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Colorectal Cancer Subtypes – 
The Current Portrait

Peter Jordan

Abstract
Colorectal cancer (CRC) is one prominent 
example for how chemotherapy has been 
changing by moving from the use of general 
cytotoxic agents to more tumour-specific 
drugs. For example, antibody-based drugs 
neutralize a growth factor receptor protein on 
the surface of tumour cells. The development 
of such new therapeutic opportunities requires 
a more thorough and systematic subclassifica-
tion of CRC because tumour cells can exploit 
several alternative genetic pathways for their 
survival. This chapter gives an overview on 
CRC subtypes as an introduction to the fol-
lowing book chapters that will describe 
aspects of specific subtypes, and how these 
may lead to the development of novel pathway-
specific drugs for a more precise therapeutic 
intervention.

Keywords
Chromosomal instability · Colorectal cancer 
subtype · Consensus molecular subtype · 
Microsatellite instability · Oncogene · Polyp · 
Serrated pathway

According to the Globocan 2012 data collected 
by the International Agency for Research on 
Cancer, cancer of the colon and rectum (CRC) 
presented in both sexes over 1.35 million cases. 
This corresponds to the third most common inci-
dence (behind lung and breast cancer) and the 
fourth cause of cancer mortality worldwide 
(Ferlay et al. 2015). CRC incidence continues to 
rise especially in low and middle income coun-
tries and is considered one of the clearest markers 
for rapid societal and economic changes that are 
associated with cancer development (Arnold 
et  al. 2017). The corresponding life-style and 
environmental factors contribute significantly to 
the vast majority of CRC cases, which are desig-
nated as sporadic CRC. Nevertheless, hereditary 
CRC syndromes exist but cause only a small 
fraction of cases.

Sporadic CRC has been extensively studied 
and reviewed (Jass 2007; Fearon 2011; Cancer 
Genome Atlas Network 2012; Brenner et  al. 
2014; Matos et al. 2016). The majority of the spo-
radic CRC tumours originates from premalignant 
precursor lesions known as polyps, which over 
time progress to clinically relevant tumours. The 
Fearon-Vogelstein model has provided an initial 
paradigmatic model for CRC tumorigenesis 
based on the loss of the tumour suppressor gene 
APC and stepwise accumulation of mutations in 
critical genes including KRAS, DCC and TP53 
(Fearon and Vogelstein 1990). A persistent acti-
vation of the Wnt pathway that regulates the stem 
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cell compartment and cell fate along the crypt-
villus axis of the colon mucosa emerged as a key 
driver of CRC.

However, subsequent pathological or molecu-
lar analyses have revealed the existence of sev-
eral CRC subtypes instead of being a uniform 
disease entity. From the pathologist’s perspec-
tive, for example, the detected polyps are precur-
sor structures formed as morphologically distinct 
types and can be divided into either tubular and 
villous adenomas, or serrated and hyperplastic 
polyps. The anatomic site of origin further divides 
tumours into two groups: those found in the distal 
or in the proximal colon segment. For example, 
proximally located tumours are usually larger 
and present a mucinous histology.

On the other hand, molecular analyses demon-
strated that tumours can exhibit either widespread 
chromosomal abnormalities, designated as the 
chromosomal instability phenotype (CIN), or, 
instead, a high rate of DNA sequence mutations 
(the microsatellite instability phenotype, or MSI) 
caused by deficient DNA mismatch repair. 
Another molecular feature that distinguishes dif-
ferent tumour groups is the degree of increase in 
DNA methylation observed in clusters of the 
CpG dinucleotide found in many gene promoters, 
a phenotype known as CpG island methylator 
phenotype (CIMP).

Finally, genotype analyses of tumours detected 
the presence of typical and sometimes mutually 
exclusive somatic mutations in specific cancer-
related genes, such as the APC and TP53 tumour 
suppressor genes, or in oncogenes such as KRAS, 
PIK3CA or BRAF and contributed to the assign-
ment of CRC subtypes.

By combining the above criteria of pathology 
and molecular genotyping, sporadic CRC 
tumours initially formed two main groups. One 
group included over 70% of the cases and devel-
oped tumours, mostly in the distal colon, that 
appeared to follow an adenoma-carcinoma 
sequence involving recurrent somatic mutations 
in the APC and TP53 tumour suppressor genes or 
in the oncogene KRAS (Jass 2007; Cancer 
Genome Atlas Network 2012; Brenner et  al. 
2014; Phipps et  al. 2015). These cases also 

exhibit widespread chromosomal abnormalities 
(CIN), and derive from adenomatous polyps.

A second major group of sporadic CRC 
included about 15% of patients with tumours 
occurring preferentially in the proximal colon, 
presenting a stable chromosome number, but a 
high rate of DNA sequence mutations, the MSI 
phenotype. This phenotype develops following 
the somatic silencing by DNA methylation of the 
promoter of the MLH1 gene that encodes a com-
ponent required for a functional DNA mismatch 
repair system. The majority of these tumours 
derive from precursor polyps with a serrated 
morphology called sessile serrated adenoma 
(Snover et al. 2005; Bettington et al. 2013) and 
present activating mutations in the oncogene 
BRAF, but not in KRAS.

Subsequent studies unravelled further hetero-
geneity within these two groups of tumours. For 
example, some 8% of sporadic cases have a 
mutation in BRAF but are not MSI. Another 10% 
have mutation in KRAS but occur in the proximal 
colon and derive from a type of serrated polyp 
called traditional serrated adenoma (Jass 2007; 
Phipps et  al. 2015). In addition, many 
adenomatous-derived polyps in the distal colon 
lead to carcinomas with CIN, but without the 
presence of mutated KRAS.

Although this heterogeneity precluded a simple 
genotype-phenotype correlation of CRC, it laid the 
foundation for subtype-specific therapeutic 
approaches. For example, the stimulation of tumour 
cell proliferation through the epidermal growth 
factor receptor (EGFR) and its downstream signal-
ling along the mitogen-activated protein kinase 
(MAPK) pathway, has led to the development and 
clinical approval of therapy using the anti-EGFR 
antibodies cetuximab and panitumumab. In clinical 
practice only around 10% of cases respond to anti-
EGFR therapy (Bardelli and Siena 2010; Misale 
et al. 2014), while others are a priori resistant due 
to mutually exclusive mutations in either KRAS 
(30%), NRAS (2%), or BRAF (15%) that all operate 
in the EGFR pathway (Zhao et  al. 2017). Such 
mutations revealed to be alternative mutational 
events and occur early during tumour development, 
given they can be detected in microdissected 
premalignant polyps or aberrant crypt foci (Yang 
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et  al. 2004; Beach et  al. 2005; Rosenberg et  al. 
2007; Velho et al. 2008; Carr et al. 2009; Sandmeier 
et al. 2009; Boparai et al. 2011; Kim et al. 2011). 
Another example are inhibitors of the BRAF kinase 
activity that have the potential to target some 
10–15% of CRC cases (Obaid et al. 2017).

Besides the MAPK pathway, the activation of 
the phosphatidylinositol 3-kinase (PI3K) path-
way has therapeutic potential. Mutations in exon 
20 of the PIK3CA gene were found to associate 
significantly with the MSI pathway, while exon 9 
mutations E542K and E545K are overrepre-
sented in KRAS mutant tumours (Zhao and Vogt 
2010; Whitehall et al. 2012; Day et al. 2013).

More recently, genome-wide techniques have 
allowed determining the gene expression signa-
tures of colorectal tumours. The subsequent bio-
informatic clustering of the expression profiles 
provided yet another approach for the identifica-
tion of CRC subtypes. Several studies have been 
published with partly overlapping conclusions 
(Perez Villamil et al. 2012; Schlicker et al. 2012; 
De Sousa E Melo et al. 2013; Sadanandam et al. 
2013; Marisa et  al. 2013; Budinska et  al. 2013; 
Roepman et al. 2014), but have eventually resulted 
in the definition of at least 4 consensus molecular 
subgroups (CMS) (Guinney et al. 2015).

These expression signatures overlap in part 
with some of the previous genotypic or pheno-
typic CRC subtype characterization. For exam-

ple, the MSI_BRAF subtype from the serrated 
pathway corresponds fully to the unique CMS1 
gene expression profile and both classification 
schemes determined that roughly 15% of all spo-
radic CRCs belong to this group.

By contrast, the major group of 70% of the 
CRC cases CRC with recurrent mutations in the 
APC, TP53 and KRAS genes and CIN has been 
subdivided into three distinct CMS profiles. 
CMS2 joins tumours with APC mutations, CIN 
and frequent gene amplification or deletion, while 
CMS3 features mutation in KRAS and a mixed 
status of MSI and CIN. Interestingly, this group 
revealed major changes in metabolic reprogram-
ming of tumour cells. Finally, CMS4 unites 
tumours with CIN and a high degree of mesen-
chymal characteristics and activation of the TGFβ 
pathway. Concerning this subtype, subsequent 
studies emphasized the contribution of stromal-
cell gene expression to the CMS definitions 
(Calon et al. 2015; Isella et al. 2015, 2017). This 
could imply that clinically meaningful CRC gene 
signatures are being obscured by the presence of 
abundant stromal cell-derived signals. 
Alternatively, if this CMS4 turns out to be a thera-
peutically meaningful classification, then pro-
gression of this CRC subtypes might be strongly 
influenced by microenvironmental cues from the 
tumour stroma. A comparison of the most relevant 
characteristics of each CMS is given in Fig. 1.1.

Fig. 1.1  Comparison of the pathological, molecular and 
genomic features that distinguish the four consensus 
molecular subtypes (CMS) of colorectal tumours defined 
by gene expression-based clustering. CIMP CpG island 

methylator phenotype, -H high, -L low, MSI microsatellite 
instability, MSS microsatellite stability, CIN chromosomal 
instability

1  Colorectal Cancer Subtypes – The Current Portrait
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It should be noted that despite of the progress 
of using genome-wide and unbiased gene expres-
sion signatures for the CMS classification, a 
group of 13% of all sporadic CRC cases could 
not be accommodated into the 4 CMS groups due 
to a mixture of features observed in the other 4 
groups. This may indicate several properties: 
either further criteria are required to define this 
group, or these tumours are heterogeneously 
composed of different clones, or transition can 
occur between CMS signatures during tumour 
progression.

Altogether, this heterogeneity among sporadic 
CRC cases implies that a standardized therapeu-
tic approach does not exist for patients; however, 
it also provides an opportunity for the identifica-
tion of subtype-specific therapeutic targets or 
strategies.

In this book, a collection of review articles 
presents major CRC subtypes and how they can 
be distinguished by molecular analyses. They 
also highlight how this knowledge may guide the 
development of therapeutic strategies with higher 
precision and efficiency, thus reducing harmful 
side effects and increasing therapeutic efficacy.

In particular, the second chapter by Matos and 
Jordan describes the subgroup characterized by 
proximal colon location, mutation in the onco-
gene BRAF and microsatellite instability.

Then, Aguilera and Serna-Blasco elaborate on 
the KRAS-mutant CMS3 subtype in the distal 
colon and its changes in cell metabolism.

Chapters 4 and 5 are devoted to alterations in 
the phosphatidylinositol (PI)-dependent signal-
ling pathway that affects more than one CRC 
subgroup. Fernandes et al. describe the role of the 
oncogenic lipid kinase PI3K and targeted thera-
peutic strategies, whereas Kotelevets et al. focus 
on the antagonizing phosphatase and tumour sup-
pressor PTEN.

Chapter 6 reviews CRC subtype CMS2, which 
is characterized by recurrent mutations in the 
canonical Wnt signalling components, and pres-
ents the perspectives for using targeted therapy.

The more mesenchymal tumour cell proper-
ties that distinguish the highly invasive CMS4 
subtype are addressed in Chap. 7 by Georges 

et al., together with the role of tumour budding 
and of the microenvironment.

Chapters 8 and 9 present important aspects of 
the targeted treatment approach through anti-
EGFR therapy. Martins et  al. describe first the 
clinical challenges encountered in the treatment 
of patients with anti-EGFR therapy. Finally, 
Pereira and Rodrigues elaborate on the develop-
ment of miRNA-based strategies to improve the 
response to EGFR-directed therapy in patients.

Altogether, the book presents the main aspects 
of our current knowledge on heterogeneity in 
colorectal cancer, a prerequisite for the develop-
ment of novel targeted therapy approaches.
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Targeting Colon Cancers 
with Mutated BRAF 
and Microsatellite Instability

Paulo Matos and Peter Jordan

Abstract
The subgroup of colon cancer (CRC) charac-
terized by mutation in the BRAF gene and 
high mutation rate in the genomic DNA 
sequence, known as the microsatellite insta-
bility (MSI) phenotype, accounts for roughly 
10% of the patients and derives from polyps 
with a serrated morphology. In this review, 
both features are discussed with regard to 
therapeutic opportunities. The most prevalent 
cancer-associated BRAF mutation is BRAF 
V600E that causes constitutive activation of 
the pro-proliferative MAPK pathway. 
Unfortunately, the available BRAF-specific 
inhibitors had little clinical benefit for meta-
static CRC patients due to adaptive MAPK 
reactivation. Recent contributions for the 

development of new combination therapy 
approaches to pathway inhibition will be high-
lighted. In addition, we review the promising 
role of the recently developed immune check-
point therapy for the treatment of this CRC 
subtype. The MSI phenotype of this subgroup 
results from an inactivated DNA mismatch 
repair system and leads to frameshift muta-
tions with translation of new amino acid 
stretches and the generation of neo-antigens. 
This most likely explains the observed high 
degree of infiltration by tumour-associated 
lymphocytes. As cytotoxic lymphocytes are 
already part of the tumour environment, their 
activation by immune checkpoint therapy 
approaches is highly promising.

Keywords
Alternative splicing · BRAF · Microsatellite 
instability · RAC1b · Serrated polyp pathway

2.1	 �Introduction

As described in the introductory Chap. 1, spo-
radic colorectal cancer (CRC) is not a homoge-
nous disease entity but presents with distinct 
subtypes that differ in molecular and pathologi-
cal criteria. One defined subgroup comprises 
about 10–15% of the patients and displays a high 
mutation rate in the genomic DNA sequence, 
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known as the microsatellite instability (MSI) 
phenotype. Tumours of this type occur mostly in 
the proximal colon, carry frequently a mutation 
in the BRAF gene, and derive from polyps with a 
serrated morphology. They present a stable chro-
mosome number, but an inactivated DNA mis-
match repair system, which causes the high 
number of mutations in the DNA sequence, as 
detailed below (Jass 2007; Fearon 2011; Cancer 
Genome Atlas Network 2012; Brenner et  al. 
2014; Matos et al. 2016). Besides this subgroup 
of sporadic CRC, DNA mismatch repair genes 
can also suffer germline mutations and cause 
Lynch syndrome or hereditary nonpolyposis 
colorectal cancer (HNPCC) that is responsible 
for about 3% of all CRC cases.

From the morphological point of view, sessile 
serrated adenoma (SSA) is the main precursor 
lesion of this tumour subtype (Noffsinger 2009; 
Snover 2011; Bettington et  al. 2013). By colo-
noscopy, SSAs are detected in the proximal colon 
as broad-based flat polyps that grow on the 
mucosa surface with a mucinous cap, and are 
estimated to give rise to about 12% of all spo-
radic CRC tumours.

Following the availability of genome-wide 
gene expression analyses, CRC subtypes have 
also been determined based on transcriptomic 
signatures. Eventually, this resulted in the defini-
tion of consensus molecular subgroups (CMS) 
(Guinney et al. 2015) and one of the unique gene 
expression profiles characterizing roughly 15% 
of all sporadic CRCs, called CMS1, corresponds 
unequivocally to the BRAF/MSI subtype.

2.2	 �Biology and Role of Mutated 
BRAF Protein Kinase

The BRAF gene encodes a serine/threonine-protein 
kinase that is one of the downstream effector proteins 
of several growth factor receptors, including the epi-
dermal growth factor receptor (EGFR). In normal 
colon epithelial cells, stimulation of EGFR leads to 
recruitment of the small GTPase KRAS to the plasma 
membrane and subsequent interaction with 
BRAF.  This initiates the mitogen-activated protein 
kinase (MAPK) pathway by activating MEK through 

its phosphorylation (Dhillon et al. 2007; Lavoie and 
Therrien 2015). Several studies have revealed the for-
mation of a dimeric complex between BRAF and 
CRAF proteins (Wan et al. 2004; Poulikakos et al. 
2010) involved in activation of the MAPK pathway, 
which then induces cell growth and proliferation. In 
addition, this pathway also affects other key cellular 
processes, such as cell migration (through RHO 
small GTPases), apoptosis (through the regulation of 
BCL-2), and survival (through the HIPPO pathway) 
(Matallanas et al. 2011).

In colon cancer, this pathway is highly acti-
vated, either by oncogenic mutation or overex-
pression of EGFR (occurs in up to 50% of human 
cancers (Dhillon et  al. 2007)), or by mutually 
exclusive oncogenic mutations in the KRAS or 
BRAF genes. The 1799 T > A mutation in BRAF 
encodes substitution of a valine with a negatively 
charged glutamate residue at codon 600 within 
the BRAF kinase domain. This mimics a regula-
tory phosphorylation event that increases kinase 
activity approximately tenfold (Davies et  al. 
2002). The BRAF V600E mutation accounts for 
up to 80% of all cancer-associated BRAF muta-
tions, characterizes between 8 and 14% of early 
and advanced stages CRC cases (Roth et al. 2010; 
Gavin et al. 2012; Venderbosch et al. 2014; André 
et al. 2015; Taieb et al. 2016), and causes consti-
tutive activation of the MAPK pathway (Davies 
et  al. 2002). Clinically, BRAF V600E-mutated 
CRCs are associated with right-sided, high-grade 
primary tumours, more frequent in older women, 
and arising from precursor sessile serrated ade-
nomas (Jass 2007). Despite having a favourable 
prognosis in early-stage disease, BRAF V600E-
mutated CRCs are associated with poor survival 
rates at a metastatic stage (Roth et  al. 2010; 
Venderbosch et  al. 2014; Guinney et  al. 2015; 
Bläker et al. 2018). They also display a distinct 
pattern of metastatic spread, with higher frequen-
cies of peritoneal involvement, distant lymph 
node metastases, and a lower frequency of lung 
metastases (Atreya et al. 2016).

Up to 80% of CRCs positive for the BRAF 
V600E mutation were also found to overexpress 
RAC1b, a highly active splicing variant of the 
small GTPase RAC1 (Matos et al. 2008). RAC1b 
overexpression seems to occur independently of 
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tumour stage and microsatellite status (Matos et al. 
2008), and was shown to arise from persistent 
inflammatory cues from the tumour microenviron-
ment (Matos et  al. 2013). RAC1b differs from 
RAC1 both by requiring 10-times fewer growth 
factor stimulation to become activated and by 
exhibiting a selective downstream signalling that 
favours cellular proliferation and survival (Matos 
et al. 2003; Matos and Jordan 2005). RAC1b over-
expression was found to synergise with BRAF 
V600E in promoting cellular transformation 
(Matos and Jordan 2008; Matos et al. 2008), and to 
allow colonocytes to overcome BRAF V600E-
induced senescence (Henriques et al. 2015).

2.3	 �Causes and Consequences 
of Microsatellite Instability

Short repetitive sequence stretches consisting of 
mono-, di-, tri- or tetra-nucleotides are desig-
nated as microsatellites and occur frequently 
throughout the genome, mostly in non-coding 
regions. These stretches constitute frequent hot-
spots for DNA polymerase slippage during DNA 
replication, leading to the gain or loss of repeated 
nucleotides, i.e. short insertions or deletions 
(Yamamoto and Imai 2015). Usually, these errors 
generate unpaired nucleotides that are recognized 
and excised by the DNA mismatch repair system 
(MMR) followed by resynthesis of the affected 
stretch. If MMR is not functioning properly, then 
microsatellite regions suffer length variation and 
an instable number of repeat units, designated as 
microsatellite instability (MSI). Thus, MSI repre-
sents phenotypic evidence that MMR is malfunc-
tioning. Typically, two mononucleotide repeat 
markers (BAT25 and BAT26), and three dinucle-
otide repeats (D2S123, D5S346, and D17S250) 
are analysed to determine the MSI status of a 
tumour (Umar et al. 2004). Samples are classified 
as MSI-high when two or more markers are 
unstable, and as MSI-low when only one marker 
shows instability.

Although the majority of repeats occur in 
untranslated regions and introns, the coding 
region of some genes also contain repeats 
(Cortes-Ciriano et  al. 2017). In this case, MSI 

will cause sequential acquisition of frameshift 
mutations that usually create a premature stop 
codon in the corresponding mRNA, leading to its 
subsequent degradation by the nonsense-
mediated mRNA decay (NMD) pathway and lack 
of translated protein product. Well-known exam-
ples of tumour-suppressor genes mutated in MSI 
tumours are encoding the receptor TGFBR2 
(A10 repeat), the pro-apoptotic protein BAX (G8 
repeat), or mismatch repair proteins MSH6 (C8 
repeat) and MSH3 (A8 repeat) (Grady et al. 1999; 
Duval and Hamelin 2002). Another possible out-
come of MSI-induced frameshift mutations in the 
coding region, in particular when occurring in the 
NMD-resistant terminal exon, can be the transla-
tion of new amino acid stretches that affect pro-
tein function but also confer a neo-antigen 
character (Williams et  al. 2010), as described 
below.

But what causes MSI in sporadic tumours and 
could this be therapeutically targeted? While in 
the hereditary non-polyposis syndrome (HNPCC 
or Lynch syndrome), MSI initiates tumorigenesis 
and is caused by germline mutations in MMR 
genes (mainly MSH2 and MLH1, but in some 
cases also in MSH6, MSH3 or PMS2), this is 
rarely the case in sporadic tumours. The sporadic 
MSI tumour phenotype corresponds to 12% of all 
CRC cases, occurs later during tumorigenesis 
and is mainly caused by biallelic hypermethyl-
ation of the MLH1 promoter, resulting in silenc-
ing of the gene’s expression (Veigl et  al. 1998; 
Cunningham et al. 1998). Hypermethylation is a 
major mechanism of gene silencing. It occurs 
through the methylation of cytosines in the CpG 
islands present in the majority of human gene 
promoters, including the MLH1 gene. Indeed, 
there is a significant correlation between MSI 
and the presence of both the CpG island methyl-
ator (CIMP) phenotype and BRAF mutation in 
this subgroup of CRCs (Weisenberger et al. 2006; 
Shen et  al. 2007). More specifically, this sub-
group is characterized as CIMP-high (CIMP-H), 
characterized by methylation in the majority of 
five selected CIMP marker gene promoters, 
although definition and prognostic role are still 
controversial (Curtin et al. 2011; Jia et al. 2016). 
CIMP represents a genome-wide change in epi-
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genetic regulation that precedes the MSI pheno-
type and a genome-wide study identified that 
over 100 genes were silenced due to CpG island-
methylation in this group of colorectal tumours 
(Hinoue et  al. 2012). Recent evidence suggests 
that CIMP, in turn, may be preceded by the pres-
ence of the BRAF-V600E mutant protein because 
this stimulates ERK activity and subsequent 
phosphorylation of MAFG, a transcriptional 
repressor protein. MAFG then binds the MLH1 
promoter and recruits a protein complex contain-
ing DNA methyltransferase DNMT3B involved 
in transcriptional silencing (Fang et  al. 2014). 
Thus, if oncogene-induced epigenetic silencing 
can trigger CIMP in CRCs, the therapeutic down-
regulation of oncogene signalling in tumour cells 
should, in theory, also be able to reverse the 
CIMP phenotype. Yet, to our knowledge, there is 
no reported evidence of CIMP reversion by thera-
peutic targeting of oncogenic MAPK signalling. 
Moreover, although the use of DNA methyltrans-
ferase inhibitors, such as 5-aza-2′-deoxycytidine 
(5-aza-dC), have had some success in reverting 
the hypermethylation of CRC-associated genes 
in vitro (Kai et al. 2017), the use of therapeutic 
use of cytosine-analogues did not shown con-
vincing clinical benefit when used alone 
(Vaiopoulos et al. 2014).

Considering the epigenetic nature of this CRC 
phenotype, this is perhaps one of the many cases 
where preventive medicine and adjuvant mea-
sures concerning life-style factors such as nutri-
tion, physical activity or tobacco smoking, could 
have an important impact. For example, DNA 
methylation reactions depend on folate intake 
and the level of the methyl-group donor 
S-adenosylmethionine (SAM) (Sapienza and Issa 
2016; Bultman 2017). Although the effects of 
folic acid dietary supplementation in colorectal 
cancer still remain controversial (Crider et  al. 
2012; Johnson and Belshaw 2014), in cultured 
human colonocyte cells, folate depletion was 
shown to result not only in the expected DNA 
hypomethylation but also in the targeted hyper-
methylation of certain gene locus (Zhang et  al. 
2017). Moreover, these aberrant DNA methyla-
tion and gene expression patterns correlated with 
tumour stage, disease progression, recurrence 
rate and overall survival of sporadic CRCs.

Another potential epigenetic mechanism caus-
ing MSI was reported based on mutations in the 
H3K36 trimethyltransferase SETD2, a histone 
modification that characterizes the DNA synthe-
sis phase of the cell cycle and is required for 
recruitment of the MMR protein MSH6 to sites 
of DNA replication (Li et al. 2013). MSH6 forms 
one of the two major MMR protein complexes 
with MSH2 and cells lacking the H3K36 trimeth-
yltransferase SETD2 displayed the MSI-typical 
mono- and dinucleotide repeat instability. 
However, a subsequent analysis of tumour sam-
ples could not confirm the association of SETD2 
mutations with any clinically relevant MSI phe-
notype (Kanu et al. 2015).

It should be noted that an important clinical 
implication of the presence of MSI in CRC is that 
the widely used 5-fluorouracil (5FU) adjuvant 
chemotherapy has no benefit for sporadic MSI 
CRC as well as Lynch syndrome patients (Ribic 
et al. 2003; Carethers 2017). The reason is that 
the MSH2-MSH6 mismatch repair complex is 
required for binding 5FU after its incorporation 
into DNA and for triggering cell death (Tajima 
et al. 2004).

More recently, another type of MSI specific 
for the less frequent tri- or tetra-nucleotide 
repeats has been linked to inflammation-induced 
mislocalization of the MSH3 protein from the 
nucleus to the cytosol (Haugen et  al. 2008; 
Tseng-Rogenski et al. 2015). This phenotype was 
detected in up to 60% of CRC and is thus not 
specific for the BRAF/MSI subtype; however, it 
can influence patient outcome because an 
A8-repeat in exon 7 of the MSH3 gene is one of 
the target regions for frameshift mutations in 
MSI (Carethers et al. 2015; Koi et al. 2018).

2.4	 �Pharmacological 
Approaches to Target 
the BRAF CRC Subtype

Patients with BRAF-mutated metastatic CRCs 
show shorter progression-free and overall sur-
vival (Roth et al. 2010; Venderbosch et al. 2014; 
Guinney et al. 2015) and have limited therapeutic 
options [nearly 70% of patients with advanced 
BRAF V600E-mutated CRC do not survive first-
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line chemotherapy (Seligmann et al. 2017)]. This 
raised high hopes for the use of BRAF inhibitors 
to treat this subtype of CRC.  BRAF inhibitor 
monotherapy has proven efficient in the treat-
ment of metastatic melanoma patients, the major-
ity of which carry BRAF V600E mutations and 
reach response rates above 50% (Flaherty et al. 
2010; Long et al. 2014)). However, these inhibi-
tors alone were proven ineffective in 20 of 21 
(95%) of BRAF-mutated metastatic CRCs and 
this was not associated with either microsatellite 
instability status, CpG island methylation status, 
PTEN loss, or EGFR expression and copy num-
ber alterations (Kopetz et al. 2015). Thus, under-
standing the poor response rate to BRAF 
inhibitors constitutes a major therapeutic chal-
lenge for the treatment of this BRAF-mutated 
CRC subgroup.

Primary or acquired resistance to BRAF 
inhibitors is well known and has been a subject of 
intense investigation in the last decade (Shi et al. 
2014; Cosgarea et al. 2017). In melanoma, sev-
eral mechanisms of resistance to BRAF inhibi-
tors were already characterized, including 
activating mutations in MEK1 (Emery et  al. 
2009) or NRAS (Nazarian et al. 2010), the appear-
ance of BRAF splice variants that favour dimer-
ization with CRAF (Poulikakos et  al. 2011), 
BRAF gene amplification (Villanueva et  al. 
2013), MAP 3K8 overexpression (Johannessen 
et  al. 2010), upregulation of platelet-derived 
growth factor receptor (PDGFR) (Nazarian et al. 
2010; Sabbatino et  al. 2014) or EGFR (Girotti 
et  al. 2013), and MAPK pathway-related muta-
tions (Van Allen et  al. 2014). Thus, the vast 
majority of resistance mechanisms in melanoma 
appear somehow related to the re-stimulation of 
MAPK pathway signalling. This is further sup-
ported by recent clinical studies showing that the 
combination therapy with BRAF and MEK 
inhibitors significantly increases the response 
rate and overall survival of melanoma patients 
(Mäkinen 2007).

In the case of CRC, BRAF gene amplification 
was also found to mediate resistance to BRAF 
and MEK inhibition (Corcoran et  al. 2010). In 
addition, upregulation of EGFR activity, either 
by its overexpression (Corcoran et  al. 2012) or 

via feedback activation through CDC25C inhibi-
tion (Prahallad et al. 2012), have been implicated 
in resistance to BRAF inhibitors and lead to reac-
tivation of MAPK signalling. In contrast to mela-
noma, however, combined therapy using a 
selective BRAF inhibitor (dabrafenib) and a 
selective MEK inhibitor (trametinib), produced 
only minimal improvement over the individual 
monotherapies in patients with BRAF V600 
mutant metastatic CRC (Corcoran et  al. 2015). 
Better results were apparently obtained in a trial 
combining a BRAF inhibitor (vemurafenib) with 
an anti-EGFR antibody (panitumumab). In this 
trial, tumour regressions were seen in 10 of the 
12 evaluated patients, with partial responses in 2 
patients (100% and 64% regression lasting 40 
and 24  weeks, respectively), and stable disease 
lasting over 6 months in 2 other patients (Yaeger 
et  al. 2015). A very recent report of a clinical 
trial, combining dabrafenib (D) to inhibit BRAF 
with anti-EGFR panitumumab (P), alone or 
together with MEK inhibitor trametinib (T), 
obtained no response for the T + P combination 
but, in turn, achieved response rates of 10% for 
D + P, and of 21% for the triple drug combination 
(D + T + P) (Corcoran et al. 2018). Importantly, 
although the authors found that the efficacy of the 
D + T + P combination correlated with increased 
MAPK suppression, they also observed signifi-
cant correlation between reduced response, the 
emergence of KRAS and NRAS mutations, and 
disease progression (Corcoran et al. 2018). Thus, 
targeting the adaptive feedback pathways in 
BRAF V600E-mutated CRC can improve effi-
cacy, but MAPK reactivation remains an impor-
tant mechanism for acquired resistance.

Altogether, these findings reveal that BRAF 
V600 mutant metastatic CRCs may need the 
targeting of additional pathways, and pre-clinical 
data collected in the last few years have shown 
promising contributions for the development of 
new combination therapy approaches. For exam-
ple, a patient with metastatic BRAF-mutated 
colorectal cancer, who initially responded to 
combined EGFR and BRAF inhibition, devel-
oped resistance due to clonal selection of tumour 
cells bearing hepatocyte growth factor receptor 
gene (MET) amplification (Pietrantonio et  al. 
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2016). Switching therapy to dual MET and 
BRAF blockade, produced a rapid and marked 
regression of the disease, suggesting that the 
identification of molecular targets emerging dur-
ing the first treatment may allow to optimize the 
therapeutic strategy and maximize patient benefit 
(Pietrantonio et al. 2016). Consistently, a preclin-
ical study using mouse xenografts of HT-29 and 
RKO CRC cell lines, which bear the BRAF 
V600E mutant allele, showed that the combina-
tion of a MET inhibitor (PHA-665752) and 
BRAF inhibitor (vemurafenib) produced a sig-
nificantly higher inhibition of tumour growth 
than PHA-665752 or vemurafenib alone (Zhi 
et al. 2018). The effect correlated with increased 
cell cycle arrest and decrease in MET, AKT and 
ERK activation.

Another recurrent event in CRC are activating 
mutations in the PIK3CA gene encoding 
phosphatidylinositol-3-kinase (PI3K). BRAF 
V600E CRC cell lines show higher levels of 
PI3K/AKT pathway activation, and cell lines 
with mutations in PTEN or PIK3CA were highly 
insensitive to growth inhibition by vemurafenib 
(Mao et al. 2013). Moreover, treatments combin-
ing vemurafenib with PI3K inhibitors caused 
synergistic growth inhibition in both primary and 
secondary resistance BRAF-mutant CRC cells, 
indicating that activation of the PI3K/AKT path-
way is a mechanism of both innate and acquired 
resistance to BRAF inhibitors in this CRC sub-
group (Mao et al. 2013). Consistently, in a pre-
clinical model studying sessile serrated 
adenomas/polyps from a genetically engineered 
mouse model for BRAF V600E CRC, the authors 
observed an upregulation of PI3K/mTOR signal-
ling upon BRAF inhibition (Coffee et al. 2013). 
Importantly, combination treatment with PI3K/
mTOR and BRAF inhibitors circumvented resis-
tance leading to induction of apoptosis and 
tumour regression.

Another study reported evidence that BRAF 
V600E induces the expression of key autophagy 
markers, like LC3 and BECN1, in CRC cells 
(Goulielmaki et  al. 2016). It showed that pre-
treatment with autophagy inhibitor 3-MA or 
bafilomycin A1, when followed by the BRAF 
V600E inhibitor vemurafenib, had a synergistic 

effect on apoptosis induction in these BRAF 
V600E CRC cells. Thus, the study provided evi-
dence that the autophagic properties could be 
exploited to sensitize resistant colorectal tumours 
to BRAF inhibitors. Unfortunately, the authors 
also observed that PI3K/AKT/mTOR inhibitors 
stimulated autophagy in these tumour cells, 
which could antagonise the anti-autophagic 
effects of inhibiting BRAF/MEK signalling in 
combined therapies.

The Wnt/β-catenin pathway, which is fre-
quently dysregulated in non-MSI CRC, was also 
recently implicated in the mechanisms of BRAF 
V600E CRC resistance (Chen et  al. 2018). 
Treatment with BRAF inhibitors was found to 
upregulate this pathway in preclinical models of 
BRAF V600E-mutant CRC, including cell line- 
and patient-derived xenografts. Stimulation of 
the Wnt signalling occurred through activation of 
focal adhesion kinase (FAK) upon inhibitor treat-
ment. Notably, FAK activation and did not require 
EGFR or ERK1/2 activation, indicating that the 
observed hyperactivation of Wnt signalling was a 
MAPK pathway reactivation-independent event. 
Importantly, combined inhibition of BRAF/Wnt 
pathway or BRAF/FAK exerted strong synergis-
tic antitumor effects, both in cell lines and mouse 
xenograft models (Chen et al. 2018). Interestingly, 
the resistance-associated upregulation of Wnt 
signalling in these models occurred also in the 
presence of new generation RAF inhibitors, such 
as LY3009120 (a new pan-RAF inhibitor) 
(Vakana et al. 2017) and PLX7904 (a more effec-
tive BRAF inhibitor preventing paradoxical reac-
tivation of the MAPK pathway in preclinical 
studies (Zhang et al. 2015; Tutuka et al. 2017).

In the near future, a refinement of targets for 
combination therapy may result from the 
emerging genome-wide gene expression analy-
ses. For example, the above referred BRAF-
driven CMS1 group (Guinney et  al. 2015) was 
recently suggested to be composed of two 
branches with predominant deregulation of either 
the cell cycle or of cell growth pathways (Barras 
et al. 2017).

Finally, regarding the tumour microenviron-
ment, persistent inflammatory cues were shown 
to promote the overexpression of tumour-related 
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RAC1B GTPase (Matos et  al. 2013). RAC1B 
overexpression facilitates malignant progression 
(Matos et  al. 2008) by promoting evasion from 
BRAF V600E-induced senescence (Henriques 
et al. 2015). Importantly, it was shown that one 
non-steroid anti-inflammatory drug, ibuprofen, 
specifically downregulated inflammation-related 
RAC1B overexpression and led to reduced 
tumour growth in mouse xenografts of BRAF 
V600E CRC cell lines (Matos et al. 2013). This 
could represent another therapeutic opportunity 
for combination therapy in patients with the 
BRAF CRC subtype (Matos and Jordan 2015).

2.5	 �The Promise 
of Immunotherapies

The CRC subgroup of BRAF/MSI-H tumours 
develops primarily in the proximal colon and 
patients have a better prognosis and survival rate 
than those with other CRC subtypes (Samowitz 
et  al. 2001; Galon 2006; Kumar 2009; Ogino 
et  al. 2009; Brenner et  al. 2014). This subtype 
and is associated with a high degree of infiltration 
by tumour-associated lymphocytes (Dolcetti 
et al. 1999; Smyrk et al. 2001; Shia et al. 2003), 
which consist mostly of activated CD8+ cyto-
toxic T lymphocytes (Phillips et al. 2004). Indeed, 
patient-derived cytotoxic lymphocytes recognize 
the above-referred neo-antigens (Schwitalle et al. 
2008) that are translated as a consequence of MSI 
and presented as peptides on the cell surface by 
major histocompatibility complex class I mole-
cules. This could also be demonstrated experi-
mentally in mouse models, using genome editing 
with the CRISPR–Cas9 system to inactivate 
Mlh1 (Germano et al. 2017). In these mice, the 
lack of DNA mismatch repair resulted in frame-
shift mutations at repetitive sequence stretches 
throughout the genome, which led to the produc-
tion of neo-antigens and induced an immune sur-
veillance response observed in human MSI 
tumours.

In order to evade an immune response, tumour 
cells express on their surface the inhibitory pro-
grammed cell death 1 ligand (PD-L1) that binds 
to the PD-1 co-receptor on T lymphocytes, an 

immune checkpoint, and supresses cytotoxic 
activity. Thus, although infiltrating T cells are 
abundantly detected in the BRAF/MSI subtype 
of tumours, their activity is downmodulated by 
tumour cells, suggesting the malignant progres-
sion involved increased expression of PD-L1 as 
an escape mechanism (Rosenbaum et al. 2016). 
These tumour cells express PD-L1 in response to 
the inflammatory microenvironment as an adap-
tive immune resistance. Indeed, blocking the 
interaction between PD1 and PD-L1 by the thera-
peutic use of antibodies can reactivate cytotoxic 
T lymphocytes to attack cancer cells. Moreover, 
this response has been specifically observed for 
the BRAF/MSI subtype, since patients with 
microsatellite-stable tumours did not respond to 
the therapy (Llosa et al. 2015; Le et al. 2015; Toh 
et  al. 2016). Altogether, these data suggest that 
the better prognosis of MSI CRC is partly due to 
immune surveillance. In addition, the above men-
tioned mutational inactivation of the TGFBR2 
gene due to MMR deficiency renders these 
tumour cells less prone to the process of 
epithelial-mesenchymal transition, a key event 
involved in metastasis (Pino et al. 2010).

In 2017, anti–PD-1 therapy has been approved 
under the trade name pembrolizumab for the 
treatment of patients with metastatic late stage 
MSI CRC, a promising target group since cyto-
toxic lymphocytes are already part of the tumour 
environment but require activation. Other 
immune checkpoint blockers are in clinical trials 
such as nivolumab (anti-PD-1) (Sarshekeh et al. 
2018), atezolizumab (Tapia Rico and Price 2018), 
durvalumab (Levy et  al. 2016), and avelumab 
(Wang et al. 2017) (all anti-PD-L1), and ipilim-
umab (anti-cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4)) (Passardi et  al. 2017; 
Overman et  al. 2018). CTLA4 is expressed by 
cytotoxic T cells and immunosuppressive T regu-
latory (T-reg) cells, transmits inhibitory signals 
that downmodulate the cytotoxic T cell response, 
and can thus regulate the physiological balance 
between immune reaction and immune tolerance. 
The blockade of CTLA4 with therapeutic anti-
bodies led to increased proliferation of T cells, 
increased production of interleukin-2 and deple-
tion of inhibitory T-reg cells. Other potential tar-
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get molecules for the development of therapeutic 
antibodies have also been identified including 
lymphocyte activation gene 3 (LAG-3) and T cell 
immunoglobulin mucin 3 (TIM-3), and members 
of the costimulatory tumour necrosis factor 
receptor family (OX40, GITR, 4-1BB, CD40, 
CD70) (Hahn et al. 2017).

It should be noted that other tumour types 
acquired resistance to immune checkpoint ther-
apy, mostly through clonal selection of tumour 
cells with mutations in genes required for pro-

cessing or cell surface presentation of antigens, 
as well as metabolic changes affecting T-cell 
activity (Syn et al. 2017).

2.6	 �Conclusions

Figure 2.1 illustrates the discussed therapeutic 
targets in the BRAF/MSI subtype of CRC. From 
the data presented above, it is reasonable to spec-
ulate that successful therapies against metastatic 

Fig. 2.1  Illustration of pathways relevant for therapeutic 
targeting of the BRAF/MSI subtype of CRC. The MAPK 
pathway drives proliferation and is of central importance 
for this tumour type. Direct BRAF inhibition was ineffec-
tive in CRC and needs to be combined with other targets 
from this pathway in order to prevent its reactivation 
through complex feed-back regulation loops. Examples 
include the downstream kinase MEK and upstream recep-
tor tyrosine kinases (RTK), such as EGFR, PDGFR or 
MET.  Additional relevant pathways that cooperate with 
the MAPK pathway include as therapeutic targets the PI3K 

and Wnt pathways, as well as the small GTPase RAC1b. 
The latter appears to be specifically downregulated by 
COX-independent NSAID activities, which could be 
explored to improve outcome of patients with this CRC 
subtype. Besides these cancer cell-centred targets, the 
BRAF/MSI subtype is characterized by high infiltration of 
cytotoxic T lymphocytes that can be activated by immuno-
therapy strategies such as humanized antibodies that bind to 
and block the receptors PD-1 or CTLA4. Solid connecting 
lines represent direct protein interactions whereas dashed 
lines indicate indirect action or unknown mechanisms
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CRCs with the BRAF V600E mutation will 
involve the targeting of multiple pathways simul-
taneously (horizontal inhibition), by combining 
selective inhibitors or engineering multi-target 
agents. However, unforeseen adverse cross-
interactions, as discussed above, as well as dose-
limiting toxicities can bring a significant 
challenge to the establishment of horizontal inhi-
bition therapeutic strategies (Tolcher et al. 2018; 
Bahrami et  al. 2018). Therefore, prior and/or 
concurrent use of immune checkpoint approaches 
at earlier stages of CRC detection may provide a 
valuable strategy to decrease tumour burden and 
therapy-driven clonal selection, as they do not 
target the specific genetic changes within particu-
lar cancer cells but rather the tumour 
microenvironment.
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Targeting KRAS Mutant CMS3 
Subtype by Metabolic Inhibitors
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Abstract
Cancer cells rewire their metabolism in order 
to boost growth, survival, proliferation, and 
chemoresistance. The common event of this 
aberrant metabolism is the increased glucose 
uptake and fermentation of glucose to lactate. 
This phenomenon is observed even in the 
presence of O2 and completely functioning 
mitochondria. This is known as the “Warburg 
Effect” and it is a hallmark in cancer. Up to 
40% of all CRC’s are known to have a mutated 
(abnormal) KRAS gene, found at differing 
frequencies in all consensus molecular sub-
types (CMS). CMS3 colon cancer molecular 
subtype contains the so-called ‘metabolic 
tumours’ which represents 13% of total CR 
cases. These tumours display remarkable met-
abolic deregulation, often showing KRAS 
mutations (68%). Unfortunately, patients har-
bouring mutated KRAS are unlikely to benefit 
from anti-EGFR therapies. Moreover, it 
remains unclear that patients with KRAS 
wild-type CRC will definitely respond to such 
therapies. Although some clinically designed-
strategies to modulate KRAS aberrant activa-
tion have been designed, all attempts to target 
KRAS have failed in the clinical assays and 

KRAS has been assumed to be invulnerable to 
chemotherapeutic attack. Quest for metabolic 
inhibitors with anti-tumour activity may con-
stitute a novel and hopeful approach in order 
to handle KRAS dependent chemoresistance 
in colon cancer.

Keywords
KRAS · Cancer · Chemoresistance · 
Metabolism · CMS3

3.1	 �Introduction

According to GLOBOCAN (2012), the estimated 
number of cancer cases worldwide in 2008 was 
12.7 million, with 7.6 million deaths. By 2030, 
there will an estimated 22.2 million newly diag-
nosed cancer cases and 12 million deaths (Ferlay 
et al. 2015).

Colorectal cancer (CRC) is a frequently lethal 
disease showing diverse outcomes and chemo-
therapy responses. Currently, CRC is the third 
leading site of cancer in men and women and is 
the second leading cause of cancer-related deaths.

This number will increase largely by growth 
and aging of populations and will be largest in 
low- and medium-resource countries.

The global distribution of neoplasia and types 
of cancer with higher penetrance continues to 
change, especially in economically developing 

O. Aguilera (*) · R. Serna-Blasco 
Translational Oncology Division, Oncohealth 
Institute, Fundacion Jimenez Diaz University 
Hospital, Madrid, Spain
e-mail: oscar.aguilera@FJD.es

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02771-1_3&domain=pdf
mailto:oscar.aguilera@FJD.es


24

countries. Lower income countries accounted for 
about half (51%) of all cancers worldwide in 
1975 but this proportion increased to 55% in 
2007 and it is projected to reach 61% by 2050 
(Bray and Møller 2006).

Nowadays, oncology tries to personalize anti-
cancer therapy on the basis of tumour genotypes 
in order to provide enhanced prognostic and 
treatment planning.

In 2015, the molecular classification carried 
out by Guinney et  al. established four different 
CRC subtypes with specific molecular features: 
CMS1 (MSI Immune, 14%), hypermutated, mic-
rosatellite unstable, remarkable immune activa-
tion; CMS2 (Canonical, 37%), epithelial, 
chromosomally unstable, marked WNT and 
MYC signalling activation; CMS3 (Metabolic, 
13%), epithelial, discernible metabolic dysregu-
lation; and CMS4 (Mesenchymal, 23%), promi-
nent transforming growth factor β activation, 
stromal invasion, and angiogenesis.

Despite the frequency of KRAS mutations in 
cancer patients, data outcome is confusing 
regarding the impact these mutations have on 
treatment response and patient outcomes.

Although the development of molecular-tar-
geted therapy has supposed a clear benefit on the 
survival of patients with metastatic CRC, the 
majority of patients with stage IV CRC undergo-
ing complete resection die from metastasis 
(Karapetis et al. 2008; Hurwitz et al. 2004).

CRC tumorigenesis is characterized by the 
accumulation of sequential genetic and epigene-
tic alterations, and V-Ki-ras2 Kirsten rat sarcoma 
viral oncogene homolog (KRAS) mutations are 
an early step in tumorigenesis (Vogelstein et al. 
1988; Aguilera et al. 2006).

RAS genes are among the most frequently 
mutated genes in human cancer. Scientific evi-
dence indicates that mutations activating RAS 
family members, KRAS, HRAS, and NRAS, are 
found in 20–30% of all human tumours (Cox 
et  al. 2014; Prior et  al. 2012). Although KRAS 
mutations are present in every molecular subtype 
defined by Guinney et al. in 2015, they are more 
prevalent in CMS3 CRC (68%). Interestingly, 
CMS3 appeared to be the most similar to normal 
colon tissue at the gene expression level.

Recently, it has been suggested that the pre-
cursor lesion to KRAS mutant CRC (the majority 
of CMS3 cancers) are tubovillous adenomas with 
serrated traits.

Cetuximab and panitumumab are monoclonal 
antibodies directed to the exodomain of the epi-
dermal growth factor receptor (EGFR), which in 
turn blocks downstream signalling, including the 
RAS/RAF/MEK/ERK pathway. Cetuximab and 
panitumumab have been proven to be effective in 
patients with metastatic colorectal cancer 
(mCRC) when administered alone or in combina-
tion with standard chemotherapy (Jonker et  al. 
2007; van Cutsem et al. 2009).

Cetuximab, is commonly used in the clinical 
practice to treat metastatic colon, and head and 
neck cancer. The U.S.  Food and Drug 
Administration (FDA) approved Panitumumab 
(INN), formerly ABX-EGF, in 2006 for “the 
treatment of EGFR-expressing metastatic 
colorectal cancer with disease progression”. 
However, benefits of such therapies in the sur-
vival outcome of patients harbouring KRAS 
mutant CRC are dramatically decreased.

Here we aim to describe different molecular 
approaches focused on overcoming the molecu-
lar barriers posed by KRAS mutation, often 
shown in metabolic CMS3 tumours, targeting 
key players involved in the metabolic reprogram-
ming in colorectal tumours.

3.2	 �Reprogramming Cell 
Metabolism in Cancer: 
The “Warburg Effect”

After almost a century ago since the Warburg 
effect was described in 1924, this atypical metab-
olism is considered a hallmark in every type of 
cancer, exhibiting higher glycolysis and lactate 
metabolism and defective mitochondrial ATP 
production.

Although cancer is a heterogeneous malady, 
often considered as different diseases converging 
in the abnormal cell growth, cancer cells share 
the very same metabolic trait: abnormal rates of 
glucose conversion to lactate even in the presence 
of O2 (Warburg 1956).
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In general, cancer cells metabolize glucose, 
lactate, hydroxybutyrate, pyruvate, lactate, fatty 
acids and glutamine at much higher rates than 
normal ones. In spite of the higher glycolytic 
rates often shown by cancer cells, ATP rendering 
is substantially lower than normal cells. Unlike, 
molecular biosynthesis requirements of tumour 
cells are markedly higher (Fig. 3.1a, b).

However, the metabolic homeostasis of 
tumours is complex because they contain multi-
ple niches, which are linked by the transfer of 
these catabolites. This metabolic plasticity 
enables cancer cells to produce ATP, while keep-
ing the reduction–oxidation (redox) balance and 
committing resources to biosynthesis processes 

that are essential for cell survival, growth, and 
proliferation (Martinez-Outschoorn et al. 2017).

This metabolic feature, known as the “Warburg 
effect”, represents in fact the basis for the 
18F-fluorodeoxyglucose positron emission 
tomography (FDG-PET), a non- invasive imag-
ing technique that, providing an accurate assess-
ment of tumour glucose utilization, is widely 
exploited in the clinic for initial diagnosis, mea-
suring tumour size, staging, and monitoring 
tumour responses to therapies. The Warburg 
effect allows promoting the deviation of glyco-
lytic metabolites into multiple correlated path-
ways that provide substrates for the biosynthesis 
of macromolecules (lipids, nucleic acids, and 

Fig. 3.1  Targeting metabolism in colon cancer. (a) In 
normal tissues, cell may obtain energy through Oxidative 
Phosphorylation (OxPhos) that generates 36 ATP. In poor 
oxygen conditions, normal tissues may obtain energy via 
anaerobic glycolysis, which gives 2 ATP.  For the same 
glucose, normal cells will get 18 times more energy using 
oxygen in the mitochondrion compared to anaerobic gly-
colysis. Normal tissues only use this less efficient path-

way in the absence of oxygen. In cancer cells the situation 
changes dramatically. Even in the presence of oxygen, 
cancer cells use a less efficient method of energy genera-
tion (glycolysis, not phosphorylation) delivering only 4 
ATP per molecule of glucose. (b) Unlike cancer cells, in 
normal cells the main goal for glucose uptake is producing 
enough ATP to keep cell metabolic homeostasis. (c) 
Described molecules with antitumor activity targeting 
metabolism in colon cancer
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proteins) required for rapid tumour growth and 
proliferation.

Furthermore, an augmented flux of cytosolic 
NADPH provided from the cytosolic oxidative 
pentose phosphate pathway (PPP) is observed 
that will balance the intracellular redox potential 
and neutralize the excessive levels of reactive 
oxygen species (ROS) resulting from the 
enhanced metabolic activity of cancer cells.

Warburg hypothesized that cancer was caused 
by defects in mitochondrial oxidative phosphory-
lation and then forcing the cell to switch into gly-
colysis, thus cells would become undifferentiated 
and cancerous. However, studies carried out by 
Prof. Craig B. Thompson’s laboratory at the 
Memorial Sloan-Kettering Cancer Center, prefer-
entially indicates that the Warburg effect is not 
just a passive response to damaged mitochondria 
but results from oncogene-directed metabolic 
reprogramming required to support glycolytic 
metabolism and anabolic growth (Ward and 
Thompson 2012). The question about altered 
metabolism as primary cause or just consequence 
of genomic alteration in cancer still remains 
open.

Nevertheless, alterations in oncogenic signal 
transduction pathways and loss of tumour sup-
pressor genes, then affecting the regulation of 
enzymes and transporters, are tightly correlated to 
aerobic glycolysis in cancer. Over-expression of 
the facilitative glucose transporter 1 (GLUT-1) 
promotes an increased glucose uptake in a variety 
of cancer cell types, and has been associated with 
the loss of the tumour suppressor PTEN (Morani 
et al. 2014) or constitutive activation of oncogenes 
such as KRAS, AKT, SRC, and Myc (Dang 2012).

HIF-1 and Myc positively regulate the expres-
sion of pyruvate kinase M2 (PKM2), the final 
rate-limiting enzyme of glycolysis, which cataly-
ses the conversion of phosphoenolpyruvate to 
pyruvate.

Aberrant activity of some signalling pathways 
such as the PI3K/AKT/mTORC1 pathway has 
been reported to enhance the expression of glyco-
lytic enzyme Hexokinase II (HKII) that mediates 
the phosphorylation of glucose upon its entrance 
into the cell (Wang et al. 2014).

HIF-1 and c-Myc are also considered master 
regulators of the metabolic reprogramming in 
neoplasia. Both proteins have been shown to 
cooperatively induce the expression of both, 
HKII and pyruvate dehydrogenase kinase 1 
(PDHK1). PDHK1  in turn inactivates the pyru-
vate dehydrogenase (PDH) and so the pyruvate 
dehydrogenase enzyme complex (PDC) involved 
in the conversion of pyruvate to acetyl-coenzyme 
A, therefore inhibiting pyruvate entrance in the 
tricarboxylic acid (TCA) cycle and then limiting 
mitochondrial OXPHOS.

Moreover, both HIF-1 and c-Myc enhance the 
transcription of lactate dehydrogenase A 
(LDHA), which catalyses the transformation of 
pyruvate into lactate, further then boosting the 
glycolytic cancer phenotype in Myc over- 
expressing cancers (Dang et al. 2008).

Over-expression of PKM2 has been found in 
multiple human cancers, including colon cancer, 
and it is considered a master regulator of the met-
abolic rewiring (Aguilera et al. 2016).

PKM2 may form a complex tetramer, with high 
catalytic activity, or can exist as a dimer, less active 
form. In cancer cells, different post-translational 
modifications, such as fibroblast growth factor 
receptor type 1 (FGFR1)-mediated phosphoryla-
tion at Tyr105, enhance the tetramer-to-dimer 
switch, therefore inhibiting pyruvate kinase activ-
ity and promoting the diversion of glycolytic inter-
mediates towards collateral pathways, such as PPP 
and serine biosynthesis (Dayton et al. 2016).

3.3	 �Mutant KRAS in Colon Cancer

Genetic alterations in any one of the 3 isoforms 
of the RAS family (HRAS, NRAS, or KRAS 
genes) are very frequent events on neoplasic 
transformation. The Sanger Centre keeps and 
periodically updates an exhaustive database 
involving the nature and frequency of RAS muta-
tions in different human tumours (catalogue of 
somatic mutations in cancer: http://sanger.ac.uk/
cosmic).

In fact, activating KRAS mutations are found 
in human epithelial neoplasia with an overall fre-
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quency of 30%. Studies of the extensive panels of 
human tumour tissue samples analysed during 
the last three decades have shown that there is a 
prevalent correlation of specific mutated RAS 
isoforms with particular types of tumours 
(Shimizu et al. 2007).

Some reports describing KRAS overexpres-
sion in a colon carcinoma did not find a positive 
correlation between KRAS overexpression and 
prognosis, pointing out that RAS overexpression 
should not be used as a predictive factor (Akkiprik 
et al. 2008).

KRAS mutations are detected in 40–45% of 
all colorectal carcinoma (CRC) suggesting that 
KRAS proteins must play a pivotal role in 
tumour development (Vaughn et al. 2011). Most 
KRAS mutations are located in codons 12 and 
13 (80% and 20%, respectively), being G12D 
the most often amino acid modification. On the 
other hand, much lower activating mutation 
percentages have been found in NRAS (1–3%) 
(Irahara et al. 2010). KRAS mutation is an early 
event in CRC. Although still arguable, it has 
been proposed that in some CRCs, KRAS muta-
tions may occur as early events in formation of 
aberrant crypt foci that could later trigger the 
development of hyperplasic polyps and eventu-
ally to CRC (Yuen et al. 2002; Nash et al. 2010). 
However, contrary to pancreatic carcinomas 
where KRAS mutations are prevalent, many 
other genetic and epigenetic alterations besides 
KRAS mutations may occur in CRC that could 
be responsible for tumour initiation and pro-
gression in this case like APC, beta-catenin 
mutations and promoter silencing of genes 
involved in controlling the WNT signalling 
pathway.

As it has been reported on pancreatic ductal 
adenocarcinoma (PDAC), there is a tight correla-
tion between KRAS mutations and poor progno-
sis of aggressive and invasive colorectal 
carcinomas (Conlin et  al. 2005; Zavodna et  al. 
2009). Interestingly, some clinical studies have 
reported that the rate of KRAS mutation is higher 
in CRC patients with lung metastasis and that the 
presence of the mutation in CRC patients with 
liver metastasis correlates with poor prognosis 
(Cejas et al. 2009; Nash et al. 2010).

3.4	 �Metabolic Switch in CRC: 
KRAS Connection

As it has been widely described, several clinical 
trials have shown that KRAS mutations in cancer 
may predict a lack of responses to the anti-epi-
dermal growth factor receptor (EGFR)–based 
therapy. So, anti-EGFR therapies using cetux-
imab and/or panitumumab are now limited to 
patients with KRAS wild-type CRC (Jonker et al. 
2007; Karapetis et al. 2008; Ye et al. 2013).

Interestingly, mutant KRAS is closely 
involved in the upregulation of the cell Warburg 
metabolism. Mutated KRAS maintains tumour 
growth by boosting glucose uptake and transport-
ing glucose intermediates into the pentose phos-
phate pathway (PPP) and hexosamine 
biosynthesis pathway (HBP). Nowadays, the 
interest to understand the reprogramming of 
metabolism in neoplasic transformation is 
increasing. Although the molecular mechanism 
behind the upregulation of glucose metabolism is 
not yet understood, the pivotal role played by 
KRAS signalling in the homeostasis of aerobic 
glycolysis has been reported in several types of 
cancer. For example, in a PDAC murine model, it 
has been demonstrated that mutated KRAS keeps 
tumour growth by stimulating glucose uptake and 
leading glucose intermediates into the hexos-
amine biosynthesis pathway (HBP) and pentose 
phosphate pathway (PPP) (Ying et  al. 2012). 
Remarkably, knockdown of rate-limiting 
enzymes in HBP or PPP halted tumour growth, 
indicating their potential as therapeutic targets.

In human colorectal cancer, the increase of 
glucose transporter 1 (GLUT1) expression and 
glucose uptake is critically dependent on KRAS 
mutational state (Yun et al. 2009). In fact, PET 
(fluorodeoxyglucose (FDG) positron emission 
tomography scan) is used to evaluate tumour size 
and location by analysing glucose metabolism by 
measuring the uptake of FDG, a glucose ana-
logue and it has been described that CRC cells 
with mutated KRAS show an increased FDG 
accumulation via of GLUT1 upregulation 
(Kawada et al. 2012; Iwamoto et al. 2014).

On the other hand, the tight relationship 
between GLUT-1 and KRAS is confirmed by 
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studies reporting that glucose deprivation con-
tributes to the development of mutated KRAS 
pathways in tumour cells (Yun et al. 2009).

Actually, GLUT1 has been addressed as a poten-
tial target in oncology drug discovery since in 2014 
a crystal structure of human GLUT-1 was obtained. 
This achievement will surely be helpful in the dis-
covery of new GLUT1 inhibitors as anti-cancer 
agents (Flight 2011). First, GLUT-1 antibodies 
were shown to inhibit breast cancer and lung cancer 
(NSCLC) cell lines growth (Rastogi et  al. 2007). 
Interestingly, in 2010 a series of synthetic polyphe-
nolic esters were also described to inhibit glucose 
transport through the cell membrane, and to exert a 
certain anti-proliferative activity in the H1299 lung 
cancer cell line. Moreover, these molecules were 
used in combination with anti-cancer drugs cispla-
tin or paclitaxel demonstrating synergistic effects in 
the inhibition of breast and lung cancer cell growth 
(Granchi et al. 2016).

Likewise, the small-molecule N-[4-chloro-3-
(trifluoromethyl)phenyl]-3-oxobutanamide 
(fasentin) was identified as a chemical sensitizer 
to the death receptor stimuli FAS and tumour 
necrosis factor (TNF) apoptosis-inducing ligand. 
Fasentin interacts with a unique GLUT-1 site in 
the intracellular channel of this protein, thus 
inhibiting glucose transport (Wood et al. 2008)

GLUT-1 also plays an essential role for the 
homeostasis of pancreatic, ovarian, and glioblas-
toma cancer stem cells (CSCs). WZB117, a spe-
cific GLUT1 inhibitor, was shown to inhibit the 
self-renewal and tumour-initiating capacity of the 
CSCs without compromising their proliferative 
potential in  vitro. In vivo, systemic WZB117 
administration was able to inhibit tumour initia-
tion after implantation of CSCs without causing 
significant adverse events in host animals 
(Shibuya et  al. 2015). Recently, WZB117 was 
shown to kill lung and breast cancer cells by 
inhibiting GLUT1-mediated glucose transport, 
leaving non-tumorigenic cells unaffected 
(Shibuya et al. 2015)

In addition to their glucose dependency, 
tumour growth and survival also relies on gluta-
mine uptake. Glutamine is a fundamental carbon 
source for the tricarboxylic acid (TCA) cycle and 
a nitrogen source for nucleotides and nonessen-

tial amino acids. Glutamine is also involved in 
other cellular processes in cancer cells, such as 
(mTOR) signalling and including anti-oxidative 
stress. Therefore, glutamine dependent pathways 
and signalling involved in cancer cell survival, 
progression and metastasis is a hot topic in can-
cer research (Deberardinis and Cheng 2010; Wise 
and Thompson 2010).

As it has been reviewed for glucose transport, 
glutamine metabolism exhibits pleiotropic effects 
on cancer cell signalling and therapeutic suppres-
sion of glutamine metabolism is considered to be 
an attractive anti-cancer strategy.

For instance, Benzylserine and L-γ-glutamyl-
p-nitroanilide (GPNA), the inhibitor of the gluta-
mine transporter SLC1A5, have been shown to 
be effective agents in the treatment of non-small 
cell lung cancer cell lines and murine xenografts 
(Hassanein et  al. 2015). However, these drugs 
have been shown to induce unselective toxicity in 
normal, healthy cells that require glutamine for 
other pathways.

Some other small inhibitors, such as, CB-839 
and bis-2-(5-phenylacetamido-1,2,4-thiadiazol-
2-yl) ethyl sulfide (BPTE) have been reported to 
specifically target glutaminase (GLS) isoforms not 
often expressed in normal cells (Xiang et al. 2015)

In view of the abovementioned factors sup-
porting the tight interplay between mutated 
KRAS and the Warburg metabolism in cancer 
and the partial success of molecules directly tar-
geting KRAS, quest for new scopes and mole-
cules capable to overcome chemotherapy 
resistance in tumours displaying gene mutations 
downstream EGFR should be considered as a top 
priority in oncological research worldwide.

3.5	 �Uncoupling the “Warburg 
Effect” in CRC: A Chink 
in the Armour of KRAS 
Dependent Chemoresistance

As it has been widely explained, CRC is the sec-
ond leading cause of cancer-related deaths and 
trials using apoptosis-inducing ligand monother-
apy to overcome resistance to apoptosis in colon 
cancer have not shown clinical benefits.
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There is a need for a novel focus to overcome 
clinical resistance to chemotherapies, mainly due 
to RAS/RAF mutations.

It has been also explained that the enhanced 
metabolic requirements of colon cancer cells 
necessarily involves increased glucose uptake 
and glycolytic flux relative to normal tissues. 
This feature is used to visualize colon cancer 
cells using positron emission tomography (PET) 
where signals emitted from 2-deoxy-2-fluoro-D-
glucose (FDG), which is taken up preferentially 
by colon cancer cells, are monitored.

Currently, some promising molecules are 
being investigated to bypass KRAS dependent 
chemoresistance, using a metabolic approach 
(Fig. 3.1c).

In 2016, Carr et al., published an interesting 
article where they overcome colon cancer cells 
resistance to TRAIL (tumour necrosis factor-
related apoptosis-inducing ligand) using 
2-deoxy-D-glucose (2DG), which is molecularly 
similar to FDG and is preferentially uptaken by 
cancer cells. In tumour cells, 2DG metabolism 
may affect death receptor (DR) expression 
(TRAIL is a DR ligand) and dissociate the Bak-
Mcl-1 complex in cells with high glycolytic 
activity (Yamaguchi and Perkins 2012). In addi-
tion, 2DG is a receptor-competitive inhibitor of 
glucose, increasing oxidative stress, inhibiting 
N-linked glycosylation, and hence inducing 
autophagy. It inhibits cell growth and facilitates 
selective apoptosis in cancer cells.

The Ras/Raf/mitogen-activated protein kinase 
kinase (MEK)/extracellular signal-regulated 
(ERK) cascade is involved the signal transduction 
from the cell surface receptors to the nucleus and 
regulates cell cycle, cell proliferation, cell differen-
tiation and survival. Genetic and epigenetic altera-
tions in many of the key players in this pathway 
have been found to be associated with cancer.

The dual RAF/MEK kinase Inhibitor 
RO5126766, synthesized in Chugai 
Pharmaceuticals Co., Ltd. was shown to decrease 
FDG uptake in KRAS and BRAF mutant colon 
cancer murine xenografts (Tegnebratt et  al. 
2013). This metabolic inhibition correlates with a 
decreased cell membrane expression of the glu-
cose receptor GLUT-1 and it was tightly associ-

ated with a notably reduced expression of the 
marker of proliferation Ki67.

In the 70–80th of the twentieth century, sev-
eral scientific reports demonstrated that the anti-
diabetic biguanide drugs phenformin (PF) and 
buformin (BF) can exert some anti-tumour activ-
ity in animal models and increase from 5 to 
10-years survival of cancer patients.

Metformin (1,1-dimethylbiguanide hydro-
chloride) is often used to reduce hepatic gluco-
neogenesis and increase skeletal muscle glucose 
uptake in patients with type 2 diabetes. Metformin 
has been proposed as adjuvant therapy in cancer 
treatment because of its ability to limit cancer 
incidence by negatively modulating the PI3K/
AKT/mTOR pathway.

In 2015, Jia et  al. reported that Metformin 
might prevent induced colorectal cancer in dia-
betic rats by reversing the Warburg effect. They 
described that Warburg inhibition was mediated 
through inhibition of the master regulator PKM2. 
In fact, PKM2 metformin-induced inhibition has 
been also reported in other neoplasia. For 
instance, Metformin Induces apoptosis, down-
regulating PKM2 in breast cancer cells grown in 
poor nutrient conditions (Silvestri et al. 2015).

c-Src, is found to be over-expressed and acti-
vated in a wide variety of human tumours. The 
relationship between Src activation and cancer 
progression appears to be significant, regulating 
cancer glucose metabolism in premalignant 
estrogen receptor (ER)-negative mammary epi-
thelial cells.

In this model, Saracatinib, a highly selective, 
dual Src/Abl kinase inhibitor, was shown to 
blocks c-Myc translation and glucose metabolism 
a result of an inhibition in ERK1/2-MNK1-eIF4E-
mediated cap-dependent translation of c-Myc and 
transcription of the glucose transporter GLUT1, 
therefore interfering with the Warbug effect.

Saracatinib has been used in a phase II trial 
treating patients with previously treated meta-
static colon cancer or rectal cancer. Results from 
this study suggested that may stop the growth of 
tumour cells by blocking blood flow to the 
tumour and by blocking some of the enzymes 
needed for cell growth (ClinicalTrials.gov 
Identifier: NCT00397878).
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3.5.1	 �Vitamin C: Reassessing 
the Role of Vitamin C 
in Metabolic Enhanced Colon 
Cancer

In 1976, Linus Pauling and Ewan Cameron per-
formed a pioneering clinical study of the survival 
times of 100 terminal cancer patients who were 
given supplemental ascorbate (usually 10 g/day) 
plus adjuvant chemotherapy and 1000 matched 
controls, similar patients who had received the 
same treatment except for the ascorbate. Survival 
times greater than 1 year after the date of untreat-
ability were observed for 22% of the ascorbate-
treated patients and for 0.4% of the controls 
(Cameron and Pauling 1976).

Many authors have reported that vitamin C 
shows certain anti-tumour activity, but in spite of 
the several efforts carried out in order to unravel 
the molecular mechanism underlying this killing 
effect and its intriguing selective activity, this is 
still far from clear.

Scientific data published by Chen Q et  al., 
supporting the previous clinical study carried out 
by Pauling and Cameron, have shown that vita-
min C exerts killing effects on cancer cells from 
very different origin, displaying a wide variety of 
gene mutations (many of them do not display 
KRAS mutation) and alterations in different sig-
nalling pathways (Chen et al. 2008).

In 2015 in an article published in Science, Yun 
J et al., presented data stating that oxidized vita-
min C was able to kill CRC cells depending on 
the KRAS mutational status (Yun et  al. 2015). 
They found that cultured human CRC cells har-
bouring KRAS or BRAF mutations were selec-
tively killed when exposed to high levels of 
vitamin C.  This effect was due to increased 
uptake of the oxidized form of vitamin C, dehy-
droascorbate (DHA), via the GLUT1 glucose 
transporter. Increased DHA uptake caused oxida-
tive stress when intracellular DHA is reduced to 
vitamin C, depleting glutathione. Thus, ROS 
accumulate and inactivate glyceraldehyde 
3-phosphate dehydrogenase (GAPDH), an 
enzyme of ~37 kDa that catalyses the sixth step 
of glycolysis and thus serves to break down glu-
cose for energy and carbon molecules. Inhibition 

of GAPDH in highly glycolytic KRAS or BRAF 
mutant cells leads to an energetic catastrophe and 
cell death not seen in normal cells.

Later, in 2016 it was published another scien-
tific work partially confirming previous observa-
tions of Yun et  al., but mainly focused on the 
putative interaction of vitamin C in the Warburg 
metabolism that is considered, as stated previ-
ously, a hallmark in cancer and glycolytic 
enzymes reported as central points of regulation 
in cancer. In this work we described a novel anti-
tumour mechanism of vitamin C in KRAS mutant 
colorectal cancer involving the Warburg meta-
bolic disruption through downregulation of key 
metabolic checkpoints in KRAS mutant cancer 
cells and tumours without killing human immor-
talized colonocytes (Aguilera et  al. 2016). 
Vitamin C is capable to induce RAS detachment 
from the cell membrane via ROS inhibition. 
Thus, RAS detachment leads inhibition ERK 1/2 
and PKM2 phosphorylation. As a consequence of 
this activity, we could observe strong downregu-
lation of the glucose transporter (GLUT-1) and 
pyruvate kinase M2 (PKM2)-PTB dependent 
protein expression causing a major blockage of 
the Warburg effect and therefore energetic stress.

Tumour-specific pyruvate kinase M2 (PKM2) 
is a master regulator for the Warburg effect and In 
addition to its well-established role in aerobic 
glycolysis, PKM2 directly regulates gene tran-
scription [90].

Interestingly, in 2014 Tian et  al., published 
that highly glycolytic cells triggered by activa-
tion of the hypoxia-inducible factor (HIF) path-
way greatly enhanced vitamin C-induced toxicity 
in multiple cancer cell lines, including von 
Hippel-Lindau (VHL)-defective renal cancer 
cells. According to their observations, HIF 
increases the intracellular uptake of DHA through 
its transcriptional target glucose transporter 1 
(GLUT1), synergizing with the uptake of its 
reduced form through sodium-dependent vitamin 
C transporters (Tian et al. 2014).

The majority of these results point to the 
Warburg metabolism and related overexpressed 
enzymes in cancer as a promising scientific field 
that requires further in-depth studies in order to 
find new therapeutic targets. Encouraging results 
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observed in vitamin C research, such as its ability 
to overcome anti-EGFR resistance and displayed 
selectivity, emphasizes the need for further 
research on this topic and may open the door to a 
novel generation of molecules that may consti-
tute a new hope in handling RAS dependent che-
moresistant cancer.

3.6	 �Conclusions

KRAS dependent chemoresistance is a major 
threat to the clinical handling of CRC and other 
neoplasia. Among all the CRC subtypes, the 
CMS3 also called “metabolic subtype”, shows 
frequent KRAS mutation and concomitant meta-
bolic alterations. Many authors have shown com-
pelling data highlighting the role of KRAS 
signalling in the regulation of aerobic glycolysis 
in several types of cancer.

KRAS harbouring cancers have altered metab-
olism involving enhanced nutrients uptake gly-
colysis, glutaminolysis, and elevated synthesis of 
nucleotides and fatty acids.

Unfortunately, clinical trials with molecules 
targeting KRAS did not render clear benefits to 
the overall survival (OS) and progression-free 
survival of metastatic colorectal cancer patients 
and, to date, no effective treatments that target 
mutant variants of KRAS have been introduced 
into clinical practice. It is time to propose differ-
ent approaches to break down the KRAS barrier 
to chemotherapy. Counteracting KRAS-ruled 
metabolic pathways may be a promising focus in 
order to sensitize KRAS mutant tumours to che-
motherapy and many studies are already centred 
in this approach.

But the problem seems to be far more complex.

Glucose requirements and carbon sources in 
tumours are much more heterogeneous than ini-
tially thought. Currently, new studies have been 
developed showing a dual capacity of tumour 
cells for glycolytic and oxidative phosphoryla-
tion (OXPHOS) metabolism.

Metabolic OXPHOS-dependent cancer cells 
are capable to use alternative substrates, such as 

glutamine and/or fatty acids. Therefore, the vari-
ety of carbon substrates able to fuel neoplastic 
cells points out to a high metabolic heterogeneity, 
even within tumours sharing the stage and clini-
cal diagnosis. Indeed, it has been reported that 
80% of the ATP generation in MCF7 breast can-
cer cells relies on mitochondrial respiration 
(Guppy et al. 2002).

Furthermore, some studies have reported that 
glycolysis inhibition often restores OXPHOS in 
cancer cells (Bonnet et al. 2007; Michelakis et al. 
2010) demonstrating that in spite of the aug-
mented glycolytic rates often shown by cancer 
cells, mitochondrial oxidative metabolism 
remains intact. The overall data strongly point 
out to a high cancer metabolic plasticity, imply-
ing that molecules targeting metabolic factors in 
cancer may face similar mechanisms of resis-
tance as previously described for conventional 
chemotherapy.

Combination of metabolic inhibitors and clas-
sical chemotherapeutic agents may constitute a 
great advance to address KRAS-driven chemore-
sistance, often attributed to the concomitant 
altered metabolic expression patterns.
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Abstract 
Colorectal cancer (CRC)  remains one of the 
leading causes of cancer mortality worldwide. 
Regarded as a heterogeneous disease, a num-
ber of biomarkers have been proposed to help 
in the stratification of CRC patients and to 
enable the selection of the best therapy for 
each patient towards personalized therapy. 
However, although the molecular mechanisms 
underlying the development of CRC have 
been elucidated, the therapeutic strategies 
available for these patients are still quite lim-
ited. Thus, over the last few years, a multitude 

of novel targets and therapeutic strategies 
have emerged focusing on deregulated mole-
cules and pathways that are implicated in cell 
growth and survival. Particularly relevant in 
CRC are the activating mutations in the onco-
gene PIK3CA that frequently occur in con-
comitancy  with KRAS and BRAF mutations 
and that lead to deregulation of the major sig-
nalling pathways PI3K and MAPK, down-
stream of EGFR.  This review focus on the 
importance of the PI3K signalling in CRC 
development, on the current knowledge of 
PI3K inhibition as a therapeutic approach in 
CRC and on the implications PI3K signalling 
molecules may have as potential biomarkers 
and as new targets for directed therapies in 
CRC patients.

Keywords
Colorectal cancer · PI3K signalling pathway · 
PI3K p110α · Targeted therapies · KRAS

4.1	 �Introduction

Colorectal cancer (CRC) is one of the most com-
mon cancer types, and despite intensive research, 
remains one of the leading causes of cancer mor-
tality worldwide (Torre et  al. 2015). It results 
from the accumulation of genetic and epigenetic 
alterations in oncogenes and tumour suppressor 
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genes, leading to the transformation of the nor-
mal epithelia towards invasive carcinoma 
(Markowitz and Bertagnolli 2009). Although a 
large number of molecules have been shown to 
be altered in these patients, to date, the use of tar-
geted therapies has been limited to anti-epidermal 
growth factor receptor (EGFR) and anti-vascular 
endothelial factor (VEGF) agents. Moreover, 
patients harbouring KRAS and NRAS mutations 
are currently excluded from anti-EGFR thera-
pies, as these alterations were shown to cause 
resistance (Allegra et  al. 2016). Therefore, it is 
urgent to unravel novel therapeutic approaches 
for CRC patients in an attempt to improve patient 
outcomes and overcome therapy resistance. 
While several inhibitors are already being tested 
in preclinical and clinical trials, the interplay of 
the signalling pathways has proved to be rather 
complex and no other agents have yet been 
approved for these patients. In this review, we 
focus on the key role of the phosphatidylinositol 
3-kinase (PI3K) signalling pathway in CRC 
development, the latest developments in the field 
of PI3K targeted specific agents as well as on the 
implications of PI3K inhibition as an alternative 
therapeutic approach for CRC patients.

4.2	 �Molecular Aspects of CRC 
Progression

Colorectal carcinogenesis is characterized by the 
gradual accumulation of alterations, genetic and 
epigenetic, in specific oncogenes and tumour 
suppressor genes in a multistep manner 
(Markowitz and Bertagnolli 2009).

The classical model of colorectal cancer pro-
gression is the adenoma-carcinoma sequence, 
however this pathway oversimplifies the hetero-
geneity of CRC and is not able to explain the 
development of all types of CRC (Fearon and 
Vogelstein 1990; Walther et al. 2009). Due to the 
distinct molecular, clinical and pathological char-
acteristics observed in CRC tumours, other 
mechanisms for CRC development have emerged, 
namely the serrated pathway (O’Brien et  al. 
2006). In each of these models, a unique progres-
sion pathway is associated with a distinct muta-

tional spectra. While alterations in the genes 
APC, KRAS and p53 are classic molecular altera-
tions in the Vogelstein pathway, mutations in 
BRAF are typical of the serrated polyp pathway 
(Jass 2006; Velho et al. 2010; Vilar and Gruber 
2010).

Moreover, these models are often associated 
with different types of genetic instability. Indeed, 
according to the type of genetic instability, CRC 
can be subdivided in different molecular subsets, 
microsatellite instability (MSI) and microsatel-
lite stability (MSS), the latest characterized by 
having chromosomal instability (CIN) and 
observed in the majority of the cases (approxi-
mately 85%) (Vilar and Gruber 2010; 
Cunningham et  al. 2010). In contrast, MSI is 
detected in about 15% of CRC patients and is 
characterized by a defective mismatch repair sys-
tem through epigenetic silencing or germline 
mutations, leading to the accumulation of muta-
tions across the genome mainly in repetitive 
sequences (microsatellites) (Cunningham et  al. 
2010). As previously highlighted, MSS and MSI 
are preferentially observed in the adenoma-
carcinoma sequence and the serrated pathway, 
respectively (Velho et al. 2010; Vilar and Gruber 
2010). Notably, while for most patients (about 
70%) CRC occurs sporadically (MSI and MSS), 
in other cases CRC develops in a hereditary con-
text being the most common form the hereditary 
non-polyposis CRC (HNPCRC) also termed 
Lynch syndrome (Tops et al. 2009).

Of particular importance in CRC, is the fact 
that MSI status can be used as a prognostic 
marker and predictor of therapeutic resistance in 
CRC patients. More specifically, MSI CRC 
tumours have been shown to be associated with a 
better prognosis than MSS tumours (Malesci 
et al. 2007; Gryfe et al. 2000). In addition, these 
subsets are known to respond differently to the 
available therapies and studies indicate that, in 
contrast to MSS, MSI tumours do not benefit 
from 5-fluouracil (5-FU) based adjuvant chemo-
therapies (Ribic et al. 2003).

Overall, to successfully design and develop 
novel targeted therapies, more studies are needed 
to clarify the value of specific biomarkers for pre-
dictive and prognostic purposes, including MSI 
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status, as well as to better understand the mecha-
nisms underlying the development of CRC in the 
different molecular subsets.

4.3	 �The MAPK and PI3K 
Signalling Pathways 
and Their Deregulation 
in CRC

The mitogen activated protein kinase (MAPK) 
and PI3K are ubiquitous signalling pathways, 
downstream of EGFR, implicated in a variety of 
key biological processes including cell prolifera-
tion and survival, cell cycle regulation, differen-
tiation, metabolism and apoptosis, among others 
(Sebolt-Leopold and Herrera 2004; Liu et  al. 
2009). Figure 4.1 illustrates, in a simplified man-
ner, the classical MAPK and PI3K signalling 
pathways and their intervenient molecules.

Overall, these pathways are of major relevance 
in CRC as activating mutations in genes of these 
cascades are frequently detected in CRC patients, 
leading to the constitutive activation of the sig-
nalling pathway independently of a stimuli. 

Indeed, as determined by others and our group, a 
high frequency of mutations has been observed in 
KRAS, BRAF and PIK3CA (the gene coding for 
PI3K p110α, the catalytic subunit of PI3K) (De 
Roock et  al. 2011; Lievre et  al. 2010; Oliveira 
et al. 2004, 2007; Velho et al. 2005, 2008).

Briefly, as part of the RAS-RAF-MAPK cas-
cade, KRAS is a member of the RAS superfamily 
of GTPases, along with N-RAS and H-RAS, all 
belonging to the larger class of regulatory GTP 
hydrolases (Pylayeva-Gupta et  al. 2011). By 
switching between on and off states, GTP- and 
GDP-bound respectively, KRAS is important in 
controlling a complex network of signalling 
pathways by transducing signals from cell sur-
face receptors namely EGFR to specific intracel-
lular effectors (Sebolt-Leopold and Herrera 
2004; Samatar and Poulikakos 2014). Upon stim-
ulation, guanine nucleotide exchange factors 
(GEFs) promote the activation of RAS by stimu-
lating GDP for GTP exchange; conversely, 
GTPase-activating proteins (GAPs) accelerate 
RAS-mediated GTP hydrolysis. In their active 
state, RAS proteins interact and activate their 
effectors and stimulate downstream signalling 

Fig. 4.1  Simplified 
representation of the 
MAPK and PI3K 
signalling pathways. 
EGF epidermal growth 
factor, EGFR epidermal 
growth factor receptor, 
PI3K 
phosphatidylinositol 
3-kinase, MAPK 
mitogen activated 
protein kinase, MEK1/2 
MAPK kinase 1/2, 
ERK1/2 extracellular 
signal-regulated kinase 
1/2, mTOR mammalian 
target of rapamycin
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pathways (Bos et al. 2007). More specifically, the 
classical RAS signal transduction pathway com-
prises sequential phosphorylations of the serine/
threonine kinase RAF, MAPK kinase 1/2 
(MEK1/2) and extracellular signal-regulated 
kinase 1/2 (ERK1/2), ultimately modulating 
other molecules and regulating the distinct bio-
logical functions (Sebolt-Leopold and Herrera 
2004; Samatar and Poulikakos 2014). Importantly, 
RAS is also known to activate other molecules 
and signalling cascades namely the PI3K signal-
ling pathway, with major implications in targeted 
therapies (Liu et al. 2009; Fernandes et al. 2013; 
Murillo et al. 2014; Gupta et al. 2007).

The B-RAF serine/threonine kinase, which 
belongs to the RAF kinase family of protein 
kinases together with A-RAF and C-RAF, is one 
of the best characterized RAS effectors. RAF 
phosphorylates MEK1/2, which in turn phos-
phorylates and activates ERK1/2 that will modu-
late downstream effectors (Sebolt-Leopold and 
Herrera 2004; Samatar and Poulikakos 2014).

On a separate and parallel signalling cascade, 
PI3Ks are a rather ubiquitous family of lipid 
kinases activated by receptor tyrosine kinases 
(RTK) or other molecules as G-proteins (Liu 
et al. 2009). PI3Ks are able to phosphorylate the 
3′-hydroxyl group of phosphatidylinositol and 
phosphoinositides and these lipid products act as 
second messengers to trigger a multitude of sig-
nalling cascades with impact in key mechanisms 
as survival, differentiation and metabolism (Liu 
et al. 2009; Vanhaesebroeck et al. 2012). In terms 
of classification, PI3Ks are grouped into three 
classes (IA/IB, II and III), with distinct structures 
and substrate specificities but class IA have 
received much attention as they have been impli-
cated in many human cancers. Class IA PI3Ks, 
able to phosphorylate phosphatidylinositol 
(4,5)-biphosphate (PIP2), converting it to phos-
phatidylinositol (3,4,5)-triphosphate (PIP3), are 
composed of a heterodimer of a p85 regulatory 
subunit (p85α, p85β, p55γ or splice variants) and 
a p110 catalytic subunit (p110α, p110β or p110δ) 
(Liu et  al. 2009; Vanhaesebroeck et  al. 2012). 
Notably, the different p110 and p85 isoforms 
seem to preferentially mediate specific signalling 
cascades, though with some redundancy as 

reviewed in (Hennessy et  al. 2005). Moreover, 
while p110α and p110β are ubiquitously 
expressed, p110δ expression is mostly restricted 
to the immune system (Engelman et al. 2006; Liu 
et al. 2009). In CRC, the p110α subunit of PI3K, 
encoded by the PIK3CA gene, is of particular rel-
evance as it is often mutated in these patients (De 
Roock et al. 2011). The p110 catalytic isoforms 
share high homology and have common specific 
domains namely the p85 binding domain (able to 
interact with the p85 subunit), a RAS binding 
domain (to mediate activation by RAS family 
members) and a kinase catalytic domain (to gen-
erate PIP3 and activate downstream targets) (Liu 
et  al. 2009; Thorpe et  al. 2015). Similarly, the 
common p85 subunit domains include a 
p110-binding domain also termed inter-Src 
homology 2 (iSH2), and SH2, SH3 and BCR 
homology (BHD) domains (Liu et  al. 2009; 
Thorpe et  al. 2015). Mechanistically, activation 
(dimerization and autophosphorylation) of the 
RTK, upon stimulation by growth factors, leads 
to the recruitment of class IA PI3K to the mem-
brane where the regulatory p85 subunit will bind 
RTK phosphorylated motifs but also relieve the 
p85 inhibition of p110; the activated p110 is then 
able to generate PIP3, a second messenger that 
provides docking sites for specific proteins, i.e., 
PIP3 binds to specific domains, as the pleckstrin-
homology (PH) domain, of downstream targets 
including Akt (also termed protein kinase B, 
PKB) and phosphoinositide-dependent kinase 
(PDK1); PDK1 is then able to phosphorylate Akt 
at Thr308 important to activate Akt (Liu et  al. 
2009; Thorpe et al. 2015). Remarkably, the acti-
vation of the serine/threonine-specific protein 
kinase Akt, one important downstream effector 
of PI3K, leads to phosphorylation and subse-
quent activation or inhibition of additional down-
stream molecules that will ultimately regulate 
other proteins modulating the many functions of 
the PI3K signalling cascade (Manning and 
Cantley 2007). Indeed, a panoply of Akt sub-
strates have been identified including glycogen 
synthase kinase 3β (GSK-3β), forkhead box O 
(FoxO) transcription factors, mouse double min-
ute 2 homologue (MDM2), Bcl-2 associated 
death promoter (Bad), tuberous sclerosis complex 
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2 (TSC2), proline-rich Akt substrate of 40 kDa 
(PRAS40) among others, that are involved in cell 
growth, metabolism, insulin signaling and sur-
vival (Manning and Cantley 2007; Manning and 
Toker 2017). In addition, an important down-
stream effector of Akt is the mechanistic target of 
rapamycin (mTOR), a serine/threonine protein 
kinase. Interestingly, the catalytic subunit mTOR 
can be found in two distinct complexes, named 
mTOR complex 1 (mTORC1, composed by 
mTOR, raptor, mLST8, PRAS40 and DEPTOR) 
and mTOR complex 2 (mTORC2, composed by 
mTOR, rictor, mLST8, DEPTOR, Sin1 and 
Protor) and while mTORC1 is activated by Akt 
and known to modulate protein synthesis by 
phosphorylating the key mTOR effectors elF4E 
Binding Protein (4EBP1) and p70S6 Kinase 1 
(S6 K1), mTORC2 is able to phosphorylate Akt 
at Ser473 and activate it (Sarbassov et al. 2005, 
2006; Liu et al. 2009; Manning and Toker 2017; 
Saxton and Sabatini 2017). Importantly, the 
phosphorylation of Akt at both Thr308 and 
Ser473 is required for full Akt activation 
(Manning and Toker 2017). In contrast to the 
above mentioned activation mechanisms, nega-
tive regulation of the PI3K pathway is also medi-
ated by the tumour suppressor gene phosphatase 
and tensin homolog (PTEN) that removes the 3′ 
phosphate from PIP3 hampering the PI3K signal-
ling (Cully et al. 2006). Noteworthy, in addition 
to the described regulatory mechanisms, the 
PI3K-Akt-mTOR signaling is also tightly con-
trolled by a number of feedback loops and cross-
talk with other signaling pathways as reviewed 
in  (Manning and Toker 2017; Rozengurt et  al. 
2014). Indeed, an important negative feedback 
mediated by mTORC1 is known to inhibit the 
PI3K pathway through distinct mechanisms. In 
particular, mTORC1 and its downstream effector 
S6K are able to inhibit the PI3K/Akt signalling 
through phosphorylation, inhibition and degrada-
tion of the insulin receptor substrate I (IRS-I) 
(Harrington et  al. 2004; Manning and Toker 
2017). In addition, RTKs are also targets of nega-
tive feedback regulation by activated PI3K-Akt-
mTOR (Zhang et al. 2007; Chandarlapaty et al. 
2011; Manning and Toker 2017).

As previously mentioned, mutations in genes 
of the MAPK and PI3K pathways are frequent in 
CRC.  Specifically, about 30–40% of CRC 
patients harbour a mutation in KRAS (mostly 
affecting codons 12 and 13 of exon 2), whereas 
mutations in the KRAS effector, BRAF, are 
detected in about 15% of CRC patients (typically 
V600E on exon 15) (De Roock et al. 2011; Velho 
et al. 2010). Notably, KRAS and BRAF oncogenes 
have been suggested to play different roles in the 
development and progression of CRC, as KRAS 
and BRAF mutations are rarely detected in the 
same tumour and are instead observed as alterna-
tive molecular modifications (Rajagopalan et al. 
2002; Velho et  al. 2010). Moreover, KRAS and 
BRAF mutation frequencies and patterns are dis-
tinct in MSI, MSS, sporadic and hereditary sub-
sets of CRC, with mutations in BRAF mostly 
found in MSI sporadic CRC and KRAS in MSS 
and MSI sporadic and hereditary CRC (Oliveira 
et  al. 2004, 2007; Velho et  al. 2010; Domingo 
et al. 2004; Lubomierski et al. 2005). In addition 
to KRAS and BRAF, PIK3CA mutations are 
observed in approximately 15% of CRC patients 
and, in contrast, often arise concomitantly with 
KRAS or BRAF mutations (De Roock et al. 2011; 
Velho et  al. 2005, 2008). These PIK3CA muta-
tions are of the missense type and are mostly in 
hotspots involving exon 9 that corresponds to the 
helical domain of PI3K p100α, and exon 20 that 
corresponds to the kinase domain of PI3K p100α; 
two common examples are E545K and H1047R 
(De Roock et al. 2011; Liu et al. 2009). In con-
trast to these, alterations in other molecules of the 
PI3K pathway are rare, except for PTEN for 
which controversial information has been raised 
in terms of mutations and loss of expression (De 
Roock et al. 2011; Nassif et al. 2004).

In any case, aberrant activation of these mol-
ecules will have a major impact in cell behaviour 
with effects on proliferation, survival, invasion 
and therefore in the initiation and progression of 
CRC (Thorpe et al. 2015). Of particular impor-
tance, and essential to better understand the 
underlying signalling mechanisms, is the increas-
ing evidence in support of RAS-RAF-MAPK and 
PI3K-Akt cross-talk resulting in a complex sig-
nalling network (Castellano and Downward 
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2011; Thorpe et al. 2015). However, the extent of 
such cross-talk and the implications for CRC 
therapy are still not clear.

4.4	 �Current Targeted Therapies 
for CRC and Their Limitations

To date, apart from the conventional therapeutic 
strategies, CRC is limited to two distinct types of 
targeted therapy. These include anti-angiogenic 
and anti-EGFR agents (Ciardiello and Tortora 
2008; Welch et  al. 2010; Weng et  al. 2015). In 
particular, cetuximab and panitumumab, two 
anti-EGFR antibodies that bind the extracellular 
domain of EGFR, have received much attention 
and are currently approved for the treatment of 
patients with mCRC (Ciardiello and Tortora 
2008). Regrettably, only a subgroup of mCRC 
patients can benefit from such therapies and only 
a small percentage will be sensitive (Ciardiello 
and Tortora 2008; Lievre et al. 2017). More spe-
cifically, KRAS mutations have been recognized 
as predictive biomarkers of resistance to anti-
EGFR agents, though some controversy exist as 
to the type of KRAS mutation (De Roock et  al. 
2010; Allegra et  al. 2016). Nonetheless, CRC 
patients harbouring somatic KRAS mutations are 
currently not eligible to cetuximab and panitu-
mumab targeted therapies (Allegra et  al. 2009, 
2016). Such limitation has a major impact, as 
about 30–40% of CRC patients do harbour a 
KRAS mutation (De Roock et  al. 2011; Velho 
et al. 2010). Importantly, not all mCRC patients 
with wild type KRAS respond to anti-EGFR 
agents, suggesting that other mechanisms of 
resistance are involved (Heinemann et al. 2016; 
Lievre et  al. 2017; Price et  al. 2016). Indeed, 
NRAS mutations were also shown to be associ-
ated with resistance to anti-EGFR agents, and 
recommendations are now to exclude these 
patients from EGFR targeted therapies (Allegra 
et  al. 2016). However, these account for only 
about 2% of CRC patients, indicating that other 
molecules are involved (Irahara et  al. 2010). 
Mutations in other genes downstream of EGFR, 
including BRAF and PIK3CA, have been associ-
ated with resistance to EGFR targeted therapies 

but inconsistent results have been obtained and 
additional evidence is required to clarify such 
controversy (De Roock et  al. 2011; Mohamed 
et al. 2018; Lievre et al. 2010; Therkildsen et al. 
2014). As above mentioned, mCRC patients can 
also be offered anti-angiogenic therapy using the 
anti-VEGF agent bevacizumab, namely in com-
bination with chemotherapy regimens, which has 
proven some clinical efficacy (Welch et al. 2010).

Altogether, at present, not only the available 
targeted agents for mCRC patients are limited but 
also exclude a considerable proportion of 
patients. Therefore, there is an urgent need to 
develop novel therapeutic strategies for CRC 
patients, particularly for those with KRAS 
mutations.

4.5	 �Targeting the PI3K 
Signalling Pathway

The PI3K signalling pathway is a key signalling 
cascade implicated in many human cancers 
including CRC (Janku et  al. 2018). It is well 
established that deregulation of the PI3K signal-
ling can occur through activating mutations in the 
PIK3CA gene, but other important activation 
mechanisms are known to exist, namely through 
oncogenic KRAS, with strong implications for 
CRC patients (Thorpe et al. 2015; Castellano and 
Downward 2011). Thus, efforts have been made 
to advance in the development of novel targeted 
therapies directed to the many molecules of the 
PI3K signalling cascade. Attractive therapeutic 
targets include PI3K p110 isoforms, Akt and 
mTOR, and inhibitors can be isoform specific- or 
pan-PI3K inhibitors, dual PI3K/mTOR inhibi-
tors, Akt inhibitors and mTORC1 and mTORC2 
inhibitors.

A vast number of drugs have already been 
tested in preclinical assays, however, only a few 
have reached clinical studies for several cancer 
types, including CRC (Fig.  4.2). Furthermore, 
the available data on the clinical effects of PI3K 
inhibitors is still limited (Rodon et  al. 2013; 
Janku et al. 2018). Notably, despite reports sug-
gesting specific alterations to be predictive of 
responsiveness, as the presence of PIK3CA 
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mutations for PI3K p110α specific inhibitors, 
reliable predictive biomarkers of therapeutic 
response or resistance are still awaited. To date, 
no PI3K signaling pathway inhibitor has yet been 
approved for CRC patients and only temsiroli-
mus and everolimus (mTORC1 inhibitors) and 
copanlisib and idelalisib (PI3K inhibitors) have 
been approved for specific types of cancer as sub-
sequently described in more detail (Janku et al. 
2018). A brief overview of the current knowledge 
is described below.

4.5.1	 �PI3K Isoforms as Therapeutic 
Targets

As above mentioned, agents that target the PI3K 
are classified into pan-class I PI3K inhibitors tar-
geting all class I PI3K isoforms, or into isoform 
specific-PI3K inhibitors, targeting specifically 
one p110 isoform (Thorpe et  al. 2015; Janku 
et al. 2018).

Initially, many studies were performed in sev-
eral cancer type models using the PI3K pan-

inhibitors wortmannin and LY294002, but these 
were only tested in preclinical studies and did not 
reach clinical trials, in part due to selectivity and 
toxicity issues (Liu et al. 2009). In particular, the 
irreversible PI3K inhibitor wortmannin was 
shown to have antitumour activity in several 
human tumour cell lines, including a colon carci-
noma cell line (Schultz et  al. 1995). Moreover, 
LY294002, a reversible small molecule PI3K 
inhibitor, demonstrated a remarkable growth-
inhibitory and apoptosis-inducing effect in colon 
cancer cell lines and, experiments using mouse 
xenografts revealed that LY294002 administra-
tion in vivo also resulted in suppression of tumour 
growth and induction of apoptosis (Semba et al. 
2002).

In recent years, novel inhibitors were gener-
ated with improved characteristics, namely in 
terms of specificity, potency and stability while 
simultaneously minimizing toxicity. In most 
cases, these inhibitors are ATP competitive agents 
and many of them are now being evaluated in 
clinical trials in patients with solid tumours, 
including CRC, either as monotherapy or in 

Fig. 4.2  Inhibitors of the PI3K signalling pathway used in clinical trials for several cancer types, including CRC
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combination with other therapies (Thorpe et  al. 
2015). The list of inhibitors is vast and includes 
BKM120, PX-866, XL147, GDC0941, 
GSK1059615, BYL719, GDC0032, INK1117 
(Janku et al. 2018). Some relevant studies focus-
ing on CRC are briefly described.

BKM120 (buparlisib), a pan-PI3K inhibitor, 
when tested in a panel of 353 cell lines exhibited 
preferential inhibition of tumour cells harbouring 
PIK3CA mutations, in contrast to either KRAS or 
PTEN mutant models (Maira et  al. 2012). In 
addition, BKM120 was shown to reduce cell pro-
liferation in wild type and mutant PI3KCA CRC 
cells and treatment with cetuximab and BKM120 
significantly reduced the growth of xenograft 
tumours originating from PIK3CA wild type and 
KRAS mutant cells compared with cetuximab 
alone (Hong et al. 2016). Noteworthy, the mecha-
nisms underlying resistance to PI3K inhibition 
are known to involve other molecules. For 
instance, high nuclear β-catenin concentrations 
were shown to confer resistance to BKM120 in 
sphere cultures derived from patients with colon 
cancer (Tenbaum et  al. 2012). Clinical studies 
have shown that BKM120 was well tolerated and 
had preliminary antitumour activity (Bendell 
et al. 2012; Rodon et al. 2014). However, a phase 
I trial of BKM120 plus mFOLFOX6 (5-FU/LV + 
oxaliplatin), in patients with refractory solid 
tumours, including CRC, resulted in increased 
toxicity compared to either therapy alone (McRee 
et al. 2015). At present, other clinical trials using 
BKM120 are under investigation, one in combi-
nation with panitumumab in KRAS wild type 
mCRC patients (NCT01591421) and another in 
combination with irinotecan in previously treated 
advanced CRC patients (NCT01304602). 
PX-866, an irreversible pan-PI3K inhibitor, has 
been shown to cause prolonged inhibition of 
PI3K signalling in human tumour xenografts, 
namely in colon tumour xenografts (Ihle et  al. 
2004). In clinical trials, it was well tolerated and 
was associated with prolonged stable disease in 
patients with advanced solid tumours, namely 
CRC (Hong et  al. 2012). A multicenter phase I 
study of PX-866 and cetuximab in patients with 
mCRC or recurrent/metastatic squamous cell car-
cinoma of the head and neck has shown that 

PX-866 and cetuximab treatment was tolerated 
with signs of antitumour activity (Bowles et  al. 
2014). Subsequently, a randomized phase II 
study evaluated cetuximab with or without 
PX-866 in patients with KRAS wild type mCRC; 
however the addition of PX-866 to cetuximab did 
not improve progression free survival, objective 
response rate, or overall survival in patients with 
mCRC but instead the combination arm had 
greater toxicity (Bowles et al. 2016). In addition 
to these, other pan-PI3K inhibitors are being 
investigated in clinical trials for several tumour 
types and include XL-147 (pilaralisib), GDC-
0941 (pictilisib), CH5132799, GSK1059615, 
SF1126 and ZSTK474 (Wheler et  al. 2017; 
Sarker et  al. 2015; Thorpe et  al. 2015; Patnaik 
et  al. 2016; Blagden et  al. 2014; Janku et  al. 
2018). To date, copanlisib (BAY80-6946) is the 
only pan-PI3K inhibitor, with predominant activ-
ity against PI3K p110α and PI3K p110 δ iso-
forms, approved for relapsed lymphoma 
(Markham 2017).

In the last few years, isoform specific PI3K 
inhibitors have also been developed and of par-
ticular interest for CRC patients are the PI3K 
p110α inhibitors, as mutations in the gene that 
code for the PI3K p110α are frequently observed. 
BYL719 (alpelisib), a selective inhibitor of the 
PI3K p110α, was shown to have antitumour 
activity in preclinical studies and PIK3CA muta-
tion was suggested to be a positive predictor of 
BYL719 sensitivity (Fritsch et  al. 2014). Our 
group has also demonstrated the potential benefit 
of targeting PI3K p110α in CRC cells. Notably, 
not only cells with PIK3CA mutations were sen-
sitive to PI3K p110α inhibition, but also cells 
with KRAS mutations (Fernandes et al. 2016). In 
particular, we have shown that the specific inhibi-
tion of PI3K p110α, by small interfering RNA 
(siRNA) or BYL719, had an impact in the viabil-
ity of SW480 and HCT116 CRC cells harbouring 
mutations in KRAS and KRAS/PIK3CA, respec-
tively (Fernandes et al. 2016). In addition, PI3K 
inhibition induced apoptosis in HCT116 cells and 
cell cycle arrest in SW480 cells suggesting that 
different mechanisms may be involved 
(Fernandes et al. 2016). Thus, specific inhibition 
of the p110α subunit of PI3K could provide an 
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alternative therapeutic approach for CRC 
patients, particularly those harbouring KRAS 
mutations, who are currently excluded from 
EGFR-targeted therapies. In addition to preclini-
cal studies, data from clinical trials is now emerg-
ing. The results from the first in-human phase Ia 
study revealed that BYL719 was tolerable and 
encouraging preliminary activity was observed in 
patients with PIK3CA-altered solid tumours 
(Juric et al. 2018). Moreover, due to the limited 
efficacy of BRAF inhibitors as single agents in 
BRAF mutant CRC and since EGFR and PI3K 
activation have been associated with resistance, a 
clinical phase Ib study evaluated the selective 
RAF kinase inhibitor encorafenib plus cetuximab 
or encorafenib plus cetuximab and BYL719; the 
results demonstrate that the treatments were tol-
erable and provided promising clinical activity in 
BRAF mutant mCRC patients (van Geel et  al. 
2017). Taselisib (GDC-0032) and MLN1117 
(TAK-117, INK1117) are other PI3K p110α 
inhibitors currently in clinical trials for several 
cancer types (Janku et al. 2018).

In addition to PI3K p110α inhibitors, other 
p110 isoforms have been targeted including PI3K 
p110β and PI3K p110δ, but these have been 
mostly used for other cancer types. Indeed, idelal-
isib (CAL-101), a selective PI3K p110δ inhibitor, 
has already been approved for the treatment of 
patients with haematological malignancies (Gopal 
et  al. 2014; Yang et  al. 2015). In addition, the 
PI3K p110β inhibitor GSK2636771 and the PI3K 
p110δ inhibitor INCB050465 are also in clinical 
trials for various cancer types including CRC.

4.5.2	 �PI3K/mTOR Axis 
as a Therapeutic Target

The p110 catalytic domain of PI3K is structurally 
similar to that of the mTOR and therefore a class 
of inhibitors has been developed that target both 
molecules (Takeda et al. 2016). Using this strat-
egy, PI3K-Akt-mTOR activation should be more 
efficiently inhibited as feedback mechanisms 
could be prevented. A number of dual inhibitors 
have been evaluated both in preclinical and clini-

cal settings including BEZ235, XL765, BGT226 
and PKI587.

BEZ235 (dactolisib), a potent ATP-
competitive dual PI3K-mTOR inhibitor, was 
shown to have antitumour activity in vitro and in 
vivo using human tumour cell lines and tumour 
xenografts (Maira et  al. 2008). In addition, 
BEZ235 was shown to induce tumour regression 
in genetically engineered mouse models of 
PIK3CA wild type CRC (Roper et al. 2011). Also 
in preclinical studies, BEZ235 was able to inhibit 
the PI3K/mTOR axis and to have antiprolifera-
tive and antitumoural activity in cancer cells with 
both wild type and mutated PIK3CA (Serra et al. 
2008). Regarding predictive biomarkers, PIK3CA 
mutations have been associated with antitumour 
activity in preclinical and clinical studies, as 
shown with the association of the PIK3CA muta-
tion H1047R with response to PI3K/AKT/mTOR 
signalling pathway inhibitors in early-phase clin-
ical trials (Janku et al. 2013). Importantly, other 
preclinical studies have shown that coexistent 
mutations in PIK3CA and KRAS in CRC cells 
conferred resistance to BEZ235 (Kim et  al. 
2013). In addition, alterations in distinct mole-
cules have also been associated with resistance to 
PI3K signaling inhibitors as is the case of TRIB2 
that was shown to confer in vivo resistance to 
BEZ235 treatment through activation of Akt (Hill 
et  al. 2017). Nonetheless, additional data is 
awaited from clinical trials. BEZ235 has also 
been combined with the mTOR inhibitor everoli-
mus. Indeed, a phase Ib study of BEZ235 com-
bined with everolimus was evaluated in patients 
with advanced solid malignancies but the combi-
nation of BEZ235 and everolimus demonstrated 
limited efficacy and tolerance (Wise-Draper et al. 
2017).

BGT226, another dual PI3K-mTOR inhibitor, 
has also been evaluated in a clinical trial in 
patients with advanced solid tumours, including 
patients with colon cancer. However, BGT226 
was shown to have limited preliminary antitu-
mour activity and inconsistent target inhibition 
(Markman et al. 2012). The first-in-human study 
of PF05212384 (PKI-587) in patients with 
advanced cancer demonstrated a manageable 
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safety profile and antitumour activity supporting 
further clinical development for patients with 
advanced solid malignancies (Shapiro et al. 2015).

Additional dual PI3K-mTOR inhibitors have 
been tested in clinical trials for many cancer 
types, but for some inhibitors, little success or 
toxicity issues were observed and no further stud-
ies were pursued (Janku et  al. 2018; LoRusso 
2016). More data on CRC is still awaited.

4.5.3	 �Akt and mTOR as Therapeutic 
Targets

As a key molecule in the PI3K signalling cas-
cade, Akt has been appointed as a potential thera-
peutic target. Indeed, MK-2206, a potent 
allosteric inhibitor of all Akt isoforms, has 
already been evaluated in preclinical and clinical 
settings (Brown and Banerji 2017). For instance, 
in mice with established xenograft tumours, 
MK-2206 exhibited a significant deceleration of 
tumour progression and primary patient-derived 
tumour sphere growth was significantly inhibited 
by MK-2206 (Malkomes et  al. 2016). In the 
clinic, the first-in-man clinical trial of MK-2206 
demonstrated good tolerability with evidence of 
Akt signalling blockade in patients with advanced 
solid tumours that included CRC patients (Yap 
et al. 2011). Further clinical trials using MK-2206, 
alone or in combination, are ongoing in patients 
with advanced CRC namely a phase II study in 
patients with metastatic KRAS wild type and 
PIK3CA mutant (NCT01186705). Perifosine is 
another Akt inhibitor that, as MK-2206, targets 
the PH domain of Akt, thereby preventing its 
translocation to the plasma membrane and block-
ing its phosphorylation and activation (Gills and 
Dennis 2009; Brown and Banerji 2017). In a 
phase II trial in patients with mCRC, perifosine 
plus capecitabine showed promising clinical 
activity when compared with capecitabine alone 
(Bendell et al. 2011). Other inhibitors, including 
ATP competitive inhibitors of Akt, are being 
tested in patients with different cancer types and 
these include AZD5363, GDC-0068 and 

GSK2141795 (Janku et al. 2018; LoRusso 2016). 
Importantly, special attention should be taken 
when using these inhibitors alone as data indi-
cates that PI3K may signal through both Akt-
dependent and Akt-independent mechanisms. 
Indeed, an Akt-independent signalling down-
stream of PIK3CA mutations has been described 
in human cancer cells (Vasudevan et al. 2009).

Inhibitors targeting mTOR are also being 
evaluated in clinical trials for many cancer types. 
These inhibitors, which can be rapamycin ana-
logs inhibiting mTORC1, or ATP-competitive 
inhibiting both mTORC1 and mTORC2, have 
been investigated in preclinical and clinical stud-
ies (Guertin and Sabatini 2009; Papadatos-Pastos 
et  al. 2015). Indeed, temsirolimus, which is an 
mTORC1 inhibitor, has already been approved 
for advanced renal cancer and everolimus 
(RAD001), also an mTORC1 inhibitor, was 
approved for certain cancer types including 
advanced renal cancer and particular types of 
advanced breast cancer (Hudes et  al. 2007; 
Baselga et  al. 2012; Motzer et  al. 2008; Janku 
et al. 2018). Temsirolimus and everolimus have 
also been evaluated in several clinical trials in 
mCRC patients, either alone or in combination 
with other therapeutic agents. For instance, in a 
phase II study in patients with refractory mCRC, 
the combination of tivozanib (a VEGFR inhibi-
tor) and everolimus was shown to be well toler-
ated, with stable disease achieved in 50% of 
patients (Wolpin et  al. 2013). In contrast, in a 
phase II study in patients with mCRC heavily 
pretreated, everolimus was well tolerated but did 
not confer meaningful efficacy (Ng et al. 2013). 
A phase I trial of everolimus in combination with 
5-FU/LV, mFOLFOX6 and mFOLFOX6 plus 
panitumumab in patients with refractory solid 
tumours including CRC has shown that the fur-
ther addition of panitumumab resulted in an 
unacceptable level of toxicity that cannot be rec-
ommended for further study (McRee et al. 2014). 
A phase II trial of temsirolimus, alone or in com-
bination with irinotecan, in KRAS mutant mCRC 
revealed that treatment was well tolerated but had 
limited efficacy in chemotherapy resistant KRAS 
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mutant (Spindler et  al. 2013). Nonetheless, 
plasma KRAS quantification was suggested as a 
strong predictor of outcome (Spindler et  al. 
2013). In addition to these, other mTOR inhibi-
tors entered clinical trials including AZD8055, 
AZD2014 and MLN0128 (LoRusso 2016; 
Papadatos-Pastos et al. 2015). More studies and 
data are required evaluating mTOR inhibitors, 
namely in combination with other regimens.

4.5.4	 �PI3K Inhibition 
in Combination with MAPK 
Targeted Therapies

The available PI3K targeted therapies have 
shown limited success in CRC patients. Indeed, 
despite the development of many specific inhibi-
tors, some of which already in clinical trials, 
none of these have yet been approved for the 
treatment of patients with CRC. Therefore, in an 
attempt to improve the response rates of these 
patients, combined targeted therapies have been 
proposed and investigated.

Notably, it is well established that the MAPK 
and PI3K signalling pathways are interconnected 
and inhibition of one signalling cascade could 
induce feedback loops and compensatory mecha-
nisms, ultimately leading to resistance (Britten 
2013). Moreover, as mutations in KRAS and 
BRAF are frequently observed in CRC patients, 
inhibition of both MAPK and PI3K pathways 
could be a more effective strategy. Thus, several 
studies have been performed to evaluate the com-
bination of inhibitors targeting molecules of 
these pathways.

In preclinical models, inhibition of both the 
MAPK and PI3K signalling pathways have been 
reported to be synergistic in various cancer types 
(Temraz et al. 2015). For instance, although treat-
ment with BEZ235 led to marked tumour regres-
sion in a mouse model of lung cancer with the 
PIK3CA H1047R mutation, in KRAS G12D 
mutant mice only BEZ235 combined with the 
MEK inhibitor ARRY-142886 induced tumour 
regression but not BEZ235 alone (Engelman 

et al. 2008). In CRC, the combination of a PI3K/
mTOR (PF-04691502) and a MEK (PD-0325901) 
inhibitor demonstrated enhanced anti-
proliferative effects against CRC cell lines and 
demonstrated enhanced reduction in tumour 
growth in patient-derived CRC tumour xenograft 
models, regardless of KRAS or PI3K mutational 
status (Pitts et al. 2014). In a panel of CRC cell 
lines, dual targeting of PI3K (GDC-0941) and 
MEK (AZD6244) induced synergistic growth 
inhibition but the combination of specific PI3K 
inhibitors, rather than dual mTOR/PI3K inhibi-
tors, with MEK inhibitors resulted in greater syn-
ergy (Haagensen et  al. 2012).The inhibition of 
MEK and PI3K/mTOR was shown to suppress 
tumour growth in patient-derived xenografts of 
RAS-mutant colorectal carcinomas, though it did 
not cause tumour regression (Migliardi et  al. 
2012). However, preclinical data also indicates 
that such therapeutic strategies have limitations 
namely related to toxicity issues and periodic 
rather than continuous inhibition has been sug-
gested as an alternative strategy (Will et al. 2014). 
Indeed, rapid induction of apoptosis by PI3K 
inhibitors was reported to be dependent of the 
transient inhibition of RAS–ERK signalling 
(Will et al. 2014).

In a retrospective analysis, dual targeting of 
the PI3K and MAPK pathways was evaluated in 
patients with advanced cancers including CRC 
and treated with phase I study drugs; the results 
suggested that dual inhibition may potentially 
exhibit favourable efficacy compared with inhibi-
tion of either pathway, although with greater tox-
icity (Shimizu et al. 2012). In a biomarker-driven 
trial, no clinical benefit was observed in CRC 
patients treated with the Akt inhibitor MK-2206 
and the MEK1/2 inhibitor selumetinib; instead, 
overlapping toxicities limited the ability to dose 
escalate to achieve exposures likely needed for 
clinical activity (Do et  al. 2015). At present, 
many clinical trials are ongoing with MAPK and 
PI3K inhibitors for many cancer types including 
CRC but data is still awaited (Temraz et al. 2015; 
Tolcher et al. 2018).

4  Targeting the PI3K Signalling as a Therapeutic Strategy in Colorectal Cancer



46

4.6	 �The Importance 
of Bioinformatic Tools 
for Biomarker and Therapy 
Predictions

The number of studies evaluating specific inhibi-
tors, both in preclinical and clinical settings, is 
enormous. Whether evaluating single and combi-
nation of drugs in cancer cell lines, performing in 
vivo experiments in animal models, or clinical 
trials in patients with advanced cancers, the 
amount of generated information is huge and 
rather under analysed.

Over the last few years, bioinformatic tools 
have gained much interest and proved powerful 
in unravelling some key aspects in cancer 
research, namely in the discovery of cancer bio-
markers and evaluation of therapy responsive-
ness. Currently, it is well established that despite 
similarities in the mutational patterns among sev-
eral cancer types, specific molecular alterations 
have context specific functional consequences 
with impact in therapy outcome. For instance, 
using a computational strategy for integrating 
(phospho) proteomic and mRNA sequencing 
data across tumour data sets, it was possible to 
link the dysregulation of upstream signalling 
pathways with altered transcriptional programs. 
More specifically, it was possible to associate 
PIK3CA activating mutations with altered activi-
ties of distinct sets of transcription factors and 
therefore this model could help to better predict 
which patients will benefit from targeted and 
combination therapies (Osmanbeyoglu et  al. 
2017). In a different study, a model is proposed to 
integrate oncogene and tumour suppressor activ-
ity in CRC cells and used to identify cancer driv-
ers and compute patient-specific gene activity 
scores (Pavel et al. 2016). In this model, the inte-
grative score improved prediction of drug sensi-
tivity and the gene activity scores were also used 
to cluster CRC cell lines (Pavel et al. 2016). In 
addition to these, other studies focusing on bio-
imaging and bioinformatics have been devel-
oped. For instance, a novel method was proposed 
to characterize E-cadherin signature in gastric 
cancer cells in order to identify E-cadherin dereg-
ulation and functional impairment (Sanches et al. 

2015). More specifically, this strategy included a 
bioimaging pipeline to quantify the expression 
level and characterize the distribution of the pro-
tein from in situ immunofluorescence images 
(Sanches et al. 2015). As for gastric cancer, bio-
imaging tools could be used in CRC models with 
potential implications in biomarker identification 
and therapy outcome predictions.

4.7	 �Conclusions and Future 
Perspectives

The ultimate goal in cancer therapy is to provide 
patients with treatments that will improve their 
overall survival and eventually manage cancer as 
a chronic disease. To achieve successful out-
comes, personalized therapy will most probably 
be needed, i.e., select the best targeted therapy to 
each patient tumour characteristics. Although 
many drugs are being developed, there is still the 
urgent need to develop novel therapeutic 
strategies.

In recent years, inhibitors to the various mol-
ecules of the PI3K-Akt-mTOR cascade have 
emerged. In most cases, these inhibitors have 
shown a wide range of adverse effects and lim-
ited success. A deeper knowledge of the complex 
interplay between distinct signalling pathways, 
as well as a better understanding of feedback-
loops disruption and the occurrence of compen-
satory mechanisms upon PI3K inhibition, will 
guide and improve the design of novel therapeu-
tic strategies. The available clinical results have 
shown that dual MAPK and PI3K inhibition is 
possible, although toxicity has been an issue. 
Additional combination therapy regimens are 
being tested and should be considered.

A challenge in the treatment of CRC patients 
will be the identification of specific biomarkers 
predictive of therapy responsiveness, for which 
bioinformatics tools will be essential. Indeed, a 
proper patient stratification will most probably be 
a key issue for a successful outcome. Although 
many studies have been performed to identify 
such biomarkers, further studies are required. 
Overall, and despite ongoing clinical trials with 
some of these drugs, CRC patients are still await-
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ing alternative therapies to be approved. More 
data on novel drugs, combination regimens and 
clinical trials is expected to shed light on CRC 
best targeted therapies.
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Targeting PTEN in Colorectal 
Cancers
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and Eric Chastre

Abstract
Phosphatase and tensin homolog (PTEN) is a 
tumour suppressor that represents one of the 
most common targets for genetic defect in 
human cancer. PTEN controls an array of 
physiopathological processes related to cell 
proliferation, differentiation, DNA/chromo-
some integrity, apoptosis and invasiveness. 
PTEN dephosphorylates not only proteins, but 
also phosphoinositides generated by phospha-
tidylinositol 3-kinase, thus counteracting the 
Akt signalling pathway. Interestingly, PTEN 
can also exert some biological functions inde-
pendently of its catalytic activity.

A feature of colorectal cancers is the relatively 
low incidence of PTEN mutation or deletion, 
whereas PTEN downregulation occurs in approx-
imately one third of tumours. PTEN inactivation 

may be even higher when changes in posttransla-
tional modifications and/or mislocalization of the 
tumour suppressor are accounted for. Strategies 
based on pharmacologically-induced restoration 
of wild-type PTEN function in colon cancer cells 
could therefore be considered, to impact cell 
growth, trigger apoptosis, and sensitize tumour 
cells to therapeutic agents.

This review details current knowledge of the 
mechanisms regulating PTEN expression, activ-
ity and function. It also focuses on the use of 
small molecules targeting positive or negative 
PTEN regulators and summarizes alternative 
strategies that could be used to alter PTEN con-
formation/activity. Finally, we propose an outline 
of a personalized approach to restore PTEN func-
tion in colon cancer cells.

Keywords
AKT signaling · DNA repair · Molecular 
scaffolds · Phosphatase · Tumor suppressor

5.1	 �Background

PTEN (phosphatase and tensin homolog deleted 
on chromosome ten)/MMAC (mutated in multi-
ple advanced cancers) was identified in 1997 by 
two groups as a candidate tumour suppressor 
gene located at 10q23 (Li et al. 1997; Steck et al. 
1997). In parallel, in a study screening for new 

L. Kotelevets · E. Chastre (*) 
Inserm, UMR S 938, Cancer Biology and 
Therapeutics, Centre de Recherche Saint-Antoine, 
Paris, France 

Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 
Université Pierre-et-Marie-Curie Paris 6, Sorbonne 
Universités, Paris, France
e-mail: eric.chastre@inserm.fr 

M. G. H. Scott 
U1016, Institut Cochin, 27, CNRS, UMR8104, 
Institut National de la Santé et de la Recherche
Médicale, Paris, France 

Université Paris Descartes, Sorbonne Paris Cité, 
Paris, France

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02771-1_5&domain=pdf
mailto:eric.chastre@inserm.fr


56

dual-specificity phosphatases the same gene was 
identified and named TEP-1 (TGF-β-regulated 
and epithelial cell-enriched phosphatase) (Li and 
Sun 1997). Homozygous inactivation of PTEN 
occurs in a large fraction of glioblastomas, mela-
noma cell lines, advanced prostate cancers and 
endometrial carcinomas (Teng et  al. 1997). 
Depending on tissue type, PTEN inactivation can 
occur either as an early (e.g. endometrium), or 
late event (e.g. prostate cancers, glioblastomas). 
PTEN is one of the most common targets for 
genetic defect in human cancer. 
Haploinsufficiency or inactivation of a single 
PTEN allele is sufficient for cancer development. 
Germ-line mutations in PTEN cause three auto-
somal dominant inherited cancer syndromes 
(Cowden disease, Lhermitte-Duclos disease, and 
Bannayan-Zonana syndrome) characterized by 
hamartomas, and an increased prevalence of 
breast and thyroid malignancies. Pten+/− mice 
mimic the effects of some germ-line mutations of 
the human tumour suppressor gene (Di Cristofano 
et al. 1998; Suzuki et al. 1998; Podsypanina et al. 
1999). Pten−/− mice exhibit early embryonic 
lethality, whereas heterozygotes show increased 
tumour incidence, consistent with its identifica-
tion as a tumour suppressor gene.

PTEN encompasses 403 amino acids and is 
characterized by five functional domains: a short 
N-terminal PtdIns(4,5)P2 (PIP2)-binding 
domain, a phosphatase domain, a membrane-
targeting C2 domain, and a C-terminal tail con-
taining PEST sequences and a PDZ binding motif 
in its C-terminus (see Fig. 5.1). The PDZ binding 
motif permits binding to PDZ domain-containing 
proteins that often direct the assembly of multi-
protein complexes at membrane-cytoskeletal 
interfaces.

PTEN is a multifunctional protein endowed 
with phosphatase activity. It has been reported 
that PTEN dephosphorylates the protein sub-
strates FAK, SHC, IRS1, Dvl2 and PTK6 (Gu 
et al. 1998; Shi et al. 2014; Shnitsar et al. 2015; 
Wozniak et al. 2017). The tyrosine residue 138 of 
PTEN appears to be critical for PTEN protein 
phosphatase activity (Davidson et  al. 2010). 
Importantly, PTEN dephosphorylates not only 
proteins, but also the phosphoinositides gener-

ated by phosphatidylinositol 3-kinase activity. 
PtdIns(3,4,5)P3 is known to exert its function by 
recruiting proteins that contain pleckstrin homol-
ogy (PH) domains to the membrane, such as Btk, 
PKB/Akt, PLC-γ, Gab1, P-Rex1, PDK1, and 
Grp1 (Lemmon 2007). PtdIns(3,4,5)P3 effectors 
promote activation of Rac GTPases and F-actin 
polymerization at the leading edge of migrating 
cells. Through its lipid phosphatase activity, 
PTEN counteracts the PI3K/Akt signalling cas-
cade to decrease cell proliferation (Furnari et al. 
1998), promote apoptosis (Stambolic et al. 2001; 
Szado et  al. 2008) and revert invasiveness 
(Kotelevets et  al. 2001; see also “Targeting the 
PI3K signaling as a therapeutic strategy in 
colorectal cancer” by Fernandes et al., Chap. 4, in 
this issue). PTEN can autodephosphorylate thre-
onine 383 and threonine 366 in its C-terminal tail 
(Fig.  5.1) (Raftopoulou et  al. 2004; Tibarewal 
et al. 2012).

The many somatic PTEN mutations identified 
in human cancers impact PTEN stability, subcel-
lular localisation, and/or the lipid phosphatase/
both lipid and protein phosphatase activities 
(Georgescu et al. 2000; Yang et al. 2017; Furnari 
et al. 1998).

PTEN also exerts some biological activities 
independently of its catalytic activity. For exam-
ple, PTEN directly interacts with the tumour sup-
pressor TP53, enhancing its stability and 
transcriptional activity (Freeman et  al. 2003; 
Tang and Eng 2006). The C-terminal domain of 
PTEN physically interacts with the forkhead-
associated domain of the Microspherule Protein 
1 (MSP58) and inhibits its oncogenic activity 
(Okumura et al. 2005). The isolated C2 domain 
of PTEN is also able to mimic effects of full-
length PTEN in the control of both cell migration 
and glandular morphogenesis in 3D colorectal 
cancer cell systems (Raftopoulou et  al. 2004; 
Leslie et  al. 2007; Lima-Fernandes et  al. 2011; 
Javadi et al. 2017). Nuclear PTEN also interacts 
with the anaphase-promoting complex (APC/C), 
promotes APC/C association with CDH1 
(CDC20 homolog 1), and thereby enhances the 
tumour-suppressive activity of the APC-CDH1 
complex, in a phosphatase-independent manner 
(Song et al. 2011). Interestingly, the knockin of 
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mutant phosphatase-defective alleles of PTEN in 
mouse models reveals that heterozygous mice 
bearing one mutant allele (PtenC124S/+ and 
PtenG129E/+) have a higher tumour burden than 
Pten+/− counterparts with one full null allele. This 
suggests that heterooligomerization of wild-type 
with mutant PTEN inhibits PTEN tumour sup-
pressor activity (Papa et al. 2014).

Due to the significant progress in high-
throughput technologies, vast amounts of multi-
dimensional data relevant to the biology of 
colorectal cancers have been generated (http://
www.colonatlas.org) (Chisanga et  al. 2016). 
Colorectal cancers (CRC) arise through the step-
wise accumulation of genetic alterations leading 
from normal epithelia to aberrant crypt foci, 

Fig. 5.1  Schematic overview of PTEN structure, biologi-
cal functions and regulation by epigenetic, transcriptional, 
post-transcriptional and post-translational mechanisms 
Upper Panel: Structure of canonical PTEN protein 

domains and post-translational modifications. Lower 
Panel: Effector systems controlling PTEN accumulation, 
activity and subcellular localisation. For details see the 
text

5  Targeting PTEN in CRC
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adenoma, carcinoma and metastatic disease 
(Fearon and Vogelstein 1990; Kotelevets et  al. 
2016), and follow three molecular pathways to 
genome instability characterized by (i) chromo-
somal instability (CIN), (ii) high microsatellite 
instability (MSI-H), or (iii) CpG island methyl-
ator phenotype (CIMP). A more detailed classifi-
cation of primary colorectal cancers based on 
intrinsic gene expression profiles, resulting in the 
four biologically distinct consensus molecular 
subtypes (CMS1–4) was recently proposed to 
facilitate the translation of molecular subtypes 
into the clinic (Guinney et al. 2015).

According to The Cancer Genome Atlas 
Network, APC, TP53, KRAS, PIK3CA, FBXW7, 
SMAD4, TCF7L2 and NRAS are the most fre-
quently mutated genes in CRC (cancer genome 
atlas network 2012). Molecular analysis of PTEN 
status in sporadic colorectal cancers revealed that 
PTEN mutation is a relatively rare event. 
COSMIC v84 (URL http://cancer.sanger.ac.uk/
cosmic/, released February 13 2018), reports that 
335 out of 6361 human colonic tumour samples 
exhibited PTEN mutations (5.27%, 2.02% 
according to Lin et  al. 2015), whereas PTEN 
mutations were found in 37.8% of endometrial 
cancers. PTEN mutation in CRC was associated 
with the subgroup displaying microsatellite insta-
bility (mutation rate estimated to 19% in this sub-
group), suggesting that PTEN might be a target 
of defective mismatch repair function in colorec-
tal carcinogenesis. In line with this, the PTEN 
coding region contains several repeat sequences, 
including two poly(A) tracts in exons 7 and 8 
(Goel et al. 2004). These mutations were found 
regardless of the antero-posterior localization of 
the tumour, with a slightly higher incidence in the 
cecum and proximal colon (Loree et al. 2018).

The loss of PTEN copy number was identified 
in 1.56% of tumour samples. Nevertheless, PTEN 
downregulation occurs in 33% of colon cancer 
samples. PTEN inactivation in colonic tumours 
might therefore be underestimated and could 
occur via other non-genomic mechanisms such 
as aberrant regulation of posttranslational modifi-
cations and/or mislocalization of the tumour sup-
pressor. Nuclear-cytoplasmic partitioning of 
PTEN is a promising biological marker: the 

absence of nuclear PTEN is associated with more 
aggressive disease in patients with colorectal 
cancer or other types of cancer (Zhou et al. 2002; 
Tachibana et  al. 2002; Whiteman et  al. 2002; 
Perren et al. 2000; Fridberg et al. 2007).

Experimental studies demonstrate that resto-
ration of PTEN expression sensitizes tumour 
cells to conventional as well as targeted therapies 
and immunotherapies. Since PTEN mutation is 
uncommon in CRC, targeting the multiple levels 
of PTEN regulation constitutes an attractive strat-
egy to explore with the goal of re-establishing/
potentiating its tumour suppressor activities and 
to manage tumour cell responses to 
chemotherapies.

5.2	 �Targeting PTEN in Colorectal 
Cancers

PTEN exerts pleiotropic activity and fulfils a 
complex array of physio-pathological processes 
related to cell proliferation (cell cycle arrest in 
G1 or in G2-M), differentiation, DNA and chro-
mosomal integrity (Shen et al. 2007), apoptosis 
(increased susceptibility) and invasiveness (inhi-
bition). PTEN expression is therefore subjected 
to fine-tuning at transcriptional, post-
transcriptional and post-translational levels 
(Fig. 5.1). The importance of maintaining appro-
priate PTEN expression is highlighted by the fact 
that even a subtle reduction in PTEN levels is suf-
ficient to promote cancer susceptibility 
(Carracedo et al. 2011).

5.2.1	 �Transcriptional Level

5.2.1.1	 �Epigenetic PTEN Regulation
Hypermethylation of CpG islands in promoters is 
associated with gene silencing and PTEN silenc-
ing might therefore result from promoter meth-
ylation independently of copy number loss. The 
analysis of PTEN promoter methylation might be 
biased by contamination of the methylated PTEN 
pseudogene. In colonic cell lines, PTEN pro-
moter methylation is a rare event (Hesson et al. 
2012). In contrast, however, PTEN promoter 
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methylation was observed in approximately 30% 
of colorectal tumour samples (Lin et  al. 2015; 
Yazdani et al. 2016). Interestingly, sulforaphane, 
an organosulfur compound present in cruciferous 
vegetables such as broccoli, Brussels sprouts and 
cabbages induces DNA demethylation and 
restores PTEN expression in cultures of mam-
mary cell lines (Lubecka-Pietruszewska et  al. 
2015). Other epigenetic inhibition of PTEN 
expression involves the histone methyltansferase 
activity of the Polycomb Repressive Complex 2 
that is reversed by the selective antagonist 
3-deazaneplanocin A (Benoit et al. 2013).

This provides a rationale for epigenetic thera-
pies based on the use of DNA demethylating 
agents, such as 5-azacytidine and 5-aza-2′-
deoxycytidine, or of selective inhibitors of his-
tone methyltransferase. Such compounds are 
under clinical trial for cancer treatment (16 trials 
referenced at URL: https://clinicaltrials.gov/, 
accessed on 1st March 2018 concern azacytidine 
derivatives in colorectal cancers, 13 trials evalu-
ate histone methyltransferase inhibitors in differ-
ent types of cancers).

The PTEN pseudogene PTENpg1 is located on 
chromosome 9, and encodes a long noncoding 
RNA (lncRNA) that regulates PTEN both posi-
tively and negatively at transcriptional and post-
transcriptional levels (Johnsson et  al. 2013). 
PTENpg1 is transcribed in the sense orientation 
and in antisense under three isoforms: unspliced, 
spliced antisense alpha and antisense beta. It is pro-
posed that the antisense alpha recruits the EZH2 
histone methyltransferase and the DNA methyl-
transferase 3A (DNMT3a) to the PTEN promoter 
leading to PTEN silencing. The nuclear export of 
the PTENpg1 sense RNA that lacks a poly-A tail is 
facilitated by PTENpg1 antisense beta. Due to its 
strong homology with PTEN, cytoplasmic sense 
PTENpg1 transcript acts as a “sponge” to “mop 
up” the microRNAs targeting PTEN (Fig. 5.1 and 
see below) (Poliseno et al. 2010).

5.2.1.2	 �Transcription Factors
A series of transcription factors bind directly to 
the PTEN promoter and either activate or repress 
PTEN transcription (Fig. 5.1).

Inducing factors include the early growth 
response transcriptional factor 1 (EGR1) (Virolle 
et al. 2001), the peroxisome proliferator activated 
receptor gamma (PPARγ) (Patel et al. 2001), acti-
vating transcription factor 2 (ATF2) (Shen et al. 
2006), the nuclear factor of activated T cell 
(NFAT) (Wang et al. 2011) and the tumour sup-
pressor, TP53 (Stambolic et al. 2001).

In contrast, PTEN is transcriptionally 
repressed by c-Jun (Hettinger et al. 2007), nuclear 
factor-kappa B (NFкB) (Xia et al. 2007; Ghosh-
Choudhury et al. 2010)), and the zinc finger-like 
proteins SNAIL and SLUG involved in epithelial-
mesenchymal transition (Escrivà et  al. 2008; 
Uygur et al. 2015).

These transcription factors and their upstream 
effectors therefore constitute targets to enhance 
PTEN transcription. Examples include the 
PPARγ agonist rosiglitazone, induction of EGR-1 
following irradiation, activation of NFAT by 
butyrate a short-chain fatty acid produced by fer-
mentation of dietary fibers by colonic microbiota, 
statins or selective inhibitors to target NFkB.

5.2.2	 �Posttranscriptional 
Modulation

MicroRNAs (miRNAs) are a class of small non-
coding RNAs containing 18–24 nucleotides. 
These short RNAs can negatively regulate gene 
expression by complementary binding to the 
3-untranslated region (3′-UTR) of target tran-
scripts, leading to translation inhibition and/or 
mRNA degradation (Fig. 5.1). One single miRNA 
may target the expression of many different 
genes. Conversely, one transcript may be targeted 
by distinct miRNAs. MiRNAs are usually tran-
scribed as miRNA precursors, which are pro-
cessed by the DGCR8–Drosha complex, to 
produce a 60- to 70-nucleotide pre-miRNA. This 
pre-miRNA is exported to the cytoplasm and fur-
ther cleaved by the Dicer complex into the mature 
form of miRNA.  The mature miRNA is then 
loaded onto the Argonaute protein, forming a 
miRNA–protein complex known as the RNA-
induced silencing (RISC). A subgroup of miR-
NAs termed oncomiRs, exert oncogenic action 
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through the binding and downregulation of 
tumour suppressor transcripts.

So far, 19 miRNA known to directly target 
PTEN have been identified in colorectal cancers, 
including miR-17 and miR-92a (cluster miR-
17-92) (Tanaka et  al. 2016; Zhang et  al. 2013), 
miR-20b (Zhu et al. 2014) and miR-106a (cluster 
miR-106a-363) (Qin et  al. 2018), miR-21 (Zhu 
et al. 2014), miR-26b (Fan et al. 2018), miR-29a 
(Wang et  al. 2016), miR-32 (Wu et  al. 2013), 
miR-103 (Geng et  al. 2014), miR-106b (Zheng 
et al. 2015), miR-130b (Colangelo et al. 2013), 
miR-135b (Xiang et  al. 2015), miR-181a (Wei 
et al. 2014), miR-200a (Li et al. 2016), miR-200c 
(Chen et  al. 2014), miR-221 (Xue et  al. 2013), 
miR-494 (Sun et al. 2014), miR-543 (Sun et al. 
2017) and miR-582 (Song et  al. 2017). In con-
trast, miR-22 suppresses the growth, migration 
and invasion of colorectal cancer cells through 
targeting Sp1 transcripts, resulting in PTEN up-
regulation (Xia et al. 2017).

MiRNAs expression could therefore be tar-
geted at different levels, i.e. transcription, pro-
cessing, or via depletion or inactivation using 
antisense sequence or small molecule inhibitors 
(Nguyen and Chang 2018). As a proof of con-
cept, the high throughput analysis of a library of 
pharmacologically active compounds allowed 
the identification of small molecule inhibitors of 
the (onco)mir-21 (Gumireddy et al. 2008). Anti-
miRNA-221 sensitizes human colorectal carci-
noma cells to radiation by upregulating PTEN 
(Xue et al. 2013). The MEK inhibitor PD0325901 
suppresses expression of the miR-17-92 cluster 
and up-regulates PTEN in human colonic HT-29 
cells (Tanaka et al. 2016).

The RNA-binding proteins Musashi-1/2 over-
expressed in CRC bind PTEN transcripts leading 
to loss of the PTEN protein and to activation of 
the Akt pathway (Wang et al. 2015; Li et al. 2015; 
Fig. 5.1). The emerging role of Musashi proteins 
in carcinogenesis motivated several groups to 
screen libraries of small molecules in order to 
identify compounds that might disrupt the bind-
ing of Musashi proteins to RNA.  Gossypol, a 
natural phenol derived from the cotton plant, was 
identified following screening. Interestingly, this 
inhibitor of RNA-binding proteins suppresses 

tumour growth in a mouse xenograft model and 
might constitute the basis for the development of 
more selective compounds (Kudinov et al. 2017).

5.2.3	 �PTEN Translation/PTEN 
Isoforms

In addition to the initial PTEN sequence encom-
passing 403 amino acid residues, longer isoforms 
have been recently identified (Hopkins et  al. 
2013; Liang et al. 2014; Tzani et al. 2016). These 
isoforms originate via translation from alterna-
tive start codons, distinct from the canonical 
AUG, and characterized by an extra in frame 
N-terminal sequence of 72 (PTEN-O), 131 
(PTEN-N), 146 (PTEN-M/PTEN-β) and 173 
amino acid residues (PTEN-L/PTEN-α) (Pulido 
et al. 2014; Tzani et al. 2016). Translation of the 
PTEN-L isoform was reported to be under the 
control of the eukaryotic translation initiation 
factor 2A (eIF2a) (Liang et al. 2014). All these 
isoforms retain phosphatase activity and down-
regulate the PI3K/Akt pathways. Nevertheless, 
the N-terminal extension affects their subcellular 
localization. PTEN-L interacts with canonical 
PTEN to increase PTEN-induced kinase 1 
(PINK1) levels and collaborates in mitochondrial 
bioenergetics through regulation of cytochrome c 
oxidase activity and ATP production (Liang et al. 
2014). PTEN-M is localized to the nucleolus, 
where it binds and dephosphorylates, nucleolin, 
the nucleolar phosphoprotein resulting in inhibi-
tion of rDNA transcription, ribosomal biogenesis 
and cell proliferation (Liang et al. 2017).

PTEN-L harbours an N-terminal signal pep-
tide secretion signal, is secreted from cells and 
can enter into other neighbouring cells (Fig. 5.1). 
As an exogenous agent, PTEN-L antagonizes 
PI3K signalling and induces tumour cell death in 
vitro and in mouse tumours xenograft after intra-
peritoneal injection (Hopkins et  al. 2013). By 
providing a means to restore a functional tumour 
suppressor protein to tumour cells, PTEN-L may 
have therapeutic implications. In this context, a 
variant of this isoform was engineered by replace-
ment of the native leader sequence of PTEN-L 
with a leader sequence from human light-chain 
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immunoglobulin G (IgG) to enhance cell-
mediated protein delivery to neighbouring cancer 
cells (Lavictoire et  al. 2018). Another prospect 
might be to exploit surrounding neighbouring 
non-transformed cells to produce PTEN-L. The 
eukaryotic translation initiation factor 2 (eI2F) 
plays an important role in the translation of this 
isoform (Liang et al. 2014).

5.2.4	 �Posttranslational Regulation

In the case where PTEN is expressed, several 
approaches could be devoted to increase its activ-
ity, including posttranslational modulation, stabi-
lization of active conformations and modulating 
its subcellular localization.

5.2.4.1	 �Phosphorylation
PTEN is subjected to phosphorylation, mainly on 
serine/threonine residues located in the 
C-terminus (Thr366, Ser370, Ser380, Thr382, 
Thr383 and Ser385) (Odriozola et  al. 2007). 
Casein kinase 2 (CK2) phosphorylates PTEN 
sequentially on Ser-385, Ser-380, Thr-383, Thr-
382, and Ser-370, and reduces phosphatase activ-
ity and proteolysis by 70% (Torres and Pulido 
2001; Cordier et  al. 2012; Fragoso and Barata 
2015) (Fig.  5.1). Despite T cell acute lympho-
blastic leukemia (T-ALL) cells displaying nor-
mal levels of wild type PTEN mRNA and 
exhibiting PTEN overexpression, hyperphos-
phorylation of PTEN on the phosphorylation 
sites in its C-terminus by CK2, results in 
decreased PTEN lipid phosphatase activity and 
hyperactivation of the PI3K/Akt pathway (Silva 
et al. 2008). Incubation of T-ALL cell lines with 
the selective CK2 inhibitor CX-4945 reverses 
Akt activation and triggers apoptosis (Buontempo 
et  al. 2014). Interestingly, CK2 is also overex-
pressed in CRC and colonic cell lines treated 
with CK2 inhibitor display decreased prolifera-
tion and invasiveness (Zou et al. 2011).

It has been proposed that phosphorylation of 
the C-terminal Ser380, Thr382, Thr383, Ser385 
cluster induces a “closed” less active cytoplasmic 
form that has decreased plasma membrane tar-
geting and increased conformational compaction 

(Vazquez et  al. 2000; Vazquez et  al. 2001; Das 
et  al. 2003; Bolduc et  al. 2013; Fig.  5.1). 
Intramolecular interaction of the phosphorylated 
C-terminal tail with basic residues within the 
N-terminal PIP2-binding motif, the catalytic and 
C2 domains maintains PTEN in its “closed” form 
(Rahdar et al. 2009). Mutation of the C-terminal 
residues disrupts the intramolecular interaction 
promoting an “open” form of PTEN with 
increased plasma membrane association to con-
trol PIP3 levels (Rahdar et  al. 2009; Lima-
fernandes et  al. 2014). The “open” PTEN 
conformation also favours PTEN translocation to 
the nucleus (Nguyen et al. 2015) where it func-
tions in DNA repair and genome stability inde-
pendently of its lipid phosphatase activity (see 
below, PTEN ubiquitination). PTEN is also 
inhibited by the GSK-3β (phosphorylation of 
Ser362 and 366) and the MASTs (Microtubules 
associated Kinase 205, MAST3, phosphorylation 
of C-terminal tail) Ser/Thr kinases (Al-Khouri 
et  al. 2005; Cordier et  al. 2012; Fragoso and 
Barata 2015; Valiente et  al. 2005). In contrast, 
phosphorylation of Ser-229/Thr-223 and Thr-
319/Thr-321 amino acid residues by ROCK 
(RhoA-associated kinase) in the PTEN C2 
domain enhances PTEN phosphatase activity (Li 
et  al. 2005; Lima-Fernandes et  al. 2011). 
Activation of ATM serine/threonine kinase 
(ataxia telangiectasia mutated) by DNA damage 
induces PTEN phosphorylation at Ser 113 lead-
ing to PTEN nuclear translocation and induction 
of autophagy (Chen et al. 2015). The interaction 
of glioma tumour suppressor candidate region 
2-gene product, GLTSCR2/ ‘protein interacting 
with carboxyl terminus 1′ (PICT-1) with PTEN 
favors phosphorylation of Ser-380 (Okahara 
et al. 2004).

PTEN is also a substrate for tyrosine kinases. 
Src phosphorylates PTEN at Tyr-240 and Tyr-
315 leading to a decrease in phosphatase activity 
and stability of the tumour suppressor (Lu et al. 
2003). Phosphorylation of tyrosine 336 by the 
tyrosine kinases Rak and FAK results in inhibi-
tion of PTEN polyubiquitination by NEDD4–1 
and degradation by the proteasome (Yim et  al. 
2009; Tzenaki et al. 2015).

5  Targeting PTEN in CRC



62

The polo-like kinase 1 (PLK1) is a regulator 
of many cell cycle-related events, including 
mitotic entry and the G2/M checkpoint, coordi-
nation of the centrosome and cell cycle, regula-
tion of spindle assembly and chromosome 
segregation. PLK1 phosphorylates PTEN in vitro 
on Ser-380, Thr-382, and Thr-383, but not Ser-
385. In vivo, only the Ser-380 amino-acid residue 
is significantly phosphorylated and this is associ-
ated with PTEN accumulation on chromatin 
(Choi et al. 2014). PTEN and PLK1 can recipro-
cally regulate each other. PTEN inhibits PLK1 by 
inducing its dephosphorylation, or by promoting 
the association of the E3 ligase APC/C with its 
activator CDH1, which induces the degradation 
of mitotic cyclins (Cyclins A and B), as well as 
mitotic kinases including PLK1 (Song et  al. 
2011; Zhang et al. 2016).

So far, few studies have reported the mecha-
nisms related to PTEN dephosphorylation. The 
N-myc downstream-regulated gene 2 (NDRG2) is 
a molecular partner of PTEN that recruits protein 
phosphatase 2A (PP2A) resulting in dephosphor-
ylation of PTEN at the Ser380, Thr382 and 
Thr383 (Nakahata et  al. 2014). Interestingly, 
NDRG2 is frequently down-regulated in 
CRC. The Tyrosine phosphatase SHP-1 dephos-
phorylates PTEN in Src transfected cells and 
restores PTEN stability (Lu et  al. 2003). Some 
orally bioavailable small molecule activators of 
PP2A (SMAPs) efficiently inhibited the growth of 
KRAS-mutant lung cancers in mouse xenografts 
and transgenic models (Sangodkar et al. 2017).

5.2.4.2	 �Oxidation
PTEN is subjected to reversible inactivation by 
reactive oxygen species (ROS) produced by the 
membrane associated Duox1/2, NAPDH oxidase 
(Noxs) and mitochondrial oxidative stress. 
Hydrogen peroxide (H2O2) inactivates PTEN by 
promoting oxidation of the critical Cys124 resi-
due in the catalytic domain of PTEN and forming 
an intramolecular disulfide bond with Cys71 
(Lee et al. 2002; Leslie et al. 2003). This inhibi-
tion is reversed by thioredoxin (Fig.  5.1). This 
regulation process might occur under physiologi-
cal conditions. Accordingly, it has been proposed 
that cell stimulation by EGF triggers PI3Kinase 

activation that induces NOXs activation. The 
resulting ROS inactivate PTEN leading to further 
accumulation of PIP3 to complete a positive 
feedback loop (Kwon et  al. 2004). Binding of 
thioredoxin-1 to PTEN Cys212 of the C2 domain 
of PTEN inhibits PTEN membrane translocation 
and activation (Meuillet et al. 2004).

Hypoxia, a hallmark of tumours, promotes 
transcriptional inhibition of AIF (tumour 
apoptosis-inducing factor) through HIF-1 
(hypoxia induced factor-1), resulting in oxidative 
inactivation of PTEN and epithelial–mesenchy-
mal transition of colorectal cancer (Xiong et al. 
2016).

Oxidation of PTEN-binding partners can also 
affect PTEN activity. For example, the oncogene 
DJ-1 binds to PTEN and reduces its catalytic 
activity. Oxidation of DJ-1 increases its affinity 
for PTEN, resulting in more profound decreases 
in PTEN activity (Kim et al. 2009). ROS might 
also affect PTEN indirectly via pro-inflammatory 
redox-sensitive pathways, such as NF-κB.

Scavengers of ROS, such as sodium pyruvate, 
which reacts with H2O2 to yield sodium acetate, 
carbon dioxide and water, and anti-inflammatory 
agents therefore constitute approaches to restore 
PTEN activity.

5.2.4.3	 �S-Nitrosylation
Ischemia, superoxide anion, hydrogen peroxide 
and nitric oxide (NO) can trigger S-nitrosylation 
of protein cysteine residues. It was reported that 
low NO concentrations lead to S-nitrosylation of 
Cys-83 leading to PTEN inactivation (Numajiri 
et  al. 2011). The NO scavenger c-PTIO effi-
ciently prevents PTEN S-nitrosylation.

5.2.4.4	 �Acetylation
The Histone Acetylase (PCAF)/lysine acetyl-
traansferase 2B (KAT2B) has been reported to 
promote PTEN acetylation on Lys125 and 
Lys128 in response to growth factor stimulation 
(Okumura et  al., 2006). As these residues are 
within the catalytic pocket, acetylation negatively 
regulates its enzymatic activity. PTEN is also 
acetylated on Lys402, which is located within the 
C-terminal PDZ-domain-binding motif of PTEN, 
by CREB-binding protein (CREBBP) favouring 
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PTEN interaction with proteins with PDZ 
domains (Ikenoue et al. 2008). CREBBP and the 
sirtuin SIRT1 have been identified as the main 
PTEN acetyltransferase and deacetylase, respec-
tively. Interestingly, PCAF forms a complex with 
CREBBP.

It has also been recently demonstrated that 
non-selective Histone Deacetylase (HDAC) or 
HDAC6-specific inhibitors switch PTEN into an 
open conformation and induce its membrane 
translocation through acetylation at Lys163, 
resulting in the inhibition of cell proliferation, 
migration and invasion, as well as xenograft 
tumour growth in athymic mice (Meng et  al. 
2016). Such inhibitors may be clinically relevant 
to treat tumours with wild-type PTEN.

5.2.4.5	 �Mono/Polyubiquitinylation 
Proteasome

PTEN is regulated by ligation of the protein mod-
ifiers ubiquitin (76 amino acids) on the Lys 
amino-acid residues 13 and 289. NEDD4 was 
identified as an E3 ligase that ubiquitylates PTEN 
(Wang et  al. 2007). Other E3 ligases have also 
been reported to target PTEN, including X-linked 
inhibitor of apoptosis protein (XIAP) and WWP2. 
Polyubiquitination of PTEN leads to its degrada-
tion by the proteasome complex, whereas monou-
biquitylation is essential for PTEN nuclear 
import (Wang et  al. 2007, Trotman et  al. 2007 
(Fig. 5.1). Although NEDD4 proved to be over-
expressed in colorectal cancer (Kim et al. 2008), 
its effect on the growth and morphology of 
human colonic cell lines seems to be independent 
of PTEN (Eide et al. 2013).

The monoubiquitylation of PTEN and its 
nuclear compartmentalization, is reversed by the 
deubiquitylase USP7 (Song et al. 2008). Nuclear 
exclusion of PTEN has been associated with can-
cer progression. Some inhibitors of USP7 are 
under development in several bio-pharmaceutical 
companies (Zhou et al. 2018).

5.2.4.6	 �Sumoylation
PTEN can be modified by the small ubiquitin-
like modifier (SUMO) on Lys254 and Lys266 in 
the C2 domain. SUMOylation, principally at 
Lys266, in the CBR3 loop, which plays a major 

role in PTEN membrane association, was shown 
to promote binding to the plasma membrane via 
electrostatic interactions (Huang et  al. 2012). 
This leads to decreased PI3K/AKT signalling, 
suppression of anchorage-independent cell 
growth and tumour growth in vivo. Subsequently 
it was shown that SUMOylation of Lys254 con-
trols PTEN nuclear localization (Fig.  5.1). 
Following cell exposure to either γ-irradiation or 
DNA-damaging chemotherapeutic agents, 
SUMO conjugated PTEN was excluded from the 
nucleus in an ATM protein kinase manner. Cells 
lacking nuclear PTEN were hypersensitive to 
DNA damage.

Several other studies have shown that there 
may be competition between SUMOylation and 
ubiquitination. Gonzalez-Santamaria et  al. 
(2012), showed that Lys289 can also be 
SUMOylated. As Lys289 is also a major site for 
PTEN monoubiquitination, which drives nuclear 
import, competition for modification on this site 
would be predicted to affect nucleocytoplasmic 
partitioning. In another study, PTEN 
SUMOylation was shown to be enhanced by the 
SUMO E3 ligase PIASxα, resulting in reduced 
PTEN polyubiquitination and increased stability, 
culminating in negative regulation of the PI3K/
AKT pathway, cell proliferation inhibition and 
tumour suppression (Wang et al. 2014).

5.2.4.7	 �Ribosylation
PTEN can also be ribosylated by tankyrases 
(TNKS1 and TNKS2) on Glu40/Glu150  in the 
phosphatase domain and Asp326  in the C2 
domain. This promotes the recognition of PTEN 
by an E3 ubiquitin ligase, RNF146, leading to 
subsequent PTEN ubiquitination and degradation. 
Knockdown of TNKS1/2 in colorectal cancer cell 
lines resulted in the inhibition of tumour growth 
in PTEN-expressing cells but not in PTEN-
depleted cells. This indicates that targeting TNKS 
in tumour cells may only be effective in wild-type 
PTEN contexts. Interestingly, expression of 
tankyrases was found to be negatively correlated 
with PTEN levels in human colon carcinomas. 
Combined, all these findings support the rationale 
to explore the development of tankyrase inhibitors 
as potential anti-cancer agents.
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5.2.4.8	 �Other Postranslational 
Modifications of PTEN

PTEN is also subject to S-sulfydration on both 
Cys71 and Cys124, which has been proposed to 
prevent the S-nitrosylation associated with inhi-
bition of PTEN catalytic activity. PTEN can also 
be methylated on Lys313 by the oncogenic pro-
tein methyltransferase SET and MYND domain 
containing 2 (SMYD2), which has been proposed 
to result in negative regulation of PTEN activity 
and increased PI3K/AKT signalling (Nakakido 
et al. 2015).

5.2.5	 �Protein-Protein Interactions

PTEN interacts with many effector systems 
through its different protein domains (lipid bind-
ing, catalytic, C2 domain and the PDZ binding 
motif in the C-terminus), which are crucial for its 
localization as well as for the organization of a 
variety of sub-membranous complexes associ-
ated with cell signal mediators, including ion 
channels, transmembrane receptors and regula-
tory enzymes (Harris and Lim 2001; Kotelevets 
et al. 2005, Chastre et al. 2009, Lima-Fernandes 
et al. 2011).

The cellular activity of PTEN is thus com-
monly modulated via inclusion in multiprotein 
signalosomes (Fig. 5.1).

Modulating protein–protein interactions 
involved in disease pathways is an attractive 
strategy for developing drugs, but remains a chal-
lenge to achieve. One approach is to target cer-
tain domains within proteins that mediate these 
interactions (Berg 2003; Arkin et al. 2004, 2014). 
One example of such a domain is the PDZ domain 
(Dev 2004). Proteins with PDZ domains usually 
encompass a series of such domains, alone or 
combined with other protein-protein interaction 
domains, and act as scaffolding molecules allow-
ing the organization of effector proteins as sig-
nalosomes and their targeting to selective cellular 
subdomains.

A series of proteins with PDZ domains inter-
act with the C-terminus of PTEN, these include 
MAGI-1/2/3, NHERF, MAST3, hDLG1. We 
demonstrated that PTEN was recruited to 

E-cadherin junctional complexes through the 
interaction with the 2nd PDZ domain of MAGI-
1, whereas the C-terminus of β-catenin interacts 
with PDZ5. The colocalization of PTEN and 
PI3K and their antagonistic activities on PIP3 
levels allows the subtle regulation of junctional 
complex activities (Kotelevets et al. 2001, 2005; 
Chastre et al. 2009). Subsequently, we identified 
by yeast two-hybrid analysis human DLG, a pro-
tein with multiple PDZ domains, as a binding 
partner for the PTEN PDZ-BD and demonstrated 
Dlg1-PTEN interaction in colonic HT-29 epithe-
lial cells (Kotelevets, unpublished data).

Recently, Zaric et al identified MAGI-1 as a 
celecoxib-induced inhibitor of Wnt/β-catenin 
signalling with tumour- and metastasis-
suppressive activity in colon cancer cells. They 
reported that this Cox-2 inhibitor upregulated 
MAGI-1  in human colonic cell lines and that 
MAGI-1 overexpression attenuated primary 
tumour growth and spontaneous lung metastasis 
in an orthotopic model of colorectal cancer (Zaric 
et  al. 2012). One interesting point that was not 
addressed in their study concerns the role of 
PTEN in this process. Interestingly, another study 
reported that celecoxib promoted the membrane 
translocation of PTEN and the inactivation of Akt 
(Zhang and Gan 2017). Taken together, these 
data suggest that inhibition of Cox-2 leads to 
increased expression of MAGI-1 and the subse-
quent targeting of PTEN to the plasma 
membrane.

The widespread occurrence of PDZ domains 
as organizers of signalling pathways makes them 
an important subject for biological studies. 
Changes in the expression of several PDZ 
domain-containing proteins have been associated 
with cancers (Nagayama et al. 2004; Park et al. 
2006). The therapeutic usefulness of inhibiting 
PDZ-based protein-protein interactions has been 
clearly demonstrated by using peptide and non-
peptide small molecules (Aarts et  al. 2002; 
LeBlanc et al. 2010). Because PDZ domains have 
well-defined binding sites, they are promising 
targets for drug discovery. However, there is still 
much to learn about the function of these domains 
before drugs targeting PDZ interactions can 
become a reality. The first cell-permeable inhibi-

L. Kotelevets et al.



65

tor of a PDZ interaction was reported in a study 
that described how the interaction between the 
PDZ domain of MAGI and the PDZ motif of 
PTEN was irreversibly blocked by a low-
molecular-mass compound. The interaction 
between MAGI and PTEN is thought to regulate 
the activity of the kinase Akt/PKB.  Compound 
treatment of HCT116 cells expressing endoge-
nous PTEN, MAGI and Akt/PKB showed 
enhanced AKT activity (Fujii et  al. 2003). By 
creating analogue libraries, the structure of the 
compound was suggested to be a useful starting 
point for finding class- and domain-selective 
inhibitors. Further chemical optimization could 
render the compound useful as a tool for explor-
ing the effects and side effects of inhibiting PDZ 
interactions in vivo (Fujii et al. 2007).

The multifunctional scaffolding proteins 
β-arrestins (β-arrs) control distinct functional 
outputs of PTEN to regulate cell proliferation, 
migration and multicellular assembly. β-arr bind-
ing to PTEN increases its lipid phosphatase activ-
ity and inhibits cell proliferation. However, 
during cell migration of glioma cells, β-arr binds 
the C2 domain of PTEN to inhibit its lipid 
phosphatase-independent anti-migratory func-
tion (Lima-Fernandes et  al. 2011). β-arr1 also 
binds the C2 domain of PTEN as part of a 
membrane-associated regulatory complex incor-
porating the Cdc42 GTPase-activating protein 
ARHGAP21 and Cdc42 (Fig. 5.1). This complex 
controls Cdc42-dependent mitotic spindle forma-
tion and lumen formation in 3D cultures of 
colorectal cancer cells. Disruption of the com-
plex provokes mitotic spindle misorientation and 
abnormal multilumen formation that are evoca-
tive of colorectal cancer (Javadi et al. 2017).

PTEN interacts via its phosphatase domain 
with homodimers of the p85α regulatory subunit 
of the PI3K (PIK3R1). Importantly, this interac-
tion positively regulates the lipid phosphatase 
activity of PTEN and impairs PTEN degradation 
by competing with the E3 ligase WWP2 
(Rabinovsky et  al. 2009; Chagpar et  al. 2010; 
Cheung et al. 2015). Thus, PIK3CA overexpres-
sion or PIK3R1 mutations could lead to PI3K 

pathway hyperactivation by decreasing PTEN 
expression and activity.

Many disparate proteins interact with PTEN 
and negatively regulate its tumour suppressing 
activity by a wide variety of mechanisms. These 
proteins include DJ-1, α-mannosidase 2C1 
(Man2C1), shank-interacting protein–like 1 
(SIPL1), and PI(3,4,5)P3-dependent RAC 
exchange factor2a (PREX2a) (He et  al. 2010, 
2011; Fine et  al. 2009). Man2C1, PREX2a and 
SIPL1 bind directly to PTEN and inhibit its lipid 
phosphatase activity.

Furthermore, paxillin, an important adaptor 
protein of focal adhesions, was identified as an 
interaction partner of PTEN (Herlevsen et  al. 
2007). A recent study showed that PTEN down-
regulates paxillin expression in human colon can-
cer tissues via the PI3K/AKT/NF-κB pathway 
and that paxillin expression contributes to colon 
tumourigenesis (Zhang et al. 2015).

Greater understanding of the pathophysiologi-
cal relevance in vitro and in vivo will be critical in 
strategies for developing drugs toward modulat-
ing protein-protein interactions.

5.2.6	 �Controlling PTEN 
Conformation and Subcellular 
Localization

In addition to the bioactive small molecules tar-
geting positive or negative PTEN regulators 
mentioned above, the development of alternative 
strategies to control PTEN conformation and 
subcellular localization might constitute power-
ful approaches to restore or enhance PTEN 
tumour suppressor activity. As a proof of con-
cept, Nguyen et  al. screened a library of ran-
domly mutated human PTEN and identified 
mutations that increase its recruitment to the 
plasma membrane. This enhanced PTEN 
(ePTEN) exhibited an eightfold increase in abil-
ity to suppress PIP3 signalling (Nguyen et  al. 
2014). These findings open up interesting new 
perspectives on pharmacological strategies that 
could therefore be harnessed to achieve enhanced 

5  Targeting PTEN in CRC
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forms of PTEN using small molecule conforma-
tional activators/stabilisers. In relation to this, an 
intramolecular bioluminescence resonance 
energy transfer (BRET)-based biosensor of 
PTEN with PTEN sandwiched between the 
energy donor Renilla luciferase (Rluc) and the 
energy acceptor yellow fluorescent protein 
(YFP) was recently described that can report 
signal-dependent conformational changes of 
PTEN in live cells (Lima-Fernandes et al. 2014; 
Misticone et  al. 2016). The PTEN biosensor 
could therefore potentially be used as conforma-
tional readout in high-throughput screens to 
identify small molecules that enhance or restore 
PTEN function.

Another interesting point concerns the bal-
ance in the subcellular localisation of PTEN at 
the plasma membrane, in the cytosol, mitochon-
dria, endoplasmic reticulum and nucleus. Some 
strategies succeeded in targeting PTEN to the 
plasma membrane (Meng et al. 2016; Zhang and 
Gan 2017) to exert tumour suppressor activity. 
Whether the nuclear pool of PTEN is affected 
remains an interesting question. Enhancing 
PTEN targeting to the endoplasmic reticulum 
may promote Ca2+ release and sensitivity to 
apoptosis. As stated above promoting PTEN 
nuclear exclusion should sensitize cancer cells to 
genotoxic agents. Based on the observation that 
cancer cells are more prone to export nuclear 
PTEN, further studies are required to delineate 
the benefit to induce pharmacological nuclear 
exclusion of PTEN and the impact on neighbour-
ing non-transformed cells.

Another level of complexity resides in the het-
erogeneous PTEN distribution at the plasma 
membrane and its contribution as a member of 
molecular signalling complexes. During chemo-
taxis, PTEN and PI3K exhibit a reciprocal pat-
tern of localization, PI3K being located at the 
leading edge and PTEN at the rear (Li et  al. 
2005). PTEN is also recruited to E-cadherin junc-
tional domains and likewise PTEN is also 
recruited to the plasma membrane with β-arr2 
following GPCR stimulation. Complementary 
approaches, such as the development of permeant 
bi-functional nanobodies might allow targeting 
PTEN in specific subdomains.

5.3	 �Toward Targeted Therapies

Experimental models of carcinogenesis using 
transgenic mice reveal that PTEN inactivation 
cooperates with the main genetic alterations 
identified in human CRC, including KRAS acti-
vation, and APC and TGFBR2 inactivation, to 
promote cancer progression (Davies et al. 2014; 
Shao et  al. 2007; Marsh et  al. 2008; Yu et  al. 
2014). Restoring PTEN expression/activity 
should therefore benefit all patients with colorec-
tal cancer, regardless of the subtype. Nevertheless, 
particular attention should be devoted in the case 
of activation of downstream effectors controlled 
by PTEN, such as Akt1 mutation (Carpten et al. 
2007).

It should be underlined that as for other tar-
geted therapies, the strategy proposed here will 
require the identification of patients who are most 
likely to respond to the treatment and to define 
the appropriate and personalized approach to 
restore PTEN activity. Due to the higher rate of 
PTEN mutations in the subgroup of patients with 
CRC high microsatellite instability (15% of 
CRC), the MSI-h status of the tumour will direct 
to PTEN sequencing. Typing of CRC for MSI 
and analysis of gene mutations, e.g. KRAS are 
performed routinely in clinical practice. In the 
case of PTEN deletion or mutation, (since 
genome editing is far away from being used in 
the clinic) an alternative approach would be to 
take advantage of PTEN deficiency-related 
defects in homologous recombination. This 
defect sensitizes tumour cells to inhibitors of 
polyadenosine diphosphate ribose polymerase 
(PARP), involved in the repair of DNA double-
strand breaks (Dillon and Miller 2014). Five clin-
ical trials are evaluating the efficiency of PARP 
inhibitors in connection with PTEN status 
(NCT02286687, NCT02401347, NCT03207347, 
NCT03016338, NCT02576444).

In cases where PTEN is wild-type, immuno-
histological analysis of PTEN accumulation, 
subcellular localisation, and activation of down-
stream PI3K targets (Akt, S6K) could be moni-
tored to provide information on the level of 
dysregulation (transcriptional, post-
transcriptional, post-translational).

L. Kotelevets et al.
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Ex vivo testing of organotypic CRC slices cul-
tured on porous membrane supports would per-
mit to simultanenously screen a series of selected 
compounds, based on the level of PTEN dysregu-
lation identified by immunochemistry and to 
assess the restoration of the activity of the tumour 
suppressor. A series of permeant fluorescent 
labeled probes are now available to monitor in 
situ tissue response to treatment: live or dead 
cells, enzyme activities (e.g. caspases). Proof of 
concept to test individual tumour responses to 
anti-cancer drugs was recently provided using a 
96-well plate-based microfluidic device that 
allows to expose organotypic slices to multiple 
compounds either simultaneously or sequentially 
(Chang et al. 2014).

It is also conceivable to optimize the identifi-
cation of PTEN defects in these organotypic 
slices using fluorescently-labelled permeant 
nanobodies targeting selective PTEN epitopes 
and/or downstream effector systems. FRET could 
then be used as readout to report changes in 
PTEN conformation or subcellular localisation, 
or upon molecular assembly of signalosomes, 
e.g. TORC1 complex.

5.4	 �Conclusions and Prospects

This review illustrates the diversity and complex-
ity of the mechanisms that can downregulate 
PTEN function during carcinogenesis. Restoring/
enhancing PTEN activity in colonic cancer cells 
may represent a promising therapeutic approach, 
since it would be predicted to directly impact cell 
growth, trigger apoptosis, but also increase 
tumour cell sensitivity to therapeutic agents. This 
is a critical issue, since anti-cancer treatments 
have dose-limiting toxicities.

Further studies are required to elucidate the 
cross-talk between PTEN and other (anti-) onco-
gene pathways during carcinogenesis, and their 
significance in terms of resistance to chemothera-
pies. Nevertheless, knowledge gleaned in how 
PTEN signalling is regulated will provide the 
basis to explore the potential of a personalized 
approach to restore/enhance PTEN activity in 
cancer.
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Abstract
Colorectal cancers (CRC) belonging to the 
consensus molecular subtype 2 (CMS2) have 
the highest incidence rate, affect mainly the 
distal colon and rectum, and are characterized 
by marked Wnt/β-catenin/Transcription 
Factor 7-Like 2 (TCF7L2) pathway activation 
and also by activation of epidermal growth 
factor receptor (EGFR) signalling. Despite 
having the highest overall survival, CMS2 
tumours are often diagnosed at stage III when 
an adjuvant chemotherapy-based regimen is 
recommended. Nevertheless, colorectal can-
cer stem cells (CSCs) and circulating tumour 
cells may still evade the current therapeutic 
options and metastasize, stressing the need to 
develop more tailored therapeutic strategies. 
For example, activation of EGFR signalling is 
being used as a target for tailored therapy, 
however, therapy resistance is frequently 
observed. Therefore, targeting the Wnt signal-
ling axis represents an additional therapeutic 
strategy, considering that CMS2 tumours are 
“Wnt-addicted”. Several efforts have been 
made to identify Wnt antagonists, either of 

synthetic or natural origin. However, an 
inverse gradient of Wnt/β-catenin/TCF7L2 
signalling activity during CRC progression 
has been suggested, with early stage and meta-
static tumours displaying high and low Wnt 
signalling activities, respectively, which lead 
us to revisit the “just-right” signalling model. 
This may pinpoint the use of Wnt signalling 
agonists instead of antagonists for treatment 
of metastatic stages, in a context-dependent 
fashion. Moreover, the poor immunogenicity 
of these tumours challenges the use of recently 
emerged immunotherapies. This chapter 
makes a journey about CMS2 tumour charac-
terization, their conventional treatment, and 
how modulation of Wnt signalling or immune 
response may be applied to CRC therapy. It 
describes the newest findings in this field and 
indicates where more research is required.
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6.1	 �CMS2 – A Coin of Two Faces – 
The Highest Response 
to Chemotherapy vs. 
the Lowest Immunogenicity

6.1.1	 �Introducing the CMS2 Tumour 
Subtype

CMS2 (canonical) tumours display an epithelial-
like gene expression profile compatible with the 
activation of canonical pathways involved in 
colorectal tumorigenesis. Accordingly, they are 
characterized by marked activation of Wnt and 
MYC pathways and up-regulation of downstream 
target genes associated with CRC. They also show 
the activation of other signalling pathways like 
EGFR and vascular endothelial growth factor 
(VEGF). This subtype of tumours has the highest 
incidence rate (approximately 37%) among all 
CMS and is localised mainly in the distal colon 
and rectum, in contrast with other CMS.  These 
tumours are microsatellite stable (MSS) and char-
acterized by high chromosomal instability (CIN), 
presenting the highest number of copy number 
gains in oncogenes and copy number losses in 
tumour suppressor genes compared with the other 
CMS. Other characteristic features are high fre-
quency of mutations in the adenomatous polypo-
sis coli (APC) and in the tumour protein p53 
(TP53) genes, a lack of CpG island methylation 
phenotype (CIMP), high expression of the onco-
genes EGFR, erb-b2 receptor tyrosine kinase 2 
(ERBB2, also known as HER2), insulin-like 
growth factor 2 (IGF2), insulin receptor substrate 
2 (IRS2) and transcription factor hepatocyte 
nuclear factor 4α (HNF4A), as well as cyclins. 
Patients with these tumours display the highest 
overall survival, although they are often diag-
nosed at stage III (Guinney et al. 2015; Inamura 
2018). Five-year overall survival for all CMS2 
stages are the highest of any subtype, reaching 
77%, compared with 73%, 75% and 62% for 
CMS1, 3 and 4, respectively, and presented higher 
survival rates after relapse (35 months) (Guinney 
et al. 2015; Thanki et al. 2017).

The EGFR signalling pathway plays a crucial 
role in the regulation of the cellular response to 
growth signals and its constitutive activation in 

CRC promotes growth and proliferation through 
the Kirsten rat sarcoma viral oncogene homolog 
(KRAS)/RAF/mitogen-activated protein kinase 
(MAPK) and phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT)/mammalian tar-
get of rapamycin (mTOR) axes (Wee and Wang 
2017). In CMS2, activation of EGFR signalling 
is mainly at the expense of KRAS mutations. 
Mutations in the B-Raf proto-oncogene, serine/
threonine kinase (BRAF) gene are rare, present-
ing the lowest mutation frequency among all 
CMS subtypes, although KRAS mutations are 
relatively frequent among all tumour subtypes. 
Of note, the poor prognosis of KRAS mutations 
applies only to MSS tumours with CMS2/CMS3 
epithelial-like gene expression profiles. 
Accordingly, KRAS mutations had the strongest 
prognostic value in epithelial (CMS2/3) MSS 
tumours, with statistical significance only in 
CMS2. Indeed, patients with KRAS-mutated 
CMS2 and MSS tumours had an overall survival 
rate of 59%, significantly lower than the corre-
sponding 75% survival rate for wildtype-KRAS 
patients (Smeby et al. 2018). Contributing to this 
poorer prognosis may be the recent association of 
KRAS mutations with suppressed cytotoxic 
immunity of T helper (Th) 1 cells in CRC, and 
hence reduced immune reactivity, irrespective of 
mismatch repair (MMR) status, tumour location 
and transcriptional subtype, particularly in CMS2 
and CMS3 tumours (Lal et al. 2018).

6.1.2	 �Current Chemo- and Targeted 
Therapies in CMS2 Tumours: 
Where Are We?

Approximately 39% of CMS2 cancers are stage 
III at the time of diagnosis and standard adjuvant 
chemotherapy is recommended at this stage 
(Thanki et al. 2017). In high-risk stage II and III 
CRC, a combination of fluoropyrimidine based 
therapies such as 5-fluorouracil (5-FU), leucovo-
rin and oxaliplatin (FOLFOX) or capecitabine 
with oxaliplatin (XELOX) are generally used 
(Labianca et al. 2013).

Interestingly, treatment of the CMS2 subgroup 
showed to be sensitive to either 5-FU and/or 
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oxaliplatin. Indeed, evaluation of in vivo efficacy 
of this chemotherapy in patient-derived xenograft 
(PDX) models led to the observation of a delay in 
outgrowth of CMS2  (Linnekamp et  al. 2018). 
Recently, it was shown that these CRCs benefit-
ted significantly from adjuvant chemotherapy 
treatment in both stage II and III.  Additionally, 
Isella and colleagues sub-stratified tumours to 
identify specific tumour-intrinsic traits associated 
with response to standard-of-care treatment, 
using a combination of transcriptional subtyping 
based on gene expression from the tumour epi-
thelial cells only and independent of stromal-
derived signals combined with CD8 
immunohistochemistry. CMS2 tumours were 
divided in 3 subgroups with a common back-
ground of high Wnt signalling: (i) intrinsic sub-
types [CRIS] C (elevated EGFR/ERBB signalling, 
sensitivity to EGFR inhibitors, often KRAS wild-
type), (ii) D (Wnt activation- leucine rich repeat-
containing G protein coupled receptor 5 (LGR5) 
stem cell signature, IGF2 gene overexpression 
and amplification, often TP53 wild-type) and (iii) 
E (Wnt-producing Paneth cell-like phenotype, 
often TP53 and KRAS mutated). Notably, only 
the CRIS-C subtype significantly benefitted from 
adjuvant chemotherapy in stage II and III, while 
CRIS-D significantly benefitted in stage III only. 
CRIS-C patients with low levels of CD8+ tumour-
infiltrating lymphocytes (TILs) were most at risk 
of relapse in both stages and should be treated 
with adjuvant chemotherapy. These results are 
particularly relevant to identify within the CMS2 
group those patients who can benefit from adju-
vant standard-of-care chemotherapy (Allen et al. 
2018; Isella et al. 2017).

Notwithstanding, one cannot overlook that in 
patients undergoing chemotherapy prior to sur-
gery this neoadjuvant regimen may modulate the 
gene expression signatures/profiles of tumours, 
in some cases towards a more mesenchymal-like 
phenotype with a poorer prognosis, thus influenc-
ing their accurate CMS connotation (Trumpi 
et al. 2017).

An increased understanding of colorectal car-
cinogenesis pathways involved in tumour inva-
sion and metastasis has led to the development of 
monoclonal antibodies (mAbs) to EGFR, namely 

cetuximab or panitumumab, to block this recep-
tor, thereby preventing activation of signal trans-
duction pathways involving RAS, PI3K/AKT 
and SRC kinase (Zhao et al. 2017a). The effec-
tiveness of these mAbs has been confirmed by 
phase II and III clinical trials. Similarly, blocking 
VEGF/VEGFR signalling proved to be effective 
across different treatment lines in metastatic 
CRC (mCRC) and contributed greatly to improve 
patients’ survival in recent years (Hopirtean and 
Nagy 2018).

Extensive molecular characterization of CRC 
and correlation with response to therapy identi-
fied KRAS and NRAS mutations as negative pre-
dictive markers of response to anti-EGFR mAbs 
(Allegra et al. 2016; Amado et al. 2008; Karapetis 
et al. 2008; Van Cutsem et al. 2011; Zhao et al. 
2017a). These mutations are the only ones 
approved by the Food and Drug Administration 
(FDA) as molecular biomarkers of response to 
therapy in CRC. In the case of VEGF signalling 
and tyrosine kinase inhibitors (TKIs), biomarker 
discovery has proved to be more problematic as 
they have multiple targets.

Considering the abovementioned, treatment of 
mCRC follows in general a combinatory therapy 
in first and second line based on FOLFOX or 
5-FU/leucovorin/irinotecan (FOLFIRI) (de 
Gramont et al. 2000; Grothey et al. 2004), which 
may include combinations with (at least) an anti- 
EGFR mAb for RAS wild-type patients and/or an 
anti-VEGF compound (e.g. the mAbs bevaci-
zumab and ramucirumab, the recombinant fusion 
protein aflibercept, or the multi-kinase inhibitor 
regorafenib) (Van Cutsem et al. 2016).

Of note, the abovementioned activation of 
EGFR and VEGF signalling characteristic of 
CMS2 makes this subgroup attractive to be tack-
led by therapies targeting these pathways. 
Accordingly, this tumour subtype was particular 
sensitive to anti-EGFR mAbs in preclinical mod-
els, especially in comparison with CMS1 and 
CMS4 (Linnekamp et  al. 2018; Sveen et  al. 
2018). Indeed, distal carcinomas, particularly of 
CMS2 phenotype, may also carry EGFR and 
IRS2 amplifications, which are markers of cetux-
imab sensitivity. Strikingly, a retrospective study 
involving CRC patients from two clinical trials 
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(CRYSTAL and FIRE-3) concluded that the sur-
vival benefit of the anti-EGFR therapy was 
restricted to patients diagnosed with a distal pri-
mary tumour. Patients with distal tumours also 
had an improved rate of overall survival follow-
ing first-line therapy with FOLFIRI plus cetux-
imab vs FOLFIRI alone or FOLFIRI plus 
bevacizumab (Tejpar et al. 2016).

The introduction of next-generation sequenc-
ing of clinical samples and the inclusion of circu-
lating tumour DNA (ctDNA) analyses, together 
with the development of preclinical models, led to 
the identification of additional mutational events, 
although none of them is used yet as predictive 
marker of response to therapy. Among these are 
EGFR, ERBB2 and MET proto-oncogene, recep-
tor tyrosine kinase (MET) amplification, and 
mutations in mitogen-activated protein kinase 
kinase 1 (MAP2K1, also known as MEK1), 
ERBB2, fibroblast growth factor receptor 1 
(FGFR1), EGFR and platelet derived growth fac-
tor receptor alpha (PDGFRA) genes (Dienstmann 
et  al. 2017). Interestingly, EGFR mutations are 
the only alterations detected exclusively after 
treatment with EGFR inhibitors, but not prior to 
this treatment. Recently, tumours with EGFR 
copy-number below 4.0 appeared also to be as 
refractory to anti-EGFR treatment as tumours 
with mutation in any of the RAS/RAF/PIK3CA 
pathway genes (Algars et  al. 2017). In contrast, 
quadruple wild-type tumours (KRAS, NRAS, 
BRAF and PIK3CA) have been reported as sensi-
tive to dual EGFR targeting, including TKIs com-
bined with anti-EGFR mAbs, both of which 
inhibit EGFR through different mechanisms 
(Weickhardt et al. 2012).

Making use of ERBB2 amplification for tar-
geted therapy, in a heavily pre-treated KRAS wild-
type subgroup of patients with advanced-stage 
CRC, substantial clinical benefit was recently 
reported with a dual HER2-targeted regimen, 
trastuzumab (HER2-inhibitor), in combination 
with the TKI lapatinib (Sartore-Bianchi et  al. 
2016), or with anti-EGFR mAbs, resulting 
in tumour regression in PDXs (Kavuri et al. 2015). 
It has also been reported a substantial clinical ben-
efit in patients treated with biomarker-driven 
HER2-targeted therapies, with response rates and 

duration of response that compared closely with 
those observed in immunotherapy (Hurwitz et al. 
2017). Alongside with the observed sensitivity to 
anti-EGFR therapy, CMS2 tumours also showed 
to respond to HER2 inhibitors (Sveen et al. 2018), 
which indicates HER2 as a driver oncogene in 
CRC and a potential biomarker for targeted treat-
ment, particularly in CMS2.

Moreover, as actionable ERBB2 and IGF2 
copy number gains, that potentially drive resis-
tance to anti-EGFR mAbs in patients with wild-
type KRAS/NRAS genotype, are enriched in 
CMS2 tumours, the CMS2 subtype appears to be 
the most appealing to test combinations of pan-
ERBB and IGF1R inhibitors (Sveen et al. 2018).

Altogether, these findings mark the emergence 
of the ‘multi-gene, multi-drug’ paradigm of pre-
cision medicine and liquid biopsies upsurge as a 
powerful tool to provide information about pri-
mary therapy resistance or evasion mechanisms 
to guide clinical decisions. Indeed, mutations in 
the RAS/RAF genes emerged in a large propor-
tion of tumour/liquid biopsy/ctDNA samples 
from patients whose tumours were initially diag-
nosed as wild-type for KRAS pre-treatment. In 
one third of cases, multiple events coexist in the 
same sample (Sawada et  al. 2018). Notably, 
ctDNA analyses in different time-points along 
treatment have shown that the percentage of 
KRAS-mutated alleles increased on anti-EGFR 
treatment and declined after drug withdrawal 
(Dienstmann et al. 2017).

Despite the partial success of conventional 
chemotherapeutic regimens (FOLFIRI or 
FOLFOX) and of targeted therapies in the treat-
ment of colorectal  tumours and patient survival 
(Cunningham et  al. 2004; Hurwitz et  al. 2004; 
Tournigand et al. 2004), cells with a metastatic/
stemness-like signature eventually evade therapy 
in a great proportion of CRCs (Dasari et al. 2013; 
Dylla et  al. 2008; Mertins 2014; Zhao et  al. 
2017b). Indeed, up to 30–50% of mCRC patients 
exhibit intrinsic tumour chemoresistance and 
almost all who are responsive at the beginning 
may eventually acquire chemoresistance, stress-
ing the need for novel first-line mCRC therapeu-
tic approaches and biological markers towards a 
more personalized medicine (Anderson et  al. 
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2011; de Gramont et  al. 2000; Douillard et  al. 
2000; O’Connell et  al. 2008; Patil et  al. 2017). 
Therefore, an alternative to intermittent adminis-
tration of targeted therapies may be drugging 
common genomic alterations besides those of 
MAPK pathway, such as mutations in the Wnt/β--
catenin axis, as previously suggested (Dienstmann 
et  al. 2017). This is particularly valid in the 
CMS2 subtype considering the “Wnt-addiction” 
of these tumours. Therefore, Wnt signalling tar-
geted therapy will be the recipient of the major 
focus of this chapter, including immunotherapy 
that despite the low immunogenicity of CMS2 
subtype deserves a special highlight.

6.1.3	 �Harnessing the Full Potential 
of Immunotherapy in the Low 
Immunogenic CMS2 Subtype

Immunotherapy has increasingly proven to be a 
key treatment modality that can make a signifi-
cant impact on the lives of many cancer patients. 
Immune checkpoint inhibitors targeting the pro-
grammed cell death protein 1 (PD-1) pathway 
have led to remarkable clinical benefits in various 
cancers. Currently, immune checkpoint inhibi-
tors already approved for cancer treatment 
include ipilimumab (anti-cytotoxic 
T-lymphocyte-associated protein 4 (anti-
CTLA4)), nivolumab, pembrolizumab (anti-
programmed death-1 (anti-PD-1)), and 
atezolizumab (anti-programmed death ligand-1 
(anti-PD-L1)) (Pai et al. 2017). Le and colleagues 
reported the results of a phase II trial with the 
anti-PD-1 immune checkpoint inhibitor pembro-
lizumab and established a positive correlation 
between somatic mutation prevalence and the 
clinical success in PD-1 axis blockade (Le et al. 
2015). This becomes extremely relevant for CRC, 
which presents higher rates of somatic mutations 
in comparison to other solid tumours (Network 
2012). However, compared to CMS1, CMS2 can-
cers have a low mutation rate (defined as non-
hypermutated, or <8 mutations per 106 bases 
(Thanki et al. 2017), predicting low immunoge-
nicity. This was recently confirmed when Becht 
and colleagues (Becht et  al. 2016) conducted 

transcriptomic analyses of the immune, fibro-
blastic and angiogenic microenvironment, using 
1388 CRC samples from three independent dis-
covery and validation cohorts. With the aim to 
integrate the immune score previously defined by 
Galon and colleagues (histology-based analysis 
of the cancer’s invasive margin or central location 
of memory and cytotoxic TILs) (Galon et  al. 
2006, 2007) and the inflammatory microenviron-
ment data within the CMS subtypes, they revealed 
that the CMS2 group displays low immune and 
inflammatory signatures and are typically PDL1-
negative. This low immune signature was 
extended to low expression of markers of cyto-
toxic lymphocytes, low densities of CD8 T cells 
and CD68 macrophages (Becht et al. 2016), lack 
of TILs and immunoregulatory cytokines in the 
microenvironment, which suggests that these 
tumours are poorly immunogenic (Colangelo 
et  al. 2017; Dienstmann et  al. 2017). Although 
increased expression of major histocompatibility 
complex, class I (MHC-1) genes, E (HLA-E) and 
G (HLA-G), primarily observed in CMS1 
tumours, is also found in a subset of CMS2, 
immunosuppressive genes are weakly expressed 
in CMS2 tumours. This suggests a different 
mechanism of immune escape in these subtypes, 
such as the involvement of other oncogenic path-
ways leading to complete immune avoidance by 
exclusion of T cells from the tumour site 
(Roelands et al. 2017). For instance, the Wnt/β--
catenin signalling pathway, which is activated in 
most epithelial tumours, correlates with T cell 
exclusion across solid tumours and cause sup-
pression of CCL4 gene transcription (Roelands 
et al. 2017) required for recruitment of dendritic 
cells (DCs). Hence, this immune escape mecha-
nism might contribute to the low immunogenicity 
observed in CMS2 tumours.

Like the remaining CMS, CMS2 exhibited 
significant enrichment of innate immune cells 
(macrophages M0 and M1, activated mast cells 
and neutrophils) and significant depletion of 
plasma cells, resting mast cells and resting DCs. 
Frequent enrichment was also observed for regu-
latory T cells (Tregs) and memory activated Th 
and frequent depletion of cytotoxic T lymphocytes 
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(CTLs), memory resting Th and macrophages 
M2 (Karpinski et al. 2017).

CMS2 displayed the highest enrichment in Th 
cells (naive and memory activated) and memory 
B cells. In contrast, they were characterised by 
low number of cancer-associated fibroblasts 
(CAFs) and endothelial cells and by significantly 
lower influx of leukocytes in their active states, 
with exception of anti-tumour memory B cells 
and active T CD4 memory cells, and reduced 
immune activation (Karpinski et  al. 2017). 
Nonetheless, the use of check-point inhibitors to 
modulate immunogenicity in CRC treatment was 
not yet very promising, except for the MSI/CMS1 
group (Le et  al. 2015; Singh et  al. 2015b). 
Therefore, for the poorly immunogenic CMS2 
tumours, other approaches such as adoptive T 
cell therapies or cancer vaccines with DCs to 
stimulate tumour infiltration with antigen-
specific CTLs130 have been proposed (Becht 
et al. 2016; Jackie Oh et al. 2016).

Strikingly, another strategy under investiga-
tion is the combination of immune modulators 
and anti-EGFR therapy in a RAS wild-type popu-
lation, reflecting the notion that the immune sys-
tem contributes to the therapeutic effects of 
mAbs. The mechanism is based on the recently 
discovered association of KRAS mutations with 
suppressed Th1/cytotoxic immunity in CRC, and 
hence reduced immune reactivity (Lal et  al. 
2018). Considering this for CMS2 tumours, one 
possible combination might be anti-EGFR mAb 
cetuximab (used in pan-RAS wild-type CRCs 
with EGFR signalling activation) with anti-PD-1 
antibody as immune checkpoint inhibitor, as 
already studied in non–small-cell lung cancer 
(NSCLC) (Chen et al. 2015).

Although CMS2 tumours exhibit low levels of 
neo-antigens, the expression of tumour-specific 
antigens at the cancer cell surface (e.g. mucin 1, 
carcinoembryonic antigen, EGFR and HER2/
neu) has been positively correlated with antitu-
mor immune responses in CRC. Their potential 
as targets for immune-based CRC therapies, for 
example using vaccines or other cellular therapy 
strategies was already revised elsewhere (Riley 
et al. 2018).

Alternatively, chemotherapeutic regimens 
might be also used to shape immune microenvi-
ronment of cancer liver metastases. Accordingly, 
multiple trials are investigating the value of com-
bined administration of standard radio- and che-
motherapies known to induce immunogenic cell 
death (ICD) of CRC cells with alternative agents 
that can increase expression of T cell chemokines 
and enhance T cell infiltration in a non-antigen-
specific way. For example, histone deacetylase 
(HDAC) inhibitors (HDACis) were found to 
increase expression of multiple T cell chemo-
kines in cancer cells, macrophages and T cells, 
resulting in enhanced T cell infiltration and PD-1 
sensitivity (Zheng et  al. 2016), which may 
assume particular relevance in CMS2 therapy as 
this subtype is characterised by reduced expres-
sion of T cell attracting chemokines and resistant 
to PD-1 inhibition (Dienstmann et  al. 2017; 
Roelands et al. 2017). Interestingly, the combina-
tion of the HDACi romidepsin with anti-PD-1 
therapy is now being tested in advanced CRC 
phase I trial (NCT02512172).

Another aspect to consider is that standard 
radio- and chemotherapies affect the patient’s 
immune response. For example, in a cohort of 
mCRCs that was highly enriched for CMS2 
(TP53 and APC mutated, despite KRAS muta-
tions) and treated with neoadjuvant chemother-
apy (based on fluoropyrimidine with oxaliplatin 
or irinotecan), two clusters of liver metastases 
were identified based on high or low signalling 
and expression profiles of genes related with ICD 
(Ostrup et  al. 2017). Thus, the activation of 
immune response in this biological scenario fol-
lowing neoadjuvant chemotherapy might be bal-
anced by feedback mechanisms and immune 
escape, suggesting that immune therapy might be 
used in combination with ICD-promoting agents 
(e.g. conventional neoadjuvant chemotherapy) to 
overcome immunosuppression and improve the 
treatment for liver metastases for certain sub-
groups (Ostrup et  al. 2017). However, different 
chemotherapeutic regimens may trigger different 
immune responses. For instance, FOLFOX may 
reduce the levels of circulating myeloid-derived 
suppressor cells and hence immunosuppression, 
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while FOLFIRI may elicit the opposite effect in 
advanced CRC (Kanterman et al. 2014).

Moreover, combination of oxaliplatin with the 
cyclophosphamide was also explored as another 
potential combinatory therapy to subvert a check-
point inhibition-resistant solid tumour into a sen-
sitive one (Pfirschke et al. 2016). Further research 
will be needed to ascertain oxaliplatin’s role in 
activation of immune responses and its applica-
tion in the context of CRC immunotherapy (Riley 
et al. 2018).

As above mentioned, several pieces of evi-
dence have supported that radiotherapy can also 
activate the host immune system by various 
mechanisms, including the increased presenta-
tion of tumour neoantigens, MHC-I expression, 
and immune-activating chemokines and cyto-
kines (e.g. interferon-γ) in the tumour microenvi-
ronment, hence representing a promising strategy 
for MSS cancers (Derer et al. 2016; Riley et al. 
2018). Interestingly, enhanced antitumor respon-
siveness arising from the potential synergy 
between radiotherapy immune priming and 
checkpoint inhibition, with either CTLA-4– or 
PD-1–directed therapy alone or in combination, 
was already demonstrated in early phase I clini-
cal trials (Deng et al. 2014; Twyman-Saint Victor 
et  al. 2015). Hence, to overcome CRC cells’ 
resistance to radiotherapy (e.g. PD-1 upregula-
tion), it would be feasible/interesting to combine 
the former with PD-1-targeted therapy to achieve 
best clinical outcomes in CRC treatment, as sug-
gested elsewhere (Riley et al. 2018). Accordingly, 
a phase II trial combining nivolumab, ipilimumab 
and radiation therapy in MSS and MSI-high CRC 
and pancreatic cancer (NCT03104439), as well 
as combination of anti-PDL-1/PD-1 therapy with 
radiotherapy or modified FOLFOX, are currently 
on-going (NCT02437071; NCT02375672) 
(Riley et al. 2018; Roelands et al. 2017).

Although 5-FU has demonstrated synergy 
with radiotherapy in vitro, one should be careful 
considering that low-dose fractionated radiother-
apy combined with 5-FU may inhibit the 
immune-priming effects of radiotherapy. These 
observations would have serious consequences 
for patients with CMS2 rectal cancers because 
nowadays combined neoadjuvant 5-FU/radio-

therapy treatment remains the gold standard 
option for these cases (Sauer et al. 2004).

Finally, the Wnt/β-catenin signalling pathway 
has been linked to modulation of immune cell 
infiltration in the tumour microenvironment, i.e. 
to immune evasion, as it has been recently associ-
ated with suppression of CD4+ T cell immunity 
in CRC (Fu et al. 2015; Pai et al. 2017; Spranger 
and Gajewski 2015; Sun et al. 2017). Moreover, 
tumours deprived from T cell infiltration are bad 
candidates for immunotherapy and have a poorer 
prognosis (Gajewski 2015).

According to a segregation analysis based on 
gene expression profiles of almost 9000 tumour 
samples, about one third of them was character-
ized as non-T cell inflamed. APC, AXIN1/2 and 
CTNNB1 (encoding β-catenin) mutations were 
associated to a non-T cell inflamed gene signa-
ture. Besides, β-catenin was inversely correlated 
with CD8+ T cell infiltration. Altogether, these 
results suggest β-catenin expression as a predic-
tive tool to select the patient cohort that might 
benefit from checkpoint inhibition therapy, as 
reviewed elsewhere (Pai et al. 2017).

Interestingly, it is plausible to hypothesize that 
by inhibiting the Wnt/β-catenin signalling path-
way in CMS2 tumours, one could improve CD8+ 
T cell infiltration and priming, enabling a sce-
nario in which immune checkpoint inhibition 
may be effective. Therefore, future preclinical 
and clinical assays should consider and explore 
the potential role of Wnt/β-catenin signalling 
modulators as possible adjuvants to immune 
checkpoint inhibitors (e.g. anti-PD1, anti-
CTLA4, anti-PD-L1) (Pai et al. 2017).

Overall, CMS2 tumours are poorly immuno-
genic and lack immune cell infiltration, requiring 
the right combinatory therapeutic approach to 
convert these “cold” tumours to “hot” tumours 
targetable by immunotherapeutic approaches, 
that is, towards a CMS1-like reactive immune 
phenotype.

Altogether, a better patient stratification 
regarding the CMS group and tumour immuno-
genicity, a better knowledge of the cellular and 
molecular mechanisms behind the absence of 
immune cells within the tumour microenviron-
ment, as well as the identification of novel 
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biomarkers for immune response will be required 
to achieve a more personalized therapy with the 
best clinical outcome (Roelands et al. 2017).

6.2	 �Wnt Targeted Therapy 
in CMS2 Tumours: 
Antagonizing or Agonizing, 
a Double-Edged Sword?

The Wnt/β-catenin pathway regulates several 
aspects of embryonic development and adult tis-
sue homeostasis, controlling cell self-renewal, 
differentiation and apoptosis. Particularly, it par-
ticipates in the control of intestinal homeostasis 
and maintenance of the intestinal stem cell pool/
niche (Mah et  al. 2016). Indeed, this signalling 
axis is one of the most frequently deregulated 
pathways in several tumour types, especially in 
CRC where it reaches about 90% of cases.

Briefly, under normal physiological condi-
tions, activation of the canonical Wnt signalling 
begins with the binding of secreted Wnt ligands 
(e.g. Wnt3a and Wnt1) to a complex of the 
Frizzled (FDZ) receptor and low-density 
lipoprotein-related protein 5/6 (LRP5-6) co-
receptor. Phosphorylation of LRP co-receptors by 
protein kinases CK1 (casein kinase 1) and GSK3β 
(glycogen synthase kinase 3 beta) stimulates the 
membrane recruitment of Dishevelled (DVL) and 
Axin proteins and this inhibits the assembly of the 
β-catenin destruction complex  – mainly com-
posed by APC, Axin-1/2, CK1 and GSK3β pro-
teins-, thus enabling β-catenin stabilization by 
preventing its cytoplasmic degradation via the 
ubiquitin-proteasome pathway (Novellasdemunt 
et  al. 2015; Stamos and Weis 2013; Zhan et  al. 
2016). This leads to cytoplasmic accumulation of 
β-catenin, which then is translocated into the cell 
nucleus where it forms a transcriptional complex 
with members of the TCF/LEF family of tran-
scriptions factors (namely TCF7L2) and regulates 
the expression of Wnt signalling target genes that 
regulate important cellular processes like cell pro-
liferation, apoptosis and stemness (MacDonald 
et  al. 2009; Novellasdemunt et  al. 2015; Zhan 
et al. 2016).

On the other hand, in the absence of extracel-
lular Wnt ligands or signals from other signalling 
cascades, the N-terminus of β-catenin is phos-
phorylated within the destruction complex (by 
GSK3 and CK1) stimulating the recruitment of 
E3 ligase β-TrCP towards the complex. This pro-
motes β-catenin ubiquitination, targeting it for 
proteosomal degradation, thus restraining the 
transcription of Wnt target genes (MacDonald 
et  al. 2009; Novellasdemunt et  al. 2015; Zhan 
et al. 2016).

However, the balance of this signalling may 
be disturbed by the existence of mutations in Wnt 
signalling players, mostly in APC and CTNNB1, 
that result in ineffective turnover/degradation of 
β-catenin and, ultimately, in hyperactivated sig-
nalling. Hence, in this scenario, the aberrantly 
stabilised intracellular β-catenin translocates into 
the nucleus and constitutively activates the 
expression of Wnt/β-catenin target genes that 
culminate in unrestrained cell growth, being one 
of the hallmarks of colorectal tumorigenesis and 
progression. Though, even in the presence of 
mutations that drive CRC onset and progression, 
different levels of β-catenin may exist in CRC 
cells, according to the “just-right” signalling 
model (Albuquerque et  al. 2002, 2010, 2011; 
MacDonald et  al. 2009; Novellasdemunt et  al. 
2015; Zhan et al. 2016).

Since the unrestrained hyperactivation of 
Wnt/β-catenin signalling pathway, is the hub of 
CMS2 tumour onset and progression, targeting 
this pathway represents a highly attractive path 
along the road to precision therapy. Strikingly, 
this has been recently reinforced by the finding 
that among adenomas, the CMS2 subtype was 
the most frequent subtype and at higher risk of 
progression, thus representing an opportunity for 
the development of targeted therapies to counter-
act Wnt/β-catenin signalling in early tumour 
stages. In agreement with this is the finding that 
Apc restoration in a mouse model of CRC 
whereby Apc was suppressed, induced sustained 
tumour regression without relapse (Dow et  al. 
2015). Several attempts have been made to dis-
cover and/or develop Wnt signalling inhibitors, 
ranging from small-molecule compounds, to 
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antibodies, peptides and even natural bioactive 
compounds, that may target this pathway through 
different mechanisms: “non-specific” or disrup-
tion of the ligand/receptor, the β-catenin destruc-
tion and the nuclear/transcriptional factor 
complexes, respectively (Krishnamurthy and 
Kurzrock 2018; Novellasdemunt et  al. 2015; 
Zhan et al. 2016). Even so, most compounds tar-
geting Wnt signalling are still in preclinical or 
early clinical trial phases or were withdrawn, 
since it seems difficult to circumvent the toxicity 
inherent to the inhibition of this pathway, due to 
its crucial role in regulation of intestinal homeo-
stasis and the stem cell niche (Lu et  al. 2016; 
Mah et al. 2016).

So far, Wnt signalling inhibition in colorectal 
tumorigenesis has only been accomplished clini-
cally by “generic”/non-specific Wnt signalling 
modulators, already approved for other malig-
nancies, so called nonsteroidal anti-inflammatory 
drugs (NSAIDs), such as aspirin and sulindac 
(Krishnamurthy and Kurzrock 2018; 
Novellasdemunt et  al. 2015). Among NSAIDs, 
aspirin has been reported to supress colorectal 
neoplasia, and has been suggested as a chemo-
preventive agent, as its regular use correlates with 
lower CRC incidence even in predisposed indi-
viduals (Burn et al. 2011; Cao et al. 2016). This 
NSAID may act either by inhibiting the cycloox-
ygenase-2/prostaglandin-E2 (COX-2/PGE2) 
pathway, by promoting β-catenin ubiquitination 
and its proteosomal degradation in a COX-2-
independent manner, or by targeting the NF-KB 
pathway, with subsequent decrease in Wnt tran-
scriptional activity (Gala and Chan 2015). 
Nonetheless, despite the effect of NSAIDs, sev-
eral of these compounds are associated with 
numerous gastrointestinal toxicity-related side 
effects (Gala and Chan 2015).

Next, we will summarize some of the most 
well-known and new Wnt negative modulators 
identified so far, either synthetic or of natural ori-
gin. Then, we will relate the feasibility of Wnt 
antagonists in CRC therapy and discuss the appli-
cation of Wnt agonists, in a tumour stage-
dependent scenario.

6.2.1	 �Wnt Antagonists: Tailored 
Treatment 
for Downregulating Wnt 
Signalling

6.2.1.1	 �Small Molecules Targeting 
TCF7L2/β-Catenin 
Transcriptional Complex 
Players

Several efforts have been made towards the 
development of small molecules targeting the 
TCF7L2/β-catenin complex, either by disrupting 
directly the binding between these two players or 
indirectly by targeting β-catenin (Krishnamurthy 
and Kurzrock 2018; Novellasdemunt et al. 2015; 
Yan et  al. 2017). PKF115-584, ICG-001 (PRI-
724), PKF118-310, CGP049090 and NCB-0846 
are some of the small-molecule inhibitors of this 
transcriptional complex that have been often 
cited (e.g. by disrupting β-catenin interaction 
with TCF7L2, LEF-1 or APC, or TCF/DNA), 
despite the widespread biological side-effects 
that this inhibition might have (Krishnamurthy 
and Kurzrock 2018; Novellasdemunt et al. 2015; 
Yan et  al. 2017). Among these, ICG-001 binds 
selectively to the N-terminus of CREB binding 
protein (CBP) and blocks the interaction between 
this coactivator and β-catenin, restraining 
TCF7L2/β-catenin transcriptional activity 
(Emami et al. 2004). Although it reached the clin-
ical trial phase in combination with chemother-
apy and bevacizumab, it was withdrawn without 
results due to drug supply issues (NCT02413853).

Additionally, several other TCF/β-Catenin 
complex inhibitors have been identified among 
synthetic compound libraries by in silico virtual 
screening, high throughput screening or struc-
tural optimization of lead compounds, based on 
the crystal structure of these signalling players 
and other biochemical assays (Fang et al. 2016; 
Masuda et al. 2016; Tian et al. 2012; Yan et al. 
2017). For instance, BC21 may block TCF7L2/β--
Catenin complex assembling by occupying part 
of the TCF7L2 binding pocket of β-catenin and 
blocking the establishment of hydrophobic inter-
actions in key binding sites and TCF7L2 binding, 
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which correlated with downregulation of Wnt tar-
get genes, inhibition of cell viability and colony 
formation (without cytotoxicity on normal 
HEK293 and HUVEC cells) (Tian et al. 2012).

Wnt signalling may also be regulated by 
Traf2- and Nck-interacting kinase (TNIK) that 
regulate directly the Wnt transcriptional complex 
via phosphorylation of TCF7L2, which turns 
TNIK blocking into an appealing strategy to 
supress this pathway (Masuda et  al. 2015; 
Shitashige et  al. 2010). In this context, NCB-
0846, a small molecule that occupies the ATP-
binding pocket/cavity of TNIK in an inactive 
conformation, was identified to abrogate its 
kinase activity and disturb the TCF7L2/β-catenin 
interaction. In vitro this compound has shown to 
impair tumour-initiation ability of colorectal 
CSCs and to downregulate the expression of 
mesenchymal markers (Slug, Snail, Twist, Smad2 
and Vimentin) in HCT116 cells, while in vivo it 
inhibited Wnt-driven CRC onset in Apcmin/+ mice. 
However, its effect might not be fully selective 
towards Wnt signalling targeting, since it also 
may interfere with other signalling pathways 
(Masuda et al. 2016).

Another antagonist potentially appealing for 
CMS2 therapy is the newly identified 4-(5-Fluoro-
1 H - B e n z o [ d ] I m i d a z o l - 2 - y l ) - N , 
NDimethylaniline (HI-B1) compound that, in 
PDX studies, showed a selective anticancer effect 
against tumours showing high expression levels 
of nuclear β-catenin relatively to tumours pre-
senting low nuclear expression levels of this pro-
tein. Therefore, HI-B1 anticancer effect appears 
to depend on high levels of Wnt/β-catenin signal-
ling that are typical of CMS2 tumours (Shin et al. 
2017). HI-B1 inhibits Wnt transcriptional com-
plex by inhibiting the interaction between 
TCF7L2 and β-catenin by directly targeting the 
latter, which correlated with its ability to down-
regulate β-catenin levels, to induce apoptosis and 
to decrease cell growth in vitro, in either 
anchorage-dependent or -independent condi-
tions, and in vivo, in PDX tumours and Apcmin 
mouse models (Shin et al. 2017).

Due to signalling pathway crosstalk, peroxi-
some proliferator–activated receptor isotype y 
(PPARy) assembles with TCF7L2 and interacts 
with β-catenin (Jansson et  al. 2005). In agree-

ment with this, treatment of HCT116 cells with 
FG535 blocked the recruitment of the coactiva-
tors β-catenin and glutamate receptor-interacting 
protein 1 (GRIP1) to PPARy, suggesting that this 
compound may impair the assembly of a com-
plex containing these players and binding to 
DNA at TCF/LEF-binding sites, inhibiting target 
gene expression (Handeli and Simon 2008). 
More relevant results on the biological effects of 
FG535 in CRC were reported recently, showing 
its potential to downregulate the expression of 
invasiveness-related (matrix metallopepti-
dase-7/9 (MMP7/MMP9), snail family transcrip-
tional repressor 1 (SNAI1) and Vimentin) and 
Wnt target genes (including those encoding for 
Axin-2 and cyclin D1), which correlated with 
impaired cell proliferation, stemness and migra-
tory and invasion skills in HT29 and SW480 
cells, as well as with lower tumour xenograft 
growth in vivo (Chen et al. 2017a).

6.2.1.2	 �Small Molecules Targeting 
the APC/β-Catenin/Axin 
Destruction Complex

The multi-subunit destruction complex – involv-
ing APC, Axin-1/2, the kinases GSK3β and CK1, 
PAD2 (peptidyl arginine deiminase 2) and the 
E3-ubiquitin ligase β-TrCP – acts as the key gate-
keeper for regulation of β-catenin levels and, 
hence, β-catenin-mediated gene transcription 
(Novellasdemunt et  al. 2015; Stamos and Weis 
2013; Zhan et  al. 2016), making its players 
important targets for modulation of Wnt 
signalling.

One of the most well described mechanism is 
the stabilization of Axin activity by inhibition of 
Tankyrase-1 and -2 (TNKS1 and TNKS2) activ-
ity that belong to the poly(ADP-ribose) polymer-
ases (PARPs) family. TNKS have been described 
as modulators of protein stability and turnover of 
components of the degradation complex, includ-
ing the cellular levels of β-catenin (Lehtio et al. 
2013; Mariotti et al. 2017). Indeed, it was dem-
onstrated that these enzymes may participate in 
modulation of Axin stability by binding at its 
N-terminus (close to the binding site of APC) and 
performing poly-ADP-ribose modifications 
(PARsylation) in this protein, which elicits its 
polyubiquitination and further degradation via 
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ubiquitin-proteosome pathway (Huang et  al. 
2009; Morrone et al. 2012). More recently, it was 
shown that TNKS play a crucial role in the for-
mation of the β-catenin destruction complex by 
being recruited by either APC2 or Axin into 
degradasomes (cytoplasmic puncta), thus regu-
lating β-catenin degradation (Croy et  al. 2016; 
Martino-Echarri et  al. 2016; Thorvaldsen et  al. 
2015). Hence, TNKS inhibitors (TNKSi) may act 
by stabilizing the interaction and promoting the 
assembly of TNKS and AXIN in degradasomes 
in which β-catenin is degraded (Croy et al. 2016; 
Martino-Echarri et al. 2016).

Several small-molecule TNKSi towards CRC 
therapy have been identified in the last years, 
including XAV939 (Huang et  al. 2009), IWR-1 
(Chen et  al. 2009), JW55 (Waaler et  al. 2012), 
JW74 (Waaler et  al. 2011) and its analogue 
G007-LK (Lau et  al. 2013), NVP-TNKS656 
(Arques et al. 2016), G-631 (Zhong et al. 2016), 
K-756 (Okada-Iwasaki et al. 2016) and AZ1366 
(Quackenbush et  al. 2016). They revealed anti-
cancer activity in CRC cells, however, the study 
of their biological effects is still in its infancy.

Moreover, a recent report has highlighted the 
feasibility of synergizing TNKS inhibition with 
conventional chemotherapeutic agents. For 
example, XAV939 was combined with 5-FU and/
or Cisplatin with overall results showing signifi-
cant increase in apoptosis, upregulation of Axin 
and downregulation of β-catenin and CSCs mark-
ers in SW480 and SW620 cells (Wu et al. 2016). 
Also, AZ1366 combination with irinotecan dis-
played improved ability to impair tumour growth 
in explants, although its mechanism might not be 
via modulation of Wnt signalling (Quackenbush 
et  al. 2016). Additionally, potential synergy 
between NVP-TNKS656 and PI3K/AKT signal-
ling pathway inhibitors (triciribine and 
4-hydroxytamoxifen) and MEK inhibitors 
(AZD6244) has also been suggested (Arques 
et al. 2016; Schoumacher et al. 2014).

Interestingly, Tanaka and colleagues have 
shown that short-form APC mutant proteins lack-
ing all the β-catenin-downregulating motifs (20 
amino acid repeats, 20AARs) might be used as 
potential predictive biomarkers for CRC sensitiv-
ity to TNKSi, while cells expressing “long” APC 
mutant protein that retain two or more of these 

motifs might be resistant (Tanaka et al. 2017). In 
their study, induced downregulation of long-form 
APCs with two 20AARs led to increased Wnt/β--
catenin signalling levels and upregulated expres-
sion of its target gene AXIN2, and turned cells 
sensitive to treatment with TNKSi (Tanaka et al. 
2017). This is extremely relevant according to the 
“just-right” signalling model (Albuquerque et al. 
2002, 2010, 2011) and CMS2 “Wnt-addiction”, 
mostly driven by APC mutations, as abovemen-
tioned. Accordingly, it is known that APC mutant 
genotypes that lead to truncated proteins retain-
ing 1 or, less frequently, none of the 20AARs, are 
more frequent in MSS distal tumours 
(Albuquerque et  al. 2010, 2011; Christie et  al. 
2013) which are highly represented in CMS2 
tumours. This results in higher β-catenin signal-
ling levels than that obtained from truncated pro-
teins retaining 2 or 3 20AARs, which are more 
frequent in the proximal colon and consequently 
in other CMS subtypes. Hence, it is plausible to 
suggest that TNKSi may be promising Wnt sig-
nalling modulators specially to counteract CMS2 
tumorigenesis. One possible application might be 
to circumvent radio-chemoresistance mediated 
by hyperactivation of Wnt signalling in rectal 
tumours.

Despite none of the identified Wnt signalling 
antagonists have been applied so far in CRC ther-
apy, an antagonistic effect was recently reported 
for nitazoxanide, an already FDA-approved drug 
for antiparasitic purposes, bringing closer the 
Wnt antagonists to the clinical practice. Indeed, 
nitazoxanide can inhibit this pathway in a 
GSK3β- and APC-independent manner by 
directly targeting and stabilizing PAD2 that catal-
yses protein citrullination/deamination (a post-
translational modification that converts an 
arginine residue in citrulline). In this context, 
treatment with this drug demonstrated an increase 
in citrullination and degradation of β-catenin 
(dependent on the proteasome but not on ubiqui-
tination) in HCT116 and SW480 cells, disrupting 
its transcriptional activity, measured as lower 
expression levels of Wnt target genes, impaired 
colony-formation ability in vitro, and lower 
occurrence of intestinal adenomas in vivo (Qu 
et al. 2018).
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6.2.1.3	 �Small-Molecule Inhibitors 
of Upstream Signalling Players: 
Targeting Ligands 
and Receptors

Lastly, the ligand-receptor interaction has been 
one of the most well explored signalling inter-
faces, with several on-going clinical trials, to 
block hyperactivated Wnt signalling, using either 
small molecules or antibodies designed against 
Wnt ligands or FZD receptors to disrupt ligand/
receptor interaction at the cell surface (Gurney 
et al. 2012; Krishnamurthy and Kurzrock 2018; 
Lu et al. 2016). Some FZD receptors have been 
associated with CRC cells survival, invasiveness 
and metastasis, and in the case of FZD-7 its over-
expression might also be associated with a poor 
prognosis (Ueno et al. 2009).

However, as emphasized in a recent review, 
targeting the ligand/receptor interface might be 
of limited efficiency, because the receptor signals 
upstream of APC that is found mutated in about 
80–90% of CRCs (Phesse et al. 2016), in particu-
lar in the CMS2 subtype. Nevertheless, consider-
ing the “just-right” signalling model, the targeting 
of Wnt receptors might still decrease Wnt signal-
ling in some APC mutant tumours since not all 
APC mutations have the same impact on signal-
ling activity and can retain some functionality 
(Albuquerque et  al. 2002, 2010, 2011; Phesse 
et al. 2016). Accordingly, CRCs harbouring APC 
mutations still responded to FZD7 inhibitors 
although the precise mechanism remains to be 
clarified (Phesse et al. 2016; Vincan et al. 2005).

In this context, the antibody Vanituctumab 
(OMP-18R5) has shown the ability to target 
FZD-1, -2, -5, -7 and -8 receptors in several solid 
tumours by binding directly to a conserved epit-
ope within their extracellular domain, and its use 
in a CRC PDX model correlated with inhibition 
of tumour growth and tumour-initiating cell fre-
quency, besides displaying synergetic effects 
with the conventional drug irinotecan (Gurney 
et al. 2012). However, this antibody did not show 
anticancer effect in APC or CTNNB1  mutated 
CRCs, contrary to APC and CTNNB1 wild-type 
tumours (Gurney et al. 2012). This suggests that 
Vanituctumab may not have successful outcome/
effectiveness in the context of CMS2 therapy, 

however this might also be due to its non-specific 
and wide spectrum of action among FZD 
receptors.

Although several small FZD inhibitors with 
potential anticancer activity in CRC have been 
explored so far, much remains to be understood 
about the diversity of Wnt ligands and FZD 
receptors and the biological effects of Wnt-FZD 
interactions (Kikuchi et al. 2011).

Additionally, other small-molecule Wnt modu-
lators targeting the co-receptor LRP5/6 extracellu-
lar domain have been identified (Jackson et  al. 
2016; Lee et al. 2018). GSK3178022 is an antibody 
against LRP6 and was shown to block stimulation 
by both Wnt and R-Spondin (RSPO) ligands, pos-
sibly by disturbing LRP6 turnover or by blocking 
more downstream signalling events. By hindering 
LRP6 stimulation, GSK3178022 was shown to 
impair the expression of Wnt target genes in in 
vitro preclinical assays using either CRC cell lines 
or PDX models (Jackson et al. 2016).

Another strategy is neutralizing Wnt ligands 
directly or blocking their secretion by the so-
called Porcupine (PORCN) inhibitors 
(Krishnamurthy and Kurzrock 2018). PORCN is 
an enzyme that catalyses post-translational pal-
mitoylation of Wnt ligands that is necessary for 
their extracellular secretion (Takada et al. 2006). 
Several PORCN inhibitors have been identified 
for CRC and other solid tumours therapy, namely 
PORCN inhibitors LGK974 (Liu et al. 2013; van 
de Wetering et al. 2015) and ETC-1922159. Both 
were already subject to Phase I/II trials in CRC 
and/or other solid tumours, but conclusive results 
are still unavailable (NCT02278133; 
NCT01351103; NCT02521844).

Finally, in the category of Wnt ligand neutral-
ization, OMP-131R10 stands out as an anti-
RSPO3 antibody targeting RSPO3-positive 
mCRCs and is currently in phase I trial in combi-
nation with FOLFIRI regimen, still waiting for 
results (NCT02482441). Also in phase I trial for 
mCRC (NCT02655952) is Foxy-5, which mim-
ics the Wnt5a peptide, a Wnt antagonist that has 
been found silenced in CRCs by promoter meth-
ylation and whose expression has been shown to 
impair β-catenin activity and suppress cell prolif-
eration, migration and invasion (Zhu et al. 2014).
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However not all CRC patients may respond in 
the same way to upstream signalling antagonists. 
They may carry mutations in downstream players 
and a substantial part would be refractory due to 
APC mutations. Further research will be needed 
to establish a stratification of the patients that 
might best respond to this type of antagonists, 
namely against  FZD7, taking into account the 
APC/CTNNB1 mutation status and the “just-
right” signalling model (Albuquerque et al. 2002, 
2010, 2011; Phesse et al. 2016).

6.2.1.4	 �Nutraceuticals Inhibiting Wnt 
Signalling: How Nature Can 
Help Shaping CRC Therapy

As discussed so far, there is a plethora of chemi-
cally engineered compounds designed to modu-
late the Wnt signalling pathway, most of them by 
antagonizing its main effectors. Notwithstanding, 
Nature also offers several natural compounds that 
may antagonize CRC onset and progression. The 
strong evidence from epidemiological studies, 
supporting a positive correlation between a high 
intake of fruits and vegetables with a lower risk 
of CRC incidence, has been drawing attention for 
the application of natural compounds in CRC 
chemoprevention and therapy (Lanou and 
Svenson 2011; Pericleous et al. 2013; Song et al. 
2015). Due to their presence in plants, especially 
fruits and vegetables, and their bioactivity in pre-
vention and treatment of several human patholo-
gies, such as cancer, these bioactive compounds 
have been termed phytochemicals and/or nutra-
ceuticals. Nutraceuticals comprise several natu-
ral compounds with different structure and 
botanical origin, including phenolic compounds 
(e.g polyphenols, like flavonoids, curcuminoids, 
stibenes and tannins), terpenoids (e.g. carot-
enoids and antioxidative vitamins), and gluco-
sinolates (precursors of isothiocyanates, ITCs), 
among others (Kuppusamy et al. 2014; Liu 2004; 
Pan et al. 2011).

Interestingly, the anticancer potential of nutra-
ceuticals relies on their multi-target mechanism 
of action, either by exerting apoptotic, antioxi-
dant, antiangiogenic or antiproliferative activi-
ties, but also by modulating different signalling 
pathways involved in cancer stemness, metastasis 

and drug resistance (Chang and Yu 2016; 
Kuppusamy et  al. 2014; Liu 2004; Pan et  al. 
2011; Pistollato et  al. 2015; Priyadarsini and 
Nagini 2012). In this section, the most recent evi-
dence of nutraceutical roles in CRC prevention 
and therapy will be addressed, focusing on spe-
cific nutraceuticals with ability to modulate the 
Wnt signalling pathway and consequently to tar-
get CMS2 tumour subtype.

A study carried out by our group, using a 3D 
model of HT29 CRC cell spheroids, has demon-
strated that ITCs and ITCs-enriched natural 
extracts derived from different cruciferous vege-
tables may differentially target the Wnt signal-
ling pathway. For instance, watercress extract 
and its main ITC phenethyl isothiocyanate 
(PEITC), decreased β-catenin mRNA levels, 
whereas broccoli extract and its main ITC sul-
foraphane, downregulated TCF7L2 and AXIN2 
expression. Both ITCs and extracts had the abil-
ity to reduce cell proliferation, stemness and met-
astatic potential of CRC cells (Pereira et  al. 
2017). Notwithstanding, further studies will be 
required to scrutinize the primary mechanisms of 
ITC action in complex cellular scenarios.

Regarding phenolic compounds, another study 
performed by our group has demonstrated the 
effect of polymethoxyflavones (PMFs)-enriched 
orange peel extract in the same 3D CRC cell model 
with downregulation of the expression of the Wnt 
target gene and known CRC stemness marker 
LGR5, in a dose-dependent manner, an effect 
mainly attributable to tangeretin in this extract 
(Pereira 2016; Pereira et al. unpublished data).

In addition, epigallocatechin-3-gallate 
(EGCG), a green tea-derived catechin, has been 
shown to modulate Wnt/β-catenin/TCF signal-
ling pathway by downregulating β-catenin 
expression in two mouse models of intestinal 
tumorigenesis, preventing intermediate and 
advanced stages of CRC (Orner et  al. 2002). 
Moreover, EGCG has demonstrated to induce the 
shuttling of β-catenin from the nucleus towards 
cytoplasm and cell membrane in HT29 cells, 
while increasing the expression of E-cadherin 
and decreasing the expression of Wnt target 
genes, c-Myc and cyclin D1. In vivo assays with 
the Apcmin/+ mouse model of intestinal tumorigen-
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esis, demonstrated that oral uptake of this reduced 
aberrant nuclear β-catenin and the levels of acti-
vated, phosphorylated ERK1/2 and AKT (at 
Ser473) proteins (Ju et al. 2005). More recently, 
using CSC-enriched cell spheroids generated 
with DLD-1 and SW480 cells, Chen and co-
workers demonstrated the ability of EGCG to tar-
get colorectal CSC subpopulations by suppression 
of the Wnt/β-catenin signalling pathway. They 
observed upregulated expression of GSK3β and 
decreased levels of phosphorylated GSK3β 
(Ser9), alongside with a decrease in β-catenin 
and c-Myc levels. Besides its antiproliferative 
effect and ability to induce apoptosis, exposure to 
this nutraceutical also impaired significantly 
spheroid formation (in number and size) together 
with downregulation of stemness markers 
(Nanog, Oct-4, CD44, CD133 and ALDHA1) in 
a dose-dependent manner (Chen et al. 2017b).

Resveratrol, another polyphenol mainly found 
in peel of red grapes (Singh et al. 2015a), has also 
shown promising effects in Wnt signalling 
including impaired β-catenin nuclear transloca-
tion, leading to lower c-Myc and MMP-7 expres-
sion, impaired cell proliferation, invasion and 
migration (Ji et al. 2013). Another study reported 
it to induce mitochondrial-mediated apoptosis, to 
impair cell proliferation, sphere formation and 
translocation of nuclear β-catenin in human 
colorectal CSCs in vitro, along with downregula-
tion of Wnt targets (c-Myc and Cyclin-D1), and 
to diminish tumour incidence in vivo (Reddivari 
et al. 2016).

Another compound that modulates Wnt sig-
nalling is curcumin, a phytochemical extracted 
from Curcuma longa (root of turmeric). In a 
study using SW620 cells, treatment with this 
nutraceutical led to downregulation of Wnt sig-
nalling players (β-catenin and TCF7L2), 
Vimentin and CXCR4, in parallel with upregula-
tion of E-cadherin, Axin and NKD2 (the latter 
two acting as negative regulators of Wnt signal-
ling). This supports the role of curcumin in sup-
pression of Wnt signalling, EMT, and, therefore, 
in CRC invasion and metastasis (Zhang et  al. 
2016). Similar results obtained for SW480 cells 
suggest that curcumin may also induce its antip-
roliferative effect by modulating Wnt signalling 

via suppression of miR-130a expression (Dou 
et al. 2017).

The flavonoid apigenin has also been shown to 
modulate CRC cell proliferation, migration, inva-
sion and organoid growth in vitro in a dose-
dependent manner by the ability to inhibit 
β-catenin nuclear translocation (Xu et al. 2016). 
Apigenin may also decrease the levels of cyto-
solic and nuclear β-catenin through induction of 
its autophagy-mediated lysosomal degradation, 
as a consequence of AKT/mTOR signalling inhi-
bition (Lin et al. 2017).

Aside, phytochemicals may also  target the 
β-catenin/TCF7L2 transcriptional complex. For 
instance, resveratrol may also act downstream of 
GSK3β by destabilizing directly the interaction 
between β-catenin and TCF7L2  in a dose-
dependent manner, leading to a lower transcrip-
tional activation of Wnt-responsive genes and 
impaired cell growth in both Wnt-stimulated and 
APC-mutated CRC cells (Chen et al. 2012). Also, 
11α, 12α-epoxyleukamenin E (EPLE), an ent-
kaurane diterpenoid extracted from Salvia caval-
eriei, has shown to selectively exert 
antiproliferative effect in CRC cells by occupy-
ing and disrupting the binding interface of 
β-catenin/TCF7L2 complex and, hence, its abil-
ity to act as a transcriptional activator, as corrob-
orated by the downregulation of the expression of 
Wnt signalling target genes, co-
immunoprecipitation and X-ray crystal structure 
results (Ye et al. 2015).

Epigenetic regulation is another mechanism 
of action of nutraceuticals to modulate Wnt sig-
nalling and cancer cell proliferation and growth, 
mostly by restoring Wnt antagonists’ function. In 
addition to modulating β-catenin levels, genistein 
may also be involved in the upregulation of 
Dickkopf-related protein 1 (DKK1), another Wnt 
antagonist, by inducing histone H3 acetylation of 
the DKK1 promoter (Wang et al. 2012). PEITC 
may also alter the epigenetic profile of CRC cells 
through modulation of histone epigenetic regula-
tors, induction of different DNA methylation pat-
terns (e.g. hypomethylation of Polycomb-group 
complex target genes) and suppression of HDAC 
binding to euchromatin, along with upregulation 
of apoptosis-related genes (Park et al. 2017).
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Notwithstanding, one of the most appealing 
and promising aspects of nutraceuticals’ applica-
tion in CRC therapy in a near future might be 
their potential combination with chemotherapeu-
tic regimens to avail possible anticancer syner-
gies, thus enabling lowering chemotherapy 
dosage. Consequently, this would allow to 
decrease toxicity and side-effects of conventional 
chemotherapeutic drugs and, hence, an uninter-
rupted therapy regimen (Redondo-Blanco et  al. 
2017). Last but not least, by combining chemo-
therapy with nutraceuticals with known anti-
stemness and anti-metastatic potential, this 
combinatory regimen may also allow to prevent 
tumour metastasis and recurrence by circumvent-
ing CSC-associated chemoresistance, for instance 
to 5-FU, the gold standard chemotherapeutic 
drug in CRC therapy as demonstrated for EGCG 
(Toden et al. 2016), resveratrol (Buhrmann et al. 
2018), curcumin (Bachmeier et  al. 2018; Jalili-
Nik et  al. 2018; Shakibaei et  al. 2015; Toden 
et al. 2015; Wei et al. 2018) and PMFs-enriched 
orange peel extract (Pereira 2016; Pereira et al. 
unpublished data).

Accordingly, a phase I clinical trial of cur-
cumin in combination with FOLFOX in 12 CRC 
patients with inoperable liver metastases has 
been conducted and the dose escalation study 
showed that curcumin was a safe and well-
tolerated adjunct to FOLFOX chemotherapy in 
patients at doses up to 2  g daily (James et  al. 
2015). Another randomized control clinical trial 
combining curcumin with FOLFOX has been 
conducted in 33 CRC patients with inoperable 
liver metastases to determine a target dose, side 
effects and antitumor efficacy, but results are still 
unwarranted (Irving et al. 2015). Also promising 
is the recent finding that curcumin may revert 
oxaliplatin-acquired resistance in CRC cell lines 
(Ruiz de Porras et al. 2016).

Although, several clinical trials have been car-
ried out to screen the potential use of phytochem-
icals in CRC prevention and therapy (Alam et al. 
2018) – as the ones for curcumin (Carroll et al. 
2011), resveratrol (Nguyen et  al. 2009; Tome-
Carneiro et  al. 2013), black raspberry phyto-
chemicals (Kresty et al. 2016; Wang et al. 2014a) 
and ITCs (NCT03034603; NCT00968461; 

NCT01228084) – there is still a long way to go 
for phytochemical acceptance in CRC treatment, 
even as an adjuvant in combinatory treatment. 
For example, studies with nutraceuticals shed 
doubt on whether ‘more is better’, on their bio-
availability and on the attainment of a therapeutic 
dosage in vivo. Solutions might include using 
special delivery systems (e.g. micro- and/or 
nanoparticles) to entrap phytochemicals and 
release them in a targeted and controlled way 
(Nair et al. 2010; Priyadarsini and Nagini 2012; 
Wang et  al. 2014b). Therefore, it is feasible to 
cogitate the combination of nutraceuticals-loaded 
delivery systems with conventional chemothera-
peutic drugs, namely 5-FU, in CRC therapy, as 
reported previously for chitosan-coated cinna-
mon/oregano-loaded solid lipid nanoparticles 
(Kamel et  al. 2017) and for curcumin-loaded 
N,O-carboxymethyl chitosan nanoparticles 
(Anitha et al. 2014). Moreover, specific delivery 
to tumour cells would circumvent the side effects 
associated with the inhibition of Wnt signalling 
in normal cells that need physiological activation 
for their homeostasis, as previously mentioned.

6.2.2	 �Wnt Agonists: Are 
We Counteracting the “Just-
Right” Amount of Wnt 
Signalling Driving CRC 
Metastasis?

As discussed so far,  current efforts have been 
mostly spent on the development of Wnt signal-
ling antagonists aiming at Wnt signalling down-
regulation, disruption or attenuation, and for 
some the clinical outcome is still to be deter-
mined. Thus far, clinical trials involving Wnt sig-
nalling inhibitors have not been succeeded (Lu 
et  al. 2016). One of the reasons, as mentioned 
above, may rely on the fact that when counteract-
ing activated Wnt signalling in colorectal 
tumours, physiological Wnt signalling is also 
being inhibited in normal cells, for which a spe-
cific threshold is crucial for cell homeostasis.

Notably, antagonists may not be counteracting 
the “just-right” amount of Wnt signalling that 
drives CRC metastasis. In agreement, a paradox 
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appears to exist regarding Wnt signalling hyper-
activation and CRC progression. Varnat et  al. 
have demonstrated that, contrary to non-mCRCs 
displaying a high Wnt/TCF signalling signature, 
mCRCs show downregulation of Wnt/TCF sig-
nalling in parallel with increased Sonic hedgehog 
(SHH) signalling. In this work, the occurrence of 
an inverse gradient of Wnt and SHH signalling in 
patient-derived CRCs and in their CD133+ 
colorectal CSCs subpopulation was observed, 
indicating a metastatic transition characterized 
by a shift from a high-to-low Wnt signalling 
accompanied by a low-to-high shift in SHH sig-
nalling. Hence, these results suggest that although 
the use of Wnt/TCF signalling inhibitors may be 
beneficial in the treatment of early stage CRCs, 
the same may not apply to advanced or mCRCs, 
as observed by enhancement of tumour metasta-
sis after TCF blockage in vivo (Varnat et  al. 
2010). Additionally and contrary to early stages, 
advanced tumours and metastases have also 
revealed downregulation of the Wnt/TCF gene 
expression program in patient tumour samples, 
probably due to methylation of CSC-associated 
target genes (de Sousa et al. 2011; Varnat et al. 
2010). This calls for a revisitation of the “just-
right” signalling model according to which spe-
cific Wnt signalling levels are selected for during 
tumour formation (Albuquerque et  al. 2002). 
This theory was also demonstrated in several Apc 
mutant mouse models displaying CRC pheno-
types that diverged in a β-catenin signalling dose-
dependent manner (Gaspar and Fodde 2004).

More recently, Seth et  al. demonstrated that 
xenograft growth and metastases are not enhanced 
by increased Wnt signalling. Moreover, they pro-
posed that partial downregulation of TCF func-
tion enhances CRC metastasis to distant organs 
and that endogenous Wnt/TCF signalling gener-
ally counteracts tumour progression, since block-
age of TCF function via expression of a 
dominant-negative TCF7L2 (dnTCF7L2) 
boosted metastatic progression (Seth and Ruiz i 
Altaba 2016). Therefore, in parallel with the 
selection for different “just-right” signalling lev-
els for tumour formation between the proximal 
and distal colon (Albuquerque et al. 2010, 2011) 
and between upper gastrointestinal tract and 

colonic tumours, optimal Wnt signalling levels 
may also differ between tumour initiation and 
metastasis.

Indeed, advanced tumours and metastases have 
revealed a downregulation of the Wnt/TCF gene 
expression program in patient tumour samples 
and partial downregulation of TCF function, 
accompanied by a low-to-high shift in SHH sig-
nalling, was associated with enhanced CRC 
metastasis to distant organs (de Sousa et al. 2011; 
Seth and Ruiz i Altaba 2016; Varnat et al. 2010). 
These findings support the rational that the best 
strategy to counteract the metastatic transition in 
CRC may not be the blockage of Wnt signalling 
(Seth and Ruiz i Altaba 2016; Varnat et al. 2010), 
but instead the use of Sonic Hedgehog (SHH) sig-
nalling inhibitors, or even Wnt/TCF signalling 
agonists. Hence, an important take-home message 
is that use of Wnt antagonists or agonists should 
be context-dependent, that is, they should be 
applied carefully considering the tumour stage, as 
well as the limitations of the conventional treat-
ments. For instance, CRC patients with synchro-
nous metastases or undergoing neoadjuvant 
chemoradiotherapy regimens before surgical 
resection, in which cells with a metastatic/stem-
ness-like signature may evade conventional thera-
pies and metastasise to other organs (Dasari et al. 
2013; Mertins 2014; Zhao et al. 2017b), may ben-
efit more from SHH inhibitors or Wnt agonists to 
counteract cells’ metastatic signature. However, 
the context and tumour stage, in which these com-
pounds may be used still needs intensive research 
before clinical application and, similarly to what 
happens with the use of Wnt antagonists, efficient 
drug delivery systems to target preferentially 
tumour cells would be needed to avoid side-
effects in normal cells.

Considering Wnt signalling hyperactivation in 
tumorigenesis, very few Wnt agonists in CRC have 
been explored so far compared to antagonistic 
drugs (Lu et al. 2016). According to a recent review 
based on patent and patent applications databases 
for targeting Wnt signalling in cancer, most ago-
nists have been designed to act at the extracellular 
ligand-receptor interface and to inhibit DKK or to 
act as Wnt ligands (Lu et al. 2016).
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Notwithstanding, deregulation of the Wnt/β--
catenin signalling pathway has also been associ-
ated with epigenetic gene silencing driven by 
histone methylation/deacetylation or DNA meth-
ylation of promoters of Wnt signalling players 
(Serman et al. 2014). Interestingly, these epigen-
etic alterations can be modulated by epigenetic 
agents, namely DNA methyltransferase inhibi-
tors or HDACi (Vaiopoulos et al. 2014). Indeed, 
it has been suggested that upregulation of Wnt 
signalling and induction of apoptosis in CRC 
cells by several HDACis with different chemical 
structures  – sodium butyrate; Trichostatin A 
(TSA) and Vorinostat (suberoylanilide 
hydroxamic acid, SAHA) (both hydroxamic 
acids) and MS275 (benzamide derivate)  – is 
mediated by an increase in activated β-catenin 
via dephosphorylation of Ser-37 and Thr-41 resi-
dues initiated at the ligand level (Bordonaro et al. 
2007). According to these studies, response to 
treatment with these compounds might be elic-
ited by activating pro-apoptotic genes (Bordonaro 
et al. 2007), which would be in accordance with 
the “just-right” signalling model that postulated 
that too much Wnt/β-catenin signalling would 
lead to apoptosis induction (Albuquerque et  al. 
2002). Considering the higher activation of Wnt/
β-catenin signalling, likely associated to APC 
truncated proteins retaining 1 or 0 20AARs, char-
acteristic of distal MSS tumours (Albuquerque 
et al. 2010, 2011), the CMS2 subtype might be a 
good candidate for targeted therapy with Wnt 
agonists, in the right context and tumour stage, 
since the threshold level for Wnt hyperactivation 
and apoptosis induction would be easier to 
achieve, i.e. would need less increment of Wnt/β--
catenin signalling, with less side-effects for nor-
mal cells.

Although the use of HDACis to boost Wnt 
signalling activity in CRC is not being explored 
so far in clinical trials, their anti-CRC activity 
in the context of the modulation of other bio-
logical and cellular events (e.g. thymidylate 
synthase-mediated resistance, apoptosis, prolif-
eration, autophagy, anti-tumour immunity) has 
been studied in combination with other com-
pounds (Di Gennaro et al. 2010; Fazzone et al. 

2009; Patel et al. 2016; Wilson et al. 2010; Yang 
et al. 2012).

Although CRC is the disease with most trials 
evaluating the effects of Wnt signalling targeting, 
there is still no on-going clinical trial evaluating 
Wnt agonist drugs in this pathology (Lu et  al. 
2016). The only trial cited (NCT01882660) 
aimed to evaluate the effect of the epigenetic 
modulator Decitabine (5-aza-2′-deoxycytidine) 
in the de-repression of Wnt target genes via 
demethylation in CRC tumours, but it was aban-
doned due to slow inclusion of patients. 
Nevertheless, low dose of this DNA-
demethylating agent has shown promising anti-
cancer effects in vivo by enhancing PD-1 
blockade-based immunotherapy.

Regarding the effect of natural bioactive com-
pounds as Wnt agonists in CRC very few reports 
exist. For instance, it has been reported that deriv-
atives of the group of indirubins (phytochemicals 
originally isolated from Indigo naturalis, a plant 
used in traditional Chinese medicine) act as Wnt 
agonists by inhibiting GSK3β, eliciting however 
undesired pro-tumour effects as upregulation of 
stemness properties and chemoresistance to 5-FU 
(Liu et al. 2012, 2017). As discussed before in this 
chapter, this effect would likely be observed if 
tested in early tumour stages and without Wnt 
hyperactivation. As also mentioned, the use of 
delivery systems to target drugs specifically to 
tumour cells would likely circumvent the side 
effects associated with Wnt signalling activation. 
On the other hand, another indirubin derivative, 
LDD970, was suggested as a potential therapeutic 
compound in CRC, according to its ability to 
inhibit the usually overexpressed and hyperacti-
vated Aurora kinase A (via autophosphorylation 
and phosphorylation of histone H3 at Ser10 resi-
due) and to impair migration and growth of HT29 
cells (Ndolo et al. 2017).

In summary, considering some controversial 
effects of Wnt agonistic compounds, further stud-
ies will be needed to ascertain their effect in CRC 
therapy, according to tumour molecular stratifi-
cation, Wnt signalling levels (“just-right” model), 
tumour stage (early vs. advanced) and possible 
combinatory therapeutic regimens.
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6.3	 �Conclusions

Despite the benefit in current clinical practice of 
treating CMS2 tumours with conventional 
chemo- and targeted therapies (FOLFOX or 
FOLFIRI plus anti-EGFR, anti-VEGF), and also 
the scientific advances in this field, cells with a 
metastatic signature are still able to evade therapy 
and metastasise to other organs in a great propor-
tion of treated CRC patients (see Fig.  6.1). 
Moreover, attention should be given to clear dif-

ferences within the same group of tumours 
between distal and proximal location in the colon 
with respect to prognosis and therapy response. 
In order to consider emergent immunotherapy 
options, the low immunogenicity of this subtype 
may be increased by combination with radio/
chemo or specific targeted therapies like 
anti-EGFR  (see Fig.  6.1a), and this is included 
already in certain clinical trials of Wnt 
antagonists.

Fig. 6.1  Targeted therapy of the CMS2 subtype of CRCs 
according to tumour biology, Wnt signalling activity and 
tumour stage. (a) CMS2 tumours affect mainly the distal 
colon and rectum, are characterized by poor immunoge-
nicity, low infiltration of immune cells (e.g. tumour-
infiltrating lymphocytes, TILs) and CAFs, hyperactivation 
of Wnt/β-catenin signalling pathway and are often diag-
nosed at an advanced stage (III), in which an adjuvant 
treatment based on chemo- (CT) or chemoradiotherapy 
(CT + RT) is applied. Though, the poorly immunogenic 
“cold” tumours might be switched to highly “hot” immu-
nogenic tumours by the administration of conventional 
CT and/or RT or Wnt antagonists along with the applica-
tion of immune checkpoint modulators, making them 
more responsive to immunotherapy (IT). (b) In a great 

proportion of treated CRC patients cells are still able to 
evade therapy and metastasise to other organs. (c) Wnt 
signalling hyperactivation is a hallmark of colorectal 
tumorigenesis, and tumours from the CMS2 subtype are 
known to be “Wnt-addicted”. Still, despite increasing 
along tumour progression, Wnt signalling activity 
becomes attenuated in the transition towards a metastatic 
stage/signature while other signalling pathways, like 
SHH, are enhanced. This leads us to revisit the “just-
right” signalling model. Therefore, a proposal for future 
targeted therapy approaches would be the treatment of 
early CMS2 tumours with Wnt antagonists, whereas more 
advanced or metastatic CMS2 tumours may benefit more 
from Wnt agonists to prevent tumour progression towards 
distant organs
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Notably, targeting the Wnt signalling axis may 
also become a potential therapeutic strategy, con-
sidering CMS2 “addiction” to this signalling 
pathway (see Fig. 6.1a and 6.1c). Several efforts 
have been made to identify compounds with Wnt 
antagonistic activity, either of synthetic or natural 
origin. Accordingly, we highlighted compounds 
targeting the high Wnt/β-catenin signalling levels 
observed in CMS2: (i) at the ligand/receptor 
interface; (ii) at the β-catenin destruction com-
plex and, (iii) at the β-catenin/TCF7L2 transcrip-
tional complex levels. In this context, the 
application of tankyrase inhibitors might be one 
of the most promising because CMS2 tumours in 
distal colon carrying short-form APC mutant pro-
teins are highly sensitive to these compounds. 
For example, this could circumvent radio-
chemoresistance in rectal tumours mediated by 
hyperactivation of Wnt signalling. Regarding 
nutraceuticals, these have a more transversal 
mechanism of action, being able to target and 
restrain this pathway at different steps of the sig-
nalling cascade. Though, one should beware that 
inhibition of this pathway may unleash cytotoxic 
effects since it regulates intestinal homeostasis, 
especially the stem cell niche, reason why appli-
cation of such antagonists may struggle to reach 
clinical benefit. More importantly, the high-to-
low gradient of Wnt/β-catenin/TCF7L2 signal-
ling intensity during the progression from early 
to advanced CRC stages (based on the selection 
of different β-catenin levels during tumorigenesis 
in accordance with the “just-right” signalling 
model), might indicate the application of Wnt 
signalling agonists to be more advantageous and 
clinically relevant for the treatment of metastatic 
CRC. Thus, the use of positive and negative Wnt 
pathway modulators requires context-dependent 
decisions (see Fig.  6.1c). In CMS2 tumours, in 
particular those localised distally, the application 
of agonists could be relevant even in early stage 
tumours considering their high levels of Wnt/β--
catenin signalling and the potential induction of 
apoptosis by certain Wnt signalling agonists in 
this context. Unfortunately, there is still a long 
way to go until the consequences of antagonist 
and agonist applications be unveiled and accepted 
towards better clinical outcomes.
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on Tumour Budding in Colorectal 
Cancer
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Abstract
Tumour Budding (TB) is recognized as an 
adverse prognostic factor in colorectal cancer 
(CRC). TB is the detachment of isolated can-
cer cells or small clusters of such cells mainly 
at the invasion front. One question that arises 
is of the role of the tumour stroma regarding 
the permissiveness of the formation and pro-
gression of TB. In this review, we will exam-
ine potential factors affecting TB, in particular 
we will analyse the potential effect of inflam-
mation, hypoxia, extracellular matrix and 
Cancer-Associated Fibroblasts (CAFs).

Keywords
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7.1	 �Introduction

Colorectal cancer (CRC) is the third most com-
monly diagnosed cancer in the world, and the 
fourth principal cause of cancer deaths world-
wide (Jemal et al. 2011). The prognosis and ther-
apy strongly depend on the UICC (Union for 
International Cancer Control) tumour stage. 
Nevertheless, it is well known that a certain pro-
portion of stage I/II cancers develop an aggres-
sive clinical course. However, approximately 
40% of stage III cancers show a favourable out-
come despite the occurrence of regional lymph 
node metastases (Armin et al. 2017). Therefore, 
alternative or additional prognostic factors, 
including new histopathological features or 
molecular targets, are now studied to improve 
both prognostic estimation and therapeutic strati-
fication. One such histomorphological feature is 
TB; it reflects a detachment of tumour cells at the 
invasion front of epithelial cancers into single 
cells or small cell clusters. Based on well-
designed retrospective studies, TB has been 
linked to adverse outcome of CRC patients in 
several clinical scenarios. Budding takes place in 
the tumour stroma; a type I collagen rich environ-
ment produced by Cancer-Associated Fibroblast 
(CAFs). CAFs are important contributors to inva-
sion and metastasis of cancer cells in CRC (De 
Wever et al. 2004; De Boeck et al. 2013b; Calon 
et al. 2014) and their presence is negatively asso-
ciated with disease outcome (Tsujino et al. 2007). 
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This minireview provides an overview of the 
tumour microenvironment leading to tumour 
budding and stromal invasion.

7.2	 �Tumour Budding

7.2.1	 �Definition of Tumour Buds

TB is a histomorphological phenomenon found in 
epithelial cancers, and corresponds to the detach-
ment of isolated cancer cells or small clusters of 
such cells at the invasion front, infiltrating the sur-
rounding stroma (Fig. 7.1). The process through 
which cancer cells undergo epigenetic and molec-
ular changes and gain invasive stromal character-
istics is referred to as epithelial-mesenchymal 
transition (EMT; Kalluri and Weinberg 2010).

In 2016, consensus was reached to define 
tumour buds as a single cancer cell or a cell clus-
ter consisting of maximum 4 cancer cells (Lugli 
et al. 2017).

7.2.2	 �Diagnostic and Prognostic 
Impact/Clinical Scenarios

TB is recognised as an unfavourable prognostic 
factor in CRC independent of disease stage. 
Indeed, the correlation between the presence of 
TB within the stroma of CRC and lymph node 
metastasis, distant metastasis, local and distant 
recurrence and cancer-related death at 5 years is 
now well established (Rogers et al. 2016).

The ‘International Tumor Budding Consensus 
Conference’ (ITBCC) suggests the application of 

Fig. 7.1  Representative illustrations of tumor budding (TB) at the invasion front of colorectal cancer; stained in 
Haematoxylin & Eosin (a), cytokeratin (b), epithelial-cadherin (c) and α-Smooth Muscle Actin (d)
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TB as an additional prognostic factor in 3 clinical 
situations to facilitate management of patients 
with CRC (Lugli et al. 2017):

•	 TB predicts lymph node metastasis in endo-
scopically resected pT1 tumours. The pres-
ence of TB at the invasion front hence allows 
identification of patients with a high risk to 
present lymph node metastasis; they can be 
selected for radical surgery.

•	 TB in stage II colorectal cancers is associated 
with a higher risk of recurrence; therefore, 
stage II CRC patients with high-grade TB can 
be selected for adjuvant therapy.

These two scenarios are very well described in 
existing literature with abundant studies showing 
consistent results. However, a third scenario was 
discussed, that of TB within biopsies and impact 
on the management in the preoperative setting.

The prognostic importance of TB in preopera-
tive biopsies in CRC was first described in 1989 
by Morodomi and colleagues, who suggested that 
the degree of TB within biopsy material could be 
used to evaluate the probability of lymphatic 
invasion and nodal metastases (Morodomi et al. 
1989). Recently, this concept of ‘intratumoural 
budding’ (ITB; Lugli et  al. 2011) was further 
elaborated and found to be highly correlated with 
the presence of ‘peritumoural budding’ (PTB) at 
the invasion front. Moreover, its presence corre-
lates with aggressive tumour features and worse 
clinical outcome (Zlobec et al. 2014). This find-
ing suggests that important tumour features can 
be assessed in biopsies, which rarely sample the 
invasive margin, and thus potentially add deci-
sive tumour-related information to the manage-
ment of patients in the preoperative setting. 
Indeed, a strong correlation between ITB and 
nodal metastases and poor long-term prognosis 
has been shown (Rogers et al. 2014; Giger et al. 
2012). However, ITB in pre-treatment rectal can-
cer biopsies is associated with non-response to 
neo-adjuvant chemo-radiotherapy (Rogers et  al. 
2014). Patients who are likely not to present a 
complete pathological response to neo-adjuvant 
therapy must be managed accordingly, and could 
qualify for an escalation of therapy. Further inter-

laboratory studies will demonstrate the uniform 
reporting of TB scores, a necessary step before 
widespread clinical implementation.

7.2.3	 �Genetics: Consensus 
Molecular Subtyping

In 2015, the colorectal cancer subtyping consor-
tium was able to unify six independent molecular 
classification systems for CRC into four distinct 
groups, based on their gene expression, which are 
known as Consensus Molecular Subtype (CMS; 
Guinney et al. 2015). The aim of this novel clas-
sification is to better inform the clinician of prog-
nosis and of therapeutic response in the 
heterogeneous disease collectively known as 
CRC. TB is an adverse prognostic factor across 
all CRC stages and is associated with the mesen-
chymal CMS4 phenotype. KRAS/BRAF muta-
tions are strongly correlated with tumor budding 
suggesting their involvement in regulation of this 
process (Trinh et al. in press 2018).

This classification distinguished 4 subtypes of 
CRC cancer cells:

7.2.3.1	 �CMS1
The CMS1 subtype is characterised by defective 
DNA mismatch repair system consistent with 
microsatellite instability (MSI). Furthermore, 
they are characterised by a strong immune infil-
tration (De Smedt et al. 2017) along with strong 
activation of immune evasion pathways (Guinney 
et al. 2015). TB is infrequently found in patients 
with MSI tumours (Jass 2002). It is hypothesised 
that the inherent immune cell infiltrate leads to 
the destruction of the TBs (Lugli et al. 2009).

7.2.3.2	 �CMS2
Cancer cells of this subtype show epithelial dif-
ferentiation and are characterised by chromo-
somal instability, which leads to chromosomic 
rearrangements with losses and/or gains  
of large segments of chromosomes, 
loss-of-heterozygosity and aneuploidy. They 
also show a marked activation of Wnt-β-catenin 
and Myc signalling pathways. This subtype is 
associated with superior survival after relapse, 
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and larger proportion of long-term survivors in 
this subset.

7.2.3.3	 �CMS3
In contrast to the other CMS groups, CMS3 is 
more ambiguous and shows an enrichment for 
multiple metabolic signatures (Guinney et  al. 
2015). Tumours of the CMS 3 subtype seem to be 
genetically stable but metabolically active with 
little involvement in frequently occurring onco-
genic pathways or in immune cell infiltration.

7.2.3.4	 �CMS4
Cancer cells of the CMS4 subtype show a marked 
activation of the TGF-β pathway and Wnt-
signalling pathway in addition of markers of 
EMT and angiogenesis. This subtype shows the 
worst overall survival, worst 5-year survival and 
relapse-free survival among all subtypes (Thanki 
et  al. 2017). The reversible process through 
which epithelial cells gain mesenchymal traits 
enabling them to infiltrate the stroma is called 
EMT (Kalluri and Weinberg 2010), an ubiquitous 
phenomenon during embryonic development, 
wound healing and cancer progression (Li et al. 
2016). In this process, epithelial cells lose their 
polarity and modify their protein expression, 
enabling them to gain migratory capacity, inva-
siveness and elevated resistance to apoptosis 
(Kalluri and Weinberg 2010).

The underlying mechanism of the EMT pro-
cess involves genetic and epigenetic changes, 
modifying the cellular protein make-up leading 
to enhanced mobility. Some cancer cells only 
lose their epithelial phenotype partially, so they 
show both epithelial and mesenchymal proper-
ties; this is referred to as ‘partial EMT’ (Grigore 
et al. 2016). Evidence supports the existence of 
pan-cytokeratin (epithelial marker) and vimentin 
(mesenchymal marker) double-positivity in 
tumour buds (Meyer et al. 2016).

Different subtypes can coexist within the same 
tumour. A shift from CMS2 (epithelial) to CMS4 
(mesenchymal) was observed as tumour cells 
transit from the tumour bulk to the budding 
regions (De Smedt et  al. 2017). Aligning their 
results with the new CMS classification ascribed 
to CRC they showed that CRC undergo a switch 

from the epithelial CMS2  in the centre of the 
tumours to the mesenchymal subtype CMS4  in 
the TBs. Single cell microdissection followed by 
single cell genomics has recently shown the rela-
tionship between breast ductal carcinoma in situ 
and invasive ductal carcinoma (Casasent et  al. 
2018). This strategy would also enable to evalu-
ate the true implication of EMT in TB and map 
the relationship between TB in the centre vs inva-
sion front.

Furthermore, a tight link between stromal pos-
itivity for markers such as TWIST1, ZEB1 and 
SNAIL (considered ‘classical’ markers of EMT) 
and a high-grade TB phenotype has been demon-
strated (De Smedt et  al. 2017). Interestingly, 
these EMT markers are often limited to the so-
called CAFs, and not the TBs themselves. This 
arises the question whether the stroma plays a 
role in the formation of TB by providing a more 
or less conductive surrounding for the budding 
process.

7.2.4	 �Is TB Considered an Invasive 
Process and Is It Driven 
by EMT?

Studies on serial section of CRC which allowed 
the creation of 3D reconstructions of the tumour-
stroma interface (Bronsert et  al. 2014) showed 
that the tumour mass projects finger-like exten-
sions into the stroma. These extensions may give 
the false impression to be detached structures in 
2D sections, even though they would remain con-
nected to the tumour mass. It should be men-
tioned however, that the conclusion of absent 
single cell migration raises concerns due to the 
low sample size (n = 3) and the selection of very 
early cancers (i.e., those that would typically 
show the least amount of TB).

Cells migrating through the stroma can either 
migrate as isolated cells, based on cytoskeletal 
rearrangements and without cell-cell adhesions, 
or as an adhesive group in clusters, based on 
coordinated collective cytoskeletal activity while 
maintaining cell-cell junctions to their neigh-
bouring epithelial cells as well as to the extracel-
lular matrix (te Boekhorst et al. 2016). TB adhere 

L. M. C. Georges et al.



105

to the mesenchymal cells of the stroma. The dis-
connection of TBs from the tumour body is 
marked by loss of E-cadherin, a transmembra-
nous protein which plays a vital role in the adhe-
rens junctions between epithelial cells 
(Karamitopoulou et al. 2010). These cell migra-
tion modes underlie distinct molecular programs, 
which define the specificity, mechanical strength 
and consequences of cell-cell and cell-matrix 
interactions.

Collectively moving cells have the ability to 
switch to single cell migration, and vice versa. 
Indeed, migrating clusters of cells can detach into 
individual cells while moving through loosely 
organised stroma (te Boekhorst et al. 2016). This 
phenomenon is consistent with downregulation of 
cell-cell junctions and is known as ‘unjamming’.

The transcriptional downregulation of adher-
ens junctions as well as of tight junctions and 
desmosomes occurs when cells undergo an 
epithelial-mesenchymal transition (EMT; te 
Boekhorst et  al. 2016). With fewer intercellular 
attachments, cells can detach from the surround-
ing epithelium, or migrating clusters, and migrate 
through the stroma individually.

Detachment of small multicellular groups of 
cells from tumour lesions is followed by intrava-
sation and entry into the circulation as a multicel-
lular cluster, which in sequence constitute 
important and efficient steps toward metastatic 
organ colonisation. In this respect, TB have been 
hypothesized as a cause of local and distant 
metastasis and a source of circulating tumour 
cells. Isolating these cells and applying next-gen-
eration sequencing techniques reveals that the 
DNA profile of tumour buds is identical to the 
main tumour. These findings underline further-
more that TB are not derived from a more aggres-
sive subclone of the tumour (Centeno et al. 2017).

Recent genomic studies on metastases, 
describing the polyclonal nature of cancer cells 
in metastasis, (Ulintz et al. 2018) challenge the 
conventional conception that distant metastases 
must arise from single cells disseminated for 
polyclonal seeding as a major mechanism for 
metastatic spread. In fact, cancer cells can dis-
seminate collectively through the bloodstream to 
colonise distant organs (Cheung et al. 2016).

7.3	 �Impact of the 
Microenvironment on TB

Cancer cells exist within a complex ecosystem 
consisting of an ECM scaffold populated by 
carcinoma-associated fibroblasts (CAFs), endo-
thelial cells and immune cells. Studies have 
shown that not only the cancer cells’ genetic and 
molecular changes play a role in EMT, but so 
does the tumour microenvironment. We will dis-
cuss the roles of the following factors:

7.3.1	 �Inflammation

The expression of neoantigens, in consequence 
of genetic mutations and stromal invasion of the 
cancer cells, induce an inflammatory reaction, a 
defence mechanism of the host to stop the vicious 
proliferation and invasion (Li et al. 2016). On one 
hand, the inflammatory cells do have a host-
protecting function, which can destroy the invad-
ing cancer cells. On the other hand, the local 
production of pro-inflammatory cytokines, such 
as TNF-α (by activating the NF-kB pathway), 
IL-6 and IL-1β produced by macrophages can 
stimulate tumorigenic pathways and thus stimu-
late growth and survival of cancer cells. TNF-α 
and IL-1β stimulate the expression of TGF-β, 
which promotes EMT. IL-6 also activates the 
TGF-β signalling pathway, but furthermore stim-
ulates downregulation of E-cadherin and upregu-
lation of vimentin through the JAK/STAT3/Snail 
pathway in head and neck cancer (Li et al. 2016).

The presence of tumour-infiltrating lympho-
cytes indicates a favourable outcome and a 
decreased metastatic potential. The absence of 
intratumoural lymphocytic inflammation is an 
independent predictive factor of lymph node 
metastasis (Mlecnik et al. 2016).

The severity of TB is inversely correlated to the 
presence of peritumoural lymphocytic 
inflammation at the invasion front. The type and 
frequency of immune cells within densest TB 
regions shows that among other cells, CD8+ 
T-lymphocytes are markedly over-represented and 
Lugli and colleagues identified the CD8+ 
T-lymphocytes/TB index as an independent prog-
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nostic factor (Lugli et al. 2009). Indeed, the ratio of 
invading TBs and defending CD8+ T-lymphocytes, 
is more prognostic than either feature alone.

Patients with marked inflammation, even with 
high-grade budding tumours, have a significantly 
better outcome, compared to patients with mild 
inflammation and high-grade budding. Outcome 
of patients with high TB tumours however is still 
worse than for patients with low TB (Max et al. 
2016). In high-grade TB CRC, a marked inflam-
mation showed to be a predictor of favourable 
progression-free survival and cancer-specific sur-
vival, independent from other variables (T and N 
stage, grade, lymphatic and venous invasion).

CD8+ T-lymphocyte infiltration can also be 
assessed in endoscopic biopsies of rectal cancer 
and correlates with the absence of lymph node 
metastasis (Koelzer et al. 2014).

7.3.2	 �Hypoxia

It is well known that patients with hypoxic 
tumours have worse outcome. Tumour cell pro-
liferation strongly increases oxygen consump-
tion. This induces a local microenvironment that 
is relatively hypoxic, inducing over-expression of 
HIF-1, which acts as a transcription factor for 
functions in cancer progression, including prolif-
eration and survival, motility, cytoskeletal struc-
ture, angiogenesis, ECM metabolisms and drug 
resistance (Laura D’Ignazio et al. 2017; Fan et al. 
2013; Yang et  al. 2008). HIF-1 cooperates with 
the transcription factor TWIST, an EMT inducer.

Significant relationship between high-grade 
TB at the invasive edge (PTB) of CRC and HIF-1 
expression (Righi et al. 2015). Furthermore, they 
showed the existence of an ‘hypoxic tumour phe-
notype’ in CRC showing TB: CRC with high-
grade TB showed higher HIF-1 expression than 
CRC with low-grade TB.

7.3.3	 �Extracellular Matrix 
and Desmoplasia

During stroma infiltration, cancer cells travel 
through pre-existing gaps in the ECM or revers-

ible or irreversible reorganize the ECM through 
respectively collagen realignment or matrix 
metallo-proteinases (MMPs). In addition, matrix 
reorganisation is induced by production and 
deposition of ECM molecules. In addition to can-
cer cells, stromal CAFs play a major role in ECM 
reorganization and accumulation. This phenom-
enon, also called desmoplasia, influences cell 
mobility and leads to activation of a series of 
EMT-inducing signals, such as TGF-β, Wnt and 
Rho GTPases (Forse et  al. 2017; Jansen et  al. 
2018).

The density of the ECM determines the inva-
sion mode of mesenchymal tumour cells (Haeger 
et al. 2014). Whereas fibrillar, high porosity ECM 
enables single-cell dissemination, dense matrix 
induces cell-cell interaction, leader-follower cell 
behaviour and collective migration as an obligate 
protease-dependent process.

Multiple phenotypes of desmoplasia can be 
identified, such as mature—when the stroma is 
composed of mature collagen fibres (fine and 
elongated fibres into multiple layers); intermedi-
ate—when keloid-like collagen is intermingled 
with mature fibres; and immature—consisting of 
a myxoid stroma in which no mature fibres are 
included (Ueno 2004). It is unknown how this 
desmoplastic maturity influences TB.

7.3.4	 �Cancer Associated Fibroblasts

Tumours are chronic wounds that do not heal 
(Dvorak 1986; Karagiannis et  al. 2012). This 
stromal ‘wound healing’-like reaction associated 
with tumours promotes both the development and 
progression of cancer through stromal cells of 
fibroblastic origin that actively participate in the 
wound healing reaction and which are known as 
CAFs (De Wever et al. 2014).

CAFs are the preponderant cell population in 
the tumour stroma. They are derived mainly from 
tissue resident fibroblasts or are recruited from 
distant reservoir sites such as the bone marrow 
(Direkze et  al. 2004; De Boeck et  al. 2013a). 
CAFs are one of the most abundant cells present 
in the tumour stroma (Calon et  al. 2014) and 
typically show a large spindle-like shape similar 
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to smooth muscle cells (Tao et  al. 2017). They 
have been shown to support the cancer cells by 
releasing regulation factors into the tumour’s 
local microenvironment, stimulating tumour 
growth, angiogenesis, metastasis and therapy 
resistance (Tao et al. 2017).

The activation of the residual Normal 
Fibroblasts (NF) to CAFs is induced by cytokines 
secreted by the cancer cells, but the underlying 
mechanisms remain unclear. Studies have shown 
a differential expression of 46 genes regulated by 
the TGF-β signalling pathway (Navab et  al. 
2011), suggesting an important role of TGF-β 
receptors. These identified genes were described 
to be paracrine local and systemic acting factors. 
Indeed, Bone marrow-derived mesenchymal 
stem cells are recruited to the tumour’s microen-
vironment by the combined stimulation of TGF-β 
and CXCL12 signalling (Quante et  al. 2011). 
Furthermore, TGF-β stimulates reactive oxygen 
species production and experiments point to the 
importance of NAD(P)H-oxidase-4 (NOX4) as 
potential therapeutic target to prevent CAF acti-
vation (Hanley et  al. 2018). Resolution of the 
wound healing response is associated with 
enhanced fibroblast apoptosis (Iredale et  al. 
1998). By analogy, one may predict that CAFs 
can also be uniquely sensitive to proapoptotic 
stimuli. Indeed, BH3 (BCL-2 homology domain 
3) mimetics, such as Navitoclax, are apoptosis 
inducers in CAFs (Mertens et al. 2013).

The presence of CAFs could represent an 
attempt by the host to ward off tumour cells, 
thereby exerting antagonistic biological forces. 
Alternatively, this process may benefit the 
tumour, by facilitating TB and neovascularisa-
tion, and impeding access to host lymphocytes, 
macrophages, and other immune regulator cells. 
This contradiction suggests that multiple spatio-
temporal activities of peritumoural CAF exist 
which have opposing effects on cancer behav-
iour. A high degree of TB is significantly associ-
ated with elevated c-Met expression at the 
invasion front in CRC (Satoh et al. 2014) in com-
parison to more superficial parts of the tumour in 
both high- and low-grade budding tumours. 
c-Met is a tyrosine kinase receptor that binds 
scatter factor/hepatocyte growth factor (SF/

HGF). These observations suggest that the pro-
duction of HGF by CAFs may benefit the tumour, 
by facilitating TB and neovascularisation, and 
impeding access to host lymphocytes, macro-
phages, and other immune regulator cells. Indeed, 
CAFs secrete SF/HGF and are linked to CRC cell 
invasion (De Wever et  al. 2004). Other soluble 
factors involved in the invasion process are neu-
regulin-1 (NRG1; (De Boeck et al. 2013b), che-
mokines such as CXCL12 (Orimo et  al. 2005), 
and cytokines such as IL-6 that stimulate the 
NF-κB pathway (New et  al. 2017) and protein-
ases (De Wever and Mareel 2003).

It is suggested that direct cell-cell contacts 
between CAF and TB can occur through hetero-
philic adhesion involving N-cadherin at the CAF 
membrane and E-cadherin at the cancer cell 
membrane (Labernadie et  al. 2017). CAF-
deposited ECM proteins provide a macromolecu-
lar structure for migration of cancer cells. CAFs 
exert adhesive forces to the matrix causing 
increased stiffness which influences a switch 
from collective migration to single cell migration 
(te Boekhorst et al. 2016).

Extracellular Vesicles (EV) are nano-sized 
membrane vesicles which contain bioactive pro-
teins, lipids, and nucleic acids, and emerge as 
functional agents of cancer (Van Deun et  al. 
2017). CAFs secrete EVs and stimulate cancer 
invasion and metastasis (Luga et  al. 2012) and 
could therefore be involved in the process of TB 
as well.

7.4	 �Conclusions

TB is now considered an additional prognostic 
factor in CRC, ranked similarly to tumour grade 
and recommendations for reporting tumour bud-
ding in CRC were reached during the International 
Tumour Budding Consensus Conference (Lugli 
et al. 2017). Indeed, TB is a prognostic biomarker 
(and potential predictive factor) that can influ-
ence the clinical management of patients with 
CRC (Zlobec and Lugli 2018). CAFs and the 
tumour environment are important factors that 
may stimulate or constrain TB. Incorporation of 
this tumour context will improve the diagnostic 

7  Impact of the Microenvironment on Tumour Budding in Colorectal Cancer



108

rationale of TB and will allow to identify relevant 
therapeutic strategies. Interdisciplinary collabo-
ration between researchers, pathologists, and cli-
nicians will provide new opportunities and 
insights into cancer diagnosis and management.
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Abstract

The development of monoclonal antibodies 
(mAbs) cetuximab and panitumumab, which 
target the transmembrane protein epidermal 
growth factor receptor (EGFR), mark a major 
step forward in the treatment of metastatic 
colorectal cancer (mCRC). However, this thera-
peutic progress proved to be effective only in a 
very restricted subset of patients. Although sev-
eral mechanisms of resistance, both primary and 
acquired, have been identified, the only estab-
lished predictive tumour biomarker for the treat-
ment of mCRC patients is the RAS mutational 
status. RAS activating mutations predict a lack of 
response to these therapies while low levels of 
primary resistance characterize RAS wild type 

(WT) patients (only about 15%). However, even 
WT patients that initially respond to anti-EGFR 
therapy, eventually undergo tumour progression. 
In this context, there is still more to be done in 
the search for effective predictive markers with 
therapeutic applicability. In this chapter, we pro-
vide an overview on the mechanisms that con-
tribute to resistance to EGFR-targeted therapy 
and highlight what is still missing in our under-
standing of these molecular mechanisms and 
approaches to overcome them.

Keywords
Colorectal cancer · Epidermal growth factor 
receptor · Primary resistance · Secondary 
resistance · Targeted therapy

8.1	 �Introduction

Cancer is a worldwide health problem whose inci-
dence has been increasing every year, severely 
threatening human wellbeing. Colorectal cancer 
(CRC) ranks among the third most frequent cancer 
type and the fourth leading cause of cancer-related 
death (Ferlay et  al. 2015). Although impressive 
advances in cancer therapy have been achieved 
over the last 20 years (better surgical techniques, 
better screening methods, improved postoperative 
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care, regular follow-ups and more effective adju-
vant therapies), CRC is still an illness with unde-
sirably high mortality, mainly associated to the 
metastatic setting. The prognosis of patients with 
mCRC has been improving, and correspond now 
to median overall survival (OS) of over 30 months, 
depending on the treatment options (Heinemann 
et al. 2014; Venook et al. 2017).

Novel therapies targeting the epidermal growth 
factor receptor (EGFR) have significantly contrib-
uted to the improvement of the OS of mCRC 
patients. EGFR is a transmembrane receptor 
belonging to the ErbB tyrosine kinase family 
which consists of four related proteins: EGFR 
(ErbB1/HER1), HER2/neu (ErbB2), HER3 
(ErbB3) and HER4 (ErbB4) (Hynes and Lane 
2005; Wieduwilt and Moasser 2008). All family 
members contain an extracellular ligand-binding 
domain with two cysteine-rich regions, a single 
membrane-spanning region and a cytoplasmic 
tyrosine kinase domain. In healthy cells, EGFR 
signalling is tightly regulated by various extracel-
lular ligands, namely EGF, Amphiregulin, 
Epiregulin and TGFα, which induce homo- and 
hetero-dimerization with other ErbB members 
and the subsequent activation of downstream 
pathways, such as RAS-RAF-MEK-MAPK, 
PIK3CA-AKT, the SRC family kinases, PLCγ-
PKC and JAK/STATs (Fig. 8.1) (Oda et al. 2005). 
These pathways are involved in several essential 
cellular processes including proliferation, migra-
tion, invasion, survival and angiogenesis. 
However, in pathologic conditions, constitutive 
activation of EGFR or downstream effectors (by 
activating mutations, increased copy number and 
upregulations) are described as responsible for 
tumour development and metastasization. EGFR 
is expressed in various cancers including in CRC 
with a frequency of 60–80%, where it plays a key 
role in tumour development and progression 
(Spano et al. 2005). Therefore, its essential func-
tion together with its deregulated activity in can-
cer justified the rational for the development of 
EGFR inhibitors. To date, two monoclonal anti-
bodies (mAbs) against EGFR were approved for 
the treatment of patients with mCRC. Cetuximab 
is a human-mouse chimeric monoclonal antibody 
(IgG1 subtype), whereas panitumumab is a fully 

human anti-EGFR monoclonal antibody (IgG2K 
subtype). Both antibodies recognize and bind to 
the extracellular domain of EGFR, not only block-
ing the ligand-binding region and therefore pre-
venting its ligand-mediated activation, but also 
causing receptor internalization and degradation, 
inhibiting further signalling propagation 
(Ciardiello and Tortora 2008). Furthermore, 
cetuximab induces antibody-mediated cytotoxic-
ity due to its ability to recruit immune effector 
cells such as macrophages and monocytes to the 
tumour, which have specific receptors to bind the 
antibody’s constant Fc domain (Yang et al. 2013a, 
b). Cetuximab and panitumumab were proven to 
give similar benefit in terms of progression-free 
survival (PFS), overall survival (OS), response 
rate (RR), as well as quality of life, in several 
phase II and III clinical trials in combination with 
chemotherapy or as single agent (Bokemeyer 
et  al. 2009; Van Cutsem et  al. 2011; Douillard 
et al. 2014). Unfortunately however, only a small 
percentage of mCRC patients are sensitive to anti-
EGFR therapy due to primary or innate resistance. 
And even those that initially respond, eventually 
acquire resistance and relapse under this therapy 
(secondary resistance). When used as a single 
agent in unselected mCRC patients, Cetuximab 
and panitumumab achieved only a RR of about 
10–20% (Cunningham et  al. 2004; Van Cutsem 
et al. 2007). This low RR is caused by the high 
frequency of genetic or epigenetic alterations in 
proteins involved in EGFR regulation itself and 
downstream pathways (such as RAS, BRAF, 
PI3K and PTEN) that blunt the response to mAbs 
targeting EGFR.  The subgroup of patients with 
tumours wild-type for RAS, BRAF, PIK3CA and 
expressing normal levels of PTEN have the best 
response to mAbs (De Roock et  al. 2010a, b; 
Karapetis et  al. 2014). Nevertheless, still about 
10% of these individuals remain resistant to anti-
EGFR therapies, suggesting the existence of still 
unknown alternative mechanisms capable of 
influencing treatment effectiveness.

To date the molecular mechanisms of response 
to anti-EGFR mAbs are not yet completely 
understood. For instance, reports have shown that 
some patients experience benefit to cetuximab, 
although having undetectable levels of EGFR 
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(Chung et al. 2005), or occasionally patients that 
although harbouring RAS activating mutations 
are able to respond to these therapies (Karapetis 
et al. 2008; Linardou et al. 2008). Therefore, in 
this era of targeted medicine, clinical and transla-
tional efforts are being made to better understand 
the molecular complexity of mCRC tumours in 
order to better adapt the treatment to the molecu-
lar characteristics of the specific patient. 
Furthermore, the identification of clinical rele-

vant predictive biomarkers able to effectively 
select patients who will likely benefit from these 
therapies, will not only prevent unnecessary tox-
icity in resistant patients, but also allow them to 
receive undelayed alternative treatments.

The aim of this chapter is to provide an over-
view on the molecular mechanisms that underlie 
resistance to EGFR-targeted mAbs in mCRC and 
to discuss possible future directions on how to 
overcome them.

Fig. 8.1  EGFR-mediated signalling pathways and clini-
cally available strategies for their inhibition. EGFR 
ligands bind to the extracellular domain of the receptor 
leading to its activation and downstream signal propaga-
tion, which is essential for tumour cell growth and prolif-
eration. The antibodies cetuximab and panitumumab 

prevent ligand binding to EGFR, thus blocking receptor 
signalling. Further targeted agents are available to inhibit 
EGFR-stimulated downstream pathways and represent 
potentially valuable tools to overcome resistance to anti-
EGFR treatment. Stars indicate oncogenic mutations 
involved in resistance of tumours to anti-EGFR therapy
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8.2	 �Molecular Events That 
Positively Correlate 
with Primary Response

8.2.1	 �Alterations in EGFR Copy 
Number

Early studies conducted both in heavily pre-
treated chemotherapy-refractory patients or in 
chemotherapy-naïve mCRC patients, have dem-
onstrated that about 80% of unselected mCRC do 
not benefit from anti-EGFR therapy (Cunningham 
et al. 2004; Misale et al. 2012). In this context, it 
was hypothesized that EGFR mutations, levels of 
expression or levels of its specific ligands could 
be associated to the lack of response. Soon was 
realized that, contrarily to non-small-cell lung 
carcinoma (NSCLC) where mutations in the 
kinase domains of EGFR correlate with clinical 
responsiveness to the small molecule tyrosine 
kinase inhibitors (TKI) gefitinib or erlotinib 
(Gazdar 2009), point mutations in EGFR are 
extremely rare in CRC and when they do occur, 
they are associated with secondary resistance 
(Barber et  al. 2004). Therefore, several studies 
further assessed whether levels of EGFR expres-
sion could correlate with treatment resistance, 
considering that trastuzumab, a mAb against 
human epidermal growth factor receptor 2 (HER2/
neu) was most effective in patients with meta-
static breast tumours overexpressing HER2/neu 
(Perez et  al. 2014). Disappointingly, levels of 
expression of EGFR were found not to correlate 
with clinical response to cetuximab or to panitu-
mumab (Chung et al. 2005; Jonker et al. 2007). 
Curiously, however, alterations in EGFR gene 
copy number were later confirmed in retrospec-
tive analysis of clinical trials to be associated with 
responses to EGFR-targeted therapy. For exam-
ple, in a cohort study, about 90% of the patients, 
who experienced an objective response, had an 
increase in copy number (three- to five-fold), 
detected by fluorescence in situ hybridization 
(FISH) (Moroni et al. 2005). In contrast, only 5% 
of non-responders showed an increased EGFR 
copy number. Although only a modest increase in 
copy number was seen, correlation with response 
was further confirmed in another large and more 

homogenous cohort (Sartore-Bianchi et al. 2007). 
Intriguingly however, is the fact that increased 
EGFR gene copy number did not seem to corre-
late with increased expression of this protein 
(Cappuzzo et al. 2008; Campanella et al. 2010). 
Therefore, the reason why and how this amplifica-
tion correlates with response is largely unknown 
and requires further studies. Furthermore, due to 
lack of technical standardization and definition of 
a clear and reproducible cut-off for gene amplifi-
cation, the assessment of gene copy number by 
FISH shows high variability, which further makes 
this biomarker clinically unpractical. Finally, sta-
tistical correlation between the increased copy 
number of EGFR and response to cetuximab and 
panitumumab is not strong enough to allow the 
clinical use of this biomarker for the predictive 
selection of patients (Personeni et  al. 2008; 
Sartore-Bianchi et al. 2012).

8.2.2	 �Alteration in EGFR-Ligands 
Expression

Other molecular alterations that positively associ-
ate with response are the levels of expression of 
the EGFR ligands Amphiregulin (AREG) and 
Epiregulin (EREG). In a prospective clinical trial 
of 110 patients with mCRC, AREG and EREG 
levels were higher in pre-treatment tumours from 
responding patients compared to non-responders 
(Khambata-Ford et al. 2007). A subsequent in a 
lager cohort of KRAS WT patients showed similar 
effects, namely that expression of higher levels of 
mRNA for either of these ligands was linked to 
sensitivity to cetuximab monotherapy, improving 
disease control rate and progression-free survival 
(Jacobs et  al. 2009). Interestingly, patients with 
KRAS WT or KRAS mutant tumours have similar 
response rates when ligand expression levels are 
low and in both cases experience worst responses 
to cetuximab. It is believed that an autocrine or 
paracrine loop generated by the increased expres-
sion of these ligands is responsible for driving the 
growth of these tumours. Low levels of expres-
sion of AREG and EREG may characterize a 
tumour that is less dependent on EGFR and, 
therefore, less sensitive to its inhibition.
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Similarly to EGFR gene copy number, the lev-
els of expression of AREG and EREG have so far 
been difficult to assess (mRNA levels), score and 
reproduce. Therefore, at present, these markers 
cannot be used to select patients for cetuximab or 
panitumumab therapy.

8.3	 �Primary Resistance to Anti-
EGFR Therapy

8.3.1	 �RAS Mutations

RAS-RAF-MAPK is the signalling pathway 
mostly studied in cancer given the high frequency 
of genetic alterations in its components, as well 
as, its crucial role in cell growth and differentia-
tion. The RAS family is composed of the three 
genes KRAS, NRAS and HRAS that encode small 
guanosine-triphosphate (GTP) hydrolases, that 
act as signal transducers by cycling between a 
GDP and GTP-bound conformation upon cell 
surface receptor stimulation (Malumbres and 
Barbacid 2003). CRC tumours present with about 
40% of KRAS mutations, 3–5% of NRAS and less 
than 1% of HRAS genetic alterations (Bos 1989; 
Fernández-Medarde and Santos 2011). In 
tumours, mutations found in RAS family mem-
bers generally lead to constitutive activation of 
these proteins and their downstream effector 
pathway (MAPK pathway), independently of the 
upstream signalling cascade or growth factor 
receptor.

A large number of retrospective analyses of 
data from previous clinical trials over the last 
decade have led to the discovery that patients 
with KRAS activating mutations in codons 12 
(70–80% of KRAS mutations) or 13 (15–20% of 
KRAS mutations) of exon 2 do not benefit from 
cetuximab or panitumumab agents. Clinical trials 
in which EGFR-targeted mAbs cetuximab or 
panitumumab were used to treat either 
chemotherapy-refractory (NCIC trial) or naïve 
mCRC patients (OPUS, CRYSTAL and PRIME 
trials), demonstrated that KRAS WT patients had 
a statistically significant improvement in OS and 
PFS, whereas KRAS mutant patients did not show 
any benefit in OS, in PFS or quality of life (Van 

Cutsem et  al. 2011; Douillard et  al. 2014; Van 
Cutsem et al. 2015a, b). The exclusion of patients 
with RAS mutations has allowed the identifica-
tion of the subgroup of patients that is more likely 
to benefit from anti-EGFR therapies. Therefore, 
in patients with wild-type RAS genotype median 
OS was 25.8  months versus 20.2  months 
(HR = 0.77, 95% CI = 0.64–0.94, p = 0.009), in 
favour of the combination of panitumumab and 
FOLFOX (infusion of fluorouracil, leucovorin, 
and oxaliplatin) compared with FOLFOX alone 
(Douillard et al. 2014). Similar results were pre-
sented in the CRYSTAL (28.4  months vs. 
20.2 months, HR 0.69, 95% CI = 0.54–0.88) and 
OPUS trials (ORR 58% vs. 29%; HR 3.33 [95% 
CI = 1.36–8.17, p = 0.0084), in which random-
ized patients received first-line cetuximab in 
combination with FOLFIRI (fluorouracil, leu-
covorin, and irinotecan) or FOLFOX respectively 
(Bokemeyer et al. 2011; Van Cutsem et al. 2011).

These results have not only shown that patients 
harbouring RAS mutations do not experience any 
benefit from those treatments, but also that in 
some cases it could even be detrimental for them. 
PRIME trial shows that the presence of RAS 
mutations was associated with inferior PFS and 
OS in patients receiving first line panitumumab 
plus FOLFOX compared with FOLFOX alone 
(Douillard et al. 2014). Overall, this information 
led the American and European health authorities 
in 2009 to restrict the use of panitumumab and 
cetuximab only to patients with KRAS exon 2 
WT tumours.

However, later retrospective studies revealed 
that further mutations in KRAS and NRAS genes 
were also predictive of resistance to anti-EGFR 
therapies (Heinemann et  al. 2014; Van Cutsem 
et al. 2015a, b). In addition to exon 2, mutations 
in KRAS exon 3 (codons 59 and 61), exon 4 
(codons 117 and 146) and in the homologous 
codons of NRAS also confer resistance to anti-
EGFR therapy, and are altogether called “the 
expanded RAS mutations” (Heinemann et  al. 
2014). Thus, a meta-analysis of nine randomized 
trials confirmed that treatment with mAbs had 
better efficacy reflected in PFS and OS for RAS 
WT patients when compared with the expanded 
RAS mutant group (Sorich et  al. 2015). In 
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response to this data, EMA and FDA have 
updated their recommendations against the use of 
cetuximab e panitumumab in patients with 
extended RAS mutations.

Considering that patients with expanded RAS 
mutations constitute about 53% of all mCRC 
cases, several attempts have been made to inhibit 
RAS directly in these patients. Initial approaches 
have tried to inhibit RAS farnesylation (a neces-
sary step to attach RAS proteins to the cell mem-
brane), which have shown a potent antitumour 
activity in preclinical studies (Kohl et al. 1995), 
but this was not confirmed in clinical trials 
(Macdonald et  al. 2005). Another interesting 
approach was the identification of small-molecule 
inhibitors that could form a disulfide bond with 
the cysteine residue in the G12C mutant KRAS 
protein (about 8% of all KRAS mutations in CRC) 
(Ostrem et  al. 2013). These compounds do not 
affect WT KRAS but preferentially bind the 
G12C mutant, inhibiting its activity. Similarly, 
efforts have been made in identifying compounds 
that bind and covalently react with the GDP-
bound state of KRAS G12C, trapping it in an 
inactive conformation (Patricelli et  al. 2016). 
However, these studies resulted in only limited 
demonstration of KRAS inhibition in cells and 
lack demonstration of in vivo efficacy and speci-
ficity. Very recently, Matthew et al. have designed 
and characterized a promising G12C inhibitor 
(ARS-1620) with features necessary to achieve in 
vivo covalent targeting and inhibition of mutant 
allele-specific G12C cell lines and tumour mod-
els (Janes et al. 2018). This could be a promising 
step towards bringing KRAS mutant specific 
inhibitors to the clinic. Nevertheless, several 
other approaches have been used to target RAS: 
(i) blocking downstream effectors such as MEK 
(Yoon et  al. 2011) and PI3K (Migliardi et  al. 
2012), (ii) identification of synthetic lethal inter-
actions with mutant KRAS (interactions that 
when co-occur in a cell result in cellular death) 
(Costa-Cabral et  al. 2016), or (iii) the use of 
small-molecule inhibitors of KRAS (Welsch 
et  al. 2017). Finally, a combination therapy of 
inhibitors co-targeting MEK and CDK4/6 with 
trametinib and palbociclib, respectively, was 
highly efficacious in KRAS-mutant CRC patient-

derived xenografts (Ziemke et  al. 2016), but a 
clinical validations of this strategy is still 
missing.

Despite these promises, targeting RAS in can-
cer remains one of the most difficult assignments 
in cancer therapy. Our incomplete knowledge 
about RAS-mediated signalling, regulatory feed-
back loops, pathway redundancy and mecha-
nisms by which RAS activates its downstream 
effectors, prevents the design of more effective 
therapies. It is, therefore, essential to fill the gaps 
of our knowledge regarding RAS-mediated pro-
cesses in order to develop more effective agents 
for targeting RAS and its effector pathways in 
cancer cells.

This is even more relevant given the conflict-
ing data that a number of patients carrying 
KRAS-mutant tumours are able to respond to 
either cetuximab or panitumumab. Specifically 
the role of codon 13 mutation in this mecha-
nism is still controversial. DeRoock et al. stud-
ied the role of G13D mutation in response to 
cetuximab in chemo-refractory patients and 
their results showed longer OS of 7.6  months 
compared to 5.7 (P = 0.005) and longer PFS of 
4.0 months compared to 1.9 months (P = 0.004) 
than in G12V mutant patients (De Roock et al. 
2010a, b). Although suggesting that patients 
with G13D-harbouring tumours respond to 
cetuximab, RR were lower than in KRAS WT 
patients. The same study further showed in 
vitro and in mouse models that CRC cells with 
the G12V mutation were insensitive but with 
mutation G13D were as sensitive as the KRAS 
WT to cetuximab. In contrast, a retrospective 
analysis of three randomized phase III clinical 
trials showed that patients harbouring KRAS 
codon 13 mutations did not benefit from receiv-
ing panitumumab treatment (Peeters et  al. 
2013). Explanations for these contradictory 
results may include differences between cetux-
imab and panitumumab treatments or in the 
chemotherapy regimens between the studies. 
Given that these mutations represent about 19% 
of the KRAS-mutant tumours, further studies 
are necessary to unravel the effect of KRAS 
codon 13 mutation in resistance to anti-EGFR 
therapy.
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8.3.2	 �BRAF Mutations

Although RAS mutations are effective predictive 
marker of resistance, not all RAS WT patients 
respond to cetuximab and panitumumab. Thus, 
research has turned to the serine-threonine pro-
tein kinase BRAF, the main effector of KRAS in 
EGFR signalling, which is mutated in 5–9% of 
CRC patients. Importantly, BRAF and KRAS 
mutations are usually mutually exclusive, there-
fore, do not tend to coexist in the same tumour. 
The activating BRAF V600E mutation represents 
the majority of BRAF mutations and confers poor 
prognosis to its patients (Di Nicolantonio et  al. 
2008). OS of mCRC patients harbouring BRAF 
mutations is about 8.8  months, compared to 
KRAS mutant of 14.4  months and KRAS WT 
20.1  months. Furthermore, De Roock et  al. 
showed that patients with BRAF V600E mutation 
had a significantly lower response rate to cetux-
imab than those with WT tumours (8.3% vs. 
38.0%, OR  =  0.15, P  =  0.0012) in chemo-
refractory mCRC patients (De Roock et  al. 
2010a, b). Several multicentre trials and meta-
analyses have further confirmed that BRAF 
V600E mutation resulted in shorter PFS and OS 
when compared to BRAF WT tumours, indicat-
ing its contribution to resistance to anti-EGFR 
mAbs (Pietrantonio et al. 2015, Tveit et al. 2012, 
Therkildsen et al. 2014).

Similar to the presence of RAS mutations, 
BRAF V600E mutation can effectively predict 
patients that are unlikely to respond to anti-EGFR 
therapy. It is, therefore, advisable to know both 
RAS and BRAF status before administering 
EGFR-targeted therapies.

In this context, diverse strategies have been 
employed to overcome BRAF-mediated resis-
tance to anti-EGFR therapy. An in vitro study of 
adding sorafenib (a multi-target small-molecule 
inhibitor with high affinity for BRAF) to anti-
EGFR mAbs showed that even BRAF mutated 
cells can respond to cetuximab and panitumumab 
therapy when both inhibitors are used simultane-
ously (Di Nicolantonio et  al. 2008). Based on 
these results, the combinatory therapy of BRAF 
and EGFR inhibitors was administered in BRAF-
mutant CRC patients and resulted in increased 

response rates (Al-Marrawi et al. 2013). In addi-
tion to sorafenib, other compounds targeting 
either BRAF (such as vemurafenib) or its down-
stream effectors are in clinical development and 
could be exploited in combination with EGFR-
targeted mAbs therapy. Thus, monotherapy, dou-
blet and triplet combinations with drugs targeting 
the MAPK pathway have been tested in BRAF-
mutant CRC.  Results from vemurafenib mono-
therapy were disappointing when compared to 
the clinical activity seen in melanoma, with a 
median PFS of 2.1 months and only two patients 
progression-free for more than six months 
(Kopetz et  al. 2015). In contrast to melanoma, 
CRC express high levels of activated EGFR 
which reactivate the MAPK pathway after BRAF 
inhibitor monotherapy (Prahallad et  al. 2012, 
Corcoran et  al. 2012). Based on the observed 
therapy resistance via a feedback activation of 
EGFR signalling, the BASKET trial was amended 
to include the assessment of the safety and effi-
cacy of vemurafenib when combined with cetux-
imab, and showed improved results (median PFS 
of 3.7 months and OS of 7.1 months) in a heavily 
pre-treated patient population (Yaeger et  al. 
2015). Similar results have been seen when com-
bining other BRAF inhibitors, dabrafenib and 
panitumumab (PFS of 3.5 months) (Atreya et al. 
2015, Van Cutsem et  al. 2015a, b), as well as 
encorafenib and cetuximab (RR 23.1%, PFS of 
3.7 months) (Gomez-Roca et al. 2014, Van Geel 
et  al. 2017). Phase II results for the latter have 
been presented with a median PFS of 4.2 months 
and an ORR of 22% (Tabernero et  al. 2016). 
Chemotherapy was also combined with BRAF 
and EGFR inhibition in a phase II trial combining 
irinotecan, cetuximab and vemurafenib. A total 
of 106 patients were enrolled and results show an 
increasing PFS to 4.3 months with the addition of 
vemurafenib compared to the control arm 
(2.0 months) (Kopetz et al. 2017). Finally, BRAF 
inhibition can not only also induce EGFR-
dependent MAPK reactivation but also PI3K 
modulation so that triple combinations targeting 
these pathways have been studied and shown 
improved results. The MEK116833 trial combin-
ing trametinib, panitumumab and dabrafenib 
included 24 patients which received full dose, 
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with an ORR of 21% and a median PFS of 
4.1 months; OS was 9.1 months (Corcoran et al. 
2015). A randomised phase II trial which com-
bined encorafenib, cetuximab and alpelisib (a 
PI3K inhibitor) revealed a median PFS of 
5.4 months in an interim analysis with an ORR of 
27% (Tabernero et al. 2016). More recently, the 
BEACON CRC phase 3 study assessed the safety 
and efficacy of the combination of the BRAF 
inhibitor encorafenib, plus MEK inhibitor bin-
imetinib, plus anti-EGFR antibody cetuximab in 
patients with BRAF mutant CRC after 1 or 2 prior 
regimens. The confirmed ORR was 41%, with 1 
complete and 11 partial responses. In addition, 9 
patients had prolonged stable disease up to 
9.3 months and CEA/CA19-9 decreased in 96% 
and 82% of these patients, respectively (Huijberts 
et al. 2017).

Overall, given that KRAS and BRAF mutations 
are usually mutually exclusive and highly fre-
quent, together they allow the identification of 
the majority of non-responder patients, avoiding 
unnecessary exposure of these patients to ineffec-
tive treatments and selecting them for alternative 
therapeutic options.

8.3.3	 �Other Putative Players

8.3.3.1	 �PIK3CA Gene and PTEN 
Expression

KRAS and BRAF WT status is not enough to 
define all anti-EGFR-sensitive patients. The 
EGFR receptor also signals through the PI3K-
AKT pathway resulting in tumour cell prolifera-
tion and survival (Rommel and Fruman 2014). 
PIK3CA gene encodes the p110α protein kinase, 
which is the catalytic subunit of class I PI3Ks. 
Furthermore, besides direct activation of the 
PI3K-AKT pathway by EGFR, activated KRAS 
protein can further bind and directly activate the 
p110α PI3K protein. Mutations in PIK3CA are 
reported in approximately 10–18% of mCRC 
patients and can coexist with either KRAS and 
BRAF mutations (Nosho et al. 2008). Therefore, 
several studies have evaluated the predictive 
value of PIK3CA mutations in resistance to anti-
EGFR therapies. Retrospective studies of cetux-

imab treatments in chemo-refractory mCRC 
patients have revealed that, in KRAS WT patients, 
PIK3CA mutations in exon 20 lead to worse out-
come shown by lower response rates (0.0% vs. 
36.8%; 95% CI 0.00–0.89; P  =  0.029) than 
PIK3CA WT patients (De Roock et al. 2010a, b). 
Interestingly, mutations in exon 9 (60–65% of 
PIK3CA mutations) of PIK3CA had no effect on 
response rates, survival and prognosis. In two 
further meta-analysis studies on retrospective 
cohorts, PIK3CA exon 20 mutations, but not 
exon 9, were associated with absence of response, 
lower PFS and OS to anti-EGFR mAbs (Sartore-
Bianchi et  al. 2009; Mao et  al. 2012). In vitro 
studies unravelled different intracellular mecha-
nisms of action: exon 9 mutations release p110α 
from p85-induced inhibition in a KRAS-GTP 
dependent way, whereas exon 20 mutations acti-
vate the kinase domain, independently of interac-
tions with KRAS. This fact may justify different 
effects of both mutations in responses to mAbs 
(Zhao and Vogt 2008; Zhao and Vogt 2010).

Overall, without larger prospective studies, it 
is still difficult to evaluate the precise role of 
PIK3CA mutations with respect to the response 
to EGFR-targeted therapies, especially given that 
they are mostly found co-occurring with KRAS or 
BRAF mutations.

PTEN (phosphatase and tensin homologue) is 
another potential marker of response to anti-
EGFR therapy, given its negative role on the 
PI3K-AKT signalling pathway. PTEN inhibits 
the PI3K pathway through its lipid phosphatase 
activity, behaving in this way as a tumour sup-
pressor protein (Cully et  al. 2006). In mCRC, 
PTEN activity is reduced in about 20–40% of 
tumours through either PTEN gene silencing ( 
via promoter hypermethylation or loss of hetero-
zygosity) or mutations (Molinari and Frattini 
2014). This loss of PTEN activity resulted in con-
stitutive activation of the PI3K-AKT signalling 
pathway leading to tumour cell proliferation and 
survival. Studies on the association between the 
PTEN status and the response to mAbs are con-
troversial and inconclusive. Frattini et  al. have 
studied a cohort of cetuximab and irinotecan-
treated patients and found that lower levels of 
PTEN were predictive of resistance (Frattini 
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et al. 2007), whereas Laurent-Puig et al. showed 
no significant differences in terms of RR, PFS 
and OS in a larger cohort of patients (Laurent-
Puig et  al. 2009). Moreover, in the NCIC trial, 
where 572 patients with pretreated mCRC were 
randomly assigned to receive cetuximab or best 
supportive care, no statistical significance was 
found with respect to loss of PTEN and the clini-
cal outcome of patients treated with cetuximab 
(Karapetis et  al. 2014). Nevertheless, two other 
studies corroborate the fact that loss of PTEN 
expression (measured by immunohistochemis-
try) is associated with decreased RR, PFS and OS 
in mCRC patients treated with anti-EGFR ther-
apy (Loupakis et al. 2009; Sartore-Bianchi et al. 
2009). Finally, a recent meta-analysis confirmed 
that PTEN loss was significantly associated with 
lack of benefit to mAbs treatment in RAS WT 
patients. However, this study concluded that the 
predictive power of BRAF and PIK3CA muta-
tions were stronger than that of PTEN levels 
(Yang et al. 2013a, b).

Overall, given that technically the assessment 
of PTEN expression levels by immunohisto-
chemical methods lack standardization, that 
PTEN alterations co-occur with RAS mutations, 
and that discordant levels of PTEN expression 
are seen between primary tumour and metastasis, 
the loss of PTEN expression cannot be seen at 
present as a reliable predictive biomarker of 
response to EGFR-targeted mAbs.

Nevertheless, targeted treatments against 
PI3K or its downstream effectors such as mTOR 
and AKT in preclinical models suggest great 
therapeutic potential when combined with recep-
tor tyrosine kinase inhibitors (Kim et al. 2017). A 
clinical trial evaluating the combination of mTOR 
inhibitor everolimus with panitumumab and iri-
notecan in second-line mCRC patients showed 
better RR when compared to the treatment with-
out everolimus, in RAS WT patients (Townsend 
et  al. 2018). Another combination that is pres-
ently exploited in clinical trials is that of PIK3CA/
mTOR inhibitors and MEK inhibitors (Andersen 
et al. 2015; Temraz et al. 2015).

Despite these promising results, larger pro-
spective studies are needed before the role of 
PIK3CA mutations and PTEN expression levels 

in the mechanism of resistance, and their poten-
tial predictive value in anti-EGFR therapies can 
be concluded.

8.3.3.2	 �JAK/STAT Signalling Pathway
The Janus family of tyrosine kinases (JAK) and 
the signal transducer and activator of transcrip-
tion (STAT) family are involved in cytokine 
receptor signalling as important mediators of cell 
survival, proliferation, differentiation, and apop-
tosis (Rawlings 2004). There have been pieces of 
evidence supporting a role of STAT family mem-
ber STAT3  in resistance to the EGFR kinase 
inhibitor gefitinib in cells (Li et  al. 2015). 
Furthermore, this work has shown that inhibition 
of STAT3 activity by Stattic (STAT3-inhibitor) 
sensitizes CRC cells to gefitinib treatments. In an 
independent work, co-treatments of gefitinib 
with the JAK/STAT3 inhibitor cucurbitacin B led 
to increased antitumour activity in CRC cells 
(Yar Saglam et al. 2015). These results indicate 
that blocking EGFR signalling is more effective 
in combination with inhibitors of JAK/STAT3, 
suggesting a putative role of this pathway in the 
mechanism of resistance to anti-EGFR therapies. 
However, further studies are required to fully 
confirm the role of STAT3 in the mechanism of 
resistance to mAbs targeting EGFR.

8.3.3.3	 �Others Components
Other mechanisms have been implicated in the 
resistance to EGFR-targeted therapy in 
mCRC.  Expression of vascular endothelial 
growth factor 1 (VEGF-1) or its receptor 
(VEGFR) has been associated to resistance to 
cetuximab in preclinical models and in patients 
with mCRC (Bianco et  al. 2008). Furthermore, 
inflammatory markers such as interleukin-8 (IL8) 
and cyclooxygenases-2 (COX2), as well as the 
cell cycle regulator cyclin D1 were also shown 
important for the outcome of patients receiving 
anti-EGFR therapy. Vallböhmer et  al. reported 
that a combination of low levels of COX2, EGFR 
and IL8 was a good prognostic marker for 
patients when compared to high levels of expres-
sion of these three genes, with an OS of 
13.5  months vs. 2.3  months, respectively 
(Vallböhmer et  al. 2005). Nuclear translocation 
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of EGFR was also identified as a possible marker 
for resistance dependent on Src family kinases 
(Li et al. 2009). Nuclear EGFR is associated with 
transcription of cyclin D1 and consequently pro-
liferation of tumour cells. Expression of the tran-
scription factor nuclear factor κB has also been 
linked with resistance to cetuximab (Scartozzi 
et al. 2007). Finally, in in vitro models epithelial-
to-mesenchymal transition (EMT) has also been 
pointed out as a mechanism involved in resis-
tance to anti-EGFR inhibitors, as CRC 
mesenchymal-like cells were found sevenfold 
more resistant than epithelial-like cells (Buck 
et al. 2007). Although interesting, data regarding 
the previously mentioned proteins is limited and 
lack further validation. A comprehensive under-
standing of their contribution to mechanisms 
involved in cetuximab and panitumumab resis-
tance is desirable and holds the promise for the 
generation of novel therapeutic opportunities for 
the treatment of CRC.

8.4	 �Acquired Resistance to Anti-
EGFR Therapy

8.4.1	 �EGFR Mutations

EGFR mutations are extremely rare in CRC but 
have been described associated with acquired 
resistance to mAb treatment (approximately in 
20% of patients treated with cetuximab and 1% 
of patients treated with panitumumab). Montagut 
et  al. have identified EGFR S492R mutation in 
cell lines that acquired resistance to cetuximab 
and confirmed these data in patients who relapsed 
after cetuximab treatment (Montagut et al. 2012). 
This mutation is located in the extracellular 
domain of the receptor and prevents binding of 
the cetuximab antibody, however, does not seem 
to affect panitumumab binding. Indeed, one 
patient who had relapsed under cetuximab and 
harboured the S492R mutation, responded to 
panitumumab, suggesting a clinical option to 
overcome cetuximab resistance in these patients. 
Other mutations occurring in the extracellular 
domain of EGFR (R451C, S464L, G465R, 
I491M and K467T) were identified in patients 

who had relapsed under cetuximab treatment or 
in cell lines that acquired resistance to cetuximab 
(Arena et al. 2015). From these mutations, R451C 
and K467T do not prevent binding of panitu-
mumab to the receptor. This fact resulted in the 
generation of new EGFR inhibitors consisting of 
a mixture of more than one mAb that target dif-
ferent epitopes located in the extracellular 
domain of EGFR. Sym004 (mixture of two dif-
ferent mAbs) and MM-151 (mixture of three 
fully human IgG1 antibodies) are new treatment 
options presently under clinical evaluation 
(Pedersen et al. 2010, Kearns et al. 2015). Phase 
I clinical trials of both compounds demonstrated 
their safety. In 42 mCRC patients who had 
acquired resistance to anti-EGFR therapy, 
Sym004 treatments induced about 44% of tumour 
shrinkage and partial response or stable disease 
for the other patients. In a similar way, MM-151 
also showed long-lasting disease control of 
patients treated with MM-151  in combination 
with irinotecan.

8.4.2	 �RAS/RAF Signalling Pathway

As one of the most important signalling pathways 
downstream of EGFR, the RAS-RAF-MAPK 
cascade is also one of the most important mecha-
nisms associated with secondary resistance to 
mAbs (50–80% of cases). Thus, pre-clinical and 
clinical studies have identified the occurrence of 
KRAS mutations in metastases that acquired 
resistance to EGFR inhibitors. Bouchahda et al. 
reported the first case of CRC liver metastasis 
harbouring KRAS mutations in a patient who had 
progressed under cetuximab therapy, although 
primary and metastatic tumours were KRAS WT 
before treatment (Bouchahda et  al. 2010). In a 
further study, Misale et al. showed that six out of 
ten patients that were KRAS WT before the treat-
ment were detected with KRAS mutations in their 
plasma samples during cetuximab treatment 
(Misale et al. 2012). The same study, also showed 
one case of KRAS amplification (an infrequent 
event in CRC) in a patient who relapsed after 
cetuximab treatment, showing that either muta-
tions or amplifications could be associated with 

M. Martins et al.



123

acquired resistance to mAbs. In addition to the 
KRAS gene, alterations in NRAS and BRAF were 
also associated with secondary resistance to 
EGFR-targeted therapies in pre-clinical models 
(Misale et  al. 2012). Altogether, the occurrence 
of RAS mutations in relapsed tumours was found 
to derive from an expansion of pre-existing 
clones that propagated under the selection pres-
sure of anti-EGFR treatment, rather than from 
novel spontaneous mutations (Diaz et al. 2012).

8.4.3	 �HER2/HER3 Expression

Amplification of other receptor tyrosine kinases 
of the ErbB family has been described as an 
acquired resistance mechanism to anti-EGFR 
therapies. Bertotti et al. showed that HER2 gene 
amplification was correlated with responses to 
cetuximab in a patient-derived xenografts mouse 
model (Bertotti et al. 2011). The authors observed 
that HER2 amplification was only present in 
2–3% of KRAS WT patients before treatment, 
however, in 36% of resistant tumours after cetux-
imab treatments. They further showed that com-
bination of lapatinib (a small molecule inhibitor 
of both EGFR and HER2 receptors) with cetux-
imab or pertuzumab (a monoclonal antibody that 
inhibits the dimerization of HER2 with other 
HER receptors) was efficient in a subset of 
cetuximab-resistant HER2-amplified mCRC 
xenografts. Based on these findings, the 
HERACLES phase II was designed to assess the 
RR of trastuzumab (mAbs targeting HER2) com-
bined with either lapatinib or pertuzumab, in 
KRAS exon 2 WT and HER2 amplified mCRC 
patients (Sartore-Bianchi et al. 2016). The initial 
results concerning the trastuzumab and lapatinib 
combination showed that 30% of patients 
achieved an objective response with a median 
duration of response of 38 weeks. Median PFS 
was 21  weeks and median OS was 46  weeks. 
Importantly, these results indicate that HER2 is a 
good druggable target in mCRC.

It should be noted that HER2 gene amplifica-
tion was also associated with intrinsic resistance 
to anti-EGFR therapy, however, given its 
extremely low frequency in CRC (about 2% of 

cases), its role in primary resistance seems to be 
minor (Hynes and Lane 2005).

Additionally to HER2, HER3 has also been 
described to have a role in the resistance mecha-
nism to EGFR-targeted therapies. In a cohort of 
mCRC patients treated with irinotecan and cetux-
imab, HER3 overexpression was associated with 
lower PFS and OS (Scartozzi et  al. 2011). 
Moreover, HER3 is found mutated in 11% of 
CRC patients and owns oncogenic activity 
(Jaiswal et al. 2013). MEHD7945A is a human-
ized IgG1 mAbs with dual HER3/EGFR activity. 
This compound has achieved promising results in 
a phase I trial in patients with pretreated 
mCRC.  However, phase II randomized trial 
showed no benefit for MEHD7945A plus 
FOLFIRI when compared to cetuximab plus 
FOLFIRI in KRAS WT chemo-refractory patients 
(Van Cutsem et al. 2014).

8.4.4	 �MET Receptor Expresssion

MET is a tyrosine kinase receptor for the ligand 
Hepatocyte Growth Factor (HGF), which upon 
activation leads to several cellular processes such 
as cell proliferation, invasion, apoptosis and sur-
vival (Organ and Tsao 2011). Several pieces of 
evidence suggest an involvement of the MET 
pathway (through MET amplification or 
increased HGF expression) in the mechanism of 
both primary and secondary resistance to EGFR 
mAbs in KRAS WT patients (Krumbach et  al. 
2011). Although in primary samples amplifica-
tion of MET was only reported in 2% of cases, 
interaction between EGFR and MET was seen 
upon activation with TGF-alpha and correlated 
with acquired resistance to cetuximab in cells 
(Troiani et  al. 2013). Treatment of those cells 
with MET inhibitor restored cetuximab sensitiv-
ity. Furthermore, in vivo studies showed an 
increased level of MET amplification in 
cetuximab-resistant patients WT for RAS, BRAF, 
PIK3CA and HER2, whereas amplification had 
not been seen in pre-treatment tumours (Bardelli 
et  al. 2013). Finally, in a randomized phase II 
clinical trial of chemo-refractory KRAS WT anti-
EGFR naïve patients, the combination of 
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anti-HGF mAbs and panitumumab led to higher 
response rates and a trend for better outcome in 
the patient population with MET overexpression 
(Van Cutsem et al. 2014). A phase I trial assess-
ing safety of cabozantinib (a small molecule 
MET inhibitor) plus panitumumab in chemo-
refractory KRAS WT patients is ongoing (Jia 
et al. 2018).

8.5	 �Conclusions

The high complexity of mechanisms of resis-
tance to anti-EGFR mAbs, make this therapy 
only efficient in a restricted CRC patient popula-
tion. Presently, resistance to EGFR-targeted ther-
apies is known to be mediated by constitutive 
activation of EGFR signalling cascades through 
deregulation of the receptor itself or downstream 
components of the RAS/RAF, PI3K/PTEN and 
JAK/STAT pathways, as well as, from the activa-
tion of alternative tyrosine kinase receptor such 
HER2 and MET. Despite intensive research done 
over the last 10 years, RAS mutations are effec-
tively the only approved biomarker of response in 
clinical practice. More clinical and translational 
studies are required in order to increase our 
knowledge on the mechanisms behind anti-EGFR 
therapy resistance.

Recent efforts to segregate CRC tumours into 
subgroups based on their biology and gene 
expression patterns resulted in an unified classifi-
cation which categorizes the majority of tumours 
into four groups called consensus molecular sub-
types (CMS1–4) (Guinney et  al. 2015). CMS1 
(immune, 14% of cases) is enriched for microsat-
ellite instable (MSI) tumours that display BRAF 
mutations, hypermethylation of CpG islands 
(CIMP), and immune infiltration and activation. 
CMS2 (canonical, 37% of cases) reflects the clas-
sical adenoma-to-carcinoma sequence, encom-
passing typical WNT/MYC-driven tumours with 
epithelial characteristics and high somatic copy 
number alterations (SCNA), whereas CMS3 
(metabolic, 13% of cases) is enriched for KRAS-
mutated tumours (although KRAS mutations are 
present in all CMS subtypes) with activation of 
metabolic pathways. Finally, CMS4 (mesenchy-

mal, 23% of cases) has mesenchymal features, 
shows high SCNA, stromal content and activa-
tion of TGF-β and VEGFR pathways. Clear clini-
cal distinction is also evident with poor prognosis 
for CMS4 and a relatively good prognosis for 
CMS1 (Thanki et al. 2017). In this context, Sveen 
et al. have lately shown that the CMS2 subtype is 
predicted to respond to EGFR inhibition, whereas 
tumours with a metabolic and mesenchymal-like 
phenotype seem strongly resistant, independently 
of KRAS and BRAF mutation status (Sveen et al. 
2018).

Overall, the field is moving towards a more 
comprehensive picture of the processes involved 
in therapy resistance, which will certainly lead to 
the recognition of alternative or combinatory 
treatments, providing more benefit to patients 
and sparing unnecessary treatments.
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miRNAs as Modulators of EGFR 
Therapy in Colorectal Cancer

Diane M. Pereira and Cecília M. P. Rodrigues

Abstract
Drug resistance is a serious impediment to the 
treatment of cancer. The use of anti-epidermal 
growth factor receptor (EGFR) monoclonal 
antibody therapies in patients with metastatic 
colorectal cancer is guided by the presence of 
activating point mutations in KRAS and NRAS 
genes in the primary tumour. However, RAS 
wild-type status is still not sufficient to guar-
antee response to cetuximab and panitu-
mumab, with response rates limited to 70% 
for combinations with multidrug chemother-
apy. Therefore, additional mechanisms con-
tributing to resistance are currently under 
investigation, and include genetic alterations 
and epigenetic mechanisms of resistance. In 
this regard, deregulation of miRNA expres-
sion profiles holds potential to unveil resis-
tance and fuel the development of 
miRNA-based strategies to overcome EGFR-
directed therapy limitations. We discuss cur-
rent understanding of miRNA impact as 
modulators of EGFR therapy in patients with 
metastatic colorectal cancer and the future 
challenge of miRNAs in circulation as power-
ful non-invasive tools to monitor anti-EGFR 
therapy response and predict resistance.

Keywords
Anti-EGFR therapy · Epidermal growth 
factor receptor · Prognostic marker · miRNA · 
Therapy resistance

9.1	 �Introduction

The growing body of knowledge on the molecu-
lar mechanisms driving tumour initiation and 
progression has paved the way for the introduc-
tion of targeted therapies in clinical practice. In 
particular, overexpression of epidermal growth 
factor receptor (EGFR) was shown to be a fre-
quent event in human cancer, among which 
colorectal cancer (Spano et al. 2005), providing 
the rationale for the development of therapeutic 
approaches directed to this receptor. In this 
framework, two different monoclonal antibodies 
raised against the extracellular domain of EGFR 
have been approved for the treatment of meta-
static colorectal cancer: cetuximab, a chimeric 
monoclonal antibody (Harding and Burtness 
2005), and panitumumab, a fully humanized 
monoclonal antibody (Cohenuram and Saif 
2007). Treatment with these antibodies prevents 
ligand-induced EGFR tyrosine kinase activation, 
thereby suppressing downstream signalling path-
ways (Martinelli et al. 2009). These include the 
RAS-RAF-MEK-ERK and the PI3K-AKT axes, 
that in turn promote tumour cell proliferation, 
survival and invasive properties (Lemmon and 
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Schlessinger 2010; Witsch et al. 2010). Given its 
chimeric origin (IgG1 subtype), cetuximab also 
triggers antibody-dependent cellular cytotoxicity 
(ADCC), an immune mechanism whereby effec-
tor cells recognize and eliminate antibody-coated 
tumour cells, adding to the therapeutic effects of 
this anti-EGFR agent (Kimura et al. 2007; Mellor 
et al. 2013).

Although EGFR-targeted therapies represent 
an undeniable step forward in the management of 
metastatic colorectal cancer, it quickly became 
evident that only a small group of patients would 
benefit from treatment with these antibodies 
(Bardelli and Siena 2010). Moreover, even the 
subset of patients who initially respond to anti-
EGFR-based regimens will ultimately become 
refractory within 3 to 12 months after initiating 
treatment (Cunningham et al. 2004; Van Cutsem 
et al. 2007). Mechanisms of primary and acquired 
resistance towards EGFR blockade have been 
mainly attributed to the activation of signalling 
pathways operating downstream of EGFR (Zhao 
et al. 2017). Mutations in KRAS exon 2 (codons 
12 and 13) were the first to be validated as having 
a negative predictive value for EGFR-directed 
therapy (Amado et  al. 2008; Bokemeyer et  al. 
2009; Douillard et al. 2010; Karapetis et al. 2008; 
Lievre et  al. 2006). Since then, less frequent 
KRAS and NRAS alterations were also recognized 
as biomarkers of resistance to cetuximab and 
panitumumab (Douillard et  al. 2013; Stintzing 
et  al. 2016). Accordingly, the administration of 
these targeted therapies is now restricted to wild-
type KRAS and NRAS tumours, as recommended 
by all major international guidelines (Waring 
et  al. 2016). However, RAS wild-type status is 
still not sufficient to guarantee response to cetux-
imab and panitumumab, with response rates as 
low as 20% for anti-EGFR monotherapy (Price 
et al. 2016), and limited to 70% for combinations 
with multidrug chemotherapy (Heinemann et al. 
2016). Therefore, additional mechanisms con-
tributing to resistance are currently under investi-
gation, and include genetic alterations in BRAF, 
PIK3CA, MET, and PTEN (Bardelli et al. 2013; 
De Roock et  al. 2010a; Frattini et  al. 2007; 
Sartore-Bianchi et al. 2009). Alternatively, non-
genetic mechanisms of resistance are also emerg-

ing, a scenario where deregulation of microRNA 
(miRNA) expression profiles has attracted 
remarkable attention (Perkins et al. 2014). Owing 
to their dynamic and potentially reversible nature 
(Biswas and Rao 2017; Salgia and Kulkarni 
2018), knowledge on these epigenetic alterations 
holds promise of being translated into new clues 
to unveil resistance and alternative strategies to 
overcome anti-EGFR therapy limitations.

9.2	 �MicroRNAs

9.2.1	 �miRNA Structure 
and Mechanism of Action

miRNAs are a class of endogenous small non-
coding RNAs that post-transcriptionally regulate 
gene expression (Bartel 2004; Lin and Gregory 
2015). These molecules have been predicted to 
control up to 60% of all protein-coding genes 
(Friedman et al. 2009), participating in the modu-
lation of a myriad of crucial cellular processes 
such as proliferation, motility, differentiation and 
apoptosis (Vidigal and Ventura 2015). miRNA 
biogenesis involves a collection of tightly regu-
lated bioprocessing steps until the mature and 
biologically active miRNA  – a ~22-nucleotide 
single-stranded RNA  – is incorporated in the 
miRNA-induced silencing complex (miRISC). 
Following complex assembly, the mature miRNA 
guides the miRISC to target mRNAs, leading to 
gene silencing via translational repression and/or 
mRNA deadenylation and degradation. Target 
recognition proceeds predominantly through 
miRNA-mRNA incomplete base pairing, but 
involves high sequence complementarity between 
the 5′ end of the miRNA, known as the seed 
region, and the 3′-untranslated region (3’-UTR) 
of the mRNA (Krol et al. 2010; Pasquinelli 2012). 
This imperfect match and relatively short binding 
sites (6–8 base pairs) confer miRNAs with the 
ability to regulate the expression of multiple 
genes, while retaining their specificity. In turn, 
the multiplicity of targets allows for the wide-
spread action of a given miRNA on different sig-
nalling pathways, or leads to intensified miRNA 
suppressing effects when controlling multiple 

D. M. Pereira and C. M. P. Rodrigues



135

components of the same cascade. The functional 
significance of these molecules is further illus-
trated by the fact that different miRNAs may tar-
get the same mRNA, creating an even tighter 
network of gene expression regulation (Friedman 
et  al. 2009). In the rare cases of nearly perfect 
miRNA-mRNA complementarity, the target 
mRNA may also undergo endonucleolytic cleav-
age (Krol et al. 2010).

9.2.2	 �Deregulation of miRNAs 
in Colorectal Cancer 
and Therapy Resistance

Abnormal miRNA expression, processing and 
function is involved in almost every aspect of 
tumour aetiology and became a well-established 
feature of colorectal cancer (Schetter et al. 2012). 
According to their functions in the regulation of 
cancer-related pathways, miRNAs have been 
shown to behave as either tumour suppressors or 
oncogenes. Downregulation of tumour-
suppressive miRNAs and upregulation of miR-
NAs with oncogenic functions triggers the 
activation of multiple signalling pathways that 
facilitate tumour initiation, progression and 
metastasis (Svoronos et al. 2016). Increased and/
or decreased miRNA expression in tumour cells 
is often the result of mutations, genomic rear-
rangements, epigenetic modifications, alterations 
in transcriptional control, and defects in miRNA 
biogenesis machinery (Lin and Gregory 2015; 
Rupaimoole et al. 2016). In addition to the impact 
of both genetic and epigenetic alterations on 
mature miRNA expression patterns, miRNA 
proper function can also be impaired by single-
nucleotide polymorphisms or mutations within 
target mRNA 3’-UTR sequences (Sethupathy 
and Collins 2008). Importantly, these modifica-
tions are responsible for the loss of miRNA rec-
ognition elements, limiting miRNA-mediated 
regulation and providing tumour cells with the 
ability to circumvent miRNA-mRNA binding.

In colorectal cancer, miRNAs have been 
reported to contribute to tumour development, 
following distinct patterns of expression between 
normal colonic mucosa, adenomas and adenocar-

cinomas (Oberg et al. 2011; Slattery et al. 2016b). 
The profiles of miRNA deregulation might fur-
ther help in the classification of colorectal cancer 
molecular subtypes. Indeed, miRNAs are differ-
entially expressed in microsatellite stable and 
unstable tumours (Earle et al. 2010; Lanza et al. 
2007; Sarver et al. 2009; Schepeler et al. 2008), 
and correlate with CpG island methylator pheno-
types (Slattery et  al. 2011, 2016a). Moreover, 
KRAS-, BRAF- and TP53-mutant tumours carry 
altered miRNA expression signatures when com-
pared with wild-type counterparts (Mosakhani 
et  al. 2012b; Slattery et  al. 2011, 2016a). 
Ultimately, aberrant miRNA function was found 
to contribute to every colorectal cancer hallmark, 
and to affect virtually all fundamental signalling 
pathways driving tumorigenesis, including EGFR 
and its downstream signalling network 
(Mlcochova et al. 2013).

Apart from their role in colorectal cancer ini-
tiation and progression, miRNA deregulation 
might also contribute to anti-cancer therapy resis-
tance, being associated with impaired response 
rates and worse survival outcomes. In this regard, 
distinct sets of miRNAs have been shown to cor-
relate with either tumour response or tumour 
resistance to chemotherapy and chemoradiother-
apy (Boisen et  al. 2014; Della Vittoria Scarpati 
et  al. 2012; Kjersem et al. 2014; Svoboda et al. 
2012; Zhang et  al. 2014; Zhu et  al. 2017). 
Moreover, and consistent with the hypothesis that 
miRNAs might control anti-EGFR therapy 
response, miRNA profiling was demonstrated to 
efficiently predict the clinical benefits of EGFR 
blockade (Cappuzzo et al. 2014; Mlcochova et al. 
2015; Mosakhani et al. 2012a). Also, colon cancer 
cell lines with different sensitivities to cetuximab 
express distinct sets of miRNAs following treat-
ment (Ragusa et al. 2010). This chapter provides 
an overview of the main findings regarding the 
relationship between miRNAs and tumour cell 
response to EGFR-targeted antibodies in colorec-
tal cancer. Focus will be given to the potential 
uses of miRNAs as innovative therapeutic options 
to overcome resistance, and to the clinical appli-
cation of these small non-coding RNAs for the 
selection of patients who might benefit from 
cetuximab and panitumumab treatment.
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9.3	 �miRNAs as Modulators 
of Anti-EGFR Therapy 
Response in Colon Cancer

The deregulation of miRNA expression profiles 
in cancer introduced an additional layer of com-
plexity to the mechanisms promoting drug resis-
tance. Particularly, miRNAs were shown to 
control tumour cell response to EGFR-targeted 
agents by directly regulating the expression of 
several components within the EGFR cascade, 
and to sustain resistance by activating both down-
stream and parallel compensatory signals (Adem 
et  al. 2016; Migliore and Giordano 2013). The 
significance of this liaison is further emphasized 
by the demonstration that modulation of 
resistance-associated miRNAs is able to restore 
colon cancer cell response to cetuximab and 
panitumumab (Table 9.1). In the era of personal-
ized medicine, this increasing knowledge regard-
ing the impact of miRNAs in tumour cell response 
to EGFR-directed therapies will undoubtedly 
fuel the development of miRNA-based strategies 
to overcome resistance.

9.3.1	 �miRNAs and Anti-EGFR 
Therapy Resistance

The interplay between miRNAs and EGFR sig-
nalling has been widely studied in cancer. Growth 
factor-induced signalling is known to control 
miRNA expression profiles, and miRNAs can 
reciprocally regulate multiple tiers of the EGFR 
cascade (Kedmi et al. 2015). In this regard, miR-7 
has been shown to simultaneously target EGFR 
and RAF1 (Suto et al. 2015), and might itself be 
regulated at the transcriptional level by EGFR-
triggered signalling (Chou et  al. 2010). In turn, 
miR-7 overexpression sensitized human colon 
cancer cell lines harbouring a mutant KRAS to 
cetuximab treatment (Suto et al. 2015). Similarly, 
the tumour suppressor miR-133b was reported to 
directly regulate EGFR expression, while enhanc-
ing the growth inhibitory effects of cetuximab in 
wild-type and mutant KRAS colon cancer cells 
(Zhou et al. 2015).

A regulatory loop involving EGFR and the 
miR-143/miR-145 cluster has also been described. 
Both miR-143 and miR-145 are recognized for 

Table 9.1  miRNAs involved in EGFR-targeted therapy response in colorectal cancer

miRNAs Target mRNAs Impact of therapeutic modulation References
miRNAs promoting response to anti-EGFR therapy
miR-7 EGFR, RAF1 Overexpression of miR-7 precursor sensitized KRASMUT and 

BRAFMUT colon cancer cells to cetuximab
Suto et al. 
(2015)

miR-
133b

EGFR Combination with miR-133b mimics improved the growth-
inhibitory effects of cetuximab in KRASWT and KRASMUT colon 
cancer cells

Zhou et al. 
(2015)

miR-143 KRAS, BRAF, 
MEK2, ERK5, 
RREB1

Stable miR-143 or miR-145 overexpression increased 
cetuximab-mediated ADCC effected by PBMCs in KRASWT and 
KRASMUT colon cancer cells

Gomes et al. 
(2016)miR-145

miRNAs associated with resistance to anti-EGFR therapy
miR-
199a-5p

PHLPP1, CTGF, 
PIK3CA

miR-199a-5p and miR-375 inhibitors sensitized KRASMUT colon 
cancer cells to cetuximab

Mussnich 
et al. (2015)

miR-375 Overexpression of miR-375 precursor increases cetuximab-
induced cell death in KRASMUT colon cancer cells

Alam et al. 
(2017)

miR-100 DKK1, DKK3, 
ZNRF3, RNF43, 
APC2

Bicistron sponges for miR-100 and miR-125 restored cetuximab 
response in resistant KRAS/NRAS/BRAFWT colon cancer cell 
lines and mouse xenografts

Lu et al. 
(2017)miR-125

Abbreviations: ADCC antibody-dependent cellular cytotoxicity, MUT mutant, PBMCs peripheral blood mononuclear 
cells, WT wild-type
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their tumour-suppressive role in colon cancer, 
acting through direct repression of KRAS, BRAF, 
and several downstream members of the MAPK 
family (Akao et  al. 2006b; Chen et  al. 2009; 
Ibrahim et  al. 2011; Kent et  al. 2013; Pagliuca 
et al. 2013; Pekow et al. 2012). In line with this 
notion, miR-143/miR-145 overexpression 
strongly suppressed EGFR-induced colon cancer 
cell growth (Zhu et al. 2011). Conversely, EGFR 
signals have been shown to negatively regulate 
miR-143 and miR-145 expression in murine 
colonic cells (Zhu et  al. 2011). In colon cancer 
cell lines, oncogenic KRAS impaired miR-143/
miR-145 transcription by activating the RAS-
responsive element-binding protein 1 (RREB1) 
(Kent et al. 2013). RREB1 is in turn targeted by 
miR-145 itself (Kent et al. 2010), narrowing the 
feedback regulatory circuit. Finally, re-introduc-
tion of miR-143 and miR-145  in human colon 
cancer cells increased cetuximab-mediated 
ADCC and apoptosis independently of KRAS sta-
tus (Gomes et al. 2016), further suggesting that 
combined administration of tumour-suppressive 
miRNAs with systemic therapy may be an ele-
gant strategy to overcome resistance to anti-
EGFR therapies.

Using a miRNA microarray profiling plat-
form, miR-199a-5p and miR-375 were found to 
be upregulated in cetuximab-resistant colon can-
cer cells. In turn, inhibition of either miR-199a-5p 
or miR-375 sensitized colon cancer cells to 
EGFR-targeted cetuximab treatment. 
Mechanistically, these miRNAs have been pro-
posed to promote cetuximab resistance by 
directly targeting PHLPP1, which in turn inhibits 
the AKT pathway (Mussnich et  al. 2015). 
Nevertheless, contradictory results have shown 
that miR-375 suppresses the expression of CTGF, 
a ligand of EGFR, and synergizes with cetux-
imab treatment (Alam et al. 2017). Moreover, the 
catalytic subunit of PI3K has also been identified 
as a target of miR-375 (Wang et al. 2014), further 
suggesting that this miRNA might have context-
dependent opposing roles in colon cancer and, 
particularly, in EGFR signalling modulation.

Apart from the direct regulation of EGFR sig-
nalling components, the influence of miRNAs on 
alternative oncogenic pathways may also have 

significant effects on anti-EGFR therapy 
response. The long non-coding RNA MIR100HG 
and its embedded miRNAs, miR-100 and miR-
125b, were found to be upregulated in cetuximab-
resistant three-dimensional cultures of colon 
cancer cells, and in tumours from colorectal can-
cer patients who progressed on anti-EGFR ther-
apy. Interestingly, this phenomenon correlated 
with the degree of cetuximab resistance and was 
associated with both de novo and acquired resis-
tance, regardless of KRAS/BRAF mutational sta-
tus. In return, simultaneous inhibition of miR-100 
and miR-125b in cetuximab-resistant cells using 
bivalent miRNA sponges restored cetuximab 
responsiveness in vitro and in vivo, revealing a 
model in which these miRNAs cooperate to 
modulate cetuximab response (Lu et al. 2017). In 
this study, miR-100 and miR-125b were shown 
to contribute to cetuximab resistance by repress-
ing five different Wnt/β-catenin negative regula-
tors, leading to increased Wnt signalling (Lu 
et  al. 2017). Nonetheless, a crosstalk between 
Wnt and EGFR signalling in cancer has already 
been demonstrated (Hu and Li 2010) and may, at 
least in part, account for the impact of MIR100HG 
and its product miRNAs on cetuximab-resistant 
phenotype.

9.3.2	 �miRNA-Based Strategies 
to Overcome Resistance 
to Anti-EGFR Therapy

Therapeutic strategies currently in preclinical 
development include anti-miRNA constructs 
designed to repress oncogenic miRNAs, as well 
as miRNA mimics intended to replace miRNAs 
with tumour-suppressive functions (Rupaimoole 
and Slack 2017). Interestingly, the same rationale 
could be used in combination with anti-EGFR 
therapies, targeting miRNAs that contribute to 
resistance (e.g. miR-21 (Gong et  al. 2011) and 
miR-221 (Garofalo et  al. 2011)), and re-
establishing the expression of miRNAs capable 
of restoring sensitivity (e.g. miR-133b (Zhou 
et al. 2015), miR-143 and miR-145 (Gomes et al. 
2016)). Still, several examples in which specific 
miRNAs, depending on the context, behave as 
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either tumour suppressors or oncogenes have 
already been identified (Svoronos et al. 2016). Of 
note, miR-7 (Nakagawa et al. 2015; Zhang et al. 
2013), miR-199a, miR-375 (Alam et  al. 2017; 
Chao et  al. 2017; Mussnich et  al. 2015), miR-
100, and miR-125b (Chen et al. 2014b; Lu et al. 
2017; Zhang et al. 2017) are all likely to fit in this 
scenario, so care must be taken when designing 
strategies for the modulation of these dichoto-
mous miRNAs.

The rational combination of miRNA-based 
therapeutics with current cytotoxic and targeted 
agents provides an unprecedented opportunity to 
counteract tumour resistance and tailor cancer 
treatment. In this context, one of the most signifi-
cant advantages of miRNA therapeutics stems 
from their unique ability to coordinately regulate 
multiple effectors within parallel signalling path-
ways (Lam et  al. 2015), outperforming single-
target approaches by minimizing the risk of 
acquired resistance. On the other hand, this inher-
ent multi-target nature of miRNAs also translates 
into the need for an extensive characterization of 
a given miRNA targetome in order to predict 
potential side-effects and ensure the desired out-
come before it can be considered for therapeutic 
intervention. Moreover, additional challenges 
delaying the translation of miRNA-based thera-
peutics into the clinic include in vivo stability 
and tissue-specific targeting of miRNA 
mimics/inhibitors. Still, significant advances in 
RNA chemistry and systemic delivery technolo-
gies have already been made, providing new for-
mulations with low toxicity profiles and capable 
of targeted payload delivery (Pereira et al. 2013). 
Given the optimistic perspective on the field, sev-
eral miRNA-based agents have now reached clin-
ical trials for the treatment of cancer (Chakraborty 
et  al. 2017). Those include synthetic mimics of 
miR-34 (MRX34; phase I, terminated) and miR-
16 (MesomiR-1; phase I, ongoing) for the treat-
ment of multiple solid tumours, and an antisense 
inhibitor of miR-155 for patients with cutaneous 
T-cell lymphoma (MRG-106; phase I, ongoing) 
(Rupaimoole and Slack 2017). The data arising 
from these studies will hopefully provide the first 
clues to the benefits of miRNA modulation in 
clinical practice, and encourage new miRNA-

based therapeutics to progress into clinical devel-
opment as sensitizers to anticancer drugs.

9.4	 �miRNAs as Predictive 
Biomarkers for Anti-EGFR 
Therapy in Colon Cancer

In addition to their direct role in regulating 
response to EGFR-directed therapy, miRNAs 
have shown great promise as biomarkers of drug 
sensitivity (Allen and Weiss 2010) (Table  9.2). 
Owing to their small size and remarkable stabil-
ity, miRNAs can be reliably detected in a variety 
of human specimens, ranging from frozen and 
formalin-fixed paraffin-embedded tissues (Xi 
et al. 2007), to the majority of body fluids, such 
as plasma (Mitchell et  al. 2008), serum (Chen 
et  al. 2008), saliva (Park et  al. 2009) and urine 
(Hanke et al. 2010). Remarkably, these molecules 
were shown to remain stable even after multiple 
freeze-thaw cycles and prolonged exposure to 
room temperatures (Chen et  al. 2008; Mitchell 
et al. 2008). Moreover, a variety of miRNA detec-
tion methods has been developed, and include 
quantitative RT-PCR, microarray and high-
throughput sequencing platforms (Ferracin and 
Negrini 2015). In this framework, current 
research has been building to support the hypoth-
esis that miRNA expression profiles can be used 
to select patients who will benefit from a specific 
pharmacological therapy, and to avoid unneces-
sary treatment and collateral side effects on those 
who are predicted to be non-responders.

9.4.1	 �Tissue miRNAs as Biomarkers

The presence of activating RAS mutations is rec-
ognized as a major predictor of resistance to 
cetuximab and panitumumab (Waring et  al. 
2016). However, RAS mutational status only 
accounts for a portion of nonresponsive cases, 
and about 30% of metastatic colorectal cancer 
patients with wild-type RAS tumours also do not 
benefit from chemotherapeutic regimens incor-
porating anti-EGFR monoclonal antibodies 
(Heinemann et  al. 2016). Interestingly, several 
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studies have addressed this issue, suggesting 
miRNAs as candidate biomarkers of response to 
EGFR-targeted agents in a wild-type KRAS back-
ground. In this context, upregulation of miR-
31-3p and/or miR-31-5p was found to be 
associated with poor response (Mosakhani et al. 
2012a) and shorter progression-free survival 
(PFS) (Igarashi et al. 2015; Manceau et al. 2014) 
in metastatic colorectal patients treated with 
cetuximab or panitumumab. A negative correla-
tion between miR-31-3p/5p expression levels and 
time-to-progression (TTP) after cetuximab treat-

ment has also been demonstrated (Mlcochova 
et al. 2015). Finally, a follow-up to these studies 
recently confirmed the negative predictive value 
of miR-31-3p in patients receiving cetuximab-
based chemotherapy for operable colorectal liver 
metastases (Pugh et al. 2017), adding proof to the 
strength of miR-31 in the identification of wild-
type KRAS patients who are unlikely to respond 
to anti-EGFR therapy. On the other hand, 
increased expression of the miRNAs from the 
miR-99a/let-7c/miR-125b cluster, together or 
individually, correlated with significantly longer 

Table 9.2  miRNA biomarkers for anti-EGFR therapy response in metastatic colorectal cancer

miRNAs Therapy regimen n Source Method Clinical observation References
Wild-type KRAS
miR-31 Anti-EGFR mAbs (alone 

or with irinotecan)
33 FFPE 

tissue
Microarray Negative correlation 

with therapy response
Mosakhani 
et al. (2012a)

Anti-EGFR mAbs (alone 
or combined)

132 FFPE; 
frozen 
tissue

Microarray Positive correlation 
with risk of 
progression

Manceau et al. 
(2014)

Anti-EGFR mAbs 
(monotherapy)

88 FFPE 
tissue

qRT-PCR Negative relation with 
PFS (RAS/BRAFWT)

Igarashi et al. 
(2015)

Anti-EGFR mAbs (alone 
or combined)

69 FFPE 
tissue

Microarray Negative correlation 
with TTP (RASWT)

Mlcochova 
et al. (2015)

miR-
592

Anti-EGFR mAbs (alone 
or with irinotecan)

33 FFPE 
tissue

Microarray Positive association 
with therapy response

Mosakhani 
et al. (2012a)

miR-
99a

Anti-EGFR mAbs (alone 
or combined)

110 FFPE 
tissue

Microarray Positive correlation 
with PFS and OS

Cappuzzo et al. 
(2014)

let-7c
miR-
125b
miR-
181a

Anti-EGFR mAbs (alone 
or combined)

54 FFPE 
tissue

qRT-PCR Positive association 
with PFS

Pichler et al. 
(2014)

miR-
345

Cetuximab (plus 
irinotecan)

138 Whole 
blood

Microarray Negative correlation 
with response and PFS

Schou et al. 
(2014)

Mutant KRAS
let-7a Cetuximab (plus 

irinotecan)
59 FFPE 

tissue
qRT-PCR Positive correlation 

with PFS and OS
Ruzzo et al. 
(2012)

miR-
200b

Cetuximab (plus 5-FU, 
oxaliplatin and 
bevacizumab)

15 FFPE 
tissue

qRT-PCR Positive correlation 
with PFS

Mekenkamp 
et al. (2012)

miR-
143

Cetuximab (plus 5-FU, 
oxaliplatin and 
bevacizumab)

15 FFPE 
tissue

qRT-PCR Negative correlation 
with PFS

Mekenkamp 
et al. (2012)

miR-
193a

Anti-EGFR mAbs 
(combined therapy)

45 FFPE 
tissue

Microarray; 
qRT-PCR

Positive association 
with PFS (KRAS/
BRAFWT/MUT)

Takahashi et al. 
(2017)

Unknown KRAS status
miR-
155

Cetuximab (plus 5-FU 
and oxaliplatin)

15 Serum qRT-PCR Increased in 
non-responders

Chen et al. 
(2014a)

Abbreviations: 5-FU 5-fluorouracil, FFPE formalin-fixed paraffin-embedded, mAbs monoclonal antibodies, OS overall 
survival, PFS progression free survival, qRT-PCR quantitative RT-PCR, TTP time to progression, WT wild-type
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PFS and overall survival (OS) rates in wild-type 
KRAS metastatic colorectal patients receiving 
anti-EGFR monoclonal antibodies (Cappuzzo 
et  al. 2014). Similarly, patients with high miR-
181a expression levels had better PFS than those 
from the low expression group, suggesting that 
this miRNA may also be predictive of benefit to 
cetuximab and panitumumab treatment in the 
wild-type KRAS population (Pichler et al. 2014).

Conversely, although wild-type KRAS status 
has been established as a necessary condition for 
anti-EGFR treatment indication, a small fraction 
of chemotherapy-refractory patients carrying 
KRAS mutations might still benefit from this 
therapy (De Roock et al. 2010b). In this frame-
work, mechanisms of post-transcriptional inhibi-
tion of mutant KRAS could be of clinical 
relevance, introducing an additional scenario 
where miRNAs may become interesting tools to 
guide treatment choice. The human KRAS 3’UTR 
contains multiple let-7 complementary sites, sub-
jecting KRAS mRNA to let-7-mediated regula-
tion (Akao et al. 2006a). In turn, let-7 has been 
suggested to provide survival advantages by tar-
geting mutant KRAS under anti-EGFR therapy. 
Indeed, in mutant KRAS metastatic colorectal 
patients receiving cetuximab-based chemother-
apy, upregulation of let-7a correlated with 
improved PFS and OS (Ruzzo et al. 2012). Still, 
the presence of a specific 3’UTR polymorphism 
known to compromise let-7 binding to KRAS 
mRNA (LCS6) failed to correlate with survival 
outcomes in patients treated with anti-EGFR 
therapy (Sha et al. 2014). As for let-7a, increased 
expression of miR-200b (Mekenkamp et  al. 
2012) or miR-193a-3p (Takahashi et  al. 2017) 
was found to be associated with significant ben-
efits in terms of PFS in mutant KRAS tumours 
treated with cetuximab. Interestingly, miR-200 
and miR-193 families are also known to regulate 
KRAS (Kopp et  al. 2014; Seviour et  al. 2017), 
reinforcing the idea that miRNAs interfering with 
KRAS-signalling may have predictive value in 
the mutant population. However, improved PFS 
has further been described to correlate with 
downregulation of the KRAS-targeting miR-143 
(Chen et  al. 2009; Mekenkamp et  al. 2012), a 
contradicting observation that clearly reflects the 

complexity of mechanisms dictating EGFR-
targeted therapy response.

Although the analysis of miRNA expression 
profiles directly from tissues has greatly improved 
our knowledge on the factors predicting therapy 
response and survival outcomes, the invasive 
nature of the procedures required for sample col-
lection limits its application. Interestingly, the 
discovery of circulating miRNAs may offer an 
opportunity to replace tissue biopsies by easily 
obtainable blood products, and translate miRNA 
biomarkers into clinical decision-making.

9.4.2	 �Circulating miRNAs 
as Biomarkers

Circulating miRNAs possess a unique set of fea-
tures providing the basis for their development as 
non-invasive cancer biomarkers. First of all, cell-
free miRNA molecules are remarkably stable in 
blood flow. In this regard, extracellular vesicles 
(Hunter et al. 2008; Valadi et al. 2007), lipopro-
teins (Vickers et al. 2011) and ribonucleoprotein 
complexes (Arroyo et  al. 2011) have all been 
found to shield miRNAs from RNases in circula-
tion. Moreover, extracellular miRNA expression 
profiles were shown to mirror the patterns of 
deregulation observed in corresponding tumour 
tissues (El Sharawy et al. 2016), providing acces-
sible material to follow miRNA dynamics in can-
cer and to evaluate the effects of therapeutic 
interventions. Finally, these miRNA candidates 
are also expected to offer improved specificity 
and sensitivity over currently available protein 
markers and screening tests (Schwarzenbach 
et al. 2014; Sun et al. 2012).

The first reports addressing the correlation 
between tumour-associated circulating miRNAs 
and response to anti-EGFR therapies in colorec-
tal cancer are now emerging. For instance, serum 
levels of miR-155 were upregulated in metastatic 
disease, and declined to values found in healthy 
controls after surgery and cetuximab-based adju-
vant chemotherapy in patients who responded to 
therapy, but remained elevated in non-responsive 
cases (Chen et al. 2014a). Also, high levels of cir-
culating miR-345 in whole blood were found to 
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be associated with poor response and decreased 
PFS in wild-type KRAS metastatic colorectal 
cancer patients receiving third-line cetuximab 
plus irinotecan therapy (Schou et  al. 2014). 
Together, these studies support the notion that 
miRNAs in circulation may become powerful 
non-invasive tools to monitor anti-EGFR therapy 
response and predict resistance. However, lack of 
specificity, reproducibility and consensus for 
data normalization remain as challenges to over-
come, encouraging the implementation of accu-
rate and standardized guidelines for miRNA 
isolation and quantitation in serum and plasma 
(Shigeyasu et  al. 2017; Witwer 2015). Despite 
these apparent limitations, a surprising number of 
clinical trials using miRNAs as candidate bio-
markers in their protocols are already undergo-
ing, and include studies aiming to evaluate 
miRNA levels during exposure to targeted agents, 
as well as studies assessing circulating miRNAs 
as indicators of therapy response (Ferracin and 
Negrini 2015).

9.5	 �Concluding Remarks

Since the initial discovery of miRNA deregula-
tion in colorectal cancer, it became clear that 
these small non-coding RNAs might participate 
in the underlying mechanisms of anti-EGFR 
therapy resistance. In this context, rational com-
bination of EGFR-targeted agents with miRNA 
therapeutics emerged as a promising strategy to 
maximize treatment efficacy. However, one of the 
main obstacles for the development of miRNA-
based therapeutic strategies remains the identifi-
cation of context-relevant miRNA candidates. 
Indeed, current treatment options for metastatic 
colorectal cancer heavily rely on combination 
protocols, whereas most of the studies here 
reviewed have been designed to evaluate the 
impact of miRNA modulation on anti-EGFR 
monotherapy. Thereby, and before considering 
the incorporation of miRNA-based therapeutics 
in colorectal cancer treatment, it will be crucial to 
understand the contribution of miRNAs in the 
response to multidrug regimens, a scenario where 
additional mechanisms of resistance are expected 

to arise. Ultimately, miRNAs with targets in more 
than one resistance-associated pathway will be 
the best candidates to progress into clinical eval-
uation. It is also important to emphasize that 
tumour cell response to cetuximab and panitu-
mumab appears to be predominantly influenced 
by miRNAs with validated targets within the 
EGFR signalling network. Still, further studies 
will be required to better characterize the array of 
miRNAs controlling anti-EGFR therapy 
response, increasing the probabilities of finding 
valid targets for miRNA modulation in cancer 
treatment. Finally, the comprehensive character-
ization of the repertoire of oncogenes and tumour 
suppressors targeted by any potential miRNA 
candidate will be crucial to minimize the risk of 
toxicity and unwanted side-effects.

In addition, miRNAs are attractive candidates 
for the identification of biomarkers outperform-
ing RAS mutation status in predicting response to 
EGFR blockade. Particularly, special focus has 
been given to the potential of circulating miR-
NAs as minimally invasive biomarkers of 
response. However, the expression of cancer-
specific miRNAs in serum/plasma can be masked 
by miRNAs from unrelated inflammatory states 
and different tissue origins (e.g. blood, endothe-
lial and liver cells), hampering the interpretation 
of single miRNA biomarkers. Combination of 
panels of multiple miRNAs should be considered 
to enhance sensitivity and specificity in selecting 
patients who will benefit from cetuximab- or 
panitumumab-based treatments. Even more 
promising will be the identification of tumour 
signatures integrating miRNA expression pro-
files with clinicopathological features.

Remarkably, in vitro models capable of reca-
pitulating tumour heterogeneity and microenvi-
ronment are being developed for the identification 
of mechanisms leading to anti-EGFR therapy 
resistance (Luraghi et al. 2018), holding incredi-
ble promise to enhance the precision with which 
personalized medicine is delivered in metastatic 
colorectal cancer. As more miRNAs are tested in 
large-scale validation studies and clinical trials, 
either as biomarkers or cancer therapeutics, the 
clinical expectations for these tiny molecules will 
likely continue to grow.
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