-
icy engine. For an event requesting a DMA access, the metadata will contain access
details that can be analyzed from page size, DMA burst sizes, and memory address
range, etc. Thesemetadata are forwarded to the RSPE by the security wrappers, often
based on the requests made by the policy engine itself. In addition to the standard
events, there IP specific events used in this framework that highlights the security
critical events belonging to each of the IPs. Moreover, the proposed architecture
allows extensive flexibility for the SoC integrator as it is possible to map IP specific
events in the wrappers based on custom security requirements.

4.3.2 Security Wrapper Implementation

The proposed security wrappers deliver the security critical event information in a
standard format through a frame-based design. The wrappers can be instantiated for
corresponding events in individual IPs. The architecture of a typical smart security
wrapper is illustrated in Fig. 4. Themajor components of the securitywrapper include
an activitymonitor logic (to checkwhether the IP is in activemode), a detector for the
event types and a buffer storage for storing the eventmetadata.A correspondencewith

Fig. 4 Security wrapper architecture: the purpose of the security wrappers in to provide a stan-
dardized, frame based communication between the IPs of the SoC and the RSPE

74 A. P. Deb Nath et al.

local clock domainmight be required for some events. Thewrappers are also designed
with configurable registers. These registers can be configured by the RSPE at boot
time to select a particular set of events which require modification. The frame-based
interface aided the process of establishing a standard communication mechanism
between the wrappers and the RSPE. The functionality of the RSPE is generally
confined to two major actions. Firstly, RSPE can send a disable signal to block an
IP transaction in case of a suspected security policy violation. The application of the
disable signal can vary over a range of granularities depending on the implemented
policies. Secondly, RSPE can initiate a request signal to request additional data
or status of control signals when additional information is required for enforcing
policies. The boundary scan interface of the IP, which is already present in the
architecture, is exploited to transfer data in a parallel shift or access mode. This
helps to meet the higher bandwidth demands required by some specific functional
security validation processes.

4.4 Design-for-Debug Interface

4.4.1 Debug-Aware IP Security Wrapper

The process of making the security wrappers smart is facilitated by the local Design-
for-debug (DfD) modules of each IP in the SoC. DfD modules are inserted in most
of the modern architectures for debug purposes. In this framework, the debug mod-
ules, corresponding to each of the IPs, are exploited to extract an extensive number
of security critical signals and implement an arbitrary number of policies based on
the security requirements. The utilization of DfD modules for security policy imple-
mentation should not come at the cost of any hindrance during the regular operation
of debug mode. The exploitation of DfD modules without hampering their regular
functionality requires IP-level modification of the DfD logic and efficient adaptation
of the smart security wrappers [19]. Figure 5 illustrates the required modification for
the usage of the debug infrastructure for security policy implementation. In partic-
ular, a separate port is required to transfer security critical data to the RSPE. Such
separate port is introduced in the architecture to avoid the re-purposing of existing
debug trace port and bus. The IP specific events of interest are programmed in the
local DfD modules by the RSPE. The programming is facilitated by the configu-
ration register interface of corresponding DfD modules. RSPE must be capable of
identifying corresponding events from communication frames sent by the security
wrapper as the DfDmodules are configurable at runtime to detect related or disparate
security events. The interface is standardized throughout all DfD module and secu-
rity wrapper pairs by tagging the event information with corresponding addresses
of the configuration registers. The standardization, however, comes at the cost of
the overhead of additional registers in the IPs especially in cases where only a few
events are detected by the debug logic. The trace packet generation of the local DfD
modules can be disabled during the RSPE access to any leakage power when the

An Adaptable System-on-Chip Security Architecture … 75

Fig. 5 Additional hardware resources for interfacing local DfD with IP security wrapper

debug infrastructure is not in use. Apart from security critical event triggering and
observation of the signal relevant information, it is possible to re-purpose the DfD
control hooks during the design of the SoC and at the time of in-field upgrade or
patch.

4.4.2 RSPE-Debug Infrastructure Interface

The local debug modules must be configurable by the RSPE to identify the security
critical events and enforce appropriate control. The communication interface between
the on-chip debug instrumentation and RSPE is depicted in Fig. 6. RSPE utilizes the
DebugAccess Port (DAP) and configuration bus to program the trace cells. Due to the
abundance of configuration registers and corresponding logics of local DfDmodules,
the policy engine can program the trace cells to monitor any relevant security critical
signal. The programming is done during the boot time and the configuration interface
is turned off during regular mode of operation to save leakage power dissipation.

76 A. P. Deb Nath et al.

Fig. 6 Interfacing RSPE with on-chip debug

In case the RSPE fails to configure the local DfD for monitoring all security relevant
events at boot phase, the DAP can be powered on through the power management
module at runtime.

5 Overall Flow and Major Steps

5.1 CAD Framework for Security Policy Synthesis

A systematic and standardized method for synthesizing diverse security policies into
the proposed Reconfigurable Security Policy Engine (RSPE) is presented in this
section. The primary features of the framework are as following:

• It is possible to synthesize arbitrary security policies in an automatic manner using
the CAD framework if the policies are presented in the specified tuple format of
predicates and actions.

• The CAD flow implements the security policies in an energy optimum way while
meeting the performance requirements through exploration of the design space.

• Using the presented framework, it is possible to perform incremental mapping
of security policies through partial reconfiguration. It aids the process of in-field
upgrade and patching of security policies.

• The framework is compatible with conventional FPGA synthesis flow and capable
of utilizing commercial off-the-shelf application mapping tools.

The steps of mapping security policies into an embedded FPGA fabric is illus-
trated in Fig. 7. Two novel steps are introduced (highlighted as blue colored action
items in the flowchart) into the front-end flow to integrate the proposed framework
to conventional FPGA synthesis flow. Through the newly introduced steps, a pre-
compilation phase is integrated into the flow for parsing the security policies. An

An Adaptable System-on-Chip Security Architecture … 77

Fig. 7 An illustration of the mapping process of diverse SoC security policies on embedded FPGA-
based reconfigurable security policy engine

RTL description of the policies is also created through these two steps. In the pro-
posed flow, the security policies are mainly presented in a specific format of 3-tuples:
〈timing, predicate, action〉. A short description of each of the tuples are given below:

Timing:
The timing tuple of the policies signifies two major aspects of security. First, the
timing information can state the mode of operation of the SoC. For example, it helps
to determine if the SoC is being run on user mode or supervisor mode. Second,
it helps to define the timing of SoC operation with respect to the global clock of
the system. For instance, policy 1 and 3 of Table 1 exploits timing information to
determine the mode of operation of the DLX microprocessor (e.g. user mode) as
well as the entire SoC (e.g. debug mode).

Predicate:
The predicate tuple works as the pre-condition for any policy enforcement process.
The predicate information is obtained from IP-specific observable signals or specific
properties of the IP interconnect. The predicate tuple is usually derived from the
logical operations among multiple security critical signals that are observable. For
the first policy enumerated in the Table 1, the predicate part of the policy is derived

78 A. P. Deb Nath et al.

Table 1 This table shows a set of representative security policies. These policies are implemented
on themicro-controlled policy engine and the embeddedFPGA-based reconfigurable security policy
engine

Policies Tuple: predicate Tuple: action IPs involved

P# 1 (Operational mode: user) and
(read or write request to
memory by any IP)

Read or write requests
within valid address
ranges are allowed

Any IP with access to
system memory

P# 2 (Operational mode: supervisor)
and (read or write request by
any IP)

Read requests within
shared address ranges
are allowed; no write
request is allowed

Any IP with access to
system memory

P# 3 (Operational mode: debug) and
(the trace cells of local debug
modules are busy and power
unit is busy)

Firmware update of
power module or
changes in configuration
register of SPI module is
not allowed

Power management unit
and SPI module

P# 4 (Operational mode: user) and
(request for updating the inst.
memory)

Instruction memory
update is not allowed

Processor of the SoC

P# 5 Active crypto mode Any request to access
system memory or
interrupts from other IP
cores are not allowed

Crypto engine and other
IPs of the SoC

by the logical OR operation of multiple signals. The type of the signals can be like
memory read or write request by the user, memory read or write request by an IP,
etc. The pre-condition for the application of action part of the policy is formed by
the logical AND operation between the timing and predicate information.

Action:
In the 3-tuple format, the third tuple is known as the action tuple. It is applied in
any policy when the joints conditions imposed by timing and predicate tuple is true.
The usual approach for applying the action tuple involves asserting or de-asserting
certain signal or a set of signals. The processmight involve checking a set of variables
as well. For instance, in policy number 1 of the Table 1, a check is required to see
whether the read or write request falls within the address range for the corresponding
IP.

The three-tuple policies are parsed to generate equivalent Verilog RTL code. The
RTL conveys the information of the I/O ports of all IPs constituting the SoC, the
test and debug ports, and the interconnect fabric. The inputs and outputs for the RTL
modules are analyzed to determine the observable signals and controllable signal
along with the timing information. The inputs of the modules are deemed as the
controllable signals required for the enforcement of a security policy. Similarly, the
outputs of themodule are considered as observable signals for any given policy. In the
parsing process, policies without state elements are represented through the “assign”

An Adaptable System-on-Chip Security Architecture … 79

statement in RTL. For policies that require the application of a state machine, a
separate “always” block is introduced in the RTL code.

Resource Optimization:
Once the RTL module containing the security policies is developed, it is synthesized
into the reconfigurable fabric of FPGA exploiting commercial off-the-shelf synthesis
tools.We employ the principle of pareto-optimality to generate a set ofmapping solu-
tions while considering the restrictions posed by timing, resource, and other relevant
constraints. The resource sharing approach is exploited to get an optimized area and
energy requirement when many policies are being mapped within the boundary of
resource constraints. In this architecture, the new sets of policies are mapped in an
incremental fashion along with the prior sets of policies. To obtain such incremen-
tal mapping, the existing resource usage information is utilized and employed with
the partial mapping feature of commercial FPGA mapping tools. Consequently, it
is possible to opt for a specific mapping methodology based on the energy or area
preferences for custom products. The preferred solution can be selected from a set
of efficiently designed mapping solutions.

5.2 Authentication and Remote Upgrade

In-field patchability of security policies is one of the primary features of RSPE.
RSPE prevents the exploitation of existing policy loop-holes by in-field upgrades.
The upgrade is provided based on emergent threats and security requirements. Con-
sequently, secure remote upgrade of RSPE patch is equally important. In this work,
a challenge-response based authentication mechanism is employed to protect the
remote RSPE patch installation from threats originating from malicious Trojans or
other back-door vulnerabilities. The authentication scheme relies on the keys gener-
ated by an SRAM-based Physically Unclonable Functions (PUFs). The SRAM PUF
exploits the intrinsic process variation of the chip and generates unclonable keys for
secure authentication. SRAM PUFs require minimal efforts for implementation as
there is no need for additional circuitry. Moreover, being a weak PUF, it is very cost
efficient for resource constraint devices like IoT and automotive systems. As the keys
are only generated at power-up period of the chip and do not require on-chip key
storage, it is extremely difficult for the attacker to get access to the PUF keys. Hence,
the SRAM PUF-based authentication protocol aids secure remote authentication as
well as in-field patch upgrade of the policy engine. For instance, the security threats
related to Time-of-Check versus Time of Use (TOCTOU) attacks are mitigated by
single-threaded policy update procedure i.e. an overlapping patch request isn’t be
allowed to interrupt an on-going patch [15]. It should be noted that the threat model
of the work addresses possible external attacks via software and SoC interfaces.
The security issues related to third-party IPs, due to lack of trust verification mea-
sures, however, are excluded from the threat model. In particular, the scope of the
implemented policies is limited to the IP integration characteristics of the SoC.

80 A. P. Deb Nath et al.

6 Results and Discussion

To evaluate the proposed framework, an SoC model is developed from bottom-up.
The representative model is constituted of several crucial IPs that are prevalent in
industrial SoCs. The building blocks of the SoC include a 32-bit pipelined DLX
microprocessor core, a 128b AES crypto core, a 128b FFT engine, a representative
memory controller, a clock controller, a power unit, and a Serial Peripheral Interface
(SPI) IP. The model has 32 KBs of central memory. Due to difficulties of obtaining
open-source SoCmodels for research purpose, we acquired the IPs from http://www.
Opencores.org (an open-source online repository for hardware IPs) and developed
our own illustrative SoC model.

To extend the baseline SoCmodel with our proposed architecture and framework,
we developed two versions of the security policy engine. These versions include a
micro-controlled policy engine built on a DLX µP core and a Reconfigurable Secu-
rity Policy Engine (RSPE) implemented on FPGA fabric. A set of 10 illustrative
policies is implemented on both versions of the security policy engine. The types
of the policies include access control, liveness, secure boot, and secure information
flow. Some representative policies are depicted in Table 1. The policies are function-
ally verified using Altera ModelSim simulation platform. A library of 32nm node
technology is used to obtain the area, performance, and power consumption results.
The target platform for design implementationwas a commercial off-the-shelf FPGA
development board named Cyclone V by Altera.

The implementation of a diverse number of arbitrary security policies mandates
the security policy engine’s access to required security critical signals of the SoC.We
have performed an accessibility analysis of the proposed policy engine on the repre-
sentative SoC with 3 different versions of the model. The first and second versions
are consist of standard test wrappers (IEEE P1500 boundary scan-based wrapper)
and the smart security wrappers (an extension of IEEE P1500 boundary scan-based
wrapper and debug wrappers), respectively. In the final version of the design, we
combined the smart security wrappers with on-chip Design-for-Debug (DfD) instru-
mentation (similar to ARM coresight) to enhance the observability and controlla-
bility over required signals. Table 2 provides the estimated number of observable
and controllable signals in different versions of the proposed design, namely TW
(the test wrapper-based design), the SW (the smart security wrapper integrated pol-
icy engine), and DfD (the Design-for-Debug Infrastructure integrated with smart
security wrappers). The comparative observability and controllability results of the
signals in all three versions are presented in Table 2. In particular, % Increment
column of Table 2 represents the increment of controllability and observability in
DfD interfaced design. From the results, it is evident that DfD integration increases
the potential number of observable and controllable signals of each IP blocks by a
vast magnitude. For instance, the percentage increment in observability is as high
as 171.43% (for an illustrative memory controller block) in the extended version of
the design with DfD instrumentation compared to the smart security wrapper based
design. DfD infrastructure enhances the observability over the signals of DLX µP

http://www.Opencores.org
http://www.Opencores.org

An Adaptable System-on-Chip Security Architecture … 81

Table 2 The table illustrates an estimated number of controllable and observable signals in different
phases of the design

Design specification

IP type Test wrapper Security
wrapper

Design-for-
debug

% increment
by DfD over
SW

Observable DLX Up 5 547 772 41.13

AES 5 386 776 101.04

SPI n/a 104 161 54.81

Mem. Cont. 5 224 608 171.43

FFT 5 134 218 62.69

Total 20 1395 2535 81.72

Controllable DLX uP 1 142 255 79.58

AES 1 107 188 75.70

SPI n/a 75 144 92.00

Mem. Cont. 1 104 187 79.81

FFT 1 76 156 105.26

Total 3 504 930 84.52

Table 3 The table shows an estimated number of SoC security policies that can be implemented
in various case scenarios: the number of policies are dependent on the number of observable and
controllable signals which are represented in the table as predicate and action tuples, respectively

Possible number of arbitary security policies

Tuple type Test wrapper Security
wrapper

Design-for-
debug

% increment by
DfD over SW

2 predicate, 1 action 570 490,046,760 2,987,015,850 5.10

4 predicate, 1 action 14,535 7.91857E+13 1.59645E+15 19.16

8 predicate, 1 action 377,910 1.757E+23 3.89E+25 220.42

8 predicate, 2 action 377,910 4.42E+25 1.81E+28 407.94

core by 41.13%. As for controllable signals, the percentage increment is 79.58% for
the DLX µP. The maximum increment in controllability is up to 105.26% for the
FFT module.

To further illustrate the notion of adaptability and flexibility in in-field policy
implementation, we prepared Table 3 based on the controllability and observability
information obtained by comparing different designs. Table 3 shows the feasibility
of implementing an arbitrary number of policies by obtaining access to the extended
number of controllable and observable signals through the debug instrumentation.
The results clarify the initial assumption that local debug modules help to implement
a significantly higher number of policies compared to other versions of the design
that lack the DfD integration. The estimated number of security policies is calculated
based on the standard policy framework proposed in this work. Apart from the timing

82 A. P. Deb Nath et al.

information, the primary policy-determining components of the framework are pred-
icate tuples and corresponding action tuples. The predicate and action tuples of the
policies are represented as P, and A respectively in Table 3. For each of the IP blocks
constituting the SoC model, the observable signals are considered as the predicates
for security policies. The controllable signals of the IPs are deemed as the action
tuples that can be exploited to implement an arbitrary number of policies for the
SoC. Possible implementation scenarios of maximum number of arbitrary policies
is analyzed under different cases e.g. 2 predicates, 1 action; 4 predicates, 2 actions;
8 predicates, 2 actions, etc. The debug instrumentation based design provided better
results due to enhanced accessibility to security critical signals.

A comparison of overhead results between the FPGA-based policy engine and
the micro-controlled version is illustrated in Table 4. Testbenches are developed to
exercise a set of 10 security policies for specific case scenarios. For the DLX µP
based implementation, the execution of each policy involved between 15 and 20
instructions. The dynamic and static power analysis is performed by the observing
the signal activities caused by the application of representative testbenches. The
voltage and thermal models considered for the calculations are obtained from the
standard 32 nm technology library. The total power is determined by adding the
dynamic and static power values obtained through the simulation. Furthermore, the
total energy is measured by multiplying the total power results by the latency values
obtained for 10 policies.

In the FPGA-based design, the critical parameters like latency, die area, total
power, total energy are calculated using the values obtained by the Altera Quartus
tool. Once the design is compiled via Quartus tool, the partial and fully utilized
arithmetic logic modules (ALMS) are multiplied with their respective areas to get
the total die area. The dynamic and static power calculation is done by observing
the signal activity triggered by the same set of testbenches utilized for the micro-
controlled version of the policy engine. An estimation of the net leakage power for
the embedded FPGA is made by multiplying the total logic utilization factor with
the static power reported by the tool for the entire FPGA chip.

It is evident from Table 4 that the FPGA-based RSPE is more energy efficient
(around 5.02X) than theDLXµP based policy engine. Furthermore, theMCU imple-
mentation takes on average 5.5x time compared to FPGA based design to execute

Table 4 A comparative analysis among the different aspects of design overhead i.e. area, perfor-
mance, power, and energy is presented in the table. It shows the overhead of theDLXmicroprocessor
based policy engine and embedded FPGA based reconfigurable policy engine module

Die area
(µm2)

Clock
frequency
(MHz)

Cycle
count 10
policies

Total
latency
(µs)

Dynamic
power
(mW)

Static
power
(mW)

Total
energy
(nJ)

DLX µP 0.724 203 210 1.04 14.27 63.48 80.86

FPGA 1.06 138 26 0.189 64.9 20.43 16.13

Ratio 0.68 1.47 8.07 5.49 0.22 3.11 5.02

An Adaptable System-on-Chip Security Architecture … 83

Table 5 Execution result of each policy on the FPGA based reconfigurable security policy engine

Security
policy no.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Energy (nJ) 1.865 1.842 1.851 1.876 1.861 1.839 1.846 1.85 1.868 1.875

Latency (ns) 21.74 14.48 7.24 21.74 21.74 14.48 21.74 14.48 21.74 7.24

Resources
(ALMs)

5465 4065 3260 5465 4065 4065 5465 4065 5465 3260

these policies. As many IoT devices operate under strict energy constraints and often
require real-time security protection and mitigation, the superior performance and
energy efficiency of the FPGA implementation are of critical benefits compared to
micro-controlled architecture. Obviously, these comparative values might vary with
the choice of different processors, but we expect the relative trends to hold for most
scenarios. In any case, these experiments point to the trade-offs and analysis thatmust
be performed in practice in selecting the deployment platform (MCU vs. embedded
FPGA) for any target SoC design with custom security requirements. Note that the
area cost in the reconfigurable fabric from the experiments is about 1.47 times that
of the MCU implementation. The higher area cost in FPGA arises because DLX µP
is a simple RISC core and its area is typically low compared to other microprocessor
cores such as MinuteIA, or ARM used in practical MCU implementations.

To provide a sense of the energy cost in FPGA for individual policy implemen-
tation, the energy consumed by each is presented in Table 5. Standard testbenches
are applied to execute each policy in an isolated manner. The energy costs incurred
by various policies fall in a close range. The occurrence of such similar energy costs
happened primarily due to the fact that the policies enforce similar access controls.
Consequently, the policies require similar computation on each of the IP frames.
Besides, the duration of all the policies varies over 3 cycles (2 cycles for reading
corresponding event frames once the buffer flag is raised and 1 cycle for executing
the policy based on the security status). Obviously, in practice, the policies may
involve multiple cycles of execution. Furthermore, several policies might get exe-
cuted together, resulting in significant overlapping of performance and energy costs.
Nevertheless, the results provide a relative comparison of the FPGA implementa-
tion of various policies, and, in practice, may suggest targets for optimizations. A
comparative analysis of area overhead for microcontrolled and FPGA-based policy
engine implementation is presented in Table 6. The table shows the area overhead
introduced by the addition of micro-controlled and FPGA-based policy engine in
the entire SoC model. Though the overhead of the RSPE seems high (i.e. 20–30%
approx.) for the given SoC model, the overhead is reasonably low when compared to
realistic industrial SoCs like Apple A6 and Qualcomm Snapdragon 800. The results
indicate that the FPGA-based RSPE has 0.68x higher area overhead compared to the
micro-controlled policy engine. However, the total area overhead of the FPGA-based
RSPE is less than 5% in case of industrial SoCs.

84 A. P. Deb Nath et al.

Table 6 A realistic comparison on area overhead of RSPE in system-on-chips

SoC Original area (µm2) µC design overhead
(%)

FPGA design
overhead (%)

SoC model 13.1 × 106 21.7 30.74

Apple A6 (APL0598) 96.71 × 106 2.92 4.26

Qualcomm
Snapdragon 800

118.3 × 106 2.39 3.49

7 Conclusion

SoC Security architectures designed for IoT and automotive applications need to
be adaptable, especially in the face of evolving requirements and uncertainties over
their long lifetime. This chapter considers existing limitations of such adaptability
and demonstrates a viable patchable hardware implementation through a central-
ized Reconfigurable Security Policy Engine, a set of smart security wrappers, and
on-chipDesign-for-Debug (DfD) infrastructure. In the proposed architecture, the pol-
icy engine acts as the centralized security brain, the smart security wrappers extract
critical signals from IP blocks of varying structural properties, and the DfD modules
provides extensive observability and controllability over the required signals. The
work also introduces an automatic synthesis flow to facilitate the mapping process
of an arbitrary number of SoC security policies. The proposed CAD flow is compat-
ible with existing commercial tools. Significantly higher access to required signals
and capability to implement a vast number of arbitrary security policies are dis-
tinct properties of the design. Moreover, the proposed hardware-software framework
facilitates the policy implementation at the cost of minimal overhead. The proposed
work is highly cost-efficient compared to conventional software-based implementa-
tion in terms of performance, power, and energy. For a set of illustrative policies, it is
shown that an order of magnitude reduction can be obtained in cost of performance,
power, and energy overhead. Future work will involve evaluating the architecture on
industrial SoC models with test chip fabrication.

References

1. Evans,D.: The internet of things—how the next evolution of the internet is changing everything.
White Paper, Cisco Internet Business Solutions Group (IBSG) (2011)

2. Sastry, M.R., Schoinas, I.T., Cermak, D.M.: Method for enforcing resource access control in
computer system. US Patent 20120079590 A1 (2012)

3. Krstic, S. et al.: Security of SoC firmware load protocol. HOST (2014)
4. Li, X. et al.: Sapper: a language for hardware level security policy enforcement. ASPLOS

(2014)
5. Rushby, J.: Noninterference, transitivity, and channel-control security policies. SRI Interna-

tional, Computer Science Laboratory (1992)

An Adaptable System-on-Chip Security Architecture … 85

6. ARM: Building a secure system using trustzone technology. ARM Limited (2009)
7. Basak, A., Bhunia, S., Ray, S.: A flexible architecture for systematic implementation of SoC

security policies. IEEE ICCAD (2015)
8. Miettinen, M., Heuser, S., Kronz, W., Sadeghi, A.-R., Asokan, N.: Conxsense: automated con-

text classification for context-aware access control. In: Proceedings of the 9thACMSymposium
on Information, Computer and Communications Security, pp. 293–304. ACM (2014)

9. Conti, M., Crispo, B., Fernandes, E., Zhauniarovich, Y.: Crêpe: a system for enforcing fine-
grained context-related policies on android. IEEE Tran. Inf. Forensics Sec. 7(5), 1426–1438
(2012)

10. Hull, R.,Kumar, B., Lieuwen,D., Patel-Schneider, P.F., Sahuguet,A.,Varadarajan, S.,Vyas,A.:
Enabling context-aware and privacy-conscious user data sharing. In: 2004 IEEE International
Conference on Mobile Data Management, 2004. Proceedings, pp. 187–198. IEEE (2004)

11. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Symposium on
Security and Privacy, IEEE, pp. 11–11 (1982)

12. Ray, S., Yang, J., Basak,A., Bhunia, S.: Correctness and security at odds: post-silicon validation
of modern SoC designs. In: DAC (2015)

13. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. ACM SIGPLAN Notices 41(1), 91–102 ACM (2006)

14. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

15. Borisov, N., Johnson, R., Sastry, N., Wagner, D.: Fixing races for fun and profit: how to abuse
a time (2005)

16. Ray, S., Jin, Y.: Security policy enforcement in modern soc designs. In: 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov 2015, pp. 345–350

17. Loucaides, J., Furtak, A.: A new class of vulnerability in SMI handlers of BIOS/UEFI firmware.
In: The 15th Annual CanSecWest Conference (CanSecWest) (2015)

18. Nath, A.P.D., Ray, S., Basak, A., Bhunia, S.: System-on-chip security architecture and cad
framework for hardware patch. In: 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan 2018, pp. 733–738

19. Basak, A., Bhunia, S., Ray, S.: Exploiting design-for-debug for flexible SoC security architec-
ture. In: DAC (2016)

Lightweight Fault Tolerance for Secure
Aggregation of Homomorphic Data

Nektarios Georgios Tsoutsos and Michail Maniatakos

Abstract Homomorphic encryption constitutes a powerful cryptographic method
that enables data aggregation in distributed applications over large datasets, such as
electronic voting, electronic wallets, secure auctions, lotteries and secret sharing. At
the same time, as attack trends move towards the lower levels of the computation
stack and new threats continue to emerge, the lack of trust in contemporary comput-
ing paradigms keeps increasing. Since, homomorphic encryption helps preserve the
confidentiality of sensitive information, it offers a powerful countermeasure against
contemporary and future privacy threats, while allowingmeaningful processing even
though the data remains unreadable. Nevertheless, when homomorphic primitives
are mapped to hardware circuits to improve performance, they become vulnerable
to random faults and soft errors since homomorphic operations are malleable by
construction and do not provide any explicit assurance towards data integrity. In
this chapter, we present a fault tolerance methodology that protects homomorphic
aggregation circuits through concurrent detection of random errors in homomorphic
ALUs and encrypted values stored in memory. Our approach establishes the theoret-
ical foundations to extend residue numbering to additive homomorphic operations,
which enables lightweight fault detection with detection rates of more than 99.98%
for ALU operations, and 100% for clustered faults and single bitflips in memory
values. Using an efficient modular reduction algorithm, our method incurs a perfor-
mance overhead between 3.6 and 8%, for a minimal area penalty.

N. G. Tsoutsos (B)
University of Delaware, Newark, DE 19716, USA
e-mail: tsoutsos@udel.edu

M. Maniatakos
New York University, Abu Dhabi, UAE
e-mail: michail.maniatakos@nyu.edu

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_5&domain=pdf
mailto:tsoutsos@udel.edu
mailto:michail.maniatakos@nyu.edu
https://doi.org/10.1007/978-3-030-02807-7_5

88 N. G. Tsoutsos and M. Maniatakos

1 Introduction

As computing devices become more ubiquitous every day, users rely on them for
storage and processing of their sensitive data [36]. From health information and
banking records, to location services and file backups, computers are the virtual con-
tainers of the digital footprints of millions of users. At the same time, distributed
computing paradigms such as wireless sensor networks and grid computing have
become increasingly popular, as they allow efficient and scalable computation com-
pared to monolithic dedicated machines. Likewise, from electronic voting [11] and
electronic wallets, to electronic auctions and lotteries [15], as well as secret sharing
and fingerprinting protocols [25], data aggregation remains a prevalent application
on large datasets. Nevertheless, there is no shortage of concerns regarding the pri-
vacy guarantees offered by contemporary computing platforms, especially in case
sensitive data are outsourced to untrusted third parties [8].

In several cases, there is financial incentive for the hosts of distributed computing
to violate user privacy and extract identifiable information (e.g., to develop targeted
advertisement campaigns). Moreover, as commercial cloud service providers are
compromised [2, 33], mass surveillance instances are reported in whistle-blower
cases [26], and private companies are compelled to digitally sign insecure software
[22], the debate on the importance of user privacy becomes even more intense.
Furthermore, as attack trends keep moving towards lower levels in the computation
stack [4, 40, 41, 45, 49], the portrayal of the hardware as the computation root-of-
trust continues to be challenged.

Nevertheless, an important observation is that privacy threats are a concern only if
the data is unencrypted [43]. In case encryption algorithms are used for protection,
the risk of privacy violations is minimized, as any leaked data would be unreadable.
This is particularly useful, as it is not always possible to foresee the nature of attacks
that will emerge in the future, while encryption offers oblivious protections against
generic privacy threats. Hence, using cryptographic primitives such as homomorphic
encryption [14] that enables meaningful manipulation of encrypted values (such as
data addition or multiplication), it is possible to return control of data privacy back
to the end users, while the data is being processed.

Even though homomorphic encryption presents multiple benefits with respect to
privacy, contemporary implementations in software incur prohibitive performance
overheads. One direct approach to mitigate these performance concerns would be
to use custom hardware units that evaluate homomorphic operations natively [44].
Integrated circuit (IC) implementations, however, are vulnerable to different classes
of random faults thatmay compromise the integrity of encrypted results. In particular,
since homomorphic encryption is malleable by construction [24], without dedicated
countermeasures it may not be possible to detect whether a homomorphic ciphertext
output has a fault or not. Moreover, since common homomorphic schemes are based
on special properties of modular arithmetic, fault tolerance is not a trivial challenge,
and traditionalmethods such as ResidueNumber Systems (RNS) [16] are not directly
applicable. In addition, since encrypted arguments have very large bitsizes (often,

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 89

thousands of bits), integrity techniques like parity checks and error-correcting codes
yield unacceptable overheads with respect to bit redundancy.

Notably, since common homomorphic operations are naturally compatible with
modular arithmetic, it is possible to extend the inherent mathematical properties of
RNS and create a lightweight fault tolerance framework. Specifically, the methodol-
ogy introduced in this chapter is tailored to arithmetic logic units (ALUs) for homo-
morphic data aggregation, it incurs minimal overheads with respect to integrity meta-
data, and it is theoretically founded on modular arithmetic properties. Our approach
enables concurrent detection of random errors in ALU operations and encrypted
arguments stored in memory, and it is realized using a fast modular reduction pro-
cedure that exploits the properties of Mersenne prime moduli to drastically improve
runtime performance.

The rest of this chapter is organized as follows: in Sect. 2 we elaborate on back-
ground notions, while in Sect. 3we present our assumed threatmodel. Our theoretical
arguments on adapting residue numbering for modular arithmetic are discussed in
Sect. 4, and in Sect. 5 we present our algorithm for fast modular reductions. Ourmain
methodology on fault tolerance is presented in Sect. 6, while in Sect. 7 we discuss
our experimental setup and evaluation results. Finally, related work is discussed in
Sect. 8, and the chapter concludes in Sect. 9.

2 Preliminaries

2.1 Cryptographic Schemes and Homomorphic Encryption

In modern cryptography, a pair of encryption and decryption algorithms (also called
encryption scheme) is used to map plaintexts into unreadable ciphertexts, based on
a secret key. One necessary property that encryption algorithms should offer is the
computational indistinguishability of ciphertexts compared to truly random values
[24]. Essentially, it should be impossible to define an algorithm with polynomial-
time complexity that discriminates an encrypted value from a truly-random sequence
of bits. In effect, ciphertext data look like random data, and this property offers an
effective solution against privacy threats by rendering the data inaccessible to unau-
thorized entities. Encryption schemes can either be symmetric, when the same secret
key is used for both decryption and encryption, or asymmetric, when different keys
are used for encryption and decryption (called public and private keys respectively).

Two essential features of encryption schemes are the diffusion and confusion prop-
erties [37]. The latter warrants that a sequence of ciphertext bits depends on multiple
bits of the secret key. Likewise, the former warrants that a minimal modification in
a plaintext (such as flipping one bit) would yield a significantly different ciphertext
under the same encryption key (i.e., multiple ciphertext bits are affected). Naturally,
diffusion would also hold in the inverse direction, so a minimal modification in a
ciphertext would yield a significantly different plaintext under the same decryption
key.

90 N. G. Tsoutsos and M. Maniatakos

In addition to confusion and diffusion, one characteristic property of encryption
algorithms is malleability, which describes the potential to manipulate an encrypted
value in a meaningful way. Specifically, if an encryption scheme is malleable, it is
possible to transform any ciphertext to a new one that decrypts to a plaintext mes-
sage with a known relationship to the message encoded in the original ciphertext.
Depending on the application, malleability could be a desirable or entirely undesir-
able property, and there exist encryption algorithms that are non-malleable by design
(e.g., [31]).

At the same time, there exist malleable encryption schemes with homomorphic
properties, which enables meaningful computations directly over already encrypted
values [32]. In particular, homomorphic encryption schemes support applying known
arithmetic operations directly over ciphertexts so that the decryption of the result
would be equal to the output after applying a related arithmetic operation on the
corresponding plaintexts (i.e., as if encryption was not involved in the process).
Given two plaintext messagesm1 andm2, the homomorphic property can be formally
expressed using the following formula:

Decrypt[Encrypt[m1] ◦ Encrypt[m2]] = m1 � m2, (1)

where � and ◦ are associated arithmetic operations.
For example, in both the ElGamal [12] and the RSA schemes [34], the modular

multiplication of two ciphertexts is homomorphic to the modular multiplication of
the corresponding plaintexts. Such schemes are called multiplicative homomorphic,
as the ◦ operation applied on ciphertexts yields a preimage of the multiplication
of their plaintexts. Likewise, in the Paillier cryptosystem [30] and the exponential
ElGamal variant [10], the modular multiplication of two ciphertexts is homomorphic
to the modular addition of the corresponding plaintexts. Such schemes are additive
homomorphic, as the ◦ operation applied on ciphertexts yields a preimage of the
addition of their plaintexts.

Both additive and multiplicative schemes are further classified as partially homo-
morphic encryption (PHE) schemes, as only one homomorphism (i.e., either mul-
tiplication or addition of plaintexts) is allowed [14]. Until a decade ago, all known
homomorphic encryption schemes were partially homomorphic; since 2009, how-
ever, and the invention of the first fully homomorphic encryption (FHE) scheme, it is
possible to have both additive and multiplicative homomorphisms at the same time
[9, 13, 17, 38, 39, 46].

2.2 Paillier Additive Homomorphic Encryption

The Paillier cryptosystem is among the first efficient PHE schemes that enables
homomorphic addition [30]. The security of this scheme is reduced to the decisional
composite residuosity assumption, which asserts that:

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 91

Given a composite number N and an integer z, it is hard to decide whether there
exists y such that

z ≡ yN (mod N 2). (2)

The Paillier cryptosystem is further classified as a probabilistic asymmetric
encryption scheme and it is formally defined as follows:

Let u and v be two large primes of equivalent length, randomly and indepen-
dently chosen of each other. Let N = u · v be the product of these primes and
λ = LeastCommonMultiple(u − 1, v − 1); the bitsize of N is the security param-
eter of the cryptosystem. Let g be a random integer in Z

∗
N 2 so that μ = (L(gλ

(mod N 2)))−1 (mod N) exists (i.e., the order of g is greater than zero and also
divided by N), where the (·)−1 power denotes modular multiplicative inversion (over
modulus N) and L(x) = x−1

N . The private key is (λ, μ), while the public key is (N , g).
The encryptionoperation is defined as follows:Letm be amessage to be encrypted,

with m in ZN , and let r be a random integer in Z∗
N ; the randomness of r is essential,

as it ensures the semantic security of the probabilistic Paillier scheme [19]. Then,
the encryption function of any message m is defined as the unique mapping between
a ciphertext c ∈ Z

∗
N 2 and values r and m:

c = Encrypt[m] = gm · r N (mod N 2) (3)

and the decryption function of any ciphertext c is defined as:

m = Decrypt[c] = L(cλ (mod N 2)) · μ (mod N). (4)

In Paillier, the complexity of the decryption algorithm is equivalent to one modular
exponentiation operation, which makes the scheme practical. This is not always the
case with additive homomorphic schemes: for example, the exponential ElGamal
cryptosystem [10] incurs high decryption overheads, as the decryption complexity
reduces to evaluating discrete logarithms, which is intractable in general.

The homomorphism of Paillier is formally defined as:

Decrypt[Encrypt[m1] · Encrypt[m2] (mod N 2)] =
Decrypt[r N

1 gm1 · r N
2 gm2 (mod N 2)] =

Decrypt[(r1r2)N gm1+m2 (mod N 2)] = m1 + m2 (mod N),

(5)

so decrypting the result of the modular multiplication of the encryptions of two
messages would be equal to the modular addition of these messages. The latter is a
significant result, as this will be the basis for secure homomorphic aggregation.

92 N. G. Tsoutsos and M. Maniatakos

2.2.1 Paillier Ciphertext Size and Range Expansion

To guarantee asymptotic security against decryptions without knowing the private
key (e.g., prevent recovery of the private key by factorizing the public key N), the
bitsize of N must be adequately large (usually, thousands of bits long) [18]. By
definition of Paillier encryption, ciphertexts are reduced to modulus N 2, so their
typical bitsize is twice as large as the bitsize of N . Thus, if N is 1024 bits long,
Paillier ciphertexts will be 2048 bits long respectively. Moreover, for a 1024-bit
long N , the ciphertext bitsize is always 2048 bits, regardless of the corresponding
plaintext bitsize (i.e., ciphertexts have a fixed bitsize for any valid plaintext, even if
that plaintext is a 64-bit, a 32-bit, or even a 1-bit long value). In effect, the plaintext
range is expanded to a fixed ciphertext range.

2.2.2 Paillier Cryptosystem Using Multi-prime Keys

If the calculation of modulus N uses more than two prime factors, the key-pair
generation procedure would be modified as follows:

Let {p1, p2, . . . , pk} be a set of k primes so that at least two of these are generated
randomly and independently of one another, with equivalent and adequately large
bitsizes. In this case, the public modulus equals N = ∏

pi with 1 ≤ i ≤ k, while the
private parameter λ equals LeastCommonMultiple(p1 − 1, p2 − 1, . . . , pk − 1).

The asymptotic security of the multi-prime cryptosystem holds, as it would be
computationally intractable to compute λ without knowing the prime factors of N .
In fact, given that at least two prime factors of N are random and adequately large,
factorizing N would be intractable.

3 Assumed Threat Model for Fault Tolerance

This section elaborates on the different threat scenarios that we deem possible, and
the various errors we strive to mitigate. The application in our scope is secure data
aggregation implemented using additive homomorphic encryption, assuming with-
out loss of generality that Paillier [30] is our baseline cryptosystem.1 In Paillier,
ciphertext modular multiplications are homomorphic to plaintext modular additions
so that implementing homomorphic aggregation applications in hardware requires
ALUs for modular multiplication (e.g., a Montgomery modular multiplication ALU
is implemented in [28]). Since a typical bitsize of Paillier ciphertexts would be 2048
bits, the ALUs implementing modular multiplications are expected to consume thou-
sands of cycles before generating an output, and also incur considerable silicon area

1Asmentioned in Sect. 2.1, another additive homomorphic scheme is the exponential ElGamal [10],
yet its decryptions require computing discrete logarithms. In addition, the Damgård-Jurik-Nielsen
cryptosystem [11] generalizes the additive homomorphic property of Paillier.

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 93

overheads. Thus, there is a non-negligible probability of permanent or transient
faults impacting ALU operations, which is a threat for the integrity of homomorphic
outputs. In our scope, we consider scenarios where these random faults may impact
an arbitrary number of steps associated with the computation of the ALU output.

Along with the modular multiplication ALUs, our threat model further considers
memory soft errors affecting cells that store ciphertext data. Specifically, we consider
(a) Multi-Bit Upsets (MBUs) where clusters of up to four consecutive bits may be
cleared or set together (i.e., clustered faults as in [27]), and (b) Single Event Upsets
(SEUs). These faults may impact the integrity of the homomorphic arguments during
memory storage, and eventually cause corrupted outputs in case such erroneous
ciphertexts are loaded for processing. Our threat model assumes a non-negligible
probability for these soft errors, considering that the silicon area occupied bymemory
cells can be large. On the contrary, we assume that soft errors in individual registers
within functional units have negligible probability.

4 Adapting Residue Numbering for Modular
Multiplication

Residue Number Systems offer a powerful and popular method for detecting faults in
standardALUoperations [23]. Instead of using conventional digitswhoseweights are
defined by their position, a residue number system can represent an integer as a tuple
of weightless residue values based on a predetermined set of moduli [16]. The latter
supports carry-free and parallelizable multiplication and addition, as each residue
value can be computed independently. Moreover, residue values allow concurrent
detection of errors during multiplication or addition in an ALU: the residue values
of each ALU input are multiplied or added together and that result is compared with
the corresponding residue of the ALU operation output to verify equality.

In this chapter, one of our main objectives is fault detection for modular multipli-
cation ALUs, by adapting the same efficient and simple residue numbering checks
that are applicable to standard ALUs. Nevertheless, residue number systems are
not directly compatible with complex arithmetic operations such as divisions, strict
inequalities, or modular multiplications, and implementing these operations usually
requires highly complex algorithms [1]. Furthermore, applying a standard residue-
based fault detection check directly to a modular multiplier yields an invalid result.2

To address this limitation of residue numbering in the context of verifyingmodular
multiplications, we observe that the public parameter N in Paillier is defined as a
product of different primes (Sect. 2.2). Thus, to allowcorrect residue-based checks, an
appropriate solution would be to define the set of moduli used for the residue number

2For example, if we use RNS modulus 7 to reduce the output of modular multiplication 20 ×
30 (mod 9), we have: ((20 × 30) mod 9) mod 7 = (600 mod 9) mod 7 = 6 mod 7 = 6. This is
different from: (((20 mod 7) × (30 mod 7)) mod 9) mod 7 = ((6 × 2) mod 9) mod 7 = (12 mod
9) mod 7 = 3.

94 N. G. Tsoutsos and M. Maniatakos

system with the primes composing the public modulus N in Paillier. Still, if the
modulus N can be factorized using exactly two distinct prime factors v and u (i.e., N
equals the product of v andu), disclosing either prime as part of the residue numbering
moduli set essentially reveals Paillier’s private key that should remain secret. Our
observation is that, in order to enable fault detection using lightweight residue-based
checkswhile preserving cryptographic security, we can introduce another integer z as
a factor of the public modulus. To ensure correctness, the new factor z of modulus N
should also be a prime, similar to the RSA cryptosystem configuration with multiple
primes [5]. Even though z can be publicly disclosed, the prime factors v and u must
always be kept secret (Sect. 2.2.2).

In the rest of this section, we offer theoretical foundations for adapting residue
number systems in modular multiplication operations.

Representation: In a residue number system, non-negative integers are uniquely
represented as tuples of residue values. Each residue value corresponds to one pre-
defined modulus from a set of positive integers forming the basis of the numbering
system.More formally, the residue numbering basis is defined as a tuple of k positive
moduli (m1, m2, . . . , mk) so that:

gcd(mi , m j) = 1, ∀i, j ∈ {1, 2, . . . , k}, i 	= j (6)

(i.e., all moduli in the basis are pairwise coprimes). Then, for a given basis, any
non-negative integer value X smaller than M = ∏

mi is uniquely represented as a
tuple of k integer residues (x1, x2, . . . , xk) so that xi = X mod mi .

Uniqueness: The representation of non-negative integers using a residue number
system is always unique as required by the following theorem (based on the Chinese
Remainder Theorem).

Theorem 1 Given a residue numbering basis of pairwise coprime positive moduli
(m1, m2, . . . , mk), then for any integer X ∈ [0, M), where M = ∏

mi for 1 ≤ i ≤ k,
the set of residues X mod mi is unique.

Proof If the statement of the theorem did not hold, there would exist two distinct
integers A and B ∈ [0, M) with identical residue number system representations.
Hence, for all i we would have A = ci · mi + ai , B = di · mi + bi , ci 	= di and ai =
A mod mi = B mod mi = bi , so A − B would be a multiple of mi :

A − B = (ci − di) · mi , ∀i and ci 	= di . (7)

The latter also denotes that A − B is a multiple of lcm(m1, m2, . . . , mk), which is
equal to M , given that all mi are pairwise coprimes. Nevertheless, if A − B is a
multiple of M , then it is impossible for both A and B to be in the interval [0, M)

(contradiction). �

Simple Arithmetic: Using a residue number system, it is possible to apply carry-
free multiplication, addition or subtraction directly over the residues of two input

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 95

values, and compute the residue number system representation of the output of the
corresponding arithmetic operation. Formally, if the residue number system repre-
sentation of inputs A and B is (a1, a2, . . . , ak) and (b1, b2, . . . , bk) respectively, then
the residue number system representation of the output X = (A � B) mod M would
be (x1, x2, . . . , xk), where xi = (ai � bi) mod mi , M = ∏

mi , and � corresponds to
multiplication, addition or subtraction.

Nested Reductions: As we prove in the following theorem, under certain conditions
it is possible to computemodular reductions that are nested. This result is particularly
useful in order to compute a residue representation of a value that has already been
reduced to a given modulus (such as a ciphertext reduced modulo N).

Theorem 2 If N and z are positive integers so that z divides N, then for any non-
negative integer X we have:

(X mod N) mod z = X mod z. (8)

Proof Leta = X mod N andb = a mod z = (X mod N) mod z. Therefore, it holds
that X = k · N + a for some integer k and a = j · z + b for some integer j . If we
combine the two equalities, we observe that X = k · N + j · z + b. Given that N is
divided by z, there should exist an integer m such that N = m · z; hence,

X = k · m · z + j · z + b = z · (k · m + j) + b. (9)

If the previous equation is divided by z, a remainder b will be produced:

X mod z = (z · (k · m + j) + b) mod z = b. (10)

Considering that X mod z = b and (X mod N) mod z = b using our definition of
b, we conclude that (X mod N) mod z = X mod z, when X ∈ Z≥0, and z, N ∈ Z+
so that N is divided by z. �
Modular Multiplication: The result of Theorem 2 is fundamental in our fault toler-
ance methodology, since it can be applied to modular multiplication ALUs operating
on encrypted values that have already been reduced to a public modulus N .3

Corollary 1 If N and z are positive integers and N is divided by z, then for any pair
of non-negative integers X and Y the following equation holds:

(X · Y mod N) mod z = ((X mod z) · (Y mod z)) mod z.

Proof Using the result of Theorem 2, we have that:

(X · Y mod N) mod z = X · Y mod z. (11)

3Notably, if the divisibility conditions outlined in the Corollary are not satisfied, multiplying the
residues of arguments X and Y would return an inaccurate residue value for the output product.

96 N. G. Tsoutsos and M. Maniatakos

Let a = (X mod z), b = (Y mod z) and c = (X · Y mod z). In this case, there exist
some integers x and y such that X = (x · z + a) and Y = (y · z + b). Applying these
expressions for X and Y , the product X · Y equals:

X · Y = (x · z + a) · (y · z + b) = x · y · z2 + x · z · b + y · z · a + a · b, (12)

X · Y = z · (x · y · z + x · b + y · a) + a · b. (13)

If we set a new integerw = x · y · z + x · b + y · a, Eq. 13 is transformed to X · Y =
w · z + a · b so that

X · Y mod z = (w · z + a · b) mod z = a · b mod z, (14)

by observing that z · w is divided by z (i.e., a · b and z · w + a · b are congruent
modulo z). Finally, if we combine Eqs. 11 and 14, we obtain the result promised in
the Corollary. �

5 Fast Modular Reductions Using Mersenne Primes

Following the analysis in Sect. 4, one essential condition to use residue number sys-
tems is the ability to reduce integer inputs using a fixed modulus. Notably, modular
reduction implementations that support non-fixed (arbitrary) moduli could introduce
considerable overheads, impacting the runtime performance of a system. In partic-
ular, since these reductions require integer division of an arbitrary input (i.e., the
dividend) with the corresponding non-fixed modulus (i.e., the divisor), this overhead
could be significant for Paillier ciphertext inputs in the order of 2048 bits. Although
fast modular reduction methods have been reported in the literature (e.g., [6]), the
runtime cost is a linear function of the dividend bitsize.

With respect to verifying modular multiplications using a residue number system,
our key observation is that the modulus z in Corollary 1 does not need to be random,
except for the correctness condition to be a prime number that divides the Paillier
modulus N (Sect. 4). As we demonstrate, a judicious selection of modulus z to be
a prime number that is smaller by exactly 1 from a power of 2 allows significant
efficiency improvements when an arbitrary input is reduced modulo z. An integer
z with such special property is actually a Mersenne prime [35], which is formally
expressed as Mp = 2p − 1 so that both p and Mp are prime numbers.

To complement our fault-tolerance methodology, we present an efficient modular
reduction algorithm that is applicable in caseMersenne primes 2p − 1 are used as the
reduction modulus. Specifically, given that any integer value can be represented with
radix-2p digits, we can compute a reductionmodulo aMersenne prime Mp = 2p − 1
by first evaluating the summation of all these digits and then reducing the summodulo
Mp, as illustrated in Algorithm 1. Such special-case reductions can be very fast, as
their runtime overhead is not a function of the bitsize of the input, but instead a

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 97

Algorithm 1 Fast Reduction Modulo a Mersenne Prime Mp

Input: X, p so that both p and 2p − 1 are primes
Output: Remainder
1: procedure FastMod(X, p)
2: Mp ← 2p − 1
3: while X > 2 · Mp − 1 do
4: Acc ← 0
5: while X 	= 0 do
6: Acc ← Acc + X&Mp � Add a masked radix-2p digit to Acc
7: X ← X
 p � Shift X right by p bits
8: X ← Acc � Recursion over all radix-2p digits of Acc

9: if X ≥ Mp then
10: X ← X − Mp

11: return Remainder = X

linear function of the number of digits in the input, expressed in radix-2p (i.e., the
number of p-bit input blocks). The correctness of Algorithm 1 is demonstrated in
the following theorem.

Theorem 3 Let p be a prime and Mp = 2p − 1 a Mersenne prime. Then, for any
positive radix-2p integer X in the form:

X =
�log2p X�∑

i=0

ai · (2p)i , (15)

where 2p is the numbering system base of the representation and ai are the digits of
integer X in that base, the reduction of X modulo Mp equals:

X mod Mp =
⎛

⎝
�log2p X�∑

i=0

ai

⎞

⎠ mod Mp. (16)

Proof Let a′
i = ai mod Mp and b′

i = (2p)i mod Mp be the reductions modulo Mp

of each digit ai and each base power (2p)i respectively. In this case, using the defi-
nition of congruence [24], we observe that ai and a′

i are congruent modulo Mp for
each i , and the same property is true for each (2p)i and b′

i as well. Leveraging the
properties of congruence, it is possible to apply standard arithmetic rules with respect
to multiplication and addition over congruent integers. Hence, for each i ≥ 0, it is
possible to apply the reductions modulo Mp distributively to individual digits and
base powers:

(ai · (2p)i) mod Mp = (a′
i · b′

i) mod Mp. (17)

98 N. G. Tsoutsos and M. Maniatakos

The same observation holds for each product term in the summation of Eq. 15:

X mod Mp =
⎛

⎝
�log2p X�∑

i=0

ai · (2p)i

⎞

⎠ mod Mp =
⎛

⎝
�log2p X�∑

i=0

(
ai · (2p)i

)
mod Mp

⎞

⎠ mod Mp.

(18)

Similarly, for each i ≥ 0, it is also possible to distribute the reductions modulo Mp

to the individual (2p) factors composing each base power (2p)i (when i = 0, we
assume that the empty product equals 1):

(2p)i mod Mp =
(

i∏

1

(2p mod Mp)

)

mod Mp. (19)

Combining Eqs. 17, 18 and 19, with our definitions of a′
i and b′

i , we obtain the
following equation:

X mod Mp =
⎛

⎝
�log2p X�∑

i=0

(

a′
i ·

i∏

1

(2p mod Mp)

)⎞

⎠ mod Mp. (20)

In the last equation, it is possible to simplify the product terms since we know that
2p mod Mp = (Mp + 1) mod Mp = 1, using the definition of Mp. Lastly, based
on our definition of a′

i , we observe that (
∑

a′
i) mod Mp = (

∑
(ai mod Mp)) mod

Mp, which is equal to (
∑

ai) mod Mp for each i , after applying standard rules of
arithmetic. Hence, we can simplify Eq. 20 to Eq. 16 as promised. �

6 Lightweight Error Detection for Random Faults

One important concern towards mitigating integrity threats in homomorphic aggre-
gation applications is the ability to detect errors attributed to random faults. Typically,
these faults can be caused by low energy neutrons from cosmic radiation interact-
ing with the insulator layers of integrated circuits (ICs), as well as by high energy
cosmic neutrons, or can be attributed to alpha particles emitted due to impurities in
IC packaging [3]. The following sections discuss our approach that enables efficient
detection of such random faults in additive homomorphic ALUs and in memories
hosting ciphertext arguments. An overview of our fault tolerance methodology for
modular multiplication ALUs is illustrated in the block diagram of Fig. 1.

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 99

Fig. 1 Abstract view of a homomorphic aggregation system featuring an additive homomorphic
ALU with fault tolerance and redundant equality checks. In typical aggregation applications (e.g.,
secure electronic voting), the end users encrypt their sensitive data using homomorphic encryption
and send the corresponding ciphertexts to a remote system that performs homomorphic addition;
when the final results are evaluated, the end users download the ciphertext outputs and decrypt them
locally

6.1 Detecting Errors in Modular Multiplication ALUs

To enable the detection of random errors in the output X of modular multiplication
ALUs, we employ our results for adapting residue number systems in modular mul-
tiplication (Sect. 4) and construct special homomorphic syndromes. Each syndrome
is defined as the residue sndr = X mod Mp of an integer value X , using a prede-
fined Mersenne prime Mp as the modulus. Notably, such reductions are efficiently
computed using additions of p-bit blocks, as illustrated in Algorithm 1. Moreover,
as discussed in Sect. 4, a necessary condition for both correctness and security is that
Paillier’s public parameter N is factorized to k > 2 primes, where one of them is a
Mersenne prime Mp.4

4In this case, the public parameter N of the cryptosystem is the product of all k prime numbers, while
the private parameter is Carmichael’s λ function of N (Sect. 2.2.2). We remark that the reduction
modulus for homomorphic additions of two ciphertexts is N 2 [30].

100 N. G. Tsoutsos and M. Maniatakos

Algorithm 2Modular Multiplication with Error Detection
Input: A, B, N , Mp so that N is divided by Mp
Output: (Modular Multiplication Result, Updated Syndrome, Fault Status)
1: procedure ModMul-ED-ALU(A, B, N , Mp)
2: X ← A · B mod N 2

3: Xsndr ← X mod Mp
4: Asndr ← A mod Mp � For Just-In-Time syndromes
5: Bsndr ← B mod Mp � For Just-In-Time syndromes
6: X ′

sndr ← Asndr · Bsndr mod Mp � Parallelizable step
7: if X ′

sndr = Xsndr then � Redundant equality comparison
8: return (X, Xsndr , Correct)
9: else
10: return (⊥,⊥, Faulty)

In our case, we assume with no loss of generality that N comprises k = 3 prime
factors, specifically v, u and Mp; hence, since one of the factors is aMersenne prime,
we can leverage Theorem 2 and Algorithm 1 to evaluate the syndrome of ALU result
X very efficiently. As already mentioned, in case N does not have a third factor,
adapting residue numbering to enable fault detection would entail revealing either v
or u as the modulus for residue numbering, since the latter should also be a divisor of
N . Nevertheless, this alternative would undermine the security of the cryptosystem,
which requires that at least two sufficiently large prime factors of N must remain
secret at all times (i.e., factorizing N should be prevented).

Using our construction for homomorphic syndromes, it is possible to assert (with
high probability) that a random error has not occurred in a homomorphic operation,
by computing the quantity X mod Mp for an ALU output X and verifying that it is
equal to the expected syndrome. Nevertheless, this correctness check would not be
practical unless we can compute the expected syndrome for the ALU output based
on the syndromes corresponding to the two ALU inputs. Indeed, for ALU inputs
A and B and ALU output X = A · B mod N 2, it is possible to apply the result of
Corollary 1 and verify the following equality for error-free outputs:

X mod Mp = (Asndr · Bsndr) mod Mp, (21)

where Asndr = A mod Mp and Bsndr = B mod Mp. Specifically, as summarized in
the error detection procedure of Algorithm 2, knowing A and Asndr , as well as B
and Bsndr for a given ALU operation, we are able to apply Eq. 21 and verify if X is
correct. In general, we can pre-compute offline the initial value of each syndrome,
store it alongwith the corresponding ciphertext in encryptedmemory, and update it at
runtime to the syndromematching theALUoutput after a homomorphic operation. In
particular, as discussed in the next section, pre-computing and storing each syndrome
in encrypted memory allows efficient detection of random memory errors as well.
Conversely, if onlyALUerror detection is in scope,we can compute each syndrome in
a Just-In-Time (JIT) manner, as soon as the corresponding ciphertext input is fetched
for ALU processing (so no additional memory is needed for syndrome storage).

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 101

As we observe from Eq. 21, computing the expected syndrome of the ALU output
requires a second modular multiplication of two input syndromes. In this case, and
given that the primary ALU module is allocated for the modular multiplication of
ciphertext inputs A and B using modulus N 2, additional ALU hardware is required
for the modular multiplication of Asndr and Bsndr (each having a much smaller
bitsize compared to A and B) using modulus Mp (i.e., not N 2). Notably, if we have
separate hardware units, it is possible to parallelize the two modular multiplications
of Algorithm 2 (i.e., Steps 2 and 6), so we can mask the overhead of syndrome
multiplication with the main homomorphic addition operation of A and B. On the
other hand, a prerequisite for calculating Xsndr , which is necessary for syndrome
verification (Step 3 in Algorithm 2), is the computation of ciphertext X (Step 2).
At the same time, in case the fault-tolerant modular multiplication (Algorithm 2)
is pipelined, the syndrome computation of Step 3 can be parallelized with the next
modular multiplication in the pipeline (i.e., Step 2); if an ALU error is eventually
detected, then the pipeline is “flushed”.

Typically, in case the equality check of Step 7 inAlgorithm 2 fails, we consider the
following (not mutually exclusive) possibilities: (a) an error occurred at the equality
check, (b) an error occurred during the modular multiplication of two syndromes
within the secondaryALU, (c) an error occurred during the calculation of a syndrome
from its corresponding ciphertext (i.e., within a Mersenne reduction module), (d) an
error occurred during the homomorphic addition of two ciphertexts in the primary
ALU. If we assume that such errors are attributed to transient faults, it is possible to
handle such exceptions by repeating the primary and secondary ALU operations with
freshly-calculated syndromes. Similarly, to mitigate undetectable errors in equality
comparisons (Step 7), it is important to employ redundant equality checking units.
Additionally, although our methodology enables the detection of arbitrary many
random errors at the output of the primary homomorphic ALU, there is still a residual
risk of errors that escape detection if the syndrome of a faulty ALU result collides
with the syndrome of the correct result.5 Specifically, undetectable collisions are
possible when the syndrome Xsndr corresponding to a faulty output X (f) is the same
as the expected syndrome X ′

sndr = Asndr · Bsndr mod Mp (for example, if the faulty
result X (f) is congruent to the correct result X so that X (f) = X + k · Mp for some
integer k 	= 0).

Tomaximize the efficiency benefits of our error detectionmethodology, the bitsize
of the selected Mersenne prime Mp should be significantly smaller that the bitsize
of N 2 (usually by one to two orders of magnitude). Given that our selection of
modulus Mp defines the bitsize of our homomorphic syndromes, this also determines
the runtime and area overheads of our secondary modular multiplication ALU that
computes the expected syndrome in Step 6 of Algorithm 2. As we report in Sect.
7, our experimental evaluation shows that selecting Mersenne prime M19 or M31

5An undetectable collision is also possible if one error has occurred in the primary ALU output,
but it is ultimately masked due to an additional (very precise) error in the computation of either the
expected syndrome (i.e., Step 6 in Algorithm 2) or the actual syndrome of the result (i.e., Step 3 in
Algorithm 2). In our analysis, we consider that this scenario has negligible probability.

102 N. G. Tsoutsos and M. Maniatakos

would be sufficient to enable more than 99.999% fault coverage. In particular, the
probability of an escaped error that is attributed to syndrome collisions would be
Mp

−1. Thus, in case the bitsize of Mp is overly small, the escaped error probability
increases; conversely, if the bitsize of Mp is excessively large, this would increase
the storage requirements for pre-computed syndromes that are paired with ciphertext
arguments in encryptedmemory.We remark that a secondarymodular multiplication
ALU for 31-bit or 19-bit syndromes requires 34 or 22 clock cycles respectively, while
the runtime overhead for one homomorphic addition of 2048-bit ciphertext inputs
in the primary ALU is 2051 clock cycles [42]; generally, the runtime overhead of
homomorphic addition is a linear function of the argument bitsize.

6.2 Detecting Errors in Encrypted Memories

In typical homomorphic aggregation applications, encrypted arguments are stored
withinmemorymoduleswhile being processed. Sincememory cells are continuously
susceptible to soft errors, one fundamental objective is the ability to detect the occur-
rence of these errors in order tomitigate them (for example, the application can reload
the corrupted ciphertexts from redundant memory modules or permanent storage).
A common protection mechanism against soft errors is the use of Error Correcting
Code (ECC) memories (e.g., [50]), which are able to mitigate a limited number of
bit errors within each data word. Nevertheless, a shortcoming of this approach is that
error-correcting memories can incur non negligible delay and area overheads, since
they require additional dedicated ECC circuits. In addition, the number of parity bits
required for ECC grows logarithmically with the bitsize of the protected value, so
this approach does not scale gracefully, given that the bitsize of each homomorphic
ciphertext is in the order of 2048 bits.

As the previous subsection discusses, one alternative for obtaining the syndromes
of the homomorphic ALU inputs would be to pre-compute the residue of each cipher-
text and fetch it from memory. In particular, each pre-computed syndrome can be
stored along with its corresponding ciphertext and form a (ciphertext, syndrome)
tuple in memory; these tuples are updated at runtime when intermediate ALU out-
puts are written back to memory. This option is beneficial in our methodology, as
it also allows the detection of random errors in memory at no further cost. Specifi-
cally, when a ciphertext and its corresponding syndrome are fetched from memory
at runtime, we can assert their integrity by calculating the residue modulo Mp of the
ciphertext (Algorithm 1) and compare this result with the pre-computed syndrome.
Indeed, by checking if the fetched syndrome matches the calculated residue, it is
possible to correctly detect the occurrence of random errors in either the ciphertext
or its syndrome with probability 1 − Mp

−1. Assuming there are redundant checks to
prevent equality errors in every comparison, this probability embodies escapes due
to collisions, as well as reduction errors.

Conversely, in case no actual soft errors have occurred inmemory, any discrepancy
in the equality comparisons is considered a false positive, which can be attributed

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 103

to errors during residue calculations. The latter is indistinguishable from true pos-
itives, so it is handled as a regular error. Moreover, considering that the modular
multiplications required for homomorphic aggregation are at least one order of mag-
nitude slower compared to our efficient reductions using Mersenne prime moduli (as
supported by our results in Sect. 7.2), the proposed integrity checks for encrypted
memory arguments could be executed within the existing reduction units using time-
multiplexing. Hence, the memory integrity overhead would be masked (i.e., we can
have delay-free detection of memory errors), since we can perform the required
reductions in parallel to the primary homomorphic ALU operations.

6.2.1 Complete Coverage for Single Memory Bit-Flips

Depending on the number and nature of memory errors, one important remark is that
our residue-based detection methodology can offer higher fault coverage, compared
to the probabilistic estimate of 1 − Mp

−1 mentioned in the previous paragraphs. In
particular, since it is algebraically impossible for two congruent values (modulo Mp)
to have a Hamming distance equal to 1, our fault coverage would always be 100%
when we consider single bit-flips.

If we assume that that X is the original ciphertext in memory and Y = X ⊕ 2 j is
the faulty ciphertext after a single bit-flip at bit position j of X , then the corresponding
single-bit error would be masked if and only if:

|X − Y | = k · Mp, for some k ∈ Z>0, (22)

which is a congruence relation between X and Y . In our methodology, however, we
observe that Eq. 22 cannot be true, since for xi ∈ {0, 1} and j ≥ 0 we have:

X =
�log2 X�∑

i=0

xi · 2i ≡ x j · 2 j +
�log2 X�∑

i=0,i 	= j

xi · 2i , (23)

Y = X ⊕ 2 j = (1 − x j) · 2 j +
�log2 X�∑

i=0,i 	= j

xi · 2i , (24)

|X − Y | = ∣
∣x j · 2 j − (1 − x j) · 2 j

∣
∣ = 2 j ∀x j ∈ {0, 1}. (25)

Therefore, in order to have a masked single bit-flip, there should exist integers k > 0
and j ≥ 0 so that 2 j = k · Mp. In the trivial case where j = 0, the equation does
not hold for any k > 0, as 1 cannot have Mp as a factor. Similarly, if j > 0, by the
fundamental theorem of arithmetic [21], 2 j should have a unique prime factorization;
since the latter is a power of 2, it cannot have prime Mp as a factor. As a result,
2 j 	= k · Mp for all k > 0 and j ≥ 0, so the fault coverage for single bit-flips is
exactly 100%.

104 N. G. Tsoutsos and M. Maniatakos

6.2.2 Complete Coverage for Clustered Faults

Complete fault coverage can also be shown algebraically for clustered faults of up
to 4 bits (as in [27]). In this case, the unique factors of the absolute difference in
Eq. 25 are primes 2, 3, 5 and/or 7. Hence, any Mersenne prime Mp with p > 3 (i.e.,
any Mp other than M2 = 3 and M3 = 7) is not a factor either, so the fault coverage
is 100% as well.

7 Experimental Evaluation

We evaluate the effectiveness of our lightweight fault-tolerance methodology using
Monte Carlo simulations in Python 2.7, and we assess the area and delay overheads
of our ALU and memory error detection modules by implementing their designs
in Verilog. All simulations are executed on two servers, each comprised of 64 GBs
RAM and an 8-core Xeon E5-2650 processor that can execute 16 Python threads at
2.00GHz; our RTL designs are synthesized usingXilinxXST 14.7 targeting a Kintex
xc7k160t-3 FPGA. In addition, our fault model makes the following assumptions:

(a) Regarding the modular multiplication ALU, we consider faults during any iter-
ation of the sequential steps composing one homomorphic operation.

(b) Regarding soft errors in encrypted memory, we consider Single Event Upsets
(SEUs) and Multiple Bit Upsets (MBUs) as in [27], where up to 4 consecutive
bits are cleared or set together (i.e., clustered faults).

7.1 Fault Coverage Results

ALU andMemory Error Detection: In Table 1 we present the average error detec-
tion rates for ALU protection. Our results for different Mersenne prime moduli Mp

verify the theoretically expected value of 1 − Mp
−1, as discussed in Sect. 6.1. In

addition, we evaluated our error detection method for SEUs and MBUs in encrypted
memory (according to the aforementioned fault model) by performing 1010 Monte
Carlo simulations. Our results for Mersenne primes M13, M17, M19 and M31, as well
as encrypted values of 1024 bits in size, show that the number of escaped faults
in our simulations is exactly zero (i.e., we achieve 100% coverage). This result is
actually expected due to the use of Mersenne prime moduli, since single bit-flips and
clustered faults cannot produce a value congruent to the original one, as discussed
in Sects. 6.2.1 and 6.2.2.

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 105

Table 1 Average ALU error detection rates after 1010 Monte Carlo simulations, for different
Mersenne primes

Mersenne prime Average error detection rates (%)

M13 99.98769900

M17 99.99227200

M19 99.99980970

M31 99.99999995

Fig. 2 Execution delay overhead in cycles for our fast reduction unit and fault tolerant ALU,
compared to a modular multiplier with resource duplication, for argument sizes of 1024 bits (left)
and 2048 bits (right) and different Mersenne primes

7.2 Area and Delay Overhead Results

In typical homomorphic aggregation scenarios, the fast Mersenne reduction as well
as theALUandmemory error detection need to be part of the deployed homomorphic
aggregation system, as they are required to enable concurrent error detection. Since
the overhead of memory error detection corresponds (by construction) to that of
fast modular reductions (e.g., by time-multiplexing the same functional units), our
primary focus is the ALU and the modular reduction unit. In order to assess the
area and delay overhead of our methodology, we instantiated a fast reduction unit
(Algorithm 1) and a fault-tolerant modular multiplier (Algorithm 2) in Verilog, and
evaluated their performance. For comparison,weused a fault tolerant implementation
of a traditional modular multiplication ALU that uses resource duplication as its
protection strategy.6 Our evaluation results for argument sizes of 1024 and 2048 bits
(commonly used in homomorphic operations), as well as four different Mersenne
primes, are presented in Figs. 2 and 3 for delay and area overheads respectively.

6Our modular multiplication ALUs need to support any cyclic group, not only binary extension
fields.

106 N. G. Tsoutsos and M. Maniatakos

Fig. 3 Area overhead in terms of FPGA Slice LUTs (bottom bars) and Slice Registers (top stacked
bars) of our fault tolerantALUand fastmodular reductionmodule, compared to amodularmultiplier
with resource duplication, for argument sizes of 1024 bits (left) and 2048 bits (right) and different
Mersenne primes

7.2.1 Delay Overhead Comparison

In terms of delay overhead, our results show that the required number of clock cycles
for fast Mersenne reduction is approximately equal to the bitsize ratio between the
input argument and the used Mersenne prime. For example, the reduction of a 1024-
bit input using M13 would take 82 cycles, while using M31 decreases this overhead
to 37 cycles (trading longer syndromes for fewer execution cycles). The delay of
the fault tolerant ALU equals the sum of the fast Mersenne reduction delay and the
modular multiplication delay (which requires at least as many cycles as the argument
bitsize). Thus, for M13 and argument size of 1024 bits, the fault tolerant ALU requires
1109 cycles, while for M31 one operation would require 1064 cycles. Compared to
a duplicated modular multiplier, which requires 1027 cycles for 1024-bit arguments
(assuming that the redundant modules work in parallel), the additional delay over-
head of our fault tolerant ALU is between 3.6 and 8% for different Mersenne primes.

This additional overhead is generally attributed to the non-parallelizable steps of
Algorithm 2, where the syndrome calculation in Step 3 must follow the modular
multiplication that generates the ALU result (Step 2). Our results for fast Mersenne
reductions, however, show that these reductions can be performed about 12–28 times
faster compared to a standard modular multiplication. Therefore, in practice, this
allows us to mask the delay overhead of many such (time-multiplexed) reductions,
by executing them in parallel with modular multiplications.

7.2.2 Area Overhead Comparison

In terms of area overhead, our synthesis results are presented in Fig. 3. The results
indicate that our implementation of a fault tolerant ALU incurs an additional area
overhead between 20 and 23% for 1024-bit values, or between 19 and 21% for
2048-bit arguments. The latter is primarily attributed to the additional fast modular
reduction and syndromemultiplicationmodules, and it is about 5× smaller compared
to the 100% additional area overhead in case of resource duplication.

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 107

To achieve error detection for the encrypted memory, additional metadata of size
equal to the usedMersenne prime bitsize should be stored along with each encrypted
memory value. Since the stored encrypted value sizes are in the order of thousands of
bits (e.g., 1024 or 2048), adding metadata in the order of a couple dozen bits makes
our approach a proper alternative to ECC, especially considering that our lightweight
methodology can detect an arbitrary number of errors with high probability (bounded
by 1 − Mp

−1, where Mp is the used Mersenne prime). Furthermore, it should be
noted that ECC implements error detection within the memory module ICs, while
our approach uses resources of the homomorphic ALU; due to the aforementioned
delay overheadmasking by the primarymodularmultiplications, and contrary toECC
solutions, our approach does not impact memory performance at all. Additionally,
considering that ECC typically uses 8 parity bits for every 64 data bits [50], our
methodology (which requires between 13 and 31 bits in total for 1024-bit and 2048-
bit values) is more efficient in terms of extra storage requirements.

8 Related Work

In the area of reliable computation, several error detection methods have been pro-
posed in the past. Traditional approaches, such as resource duplication, M out-of N
majority vote (e.g., triple modular redundancy) or time redundancy, can be effective,
but incur undesirable area or delay overheads. In addition, error codes, such asBerger,
Bose-Lin, BCH, Reed-Muller, Hamming, or Cyclic Redundancy may offer robust
detection of randommemory errors [20, 29], but are incompatiblewith homomorphic
aggregation by their construction: they either cannot support additive homomorphic
operations like modular multiplication, or can only be ported to multiplication over
specific fields like binary extension fields (e.g. [7]), which is not generally the case
in homomorphic aggregation.

Moreover, randommemory errors can be mitigated using ECCmemory modules,
where protections are implemented within memory ICs. Still, considering that such
memories typically use 8 parity bits for every 64 data bits [50], storage efficiency
can be lower, compared to the practical syndrome sizes in our approach. In addition,
ordinary modular checksums (e.g. [47]) would require keeping track of the non-
modular representations and the number of reductions, but such intermediate values
are not generated as part of the homomorphic aggregation, since they could leak side
channel information about the protected secrets.

With respect to efficientmodulo operations, the authors of [6] propose an improved
hardware implementation ofmodular reductions that requires O(n − m) steps,where
n is the argument size andm is themodulus size in bits. Their approach ismore attrac-
tive when the modulus size in very big, while in our methodology we purposefully
select relatively small Mersenne primes to reduce the storage requirements for syn-
dromes. Furthermore, the authors of [48] discuss improved reduction algorithms
for arbitrary moduli, but their approach uses lookup tables that require continuous
memory accesses and may leak side channel information in addition to affecting

108 N. G. Tsoutsos and M. Maniatakos

performance. In the presented approach, modular reductions are optimized, since
we do not require arbitrary moduli (except in the primary homomorphic aggregation
ALU).

9 Concluding Remarks

In this chapter, we present a lightweight fault tolerance methodology intended for
error detection in homomorphic aggregation applications that are based on additive
homomorphic encryption. Our approach is based on residue numbering extensions,
modular arithmetic, as well as the intrinsic properties of homomorphic encryption
algorithms. In modular multiplication ALUs, our methodology can achieve at least
99.98% fault coverage for only 3.6–8% additional runtime overhead, while our addi-
tional area overhead is about 5× smaller, compared to standard fault tolerance solu-
tions such as resource duplication. Furthermore, in terms of memory error detection
(which comes at no additional cost), the presented methodology can achieve 100%
fault coverage for single bit-flips and up to four clustered faults in encrypted memo-
ries, providing a suitable alternative to generic VLSI fault tolerance methods (such
as ECC and resource redundancy) ported to homomorphic aggregation applications.

References

1. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS montgomery modular multiplication algo-
rithm. IEEE Trans. Comput. 47(7), 766–776 (1998)

2. Barron, C., Yu, H., Zhan, J.: Cloud computing security case studies and research. In: World
Congress on Engineering, pp. 1287–1291 (2013)

3. Baumann, R.: Soft errors in advanced computer systems. IEEE Des. Test Comput. 22(3), 258–
266 (2005)

4. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hardware Trojans.
In: Cryptographic Hardware and Embedded Systems Workshop, pp. 197–214 (2013)

5. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
6. Butler, J.T., Sasao, T.: Fast hardware computation of x mod z. In: Parallel and Distributed

Processing Workshops and Phd Forum (IPDPSW), pp. 294–297. IEEE (2011)
7. Chiou, C.-W., Lee, C.-Y., Deng, A.-W., Lin, J.-M.: Concurrent error detection in montgomery

multiplication over G F(2m). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(2),
566–574 (2006)

8. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J.: Controlling
data in the cloud: outsourcing computation without outsourcing control. In: Cloud Computing
Security Workshop, pp. 85–90. ACM (2009)

9. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homo-
morphic encryption. In: Advances in Cryptology—CRYPTO 2010, pp. 483–501. Springer
(2010)

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. In: Advances in Cryptology—EUROCRYPT’97, pp. 103–118. Springer
(1997)

Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data 109

11. Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key system with
applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol.
ePrint Archive 2012, 144 (2012)

14. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP
J. Inf. Secur. 2007(1), 26–35 (2007)

15. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries.
In: International Conference on Financial Cryptography, pp. 90–104. Springer (2000)

16. Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. EC-8(2):140–147
(1959)

17. Gentry,C.:AFullyHomomorphicEncryptionScheme.Ph.D. thesis, StanfordUniversity (2009)
18. Giry, D., Bulens, P.: Cryptographic Key Length Recommendation [Online] (2017). https://

www.keylength.com/
19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299

(1984)
20. Gorshe, S.S.: Concurrent Error Detection. Ph.D. thesis, Oregon State University (2002)
21. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University

Press (1979)
22. Hodson, H.: Apple vs FBI: first salvo in the informationwar. NewSci. 229(3062), 24–25 (2016)
23. Jenkins, W.: The design of error checkers for self-checking residue number arithmetic. IEEE

Trans. Comput. 100(4), 388–396 (1983)
24. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2008)
25. Kuribayashi, M., Tanaka, H.: Fingerprinting protocol for images based on additive homomor-

phic property. IEEE Trans. Image Process. 14(12), 2129–2139 (2005)
26. Lyon, D.: Surveillance, Snowden, and big data: capacities, consequences, critique. Big Data

Soc. 1(2), 1–13 (2014)
27. Maniatakos, M., Michael, M.K., Makris, Y.: Multiple-bit upset protection in microprocessor

memory arrays using vulnerability-based parity optimization and interleaving. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 23(11), 2447–2460 (2015)

28. Mclvor, C., McLoone, M., McCanny, J.V.: Fast Montgomery modular multiplication and RSA
cryptographic processor architectures. In: Asilomar Conference on Signals, Systems and Com-
puters, vol. 1, pp. 379–384. IEEE (2003)

29. Mitra, S., McCluskey, E.J.: Which concurrent error detection scheme to choose? In: Interna-
tional Test Conference (ITC), pp. 985–994. IEEE (2000)

30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Advances in Cryptology—EUROCRYPT’99, pp. 223–238. Springer (1999)

31. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure against active
adversaries. In: Advances in Cryptology—ASIACRYPT’99, pp. 165–179. Springer (1999)

32. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with CCA security. In: Automata,
Languages and Programming, pp. 667–678. Springer, Berlin, Heidelberg (2008)

33. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In:Computer andCommunicationsSecurity
(CCS), pp. 199–212. ACM (2009)

34. Rivest, R.L., Shamir, A., Adleman, L.: Amethod for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120–126 (1978)

35. Robinson, R.M.: Mersenne and fermat numbers. Proc. Am. Math. Soc. 5(5), 842–846 (1954)
36. Salim, F., Haque, U.: Urban computing in the wild: a survey on large scale participation and

citizen engagement with ubiquitous computing, cyber physical systems, and internet of things.
Int. J. Hum. Comput. Stud. 81, 31–48 (2015)

37. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715
(1949)

https://www.keylength.com/
https://www.keylength.com/

110 N. G. Tsoutsos and M. Maniatakos

38. Smart, N., Vercauteren, F.: Fully homomorphic encryptionwith relatively small key and cipher-
text sizes. IACR Cryptol. ePrint Archive 2009, 571 (2009)

39. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Advances in Cryptology—
ASIACRYPT, pp. 377–394. Springer (2010)

40. Tsoutsos, N.G., Konstantinou, C.,Maniatakos,M.: Advanced techniques for designing stealthy
hardware trojans. In: Design Automation Conference (DAC), pp. 1–4 (2014)

41. Tsoutsos, N.G., Maniatakos, M.: Fabrication attacks: zero-overhead malicious modifications
enabling modern microprocessor privilege escalation. IEEE Trans. Emerg. Top. Comput. 2(1),
81–93 (2014)

42. Tsoutsos, N.G., Maniatakos, M.: HEROIC: Homomorphically EncRypted One Instruction
Computer. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp.
1–6 (2014)

43. Tsoutsos, N.G., Maniatakos, M.: Trust no one: thwarting “heartbleed” attacks using privacy-
preserving computation. In: Symposium on VLSI (ISVLSI), pp. 59–64. IEEE (2014)

44. Tsoutsos, N.G., Maniatakos, M.: The HEROIC framework: encrypted computation without
shared keys. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(6), 875–888 (2015)

45. Tsoutsos, N.G., Maniatakos, M.: Cryptographic vote-stealing attacks against a partially homo-
morphic e-voting architecture. In: International Conference on Computer Design (ICCD), pp.
157–160. IEEE (2016)

46. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. In: Advances in Cryptology—EUROCRYPT, pp. 24–43. Springer (2010)

47. Walter, C.D.: Data integrity in hardware for modular arithmetic. In: Cryptographic Hardware
and Embedded Systems (CHES), pp. 204–215. Springer (2000)

48. Will, M.A., Ko, R.K.L.: Computing mod without mod. IACR Cryptol. ePrint Archive 2014,
755 (2014)

49. Yang, K., Hicks, M., Dong, Q., Austin, T., Sylvester, D.: A2: analog malicious hardware. In:
IEEE Symposium on Security and Privacy (S&P). IEEE (2016)

50. Yoon, D.H., Erez, M.: Memory mapped ECC: low-cost error protection for last level caches.
In: International Symposium on Computer Architecture (ISCA). ACM (2009)

An Approach to Integrating Security
and Fault Tolerance Mechanisms
into the Military IoT

Zbigniew Zieliski, Jan Chudzikiewicz and Janusz Furtak

Abstract Security and dependability are the most crucial challenges for the IoT
implementation into themilitary domain. Insufficiently securedmilitary IoT can pro-
vide adversary possibility of manipulation or disruption of data transmitted between
units or even taking control of or disabling automated systems. On the other hand,
if we already apply certain security mechanisms, IoT network should work reli-
ably, even with faults arising out of unreliable hardware, and harsh or even hostile
physical environment. In the paper it was pointed out that security mechanisms and
fault-tolerant techniques to be effective inmilitary applications should be tightly inte-
grated. An approach for integrating security techniques on the access layer and the
fault-tolerant techniques which are based on faulty (or misbehaving) sensor nodes
diagnosis and reconfiguration was proposed. Presented solutions for securing the
military IoT network ensure strong nodes authentication within network clusters and
securing data transmissions between sensor nodes (SN) and gateways with the use of
COTS IoT platforms equipped with TPM modules. Fault diagnosis (or detection) is
based on the comparison method within network clusters. The method for determin-
ing effective diagnosable structureswithin clusterswas presented. An experimentally
constructed network called SFTN was build to demonstrate the proposed approach.
Also, some results from a study of the experimental network in Cooja simulator were
conducted.

Keywords Fault-tolerant system · Fault-diagnosis · Internet of Things · Security

This work is an extended version of the paper Integrating Some Security and Fault Tolerant Tech-
niques for Military Applications of Internet of Things [1].

Z. Zieliski (B) · J. Chudzikiewicz · J. Furtak
Faculty of Cybernetics, Military University of Technology, ul. W. Urbanowicza 2, 00-908
Warszawa, Poland
e-mail: zbigniew.zieliski@wat.edu.pl
URL: http://www.wat.edu.pl/

J. Chudzikiewicz
e-mail: jan.chudzikiewicz@wat.edu.pl

J. Furtak
e-mail: janusz.furtak@wat.edu.pl

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_6

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_6&domain=pdf
mailto:zbigniew.zieliski@wat.edu.pl
http://www.wat.edu.pl/
mailto:jan.chudzikiewicz@wat.edu.pl
mailto:janusz.furtak@wat.edu.pl
https://doi.org/10.1007/978-3-030-02807-7_6

112 Z. Zieliski et al.

1 Introduction

The Internet of Things (IoT) is rapidly growing a world-wide technology, mainly
focused on civilian applications. These include smart city initiatives, wearable
devices for near real-time health monitoring, smart homes and buildings, smarter
vehicles, etc. Moreover, there is a possibility that application of IoT in the mili-
tary domain will bring significant benefits and change the picture of future military
operations.

The adaptation of the IoT concept in the military domain (Military Internet of
Things—MIoT) emphasizes on connectivity of military things (e.g.: military vehi-
cles, weapons, materials, sensors, soldier devices, etc.) without any human participa-
tion [2–4]. TheMIoT is most frequently used in safety critical real-time applications.
MIoT systems have to deal with faults arising out of unreliable hardware, limited
energy, connectivity interruption, and harsh or even hostile physical environment e.g.
radiation. These findings highlight the need to consider a number of factors includ-
ing security, and fault tolerance techniques while designing the MIoT application, in
order to achieve MIoT robustness against attacks and resilience against faults typ-
ically considered in the area of fault-tolerant system design. For military domain,
the system’s capability to fulfill its mission, in a timely manner, in the presence of
attacks, failures, or accidents is the most important.

Themain issues inMIoT systems are security and dependability. Security has been
described via attributes of confidentiality, integrity, and availability. Dependability
is typically understand as a systems ability to avoid service failures that are more
frequent and more severe than is acceptable. Integrating dependability and security
is a challenging and ongoing effort [5]. In the work [6] the schema and taxonomy of
dependable and secure computing was proposed. This scheme shows that the main
threats for dependability and security are faults, errors, and failures. One of the basic
ways to improve dependability and security is fault tolerance. This directly lead us
to the fact that in the case of military systems, the notions of security and fault
tolerance should be treated in an integrated manner. The expected number of device
failures will grow linearly with the population of MIoT. Highly constrained devices
will be the most vulnerable, and malicious entities will seek to control at least some
devices either directly or indirectly. In this context, fault tolerance is indispensable to
assure service reliability. Also some security-enhancing services such as remote node
validation in MIoT should work in reliably manner. Therefore, to improve security,
it will be required to ensure fault-tolerance of nodes involved in strong validation.

The concern is that insufficiently secured MIoT can provide adversary possibil-
ity of manipulation or disruption of data transmitted between units or even taking
control of or disabling automated systems. Security within IoT has been extensively
investigated and plenty of solutions have been proposed as for instance [7–10]. These
works concern security in various areas of applications of the IoT as smart-home [7],
smart-cities [8] etc. To provide end to end secure communication some solutions
were proposed, one of them based on hardware implementation of the IPSec, which
was elaborated in [9]. Another important problem is to secure the range of devices in

An Approach to Integrating Security and Fault Tolerance … 113

the MIoT. MIoT devices have serious security implications as they may contain sen-
sitive or valuable data making them attractive to various forms of adversary attack.
Thework [11] introduced theObject Level Protection concept forMilitary IoTwhich
deals with securing data at the application layer, but does not concern the threats that
may occur in the data link layer. To address this issues the implementation of security
functionalities at the link layerwas conducted as in [10] for IEEE 802.15.4-compliant
IoT devices. We solved this problem with the use of asymmetric cryptography of
TPM (Trusted Platform Module)1 to support the processes of securing transmitted
data and storage of sensors data resources [12].

Fault tolerance in distributed systems (also inWireless Sensor Networks—WSN)
have been the subject of active research in the past few decades. Recently, fault
tolerance andmanagement inWSNs have drawn researches’ attention [13–15]. Some
approaches, energy efficient detection schemes and algorithms for failure detection,
faulty sensor identification have been proposed [14]. The mutual testing method [16]
at the processor level was adopted among them, in which each processing element
(sensor node) is capable of testing its neighbors [15, 17].

Themain goal of the work is to integrate some security solutions for theWSN link
layer with the use of pertinent commercial off the shelf (COTS) technologies and
fault-tolerant techniques. The basis of the approach is amethod of fault detectionwith
applying comparisonmutual nodes testing for diagnosis ofmisbehaving nodeswithin
MIoT network clusters and cryptographic mechanisms for strong objects authentica-
tion and the data transmission protection. Cryptographic mechanisms are provided
by the TPMmodules installed in distinguished cluster nodes. The experimental setup,
aimed to enable investigation of the key research problems for implementing effective
solutions into the military domain was developed.

Themain goal of the paper is to integrate security solutions for theWSN link layer
with the use of pertinent commercial off the shelf (COTS) technologies and fault-
tolerant techniques. The basis of the approach is the use of cryptographicmechanisms
provided by the TPM module for strong object authentication and protection of the
data transmission between sensor nodes. The experimental setup, aimed to enable
investigation of the key research problems for implementing effective solutions into
the military domain was developed.

The rest of the paper is organized as follows. In Sect. 2 overall structure of SFTN
(Secure and Fault-Tolerant Network) for MIoT was described, and the basic terms
and certain properties of the logical network structure were explained. The general
approach to fault-tolerant schemes for the MIoT and fault detection method based
on the comparison tests and determining so called simplified comparison graph was
presented in Sect. 3. In Sect. 4 the security solutions for strong authentication and
securing data transmissions on the network layer were proposed. In Sect. 6 selected
components of the network implementation in the Cooja environment are presented.
The simulation results of SFTN in theCoojawere presented inSect. 6. Some solutions

1 TPM is an implementation of a standard developed by the Trusted Computing Group [18]. This
module is designed to support the cryptographic procedures and protocols that can be used for
securing data [19].

114 Z. Zieliski et al.

proposed for the experimentally constructed network called SFTN were conducted
in Sect. 7. In Sect. 8 some concluding remarks are given.

2 Preliminaries

The architecture of the considered MIoT network is based on a layered model [4].
In this model, the following layers can be distinguished: sensor layer, access layer,
network layer, service layer, and application layer. The basis of the experimental
MIoT network (called SFTN—Secure and Fault-Tolerant Network) is themulti-layer
architecture of the MIoT network.

It was assumed that SFTN is part of MIoT. In the SFTN network, objects cooper-
ate with each other. Each of these objects (called sensor node—SN) is equipped with
many sensors (S) and a device for wireless data transmission. An example of a sen-
sor node (SN) can be a wireless communication module including microcontroller-
processing the data that is at the disposal of a soldier, but a role of the sensors (S)
can be played by wearable sensors installed on a soldier’s uniform. Additionally, it
was assumed that MIoT is divided into disjoint groups of objects (clusters). Each
cluster will include a limited number of objects and will represent the organizational
structure and communication capabilities between objects. The structure of such a
SFTN network is shown in Fig. 1.

The actions performed at lower layers may be divided into two parts: data acqui-
sition and short-range wireless transmission. Data acquisition part collects various
information through the use of RFID, sensors and other technologies.

Each cluster object is able to perform similar actions. Cluster objects are mobile,
and wireless connections are used to exchange data. Each cluster object must also
perform the following functions:

• acquire and pre-process the data from sensors inwhich the sensor node is equipped;
• authentication of objects in the cluster;
• securing data transmission between the nodes sensor and between the clusters;
• performing diagnostic procedures and cluster reconfiguration procedures.

Each cluster object contains elements of the sensor layer and the access layer.
In the sensor layer there are sensors (S) which transmit the read data to the sen-

sor node (SN). The sensor nodes pre-process the received data. This processing
may include: aggregating, averaging, creating the data structures or other processing
needed to transfer the data to another sensor node or to another cluster. Data trans-
mission between the SN and the S is bidirectional. It is assumed that sensors (S) do
not directly send data between each other.

SN work on the access layer. Data transmission between the SNs is secured using
cryptographic methods. The SN are able to perform the same functions, in particular,
can play the Master role in the security domain and/or can serve as a Gateway in the
domain of transmitting sensory data. TrustedPlatformModule (TPM) is anobligatory
element of each SN.

An Approach to Integrating Security and Fault Tolerance … 115

Fig. 1 The structure of Secure and Fault-Tolerant Network (SFTN)

In each cluster exist two interpenetrating domains. The first domain is called a
security domain. In the domain the nodes exchange data used to authenticate the
nodes. In this domain are also implemented the diagnostic procedures. The second
domain is the domain of sensor data transmission from each SNs to another one,
which plays a Gateway role in the domain. The Gateway node is also responsible for
securing of the data exchange to other clusters.

Definition 1 The logical structure of sensors network is described by coherent ordi-
nary graphG = 〈E,U 〉 (E—a set of sensors,U—a set of bidirectional direct wire-
less link—data transmission channels).

Denote by d
(
e, e′|G)

the distance from node e to e′ in G; it is the length of the
shortest chain connecting node e with the node e′.

Let r (e|G) = maxe′∈E(G)d
((
e, e′) |G)

be the greatest distance from the node
e ∈ E (G) to another nodeof the setE (G), and r (G), andD (G) (respectively) denote
the radius and the diameter of a graph G i.e. r (G)=min {r (e|G) : e ∈ E (G)} and
D (G) = max

{
d

(
e′, e′′|G) : {

e′, e′′} ⊂ E (G)
}
If r (e|G) = r (G) then the node e

is called the central node of the network G.

Denote by E(d) (e|G) = {
e′ ∈ E (G) : d (

e, e′|G) = d
}
for d ∈ {1, . . . ,D (G)}

and by

ς (e|G) = (ς1 (e|G) , . . . ,ςr (e|G)) for ςd (e|G) = ∣∣E(d) (e|G)
∣∣ . (1)

116 Z. Zieliski et al.

Fig. 2 An example of the
cluster structure G (ECS)

Definition 2 [20] Let ϕ (e|G)= ∑
e′∈E(G) d

(
e, e′|G)

for (e ∈ E (G)) be the attain-
ability of the node e in the network G.

Using (1) we have

ϕ (e|G) =
r(e|G)∑

d=1

dςd (e|G). (2)

Let us consider the exemplary network structure presented in the Fig. 2. We
focus our analysis on the subnet of the network indicated by the dotted circle which
represents the exemplary cluster structure G (ECS).

We can determined ς (e|G) using (1) and ϕ (e|G) using (2) for the structure G.
The central cluster node can be determined on the base ofminimal largest distance

r (e|G) of nodes or attainability of nodes. For the ECS (Fig. 2) the central node is
node e4, because ϕ (e4|G) = 18 and it is the min. value for the structure G.

Definition 3 Let T 〈E,U ∗〉 be the dendrite i.e. such coherent acyclic partial graph
of G that:

∃ 〈
e′, e′′〉 ∈ U ⇒ 〈

e′, e′′〉 ∈ U
∗ ⇔

⇔ [(
d

(
ei, e′)) �= d

(
ei, e′′) ∧ d

(
e′, e′′) �= 1

]

for r (ei) = mine∈E(G)r (e) .

The dendrite T is a base to determine routing table and the diagnostic structure
for G.

An Approach to Integrating Security and Fault Tolerance … 117

3 Faults Diagnosis Techniques Within SFTN

The purpose of fault-tolerant techniques (FTT) is to use available means to detect,
identify, and isolate possible sensor faults, actuator faults, processing elements faults,
communication links and system faults. In the design of a fault-tolerant system the
fault model should be defined.

• The Fault Model

At the sensor layer of theMIoT all nodes components can be divided into two groups.
The first group consists of nodeswith a processor/microcontroller, storage subsystem
and power supply infrastructure. The second group can include sensors and actuators.
It is known that all components from the first group are much more reliable that the
ones from the second.Thatmeans theyhavemuch lower rate of failures [13].However
simultaneous occurrence of microprocessor’s and sensor faults couldn’t be excluded.
Faulty nodes and its sensors should be diagnosed and isolated from the system.

At the access layer of the SFTN we assume communication links faults, commu-
nication nodes (base station, gateway faults, etc.). Further we present some extension
of our approach proposed in the work [17].

• Sensor Level Fault Diagnosis

Fault diagnosis is performed in two phases—diagnosis of processing nodes (micro-
controllers) which reliability state of the processing elements is diagnosed and sub-
system level phase where health of all the sensors/actuators is determined.

According to approach called MM method [16], the diagnosis is performed by
sending the same input to pairs of nodes and comparing their responses. Based on
the collective results of comparisons, one may be able to claim the faulty/fault-free
status of the nodes in the SFTN network.

• System-Level Fault Diagnosis

At the system level, diagnose of the communication nodes and the communication
links has to be performed. In the work [17], at the system level, we proposed commu-
nication links faults and communication nodes faults diagnosis based on distributed
agents (similar to SNMP agents).

• The Method of Fault Detection Within Network Clusters

Diagnosis is a stage where the exact occurrence of a fault should be attributed to
a specific node (SNi or Sj). We assume the diagnosis of the SFTN is performed
with a use of the MM∗ method and consists of conjunction of all possible results of
comparison tests for the logical structure G of the network. Three sensor nodes take
part in every comparison: a comparator, which orders neighboring sensor nodes e′
and e′′ the same task and checks whether the results of the task are identical and the
sensor nodes {e′, e′′}—a comparison pair.

Let E1 and E0 denote, accordingly, the set of faulty as well as fault-free net-
work sensor nodes, and d(ψ,E1)—result of the comparison test ψ for the set of
faulty sensor nodes E1. We assume d(ψ,E1) = 0 means that the difference between

118 Z. Zieliski et al.

obtained results from both compared sensor nodes not exceed given threshold ϑk and
d(ψ,E1) = 1—in the contrary.

Definition 4 [16] A sensor network is t—diagnosable if each sensor node can be
correctly identified as fault-free or faulty based on a valid collection of comparison
results, assuming that the number of faulty nodes does not exceed a given bound t.

According to the work [17] the sensor network with a logical structure G is td—
detectable if for any fault situation there exist at least one comparison test ψsuch
that d(ψ,E1) = 1 provided that the number of faulty nodes does not exceed td i.e.∣∣E1

∣∣ ≤ td .
The method of the fault detection in the SFTN is based on the network clustering

and determining td—detectable structures within clusters.
In [17] we also introduced simplified comparison graph (SCG) as a graph

G (〈G;E•〉), where the set of comparators E• will be distinguished with bold nodes,
a pair of antisymmetric arcs will be represented by the edge, and arcs leading to nodes
which aren’t comparators will be represented by dotted lines. The arc < e′, e′′ >,
where e′, e′′ ∈ E•, denotes that the node e′′ (a comparator) is an element of a com-
parable pair of comparator e′. The example of the SCG is presented in the Fig. 3b.

On the base of the properties of the SCG graph (proved in the work [17]) we
modified the procedure for determining a diagnostic structure of the cluster Gi in the
following way. The procedure consists of 3 main phases:

1. Designating a central cluster node on the base of minimal: r (e |Gi) or ϕ (ei|G)

of the nodes G (see Sect. 2);
2. For the selected cluster central node determine dendrite;
3. Based on a designated dendrite building a diagnostic structure (SCG).

• The Method of Determining Diagnostic Structure

The method consists of three phases.

1. Designating a central cluster node

In the first stage, the node which meets one of the conditions: r (ei|G) =
mine∈E(G)r (e|G) or ϕ (ei|G) = mine∈E(G)ϕ (e|G) is chosen as a central cluster node.

2. Determine a dendrite

In the second phase the dendrite T (satisfying the condition dmax (ei|T) = r (ei))
is determined. Based on the presented method, the algorithm for determining the
central node and the dendrite was developed.

3. Transformation the dendrite to the diagnostic structure

The explanation of the transformation of the dendrite into a diagnostic structure
will be presented in the example of the structure from Fig. 2. According to proposed
approach node e4 is appointed as the central cluster node.Next, the dendrite presented
in the Fig. 3a) is determined. On the basis of the obtained dendrite the diagnostic
structure (SCG) can be obtained. Transformation of the dendrite into the diagnostic
structure is very simple and it involves the use of two simple rules:

An Approach to Integrating Security and Fault Tolerance … 119

Fig. 3 Illustration of the procedure of diagnostic structure determining for ECS structure G from
Fig. 2

1. Each node of the dendrite with a degree that equals at least 2 (the number of
neighboring nodes) becomes a comparator;

2. The edges connecting nodes of degree one with the comparators should be
replaced by dotted arcs directed to the comparable nodes.

From the properties of t—diagnosability [16] and properties of SCG we can
state that obtained structure is 1—diagnosable and at least (|E•| − 1)—detectable,
where E• denotes the subset of comparators. For the presented example (Fig. 3b)
the set of comparators E• = {1, 2, 4, 5, 10} and the set of comparison test � =
{(1; 10, 11) , (10; 9, 1) , (10; 1, 4) , (4; 2, 5) , (4; 5, 10) , (2; 3, 5) , (5; 4, 6) , (5; 7, 8)}.

4 The Security Solutions in the Network Layer

There is a security domain (SD) in each cluster. This domain includes all sensor nodes
(SN) of the cluster. Security mechanisms are applied inside this domain. The most
important element of the domain is one of the SNs, which plays the role of Master in
the domain (M node). This SN is elected from among domain nodes during domain
creation. The remaining nodes of the domain play the role of replicas of Master (R
node). R nodes can take over the role of Master if diagnostic procedures detect a
malfunction of M node.

The SN becomes a full member of the domain after the SN registration in the
domain has been properly completed and then the registered SNplays theReplica role
in the domain. During this procedure, credentials are established for each registered
SN. These data are stored on one side in the resources of registered SN, and on the
second hand, in the resources of theM node. For this purpose, to allow each R node to
be able to take over the role ofMaster, after registration of the SN in the domain in the

120 Z. Zieliski et al.

Fig. 4 Logical topology of
cluster network (security
domain)

resources of this node is created a copy of the resources of the security domain.While
performing the above-described activities to protect data transmission between SN,
asymmetric cryptography is used only in the first step, but symmetric cryptography
is used in other steps.

The sink node for the domain is a node, which plays the Gateway role (G node)
(Fig. 4). The transfer of sensor data from each SN to sink node is cryptographically
protected using a common symmetric key for the domain. This encryption key is
obtained from the M node during the registration procedure of each SN node in the
security domain.

To avoid several types of routing attacks inside SFTN, we adopted a solution in
which SN authentication in the domain is enforced before starting the creation of the
routing table. This means that only authenticated nodes can exchange the route data.

Cryptographic security is applied to protect the sensitive data stored in resources
of SN, and also to protect the exchange of data between SNs of the domain in the
procedures of exchanging the authentication data, in diagnostic procedures and pro-
cedures for transmission of the sensor data. All cryptographic procedures performed
in the domain are supported by the TPM module. The TPM module is an obligatory
element of each SN.

5 Simulation of the SFTN

In the Cooja simulator, the main SFTN modules have been implemented (Fig. 5):

• Routing—creates a routing table for cluster nodes,
• DiagS-Builder—determines the diagnostic structure,
• Self-Diagnostics—performs a comparative test for a specific diagnostic structure
and identifies defective nodes,

An Approach to Integrating Security and Fault Tolerance … 121

Fig. 5 Diagram of
dependencies between SFTN
modules implemented in
Cooja

Fig. 6 An exemplary
network implemented in the
Cooja simulator

• Working—emulates the basic node functions such as: (data sensing, processing
and transmitting to a gateway),

• Collect—collects information about events, statistics and sends them to the sim-
ulation module to illustrate in the collect-view.

The routing table contains, based on the number of hops as a metric route, routes
to other nodes in the cluster. Based on this assumption, in the Cooja simulator, a
software was developed to determine the routing table for the network shown in
Fig. 6. The range of the transmitters of individual nodes is limited to 25 m.

The functions of radius determination and reachability for each node were imple-
mented in Cooja simulator. The values of these parameters were determined for
the example network, which took about 69 (simulation time). Then, according to

122 Z. Zieliski et al.

Fig. 7 An example of the
dendrite for an investigated
network

the adopted method, the central node, dendrite and a diagnostic structure for the
exemplary network were determined.

Figure 7 shown the dendrite determined for the exemplary network, in which the
central node is the node number 36.

6 Results of the SFTN Simulation

The efficiency of determining the diagnostic structure for the exemplary network
structure was measured in the Cooja simulator. The following parameters were mea-
sured:

• Average power consumption across all nodes.
• The energy consumption in the central node.
• The average number of sent and received packets.
• The average time of determine the diagnostic structure.

Measurement was performed for a network structure that was degraded. The
network structure degradation was carried out by removing five randomly selected
nodes in every stages. Table 1 presented the order of removing nodes for each stages.

In the Cooja simulator, the rime protocol on the Skymotemodules has been imple-
mented. We are using Powertrace profile to estimate power consumption in every
network nodes. Energy consumption was calculated on the basis of the following
formula:

Power = Energest_Value ∗ Current ∗ Voltage

RTIMER_SECOND ∗ Runtime

An Approach to Integrating Security and Fault Tolerance … 123

Table 1 The order of removing nodes from the SFTN for each stage

Number of nodes in network Numbers of deleted nodes

40 –

35 4; 10; 21; 30; 34

30 3; 11; 15; 22; 24

25 6; 29; 33; 38; 39

20 7; 8; 17; 20; 27

15 5; 12; 19; 23; 31

Fig. 8 The average energy consumption for the four operating modes

where:
Energest_Value—value determined by Powertrace in Cooja;
Current—energy consumption in the four highlighted modes of Skymote mote:

• CPU (active mode)—600 µA;
• LPM (Low Power Mode)—3 µA;
• TX (radio transmitter)—21 mA;
• RX (radio receiver)—23 mA.

Voltage—3, 6 V;
RTIMER_ SECOND—ticks per second for rtime (protocol implementation) and

equal 32768;
Runtime—value is determined from powertrace_ start(CLOCK_ SECOND * 10)

and equal 10.
In the Fig. 8 the average energy consumption in network nodes for different

network structureswere presented.Aswe can see, regardless of the degree of network
degradation, the average energy consumption for Skymote modes remains at this
similar level.

The Fig. 9 shows the energy consumption in the central node (node number 36)
of the exemplary network subject to the degradation process. As we can see, for
a structure with 25 nodes, there has been a decrease in energy consumption by the

124 Z. Zieliski et al.

Fig. 9 The energy consumption in the central node (36) for the four operating modes

Fig. 10 The structures with the number of 30 nodes (a) and 25 nodes (b)

transmitter and receiver modules of the central node. A similar anomaly, albeit with
a lower force, also occurs for the average energy consumption (Fig. 8). The cause of
this anomaly is to remove from the structure with 30 nodes, the nodes 6; 29; 38; 39
(see Fig. 10b), which were extreme nodes in the network on the number of nodes 30
(see Fig. 10a).

In the Fig. 11 shown the average number of sent and received packets by the
nodes of the exemplary network subject to the degradation process. As the network
structure degrades, the number of packets received by each node decreases in a linear
way, with a fixed number of packets sent. This is due to the reduction the number of
nodes evenly.

The average time of determining the diagnostic structure is shown in Fig. 12.
Determination of the diagnostic structure was the fastest for the structure with the

An Approach to Integrating Security and Fault Tolerance … 125

Fig. 11 The average number of sent and received packets

Fig. 12 The average time of
determine the diagnostic
structure

largest number of nodes,while the slowest processwas in the structurewith the lowest
number of nodes. The reason for this is the decrease the number of neighboring nodes
as the structure degrades, which forces multi-hop forwarding of messages.

7 An Experimental Model of Fault Tolerant Network for
MIoT

Figure 13 shown the hardware implementation of the one cluster of the SFTN. The
constructed model contains four elements (in the Fig. 13, marked as A, B, C and D),
each of which consists of an SN node (indicated in Fig. 13 through 1) and three S
nodes (marked in Fig. 13 through 2).

The model was constructed with the use of the following main components:
Arduino Mega2560R3—a base module for build Collecting Sensor Node and Sen-
sor Node; XBee 1mWWire Antenna Series 1 or Series 2—wireless communication
module; TPM—detachable part of hardware component of Atmel I2C/SPI Demon-
stration Kit; Temperature and Humidity Sensor DTH11.

In the SN node’s software architecture shown in Fig. 14, the Secure Software
Module (SSM) is used to secure the transmission carried out between SN nodes
through the XBee.

126 Z. Zieliski et al.

Fig. 13 Laboratory model
of cluster of EFTNS

Fig. 14 The software architecture of Collecting Sensor Node

The tasks of thismodule include, amongothers, ensuring: authentication, integrity,
and integrity of data, as well as authorization of nodes.

The process of auto-reconfiguration of the network after detecting errors in its
structure is carried out by the Network Reconfiguration Module (NRM).

The Network Diagnostic Module (NDM) is used both as a communication inter-
face for system level diagnostics and as a port for sensor level diagnostics.

An Approach to Integrating Security and Fault Tolerance … 127

Summary

Proposed solutions for securing theMilitary IoT network ensure strong nodes authen-
tication within network clusters and securing data transmissions between Collecting
Sensor Nodes (SN) and gateways with the use of COTS IoT platforms equipped with
TPM modules.

Analyzing the obtained simulation results (Figs. 11 and 12), we can see that the
number of nodes in the structure, as well as the number of incident nodes with each
node, have a significant impact on the time of determining the diagnostic struc-
ture. Decreasing the number of structure nodes we decrease the number of packets
received, while the number of packets sent remains at the same level.

Simulation studies confirmed that the solutions for network diagnostics based on
the adoption of system-level comparison methods proposed in the paper have good
efficiency with a little waste of network bandwidth.

References

1. Zieliński, Z., Chudzikiewicz, J., Furtak, J., Głebocki, P.: Integrating some security and fault
tolerant techniques for military applications of Internet of Things. In: IEEE World Forum on
Internet of Things, 12–14 Dec 2016, Reston, VA, USA (2016)

2. Zheng, D.E., Carter, W.A.: Leveraging the Internet of Things for aMore Efficient and Effective
Military, A Report of the CSIS Strategic Technologies Program (2015)

3. Suri, N., et al.: Analyzing the applicability of Internet of Things to the battlefield environment.
In: Proceedings of ICMCIS Conference, Brussel (2016)

4. Yishi, L., Fei, J., Hui, Y.: Study on application modes of military Internet of Things (MIOT).
In: Proceedings of 2012 IEEE International Conference on Computer Science and Automation
Engineering (CSAE), vol. 3, pp. 25–27 (2012)

5. Qian, Y., Joshi, J., Tipper, D., Krishnamurthy, P.: Information Assurance: Dependability and
Security in Networked Systems, pp. 113–170. Morgan Kaufmann Publishers (2018)

6. Avizienis, A., Laprie, J.C., Randell, B., Landwhehr, C.: Basic concepts and taxonomy of
dependable and secure comuting. IEEE Trans. Dependable Secur. Comput. 1, 11–33 (2004)

7. Sivaraman, V., Gharakheili, H.H., Vishwanath, A., Boreli, R., Mehani, O.: Network-level secu-
rity and privacy control for smart-home IoT devices. In: WiMob’15

8. Bohli, J.M., Skarmeta, A., Victoria Moreno, M., García, D., Langendörfer, P.: SMARTIE
project: secure IoT data management for smart cities. In: International Conference on Recent
Advances in Internet of Things (RIoT), Singapore, pp. 1–6 (2015)

9. Rao, M., Newe, T., Grout, I., Lewis, E., Mathur, A.: FPGA Based Reconfigurable IPSec AH
Core Suitable for IoT Applications. In: CIT/IUCC/DASC/PICOM’15 (2015)

10. Altolini, D., Lakkundi, V., Bui, N., Tapparello, C., Rossi, M.: Low power link layer security
for IoT: implementation and performance analysis. In: IWCMC’13 (2013)

11. Wrona, K.: Securing the Internet of Things a military perspective. In: Proceedings of 2nd IEEE
World Forum on Internet of Things—WF-IoT’15 (2015)

12. Chudzikiewicz, J., Furtak, J., Zielinski, Z.: Secure protocol for wireless communication within
Internet of Military Things. In: Proceedings of 2nd IEEEWorld Forum on Internet of Things—
WF-IoT’16 (2016)

13. Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentelli, M.A.: Fault-tolerance in sensor net-
works. In: Mahgoub, I., Ilyas, M. (eds.) Handbook of Sensor Networks, Section VIII, no. 36.
CRC Press (2004)

128 Z. Zieliski et al.

14. Jiang, P.: A new method for node fault detection in wireless sensor networks. Sensors 9, 1282–
1294 (2012)

15. Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor networks. In:
DIWANS ’06 Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad hoc
Networks and Sensor Networks, pp. 65–72 (2006)

16. Maeng, J., Malek, M.: A comparison connection assignment for self-diagnosis of multipro-
cessor systems. Digest International Symposium on Fault Tolerant Computing, pp. 173–175
(1981)

17. Chudzikiewicz, J., Furtak, J., Zielinski, Z.: Fault-tolerant techniques for the Internet ofMilitary
Things. In: Proceedings of 2nd IEEEWorld Forum on Internet of Things—WF-IoT’16 (2016)

18. TPM Main Part 1 Design Principles. Specification Version 1.2. Revision 116, Trusted Com-
puting Group, Incorporated (2011)

19. Kinney, S.: Trusted Platform Module Basics: Using TPM in Embedded Systems. Elsevier Inc,
Embedded Technology Series (2006)

20. Chudzikiewicz, J., Zieliński, Z.: On some resources placement schemes in the 4-dimensional
soft degradable hypercube processors network. In: Proceedings of DepCoSRELCOMEXCon-
ference, Poland, pp. 133–143 (2014)

Fault-Tolerant Implementations
of Physically Unclonable Functions
on FPGA

Durga Prasad Sahoo, Arnab Bag, Sikhar Patranabis,
Debdeep Mukhopadhyay and Rajat Subhra Chakraborty

Abstract Most of the faults in circuits or systems occur due to the unintentional
but natural phenomenon (e.g. imperfection in manufacturing process or significant
change in the working environment), and thus, these faults are often follow a pattern
and comparatively easier detect than the intentional faults. In the context of secure
design/system, the adversary (intentionally) injects some faults in the system to
bypass the security protection or reveal secret information. Since the adversaries’
fault injection objectives are often very subjective, it is difficult to find a pattern
among the faults in a system, and this makes the fault detection and fault recovery
difficult in a secure system. In this chapter, we discuss possible intentional faults in an
emerging hardware security primitive, known as Physically Unclonable Functions
(PUFs). We show how the faults vary over the PUF designs and its applications. In
addition, we explain different fault detection circuits and fault recovery techniques
which are specific to PUF designs and their implementations on FPGA platforms.

D. P. Sahoo
Bosch India (RBEI/ESY), Bengaluru, India
e-mail: dpsahoo.cs@gmail.com

A. Bag (B) · S. Patranabis · D. Mukhopadhyay · R. S. Chakraborty
IIT Kharagpur, Kharagpur, India
e-mail: arnabbag@iitkgp.ac.in

S. Patranabis
e-mail: sikharpatranabis@gmail.com

D. Mukhopadhyay
e-mail: debdeep@cse.iitkgp.ernet.in

R. S. Chakraborty
e-mail: rschakraborty@cse.iitkgp.ernet.in

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_7

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_7&domain=pdf
mailto:dpsahoo.cs@gmail.com
mailto:arnabbag@iitkgp.ac.in
mailto:sikharpatranabis@gmail.com
mailto:debdeep@cse.iitkgp.ernet.in
mailto:rschakraborty@cse.iitkgp.ernet.in
https://doi.org/10.1007/978-3-030-02807-7_7

130 D. P. Sahoo et al.

1 Introduction

Present day embedded devices with state-of-the-art security solutions for a vast num-
ber of applications, such as Internet of Things (IoT), have seen increased demand for
reconfigurable and efficient hardware. Field Programmable Gate Arrays (FPGAs)
and Complex Programmable Logic Devices (CPLDs) are now widely used as recon-
figurable hardware for designing cryptographic primitives. FPGA implementations
for conventional cryptographic schemes such as secure storage and random number
generators have been compromised by several side-channel based attacks. There-
fore demand for alternative solutions has come up. Physically Unclonable Functions
(PUFs) [18, 19] have emerged as pertinent solutions in this regard.

A silicon PUF is treated as Boolean mapping λ : {0, 1}n → {0, 1}m , where
the m-bit output (known as response) depends on the input (known as
challenge) and extractable randommanufacturing variations in the device.
Note that variation in circuit behaviors (e.g. current, voltage, and delay pro-
files) are mostly analog in nature. A PUF circuit is used to extract device-
specific variations and eventually, generates a binary response using efficient
quantization technique. Arbiter PUF (APUF) [18] and Ring Oscillator PUF
(ROPUF) [33] are two widely studied Delay PUF primitives, while SRAM
PUF [14] is a popular candidate ofMemory PUF.

By description, PUF is a physical device which provides an easy way to evaluate
(by challenge response pair), but at the same time, it has an extremely unpredictable
nature. Practically, it is almost impossible to clone a PUF physically, even with
the detailed knowledge of the exact manufacturing process used for its production.
The intrinsic random nature makes PUF an attractive alternative of conventional
cryptographic primitives like random key generation and storage for secure keys. As
it can be seen in case of traditional cryptography, where secure non-volatile memory
elements were used to store secret keys, PUFs provide amethod to generate the secret
keys, instead of storing it. PUFs generate the random keys [20, 21] through a unique
mechanism of challenge-response pairs (CRP) sequence which is extremely difficult
to reproduce. Additionally, there are PUFs like delay-based PUFs [18, 33], which are
extremely efficient when implemented on FPGA, this makes this PUF an ideal choice
for the cryptographic applications like authentication and key generation. For other
applications,XORArbiter PUF (APUF) is predominantly used for authentication [16,
24] purpose, and the Ring Oscillator PUF (ROPUF) family is popular for random
number generation [21]. We provide a brief discussion of APUF and its design in the
rest of the chapter. Readers who are unfamiliar with PUFs’ functionality and PUF
designs can have a basic understanding from it. To know about PUFs in more detail,
readers may refer to [19, 30].

A block diagram of the classic APUF design is shown in Fig. 1a. The cascade
of path-swapping switches is a core part of the APUF design. At the end of the

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 131

c[0]
= 1

c[i]
= 0

c[n− 1]
= 1

A r

(a) APUF with n-bit challenge c

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1

(b) 3-XOR APUF

Fig. 1 Arbiter PUF design and its XOR composition. Here, A0, A1 and A2 are three instances of
APUF

cascade chain, there is an arbiter. The path-swapping switches are typically realized
using a pair of 2:1 multiplexers. A voltage impulse is applied to the input node of the
cascade. It propagates along two symmetrical paths constructed by the switches after
application of control bits to the switches. The source of randomness in PUF, the
individual path delays in each stage are randomly determined by effect of device level
process variation of manufacturing process, thus making it unpredictable in nature.
The accumulated delay differences of these individual stages primarily determine
the output of the arbiter circuit at the output end. The arbiter is usually realized using
an edge-triggered D Flip-Flop (DFF) or SR Latch. The control bit string, generally
known as the challenge in literature, is applied to the cascade of switches (each bit of
the string is applied to the corresponding switch in the cascade). The output, known
as the response, is extracted from the output of the arbiter.

Besides the primitive PUF designs which are vulnerable to the machine learning
basedmodeling attacks [28], there aremany proposals for PUF compositions [31, 32]
where primitive PUFs are combined to achieve a higher level of modeling resistance.
Let us briefly introduce the XOR APUF design which is one of target PUF designs
to be used for explaining the fault attacks. An x-XOR APUF consists of x APUF
instances (a 3-XORAPUF is shown in Fig. 1b), and for a given challenge c, the 1-bit
response is generated as the bitwise XOR of 1-bit responses of x APUF instances. It
is shown in the literature [28] that themodeling resistance of x-XORAPUF increases
with the increasing value of x .

PUFs have been predominantly subjected to several attacks based on machine
learning methods where a mathematical model is created from partially observed
challenge-response behaviour [27]. Recently, several other attack methodologies,
especially physical attacks, have been reported in the literature [11–13, 29, 34, 35],
employing techniques like power side-channel, laser-based fault injection, etc. for
attack purpose. In this chapter, we confine the discuss to fault attacks on PUFs
focusing on the following facts:

• Objectives of fault attacks and fault injection techniques for FPGA-based PUF
implementations, and

• Fault detection and fault recovery techniques specific to the FPGA platform.

132 D. P. Sahoo et al.

We start the discussion with different fault injection techniques and objectives of
faults from attackers’ perspective.

2 Fault Injection and Its Objectives

By definition, in a device/circuit, a fault is an aberration originated by manufacturing
defects or post-manufacture interference from external sources. In cryptographic
applications, fault injection can be done in a(n) invasive/semi-invasive way, and the
goal is to extract some secret information related to the target cryptosystem such
as the key. Fault can be injected into the device by various means—by introducing
voltage spikes to the power supply, by introducing glitches to the clock supply, by
applying high-intensity EM radiations, temperature variations, and even by applying
short timed pulses of flash light or laser beam to the hardware (depackaged chip)
[5, 15].

The principle of fault attack is to induce intentional faults (unexpected
behaviour) into cryptographic implementations, to reveal their internal secret
states.

There are several fault attacks on PUFs reported in the recent literature [35], but
there is a fundamental difference in fault attacks on PUFs. In traditional fault attacks
on cryptosystems, the objective remains to recover any information related to the
secret key or the secret key itself. In the case of PUF, fault attacks try to compromise
its randomness, reliability and unclonability [22] properties mainly, reducing the
strength of cryptographic primitives designed using it. We discuss few such attack
methodologies below:

1. Entropy reduction. PUFs with responses having a low level of entropy are
easy to reproduce, therefore impractical for secret key generation and random
number generation for security applications. As described in [35], a back-side
laser beam injection has been applied to forcefully convert the inverting stage to
non-inverting stage of the RO, thus hindering the normal operation of the RO.
As a consequence, this reduces the entropy of the output. Applications based
on the ROPUF, for instance, key-generators or random number generators are
susceptible to this type of attack.

2. Accelerating ML based modeling. Machine learning (ML) based attacks are
already there in the literature for attacks on PUF. The problem is that ML-
based attacks are either computationally expensive or infeasible. For instance,
Ruhrmair [28], Tobisch [36] reported ML-based models of x-XOR PUF which
becomecomputationally infeasible for x ≥ 10.However, authors of [35] reported
a laser-based fault injection attack to tweak the structure of the XOR APUF
which provided them with the access the CRPs of individual APUFs, allowing

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 133

them to model the entire XOR APUF. Authors of [7] have observed the corre-
lation between the reliability of XOR APUF and the component APUFs. They
exploited this reliability information of XOR APUF to model the individual
APUFs. There are some fault attacks [7] which try to extract secret informa-
tion from side channel leakage resulting from unreliable CRPs generated due to
operating temperature variation. Other than these, semi-invasive attacks like the
one described in [26], uses IC backside EM radiations to characterize RO PUFs.

3. Denial of service. PUFs like Loop PUF (LPUF) [10] and Bistable Ring PUF
(BRPUF) [9] are mostly used for authentication purpose, and they mostly suffer
from denial-of-service attacks. In a denial-of-service attack, an adversary tries to
cause an authentication failure by injecting faults despite the verifier maintaining
the database of the original fault-free PUF device. Similar attack methodology
can be applied to LPUF also, where a laser beam shoot can invert the output of
an inverter, stalling the oscillation of the oscillator loop. In the case of BRPUF
instance, an adversary can modify an odd number structure to an even number
of inverters, which makes the output unstable. If the faults are not permanent,
the PUF device can be reverted back to its normal, fault-free state, but services
depending upon the PUF operation will be disrupted for a certain time interval.

It is clear that,without suitable countermeasures, PUFbased designs are deemed to
be insecure against these threats. There are traditional countermeasures against these
standard attack methodologies, but for PUFs, these traditional countermeasures pose
significant challenges, especially the spatial and temporal redundancy [25] in the case
of a design of fault-tolerant circuits involving PUFs. Two properties—randomness
and unclonability, are the challenging ones, as described next:

• Randomness. A PUF instance can be uniquely characterized by a random set of
CRPs. This implies that there is no particular or reference CRP that can be used
for fault detection in PUF. It can not be guaranteed whether injecting a fault can
improve or degrade the randomness of the PUF, making in extremely tough to
identify any occurrence of a fault.

• Physical Unclonability. Infeasibility of physical cloning of PUFs implies that
spatial redundancy can not be treated as a viable option for detecting faults. Tem-
poral redundancy becomes ineffective for an adversary who introduces a remnant
fault [15]. Once introduced, this fault, persists throughout the FPGA operation
until is reconfigured, causing the circuit to generate same faulty output both in
redundant and original phases.

Traditional spatial redundancy based fault-tolerant approaches are not applica-
ble for PUF as the challenge-response behaviour of PUF instances are unique.
Thus, the redundant copies of a PUF instance would have different behaviour.

134 D. P. Sahoo et al.

In the next section, we discuss about various delay PUFs, especially about the
design of novel fault-tolerant PUF circuits related to delay PUFs. These are consid-
ered robust against high precision laser pulse injection fault attacks [35].

3 Countering Fault Attacks on XOR APUF

To the best of our knowledge, the x-XOR PUFs instances are resistant against con-
ventional machine learning attack. However, recently authors of [35] proposed two
laser injections based fault attacks where they were able to convert an XOR PUF
into a simple APUF design. An adversary can extend this attack by repeating x times
to get responses of x individual APUF instances, and finally, develop a linear time
model of an x-XOR APUF for any arbitrary x . Considering the exact location of the
fault injections, these two attacks have been described in [35]:

• Attack-I. TheLast switch (Sn−1) ofAPUF (cf. Fig. 4)—a component ofXORPUF
is targeted for this attack. The adversary alters the logic of the Sn−1 switch such
that CLK input (cf. Fig. 4) of the arbiter always remains at ‘0’, therefore producing
a fixed value irrespective of the input challenge at the output of the arbiter. The
adversary needs to modify all the PUFs except the one she wants to collect the
CRPs. Refer to the example provided in Fig. 2 to get a better understanding of this
attack.

• Attack-II. In this particular attack scenario, the final XOR circuit of the XOR
APUF is targeted (cf. Fig. 3), typically implemented by LUT on FPGA. A laser
pulse is injected to alter the contents of SRAM cells present in the target LUT
to transform the XOR gate into a buffer for i-th input. Therefore, the response
produced by i-th APUF will be available as XOR response. This is considered as a
serious security issue as the basic assumption of the XOR APUF (that the internal
inputs of XOR are secret) is violated in this case.

Both Attack-I and Attack-II have a common underlying philosophy, the adversary
injects faults to alter the configuration memory of the programmable logic cell(s),
and forcing to show different functional behaviour from its normal behaviour. We
introduce two countermeasures against the attacks on the XOR PUF mentioned
earlier. The basic idea is to incorporate an additional fault-checking circuit in the

Fig. 2 Exemplification of
fault Attack-I on 3-XOR
APUF. Two highlighted
APUF (gray color) blocks
are faulty and producing
constant ‘0’ output
regardless of applied
challenge. The output of
3-XOR APUF is the same as
response of APUF A0

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1
0

0

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 135

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1

(a) Fault injected on XOR logic

o

X1
r0
r1
r2

ri o

(b) XOR Logic behaves as buffer

Fig. 3 Demonstrating Attack-II on 3-XOR APUF

design of the XOR PUF to detect fault injection. The output of the XOR PUF is
forced to 0 if a fault is detected; otherwise normal operation continues.

3.1 Countermeasure Design for Attack-I

Attack-I in [35] works by injecting a fault in the lower part of the PDL switch located
at the Sn−1-th stage of an individual APUF instance, making the CLK of the switch
to fixed at ‘0’. In other attack scenario, the D signal of the switch can be set at a fixed
value of ‘0’ or ‘1’, forcing the arbiter to always sample the same value. We introduce
an ingenious countermeasure to identify anymodifications in the PUF circuit of these
types. The strategy is to incorporate a 3-input fault detection logic (FDL) having an
output T , as described in Fig. 4. A summary of the functional behaviour of the FDL
circuit is provided in Table 1. We state the following theorem:

Theorem 1 Each individual APUF circuit generates correct output if and only if
T = 1.

Proof Notice that, in the absence of any blockage (stuck-at-0 or stuck-at-1) on the
path originating from S0 and extending to Sn−1 (implying all the intermediate switch-
ing circuits are properly functioning), the ‘tig’ signal (logic 0 or 1) propagates to the

Fig. 4 APUF with fault
detection logic (FDL)

S0

yt0

yb0

c[0]

S1

yt1

yb1

c[1]

Sn−2

ytn−2

ybn−2

c[n-2]

Sn−1

ytn−1

ybn−1

c[n-1]

CLK

D
rtig

Switch

APUF
tig
c

T
r

FDLtig
T

136 D. P. Sahoo et al.

Table 1 Truth table of
3-input FDL in Fig. 4

Inputs Output

tig ytn−1 ybn−1 T

0 0 0 1

1 1 1 1

x 0 1 0

x 1 0 0

stage Sn−1, namely the outputs ytn−1 and ybn−1. Otherwise, the ‘tig’ signal will not be
able to propagate to the outputs ytn−1 and ybn−1. Therefore, the circuit can function
properly only if:

tig = 0, ytn−1 = ybn−1 = 0

tig = 1, ytn−1 = ybn−1 = 1

along with T = 0 for other conditions. It accurately conforms to the given truth table
of ‘T’ provide in Table 1. This completes the proof of Theorem 1.

Ultimately, the complete XOR APUF combines the ‘T’ values output for each
APUF instance, and a fault is detected if any of these instances produce output
‘T = 0’. A representative illustration of the proposed countermeasure is provided
in Figs. 1b and 5a depicting the 3-XOR APUF designs without FDL and with FDL,
respectively. Attack-I can not be detected for the design in Fig. 1b, but it can be
detected for the design in Fig. 5a, given that the AND gate (F1) used to combine
‘T’ outputs of APUFs has not been modified. The output o of XOR PUF will be ‘0’
unless ‘Z’ is equal to ‘0’, irrespective of the challenge applied. Otherwise, the XOR
APUF produces correct output at the output o. After integrating the FDL circuit, it
is comparatively harder to exploit the advantage of fault injection in XOR PUF.

3.2 Countermeasure Design for Attack-II

Fault Attack-II targets the XOR gate (X1) of XOR APUF [35], used to combine the
outputs of the component APUFs (cf. Fig. 3). The corresponding LUT for the XOR
function is altered to function as a buffer by performing a precise laser pulse injec-
tion. Our proposed countermeasure tries to detect the modification by incorporating
a redundant XOR gate (X2) with different input connection patterns, as depicted
in Fig. 5b. Observe that, an adversary needs to modify two LUTs of both the XOR
gates to make those work as buffers for the same APUF instance to bypass this
countermeasure. This is extremely difficult due to their input connection patterns.
Additionally, an extra XOR (F2) gate is used to ensure that X1 and X2 generate the
same output, to prevent attacks on any of X1 or X2. If output Y1 of F2, the con-

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 137

Fig. 5 3-XOR APUF with
FDL to resist Attack-I and
Attack-II A0

tig
c

T
r

A1
tig tig

c
T
r

A2
tig

c c
T
r

1

0 0
o

Z
F1

X1
M1

(a) Countering Attack-I

A0
tig
c

T
r

1A1
tig tig

c
T
r 2

A2
tig

c c
T
r

3
0

0 1
1

3

1
2

0 0 o

Y2 F1

X1

X2

F2

M1

M2

F3
Y1

Z

Y2

(b) Countering Attack-I & II

trol input of MUX M1, is ‘0’, then the output of M1 is the output of XOR APUF,
otherwise M1 always outputs ‘0’ irrespective of the input challenge.

After all, the utility of the XNOR gate F3 in Fig. 5b can be described as follows.
Notice that, if the F3 is absent, an adversary can alter X1 and F2 (X2 is not touched)
in a way such that X1 behaves as a buffer and F2 is forced to output ‘0’ always.
Fortunately, F3 can detect this attack, as it is the complement gate of F2 and output
of F3 is connected to the input of the fault detection logic F1. An adversary can
attack the modified circuit only by altering both F2 and F3, which is difficult achieve
due to their dissimilar functionalities. Redundant gates may be added to the PUF,
multiplexed accordingly to produce the final output signal ‘Z’, this reinforces the
fault tolerance of the design.

3.3 A Self-testable APUF Switch Design

The fault detection logic for APUF presented in Fig. 4 monitors only the inputs of
an arbiter circuit to detect the fault. We next introduce an alternative fault detection
scheme which uses a properly modified design of APUF switch that allows to detect
any inconsistency in the expected switching activity. Figure 7a and 7b show the the
LUT based construction of a PDL switch (cf. Fig. 6b) and classic switch (cf. Fig. 6a)
of APUF, respectively. For clear discussion, we primarily focus on the necessary

138 D. P. Sahoo et al.

pi

qi

ri

si

c[i]
= 0

pi

qi

ri

si

c[i]
= 1

(a) Classic APUF’s i-th stage

pi

qi
ri

si

c[i]
= 0

pi

qi
ri

si

c[i]
= 1

(b) PDL-based APUF’s switching stage

Fig. 6 Switching stages of classic APUF and PDL-based APUF [23]. Depending on the challenge
bit c[i] ∈ {0, 1}, a pair of delay elements is selected

Table 2 Truth table of G1
in Fig. 8

Inputs Output

xti xbi yti Ti

0 0 0 1

1 1 1 1

x 0 1 0

x 1 0 0

modifications of the PDL switch to make it self-testable. An identical approach can
be may be considered for self-testable classic switch designs also.

Evidently, LUTsL1 andL2have identical content, as can be observed fromFig. 7a.
Therefore, these two should have equal responses for the same inputs. Thus any
anomaly can be detected, as any change occurring in either L1 or L2 input, but not
to the other one, can be easily detected by simple XNOR logic. Although XNOR
logic can ensure that the contents of L1 and L2 are same, it can not guarantee
that the contents are as per the depiction in Fig. 7a. This is the primary reason
behind our motivation to develop a new countermeasure, as presented in Fig. 8. This
countermeasure allows identifying any anomaly in its expected functional behaviour
automatically. Notice that, in Fig. 7a, the contents of the SRAM cells accessed by xti
and xbi are identical with the values of xti and xbi themselves, and these are the exact
values that propagate to yti and ybi , respectively. Therefore the self-testable design of
APUF switch which we proposed, a logic module G1 and an XNOR gate (G2) are
required. TheXNORgate is required for equality check of xti , x

b
i and y

t
i . Functionality

of G1 is briefly described in Table 2. If both G1 and G2 are ‘1’, it can be guaranteed
that contents of L1 and L2 are correct. Otherwise, an undesired modification might
have been introduced in the circuit and it outputs ‘0’. AnAND logic (G3) is employed
to achieve this. It can be understood that it is possible to map the logic of each of
the three functions G1, G2 and G3 to a single 4-bit LUT. Therefore, the self-testing
APUF switch consumes only a single LUT in Xilinx 7-series FPGAs.

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 139

0
1
0
1

0
1

0
1

0
1 yti

0
1
0
1

0
1

0
1

0
1 ybi

xti c[i]

c[i]

xbi

2-LUT

2-LUT

L1

L2

(a) PDL switch based on 2-
LUT

0
1
0
1
0
0
1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

c[i]xbixti

yti

0
1
0
1
0
0
1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

c[i]xtixbi

ybi

3-LUT

3-LUT

L1

L2

(b) Classic switch based on 3-LUT

Fig. 7 APUF’s i-th switch realization using LUT

Fig. 8 Self-testable PDL
switch using 2-LUTs

0
1
0
1

0
1

0
1

0
1 yti

0
1
0
1

0
1

0
1

0
1 ybi

xti c[i]

c[i]

xbi

2-LUT

2-LUT

L1

L2

=xti

xbi

Ti

G1

G2

G3

140 D. P. Sahoo et al.

4 Countering Fault Attacks on ROPUF

Recently, authors of [35] proposed a fault attack that aims to lower the entropy of the
generated key by transforming one of a pair of ROs into a cascade of an even number
of inverters by applying laser pulse injection and altering the content of the LUT of
the last inverter. As a result, fault-free RO counters and faulty RO counters diverge
significantly from their expected behaviour. Particularly, fault-freeROcounter values
are higher than the faulty RO, causing a biased distribution of the keys generated by
the ROPUF. We introduce a countermeasure that can detect the presence of a fault
and raises an alert signal to inform the system about the key generated by the faulty
ROPUF.

A distinctive feature of ROPUF is that input challenges do not influence the
functionality of individual RO. The challenge is used specifically to select the pair of
RO only. The delay elements (inverters) in an RO are used to construct a loop, which
is not in the case of APUF. Therefore, the presence of delay element in different
stages makes it difficult to detect any modification while the RO is being evaluated.
We discuss a naïve fault detection scheme for ROPUF and identify the problems this
construction. Next, we improve it to develop a stronger countermeasure.

Figure 9b, c show the realization of an inverter and a buffer using 1-LUT. The
following trivial facts can be observed from Fig. 9b, c:

1. The LUT content of inverter is the complement of buffer LUT, and if one changes
an inverter to a buffer (or a buffer to an inverter), then it can be easily detected
by comparing their output while the same input is applied to both of them.

2. Outputs of two inverters are the same when they have the same inputs.

The input to the RO inverters with odd indices (highlighted in black in Fig. 9a) are
the same for each period of oscillation, and the same thing happens with the inverters

inv1 inv2 inv3 inv4 inv5
en out

(a) Basic RO

1
0

0
1

y

x

1-LUT

inv
x y

(b) Inverter using 1-LUT

0
1

0
1

y

x

1-LUT

buf
x y

(c) Buffer using 1-LUT

Fig. 9 Ring oscillator realized using 1-LUT. Inverters with odd index are highlighted with black
color. Functional behaviour of F1 and F2 is identical as mentioned in Table 2, and they output ‘1’
if and only if all inputs are same

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 141

inv1 inv2 inv3 inv4 inv5
en out

=
F1

=
F2

T
F3

I2

I1

(a) RO with FDL

inv1 inv2 inv3 inv4 inv5

en out

=
F1

=
F2

T
F3

M1
0

1 1

x

I2

I1

(b) RO with FDL and an extra MUX

Fig. 10 Fault detection logic (FDL)with ring oscillator design. Black colour highlights the inverters
with odd indices

with even indices. Therefore, a structural modification can easily be detected in RO
just by checking the equality of the corresponding outputs of inverters with odd
indices and similarly for even indices also. Figure 10a provides an illustration of RO
design with these checkpoints. The design can operate free of faults considering that
the value of ‘T’ should be 1when at the end of an oscillating period, the output (‘out’)
of RO changes its state (from 0 → 1 or 1 → 0). This circuit can any inverting to non-
inverting input transformation (and vice-versa) and allowing adequate fault attack
detection in [35]. If an adversary wants to bypass the countermeasure of Fig. 10a,
she has to inject an additional fault in one of the two detection logic entities F1 or
F2, or the final AND gate (F3), thus making the attack increasingly difficult.

One issue with the proposed countermeasure is that the ‘T’ signal requires con-
stant monitoring and the end of every oscillation. The circuit can be modified to
any adversary at any time before the evaluation of the RO circuit is completed. In
general, this is an expensive task, considering that a 5–7 stage configuration RO has
a frequency in the range of MHz. Still, we can logically assume that even if the
adversary can change the circuit at any point in the middle of evaluation, it is highly
improbable that she can not revert the system back before the evaluation is finished.
Therefore it is adequate to check the structural integrity of the RO in pre-evaluation
and post-evaluation phase. Including this, the integrity check is performed on the
RO with an odd number of inverters, not on an RO consisting a feedback loop. This
is acceptable considering that the feedback loop does not have any logic element.

142 D. P. Sahoo et al.

However, it is necessary to check the integrity of the RO chain for both 0 and 1
input provided to the first inverter (inv1) in Fig. 10a. This countermeasure facility is
realized by incorporating an additional MUX, as illustrated in Fig. 10b. If ‘x’ and
‘en’ are set to ‘0’, then input of inverter ‘inv1’ is set to ‘0’, whereas for ‘x’ equal to
1 and ‘en’ equal to either ‘1’ or ‘0’, input of ‘inv1’ is fixed to ‘1’. These two assign-
ments are required for signals ‘en’ and ‘x’ for fault detection, while the following
assignment is required:‘x = 0’ and ‘en = 1’ for normal operation of the RO.

5 Countering for Fault Attacks on Other Delay PUFs

This section is mainly devoted to possible fault attacks on two other varieties of delay
PUFs—the Loop PUF and the Bistable Ring PUF. The countermeasure strategies for
preventing such attacks also have been discussed.

5.1 Loop PUF

The Loop PUF can be considered as a variant of the delay PUF, comprising a con-
nected sequence of delay elements forming a closed loop as illustrated in Fig. 11.
The input signal of each delay element (‘in’ in Fig. 12) in a delay chain propagate
to the output (‘out’ in Fig. 12) through any of the two possible paths. The path is
defined by the control bit. The controller for the LPUF module generates N control
words (c1, . . . , cN), each of lengthM-bits, extracted from an input challenge c. Thus,
for a given challenge c, N different permutations of the control words (c1, . . . , cN)
generate an N bit response. For further reading, refer to [10].

c1[0] c1[1] c1[M − 1]

c1

c2[0] c2[1] c2[M − 1]

c2

cN [0] cN [1] cN [M − 1]

cN

CONTROLLERc
Challenge

Frequency
Measurement

Delay Chain 1 Delay Chain 2 Delay Chain N

r
N -bit

Response

I1

Fig. 11 Architectural overview of Loop PUF

Fig. 12 Non-inverting delay
element of Loop PUF with
control bit c j [i], i ∈
[0, M − 1], j ∈ [1, N]

0

1
in out

cj[i]

in out

cj[i]

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 143

0

1

0
1

c[0]

0

1

0
1

c[1]

0

1

0
1

c[n2 − 1]

0

1

0
1

c[n− 1]

0

1

0
1

c[n− 2]

0

1

0
1

c[n2]

reset

Stage-0

r

Fig. 13 Architectural diagram of BRPUF with n-bit challenge c and 1-bit response r

Now, we begin our discussion on possible fault attack strategies for LPUF imple-
mentation on FPGA. Precise fault injection strategies like laser pulses can be carried
out on LPUF also, as in the attacks on XOR APUF and ROPUF presented in [35].
The objective of the attack we proposed to alter the behaviour of an LPUF in a way
such that an authentication failure is encountered when the PUF is used for hardware
authentication purpose. An adversary can use fault injection to alter the inverter (I1)
of LPUF (cf. Fig. 11) to forcefully transform it into a non-inverting gate, inhibiting
the oscillation in the input signal of the frequency measurement unit. Alternatively,
fault injection can also be performed to transform a non-inverting delay element to
an inverting one, but one has to ensure that inverter I1 is not modified. Therefore,
in case of any of the attacks, the fault injection stops the oscillation making the
output of the PUF fixed irrespective of the input challenge, causing authentication
failure. If remnant fault injection has been performed, then the SRAM-based FPGA
would allow the LPUF to revert to its initial fault-free state after reconfiguration, but
the services relying upon the LPUF would be disrupted for the time period before
reconfiguration.

We discuss possible countermeasure strategies for this attack. Similar to XOR
APUF and ROPUF, additional logic is necessary to identify to any fault causingmod-
ification of LPUF architecture. This is shown in (cf. Fig. 11), all the non-inverting
delay elements are homogeneous in nature and receive similar input during the oscil-
lation period. Therefore a fault detection method similar to the ROPUF in Fig. 10
can detect any modification in a subset circuit formed by the non-inverting elements.
Any modification done to the inverter I1 of LPUF can be identified by allowing no
modification to the non-inverting delay elements, the inverter is functioning properly.

5.2 Bistable Ring PUF

Abistable ring (BR) is closed chain constructedusing an evennumber of inverters.BR
has only two ‘0’ or ‘1’, originating from the random process variation of inverters.

144 D. P. Sahoo et al.

Fig. 14 A 3-LUT based
realization of i-th stage of a
BRPUF

1
0
1
0
0
0
0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

resetc[i]xi

yi

3-LUT

(a) Fault-free i-th stage

0
1
0
1
0
0
0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

resetc[i]xi

yi

3-LUT

(b) Faulty i-th stage

The functionality of BR is exploited in Bistable Ring PUF (BRPUF) to generate
1-bit response. The compact representation proposed in [9] introduced the challenge-
response mechanism. This compact representation comprises of two NOR gates, a
MUXand aDMUX. The principal objective of theDMUX is to prevent the switching
of output for both the NOR gates for a given challenge bit. However, in the case of
FPGA implementations, DMUX can be avoided to realize the two NOR gates in a
singe LUT, as depicted in Fig. 14a. To evaluate a BRPUF for a given challenge, we
start by asserting ‘reset’ signal to ‘1’ reseting all BRPUF stages’ output to ‘0’. This
is the initial and unstable state of a BR. After that, ‘reset’ is asserted to ‘0’ and the
BR reaches a stable state after the signal propagates through the loop (Fig. 13).

BRPUF instances are vulnerable to precise fault injections, as described in [35],
and this can be clearly observed in Fig. 14a. If the attacker is able to alter the inverting
stage of an BRPUF to a non-inverting one, as shown in Fig. 14b, the BR output would
start oscillating and it would start working like an RO, unable to reach to a stable
state. Therefore, fault injection can make a BRPUF unreliable. The fault detection
scheme proposed for the ROPUF used in detection of fault for BRPUF can also
used here as these have homogeneous stages. In addition to this, the authors of [35]
also mentioned the fault injection-based modeling of XOR BRPUF. This can also be
detected with the fault injection scheme proposed for APUF in Fig. 5b.

6 Fault Recovery Schemes

So far we have discussed about the proposed schemes for fault detection against fault
attacks on XOR APUF and RO PUF. However, it is extremely important to recover
the circuit back to its original fault-free state. Now, we explore the possibilities for
efficient approaches for fault recovery of APUF and XOR APUF circuits. Other

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 145

delay based PUFs can also have similar methodologies for fault recovery. Broadly,
FPGA-based designs have two main choices for fault recovery:

1. Rollback. Revert back to have the same timing performance of the original one.
2. Random-sliding. Replace the faulty PUF instance with a new one with different

timing behaviour.

We shall see later that the second recovery scheme is more suitable than the other
one. First, we identify that an adversary requires to restart the circuit x times to collect
CRPs for each of the x APUF instances while performing fault assisted modeling
attack on x-XOR APUF in [35]. We consider this assumption for our realizations of
the rollback and random-sliding recovery schemes.

6.1 Rollback

OnXilinx FPGA, the faulty PUF instance can be reverted back to the original through
twoways: partial reconfiguration (PR) [4] and dynamically configurable LUT. In PR,
the original PRmodule bitstream of the PUF instance is stored in a memory, and later
dynamic partial reconfiguration is performed without any external communication.
In Xilinx FPGA, a user application can use the internal configuration access port
(ICAP) [3, 17] to configure the application structure at run time. In our design, a
Fault Recovery Controller (FRC) is employed to perform PUF reconfiguration upon
fault detection in the PUF design.

Rollback can be performed in a different way also. Xilinx FPGAs contain config-
urable LUT (CFGLUT). These arewidely used to design evolvable hardware (EH) [6,
8]. The contents of CFGLUTs can be modified dynamically in a synchronous way to
change the functional behavior of the circuit. Our APUF design uses CFGLUT for
the switches, which allows us to recover the fault modified switch. Xilinx provides
HDL primitive CFGLUT5 [1, p. 106] for its 7 series FPGAs, and also for Spartan-6
FPGAs, that facilitates the instantiation of CFGLUT in the design and consumes a
single 6-LUT in SLICEM (memory slice) [2, pp. 18–19] in FPGA. CGFLUT inter-
face is shown in Fig. 15. This method is comparatively more efficient that the PR
based scheme. This is mainly because of the homogeneity of the APUF switches,
and corresponding CFGLUTs can be configured parallel with the same configuration
file in 32 clock cycles only.

6.2 Random-Sliding

Figure 16a depicts 4-LUT based realization of two-variable function (f), and only i0
and i1 inputs of the LUT are used for f and inputs i2 and i3 remain unused. As shown
by a coloured rectangle in Fig. 16a, we can see that i2 = 0 and i3 = 0, only four SRAM
cells are used out of 16 SRAMcells. From Fig. 16a, we can observe that starting from

146 D. P. Sahoo et al.

0
...

15
16

...

31 LUT

CFGLUT5
I0
I1
I2
I3
I4

CDI
CE

CLK

O5

O6

CDO

Fig. 15 Dynamically reconfigurable lookup table is primarily realized using CFGLUT5 HDL
primitive. Other than LUT inputs I0, ..., I4 and outputs O5 and O6, it has a few reconfiguration
interface with ports: configuration data in (CDI), configuration data out (CDO), clock enable (CE)
and configuration clock (CLK). This primitive can be used to realize either a single 5-LUT with
output O6 or as two 4-LUTs using both the outputs O5 and O6

the top, the four consecutive SRAM cells of alternative blocks have the same value.
This implies that the LUT would work as the function f irrespective of the value of
i2 and i3 of 4-LUT. However, even if there is no change in functional property (input-
output characteristic) of LUT, the timing behaviour of f can show different result
because different propagation delay for different input-to-output combination [23]
after random assignment of i2 and i3. Figure 16 also explains how LUT’s SRAM
cells are used to realize the function f for different assignments to i2 and i3 inputs
of LUT at different locations. This is one to make the function f fault-tolerant.
Depending upon the whether the output of f is faulty or not, we can try a different
configuration of i2 and i3. Any configuration which produces non-faulty output and
uses that configuration. In the worst case, if the entire LUT is detected as a faulty
one, (partial) reconfiguration of the FPGA is required. This fault-tolerant function
realization approach is referred as Random Sliding.

LUT based implementation of PDL switch is shown in Fig. 7a, which consists of
two 2-LUTs. Therefore, if we realize this PDL switch with 6-LUT of Xilinx Artrix-7
FPGA, we are left with four unused LUT inputs. If the same assignment is done for
the unused inputs for both the LUTs of PDL switch, then 24 switch configurations can
be used as there are 16 possible assignments to four unused LUT inputs. Therefore,
the random sliding notion can be extended to make PDL switches fault-tolerant.
Afterwards, to have a fault-tolerant APUF designwith fault detection circuit included
this random-slid PDL switch can be used, as mentioned in Sect. 3. Observe that, one
can reconfigure the FPGA with different configuration bits for random sliding for
each switch, but we have used the same configuration bits to all unused LUT inputs

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 147

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM
Cells

(a) i2=0, i3=0

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM
Cells

(b) i2=1, i3=0

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM
Cells

(c) i2=0, i3=1

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM
Cells

(d) i2= 1, i3=1

Fig. 16 A 2-variable Boolean function f (i0, i1) is implemented using 4-LUT. The circuit corre-
sponding to f (i0, i1) shows four different timing behaviors for four different assignments for i2i3
∈ {00, 10, 01, 11}

of PDL switches. Thus, 16 different configurations can be realized using the same
hardware. Therefore this method does not require any additional hardware resource.

XOR APUF can be made robust against fault-assisted modeling attacks by
employing random-slid PDL as discussed in [35]. To perform the XORAPUF attack
in [35], the PUF circuits needs to be restarted x times to collect the CRPs of x APUFs
in x-XOR APUF. Depending upon the random-slid configurations generation every
time, whether randomly or not, the x-XOR PUFs become different before and after
the restart. Therefore, even if an adversary is able to collect CRP data for APUF
by restarting x-times, the collected data is not same XOR APUF. This increase the
difficulty level for modeling the individual APUFs. If we can exploit the random-
slid scheme with the fault detection scheme proposed by us, fault-tolerance can be
ensured for the delay PUF design. In the presence of random sliding, the verifier
can authenticate the PUF by maintaining a database of all configuration of the PUF.
If the PUF is a legitimate one; then for some possible configuration, the responses
should match the CRPs.

Note that the useofRandom-sliding is not limited to theFPGA-implemented
PUFs. It can be used in any FPGA-based design. The purpose of using
Random-sliding may be to achieve fault-tolerant feature or to get dif-
ferent realizations of the same function.

148 D. P. Sahoo et al.

7 FPGA Implementations and Hardware Overhead

We have implemented the original APUF and RO designs, including the fault-
tolerant versions, to validate the proposed fault attack countermeasures. XilinxArtix-
7 FPGAs have been used as the target platform.

7.1 Implementation Details and Fault Simulation

Despite Artix-7 FPGA having 6-LUT blocks, the CFGLUT5 HDL primitive allows
to realize at most 5-input function. Classic switches require two 3-LUTs and two 2-
LUTs for PDL switch in APUF. Therefore, two (or three) LUT inputs, which remain
unused can be utilized for random sliding. This implies CFGLUT5 can be used for
dynamic configuration of the switch and random sliding both.

Combination of configurable LUT and random sliding has been used for fault
recovery. We apply random sliding to a faulty instance to search for a fault free
random-slid instance. If we do not find any fault-free instance, then dynamic recon-
figuration is applied to CFGLUT5 based switches. A similar approach has been
followed for implementation of ROs and ROPUF. CFGLUT5 instances are primarily
used for realizing each stage of the 5-stage RO.

We have performed the simulation of fault injection process with the CFGLUTs,
which allows changing the LUT configuration at run time. No complex designs were
used to perform injections on PUFs implemented with CFGLUT5 primitive only. In
this the fault simulation can be performed in a more precise and controlled way as it
allows us to reinitialize the LUTwith different configuration bits. The number of bits
to be reconfigured and the bit position decides the number of clock cycles required
for fault injection. This is mainly because reconfiguration takes place serially.

7.2 Post Placed-and-Route Simulation Results

A simulated output of the APUF behaviour (post place-and-route), with classic
switching stages before and after the fault injection, is depicted in Fig. 17. Eight
clock cycles are required (there are eight SRAM cells as shown in Fig. 7b) to con-
figure the bottom part of the last APUF switch, to make its output ‘0’ regardless of
the input. ‘cenB[15:0]’ signal vector (for 16-stage APUF) in Fig. 17 controls the the
reconfiguration of the bottom part of the switch. When ‘cenB[i] = 1’, the configura-
tion is performed for bottom part of the i th switch. Fault injection is controlled by the
vector ‘cenB[15:0]’. ‘tig = 1’ and ‘T = 1’ implies that the response of APUF is valid.
Observed in Fig. 17, that ‘T’ is not ‘1’ even even if the trigger (‘tig’) is set to ‘1’.
This indicates a fault in the APUF implementation. Also note that signals ‘pathT’

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 149

Before Fault Fault Injection After Fault

Fig. 17 Waveform of post place-and-route simulation 16-stage APUF (cf. Fig. 4) with classic
switches. It depicts the pre and post fault injection behavior of APUF. This design is without self-
testable switch. Here signal vector ‘c’ and signal ‘r’ is the challenge and corresponding response,
respectively, and ‘T’ is the output of fault detection circuit in APUF

Before Fault
Fault

Injection After Fault
Random
Sliding

Fig. 18 Waveform of post place-and-route simulation of 5-stage RO with fault detection logic as
shown in Fig. 10b. It depicts the pre and post fault injection behavior of RO. It also shows how
RO is recovered by using the random-sliding with ‘rSlide’ signal vector. ‘T’ is the output of fault
detection circuit in RO

and ‘pathB’ belong to the top and bottom terminals of APUF’s last switch. After the
completion of fault injection, ‘pathB’ is fixed to ‘0’.

A simulated behaviour (post place-and-route) for pre fault injection and post fault
injection of a 5-stage RO with incorporated fault detection logic is presented in
Fig. 18. CFGLUT5 instances have used predominantly to realize each stage of the
RO. As mentioned previously, this particular design allows to detect fault in pre-
evaluation and post-evaluation stage. If ‘T = 1’ is present at these checkpoints, then
RO is considered as fault free fit for response generation. Otherwise the RO is in its
faulty state, andmust be recovered back to normal state. The vector ‘cin[i]’ in Fig. 18
is used as the configuration bit for the i th stage of RO. ‘cen[i]’ is used as the enable
signal for configuring CFGLUT5 of i th stage. We have injected faults in the last
stage (i = 4) of the 5-stage RO to make it as a non-inverting buffer.

150 D. P. Sahoo et al.

Table 3 Summary of resource overhead of fault-tolerant design in Artix-7 FPGA

Design Original design FDL

LUT FF LUT FF

APUF (Fig. 4) 2n 1 1 0

3-XOR APUF (Fig. 5b) 6n + 1 3 3 + 6 0

5-stage RO (Fig. 10b) 6 0 4 0

Note n implies number of stages present in APUF. FDL refers to fault detection logic, and it is a
pure combinational circuit

7.3 Hardware Overhead

Table 3 provides a summary of resource overhead of the proposed countermeasures.
One extra LUT is required to detect a fault in a single fault-tolerant APUF. As 3-XOR
APUF is constructed using three fault-tolerant APUFs; three LUTs are required to
transform the component APUFs into fault-tolerant ones. Additionally, six LUTs
are needed to transform the 3-XOR APUF into a fault-tolerant one. This is depicted
in Fig. 5b. For designing 5-stage fault-tolerant RO as in Fig. 10b, additional six LUTs
are required to implement the logic for M1, I1, I2, F1, F2, and F3. However, (I1,
F1) have been mapped to one LUT and (I2, F2) have been mapped to another one.
Therefore, it requires just four LUTs of the FDL logic of an RO. Although separate
LUThas been used tomapM1, this can also bemapped to the sameLUTofANDgate
(just prior to the first stage) of the RO. Notice that, each LUT has dual dual output in
Artrix-7 FPGAs. This allows for further logic resource optimization of the FDL.Our
reported resource overhead includes only the PUF with FDL circuit in Table 3.
However, additional logic resources are required to implement and incorporate the
above mentioned fault-recovery methods.

8 Summary

Wediscussed various efficient fault-tolerant implementation of delay PUFswhich are
robust against a number of high precision fault attacks. We introduced fault-tolerant
implementations forAPUFs that incorporate additional fault detection logic (FDL) to
identify the illegitimate modifications to the circuit in run time due to fault injections.
This technique has been extended to develop a similar fault-tolerant implementation
of XOR APUF. It also includes additional reinforcement for the terminal XOR gate
to prevent modeling the PUF by collecting the individual response data. A fault-
tolerant implementation for ROPUF also has been introduced. The proposed design
counters the attacks targeted to individual RO components trying produce bias in
the output. The technique can also identify any modification to the delay stages
trying to halt the oscillations at the RO output. We also discussed about the possible
fault attacks on two other delay PUFs—namely Loop PUF and Bistable Ring PUF.

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 151

We discussed about few prospective circuit modifications those can prevent such
attacks. We also discussed two fault recovery schemes—the Rollback method and
the Random-slidingmethod. A brief comparative discussion of their implementation
overhead and efficiency has been provided. In the end, validation of correctness of the
designed countermeasures were performed by performing precise fault injection on
different delay PUF implementation on Artrix-7 FPGA platform. The assumption of
absence of a fault in fault detection circuit is practically achievable, onemight have to
use redundant copies of the FDL logic, and it is possible because it is a deterministic
circuit component. However, as PUF behavior is unique for each instance, fault-
tolerance based redundancy can not be achieved for it.

References

1. Xilinx 7Series FPGAandZynq-7000All Programmable SoCLibrariesGuide forHDLDesigns
UG768 (v14.7) October 2, 2013. http://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_7/7series_hdl.pdf

2. Xilinx 7 Series FPGAs Configurable Logic Block User Guide UG474 (v1.7) November 17,
2014. http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

3. Xilinx 7 Series FPGAs Configuration User Guide UG470 (v1.10) June 24, 2015. http://www.
xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

4. Xilinx Partial Reconfiguration User Guide UG702 (v14.1) April 24, 2012. http://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf

5. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic
devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012). https://
doi.org/10.1109/JPROC.2012.2188769

6. Bartolini, D.B., Carminati, M., Cancare, F., Santambrogio, M.D., Sciuto, D.: HERA project’s
holistic evolutionary framework. In: Proceedings of IEEE International Symposium on Parallel
& Distributed Workshops, pp. 231–238 (2013). https://doi.org/10.1109/IPDPSW.2013.110

7. Becker, G.T.: The gap between promise and reality: on the insecurity of XOR Arbiter PUFs.
In: Proceedings of 17th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES) (2015)

8. Cancare, F., Bartolini, D.B., Carminati, M., Sciuto, D., Santambrogio, M.D.: On the evolution
of hardware circuits via reconfigurable architectures. ACM Trans. Reconfig. Technol. Syst.
(TRETS) 5(4), 22 (2012). https://doi.org/10.1145/2392616.2392620

9. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., ührmair, U.R.: The bistable ring PUF: a new
architecture for strong physical unclonable functions. In: Proceedings of IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 134 –141 (2011)

10. Cherif, Z., Danger, J.L., Guilley, S., Bossuet, L.: An easy-to-design PUF based on a single
oscillator: the loop PUF. In: Proceedings of 15th Euromicro Conference on Digital System
Design (DSD), pp. 156–162 (2012)

11. Delvaux, J., Verbauwhede, I.: Fault injection modeling attacks on 65 nm Arbiter and RO Sum
PUFs via environmental changes. IACR Cryptol. ePrint Archive 2013, 619 (2013)

12. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65 nmArbiter PUFs exploiting
CMOS device noise. In: IEEE 6th International Symposium on Hardware-Oriented Security
and Trust (2013)

13. Ganji, F., Krämer, J., Seifert, J., Tajik, S.: Lattice basis reduction attack against physically
unclonable functions. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp. 1070–1080 (2015)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/IPDPSW.2013.110
https://doi.org/10.1145/2392616.2392620

152 D. P. Sahoo et al.

14. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint
and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)

15. Karaklajic, D., Schmidt, J., Verbauwhede, I.: Hardware designer’s guide to fault attacks. IEEE
Trans. VLSI Syst. 21(12), 2295–2306 (2013)

16. Koçabas, Ü., Peter, A., Katzenbeisser, S., Sadeghi, A.: Converse PUF-based authentication.
In: Trust and Trustworthy Computing—5th International Conference, TRUST 2012, Vienna,
Austria, 13–15 June 2012. Proceedings, pp. 142–158 (2012)

17. Lai, V., Diessel, O.: ICAP-I: A reusable interface for the internal reconfiguration of Xil-
inx FPGAs. In: Proceedings of International Conference on Field-Programmable Technology
(FPT), pp. 357–360 (2009). https://doi.org/10.1109/FPT.2009.5377616

18. Lim, D.: Extracting Secret Keys from Integrated Circuits. Master’s thesis, MIT, USA (2004)
19. Maes, R.: Physically Unclonable Functions—Constructions, Properties and Applications.

Springer (2013)
20. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation from biased

PUFs. In: Proceedings of 17th InternationalWorkshop onCryptographicHardware andEmbed-
ded Systems (CHES), pp. 517–534 (2015)

21. Maiti, A., Nagesh, R., Reddy, A., Schaumont, P.: Physical unclonable function and true random
number generator: a compact and scalable implementation. In: Proceedings of ACM Great
Lakes Symposium on VLSI, pp. 425–428 (2009)

22. Maiti, A., Gunreddy, V., Schaumont, P.: A systematic method to evaluate and compare the
performance of physical unclonable functions. IACRCryptol. ePrint Archive 2011, 657 (2011)

23. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay lines. In:
IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2010)

24. Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Slender PUF protocol:
a lightweight, robust, and secure authentication by substringmatching. In: Proceedings of IEEE
Symposium on Security and Privacy Workshops, pp. 33–44 (2012)

25. Malkin, T., Standaert, F., Yung, M.: A comparative cost/security analysis of fault attack coun-
termeasures. In: Proceedings of Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
159–172 (2006)

26. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA RO PUFs and
countermeasures. In: Proceedings of the 6thWorkshop on Embedded Systems Security (WESS
2011) (2011)

27. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks
on physical unclonable functions. In: Proceedings of 17th ACM Conference on Computer and
Communications Security (CCS), pp. 237–249. ACM, New York, NY, USA (2010)

28. Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror, G., Schmidhu-
ber, J., Burleson, W., Devadas, S.: PUF modeling attacks on simulated and silicon data. IEEE
Trans. Inf. Forensics Secur. 8(11), 1876–1891 (2013)

29. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F., Burleson, W.P.:
Efficient power and timing side channels for physical unclonable functions. In: Proceedings
of 16th International Workshop on Cryptographic Hardware and Embedded Systems (CHES),
pp. 476–492 (2014)

30. Sahoo, D.P.: Design and Analysis of Secure Physically Unclonable Function Compositions.
Ph.D. thesis (2017)

31. Sahoo, D.P., Saha, S., Mukhopadhyay, D., Chakraborty, R.S., Kapoor, H.: Composite PUF: a
new design paradigm for physically unclonable functions on FPGA. In: Proceedings of IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 50–55 (2014)

32. Sahoo, D.P.,Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: Amultiplexer-basedArbiter
PUF composition with enhanced reliability and security. IEEE Trans. Comput. 67(3), 403–
417 (2018). https://doi.org/10.1109/TC.2017.2749226. http://doi.ieeecomputersociety.org/10.
1109/TC.2017.2749226

33. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of Design Automation Conference (DAC), pp. 9–14. ACM Press,
New York, NY, USA (2007)

https://doi.org/10.1109/FPT.2009.5377616
https://doi.org/10.1109/TC.2017.2749226
http://doi.ieeecomputersociety.org/10.1109/TC.2017.2749226
http://doi.ieeecomputersociety.org/10.1109/TC.2017.2749226

Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA 153

34. Tajik, S., Dietz, E., Frohmann, S., Seifert, J., Nedospasov, D., Helfmeier, C., Boit, C., Dittrich,
H.: Physical characterization of Arbiter PUFs. In: Proceedings of 16th International Workshop
Cryptographic Hardware and Embedded Systems (CHES), pp. 493–509 (2014)

35. Tajik, S., Lohrke, H., Ganji, F., Seifert, J.P., Boit, C.: Laser fault attack on physically unclonable
functions. In: Proceedings of 12thWorkshop on Fault Diagnosis andTolerance inCryptography
(FDTC) (2015)

36. Tobisch, J., Becker, G.T.: On the scaling of machine learning attacks on PUFs with application
to noise bifurcation. In: Proceedings of 11th International Workshop on Radio Frequency
Identification: Security and Privacy Issues (RFIDsec), pp. 17–31 (2015)

Fault Tolerance in 3D-ICs

Raviteja P. Reddy, Amit Acharyya and Saqib Khursheed

Abstract The systems with emerging technologies like Internet-of-Things and
beyond Von-Neumann architectures can be produced in large scale only if they
are resilient-aware, cost-effective and secure. The resilient and cost-effective solu-
tions can be achieved by incorporating fault tolerance techniques at the architecture
level of the system design is one of the plausible solutions. The choice of various
fault tolerance techniques gives the designers a freedom to incorporate these in the
early stage of the design and in turn leading to high yield and reliable architec-
tures. Through-silicon-via (TSV) interconnects based three-dimensional integrated
circuits are emerging technologies consisting of vertical communication between the
stacked dies, leading to the decrease of wire length and thus enhances the system per-
formance. However, yield and reliability are the major issues that hinder resilient and
cost-effective solutions for 3D-IC design. These can be addressed by incorporation
of fault tolerance techniques.

1 Introduction

CMOS technology is approaching its scaling limits and stacking of dies is a feasible
solution to decrease delay and power of interconnects, while increasing transistor
density. Dies can be stacked by existing technology by directly bonding of TSVs
[1]. This enables heterogeneous technology integration of numerous dies. TSVs are
basicallymetal pillars that pass through the silicon substrate to connect themetal pads
and all dies in the stack. The third dimension significantly reduces the wire delay and

R. P. Reddy · A. Acharyya (B)
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
e-mail: amit_acharyya@iith.ac.in

R. P. Reddy
e-mail: ee15resch11006@iith.ac.in

S. Khursheed
Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
e-mail: S.Khursheed@liverpool.ac.uk

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_8&domain=pdf
mailto:amit_acharyya@iith.ac.in
mailto:ee15resch11006@iith.ac.in
mailto:S.Khursheed@liverpool.ac.uk
https://doi.org/10.1007/978-3-030-02807-7_8

156 R. P. Reddy et al.

Fig. 1 Heterogeneous
3D-IC [32]

power, and also delivers high-density interconnect for data transfer between layers
[2]. A conceptual view of a 3D IC is shown in Fig. 1. Heterogeneous integration of
memories, CPUs, sensors, radio frequency (RF) and analog circuits are combined in
the same package to avoid slow and long off-chip wires. A heat sink and spreader
are on the other side of the chip. However, 3D integration introduces new technology
challenges. Through silicon via consists of defects due to the manufacturing process
and thermal mechanical stress, crack in dielectric around the TSVs, delamination
between landing pad and TSVs, as well as short and open defects due to improper
copper filling and electro migration forms voids and causes delay of signal and
malfunctioning of 3D-IC. The yield and reliability in 3D-ICs is affected due defects
in TSVs and accelerated by thermo mechanical stress and on-field operation. These
challenges are addressed by incorporating fault tolerance techniques for enhancing
reliability and yield of 3D-ICs.

2 Defects in TSVs

The manifestation of defects in TSVs occur during the fabrication process and bond-
ing stage, when diverse dies are combined and one defective TSV can possibly fail
other TSVs due to defect clustering effect, as well as the known-good dies. TSVs in
3D integration, can lead to new reliability and yield challenges. The deficient TSV
materialization process can lead to a void in TSVs, and void growth is hastened

Fault Tolerance in 3D-ICs 157

Fig. 2 Defects in TSVs [19]

by electro migration effect [3, 4], moreover, the EM effect is driven by tempera-
ture during on field operation. The discrepancy of coefficient of thermal expansion
between silicon and TSV, the thermal mechanical stress can enterprise crack between
silicon substrate and dielectric layer [5, 6]. This crack in interface is analyzed [7]
by considering the impacts of keep-out-zone (KOZ) length, TSV pitch, thickness
dielectric of layer, TSV dimension and TSV placement. The cracks can take place at
the boundary TSVs and landing pad and causing delamination defect due to thermal-
mechanical stress during fabrication or normal operation [8–10]. For a TSV interface
that employs micro bumps, studies [11–13] show that TSV reliability is also suscep-
tible due to both EM effect and TSV-induced stress, and cracks can transpire in
the intersections [14, 15]. The enormous size discrepancy between TSVs and metal
wires leads to the higher current density in the metal interconnects which is higher
than TSVs, leading to EM problems [16, 17]. Electro migration is modeled between
wires and TSVs (landing pad) in [18] for finding the effect of dimensions of a TSV
and landing pad. Hence, from all defects, three defects types have been pondered
as foremost TSV defects are void, delamination and short to substrate as shown in
Fig. 2.

3 Fault Tolerance Techniques and Classification

The manifestation of various defects in TSVs leads to the need of fault tolerance
techniques in 3D-ICs for a resilient systemdesign.Without fault tolerance techniques,
the cost of adding immoral dies with defective TSVs will be high, predominantly
design with high functional TSV and high failure rate. There are two types of fault
tolerance techniques that are incorporated in 3D-IC design: (1) Redundant TSV
and (2) Time Division Multiplexing Access (TDMA without redundant TSVs). The
redundant TSV fault tolerance techniques are further classified into four types of

158 R. P. Reddy et al.

Fig. 3 Signal switching [21]

configuration strategies: (i) Signal switching, (ii) Signal shifting, (iii) Cross bar, (iv)
Router based and (v) Online fault tolerance.

4 Signal Switching

A redundant TSV strategy is proposed by Samsung to enhance the yield of 3D
memory products. The four signal TSVs (grey color) and two redundant TSVs are
paired to form a group of six TSVs, as shown in Fig. 3. The redundancy ratio is
1:2 and it works even if any two TSV fails within the group. This signal switching
improves the yield and lifetime reliability. In overall, a number of redundant TSVs
are accompanying with a group of TSVs. If one of the TSVs fails, it is switched by
one of the redundant TSVs. In the conservative structure, the redundant TSVs are
steadfast and stationary in location. In this scheme there is no difference between
regular and redundant TSVs. If a failure occurs at a TSV, the residual TSVs are all
switched to the neighboring ones, so a failed TSV is always paired with adjacent
TSV. This decline in the by-pass track leads to reduction in routing complication.

Fault Tolerance in 3D-ICs 159

Fig. 4 Recovery mechanism of TSV a Normal operation. b TSV_1 failed [19]

5 Signal Shifting with TSV Chains

The Signal shifting is developed to connect functional TSVs in a group of TSVs
with one redundant TSV to form a chain of TSVs as shown in Fig. 4. If there is
one defective TSV in a group of TSVs, signal shifting is done to repair it with the
redundant. If each TSV group contains TSVs, the redundancy ratio of this technique
is 1:N , and it can accommodate one TSV failure in the group. The shifting of signal
to neighboring TSV require two mux each TSV, when one TSV is failed. The delay
increased due to the capacitance loading of the extra wires used for signal shifting
is balanced by buffers pairs added to each TSV. The redundant TSVs are located
at the last location and allied as chain. When there is no failed TSV, all signals are
delivered by unique TSVs, as shown in Fig. 4a. When one of the TSV is failed, the
signal of the failed TSV needs to be shifted. The shifting for one failed TSV effects
all signals between the redundant TSV and the failed TSV. For example, let TSV 1 be
failed. The shifting of signal paths are shown in Fig. 4b. In each TSV chain structure
can recover only defective TSV and only one of them can be recovered if two or
more defective TSVs in a chain. The e-fuse array is used in the architecture and
programmed by scan-chain to provide selection lines to the multiplexers. All signals
connected to MUXs are set to 0 by default. When the testing for TSV connectivity
is done, signals are scanned into program the e-fuses, so that each MUX obtains an
applicable control signal.

Due physical design challenges and manufacturing constraints, TSVs are not
encouraged to be located randomly on a plane. From the built-up point of view, a
regular assignment of TSVs enhances the yield, due to the accurate lithographic pro-
cess. In real-world designs, TSVs are recommended to be placed in block uniformly,
which are confirmed in floor plan stage. In each TSV block, TSVs are placed in a
grid-based form to justify the pitch restraint of bond pads. Examples of TSV blocks
are shown in Fig. 5. It is not suggested for a TSV-chain to contain TSVs of other
TSV blocks due to lengthy wires for signal shifting. Hence, a TSV-chain in design
is recommended to contain TSVs in the same TSV block. Furthermore, each TSV
block contain only one redundant TSV. In case the number of TSVs in a TSV block

160 R. P. Reddy et al.

Fig. 5 TSV blocks [19]

is too large for TSV-chain, the TSV block needs to be subdivided into a smaller TSV
blocks as shown in Fig. 5.

6 Signal Shifting with Optimal Grouping

Figure 6a demonstrates the idea of optimal grouping technique. A design may con-
sists of regular TSVs and redundant TSVs and they are subdivided into groups with
a grouping ratio of gr=Ngr: Ngs, with number of regular TSVs (Ngr) and redundant
TSVs (Ngs) in a group. The routing block is shown in Fig. 6b, it performs re-routing
of signals to overcomemalfunctioning TSVs. A block of fuse-ROM provides control
signals to routing blocks. In this optimal grouping technique, the routing block con-
sists multiplexers, which are used to select defect free signal paths for re-routing the
defective TSVs. In Fig. 6c each group has two redundant and two regular TSVs, if
a defective TSV is found in the group, redundant TSVs are used to repair the group.
The grouping ratio is 2:2, it will be able to repair the group if one or two defective
TSVs are found through and re-routing of signals is performed using defect free
TSVs.

The optimal grouping and arrangement among redundant TSVs and regular ones
has an effect on the cost in terms of hardware overhead (redundant TSVs and mul-
tiplexers) is presented Fig. 7. For illustration four redundant TSVs and eight regular
TSVs are in two grouping ratios, as shown in Fig. 7 [4]. Organization 1: Grouping
ratio is 2:1. Four groups are arranged, with one redundant TSV and two regular TSVs
in each group. Organization 2: Grouping ratio is 4:2. Two groups are arranged, each
with two redundant and four regular TSVs. Organization 1 can tolerate one defective
TSV within a group and hence the group can be repaired (case 1.1). In one group

Fault Tolerance in 3D-ICs 161

Fig. 6 aGrouping of TSVs. b TSV groups containing the routing block. cGrouping and bypassing
to avoid defective TSVs [33]

162 R. P. Reddy et al.

Fig. 7 Grouping of regular and redundant TSV scenarios [4]

consists of two defective TSVs, as in case 1.2, the group cannot be repaired. How-
ever, with the same percentage redundancy, organization 2 can repair two defective
TSVs at maximum.

Similarly TSVs exist in a group of case 2.1, as shown in organization 1 can be
repaired. The optimal grouping incurs extra cost in terms of redundant TSVs and
multiplexers. Figure 8 [4] illustrates the various multiplexer used for both grouping
ratios 4:2 and 2:1, and concludes the cost of multiplexer in the Table (Fig. 8). The
higher yield is obtained in the grouping ratio of 4:2 (Fig. 8), it needs more number of
multiplexer and leading tomore area overhead. It models the ratio of redundant TSVs
and regular TSVs to be grouped in order to accomplish paramount yieldwithminimal
cost in terms of hardware overhead of redundant TSVs andmultiplexers. To addresses
the placement of timing critical signals, there is a possible way out proposed in Hsieh
and Hwang [19], such that it exhibits a timing-aware TSV placement methodology
and if signal rerouting is needed due to the defective TSV present in a group and the
placement methodology provides the most timing critical signal with minimal delay
affect.

Fault Tolerance in 3D-ICs 163

Fig. 8 Multiplexer cost for grouping of TSVs [4]

7 Cross Bar

The short vertical interconnects of 3DICs are used in three-dimensional network
on chips (3DNoCs). The vertical and horizontal links are supported by 3DNoCs.
A cluster of TSVs can be implemented as vertical links. TSVs are compatible with
standard CMOS process and allows fine pitch bonding for high density TSV integra-
tion. The cross bar technique [20], for defect-tolerant TSV-based multi-bit vertical
link empowers noteworthy yield enhancement even in the presence of defects at
very low cost. Similar to the conventional fault tolerance techniques, cross bar tech-
nique is based on redundancy and leading to robust, fault-tolerant and vertical link
architecture (for TSVs) to solve problems of low yield.

There are various state-of-the-art techniques to enhance wafer yield designs, the
cross bar technique uses hardware redundancy, incorporated at design time, with
re-configuration option after post-manufacturing process. The redundancy made
available in the form spare pads and in order to reduce the overall hardware com-
plexity it provides re-configurable routing. The TSV interconnect map is provided
with dynamic routing option to leverage the post manufacturing configurability. The
cost-effectiveness and high yield is achieved due to reconfiguration with minimal
number of pads and extra logic. The combination of resources like testing and re-
configurability helps in obtaining high yield. This solution makes feasible testing of
each interconnect, diagnose defects and identify failed TSV, and finally by re-routing
the failed TSVs over to the spare pads the functionality is restored. Figure 9a [20]
shows the dynamic routing technique, all pads are driven by a 2×1 crossbar, and
each signal can be routed to two different TSVs. The crossbar is very cost-effective
and to very low area overhead as low as possible for each additional rerouting degree
of freedom. The defects are overcome by shifting signals to the adjacent pads, and
additional shifting of the original connections over to other adjacent. To understand
the retrieval scheme, we consider Fig. 9b. Assuming that pad 2 is affected by one
of the defects e.g. in an open circuit defect, the routing of signal 3 normally goes
through its associated pad 3, while signal 2 is re-routed through pad 1, and hence

164 R. P. Reddy et al.

Fig. 9 a Crossbar scheme for dynamic routing. b Extra pads (E 1 E 2…) are spread nearby the
TSV cluster, abridging fault avoiding by means of a multiplexers [20]

signal 1 is re-routed to pad E1. Signals outside this column are not shifted since the
defect is present inside the first cluster; the recovery procedure is achieved locally.
The appropriate routing information is expounded off-chip in order to minimize
complexity of hardware during testing of chip and subsequently stored on-chip into
a One Time Programmable (OTP) memory (e.g. a fuse ROM). The prominence of
the testing stage is obvious, as it regulates all the required inputs correctly set up
the crossbar up. To test the physical interconnect scan chains are reused, which are
normally incorporated in the design, thus incurring no overhead.

8 Router Based

The state of the art fault tolerance techniques assume that TSV defects are uniformly
distributed. In real time defect clustering of TSVs takes place due to the occurrence of
defects depends on the bonding quality and dies that are being stacked. To provide the
feasible solution to the defect clustering effect, the router based [21] solution provided
TSV repair framework, with a appropriate hardware architecture, such that defect
TSVs are re-routed through redundant TSVs which are not the neighboring TSVs.
The router based technique enhances stacked 3D-IC yield and it is more effective
in the presence of defect clustering effect. Initially a TSV grid is formed to link the
TSV pads, switches and wires. Furthermore, redundant TSVs are also connected to
two borders of the grid, as shown in Fig. 10. If one of the TSV is defective (the one
with “X” mark in Fig. 10), the signal is re-routed through neighboring defect-free
TSV (see the solid line in Fig. 10). The defect free TSV is used by the defective TSV
for re-routing.

Hence, the original signal for defect free TSVneeds to be re-routed. The re-routing
option will be available till the redundant TSV available on the borders. TSVs are

Fault Tolerance in 3D-ICs 165

Fig. 10 Router based TSV
redundancy architecture [21]

normally placed uniformly for better bonding of TSVs and grouped 3D-IC designs
[22, 23], these regularly-placed TSVs are naturally grouped together to build the
router based architecture. In case that TSVs are not regularly placed, we can alsomap
them into a logical TSV grid and apply router based repair architecture. Compared to
the previous techniques,more hardware area overhead occurs in this architecture (i.e.,
additional switches and wires) compared to the previous fault tolerance techniques.

8.1 Designing of Switch and Re-routing Paths

The number of redundant TSVs in the design determine the switch design. The
redundant TSVs are positioned in the east and south edges of the grid as shown in
Fig. 10. The placement of redundant TSVs in such way constrains directional re-
routing from north to south or from west to east. Figure 11a shows the graphic of the
switch design. The corresponding TSV and its original signal have two ports in the
switch named as signal port and TSV port. In addition, to connect in four different
directions, there are four ports to connect to other switches far apart. The design
standard is that the signal port and two linking ports (North and West) have a mux
capable of linking to the TSV port and the residual linking ports (East and south). In
Fig. 11b [21] a 4×4 grid for is shown for better understanding of repair paths and
re-routing capability.

Originally the mux of signal port connects to TSV port. The signal port re-routes
through defect free TSV once the defective TSV is found. The connection between
TSV and signal is represented as a repair channel as shown in Fig. 11b with solid
arrow. The repair channels exists continuously starting from a defective TSV and
terminate at redundant TSV. The virtual connection between defective TSV and
redundant TSV is considered as repair path. For example, the clustered defects on
the top and bottom is shown in Fig. 11b, and the respective repair paths with the help

166 R. P. Reddy et al.

Fig. 11 a Switch design. b TSV defect cluster with repair paths [21]

of redundant TSVs find disjointed repair paths as shown in Fig. 11b with dashed
arrow.

8.2 Router Based with Processor

The various kinds of redundant TSVs allocation techniques and their repair algo-
rithms are discussed and the other alternate solution is built-in self-repair (BISR)
with redundant TSVs. The earlier discussed fault tolerance solutions are effective
for killer defects that occur at time t�0 and these solutions would be ineffective
on-field repair [24]. The latent defects that are not sorted out results in killer defects
t>0 and hence in-effective for on field repair. The deterministic repair algorithms
for re-routing the defective does not meet the timing constraints and becoming less
effective with circuit aging. The processor based on-field repair solution for TSV
based stacked 3D-ICs.

The lifetime reliability of router based fault tolerance technique is enhanced with
the judicious use of the redundant TSVs. The problem of latent defects is addressed
by conducting on field test and diagnosis of TSVs. The testing and diagnosis requires
a processor core and non-volatile memory as shown in shown in Fig. 12. The 3D
logic-on-logic/memory are designs with multiprocessor system-on-a-chip (MPSoC)
designs and hence heterogeneous integration is possible. The test data, diagnosis
patterns for defective are stored in the non-volatile memory for in-field repair, online
test and repair, activated intermittently or by events. Due to the clustering effects of

Fault Tolerance in 3D-ICs 167

Fig. 12 Router frame work with processor [24]

latent faults, unless the redundancy ratio is quite high, the situation may lead to that
some faulty TSV grids lack spare TSVs while the others have many redundant TSVs.
This scenario can be resolved by letting spare TSV sharing between TSV grids, as
shown in Fig. 12 [24].

9 Online Fault Tolerance Technique

The online fault tolerance technique for testing and repairing of TSV group is shown
in Fig. 13 [25]. It consists of: routing block, recovery block and detection block
and used for test and repairing of group of TSVs. If a group is denoted by m: n
grouping ratio it implies that there are “m” number of regular TSVs and “n” number
of redundant TSVs.Hence, each group can tolerate “n” number of defective TSVs.As
well as the yield and repair capability of the group are reliant on number of redundant
TSVs, but at the cost of area overhead. The optimal grouping ratio is done at the design
time for reduction of area overhead. The testing of each TSV is done with the help of
detection block. Delay test is employed in the detection block for differentiating the
defective and defect-free TSV.Mainly tested for short-to-substrate, delamination and
void kind of defects. The test result from the detection block is updated in the status
register which are present on the both dies. The functionality of the recovery block is

168 R. P. Reddy et al.

Fig. 13 Architecture of online fault tolerance technique [25]

re-route through defect free TSV in presence of defect free TSV and present on both
dies and shown in Fig. 13. As well as it comprises of control unit and status register.
The status of TSV is stored in the status register where ‘0’ represents defect-free
and ‘1’ represents defective TSV. The required control signals for re-routing through
defect free TSV and configuration of routing block are provided by the control block.
The routing block comprises of de-multiplexers and multiplexers to connect TSV
and its respective signal line. The required selection lines for de-multiplexers and
multiplexers are delivered by the control unit of the recovery block.

Figure 14 shows the in detail insights of online fault tolerance technique and for
explanation a grouping ratio of 4:2 is taken with four regular and two redundant
TSVs and hence it can only work if it has two defective TSVs. The testing of each
TSV is done with the help of test input and test observation block and TSV status
registers stores test result on both dies. Once the defective TSV is found, the re-
routing process is initiated by the routing block and re-configuration of signal path
takes place. The connection for output (Die2) and input (Die1) signals are similar, the
difference is output signals uses multiplexers and input signals uses de-multiplexers.
For a grouping ratio of 4:2, each signal has three possible TSVs that is 1-to-3 de-
multiplexer. The control is also used to report when the number of defective TSVs is

Fault Tolerance in 3D-ICs 169

Fig. 14 Recovery and routing blocks with 4:2 grouping ratio [4]

higher than the maximum tolerance limit of a TSV group. For indicating the number
of defective TSVs in a group the control unit provides the required information. To
illustrate the working of the recovery block a 4:2 grouping ratio undertaken with two
defective TSVs (TSV2 and TSV4) in the group (Fig. 14).

Die2 andDie1 consists of configuration circuit. The connection rules are followed
by the configuration circuit. A signal line is assigned to the TSV as shown in Fig. 14
with a right tick in the connection box and no other signal will be allocated to that
TSV. This is because one signal line can only be engaged to one TSV. If a TSV is
defective, all connection boxes (Mux or de-Mux terminals as shown Fig. 14) that
correspond to that TSV cannot be used. According to the test results and connection
rules stored in the status register. Based on the linking rules and test results stored in
the TSV status register, the accessibility of a TSV is determined. The first signal line
is linked, than moves to the following signal line and so on until all input signals are
linked to a TSV.

170 R. P. Reddy et al.

10 Time Division Multiplexing Access Based Fault
Tolerance Technique

The fault tolerance technique based on TDMA is shown in Fig. 15 [26]. It consists of
three modules—Routing, Testing, and TDMA. These modules primarily performs
two tasks: (1) finding all the TSVs which are defective; (2) signal are re-routed
through defect-free TSVs. If a design consists of “m” number of TSVs and based
on the state of the art these can be alienated at the design time into groups. Routing,
Testing, and TDMA modules are built based on the number of TSVs per group and
shown in Fig. 15. For illustration, four TSVs are shown in Fig. 15. TDMA makes
likely communication of numerous liberated messages without mutual meddling of
each other [27]. For example, in Fig. 15, input signal 1 (TSV1) uses time slot 1 and
input signal 2 (TSV2) uses time slot 2 until the last input signal. It recurrences in a
cyclical modus, still all the input signals are completed and that slot becomes free or
allocated to another input signals. For eachTSV in the designTDMAsegment assigns
time slot and generates the control signals necessary for inter-die communication and
tests the individual TSVs for defects. The TDMAmodule consists of demultiplexers,
multiplexers, counter and oscillator. The inputs to the architecture are Enable (En),
signal lines and Testmode for the respective TSVs. The oscillator generates clock
signals on die1 when En is active high, and the clock signals are received by the
counter for producing the required selection signal for demux6, demux1, mux2,
mux1 on die1, and demux1 on die2. To select particular input signal lines mux1 on
die1 is 4:1 is used and counter provides necessary control signals. The system works
in normal mode or Testmode (Fig. 15) based on the 2:1 type Mux2 on die1. Testmode
is the external signal and used as the selection line for mux2 (Fig. 15). The output of
mux2 is one of the input signal lines out of all available if the Testmode = 0, else the
output is Testmodebar. Input signal lines are passed through Demux1 of die1 and
Testmodebar to the Routing module as per the selection lines. Likewise, demux6 on
die1 and demux1 on die2 are 1:4 type which obtains Testresult (Fig. 15) as input
from the comparator, selection lines from the TDMAmodule, and the output of these
demultiplexers are selection lines for the demuxes in the Routing modules on die2
and die1, correspondingly. The algorithm for TDMA fault tolerance technique is
shown in Fig. 16.

10.1 Finding Defective TSVs

The module for testing present in Fig. 15 tests each TSVs in the group. A pull-down
network on die1 and pull-up network on die2 are used for testing. The test results
is obtained at the output of flip-flop and updated in the status register of TSV on
die1 as shown in Figs. 18 and 19. Test results are subsequently passed to the Routing
module through double TSV interconnect on die1 and die2. The propagation of
signals like Testresult and selection lines for demux1 of die2 are passed from die1

Fault Tolerance in 3D-ICs 171

Fig. 15 Architecture of TDMA based fault tolerance technique [26]

through a double TSV interconnect. The delay test is used by the testing module
to differentiate between defective and defect-free TSVs and the TSVs are tested for
short-to-substrate and void/delamination defect types. If the TSV is non-defective,
it passes through the normal path as shown in first row of Table 1 and Fig. 15 and if
it defective, signal is bypassed through the defect-free TSV as shown in second row
of Table 1 and Fig. 15.

A TSV is modeled as transmission line T-model [28], as shown in Fig. 17a [28],
where Rtsv and Ctsv are TSV resistance and capacitance. The corresponding elec-
trical model for delamination/void defect is shown in Fig. 17b [29], Ropen denotes

172 R. P. Reddy et al.

Fig. 16 Algorithm for TDMA FTT [26]

Table 1 Output lines of de-mux in routing module

Testmode Testresult Output functionality Symbol

0 0 Normal path to TSV

0 1 Re-routing Path

1 0 For switching On P-MOS

1 1 For switching Off N-MOS

the open circuit defect and upsurges delay of signal. The short-to substrate defect
is a resistive pathway between TSV and substrate is shown in Fig. 17c [30]. The
capacitance Ctsv and resistance Rtsv are taken as 200 fF and 200 milliohms respec-
tively [28]. The TSV fabrication procedure disturb the signal transmission properties
and stacking of dies leads to worsening of chip speed or envisioned functionality.
Therefore, the at-speed features of the system are confirmed with the assistance of
delay test. The delay across a defect free TSV is given by time constant (RC), which

Fault Tolerance in 3D-ICs 173

Fig. 17 Corresponding models of circuit for TSV. a T-model fot TSV. bDelamination/void defect.
c Short to substrate defect [26]

is very low and the presence of defects increases the RC value, which in turn disrupts
the timing constraints and leading to failure of the system.

The Testingmodule for single TSV is shown in Fig. 18. Here, pulldown network is
acting as a resistive load by pMOS, which is ON during testing and pull-up network
acting as a resistive circuit by nMOS. The change in resistance due to defects in
TSVs is measured with voltage divider and V tsv the output voltage is function of
on-resistance of pMOS transistor (R pull-down), on-resistance of nMOS transistor
(R pull-up), the capacitance (Ctsv) and the resistance of TSV (Rtsv). To differentiate
delamination and void defect, is shown in Fig. 18 for each TSV is substituted by
corresponding open circuit defect as shown in Fig. 17b. Likewise, to detect short-to-
substrate defect, TSV in Fig. 18 is swapped with corresponding short circuit defect
as shown in Fig. 17c. The testing of TSV is done by applying Testmode high to turn
ON the die1 pMOS transistor (third row in Table 1 and Fig. 18) and as per the above
discussion, all the TSVs can be tested by TDMA and testing module without surge
in the peak current usage and does not aggravate the thermal stress and reliability
degradation. The defective TSV is identified by comparing V ref with V tsv of the
defective TSV. To exemplify reference voltage, V ref is set to 50% of Vdd and it
can also be carefully chosen based on the TSV delay (RtsvCtsv) analogous to the
alteration in TSV resistance (Rtsv) [31]. The delay in the TSV can be identified by
changing the reference voltage and timing constraints of the design. The output of
comparator is high if V tsv<V ref implies TSV is defective and hence delay is larger
than the expected delay and cut-off the signal path through defective TSV (fourth
row in Table 1 and Fig. 15). The comparator output is low if V tsv>V ref implies
defect-free TSV.

174 R. P. Reddy et al.

Fig. 18 Testing of TSV [26]

10.2 Re-route Through Defect-Free TSV

The module for routing shown in Fig. 15 shows the routing module present on die2
and die1, it consists of de-multiplexers to reroute the signals through defect-free
TSVs. The Routing module is configured by signals from the modules of TDMA
and Routing module. Die1 routing module contains of four 1:4 type demultiplex-
ers that obtain the input signals from the demux1 of the TDMA module (Fig. 15),
selection lines from the Testmode and Testresult (Fig. 15) of the comparator, and the
functionality of output signals is explained in Table 1. Testmode is the input signal
used for testing of TSVs, when Testmode is high it specifies die is under test, else
die is under normal operation. If Testresult is high, implies TSV is defective and
Testresult low, implies TSV is defect-free. The Routing module of die2 consists of
1:2 type demultiplexers that accept the input signals from the TSVs and selection
lines are delivered by demux1 of die2.

10.3 Illustration of TDMA Based Fault Tolerance Technique

Figure 19 illustrates re-routing through single defect-free TSV. In Fig. 19 TSV1 is
taken as defective. TSV1 is to pass input signal1 fromdie1 to die2 as per theTestmode,
Testresult, and control signals obtained from the module of TDMA. If control line
and Testmode are low, input signal1 from mux1 is passed to demux1 via mux2 as

Fault Tolerance in 3D-ICs 175

shown in Fig. 19. From demux1, it passes to demux2 and as per the selection lines
it sends to the output signal1 of die2 via TSV1 or TSV2. If Testresult and Testmode
are low, output1 of demux2 passes to TSV1 and obtained on die2 output signal1. If
Testmode is low andTestresult is high, output2 of demux2 is passed toTSV2.On die2,
the signal of TSV2 is passed to demux and further demux on die2 passes the output
signal1 to its original TSV1 path via TSV2 as per the selection line acquired from
double TSV. To shift over from defective to defect-free of a single TSV necessitates
two demultiplexers each on die1 and die2, control lines produced from the TDMA
module and Testresult.

Redundant and regular through-silicon via (TSV) are used in fault tolerance tech-
niques of 3-D IC. However, the fabrication method of TSVs results in defects that
decrease the reliability and yield of TSVs. In contrast, each TSV is accompanying
with a substantial amount of on-chip area overhead. Hence, unlike the preceding dis-
cussed fault tolerance architectures, the time division multiplexing access (TDMA)-
based fault tolerance technique does not use any redundant TSVs, decreases the area
overhead and improves the yield.

11 Conclusion

Resilience aware system design is essential for CMOS and beyond CMOS technolo-
gies to perform intended functionality despite the complexities and disturbances in
the underlying hardware. Reliability issues to specific to 3D-ICs are closely asso-
ciated to TSVs. Thermal and stress issues in 3D-IC are the major source of cause
for failure of TSVs. The various killer and latent defects in TSVs developed during
the fabrication and on filed operation results in degradation of lifetime reliability,
reduce the yield and failure of 3D-IC. The underlying latent defects in TSVs can
result in killer defects due to aging of TSVs can result in failure of TSVs. Design-
time approach to address these issues in 3D-IC involves inclusion of redundant TSVs
along with regular functional TSV to enable online re-configuration or re-mapping
to overcome the defective TSVs, as a result sophisticated redundant TSV architec-
tures are introduced at design time. The number of TSVs available for a design is
limited due its constraints of Keep-out-zone from neighboring TSVs, transistors and
size of TSVs (in micrometer range). Hence, TDMA based fault tolerance technique
is the alternative feasible solution based on the application requirement. Therefore,
we have thrown light on various fault tolerance techniques to address the defective
TSVs, leading to synergy between reliability, yield and cost-effectiveness of resilient
3D-IC designs.

176 R. P. Reddy et al.

Fig. 19 Re-routing of signal for single defective TSV [26]

Fault Tolerance in 3D-ICs 177

References

1. Banerjee, K., Souri, S.J., Kapur, P., Saraswat, K.C.: 3-D ICs: a novel chip design for improving
deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE
89(5), 602–633 (2001)

2. Liu, C.C., Ganusov, I., Burtscher, M., Tiwari, S.: Bridging the processor-memory performance
gap with 3D IC technology. IEEE Des. Test Comput. 22(6), 556–564 (2005)

3. Frank, T., Chappaz, C., Leduc, P., Arnaud, L., Moreau, S., Thuaire, A., El Farhane, R., Anghel,
L.: Reliability approach of high density through silicon via (TSV). In: 2010 12th Electronics
Packaging Technology Conference (EPTC), December 2010, pp. 321–324. IEEE (2010)

4. Zhao, Y.: Investigation into Yield and Reliability Enhancement of TSV-Based Three-
Dimensional Integration Circuits. Doctoral Dissertation, University of Southampton (2014)

5. Athikulwongse, K., Yang, J.S., Pan, D.Z., Lim, S.K.: Impact of mechanical stress on the full
chip timing for through-silicon-via-based 3-D ICs. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 32(6), 905–917 (2013)

6. Liu,X.,Chen,Q.,Dixit, P.,Chatterjee,R., Tummala,R.R., Sitaraman, S.K.: Failuremechanisms
and optimum design for electroplated copper through-silicon vias (TSV). In: 59th Electronic
Components and Technology Conference, 2009. ECTC 2009, pp. 624–629. IEEE (2009)

7. Jung, M., Mitra, J., Pan, D.Z., Lim, S.K.: TSV stress-aware full-chip mechanical reliability
analysis and optimization for 3D IC. Commun. ACM 57(1), 107–115 (2014)

8. Lu, K.H., Zhang, X., Ryu, S.K., Im, J., Huang, R. Ho, P.S.: Thermo-mechanical reliability of
3-D ICs containing through silicon vias. In: 59th Proceedings of Electronic Components and
Technology Conference. ECTC 2009, pp. 630–634. IEEE (2009)

9. Lu, K.H., Ryu, S.K., Zhao, Q., Zhang, X., Im, J., Huang, R., Ho, P.S.: Thermal stress induced
delamination of through silicon vias in 3-D interconnects. In: 2010 Proceedings of 60th Elec-
tronic Components and Technology Conference (ECTC), pp. 40–45. IEEE (2010)

10. Ryu, S.K., Lu, K.H., Zhang, X., Im, J.H., Ho, P.S., Huang, R.: Impact of near-surface thermal
stresses on interfacial reliability of through-silicon vias for 3-D interconnects. IEEE Trans.
Device Mater. Reliab. 11(1), 35–43 (2011)

11. Kao, C.R., Wu, A.T., Tu, K.N., Lai, Y.S.: Reliability of micro-interconnects in 3D IC packages.
Microelectron. Reliab. 53(1), 1 (2013)

12. Ko, C.T., Chen, K.N.: Reliability of key technologies in 3D integration. Microelectron. Reliab.
53(1), 7–16 (2013)

13. Tu, K.N.: Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 51(3),
517–523 (2011)

14. Chakrabarty, K., Deutsch, S., Thapliyal, H., Ye, F.: TSV defects and TSV-induced circuit
failures: The third dimension in test and design-for-test. In: 2012 IEEE InternationalConference
on Reliability Physics Symposium (IRPS), pp. 5F–1. IEEE (2012)

15. Lin, Y.M., Zhan, C.J., Juang, J.Y., Lau, J.H., Chen, T.H., Lo, R., Kao, M., Tian, T., Tu, K.N.:
Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking. In: 2011
IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 351–357. IEEE
(2011)

16. Frank, T., Moreau, S., Chappaz, C., Leduc, P., Arnaud, L., Thuaire, A., Chery, E., Lorut, F.,
Anghel, L., Poupon, G.: Reliability of TSV interconnects: electromigration, thermal cycling,
and impact on above metal level dielectric. Microelectron. Reliab. 53(1), 17–29 (2013)

17. Tan, Y.C., Tan, C.M., Zhang, X.W., Chai, T.C., Yu, D.Q.: Electromigration performance of
through silicon Via (TSV)—a modeling approach. Microelectron. Reliab. 50(9), 1336–1340
(2010)

18. Pak, J., Pathak, M., Lim, S.K., Pan, D.Z.: Modeling of electromigration in through-silicon-
via based 3D IC. In: 2011 IEEE 61st Proceedings of Electronic Components and Technology
Conference (ECTC), pp. 1420–1427. IEEE (2011)

19. Hsieh, A.C., Hwang, T.: TSV redundancy: architecture and design issues in 3-D IC. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 20(4), 711–722 (2012)

178 R. P. Reddy et al.

20. Loi, I., Mitra, S., Lee, T.H., Fujita, S. Benini, L.: A low-overhead fault tolerance scheme for
TSV-based 3D network on chip links. In: Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, November 2008, pp. 598–602. IEEE Press (2008)

21. Jiang, L., Xu, Q., Eklow, B.: On effective TSV repair for 3D-stacked ICs. In: 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE), March 2012, pp. 793–798.
IEEE (2012)

22. Kawano, M., Uchiyama, S., Egawa, Y., Takahashi, N., Kurita, Y., Soejima, K., Komuro, M.,
Matsui, S., Shibata, K., Yamada, J., Ishino, M.: A 3D packaging technology for 4 Gbit stacked
DRAM with 3 Gbps data transfer. In: IEDM’06 International on Electron Devices Meeting,
2006, pp. 1–4. IEEE (2006)

23. Zhang, T., Wang, K., Feng, Y., Song, X., Duan, L., Xie, Y., Cheng, X., Lin, Y.L.: A customized
design of DRAM controller for on-chip 3D DRAM stacking. In: 2010 Custom Integrated
Circuits Conference (CICC), pp. 1–4. IEEE (2010)

24. Jiang, L.,Ye, F.,Xu,Q., Chakrabarty,K., Eklow,B.:May.On effective and efficient in-fieldTSV
repair for stacked 3D ICs. In: 2013 50th ACM/EDAC/IEEE on Design Automation Conference
(DAC), pp. 1–6. IEEE (2013)

25. Zhao, Y., Khursheed, S., Al-Hashimi, B.M.: Online fault tolerance technique for TSV-based
3-D-IC. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(8), 1567–1571 (2015)

26. Reddy, R.P., Acharyya, A., Khursheed, S.: A cost-effective fault tolerance technique for func-
tional TSV in 3-D ICs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2017)

27. Haykin, S.: Communication Systems. Wiley, New York, NY, USA (2008)
28. Katti, G., Stucchi, M., DeMeyer, K., Dehaene, W.: Electrical modeling and characterization of

through silicon via for three-dimensional ICs. IEEE Trans. Electron Devices 57(1), 256–262
(2010)

29. Ye, F., Chakrabarty, K.: TSV open defects in 3D integrated circuits: characterization, test,
and optimal spare allocation. In: 2012 Proceedings of the 49th Annual Design Automation
Conference, pp. 1024–1030. ACM (2012)

30. Cho, M., Liu, C., Kim, D.H., Lim, S.K., Mukhopadhyay, S.: Design method and test structure
to characterize and repair TSV defect induced signal degradation in 3D system. In: Proceedings
of the International Conference on Computer-Aided Design, November 2011, pp. 694–697.
IEEE Press (2010)

31. Sung, H., Cho, K., Yoon, K., Kang, S.: A delay test architecture for TSV with resistive open
defects in 3-D stacked memories. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(11),
2380–2387 (2014)

32. Lu, T., Serafy, C., Yang, Z., Samal, S., Lim, S.K., Srivastava, A.: TSV-based 3D ICs: design
methods and tools. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2017)

33. Zhao, Y., Khursheed, S., Al-Hashimi, B.M.: Cost-effective TSV grouping for yield improve-
ment of 3D-ICs. In: 2011 20th Asian Test Symposium (ATS), pp. 201–206. IEEE (2011)

Formal Verification for Security
in IoT Devices

K. Keerthi, Indrani Roy, Aritra Hazra and Chester Rebeiro

Abstract Online detection of cyber-attacks on IoT devices is extremely difficult
due to the limited battery and computational power available in these devices. An
alternate approach is to shrink the attack surface in order to reduce the threat of
attack. Thiswould require that the device undergomore stringent security tests before
deployment. Formal verification is a promising tool that can be used to not only
detect potential vulnerabilities but also provide guarantees of security. This chapter
reviews several security issues that plague IoT devices such as functional correctness
of implementations, programming bugs, side-channel analysis, and hardware Tro-
jans. In each of these cases, we discuss state-of-the-art mechanisms that use formal
verification tools to detect the vulnerability much before the device is deployed.

1 Introduction

The number of connected IoT devices has crossed 20 billion and expected to increase
at a rate of 15% per year. IoT devices are typically battery operated, have low com-
puting power, and less memory. Many of the devices have either no or tiny operating
systems that have limited functionalities. Operating system functionalities are typ-
ically restricted to resource management for efficient energy utilization. Security

K. Keerthi · I. Roy · C. Rebeiro
Indian Institute of Technology Madras, Chennai, India
e-mail: keerthi@cse.iitm.ac.in

I. Roy
e-mail: indrroy@cse.iitm.ac.in

C. Rebeiro
e-mail: chester@cse.iitm.ac.in

A. Hazra (B)
Indian Institute of Technology Kharagpur, Kharagpur, India
e-mail: aritrah@cse.iitkgp.ernet.in

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_9

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_9&domain=pdf
mailto:keerthi@cse.iitm.ac.in
mailto:indrroy@cse.iitm.ac.in
mailto:chester@cse.iitm.ac.in
mailto:aritrah@cse.iitkgp.ernet.in
https://doi.org/10.1007/978-3-030-02807-7_9

180 K. Keerthi et al.

features such as secure boot, trusted execution, and even memory protection are
generally absent. These limiting features in IoT devices makes them vulnerable to a
variety of cyber-attacks.

The attack surface for IoT devices is considerably large. An attacker may use one
or more of the following attack vectors to compromise a device.

• First, there can be aweakness in the functionality of a device. For example, an oper-
ation that was intended to be present but is either absent in the implementation or
not fully complete. For example, there may be an absence of strong authentication
methods or an absence of meta-level encryption procedures.

• Even if the intended security operations are implemented in the device, there may
be flaws in the implementation. This is especially a problem with cryptographic
algorithms. The security guarantees of cryptographic algorithms are well studied
and investigated. The weakest link is generally not due to the mathematical under-
pinnings of the algorithms but rather their implementations. The huge state space
present in cryptographic implementations, makes detecting these flaws difficult.

• Programming bugs such as buffer overflows, arithmetic overflow and underflows,
and format-string vulnerabilities present in the implementations, can be used to
craft malicious payloads that can subvert execution leading to security breaches.

• Trojans present in the hardware or software can provide unauthorized access to
the system or lead to information leakage. These Trojans are introduced due to
multiple third parties involved in the design and manufacture of IoT devices. They
are very difficult to detect but provide an easy vector for an attacker.

• IoT devices are also vulnerable to multiple physical attacks such as fault injec-
tion attacks, differential power analysis, and timing attacks. These attacks would
require the attacker to have physical access to the device, disturb the device opera-
tions by injection of a fault, or passivelymonitoring the device’s side-channels such
as its power and energy consumption, electro-magnetic radiation, and execution
time to glean secret information.

This huge attack surface is a serious concern especially because many of the
IoT devices are used in cyber-physical systems such as process-control, smart-grid,
and medicals systems. A compromised device in any of these critical infrastructures
could lead to considerable losses.

Due to the constrained resources in an IoT device, detecting cyber-attacks is only
possible from outside the device. Two potential directions to detect malware out-
side the device is by monitoring the network for malware signatures or by using
side-channels such as the device’s power consumption, execution time, and electro-
magnetic radiation to identify patterns that would indicate an attack. Both techniques
face considerable challenges. For example, current side-channel analysis techniques
requires a measurement setup and therefore only possible in a laboratory environ-
ment. Network monitoring techniques on the other hand will not be effective for
attacks that do not transmit much over the network or those that camouflage their
network activities. Furthermore both techniques will not be able to detect zero-day
exploits.

Formal Verification for Security in IoT Devices 181

An alternate approach to achieving security in IoT devices is to prevent rather
than detect. This would require that the various attack vectors described above are
eliminated at design time there by reducing the attack surface. Traditionally this is
done by good design practices, use of secure coding techniques, static analysis, and
extensive testing. However, these methodologies cannot provide guarantees of secu-
rity; stronger mechanisms would therefore be required. One promising direction is
the use of formal verification to provide security guarantees. Formal verification is
a technique to mathematically ascertain the correctness of designs using a diverse
set of mathematical and logical methods. Model checking [17] and theorem prov-
ing [23] procedures are often used to ensure the accuracy of implementations. In
model checking, a model of a system is exhaustively and automatically verified with
respect to a given specification; whereas in theorem proving, the system character-
istics are derived mathematically and solved using automated reasoning techniques
to infer the correctness of the system.

Themain drawback of using a theorem prover is that the user has to explicitly pro-
vide the design and specification characteristics as algebraic constraints or theorems.
Model checkers, on the other hand, can act automatically over the implementation
with the given specifications and formulate SAT clauses from the design behavior.
It is, therefore, more effective and easier to use a model checker as compared to a
theorem prover for validating large implementations, such as crypto-designs.

In this chapter, we shall discuss various applications of formal verification in order
to improve an IoT device’s security. We would use formal verification to (a) prove
the correctness of implementations with respect to its formal specification. As a case
study, we would consider the correctness verification of a multi-precision library
used for public-key cryptographic algorithms such as ECC and RSA. (b)Wewould
then prove the absence of programming vulnerabilities, such as buffer overflows, in
the multi-precision library. Multi-precision library implementations are especially
interesting for formal verification due to their critical usage with security sensitive
aspects in the device, and their extremely complexdesign spacewhere comprehensive
testing becomes practically impossible.

The chapter would also discuss other state-of-the-art research in the use of for-
mal verification for device security. In particular, (c) the chapter discusses the use
of formal verification to validate physical attack countermeasures. While applying
countermeasures for physical attacks such as side-channel analysis is easy, proving
their effectiveness is considerably more challenging. Formal verification would help
considerably to achieve these security proofs. (d) Another application of formal
verification is to detect the presence of hardware Trojans in designs. We discuss a
recent work which demonstrates the use of model checking tools to identify a Trojan
that leaks sensitive information from the device. (e) Finally we discuss the use
of formal verification to ensure completeness of security goals such as meta-level
authentication and encryption.

The organization of this chapter is as follows: Sect. 2 provides the background
about symbolic model checking covering SAT and BDD based model checking. The
section also describes a model checking tool called CBMC for C based bounded
model checking [18]. Section 3 describes the use of model checking to verify that

182 K. Keerthi et al.

an implementation is correct with respect to its formal specification. A case study
of a multi-precision library used for ECC and RSA is verified. Section 4 describes
program vulnerabilities and presents the use of CBMC as a tool to detect such vulner-
abilities. Section 5 presents the use of formal verification for side-channel counter-
measures, while Sect. 6 describes the use of formal verification for hardware Trojan
detection. Section 7 shows how formal verification can be used to identify meta-level
authentication issues, while the final section has the conclusion.

2 Background: Symbolic Model Checking

The term symbolic model checking is popularly interpreted as BDD-based model
checking, however any model checking technique that works on a symbolic repre-
sentation of the implementation can be called symbolic model checking. There are
mainly two kinds of symbolic methodology found in the literature; namely BDD-
based model checking and SAT-based model checking.

2.1 BDD-Based Model Checking

Binary Decision Diagrams (BDDs) [8] are compact canonical representations of
Boolean functions. BDDs utilize self-similarity in the decision trees based on
Shanon’s expansion to give a more compact representation. Ken McMillan first pro-
posed model checking algorithms using BDD in his famous doctoral thesis [24]. The
use of BDDs in model checking was instrumental in bringing the technology into
practice. Experimental results showed that the BDD-based approaches were able
to handle 1020 states and beyond [9]—which was unthinkable with algorithms that
work on explicit representations of the state space.

To perform BDD-based model checking [14], a BDD representation, Z , for the
temporal property¬ϕ is created (when, ϕ be the temporal formula of interest). Then,
the product of Z with the BDD for the transition relation of the design-under-test
(DUT) is computed. Let the BDD for the product be P . In the final step of the model
checking, the strategy is to check whether P is empty, that is, whether the product
has any fair path [10, 15].

2.2 SAT-Based Model Checking

SAT is the traditional short form for the Boolean satisfiability problem. Given a
Boolean formula f , the problem is to determine whether f is satisfiable, that is,
whether there exists any valuation of the variables in f , under which f evaluates
to True. Verification methods based on the SAT problem have recently emerged as

Formal Verification for Security in IoT Devices 183

a promising solution. Dramatic improvements in SAT solver technology over the
past decade have led to the development of several powerful SAT solver tools [21,
28, 29, 31]. Verification methods based on these tools have been shown to push
the boundaries of functional verification in terms of both capacity and efficiency, as
reported in several academic and industrial case studies [2, 3, 7]. This has fueled
further interest and intense research activity in the area of SAT-based FPV.

BoundedModel Checking (BMC) [16] based on SATmethods was introduced by
Biere et al. in [5, 6, 16] and is rapidly gaining popularity today as a complementary
technique to the existing BDD-based model checking. Given a temporal logic prop-
erty, ϕ, to be verified on a finite state transition system M, the essential idea is to
search for counter-examples to ϕ in the space of all executions of M whose length
is bounded by some finite integer k.

The problem is formulated by constructing the following propositional formula:

f k = I ∧
k−1∧

i=0

R(Si , Si+1) ∧ (¬ϕk)

where I is the characteristic function for the set of initial states of M, R(Si , Si+1)

is the characteristic function of the transition relation, relating the variables in Si
with those in Si+1, ofM for time step i . Thus, the formula

(
I ∧ ∧k−1

i=0 R(Si , Si+1)
)

precisely represents the set of all executions of M of length k or less, starting with
an initial state. ¬ϕk is a formula representing the condition that ϕ is violated by a
bounded execution of M of length k or less. Hence, f k is satisfiable iff there exists
an execution of M of length k or less that violates ϕ. f k is typically converted to
conjunctive normal form (CNF) and is solved by a conventional SAT solver.

Due to the success of SAT solvers in bounded model checking, there has been
growing interest in their use for unbounded model checking. Few of the recent works
in this direction can be found in [22, 25].

2.3 CBMC: The Formal Verification Tool

There are various academic aswell as industrial tools available for formal verification
of the system. In this work, wewill evaluate the security attributes by symbolicmodel
checking approach with the help of tool named CBMC which is a C based model
checker [18]. CBMC takes two inputs: (i) the program to be verified (written in C or
C++), and (ii) the formal specification, as shown in Fig. 1. The loops in the program
(p) are first unwound and then a Boolean model Q(p) is obtained, which is checked
for satisfiability with the negation of the specification (¬q) using an in built SAT
solver. If the model is satisfied, which means that the negation of the specification
is satisfied, then the verification fails. CBMC reports this failure with a counter-
example. If the model is not satisfiable, then for all the possible combinations of the

184 K. Keerthi et al.

CBMC

q

Q

Q(p) ¬q

Q(p) ∧ ¬q

p

Fig. 1 Flow of a C program verification using CBMC, showing a SAT solver that checks the
correctness of program p with respect to the specification q. The counter example generated gives
the program inputs for which specification q fails [13]

input, the specification conditions are correct, therefore the program is verified to be
correct based on the given specifications.

3 Correctness of Crypto Implementations

An important security requirement for any program is to ensure its correctness with
respect to a specification. This becomes even more critical when the program in con-
sideration is an implementation of a cryptographic algorithm. An error in a crypto-
implementation, could be exploited to leak secrets such as the cryptographic key.
Extensive testing is the time-honored way of checking the correctness of a crypto
implementation. This however cannot provide guarantees because of the huge state
space of crypto-implementations. For example, the state space of a typical imple-
mentation of an elliptic curve cryptographic scheme is in the order of 2256. This is too

Formal Verification for Security in IoT Devices 185

huge a space to exhaustively test. A more complete technique is to use formal ver-
ification, which generates stronger guarantees of correctness based on a functional
specification of the algorithm.

There have been several efforts to prove the functional correctness of crypto-
implementations using formal verification. For example, ciphers like AES, MARS,
Twofish, RC6, Serpent, IDEA, and TEA were considered in [19]; several hash func-
tions and block ciphers in [4, 32]. For public-key ciphers, functional correctness has
been discussed in [1, 12].

In this section we discuss the formal verification of a multi-precision library. This
library forms the base over which public-key algorithm like ECC and RSA are built.

3.1 Correctness of a Multi-precision Library

A multi-precision library for public-key cryptography includes implementations of
finite-field operations such as addition, subtraction, multiplication etc. These imple-
mentations could have many flaws, most of which can be detected by formal verifi-
cation.

Themulti-precision library we consider is written in ‘C’.We use themodel check-
ing tool CBMC (ANSI-C Bounded Model Checking) [18] as a tool for verification.
The approach we follow is to use a hierarchical verification technique to handle the
scalability issues and the huge state space of the library.

Implementation Aspects and Notations. A central data-structure used to define
multi-precision numbers is the bignum_t structure, which comprises of an array
called digits used to store the multi-precision number and sign to store its sign.

typedef struct{

word digits[MAXDIGITS];

int sign;

}bignum_t;

The multi-precision elements is represented using the macro MAXDIGITS—based
on the number of digits in the multi-precision number. It depends on the word length
of the processor executing themulti-precision library. For instance to represent a field
element in F256 on a micro-controller platform with a 16 bit word size, MAXDIGITS
would be defined as �256/16� = 16.

The finite field elements are represented using the above structure as follows: A =
(a15, a11, a10, . . . , a2, a1, a0), where ai (15 ≤ i ≤ 0) are word sized numbers stored
in digits in the bignum_t structure, a15 is the most significant digit, while a0 is
the least significant digit.Multi-precision operations are denoted in capitals with a ‘∗’
on top. For example A

∗+ B represents multi-precision addition, while the operations
over the digits in the multi-precision number are in the standard representation, such

186 K. Keerthi et al.

as ai + bi for digit addition. In the remainder of this section we demonstrate several
cases of formal verification of multi-precision operations.

Case 1 (Multi-precision Addition): Let A and B be two multi-precision numbers

with n digits. To perform multi-precision addition (S = A
∗+ B), we add the digits

of A and B as shown in Eq. 1.

c−1 = 0

(ci , si) = ai + bi + ci−1 (0 ≤ i ≤ n − 1) ,
(1)

where si holds the sum of digits and ci the carry of each digit addition. The output
is stored in (cn−1|| S).

Verification of Multi-precision Addition. In Eq. 1, we first verify that the carry and
sum of each digit (i.e. ci , si) is correct. Each digit is of 8, 16, or 32 bits depending on
the execution platform. To perform the verification, we provide conditions to CBMC
(in the form of assertion statements) that will evaluate to true if the addition is correct
and false otherwise. The condition to verify the addition of the digits of A and B
considering the carry that occurs from one digit to the next, i.e. verifying (ci , si) =
(ai + bi + ci−1) is

((ci , si) − (bi + ci−1) = ai) 0 ≤ i ≤ n − 1; c−1 = 0 . (2)

CBMC will perform the multi-precision addition A
∗+ B and verify digit-by-

digit checking exhaustively over the possible valuations of A and B, for the above
condition to be satisfied. If a failure is obtained, it means that the specification failed
for some values of A and B. CBMC will return the values which caused the failure.
This counter-example is the proof that CBMC provides of a verification failure.

Listing 1.1 Implementation of multi-precision addition

void BN_uadd (bignum_t *S, bignum_t A, bignum_t B)
{

int i, j;
word c = 0;
S->sign = 1; /* sign of result forced to positive */
for(i = 0; i < MAXDIGITS; i++){

S->digits[i] = A.digits[i] + c;
c = (S->digits[i] < c);
S->digits[i] = S->digits[i] + B.digits[i];
c = c + (S->digits[i] < B.digits[i]);

}
while(c!=0){

S->digits[i] = S->digits[i] + c;
c = (S->digits[i] < c);
i = i + 1;

}
}

Formal Verification for Security in IoT Devices 187

Listing 1.2 Specification for multi-precision addition

int BN_uadd_specification(bignum_t S, bignum_t A, bignum_t B)
{

int j;
word z, c = 0;
for(j = 0; j < MAXDIGITS; j++) {

z = (S.digits[j] < c);
S.digits[j] = S.digits[j] - c;
c = (S.digits[j] < B.digits[j]) + z;
S.digits[j] = S.digits[j] - B.digits[j];
if (S.digits[j] != A.digits[j]) return (false);

}
return (true);

}

Listing 1.3 Verification of multi-precision addition

void BN_uadd_verify ()
{

bignum_t S,A,B;
int nondet_int ();
A.sign = nondet_int ();
B.sign = nondet_int ();
__CPROVER_assume(A.sign ==1 && B.sign ==1);

BN_uadd(&S,A,B); /* Compute S = A + B */
assert(BN_uadd_specification(S,A,B));

}

Listing 1.1 gives the implementation of multi-precision addition shown in Eq. 1.
Functional correctness of the implementation is done by digit addition of the
result with operand B as given in Eq. 2. The implementation aspects of the addi-
tion specification is shown in Listing 1.2. Implementation BN_uadd_verify
in Listing 1.3 performs the formal verification, which invokes BN_uadd and
BN_uadd_specification. CBMC performs the following steps for verifica-
tion:

1. CBMC unwinds all the loops in the program, based on the number of iterations
specified using command ‘--unwind N’. Each copy of the loop is replaced
by an if statement to check the terminating conditions and at the end of N
copies, anunwinding assertion is added byCBMC to avoid further iterations. The
unwinding ofBN_uadd_specification in Listing 1.2 is shown in Step 1 of
Fig. 2. We have used an additional variable P to represent the return value of the
function,which is initialized to 1 andmade 0 if false is returned (corresponding to
Line 10 of BN_uadd_specification). The assertion in the last line of Step
1 corresponds to the assertion in Line 9 of the function BN_uadd_verify.

2. The next step is to rename the program variables as shown in Fig. 2 Step 2,
which is transformed to SSA (static single assignment). For example j = j + 1
is converted to j2 = j1 + 1. In Step 2, each if block renames the variable P to
P1, P2, . . ., Pn . Therefore, the assertion statement should check all the n values
of P instead of one variable.

188 K. Keerthi et al.

Step 1
P = 1;
j = 0;
if(j < MAXDIGITS) {
//body

z = (S.digits[j] < c);

S.digits[j] = S.digits[j] - c;

c = (S.digits[j] < B.digits[j]) + z;

S.digits[j] = S.digits[j] - B.digits[j];

if (S.digits[j] != A.digits[j]) P = 0;
j = j + 1;

if(j < MAXDIGITS){
//body

j = j + 1;

...

if(j < MAXDIGITS){
//body

j = j + 1;

assert(!(j < MAXDIGITS));

}
...

}
} assert(P ==1);

Step 2
P1 = 1;

j1 = 0;

if(j1 < MAXDIGITS){
//body

z1 = (S1.digits[j1] < c1);

S2.digits[j1] = S1.digits[j1] - c1;

c2 = (S2.digits[j1] < B1.digits[j1]) + z1;

S3.digits[j1] = S2.digits[j1] - B1.digits[j1];

if (S3.digits[j1] != A1.digits[j1]) P2 = 0;

j2 = j1 + 1;

if(j2 < MAXDIGITS){
//body

j3 = j2 + 1;

...

if(jn−1 < MAXDIGITS){
//body

jn = jn−1 + 1;

assert(!(jn < MAXDIGITS));

}
...

}
} assert(P2==1 && P3==1 && ... && Pn==1);

Step 3

C := (P1 = 1)

∧ (j1 = 0)

∧ z1 = ((j1 < MAXDIGITS)∧(S1.digits[j1] < c1)) ? 1 : 0

∧ S2.digits[j1] = (j1 < MAXDIGITS) ? S1.digits[j1] - c1 : S1.digits[j1]

∧ c2 = ((j1 < MAXDIGITS)∧(S2.digits[j1] < B1.digits[j1])) ? (1+z1) : z1
∧ S3.digits[j1] = (j1 < MAXDIGITS)?(S2.digits[j1]-B1.digits[j1]) : S1.digits[j1]

∧ P2 = ((j1 < MAXDIGITS)∧(S3.digits[j1] �= A1.digits[j1])) ? 0 : P1
∧ j2 = (j1 < MAXDIGITS) ? (j1 + 1) : j1
∧ ...

P := (P2 == 1 ∧ P3 == 1 ∧ . . . Pn == 1)

Fig. 2 Given the function BN_uadd_specification, Step 1 shows how CBMC unwinds the
loop and the Step 2 shows the renaming of the variables in function body. Step 2 is converted to
Boolean formula, with set of constraints C and properties P is given in Step 3

3. In the third step, CBMCuses set of rules to convert SSA statements are converted
to Boolean formula [18]. The rules define a set of constraints (C) and set of
properties (P). These are shown in Step 3 of Fig. 2.

4. The SAT solver in CBMC, try to solve C ∧ ¬P and returns counter-example
if solution found, which means that verification is failed; otherwise it returns
verification successful

Case 2 (Multi-precision Subtraction): Let A and B be twomulti-precision numbers

of n digits each. To perform multi-precision subtraction (D = A
∗− B), we subtract

the digits of A and B as shown in Eq. 3.

br−1 = 0

di = (bri , (ai − bri−1)) − bi (0 ≤ i ≤ n − 1) ,
(3)

Formal Verification for Security in IoT Devices 189

where di holds the difference between digits and bri holds the borrow of each indi-
vidual digits. The output of the result is stored in d.

Verifying Multi-precision Subtraction. To verify subtraction, we assume that multi-
precision addition has already been verified and proven to be correct. Thus, verifying

D = A
∗− B is simply done using A = D

∗+ B. In the specification function for
multi-precision subtraction,we invokemulti-precision addition (Eq. 1)with operands
D and B. The result is verified to be equal to the original value of A using anassert
statement.

Case 3 (Multi-precision Left-Rotation): The multi-precision left-rotate takes a
multi-precision number A having b bits and an integer m. It shifts A left by m bits
and the bits that fall off at the most significant end are inserted in the least significant

end. This is represented as Ar = A
∗

≪ m.

Verifying Multi-precision Left-Rotation. We verify multi-precision left-rotate, by
checking the bit position before and after rotation. I.e., the specification given to
CBMC checks that m most significant bits of A is shifted to corresponding least
significant positions in Ar . The remaining (b − m) bits of A are left shifted by m
bits in Ar .

For example: let A = (a15, a14, a13, . . . , a2, a1, a0), be a multi-precision number
on a 16-bit platform and ai (11 ≤ i ≤ 0) be 16 bit words in A. (A ≪ m) where
m = 16, will result in Ar = (a14, a13, a12, . . . , a1, a0, a15). Verification is done by
checking whether all the bits are shifted exactly m bits to lower position and also the
most significant m bits are shifted to least significant m bits.

3.2 Verifying an ECC Implementation

Elliptic curve cryptography implementations have a pyramid-like structure as shown
in Fig. 3. The operations in the base of the pyramid are multi-precision algorithms
like addition, subtraction, multiplication, and inversion; all done in the underlying
finite field of the Elliptic curve. The verification of the point addition and doubling
functions is thus carried out to ensure that the correct invocation of all the lower level
finite field functions.

The verification of ECC scalar multiplication is done in a similar manner, since
the algorithm invokes the point addition and point doubling functions. Given that
point addition and point doubling have already been verified to be correct, the scalar
multiplication involves the number of times point addition and point doubling is
computed based on the scalar.

Results. This section contains the results of the verification of our Elliptic curve
crypto-library. Implementation of four out of the five NIST specified Elliptic curves
over F192, F224, F256, and F384 [34] were verified. CBMC Version 5.7 [18] on an
Ubuntu 14.04 Linux machine on a quad core Intel i5-3340 CPU @ 3.10 GHz was

190 K. Keerthi et al.

Fig. 3 Pyramid-like
structure of an ECC
implementation, where the
bottom layer finite field
operations include
multi-precision addition,
multiplication etc.

and
Point Addition

Point Doubling

Scalar

Finite Field Operations

Multiplication

Table 1 Time taken (in hours) by CBMC to verify scalar multiplication operation of 4 different
curves, assuming a 16 bit word size

Function Description Time (h)

Scalar multiplication 192-bit F192 23

224-bit F224 34

256-bit F256 64

354-bit F384 183

used as the platform for the study. In all cases, we assume a 16 bit word size that
forms a digit used to partially represent a multi-precision number. Table 1 shows
the verification time for the four different NIST specified curves. Figure 4 shows
the verification time and execution time for 4 NIST specified Elliptic curves F192,
F224, F256 and F384 [34] and also the increase in verification time of Karatsuba
multiplication as field size increases.

3.3 Verifying an RSA Implementation

RSA also has a similar pyramidal structure like ECC but with just two levels. The
base comprises of multi-precision operations just as in ECC, albeit with much larger
numbers. The upper level comprises of modular exponentiation, which is used for
encryption and decryption. Hence it is clear that the verification is done using the
assume-guaranteed hierarchical verification technique, where all the finite field oper-
ations are verified and found to be correct.

Formal Verification for Security in IoT Devices 191

Fig. 4 Time taken in log scale for execution and verification of scalar multiplication for the 4 NIST
Elliptic curves F192, F224, F256, and F384

4 Program Vulnerability Detection

Even though programs may be verified to be correct, minor bugs in the code can be
exploited to subvert the implementation and execute malicious payloads. To detect
such bugs, which we call programming vulnerabilities, we need to analyze the imple-
mentation. Formal verification tools such as CBMC [18] can be used for this purpose.

The first step is to classify bugs according to vulnerability numbers present in the
CVE database [26]. This database lists publicly known vulnerabilities and exposures.
The CWE database classifies lists according to various known weaknesses [27]. The
sub-category CWE-310, View-658 lists the various weaknesses of software written
in the C programming language. Another sub-category View-702, lists potential
weaknesses introduced during implementation. To detect programvulnerabilities, we
assume that these databases would help identify a majority of the vulnerabilities in
the implementation. We begin this section by highlighting the various programming
vulnerabilities, before discussing thedetectiondetails. TheCVEdatabase [26] reports
8690 buffer overflow (including arithmetic overflow) vulnerabilities. This can be
mapped to 82 CWE weaknesses [27], of which we found that 42 are applicable to a
multi-precision library. The model-checking tool CBMC [18], can verify the array
bounds, pointer safety, and integer arithmetic etc. This covers 83% of the classified
bugs in the databases.

192 K. Keerthi et al.

Buffer Overflow. Buffer overflow is a serious security concern, which has been
studied for several years. A buffer is a continuous chunk of memory, such as an
array, and is associated with a pointer. Buffer overflows occur when the pointer is
accessed beyond the bounds. An attacker may use buffer overflows to write into an
illegal memory that could then be used to subvert execution. Programming languages
such as C and C++ are prone to buffer overflows, where there are no built-in bound
check conditions. These overflows, such as in the example given below, are typically
not detected at compile time.

int buffer[10];
int i = 10;
buffer [i+1] = 20;

Buffer overflowshavedifferent variants such as—(1)Heapoverflows:where the over-
flow occur in dynamically allocated memory; (2) Stack overflows: exploits overflow
the stack based buffer, which can change the local variables in the program, return
address, and even function pointers.

Consider the buffer overflow example above, CBMC will detect the buffer over-
flow in the program by inserting proper bound check conditions for each array access.
The output from CBMC tool is as follows:

Result from CBMC

State <S> file <name.c> line <L> function main
--

i=10 (00000000000000000000000000001010)

Violated property:
file <name.c> line <L> function main
array ‘buffer’ upper bound
(signed long int)(1 + i) < 10l

VERIFICATION FAILED

CBMC performs buffer overflow checks by inserting conditions in the source code
that would validate a pointer access is legal. It would then check whether the condi-
tions are reachable or not. As an example, conditions such as

(i >= 0) and ¬(i >= MAXDIGITS − 1)

These conditions automatically determine if an array of size MAXDIGITS, accessed
with index i, violates the lower or upper bound properties (i.e., whenever a[i]
occurs in the program).

Integer Overflow. An integer overflow could occur in programs that deal with arith-
metic operations, where a computation result exceeds the range of the representation.
Integer overflows can also occur due to improper type conversion, which can affect
the security of the program and lead to unintended behavior of the program.

Formal Verification for Security in IoT Devices 193

int i = -2147483648;
i = i - 1;

The example given above is an integer overflow, where the value of i has the lowest
value in its representation and the subtraction changes its value to 2147483647.

To detect potential integer overflows, CBMC automatically inserts specific prop-
erties for each variable as given below.

(i < INT_MIN) || (i > INT_MAX)

This determines whether the defined variable iwith data-type (in our example int)
violates the underflow or overflow property. CBMC determine whether the property
is reachable for each access of these variables. For the integer overflow program
given above, the verification result returned by CBMC is as follows:

Result from CBMC

State <S> file <name.c> line <L> function main
--
i=-2147483648 (10000000000000000000000000000000)

Violated property:
file <name.c> line <L> function main
arithmetic overflow on signed -
!overflow("-", signed int, i, 1)

VERIFICATION FAILED

4.1 Program Vulnerability Detection in a Multi-precision
Library

Direct verification for buffer overflow and integer overflow need not be effective
for a crypto implementation due to its large mathematical model. For detecting all
possible vulnerabilities, we have used a hierarchical verification. The method verify
all the lower level implementation for vulnerabilities. These verified implementation
can be used for verification of higher level implementations. Hierarchical verification
will help to determine the flow of these vulnerabilities in the program and also help
to speed up the verification.

Table 2 shows the verification time for vulnerability detection in a multi-precision
library.

194 K. Keerthi et al.

Table 2 Program vulnerability detection in a multi-precision library

Function Description Time (s) Number of
vulnerabilities
detected

Copy x ← y 0.002 1

Addition r = x + y 0.333 3

Subtraction r = x − y 0.398 3

Compare x == y 0.628 0

Karatsuba
multiplication

r = x × y 53.46 16

Left-shift r = x � 1 0.004 0

Right-shift r = x 	 n 0.006 2

5 Formal Verification of Side Channel Countermeasures

IoT devices that are physically accessible to an attacker are vulnerable to side-channel
attacks. These attacks detect sensitive information flowing through unintended covert
channels such as the device’s power consumption. For example, if the device performs
an operation, E , such as y ← E(x, k), with a secret key k and plaintext bits x , then
information about k is leaked through the device’s power consumption.

Masking is a popular countermeasure used to prevent this leakage [11]. With this
countermeasure, sensitive variables like k are masked so that there is no leakage
through the power traces. The mask is then removed at the end of the operation.
For example, if E is a linear function, then for a randomly chosen value of mask,
r , the operation E(x, k ⊕ r) is done instead. No leakage about k is present in the
power consumption if r is secret. Moreover, the correct result y is obtained by
computing E(x, k ⊕ r) ⊕ E(x, r). This works because E is a linear function and
E(x, k ⊕ r) = E(x, k) ⊕ E(x, r).

Masking non-linear operations is not so trivial. It is time consuming and error-
prone as information can leak through intermediate operations. For example, consider
the non-linear operation (o = x ∧ k ∧ r). A value of o = 1, which can be distin-
guished in the power consumption, will leak the value of k, which would also be 1
in this case. Formal verification has been used to verify perfect masking. The prop-
erty used in formal verification is that every intermediate operation I that is used in
the computation of the non-linear function E , should be perfectly masked [20]. We
assume that every intermediate operation I is Boolean and has parameters x bits of
the plaintext, k secret key, and randommask r . The property fed to the model checker
to verify perfect masking is the following:

∃x ∃k ∃k ′ (
∑

r

I (x, k, r)
=
∑

r

E(x, k ′, r)) .

Formal Verification for Security in IoT Devices 195

The property verifies that for any input x and a pair of keys k and k ′ (k
= k ′), the
probability distribution of I (x, k, r) differs from that of I (x, k ′, r). If this holds then
some information about the secret key k is leaked through the side-channel. In this
case, the intermediate operation I is not perfectly masked. If the model checker finds
that the above property is not satisfied, it means that no information is leaked. Hence
the intermediate operation I is perfectly masked.

Besides power consumption based channels, execution time can also lead to
information leakage. Developing constant time implementations is a difficult task
in modern processor environments because the execution time not only depends
on the implementation but also depends on micro-architectural components such as
cache memories, branch prediction, multi-threading, etc. We could have secret inde-
pendent branching to avoid the timing attack based on the secret data. The secret
dependency, the implementation should avoid (a) conditional branching should not
depend on secret data (b) indirect load using the secret data [33].

6 Detecting Hardware Trojans Using Formal Verification

Tominimize development costs and time-to-market, most system developers operate
in a fabless mode, integrating multiple third party Intellectual Property cores into
System onChips (SoC) that are used in IoT devices. This design flow createsmultiple
opportunities for malicious code or circuits to be introduced into the device that
could act as Trojans. For example, Trojans in connected IoT devices could act as
backdoors andpermit unauthorizedusers to enter into the device and access privileged
information. This can lead to denial of service attacks, manipulation of data, or
interception of sensitive data.

A typical Trojan is designed to be passive most of the time and active only when
triggered. In a normal setting, the trigger is an extremely rare event, for example,
a specific time event or particular inputs. Due to this stealthy nature, detecting the
presence of Trojans is a considerable challenge especially when they are introduced
in the hardware. Even 100% test coverage, will not guarantee the absence of Trojans
in a hardware design. An attacker, however, with knowledge of the trigger conditions,
could easily activate the Trojan to compromise the device.

In the literature several algorithms have been suggested to detect hardware Tro-
jans. One of the most popular is FANCI, which identifies stealthy signals in a
design [35]. Another tool called VeriTrust, uses the fact that gates triggered by
Trojans, will not be driven by functional inputs. VeriTrust marks these gates as
suspicious [36]. While these approaches can detect a Trojan with certain level of
accuracy, they will not be able to guarantee the absence of a Trojan in the design.
Moreover, they can only evaluate combinational parts of the design andwould require
considerable manual analysis.

In [30], Rajendran et al. proposed to use formal verification to detect Trojans in
hardware designs. If a Trojan is present, formal verification can guarantee finding its
trigger condition. Rajendran et al. use model checking for the purpose of detecting

196 K. Keerthi et al.

Standard (AES)

Is the 128−bit plaintext all 1’s?

Advanced EncryptionKey[127:0]

Plaintext[127:0]

Output[127:0]

Fig. 5 TheTrojan is triggeredwhen the plaintext (128-bit) is all ones, which triggers themultiplexer
and returns the secret key as Ciphertext [30]

hardware Trojans that leak sensitive information from the device. The input to the
model checker is the target property to be checked along with a formal description
of the design in temporal logic. The property to be checked is: “does the design leak
sensitive information?”. If a Trojan is present in the design, the output of the model
checker will be a set of states denoting the trigger condition. As a case study, [30]
considered a Trojan that could leak an encryption key as shown in Fig. 5. In normal
working conditions, the design would encrypt data with the stored key. However,
when a trigger is fed via the plaintext input, the output of the circuit would be the
AES encryption key rather than the ciphertext, thereby leaking the key. In the simplest
case, a specific value of plaintext, for example all 1s, could act as trigger resulting
in leakage of the entire secret key or a subset of the secret key. This can be modeled
formally using the property:

∃i ∈ I � D |= (s == o) .

It means that there exists some trigger i from the set of possible input patterns I such
that in the design D, the secret s is mapped to the output o. The model checker would
search for an input assignment over the entire input space I that would satisfy the
key leakage property, which is (s == o). If such an assignment can be found then
the corresponding input becomes the trigger for the Trojan.

The limitation of this approach is that the model checking property should com-
prehensively capture all trigger and leakage conditions if the Trojan is to be detected.
Rajendran et al. [30] discussesmultiple other options for creating the trigger and leak-
ing the secret key. For example, the trigger could arrive over multiple clock cycles.
The secret key leakage could be only a few bits of the entire key. Alternatively, the
leakage could be a function of the key rather than the actual key bits.

Another limitation is in the scalability of formal verification to detect well con-
cealed hardware Trojans in larger circuits. The results of Rajendran et al. were limited
to preforming bounded model checking on 12 clock cycles of the designs. It would
take considerably longer to verify if the Trojan’s trigger occurred much later clock
cycles. The scalability of formal verification to detect better concealed Trojans in
larger designs is still an open problem.

Formal Verification for Security in IoT Devices 197

7 Leveraging Formal Verification to Identify Meta-level
Authentication Loopholes

Designers are often more keen to adopt security counter-measures over the cryp-
tographic implementations and apply formal certification procedures to eliminate
possible security flaws in the system design. However, there can be functional gaps
in the meta-level of the implementation which may lead to weaknesses. Such gaps
are often manifested, as designers (while implementing) are unaware of the IoT envi-
ronment where these devices will be deployed in future. Such meta-level gaps can
be categorized as follows:

[Level-1] Absence of Authentication. The access points of a secure implemen-
tation may require the use of authentication, may be in the form of passwords,
which is completely oblivious to the designer. Hence, (s)he has not performed/de-
vised any password or authentication checks in the high-level invocation of this
implementation which may led to exploitation in the implementation and extract
out secure data.

[Level-2] Inability to Provide Strong Authentication. Though the designer has
implemented an authentication mechanism to safeguard the access of a secure
implementation, however there may be shortcomings in the formulations where
the authentication mechanism may be simple enough (for example, in case of
simple passwords or reduced set of variations in the key space) that it may get
regenerated by exhaustive enumeration of the possible variations of the encryption
within computational limits.

[Level-3] Missing Checks over Authentication Process. Even if a strong
authentication wrapper is present around the invocation of a secure implemen-
tation, there may be loopholes in the usage of the authentication process which
may lead to serious flaws in the design. A strong authentication may get destroyed
when multiple attackers can log through the same authentication strategy and dis-
tribute the search space to derive the encryption strategy/key. There is a possibility
that this approach may lead to break-through in the authentication barrier which
may have been computationally infeasible by single or two simultaneous user.
Therefore, placing a limit on the number of accesses (for example, there may be
checks to prohibit more than two login simultaneously) may resolve these issues.

The above discussion points to the fact that it may not be sufficient to formally certify
the secure design/implementation, but we need to formally model the environment
where this implementation is being deployed/invoked from. Then, another round of
formal certification is mandatory to ensure the flaws in the meta-level authentica-
tion over the design. To adopt the formal certification in this level, we perform the
following strategy:

• First, we abstract the functionality of the secure implementation in the form of
assumptions (assume properties).

• Then, we formally model the authentication wrapper which invokes the secure
design implementation in the form of assume properties.

198 K. Keerthi et al.

• Next, the mentioned three-level attributes are captured in terms of a set of formal
specifications.

• Finally, formal verification is performed over the authentication model (which
instantiates the design in the form of assume properties) with respect to the formal
specifications formed.

8 Conclusions

Recent developments in formal verification have significantly extended the capabil-
ities of these tools. Theorem proving and model checking can potentially be applied
to solve several hard problems in security, especially in the IoT domain. This chapter
provided an overview of formal verification applied to solve five critical security
issues related to an IoT device. Formal verification scales very well for some of the
problems considered, such as detecting programming bugs in software and proving
side-channel security.

Innovative usage of the formal verification tools is required to solve certain prob-
lems involving huge state space. This chapter demonstrated the use of a hierarchical
verification methodology for verifying the correctness of cryptographic implemen-
tations, which has considerably huge state space making a naïve invocation of the
formal verification tool fail. Identifying certain security problems, such as detection
of hardware Trojans, though feasible with formal verification, is very restricted. The
state-of-the-art can for instance, only detect Trojans that are triggered in the first few
clock cycles of the device operation. If the Trojan is well concealed, for example,
gets triggered much later in the device operation, then identifying them would be
considerably more difficult.

References

1. Affeldt, R.: On construction of a library of formally verified low-level arithmetic functions. In:
Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy,
26–30 March 2012. pp. 1326–1331 (2012)

2. Amla, N., Kurshan, R.P., McMillan, K.L., Medel, R.: Experimental analysis of different tech-
niques for bounded model checking. In: Proceedings of International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 34–48 (2003)

3. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of SAT-based
model checking techniques in an industrial environment. In: Proceedings of International Con-
ference on Correct Hardware Design and Verification Methods (CHARME), pp. 254–268
(2005)

4. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACMTrans. Program. Lang.
Syst. 37(2), 7:1–7:31 (2015). http://doi.acm.org/10.1145/2701415

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT
procedures instead of BDDs. In: Proceedings of 36th Annual Design Automation Conference,
pp. 317–320 (1999)

http://doi.acm.org/10.1145/2701415

Formal Verification for Security in IoT Devices 199

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. Lect.
Notes Comput. Sci. 1579, 193–207 (1999)

7. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifying safety properties of a PowerPC micro-
processor using symbolic model checking without BDDs. In: Proceedings of International
Conference on Computer-Aided Verification (CAV), pp. 61–71 (1999)

8. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE Trans. Comput.
35(8), 677–691 (1986)

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking:
1020 states and beyond. Inf. Comput. 98(2), 142–170 (1986)

10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential circuit verification using
symbolic model checking. In: Proceedings of 28th Annual Design Automation Conference,
pp. 46–51 (1991)

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptology—CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, 15–19 August 1999,
Proceedings. Lecture Notes in Computer Science, vol. 1666, pp. 398–412. Springer (1999).
https://doi.org/10.1007/3-540-48405-1

12. Chen, Y., Hsu, C., Lin, H., Schwabe, P., Tsai, M., Wang, B., Yang, B., Yang, S.: Verifying
Curve25519 software. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, 3–7November 2014, pp. 299–309 (2014)

13. Clarke, E., Kroening, D.: The CPROVER User Manual (2006)
14. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. In: Pro-

ceedings of International Conference onComputer-AidedVerification (CAV), pp. 47–71 (1994)
15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
16. Clake, E.M., Biere,A., Raimi, R., Zhu,Y.: Boundedmodel checking using satisfiability solving.

J. Form. Methods Syst. Des. 19(1), 7–34 (2001)
17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2001)
18. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools and

Algorithms for the Construction and Analysis of Systems, 10th International Conference,
TACAS 2004, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2004, Barcelona, Spain, 29 March–2 April 2004, Proceedings, pp. 168–176
(2004)

19. Duan, J., Hurd, J., Li, G., Owens, S., Slind, K., Zhang, J.: Functional correctness proofs of
encryption algorithms. In: 12th International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning, LPAR 2005, Montego Bay, Jamaica, 2–6 December 2005,
Proceedings, pp. 519–533 (2005)

20. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermeasures against
side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11:1–11:24 (2014). http://doi.
acm.org/10.1145/2685616

21. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings of Design
Automation and Test Conference in Europe Conference (DATE). pp. 142–149 (2002)

22. Kang, H.J., Park, I.C.: SAT-based unbounded model checking. In: Proceedings of 40th Annual
Design Automation Conference, pp. 840–843 (2003)

23. Kroening, D., Strichman, O.: Decision Procedures—An Algorithmic Point of View. Texts in
Theoretical Computer Science. An EATCS Series. Springer (2008). https://doi.org/10.1007/
978-3-540-74105-3

24. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
25. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Pro-

ceedings of International Conference on Computer-Aided Verification (CAV), pp. 250–264
(2002)

26. The MITRE Corporation: Common Vulnerabilities and Exposures. https://cwe.mitre.org/
27. The MITRE Corporation: Common Weakness and Enumerations. https://cwe.mitre.org/
28. Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient

SAT solver. In: Proceedings of 38th Annual Design Automation Conference, pp. 530–535
(2001)

https://doi.org/10.1007/3-540-48405-1
http://doi.acm.org/10.1145/2685616
http://doi.acm.org/10.1145/2685616
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-540-74105-3
https://cwe.mitre.org/
https://cwe.mitre.org/

200 K. Keerthi et al.

29. Nguyen, D.M., Stoffel, D., Welder, M., Kunz, W.: Conflict driven learning in a quantified
Boolean satisfiability solver. In: Proceedings of International Conference on Computer-Aided
Design (ICCAD), pp. 442–449 (2002)

30. Rajendran, J., Dhandayuthapany, A.M., Vedula, V., Karri, R.: Formal security verification of
third party intellectual property cores for information leakage. In: 29th InternationalConference
on VLSI Design and 15th International Conference on Embedded Systems, VLSID 2016,
Kolkata, India, 4–8 January 2016, pp. 547–552. IEEE Computer Society (2016). https://doi.
org/10.1109/VLSID.2016.143

31. Silva, M., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE
Trans. Comput. 48(5), 506–521 (1999)

32. Smith, E.W., Dill, D.L.: Automatic formal verification of block cipher implementations. In:
Formal Methods in Computer-Aided Design, FMCAD 2008, Portland, Oregon, USA, 17–20
November 2008, pp. 1–7 (2008)

33. Tsai, M., Wang, B., Yang, B.: Certified verification of algebraic properties on low-level math-
ematical constructs in cryptographic programs. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30
October–03 November 2017, pp. 1973–1987 (2017)

34. U.S. Department of Commerce, National Institute of Standards and Technology: Digital Sig-
nature Standard (DSS) (2000)

35. Waksman, A., Suozzo, M., Sethumadhavan, S.: FANCI: identification of stealthy malicious
logic using Boolean functional analysis. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, 4–8 November 2013, pp. 697–708. ACM (2013). http://doi.acm.org/10.1145/2508859.
2516654

36. Zhang, J., Yuan, F., Wei, L., Liu, Y., Xu, Q.: VeriTrust: verification for hardware trust. IEEE
Trans. CAD Integr. Circuits Syst. 34(7), 1148–1161 (2015). https://doi.org/10.1109/TCAD.
2015.2422836

https://doi.org/10.1109/VLSID.2016.143
https://doi.org/10.1109/VLSID.2016.143
http://doi.acm.org/10.1145/2508859.2516654
http://doi.acm.org/10.1145/2508859.2516654
https://doi.org/10.1109/TCAD.2015.2422836
https://doi.org/10.1109/TCAD.2015.2422836

SENSE: Sketching Framework for Big
Data Acceleration on Low Power
Embedded Cores

Amey Kulkarni and Tinoosh Mohsenin

Abstract Ever-growing IoT demands big data processing and cognitive computing
on mobile and battery operated devices. However, big data processing on low power
embedded cores is challenging due to their limited communication bandwidth and
on-chip storage. Additionally, IoT and cloud-based computing demand low over-
head security kernel to avoid data breaches. In this chapter, we present, “SENSE”,
Sketching and Encryption on Scalable heterogeneous Engine for data reduction and
encryption. SENSE is a heterogeneous framework which consists of three important
kernels: 1. sketching module for data reduction, 2. an accelerator for efficient sketch
recovery using scalable and parallel reconstruction architecture and 3. a host proces-
sor to perform post processing. SENSE framework can reduce data up to 67% with
3.81 dB signal-to-reconstruction error rate (SRER). One of the critical challenges in
big data processing on embedded hardware platforms is to reconstruct the sketched
data in real-time with stringent constraints on error bounds and hardware resources.
We explore Orthogonal Matching Pursuit (OMP) algorithm for sketch data recovery.
OMP is a greedy algorithm with high computational complexity which has emerged
as an important tool for signal recovery, dictionary learning and sparse data clas-
sification. We use a domain specific many-core hardware named Power Efficient
Nano Cluster (PENC) designed by EEHPC lab at University of Maryland, Balti-
more County. To demonstrate efficiency of SENSE framework, we integrate it with
Hadoop MapReduce platform for face detection application. The full hardware inte-
gration consists of tiny ARM cores which perform task scheduling and application

Thiswork is an extended version of the paperLESS:Big data sketching andEncryption on lowpower
platform [1] andLowOverheadCS-BasedHeterogeneousFramework for BigDataAcceleration [2].

A. Kulkarni (B) · T. Mohsenin
University of Maryland, Baltimore County, USA
e-mail: ameyk1@umbc.edu
URL: http://www.csee.umbc.edu/

T. Mohsenin
e-mail: tinoosh@umbc.edu

© Springer Nature Switzerland AG 2019
R. S. Chakraborty et al. (eds.), Security and Fault Tolerance in Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-030-02807-7_10

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02807-7_10&domain=pdf
mailto:ameyk1@umbc.edu
http://www.csee.umbc.edu/
mailto:tinoosh@umbc.edu
https://doi.org/10.1007/978-3-030-02807-7_10

202 A. Kulkarni and T. Mohsenin

processing, while PENC acts as an accelerator for sketch reconstruction. We show
performance of SENSE framework on face identification application.

Keywords Big data acceleration · Many-core platform · Sketching
algorithms · Internet of things · Security

1 Introduction

In recent years, Artificial Intelligence (AI) is tremendously growing in IoT devices,
right from home assistants, bio-medical trackers, surveillance, to semi-autonomous
cars. These Internet of Intelligent Things (IoIT) devices generate about Quintilian
of data everyday. In most crowd-sourced with heavy data processing applications,
intelligence is performed in cloud. Current real-time IoT devices takes advantage
of both real-time embedded devices and cloud computing. It typically follows fol-
lowing steps on embedded devices: 1. Gather data from different sensors on real-
time embedded devices, 2. Perform on-device intelligence based real-time data 3.
Add intelligent inferences based on crowd-sourced cloud data, 4. Finally update
cloud with newly collected real-time data and inferences. Thus embedded devices
perform not only on-device intelligence, but also need to send huge data, while
constraints on power and latency. To solve AI on embedded devices, the trend has
started to adopt low-power host with accelerated hardware for machine learning, and
signal processing applications. FPGAs, embedded GPUs such as nvidia TX2, Qual-
comm’s snapdragon, and domain specific many-cores such as movidius myriad2 are
beingwidely used as hardware accelerators. However, these embedded platforms can
suffer from potential communication bandwidth bottleneck for large data transfers
[3, 4]. Therefore, data transfer reduction with encryption is of utmost importance.

The compression algorithms should be sensor-agnostic, and should allow energy-
efficient, and low memory transmissions. Different algorithms have been proposed,
however these solutions encounter various challenges such as: 1. withstanding con-
tinuously changing sensory information, 2. Hardware overhead of decompression
algorithm, including chip area, processing power and latency of operations, and
3. High decompression error rate. Adaptive sketching techniques have demonstrated
exceptional decompression (reconstruction) error rate [4, 5], however the reconstruc-
tion of sketched signal is computationally intensive [2, 6]. We propose sketching
based framework called “SENSE”, Sketching and Encryption on Scalable heteroge-
neousEngine, consisting of two kernels: sketching original signal and reconstruction
of sketched signals; first data “sketching” is performed on gathered real-time sen-
sor data to acquire compressed measurements at embedded device/in cloud, and
then “reconstruction” kernel recovers sparse data at cloud servers/embedded devices
using very less number of linearly transformed measurements. The “reconstruc-
tion” can be performed using different algorithms such as Compressive Sampling
(CoSAMP), Iterative Hard Thresholding (IHT), L1-minimization, and Orthogonal
Matching Pursuit (OMP). Among all reconstruction algorithms OMP achieves high
reconstruction accuracy with lower computational resources. In this work, we adapt

SENSE: Sketching Framework for Big Data Acceleration … 203

Fig. 1 Proposed hardware efficient sketch-based heterogeneous framework for big data accelera-
tion, adaptive sketching is implemented using our previouswork [7], reconstruction of sketched data
is achieved using OMP algorithm on hardware accelerator platform, whereas application processing
is performed on host platform on reconstructed data

OMP as reconstruction tool. OMP consists of computationally intensive vector sort,
matrix multiplications and least square kernel. Therefore, to achieve real-time and
low power constraints, SENSE framework is implemented on heterogeneous archi-
tecture, where OMP is implemented on domain specific many-core accelerator.

Figure 1 shows heterogeneous SENSE framework that consists of an accelerator
for efficient sketch recovery using a reconfigurable and parallel OMP reconstruc-
tion architecture and a general purpose HOST platform for application processing.
The heterogeneous SENSE framework can achieve about 48% data reduction with
satisfactory reconstruction accuracy. Analysis of the proposed SENSE framework
is performed in terms of execution time and power consumption on different plat-
forms including Quad-Core ARM A15 CPU, embedded GPU available on nvidia
TK1 platform, and domain specific many-core platform named Power Efficient
Nano Cluster—PENC1 to chose best accelerator platform for sketch reconstruction.
To demonstrate real-time performance of face detection application using SENSE
framework, we implemented Hadoop MapReduce platform. The performance of
SENSE framework is shown in terms of reconstruction quality, hardware overhead
cost for end-to-end framework, and overall reduction in data transfers.

2 Background

2.1 Orthogonal Matching Pursuit (OMP) Algorithm

OMP algorithm has emerged as an important tool for signal recovery, dictionary
learning and sparse data classification, and has potential in various emerging applica-
tions ranging from wearable and mobile computing to real-time analytics processing
on servers.

1PENC many-core platform is developed by EEHPC lab at University of Maryland Baltimore
County, USA, Web: http://eehpc.csee.umbc.edu/.

http://eehpc.csee.umbc.edu/

204 A. Kulkarni and T. Mohsenin

2.1.1 Signal Recovery Problem

Let us assume D to be a k-sparse signal of length n. Let φ be the measurement matrix
projected onto the original signal, D. Measurement matrix (φ) must be incoherent
with the basis of the sparse signal, D. If D is not sparse in its original bases, it can be
transformed to another domain in which the signal is sparse. Then the measurement
matrix has to be uncorrelated with the signal in the transformed domain [8]. The
size of φ is m × n, where m � n and represents the number of measurements. D̂
is a m-length vector containing the measurements obtained by the projection of φ

onto D. Therefore, signal need to be converted to a transformed basis, ψ to induce
sparsity and D̂ is obtained as:

D̂ = φψD = φD (1)

where φ needs to be chosen such that the restricted isometric property (RIP) of order
2k is satisfied, where k represents the sparsity of the signal, D.

2.1.2 OMP Algorithm and Analysis

Matching pursuit algorithms have least computational complexity among all recon-
struction algorithms. OMP is an iterative greedy matching pursuit algorithm with
lowest complexity and signal-to-reconstruction error [9, 10]. OMP unlike Principle
Component Analysis (PCA) and Singular Value Decomposition (SVD) algorithms,
can adapt to continuously changing big data sets due to its complexity [4, 11] (Fig. 2).

Notations Used in OMP Algorithm

• D = Original data, S = Sampled reduced data (measured data), D̂ = Reconstructed
original data

• n = Length of the original data
• m = Number of measurements
• k = Sparsity
• R = Residual matrix

Fig. 2 Basic block diagram of OMP algorithm

SENSE: Sketching Framework for Big Data Acceleration … 205

• φ = Measurement Matrix (si ze:m × n)

• λ = Maximum index after dot product
• t = No. of iterations (usually equal to k).

Algorithm 1 OMP Reconstruction Algorithm
1:Initialization

– R0 =S, Λ0=∅,0 =∅ and t = 0

2:Identification

– Find Index λt= max j=1...n subject to | < φ j Rt−1 > |
3:Augmentation

– Update Λt=Λt−1
⋃

λt

– Update Qt=[Qt−1 φΛt]

4:Residual Update

– Solve the Least Squares Problem
Dt= minD ‖S − QSD‖2

– Calculate new approximation: αt= Qt Dt

– Calculate new residual: Rt= S − αt

5: Increment t, and repeat from step 2 if t < k
After all the iterations, we can find correct sparse signals.

OMP is a greedy algorithm, it finds the sparsest solution iteratively by computing
support of D and subtracting it from measurement vector S at every iteration. OMP
has three different phases, Identification, Augmentation and Residual Update. In
identification phase index i of highest magnitude of φ ∗ R is chosen as potential
vector to find closest approximation to D. At each iteration, index i is added to the
list of estimated support vectors in augmentation phase. The residual update phase
generates residual for next iteration. In residual update phase, formed augmented
matrix Q is used in least square regression model to find linear relationship between
augmented matrix Q and measured vector S. Finally, the amount of contribution that
column S provides is subtracted to obtain a residue. The OMP algorithm takes k
iterations to determine correct set of columns [12, 13].
The computational complexity for each step is explained below:

• Identification phase < φR > performs inner product operation of φ(M × N)
matrixwith residue vector R(1 × M). Thus computational complexity ofO(MN).
Maximum of < φR >, which gives a N × 1 vector. Hence, it has a computational
complexity of O(N).

• Residual update phase consist of the least squares problem. In every iteration, i ,�
matrix consists of i columns of size M . Thus, the new matrix, Q, is of size i × M .

206 A. Kulkarni and T. Mohsenin

Doing a (QT Q) gives a square matrix (i × i). Thus, a cost of O(iM). The cost
of inverting this i × i matrix by LU Decomposition is O(i3). The cost of QT y is
O(i2).

• To calculate the new approximation: αt = Qt xt
Q is of size i × M and x is of size 1 × i . Thus computational complexity of
O(iM).

• Compute new residual: Rt = y − αt , y andαt areM × 1matrices. The subtraction
at each iteration will take M computations, hence, O(M).

Therefore, the total cost per iteration will be O(MN). If the signal is k-sparse,
OMP algorithm will be iterated k times, giving a total computation complexity of
O(kMN).

OMP Acceleration Analysis on Various Platform
For all platforms, the measurement matrix φ is stored on-chip to reduce external
memory overhead. Furthermore, Monte-Carlo simulations are performed since mea-
surementmatrix and sparse image is based on randomvariables. Figures 3 and 4 show
the comparison of execution time and energy consumption between the ARM CPU,
K1 GPU, and PENC many-core architecture [14–16]. Overall comparison between
ARM CPU and K1 GPU shows that, ARM CPU performs best for smaller image
sizes and K1 GPU performs better for large image sizes i.e. for higher computational
complexity. Compared toARMCPU andK1GPU implementation PENCmany-core
platform performs 8× and 177× faster and saves 15× and 200× energy consump-
tions, respectively. Additionally considering chip area for TK1 platform in 28nm
and PENC platform in 65nm, PENCmany-core platform is the most efficient choice
for OMP kernels. In this work, we adapt PENC many-core as an accelerator which
provides programmability and parallelism capability with higher energy efficiency
as compared to ARM A15 CPU and embedded GPU.

Fig. 3 Comparison ofOMPexecution time analysis on quad-coreARMCPU,K1GPUatmaximum
clock rate of 2320.5MHz and 852MHz respectively, with PENC many-core (both core-level and
kernel-level parallelism) implementations at 1GHz

SENSE: Sketching Framework for Big Data Acceleration … 207

Fig. 4 Comparison of OMP energy consumption analysis on quad-core ARM CPU, K1 GPU
at maximum clock rate of 2320.5MHz and 852MHz respectively, with PENC many-core (both
core-level and kernel-level parallelism) implementations at 1GHz

Fig. 5 a Power efficient nano clusters (PENC), many-core architecture. b Bus-based cluster archi-
tecture. c Post-layout view of bus-based cluster implemented in 65nm, 1V TSMC CMOS technol-
ogy. dBlock diagram of core architecture. e Post layout implementation results of bus-based cluster
(consisting 3 cores + bus + cluster memory)

2.2 PENC Many-Core Architecture

Power Efficient Nano Clusters (PENC), many-core architecture is composed of 64
processing clusters (192 Cores) connected through routers in a three-level GALS
hierarchical tree. The lowest level consists of four clusters connected by a router with
five ports: one for each cluster and one for communication to the next level. GALS
hierarchical tree structure of PENC many-core allows us distributed computing and
scalability, thus efficient embedding of an extra processing core or cluster to the chip.
The lightweight cores also help to ensure that all used cores are fully utilized. While
the lightweight cores are ideal for sketching and reconstruction kernels, they often
require large amounts of memory for their model data. This is addressed with the

208 A. Kulkarni and T. Mohsenin

cluster-level shared memory that is interfaced to the bus. The shared memory can
be accessed within the cluster on the bus and from other clusters through the router.
Figure 5 shows the block diagram of PENC many-core with the details of bus-based
cluster and processor block diagram. It also gives brief idea of implementation results
on 65nm, 1V TSMC CMOS technology.

2.3 Security Definitions for SENSE Framework

Figure 1 shows the SENSE framework for secured big data processing, in which
encryption is achieved by using One-Time Random Linear Projections (OTRLP)
based sketching technique and decryption is performed by OMP sketch-
reconstruction algorithm. In big data system scenario,master node receives streaming
data Dn×n , where n is size of streaming data matrix.2 Sketching algorithm performs
learned random projections on streaming data to obtain Rm×n . The reduced data
Rm×n and keys K are transferred over the system bus to the slave node. The slave
node consists ofOMPsketch-reconstruction kernels to recover sketched signals using
keys K and big data processing platform.

Considering streaming data signal (plaintext) Dn×n is sparse and seed keys K

which generate one-time measurement matrix φm×n be a measurement matrix such
that m < n, where m is the number of measurements to be taken and n is length of
the original signal. Then sketching problem can be stated as: ReconstructDn×n from
the knowledge of

Rm×n = φm×nDn×n (2)

A private key has two functions Ek : Dn×n → Rm×n and Dk : Rm×n → Dn×n . Thus,
Dk(Ek(Dn×n)) = Dn×n is unfeasible without knowing keyK to determine Ek(Dn×n)

= Rm×n . In case of known n linearly independent messages an attacker can deduce
content of messages, thus data transfers are not secure under KPA if the same matrix
is used multiple times. We use one-time random linear projections (OTRLP) sce-
nario [17] in which each measurement matrix is only used one time and all measure-
ment matrices are statistically independent.

3 Application Case Study and Analysis

The implementation results shows that, the domain specific PENC many-core plat-
form is energy efficient and requires less chip area as compared to existing off-
the-shelf platforms. Therefore, we choose PENC many-core platform for hardware
efficient OMP reconstruction in the SENSE framework. To demonstrate efficiency

2For convenience to explain overview of the framework, we selected row and column size to be
same. In real-time streaming data can be of different column and row sizes.

SENSE: Sketching Framework for Big Data Acceleration … 209

Fig. 6 a Integration of SENSE hardware frameworkwith hadoopmapreduce, sketch reconstruction
is achieved using OMP algorithm on PENC many-core platform, map and reduce is performed on
ARM CPU. b MapReduce setup on Nvidia TK1 platform with current measurement setup using a
TI INA219 and an Arduino Uno

of the SENSE framework “face detection” application implemented targeting two
different big data benchmarks for face detection [18, 19] as shown in Fig. 6.

3.1 Hadoop Implementation on Embedded Platform

The MapReduce platform is a essential module in Hadoop framework, it performs
parallel data processing over several distributed nodes. The MapReduce is designed
to perform Big Data applications efficiently, however each node has limited storage
capability with constraints on bandwidth. In Hadoop framework, first the data is
distributed off-line, i.e. before application processing, to each parallel processing
node also known as “map” node. Thus, application data size, data bandwidth and
storage capacity of each “map” node is critical to performance of hadoop cluster.

TheMapReduce framework typically consists of three important kernels: 1. Mas-
ter Node 2. Map Stage 3. Reduce Stage as shown in Fig. 6. The master node accepts
job requests from user, schedules them to different mappers and monitors the job
(program running on Map and Reduce stages) status. The map stage accepts the
< key, value > from the master and processes scheduled tasks, whereas reduce
stage performs final operations. The size of big data set necessitates compression on
underlying platform.

In this work, we implementedMapReduce on Nvidia TK1 platform, where PENC
many-core is adapted as a hardware accelerator for data reconstruction at each map
node, and general purposeARMA15CPU performs application processing.We built
nativeHadoop 2.6.3 [20] libraries from source for TK1 platform. Figure 6 shows inte-
gration of Hadoop MapReduce architecture with the proposed sketch-based SENSE
framework, to evaluate different applications. The experiment is performed in four
different stages: 1. The images to be analyzed are sketched using OTRLP kernel
with 33% measurements i.e only 33% of the image is transferred. The resulting

210 A. Kulkarni and T. Mohsenin

transformed image are stored as binary files for distribution. 2. SequenceFile is used
to create a persistent data structure for binary key-value pairs. The key is generated
from the name of the file and a value is the binary data from the compressed file. It
ensures that the binary data of each image is not segmented before facial recogni-
tion occurs. 3. At the consumer (mapper) end, reconstruction of the sketched image
is performed using PENC many-core platform. While the reconstructed image is
placed into a queue for the consumer thread, the producer thread reads in the next
key-value pair. 4. Finally, the consumer thread passes reconstructed data application
processing.

3.2 Face Detection Application

Face detection is important for application such as expression identification, face
recognition, and lip reading. In past decade, the researchers have explored differ-
ent techniques for face detection including image processing, Principal Component
Analysis (PCA), machine learning, and in recent years deep learning. Face detec-
tion can be performed at hand-held embedded devices, general purpose compute
platform, and cloud servers, depending on the applications. Therefore, we believe
face detection application is a right fit to demonstrate SENSE framework. The face
detection is implemented using Haar feature based cascade classifier in OpenCV
[21, 22]. Cascade classifier is a machine learning tool, consisting of series of simple
classifiers stages including linear regression, support vectormachines. Each classifier
updates the votes based on training weights on region of interest until the candidate
is passed or rejected [23]. The stages of classifier are selected based on data size,
and variance in data, the trade-off exist between classification accuracy and number
of stages. In this work, we use 20-stage cascade classifier trained on 5000 images
of size 512×512 consisting of 60% positive sample [24, 25]. The face detection
is evaluated on different number of images ranging from 25 to 1000 with up to 6
faces in each image. The SENSE framework can be efficiently adopted for different
machine learning algorithms. SENSE framework has been evaluated for different
machine learning algorithms including support vector machine, nave bayes, logistic
regression, and k-nearest neighbors [7]. For seizure detection application, computa-
tions are reduced by 16× while energy consumption of processing is reduced up to
68%.

In order to analyse decompression error rate, reconstruction performance analy-
sis is performed in terms of mis-classification analysis. Figure 7 shows the example
of original image transition to reconstructed image and face detection on hadoop
MapReduce platform with SENSE framework. Table 1 shows execution analysis of
the proposed SENSE framework integrated with hadoop MapReduce for face detec-
tion application. The proposed SENSE framework reduces data transfers by 26%
with 67% reduction in data. To demonstrate efficiency of the PENC sketched data
reconstruction acceleration, we implemented MapReduce platform in two different
cases, 1. ARM CPU is used for CS reconstruction and processing i.e for master,

SENSE: Sketching Framework for Big Data Acceleration … 211

Fig. 7 Visual representation of image before and after each stage of processing. a Original image.
b Reconstructed image from the stored compressed image. c Successful facial identification of the
reconstructed image

Table 1 Execution time analysis of SENSE framework integrated with MapReduce for face detec-
tion application. In PENC + ARM CPU, sketch data reconstruction is performed on PENC and
application processing on ARM CPU whereas in ARM CPU only implementation the sketch data
reconstruction and processing performed on ARM CPU. The SENSE platform achieves 26.15%
reduction in original data

Size of data Application execution time Execution

PENC + ARM
(s)

ARM only (s) Improvement
(%)

Time overhead
(%)

25 images (11MB) 14 17 22.26 8.76

50 images (22MB) 27 34 26.22 6.75

250 images (108MB) 144 183 26.97 4.49

500 images (217MB) 281 359 27.90 4.36

1000 images (434MB) 583 741 27.01 4.08

2500 images (1.08GB) 1,473 1,884 27.90 3.99

5000 images (2.17GB) 3,015 3,906 29.55 3.78

CS reconstruction and mapper, reducer. 2. Combination of PENC and ARM CPU,
in which PENC is used for CS reconstruction and ARM CPU is used for master,
mapper and reducer. Compare to ARM CPU implementation, PENC + ARM imple-
mentation reduces application processing time by 22–29% and saves 32–34% energy
consumption as shown in Table 2. Additionally we also perform hardware overhead
analysis of CS reconstruction on hadoop MapReduce platform. SENSE framework
has very low execution time overhead of 3.7% and negligible energy consumption
overhead of 0.002% when tested for 5000 images. Tables 1 and 2 shows that, the
increase in number of data sizes SENSE framework will have insignificant execution
and energy consumption overhead.

212 A. Kulkarni and T. Mohsenin

Table 2 Energy consumption analysis of SENSE framework integrated with MapReduce for face
detection application. In PENC + ARM CPU, sketch data reconstruction is performed on PENC
and application processing on ARM CPU whereas in ARM CPU only implementation the sketch
data reconstruction and processing performed on ARM CPU

Size of data Application energy consumption Energy

PENC + ARM
(J)

ARM only (J) Improvement
(%)

Consumption
(%)

25 images (11MB) 166 223 34.31 0.007

50 images (22MB) 322 436 35.52 0.005

250 images (108MB) 1,736 2,309 32.94 0.003

500 images (217MB) 3,391 4,536 33.74 0.003

1000 images (434MB) 7,060 9,349 32.41 0.003

2500 images (1.08GB) 17,044 22,769 33.58 0.003

5000 images (2.17GB) 35,210 46,946 33.33 0.002

4 Summary

In this chapter, we propose SENSE framework consisting of adaptive big data sketch-
ingwith encryption, and sketched data reconstruction for efficient big data processing
on hardware. We chose OMP algorithm, which has highest reconstruction accuracy
and lowest computational complexity among all matching pursuit reconstruction
algorithms. The OMP reconstruction algorithm is implemented on different off-
the-shelf embedded devices including ARM A15 CPU, Nvidia TK1, and domain
specific PENCmany-core platform. The PENCmany-core platform performs 16-bit
data computation, thus consume 15× and 18× less energy and 16× and 8× latency
reduction in reconstruction time as compared to low power ARMCPU, and K1 GPU
respectively, while achieving satisfactory range of signal quality. The experimental
analysis insists to adapt PENCS many-core platform as a hardware accelerator for
sketched data reconstruction. Therefore, SENSE heterogeneous framework is imple-
mented using PENCmany-core for sketched data reconstruction andARMA15CPU
for application processing. To demonstrate the efficiency of SENSE framework, we
implement Hadoop MapReduce architecture on nvidia TK1 platform for face detec-
tion application. The SENSE framework achieves 26.17% data transfer reduction
with negligible energy overhead of 0.002% and very low execution overhead of
3.7% when tested for 5000 images with each image consisting of 1–6 faces.

SENSE: Sketching Framework for Big Data Acceleration … 213

References

1. Kulkarni, A., Shea, C., Homayoun, H., Mohsenin, T.: LESS: big data sketching and encryption
on low power platform. In: 2017 Design, Automation Test in Europe Conference Exhibition
(DATE) (2017)

2. Kulkarni,A., et al.: LowoverheadCS-based heterogeneous framework for big data acceleration.
In: Proceedings of the ACM Transactions Embedded Computing System 17, 1, Article 25
(2017), 25 pages, GLSVLSI ’16, pp. 57–62. ACM (2017)

3. Kulkarni, A., et al.: CS-based secured big data processing on FPGA. In: 2016 IEEE24thAnnual
International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.
201–201 (2016)

4. Rouhani, B., et al.: Sketch: An automated framework for streaming sketch-based analysis of
big data on fpga. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 187–194 (2015)

5. Mirhoseini, A., et al.: Perform-ml: performance optimized machine learning by platform and
content aware customization. In: Proceedings of the 53rd Annual Design Automation Confer-
ence, DAC ’16, pp. 20:1–20:6. ACM, New York, NY, USA(2016)

6. Kulkarni, A.M., Homayoun, H., Mohsenin, T.: A parallel and reconfigurable architecture for
efficient OMP compressive sensing reconstruction. In: Proceedings of the 24th Edition of the
Great Lakes Symposium onVLSI, GLSVLSI ’14, 299–304. ACM,NewYork, NY,USA (2014)

7. Kulkarni, A., Jafari, A., Sagedy, C., Mohsenin, T.: Sketching-based high-performance biomed-
ical big data processing accelerator. In: 2016 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1138–1141 (2016)

8. Candès, E., Wakin, M.: An introduction to compressive sampling. Signal Process. Mag. IEEE
25(2), 21–30 (2010)

9. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching
pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

10. Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via
regularized orthogonal matching pursuit. IEEE J. Select. Topics Signal Process. 4(2), 310–316
(2010)

11. Korde, A., Bradley, D., Mohsenin, T.: Detection performance of radar compressive sensing
in noisy environments. In: International SPIE Conference on Defense, Security, and Sensing
(2013)

12. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching
pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

13. Kulkarni, A., Mohsenin, T.: Accelerating compressive sensing reconstruction OMP algorithm
with CPU, GPU, FPGA and domain specific many-core. In: 2015 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 970–973 (2015). https://doi.org/10.1109/ISCAS.
2015.7168797

14. Page,A., Attaran, N., Shea, C., Homayoun,H.,Mohsenin, T.: Low-powermanycore accelerator
for personalized biomedical applications. In: Proceedings of the 26th Edition on Great Lakes
Symposium on VLSI, (GLSVLSI ’16), pp. 63–68. ACM, New York, NY, USA. 978-1-4503-
4274-2 (2016). https://doi.org/10.1145/2902961.2902986

15. Kulkarni, A., Pino, Y., Mohsenin, T.: Adaptive real-time Trojan detection framework through
machine learning. In: 2016 IEEE International Symposium onHardware Oriented Security and
Trust, (HOST ’16), May 2016, pp. 120–123 (2016)

16. Kulkarni, A., et al.: Low energy sketching engines on many-core platform for big data accel-
eration. In: Proceedings of the 26th Edition on Great Lakes Symposium on VLSI, GLSVLSI
’16, pp. 57–62. ACM (2016)

17. Bianchi, T.: Analysis of one-time random projections for privacy preserving compressed sens-
ing. IEEE Trans. Inf. Forens. Sec. 11(2), 313–327 (2016)

18. Martinez, A., Benavente, R.: The AR face database. In: CVC Technical Report #24 (1998)
19. Jain, V., Learned-miller, E.: FDDB: a benchmark for face detection in unconstrained settings.

Technical Report (2010)

https://doi.org/10.1109/ISCAS.2015.7168797
https://doi.org/10.1109/ISCAS.2015.7168797
https://doi.org/10.1145/2902961.2902986

214 A. Kulkarni and T. Mohsenin

20. Apache kernel description (2016). http://www.apache.org/
21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2001. CVPR 2001, vol. 1, pp. I–511–I–518 (2001)

22. Girshick, R.: Fast r-cnn. In: The IEEE International Conference on Computer Vision (ICCV)
(2015)

23. Haar Feature-based Cascade Classifier for Object Detection. http://docs.opencv.org/. Accessed
2 Feb 2016

24. Lienhart, R., Kuranov, A., Pisarevsky, V.: Pattern Recognition: 25th DAGM Symposium,
Magdeburg, Germany, September 10–12, 2003. Proceedings. Chapter Empirical Analysis of
Detection Cascades of Boosted Classifiers for Rapid Object Detection, pp. 297–304. Springer,
Berlin, Heidelberg (2003)

25. Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face recognition by humans: nineteen results
all computer vision researchers should know about. Proc. IEEE 94(11), 1948–1962 (2006)

http://www.apache.org/
http://docs.opencv.org/

	Preface
	Contents
	Security and Trust Verification of IoT SoCs
	1 Introduction
	1.1 Logic Testing
	1.2 Formal Methods
	1.3 Hybrid Approaches

	2 Background: Concolic Testing
	3 Prior Works on Concolic Testing
	4 Directed Test Generation Using Concolic Testing
	4.1 CFG Generation
	4.2 Edge Realignment
	4.3 Distance Evaluation
	4.4 Test Generation

	5 Experiments
	5.1 Evaluation of Scalability
	5.2 Evaluation of Coverage

	6 Conclusion
	References

	Low Cost Dual-Phase Watermark for Protecting CE Devices in IoT Framework
	1 Introduction
	2 Overview of IP Core Protection Through Watermark
	2.1 Motivation of Embedding Dual Phase Watermark for IP Protection at Behavioral Level

	3 Dual-Phase Watermarking Methodology
	3.1 Problem Formulation
	3.2 Dual-Phase Watermark Encoding
	3.3 Process for Embedding Dual-Phase Watermark in IP Design
	3.4 Signature Detection

	4 Motivational Example for Dual-Phase Watermarking Approach
	4.1 Motivational Example for Dual-Phase Watermarking Scheme
	4.2 Properties of Generated Watermark

	5 Results and Analysis
	5.1 Typical Attack Scenarios
	5.2 Strength of Protection and Tamper Tolerance Ability
	5.3 Embedding Cost Comparison and Design Overhead Analysis

	6 Conclusion
	References

	Secure Multicast Communication Techniques for IoT
	1 Introduction
	2 Secure Group Communication
	3 Secure Group Communication Approaches
	3.1 ECC-Based Secure Group Communication
	3.2 S-CPABE for Secure Multicast Communication
	3.3 Discussion

	4 Conclusion
	References

	An Adaptable System-on-Chip Security Architecture for Internet of Things Applications
	1 Introduction
	2 Security Assurance in SoC
	2.1 Security Policies
	2.2 Security Architecture: The Current State of the Practice

	3 Motivation for Adaptable Architecture
	3.1 Case Study: An Attack on Confidentiality
	3.2 Case Study: An Attack on Integrity
	3.3 Current Challenges with Adaptable Architecture

	4 A Generic Adaptable Infrastructure
	4.1 Design Choices
	4.2 Centralized Reconfigurable Security Policy Engine
	4.3 Smart Security Wrappers
	4.4 Design-for-Debug Interface

	5 Overall Flow and Major Steps
	5.1 CAD Framework for Security Policy Synthesis
	5.2 Authentication and Remote Upgrade

	6 Results and Discussion
	7 Conclusion
	References

	Lightweight Fault Tolerance for Secure Aggregation of Homomorphic Data
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Schemes and Homomorphic Encryption
	2.2 Paillier Additive Homomorphic Encryption

	3 Assumed Threat Model for Fault Tolerance
	4 Adapting Residue Numbering for Modular Multiplication
	5 Fast Modular Reductions Using Mersenne Primes
	6 Lightweight Error Detection for Random Faults
	6.1 Detecting Errors in Modular Multiplication ALUs
	6.2 Detecting Errors in Encrypted Memories

	7 Experimental Evaluation
	7.1 Fault Coverage Results
	7.2 Area and Delay Overhead Results

	8 Related Work
	9 Concluding Remarks
	References

	An Approach to Integrating Security and Fault Tolerance Mechanisms into the Military IoT
	1 Introduction
	2 Preliminaries
	3 Faults Diagnosis Techniques Within SFTN
	4 The Security Solutions in the Network Layer
	5 Simulation of the SFTN
	6 Results of the SFTN Simulation
	7 An Experimental Model of Fault Tolerant Network for MIoT
	References

	Fault-Tolerant Implementations of Physically Unclonable Functions on FPGA
	1 Introduction
	2 Fault Injection and Its Objectives
	3 Countering Fault Attacks on XOR APUF
	3.1 Countermeasure Design for Attack-I
	3.2 Countermeasure Design for Attack-II
	3.3 A Self-testable APUF Switch Design

	4 Countering Fault Attacks on ROPUF
	5 Countering for Fault Attacks on Other Delay PUFs
	5.1 Loop PUF
	5.2 Bistable Ring PUF

	6 Fault Recovery Schemes
	6.1 Rollback
	6.2 Random-Sliding

	7 FPGA Implementations and Hardware Overhead
	7.1 Implementation Details and Fault Simulation
	7.2 Post Placed-and-Route Simulation Results
	7.3 Hardware Overhead

	8 Summary
	References

	Fault Tolerance in 3D-ICs
	1 Introduction
	2 Defects in TSVs
	3 Fault Tolerance Techniques and Classification
	4 Signal Switching
	5 Signal Shifting with TSV Chains
	6 Signal Shifting with Optimal Grouping
	7 Cross Bar
	8 Router Based
	8.1 Designing of Switch and Re-routing Paths
	8.2 Router Based with Processor

	9 Online Fault Tolerance Technique
	10 Time Division Multiplexing Access Based Fault Tolerance Technique
	10.1 Finding Defective TSVs
	10.2 Re-route Through Defect-Free TSV
	10.3 Illustration of TDMA Based Fault Tolerance Technique

	11 Conclusion
	References

	Formal Verification for Security in IoT Devices
	1 Introduction
	2 Background: Symbolic Model Checking
	2.1 BDD-Based Model Checking
	2.2 SAT-Based Model Checking
	2.3 CBMC: The Formal Verification Tool

	3 Correctness of Crypto Implementations
	3.1 Correctness of a Multi-precision Library
	3.2 Verifying an ECC Implementation
	3.3 Verifying an RSA Implementation

	4 Program Vulnerability Detection
	4.1 Program Vulnerability Detection in a Multi-precision Library

	5 Formal Verification of Side Channel Countermeasures
	6 Detecting Hardware Trojans Using Formal Verification
	7 Leveraging Formal Verification to Identify Meta-level Authentication Loopholes
	8 Conclusions
	References

	SENSE: Sketching Framework for Big Data Acceleration on Low Power Embedded Cores
	1 Introduction
	2 Background
	2.1 Orthogonal Matching Pursuit (OMP) Algorithm
	2.2 PENC Many-Core Architecture
	2.3 Security Definitions for SENSE Framework

	3 Application Case Study and Analysis
	3.1 Hadoop Implementation on Embedded Platform
	3.2 Face Detection Application

	4 Summary
	References

