
On the Soundness of Call Graph
Construction in the Presence of Dynamic

Language Features - A Benchmark
and Tool Evaluation

Li Sui1(B) , Jens Dietrich2 , Michael Emery1, Shawn Rasheed1 ,
and Amjed Tahir1

1 Massey University Institute of Fundamental Sciences,
4410 Palmerston North, New Zealand

{L.Sui,S.Rasheed,A.Tahir}@massey.ac.nz
2 Victoria University of Wellington School of Engineering and Computer Science,

6012 Wellington, New Zealand
jens.dietrich@ecs.vuw.ac.nz

http://ifs.massey.ac.nz/, https://www.victoria.ac.nz/ecs

Abstract. Static program analysis is widely used to detect bugs and
vulnerabilities early in the life cycle of software. It models possible pro-
gram executions without executing a program, and therefore has to
deal with both false positives (precision) and false negatives (sound-
ness). A particular challenge for sound static analysis is the presence of
dynamic language features, which are prevalent in modern programming
languages, and widely used in practice.

We catalogue these features for Java and present a micro-benchmark
that can be used to study the recall of static analysis tools. In many
cases, we provide examples of real-world usage of the respective feature.
We then study the call graphs constructed with soot, wala and doop
using the benchmark. We find that while none of the tools can construct
a sound call graph for all benchmark programs, they all offer some sup-
port for dynamic language features.

We also discuss the notion of possible program execution that serves
as the ground truth used to define both precision and soundness. It turns
out that this notion is less straight-forward than expected as there are
corner cases where the (language, JVM and standard library) specifica-
tions do not unambiguously define possible executions.

Keywords: Static analysis · Call graph construction · Soundness
Benchmark · Java · Dynamic proxies · Reflection
Dynamic class loading · Invokedynamic · sun.misc.Unsafe · JNI

This work was supported by the Science for Technological Innovation (SfTI) National
Science Challenge (NSC) of New Zealand (PROP-52515-NSCSEED-MAU). The
work of the second author was supported by a faculty gift by Oracle Inc.

c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 69–88, 2018.
https://doi.org/10.1007/978-3-030-02768-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02768-1_4&domain=pdf
http://orcid.org/0000-0002-8350-5287
http://orcid.org/0000-0001-9019-6550
http://orcid.org/0000-0001-7683-4296
http://orcid.org/0000-0001-9454-1366

70 L. Sui et al.

1 Introduction

Static analysis is a popular technique to detect bugs and vulnerabilities early
in the life cycle of a program when it is still relatively inexpensive to fix those
issues. It is based on the idea to extract a model from the program without
executing it, and then to reason about this model in order to detect flaws in
the program. Superficially, this approach should be sound in the sense that all
possible program behaviour can be modelled as the entire program is available for
analysis [13]. This is fundamentally different from dynamic analysis techniques
that are inherently unsound as they depend on drivers to execute the program
under analysis, and for real-world programs, these drivers will not cover all
possible execution paths. Unfortunately, it turns out that most static analyses
are not sound either, caused by the use of dynamic language features that are
available in all mainstream modern programming languages, and prevalent in
programs. Those features are notoriously difficult to model.

For many years, research in static analysis has focused on precision [31] - the
avoidance of false positives caused by the over-abstraction of the analysis model,
and scalability. Only more recently has soundness attracted more attention, in
particular, the publication of the soundiness manifesto has brought this issue to
the fore [26].

While it remains a major research objective to make static analysis sound
(or, to use a quantitative term, to increase its recall), there is value in capturing
the state of the art in order to explore and catalogue where existing analysers fall
short. This is the aim of this paper. Our contributions are: (1) a micro-benchmark
consisting of Java programs using dynamic language features along with a call
graph oracle representing possible invocation chains, and (2) an evaluation of
the call graphs constructed with soot, wala and doop using the benchmark.

2 Background

2.1 Soundness, Precision and Recall

We follow the soundness manifesto and define the soundness of a static anal-
ysis with respect to possible program executions: “analyses are often expected
to be sound in that their result models all possible executions of the program
under analysis” [26]. Similarly, precision can be defined with respect to possible
executions as well – a precise analysis models only possible executions.

Possible program executions are the ground truth against which both sound-
ness and precision are defined. This can also be phrased as the absence of false
negatives (FNs) and false positives (FPs), respectively, adapting concepts widely
used in machine learning. In this setting, soundness corresponds to recall. Recall
has a slightly different meaning as it is measurable, whereas soundness is a qual-
ity that a system either does or does not possess.

On the Soundness of Call Graph Construction 71

2.2 Call Graphs

In our study, we focus on a particular type of program behaviour: method invo-
cations, modelled by (static) call graphs [18,32]. The aspect of possible execu-
tions to be modelled here are method invocations, i.e. that the invocation of one
source method triggers the invocation of another target method. Another way
to phrase this in terms of the Java stack is that the target method is above the
source method on the stack at some stage during program execution. We use the
phrases trigger and above to indicate that there may or may not be intermedi-
ate methods between the source and the target method. For instance, in a JVM
implemented in Java, the stack may contain intermediate methods between the
source and the target method to facilitate dispatch.

Static call graph construction has been used for many years and is widely
used to detect bugs and vulnerabilities [32,38,40]. In statically constructed call
graphs (from here on, called call graphs for short), methods are represented by
vertices, and invocations are represented by edges. Sometimes vertices and edges
have additional labels, for instance to indicate the invocation instructions being
used. This is not relevant for the work presented here and therefore omitted.
A source method invoking a target method is represented by an edge from the
(vertex representing the) source method to the (vertex representing the) target
method. We are again allowing indirect invocations via intermediate methods,
this can be easily achieved by computing the transitive closure of the call graph.

2.3 Java Programs

The scope of this study is Java, but it is not necessarily obvious what this means.
One question is which version we study. This study uses Java 8, the version widely
used at the time of writing this. Due to Java’s long history of ensuring backward
compatibility, we are confident that this benchmark will remain useful for future
versions of Java.

Another question is whether by Java we mean programs written in the Java
language, or compiled into JVM byte code. We use the later, for two reasons: (1)
most static analysis tools for Java use byte code as input (2) by using byte code,
we automatically widen the scope of our study by allowing programs written in
other languages that can be compiled into Java byte code.

By explicitly allowing byte code generated by a compiler other than the
(standard) Java compiler, we have to deal with byte code the standard compiler
cannot produce. We include some programs in the benchmark that explicitly
take advantage of this. We note that even if we restricted our study to byte code
that can be produced by the Java compiler we would still have a similar problem,
as byte code manipulation frameworks are now widely used and techniques like
Aspect-Oriented Programming [21] are considered to be an integral part of the
Java technology stack.

72 L. Sui et al.

2.4 Possible Program Executions

The notion of possible program execution is used as ground truth to assess the
soundness and the precision of call graph construction tools. This also requires
a clarification. Firstly, we do not consider execution paths that are triggered by
JVM or system (platform) errors. Secondly, none of the benchmark programs use
random inputs, all programs are deterministic. Their behaviour should therefore
be completely defined by their byte code.

It turns out that there are scenarios where the resolution of a reflective
method call is not completely specified by the specification1, and possible pro-
gram executions depend on the actual JVM. This will be discussed in more detail
in Sect. 5.1.

2.5 Dynamic Language Features

Our aim is to construct a benchmark for dynamic language features for Java. This
term is widely used informally, but some discussion is required what this actually
means, in order to define the scope of this study. In general, we are interested
in all features that allow the user to customise some aspects of the execution
semantics of a program, in particular (1) class and object life cycle (2) field access
and (3) method dispatch. There are two categories of features we consider: (1)
features built into the language itself, and exposed by official APIs. In a wider
sense, those are reflective features, given the ability of a system “to reason about
itself” [36]. Java reflection, class loading, dynamic proxies and invokedynamic fit
into this category. We also consider (2) certain features where programmers can
access extra-linguistic mechanisms. The use of native methods,sun.misc.Unsafe
and serialisation are in this category. Java is not the only language with such
features, for instance, Smalltalk also has a reflection API, the ability to customise
dispatch with doesNotUnderstand, binary object serialisation using the Binary
Object Streaming Service (BOSS), and the (unsafe-like) become method [14].

This definition also excludes certain features, in particular the study of excep-
tions and static initializers (<clinit>).

3 Related Work

3.1 Benchmarks and Corpora for Empirical Studies

Several benchmarks and datasets have been designed to assist empirical studies
in programming languages and software engineering research. One of the most
widely used benchmarks is DaCapo [6] - a set of open source, real-world Java
programs with non-trivial memory loads. DaCapo is executable as it provides
a customizable harness to execute the respective programs. The key purpose of
this benchmark is to be used to compare results of empirical studies, e.g. to
compare the performance of different JVMs. The Qualitas Corpus [39] provides

1 Meaning here a combination of the JVM Specification [2] and the documentation of
the classes of the standard library.

On the Soundness of Call Graph Construction 73

a larger set of curated Java programs intended to be used for empirical studies on
code artefacts. XCorpus [10] extends the Qualitas Corpus by adding a (partially
synthetic) driver with a high coverage.

SPECjvm2008 [3] is a multi-threaded Java benchmark focusing on core Java
functionality, mainly the performance of the JRE. It contains several executable
synthetic data sets as well as real-world programs.

Very recently, Reif et al. [30] have published a Java test suite designed to test
static analysers for their support for dynamic language features, and evaluated
wala and soot against it. While this is very similar to the approach presented
here, there are some significant differences: (1) the authors of [30] assume that
the tests (benchmark programs) “provide the ground truth”. In this study, we
question this assumption, and propose an alternative notion that also take char-
acteristics of the JVM and platform used to execute the tests into account. (2)
The study presented here also investigates doop, which we consider important as
it offers several features for advanced reflection handling. (3) While the construc-
tion of both test suites/benchmarks was motivated by the same intention, they
are different. Merging and consolidating them is an interesting area for future
research.

3.2 Approaches to Handle Dynamic Language Features in Pure
Static Analysis

Reflection: reflection [14,36] is widely used in real-world Java programs, but is
challenging for static analysis to handle [22,24]. Livshits et al. [27] introduced the
first static reflection analysis for Java, which uses points-to analysis to approxi-
mate the targets of reflective call sites as part of call graph construction. Land-
man et al. [22] investigated in detail the challenges faced by static analysers to
model reflection in Java, and reported 24 different techniques that have been
cited in the literature and existing tool. Li et al. [24] proposed elf, a static reflec-
tion analysis with the aim to improve the effectiveness of Java pointer analysis
tools. This analysis uses a self-inferencing mechanism for reflection resolution.
Elf was evaluated against doop, and as a result it was found that elf was able
to resolve more reflective call targets than doop. Smaragdakis et al. [35] further
refined the approach from [27] and [24] in terms of both recall and performance.
Wala [12] has some built-in support for reflective features like Class.forName,
Class.newInstance, and Method.invoke.

invokedynamic: Several authors have proposed support for invokedynamic. For
example, Bodden [7] provided a soot extension that supports reading, represent-
ing and writing invokedynamic byte codes. The opal static analyser also pro-
vides support for invokedynamic through replacing invokedynamic instructions
using Java LambdaMetaFactory with a standard invokestatic instruction [1].
Wala provides support for invokedynamic generated for Java 8 lambdas2.

2 https://goo.gl/1LxbSd and https://goo.gl/qYeVTd, both accessed 10 June 2018.

https://goo.gl/1LxbSd
https://goo.gl/qYeVTd

74 L. Sui et al.

Dynamic Proxies: only recently, at the time of writing this, Fourtounis et al. [15]
have proposed support for dynamic proxies in doop. This analysis shows that
there is a need for the mutually recursive handling of dynamic proxies and other
object flows via regular operations (heap loads and stores) and reflective actions.
Also, in order to be effective, static modelling of proxies needs full treatment of
other program semantics such as flow of string constants.

3.3 Hybrid Analysis

Several studies have focused on improving the recall of static analysis by adding
information obtained from a dynamic (pre-)analysis. Bodden et al. proposed
tamiflex [8]. Tamiflex runs a dynamic analyses by on instrumented code. The
tool logs all reflective calls and feeds this information into a static analysis, such
as soot. Grech et al. [17] proposed heapdl, a tool similar to tamiflex that also
uses heap snapshots to further improve recall (compared to tamiflex). Mirror by
Liu et al. [25] is a hybrid analysis specifically developed to resolve reflective call
sites while minimising false positives.

Andreasen et al. [4] used a hybrid approach that combines soundness testing,
blended analysis, and delta debugging for systematically guiding improvements
of soundness and precision of TAJS - a static analyser for JavaScript. Soundness
testing is the process of comparing the analysis results obtained from a pure
static analysis with the concrete states that are observed by a dynamic analysis,
in order to observe unsoundness.

Sui et al. [37] extracted reflective call graph edges from stack traces obtained
from GitHub issue trackers and Stack Overflow Q&A forums to supplement
statically built call graphs. Using this method, they found several edges doop
(with reflection analysis enabled) was not able to compute. Dietrich et al. [11]
generalised this idea and discuss how to generate soundness oracles that can be
used to examine the unsoundness of a static analysis.

3.4 Call Graph Construction

Many algorithms have been proposed to statically compute call graphs. A com-
parative study of some of those algorithms was presented by Tip and Palsberg
[40]. Class Hierarchy Analysis (CHA) [18] is a classic call graph algorithm that
takes class hierarchy information into account. It assumes that the type of a
receiver object (at run time) is possibly any subtype of the declared type of the
receiver object at the call site. CHA is imprecise, but fast. Rapid Type Analysis
(RTA) extends CHA by taking class instantiation information into considera-
tion, by restricting the possible runtime types to classes that are instantiated
in the reachable part of the program [5]. Variable Type Analysis (VTA) mod-
els the assignments between different variables by generating subset constraints,
and then propagates points-to sets of the specific runtime types of each variable
along these constraints [38]. k-CFA analyses [34] add various levels of call site
sensitivity to the analysis.

On the Soundness of Call Graph Construction 75

Murphy et al. [29] presented one of the earlier empirical studies in this space,
which focused on comparing the results of applying 9 static analysis tools (includ-
ing tools like GNU cflow) for extracting call graphs from 3 C sample programs.
As a results, the extracted call graphs were found to vary in size, which makes
them potentially unreliable for developers to use. While this was found for C
call graph extractors, it is still likely that the same problem will apply to extrac-
tors in other languages. Lhoták [23] proposed tooling and an interchange format
to represent and compare call graphs produced by different tools. We use the
respective format in our work.

4 The Benchmark

4.1 Benchmark Structure

The benchmark is organised as a Maven3 project using the standard project
layout. The actual programs are organised in name spaces (packages) reflecting
their category. Programs are minimalistic, and their behaviour is in most cases
easy to understand for an experienced programmer by “just looking at the pro-
gram”. All programs have a source() method and one or more other methods,
usually named target(..).

Each program has an integrated oracle of expected program behaviour,
encoded using standard Java annotations. Methods annotated with @Source
are call graph sources: we consider the program behaviour triggered by the
execution of those methods from an outside client. Methods annotated with
@Target are methods that may or may not be invoked directly or indirectly
from a call site in the method annotated with @Source. The expectation whether
a target method is to be invoked or not is encoded in the @Target annota-
tion’s expectation attribute that can be one of three values: Expected.YES
– the method is expected to be invoked , Expected.NO – the method is not
expected to be invoked, or Expected.MAYBE – exactly one of the methods with
this annotation is expected to be invoked, but which one may depend on the
JVM to be used. For each program, either exactly one method is annotated
with @Target(expectation=Expected.YES), or some methods are annotated
with @Target(expectation=Expected.MAYBE.

The benchmark contains a Vanilla program that defines the base case: a
single source method that has a call site where the target method is invoked
using a plain invokevirtual instruction. The annotated example is shown in
Listing 1.1, this also illustrates the use of the oracle annotations.

3 https://maven.apache.org/, accessed 30 August 2018.

https://maven.apache.org/

76 L. Sui et al.

1 public class Van i l l a {
2 public boolean TARGET = fa l se ;
3 public boolean TARGET2 = fa l se ;
4 @Source public void source () {
5 t a r g e t () ;
6 }
7 @Target (expec ta t i on = YES) public void t a r g e t () {
8 this .TARGET = true ;
9 }

10 @Target (expec ta t i on = NO) public void t a r g e t (int o) {
11 this .TARGET2 = true ;
12 }
13 }

Listing 1.1. Vanilla program source code (simplified)

The main purpose of the annotations is to facilitate the set up of experiments
with static analysers. Since the annotations have a retention policy that makes
them visible at runtime, the oracle to test static analysers can be easily inferred
from the benchmark program. In particular, the annotations can be used to test
for both FNs (soundness issues) and FPs (precision issues).

In Listing 1.1, the target method changes the state of the object by setting the
TARGET flag. The purpose of this feature is to make invocations easily observable,
and to confirm actual program behaviour by means of executing the respective
programs by running a simple client implemented as a junit test. Listing 1.2
shows the respective test for Vanilla – we expect that after an invocation of
source() by the test driver, target() will have been called after source() has
returned , and we check this with an assertion check on the TARGET field. We
also tests for methods that should not be called, by checking that the value of
the respective field remains false.

1 public class Vani l l aTes t {
2 private Van i l l a v a n i l l a ;
3 @Before public void setUp () throws Exception {
4 v an i l l a = new Van i l l a () ;
5 v an i l l a . source () ;
6 }
7 @Test public void testTargetMethodBeenCalled () {
8 Assert . a s se r tTrue (v a n i l l a .TARGET) ;
9 }

10 @Test public void testTarget2MethodHasNotBeenCalled () {
11 Assert . a s s e r tFa l s e (v a n i l l a .TARGET2) ;
12 }
13 }

Listing 1.2. Vanilla test case (simplified)

On the Soundness of Call Graph Construction 77

4.2 Dynamic Language Features and Vulnerabilities

One objective for benchmark construction was to select features that are of inter-
est to static program analysis, as there are known vulnerabilities that exploit
those features. Since the discussed features allow bypassing Java’s security
model, which relies on information-hiding, memory and type safety, Java secu-
rity vulnerabilities involving their use have been reported that have implications
ranging from attacks on confidentiality, integrity and the availability of appli-
cations. Categorised under the Common Weakness Enumeration (CWE) clas-
sification, untrusted deserialisation, unsafe reflection, type confusion, untrusted
pointer dereferences and buffer overflow vulnerabilities are the most notable.

CVE-2015-7450 is a well-known serialisation vulnerability in the Apache
Commons Collections library. It lets an attacker execute arbitrary commands
on a system that uses unsafe Java deserialisation. Use of reflection is common in
vulnerabilities as discussed by Holzinger et al. [19] where the authors discover
that 28 out of 87 exploits studied utilised reflection vulnerabilities. An exam-
ple is CVE-2013-0431, affecting the Java JMX API, which allows loading of
arbitrary classes and invoking their methods. CVE-2009-3869, CVE-2010-3552,
CVE-2013-08091 are buffer overflow vulnerabilities involving the use of native
methods. As for vulnerabilities that use the Unsafe API, CVE-2012-0507 is a vul-
nerability in AtomicReferenceArray which uses Unsafe to store a reference in
an array directly that can violate type safety and permit escaping the sandbox.
CVE-2016-4000 and CVE-2015-3253 reported for Jython and Groovy are due
to serialisable invocation handlers for proxy instances. While we are not aware
of vulnerabilities that exploit invokedynamic directly, there are several CVEs
that exploit the method handle API used in the invokedynamic bootstrapping
process, including CVE-2012-5088, CVE-2013-2436 and CVE-2013-0422.

The following subsections contain a high-level discussion of the various cat-
egories of programs in the benchmark. A detailed discussion of each program
is not possible within the page limit, the reader is referred to the benchmark
repository for more details.

4.3 Reflection

Java’s reflection protocol is widely used and it is the foundation for many frame-
works. With reflection, classes can be dynamically instantiated, fields can be
accessed and manipulated, and methods can be invoked. How easily reflection
can be modelled by a static analysis highly depends on the usage context. In
particular, a reflective call site for Method.invoke can be easily handled if the
parameter at the method access site (i.e., the call site of Class.getMethod or
related methods) are known, for instance, if method name and parameter types
can be inferred. Existing static analysis support is based on this wider idea.

However, this is not always possible. The data needed to accurately identify
an invoked method might be supplied by other methods (therefore, the static
analysis must be inter-procedural to capture this), only partially available (e.g.,
if only the method name can safely be inferred, a static analysis may decide to

78 L. Sui et al.

over-approximate the call graph and create edges for all possible methods with
this name), provided through external resources (a popular pattern in enterprise
frameworks like spring, service loaders, or JEE web applications), or some cus-
tom procedural code. All of those usage patterns do occur in practice [22,24],
and while exotic uses of reflection might be rare, they are also the most inter-
esting ones as they might be used in the kind of vulnerabilities static analysis is
interested to find.

The benchmark examples reflect this range of usage patterns from trivial to
sophisticated. Many programs overload the target method, this is used to test
whether a static analysis tool achieves sound reflection handling at the price of
precision.

4.4 Reflection with Ambiguous Resolution

As discussed in Sect. 2, we also consider scenarios where a program is (at least
partially) not generated by javac. Since at byte code level methods are iden-
tified by a combination of name and descriptor, the JVM supports return type
overloading, and the compiler uses this, for instance, in order to support co-
variant return types [16, Sect. 8.4.5] by generating bridge methods. This raises
the question how the methods in java.lang.Class used to locate methods
resolve ambiguity as they use only name and parameter types, but not the
return type, as parameters. According to the respective class documentation,
“If more than one method with the same parameter types is declared in a class,
and one of these methods has a return type that is more specific than any of the
others, that method is returned; otherwise one of the methods is chosen arbitrar-
ily”4. In case of return type overloading used in bridge methods, this rule still
yields an unambiguous result, but one can easily engineer byte code where the
arbitrary choice clause applies. The benchmark contains a respective example,
dpbbench.ambiguous.ReturnTypeOverloading. There are two target methods,
one returning java.util.Set and one returning java.util.List. Since neither
return type is a subtype of the other type, the JVM is free to choose either. In
this case we use the @Target (expectation=MAYBE) annotation to define the
oracle. We acknowledge that the practical relevance of this might be low at the
moment, but we included this scenario as it highlights that the concept of pos-
sible program behaviour used as ground truth to assess the soundness of static
analysis is not as clear as it is widely believed. Here, possible program executions
can be defined either with respect to all or some JVMs.

It turns out that Oracle JRE 1.8.0 144/OpenJDK JRE 1.8.0 40 on the
one hand and IBM JRE 1.8.0 171 on the other hand actually do select dif-
ferent methods here. We have also observed that IBM JRE 1.8.0 171 chooses
the incorrect method in the related dpbbench.reflection.invocation.
ReturnTypeOverloading scenario (note the different package name). In this
scenario, the overloaded target methods return java.util.Collection and
java.util.List, respectively, and the IBM JVM dispatches to the method

4 https://goo.gl/JG9qD2, accessed 24 May 2018.

https://goo.gl/JG9qD2

On the Soundness of Call Graph Construction 79

returning java.util.Collection in violation of the rule stipulated in the API
specification. We reported this as a bug, and it was accepted and fixed report5.

A similar situation occurs when the selection of the target method
depends on the order of annotations returned via the reflective API.
This scenario does occur in practice, for instance, the use of this pat-
tern in the popular log4j library is discussed in [37]. The reflection API
does not impose constraints on the order of annotations returned by
java.lang.reflect.Method.getDeclaredAnnotations(), therefore, programs
have different possible executions for different JVMs.

1 public c lass Invocat ion {
2 public boolean TARGET = fa l se ;

3 public boolean TARGET2 = fa l se ;

4 @Retention (RUNTIME) @Target (METHOD) @inte r f a ce Method{}
5 @Source public void source () throws Exception {
6 for (Method method : Invocat ion . class . getDeclaredMethods ()){
7 i f (method . i sAnnotat ionPresent (Method . class)){
8 method . invoke (this , null) ;

9 return ;

10 } } } }
11 @Method @Target (expec ta t i on=MAYBE) public void t a r g e t () {
12 this .TARGET =true ;

13 }
14 @Method @Target (expec ta t i on=MAYBE) public void t a rge t2 () {
15 this .TARGET2 =true ;

16 }
17 }
Listing 1.3. Example where the selection of the target method depends on the JVM
being used (simplified)

When executing those two examples and recording the actual call graphs, we
observe that the call graphs differ depending on the JVM being used. For
instance, in the program in Listing 1.3, the target method selected at the call
site in source() is target() for both Oracle JRE 1.8.0 144 and OpenJDK JRE
1.8.0 40 , and target2() for IBM JRE 1.8.0 171.

4.5 Dynamic Classloading

Java distinguishes between classes and class loaders. This can be used to dynam-
ically load, or even generate classes at runtime. This is widely used in practice,
in particular for frameworks that compile embedded scripting or domain-specific
languages “on the fly”, such as Xalan6.

There is a single example in the benchmark that uses a custom classloader
to load and instantiate a class. The constructors of the respective class are the
expected target methods.

5 https://github.com/eclipse/openj9/pull/2240, accessed 16 August 2018.
6 https://xalan.apache.org, accessed 4 June 2018.

https://github.com/eclipse/openj9/pull/2240
https://xalan.apache.org

80 L. Sui et al.

4.6 Dynamic Proxies

Dynamic proxies were introduced in Java 1.3, they are similar to protocols like
Smalltalk’s doesNotUnderstand, they capture calls to unimplemented meth-
ods via an invocation handler. A major application is to facilitate distributed
object frameworks like CORBA and RMI, but dynamic proxies are also used
in mock testing frameworks. For example, in the XCorpus dataset of 75 real-
world programs, 13 use dynamic proxies [10] (implement InvocationHandler
and have call sites for Proxy.newProxyInstance). Landman et al. observed that
“all [state-of-the-art static analysis] tools assume .. absence of Proxy classes” [22].

The benchmark contains a single program in the dynamicProxy category. In
this program, the source method invokes an interface method foo() through an
invocation handler. In the invocation handler, target(String) is invoked. The
target method is overloaded in order to test the precision of the analysis.

4.7 Invokedynamic

The invokedynamic instruction was introduced in Java 7. It gives the user more
control over the method dispatch process by using a user-defined bootstrap
method that computes the call target. While the original motivation behind
invokedynamic was to provide support for dynamic languages like Ruby, its
main (and in the OpenJDK 8, only) application is to provide support for lamb-
das. In OpenJDK 9, invokedynamic is also used for string concatenation [33].

For known usage contexts, support for invokedynamic is possible. If
invokedynamic is used with the LambdaMetafactory, then a tool can rewrite
this byte code, for instance, by using an alternative byte code sequence that com-
piles lambdas using anonymous inner classes. The Opal byte code rectifier [1]
is based on this wider idea, and can be used as a standalone pre-processor for
static analysis. The rewritten byte code can then be analysed “as usual”.

The benchmark contains three examples defined by Java sources with dif-
ferent uses of lambdas. The fourth examples is engineered from byte code
and is an adapted version of the dynamo compiler example from [20]. Here,
invokedynamic is used for a special compilation of component boundary meth-
ods in order to improve binary compatibility. The intention of including this
example is to distinguish between invokedynamic for particular usage patterns,
and general support for invokedynamic.

4.8 Serialisation

Java serialisation is a feature that is used in order to export object graphs to
streams, and vice versa. This is a highly controversial feature, in particular after
a large number of serialisation-related vulnerabilities were reported in recent
years [9,19].

The benchmark contains a single program in this category that relates to
the fact that (de-)serialisation offers an extra-linguistic mechanism to construct
objects, avoiding constructors. The scenario constructs an object from a stream,

On the Soundness of Call Graph Construction 81

and then invokes a method on this object. The client class is not aware of the
actual type of the receiver object, as the code contains no allocation site.

4.9 JNI

The Java Native Interface (JNI) is a framework that enables Java to call and be
called by native applications. There are two programs using JNI in the bench-
mark. The first scenario uses a custom Runnable to be started by Thread.start.
In the Java 8 (OpenJDK 8), Runnable.run is invoked by Thread.start via an
intermediate native method Thread.start0(). This is another scenario that can
be handled by static analysis tools that can deal with common usage patterns,
rather than with the general feature. The second program is a custom example
that uses a grafted method implemented in C.

4.10 sun.misc.Unsafe

The class sun.misc.Unsafe (unsafe for short) offers several low level APIs that
can bypass constraints built into standard APIs. Originally intended to facil-
itate the implementation of platform APIs, and to provide an alternative for
JNI, this feature is now widely used outside the Java platform libraries [28]. The
benchmark contains four programs in this category, (1) using unsafe to load a
class (defineClass), (2) to throw an exception (throwException), (3) to allo-
cate an instance (allocateInstance) and (4) to swap references (putObject,
objectFieldOffset). leads to an error that was r

5 Experiments

5.1 Methodology

We conducted an array of experiments with the benchmark. In particular, we
were interested to see whether the benchmark examples were suitable to differ-
entiate the capabilities of mainstream static analysis frameworks. We selected
three frameworks based on (1) their wide use in the community, evidenced by
citation counts of core papers, indicating that the respective frameworks are
widely used, and therefore issues in those frameworks will have a wider impact
on the research community, (2) the respective frameworks claim to have some
support for dynamic language features, in particular reflection, (3) the respec-
tive projects are active, indicating that the features of those frameworks will
continue to have an impact.

Based on those criteria, we evaluated soot-3.1.0, doop7 and wala-1.4.3. For
each tool, we considered a basic configuration, and an advanced configuration to
switch on support for advanced language features. All three tools have options

7 As doop does not release versions, we used a version built from commit
4a94ae3bab4edcdba068b35a6c0b8774192e59eb.

82 L. Sui et al.

to switch those features on. This reflects the fact that advanced analysis is not
free, but usually comes at the price of precision and scalability.

Using these analysers, we built call graphs using a mid-precision, context-
insensitive variable type analysis. Given the simplicity of our examples, where
each method has at most one call site, we did not expect that context sensitivity
would have made a difference. To the contrary, a context-sensitive analysis com-
putes a smaller call graph, and would therefore have reduced the recall of the
tool further. On the other hand, a less precise method like CHA could have led
to a misleading higher recall caused by the accidental coverage of target methods
as FPs.

For wala, we used the 0-CFA call graph builder. By default, we
set com.ibm.wala.ipa.callgraph.AnalysisOptions.ReflectionOptions to
NONE, in the advanced configuration used, it was set to FULL.

For soot, we used spark ("cg.spark=enabled,cg.spark=vta"). For
the advanced configuration, we also used the "safe-forname" and the
"safe-newinstance" options. There is another option to support the resolu-
tion of reflective call sites, types-for-invoke. Enabling this option leads to an
error that was reported, but at the time of writing this issue has not yet been
resolved8.

For doop, we used the following options: context-insensitive, ignore-
mainmethod, only-application-classes-fact-gen. For the advanced config-
uration, we also enabled reflection reflection-classic reflection-high-
soundness-mode reflection-substring-analysis reflection-invent-
unknownobjects reflection-refined-objects and reflection-specula
tive-use-based-analysis.

We did not consider any hybrid pre-analysis, such as tamiflex [8], this was
outside the scope of this study. This will be discussed in more detail in Sect. 5.3.

The experiments were set up as follows: for each benchmark program, we used
a lightweight byte code analysis to extract the oracle from the @Target annota-
tions. Then we computed the call graph with the respective static analyser using
the method annotated as @Source as entry point, and stored the result in probe
format [23]. Finally, using the call graph, we computed the FPs and FNs of the
static call graph with respect to the oracle, using the annotations as the ground
truth. For each combination of benchmark program and static analyser, we com-
puted a result state depending on the annotations found in the methods reachable
from the @Source-annotated method in the computed call graph as defined in
Table 1. For instance, the state ACC (for accurate) means that in the computed
call graph, all methods annotated with @Target(expectation=YES) and none
of the methods annotated with @Target(expectation=NO) are reachable from
the method annotated with @Source. The FP and FN indicate the presence of
false positive (imprecision) and false negatives (unsoundness), respectively, the
FN+FP state indicates that the results of the static analysis are both unsound
and imprecise. Reachable means that there is a path. This is slightly more gen-

8 https://groups.google.com/forum/m/#!topic/soot-list/xQwsU7DlmqM, accessed 5
June 2018.

https://groups.google.com/forum/m/#!topic/soot-list/xQwsU7DlmqM

On the Soundness of Call Graph Construction 83

eral than looking for an edge and takes the fact into account that a particular
JVM might use intermediate methods to implement a certain dynamic invoca-
tion pattern.

Table 1. Result state definitions for programs with consistent behaviour across differ-
ent JVMs

Result Methods reachable from source by annotation

State @Target(expectation=YES) @Target(expectation=NO)

ACC All None

FP All Some

FN None None

FN+FP None Some

Figure 1(a) illustrates this classification. As discussed in Sect. 4.4, there are
programs that use the @Target(expectation=MAYBE) annotation, indicating
that actual program behaviour is not defined by the specification, and depends
on the JVM being used. This is illustrated in Fig. 1(b).

For the programs that use the @Target(expectation=MAYBE) annotation, we
had to modify this definition according to the semantics of the annotation: during
execution, exactly one of these methods will be invoked, but it is up to the partic-
ular JVM to decide which one. We define result states as shown in Table 2. Note
that the @Target(expectation=YES) and the @Target(expectation=MAYBE)
annotations are never used for the same program, and there is at most one
method annotated with @Target(expectation=YES) in a program.

Fig. 1. Observed vs computed call graph

84 L. Sui et al.

This definition is very lenient - we assess the results of a static analyser
as sound (ACC or FP) if it does compute a path that links the source with
any possible target. This means that soundness is defined with respect to the
behaviour observed with only some, but not all, JVMs.

Table 2. Result state definition for programs with behaviour that depends on the JVM

Result Methods reachable from source by annotation

State @Target(expectation=MAYBE) @Target(expectation=NO)

ACC Some None

FP Some Some

FN None None

FN+FP None Some

5.2 Reproducing Results

The benchmark and the scripts used to obtain the results can be found in the
following public repository: https://bitbucket.org/Li Sui/benchmark/. Further
instructions can be found in the repository README.md file.

5.3 Results and Discussion

Results are summarised in Table 3. As expected, none of the static analysers
tested handled all features soundly. For wala and doop, there are significant dif-
ferences between the plain and the advanced modes. In the advanced mode, both
handle simple usage patterns of reflection well, but in some cases have to resort
to over-approximation to do so. Wala also has support for certain usage pat-
terns of other features: it models invokedynamic instructions generated by the
compiler for lambdas correctly, and also models the intermediate native call in
Thread.start. This may be a reflection of the maturity and stronger industrial
focus of the tool. Wala also models the dynamic proxy when in advanced mode.
We note however that we did not test doop with the new proxy-handling features
that were just added very recently [15].

While soot does not score well, even when using the advanced mode, we note
that soot has better integration with tamiflex and therefore uses a fundamentally
different approach to soundly model dynamic language features. We did not
include this in this study. How well a dynamic (pre-) analysis works depends
a lot on the quality (coverage) of the driver, and for the micro-benchmark we
have used we can construct a perfect driver. Using soot with tamiflex with such
a driver would have yielded excellent results in terms of accuracy, but those
results would not have been very meaningful.

None of the frameworks handles any of the Unsafe scenarios well. There is
one particular program where all analysers compute the wrong call graph edge:

https://bitbucket.org/Li_Sui/benchmark/

On the Soundness of Call Graph Construction 85

the target method is called on a field that is initialised as new Target(), but
between the allocation and the invocation of target() the field value is swapped
for an instance of another type using Unsafe.putObject. While this scenario
appears far-fetched, we note that Unsafe is widely used in libraries [28], and has
been exploited (see Sect. 4.2).

Table 3. Static call graph construction evaluation results, reporting the number of
programs with the respective result state, format: (number obtained with basic config-
uration)/(number obtained with advanced configuration)

Category Analyser ACC FN FP FN+FP

Vanilla soot 1/1 0/0 0/0 0/0

wala 1/1 0/0 0/0 0/0

doop 1/1 0/0 0/0 0/0

Reflection soot 0/1 12/11 0/0 0/0

wala 0/4 12/3 0/5 0/0

doop 0/0 12/8 0/4 0/0

Dynamic class loading soot 0/0 1/1 0/0 0/0

wala 0/0 1/1 0/0 0/0

doop 0/0 1/1 0/0 0/0

Dynamic proxy soot 0/0 1/1 0/0 0/0

wala 0/1 1/0 0/0 0/0

doop 0/0 1/1 0/0 0/0

Invokedynamic soot 0/0 4/4 0/0 0/0

wala 3/3 1/1 0/0 0/0

doop 0/0 4/4 0/0 0/0

JNI soot 1/1 1/1 0/0 0/0

wala 1/1 1/1 0/0 0/0

doop 0/0 2/2 0/0 0/0

Serialisation soot 1/1 0/0 0/0 0/0

wala 1/1 0/0 0/0 0/0

doop 0/0 1/1 0/0 0/0

Unsafe soot 0/0 2/2 1/1 1/1

wala 0/0 2/2 1/1 1/1

doop 0/0 2/2 1/1 1/1

Reflection-ambiguous soot 0/0 2/2 0/0 0/0

wala 0/0 2/0 0/2 0/0

doop 0/0 2/1 0/1 0/0

86 L. Sui et al.

6 Conclusion

In this paper, we have presented a micro-benchmark that describes the usage
of dynamic language features in Java, and an experiment to assess how popular
static analysis tools support those features. It is not surprising that in many
cases the constructed call graphs miss edges, or only achieve soundness by com-
promising on precision.

The results indicate that it is important to distinguish between the actual
features, and a usage context for those features. For instance, there is a sig-
nificant difference between supporting invokedynamic as a general feature, and
invokedynamic as it is used by the Java 8 compiler for lambdas. The benchmark
design and the results of the experiments highlights this difference.

We do not expect that static analysis tools will support all of those features
and provide a sound and precise call graph in the near future. Instead, many
tools will continue to focus on particular usage patterns such as “support for
reflection used in the Spring framework”, which have the biggest impact on
actual programs, and therefore should be prioritised. However, as discussed using
examples throughout the paper, more exotic usage patterns do occur, and can
be exploited, so they should not be ignored. The benchmark can provide some
guidance for tool builders here.

An interesting insight coming out of this study is that notions like actual
programs behaviour and possible program executions are not as clearly defined
as widely thought. This is particularly surprising in the context of Java (even in
programs that do not use randomness, concurrency or native methods), given
the strong focus of the Java platform on writing code once, and run it anywhere
with consistent program behaviour. This has implications for the very definitions
of soundness and precision. We have suggested a pragmatic solution, but we feel
that a wider discussion of these issues is needed.

Acknowledgement. We thank Paddy Krishnan, Francois Gauthier and Michael
Eichberg for their comments.

References

1. Invokedynamic rectifier/project serializer. http://www.opal-project.de/Developer
Tools.html

2. The Java language specification. https://docs.oracle.com/javase/specs
3. SPECjvm2008 benchmark. www.spec.org/jvm2008
4. Andreasen, E.S., Møller, A., Nielsen, B.B.: Systematic approaches for increasing

soundness and precision of static analyzers. In: Proceedings of SOAP 2017. ACM
(2017)

5. Bacon, D.F., Sweeney, P.F.: Fast static analysis of c++ virtual function calls. In:
Proceedings of the OOPSLA 1996. ACM (1996)

6. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: Proceedings of the OOPSLA 2006. ACM (2006)

7. Bodden, E.: Invokedynamic support in soot. In: Proceedings of the SOAP 2012.
ACM (2012)

http://www.opal-project.de/DeveloperTools.html
http://www.opal-project.de/DeveloperTools.html
https://docs.oracle.com/javase/specs
www.spec.org/jvm2008

On the Soundness of Call Graph Construction 87

8. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
aiding static analysis in the presence of reflection and custom class loaders. In:
Proceedings of the ICSE 2011. ACM (2011)

9. Dietrich, J., Jezek, K., Rasheed, S., Tahir, A., Potanin, A.: Evil pickles: DoS attacks
based on object-graph engineering. In: Proceedings of the ECOOP 2017. LZI (2017)

10. Dietrich, J., Schole, H., Sui, L., Tempero, E.: XCorpus-an executable corpus of
Java programs. JOT 16(4), 1:1–24 (2017)

11. Dietrich, J., Sui, L., Rasheed, S., Tahir, A.: On the construction of soundness
oracles. In: Proceedings of the SOAP 2017. ACM (2017)

12. Dolby, J., Fink, S.J., Sridharan, M.: T.J. Watson Libraries for Analysis (2015).
http://wala.sourceforge.net

13. Ernst, M.D.: Static and dynamic analysis: synergy and duality. In: Proceedings of
the WODA 2003 (2003)

14. Foote, B., Johnson, R.E.: Reflective facilities in Smalltalk-80. In: Proceedings of
the OOPSLA 1989. ACM (1989)

15. Fourtounis, G., Kastrinis, G., Smaragdakis, Y.: Static analysis of Java dynamic
proxies. In: Proceedings of the ISSTA 2018. ACM (2018)

16. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification. Java Series, Java SE 8 edn. Addison-Wesley Professional, Boston (2014)

17. Grech, N., Fourtounis, G., Francalanza, A., Smaragdakis, Y.: Heaps don’t lie: coun-
tering unsoundness with heap snapshots. In: Proceedings of the OOPSLA 2017.
ACM (2017)

18. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-
oriented languages. In: Proceedings of the OOPSLA 1997. ACM (1997)

19. Holzinger, P., Triller, S., Bartel, A., Bodden, E.: An in-depth study of more than
ten years of Java exploitation. In: Proceedings of the CCS 2016. ACM (2016)

20. Jezek, K., Dietrich, J.: Magic with dynamo-flexible cross-component linking for
Java with invokedynamic. In: Proceedings of the ECOOP 2016. LZI (2016)

21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

22. Landman, D., Serebrenik, A., Vinju, J.J.: Challenges for static analysis of Java
reflection-literature review and empirical study. In: Proceedings of the ICSE 2017.
IEEE (2017)

23. Lhoták, O.: Comparing call graphs. In: Proceedings of the PASTE 2007. ACM
(2007)

24. Li, Y., Tan, T., Sui, Y., Xue, J.: Self-inferencing reflection resolution for Java. In:
Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 27–53. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44202-9 2

25. Liu, J., Li, Y., Tan, T., Xue, J.: Reflection analysis for Java: uncovering more
reflective targets precisely. In: Proceedings of the ISSRE 2017. IEEE (2017)

26. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral, J.N., Chang,
B.Y.E., Guyer, S.Z., Khedker, U.P., Møller, A., Vardoulakis, D.: In defense of
soundiness: a manifesto. CACM 58(2), 44–46 (2015)

27. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005). https://
doi.org/10.1007/11575467 11

28. Mastrangelo, L., Ponzanelli, L., Mocci, A., Lanza, M., Hauswirth, M., Nystrom,
N.: Use at your own risk: the Java unsafe API in the wild. In: Proceedings of the
OOPSLA 2015. ACM (2015)

http://wala.sourceforge.net
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/11575467_11
https://doi.org/10.1007/11575467_11

88 L. Sui et al.

29. Murphy, G.C., Notkin, D., Griswold, W.G., Lan, E.S.: An empirical study of static
call graph extractors. ACM TOSEM 7(2), 158–191 (1998)

30. Reif, M., Kübler, F., Eichberg, M., Mezini, M.: Systematic evaluation of the
unsoundness of call graph construction algorithms for Java. In: Proceedings of
the SOAP 2018. ACM (2018)

31. Rountev, A., Kagan, S., Gibas, M.: Evaluating the imprecision of static analysis.
In: Proceedings of the PASTE 2004. ACM (2004)

32. Ryder, B.G.: Constructing the call graph of a program. IEEE TSE 3, 216–226
(1979)

33. Shipilev, A.: JEP 280: indify string concatenation. http://openjdk.java.net/jeps/
280

34. Shivers, O.: Control-flow analysis of higher-order languages. Ph.D. thesis, Carnegie
Mellon University (1991)

35. Smaragdakis, Y., Balatsouras, G., Kastrinis, G., Bravenboer, M.: More sound static
handling of Java reflection. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS,
vol. 9458, pp. 485–503. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26529-2 26

36. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the POPL 1984.
ACM (1984)

37. Sui, L., Dietrich, J., Tahir, A.: On the use of mined stack traces to improve the
soundness of statically constructed call graphs. In: Proceedings of the APSEC 2017.
IEEE (2017)

38. Sundaresan, V., et al.: Practical virtual method call resolution for Java. In: Pro-
ceedings of the OOPSLA 2000. ACM (2000)

39. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: Qualitas corpus: a curated collection of Java code for empirical studies.
In: Proceedings of the APSEC 2010 (2010)

40. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: Proceedings of the OOPSLA 2000. ACM (2000)

http://openjdk.java.net/jeps/280
http://openjdk.java.net/jeps/280
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1007/978-3-319-26529-2_26

	On the Soundness of Call Graph Construction in the Presence of Dynamic Language Features - A Benchmark and Tool Evaluation
	1 Introduction
	2 Background
	2.1 Soundness, Precision and Recall
	2.2 Call Graphs
	2.3 Java Programs
	2.4 Possible Program Executions
	2.5 Dynamic Language Features

	3 Related Work
	3.1 Benchmarks and Corpora for Empirical Studies
	3.2 Approaches to Handle Dynamic Language Features in Pure Static Analysis
	3.3 Hybrid Analysis
	3.4 Call Graph Construction

	4 The Benchmark
	4.1 Benchmark Structure
	4.2 Dynamic Language Features and Vulnerabilities
	4.3 Reflection
	4.4 Reflection with Ambiguous Resolution
	4.5 Dynamic Classloading
	4.6 Dynamic Proxies
	4.7 Invokedynamic
	4.8 Serialisation
	4.9 JNI
	4.10 sun.misc.Unsafe

	5 Experiments
	5.1 Methodology
	5.2 Reproducing Results
	5.3 Results and Discussion

	6 Conclusion
	References

