
Traf: A Graphical Proof Tree Viewer
Cooperating with Coq Through Proof

General

Hideyuki Kawabata(B), Yuta Tanaka, Mai Kimura, and Tetsuo Hironaka

Hiroshima City University,
3-4-1 Ozuka-higashi, Asa-minami, Hiroshima 731-3194, Japan

kawabata@hiroshima-cu.ac.jp

Abstract. Traf is a graphical proof tree viewer that cooperates with
the Coq proof assistant and is controlled through Proof General. Among
other proof tree viewers and tools for browsing proof scripts, Traf is
well suited for daily proving of Coq problems as it is easy to use, non-
disturbing, and helpful. Proof trees dynamically updated by Traf during
interactive sessions with Proof General are informative and as readable
as Gentzen-style natural deduction proofs. Traf facilitates browsing and
investigating tactic-based proof scripts, which are often burdensome to
read. Traf can also be used for typesetting proof trees with LaTEX. The
current version of Traf was developed as an extension to the Prooftree
proof tree viewer and makes use of many of its facilities. Traf provides
functionalities that are useful to both novice Coq users and experienced
Proof General users.

Keywords: Proof tree viewer · Interactive theorem prover · Coq
Proof General · Readability of proof scripts

1 Introduction

Proof assistants are widely used for proving mathematical theorems [14,15] and
properties of software [1,4] and for developing dependable software [22]. The
power of mechanized verification by using proof assistants has been accepted, and
such verification is now thought to be indispensable. Therefore, the readability
and maintainability of proof scripts have become major concerns [10].

Among the many proof assistants [26], there are two major styles for writing
proof scripts; the tactic-based style and the declarative style [17,25]. Although
the former is preferable for writing concise proofs interactively by making use
of the theorem prover’s automation facilities, it is burdensome to read the proof
scripts. Conversely, although proof scripts written in the latter style are informa-
tive and readable without tools, writing intermediate formulae could be labori-
ous. To alleviate this situation, several tactic-based systems have been extended
to accept declarative proofs [8,13,25], and several systems offer a facility for
rendering tactic-based proof scripts in a pseudo-natural language [5,9,12].
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 157–165, 2018.
https://doi.org/10.1007/978-3-030-02768-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02768-1_9&domain=pdf


158 H. Kawabata et al.

Since a proof is not usually in a single-threaded structure, visualizing proofs
in graphical representations could be an effective complementary approach for
improving the readability of proof scripts. There have been many studies on
graphical representations of proofs; IDV [24] can graphically render derivations
at various levels of granularity. ProofWeb [18] uses the Coq proof assistant with
specialized tactics to help the user learn Gentzen-style natural deduction proofs.
ProofTool [11] offers a generic framework for visualizing proofs and is equipped
with a method for visualizing large-scale proofs as Sunburst Trees [19]. ViPrS
is an interactive visualization tool for large natural deduction proof trees [7].
Mikiβ [20] offers a set of APIs for constructing one’s own proof checker with
facilities for building proof trees by using a GUI. Pcoq [3] had a GUI for proving
lemmas by using a mouse, but it is no longer available. The Prooftree proof tree
viewer [23] dynamically draws a proof tree while the user interacts with Coq
through Proof General, although the shape of the tree is rather abstract.

In this paper, we present a graphical tool called Traf that constructs proof
trees automatically while the user is interacting with Coq through Proof Gen-
eral. Traf is different from ordinary proof viewers and proof translators in that
it is designed to guide interactive theorem proving by using a full-fledged proof
assistant through a standard tactic-based interface. In other words, Traf is a
helper tool for enhancing both the writability and readability of proofs. The
proof tree shown in Traf’s window looks like a readable Gentzen-style natural
deduction proof. The user does not have to worry about operating Traf since
the tree dynamically grows as the proving process proceeds. Traf reorganizes
the layout of the tree adaptively in accordance with changes in the proof struc-
ture caused by modifications to the proof script. It can automatically shrink
unfocused branches, enabling the user to concentrate on information related to
the current subgoal of a potentially large proof tree. Traf’s window serves as an
informative monitor that displays details of the steps in the proof.

Traf can also be used as a proof script viewer. Arbitrary subtrees can be
shrunk so as to enable the entire structure of the proof to be grasped. Detailed
information such as the assumptions and the subgoal at each proof step can be
examined later. Since no information for the corresponding proof script is lost,
the constructed proof tree can be directly used as proof documentation. With
Traf the user can obtain a LaTEX description of the tree for documentation.

The rest of the paper is organized as follows. In Sect. 2, we describe the
structure of a tree constructed by Traf. We discuss the usages and effectiveness
of Traf in Sects. 3 and 4. In Sect. 5, we summarize the strengths and weaknesses
of Traf. We conclude in Sect. 6 with a brief summary and mention of future work.

The current version of Traf was constructed based on Prooftree [23] and is
available at https://github.com/hide-kawabata/traf.

2 Visualization of a Proof Script as a Proof Tree

Figure 1 shows a proof script for Coq and the corresponding proof tree con-
structed by Traf. As shown in Fig. 1(b), a proof tree constructed by Traf looks

https://github.com/hide-kawabata/traf


Traf: A Graphical Proof Tree Viewer 159

Theorem pq_qp: forall P Q: Prop,
P \/ Q -> Q \/ P.

Proof.
intros P Q.
intros H.
destruct H as [HP | HQ].
right. assumption.
left. assumption.

Qed.
(a) Proof script for Coq (b) Proof tree constructed by Traf

Fig. 1. Proof script for Coq and corresponding proof tree constructed by Traf.

A
(∨-intro 1)

A ∨ B

B
(∨-intro 2)

A ∨ B

A[y/x]
(∀-intro)∀x.A

A ∨ B

[A]
|
C

[B]
|
C

(∨-elim)
C

[A]
|
B

(→-intro)
A → B

Fig. 2. Natural deduction inference rules.

like an ordinary proof tree for Gentzen-style natural deduction: it is apparent
that the natural deduction inference rules shown in Fig. 2 are combined for con-
structing the tree shown in Fig. 1(b). However, the details are different. A proof
tree used in proof theory is a tree in which each node is a statement (or sub-
goal), and each line with a label indicates the application of the inference rule or
axiom identified by the label. In the case of a proof tree constructed by Traf, the
label attached to a line is not the name of an inference rule but rather is a proof
command given to Coq at the proof step. Nodes written over a line are subgoals
generated by the application of the proof command to the subgoal written under
the line. When a complicated proof command combined by tacticals or a tactic
that invokes an automated procedure is applied to a subgoal, the effect might
not be as readily understandable as a Gentzen-style proof. However, a proof
tree constructed by Traf is much more informative than the corresponding proof
script.

Since some commands change only assumptions (and not subgoals), all the
subgoals that appear in the course of a proof and all the proof commands used
in the proof together and using them to construct a proof tree is not enough to
enable the user to mentally reconstruct the proof session by simply looking at
the proof tree. For example, the user will not recognize the application of the
command “apply H.” unless the meaning of H is apparent. Traf makes a proof
tree as readable as possible by

1. showing the assumptions used explicitly as branches of the proven subgoals
over the line when a command refers to assumptions and



160 H. Kawabata et al.

2. indicating the steps that do not change subgoals, i.e., the steps that modify
only assumptions, by using a line in a specific style, such as bold ones.

The first measure results in proof trees that resemble Gentzen-style natural
deduction proofs where the discharged assumptions are explicitly indicated.
Although the second measure might not be the best way of illustrating proof
scripts, it does ensure that each proof step actually taken is clearly recognizable.

(a) Verbose proof script makes proof tree complicated

(b) Use of tacticals and automation could simplify proof tree

Fig. 3. Two proof trees constructed by Traf corresponding to two versions of proof for
same lemma.

Figure 3 shows two proof trees constructed by Traf corresponding to two
versions of proof for the same lemma. In Fig. 3(a), some nodes are shrunk. The
proof corresponding to the tree in Fig. 3(b) is essentially the same as that in
Fig. 3(a), but the latter tree is smaller due to the use of tacticals. The shape of a
proof tree constructed by Traf corresponds exactly to the structure of the proof
script.1 Unlike tools such as Matita [5], which generates descriptions of proofs
by analyzing proof terms, Traf simply reflects the structure of a proof script in
the proof tree.

The example tree in Fig. 3(b) includes a proof step at which the subgoal does
not change. The use of tactics such as assert for controlling the flow of a proof
can be treated naturally, as shown in Fig. 3.

Figure 4 shows the proof tree for a proof script using SSReflect [16] tactics.
As shown in Figs. 1(b), 3, and 4, the major tactics of Coq and SSReflect are
recognized by Traf.2 At each proof step, Traf extracts the identifiers used in
1 Although non-logical tactics such as cycle and swap can be used in proof scripts,

the resulting proof trees are not affected by their use.
2 The use of goal selectors is currently not supported.



Traf: A Graphical Proof Tree Viewer 161

Fig. 4. Use of SSReflect [16] tactics.

each proof command, checks whether they exist in the set of local assumptions
available at that step, and explicitly displays the assumptions used. Externally
defined identifiers are ignored.

3 Traf as a Proving Situation Monitor

Once Traf is enabled, a proof tree is constructed in an external window as shown
in Fig. 5. The tree’s shape changes as the proving process proceeds. The user
does not have to interact with Traf’s window while proving a theorem since Traf
automatically updates the proof tree by communicating with Proof General.

(a) Proof General
(b) Traf’s window for “Current Goal” mode

Fig. 5. Screenshots illustrating scene in proving process using Coq through Proof Gen-
eral accompanied by Traf. While user interacts with Coq through Proof General, as
shown in (a), Traf automatically updates the corresponding proof tree, as shown in
(b). (Color figure online)

The Traf window shows a summary of the situation facing the user during
the process of proving a theorem. It has two panes, as shown in Fig. 5(b). The
lower pane shows the proof tree as currently constructed. Finished subgoals are
shown in green, and the path from the root to the current subgoal is shown in
blue. Other subgoals to be proved, if any, are shown in black.3

3 Colors can be specified by the user.



162 H. Kawabata et al.

The upper pane of the window shows the assumptions and the subgoal at
the current state. When the user selects a subgoal on the tree by clicking the
mouse, Traf marks the subgoal on the tree as selected and shows the assumptions
at the state facing the subgoal in the upper pane. When the user selects a
proof command, Traf shows in the upper pane the corresponding raw text string
without abbreviation that was entered by the user.4

When a proof command is entered, Traf draws a horizontal line segment over
the ex-current subgoal and places the input proof command at the right end of
the line. Subgoals generated by applying the command are placed over the line.
When the user retracts proof steps, the tree’s shape is also restored. A proof tree
constructed by Traf can be seen as a record of proof step progress.

When an entered command finishes a subgoal, Traf changes the subtree’s
color to indicate that the branch is finished and switches its focus to one of
the remaining subgoals in the proof tree window. At every moment, the current
subgoal as well as every node on the path from the root to the subgoal is shown
in blue in order to distinguish the current branch from other proven/unproven
branches. We call the path from the root to the current subgoal the current
path. Traf offers “Current Goal” display mode in which nodes that are not on
the current path are automatically shrunk, as shown in Fig. 5(b).

Finishing a proof, i.e., entering the “Qed.” or “Defined.” command to Coq
via Proof General, terminates communication between Traf and Proof General.
Traf then freezes the proof tree in the window. The window remains on the
screen, and the user can interact with it: clicking on a proof command node
or a subgoal node invokes a function to display the detailed information at the
corresponding proof step.

4 Traf as a Proof Script Browser

Traf can also be used as a tool for browsing existing proof scripts by transforming
them into proof trees by using Proof General and Coq. In addition to checking
each step by looking at explicitly displayed proof commands, assumptions, and
subgoals, the user can consult Traf for all assumptions that were valid at any
step in the course of the proof.

If the proof tree becomes very large, the complete tree cannot be seen in
Traf’s window. Traf thus offers, in addition to scrollbars, a facility for shrinking
an arbitrary node, which is helpful for setting off specific portions of the tree.
Any subtree can be shrunk/expanded by selecting its root node and pressing a
button at the bottom of the window.

Traf can generate LaTEX descriptions of the displayed tree for typesetting by
using prftree package.5 The variation of the details of the tree, i.e., the existence
of shrunk branches and/or unproven branches, is reflected in the rendered tree.

4 Command texts that are longer than the predefined length are placed on the tree in
an abbreviated form. The threshold length is an adjustable parameter.

5 https://ctan.org/pkg/prftree.

https://ctan.org/pkg/prftree


Traf: A Graphical Proof Tree Viewer 163

5 Discussion: Strengths and Weaknesses of Traf

Many tools have been proposed for facilitating proof comprehension. Many
of them visualizes proofs graphically [7,11,19,24], and some offer facilities for
explaining proofs [6,12,21]. Some have graphical interfaces for interactive the-
orem proving [3,18,20]. Compared with these systems, Traf’s strength is its
usefulness as a graphical and informative monitor of the proof states while prov-
ing lemmas by using a tactic-based language through a standard interface. In
addition, Traf is easy to use and requires no cost for Proof General users. It can
be used with the Emacs editor by adding the settings for Traf to the Emacs
configuration file.

As a viewer for proof scripts, Traf’s approach resembles that of the Coqatoo
tool [6] in the sense that both systems enhance the readability of tactic-based
proof scripts by presenting the scripts with appropriate information. However,
unlike Coqatoo, Traf can be used while proving theorems interactively.

ProofWeb [18] has functionality similar to that of Traf. Although its web
interface is promising for educational use, its tree drawing facility is a bit restric-
tive and not very quick. It therefore would not be a replacement for the combi-
nation of Proof General and Traf.

One weakness of Traf mainly stems from its style, i.e., the use of trees for
representing proof scripts. Complicated proofs might be better expressed in text
format, and other approaches, such as those of Coqatoo [6] and Matita [5], might
be more suitable. For browsing extremely large proofs, a method for visualizing
large-scale proofs as Sunburst Trees [19] would be preferable. Nevertheless, Traf
is appropriate for use as a proving situation monitor.

Another weakness is the environment required. Since the current version
of Traf depends on the LablGtk2 GUI library [2], the techniques usable for
the graphical representation are restricted. In addition, Traf’s implementation
depends on that of Proof General.

The current version of Traf is based on Prooftree [23], which was developed
by Hendrik Tews. The facilities for communicating with Proof General, many of
its basic data structures, and the framework for drawing trees were not changed
much. Some of Traf’s functionalities, such as those described in Sects. 3 and 4,
are based on those in Prooftree. While Traf owes much to Prooftree, it offers
added value due to the functionalities introduced for guiding interactive proving
sessions by displaying informative proof trees.

6 Conclusion and Future Work

The Traf graphical proof tree viewer cooperates with Coq through Proof General.
A user who proves theorems by using Coq through Proof General can thus take
advantage of Traf’s additional functionalities at no cost.

Future work includes enhancing Traf to enable it to manipulate multiple
proofs, to refer to external lemmas and axioms, and to better handle lengthy
proof commands.



164 H. Kawabata et al.

References

1. The compcert project. http://compcert.inria.fr
2. Lablgtk2. http://lablgtk.forge.ocamlcore.org
3. Pcoq: a graphical user-interface for coq. http://www-sop.inria.fr/lemme/pcoq/
4. The sel4 microkernel. http://sel4.systems
5. Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: User interaction with the matita

proof assistant. J. Autom. Reason. 39(2), 109–139 (2007)
6. Bedford, A.: Coqatoo: generating natural language versions of coq proofs. In: 4th

International Workshop on Coq for Programming Languages (2018)
7. Byrnes, J., Buchanan, M., Ernst, M., Miller, P., Roberts, C., Keller, R.: Visualizing

proof search for theorem prover development. Electron. Notes Theor. Comput. Sci.
226, 23–38 (2009)

8. Corbineau, P.: A declarative language for the coq proof assistant. In: Miculan,
M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68103-8 5

9. Coscoy, Y., Kahn, G., Théry, L.: Extracting text from proofs. In: Dezani-
Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 109–123.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014048

10. Curzon, P.: Tracking design changes with formal machine-checked proof. Comput.
J. 38(2), 91–100 (1995). https://doi.org/10.1093/comjnl/38.2.91

11. Dunchev, C., et al.: Prooftool: a GUI for the GAPT framework. In: Proceedings
10th International Workshop On User Interfaces for Theorem Provers (2013)

12. Fiedler, A.: P.rex : an interactive proof explainer. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 416–420. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 33

13. Giero, M., Wiedijk, F.: MMode, a Mizar Mode for the proof assistant coq. Technical
report, Nijmegen Institute for Computing and Information Sciences (2003)

14. Gonthier, G.: A computer-checked proof of the four colour theorem (2006). http://
www2.tcs.ifi.lmu.de/∼abel/lehre/WS07-08/CAFR/4colproof.pdf

15. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 14

16. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in coq. J.
Form. Reason. 3(2), 95–152 (2010)

17. Harrison, J.: A mizar mode for HOL. In: Goos, G., Hartmanis, J., van Leeuwen,
J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125,
pp. 203–220. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0105406

18. Hendriks, M., Kaliszyk, C., van Raamsdonk, F., Wiedijk, F.: Teaching logic using
a state-of-the-art proof assistant. Acta Didact. Napoc. 3, 35–48 (2010)

19. Libal, T., Riener, M., Rukhaia, M.: Advanced proof viewing in ProofTool. In:
Eleventh Workshop on User Interfaces for Theorem Provers (2014)

20. Sakurai, K., Asai, K.: MikiBeta : a general GUI library for visualizing proof trees.
In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 84–98. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-20551-4 6

21. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: a tool for proof re-
animation. In: Autexier, S., et al. (eds.) CICM 2010. LNCS (LNAI), vol. 6167, pp.
440–454. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14128-
7 37

http://compcert.inria.fr
http://lablgtk.forge.ocamlcore.org
http://www-sop.inria.fr/lemme/pcoq/
http://sel4.systems
https://doi.org/10.1007/978-3-540-68103-8_5
https://doi.org/10.1007/BFb0014048
https://doi.org/10.1093/comjnl/38.2.91
https://doi.org/10.1007/3-540-45744-5_33
http://www2.tcs.ifi.lmu.de/~abel/lehre/WS07-08/CAFR/4colproof.pdf
http://www2.tcs.ifi.lmu.de/~abel/lehre/WS07-08/CAFR/4colproof.pdf
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/BFb0105406
https://doi.org/10.1007/978-3-642-20551-4_6
https://doi.org/10.1007/978-3-642-14128-7_37
https://doi.org/10.1007/978-3-642-14128-7_37


Traf: A Graphical Proof Tree Viewer 165

22. Tesson, J., Hashimoto, H., Hu, Z., Loulergue, F., Takeichi, M.: Program calculation
in coq. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp.
163–179. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-
5 10

23. Tews, H.: Prooftree. https://askra.de/software/prooftree/
24. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. Electron. Notes

Theor. Comput. Sci. 174(2), 109–123 (2007)
25. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reason. 29,

389–411 (2002)
26. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.

Springer, Heidelberg (2006). https://doi.org/10.1007/11542384

https://doi.org/10.1007/978-3-642-17796-5_10
https://doi.org/10.1007/978-3-642-17796-5_10
https://askra.de/software/prooftree/
https://doi.org/10.1007/11542384

	Traf: A Graphical Proof Tree Viewer Cooperating with Coq Through Proof General
	1 Introduction
	2 Visualization of a Proof Script as a Proof Tree
	3 Traf as a Proving Situation Monitor
	4 Traf as a Proof Script Browser
	5 Discussion: Strengths and Weaknesses of Traf
	6 Conclusion and Future Work
	References




