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Abstract. This paper presents the Scallina prototype: a new tool which
allows the translation of verified Coq programs to Scala. A typical work-
flow features a user implementing a functional program in Gallina, the
core language of Coq, proving this program’s correctness with regards to
its specification and making use of Scallina to synthesize readable Scala
components.

This synthesis of readable, debuggable and traceable Scala compo-
nents facilitates their integration into larger Scala or Java applications;
opening the door for a wider community of programmers to benefit from
the Coq proof assistant. Furthermore, the current implementation of the
Scallina translator, along with its underlying formalization of the Scall-
ina grammar and corresponding translation strategy, paves the way for
an optimal support of the Scala programming language in Coq’s native
extraction mechanism.
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1 Introduction

In our modern world, software bugs are becoming increasingly detrimental to
the engineering industry. As a result, we have recently witnessed interesting
initiatives that use formal methods, potentially as a complement to software
testing, with the goal of proving a program’s correctness with regards to its
specification. A remarkable example of such an initiative is a U.S. National
Science Foundation (NSF) expedition in computing project called “the Science
of Deep Specification (DeepSpec)” [17].

Since the manual checking of realistic program proofs is impractical or, to
say the least, time-consuming; several proof assistants have been developed to
provide machine-checked proofs. Coq [12] and Isabelle/HOL [14] are currently
two of the world’s leading proof assistants; they enable users to implement a
program, prove its correctness with regards to its specification and extract a
proven-correct implementation expressed in a given functional programming lan-
guage. Coq has been successfully used to implement CompCert, the world’s first
formally verified C compiler [8]; whereas Isabelle/HOL has been successfully
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used to implement seL4, the world’s first formally verified general-purpose oper-
ating system kernel [7]. The languages that are currently supported by Coq’s
extraction mechanism are OCaml, Haskell and Scheme [11], while the ones that
are currently supported by Isabelle/HOL’s extraction mechanism are OCaml,
Haskell, SML and Scala [4].

The Scala programming language [15] is considerably adopted in the indus-
try. It is the implementation language of many important frameworks, including
Apache Spark, Kafka, and Akka. It also provides the core infrastructure for
sites such as Twitter, Coursera and Tumblr. A distinguishing feature of this lan-
guage is its practical fusion of the functional and object-oriented programming
paradigms. Its type system is, in fact, formalized by the calculus of Dependent
Object Types (DOT) which is largely based on path-dependent types [1]; a lim-
ited form of dependent types where types can depend on variables, but not on
general terms.

The Coq proof assistant, on the other hand, is based on the calculus of induc-
tive constructions; a Pure Type System (PTS) which provides fully dependent
types, i.e. types depending on general terms [3]. This means that Gallina, the core
language of Coq, allows the implementation of programs that are not typable in
conventional programming languages. A notable difference with these languages
is that Gallina does not exhibit any syntactic distinction between terms and
types [12].1

To cope with the challenge of extracting programs written in Gallina to
languages based on the Hindley-Milner [5,13] type system such as OCaml and
Haskell, Coq’s native extraction mechanism implements a theoretical function
that identifies and collapses Gallina’s logical parts and types; producing untyped
λ-terms with inductive constructions that are then translated to the designated
target ML-like language, i.e. OCaml or Haskell. During this process, unsafe type
casts are inserted where ML type errors are identified [10]. For example, these
unsafe type casts are currently inserted when extracting Gallina records with
path-dependent types. However, as mentioned in Sect. 3.2 of [11], this specific
case can be improved by exploring advanced typing aspects of the target lan-
guages. Indeed, if Scala were a target language for Coq’s extraction mechanism,
a type-safe extraction of such examples could be done by an appropriate use of
Scala’s path-dependent types.

It is precisely this Scala code extraction feature for Coq that constitutes the
primary aim of the Scallina project. Given the advances in both the Scala pro-
gramming language and the Coq proof assistant, such a feature would prove both
interesting and beneficial for both communities. The purpose of this tool demon-
stration paper is to present the Scallina prototype: a new tool which allows the
translation of verified Coq programs to Scala. A typical workflow features a user
implementing a functional program in Coq, proving this program’s correctness
with regards to its specification and making use of Scallina to synthesize read-
able Scala components which can then be integrated into larger Scala or Java
applications. In fact, since Scala is also interoperable with Java, such a feature

1 Except that types cannot start by an abstraction or a constructor.
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would open the door for a significantly larger community of programmers to
benefit from the Coq proof assistant.

Section 2 of this paper exposes the overall functionality of the tool while
Sect. 3 portrays its strengths and weaknesses and Sect. 4 concludes. The source
code of Scallina’s implementation is available online2 along with a command line
interface, its corresponding documentation and several usage examples.

2 Integrating Verified Components into Larger
Applications

Coq’s native extraction mechanism tries to produce readable code; keeping in
mind that confidence in programs also comes via the readability of their sources,
as demonstrated by the Open Source community. Therefore, Coq’s extraction
sticks, as much as possible, to a straightforward translation and emphasizes the
production of readable interfaces with the goal of facilitating the integration
of the extracted code into larger developments [9]. This objective of seamless
integration into larger applications is also shared by Scallina. In fact, the main
goal of Scallina is to extract, from Coq, Scala components that can easily be
integrated into existing Scala or Java applications.

Although these Scala components are synthesized from verified Coq code,
they can evidently not guarantee the correctness of the larger Scala or Java appli-
cation. Nevertheless, the appropriate integration of such verified components sig-
nificantly increases the quality-level of the whole application with regards to its
correctness; while, at the same time, reducing the need for heavy testing.

Indeed, even if a purely functional Scala component is verified with regards
to its specification, errors caused by the rest of the application can still mani-
fest themselves in the code of this proven-correct component. This is especially
true when it comes to the implementation of verified APIs that expose pub-
lic higher-order functions. Take the case of Listing 1 which portrays a Gallina
implementation of a higher-order map function on a binary tree Algebraic Data
Type (ADT). A lemma which was verified on this function is given in Listing 2;
whereas the corresponding Scala code, synthesized by Scallina, is exhibited in
Listing 3.

Listing 1. A Gallina higher-order map function on a binary tree ADT

Inductive Tree A : = Leaf | Node (v: A) (l r: Tree A).
Arguments Leaf {A}.
Arguments Node {A} _ _ _.
Fixpoint map {A B} (t: Tree A) (f: A → B) : Tree B : =
match t with

Leaf => Leaf

| Node v l r => Node (f v) (map l f) (map r f)
end.

2 https://github.com/JBakouny/Scallina/tree/v0.5.0.

https://github.com/JBakouny/Scallina/tree/v0.5.0
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Listing 2. A verified lemma on the higher-order map function

Definition compose {A B C} (g : B → C) (f : A → B) := fun x : A => g (f x).

Lemma commute : ∀ {A B C} (t: Tree A) (f: A → B) (g: B → C),

map t (compose g f) = map (map t f) g.

Listing 3. The synthesized Scala higher-order map function with the binary tree ADT

sealed abstract class Tree[+A]

case object Leaf extends Tree[Nothing]

case class Node[A](v: A, l: Tree[A], r: Tree[A]) extends Tree[A]

object Node {

def apply[A] =

(v: A) => (l: Tree[A]) => (r: Tree[A]) => new Node(v, l, r)

}

def map[A, B](t: Tree[A])(f: A => B): Tree[B] =

t match {

case Leaf => Leaf

case Node(v, l, r) => Node(f(v))(map(l)(f))(map(r)(f))

}

Unlike Gallina, the Scala programming language supports imperative con-
structs. So, for example, if a user of the map function mistakenly passes a buggy
imperative function f as second argument, the overall application would poten-
tially fail. In such a case, the failure or exception would appear to be emitted by
the verified component, even though the bug was caused by the function f that
is passed as second argument, not by the verified component.

To fix such failures, most industrial programmers would first resort to debug-
ging; searching for and understanding the root cause of the failure. Hence, the
generation of Scala components that are both readable and debuggable would
pave the way for a smoother integration of such formal methods in industry. The
synthesized Scala code should also be traceable back to the source Gallina code
representing its formal specification in order to clarify and facilitate potential
adaptations of this specification to the needs of the overall application.

Therefore, in congruence with Coq’s native extraction mechanism, the Scall-
ina translator adopts a relatively straightforward translation. It aims to generate,
as much as possible, idiomatic Scala code that is readable, debuggable and trace-
able; facilitating its integration into larger Scala and Java applications. We hope
that this would open the door for Scala and Java programmers to benefit from
the Coq proof assistant.

3 Translating a Subset of Gallina to Readable Scala Code

As mentioned in Sect. 1, Gallina is based on the calculus of inductive con-
structions and, therefore, allows the implementation of programs that are not
typable in conventional programming languages. Coq’s native extraction mech-
anism tackles this challenge by implementing a theoretical function that identi-
fies and collapses Gallina’s logical parts and types; producing untyped λ-terms
with inductive constructions that are then translated to the designated target
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ML-like language; namely OCaml or Haskell. During this translation process,
a type-checking phase approximates Coq types into ML ones, inserting unsafe
type casts where ML type errors are identified [11]. However, Scala’s type system,
which is based on DOT, significantly differs from that of OCaml and Haskell. For
instance, Scala sacrifices Hindley-Milner type inference for a richer type system
with remarkable support for subtyping and path-dependent types [1]. So, on the
one hand, Scala’s type system requires the generation of significantly more type
information but, on the other hand, can type-check some constructs that are not
typable in OCaml and Haskell.

As previously mentioned, the objective of the Scallina project is not to repeat
the extraction process for Scala but to extend the current Coq native extraction
mechanism with readable Scala code generation. For this purpose, it defines the
Scallina grammar which delimits the subset of Gallina that is translatable to
readable and traceable Scala code. This subset is based on an ML-like fragment
that includes both inductive types and a polymorphism similar to the one found
in Hindley-Milner type systems. This fragment was then augmented by intro-
ducing the support of Gallina records, which correspond to first-class modules.
In this extended fragment, the support of Gallina dependent types is limited to
path-dependent types; which is sufficient to encode system F [1].

The Scallina prototype then implements, for Gallina programs conforming
to this grammar, an optimized translation strategy aiming to produce idiomatic
Scala code similar to what a Scala programmer would usually write. For exam-
ple, as exhibited by Listings 1 and 3, ADTs are emulated by Scala case classes.
This conforms with Scala best practices [16] and is already adopted by both
Isabelle/HOL and Leon [6]. However, note that Scallina optimizes the transla-
tion of ADTs by generating a case object instead of a case class where appro-
priate; as demonstrated by Leaf. Note also that this optimization makes good
use of Scala’s variance annotations and Nothing bottom type. This use of an
object instead of a parameterless class improves both the readability and the
performance of the output Scala code. Indeed, the use of Scala singleton object
definitions removes the performance overhead of instantiating the same parame-
terless class multiple times. Furthermore, when compared to the use of a param-
eterless case class, the use of a case object increases the readability of the code
by avoiding the unnecessary insertions of empty parenthesis. This optimization,
embodied by our translation strategy, is a best practice implemented by Scala
standard library data structures such as List[+A] and Option[+A].

Since the identification and removal of logical parts and fully dependent types
are already treated by Coq’s theoretical extraction function, the Scallina proto-
type avoids a re-implementation of this algorithm but focuses on the optimized
translation of the specified Gallina subset to Scala. This supposes that a prior
removal of logical parts and fully dependent types was already done by Coq’s
theoretical extraction function and subsequent type-checking phase; catering for
a future integration of the Scallina translation strategy into Coq’s native extrac-
tion mechanism. In this context, Scallina proposes some modifications to the
latter with regards to the typing of records with path-dependent types. These
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modifications were explicitly formulated as possible future works through the
aMonoid example in [11]. Listing 4 shows a slight modification of the aMonoid

example which essentially removes its logical parts. While, as explained in [11],
the current extraction of this example produces unsafe type casts in both OCaml
and Haskell; Scallina manages to translate this example to the well-typed Scala
code shown in Listing 5.

Listing 4. The aMonoid Gallina record with its logical parts removed

Record aMonoid : Type : = newMonoid {
dom : Type;
zero : dom;
op : dom → dom → dom

}.
Definition natMonoid : = newMonoid nat 0 (fun (a: nat) (b: nat) => a + b).

Listing 5. The Scala translation of the aMonoid Gallina record

trait aMonoid {

type dom

def zero: dom

def op: dom => dom => dom

}

def newMonoid[dom](zero: dom)(op: dom => dom => dom): aMonoid = {

type aMonoid_dom = dom

def aMonoid_zero = zero

def aMonoid_op = op

new aMonoid {

type dom = aMonoid_dom

def zero: dom = aMonoid_zero

def op: dom => dom => dom = aMonoid_op

}

}

def natMonoid = newMonoid[Nat](0)((a: Nat) => (b: Nat) => a + b)

Indeed, Scallina translates Gallina records to Scala functional object-oriented
code which supports path-dependent types. In accordance with their Scala repre-
sentation given in [1], record definitions are translated to Scala traits and record
instances are translated to Scala objects. When a Gallina record definition explic-
itly specifies a constructor name, Scallina generates the equivalent Scala object
constructor that can be used to create instances of this record, as shown in List-
ing 5; otherwise, the generation of the Scala record constructor is intentionally
omitted. In both cases, Gallina record instances can be created using the named
fields syntax {| ... |} , whose translation to Scala produces conventional object
definitions or, where necessary, anonymous class instantiations. A complete and
well-commented example of a significant Gallina record translation to conven-
tional Scala object definitions is available online3. This example also contains a

3 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
list-queue.

https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
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proof showing the equivalent behavior, with regards to a given program, of two
Scala objects implementing the same trait.

A wide variety of usage examples, available online4, illustrate the range of
Gallina programs that are translatable by Scallina. These examples are part
of more than 325 test cases conducted on the current Scallina prototype and
persisted by more than 7300 lines of test code complementing 2350 lines of
program source code. A significant portion of the aforementioned Scallina usage
examples were taken from Andrew W. Appel’s Verified Functional Algorithms
(VFA) e-book [2] and then adapted according to Scallina’s coding conventions.

4 Conclusion and Perspectives

In conclusion, the Scallina project enables the translation of a significant subset
of Gallina to readable, debuggable and traceable Scala code. The Scallina gram-
mar, which formalizes this subset, facilitates the reasoning about the fragment
of Gallina that is translatable to conventional programming languages such as
Scala. The project then defines an optimized Scala translation strategy for pro-
grams conforming to the aforementioned grammar. The main contribution of
this translation strategy is its mapping of Gallina records to Scala; leveraging
the path-dependent types of this new target output language. Furthermore, it
also leverages Scala’s variance annotations and Nothing bottom type to optimize
the translation of ADTs. The Scallina prototype shows how these contributions
can be successfully transferred into a working tool. It also allows the practi-
cal Coq-based synthesis of Scala components that can be integrated into larger
applications; opening the door for Scala and Java programmers to benefit from
the Coq proof assistant.

Future versions of Scallina are expected to be integrated into Coq’s extrac-
tion mechanism by re-using the expertise acquired through the development of
the current Scallina prototype. In this context, an experimental patch for the
Coq extraction mechanism5 was implemented in 2012 but has since become
incompatible with the latest version of Coq’s source code. The implementation
of Scallina’s translation strategy into Coq’s extraction mechanism could poten-
tially benefit from this existing patch; updating it with regards to the current
state of the source code. During this process, the external implementation of
the Scallina prototype, which relies on Gallina’s stable syntax independently
from Coq’s source code, could be used to guide the aforementioned integration;
providing samples of generated Scala code as needed.

Acknowledgements. The authors would like to thank the National Council for Sci-
entific Research in Lebanon (CNRS-L) (http://www.cnrs.edu.lb/) for their funding, as
well as Murex S.A.S (https://www.murex.com/) for providing financial support.

4 https://github.com/JBakouny/Scallina/tree/v0.5.0/src/test/resources in addition
to https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/.

5 http://proofcafe.org/wiki/en/Coq2Scala.

http://www.cnrs.edu.lb/
https://www.murex.com/
https://github.com/JBakouny/Scallina/tree/v0.5.0/src/test/resources
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/
http://proofcafe.org/wiki/en/Coq2Scala
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A Appendix: Demonstration of the Scallina Translator

Scallina’s functionalities will be demonstrated through the extraction of Scala
programs from source Gallina programs. The fully executable version of the code
listings exhibited in this demo are available online6. This includes, for both of the
exhibited examples: the source Gallina code, the lemmas verifying its correctness
and the synthesized Scala code.

A.1 Selection Sort

The selection sort example in Listing 6 is taken from the VFA e-book. It essen-
tially portrays the translation of a verified program that combines Fixpoint,
Definition, let in definitions, if expressions, pattern matches and tuples.

The source code of the initial program has been modified in accordance
with Scallina’s coding conventions. The exact changes operated on the code
are detailed in its online version7 under the Selection.v file.

Listing 6. The VFA selection sort example

Require Import Coq. Arith. Arith.
Require Import Coq. Lists. List.
Fixpoint select (x: nat) (l: list nat) : nat ∗ (list nat) : =
match l with

| nil => (x, nil)
| h:: t => if x <=? h

then let (j, l1) : = select x t in (j, h:: l1)
else let (j, l1) : = select h t in (j, x:: l1)

end.
Fixpoint selsort (l : list nat) (n : nat) {struct n} : list nat : =
match l, n with

| x:: r, S n1 => let (y, r1) : = select x r

in y :: selsort r1 n1

| nil, _ => nil

| _:: _, 0 => nil

end.
Definition selection_sort (l : list nat) : list nat : = selsort l (length l).

Listing 7 portrays the theorems developed in the VFA e-book which verify
that this is a sorting algorithm. These theorems along with their proofs still hold
on the example depicted in Listing 6.

6 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0.
7 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
selection-sort.

https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/selection-sort
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/selection-sort
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Listing 7. The theorems verifying that selection sort is a sorting algorithm

(** Specification of correctness of a sorting algorithm:

it rearranges the elements into a list that is totally ordered. *)

Inductive sorted: list nat → Prop :=
| sorted_nil: sorted nil

| sorted_1: ∀ i, sorted (i:: nil)
| sorted_cons: ∀ i j l, i <= j → sorted (j::l) → sorted (i::j:: l).

Definition is_a_sorting_algorithm (f: list nat → list nat) :=
∀ al, Permutation al (f al) ∧ sorted (f al).

Definition selection_sort_correct : Prop : =
is_a_sorting_algorithm selection_sort.

Theorem selection_sort_perm:
∀ l, Permutation l (selection_sort l).

Theorem select_smallest:
∀ x al y bl, select x al = (y, bl) →

Forall (fun z => y <= z) bl.
Theorem selection_sort_sorted: ∀ al, sorted (selection_sort al).
Theorem selection_sort_is_correct: selection_sort_correct.

The verified Gallina code in Listing 6 was translated to Scala using Scallina.
The resulting Scala code is exhibited in Listing 8.

Listing 8. The synthesized Scala selection sort algorithm

import scala.of.coq.lang._

import Nat._

import Pairs._

import MoreLists._

object Selection {

def select(x: Nat)(l: List[Nat]): (Nat, List[Nat]) =

l match {

case Nil => (x, Nil)

case h :: t => if (x <= h) {

val (j, l1) = select(x)(t)

(j, h :: l1)

}

else {

val (j, l1) = select(h)(t)

(j, x :: l1)

}

}

def selsort(l: List[Nat])(n: Nat): List[Nat] =

(l, n) match {

case (x :: r, S(n1)) => {

val (y, r1) = select(x)(r)

y :: selsort(r1)(n1)

}

case (Nil, _) => Nil

case (_ :: _, Zero) => Nil

}

def selection_sort(l: List[Nat]): List[Nat] = selsort(l)(length(l))

}
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A.2 List Queue Parametricity

The list queue example in Listing 9 is taken from the test suite of Coq’s Para-
metricity Plugin8. It essentially portrays the translation of Gallina record defini-
tions and instantiations to object-oriented Scala code. It also illustrates the use
of Coq’s Parametricity plugin to prove the equivalence between the behavior of
several instantiations of the same record definition; these are then translated to
object implementations of the same Scala trait.

The source code of the initial program has been modified in accordance
with Scallina’s coding conventions. The exact changes operated on the code
are detailed in its online version9 under the ListQueueParam.v file.

Listing 9. The parametricity plugin ListQueue example

Require Import List.
Record Queue : = {

t : Type;
empty : t;
push : nat → t → t;
pop : t → option (nat ∗ t)

}.
Definition ListQueue : Queue : = {|

t : = list nat;
empty : = nil;
push : = fun x l => x :: l;
pop : = fun l =>

match rev l with

| nil => None

| hd :: tl => Some (hd, rev tl) end

|}.
Definition DListQueue : Queue : = {|

t : = (list nat) ∗ (list nat);
empty : = (nil, nil);
push : = fun x l =>

let (back, front) : = l in

(x :: back, front);
pop : = fun l =>

let (back, front) : = l in

match front with

| nil =>

match rev back with

| nil => None

| hd :: tl => Some (hd, (nil, tl))
end

| hd :: tl => Some (hd, (back, tl))
end

|}.
8 https://github.com/parametricity-coq/paramcoq.
9 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
list-queue.

https://github.com/parametricity-coq/paramcoq
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
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(* A non-dependently typed version of nat_rect. *)

Fixpoint loop {P : Type}
(op : nat → P → P) (n : nat) (x : P) : P : =
match n with

| 0 => x

| S n0 => op n0 (loop op n0 x)
end.

(*

This method pops two elements from the queue q and

then pushes their sum back into the queue.

*)

Definition sumElems(Q : Queue)( q: option Q.( t)) : option Q.( t) : =
match q with

| Some q1 =>

match (Q.( pop) q1) with

| Some (x, q2) =>

match (Q.( pop) q2) with

| Some (y, q3) => Some (Q.( push) (x + y) q3)
| None => None

end

| None => None

end

| None => None

end.
(*

This programs creates a queue of n+1 consecutive numbers (from 0 to n)

and then returns the sum of all the elements of this queue.

*)

Definition program (Q : Queue) (n : nat) : option nat : =
(* q := 0::1::2::...::n *)

let q : =
loop Q.( push) (S n) Q.( empty)

in

let q0 : =
loop

(fun _ (q0: option Q.( t)) => sumElems Q q0)
n

(Some q)
in

match q0 with

| Some q1 =>

match (Q.( pop) q1) with

| Some (x, q2) => Some x

| None => None

end

| None => None

end.

Listing 10 portrays the lemmas verifying the equivalence between the behav-
ior of either ListQueue or DListQueue when used with the given program. The
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proofs of these lemmas, which were implemented using Coq’s Parametricity plu-
gin, still hold on the example depicted in Listing 9. Instructions on how to install
the Parametricity plugin to run these machine-checkable proofs are provided
online.

Listing 10. The lemmas verifying the ListQueue parametricity example

Lemma nat_R_equal : ∀ x y, nat_R x y → x = y.
Lemma equal_nat_R : ∀ x y, x = y → nat_R x y.
Lemma option_nat_R_equal : ∀ x y, option_R nat nat nat_R x y → x = y.
Lemma equal_option_nat_R : ∀ x y, x = y → option_R nat nat nat_R x y.
Notation Bisimilar : = Queue_R.
Definition R (l1 : list nat) (l2 : list nat ∗ list nat) : =
let (back, front) : = l2 in

l1 = app back (rev front).
Lemma rev_app : ∀ A (l1 l2 : list A),

rev (app l1 l2) = app (rev l2) (rev l1).
Lemma rev_list_rect A : ∀ P: list A→ Type,

P nil →
(∀ (a: A) (l: list A), P (rev l) → P (rev (a :: l))) →
∀ l: list A, P (rev l).

Theorem rev_rect A : ∀ P: list A → Type,
P nil →
(∀ (x: A) (l: list A), P l → P (app l (x :: nil))) →

∀ l: list A, P l.
Lemma bisim_list_dlist : Bisimilar ListQueue DListQueue.
Lemma program_independent : ∀ n,

program ListQueue n = program DListQueue n.

The verified Gallina code in Listing 9 was translated to Scala using Scallina.
The resulting Scala code is exhibited in Listing 11.

Listing 11. The generated Scala ListQueue program

import scala.of.coq.lang._

import Nat._

import Pairs._

import MoreLists._

object ListQueueParam {

trait Queue {

type t

def empty: t

def push: Nat => t => t

def pop: t => Option[(Nat, t)]

}

object ListQueue extends Queue {

type t = List[Nat]

def empty: t = Nil

def push: Nat => t => t = x => l => x :: l

def pop: t => Option[(Nat, t)] = l => rev(l) match {

case Nil => None

case hd :: tl => Some((hd, rev(tl)))
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}

}

object DListQueue extends Queue {

type t = (List[Nat], List[Nat])

def empty: t = (Nil, Nil)

def push: Nat => t => t = x => { l =>

val (back, front) = l

(x :: back, front)

}

def pop: t => Option[(Nat, t)] = { l =>

val (back, front) = l

front match {

case Nil => rev(back) match {

case Nil => None

case hd :: tl => Some((hd, (Nil, tl)))

}

case hd :: tl => Some((hd, (back, tl)))

}

}

}

def loop[P](op: Nat => P => P)(n: Nat)(x: P): P =

n match {

case Zero => x

case S(n0) => op(n0)(loop(op)(n0)(x))

}

def sumElems(Q: Queue)(q: Option[Q.t]): Option[Q.t] =

q match {

case Some(q1) => Q.pop(q1) match {

case Some((x, q2)) => Q.pop(q2) match {

case Some((y, q3)) => Some(Q.push(x + y)(q3))

case None => None

}

case None => None

}

case None => None

}

def program(Q: Queue)(n: Nat): Option[Nat] = {

val q = loop(Q.push)(S(n))(Q.empty)

val q0 = loop(_ => (q0: Option[Q.t]) => sumElems(Q)(q0))(n)(Some(q))

q0 match {

case Some(q1) => Q.pop(q1) match {

case Some((x, q2)) => Some(x)

case None => None

}

case None => None

}

}

}
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